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Preface

“There is something fascinating about science.
One gets such wholesale returns of conjecture
out of such a trifling investment of fact.”

Mark Twain, Life on the Mississippi

The challenges in succeeding with computational science are numerous and
deeply affect all disciplines. NSF’s 2006 Blue Ribbon Panel of Simulation-Based
Engineering Science (SBES)1 states ‘researchers and educators [agree]: compu-
tational and simulation engineering sciences are fundamental to the security
and welfare of the United States...We must overcome difficulties inherent in
multiscale modeling, the development of next-generation algorithms, and the
design...of dynamic data-driven application systems...We must determine better
ways to integrate data-intensive computing, visualization, and simulation. Im-
portantly, we must overhaul our educational system to foster the interdisciplinary
study...The payoffs for meeting these challenges are profound.’ The International
Conference on Computational Science 2009 (ICCS 2009) explored how compu-
tational sciences are not only advancing the traditional hard science disciplines,
but also stretching beyond, with applications in the arts, humanities, media
and all aspects of research. This interdisciplinary conference drew academic and
industry leaders from a variety of fields, including physics, astronomy, mathe-
matics, music, digital media, biology and engineering. The conference also hosted
computer and computational scientists who are designing and building the cy-
ber infrastructure necessary for next-generation computing. Discussions focused
on innovative ways to collaborate and how computational science is changing
the future of research. ICCS 2009: ‘Compute. Discover. Innovate.’ was hosted
by the Center for Computation and Technology at Louisiana State University
in Baton Rouge. Talks and presentations at this conference focused on new ap-
plications for high-performance computing, including petascale algorithms, tools
and applications, high-speed optical networks such as the Louisiana Optical Net-
work Initiative, or LONI, distributed data management and sharing, and new
software programs for biomedical, science and humanities research. The confer-
ence included tutorials, a main track session with 5 keynote speakers and 60
accepted, peer-reviewed papers as well as 13 workshops with 138 accepted peer-
reviewed papers. Advancing computational science would not be possible with-
out engaging students and young scholars. Through participation in tutorials,
workshop and general session paper presentations, the students learned about re-
cent advances and developments in computational science. This year ICCS 2009

1 Blue Ribbon Panel Report: www.nsf.gov/pubs/reports/sbes final report.pdf
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co-funded with the National Science Foundation a conference student scholarship
for around 50 students, mostly from the state of Louisiana. ICCS is committed
to helping students and young researchers enhance their professional develop-
ment through participation in ICCS. During this year’s conference two different
tutorials were offered to participants: (i) Parallel Performance Evaluation Tools
for HPC Systems by Allen D. Malony, University of Oregon, Markus Geimer,
FZ Jülich, Andreas Knüpfer, TU Dresden, and Rick Kufrin, NCSA/University
of Illinois and (ii) Developing HPC Applications with the Cactus Framework by
Erik Schnetter, Frank Loeffler, Eloisa Bentivegna, CCT-LSU. The general main
track of ICSS 2009 was organized in about 20 parallel sessions addressing the
following topics:

– e-Science Applications and Systems
– Scheduling
– Software Services and Tools
– New Hardware and Its Applications
– Computer Networks
– Simulation of Complex Systems
– Image Processing
– Optimization Techniques
– Numerical Methods

Fig. 1. Number of papers in the general track by topic

Figure 1 presents the number of papers on different topics.
Keynote lectures were delivered by:

– Marian Bubak: Environments for collaborative applications: An answer to
computational science challenges?
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– Janice Coen: Computational modeling of wildland fire behavior and weather
for research and forecasting,

– Vittoria Colizza: Computational epidemiology: a new paradigm in the fight
against infectious diseases,

– Peter Coveney: Grid computing at the petascale,
– Mark Jarrell: Massively parallel and multi-scale simulations of strongly

correlated electronic systems

We would like to thank all keynote speakers for their interesting and inspiring
talks and for submitting the abstracts and papers for this proceedings volume.

Fig. 2. Number of papers in workshops

The conference also offered 13 workshops:

– Teaching Computational Science
– Computational Chemistry and Its Applications
– Dynamic Data-Driven Application Systems
– Tools for Program Development and Analysis in Computational Science and

Software Engineering for Large-Scale Computing
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– Simulation of Multiphysics Multiscale Systems
– Workshop on Computational Finance and Business Intelligence
– Bioinformatics’ Challenges to Computer Science
– Using Emerging Parallel Architectures for Computational Science
– Collaborative and Cooperative Environments
– Computer Graphics and Geometric Modeling
– Intelligent Agents in Simulation and Evolvable Systems
– Atmospheric and Oceanic Computational Science
– Geo Computation

Figure 2 presents the number of papers in the workshops.

Fig. 3. Number of accepted papers by country
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The selection of papers for the conference was possible thanks to the hard
work of the Program Committee members and about 390 reviewers; papers sub-
mitted to ICCS 2009 received three reviews each. ICCS is a truly international
conference, and papers were accepted from 26 countries. The international dis-
tribution of papers accepted for the conference is presented in Fig. 3. The ICCS
2009 participants equally represent all continents.

The ICCS 2009 proceedings consist of two volumes; the first one, LNCS 5544,
contains the contributions presented in the general track and workshops 5, 7 and
12, while volume LNCS 5545 contains papers accepted for the other workshops.
We hope that the ICCS 2009 proceedings will serve as an important intellectual
resource for computational and computer science researchers, pushing forward
the boundaries of these two fields and enabling better collaboration and exchange
of ideas. We would like to thank Springer for a very fruitful collaboration during
the preparation of the proceedings.

At the conference the best papers from the general track and workshops were
nominated and presented on the ICCS 2009 website; the awards were funded by
Elsevier. A number of papers will also be published as special issues of selected
journals.

We owe thanks to all workshop organizers and members of the Program
Committee for their diligent work, which has ensured the very high quality of
the ICCS 2009. We are indebted to all the members of the Local Organizing
Committee for their enthusiastic work towards the success of ICCS 2009, and
to numerous colleagues from CCT for their help in editing the proceedings and
organizing the event. We owe thanks to the ICCS 2009 sponsors: Intel, SiCortex,
NSF, Elsevier, CCT and LSU Foundation for their generous support.

We wholeheartedly invite you to once again visit the ICCS 2009 website
(http://www.iccs-meeting.org/iccs2009/), to recall the atmosphere of those May
days in Louisiana.

May 2009 Gabrielle Allen
Jarek Nabrzyski

Ed Seidel
G. Dick van Albada

Jack J. Dongarra
Peter M.A. Sloot
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C. Rodŕıguez-Leon
F. Rogier
F.-X. Roux
R. Ruiz
M. Rumi
K. Rycerz
A. Sandu
M. Sbert
R. Schaefer
H.F. Schaefer III
J. Schatz
M. Schimmler
B. Schmidt
L. Schnorr
H. Schroder
J. Schroeder
B. Schulze
S. See
M. Segarre
J. Seo
A. Sfarti
H. Shi
Y. Shi
A. Shiflet
F. Silvestri
B. Simo
D. Sinclair
V. Sipkova
P. Slizik
R. Slota
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Andreas Knüpfer, Arndt Bode, Dieter Kranzlmüller,
Daniel Rodr̀ıguez, Roberto Ruiz, Jie Tao, Roland Wismüller, and
Jens Volkert

Snapshot-Based Data Backup Scheme: Open ROW Snapshot . . . . . . . . . . 657
Jinsun Suk, Moonkyung Kim, Hyun Chul Eom, and Jaechun No

Managing Provenance in iRODS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 667
Andrea Weise, Adil Hasan, Mark Hedges, and Jens Jensen

Instruction Hints for Super Efficient Data Caches . . . . . . . . . . . . . . . . . . . . 677
Jie Tao, Dominic Hillenbrand, and Holger Marten



XXXVI Table of Contents – Part II

A Holistic Approach for Performance Measurement and Analysis for
Petascale Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 686

Heike Jagode, Jack Dongarra, Sadaf Alam, Jeffrey Vetter,
Wyatt Spear, and Allen D. Malony

A Generic and Configurable Source-Code Instrumentation
Component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 696

Markus Geimer, Sameer S. Shende, Allen D. Malony, and Felix Wolf

Workshop on Collaborative and Cooperative
Environments

Dynamic VO Establishment in Distributed Heterogeneous Business
Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 709

Bartosz Kryza, Lukasz Dutka, Renata Slota, and Jacek Kitowski

Interactive Control over a Programmable Computer Network Using a
Multi-touch Surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 719

Rudolf Strijkers, Laurence Muller, Mihai Cristea,
Robert Belleman, Cees de Laat, Peter Sloot, and Robert Meijer

Eye Tracking and Gaze Based Interaction within Immersive Virtual
Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 729

Adrian Haffegee and Russell Barrow

Collaborative and Parallelized Immersive Molecular Docking . . . . . . . . . . 737
Teeroumanee Nadan, Adrian Haffegee, and Kimberly Watson

The gMenu User Interface for Virtual Reality Systems and
Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 746

Andrew Dunk and Adrian Haffegee

Eighth International Workshop on Computer
Graphics and Geometric Modeling, CGGM 2009

VIII International Workshop on Computer Graphics and Geometric
Modeling – CGGM 2009 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 757

Andrés Iglesias

Reconstruction of Branching Surface and Its Smoothness by Reversible
Catmull-Clark Subdivision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 759

Kailash Jha

A New Algorithm for Image Resizing Based on Bivariate Rational
Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 770

Shanshan Gao, Caiming Zhang, and Yunfeng Zhang



Table of Contents – Part II XXXVII

Hardware-Accelerated Sumi-e Painting for 3D Objects . . . . . . . . . . . . . . . . 780
Joo-Hyun Park, Sun-Jeong Kim, Chang-Geun Song, and
Shin-Jin Kang

A New Approach for Surface Reconstruction Using Slices . . . . . . . . . . . . . 790
Shamima Yasmin and Abdullah Zawawi Talib

Tools for Procedural Generation of Plants in Virtual Scenes . . . . . . . . . . . 801
Armando de la Re, Francisco Abad, Emilio Camahort, and
M.C. Juan

Workshop on Intelligent Agents in Simulation and
Evolvable Systems

Toward the New Generation of Intelligent Distributed Computing
Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 813

Robert Schaefer, Krzysztof Cetnarowicz, Bojin Zheng, and
Bart�lomiej Śnieżyński
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Abstract. Multi-core processing environments have become the norm
in the generic computing environment and are being considered for
adding an extra dimension to the execution of any application. The T2
Niagara processor is a very unique environment where it consists of eight
cores having a capability of running eight threads simultaneously in each
of the cores. Applications like General Atomic and Molecular Electronic
Structure (GAMESS), used for ab-initio molecular quantum chemistry
calculations, can be good indicators of the performance of such machines
and would be a guideline for both hardware designers and application
programmers. In this paper we try to benchmark the GAMESS perfor-
mance on a T2 Niagara processor for a couple of molecules. We also
show the suitability of using a middleware based adaptation algorithm
on GAMESS on such a multi-core environment.

Keywords: Multi-Core, GAMESS, Niagara, Adaptation, NICAN.

1 Introduction

Computational chemistry applications like GAMESS [5] are widely used to per-
form ab-initio molecular quantum chemistry calculations. These calculations in-
clude a wide range of Hartree-Fock (HF) wave function (RHF,ROHF and UHF)
calculations. Such calculations are not only complex but also have high computa-
tional requirements. These calculations are currently run on SMP clusters where
each node consists of single or dual core processors. SMPs can be viewed as a
form of NUMA (Non Uniform Memory Access) architecture [4]. NUMA is the
design used where each processor in a multi processor environment is provided
with a separate memory space and data is being shared between different mem-
ory banks. This needs to be handled using separate hardware and software since
the data can be distributed over different processor memories and coherency
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between this data needs to be maintained. The communication cost plays a sig-
nificant role in this design. Each node in a computing cluster can be considered
equivalent to a processor in the NUMA architecture, but with a coupling that is
not as tight as that in NUMA. The inter-node latency and bandwidth in clus-
ters is much worse than a normal NUMA machine. Hence when we run an IO
intensive application like the conventional GAMESS job, it is very likely to bog
down the channel thereby resulting in slower execution times. The problem of
remote data access on symmetric multiprocessor (SMP) nodes is avoided by the
usage of a native communication layer DDI (Distributed Data Interface) that
utilizes the shared memory effectively [13].

A multi-core processor capable of running multiple threads in each core can be
used as a single execution environment in itself instead of a SMP cluster. The ex-
ecution semantics change in such an environment. Each of the threads act as a
virtual processor (VP) to the outside world. Thus the user application sees itself
running on a multi-processor machine with access to each and every one of them.
Each of these VPs include all the architecturally required components to execute
a task. These components include registers (both general purpose and special),
integer and floating point execution units and can handle interrupts. The execu-
tion units are present inside each core of the processor and the VPs belonging to
each core share these components. Thus each VP contains a separate instance of
the user state. Since the multi-core processor is fabricated on a single chip, the re-
sources such as memory bandwidth, L1 and L2 caches are shared among the VPs.
This has a significant impact on the performance of the task being executed.

There have been studies using benchmarking tools to show the performance of
SMP clusters which use single core or dual core processors such as the Intel Wood-
crest processor [1]. There have also been similar studies on the Niagara processor
[1] that extol the advantages of using a multi-core and a multi-threaded proces-
sor. An understanding on the performance of an application like GAMESS on a
SMP and a multi-core environment like the Niagara processor will be of immense
help not only for application programmers but also from processor designers. We
compare the performance of GAMESS on these two environments in order to un-
derstand the relative advantages and disadvantages of the two. Also, of note is the
fact that resource sharing in a multi-core processor running multiple VPs would
have a great impact on the performance of a computationally intensive applica-
tion like GAMESS. Various studies [10], [9], [7] have been done to arrive at the
best possible combination of GAMESS processes per node (on a SMP) so as to
overcome the resource constraints. It has already been shown in [8] that an adap-
tation algorithm using a generic middleware tool NICAN [2,6] would improve the
performance of GAMESS. We show that this adaptation scheme is of relevance
and importance in a multi-core and multi-threaded environment as well.

The rest of the paper is organized as follows. Section 2 describes the workload
used and the architecture of the execution environment. Section 3 describes the
performance of GAMESS on a SMP cluster and a Niagara processor. Section
4 deals with the adaptation algorithm and the results obtained by using this
algorithm on a Niagara processor.
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2 Methodology

2.1 Application Workload

General Atomic and Molecular Electronic Structure (GAMESS) performs ab-
initio molecular quantum chemistry calculations [5] to perform a wide range of
Hartee-Fock (HF) wave function (RHF, ROHF and UHF) calculations. Using
Self Consistent Field (SCF) method, GAMESS iteratively approximates solu-
tion to the Schrödinger equation that describes the basic structure of atoms
and molecules. Numerous GAMESS calculations have parallel implementations
utilizing distributed resources like memory and disk storage. The scalability of
GAMESS is aided by the use of a native communication layer DDI [13] that
takes advantage of shared memory on symmetric multiprocessors (SMP) and
reduces the remote data access bottleneck. The SCF method is one of the most
computationally intensive parts in the GAMESS execution. It has two implemen-
tations, direct and conventional, which differ from each other in the handling of
the two-electron (2-e) integrals.

In the direct SCF method, the 2-e integrals are recalculated for each iteration
and it avoids any I/O bottleneck. In the conventional SCF method, the 2-e in-
tegrals are calculated once at the beginning of the SCF process and stored in
a file on disk for subsequent iterations. These two implementations are inter-
changeable [8] due to the iterative nature of the process. SCF method also gives
a good indication of the processor computation power as well the I/O capabil-
ities of the system on which GAMESS is being run. Thus a GAMESS run on
a SMP and a Niagara processor can be favorably compared to get some sort of
an opinion on the relative merits of using either of these two architectures. We
chose Luciferin and Ergosterol molecules for testing GAMESS on these two plat-
forms. GAMESS converges in 15 iterations for both Luciferin and Ergosterol. A
conventional execution of Luciferin requires a storage of almost 3.5GB of files
while a direct execution consumes 5.65MB of main memory. On the other hand,
a conventional execution of Ergosterol molecule stores 22GB of files and requires
nearly 16MB of main memory for the direct implementation.

2.2 Architectures Used

We used two different architectures to test GAMESS. One was a SMP cluster of
4 nodes, each node having two dual-core 2.0GHZ Xeon “Woodcrest” CPUs and
8GB of RAM [1]. The nodes were interconnected with both Gigabit Ethernet
and DDR Infiniband. Each processor has a shared 4MB L2 cache. It also contains
a 32KB L1 instruction and data cache per core.

The second architecture used for testing was the Sun T2 Niagara processor
(T2) [11,14]. The T2 processor has a unique architecture which consists of 8
SPARC physical processor cores built in a single chip and each core is capable
of running 8 threads. Each of these threads can be considered to be a processor
in itself and are called as Virtual Processors (VP). Thus a user application sees
itself running on a machine of 64 processors rather than on a processor containing
8 cores. The VPs operate at a frequency of 1167 MHz. Each of these cores
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contain full hardware support for the eight VPs. There are two integer execution
pipelines, one floating point pipeline and one memory pipeline inside a single core
that are shared between all the VPs. The eight VPs are divided into two groups
of four each with the VPs 0-3 occupying one group and 4-7 occupying the other
group. Obviously, the hardware support inside a single core also gets divided
accordingly with each group of VP having access to a single integer pipeline and
sharing the floating point and memory pipelines. Each SPARC physical core
contains a 16 KB, 8-way associative instruction cache (32-byte lines), 8 KB, 4-
way associative data cache (16-byte lines), 64-entry fully-associative instruction
TLB, and 128-entry fully associative data TLB that are shared by the eight VPs.
The eight SPARC physical cores are connected through a crossbar to an on-chip
unified 4 MB, 16-way associative L2 cache (64-byte lines) which is banked eight
ways to provide sufficient bandwidth for the eight SPARC physical cores.

3 Performance Results

3.1 Benchmark Performance for GAMESS on T2 Niagara Processor

We first benchmark Luciferin and Ergosterol molecules on a Niagara proces-
sor by running single jobs on different sets of VP combinations. We create VP
sets such that the processes that are run on these VPs have access to as much
hardware as possible for speedier execution. For example, if we need to create
a set of 8 VPs, we distribute the VPs among all the 8 cores. We then bind the
GAMESS processes to the VP sets that have been created so as to take advan-
tage of the processor affinity property. Processor affinity [15] exploits the fact
that some remnants of the process’s state may remain in the processor’s cache.
The benchmarking results have been shown in Figures 1 and 2.

From the results we can deduce three different trends clearly. In case of the di-
rect execution of Luciferin and Ergosterol, increase in the number of VPs used
for execution results in better performance. The increase in hardware resources
and the thread level parallelism help speed up the computations. This trend is not
followed in case of the conventional execution of Luciferin and Ergosterol. The ex-
ecution time of conventional Luciferin reduces initially untill about 32 VPs and
then steadily increases as we move from 40VPs to 63VPs. Conventional Ergos-
terol degrades in performance as we increase the number of VPs. A conventional
GAMESS job can be characterized into two parts. The first part is writing of the
integral files and the second is RHF SCF calculation using the integral values that
are stored in the disk files. The application fetches the integral values from the files
and then performs the RHF SCF calculations iteratively. In case of Ergosterol, the
integral files (size 22GB) cannot fit in the main memory of the Niagara processor
(16GB). This gives rise to a large number of page faults and cache misses thus
leading to a drop in performance. Another contributor to the slow execution time
for the conventional Ergosterol molecule could be the issue with parallel reads and
writes at higher thread counts that affect GAMESS [16] performance. This ex-
plains the degradation in the performance in a conventional Luciferin molecule
once the number of VPs are increased beyond 32.
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Fig. 1. Luciferin: Single job bench-
mark

Fig. 2. Ergosterol: Single job bench-
mark

Fig. 3. Luciferin: Conventional job
SMP Vs Niagara comparison

Fig. 4. Ergosterol: Conventional job
SMP Vs Niagara comparison

One more thing to note is that the kernel itself is run on one of the 64 VPs.
When we create processor sets, we cannot assign all the 64 threads to different
processor sets since at least a single VP is required for running the kernel. In
such a scenario, if we assign 63 VPs to execute a single GAMESS job, the job
takes more time than when run with 60 VPs. Also, there is a steady increase in
the execution time as we move from 60 VPs to 62 and 63 VPs as seen in the
direct execution of Luciferin and Ergosterol in Figure 1 and 2. As the hardware
resources used by the kernel are shared with the GAMESS threads, we can see
a performance degradation. Hence 60 VPs would be an optimal number to be
used for application usage and 4 VPs for the system usage.

3.2 Performance Comparison between T2 Niagara Processor and a
SMP 8-Core Cluster

We compared the performance of GAMESS on a T2 Niagara processor with
its performance on a SMP cluster. The SMP cluster contains 4 nodes, each
containing two dual core Intel Xeon “Woodcrest” processors. For the sake of
comparison with the Niagara processor, we used only two of the nodes on this
cluster to run GAMESS (since this would be equivalent of running GAMESS



8 L. Seshagiri, M. Sosonkina, and Z. Zhang

Fig. 5. Luciferin: Direct job SMP Vs
Niagara comparison

Fig. 6. Ergosterol: Direct job SMP Vs
Niagara comparison

on 8 cores). The performance results for conventional and direct executions of
Luciferin and Ergosterol are given in Figures 3, 4, 5 and 6.

We can see that the SMP out performs the Niagara Processor for the Lu-
ciferin molecule while it is worse than the Niagara performance in case of the
conventional mode execution of Ergosterol molecule. We need to note that each
core in an Intel processor can run only a single thread while each Niagara core
can run up to eight simultaneous threads. The cache available to each core on
an Intel processor chip is more than the cache available in a Niagara processor
as the cache is distributed amongst all the cores. Each core on an Intel processor
runs at a higher clock rate as compared to the clock rate of a VP in the Niagara
processor. These clearly help to understand the reasons for the higher perfor-
mance in case of the Luciferin molecule calculations and the direct calculations
for the Ergosterol molecule.

However, the true advantage of using a Niagara processor can be seen when we
run a conventional Ergosterol calculation. The main reason for this is the usage of
a dedicated floating point pipeline in each of the 8 cores in a Niagara processor.
The GAMESS calculations are inherently floating point in nature and dedicated
floating point pipelines help to improve performance by nearly 50 percent. As
indicated by the performance results, execution of a conventional Ergosterol
calculation on the T2 processor is very time consuming, though it performs
better than the SMP. The performance degrades as we increase the number
of VPs on which GAMESS is run. This scenario can be readily exploited to
improve the performance by utilizing the adaptation algorithm first introduced
in [8]. The next section explains the suitability of this algorithm in a multi-core
and multi-threaded scenario.

4 Adaptations in GAMESS Using NICAN Middleware

The SCF algorithm is one of the most computationally intensive parts in the
GAMESS execution. Selection of the correct electronic structure calculation rou-
tine has a very big effect on the overall calculation and calculation time. The it-
erative nature of the SCF algorithm allows us to switch between the conventional
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and direct implementations in an arbitrary SCF iteration. The switching is carried
out using the middleware tool NICAN in order to decouple the application from
having to make any adaptation decisions during the application execution. The
application is responsible only for the invocation of the adaptation handlers. The
adaptations are handled by a control port that is part of the NICAN tool.

The adaptation scheme used in [8] for SMPs is summarized ahead. The adap-
tation scheme consists of a static and a dynamic part. Every conventional
GAMESS job gets modified to a direct execution mode if there is a “peer”
conventional GAMESS job already running in the system. It was shown in [9]
that while running concurrent scattered GAMESS jobs, a single conventional
job helps to achieve better performance. This constitutes the static adaptation
method. The dynamic adaptation is used during the iterative SCF calculations.
The control port gathers system and application information that allows it to
decide on the adaptation at runtime using the algorithm given below.

tN = Actual time taken for iteration N
tu = Upper bound for the time per iteration (taken as a arbitrary large value)
m = Average iteration time over N iterations
te0 = Estimated ideal run time for running a single iteration (obtained by
NICAN after running a GAMESS check run at startup)
Δt0 = | te0 - t0 |
if (ti > tu OR ti > m + Δt0) then

if (SCF is conventional) then
switch to direct

else if ((no peer conventional jobs) AND (enough memory)) then
switch to conventional

end if
end if

The experimental results obtained for this algorithm on a SMP have been
given in [8]. It has been shown on a two processor system with I/O congestion,
that the performance of dynamically adaptive GAMESS is nearly the same as
a “no-congestion” case. If the I/O bandwidth is fully consumed, then the adap-
tation scheme gives two times improvement in the execution time of GAMESS.
Also, on running two simultaneous parallel GAMESS jobs on two and four pro-
cessors, a gain of 10-15 percent in the cumulative execution time is obtained
through a dynamic adaptation scheme. This dynamic adaptation algorithm holds
true for a multi-core and multi-threaded environment as well. As seen in the
benchmarking results of Section 3, the degradation in the performance of a
conventional Ergosterol molecule calculation at higher values of VPs is a good
starting point to apply the above adaptation algorithm.

4.1 Adaptation Results on T2 Niagara Processor

The adaptation scheme was tested by running simultaneous parallel GAMESS
jobs on the T2 Niagara processor. The physical cores were partitioned equally
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among the jobs thus ensuring that the hardware resources of a core is used
exclusively by the GAMESS job assigned to the VP belonging to that core.
The performance was measured by executing two parallel GAMESS jobs that
consisted of one Luciferin molecule and one Ergosterol molecule. Similar results
were obtained for three parallel GAMESS job execution which have two Luciferin
Molecules and one Ergosterol molecule. If the SCF method is not defined in the
GAMESS input file, then GAMESS selects the SCF mode to be conventional
by default. Hence both the above tests were performed using conventional SCF
mode at the start. The performance graphs have been given in Figures 7 and 8.
We have not distinguished between static and dynamic adaptation in the results.

Fig. 7. Two simultaneous parallel jobs
execution

Fig. 8. Three simultaneous parallel
jobs execution

We compare the performance of anon-adaptiveGAMESS job (GAMESSORIG)
and dynamically adaptive GAMESS (GAMESSADP ) obtained using the NICAN
middleware tool. We can see in the graphs that cumulative running time for
GAMESSADP is about 50 percent faster than GAMESSORIG. For two simul-
taneous GAMESS job execution, the adaptation gives a steady gain irrespective
of the number of VPs used for running the simultaneous jobs. It was observed that
at lower VP allocation values, the smaller molecule (Luciferin) is transformed into
a direct method of execution due to the presence of a peer Ergosterol molecule but
then switches back to conventional mode dynamically to ensure a faster run time.
For larger VP allocations, both Luciferin and Ergosterol adapt and complete their
execution in the direct mode. Similarly, in case of three simultaneous GAMESS
jobs, we see that the cumulative run time of GAMESSORIG is reduced by more
than 50 percent by using the adaptation algorithm. All the three jobs complete
their execution in the direct mode.

5 Conclusions and Future Work

The main focus of this work is to compare the performance of Electronic Struc-
ture calculations on a SMP with the performance on a T2 Niagara Processor.
We have seen that SCF calculations for small molecules like Luciferin perform
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much better on a SMP than on the Niagara processor. This trend can be seen for
the direct SCF calculation for an Ergosterol molecule as well. However, the Nia-
gara processor provides much better performance as compared to a SMP when
we consider a conventional execution of the Ergosterol molecule. The T2 Nia-
gara processor looks to be a good processing environment for such an execution
scenario.

We also demonstrated that by using the adaptation algorithm introduced
in [8], we can obtain performance improvement in GAMESS on a multi-core
and multi-threaded environment. We have shown that the execution of adaptive
GAMESS can be several magnitudes faster than the non-adaptive GAMESS
execution. On a multithreaded processor like the Niagara, the I/O becomes a
bottleneck as we start increasing the number of threads for a conventional mode
of execution. In such cases, it was observed that the direct mode is the best way
of execution. The performance difference between the conventional and direct
mode at higher allocations of VPs is essential in getting the adaptation to work
on such processors.

As a future work, it would be interesting to see how the application adapt-
ability behaves when we use a cluster of such multithreaded processors. We
would like to develop multiple adaptation control strategies for usage on such
processors. These could include strategies such as changing the thread alloca-
tion dynamically from a single core to span multiple cores and to take advan-
tage of processor affinity. This requires further research into the performance of
GAMESS at different VP allocation configurations, along with the cache and IO
performance of the Niagara processor for GAMESS. It would also be interesting
to examine how any other cluster application would behave on a Niagara proces-
sor. Since the GAMESS version used for testing uses TCP/IP as an underlying
communication framework, suitability of using MPI applications can be explored
and documented. Ultimately, the aim is to develop generic adaptation control
strategies that can be reused with any parallel application and are scalable for
a multi-core and multi-threaded environment.
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Abstract. This paper summarizes our work on fuzzy modeling for an Individ-
ual-oriented Model (IoM). Our model is particularly geared toward simulating 
the movement of fish schools, derived from the model by Huth and Wissel. The 
background and motivation for the problem as well as a description of biologi-
cal model are given here. A fuzzy logic implementation is discussed based on 
the mathematical model proposed. Finally, the experiments performed to dem-
onstrate that our model represents the real behavior of fish schools. Keywords: 
Fuzzy Logic, Individual-oriented Models (IoM), Fish School. 
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1   Introduction 

Individual-oriented Models (IoM) were created to solve to the limitations imposed by 
models based in a population that use differential equations, for example to explain 
the behavior of a group of individuals.  

In IoM the unit of the system is the individual, so the group’s heterogeneity can be 
represented through the differentiated behavior of each individual. Therefore, “indi-
viduals are the building blocks of ecological system. The properties and behavior of 
individuals determine the properties of the systems they compose” [1]. The system is 
not directly modeled as a globally integrated entity, individuals are autonomous.  

In [2] many examples of IoM applications are given and the author outlines the 
importance of this kind of model for researches where the individuals’ interactions are 
important to accurately represent the group’s features. “Organisms get together and 
form populations and societies, have properties none of which can be explained by 
properties of the individual organism alone” [3]. 

We chose the simulation of fish schools as a case study. Some kinds of fish present 
the characteristically behavior of being together for a long time maintaining a self-
coordinated movement without the presence of leaders [4]. This behavior caught the 
attention of the biologists interested in investigating this kind of formation. 

The April 2007 issue of National Geographic [5] presents an overview of the situa-
tion of worldwide fishing. In fact, fish consumption has been growing and, in approxi-
mately 50 years, fishing went from about 30 million tons to nearly 100 million tons. 

One of the species that has been suffering a lot due to an increase of its consumption 
is blue tuna. The situation of this specie is so critical that the International Commission 
for the Conservation of Atlantic Tunas (ICCAT), responsible for managing the reserves 
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of blue tuna, was created. Equilibrium between commercial interests and preservation of 
the species must be found. Thus current research works focus their interest in fish be-
havior, reproduction, development and exploration. There are some models that repre-
sent the behavior of these populations [6], [7], [8]. The one used in this work is an Indi-
vidual-oriented Model (IoM) [4]. This kind of model represents the behavior of a group 
by applying some rules to a group of individuals interacting among each other. 

Our general interest is the application of fuzzy logic (FL) to simulations based on 
IoM. Within fish school simulations several models have been developed using con-
ventional mathematical modeling as in [9], [10]. We use the fuzzy approach to 
achieve an alternative way of modeling. Also, by using fuzzy logic we odd a degree 
of uncertainty, which is present in reality, to the model. 

In this work we start by using the biological model described in [4]. This biological 
model defines the behavior of each fish as a consequence of its interaction with four 
selected neighbors. A fish changes its reaction direction according to its neighbor’s 
proximity. So in each simulation step each fish will shift to new position and direction 
in the simulation space. A qualitative scheme is defined through fuzzy modeling for 
represent the biological model. A systems behavior described in a natural language 
can be interpreted using this kind of scheme. 

This paper is organized as follows. In section 2, we present the necessary back-
ground on the biological model that describes the fish interaction schemes. In section 
3, we describe our implementation of the fuzzy model. We describe the experimenta-
tion made in section 4 and conclude the paper in section 5. 

2   The Biological Model  

Fish schools are one of the most common social groups in the animal kingdom. Many 
fish species are organized in groups without a hierarchical structure. These schools 
show a high level of synchronization in short and long periods of time. Therefore, the 
movement of a school of fish presents highly parallel orientation.  

The biological model implemented in this work is based on an IoM developed by 
Huth and Wissel [4]. This model defines the behavior of a fish school representing 
simple rules to be applied to each individual. So the behavior of individuals and their 
interaction is what determines the dynamics of the group.  

The organization of schools is based on a passive communication; the patterns of 
detection are their eyes and lateral line. Each fish observes the movement of its 
neighbor using its eyes and or its lateral line. Only in special situations do other 
senses take part in the communication.[11] 

2.1   Interaction Areas 

Each fish in the group changes its direction at each time step. This new direction de-
pends on the position and direction of a fixed number of neighbors. So the influence of a 
neighbor depends on its relative position. We distinguish three different influences: 
attraction, parallel orientation and repulsion [4]. Fig. 1 shows three areas for each influ-
ence. These areas are bounded by three concentric circles and anything outside of R3 is 
considered the search area which has no influence in interaction. Additionally, the re-
gion defined by angle ω determines the null vision area or DA (Dead Area).  
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Fig. 1. Interaction Areas 

Fish reaction depends on the area in which a neighbor is positioned. The areas are 
determined by the radii R1, R2, R3 and the dead angle ω. Typical values for these 
radios are: 0.5BL, 2BL, 5BL (Body length) and 30º respectively.  

Repulsion occurs when the chosen neighbor is in range I. When two fish are very 
close, they tend to change their course to avoid collision. A neighbor found in range II 
influences the fish to move in parallel with it. It is a way to maintain a regular dis-
tance between them that is a parallel orientation situation. When a neighbor in range 
III is chosen, it attracts the fish to it. The attraction reduces the distance between fish 
maintaining the group’s cohesion. Finally, the DA is the area behind the individual 
where no neighbors can be perceived.  

The final reaction of the fish will be a combination of each reaction to the selected 
fish. When there are no neighbors in these areas, the fish starts looking for neighbors 
by swimming in random directions [7]. 

3   Fuzzy Model of the Fish School  

The importance of our model is the use of qualitative modeling based on fuzzy logic. 
With the use of fuzzy logic is possible to approximate reasoning based on vague or 
incomplete knowledge. Therefore, there is nothing vague or fuzzy about fuzzy logic. 
It is natural and simple mathematics, which allows handling vague on difficult to 
specify information or. The utility of fuzzy sets lies in their ability to model uncertain 
or ambiguous data, so often seen in real life [12]. 

3.1   Fuzzy Structure 

Fuzzy inference system (FIS) consists of a fuzzification interface, a rule base, a data-
base, a decision-making unit, and finally a defuzzification interface [13]. A FIS with 
five functional blocks is shown in Fig 2. 

FIS operation is described as follows. The crisp input is converted into fuzzy by 
using a fuzzification method. After fuzzification the rule base is formed. A rule base 
containing a number of fuzzy IF/THEN rules and a database which defines the mem-
bership functions of the fuzzy sets used. The rule base and the database are jointly 
referred to as the knowledge base. A decision-making unit which performs the infer-
ence operations on the rules. Defuzzification is used to convert a fuzzy value to a real 
world value which represents the output. 
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Fig. 2. Fuzzy Inference System 

3.2   Model Structure  

Our model consists of a fish school that moves inside an area where each fish is a unit 
of the system. The interaction between the fish results in the movement of the group. 
We define the area as a finite bidimensional space limited by an imaginary borders, 
where these borders also represent an external influence on the fish. To simulate 
movement, we have taken the location of each fish represented by x and y coordi-
nates. The fish’s speed and direction are considered. 

Our model is derived from the model [4], described in section 2. We have made 
some assumptions which describe the interactions among individuals, as well as the 
numerical data that this has taken. First, it is necessary to mention the assumptions 
extracted from the biological model for each fish in order to explain how we are im-
plementing it using fuzzy logic. These assumptions involve the behavior patterns that 
depict the movement of the fish school. Therefore, every fish: 

 

– Selects its neighbors according to certain remote regions. 
– Calculates the reaction to each of its neighbors or the external influence. 
– Calculates the final effect based on the influence of all the reactions with its 

neighbors. 
– Calculates a new position. 
 

Starting from these assumptions we built a number of fuzzy systems to represent 
the model. Hence, we implemented three fuzzy systems; Proximity, Reaction and 
Aggregation. For these systems some variables such as position and orientation were 
defined and used. Within fuzzy logic these variables are called universe of discourse 
and they are represented by fuzzy sets. 

3.3   Fuzzy Systems Description 

We started by building a single fuzzy system; Proximity. This first system helped us 
represent how the fish identifies the distance to its neighbor. Therefore, we deter-
mined proximity as a fuzzy system to find the relative position with respect to its 
neighbor. By getting the position of an individual, the position of its neighbor and the 
orientation of the individual.  

We took three variables for this system; the x and y distance and orientation. We 
defined distance as the gap that separates a fish from its neighbor taking into account 
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the x and y axes. Orientation is the variable in which we can represent how the fish 
recognizes its nearest neighbors according to its area of vision. Also we determined if 
a fish has a neighbor located in the region of null vision (Dead area) or not. The out-
put variable of the system is the consequence, of three input variables and gives prox-
imity as a result. 

Once a fish recognizes its four most nearby neighbors according to proximity, we 
built another fuzzy system called Reaction. This system represents the response of 
fish to the influence given by its neighbors in accordance with interaction zones. As a 
result, we have variables related with the orientation of its neighbor and itself. Hence, 
the output of this system represents the rotation a fish is able to do. 

We also included an influence given by an external agent. This agent is an imaginary 
border that limits the area. Hence, if a fish is found very near to the border, it assumes 
the reaction of repulsion, which is a similar situation to when the fish has a neighbor in 
the zone I, i.e., it will change the orientation in order not to touch the border. 

Once we have the four influences, there is a relation between them. In order to de-
pict this, we built a third fuzzy system named Aggregation. Our scheme allows find-
ing the final slew that the fish must do due to influences. This is done by linking pair 
of influences until the four reactions. Here, the influences are taken as vectors. i.e., 
our fuzzy system is implemented as a sum of vectors but the values are approximated. 
System output permits to determine a new position and orientation for each fish. 

Now that the fuzzy systems have been defied, we describe the knowledge base that 
is the main part of the FIS used to build fuzzy systems. As we mentioned in section 
3.1, the knowledge base is formed by a Rule base and a database, where the member-
ship functions and the rules of all the system are establish.  

 
Knowledge base. In all fuzzy sets, we determined a set of the fuzzy rules which in-
volves behavior patterns of whole system according to assumptions mentioned above. 
Then using the knowledge of the biological system, we built a database in which we 
defined the membership functions of each fuzzy set. This is used in the process of 
fuzzification. The purpose of fuzzification is to map the inputs from a set of features 
to values from 0 to 1 using a set of input membership functions thus forming the 
fuzzy sets. Figure 3 shows the membership functions of each input for the Proximity 
fuzzy system. There are three inputs and an output: distance X, distance Y, orientation 
and proximity. These input membership functions represent fuzzy concepts such as 
“near” or “far,” “very to the left” or “very to the right,” “northwest” or “northeast”. 
We included in this system; 8 fuzzy sets to represent the distance variables, 4 sets for 
orientation variable and 7 sets for proximity variable. 

Once we defined all fuzzy sets, we continue to describing the rules. Each rule is formed 
by a precedent and a consequent. The precedents express an inference or inequality and 
the consequent is how it can be inferred, and represents the output. Therefore the sentence 
which an FIS relates and consistent in rules, is given by: IF precedent, THEN consequent. 
The number of rules of a system depends of the equation 1, which follows: 

 

                               #Rules = #FS1 _ #FS2 _ #FS3 _ . . .#FSn                                                  (1) 
 

Where FS is the amount of fuzzy sets of a variable and n is the number of variables. 
We built 256 rules on Proximity system so we formed the base of the knowledge. 
E.g., one of these rules is: “If Distance X is Far Behind AND Distance Y is  
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Fig. 3. Membership Functions to Proximity system 

Very Left THEN Proximity is Far to the Left”. This rule is represented in the figure 4 
and it abstracted of Rule base of Proximity system. The same figure shows as is 
choose this rule starting of a rule sets. Figure 4a shows how a fish calculates the prox-
imity with its neighbor and figure 4b shows how a rule is used to select an output 
given certain inputs.  

The Reaction fuzzy system is represented by fuzzy sets with request to the orienta-
tion and rotation. Within orientation, we have stretched the sets used on previous 
system; we now have 12 fuzzy sets. It means, the fish have 12 directions in which it 
can be facing. Figure 5 shows the orientation divided fuzzy sets. These fuzzy sets 
have a range from −90º to 270º. Also, a rotation variable is used as the system output. 
Here, we built 9 fuzzy sets to depict several turns. These sets can have linguistic vari-
ables such as: “Very large positive turn,”“Large positive turn,” “Medium positive 
turn,” “Short positive turn,” “null turn” similarly for “negative turn”. These fuzzy sets 
have a range from −90º to 90º. 

Finally, on the Aggregation fuzzy system uses the output variables as its inputs. 
Hence, we utilized the same fuzzy sets. 

In terms of the rules, we built the rules based on the relationship of the four influ-
ences. But it should be noted that we relate these in pair of influences to produce a 
final effect. This is made in order to have a feedback system but with few variables. 
E.g., we compare two reactions as “large positive turn”’ and “short negative turn”. 
The union of these two reactions result another reaction. Then we compare the third 
reaction to this new reaction and then with the forth, similarly. 
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           (a) Scheme proximity    (b) Rule sets 

Fig. 4. Proximity Fuzzy system 

These sets are used to built rules according to interaction zones as well as the ex-
ternal influence. Therefore, according to this influence we designed a set of rules that 
represent a turn. 

 

Fig. 5. Fuzzy sets of Orientation 

Finally, we defuzzify the output to obtain the new position of the fish that is calcu-
lated with the current position and final orientation. This process is repeated for each 
individual fish. 

4   Experiments and Results 

The correct functioning of the model can be analyzed at two levels. One aspect is to 
verify that our simulated fish will reproduce certain typical maneuvers. [14]. the sec-
ond aspect is a measure of certain parameters of the global structure. These two ways 
of experimentation have been from the work presented by Huth and Wissel [4].  
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At a group level we compared the typical behavior of a real fish school with our 
simulation. This experiment is intended to describe the merging of two similar 
schools. When two schools meet in open water, the new swimming direction appears 
to be approximately the resultant vector of the two original tracks. In our experimen-
tation we used two groups of 15 fishes for each shoal.  

The result is shown in the Figure 6. Then of 10 steps of simulation, there are 
formed two schools. After 20 more iteration, the two schools are met and later they 
form an only school with same orientation. 

 

   
(a) After 20 iterations       (b) After 40 iterations               (c) After 60 iterations 

Fig. 6. Simulation of the merging of two schools 

Also, the global structure of fish schools can be measured by two quantities: the 
nearest neighbor distance nnd and the polarization p. The nearest neighbor distance 
characterizes the typical distances in a school. It is defined as the average of the dis-
tance of every fish to its nearest neighbors. Typical values from the literature are 
around of 0.5-2 body length (BL).  

The polarization characterizes the intensity of orientation in the school. The polari-
zation is defined as the average of the angle deviation of each fish to the mean swim-
ming direction of the school. Schools with a high parallel orientation have polariza-
tion values between 10º and 20º. 

A fish school with 15 individuals during 100 iterations was simulated to measure 
cohesion and polarization. These parameters are shown in the Figures 8a and 8b. 
From those parameters we calculate the mean and standard deviation of all iterations. 
In this simulation the means are 2.4 BL in cohesion and 22.2 en polarization. These 
results are found within of the typical values. Our simulations show variations on the 
cohesion and polarization of fish school along the time due to uncertainty given by 
the fuzzy sets. These results were what we expected. 

We can see in the Fig.8a the cohesion of the group along of 100 iterations what it 
show some time steps in which the group presents compactness or high cohesion 
(σ<2BL) and low cohesion (σ > 4BL), e.g.  Between 10th and 15th iteration the school 
presents low cohesion and at same time a confuse grade (ρ>60). This confuse behav-
ior is due that the school is influenced by external agents as in this case the border 
(see Figure .6a). 
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(a) Cohesion                                  (b) Polarization 

Fig. 7. Parameters measurement of the Fish School movement 

5   Conclusions 

In this work we proposed the usage of fuzzy modeling to develop Individual oriented 
models aiming to give some uncertainty to the individual behavior. As a case study 
we worked with fish schools behavior, an example of a biological system that has 
many known models cited in the best references but none using fuzzy logic. Hence, 
we assume that the way the fish realizes the distances between each other has been 
simulated and their decisions based on that data are not exact. 

Our implementation is based in a biological model that that defines a set of general 
rules that we extended to a more detailed one. We built several fuzzy systems to rep-
resent this rules set: a system of proximity, a system of reaction and aggregation. 
These systems together represent the orientation of the fish school. To validate our 
simulator we proceeded in the same way that other authors have done: we compared 
the simulation results with the results of the original model [4]. 

The implementation using MATLAB did not present good performance, requiring a 
lot of time to simulate big populations. So, most of the time simulating we worked with 
few individuals to test and refine the simulator. Some studies show that the paralleliza-
tion of the simulator can improve the system performance a lot [15],[16]. In future work 
we intend to parallelize this simulator to improve speed up and scalability. We are cur-
rently working on this version to extend the model to represent a more detailed system 
taking into account the presence of other species, predators and vegetation. 
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Abstract. In scientific domains where discovery is driven by simulation model-
ing there are found common methodologies and procedures applied for scientific
investigation. ODESSI (Open Domain-extensible Environment for Simulation-
based Scientific Investigation) is an environment to facilitate the representation
and automatic conduction of scientific studies by capturing common methods
for experimentation, analysis, and evaluation used in simulation science. Specific
methods ODESSI will support include parameter studies, optimization, uncer-
tainty quantification, and sensitivity analysis. By making these methods acces-
sible in a programmable framework, ODESSI can be used to capture and run
domain-specific investigations. ODESSI is demonstrated for a problem in the
neuroscience domain involving computational modeling of human head electro-
magnetics for conductivity analysis and source localization.

1 Introduction

Computational science is now accepted as an important approach for scientific investi-
gation, broadly considered equivalent in its discovery power to theoretical and experi-
mental science. It is typically conducted through mathematical modeling and scientific
simulation, leveraging access to advanced, high-performance computers (HPC) to run
computational experiments (simulations) that seek to model reality in various domains.
The evolution of computational science reflects both a growing need for computational
power and increased sophistication of simulation methodology. Early concerns were on
access to sufficient HPC resources, motivating research in parallel computing, compu-
tational grids, and large-scale storage. More recent research work in computational por-
tals and workflows attempts to simplify resource access as well as provide programming
support for coordinating simulation and analysis tasks. With computational horsepower
becoming more ubiquitous, there is now growing interest in enhancing the discovery
process of scientific investigations. In general, how productivity in computational-based
science can be improved in practice will depend greatly on software environments that
raise the level of investigation creation, execution, and management.

In scientific domains where discovery is driven by simulation there are common
methodologies and procedures. An environment that can capture the shared standard
practices and support their reuse across domains could improve productivity in scientific
investigation creation and application. Methods such as parameter studies and tuning,
optimization, uncertainty and sensitivity analysis, are generally used across simulation
fields. Application of these methods in simulation studies typically require executing the
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simulation many times with different input parameter sets and data files. The environ-
ment could capture the common scientific methods in modules that can be contextual-
ized for domain-specific use. The modules would hide the details of backend execution
(implemented by the environment infrastructure), while providing an interface for their
programming as part of an investigation workflow. The environment could also support
other aspects of scientific investigations, including the management of input and output
data, the specification of parameters, the post-processsing of results, and the genera-
tion of reports. The benefit is to provide a high level of service and automation to the
computational scientist to enhance their work throughput and management.

In this paper we describe our research work to create and apply an environment
for supporting scientific investigation called ODESSI (Open Domain-extensible En-
vironment for Simulation-based Scientific Investigation, pronounced “Odyssey”). The
environment will facilitate the representation and automation of scientific studies by
capturing shared methods for experimentation, analysis, and evaluation used in sim-
ulation science in a framework that can be programmed and specialized for domain
investigations. ODESSI will be demonstrated for scientific studies in the neuroscience
domain involving computational modeling of the human head.

Section §3 describes the ODESSI objectives and design. The development of the
ODESSI prototype is discussed in §4. ODESSI was inspired by our prior ICCS work
[18,20] on computational modeling of human head conductivity. Section §5 outlines the
domain problem in human brain science we are investigating and shows how ODESSI
is applied to improve scientific productivity in this domain. Section §6 concludes with
a discussion of research issues and outline of future research directions.

2 Related Work

The general theme of the ODESSI approach is to manage complexity in domain-specific
scientific investigations by providing a programmable framework with high-level ser-
vices for domain contextualization and use. Problem solving environments (PSE) are
a traditional approach to addressing domain-relevant concerns by incorporating all the
mathematical, algorithmic, and computational features necessary to solve a targeted
class of science or engineering (S/E) problems [1,2]. The main goal of a PSE is to in-
crease the productivity of scientists by letting them describe a problem and its solution
in terms of the S/E concepts and use a highly-functional, integrated set of capabilities
for modeling, analysis, and visualization. PSEs have been developed for partial dif-
ferential equations (PDE) [3], linear algebra [4], chemistry [5], and other S/E areas.
However, the traditional PSE approach has three important drawbacks: 1) it is difficult
to create a new PSE, 2) PSEs are not developed to be reused, and 3) PSEs are hard to
extend with new capabilities or new science methods.

One response to strict PSE design is to identify domain-level functionality that is
common across related fields and build software tools that can be applied in develop-
ing computational science environments [6]. Scientific development environments take
this idea further by offering rich components for data management and analysis, in a
programming framework for scientific applications. For example, SCIRun [7] is a pow-
erful environment for interactive computational science which has been used to create
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integrated problem solving environments in biomedical science [8]. ODESSI comple-
ments these directions by abstracting common simulation-based scientific methods in
reusable components, providing a cross-domain framework for scientific investigation.

Grid computing and workflow systems research take a different tact by focusing on
how to allocate and coordinate the use of computational resources (both systems and
software/tool components) to create and run scientific applications such as GridLab[15].
Grid-enabled workflow systems such as Pegasus[9], Triana [10], and Kepler [11] are
powerful tools being applied in computational science projects. However, their support
for multi-experiment simulation workflows is still rudimentary and is not easily pro-
grammed for cross-domain use or execution on non-grid platforms. Web-based portals
(e.g., the NEES [12] and BIRN [13] portals) and environments such as ViroLab [16]
address some of these issues by offering higher-level S/E services (e.g., analysis, data
management, simulation) while hiding backend complexity. The ability to abstract and
reapply scientific methods for new scientific investigations or new scientific domains in
these environments though is not supported well.

On the other hand, there are wealth of toolkits for scientific methods used in simula-
tion. The DAKOTA toolkit [14] provides several optimization algorithms, uncertainty
quantification, and parameter estimation. The Portable, Extensible Toolkit for Scien-
tific Computation (PETSc) [17] is a suite of data structures and routines for the scalable
(parallel) PDE-based scientific applications. The important aspect of these systems is
their embodiment of a known scientific methodology in a programmable form. The idea
behind ODESSI’s approach is to provide a high-level scientific development framework
that parameterizes and configures scientific methods for domain specialization.

3 ODESSI Requirements and Design

The goal of ODESSI is to provide a productive environment that assists domain scien-
tists in the development and application of their computational investigations. To this
end, the main requirements are:

1. To support common types of scientific methods used in simulation-based science.
2. To provide a programmable framework to contextualize methods for domain use.
3. To insulate the scientist from concerns of HPC resource usage, allowing them to

focus on the process aspects of the domain investigation.
4. To provide record of simulation experiment for evolving scientific investigations.

The ODESSI environment shown in Fig. 1 was designed to support these requirements.
The key concept of the ODESSI approach is the capture of standard procedures to con-
duct and analyze (simulation-based) scientific experiments in a modular, extensible, and
reusable form. We call these procedures scientific methods and think of the methods as
generating a set of simulation experiments to run. Common scientific methods include
parameter studies, comparative analysis, optimization, sensitivity analysis, and uncer-
tainty analysis. These methods are the basis upon which activities such as verification
and validation, parameter tuning, and simulation-based experimentation are built for
domain application. These processes that integrate different methods are the founda-
tion of domain scientific investigations. A scientific investigation is a domain-specific
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Fig. 1. Architecture and components of ODESSI framework

discovery process that applies one or more scientific methods in its lifetime. It defines
the simulation codes to use, the input data files, and post-simulation analysis and vi-
sualization. If ODESSI can capture key scientific methods in easy-to-use modules, the
level of productivity in the development and execution of scientific investigations may
increase. We will focus our discussion on this aspect of the design.

Logically, ODESSI represents methods internally as modules consisting of two parts:
a specification and a template. The specification identifies the context necessary for the
execution of the modules, including the simulation program to be run and parameters.
The template is the software construction of the module with abstract classes for opera-
tion of the specific scientific method. In this respect, the template embodies the method
procedures for the generation of domain simulation experiments. A module is instanti-
ated by an investigation script, setting the specification context and initializing the mod-
ule state. When a method module is executed, it generates an experiment schedule that
is passed to the ODESSI planner.

It is the responsibility of the ODESSI planner to conduct the necessary simulations
on behalf of the invoked method. It is possible multiple methods are concurrently active,
each with its own planner. The planner interfaces with the external simulation system
to run a simulation experiment. It determines which experiments to execute based on
the specified simulation schedule. If a method uses information from earlier experi-
ments to determine future experiments, its module uses a dynamic schedule which is
applied within the planner. The planner attempts to optimize schedules by interrogat-
ing the ODESSI investigation history to determine when simulation experiments have
previously been conducted. A record is maintained in the ODESSI investigation his-
tory of every completed simulation experiment, containing complete metadata for the
investigation and method specification.
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4 ODESSI Development

In this section we describe the implementation of the conceptual design described in
section §3. ODESSI is based on a set of Python objects that implement components
shown in Fig. 1. These objects form a set of interacting threads that cooperate during
the execution of the investigation script. An investigation script imports and instanti-
ates the necessary objects that implement scientific methods that it uses, and these in
turn interact through message passing operations once started. Simulation programs are
invoked through the Python system interface.

An investigation script consists of three main sections. In the first section the user
specifies the simulations under investigation and their initial input parameter values.
The simulation specifications are used to create a simulation manager object that can be
used to request simulation solutions. In the second section, the scientific investigation
methods are customized, instantiated and launched for execution. Each scientific inves-
tigation method is executed in a separate thread. Each scientific method object derives
from a base Planner object, adding the method-specific functionality that it is intended
to provide. The third section is concerned with post-processing the results.

The ODESSI implementation uses messaging to communicate between threads. Due
to the potential for long execution times during simulation runs, it is preferable to use
an asynchronous execution model to allow threads to execute independently without
blocking. Threads in ODESSI are based on the process and messaging model from the
Erlang language [19] implemented by the Python “candygram” package. Each process
has a message mailbox into which messages from other processes are delivered and
later extracted and handled by the receiving process in the order of delivery.

ODESSI provides two entities that can be instantiated in the investigation script: the
Simulation Manger entity and the Scientific Investigation Method entity. The Simula-
tion Manager controls and manages the execution of a simulation. It acts as a server
that provides solutions given sets of input parameters. Each instance of a simulation
manger controls a single simulation. Multiple simulations can be controlled by multiple
instances of the simulation manager. A simulation manager object can serve multiple
requests from different threads. Scientific Investigation Methods provide the procedures
that occur across scientific domains such as optimization and sensitivity analysis.

4.1 Scientific Investigation Methods

Scientific investigation methods are the common procedures that are used in several sci-
entific domains. ODESSI currently supports optimization based on a parallel simulated
annealing algorithm, simplex search, parameter studies and linear regression based sen-
sitivity analysis. ODESSI can easily be extended with more methods and procedures.
A scientific method gets executed in its own thread spawned by the main thread The
scientific method is implemented as a module of four classes described below:

– A specification class providing a template to customize the investigation procedure.
– An interface class providing an interface for the user to instantiate and execute

the scientific method. The interface class is parameterized with an instance of the
method specification class and a simulation manager object. An interface object
provides methods to start and stop execution and access results.
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– The scientific method logic class implements the algorithm or the procedure of the
scientific method and must inherit from the planner base class.

– The planner abstract class that all scientific method logic classes must inherit from.
This class defines the interactions between the scientific method and the execution
manager, cleanly separating scientific method logic from communication code.

4.2 Simulation Manager

The simulation manager class is the user interface to the execution manager class. A
simulation manager object is created in the main thread.A simulation object and other
optional parameters are passed in at initialization. At instantiation, the simulation man-
ager spawns a thread and starts the execution manager. The simulation manager class
currently provides methods to control execution and measure execution timing.

– The execution manager: The execution manager manages and controls a single
simulation. It acts as a server that provides the simulation response given input
parameters. The execution manager is an internal class and is not modified by the
user. It is instantiated and run in its own thread by the simulation manager, and the
planner base class requests solutions from the execution manager. Threads request
solutions from the execution manager by delivering messages to its mailbox. In
handling the request the simulation manager employs a dynamically sized pool of
workers for simulation execution and a solution database manager.

– Workers: Each worker in the pool of an execution manager corresponds to the ex-
ecution of a simulation on a resource. Workers interact with a simulation either
through a very simple modification to the main function of the simulation code or
through a wrapper around the unmodified simulation. The communication protocol
between ODESSI workers and the simulation is very simple. Messages are defined
for starting, stopping, parameterizing, and retrieving results from simulations.

– The database manager: The database manager implements the investigation his-
tory component of ODESSI and manages a repository where simulation solutions
can be obtained. Solutions are associated both with the simulation code which pro-
duced them and the input parameters necessary for the run. This allows for both
provenance tracking of simulation results and performance enhancement by avoid-
ing redundant computations when the output already exists in the database.

5 ODESSI Application

ODESSI was inspired by our research in human neuroscience where we are develop-
ing computational models of human head electromagnetics for use in dynamic brain
analysis [18,20,21]. The main goal of our research is to estimate the locations of the
active brain regions given measured electroencephalogram (EEG) recordings. Called
the source localization problem, its accurate solution will provide an opportunity to an-
alyze cortex dynamics at high temporal and spatial resolution. The source localization
problem has two parts:
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1. Forward problem: given electrical sources (e.g., cortex dipoles), tissue geometries
and conductivities, determine head volume and scalp electrical potentials.

2. Inverse problem: given an accurate forward solution, find optimal sources to match
measured scalp potentials.

An accurate forward solver requires knowledge of the head tissues geometry (ob-
tained from MR or CT images) and their conductivities. To determine the conductivi-
ties of the head tissues, we must solve the conductivity inverse problem. Here, a small
current is injected in a subject’s head and the response is measured on the scalp using
electrical impedance tomography (EIT) technology. A search for optimal conductivi-
ties parameters can then be performed using the forward simulation compared to the
measured potentials. Once the conductivities are found for an individual, a distributed
dipole linear inverse solver can be built for EEG localization [22].

There are several challenges in this research. From the start, the source localiza-
tion problem is ill-posed, since EEG measurements are made on (up to) 256 sensors
and there may be thousands of cortex dipoles active. In addition, there are multiple
sources of measurement error and modeling uncertainties that ultimately contribute to
the accuracy of the solution as well as the performance. Measurement errors include
the quality of MR/CT images, electrode and dipole registration, injected current level,
and the EEG electrode data. These errors lead to modeling inaccuracies which prop-
agate uncertainty in the solution results and also can affect computational efficiency.
These include discretizing the PDEs, adjusting the computational grid resolution, and
accurately segmenting the head tissues. Further, selection of parameters and modeling
algorithm in the forward and inverse solvers also influence the final result.

How can we understand the quality of our source localization solutions and their use
in dynamic brain analysis when dealing with multiple sources of measurement error
and modeling uncertainties in constructing head models? Our desired scientific inves-
tigations involve computational processing to generate candidate models, as well as
verification and validation to determine the effects of uncertainty and the robustness
of solutions. In general, these objectives are shared with other scientific domains. In
the following we outline the use of ODESSI in conducting several analyses from our
domain, in particular showing the results from sensitivity analysis studies.

Conductivity Modeling. In our previous work we developed an inverse solver based
on parallel simulated annealing algorithm to estimate the head tissue conductivities by
solving the conductivity inverse problem. With ODESSI we were able to set up the
problem and adjust the optimization parameters by only interfacing with the optimiza-
tion method module. ODESSI made it trivial to experiment with different optimization
objective function and different optimization algorithms.

PDF Solver Tuning. Our forward model is based on solving the time-dependent Pois-
son equation and considering the steady state solution as the static solution. The conver-
gence of the forward solver depends, on two parameters. The time step, which controls
the speed of reaching the steady state, and the convergence tolerance which specifies
the level of accuracy. We used ODESSI to tune these parameters by performing a para-
metric study for different current injection pairs and different sets of conductivities.
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Fig. 2. Left, the potentials at the electrodes using 1mm resolution geometry vs. 2mm resolution.
Right, tuning the forward-solver convergence parameters (time-step vs. tolerance).

Figure 2 shows a sample from this study. As the tolerance increases the solution fails to
converge. For very small time step, the solver terminates prematurely.

Geometry Resolution Error. The geometry of the head tissues is obtained from imag-
ing such as MRI or CT scans. Geometry obtained from high resolution (1mm) MRI
captures more details about the head tissues, such as wholes in the skull. However, the
computational time is significant. We use a high resolution image to construct lower
resolution geometry by eliminating every other plane from the high resolution image.
Then we used ODESSI to evaluate the error caused by this approximation. RDM and
MAG metrics are used to compare between the solutions obtained using the two geome-
tries. Our results show that the average RDM is about .8 and the average MAG is about
.1. Therefore, the 2mm geometry can be used for visualization and testing. However,
we have to use the high 1mm resolution to obtain accurate conductivity reconstruction.
Here ODESSI allows us to experiment with the metrics for comparison.

Sensitivity Analysis. We further applied ODESSI for regression analysis to study how
the uncertainty in each electrode potential can be apportioned to uncertainties in the in-
puts. In this analysis, we only considered the head tissue conductivities. A multivariate
sample of 1000 points of the head tissue conductivities is generated. The conductivity
of each head tissue is sampled from the normal distribution with mean equal to the av-
erage accepted value from the literature and the standard deviation is chosen such that
the distance between the mean conductivity and the lower and upper bounds is about 3
standard deviations. Then the potentials at the electrodes are computed for each sample
and a multiple regression fitting is performed on the standardized conductivities and
electrode potentials. The standardized regression coefficients (SRC or β) quantify the
effect caused by changes in the model independent variables from their mean values in
terms of standard deviations.

Figure 3 shows distributions of the electrodes sensitivity due to changes in tissue
conductivities. Positive β coefficients (SRC) correspond to electrodes near the current
source while negative β coefficients correspond to electrodes near the sink. From the
distributions we see that the potentials at all electrodes are insensitive to variation of
the CSF tissue. This can be reasoned to the fact that the CSF tissue size is small and the
variation in its conductivity is small. The second important observation is that the po-
tentials are sensitive to changes of the brain conductivity. This observation contradicts
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Fig. 3. Distribution of the electrode’s sensitivity due to changes in tissue conductivities

the belief that most of the current will be shunted in the scalp. Therefore, we believe it is
possible to explore the brain with EIT technology. We explain this sensitivity due to the
fact that the brain is a big tissue and the wholes in the skull –which our forward solver
captures– allow the current to go through the skull (contrary to spherical models). The
third observation is that the potentials are highly sensitive to changes in the skull and
scalp conductivities as expected, since the current sources are on the scalp.

Identifying and ranking the sensitivity of the electrodes due to model input variables
are very important in our research. For instance, the conductivity of the CSF tissue
can be considered homogeneous and be fixed at the literature accepted value. Also, the
contributions of the electrodes potentials in computing the objective function can be
weighted based on their sensitivity in the conductivity inverse problem.

Without the ODESSI framework, this detailed sensitivity analysis would not have
been possible. We parameterized the sensitivity testing template in ODESSI and in-
terfaced the simulation code. Once configured, the investigation required thousands of
simulations to generate the results. These simulations were fully automated by ODESSI.

6 Conclusion and Future Work

ODESSI provides a framework for constructing scientific investigations by instantiating
common methods for simulation-based analysis with domain-specific context. From a
productivity perspective, ODESSI enables a (potentially large) number of simulations
generated from a domain investigation processes to be run in a systematic and auto-
mated way. Extending our earlier ICCS research to allow investigation of uncertainty
in brain conductivity and source modeling absolutely depended on this capability. The
sensitivity results presented demonstrate the investigative power that can be achieved
with relatively simple ODESSI programming.

However, the ODESSI concept extends further to domain support for data manage-
ment (e.g., EEG and MRI data), results processing (e.g., statistics, data mining), visu-
alization (e.g., plotting, 3D graphics), and meta-analysis. The key idea is how ODESSI
can capture domain information to parameterize and contextualize common methods in
these areas for high-level use. Our immediate goal is the development of the investiga-
tion history database to track the provenance of simulation experiments.
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Abstract. Sensor-based mobile robot coverage path planning (MRCPP) prob-
lem is a challenging problem in robotic management.  We here develop a ge-
netic algorithm (GA) for MRCPP problems.  The area subject to coverage is 
modeled with disks representing the range of sensing devices. Then the problem 
is defined as finding a path which runs through the center of each disk at least 
once with minimal cost of full coverage. The proposed GA utilizes prioritized 
neighborhood-disk information to generate practical and high-quality paths for 
the mobile robot. Prioritized movement patterns are designed to generate effi-
cient rectilinear coverage paths with no narrow-angle turn; they enable GA to 
find optimal or near-optimal solutions.  The results of GA are compared with a 
well-known approach called backtracking spiral algorithm (BSA). Experiments 
are also carried out using P3-DX mobile robots in the laboratory environment.  

Keywords: Genetic algorithms, Coverage path planning, Mobile robot. 

1   Introduction 

Start-goal oriented path planning methods do not address the problem of complete 
coverage path planning, in which every point in a given workspace should be covered 
at least once [1]. Complete coverage is needed for a variety of applications such as 
floor cleaning, lawn mowing and street sweeping, and painting [2]. These applications 
require robot apparatus to move over all the points in the free workspace of the envi-
ronment. On the other hand, landmine detection, foraging, and patrolling kind of 
applications require robot sensing range to cover all the points in the environment [3], 
so called sensor-based coverage.  

Different coverage path planning algorithms are proposed for the former applica-
tions above ([4], [5], [6], [7]). In the approaches ([4], [5], [6]), the environment is 
modeled using squares proportional to robot’s tool size. However, most of mobile 
robots use sonar-rings or laser range sensors as sensing devices.  Since these devices 
have a circular sensing range, a disk-based modeling approach may be more effective. 
Therefore in this study we adopted disk-based modeling approach.  

After modeling the environment, the next step is to determine an effective path for 
coverage.  In [4], a method called backtracking spiral algorithm (BSA) is proposed 
using spiral filling paths built based on squares of robot’s tool size. In [5], the work-
space is divided into squares with dimension of four times of the robot’s tool. Then a 
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spanning tree based approach is used to generate the path.  In [6], the path is planned 
to guide the autonomous agricultural equipment to completely cover a field while 
avoiding all known obstacles.   

In this study, a pattern-based genetic algorithm is proposed for sensor-based cover-
age path planning using disk shaped modeling. To the best of our knowledge there are 
a few genetic algorithm-based coverage planning methods ([6], [7]) for the former 
applications, and there is no genetic algorithm-based method for the sensor-based 
coverage. In [8], a disk-based modeling has been studied with a single neighbor-disk 
prioritization pattern. However, performance degradation due to double-coverage has 
been observed for some obstacle layouts. In this study, the number of patterns is in-
creased to eight to overcome double coverage problem.  

Genetic algorithms utilize the Darwinian and Mendelian principles of genetic evo-
lution.  Following its proposal by Holland in 1975, GA’s have achieved a high level 
of popularity owing to its success [9].  Especially, combinatorial and/or non-convex 
problems have significantly benefited this unorthodox way of problem solving.  GAs 
work on the list of decision variables called chromosomes in which a solution can be 
obtained directly or by decoding.  There are several works related to GA for autono-
mous mobile robots ([10], [11]) in the literature planning a path from a start position 
to a goal position rather than dealing with a complete coverage. 

In the following section, the proposed algorithm is presented.  The experiments and 
comparisons with BSA have been displayed for real environments with obstacles in 
Section 3. Conclusions are given in Section 4. 

2   A Pattern-Based Genetic Algorithm for Mobile Robots 

In this study, a pattern-based genetic algorithm utilizing the rectilinear moves repre-
sented by eight neighbor-disk prioritization patterns is proposed. The coverage area is 
divided into overlapping disks, such that, no redundant overlaps are generated and no 
area is left out of robot’s coverage as in Fig.1. The radius of each disk equals to sens-
ing range of the robot sensor which is much greater than robot’s physical dimension. 

 

Fig. 1. Disk placement pattern 

In Fig. 1, obstacles are shown with gray disks. Here we assume that a disk is either 
fully occupied or completely free. With this modeling, if the robot passes through the 
center of each disk, the environment would be fully covered. Therefore, the sensor 
based coverage problem turns into planning a path to visit all of the disk centroids.  
The objective of this approach is to minimize the multiple visits of disks while sup-
porting rectilinear moves.  
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To determine the visiting order of the disks, a GA-based method is developed. 
Eight premeditated neighbor-disk-prioritization patterns (PP) (first four are given in 
Fig. 2) are designed to provide disciplined, reasonable rectilinear moves. The robot is 
relatively located in the middle of the each PP indicated by P-prefix in Fig.2. The 
numbers in the patterns indicate the preferred neighbor-disks.  In other words, each 
PP prioritizes the neighbors in ascending order so that the disk numbered 1 has the 
highest priority if unvisited yet.  1-4 numbered disks are one-disk away from the ro-
bot’s current disk, while 5-12 disks are two-disks away, and so on.  Although 1-4 
numbered disks are in the same distance, they are also prioritized according to the 
direction they represent. The PP will guide the robot until a dead-end is arrived.  In 
this case, an unvisited neighbor disk at the shortest rectilinear distance is sought.  If 
one found, the path is directed to that disk, by double-visiting at least one disk.  The 
operation taking the robot from a dead-end to an unvisited disk is called recovery.  
Since one PP may guide the robot to a dead-end while another may never cause such 
a dead-end, different premeditated PPs are used to obtain sophisticated possible pat-
terns for the path.   

    

Fig. 2. Neighbor-disk prioritization patterns 

Representation 
In the proposed algorithm, a kth-neighbor representation is preferred. Each gene repre-
sents the next neighbor’s number as indicated by their driving PP. The order of genes 
in chromosomes (i.e., locus) corresponds to the move number. For an N-disk cover-
age problem, the length of the chromosome equals (N-1) genes corresponding to free 
disks. A sample environment is given in Fig. 3a. The environment is modeled by 30 
disks: 4 of them are occupied by obstacles hence requiring (30-4-1=) 25 genes. Start-
ing from the upper left corner and by using pattern P1, a possible coverage path is 
determined as in Fig. 3b. In this figure the number in a cell corresponds to the place of 
the gene in the chromosome. Since P1 assigns the first and second priorities to up and 
right moves respectively, and the up moves face the boundary, second priority move 
which is to the right is applied for next five disks.  Following the same pattern, P1, the 
next four moves occurs at the third priority move which is downward leading to the 
bottom boundary. This operation continues till the robot faces a dead-end after 15 
moves. First 15 moves leading to disk number 16 are considered regular pattern-based 
moves. At that point, a shortest path to an unvisited disk is determined. The disk 
number 17 has the 11th priority with respect to P1. For accessing nearest unvisited 
disk, shortest path procedure generates a path starting at disk 16 and ending at disk 17 
and crossing over disks 1, 2, and 3 once again.  Dashed lines in Fig. 3.a represent the 
shortest path between disks 16 and 17 via disks 1, 2, and 3. The remaining path is a 
result of P1. Encoded chromosome of this example is given in Fig. 3.c. In this figure, 
for example, the value of gene#1 is 2 representing right move.  
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(a)                   (b) 

 
(c) 

Fig. 3.  a) Sample environment, b) Decoded chromosome, c) Genetic representation 

The chromosomes generated by using patterns increase the variety in the initial 
population with rectilinear moves.  If the area contains no obstacles, GA will less 
likely improve the paths built based on pattern-driven moves.  Patterns imply a rela-
tive location; therefore they must be evaluated for each disk when needed. As the 
number of PPs increases, the proposed pattern-based GA should be expected to im-
prove paths with less number of redundant coverage at earlier generations. However, 
patterns included in this study are designed empirically leaving design, selection, and 
optimal number of PP to the future studies.   

The steps of the proposed pattern-based GA are as follows: 
Generate Initial Population; 
While (stopping criteria are not satisfied) 

Evaluation & Selection 
Reproduction 
Crossover 
Mutation 
Enlarged New Population 

Loop 
These steps are explained in the following subsections. 

 

Generation of Initial Population 
In building the initial population, all eight PPs are used to generate a variety of recti-
linear movement patterns overcoming obstacles.  The population size is divided as 
equally as possible among PPs. However, for increased variety, we perform a pertur-
bation over PP, and then let the pattern-driven moves handle the rest. Population is 
first filled with chromosomes generated with respect to PPs, 8 chromosomes for this 
case. For generating the remaining chromosomes, these 8 chromosomes are manipu-
lated by perturbing a gene’s value corresponding to a feasible move randomly.  These 
perturbations act as a mutation in the initial population.  Main expectation from these 
pattern-perturbed moves is to let the path out from the local best solutions.  When a 
pattern is interrupted by an obstacle, then a Shortest Unvisited Neighbor procedure is 
run the same way as its name implies.  It means that there will be a “jump” from one 
disk to another indicating an inevitable repeated coverage of some disk(s).   
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Evaluation and Selection 
The fitness value of a chromosome corresponds to the number of disks visited by the 
robot for complete coverage of the environment. Since an ideal solution contains no 
redundant coverage, the ideal fitness is equal to the distance of travelling each disk 
exactly once. Therefore the fitness of a solution increases by minimizing the number 
of disks visited more than once.  Stochastic tournament selection with elitism is ap-
plied based on fitness values.   
 

Crossover Operator 
We customized parametric crossover for aligning with pattern-driven moves.  A 
crossover mask is used with a masking probability.  Masking probability determines 
the percent of the genetic material that will be exchanged between the chromo-
somes. If both chromosomes were built based on the same PP, this operator picks a 
random number for each gene. If this random number is greater than or equal to the 
masking probability then that gene is replaced with the gene value of the chromo-
some#1 if it leads to a feasible move. If the corresponding move is not feasible, 
then priority number is increased until a feasible move is reached. If the two chro-
mosomes are generated with respect to different PPs, then one of the patterns must 
be expressed in terms of the other PP. The PP that is kept as is will be called the 
reference pattern. An example of crossover operator is illustrated in Fig. 4. In Fig.4, 
the P1 is used as the reference pattern. Chromosome 1 and 2 are selected for cross-
over operator. Chromosome 1 is generated with respect to P1, and chromosome 2 is 
generated with respect to P4. Therefore, the first priority disk of P4 corresponds to 
the 3rd disk of P1. For ensuring that each PP refers to the same disk during cross-
over operation, chromosome 2 is expressed in terms of reference pattern which is 
P1. While generating Child.1, we process chromosome 1 (Chrom.1 of Fig.4) and 
converted chromosome 2 (Conv. Chrom.2 of Fig.4). The row labeled Mask in Fig.4 
represents if value is taken from the chromosome 1 or 2 depending on the random 
values as selected. This way, Child.1 takes value 2 in the first gene from the first 
chromosome depending on the mask value. If the selected random number were less 
than masking probability, the value of the first gene would turn out to be 3 which is 
the value of the converted chromosome 2. Another parameter related to this opera-
tor is crossover rate which determines what percent of the chromosomes will be 
subject to the crossover operation.   

 

Fig. 4. Illustration of the modified parametric crossover operator for two chromosomes with 
masking probability 
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The impact of the crossover for the example environment is shown in Fig. 5.  The 
path presented in Fig.5 is built based on the moves obtained from Child.1 chromo-
some of Fig.4.  First 10 moves obtained from parents yield a feasible pattern.  As a 
result of crossover of the parents, gene#11 of child chromosome 1 would take the 
value of 2.  However this move is not feasible, the priority number is increased by 1 
until the first feasible move is detected which is 4.  The priority 4 corresponds to the 
12th disk in Fig.5. 

 

Fig. 5. Path generated based on the crossover of the sample chromosomes 

Mutation Operator 
The mutation operator is designed to incorporate the exploration impact. A randomly 
selected gene’s value is changed from its current PP value to a feasible one arbitrarily. 
Following the mutated gene, all the moves again are generated with respect to its 
current PP.  Although one gene change seems to be a modest change, it might result 
in a drastic change in the entire chromosome depending on the order of the gene se-
lected for mutation.  Due to this fact, we allowed only one mutation per chromosome. 
In Fig.6, the value of the gene 19 is changed from 2 to 3 arbitrarily.  As a result, two-
third of the remaining genes was changed yielding a different pattern.  

 

Fig. 6. A Illustration of the mutation operator (the number of the gene mutated=19) 

The proposed pattern-based GA’s typical parameters are set as follows: Population 
size: 500, maximum number of generations: 100, mutation probability:1/#ofGenes, 
crossover probability: 10%; tournament size: 2, crossover masking probability:70%, 
elite rate: 1%. In the proposed GA, the chromosomes of the current population, popu-
lations after crossover and after mutation are put together to build the enlarged popu-
lation.  Then selection operator reduces the size of the enlarged population to the 
original size again.  

3   Experimental Results 

The algorithm has been tested both in simulation environment, and at AI& R lab [12] 
test platform using Pioneer-3 DX mobile robots. A picture of the 840cmx720cm plat-
form is given in Fig. 7.a. The map of the environment modeled with 116 disks is 
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given in Fig. 7.b. The obstacles are represented with gray disks. It has three rooms 
and a hallway to connect the rooms. The environment is designed to pose a challenge 
for MRCPP methods. In Fig. 7.b, thick lines show constructed path by the proposed 
method. The total distance of movement of the proposed method is 115 units, and 
there is no repeated coverage. During the tests several additional obstacles are also 
placed into different parts of this environment to increase the complexity of the  
environment. 

  

Fig. 7. AI&Robotic laboratory,  a) Picture of the platform b) Map of the platform with a tour 

In the following, the results of the proposed method are compared with the results 
of an existing grid based method, BSA [4]. BSA was chosen for comparison, because 
it divides the environment into individual cells and uses each cell as a decision unit to 
plan the coverage path similar to the approach presented in this paper. Another candi-
date method for comparison would be STC, but classical STC uses squares with di-
mension of four times of the robot’s tool size to model the environment and assumes 
that if there is one obstacle in one of the squares, all four squares are treated as occu-
pied. Therefore, some of free disks left as uncovered. Since our method aims com-
plete coverage, it is not compared with STC. Later, experiments are carried out using 
Pioneer-3 DX robot in the laboratory environment. 

3.1   Comparison of the Proposed Method with BSA 

BSA is based on the execution of spiral filling paths. Before starting a spiral path, the 
robot is located nearby an obstacle which is situated in the reference lateral side RLS. 
RLS indicates the relative direction where obstacles are to be referenced during the 
spiral filling procedure. RLS is fixed in advance and can’t be modified. OLS is the 
opposite lateral side, it identifies the antipode of RLS. The following set of four sim-
ple reactive rules allows the correct execution of the spiral coverage procedure [4]: 

RS1 IF (obstacles_all_around): THEN ending_spiral_point_detected 
RS2 IF (NOT obstacle_in_RLS): THEN turn_to(RLS) and move_forward 
RS3 IF (obstacle_in_front): THEN turn_to(OLS) 
RS4 OTHERWISE move_forward 

Once the robot has reached the central ending point of a spiral filling path, the 
backtracking mechanism is invoked. It is employed to get back to unvisited areas, 
where a new spiral filling procedure can be performed. Backtracking points are de-
tected and stored during the execution of a normal spiral path.  



40 M. Kapanoglu et al. 

In order to compare the proposed method and the BSA, several obstacle configura-
tions are used. In Figure 8.a-b, a five-disk obstacle is placed in the hallway blocking 
entrance of one room. Thick lines show the coverage path of the robot while the thick 
dashed-dot lines show redundant moves of the robot to access uncovered disks. The 
total distance of movement of the proposed method in Fig. 8.a is 114 units. For the 
same environment, the result of the BSA is 127 units as in Fig. 8.b. Therefore, 4 and 
17 disks are covered repeatedly with the proposed method and BSA, respectively. 

    

Fig. 8. a) Result of proposed method, b) Result of BSA 

Due to page restrictions only one obstacle layout is given as in Fig. 8.a-b, and the 
results of the methods for five different obstacle configurations are summarized in 
Table 1. For each obstacle layout, ND.PM. denotes the number of disks for the pro-
posed method,  N.RD P.M. denotes the number of repeated disks for the proposed 
method, RC denotes percentage of repeated coverage,  ND.PM. denotes the number 
of disks for the BSA, N.RD BSA. denotes the number of repeated disks for the BSA, 
and IMP denotes percentage improvement in the tour by the proposed method com-
pared to BSA. 

Table 1. Comparison the results of the proposed method and BSA 

 N.D 
P.M. 

N.RD 
P.M.  

RC % 
P.M. 

N.D. 
BSA 

N.RD 
BSA 

RC % 
BSA 

IMP.% 

Env#1 115 0 0 137 22 16 16 
Env#2 113 0 0 137 24 17.5 17.5 
Env#3 117 4 3.4 132 19 14.5 11.4 
Env#4 112 1 1 132 20 15 15 
Env#5 114 4 3.5 127 17 13.5 10 

 
Env#1 denotes the environment in Fig.7 without obstacle, Env#2 denotes a two-

disk obstacle in the middle, Env#3 denotes two one-disk obstacles placed at the room 
entrances, Env#4 denotes four-disks in bottom-left room, and Env#5 denotes five-disk 
obstacle blocking hallway as in Fig. 8. Figures of the environments #1-#4 could be 
reached from the web site [12].  Table 1 show that the proposed method has less re-
peatedly covered disk compared to BSA. Therefore, the robot may finish the coverage 
task in a shorter time and consuming less energy. 
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3.2   Experiments Using Pioneer 3-DX Mobile Robot 

The proposed algorithm is applied to sensor-based coverage of an indoor environment 
using Pioneer 3-DX robot. The robot has an onboard P3-800 computer with Linux 
OS. The sensors on the robot are: SICK LMS 200 laser range finder, sonar ring sen-
sors, camera, and compass. Aria ARLN software module is used for the localization 
purpose [13]. SICK LMS 200 laser range sensor is used for the sensor based coverage 
task. The sensor has normally a range of 50 meters, but for experimental purposes the 
range is restricted to 40cm with software.  

An additional four-disk size obstacle is placed in the middle of the layout (Fig.7.b) 
to create a more challenging environment as in Fig. 9.a. The path of the proposed 
method is given in the Fig. 9.a is followed by the robot as given in Fig. 9.b. This fig-
ure is drawn using log values of the robot during the experiment. Fig. 9.c shows snap-
shot of the recorded video during the movement of the robot. The full video of the 
live performance of the robot is recorded, and can be reached from following web 
site: www.ai-robotlab.ogu.edu.tr [12].   

         

Fig. 9. a) Planned path using the proposed methods, b) The path followed by Pioneer-3 DX 
mobile robot in the laboratory, c) Snapshot of the recorded video 

4   Conclusions 

Sensor based coverage path planning for a mobile robot is one of the recent research 
issues. Among several approaches proposed, a few articles have addressed the use of 
the genetic algorithms for MRCPP problem. This article proposes prioritized move-
ment patterns to generate efficient rectilinear coverage paths. They enable GA to find 
optimal or near-optimal solutions.  Comparison with one of the existing methods in 
the literature, the proposed method resulted in 10% to 17.5% improvement in traveled 
distance over BSA for a set of challenging test environments with less repeated cov-
erage. The results we obtained so far have been rather promising and efficient.  The 
approach is yet to be studied for multiple robots cases.  
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Abstract. This paper presents a novel study on gas-like models for
economic systems. The interacting agents and the amount of exchanged
money at each trade are selected with different levels of randomness,
from a purely random way to a more chaotic one. Depending on the
interaction rules, these statistical models can present different asymp-
totic distributions of money in a community of individuals with a closed
economy.

Keywords: Complex Systems, Econophysics, Gas-like Models, Money
Dynamics, Random and Chaotic numbers, Modeling and Simulation.

1 Introduction

Econophysics is born as a new science devoted to study Economy and Financial
Markets with the traditional methods of Statistical Physics [1]. This discipline
applies many-body techniques developed in statistical mechanics to the under-
standing of self-organizing economic systems [2]. One of its main objectives is to
provide economists with new tools and new insights to deal with the complexity
arising in economic systems.

The seminal contributions in this field [3], [4], [5] have to do with agent-
based modeling and simulation. In these works, an ensemble of economic agents
in a closed economy is interpreted as a gas of interacting particles exchanging
money instead of energy. Despite randomness is an essential ingredient of these
models, they can reproduce the asymptotic distributions of money, wealth or
income found in real economic systems [2].

In the work presented here, the transfers between agents are not completely
random as in the traditional gas-like models. The authors introduce some degree
of determinism, and study its influence on the asymptotic wealth distribution in
the ensemble of interacting individuals. As reality seems to be not purely random
[6], the rules of agent selection and money transfers are selected with different
levels of randomness and extended up to chaotic conditions. This unveils their
influence in the final wealth distribution in diverse ways. This study records the
asymptotic wealth distributions displayed by all these scenarios of simulation.

The paper is organized as follows: Section 2 introduces the basic theory of gas-
like economic models. Section 3 describes the four simulation scenarios studied in
this work, and the following sections show the results obtained in the simulations.
Conclusions are discussed in the final section.

G. Allen et al. (Eds.): ICCS 2009, Part I, LNCS 5544, pp. 43–52, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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2 The Gas-Like Model: Boltzmann-Gibbs Distribution of
Money

The conjecture of a kinetic theory of (ideal) gas-like model for trading in market
was first discussed in 1995 [7]. Then, it was in year 2000, when several note-
worthy papers dealing with the distribution of money and wealth [3], [4], [5]
presented this theory in more detail.

The gas-like model for the distribution of money assimilates the dynamics of a
perfect gas, where particles exchange energy at every collision, with the dynamics
of an economic community, where individuals exchange money at every trade.
When both systems are closed and the magnitude of exchange is conserved,
the expected equilibrium distribution of these statistical systems may be the
exponential Boltzmann-Gibbs distribution.

P (x) = ae−x/b (1)

Here, a and b are constants related to the mean energy or money in the
system, a =< x >−1 and b =< x >. Theoretically, the derivation (and so the
significance) of this distribution is based on the statistical behavior of the system
and on the conservation of the total magnitude of exchange. It can be obtained
from a maximum entropy condition [8] or from purely geometric considerations
on the equiprobability over all accessible states of the system [9].

Different agent-based computer models of money transfer presenting an
asymptotic exponential wealth distribution can be found in the literature [3], [10]
, [11]. In these simulations, a community of N agents with an initial quantity
of money per agent, m0, trade among them. The system is closed, hence the
total amount of money M is a constant (M = N ∗m0). Then, a pair of agents
is selected (i, j) and a bit of money Δm is transferred from one to the other.
This process of exchange is repeated many times until statistical equilibrium is
reached and the final asymptotic distribution of money is obtained.

In these models, the rule of agents selection in each transaction is chosen to be
random (no local preference or no intelligent agents). The money exchange Δm
at each time is basically considered under two possibilities : as a fixed or as a ran-
dom quantity. From an economic point of view, this means that agents are trading
products at a fixed price or that prices (or products) can vary freely, respectively.

These models have in common that they generate a final stationary distri-
bution that is well fitted by the exponential function. Perhaps one would be
tempted to affirm that this final distribution is universal despite the different
rules for the money exchange, but this is not the case as it can be seen in [3], [10].

3 Simulation Scenarios

Real economic transactions are driven by some specific interest (or profit) be-
tween the different interacting parts. Thus, on one hand, markets are not purely
random. On the other hand, the everyday life shows us the unpredictable com-
ponent of real economy. Hence, we can sustain that the short-time dynamics
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of economic systems evolves under deterministic forces and, in the long term,
the recurrent crisis happening in these kind of systems show us the inherent
instability of them. Therefore, the prediction of the future situation of an eco-
nomic system resembles somehow to the weather prediction. We can conclude
that determinism and unpredictability, the two essential components of chaotic
systems, take part in the evolution of economy and financial markets.

Taking into account these evidences, the study of gas-like economic models
where money exchange can have some chaotic ingredient is an interesting pos-
sibility. In other words, one could consider an scenario where the selection rules
of agents and regulation of products prices in the market are less random and
more chaotic. Specifically, this paper considers the selection of interacting values
with different levels of randomness up to chaotic regime.

In the computer simulations presented here, a community of N agents is given
with an initial equal quantity of money, m0, for each agent. The total amount of
money, M = N ∗m0, is conserved in time. For each transaction, a pair of agents
(i, j) is selected, and an amount of money Δm is transferred from one to the
other. In this work two simple and well known rules are used. Both consider a
variable υ in the interval (0, 1), not necessarily random, in the following way:

– Rule 1: the agents undergo an exchange of money, in a way that agent
i ends up with a υ-dependent portion of the total of two agents money,
(υ ∗ (mi +mj)), and agent j takes the rest ((1 − υ) ∗ (mi +mj)) [10].

– Rule 2: an υ-dependent portion of the average amount of the two agents
money, Δm = υ∗(mi +mj)/2, is taken from i and given to j [3]. If i doesn’t
have enough money, the transfer doesn’t take place.

As there are two different simulation parameters involved in these gas-like
models (the parameter for selecting the agents involved in the exchanges and the
parameter defining the economic transactions), four different scenarios can be
obtained depending on the random-like or chaotic election of these parameters.
These scenarios are considered in the following sections and are described as:

– Scenario I: random selection of agents with random money exchanges.
– Scenario II: random selection of agents with chaotic money exchanges.
– Scenario III: chaotic selection of agents with random money exchanges.
– Scenario IV: chaotic selection of agents with chaotic money exchanges.

It is worthy to say at this point, that the words random and pseudo-random
are used in the same sense, where random refers to the stochastic character of
the process and pseudo-random refers to the computational simulation used to
produce the process. The pseudo-random and chaotic numbers are obtained with
two chaotic pseudo-random bit generators, selected to this purpose. Technical
details of these generators are fully described in [12] and [13], and are based
in two 2D chaotic systems: the Hénon Map and the Logistic Bimap. Interactive
animations of them can also be seen in [14].

The particular properties of these generators [12], [13] make them suitable
for the purpose of this study. They are able to produce pseudo-random and
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chaotic patterns of numbers that can be used as parameters of the simulations.
Basically, these generators have two parts: the output of the chaotic maps is
used as input of a binary mixing block that randomizes the chaotic signals and
generates the final random numbers. Then, on one side, it is possible to take
the exit of the chaotic blocks and produce chaotic sequences of numbers. On the
other side, they can generate a sequence of numbers with a gradual variation of
randomness by controlling a delay parameter P in the binary mixing block.

This last feature is obtained by varying the shift factor P (P > 1) in a way
that the lower its value, the worse is the random quality of the numbers gener-
ated. Specifically, there is also a Pmin (around 80) above which, the properties
of the generator can be considered of good random quality.

As an example to show this gradual variation of randomness, the generator
in [13] is used to produce different binary sequences and initial conditions of
S2 (further details [13]). These bits are transformed in integers of 32 bits and
transformed to floats dividing by the constant MAXINT = 4294967295.

When the shift factor P is varied, the random quality of these binary sequences
also varies. This can be statistically measured by submitting them to statistical
tests and it can be also graphically observed in Fig.1.

(a) (b) (c)

Fig. 1. Representation of 20000 integers as pairs of floats in the interval [0, 1] × [0, 1].
The quality of their randomness improves as the shift factor P grows in magnitude.
(a) P = 1 (b) P = 5 (c) P = 110.

In Fig.1, we generated 640000 bits to obtain 20000 integers of 32 bits. The in-
tegers obtained from the generator are transformed to floats. The variation of the
shift factor shows graphically that with no shift at all,P = 1, the integers obtained
are hardly random. With P = 5, the bits generated do not pass the frequency or
monobit test and still show a strong no random appearance. When the shift factor
grows overP = 110, the binary sequences pass Diehard and NIST statistical tests.
Graphically in Fig.1(d), it can be assessed to possess high random quality.

4 Scenario I: Random Selection of Agents with Random
Money Exchange

In this section, both simulation parameters are selected to obey certain pseudo-
random patterns. Thus, the generators in [13] is used to produce different binary
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sequences (with initial conditions of S2 see further details in [13]). These bits
are transformed in integers of 32 bits and used as simulation parameters to select
the agents or the money to exchange.

Then, computer simulations are performed in the following manner. A com-
munity of N = 500 agents is considered with an initial quantity of money of
m0 = 1000$. For each transaction two integer numbers are selected from the
generated pseudo-random sequence with a given shift factor P = PAg. A pair of
agents (i, j) is selected according to these integers with an N -modulus operation.
Additionally, a third integer number is obtained from another pseudo-random
sequence with another shift factor P = PEx. This integer is used to obtain a float
number υ in the interval [0, 1]. The value of υ and the rule selected (Rule 1 or
Rule 2) for the exchange determine the amount of money Δm that is transferred
from one agent to the other.

Choosing P = PAg with different values it is possible to emulate an environ-
ment where the agents are locally selected under a more or less random scenario
situation. The same for P = PEx, the prices of products or services in the market
can be emulated to be less random, regulated, or completely arbitrary.
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Fig. 2. Simulation of Scenario I. (a) PAg = 2 and PEx = 110 for Rule 1, (b) PAg = 110
and PEx = 3 for Rule 2 and (c) PAg = 2 and PEx = 5 for Rule 2.

The simulations take a total time of 400000 transactions. Two rules of money
exchange were considered, Rule 1 and 2 described in Section 2. The results
show that all cases, independently of the value of the shift factor, produce a
stationary distribution that is well fitted to the exponential function. In Fig. 2,
some particular cases are shown, taking pseudo-random selection of agents or
pseudo-random calculation of Δm. Although not depicted in Fig. 2 the case,
where both agents and traded money are selected randomly, gives very similar
results to the cases shown here and also similar to the ones obtained in [3].

5 Scenario II: Random Selection of Agents with Chaotic
Money Exchange

In the previous section, it is observed that a variation in the random degree of
selection of agents and/or traded money, does not affect the final equilibrium
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distribution of money. It leads to an exponential in all cases. In this section, the
selection of agents is going to be set to random, while the exchange of money
is going to be forced to evolve according to chaotic patterns. Economically, this
means that the exchange of money has a deterministic component, although it
varies chaotically. Put it in another way, the prices of products and services are
not completely random. On the other side, the interaction between agents is
arbitrary, as they are randomly chosen.

Let us take the chaotic pseudo-random generators a step backwards, directly
at the output of the chaotic block with initial conditions S2 and R1 (see [13]
and [12] respectively, for details). Now the chaotic map variables xi and yi

can be used as simulation parameters. Consequently, the computer simulations
are performed in the following manner. A community of N = 500 agents is
considered with an initial quantity of money ofm0 = 1000$. For each transaction
two random numbers from a standard random generator are used to select a pair
of agents. Additionally, a chaotic float number is produced to obtain the float
number υ in the interval [0, 1]. The value of υ is calculated as |xi|/1.5 for the
Hénon map and as xi for the Logistic Bimap. This value and the rule selected
for the exchange determine the amount of money Δm that is transferred from
one agent to the other.

The simulations take a total time of 400000 transactions. Different cases are
considered, taking the Hénon chaotic map or the Logistic Bimap. Rules 1 and 2
are also considered. New features appear in this scenario. These can be observed
in Fig.3.
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Fig. 3. Simulation of Scenario II where agents are selected randomly and the money
exchange follows chaotic patterns. (a) Chaotic trade selection with Logistic Bimap and
Rule 1, (b) Chaotic trade selection with Logistic Bimap and Rule 2 and (c) Chaotic
trade points from the Logistic Bimap used in the simulations and represented as pairs
in the range [0, 1] × [0, 1].

The first feature is that the chaotic behavior of υ (see Fig.3 (c) ) is producing a
different final distribution for each rule. Rule 2 is still displaying the exponential
shape, but Rule 1 gives a different asymptotic function distribution. It presents
a very low proportion of the population in the state of poorness, and a high
percentage of it in the middle of the richness scale, near to the value of the mean
wealth. Rule 1 seems to lead to a more equitable distribution of wealth.
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Basically, this is due to the fact that Rule 2 is asymmetric. Each transaction of
Rule 2 represents an agent i trying to buy a product to agent j and consequently
agent i always ends with the same o less money. On the contrary, Rule 1 is
symmetric and in each interaction both agents (i, j), as in a joint venture, end
up with a division of their total wealth. Now, think in the following situation:
with a fixed υ, let say υ = 0.5, Rule 1 will end up with all agents having the
same money as in the beginning, m0 = 1000$. Using a chaotic evolution of υ
means restricting its value to a defined region, that of the chaotic attractor.
Consequently, this is enlarging the distribution around the initial value of 1000$
but it does not go to the exponential as in the random case [10].

6 Scenario III: Chaotic Selection of Agents with Random
Money Exchange

In this section, the selection of agents is going to evolve chaotically, while the
exchange of money is random. Economically, this means that the locality of the
agents or their preferences to exchange are somehow deterministic but under
complex evolution. Thus, some commercial relations are going to be restricted.
On the other hand, regulation of prices is random and they are evolving freely.

The chaotic generators are used directly at the output of the chaotic block,
exactly as in the previous section. Again a community of N = 500 agents with
initial money of m0 = 1000$ is taken and the chaotic map variables xi and yi

will be used as simulation parameters. For each transaction two chaotic floats in
the interval [0, 1] are produced. The value of these floats are |xi|/1.5 and |yi|/0.4
for the Hénon map and xi and yi for the Logistic Bimap. These values are used
to obtain i and j as in previous section. Additionally, a random number from a
standard random generator are used to obtain the float number υ in the interval
[0, 1]. The value of υ and the selected rule determine the amount of money Δm
that is transferred from one agent to the other.

The simulations take a total time of 400000 transactions. Different cases are
considered, taking the Hénon chaotic map or the Logistic Bimap, and Rules 1
and 2. As a result, an interesting point appears in this scenario with both rules.
This is the high number of agents that keep their initial money in Fig. 4(a) and
(b). The reason is that they don’t exchange money at all. The chaotic numbers
used to choose the interacting agents are forcing trades between a deterministic
group of them and hence some commercial relations result restricted.

In can be observed in Fig. 4(a) and (b), that the asymptotic distributions
in this scenario again resemble the exponential function. The Logistic Bimap is
symmetric (coordinates xi and yi) and it produces the effect of behaving like
scenario II but with a restricted number of agents.

Amazingly, the Hénon Map with Rule 2 in Fig. 4(c) leads to a distribution
with a heavy tail, a Pareto like distribution. A high proportion of the population
(around 420 agents) finish in the state of poorness. Though not completely shown
in this figure, there are a minority of agents with great fortunes distributed up
to the range of 40000$. This is due to the asymmetry of the rule, where agent
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Fig. 4. Simulation of Scenario III where agents are selected chaotically and the money
exchange is set to be random. (a) Chaotic agents selection with Logistic Bimap and
Rule 1, (b) Chaotic agents selection with Logistic Bimap and Rule 2, (c) Heavy tail
distribution of chaotic agents selection with Hénon map and Rule 2.

i always decrements its money, and the asymmetry of coordinates xi and yi in
the Hénon chaotic Map used for the selection of agents. This double asymmetry
makes some agents prone to loose in the majority of the transactions, while a
few others always win.

7 Scenario IV: Chaotic Selection of Agents with Chaotic
Money Exchange

In this section, the selection of agents and the exchange of money are chaotic.
Economically, this means that commercial relations are complex and some trans-
actions are restricted. The money exchange varies disorderly, but in a more de-
terministic way. The prices of products and services are not completely random.

As in the previous sections, the chaotic generators are used directly at the
output of the chaotic block. Again the chaotic map variables, xi and yi, will be
used as simulation parameters. The computer simulations are performed in the
following manner. A community of N = 500 agents is considered with an initial
quantity of money of m0 = 1000$. For each transaction, four chaotic floats in
the interval [0, 1] are produced. Two of these floats are |xi|/1.5 and |xi+1|/1.5
for the Hénon map or xi and yi for the Logistic Bimap. These values are used to
obtain i and j through simple multiplication (i.e.: i = xi ∗N + 1). Additionally,
a chaotic float number is produced to obtain the float number υ in the interval
[0, 1]. The value of υ is calculated as (|yi| + |yi+1|)/0.8 for the Hénon map or
as (xi+1 + yi+1)/2 for the Logistic Bimap. This value and the selected rule of
exchange determine the money Δm that is transferred between agents.

The simulations take a total time of 400000 transactions. Also, in this scenario,
we take the Hénon chaotic map or the Logistic Bimap, and Rules 1 and 2 are
considered. As a result, the same properties of both asymptotic distributions
are maintained respect to section 5, then the same differences between rules are
observed, as shown in Fig.5

Here, again a high number of agents keep their initial money. The chaotic
choice in Fig.5 (c) is forcing trades between a specific group of agents, and then
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Fig. 5. Simulation of Scenario IV where agents and money exchange are chaotic. (a)
Chaotic selection with Henon Map and Rule 1, (b) Chaotic selection with Henon Map
and Rule 2 and (c) Chaotic agent points used in these simulations represented as pairs
(i,j) in the range [1, 500] × [1, 500].

this type of locality makes some commercial relations restricted. The different
behavior for Rule 1 and 2 is similar to scenario III. Rule 2 still presents an expo-
nential shape, but Rule 1 gives a different function distribution with a maximum
near the mean wealth. We remark that Rule 1 is able to generate a more equi-
table society when chaotic mechanisms are implemented in both processes, the
agents selection and the money transfer.

8 Conclusions

The work presented here focuses on the statistical distribution of money in a
community of individuals with a closed economy, where agents exchange their
money under certain evolution laws. The several theoretical models and practical
simulation results in this field, implement rules where the interacting agents or
the money exchange between them are traditionally selected as fixed or random
parameters ( [2], [4], [10]).

Here, anovelperspective is introduced. As reality tends tobemore complex than
purely fixed or random, it seems interesting to consider chaotic driving forces in
the evolution of the economic community. Therefore, a series of agent-based com-
putational results has been presented, where the parameters of the simulations are
selected with different levels of randomness and extended up to chaotic conditions.

In a first scenario, the exponential Boltzmann-Gibbs distribution is obtained
for two different rules of money exchange under conditions with different levels of
randomness. Consequently, this does not distinguish between different evolution
rules and richness is shared among agents in an exponential and unequal mode.

Introducing chaotic parameters in three other different scenarios leads to dif-
ferent results, in the sense that restriction of commercial relations is observed, as
well as a different asymptotic wealth distribution depending on the rule of money
exchange. It is remarkable that a more equitable distribution of wealth is obtained
in one of the evolution rules when some of the dynamical parameters are driven by
a chaotic system. This can be qualitatively observed in the distributions of money
that have been obtained and reported for two different scenarios.
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The authors hope that this study can trigger other works that continue to
provide new clues in the nature of economic self-organizing systems.
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Abstract. We propose a knowledge aware bisimulation equivalence re-
lation on the Calculus of Applied Pi Calculus. Applied Pi is well-known
for discribing and analyzing security protocols. Our equivalence relation
is especially useful in analyzing the property of anonymity. We give an
analysis of iKP anonymity as a running example to show the effective-
ness of this approach.
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1 Introduction

The Calculus of Applied Pi, pioneered by Abadi and Fournet [1] is an extension
of π-calculus [2,3]. In the field of analyzing security protocols, where knowledge
and term equations play an important rule in guaranteeing security properties of
protocols (secrecy, authentication, etc), Applied Pi is the most suitable process
calculus. It has a more general setting of terms to model most security primi-
tives nowadays, and this setting provides a mechanism to model unknown new
primitives which would appear in future. The calculus itself is decoupled from
terms, so its algebraic property is not affected by which primitives its terms are
modeling. It has been used to model Just Fast Keying [4], certified email [5],
private authentication [6], etc.

In Applied Pi, the security properties such as secrecy and authentication are
captured by the labeled bisimilarity [1], which is defined upon labeled transition
system. However labeled bisimilarity does not seem to be a suitable equivalence
relation between processes for security protocols. One reason is that it does not
take account of knowledge. Secondly it is not a congruent relation. It is also
coarser than we want. For example, given the equational theory

dec(enc(x, y), y) = x
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let us take the following two processes:

A ≡ νm.(ā〈enc(m, k)〉.b(x).(τ.c̄〈c〉+ τ.d̄〈d〉
+ τ.if dec(x, k) = m then c̄〈c〉 else d̄〈d〉))

B ≡ νm.(ā〈enc(m, k)〉.b(x).(τ.c̄〈c〉+ τ.d̄〈d〉))
One can easily check that A is labeled bisimilar to B since

dec(enc(m, k), k) = k

is one of the equations in the equational theory. But from the viewpoint of an
practical observer, these two processes should not be bisimilar. Because the third
summand of A,

τ.if dec(x, k) = m then c̄〈c〉 else d̄〈d〉
could tell apart the content it receives on channel b by sending something on
channel c or d. While process B does not have this ability.

The basic idea is straightforward. A knowledge based environment with time
precedence relation is used to deal with the bounded names. The environment
records the history of a process when it is running. The time precedence relation
records those pairs of names and terms. Its role is to inhibit from substituting
a later emitted term for a free substitutable name. The resulting equivalence
relation is finer than labeled bisimilarity enough to rule out the unreasonable
equality of A and B in the above example. It also enjoys the full congruent prop-
erty, which requires an equivalent relation closed under every operator including
input prefix. In the fields of analyzing security protocols, a congruent equivalence
relation means we can verify security properties of a large system by break up to
small parts, then each small part satisfies a security property implies the whole
system also satisfies it.

Related Works. Using process calculi to analyze network security protocols is
firstly studied by Lowe [7], wherein a flaw of Needham-Schroeder key distribution
protocol is found by modeling the protocol in CSP and checking it with FDR.
Later on, some ad hoc calculi are proposed, among which the Spi Calculus [8]
and the Applied Pi Calculus [1] are the most widely studied. Many knowledge
aware equivalence relations, like framed bisimulation [9], hedged bisimulation [10]
to name a few, on Spi have been proposed to extend standard bisimulation
equivalence which lacks knowledge representation.

Anonymity, also called untraceability, is firstly proposed by Chaum [11] to
solve the Dinning Cryptographer Problem. Schneider and Sidiropoulos analyze
anonymity with CSP [12]. In [13] Kremer and Ryan analyzed the FOO92 voting
protocol in Applied Pi and prove that it satisfies anonymity. Chothia [14] uses
bisimulation in the π-calculus to test the anonymity of an anonymous file-sharing
system. Cai [15] uses Probabilistic Applied Pi to give anonymity a quantitative
analysis. The anonymity of iKP is studied in [16]. Principals of the protocol
are modeled as Applied Pi processes and the anonymity is captured by static
equivalence. The work is instructive, however, their formulation of anonymity
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is unclear and the proof is not correct though the results do hold. We give
an unambiguous formulation of anonymity based on the open bisimilarity and
provide a sound proof of it.

Outline of the Paper. The rest of the paper is organized as follows. Section 2 briefly
introduces the Applied Pi Calculus and develops knowledge aware bisimilarity and
proves its properties. Improvements on analyzing iKP anonymity is shown in Sec-
tion 3. Finally Section 4 concludes and points out some directions for future re-
search. All technical details and additional information can be found in [17].

2 Applied Pi and Open Bisimulation

2.1 Applied Pi

In this subsection, we briefly recall the syntax and semantics of the Applied Pi
Calculus. Readers are referred to [1] for full details.

We presume a countable set of names Nc, ranged over by a, b, . . . and their
decorated forms, and a countable set of variables Nv, ranged over by x, y, . . .
and their decorated forms. ñ denotes some finite set of names {n1, . . . , nk}. A
signature Σ is the set of all function symbols needed to model some protocols.

Terms are defined as follows:

L,M,N, T ::= a, b, c, . . . | x, y, z, . . . | f(M1, . . . ,Ml)

They are constructed from names, variables and function application on terms.
A substitution σ is a map from variables to terms. As in π-calculus, names are
used to express channels, and set of channels is denoted by Chan. Names can
represent atomic data such as keys, nonces, random numbers as well. Function
applications on terms are proposed to model all kinds of cryptographic operations
such as encryption and decryption. The relationship of cryptographic primitives
is described by an equational theory E. For example, when we are dealing with
symmetric cryptography, we could let Σ = {enc, dec} and E has the following
equation dec(enc(x, y), y) = x.

Plain processes are constructed by commonly seen operators:

P,Q,R ::= 0 | u(x).P | ū〈N〉.P | P |Q | !P
| νn.P | ifM = N thenP elseQ

Extended processes are plain processes paralleled by active substitutions and
the restrict operator also has effect on active substitutions:

A,B,C ::= P | A |B | νn.A | νx.A | {M/x}
The differences between plain processes and extended processes are active

substitutions. The notation {M/x} is an active substitution which replaces the
variable x with the term M . The active substitution {M/x} typically appears
when the term M has been sent out, and the environment could receive it. The
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frame of an extended process is the active substitution part of an extended
process. It can be written in the form of φA = νñ.{M̃/x̃} and ñ ⊆ n(M̃). Every
extended process can be mapped into its frame by removing plain processes.

We write fn(A) and bn(A) for free and bound names of A. The set of names
that occur in A is denoted as n(A) = bn(A)∪fn(A). If A is an extended process,
the frame of A is the active substitution part of it. Function dom(φ) returns the
domain of a frame φ. The set of frames are denoted by Frame.

Frames can be viewed as the static knowledge exposed by A to the environ-
ment, so there comes the deduction [18] which can be done by the environment.
We write φ �M to mean that M can be deduced from φ.

Definition 1. We say that two terms M and N are equal in the frame φ, and
write (M = N)φ, if and only if φ ≡ νñ.σ, Mσ = Nσ and {ñ} ∩ (fn(M) ∪
fn(N)) = ∅ for some names ñ and substitution σ.

Definition 2. We say that two closed frame φ and ψ are statically equivalent,
denoted by φ ≈s ψ if dom(φ) = dom(ψ) and for all terms M,N , we have (M =
N)φ if and only if (M = N)ψ.

Definition 3 (Static Equivalence ≈s). We call two closed extended processes
A,B statically equivalent, and write A ≈s B, if their frames are statically equiv-
alent.

Definition 4. Labeled bisimilarity ≈l is the largest symmetric relation R on
closed extended processes such that ARB implies,

1. A ≈s B;
2. if A τ−→ A′, then B

τ−→∗
B′ and A′RB′ for some B′;

3. if A α−→ A′ and fv(α) ⊆ dom(A) and bn(α) ∩ fn(B) = ∅, then
B

τ−→∗ α−→ τ−→∗
B′ and A′RB′ for some B′.

The decidability of the equational theory is crucial in automatically checking
equality between two Applied Pi processes. Some positive results have been re-
ported in [18]. For example, deducibility is decidable in polynomial time for a
large class of equational theories including the theories for encryption, decryp-
tion and digital signatures. In this paper, we assume that the deducibility of
equational theories are always decidable.

2.2 Open Bisimulation

The active substitution is already a good candidate for the knowledge aware
environment. However it will be absorbed by an input action. This causes some
information lost after an interaction, so we reserve the time precedence constraint
on substitutions. Since a term can substitute for a free name, our precedence
relation is defined on Frame× (Nc ∪Nv). The frame of a process is obtained by
mapping all plain processes to 0, and all active substitutions remained.

The environment will be the form of e = 〈V,≺〉, plus the implicit frames of
extended processes. V is the set of substitutable names and variables, and ≺ is
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time precedence relation. The constraint on substitution is achieved by the so-
called respectiveness of a substitution to an environmentσ�e. As the bisimulation
game is playing, the environment should be updated and extended accordingly.

In Applied Pi, it is not required that the same σ applies to both P and Q,
since two key protected cyphertexts are thought to be equal when the key is
unknown to observers. We use a tuple σ = 〈σ1, σ2〉, whose first part σ1 applies
to P and σ2 applies to Q. From now on, we write bold face A to denote a tuple
in the form of 〈A1, A2〉.
Definition 5. A tuple 〈V,≺〉 is an environment, if V ⊆ (Nc∪Nv) is a finite set
of substitutable names and variables from both two sides, ≺= 〈≺1,≺2〉 and ≺i⊆
Frame×V (i ∈ {1, 2}) is the precedence relation between frames and substitutable
names and variables. The set of all environments is denoted by E.

The intuition behind an environment e = 〈V,≺〉 is to make a clear notion of what
can be substituted for and what can be substituted when applying substitution.
Relation ≺i stores the time precedence between the frame and the input names,
thus avoiding substituting a later emitted bounded name or term for a currently
substitutable name.

Definition 6. We say a pair of substitution σ = 〈σ1, σ2〉 respects e, denoted by
σ � e if the following holds,

– dom(σi) ⊆ V for i ∈ {1, 2};
– ∀x ∈ V : x ∈ dom(σ1) ⇐⇒ x ∈ dom(σ2);
– ∀x ∈ V : xσ1 = xσ2, where φi ≺i x for i ∈ {1, 2};
– if x ∈ Chan, then xσi ∈ N for i ∈ {1, 2}.

The environment should be updated when a pair of substitution is applied,
reflecting the changes of names.

Definition 7. Let σ = 〈σ1, σ2〉 be a pair of substitutions, e = 〈V,≺〉 be an
environment, the updated environment eσ = 〈V ′,≺′〉 is defined as follows,

– V ′ = V \ dom(σ);
– φiσi ≺′

i xσi if φi ≺i x.

The environment should also be extended when an input bounded name becomes

free, e.g. the x in P when a(x).P
a(x)−→ P . So we have the following definition.

Definition 8. Let e = 〈V,≺〉 be an environment. The extension of e, denoted
by e⊕V (x) = 〈V ′,≺〉 will be defined as,

– V ′ = V ∪ {x};
– ≺′

i=≺i ∪{〈φi, x〉}.
We define e−1 = 〈V −1,≺−1〉 where ≺−1 is the reverse relation of ≺. An open
relation R is a subset of E × P × P , such that ∀〈e, P1, P2〉 ∈ R : fn(Pi) ⊆ V . It
is called symmetric if ∀〈e, P1, P2〉 ∈ R : 〈e−1, P2, P1〉 ∈ R.
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Definition 9. An open relation R is an open bisimulation if 〈e, P1, P2〉 ∈ R im-
plies P1 ≈s P2, and for all σ � e, if P1σ1

μ1−→ P ′
1 with bn(μ1) ∩ fn(P1) = ∅, then

there exist P ′
2, μ2 such that P2σ2

τ−→∗ μ2−→ τ−→∗
P ′

2 with bn(μ2) ∩ fn(P2) = ∅ and,

– if μ1 = τ , then μ2 = τ and 〈eσ, P ′
1, P

′
2〉 ∈ R;

– if μ1 = ā〈x〉, then μ2 = ā〈x〉 and 〈eσ, P ′
1, P

′
2〉 ∈ R;

– if μ1 = a(M1), then μ2 = a(M2) where M1 = M2 and
〈eσ ⊕V (fn(M1,M2)), P ′

1, P
′
2〉 ∈ R.

We say that P andQ are open bisimilar, denoted by P ≈e
o Q, if there exists an open

bisimulation R such that 〈e, P,Q〉 ∈ R. We call ≈〈fn(P,Q),∅,∅〉
o open bisimilarity.

Our definition of open bisimilarity is sound with respect to labeled bisimilarity.

Theorem 1. If P ≈〈fn(P,Q),〈∅,∅〉〉
o Q then P ≈l Q.

The example stated in Section 1 shows that there exist two labeled bisimilar
processes which are not open bisimilar. So we have the following corollary.

Corollary 1. Open bisimilarity is strictly included in labeled bisimilarity.

Congruence is an important property of equivalence relation in process alge-
bra. It requires an equivalent relation closed under every operator. A congruent
equivalence relation means we can verify security properties of a large system by
break up to small parts, then each small part satisfy a security property implies
the whole system also satisfy it. Fortunately, we have the following theorem.

Theorem 2. Open bisimilarity is a congruence.

3 Analyzing iKP Anonymity

iKP (i-Key-Protocol, i = 1, 2, 3) is a family of secure electronic payment proto-
cols [19,20]. It involves three parties: the buyer B, the seller S and the acquirer
A. We are concerned in the anonymity of 1KP.

We write SKX for the secret key of party X (X ∈ {B,S,A}), and PK(SKX)
for its corresponding public key. H is an ideal hash function. EX means encryp-
tion and SX means signature. We will use the following notations for messages
transmitted in the protocol:

– Desc: Description of purchase and delivery address.
– SaltB: Random number to salt Desc.
– Authprice: Amount and currency.
– Date: Time stamp.
– NonceS : Nonce of S.
– IDS : ID of S.
– TIDS: Transaction ID chosen by the seller.
– BanB: Buyer’s account number.
– RB: Random number chosen by B.
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– IDB: Pseudo-ID of B, which is equal to H(RB , BanB).
– Code: Authorization code.

Composite messages are defined as follows:

– Common = (Authprice, IDS, T IDS, Date,NonceS, IDB, H(SaltB, Desc)).
– Clear = (IDS , T IDS, Date,NonceS, H(Common)).
– Slip = (Authprice,H(Common), BanB, RB).
– EncSlip = EA(Slip).
– SigA = SA(Code,H(Common)).

The operation flow of this protocol consists of six steps:

1. Initiate B −→ S : SaltB, IDB. The buyer sends init, which is composed of
the hash code of his/her account number, a random number, etc.

2. Invoice S −→ B : Clear. The seller answers by the hash code of price and
other information. The message is composed of common and clear.

3. Payment B −→ S : EncSlip. The buyer checks the invoice and sends the
payment slip encrypted by the acquirer’s public key.

4. Auth-Request S −→ A : Clear,H(SaltB, Desc), EncSlip. The seller re-
quests the acquirer to authorize the payment. The message is composed of
clear and req.

5. Auth-Response A −→ S : Code, SigA. The acquirer checks the request,
extracts information from it, authorizes it and then sends response resp to
the seller.

6. Confirm S −→ B : Code, SigA. The seller extracts the response and the
signature of the acquirer, verifies it and then sends confirm to the buyer.

We now model this protocol in Applied Pi. The signature Σ of it is:

Σ = {init, clear, common, slip, req, resp, confirm, proj.i,

hash, dec, enc, checksig, pk, true, false}

The function symbols init, clear, common, slip, req, resp, and confirm represent the
message flows transmitted in the protocol. Their parts can be extracted. The
extraction operator here we use is proj.i. The rest of function symbols in Σ is
self-evident. They are common cryptographic primitives.

The equational theory is:

dec(enc(x, pk(z)), z) = x

checksig(enc(x, z), pk(z)) = true

proj.i(tuple(x1, . . . , xl)) = xi if 1 ≤ i ≤ l

The last equation is a short form of a family of equations with similar forms,
that is

tuple ∈ {init, clear, common, slip, req, resp, confirm}
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We use substitutions to define the messages transmitted in the protocol:

σ1 = {init(SaltB, IDB)/x1}
σ2 = {clear(IDS , T IDS, Date,NonceS,

hash(Authprice, IDS, T IDS, Date,NonceS,

proj.2(x1), hash(proj.1(x1), Desc)))/x2}
σ3 = {enc(slip, pk(SKA))/x3}
σ4 = {req(x2, hash(proj.1(x1), Desc), x3)/x4}
σ5 = {resp(Code, enc(Code, hash(common), SKA))/x5}
σ6 = {confirm(proj.1(x5), proj.2(x5))/x6}

This approach is inspired by Gu et al [16].
Three parties are defined as follows: PB stands for the buyer, PS for the seller

and PA for the acquirer. In addition, FB(x), FS(x), FA(x) represent respectively
the actions which the buyer, the seller and the acquirer are required to perform
after finishing the protocol flows. The processes are:

P ≡ (νAuthprice,Desc).PB |PS |PA

PB ≡ (νSaltB, RB).(CBS〈x1σ1〉 | !(CSB(x2).
if proj.5(x2) = hash(Authprice, proj.1(x2), proj.2(x2),

proj.3(x2), hash(RB, BanB), hash(SaltB, Desc))

then (CBS〈x3σ3〉 | !(CSB(x6).if checksig(proj.2(x6),
pk(SKA)) thenFB(x6)))))

PS ≡ (νIDS , T IDS, Date,NonceS).(CBS(x1).(CSB〈x2σ2〉
|CBS(x3).(CSA〈x4σ4〉 |CAS(x5).CSB〈x6σ6〉.FS(x5))))

PA ≡ (νSKA).!(CSA(x4).if proj.2(dec(proj.3(x4), SKA)) =
hash(proj.1(dec(proj.3(x4), SKA)), proj.1(proj.1(x4)),

proj.2(proj.1(x4)), proj.3(proj.1(x4)), proj.4(proj.1(x4)),
hash(proj.3(dec(proj.3(x4), SKA)), proj.4(dec(proj.3(x4),

SKA))), proj.1(x4)) then (νCode).(CAS〈x5σ5〉.FA(x4)))

Buyers want to keep anonymous from eavesdroppers and sellers. Furthermore,
buyers may even want to keep anonymous from the payment system provider
(acquirers). We will show that iKP does not offer anonymity with respect to the
payment system provider. It does minimize the exposure of buyers’ identities to
sellers and eavesdroppers. The crucial point is whether the BanB (Buyer B’s
Account Number) in PB can be exposed to the environment. The results are
formally stated in the following theorem.

Theorem 3. Suppose FA(x1) ≈e
o FA(x2) for every e if and only if x1 = x2

and the same property holds for FB(x) and FS(x). Suppose PB(x) be the pro-
cess PB having x substituted for BanB and B1 �= B2. Let v = {CSB,CBS},
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v′ = v ∪ {CAS ,CSA} and p = 〈∅, ∅〉. If we abbreviate (νAuthprice,Desc).
PB(x) |PS to PBS(x), then we have

PBS(B1) ≈〈v,p〉
o PBS(B2)

and
PBS(B1) |PA �≈〈v′,p〉

o PBS(B2) |PA

Proof (sketch). Let us play the bisimulation game using our open approach. In
each step, we update or extend the environment accordingly in order to record
the knowledge exposed to the environment faithfully. We find that BanB only
occurs in the frame of processes. After PBS(B1) and PBS(B2) have fired their
respective output actions CBS〈x3σ3〉,

φ(PBS(B1)) = {enc((Authprice, hash(common), B1, RB), pk(SKA))/x3}
| {(SaltB, hash(RB, B1))/x1} |σ1 |σ2 |σ3

and

φ(PBS(B2)) = {enc((Authprice, hash(common), B2, RB), pk(SKA))/x3}
| {(SaltB, hash(RB, B2))/x1} |σ1 |σ2 |σ3

It is obvious that φ(PBS(B1)) ≈s φ(PBS(B2)), then PBS(B1) ≈〈v,p〉
o PBS(B2)

follows easily.
For the case in which acquirers are taken account of, proj.3(dec(x3, SKA)) =

B1 is deducible in φ(PSB(B1) |PA), but is not deducible in φ(PSB(B2) |PA).
Therefore we have φ(PBS(B1) |PA) �≈s φ(PBS(B2) |PA). This suggests us that
the attacker hidden in the environment can tell the difference of two account
numbers. By the assumption that FA(x1) �≈e

o FA(x2) for all e if x1 �= x2, we
have PSB(B1) |PA �≈〈v′,p〉

o PBS(B2) |PA. ��

4 Conclusion

In this paper we propose a knowledge aware open bisimulation relation for the
Applied Pi Calculus. Our relation is more suitable for analyzing security pro-
tocols. It also has many other advantages, which include the congruent prop-
erty and a finer distinguishability. By analyzing the anonymity of iKP, it is
shown that playing the knowledge aware bisimulation game can effectively ana-
lyze anonymity, which is hard to obtain by many other methods.

As for the future work, we would like to apply this approach to check other
security properties, such as authentication and non-repudiation. We are also
working on developing automatically equivalence checking tools.
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Abstract. The depth-integrated shallow water equations are frequently
used for simulating geophysical flows, such as storm-surges, tsunamis and
river flooding. In this paper a parallel shallow water solver using an un-
structured high-order discontinuous Galerkin method is presented. The
spatial discretization of the model is based on the Nektar++ spectral/hp
library and the model is numerically shown to exhibit the expected ex-
ponential convergence. The parallelism of the model has been achieved
within the Cactus Framework. The model has so far been executed suc-
cessfully on up to 128 cores and it is shown that both weak and strong
scaling are largely independent of the spatial order of the scheme. Re-
sults are also presented for the wave flume interaction with five upright
cylinders.

1 Introduction

This paper presents a first step towards a community coastal modeling toolkit
for nearshore surface water waves based on spectral/hp element methods. The
ultimate goal is a scalable, parallel, non-hydrostatic wave solver, based on multi-
layered Boussinesq-type equations including time-dependent bathymetry and
sediment transport. In this paper we outline the ongoing work of the paral-
lel implementation of non-dispersive two-dimensional shallow water equations
(SWE). As Boussinesq-type equations are higher-order extensions to the SWE,
the SWE constitute the natural initial stepping stone. A driving force behind
this effort is storm surge modeling and the SWE model presented here can be
used as an efficient hydrodynamic core for such simulations.

There are several motivations for using spectral/hp element methods (i.e. fi-
nite element methods of arbitrarily high order) rather than more traditional
methods. Spectral/hp elements provide a flexible setting where both the ele-
ment size and the polynomial order within the elements can be altered. Further,
high-order methods tend to be more computationally efficient for long-time in-
tegrations compared to low-order methods due to their inherently small nu-
merical diffusion/dispersion error. The discontinuous Galerkin (DG) flavour of
spectral/hp elements was choosen mainly since the resulting global mass ma-
trix is block-diagonal. Thus, any explicit time-stepping scheme can update the
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numerical solution in an element-by-element fashion. The DG method is also
able to incorporate well established shock-capturing techniques from the finite
volume (FV) framework.

SWE models are most frequently based on shock-capturing FV methods, but
over the last decade several DG SWE models have been presented. Later studies
emphasize the use of high-order schmes [5,4,11,6] and the present state-of-the-
art DG SWE models rely on adaptivity: [1] include h-type adaptivity while [13]
illustrates the benefits of p-type adaptivity. In contrast to a recent study [12] that
addresses the parallel performance of a low-order DG SWE model, the present
study is addressing the performance of high-order schemes.

The coastal DG wave model is based on the spectral/hp element library Nek-
tar++ [9,10], while parallelism has been achieved by adding support for unstruc-
tured two-dimensional meshes into the computational framework Cactus [8,7].
This separation of programming tasks allows coastal engineers to focus on devel-
oping coastal code using Nektar++ and the computational scientists to focus on
parallelism, performance and scalability of the unstructured mesh driver. Fur-
ther, the adoption of an underlying parallel framework provides a methodology
to develop interoperable modules to add additional solvers and models leading
to a comprehensive toolkit for modeling coastal environments.

2 Shallow Water Equations

The shallow water equations are a set of non-linear hyperbolic equations. The
equations are derived under the assumption of hydrostatic pressure, and thus
the SWE are only valid for long waves (the rule of thumb being that the still
water depth to wavelength ratio should be less than 1/20). The conservation
form of the SWE read

∂U
∂t

+∇ · F(U) = S(U) , (1)

where U = [H ,Hu ,Hv]T is the vector of conserved variables and F(U) =
[E(U) ,G(U)]T is the flux vector defined by:

E =

⎡⎣ Hu
Hu2 + gH2/2

Huv

⎤⎦ , G =

⎡⎣ Hv
Huv

Hv2 + gH2/2

⎤⎦ .

Here H(x, t) = η(x, t) + d(x) is the total water depth, η(x, t) is the free surface
elevation and d(x) is the still water depth; u(x, t) = [u(x, t) , v(x, t)]T denotes
the depth-averaged velocity in the x- and y-direction, respectively, while g is the
acceleration of gravity.

The source terms S(U) can contain forcing due to e.g. bathymetry, bottom
friction, atmospheric pressure, Coriolis force, wind stresses and diffusion. The
objective of this study is to assess the performance of the computational core
rather than present any solution of real-life engineering cases, and we focus here
on the homogeneous version of the SWE.
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3 Numerical Scheme

3.1 DG Discretization

Let Ωh denote the partition of the computational domain, Ω, into N non-
overlapping elements Ωe with elemental boundaries Γe. The diameter of the
element Ωe is given by he and subsequently h = max(h1, . . . ,hN). We introduce
the discrete polynomial space

Vδ =
{
v ∈ L2(Ω) : v|Ωe ∈ Pp(Ωe), ∀Ωe ∈ Ωh

}
,

where Pp is the space of polynomials of degree at most p in the element Ωe.
We proceed by multiplying eq. (1) with a piecewise smooth test function q(x)

and integrate over the local element Ωe. We then approximate U and q with
polynomial expansions of order p:∫

Ωe

qδ
∂Uδ

∂t
dx +

∫
Ωe

qδ∇ ·F(Uδ) dx =
∫

Ωe

qδ S(Uδ) dx .

After applying the divergence theorem and exchanging the boundary flux term
with a numerical flux, we can state the discrete DG method as: find Uδ ∈ Vδ

such that for all qδ ∈ Vδ and for all Ωe ∈ Ωh∫
Ωe

qδ
∂Uδ

∂t
dx−

∫
Ωe

∇qδ ·F(Uδ) dx

+
∫

Γe

qδ F̂(Uδ) · n dS =
∫

Ωe

qδ S(Uδ) dx , (2)

where n is the outward unit normal to Γe and F̂ denotes the continuous numerical
flux used to couple the elements together. In this study we use the popular HLLC
Riemann solver [14] as the numerical flux.

The approximation of an arbitrary variable fδ ∈ Vδ in the local element Ωe

can be expressed as

fδ(x, t) =
Ne

dof−1∑
i=0

f̃e[i]φi(x) , x ∈ Ωe ,

where f̃e[i] is the time-dependent vector consisting of the Ne
dof elemental degrees

of freedom of expansion coefficients and φi(x) are the trial functions.
Introducing the elemental mass matrix

Me[p][q] =
∫

Ωe

φe
p(x)φe

q(x) dx ,

and the elemental weak derivative matrices

De
x[p][q] =

∫
Ωe

∂φe
p(x)
∂x

φe
q(x) dx , De

y[p][q] =
∫

Ωe

∂φe
p(x)
∂y

φe
q(x) dx ,
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where 0 ≤ p, q ≤ Ne
dof − 1 , we can write eq. (2) in elemental form as

Me ∂Ũ
∂t

−De
x E(Ũ)−De

y G(Ũ) + fe = Me S(Ũ) ,

in which
fe[p] =

∫
Γe

φp(x)
(
F̂(Uδ) · n

)
dS .

In contrast to continuous Galerkin methods, for DG methods the global ma-
trices are just a concatenation of local elemental matrices. Hence, using explicit
time-stepping schemes the solution can be computed in an element-by-element
fashion.

Following the standard Galerkin formulation we use the same functions for the
test and trial functions. Former studies concerned with high-order DG methods
for SWE have primarily used either the modal orthogonal Prioli-Koornwinder-
Dubiner (PKD) basis [4,11] or the nodal electrostatic basis [5,6]. Here we use
the C0 modified PKD basis [10], which can be decomposed into boundary and
interior modes. For this choice of basis the elemental mass matrix is sparse, but
on the other hand there are only the boundary modes involved in the computa-
tion of the boundary integral. More importantly this choice of expansion basis
gives the possibility to use static condensation if a global equation system must
be solved [10]. Admittedly, the present SWE solver does not involve a global
solve, but this should be an important feature in the future development of a
Boussinesq solver.

The semi-discretized equations are advanced in time using a second- or third-
order TVD Runge-Kutta method and all boundary conditions are enforced
weakly through the use of the Riemann solver.

3.2 Computational Approach

The discontinuous Galerkin scheme outlined in section 3.1 was first implemented
in a stand-alone serial code using the open-source spectral/hp library Nektar++
[9]. Nektar++ provides the fundamental tools associated with a high-order finite
element method, such as the calculation of expansion functions, inner products
and differentiation. With regard to the high-order discretization our work has
been focused on implementing a solver structure for time-dependent problems.
This includes a SWE class containing functions for the evaluation of the flux
vector, numerical fluxes, equation dependent boundary condition, various source
terms, etc.

We rely on the Cactus Framework [8] to provide parallelization and to adopt
an extensible component approach to code development. Cactus is an open
source problem solving environment designed for scientists and engineers needing
to develop collaborative code for large scale parallel machines. Cactus comprises
sets of components (or thorns) which are invoked by the Cactus Flesh which col-
lects information from the thorns to define grid variables, parameters, methods
and scheduling. The modular structure of Cactus enables parallel computation
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Fig. 1. Architectural diagram showing Cactus thorns and their connection to the ex-
ternal Nektar++ and Zoltan packages

across different architectures and collaborative code development between dif-
ferent groups.

To integrate the serial SWE solver into Cactus several new thorns were devel-
oped (see Figure 1). First, an unstructured mesh driver (thorn UMDriver) was
developed which provides the underlying parallel layer and the Cactus Configu-
ration Language was extended to support grid functions on unstructured meshes.
The UMDriver (which is still under development) uses the Zoltan [3] library to
provide mesh partitioning, load balancing and mesh migration. Another thorn
LocalToGlobal provides local reindexing of elements, edges and vertices.

The core thorn for the coastal modeling toolkit in Cactus is CoastalWave.
Mirroring the methodology for other domain specific toolkits in Cactus, this
thorn defines the generic variables, parameters, and methods for coastal mod-
els, allowing models providing the same functionality to be swapped (e.g. the
SWE will be interoperable with the Boussinesq solver) and allowing additional
components to be added into the workflow (e.g. phase-averaging wave models to
compute radiation stresses).

Thorn Nektar++ initializes and populates the data structures of the Nektar++
library. Thorn SWE thorn contains the actual SWE solver based on routines
defined in the SWE class. Finally, thorn MeshReader provides a simple ASCII
mesh file reader, and also allows users to register their own mesh readers.

4 Computational Results

4.1 Convergence

Consider the simple case of a linear standing wave with a wavelength of 10 m in
a square 10 by 10 m basin. The still water depth is 0.5 m. In order to compare
with the analytical solution we here use the linearized SWE. We compute the
solution for one wave period using 10 000 time steps. Table 1 shows the error
and order of convergence measured in the L2 norm.
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Table 1. L2 error and order of convergence for the linear standing wave

N = 16 N = 64 N = 256
p error error order error order
1 3.3676E-03 6.4677E-04 2.38 1.6054E-04 2.01
2 1.7754E-04 2.1496E-05 3.05 2.5909E-06 3.05
3 2.1303E-05 2.2351E-06 3.25 6.3190E-08 5.14
4 3.4041E-07 9.7791E-09 5.12 3.0563E-10 5.00

In general we have optimal convergence O(hp+1), although for p = 3 there is
an instance of O(hp) convergence. This is due to the use of a simplified numerical
flux (componentwise averaging) in the linear scheme. The use of averaging is
known to sometimes produce sub-optimal convergence for odd p. Nevertheless,
for p-type refinement we obtain the expected exponential convergence, illustrated
by the approximate straight lines in Figure 2.

Polynomial order p

L
2

er
ro

r

0 1 2 3 4 5 6 7 8 9 1
10-12

10-10

10-8

10-6

10-4

10-2
N = 16
N = 64
N = 256

Fig. 2. Illustration of exponential convergence for the linear standing wave

4.2 Weak Scaling

Weak scaling indicates the ability of a code to scale up a problem on more
cores, increasing the domain size or grid refinement while keeping a constant
load on each core. We consider two series of meshes – consisting of 100 and
900 quadrilaterals per core, respectively. Both sets are run with three different
polynomial orders: p = 4 , 6 , 8. The largest run (900 elements per core on 128
cores) thus contains 218 700 unique degrees of freedom per core, or a total of
roughly 28 million degrees of freedom. We execute the model for one hundred
time steps. Scaling tests were performed on the LONI “Queen Bee” Linux cluster
(comprising 668 nodes, each containing dual Quad Core Xeon 64-bit 2.33GHz
processors with an Infiniband interconnect).
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Table 2. Weak scaling using 100 quadrilaterals [Top table] and 900 quadrilaterals
[Bottom table] per core. Solution time is wall clock time in seconds while parallel
efficiency is presented as an percentage.

Numbers p = 4 p = 6 p = 8
of Solution Parallel Solution Parallel Solution Parallel

cores time eff. time eff. time eff.
1 5.00 — 7.01 — 10.6 —
2 5.56 89.8 7.77 90.3 11.7 90.6
4 6.16 81.2 8.54 82.1 12.7 83.4
8 7.17 69.7 9.98 70.3 14.7 72.1
16 7.53 66.3 10.35 67.8 15.3 69.0
32 7.75 64.5 10.63 66.0 16.0 66.1
64 8.44 59.2 11.45 61.3 16.5 64.0
128 9.06 55.2 12.13 57.8 17.2 61.4

Numbers p = 4 p = 6 p = 8
of Solution Parallel Solution Parallel Solution Parallel

cores time eff. time eff. time eff.
1 134.3 — 153.1 — 185.7 —
2 140.6 95.6 160.1 95.6 193.7 95.8
4 150.5 89.3 169.5 90.3 203.5 91.3
8 159.8 84.1 181.9 84.1 218.6 85.0
16 167.4 80.3 185.9 82.3 222.5 83.5
32 165.0 81.4 190.0 80.6 226.0 82.2
64 167.1 80.4 194.5 78.7 227.8 81.5
128 170.6 78.7 191.4 80.0 237.6 78.2

Table 2 shows the solution time (without time spent in I/O, initializing and
partitioning of the mesh) for the 100 and 900 element series. The parallel efficiency
decreases for both series, although more rapidly for the 100 element series. This is
due to the fact that ghost elements are currently used rather than ghost edges, so
that the workload per core is not actually constant: a two-core partition has 100
plus an additional 10 ghost elements per core; four partitions has 100 elements
plus 20 ghost elements per core, etc. This increase in computational overhead is
especially pronounced for scaling tests with a low workload per core as well as for
tests using less than eight cores. The parallel efficiency can be regarded as largely
independent with regard to polynomial order p – the slight increase in efficiency
for higher p can be attributed to the higher workload per core.

Scaling for the total execution time shows a larger decrease in efficiency, indi-
cating that the initialization and mesh partitioning routines also require further
attention to improve scalability. A core contributor to this effect is due to the fact
that currently each core stores information about the indices on the entire mesh.

4.3 Strong Scaling

Strong scaling indicates the ability to decrease the total run time for a particular
problem, scaling across more cores while keeping the overall problem size fixed.
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Fig. 3. Strong scaling. [Left] Solution time and [Right] total execution time.

Fig. 4. Cylinder test case: [Top] computational mesh including iso-contours of the
surface elevation at t = 20 seconds; [Bottom left] snapshot of surface elevation at
t = 9.9 seconds and [Bottom right] snapshot of surface elevation at t = 20 seconds

We assess the strong scaling using a fixed size problem of 12 800 quadrilaterals.
As for the weak scaling tests we use p = 4 , 6 , 8 and run the problem for 100 time
steps. Figure 3 shows the reduction in solution time as the number of processors
are increased. The curves in Figure 3 asymptotically approaches the 1:1 slope,
indicating that the wall clock time is halved as the number of cores are doubled.



A Parallel High-Order DG Shallow Water Model 71

4.4 Wave Interacting with Cylinders

Consider a numerical wave flume that is 125 m long and 40 m wide, with an array of
five cylinders (all having a 4 m diameter). The computational domain is discretized
into roughly 6 000 triangular elements of polynomial order p = 6 (roughly 500 000
degrees of freedom), see the top image in Figure 4, heavily clustered around the
cylinders. The initial condition is given by Laitone’s first order solitary wave so-
lution using an amplitude of 0.05 m centered at x = 0. We run the model for 25
seconds, using 10 000 steps. The non-linear SWE model is executed using 64 cores
and the simulation generally takes 0.1 second per time step.

The lower images in Figure 4 shows the evolution of the solitary wave, in-
cluding wave run-up, scattering, diffraction, reflection as well as interaction be-
tween the scattered waves. Note that the solution correctly remains symmetric
throughout the simulation.

5 Concluding Remarks

We have outlined a spectral/hp DG method for solving the SWE and described
it’s integration with the Cactus Framework. This work concludes the first phase
of a program to develop a scalable, parallel, non-hydrostatic wave solver, based
on multi-layered Boussinesq-type equations capable of including time-dependent
bathymetry and sediment transport. An important step has been taken in design-
ing the integration of the underlying spectral/hp solver apparatus into Cactus to
form the basis of a community framework for coastal modeling. This necessitated
the development of an unstructured mesh driver for Cactus, which through the
modular framework can now be used by other application domains.

Much work remains to be done. Comparing to the weak scaling results of e.g.
[2] it is clear that the scaling of the SWE is not yet optimal. The main reasons for
the suboptimal behaviour are: (i) additional communication overhead due to the
use of complete ghost elements rather than just using ghost edges; (ii) current
inefficiencies in the Cactus UMDriver thorn, e.g. in duplicating the physical
space variables.

That the scaling was found independent of polynomial approximation is en-
couraging, as we can expect scalability also for higher-order schemes. Planned
future work on the unstructured mesh driver includes improving scaling on large
numbers of cores, adaptive mesh refinement, a hyperslabbing interface and dy-
namic load balancing. On the coastal modeling side, subroutines for e.g. flood-
ing/drying and breaking waves will be added to allow for real-life engineering
applications.
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Abstract. The amount of information generated by biological research has lead 
to an intensive use of models. Mathematical and computational modeling needs 
accurate description to share, reuse and simulate models as formulated by origi-
nal authors. In this paper, we introduce the Cell Component Ontology - CelO, 
expressed in OWL-DL. This ontology captures both the structure of a cell 
model and the properties of functional components. We use this ontology in a 
Web project – CelOWS - to describe, query and compose CellML models. It 
aims to improve reuse and composition of existent components and allow se-
mantic validation of new models.  

Keywords: Semantic web services, ontology, SOA, e-Science. 

1   Introduction 

Intense research in biological science has generated great volume of data. Tools, 
methods and techniques improve the understanding of new functions, structures and 
processes related to biophysics and physiology. The increase of the computational 
power and the use of numerical methods stimulate the development and the applica-
tion of more complex models [1]. These models allow the combination of different 
physical experiments and in different scales into a computational simulation, provid-
ing an accurate view of the studied phenomena. 

The computational simulation of a model involves two important aspects. The first 
one is the model representation. Although diagrams, literal description and equations 
can be used to publish the models, typographical errors, as well as the necessary con-
ditions to the simulation may generate fatal errors. The second aspect is concerned to 
the implementation phase. The necessity to apply advanced numerical methods cre-
ates a barrier for the effective use and study of the model. 

These questions have stimulated the development of CellML [2], a markup lan-
guage for representing biological models. Based on XML (eXtensible Markup Lan-
guage), CellML specifies elements that can be used to represent a model in a formal 
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way, without ambiguities, legible for humans and computer-readable. The mathemati-
cal equations are represented in MathML, which makes it independent of a specific 
implementation language. CellML can be used to represent, store and share models. 
However, the CellML approach does not provide mechanisms to make component 
reuse an easy going step. 

This research is aimed at using and discussing ontologies and semantic rules for crea-
tion, validation, storage and sharing of biological models, through the service oriented 
architecture - CelOWS. It allows the storage, research, reuse, composition and execution 
of described models using the CelO (Cell Component Ontology) ontology. The main goal 
of the CelOWS is the composition of a new model from the reuse of different models from 
a specific repository. The CelO ontology, described in OWL-DL [3], aims to add seman-
tics to the models. It allows the representation of the intrinsic knowledge, to improve its 
validation, reuse components from other models, automate some composition processes 
and develop model repositories where queries are semantically carried out. 

The remainder of the paper is organized as follows. The next section discusses the 
background of the work. Section 3 presents the proposed CelO ontology and its main 
elements. Section 4 describes the CelOWS architecture, use cases, validation process 
and examples of application. Related works are presented in Section 5, while Section 
6 concludes the paper. 

2   Related Concepts 

In this research context, biological models are related to mathematical and 
computational representation of some biological properties. In the field of physiology 
and electrophysiology the functional elements of the system are generally represented 
by an abstraction named “component”. Each component is a mathematical model that 
aims to represent the behavior of the biological element. The interaction between the 
biological elements is represented by the association of different components. 

The electrophysiology models currently span from simple models of the electric 
activation based on polynomials to three-dimensional complex models [4]. The cell 
components models can be represented through diagrams and have a series of 
associated equations. Diagrams and text descriptions, however, can have 
typographical errors or incorrect initial or contour conditions to the simulation. These 
concerns were recently addressed via the development of the CellML language for 
representing biological models.   

CellML establishes a standard format for defining and sharing biological models. 
The models are then represented as an interconnected network of components. Each 
component represents a biological element of interest as, for example, the cell mem-
brane or an ionic channel. From the viewpoint of computational representation, a 
component is a unit that can interact, add or encapsulate other components. 

A model receives a name and an unique identification (cmeta: id) used to identify the 
model URI. The mathematical equations are expressed in MathML and they describe the 
behavior of each component in the model. A variable is a nominated entity associated to 
a component, representing amounts used in the equations. An initial value and some 
attributes (units, public and private interfaces, etc.) can be associated to a variable. Con-
nections between components are represented through the variables mapping. 
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3   Cell Component Ontology - CelO 

Ontology can be described as a formal and explicit specification of a shared concep-
tualization [6] [7]. The ontology construction implies in acquiring the domain knowl-
edge and collecting the appropriate information that formally defines the domain 
terms. The CelO ontology can be extended for the Biology area, but by now it focus 
on the sub-domain of cardiac electrophysiology. This restriction aims to diminish the 
complexity level and allow a gradual evaluation of the ontology, in terms of its com-
pleteness and functionality. 

The specific goal of the CelO ontology is to describe the semantic of biological 
models. The use of the semantic to express the intrinsic model knowledge aims to 
improve its validation, reuse other models components, automate the processes of 
models composition and construct Web repositories with semantic queries. The struc-
ture of the ontology aims its integration with simulations of CellML models, using 
tools as AGOS [8] and PCEnv [9]. 

For the development of the CelO ontology the Methontolgy methodology was 
adopted, which includes four phases [10]: specification, conceptualization, formaliza-
tion and implementation. In the specification activity a document was defined with 
the ontology goals and main terms. During the conceptualization phase a set of repre-
sentations organized the domain knowledge: terms glossary, concepts classification 
tree, diagrams of binary relationship and concepts dictionary. The activities of formal-
ization and implementation phases were developed and the ontology built using the 
Protegé tool. The maintenance and evolution will occur whenever modifications in 
the ontology structure are necessary (Fig. 1) 

The CelO ontology has three general classes in its top level and its structure pro-
vides three essential types of knowledge: SIEntity (quantities and units associated to 
variables of the model), DomainEntity (Concepts of the Biological domain) and      
ModelEntity ( Model components and interfaces). 

 

Fig. 1. Intermediate representation for the CelO ontology: (a) part of a classification concepts 
tree; (b) diagram of binary relationship of some concepts 
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In this paper we present only the ModelEntity subclasses. The complete CelO on-
tology and the performed tests are available in http://celo.mmc.ufjf.br. 

The ModelEntity class and its subclasses (Fig. 2) define the used concepts in the 
biological model representation. The goal is to have a high level description, making 
reference to the CellML models for the simulation activity. 

A challenging issue in the CelOWS architecture is to treat a model as a web service 
that has interfaces and can “be executed” (through simulation). The ModelService 
class provides a way of organizing the model vision as a service. Its structure is simi-
lar to OWL-S ontology [11], for semantic description of web service. An instance of 
the ModelService exists for each model and is associated to an instance of ModelPro-
file, ModelGrounding and ModelProcess. 

ModelProfile gives information about the model: components association with 
some specific compartment of the cell and the biological entities associated to the 
model. ModelGrounding specifies the associated models, in case of a simulation. The 
CellMLModel class stores the URI of the associated CellML model. ModelProcess 
indicates how the model can be used, which are the input parameters (ModelParame-
terIn) and output ones (ModelParameterOut) that are associated to the interface 
model (ModelInterface). These parameters are directly associated to the model vari-
ables and can be used in the simulation or composition processes. ModelType is a 
generic class, used to characterize the biological problem of the model and its mathe-
matical modeling. 

ModelObject groups objects that compose a model and that are directly related to 
the underlying model. Equation names equations that implement the math model, 
expressed in MathML. Variable represents model variables. ModelVariable de-
scribes the variables roll in model equations and ComponentVariable is related to 
the variable of each model component. These variables can be used in the interface 
of the component (InterfaceVariable) or be local (LocalVariable). DomainVariable 
associates model variables with concepts of the DomainEntity class. Model repre-
sents the model itself, it can be atomic (only one component) or composed (two or 
more components). Component represents model components, that can be described 
in the proper model (InternalComponent) or can make reference to external ones 
(ExternalComponent). A model can be composed simultaneously by internal and 
external models. 

The semantic rules are used to infer knowledge that is implicit in existing 
CellML models. The association between component variables and ontology indi-
viduals are defined and extracted from details in the CellML model.  For example, 
the information may be extracted from the name of a variable and from prede-
fined knowledge. For instance,  we may have a rule that forbids the association of  
variables without dimension to chemical elements. Actually the rules can be also 
used to validate semantically the model in terms of consistency and completeness. 
A validation example is if the components group follows the anatomical hierar-
chy. Some rules of the CelO ontology, written in SWRL, are presented in Fig. 3: 
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Fig. 2. Parcial representation of the CelO ontology in Protegé 

 

Fig. 3. Examples of the CelO ontology rules 

 

Fig. 4. Partial view of CelOWS framework architecture 
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There are different languages to represent the ontologies. Our research uses OWL , 
which is recommended by the W3C as the standard language used for web semantics 
projects. For inferences on individuals of the ontology the SWRL (Semantic Web 
Rule Language) was used [12]. SWRL makes possible the enrichment of the ontology 
with information not directly processed by the inference engine. This language was 
select because it is based on OWL. 

4   CelOWS: An Architecture for e-Science Applications 

The CelO ontology is the base for querying and composition of biological models in a 
service oriented architecture named CelOWS. This architecture uses the concepts of 
ontology repository and semantic web services. CelOWS aims to provide an infra-
structure to register, research, recovery, compose and execute (simulate) biological 
models using ontologies.  The combination of semantic description of components, in 
a standard format that allows their composition with other components, to models that 
can be simulated by existing tools, brings a great flexibility for the modeling proc-
esses in e-science projects. 

CelOWS is implemented as a web service. This allows the repositories distribution 
and facilitates its use in scientific workflows and grid environments. Each model is 
also encapsulated in a web service, so it is able to be executed remotely (independ-
ently or composed with other components) or it can simply inform its localization 
where the local execution code can be found. 

A general vision of the CelOWS architecture is presented in Fig. 4. The CelO URI 
represents the ontology model. The architecture considers three different tiers: 
• CelOWS: Implemented as a web service, can be installed in different sites, allow-

ing the distribution of the repositories, and is interface independent, as it facilitates 
the integration with existing tools. 

• Backend: it is the services tier, used by the CelOWS to access the database (Ce-
lOWS-DB) and the execution tools to simulate CellML models. 

• Client: implements the user interface and it can be developed in any language with 
access to web services. 

The architecture offers four services for its users:  a) Registry: From the URI given 
by the user, the model is then stored in a database.; b) Compose: The user gives XML 
files with the specification of the models that must be composed and the composition 
architecture (how the components will be connected among themselves). A new 
model is generated and stored in the database; c) Query: The user makes a SPARQL 
query [13] and receives, as a result, the models, components or variable that attends it; 
d) Execute: The user gives the URI model and the parameters to be used (from a pre-
vious query). From the given URI of the CellML model and a simulation tool is lo-
cated, the computing is then executed and the results returned. 

The CelOWS services are distributed in four layers: a) Client Manager: Responsi-
ble for all users interaction, implementing the Facade project pattern. Its purpose is to 
supply only one input/output point in the system, so customers do not have access to 
the internal structure of the CelOWS. b) Storage Manager: Responsible for the stor-
age/recovery processes of the ontology in the database, and queries carried out by the  
 



 CelOWS: A Service Oriented Architecture 79 

user, encapsulating the access to the data base. c) Ontology Manager: Responsible for 
the inference on the models, as well as for providing an API (Application Program 
Interface) to access CelO ontology. d) Execution Manager: Responsible for the exe-
cution of the CellML model associated with the CelO model. The access to the simu-
lation tools must be encapsulated, enabling the architecture to be independent of a 
specific tool. 

The use of the complete CelOWS infrastructure depends on the development of 
end users applications, using graphical interfaces and encapsulating its services. 
 
Prototype validation: To test and validate CelOWS functionalities a prototype was 
built, with the following services: register, query and models composition.  

Eight CellML models were used for testing the Models Composition service.  For 
example, the model “A Modification of the Hodgkin-Huxley Equations Applicable to 
Purkinje Fibre Action and Pace-Maker Potentials” is represented in Fig. 5 through a 
UML Components Diagram. The diagram presents the components and its connec-
tions through the interface parameters 

 

Fig. 5. Model used for testing the prototype 

As it can be seen in the diagram, the model is composed of eight components: en-
vironment, membrane, potassium_channel_n_gate, potassium_channel, so-
dium_channel, leak_current, sodium_channel_m_gate, sodium_channel_h_gate. Dur-
ing the tests, the model was divided, creating eight CellML files (atomic models) and 
enabling eight CelO models. The original files, the membrane atomic model and the 
CelO model of the membrane are available in the site (http://celo.mmc.ufjf.br). 

One of the specific goals of CelOWS is the composition of atomic models. The 
idea is to promote the reuse of existing components, through the composition of sim-
pler models, producing more complex ones. The composition produces a new CellML 
model, through the copy of previously defined components and the automatic connec-
tion of these components. 
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The composition process uses a XML configuration file to indicate which models 
will be composed and the structure of the new model. The connection of the compo-
nents is made through the semantic combination of the parameters of the first compo-
nent with the parameters of the second one. It is established if both parameters  
measure the same quantities, if both are associated to the same chemical element and,  
finally, if both have the same name. A SPARQL query is used to find if the output 
parameters are compatible to the input of the other component. As the composition 
process is made through the copy of the existing models, it can be considered static 
(the modification of a used model in the composition process does not modify the 
composed component). 

In order to validate the CellML model, generated from the composition process, 
the PCEnv program version 0.3, for models simulation, was used. Graph V x Times 
representing the potential action was generated from the original CellML “the 
Modification of the Hodgkin-Huxley Equations Applicable you the Purkinje Fibre 
Action and Pace-Maker Potentials” (Fig. 6) and with the file generated through the 
composition and connection of components (Fig. 7). These graphs (as others gener-
ated during the tests) are identical, proving the validation of the composition proc-
ess. 

 

Fig. 6. Graph V x time generated with original 
CellML model 

 

Fig. 7. Graph V x time generated with 
CellML model from a CelO model 

 
To test and validate the semantic query functionalities in CelO models, some 

SPARQL queries (Fig. 8) were defined to locate variables or components that could 
be used in the composition process of a new model. 

Implementation details: All the CelO ontology manipulation, as well as the de-
scribed models in OWL, are in Protégé-OWL 3,4 (Editor and API) [14]. For inference 
the Pellet Reasoner [15] and the Jess Rule Engine [16] were adopted. For the devel-
opment of the CelOWS we used the Eclipse, Java and PHP5 languages. For the ontol-
ogy storage in a relational database and the SPARQL queries, the SOR (Scalable 
Ontology Repository) [17] was used. 
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Fig. 8. SPARQL queries in ontological repository 

5   Related Work 

MONET Project [18] investigates the area of mathematical web services, with im-
plementation of a broker, definition of the description services language MSDL 
(Mathematical Service Description Language), many domain ontologies and the com-
ponent InstanceStore [19]. The CelOWS architecture is similar to the Monet architec-
ture even though Monet does not use semantic web services. Project GENSS (Grid-
Enabled Numerical and Symbolic Services) [20] is an extension of Monet project. It 
deals with the combination of grid computing and mathematician web services using 
an open framework based in software agents. One of CelOWS implementation goal as 
a web service is to allow its use in workflow environments for services composition 
and its use in grid computing. In this way some of the GENSS project proposals could 
be applied to our research. An association of ontologies and web services to support 
the biological systems modelling is described in [21]. An ontology to represent the 
models in OWL is presented. OWL-S is used to specify the parameterization and 
semi-automatic composition of web services of the model execution. CelOWS archi-
tecture has similar goals, using, however, a more open domain ontology, the biologi-
cal one. However, OWL is not used to represent the complete model, but to describe 
semantics of biological models in CellML 

6   Concluding Remarks 

The increasing volume and distribution of data and processes in Bioinformatics speed 
up the discovery of new biological information. To manage these data and processes 
in an automatic and scalable form, the use of scientific workflows is now essential. 
On the other hand, the biological models have different possible representations, such 
as conceptual, mathematical and computational. Although it is desirable the  
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association of the workflows and modeling areas, the literature does not present spe-
cific proposals in this direction. We believe that this happens because generally the 
models are considered only in their “representation” aspect, while workflows deal 
with software components that can be “executed”.  Our research considers the ap-
proach of these areas using innovative technologies, based on well established stan-
dards. In the aspect of “representation” Cell Component Ontology - CelO is pre-
sented, to describe the semantics to the biological models. In the aspect of “process”, 
the CelOWS architecture was developed to storage, query, reuse, compose and exe-
cute these models. CelOWS follows the service oriented architecture, being itself 
implemented as a web service. Some questions as scalability and performance have 
not been treated yet. Future work will focus on these questions, as well as the integra-
tion with other ontologies of the biological domain. 
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Abstract. Many modern scientific applications rely on highly parallel
calculations, which scale to 10’s of thousands processors. However, most
applications do not concentrate on parallelizing input/output operations.
In particular, sequential I/O has been identified as a bottleneck for the
highly scalable MFDn (Many Fermion Dynamics for nuclear structure)
code performing ab initio nuclear structure calculations. In this paper,
we develop interfaces and parallel I/O procedures to use a well-known
parallel I/O library in MFDn. As a result, we gain efficient input/output
of large datasets along with their portability and ease of use in the down-
stream processing.

Keywords: Parallel I/O, HDF5, MFDn.

1 Introduction

The direct solution of the quantum many-body problem transcends several areas
of physics and chemistry. Our aim is to solve for the structure of light nuclei ad-
dressing the hurdles of a very strong nucleon-nucleon interaction, three-nucleon
interactions, and complicated collective motion dynamics, by direct diagonal-
ization of the nuclear many-body Hamiltonian in a harmonic oscillator single-
particle basis.

The main tool used for the study of nuclear structure is the software package
MFDn (Many Fermion Dynamics for nuclear structure) developed by Vary and
his collaborators [1,2,3]. In MFDn, the nuclear Hamiltonian is evaluated in a
large harmonic oscillator many-body basis and diagonalized by iterative tech-
niques to obtain the low-lying eigenvalues and eigenvectors. The eigenvectors are
then used to evaluate a suite of observables which can be compared to exper-
imental quantities. One key feature of the quantum many-body calculations is
the rapid increase of basis space dimension with the total number of particles
and with the number of harmonic oscillator quanta allowed. The dimension of
the basis space characterizes the size of the many-body matrix used to represent
a nuclear many-body Hamiltonian. In general, the larger the basis set, the higher
the accuracy of the energy estimation and other computable quantities one can
obtain [4].
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Despite the large dimension of the Hamiltonian matrix produced in nuclear
structure calculations, it is sparse, meaning the matrix contains a large number
of entries that are zero. The computational method used in MFDn to solve
the matrix eigenvalues problem takes advantage of the sparsity structure of the
Hamiltonian. The large dimension and the irregular sparsity structure of the
Hamiltonian matrix pose a significant challenge to the algorithmic design, data
structure specification, parallelization, and memory management strategies in
MFDn for large-scale distributed-memory computer systems. Furthermore, the
sparsity pattern of the matrix is not known in advance. It is determined efficiently
during runtime by MFDn [2].

The original design of MFDn takes into account the standard parallel com-
puting issues such as communication and load balancing [1]. The code has run
successfully on as many as 30000 CPU’s. The total number of processors on
which MFDn is run is restricted to n(n+1)

2 , where n are odd numbers. These, n
processors are referred to as the “diagonal processors”. MFDn code has evolved
significantly [2,3], but one issue that has not been addressed till now is the I/O
performance. In this paper, we describe the benefits of using parallel libraries
for performing the I/O. Apart from performance issues, there are other features
provided by the parallel libraries that make it more useful for MFDn.

1.1 Overview of MFDn

The MFDn [1] parallel code is used for large-scale nuclear structure calculations
in the No-Core Shell Model (NCSM) formalism [5,6], which has been shown to be
successful for up to 16-nucleon problems on present day computational resources.
It is also used successfully in No-Core Full Configuration (NCFC) applications
to a similar range of nuclei [4]. The MFDn code is charged to compute a few
lowest (≈ 15) converged solutions, that is, the wave functions and eigenvalues,
to the many-nucleon Schrödinger equation:

H |φ〉 = E |φ〉 (1)

The wave functions are expressed as a linear superposition of Slater Deter-
minants in the harmonic oscillator basis. The limit on the retained Slater De-
terminants is defined by Nmax, the total number of oscillator quanta above the
lowest configuration. These wave functions are then used to calculate a set of
observables. The matrix H in (1) is the Hamiltonian operator, which is typically
solved using Lanczos diagonalization since H is symmetric and sparse. However,
the Lanczos iterative process may be very expensive due to the large dimension
of H with many off-diagonal elements. The number of Lanczos iterations also
increases significantly to converge the energy levels above the ground state. For
example, for the 16O nucleus in the Nmax = 6 basis space, the ground-state
energy level requires only 35 Lanczos iterations, while 14 excited states need at
least 500 Lanczos iterations to converge. Note that, in this case, the Hamiltonian
H has the dimension of 26,483,625.

MFDn constructs the many-body basis space on the n diagonal processors,
evaluates the Hamiltonian matrix elements in this basis on n(n+1)

2 processors
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using efficient algorithms [2], diagonalizes the Hamiltonian to obtain the lowest
eigenvectors and eigenvalues, then post-processes the wave functions to obtain a
suite of observables for comparison with experimental values. The diagonaliza-
tion produces the wave functions distributed over n diagonal processors. These
wave functions are then written to disk and read from disk in subsequent sub-
routines to verify numerical convergence of the diagonalization procedure and
to calculate a suite of observables. Since the diagonal processors hold the wave
functions, it is desirable that the I/O of the wave function file is done directly by
the n diagonal processors. With heavier nuclei and larger Nmax value, the size
of the wave function file becomes very large and requires a substantial amount
of I/O [4]. The dimension of the many-body basis for various nuclei and Nmax

values is tabulated below, along with the total number of processors selected,
the total number of diagonal processors, and the wave function file size. Near
term plans include matrices in the range of 10-20 billion dimension. The file
size follows the growth in dimensions and thus provides scope for introducing
parallel libraries to do this I/O. The wave function file is written and read once
in a normal MFDn run. This file contains typically 15 eigenvectors of the size as
indicated by the Dimension column in Table 1.

Table 1. Wave function dimensions and file sizes for a range of realistic test problems

Nucleus Nmax Dimensions CPU Count(n(n+1)
2 ) Diagonals(n) File Size(GBytes)

12C 6 32,598,920 190 19 1.82
6He 14 155,710,094 4,950 99 8.70
12C 8 594,496,743 8,646 131 33.22
16O 8 996,878,170 12,090 155 55.70
14F 8 1,990,061,078 27,730 235 111.20

1.2 Motivation for Using Parallel Libraries

I/O has been identified as a major bottleneck in parallel codes and there is a
substantial interest in using parallel libraries that can make use of the underlying
file system on parallel machines. Two widely used I/O libraries are the HDF5 li-
brary [7], and the NetCDF Library [8]. NetCDF is mostly used for array-oriented
data whereas HDF5 is also used for storing raster images, complex scientific data
and multidimensional arrays. Both libraries have a parallel implementation built
on top of MPI-IO, supporting access to files in parallel. In addition to improved
I/O efficiency, the use of these parallel I/O libraries has advantages such as
portability, human readable files, and self-describing file formats.

In MFDn, the size of the basis space, and thus of the wave functions, becomes
very large with heavier nuclei and larger Nmax, as can be seen from Table 1.
Construction of the Hamiltonian matrix and the diagonalization of the matrix
using a Lanczos algorithm are the most time-consuming operations in MFDn;
however, sequential I/O of the wave functions will become a bottleneck as the
dimension of the basis space increases. After diagonalizing the Hamiltonian ma-
trix, the wave functions are available at the diagonal processors. In the current
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version of MFDn, this I/O takes place sequentially with diagonal processors ex-
changing the data with the root processor and the root processor performing the
actual I/O. We have modified this part of I/O in MFDn to make it parallel by
having each diagonal processor write its portion of the data to a single file. The
detailed implementation of this will be presented in section 2.2. Since the files
are self describing and platform independent, they can be easily archived and
used in the future by other groups.

Another advantage of using HDF5 is that data can be added anytime in the
HDF5 file. In MFDn, the wave functions previously written into the file are read
from the file and the correctness of the data is verified. Furthermore, certain
properties like binding energy, total spin and isospin corresponding to each wave
function are calculated. It is useful to store these properties along with the
wave function, but in a raw binary file, this information cannot be appended
to each wave function and had to be added at the end of the file. With HDF5,
the space for these properties could be reserved and written later when these
properties are calculated. In addition to the wave functions, it is essential to
write related data such as a self contained description of the many-body basis
space to disk in a portable format. This information can be further used to
calculate certain observables outside of MFDn which involves post-processing of
the wave functions. Thus, portability and self-describing information are desired
properties since this post-processing can be done at a later time on another
machine by other researchers. In addition to this, parallel I/O can also be useful
for the input of the interaction files to MFDn, in particular the 3-body interaction
files which are extremely large.

Node failures, segmentation faults and hardware maintenance interruptions
are a stark reality in supercomputing. For large jobs running for many hours, a
failure or exceeding wall clock time can result in non-normal job termination. In
many cases this results in a major loss of resources. In such cases, it is imperative
that large jobs have checkpointing enabled, so that a checkpoint file is created
at regular intervals. In cases of abrupt node failures and machine outages, a
checkpointed job could be restarted from the last checkpoint file. Portability of
the checkpoint file is not very useful for MFDn since it is not feasible to move very
large checkpoint files across machines for restarting MFDn jobs. Checkpointing
for MFDn is under investigation using MPI-IO.

In MFDn, it may be valuable to save the sparsity structure of the matrix in
a self describing format, to facilitate restarts of MFDn with different input data
for the same nucleus. The use of parallel I/O libraries for large output files and
its potential advantages in checkpointing serve as major motivations for using
parallel I/O libraries over serial I/O. This paper focuses on performance im-
provements using self describing portable formats which we do not contemplate
for checkpointing.

1.3 Wave Function File

In this section, the hierarchical structure of the wave function file created with
HDF5 is described. To get a better understanding of the file structure, we briefly
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describe the file structure of an HDF5 file. A file is only a container for storing
scientific data. The actual data is in fact stored in other objects inside the file.
There are two primary objects in a file that contain the actual data, namely
Groups and Datasets. Additional data like attributes and storage properties
needed for data organization are also a part of the HDF5 file. Groups are similar
to directories and serve as parent directories to datasets, attributes and other
sub-groups. Datasets are the actual objects that contain the data of interest.
Each dataset set contains the required data array and related meta-data. This
meta-data is the data required for self description of files as well as data needed
to maintain portability of files. Another very important object of an HDF5 file is
dataspace. Dataspace in itself does not contain any data, but is a permanent part
of dataset definition. Each dataset has an associated dataspace that contains the
rank and dimensionality of the dataset. With this basic understanding of the file
structure, we can now understand the wave function file of MFDn. Figure 1 shows
the structure of the wave function file in MFDn where the lowest eigenvectors
(≈ 15) are stored in different groups with each eigenvector written in parallel by
all the diagonal processors.

Author  = UNEDF“/”
root

LENGTHS

GRP01

GROUPS

DATASETS

EigenVector01

GRP15

Properties15

ATTRIBUTES
Properties01

g

EigenVector15

Fig. 1. Wave Function File

The rest of the paper is organized as follows. In section 2 we give an overview
of HDF5 for MFDn. In this section, we discuss the differences between two modes
of parallel I/O and situations in which these modes are useful. The integration of
these parallel libraries with MFDn is also discussed in this section. In section 3,
we explain the various experiments and I/O simulations that we have performed
using HDF5. This is followed by the performance results in section 4. Finally,
we conclude in section 5.

2 Using Parallel HDF5 in MFDn

Both parallel HDF5 and parallel NetCDF libraries provide a high level API for
creating self-describing portable files, and both libraries support a wide range
of operations. We use HDF5 for the experiments presented here since it appears
to be sufficiently flexible and has a large user group. We do not investigate
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NetCDF in detail. Parallel HDF5 has both an MPI-IO implementation and a
POSIX implementation [9]. There are two modes of I/O that can be performed
while doing parallel I/O, namely Independent I/O and Collective I/O.

Some parallel implementations work with the one file per processor approach
in parallel I/O. This approach is the fastest but it is prohibitively expensive
for programs running on large number of processors, since it requires expensive
post-processing. Another method is to do I/O into a single shared file which
can be written to and read by all the processors. This is the recommended way
of performing parallel I/O and is supported both in NetCDF and HDF5. The
parallel libraries provide a single file image to multiple processors, and multiple
processors can do parallel I/O in the shared file. Each file is opened with a
communicator that is passed as a parameter while creating the parallel file. Once
created, a file handle is returned and all future accesses are performed using this
handle. Once a file is opened by processes within the communicator, the file is
then accessible to all the processors within the communicator. Thereafter, all
objects within the file can be modified by these processors.

2.1 Performance with Collective and Independent I/O

Parallel I/O can be performed in two ways, collective I/O and independent I/O.
Independent I/O means that each process can do the I/O independent of the
other processes. Once a file is opened in parallel using a communicator, the file
can then be accessed and modified independently by any of the processes in
the communicator. In collective I/O however, all processes have to participate
in I/O. Since all processes are required to participate, there is obvious inter-
process communication required. However, in most cases, multiple I/O requests
are interleaved as a single read/write operation, yielding very high speedups. In
case of contiguous data layout in which each processor has a contiguous selection,
if the selection of each processor is larger than the buffer size of the I/O agent,
then independent I/O and collective I/O would both offer approximately the
same performance. This occurs because in contiguous data, the data layout is
already optimized and collective I/O cannot perform any more optimizations to
improve I/O. Moreover, because of the inter-process communication in collective
I/O, the performance of independent I/O is better compared to collective I/O
since it does not have the overhead of inter-process communication. On the
other hand, if each processor has a non-contiguous selection, then the interleaved
access requests of different processes can be combined into a single contiguous
I/O operation yielding a very high speedup with respect to independent access.
That is, with independent I/O each processor has to perform several reads and
writes in order to write the whole data leading to high cost of latency [10].
Apart from data layout, I/O performance is also affected by other factors such
as caching, network bandwidth, latency, and the file system used.

HDF5 has another driver for parallel I/O besides MPI-IO. This driver is the
MPI POSIX driver and is a “combination” of MPI-IO and posix I/O driver [9].
MPI is implemented for coordinating the actions of several processes and posix
I/O is used to perform the actual I/O to the disk. This implementation does
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not support collective I/O mode. In independent I/O mode, MPI POSIX driver
may perform better than MPI-IO driver [9], but in our experience the results
obtained were identical with both posix and MPI-IO.

2.2 Integration with MFDn

Currently, the data is written to disk only by the root processor. The data is spread
across the n diagonal processors and each diagonal processor sends the data to the
root. The root writes its portion of the data and then receives the data from other
processors, and then writes it to the disk. This process has obvious communication
costs associated with it. Moreover the root processor takes all the load of writing
to disk. We parallelized this task with the use of parallel I/O libraries. Since each
diagonal processor has a part of the data that needs to be written to disk, that
diagonal processor itself writes it to disk eliminating the cost of communication.
The offset at which each diagonal processor writes the data is calculated during
runtime in MFDn. Figure 2 shows the older sequential write pattern in MFDn and
Figure 3 shows how parallel I/O is achieved. HDF5 uses the hyperslab model for
doing I/O where hyperslabs are simple subsets of the dataspace. All the diagonal
processors define their own non-overlapping hyperslab in the dataset and write the
data into the file at specific offsets. To have a very simple and intuitive interface
for writing files in HDF5 format, we have created two wrapper functions to read
and write the data to file. The interface is straightforward and minimal HDF5
parameters are required while calling the routines for writing and reading the data.
Separate modules for HDF5, MPI-IO, and raw binary modes of I/O will be created
and, depending on the user choice, an appropriate I/O model will be used.

Processor 0

Processor 1

• In the sequential I/O version, each
diagonal processor sends the data to the
root.
• The root processor receives data from
other processors and on receiving this
data, appends this data to disk serially
• Similarly, when reading data, the root
reads the data and sends it to the
respective processors.

Wave Function File

Processor 2

Wave Function File

Processor 3

Fig. 2. Sequential I/O

Processor 0

Wave Function File

Processor 1

• In the parallel I/O version, only the diagonal
processors write the wave function file.
• Each diagonal processor knows its offset from
the beginning of the file and the length of the data
to be written.
• All diagonal processors write the data
simultaneously in parallel.

Processor 3

Wave Function File

Processor 2

Fig. 3. Collective I/O

3 HDF5 Performance Tests with MFDn

A normal run of MFDn requires n(n+1)
2 processors. After diagonalization of

the Hamiltonian matrix, the wave functions are available on the n diagonal
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processors, and written to disk; the other processors are idle during the actual
I/O of the wave functions. In order to test the I/O performance, we have created
a suite of test programs to simulate the wave function I/O phase of MFDn on
the n diagonal processors. In addition, we have a set of programs that can be
used to generate the required input files. Once the raw binary and HDF5 files
are available, the I/O performance is measured by a set of programs to simulate
posix I/O and HDF5 I/O.

4 Performance Results

In this section, we report the I/O performance using the HDF5 library, as well
as the sequential one processor I/O using our I/O test programs. The testbed for
our experiments was the super computing Franklin cluster at NERSC. Franklin
is a distributed-memory parallel system with 38,640 processor cores available
for scientific applications. It has 9,660 compute nodes and each consists of a 2.6
GHz quad-core AMD Opteron processor with a theoretical peak performance of
9.2 GFlop/sec. Each compute node has 8 GBytes of memory. The parallel file
system on Franklin is the Lustre file system. Figures 4-6 show the performance of
parallel HDF5 for different file sizes. The processors on the X-axis represent the
n diagonal processors. For same file sizes, the actual MFDn code would run on

Fig. 4. I/O Performance for 33 GB File Fig. 5. I/O Performance for 55 GB File

Fig. 6. I/O Performance for 111 GB File Fig. 7. Cost of using Parallel I/O
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n(n+1)
2 processors for several hours. It is not feasible to run MFDn code for hours

on large scale machines for observing I/O performance. Hence we demonstrate
the results using the I/O test programs that we developed.

As can be seen in the plots, the HDF5 write operations are much slower as
compared to read operations. The Lustre file system has write locks wherein
each writer process acquires a lock on the file and this locking infrastructure ef-
fectively prevents simultaneous parallel writes. The parallel write operations are
serialized due to the file locking resulting in poor write performance. On parallel
file systems such as PVFS, where there are no write locks, the performance of
parallel writes can be expected to be much better. Figure 7 shows the cost of us-
ing parallel I/O. We define cost as the product of the total number of processors
and the total time for I/O. For small files (below 20 GB), parallel HDF5 I/O
is more costly than the current sequential binary I/O implementation, but once
the file size increases above 20 GB, parallel HDF5 becomes more cost-effective
than sequential binary I/O. For the largest file sizes considered here, 111 GB,
the difference between parallel HDF5 and sequential binary is approximately a
factor of 5 in favor of HDF5. This means that despite locking infrastructure and
the slow HDF5 write operations, the cost of using HDF5 is lesser compared to
raw binary I/O for large datasets. An output file of about 20 - 100 GB is typical
of our large runs where I/O is a significant factor.

We have done all experiments using independent I/O mode since, for contigu-
ous data, independent mode is faster than collective mode. There are several
HDF5 users [11], but most of them use HDF5 for complex scientific data in
collective I/O mode. According to our knowledge, this is the first real-world
application using HDF5 for contiguous data in independent I/O mode.

The I/O performance of any parallel library is also affected by the parallel file
system on the clusters. With the Lustre file system, multiple processes cannot
write to the same file at the same time. Each time a process has to write, it
acquires a lock on the file. So when a new process has to write anything, it
sends a request for lock revocation. Only when the lock has been released by
the previous writer, can the new process acquire a lock on the file. These are
all costly operations and this is the reason for the high write times we can see
in the performance charts above. As a work around of this defect in the Lustre
and MPI-IO interface, MPI-IO hints can be passed to HDF5 via the MPI INFO
parameter. The cb nodes parameter indicates the total number of writers to be
used. By passing a value of “1” to this parameter, we can redirect all the I/O
through a single processor. This does not address the root problem but tries
to reduce the costly operations of acquiring and revoking locks since all data is
written by a single writer. With parallel reads however, there are no locks and
this is not the problem, leading to much faster reads. In spite of the slow parallel
writes, we intend to have a common I/O approach for all parallel file systems.
Computer scientists are currently working to address the problem of MPI-IO
and Lustre interface, so we expect better I/O performance from newer version
of MPI-IO and Lustre interface.
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5 Conclusion and Future Work

We have identified sequential I/O as a bottleneck in the MFDn code performing
nuclear structure calculations. We have successfully implemented parallel I/O
for the optimization of the MFDn code. The results obtained encourage the
use of parallel I/O libraries for sufficiently large datasets. Even for file systems
that have a locking infrastructure for parallel write operations, the cost of using
parallel I/O is less compared to sequential I/O for sufficiently large datasets.
Our contribution is to show how parallel I/O libraries can be of great value
to scientific applications dealing with large datasets. We have investigated the
difference between collective and independent I/O and situations in which they
are effective. With these results in hand, we plan to implement parallel I/O for
other large datasets used by MFDn.
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Abstract. Protein loop structure modeling is regarded as a mini protein folding 
problem with significant scientific importance. Efficiently sampling the loop 
conformation space is a key step to computationally obtain accurate loop struc-
ture models. Due to the large size of the conformation space and the complica-
tion of the scoring functions describing protein energy, it is difficult to obtain 
broad, diverse coverage of the loop conformations with low energy (score). In 
this article, we present a new population-based approach to sample the back-
bone conformations of protein loops. The main advantage of the population-
based approaches is that various selection schemes can be applied to enforce the 
conformations in a population to satisfy certain constraints. In our sampling ap-
proach, conformations are generated in the dihedral angles (φ,ψ)-space and the 
Differential Evolution (DE) method is employed to implement dihedral angle 
crossover for generating new conformations. A diversity selection scheme is 
applied to achieve diversified sampling. Using a narrowing gap selection 
scheme, decoys satisfying loop closure condition are obtained by gradually 
eliminating conformations with large terminal gaps in a population. Our compu-
tational results on modeling long loop targets have shown diverse and broad 
coverage of the loop conformation space, which leads to consistently reaching 
the native-like decoys in the sampling process. 

1   Introduction 

Protein loop structure modeling is important in structural biology for its wide applica-
tions, including determining the surface loop regions in homology modeling [1], de-
fining segments in NMR spectroscopy experiments [2], designing antibody [3], and 
modeling ion channel [4]. The value of computer-generated protein loop models in 
biological research and practice relies critically on their accuracy. Protein loop struc-
ture modeling can be considered as a mini version of the ab initio protein folding 
problem. Despite their short length, protein loops exhibit greater structural flexibility 
than strands and helices and have few contacts with the remainder of the protein, 
which make it more difficult to predict than the geometrically regular β-strands and α-
helices [5]. Currently, development of high-resolution computational approaches that 
can reliably produce accurate protein loop models, particularly in long loop targets, 
remains an unsolved problem. The main difficulties include the large protein loop 
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conformation space as well as the complicated landscape of the scoring functions 
describing the loop energy. 

Similar to ab initio protein folding, the rationale of ab initio protein loop structure 
modeling is to optimize a protein loop energy function to discover the native-like 
conformations [7]. Typically, in protein modeling, the physics-based energy functions 
yield a rugged, funnel-like energy landscape, which can easily trap the optimization 
process and is extremely difficult to search. Several approaches, such as replacing the 
van der Waals potential with a soft-sphere potential [8], switching to a statistics-based 
term [9], etc., have been developed to produce scoring functions with “softened” 
energy landscape to facilitate the search process. However, such scoring functions 
also come with insensitivity and potentially inaccuracy, i.e., a conformation with the 
absolutely lowest score may not be a native-like conformation while a conformation 
with a relatively higher score may in fact be a more reasonable structure than the one 
with a lower score. Therefore, it is well-known that an optimization method seeking 
the very global minimum of a scoring function is usually not effective in finding the 
true native conformation. Instead, a sampling approach that can efficiently explore the 
low score regions in the scoring function landscape is more desirable [10].  

For very short protein loop targets, one may be able to traverse the discretized di-
hedral angles (φ, ψ)-space to completely sample all possible conformations. However, 
for longer protein loops, the size of the conformation space grows exponentially 
where complete sampling becomes infeasible. Markov Chain Monte Carlo [6, 11] and 
genetic algorithms [12] have been applied to sample the loop conformation space to 
discover feasible structures with low scores (energy). The existing problems in these 
sampling methods include oversampling – the same conformations are repeatedly 
generated as well as undersampling – some conformations with low scores are not 
reachable during the sampling procedure. Oversampling will lead to wasted computa-
tional efforts while more seriously, undersampling may miss good, native-like con-
formations. 

In this article, we present a population-based sampling algorithm to achieve broad 
exploration of protein loop backbone conformation space. We use the backbone dihe-
dral angles (φ,ψ) array as a reduced representation of a loop conformation. A modi-
fied Differential Evolution (DE) scheme [13] is used to crossover dihedral angles of 
selected conformations in an old population to generate new conformations in (φ,ψ)-
space. A diversity selection scheme is developed to filter conformations in a popula-
tion similar to those already generated during the sampling procedure, which favors 
the sampling process to explore undiscovered conformations with low scores and thus 
reduces the chance of repeatedly generating decoys with similar structures. By gradu-
ally eliminating the conformations in a population not satisfying the loop closure 
condition, our narrowing gap selection scheme can also lead to decoys with loop 
closure satisfaction. We verify our sampling approach by applying it to the long tar-
gets provided in Jacobson’s protein loop benchmark [14].  

The remainder of the article is organized as follows. Sections 2 and 3 describe the 
general protein loop structure modeling procedure and our population-based sampling 
method, respectively. Section 4 shows our computational results on the 12-residue 
loop benchmark targets. Section 5 summarizes our conclusions and future research 
directions. 
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2   General Protein Loop Structure Modeling Paradigm 

The ab initio protein loop structure modeling procedure [15, 16, 17] typically in-
volves the phases of sampling, filtering, clustering, and refining, although some addi-
tional steps may be employed in different programs. Figure 1 shows a conceptual 
illustration of these phases.  

decoys with low scores

Sampling

Filtering
filtered decoys

Clustering

representative decoys

Refining

refined structures with side chains

cluster cluster cluster

Final 
Selectionfinal model  

Fig. 1. Typical steps in high resolution ab initio protein loop structure modeling 

In the sampling phase, the loop conformation space is explored and decoys with 
low scores are produced. In order to reduce the degree of freedom, usually only loop 
backbone with reduced representation are used in this phase with simplified, smooth 
scoring functions. Afterward, the infeasible, bad decoys will be eliminated in the 
filtering phase. Then, in the clustering phase, decoys with similar structures will be 
grouped into a cluster and representative decoys for each cluster will be selected. 
Next, in the refining phase, side chains are added and complicated all-atom energy 
functions are used to locally optimize the representative decoys. Finally, the refined 
representative decoy with the lowest energy will be selected as the predicted model.  

Broadly sampling the loop conformation space to generate low-score decoys with 
diverse structures in the sampling phase is critical in successfully predicting high-
resolution protein loop models. This is due to the fact that if a native-like decoy is not 
reachable in loop conformation sampling, it is unlikely to obtain a high-resolution 
model close to the native structure in the refining phase. For the population-based 
sampling approach described in this article, we only consider the modeling computa-
tion in the sampling phase. 
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3   Population-Based Diversified Sampling Approach 

We develop a population-based sampling approach which intends to diversely sample 
the loop conformation space. Initially, a population with N conformations, C1, …, CN, 
is randomly generated. Each loop structure conformation Ci with n residues is repre-
sented by a vector (θ1, …, θ2n), which represents the backbone dihedral angles of (φ1, 
ψ1, …, φn, ψn). The dihedral angles of ωi are kept constants at their average value of 
180°. A statistical distance-based atom pair-wise scoring function is used as the sam-
pling scoring function [18]. When scoring function evaluation or structure comparison 
is needed, the dihedral angles representation of Ci is converted to the backbone atom 
representation. We adopt the Differential Evolution (DE) [13] approach to produce 
new conformations for the next population. A diversity selection scheme is designed 
to achieve diversified sampling and a narrowing gap selection scheme is used to guar-
antee loop closure.  

3.1   Differential Evolution for Conformation Crossover 

DE [13] is a powerful computational method for continuous function optimization, 
which has demonstrated its effectiveness on several hard optimization problems with 
complicated objective functions [22]. In our loop sampling approach, DE is used to 
crossover old conformations to produce new ones in continuous dihedral angles 
space. For each loop conformation Ci, a mutant vector Vi is formed by  

)( 321 rrri CCFCV −+= , (1) 

where r1, r2, and r3 are mutually distinct, uniformly distributed integer random num-
bers in the interval [1, N] and F > 0 is a tunable amplification control constant as 
described in [4]. Then, a new conformation Ci’(θ1’, …, θ2n’) is generated by the 
crossover operation on Vi and Ci: 

⎩
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where 
n2

.  denotes the modulo operation with modulus 2n, s is a randomly generated 

integer from the interval [0, 2n-1], L is an integer drawn from [0, 2n-1] with probabil-
ity Pr(L = k) = (CR)L, and CR ∈ [0, 1) is the crossover probability. Practical advice 
suggests that CR = 0.9 and F = 0.8 are favorable choices in the DE scheme [13], 
which is also adopted in our program. Our slight modification to the DE scheme is to 
always keep θi in the ranged of [-π,π]. 

3.2   Diversity Selection Scheme 

The diversity selection scheme encodes the capability of enforcing the conformations 
in a population to satisfy the diversified sampling requirement. Our diversity selection 
scheme is based on the similarity of a conformation s to a given set of generated de-
coys D = {d1, …, dk}, which is measured by 
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),(min)( i
i

dsdistsS =  (3) 

where dist(.) is a distance function measuring the structural difference.  
In our implementation, we keep track of the already generated decoys d1, …, dk by 

recording their Cα atoms in an array. To reduce computation time of evaluating loop 
structure similarity, instead of calculating the Root Mean Square Deviation (RMSD) 
of all backbone atoms, we use the Cα RMSD between conformations in a population 
and the generated decoys as the distance function. Then, in diversity selection, all 
conformations in the current population are sorted according to their similarity to the 
generated decoys and the top μ% of the candidates are eliminated, where μ is a tun-
able constant. 

3.3   Narrowing Gap Selection Scheme for Loop Closure 

The so-called loop closure problem is defined as follows: given the N- and C-
terminals, find a loop backbone conformation of a certain length that can bridge the 
ends seamlessly [19]. Inverse kinematics [23] is a common method to solve the loop 
closure problem. Unfortunately, inverse kinematics has difficulty to be applied to our 
population-based sampling approach because crossing over the dihedral angles of two 
or more conformations satisfying the loop closure condition does not automatically 
guarantee loop closure in the new conformation.  

In our population-based sampling approach, we develop a narrowing gap selec-
tion scheme to produce decoys satisfying the loop closure condition. We fix the 
position of the N-terminal, produce the loop based on the dihedral angle values in 
loop conformation Ci, and then calculate the gap distance, G(Ci), from the C-
terminal in the generated loop to the target C-terminal. G(Ci) is then used to meas-
ure the loop closure gap. To produce loops closely approximating the loop closure 
condition, in the gap selection scheme, we eliminate conformations Ci where G(Ci) 
>δ. Here δ is a variable, which specifies the acceptable gap between the predicted 
C-terminal and the target C-terminal. At the beginning, δ is initialized to a large 
value to allow aggressive loop conformation sampling. The value of δ is decreas-
ing in every iteration toward a small value so as to gradually eliminate conforma-
tions with gaps larger than δ and eventually lead to conformations approximately 
satisfying the loop closure condition. When the final conformation with the lowest 
score is selected to output as a decoy, the C-terminal gap can continue to be re-
duced by slightly adjusting the dihedral angles of φi, ψi, and ωi in the loop  
structure. 

3.4   Algorithm Description  

By putting every piece of the puzzle together, the descriptive pseudo code of the 
population-based diversified sampling algorithm is described as follows. The algo-
rithm can be repeatedly executed to produce multiple loop decoy structures. 
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Initialize N conformations, C1, …, CN, randomly and initialize δ 
Repeat { 

Generate M new conformations, C1’, …, CM’, based on the previous 
population’s N conformations using DE 

Run diversity selection scheme to eliminate conformations close to 
the already generated decoys stored in the decoy array 

Run gap selection scheme to eliminate conformations that G(Ci’>δ) 
 Evaluate the remaining C1’, …, CM’ use scoring function f(.) 

 Replace C1, …, CN  with top N conformations in C1, …, CN and the re-
maining C1’, …, CM’ 

 Reduce δ 
} Until convergence or reaching the expected iteration number 
Produce the decoy in the current population with the lowest score 
If there is serious steric clash or large loop closure gap 
 Discard this decoy 
Else { 

 Save Cα atoms to the generated decoy array 
 Minimize the terminal gap of by slightly adjusting the dihedral an-

gles of •i, •i, and •i 

 Output the loop decoy} 

4   Computational Results 

We applied our methods to the long loop benchmark targets specified in [14], includ-
ing 17 12-residue, 35 11-residue, and 49 10-residue loops. Due to space restrictions, 
we can only report a fraction of our results in this article. Therefore, we use our  
computational results on 12-residue loop targets to illustrate the effectiveness of our 
population-based diversified sampling scheme. Our computations on the other targets 
actually yield similar results. 

We use the path length of the Minimum Spanning Tree (MST) [20] based on the 
pair-wised RMSD matrix of the generated decoys to measure sampling diversity. 
Table 1 shows the comparison of the MST path lengths of the 1,000 decoys generated 
by our population-based loop conformation sampling algorithm with and without the 
diversity selection scheme. It is important to notice that the diversity selection scheme 
plays an important role in the sampling process, which leads to significantly larger 
MST path length in all 12-residue loop targets when the diversity selection scheme is 
employed. In other words, the decoys generated using the diversity selection scheme 
are more structurally different from each other than those without using the diversity 
selection scheme. This indicates that the sampling process with the diversity selection 
scheme has a broader coverage of the loop structure conformation space and leads to 
decoys with more diversified representation of structures. 

The diversified sampling of the loop conformation space directly improves the 
chance of generating decoys with close structure to the native one. Table 1 also com-
pares the best decoys with the smallest backbone RMSD to the corresponding native 
structure generated with and without using the diversity selection scheme in 12-
residue targets. One can find that in all loop targets except for 5nul(54:65), the popu-
lation-based sampling process with the diversity selection scheme can consistently 
reach decoys with backbone RMSD less than 2A, which is within the experimental X-
ray crystallization resolution. In contrast, sampling without the diversity selection 
scheme cannot reach decoys with RMSD less than 2A in 5 out of the 17 targets. 
Moreover, there is averagely 0.37A RMSD shift in the best decoys of the 12-residue 
targets when the diversity selection scheme is used. 
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Table 1. MST path length of the pair-wise RMSD matrix and the best decoy with the smallest 
backbone RMSD of the 1,000 decoys generated in our population-based sampling with and 
without the diversity selection scheme in 12-residue loop targets 

 With Diversity  
Selection Scheme 

Without Diversity  
Selection Scheme 

Protein Start 
Res. 

End 
Res. 

MST Path 
Length (A) 

RMSD (A) of 
the Best Decoy 

MST Path 
Length (A) 

RMSD (A) of 
the Best Decoy 

1ixh 160 171 1436 1.519 1297 2.786 
1cex 40 51 1294 1.780 1201 2.265 
5pti 36 47 1389 1.610 1295 1.844 
1rge 57 68 1178 1.005 1132 1.403 
1arb 74 85 1211 1.376 1115 1.500 
7rsa 13 24 1343 1.509 1207 2.102 
1xyz 813 824 1281 1.510 1151 1.687 
1cyo 32 43 1368 1.341 1243 1.444 
1akz 181 192 1370 1.197 1255 1.912 
153l 98 109 1399 1.791 1308 2.245 
1bkf 9 20 1296 1.102 1206 1.443 
1dad 204 215 1382 1.423 1270 1.717 
1dim 213 224 1262 1.109 1190 1.624 
1kuh 90 101 1371 1.214 1258 1.188 
2ayh 21 32 1392 1.678 1245 1.540 
351c 15 26 1383 1.914 1271 1.612 
5nul 54 65 1341 2.141 1235 3.218 

Average 1335 1.483 1228 1.855 
Standard Deviation 71 0.312 57 0.529 

 
Our further structural analysis shows that the native 5nul loop (54:65) interacts 

with a flavin mononucleotide ligand. The distance-based scoring function used in our 
sampling program makes no assumption on any ligands. This explains why in 
5nul(54:65) no decoys with RMSD under 2A are generated in our sampling approach 
even when the diversity selection scheme is used.    

Due to the broad structure representations in the generated decoys, sampling with the 
diversity selection scheme will also lead to diversified clusters and representative de-
coys in the clustering phase of protein loop structure modeling.  Figures 2 and 3 show 
the representative decoys in clustering the 1,000 decoys in loop target 1akz(181:192) 
using sampling with and without the diversity selection scheme, respectively. We use a 
simple agglomerative clustering algorithm [21] with 2.0A cutoff. One representative 
decoy is selected for each cluster. For the 1,000 decoys generated without using the 
diversity selection scheme, 9 clusters are produced. For each representative one of the 9 
clusters, a similar structure can be found in the representative decoys from the 19 clus-
ters generated by sampling using the diversity scheme. However, several representative 
decoys exhibiting significantly different structures found in sampling using the diversity  
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Fig. 2. Representative decoys in clustering the 1,000 decoys generated with diversity selection 
scheme in loop target 1akz(181:192). (purple – native conformation, blue – decoy conforma-
tion)  

 

Fig. 3. Representative decoys in clustering the 1,000 decoys generated without diversity selec-
tion scheme in loop target 1akz(181:192). (purple – native conformation, blue – decoy confor-
mation) 

selection scheme are not presented in these 9 clusters generated by sampling without 
diversity selection scheme, including a native-like one with 1.25A RMSD. 

A minor disadvantage of the diversified sampling method is that it may also in-
crease the production of “bad” decoys. This is due to the fact that the diversity selec-
tion scheme will increase the chance of discovering not only the “good”, native-like 
conformations but also the “bad”, far-deviated ones yielding low scores. As an exam-
ple depicted in Figure 4 showing the RMSD distribution of the 1,000 decoys in loop 
target 1rge(57:68), sampling with the diversity selection scheme leads to larger popu-
lation of decoys with RMSD less than 2.0A as well as those with RMSD higher than 
3.0A than sampling without diversity selection scheme. This problem can be rela-
tively easy to address in the filtering phase of loop structure modeling – when a  
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Fig. 4. RMSD distribution of the 1,000 decoys generated in sampling with the diversity selec-
tion scheme and without the diversity selection scheme in loop target 1rge(57:68) 

high-resolution, all-atom scoring function is employed, the “bad”, far-deviated decoys 
can usually be identified and then eliminated. 

5   Conclusions and Future Research Directions 

In this article, we present a population-based sampling algorithm for diversified sam-
pling protein loop backbone conformations. A diversity selection scheme is designed 
to diversify predicted decoys and a narrowing gap selection scheme is used to achieve 
loop closure condition satisfaction. Our computational results on 12-residue protein 
loop benchmark targets have shown diversified decoy structure distributions and 
improved chance of reaching native-like conformations.  

It is important to notice that our approach only targets the backbone sampling 
phase in ab initio protein loop structure modeling and the decoy generation time is 
usually less than a minute. As a result, our decoys have relatively lower quality com-
pared to the all-atom modeling method such as PLOP [15], which typically takes days 
to deliver a model. In the future, we are interested in studying how diversified back-
bone sampling can benefit all-atom simulation in high-resolution loop modeling. 
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Abstract. In recent years there has been interest in performing parameter space 
exploration across “scientific workflows”, however, many existing workflow 
tools are not well suited to this.  In this paper we augment existing systems with 
a small set of special “actors” that implement the parameter estimation logic. 
Specifically, we discuss a set of new Kepler actors that support both complete 
and partial sweeps based on experimental design techniques. When combined 
with a novel parallel execution mechanism, we are able to execute parallel 
sweeps and searches across workflows that run on distributed “Grid” infrastruc-
ture. We illustrate our new system with a case study in cardiac cell modelling.  

Keywords: distributed workflows, parameter exploration, Kepler. 

1   Introduction 

In recent years there has been a great deal of interest in “scientific workflows” [10]. 
These allow scientists to specify large computational experiments involving a range 
of different activities, such as data integration, modelling and analysis, and visuali-
zation. Activities can be composed, often using a graphical programming environ-
ment, so that the output of one stage can be passed as input to the next, forming a 
pipeline of arbitrary complexity. Scientific workflow engines manage the execution 
across a range of distributed resources, and leverage Grid computing middleware 
and approaches [1][2][3]. For example, it is possible to extract data from a scientific 
instrument, pass it through some analysis software running on a high performance 
cluster, store the results in a distributed data repository, and then visualize it on a 
large display wall. Scientific workflows have been used to great effect in a number 
of different disciplines including Computational Chemistry [7], Ecology[8] and Bio 
informatics [9].  

Importantly, many workflow engines double as programming environments for the 
Grid. Whilst there are no standard ways of doing this, a number of engines effectively 
expose the Grid middleware APIs. For example, Kepler [5] exposes a variety of mid-
dleware layers, from Globus through to ad-hoc interfaces like SSH. Other engines, 
such as Triana [19] and Taverna [9] allow users to invoke services as Web Services, 
but provide no explicit support for Grid middleware.  
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Prior to the wide adoption of workflow engines, we developed a family of tools, 
called Nimrod, for performing parameter sweeps with computational models. Nimrod 
supports the execution of a specific type of workflows in which a single computation 
is performed multiple times to allow exploration of some design space. Nimrod in-
cludes tools that perform a complete parameter sweep across all possible combina-
tions (Nimrod/G) [4], or search using non-linear optimization algorithms (Nimrod/O) 
[20] or experimental design techniques (Nimrod/E) [21]. Importantly, the degree of 
parallelism, can be varied at run time, as the Nimrod scheduler places tasks on the 
available resources then. Nimrod had been applied to a wide range of disciplines from 
public health policy to quantum chemistry [22]. 

However, Nimrod was not designed to execute arbitrary workflows of the type  
discussed above. Thus, it is difficult to run sweeps over workflows, and workflows 
containing sweeps. Likewise, most workflow systems do not support the parallel 
execution of tasks that are supported in Nimrod, and are not well suited to parameter 
sweeps and searches.  

In this paper we discuss how we have added parameter sweeps and searches to ex-
isting workflow tools. We focus on the techniques that allow a range of scenarios to 
be explored by adding a few simple components to an existing workflow. Specifi-
cally, we discuss the design of a new family of Kepler “actors” that support sweeps 
across parameter ranges. The resulting system is extremely flexible, and allows the 
creation of decision support systems of arbitrary complexity. 

The paper begins with a discussion of parameter sweeps and the techniques that are 
commonly used, illustrating the ideas through the Nimrod family of tools. We then 
discuss workflow engines, and in particular, we describe Kepler. We then introduce a 
new family of actors, and show how these can be combined with existing workflows. 
Finally, we demonstrate the applicability of the ideas using a case study in cardiac 
modelling. 

2   Parameter Sweeps 

2.1   Full Parameter Sweeps 

Many current scientific and engineering problems can be formulated as computational 
models with a great deal of accuracy. Changing the inputs allows a user to explore a 
range of design scenarios, giving a picture of how the system behaves. This is typi-
cally performed as a sweep over the input parameters. Although the model may be 
computationally expensive, parallel execution of the jobs can dramatically speed up 
the execution and allow very large systems to be studied. 

In this context, it is useful to think of a given computational model as a function 
that accepts a set of input parameters and produces a set of outputs. Input parameters 
are typically simple types, such as integers, floats and text strings. A full parameter 
sweep takes all combinations of the parameters, and allows exploration of the entire 
design space within some finite resolution. Such parameter sweeps have been used 
very effectively, for example in environmental modelling [23], bioscience [24], engi-
neering [20] and chemistry [25]. 
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2.2   Partial Parameter Sweeps 

Although the favoured method for exploring the parameter space of a model is a full 
parameter sweep, this may be impractical where there are many parameters, espe-
cially if the model is computationally intensive. Experimental design techniques may 
enable meaningful results to be obtained from a suitably chosen subset of jobs.  

The most widely used method of experimental design is the fractional factorial de-
sign [11]. Suppose the experiment has input parameters (called factors in the litera-
ture) A, B, C, … and produces a numerical output f(A,B,C…). The underlying model 

is that f is the sum of several terms, a constant term 0f , then the “main effect” terms 

f1 (A) , f2 (B) , …, each dependent on only one factor, then “two-factor interaction 
effects” terms, f1,2 (A,B) , f1,3 (A,C), f2,3 (B,C) , …, each dependent on two factors, 
then “three-factor interactions”, and so on.  Long experience, with both physical and 
computer-based experiments, suggests that the higher-order terms, interactions of 
three factors and more, are usually negligible. In that case, only the lower-order terms 
need to be estimated, so fewer jobs are needed to obtain these estimates and hence 
obtain reasonable approximations to the output. Significant savings are possible; with 
20 parameters, each at two levels, the number of jobs required is reduced from over a 
million to 512. 

2.3   The Current Nimrod Tool Set 

Over the past 15 years we have constructed a tool set called Nimrod [4], that auto-
mates both of the parameter sweep techniques discussed above. One of the Nimrod 
tools, Nimrod/G, supports complete parameter sweeps It operates either as a tool, 
or a middleware layer in its own right. If the former, then it is usually operated 
from a Web portal, and this allows a user to create a plan file, set up a testbed, 
manage certificates etc., and organize input and output files from an experiment. 
Nimrod/G, however, can also serve as a job management system for other soft-
ware, including the other members of the Nimrod family. This structure is shown 
in Fig. 1. 

The Nimrod/E tool, on the other hand, automates the design of fractional facto-
rial experiments. Here, the user specifies the factors and which interactions can be 
ignored. Then, one component produces an efficient design generating the parame-
ter values for the resulting jobs in a form suitable for Nimrod/G. When all jobs are 
complete, another component produces analyses of the results for each output value 
of interest. It creates graphs showing the relative size of the various main effects 
and interactions.  The Daniel Plot [13], Fig. 6, plots the effects so that the negligible 
ones, with values just experimental error, will form the central straight line, signifi-
cant effects produce points that deviate from this line. The Lenth Plot [14], Fig. 5, 
shows effects in order of absolute size and horizontal lines giving significance lev-
els. Points outside the outer lines are most probably significant. The tool also esti-
mates results of a full parameter sweep, which may then be used by visualization 
software. 
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Fig. 1. Nimrod tool chain 

3   Workflow Engines and Kepler 

There has been considerable interest in scientific workflow engines over the past few 
years, in particular, in Grid workflow engines. Workflows allow a user to build arbi-
trary computations from a set of connected components, or actors. Actors may repre-
sent computations, but also facilitate access to distributed databases and scientific 
instruments. In most systems, data moves along the edges that connect the actors as 
tokens, and can thus be streamed from instruments and databases, through a range of 
computational processes. Grid workflows allow these actors to be executed on dis-
tributed resources, and launched in a variety of ways, facilitating virtual applications 
that span multiple organizations, data sources and computers.  

To date, many scientific workflow tools have been built [6][9][10]. Grid workflow 
systems allow general applications to be constructed, with examples ranging from 
ecology to medical imaging. In this project we focus on Kepler [5][6][7][8], which 
allows a user to weave a “virtual” application from a set of otherwise distinct compo-
nents, and its workflow engine orchestrates their execution in a controlled and repeat-
able manner. Kepler builds upon Ptolemy II [11], a Java-based software framework 
with a graphical user interface called Vergil. Ptolemy II is used for the modelling, 
simulation, and design of concurrent, real-time embedded systems. The focus is on 
assembly of concurrent components. Kepler inherits a number of orchestration 
mechanisms from Ptolemy, providing an extensive range of execution mechanisms. 
These are controlled through devices called “directors”. 

In spite of their significant power, Kepler, and many other current workflow sys-
tems, do not support dynamic parallel execution of a workflow and its components. 
This means that users must explicitly code a workflow to cause it to execute elements 
in parallel – either by replicating the workflow statically, or adding looping constructs 
that scatter and gather threads. Both of these techniques significantly complicate the 
workflow and obscure the underlying business logic. In another recent paper, we have 
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shown how to augment Kepler with a Tagged Data Flow Architecture Director (TDA) 
[18]. This new system, called Nimrod/K, extends Kepler by providing powerful 
mechanisms for exposing and managing parallelism in the workflows. This provides 
an ideal platform for using workflows for parameter sweeps. Unlike the current  
Nimrod tool chain, Nimrod/K makes it possible to run sweeps over workflows, and 
workflows that contain sweeps. It leverages Kepler’s power in building complex 
workflows, and Nimrod’s ability to execute sweeps over grid resources. In the next 
section we show how we have created some specific new Kepler actors that facilitate 
parameter sweeps. When combined with Nimrod/K’s parallel execution mechanisms, 
we have a powerful new tool for parameter sweeps. 

4   New Kepler Actors 

4.1   Actor Design 

The Nimrod/G Actor. As discussed in section 2.3, the current Nimrod tools provide 
parameter sweep tools to complement Nimrod/G’s Grid execution and meta-
scheduling capabilities. One of these tools performs a parameter sweep that creates 
a Grid job for each of the parameter combinations in the parameter space. Each of 
these parameter combinations is represented in Kepler using datasets, called “to-
kens”. We have created a ParameterSweep actor, that uses the same parameter 
syntax as the Nimrod/G implementation, to generate parameter combinations in a 
workflow. This actor works with the current Ptolemy directors, however, when used 
in combination with the Tagged Dataflow mechanism in Nimrod/K, parallel execu-
tion of the different parameter combinations allows the workflow to execute effi-
ciently on the Grid. 

The new ParameterSweep actor is quite general. For example, multiple actors 
can be chained together to create a sub parameter sweep inside a larger parameter 
sweep. Although it is possible to create such a sweep with a single Parameter-
Sweep actor, staging them allows for preliminary calculations of shared data to be 
performed by the parent sweep prior to the start of the sub-sweep.  Also, chaining 
them together enables a more dynamic parameter range options, for example, if the 
sub sweep is calculated from the parameters given by the parent sweep. This envi-
ronment produces sweeps that meet the parameter sweep requirements of workflows. 

 

Nimrod/E Actors. The workflow for a typical Nimrod/E experiment is shown in Fig. 
2. The user enters details of the parameters to be varied and the effects to be  
estimated, into the FractionalFactorialDesigner actor. This designs the 
experiment and specifies the jobs required, passing these job specifications (as work-
flow tokens) to the actor(s) that perform the model execution. If the model is a simple 
formula then the model execution may be performed by a Kepler numerical actor. 
More complex modelling may require execution of an external model via the Nim-
rod/K framework. 

When all jobs are complete, downstream processing can begin. There may be sev-
eral numerical aspects of the model output of interest, so at this stage the dataflow 
may branch. Fig. 2 shows the case where there are two outputs requiring analysis.  
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Fig. 2. Nimrod/E experiment 

One output from each model is needed to estimate the effects for that output. Tabula-
tion of the effects may be sufficient, or these estimates may be used as inputs for a 
Daniel plot, Lenth plot and/or computation of the full sweep results. 

4.2   Implementation 

Nimrod/G.  The ParameterSweep actor is built on the PtolemyII source class that 
provides an output port and a trigger. The output port sends a RecordToken contain-
ing the value of each parameter for a single parameter combination.  The actor has a 
property that contains the parameter sweep string identical to the syntax of the pa-
rameter sweep commands in the Nimrod plan file syntax. To implement the token 
tagging functions, the ParameterSweep actor is built on the classes and functions 
provided by the Nimrod/K TDA director.  These classes have no functional affect 
when used with other Ptolemy directors.  Under the Nimrod/K director each parame-
ter combination is executed in parallel. This is further discussed in [18].   

 

Nimrod/E.  The actors for Nimrod/E were built using the same principles as the Pa-
rameterSweep actor. Because nimrodFracDes is computationally intensive 
there is a clear advantage in retaining the C code for this function. Further, the code is 
quite complex, so that re-writing in Java within the Kepler framework would be a 
large undertaking. Consequently, we decided to use the existing C code, using a Java 
wrapper to produce a design actor. The information that it produces as a plan file is 
redirected as a tag to the output token for downstream processing. This actor is named 
the FractionalFactorialDesigner in Fig. 2.  

For the analysis section most computation is relatively light. Further, the graphs pro-
duced would benefit from a re-coding in Java, using the Kepler graphing functionality. 
When there are a large number of factors, the plots produced may display estimates for 
many effects and be quite cluttered; Kepler graphs provide zooming to allow the user to 
explore the fine detail. On the other hand, the production of the analysis matrix does 
require some of the complex computation used in nimrodFracDes. Accordingly, we 
decided to recode the analysis section within the Kepler framework. The EffectEs-
timator, LenthPlotter, Daniel-Plotter and FullSweepInterpola-
tor actors were added to perform the analysis discussed in Section 2.3. 
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5   Case Study 

In this section we illustrate the new actors we have discussed to date, using a case study 
previously performed with the Nimrod/G and Nimrod/E tools. The case study allows us 
to demonstrate the utility of the new approach and its expressive power in Kepler. 

                    

     Fig. 3. Complete parameter sweep                              Fig. 4. Experimental Design 

Mathematical models of the heart show considerable promise for understanding the 
underlying mechanisms and for clinical diagnosis and treatment [15][12]. The model 
chosen [16] concerns excitation and contraction in rabbit ventricular muscle cells. Intracel-
lular flows of calcium, sodium and magnesium ions were modelled as a system of ordi-
nary differential equations using Matlab. Earlier experiments with this model are reported 
in [17]. Fig. 3 shows the Kepler workflow used to perform a parameter sweep over the 
nine factors, A to J., This used two values for each factor, producing an experiment of 512 
jobs, and the values are generated using the ParameterSweep Actor. 

A second experiment used the experimental design functionality to further investi-
gate the response function. The FractionalFactorialDesign actor in the 
workflow shown in Fig. 4 was used to produce a design that would estimate the main 
effects and two-way interactions of these factors. This required only 128 jobs.  

Fig. 5 shows the Lenth plot from the experiment. Points for the effects of all nine 
inputs lie outside the confidence lines and hence all inputs make a significant  
 

    

         Fig. 5. Lenth plot                                                  Fig. 6. Daniel plot 
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contribution. Of the interactions, only, AB, DE, GH, GJ and HJ are definitely signifi-
cant, the other interactions are indistinguishable from noise. This reveals the structure 
of the computational model. The final output is the sum of four terms, the first af-
fected only by A and B, the second by C, the third by  D, E and F and the last by G, H 
and J, explaining why many interactions have no effect. However the lack of signifi-
cant interactions between D and F, and between E and F, requires further investiga-
tion. Fig. 6 shows the same results on a Daniel plot. Here the deviation of points from 
the vertical line gives a measure of the significance of the effects plotted. 

Fig. 7 shows the parallelism in the complete sweep when executed under the Nim-
rod/K Director. Our cluster was saturated at just over 100 concurrent executions. The 
system takes some time to build up the parallelism, and this is evident in the initial 
ramp up phase. This is caused by the overheads in starting remote computations using 
the Globus framework.  

This case study demonstrates that Kepler provides a natural and easy mechanism 
for specifying the use of parameter sweep techniques over existing workflows. We 
have used a fairly simple computation model in this paper to clearly show the tech-
niques, but this does not really demonstrate the significant potential of the approach.  
 

 

Fig. 7. Parallelism in complete sweep 

All of the machinery developed to date is capable of sweeping across parameter com-
binations regardless of the complexity of the computational steps of the workflow. 
Thus, much more complex pre-existing workflows can be modified using our new 
actors to perform large-scale complex parameter sweep experiments. We have re-
cently begun work on modifying a complex computational chemistry workflow by 
adding the actors discussed in this paper. 

6   Conclusions 

In this paper we have discussed the design and implementation of some new actors 
that facilitate parameter sweeps in scientific workflows. The solution builds on the 
existing execution frameworks in workflow systems, and we have demonstrated its 
applicability in Kepler. The simple case study shows how easy it is to create and exe-
cute a sweep over an existing scientific computation. 

Our system leverages a separate addition to Kepler, called Nimrod/K, which sup-
ports parallel execution of the different instances. By combining the new Actors, and 
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the new TDA Director, we can execute each of the parameter combinations in paral-
lel. This makes it possible to compute complex design experiments quickly if there 
are sufficient resources available.  
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Abstract. The ALICE experiment at CERN LHC is intensively using a
PROOF cluster for fast analysis and reconstruction. The current system
(CAF - CERN Analysis Facility) consists of 120 CPU cores and about
45 TB of local space. PROOF enables interactive parallel processing of
data distributed on clusters of computers or multi-core machines. Sub-
sets of selected data are automatically staged onto CAF from the Grid
storage systems. However, a cluster of the size of CAF can only hold a
fraction of the yearly 3 PB data accumulated by ALICE. The impracti-
cability to store and process such data volume in one single computing
centre leads to the need to extend the concept of PROOF to the Grid
paradigm.

Keywords: ALICE, Grid, PROOF, interactive parallel distributed pro-
cessing, data movement, task colocation, resource availability.

1 Introduction

The ALICE [1] experiment at the CERN Large Hadron Collider (LHC) will accu-
mulate data at unprecedented speed and volume. The yearly estimate is 1.5PB
of raw data from the experimental setup and additional 1.5PB of reconstructed
data and Monte-Carlo simulations. The data management and processing is
done through the ALICE Environment [2] (AliEn) middleware on the World-
wide LHC Grid [3] (WLCG [4]), encompassing hundreds of computing centres
with many thousands of CPUs and PB scale disk and mass storage systems.
A set of unique challenges for the reconstruction and analysis software and the
ways the physicists perform data analysis is offered by the data volume and
distributed computing environment.

One of the most important aspects of data analysis is the speed with which it
can be carried out. Fast feedback on the collected data and publication of results
is essential for the success of the experiment. Since several years the ROOT [5]
team at CERN is developing a software framework, the Parallel ROOt Facility
[6] (PROOF), which addresses the question of synchronous fast data processing
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on large computing farms. This framework is widely used in High Energy Physics
(HEP) and in the ALICE experiment in particular.

The goal of PROOF is to allow for transparent interactive parallel analysis of
large sets of files in ROOT format, a common container for data storage in HEP.
It is conceived to provide transparency with respect to a local ROOT analysis
session (same code can be run locally and in a PROOF system), scalability
(no limitations on the number of machines that can be used in parallel) and
adaptability (handling of changing of load, disk failure and network cut on the
nodes). In this context, by interactive it is meant that the user is able to see
the results right away, contrary to a Grid job where it is necessary to wait for
the job to finish. Parallel means that the task is split into subtasks that will be
executed on many computing nodes at the same time. Commonly we refer to
analysis of data that are the result of events reconstruction (so called ESD, Event
Summary Data or AOD, Analysis Object Data), but in the future PROOF can
be extended to support also large scale simulation.

2 The PROOF system

PROOF is a system particularly suited to process events produced by high-
energy physics experiments. In most analysis use cases events can be processed in
an arbitrary order and partial results can be summed up after processing (trivial
or event-based parallelism). It is an interactive system, therefore it can be used

Fig. 1. Schema of the PROOF system. After the user connects to the cluster, a ROOT
session is started on each node. The analysis code is sent to the head node (master)
and then replicated on each worker. Each worker processes local data and produces
a partial result that is sent back to the master node and merged together with the
others. The final result is displayed on the user’s screen.
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from the ROOT prompt thus allowing for direct visualization of results. At the
price of some overhead, result objects, e.g. histograms, can be monitored while
they are being produced (so-called feedback histograms). Additional libraries,
i.e. user code for processing, can be distributed with so-called PROOF packages.

The functioning schema of PROOF is shown in Fig. 1. A user running a
ROOT session on her client connects to a PROOF master which in turn opens
a ROOT session on each PROOF worker via Xrootd protocol [7]. Then the user
submits a query, that consists of the analysis code and the list of files that she
wants to be processed (step 1). The PROOF master splits the input dataset into
data fragments and distributes them to the PROOF workers. The fragments are
assigned in such a way that data local to a worker is processed first, then non-
local data, if any remaining. After processing, the partial results are individually
sent back to the PROOF master, merged together (step 3) and returned to the
user (step 4). This workflow works automatically for mergeable results, that is
the case for typical ROOT objects like histograms and trees. To this end, user
objects must implement the merging functionality.

3 PROOF Concept on the Grid

PROOF is currently running for the ALICE experiment on a computing cluster
called CAF [8] (CERN Analysis Facility) with 120 CPU cores. Naturally, a clus-
ter of this size can only hold a fraction of the 3 PB data to be accumulated by
the experiment. It is also not feasible, financial and support wise, to provide a
computing capacity capable of handling the data volumes in one single comput-
ing centre. For these reasons the concept of PROOF necessitates to be extended
to the Grid paradigm - the WLCG. Presently there are a number of research
projects aiming at extending the PROOF functionality on the Grid. They are
briefly introduced here below to clarify the conceptual and architectural differ-
ences as well as the goal each one wants to achieve.

– At INFN Torino, Italy, the Virtual Analysis Facility (VAF) project is cur-
rently running PROOF on a Grid Tier-2 (T2) cluster. In Grid terminology a
T2 is a mid-size (few hundred CPU) computing centre for user analysis and
MonteCarlo production.

The cohabitation between batch and PROOF processes is achieved by
running them on two separate virtual machines on Xen. When an interac-
tive analysis must be prioritized with respect to batch jobs or vice versa,
the operating system can directly suspend/restart or slow down/speed up
an entire VM, transparently handling the processes memory footprint. Since
running a VM requires administrator privileges, this kind of setup can be
deployed at the level of a single computing centre, but not at the largest
scale (the WLCG Grid) as in our case.

– The ATLAS experiment at CERN, in collaboration with the University of
Wisconsin and BNL, USA, is developing a project to run Grid and PROOF
services together on the same computing centre infrastructure using the
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CONDOR [6] system to handle job priorities. CONDOR is a job scheduler
mechanism allowing job submission in a local queue and provides command
line API to fully control their behavior at scheduling and running time. As in
Torino, the efforts are focused on how to run efficiently batch and interactive
jobs on shared resources belonging to a single computing centre.

PROOF is an interactive analysis tool that, as such, may stay idle for a
long period of time (for example nights and weekends). CONDOR allows for
sharing the available resources between batch-like activities and PROOF,
with the capability to get CPUs in a reasonably short time. In case inter-
active jobs are executed, running batch jobs are suspended freeing the used
resources (CPU, I/O, memory) and resumed after the PROOF session is
finished.

– At the GSI Heavy Ion Research Center in Darmstadt, Germany, the PROOF
on Demand [9] package (PoD) is under development to perform PROOF-
based distributed data analysis on the Grid and local batch systems. This
successful project is already in production and has many common points with
the result we want to achieve in ALICE: the ROOT/PROOF framework
is used as a starting point, but the Grid access from ROOT is achieved
using the gLite [10] implementation. PoD provides interfaces to submit Grid
job scripts executed by the Local Resources Manager System (LRMS) on
remote workers. These scripts, comparable to the pilot jobs in our proposal
(section ”System Architecture”), make environment recognition, upload of
the necessary software packages and start the gLite-PROOF services.

On the other hand there are two considerable differences in respect to our
model that prevent its application. First of all the PROOF master is directly
started on the user machine, i.e. each user connects to her own master. The
choice to separate user environments has the advantage to obtain a robust
architecture. The flip side is the assumption that PROOF workers may reg-
ister themselves on the user machine: this is not certainly feasible on a Grid
topology as the client machines are typically forbidden to accept incoming
connections or neither allowed to ask for. The assumption a PROOF worker
can directly register itself on the client machine leads to a 2-tiers architec-
ture, whereas in our project we must add a gatekeeper on the site’s front-end
machine (optionally running also the local PROOF master), thus re-creating
the 3-tiers architecture of a local PROOF cluster.

The second difference resides in the dataset distribution. At GSI no as-
sumptions are made on the data location, the access is up to the user code.
On the contrary, the location of the file to be processed, that may be stored
across several sites, is the keypoint of our computing model to run the code
where data is, i.e. ”bring the kB to the PB and not the PB to the kB”.

In addition to the projects outlined above, PROOF is currently being used by
a number of other HEP experiments. This is the case of the CMS collaboration
in Oviedo, Spain, with the purpose to adapt the analysis framework to the
PROOF model. Similarly, the LHCb collaboration at CERN has the aim to
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adapt in PROOF ad-hoc software for analysis, as well as the RHIC experiment
at the Brookhaven National Laboratory, USA.

The extension of the PROOF concept to the Grid allows for interactive pro-
cessing of large volumes of data distributed over hundreds of computing centres
and accessible by many thousands of CPUs. The parallelization of the process
has the obvious purpose of providing short response times. A number of problems
(P) have been clearly identified, as well as proper solutions (S).

Cluster Connectivity

P The distributed PROOF clusters should be interconnected in a multi level
hierarchy reflecting the PROOF cluster deployments.

S Each site will run its own PROOF master connected in turn to a general
public PROOF superMaster acting as the starting point for the interactive
user sessions. The distributed nature of the PROOF setup is hidden.

Tasks and Data colocation

P In a distributed computing environment the data sample to be analyzed will
be located at many computing centres worldwide. The analysis tasks must
be executed in the computing centre hosting the data, thus avoiding (heavy)
data movement.

S This can be achieved by starting PROOF workers at the computing nodes of
the centres through Grid jobs. The Grid middleware classes for asynchronous
analysis allow for task splitting according to dataset location.

Protected Access

P The computing centres are protected by very strict access rules, implemented
through complex firewalls, minimizing the methods that can be implemented
for communication between tasks running in separate centres.

S In a classic PROOF local cluster, the head node initiates communications to-
wards all the registered workers (master-to-worker). The worker nodes must
be reachable from the PROOF master where the work is initiated. In a Grid
topology a PROOF master is very likely running on the front-end machine of
each centre, called VO-box, whereas the PROOF workers can communicate
only through this VO-box. In this scenario the communication is reversed to
a registration service running on the VO-box (worker-to-master).

Dynamic Scheduler

P The PROOF setup must be adapted to the dynamic Grid topology since
potential computing workers and data servers may become available or drop
out at any point in time, depending on the local availability of resources.

S The PROOF master must be able to connect to workers not only when the
user starts a PROOF session. In the current PROOF implementation the
number of workers is known a-priori. A dynamic worker allocation feature
will require the development of a workload-based scheduler.
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Interactivity

P The Grid is by implementation a batch system, where a job runs with a delay
with respect of the submission time. With an interactive system, user tasks
should start with the initiation of the analysis session.

S A number of Grid jobs will be always kept running in the local computing
centres, ready to spawn PROOF sessions. The number of such jobs should
be a function of the number of Grid users who start PROOF sessions con-
currently and is adjusted automatically.

4 System Architecture

By implementing the above mentioned solutions we can achieve a novel way to
run the PROOF setup on distributed resources accessing large data volumes,
preserving at the same time the key benefits to run interactive and parallel data
processing. Fig. 2 displays the system architecture in a Grid environment.

A ProxyServer service is running on a public port on each VO-box (step 1).
This module is installed together with the Grid services deployed on the front
end machine of the given site. A number of pilot Grid jobs (step 2) based, among

Fig. 2. Schema of the PROOF system on the Grid. New components need to be plugged
into the system to allow dynamic usage of loosely-coupled distributed resources. The
PROOF architecture master-to-slave is inverted to work through fairly strict firewalls
preventing direct connections to computing machines at the remote Grid sites.
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the others, on the cardinality and location of the user input dataset, is submitted
to the Grid from the user interface with the purpose to start a certain number
of ProxyClient, the counterpart of the ProxyServer. Pilot jobs are created by
the task splitting capabilities of the Grid middleware and sent to the computing
sites close to the Storage Element(s) (SEs) hosting the dataset. The number of
pilot jobs is a function of the number of files the user wants to process and their
distribution among the SEs.

ProxyClient services already running can be re-used for further user sessions.
In such way, the latency of the Grid is hidden because the proxies are kept
running once started, ready to serve new tasks. A ProxyClient starts an Xrootd
server from the proper ROOT package installed at the site. Users might ask
for different versions of a given ROOT/Xrootd package: if it is not present on
the Grid Worker Node (WN), it will be automatically downloaded using the
Grid Package Manager service. Whenever a ProxyClient process is started on a
WN, it registers itself on the ProxyServer (step 3) and establishes an outgoing
connection towards the Grid VO-box. The ProxyServer acts as a gatekeeper and
keeps the list of all ProxyClients running on the WNs (step 4).

When a user starts a ROOT session (step 5) and connects to the distributed
PROOF cluster, the proper workers are selected among the available ones. The
local PROOF master at the VO-box accepts connections from the public PROOF
superMaster (running on a public machine and coordinating the activity of the
local masters) and, through the proxies, connects the PROOF workers at the
protected sites (red thick line). The PROOF superMaster distributes the load
among the PROOF clusters started at the Grid sites and shields the user from
the underlying complexity.

A prototype of the distributed PROOF framework is currently under devel-
opment and test on two Grid sites at CERN and NIHAM (Romania). These
sites store recent ESD data generated by the production cycles of the ALICE
Physics Data Challenge 2008 and 2009 (PDC08/09). As a proof of concept, sim-
ple analysis tasks processing ESD and reading Monte Carlo tracks have been
successfully executed (Fig. 3). The current challenge consists in connecting the
individual Grid sites throughout the same session whenever an input dataset is
spread over different Grid SEs. Meanwhile, the robustness of the ProxyServer
must be improved to support a higher number of connections (tested up to 20
TCP sockets per site). Performance tests are in progress to precisely determine
the increment of load sustained by the VO-box with the introduction of the
PROOF master. It is well known that this service produces negligible traffic as
long as data is processed by the workers (it must only coordinate the job among
them) but has peaks of CPU usage and memory consumption during the final
merging. The understanding of the PROOF master performance and scalability
will come with the integration of the ProxyServer in the MonALISA monitoring
system [11] in use in ALICE. The ProxyServer will plug-in into the MonALISA
distributed agents already deployed at each Grid site with the advantage to be
completely monitored and remotely managed. MonALISA provides the capacity
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Fig. 3. Analysis task running in distributed PROOF. The plot displays the Pt spectrum
out of 26k tracks with the corresponding processing rate (events/sec).

to send monitoring information to the central ALICE Web repository [12] for
history view or an interactive GUI client for detailed short-time views.

5 Summary

This contribution presents the approach of the ALICE experiment to enable fast
data analysis on the Grid middleware in usage, the ALICE Environment (AliEn).
The PROOF framework is primarily meant as an interactive alternative to batch
systems for central analysis facilities and departmental workgroups (Tier-2s) in
particle physics experiments. However, thanks to a multi-tier architecture allowing
multiple levels of masters, it can be adapted to a wide range of virtual clusters
distributed over geographically separated domains and heterogeneous machines
that form the Grid. The dynamic allocation of a Grid Analysis Facility running
PROOF allows to quickly prototype user code that needs many iterations on input
datasets, with the advantage given by the availability of the entire data production
of the experiment instead of only a small subset locally staged. To this end, new
components must be plugged into the system, i.e. a tunnel between the Grid WNs
and corresponding VO-box to work through firewall protections, an hierarchy of
PROOF masters coordinating the work among the Grid sites, a PROOF workers
distribution based on the AliEn capabilities to split jobs according to the data
location and a dynamic allocation of PROOF workers.
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Abstract. We have taken up the issue of named entity recognition of Indian 
languages by presenting a comparative study of two sequential learning algo-
rithms viz. Conditional Random Fields (CRF) and Support Vector Machine 
(SVM). Though we only have results for Hindi, the features used are language 
independent, and hence the same procedure could be applied to tag the named 
entities in other Indian languages like Telgu, Bengali, Marathi etc. that have 
same number of vowels and consonants. We have used CRF++ for implement-
ing CRF algorithm and Yamcha for implementing SVM algorithm. The results 
show a superiority of CRF over SVM and are just a little lower than the highest 
results achieved for this task. This can be attributed to the non-usage of any pre-
processing and post-processing steps. The system makes use of the contextual 
information of words along with various language independent features to label 
the Named Entities (NEs).  

Keywords: Support Vector Machines, Conditional Random Fields, Maxent, 
NER, Hindi, Named Entities. 

1   Introduction 

Named Entity Recognition for European Languages has already achieved a significant 
accuracy (Sang, 2002 [6]; Sang and De Meulder, 2003 [5]), which is especially high 
for English, and even for East Asian languages (Sassano and Utsuro, 2000 [16]). But 
the same task for Indian languages like Devnagiri (Hindi) is lagging far behind due to 
its various intricacies like, missing capitalizatoin information, which is the single 
most important information for identifying NEs. Indian languages also lack a formal 
and large list of gazetteers which makes pre-processing inefficient. Indian languages 
also have the problem of disambiguation of common nouns from proper nouns. A 
fairly large no. of frequently used words (common nouns) in Indian languages can 
also be used as named entities. For example, words like Vivek, Kamal, Pankaj, Dee-
pak etc. which are proper nouns can also confer some meaning and can be used as 
common nouns. While in english almost all proper nouns are meaningless viz. Harry, 
Kate, Leonardo, Jessica etc. Hence the disambiguation in usage of a word as common 
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noun or proper noun using its contextual features in Indian languages is more difficult 
and important than that for European languages. 

Due to the above mentioned problems NER task for Indian languages is more dif-
ficult. Hence, even though at least four of them figure in the top ten spoken languages 
of the world these languages are less studied by researchers. Our comparative study of 
NER for these languages using two sequential labelling algorithms will provide an 
insight to researchers to work on the best method and shape their research accord-
ingly. As opposed to the four tag tagset used in CoNLL 2003 shared task we have 
used a tweleve tag tagset which was used in NERSSEAL-08 shared task. The system 
first identifies the named entities and then predicts their correct tags using the model 
generated through training. 

2   Previous Work 

The latest research work on named entity recognition for Indian languages was re-
ported in the NERSSEAL-08 shared task against a baseline that uses maximum en-
tropy based name finder tuned for English but trained on data from five South Asian 
languages viz. Hindi, Telugu, Bengali, Oriya and Urdu. The highest F-measure of 
65.13% was reported by Saha et al. while the second highest was 50.06%, reported by 
Karthik et al. Our tagset and test data is the same as was used in this workshop. 

Mainly  two approaches are applied for NER : 

• Linguistic approach 
• Machine Learning approach 

Linguistic approach works on handcrafted rules which are written by skilled lin-
guists. Previous rule based NER systems, containing  mainly lexicalized grammar, 
gazetteer lists, and list of trigger words, are capable of providing upto 92% F-measure 
accuracy for English (Grishman, 1995 [8]; McDonald, 1996 [17]). These systems 
have a disadvantage that they require huge experience and grammatical knowledge of 
the particular language or domain and  are not transferable to other languages or do-
mains. However, given the closer nature of many Indian languages, the cost of adap-
tation of a resource from one language to another could be quite less (Singh and 
Surana, 2007 [2]). 

The machine learning techniques tried for NER include the following:  

• Hidden Markov Models or HMM (Zhou and Su, 2001 [7]) 
• Decision Trees (Isozaki, 2001 [9]) 
• Maximum Entropy (Borthwick et al., 1998 [1]) 
• Support Vector Machines or SVM (Takeuchi and Collier, 2002 [11]) 
• Conditional Random Fields or CRF (Settles, 2004 [12], Li and Mccallum,  

2004 [15]) 

These techniques  make use of a large amount of NE annotated training data to ac-
quire high level language knowledge. 

Srihari et al. (2000) [19] used a combination of different ML approaches.They 
combined MaxEnt, HiddenMarkov Model (HMM) and handcrafted rules to build an 
NER system. Such hybrid systems have been generally more effective at the task of 
NER. 
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Previous work on NER for Indian and some other South and South East Asian 
Languages has been done by McCallum and Li, 2003 [3] and Cucerzan and 
Yarowsky, 1999 [18] but this work was just an extension of the work done on Euro-
pean Languages. Cucerzan and Yarowsky [18] in their language independent NER 
work used morphological and contextual evidences. They ran their experiment with 5 
languages - Romanian, English, Greek, Turkish and Hindi. Among these the accuracy 
for Hindi was the worst. For Hindi the system achieved 41.70% F- measure with a 
very low recall of 27.84% and about 85% precision. The F-measure of the system 
developed by Wei Li and Andrew McCallum (2004) [15] was a lot better, giving an F 
measure of 71.50% against a training data of 340000 words. The maximum accuracy 
for NER in Hindi is reported by Kumar and Bhattacharyya, (2006) [14]. They 
achieved an F measure of 79.7% using a Maximum Entropy Markov Model. 

3   Named Entity Tagset 

We have used a twelve tag tagset for our classification task. This tagset gives a finer 
classification which in turn is helpful for better machine translation task. These tags 
are briefly explained in Table 1. 

Table 1. The twelve tag tagset used in our task of named entity recognition 

Tag Name Description 
NEP Person Deepak, Gandhi 
NED Designation Secretary, Director 
NEO Organization Municipal Corporation 
NEA Abbreviation C.E.O., A.D.A. 
NEB Brand Honda, Reebok (ambiguous) 

NETP Title-Person Mr., Mrs., Dr. 
NETO Title-Object Hamlet, Othello 
NEL Location Mumbai, Bangalore, Delhi 
NETI Time 18th September, 1984  

(ambiguous) 
NEN Number 7.94, 8.56, 420 
NEM Measure 4 grams, Rs 4,000 
NETE Terms Botany, Maximum Entropy 

4   Data Description and Features Used 

The data for our task was in Shakti Standard Format (SSF) which is shown below : 
 

0     ((        SSF 
1.         ((        NP <ne=NEP>  
1.1       Mahatma  
1.2       Gandhi   
            )) 
2.         ke 
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3.         kehne 
4.         par 
            )) 
 

We have converted this data to BIO format (B=Begin of chunk, I=Inside chunk, 
O=Outside the chunk) as follows: 

 

Mahatma B-NEP 
Gandhi I-NEP 
Ke  O-NOT 
kehne  O-NOT 
par  O-NOT 
 

The input format for both CRF++ and Yamcha SVM is same i.e. the word to be 
classified is followed by its features and then the class label. The initial training 
data for our classification task consisted of 503179 instances (words). The testing 
data had 40543 instances. This data had too many sentences which did not contain 
even a single named entity hence we refined the data by eliminating these sen-
tences. Hence our refined data had all those sentences which had one or more 
named entities. The refined data had 301620 instances. We have used the following 
features : 

• Word Window – A window size of 3 has been used to take into account the 
words in context of the current word. 

• Prefix information – Prefix information upto length 3 is used. 
• Suffix information – Suffix information upto length 3 is used. 
• Length of the word – Word length information is used. 
• Sentence start information – Whether the current word is the start of the sen-

tence or not. 
• Two consecutive digits – Occurrence of two consecutive numbers is quite 

frequent and hence it served as a good feature. 
• Four consecutive digits – It mainly indicated the occurrence of ‘years’. 

Served as a good feature. 
• Word class and Brief class - Words are also assigned a generalized ‘word 

class (WC)’, which replaces all letters with ‘a’, digits with ‘0’, punctuation 
marks with ‘p’, and other characters with ‘-’. There is a similar ‘brief class 
(BWC) (Settles 2004 [12])’ which collapses consecutive characters into one. 
Thus the words “D.D.T.” and “AB-1946” would both be given the features 
WC=apapap, BWC=apapap.  

5   Learning Algorithms Applied 

We used two learning algorithms for our classification task : Conditional Random 
Fields (CRFs) (Lafferty et al., 2001 [10]) and Support Vector Machines (SVMs) (Cor-
tes and Vapnik, 1995 [4]). CRFs are implemented using CRF++ while SVMs are 
implemented using Yamcha. These algorithms are discussed below. 
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5.1   Conditional Random Fields 

Conditional Random Fields (CRFs) are undirected graphical models used to calculate 
the conditional probability of values on designated output nodes given values as-
signed to other designated input nodes. 

In the special case in which the output nodes of the graphical model are linked 
by edges in a linear chain, CRFs make a first-order Markov independence assump-
tion, and thus can be understood as conditionally trained finite state machines 
(FSMs). Let o = (o1,o2,o3 ,o4 ,... oT ) be some observed input data sequence, such 
as a sequence of words in text in a document,(the values on n input nodes of the 
graphical model). Let S be a set of FSM states, each of which is associated with a 
label, l Є £. 

Let s = (s1,s2 ,s3 ,s4 ,... sT ) be some sequence of states, (the values on T output 
nodes). By the Hammersley Clifford theorem, CRFs define the conditional probability 
of a state sequence given an input sequence to be: 

T 

P(s|o) = 1/Z0 *exp( ∑   ∑ λk fk(st-1, st, o, t)) . 
t=1    k 

where Zo is a normalization factor over all state sequences is an arbitrary feature 
function over its arguments, and λk is a learned weight for each feature function. A 
feature function may, for example, be defined to have value 0 or 1. Higher λ 
weights make their corresponding FSM transitions more likely. CRFs define the 
conditional probability of a label sequence based on the total probability over the 
state sequences, 

 

P(l|o) = ∑s:l(s)=l P(s|o) . 
 

where l(s) is the sequence of labels corresponding to the labels of the states in se-
quence s.  

Note that the normalization factor, Zo, (also known in statistical physics as the par-
tition function) is the sum of the scores of all possible states. 

T 

Z0  =   ∑   exp( ∑   ∑ λk fk(st-1, st, o, t)) . 
sεsT          t=1      k 

And that the number of state sequences is exponential in the input sequence length, 
T. In arbitrarily-structured CRFs, calculating the partition function in closed form is 
intractable, and approximation methods such as Gibbs sampling or loopy belief 
propagation must be used. In linear-chain structured CRFs (in use here for sequence 
modeling), the partition function can be calculated efficiently by dynamic  
programming. 

5.2   Support Vector Machines 

Support Vector Machines (SVMs) are supervised machine learning algorithm for 
binary classification on a feature vector space x ε RL.  
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     w . x + b = 0,        w ε RL,   b ε R .                      (1) 
 
Suppose the hyperplane (1) separates the training data, {(xi, yi) | xi ε RL,  yi ε {±1}, 

1≤ i ≤ l }, into two classes such that 
 

                                 yi.(w.xi +  b) ≥ 1 .          (2) 
 
While several of such separating hyperplanes exist, SVMs find the optimal hyper-

plane that maximizes the margin (the distance between the hyperplane and the nearest 
points). Such a hyperplane is known to have the minimum expected test error and can 
be solved by quadratic programming. Given a test example x, its label y is decided by 
the sign of discriminant function f(x) as follows: 

 
                                      f(x) = w . x + b,                                                                  (3) 
                                        y = sgn(f(x)),                                                                    (4) 
 
For linearly non-separable cases, feature vectors are mapped into a higher dimen-

sional space by a nonlinear function Φ(x) and linearly separated there. In SVMs’ 
formula, since all data points appear as a form of inner product, we only need the 
inner product of two points in the higher dimensional space. Those values are calcu-
lated in RL without mapping to the higher dimensional space by the following func-
tion K(xi, xj) called a kernel function,                                            

 
                              Φ(xi) . Φ(xj) = K(xi, xj) ,                                                            (5) 
 
Since SVMs are binary classifiers, we must extend them to multi-class classifiers 

to predict k > 2 POS tags. 
Among several methods of multi-class  classification, we employ the one-versus- 

rest approach. In training,  k classifiers fi(x) (1 ≤ i ≤ k) are created to classify the class 
i from all other classes, 

 
                   fi(x) ≥ +1               x belongs to the class i, 
                   fi(x) ≤  -1               otherwise. 

 
Given a test example x, its class c is determined by the classifier that gives the 

largest discriminating function value, 
                          c = argmax  fi(x)                                                  (6) 

6   Results 

Table 2 shows the resulting classification of individual tags using both CRFs and 
SVMs on full data, on full data using a word window and on refined data. It is 
clearly evident from the results that a refined training data i.e. a data consisting of 
only those sentences which have at least one named entity outperforms the accruacy  
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Table 2. Comparison of CRFs and SVMs with full data and refined data. Refined data shows a 
better accuracy than full data while overall CRFs outperform SVMs.  

Tag NEP 
t=245 

NED 
t=72 

NEO 
t=103 

NEA 
t=8 

NETO 
t=325 

NEL 
t=235 

NETI 
t=92 

NEN 
t=514 

NEM 
t=31 

NETE 
t=1080 

NEB 
t=0; 

NETP 
t=5 

Al
go 

Data c c c c c c c c c c c 
Full 
Data  

90 20 26 2 12 110 53 368 14 90 0 

Word 
Window 
Four 

94 21 23 3 18 109 53 364 15 90 0 

C
R
Fs 

Ref. 
Data 

98 19 27 3 36 129 59 421 17 127 0 

Full 
Data 

33 18 10 1 8 62 34 326 13 51 0 

Word 
Window 
Four 

38 17 10 1 9 63 36 333 13 67 0 

S
V
M
s 

Ref. 
Data 

48 17 12 1 9 70 37 367 13 76 0 
 

  t = total count ;    c = correct count;  Full Data = 503179 instances ;    
  Ref. Data = Refined Data = 301620 instances; Experiment with word window four is  
  performed on full data. 

 
of the data having a large number of sentences without a single named entity. It is 
also clearly evident that CRFs outperform SVMs when it comes to Named Entity 
Resolution.  

6.1   Calculation of F-Measure, Precision and Recall 

We present our result on three measures of performance calculated for three cases : 
maximal named entities, nested named entities and lexical matches. Thus, there are 
nine measures in total :  

 
• Maximal Precision: Pm = Cm / Rm 

• Maximal Recall: Rm = Cm / Tm 

• Maximal F-Measure: Fm = (2 * Pm * Rm) / (Pm + Rm)   

• Nested Precision: Pn = Cn / Rn 

• Nested Recall: Rm = Cn / Tn 

• Nested F-Measure: Fn = (2 * Pn * Rn) / (Pn + Rn)   

• Lexical Precision: Pl = Cl / Rl 

• Lexical Recall: Rl = Cl / Tl 

• Lexical F-Measure: Fl = (2 * Pl * Rl) / (Pl + Rl)   
 

where C is the number of correctly retrieved (identified) named entities, R is the total 
number of named entities retrieved by the system being evaluated (correct plus incor-
rect) and T is the total number of named entities in the reference data.  

Table 3 lists these measures for various experiments performed. 
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Table 3. The nine performance measures for each experiment (P=Precision; R=Recall) 

Type Maximal Nested Lexical Algo 
Data P R Fβ P R Fβ P R Fβ 
Full 
Data 

0.55 0.27 0.37 0.58 0.27 0.37 0.79 0.29 0.42 

Word 
Window 

four 

0.56 0.27 0.37 0.60 0.27 0.37 0.81 0.29 0.43 

CRFs 

Ref. 
Data 

0.52 0.32 0.40 0.56 0.32 0.40 0.76 0.34 0.47 

Full 
Data 

0.61 0.21 0.31 0.66 0.20 0.31 0.86 0.20 0.33 

Word 
Window 

four 

0.56 0.23 0.35 0.57 0.22 0.32 0.83 0.26 0.35 

SVMs 

Ref. 
Data 

0.59 0.25 0.35 0.63 0.24 0.35 0.82 0.24 0.37 

7   Error Analysis 

As the results show the f-value measure is highest for CRFs using a refined data while 
the SVMs give the lowest f-value measure. These results are obtained against a base 
line of 25.68%. We can easily infer that the sparseness of the named entities plays a 
major role in deciding the final classification. Also, as a finite state machine derived 
from HMMs, CRFs can naturally consider state-to-state dependences and feature-to-
state dependences. On the other hand, SVMs do not consider such dependencies. 
SVMs separate the data into categories via a kernel function. They implement this by 
mapping the data points onto an optimal linear separating hyperplane. Finally, SVMs 
do not  behave  well  for  large number of feature values. For large number of feature 
values, it would be more difficult to find discriminative lines to categorize the labels. 

In recognition task, NETO and NETE are giving worst results since they are diffi-
cult to discriminate even manually. The low results of the whole process are due to 
the use of ambiguous and a vast variety of named entity tags.  

8   Conclusion 

Since the Indian sub-continent has a large variety of regional languages which inher-
ently have the same number of vowels and consonants and also the semantic of  
construction of words, the results give future researchers a direction regarding the 
suitability of the algorithms and also to focus their research in the areas of shortcom-
ings viz. on the ambigous tags like NETO and NETE as also the usage of gazetteers 
and other pre-processing and post-processing steps to refine the results. Nevertheless, 
we feel that our results are far better since we have achieved higher accuracy without 
any pre-processing or post-processing steps and it is expected to increase the effi-
ciency of the system with these aids. 
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Abstract. AspectSBASCO is a new programming environment that in-
tegrates modern technologies (i.e. software components, parallel skele-
tons and aspects) to support the development of parallel and distributed
scientific applications. This multi-paradigm approach provides high-level
parallelism, reusability, interoperability and a clearer separation of con-
cerns. This paper is focussed on a case study in which the programming
model of AspectSBASCO is applied for the efficient solution of a rel-
atively complex reaction-diffusion problem. In the application, the sys-
tem of non-linear PDEs is solved in parallel using skeleton abstractions
for domain decomposition methods. In addition, other concerns includ-
ing distributed simulation persistence, mesh adaptation procedures, dy-
namic processor re-mapping and state variables communication are im-
plemented in a modular way using (un)pluggable aspects. This style of
application development leads to a better system decomposition, which
is the key to improving software evolution, maintenance, productivity
and reliability.

1 Introduction

Software engineering advances in sequential computing are often difficult to
spread on the high-performance computing (HPC) scene, where parallel pro-
gramming models have to deal with an additional dimension of complexity (i.e.
concurrency), and where portability is restricted by the types of underlying hard-
ware architectures. Examples of relatively recent technologies which are proven
to achieve high-quality decomposition of sequential and distributed applications
are those based on software components and aspects.

Component-oriented programming (COP) [8] is the paradigm that proposes
the construction of applications plugging stand-alone and reusable pieces of soft-
ware, so called components. However, the most extended component models and
implementations (e.g. Microsoft COM+, Sun EJB, OMG CCM) lack the abstrac-
tion needed for scientific applications. For example, a component in these models
cannot encapsulate (at least, in a natural way) a parallel application which must
be executed on a group of processors and interact efficiently with other proces-
sors. For this reason, specific solutions for HPC have emerged in the last few
years. Some examples are CCA [1] and ASSIST [14].

G. Allen et al. (Eds.): ICCS 2009, Part I, LNCS 5544, pp. 133–142, 2009.
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When designing and building complex systems (even when components are
used) it is difficult to produce designs that modularize all the system require-
ments. Typically, there are some characteristics that do not fit well into any
component structure chosen. This is particulary true for concerns such as log-
ging, debugging, communication, synchronization, security, and so on. Design
alternatives often lead to code where the same concern spreads over (i.e. cross-
cuts) many system modules. Aspect-oriented programming (AOP) [9] enables
developers to capture the cross-cutting structure so that concerns can be pro-
grammed in a centralized way. Although AOP is very extended for sequential
application development, the paradigm is hardly ever applied to HPC. Some
interesting work is that of [7] and [12], both based on using the popular aspect-
oriented language AspectJ for the modularization of high-performance concerns.

In a different context, structured parallel programming [10] proposes the use of
skeletons, which are reusable parallelism exploitation patterns. The idea behind
skeletal programming is to provide the programmer with a collection of prede-
fined parallelism constructors (the skeletons) which can be combined to declar-
atively express the parallel structure of the application. Using this paradigm
the developer is free from implementing low-level operations (e.g. task creation,
data communication) and thereby she/he can focus on the numerical algorithms.
Muskel [3] and eSkel [2] are representative examples of skeleton-based systems.

AspectSBASCO [6] is a new programming environment for HPC applications
which provides a multi-paradigm approach that combines the above-mentioned
technologies (i.e. software components, parallel skeletons and aspects). Compo-
nents and aspects have been previously unified successfully in work dealing with
non-parallel models [13]. Components and skeletons were used together in some
parallel approaches [14]. However, and to the best of our knowledge, our proposal
is the first attempt to combine the three technologies in the context of HPC.

This paper presents a case study on applying the AspectSBASCO programming
model for the efficient solution of a complex reaction-diffusion problem, which is
solvedusing skeleton abstractions for paralleldomain decomposition methods [11].
Additional application concerns are implemented using aspects (which can be
plugged, or unplugged, if necessary). Some examples are distributed simulation
persistence, mesh refinement and dynamic processor re-mapping, which aim for
improvements in different directions (e.g. accuracy, performance). Using AspectS-
BASCO, these kinds of “extra-functional” concerns of vital importance in scien-
tific applications can be separate from the numerical code and become easier to
develop and evolve as they are well-modularized.

A similar problem, though considering a simpler set of application require-
ments, was previously studied using SBASCO [4][5], the predecessor of AspectS-
BASCO which only combined coarse-grain scientific components and skeletons.

2 Overview of AspectSBASCO

There are two types of components in AspectSBASCO: Scientific Components
(SCs) which implement the tasks that solve the numerical problem, and Aspect
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Components (ACs) for encapsulating the cross-cutting functionality in applica-
tions. In addition, a family of three parallel skeletons is defined: multiblock is
used for the solution of domain decomposition and multi-block problems; farm
improves the throughput of a task as different data sets can be processed in
parallel; pipe enables a sequence of tasks which can be executed concurrently to
be pipelined. A detailed explanation of these skeletons can be found in [4].

Scientific components can implement sequential or parallel tasks. A parallel
SC can use skeleton declarations to establish its internal parallel structure in a
high-level way. Otherwise, the developer is free to implement “ad-hoc” paral-
lelism in the component (e.g. unstructured, data-parallelism). Skeletons are not
only used for internal component structure but also for application parallelism.
For instance, an application can consist of a group of SCs which interact fol-
lowing the multiblock paradigm. Skeletons represent an elegant and declarative
style of integrating different parallelism types (e.g. task and data parallelism).

The interaction between SCs follows a data-flow style and is based on two
communication primitives called get_data() and put_data(). The configura-
tion interface of a SC influences this type of communication. This interface de-
scribes the input/output arguments, their data-distribution, the processor layout
and, (if possible) the internal structure in terms of skeleton declarations. Expos-
ing this kind of information at the component interface level enables the system
to implement efficient data communication and task interaction.

Aspect components implement the aspect code which will be executed at
different points (join points) of the application control flow. Interactions between
SCs and ACs are based on method calls (instead of data-flow). An AC can
provide one or several interfaces of operations describing aspect functionality.
A new type of elements called Aspect Connectors (ACNs) encapsulate the SC-
AC interaction information. Specifically, an ACN indicates the methods on the
corresponding ACs to be invoked at specific pointcuts (namely subsets of join
points) that refer to the participant SCs. Expressing the interaction information
in a separate layer of ACNs improves component development and reuse.

ACN declarations exploit the AspectSBASCO join point model which defines
valid points for the potential execution of aspect code. The union of two different
sets of points is considered. First, some internal actions identified as generic for
our skeleton-based applications (e.g. calculation of new time step, communica-
tion based on get_data() and put_data()), and second, any method call carried
out on external components, which are components that represent functionality
reused by several SCs (for instance, a wrapper to a legacy code library).

The implementation of an AC may require access to the internal state of the
SCs. For this reason, the latter can define additional interfaces that expose SC
internal variables and properties. These interfaces are so-called aspect interfaces
and are described using a subset of the OMG IDL language. Aspect interfaces
are designed to enable the plugging and execution of aspects by means of the
traditional provide-use pattern followed in component models such as CCM.

More detailed descriptions of the mechanisms that enable the definition and
execution of aspects in our programming model can be found in [6].
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3 Case Study: Reaction-Diffusion Equations

This section describes the numerical problem, the application design in AspectS-
BASCO and some issues regarding implementation.

3.1 Numerical Problem Definition

The reaction-diffusion problem considered is characterized by a system of two
time-dependent PDEs which are coupled by a non-linear source term. Basic
combustion and heat transfer phenomena can be modeled as follows.

∂U

∂t
=
∂2U

∂x2 +
∂2U

∂y2 + S(U), U = (u, v)T , S = (−uv, uv − λv)T (1)

The variables u and v represent the concentration of a reactant and the tem-
perature, respectively, t is time, x and y denote Cartesian coordinates, λ is a
constant (in this paper, λ = 0.5), and the superscript T denotes transpose.

Equation (1) was discretized in time and space using finite differences and
implicit linearized θ-method, where the non-linear term Sn+1

i,j was approximated
using a Taylor polynomial to obtain a system of linear algebraic equations.
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Fig. 1. Decomposition of the problem using four overlapping domains (left) and graph-
ical representation of variable v, temperature, at t = 70 (right)

The problem is studied on a two-dimensional geometry similar to the one
shown in Fig. 1 (left). The point marked with a cross denotes the ignition point,
which is the temperature peak needed to start the reaction. The same figure
depicts a snapshot of the solution, which corresponds to a traveling reaction
wave front that propagates from the ignition point to the rest of the domain.

The numerical solution is calculated by means of a overlapping domain decom-
position (i.e. Schwarz) method which admits parallel processing. The algorithm
used proceeds as follows: the geometry is divided into four equal-sized domains
which are overlapped, as illustrated in Fig. 1, where the symbol Ωi denotes the
domain number i, and Γi,j is the part of the border of Ωi that penetrates Ωj .
Specific initial conditions are the Dirichlet data on external boundary and, on
the entire surface, unit value for reactant and inverse exponential function cen-
tered at the temperature ignition point. The solution on the different domains
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Ωi is computed concurrently. Then, the borders are interchanged, which means
that every border Γi,j is updated with the current solution on Ωj . The process
is repeated iteratively until the borders remain unchanged in two iterations (i.e.
‖Γ k

i,j − Γ k−1
i,j ‖∞ < 10−15). Then, the next time step can be computed.

In addition to the equation definition, other requirements are considered. Due
to the steepness and high-curvature of the solution (see Fig. 1) a large number of
grid points is needed for an accurate result. However, it is a fact that the solution
is virtually constant in the areas which have not yet been reached by the wave
front, so it can be considered a waste of computational power to use many grid
points on such areas (also for the areas the wave leaves). As an alternative, grid-
adaptive procedures which dynamically concentrate more grid points where they
are needed can be used. In this application, when the traveling front reaches a
domain Ωi, its number of grid points is duplicated. Cubic spline interpolation
on the x− axis is used to calculate initial values for the new unknowns.

3.2 Application Design

The application features four scientific components, named Solve1 to Solve4,
each one computing the solution on a single domain Ωi. The SCs use inter-
nal data-parallel red-black iterations to solve the domain, so every SC itself
is a parallel task that divides its domain data to be computed on various
processors.

PROGRAM reaction-diffusion 
integer :: y0=1, y1=100, d1l=1, d1r=200, d2l=181, d2r=380,// ... 
complex, DOMAIN2D :: omega1/d1l,y0,d1r,y1/ 

                       omega2/d2l,y0,d2r,y1/ 
                       // ... 

STRUCTURE
MULTIBLOCK reaction-mb 

      Solve1(omega1) ON PROCS(4),
      Solve2(omega2) ON PROCS(4),
      // ... 

WITH BORDERS 
      omega1(d1r,y0,d1r,y1) <- omega2(_) 
      omega2(d2l,y0,d2l,y1) <- omega1(_) 
      // ... 
END

CONFIGURATION INTERFACE Solve1 
complex, INOUT, DOMAIN2D :: d 
DISTRIBUTE d(BLOCK,*)

END
// ... 

Fig. 2. Program structure and multiblock (left). Configuration inferface (right).

The structure of the main program in AspectSBASCO is based on a multi-
block skeleton declaration, as shown in Fig. 2. Once the extension of the domains
(i.e. two-dimensional arrays of complex numbers) is defined, the participant SCs,
the domains assigned to them and, finally, the communication of borders are in-
dicated using a specific syntax. As an example, the first line of WITH BORDERS
means that the part of omega1 delimited by the points (d1r,y0) and (d1r,y1)
will be updated at each iteration by the part of omega2 delimited by the same
points. In this program, it is expressed that every SC executes using four proces-
sors. The right side of the picture depicts the configuration interface of Solve1.
Interfaces for the rest of the SCs are similar. The sole component argument is a
two-dimensional domain which, in this case, is distributed by rows.
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It should be noted that the border interchange operation can involve complex
communication and synchronization among parallel tasks, where the number of
processors, data distribution and border extensions need to be considered. By
using the multiblock skeleton, the developer is abstracted from these details.
She/he only invokes two primitives, get_data() and put_data(), for receiv-
ing and sending border data, respectively, while the system performs efficient
communication exploiting the information declared in the skeleton.

Although the procedure described in the last paragraph of Section 3.1 en-
ables better (more accurate) numerical solution, its use may negatively affect
the performance. Let us assume that one of the domains increases its size in our
executing parallel application. The SC processing such a domain will take longer
(in comparison with the other SCs) to finish its task. In addition, the commu-
nication of borders (operation repeated several times per iteration) represents
a synchronization point for the entire application. For this reason, parallel do-
main decomposition programs must maintain a similar computation load for
every domain, otherwise processors of the domains computed faster will be idle
while waiting for new border data. In order to overcome this shortcoming, our
application carries out processor re-mapping at run-time. This functionality is
implemented using pluggable aspect components, as described later.

The next step entails describing the layer of aspect interfaces which enables
the composition and execution of aspects. This application features a total of
six aspect components to encapsulate different functionality. Fig. 3 (left) shows
component declarations indicating the provided and used interfaces. Interfaces
themselves are described in the same figure (right). The four SCs are declared as
subclasses of a component root named Sc which has common declarations. The
idea is that the SCs, influenced by connector declarations (ACNs), will invoke
methods on the ACs in order to execute aspect code at different points of the
control flow. In this application, the ACNs exploit a set of join points which are
predefined in AspectSBASCO and refer to static points (in multiblock programs)
such as domain initialization, computation of a new time step, evaluation of a
new iteration (in current time step), border communication, variation in the
number of processors of a SC, and estimation of convergence result.

As can be observed in Fig. 3, aspect component operations usually define their
first argument as a reference to the caller SC. The AC implementation can use
this reference to invoke operations on the caller component, if necessary. The
next paragraphs provide brief component and interface descriptions.

Using IAccess, the ACs can modify the state of the SCs. The Domain2D
object which hosts the solution on the current and the previous time steps can
be accessed. The input and output borders, as well as some parameters (e.g.
physical system parameters, convergence result), can be manipulated. An AC
can modify the domains using changeDomain(). The object of type MapResult
encapsulates the current processor mapping scheme for this application.

Component LinearSolver implements ISolver and calculates the solution
of a linear system Ax = b. At the beginning of each time step, the vector b
is adjusted using evalFixedTerms(). Then, the solution x is obtained calling
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// COMPONENT DECLARATIONS 

component Sc { 
provides IAccess access; 
uses ISolver solver; 
uses IConvergence conver; 
uses IStorage storage; 
uses IAdaptor adaptor; 
uses IMapping mapping; 
uses IState state; 

};

component Solve1 : Sc {}; 
component Solve2 : Sc {}; 
component Solve3 : Sc {}; 
component Solve4 : Sc {}; 

component LinearSolver { 
provides ISolver solver; 
uses IAccess access; 

};

component BorderTest { 
provides IConvergence conver; 
uses IAccess access; 

};

component Store { 
provides IStorage store; 
uses IAccess access; 

};

component GridAdaptor { 
provides IAdaptor adaptor; 
uses IAccess access; 

};

component Scheduler { 
provides IMapping mapping; 
uses IAccess access; 

};

component State { 
provides IState state; 
uses IAccess access; 

};

// ASPECT INTERFACE DECLARATIONS 

interface IAccess { 
  Domain2D getDomain(in unsigned currentOrPrevious); 

sequence<Domain2D> getBorders(in unsigned inputOrOutput); 
double getParam(in string param_name); 
void setParam(in string param_name, in double value); 
void changeDomain(in Domain2D currDom, in Domain2D prevDom); 

  MapResult getMapResult(); 
void setMapResult(in SchResult schRes); 

};
interface ISolver { 

void setup(in Sc sc, in Domain2D currDom); 
void evalFixedTerms(in Sc sc, in Domain2D prevDom); 
void eval(in Sc sc, in Domain2D currDom, in Domain2D prevDom); 
void checkDomain(in Sc sc, in Domain2D currDom, in Domain2D prevDom); 
void checkMapResult(in Sc sc, in MapResult mapRes); 

};
interface IConvergence { 

void setup(in Sc sc, in sequence<Domain2D> inputBorders); 
void copy(in Sc sc, in sequence<Domain2D> inputBorders) 
boolean evaluate(in Sc sc, in sequence<Domain2D> inputBorders); 
void checkMapResult(in Sc sc, in MapResult mapRes, 

in sequence<Domain2D> inputBorders); 
};
interface IStorage { 

void load(in Sc sc, in Domain2D currDom); 
void save(in Sc sc, in Domain2D currDom); 

};
interface IAdaptor { 

void setup(in Sc sc, in Domain2D currDom, in Domain2D prevDom); 
void adapt(in Sc sc, in Domain2D currDom); 
void initPut(in Sc sc); 
void finishGet(in Sc sc); 
void communicateGridMode(in Sc sc, in MapResult mapRes); 
void finishApp(in Sc sc, in Domain2D currDom); 

};
interface IMapping { 

void setup(in Sc sc); 
void startTime(in Sc sc); 
void stopTime(in Sc sc); 
void remap(in Sc sc); 
void communicateMapResult(in Sc sc, in MapResult mapRes); 

};
interface IState { 

void initRemap(in Sc sc, in Domain2D currDom, in MapResult mapRes) 
void finishRemap(in Sc sc, in Domain2D currDom, in MapResult mapRes) 

};

Fig. 3. Component and aspect interfaces used in the reaction-diffusion problem

eval() iteratively. The functions checkDomain() and checkMapResult() are
executed, respectively, when the domain is replaced and when the mapping of
processors changes. These functions adapt the component to the new settings.

Component BorderTest calculates the convergence of the method. Each time
a SC invokes get_data() to receive new borders, the code of copy() stores the
values of previously used borders. The function evaluate() compares successive
border data to determine if the calculation of a time step must stop.

Component Store implements a simple persistence characteristic. The execu-
tion time of this application can range (from several minutes to dozens of hours
in modest parallel computers) simply changing the domain size and convergence
criteria. Store enables the final distributed numerical result to be the initial
condition of a subsequent execution. This way a simulation can be completed in
several sessions. The functions load() and save() manage the serialization.

The grid adaptation procedure is encapsulated in GridAdaptor, which im-
plements IAdaptor. The method named adapt() changes both the current do-
main and the x− space step length. This means either increasing or decreasing
the number of grid points in function of the variable v. The component uses
cubic splines to interpolate the new points in the x− axis. In addition, this
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ACN adaptor_acn on component Sc { 
advice before on put_data_call { 

    getAdaptor()->initPut(this);
  }; 

advice after on resize_call { 
    getAdaptor()->communicateGridMode(this, getMapResult()); 
  }; 

advice after on init_call { 
    getAdaptor()->setup(this, getDomain(0), getDomain(1)); 
  }; 

advice before on step_call { 
    getAdaptor()->adapt(this, getDomain(0)); 
  }; 
  // ... 
};

Fig. 4. Aspect connector declaration for grid-adaptive procedure management

component manages the borders in accordance with the type of domain being
used. For instance, each time borders are received, the function finishGet()
adapts received data considering the real extension of the new domain.

Component Scheduler determines how processors should be re-distributed
for a better computation balance. The methods startTime() and stopTime()
are called just before and after the code blocks which will be monitored. These
functions allow Scheduler to calculate the execution time of the SCs. When the
function remap() is invoked, Scheduler consults time information to establish
a better processor mapping. The algorithm used in this application is quite
straightforward and it consists of comparing two SCs which are the components
having the highest and slowest execution time. If the difference is greater than a
threshold the “fast” SC releases one processor which is taken by the “slow” SC.

Finally, State is in charge of communicating the computation state in pro-
cessor re-mapping operations. For instance, if a SC acquires one more proces-
sor, the current domain data has to be re-distributed among a higher num-
ber of processors. Other internal variables have also to be communicated. The
methods initRemap() and finishRemap() implement the state communication
and are called, respectively, just before and after any change in the scheme of
processors.

The execution of aspect code is governed by the so-called aspect connectors
(ACNs). An ACN is defined on (i.e. affects) a group of SCs and contains one or
several advice declarations. Every advice consists of an advice header indicating
a combination of join points at which the advice body will be executed. The
syntax chosen for advice body is C++. The only code statements allowed here
are invocations to the AC operations (i.e. interactions). Advice header usually
indicates the instant at which advice body is executed. Allowed values are before
and after the corresponding join point. In Fig. 4, part of an ACN declaration
for the execution of GridAdaptor is shown. For instance, the first advice means
that just before border communication routine put_data() is executed on any
SC, the operation initPut() on GridAdaptor is invoked. The second advice
expresses that communicateGridMode() is invoked on the same AC after the
number of processors of any participant SC changes. A reference to the compo-
nent GridAdaptor is retrieved using getAdaptor(). Similar ACN structures are
needed for the management of the other ACs. Although in this example the use
of predefined join points was enough, advice headers can refer to methods on the
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aspect interface as alternative join points. AspectSBASCO provides mechanisms
to express the precedence of a set of advices affecting the same join point.

3.3 Implementation Issues

The current implementation of AspectSBASCO consists of a runtime system
based on MPI, a programming framework in C++ and a source-to-source com-
piler to produce target language code structures. Scientific and aspect compo-
nents are implemented using C++ and MPI. SCs inherit from the class ScRoot
which provides access to distributed arguments. This class declares get_data()
and put_data() as member functions. ACs are C++ classes that implement
all operations of the corresponding aspect interfaces. An instance of the class
Framework providing a set of common services can be retrieved at any point in
the application. For example, Framework has methods that return up-to-date
MPI intra- and inter-communicators to implement component parallelism.

An application consists of a collection of MPI programs. Specifically, one MPI
program (so-called worker) is associated with each SC. Each worker manages one
single SC instance together with a set of AC instances. The program executes
using a group of processes whose size was expressed in the high-level composition
language. When an aspect affects different SCs, the corresponding AC appears in
several workers, and so aspect instances are created in several groups of processes.

Aspect weaving is the mechanism by which aspects and base code are com-
bined to produce final applications. In our approach, this process is carried out
at compile-time by modifying the source code of the SCs. More specifically, the
aspect weaver examines ACN structures in order to include advice body interac-
tion code at the corresponding points indicated in connector declarations. Every
time a SC executes AC functionality (as a result of using the ACNs) the method
invocation is carried out (in parallel) in all processes that contain both compo-
nent instances. Then, it is the responsibility of the aspect developer to implement
functionality that may range from simple local processing to complex parallel
computation involving several groups of processes. The important thing is that
our approach avoids any type of complex runtime structure to support aspect
execution. The overhead of invoking ACs in final applications is equivalent to
the cost of a standard C++ method call (the one declared in advice body).

Communication based on get_data() and put_data() (namely border inter-
change in this case study) is based on point-to-point message passing managed
by the runtime system. This communication is efficiently carried out due to the
information expressed in component configuration interfaces and skeletons.

4 Conclusions

This paper describes the use of AspectSBASCO for the development of a
reaction-diffusion parallel problem. The complexity of functional and non-
functional application concerns is managed effectively by means of a combi-
nation of paradigms. The resulting approach leads to improved interoperability



142 M. Dı́az et al.

and application evolvability. In this case study, heterogeneous concerns such as
grid adaptation and processor re-mapping procedures are implemented as well-
modularized aspects. Pluggability is also provided. For instance, simply plugging
the component that manages processor re-mapping, the application achieves the
same numerical result more efficiently due to a better balance of the computa-
tion load. In addition, using high-level parallel skeletons raises the abstraction
level of the development.

References

1. Armstrong, R., et al.: The CCA Component Model for High Performance Scientific
Computing. Concurrency and Computation: Practice and Experience 18(2), 215–
229 (2006)

2. Benoit, A., Cole, M., Gilmore, S., Hillston, J.: Flexible Skeletal Programming with
eSkel. In: Proc. of the 11th International Euro-Par Conference, Lisboa, Portugal,
pp. 761–770 (2005)

3. Danelutto, M.: QoS in Parallel Programming Through Application Managers. In:
Proc. of the 13th Euromicro Conference on Parallel, Distributed and Network-
Based Processing, Lugano, Switzerland, pp. 282–289 (2005)

4. Dı́az, M., Rubio, B., Soler, E., Troya, J.M.: SBASCO: Skeleton-based Scientific
Components. In: Proc. of the 12th Euromicro Conference on Parallel, Distributed
and Network-Based Processing, A Coruña, Spain, pp. 318–324 (2004)

5. Dı́az, M., et al.: Using SBASCO to Solve Reaction-Diffusion Equations in Two-
Dimensional Irregular Domains. In: Proc. of the 3rd International Workshop on
Practical Aspects of Parallel Programming, Reading, UK, pp. 912–919 (2006)

6. Dı́az, M., et al.: Adding Aspect-Oriented Concepts to the High-Performance Com-
ponent Model of SBASCO. In: Proc. of the 17th Euromicro Conference on Parallel,
Distributed and Network-Based Processing, Weimar, Germany (to appear, 2009)
(The paper can be accessed), http://www.lcc.uma.es/~tolo/publications.html

7. Harbulot, B., Gurd, J.: A Join Point for Loops in AspectJ. In: Proc. of the 5th In-
ternational Conference on Aspect-Oriented Sofware Development, Lancaster, UK,
pp. 122–131 (2006)

8. Heineman, G.T., Council, W.T.: Component-Based Software Engineering: Putting
the Pieces Together. Addison Wesley, Reading (2001)

9. Kiczales, G., et al.: Aspect-Oriented Programming. In: Proc. of the European Con-
ference on Object-Oriented Programming, Jyvskyl, Finland, pp. 220–242 (1997)

10. Pelagatti, S.: Structured Development of Parallel Programs. Taylor & Francis,
Abington (1998)

11. Quarteroni, A., Valli, A.: Domain Decomposition for Partial Differential Equations.
Oxford Science Publications (1999)

12. Sobral, J.L.: Incrementally Developing Parallel Applications with AspectJ. In:
Proc. of the 20th International Parallel and Distributed Processing Symposium,
Rohdes, Greece, p. 10 (2006)

13. Suvée, D., Fraine, B., Vanderperren, W.: A Symmetric and Unified Approach To-
wards Combining Aspect-Oriented and Component-Based Software Development.
In: Proc. of the 9th International SIGSOFT Symposium on Component-Based
Software Engineering, Stockholm, Sweeden, pp. 114–122 (2006)

14. Vanneschi, M.: The Programming Model of ASSIST, an Environment for Paral-
lel and Distributed Portable Applications. Parallel Computing 28(12), 1709–1732
(2002)

http://www.lcc.uma.es/~tolo/publications.html


Balancing Scientist Needs and Volunteer
Preferences in Volunteer Computing Using

Constraint Optimization

James Atlas, Trilce Estrada, Keith Decker, and Michela Taufer

University of Delaware, Newark, DE 19716 U.S.A.
{atlas,estrada,decker,taufer}@cis.udel.edu

Abstract. BOINC is a middleware for Volunteer Computing. In BOINC
projects, heterogeneous resources distributed across the Internet are used
for large-scale scientific simulations. The large need for resources in
BOINC projects often competes with volunteer preferences: volunteers
can impose limits on the use of their idle resources. Most of the time,
maximum project performance can be achieved only when volunteer pref-
erences are neglected.

To address this problem, we propose a novel optimization procedure
based on constraint optimization techniques that actively allocates vol-
unteer resources to improve project throughput and, at the same time,
aims to preserve volunteer preferences. We show the increase in project
throughput obtained with our approach and discuss the trade-off be-
tween volunteer preferences and project throughput.

Keywords: Volunteer Computing, Constraint Optimization.

1 Introduction

Volunteer Computing (VC) is a form of distributed computing in which ordinary
people (i.e., volunteers) volunteer processing and storage resources to computing
projects. BOINC is a well-known middleware for VC [1] supporting scientific
computing projects (e.g., physics, biology, and medicine). The main strength
of BOINC systems is its capability to provide scientists with PetaFLOPs of
computing power at low cost. The VC community powered by BOINC currently
counts approximately 50 projects and 580 000 volunteer computers supplying an
average of 1.2 PetaFLOPs to these projects.

VC resources increasingly include diverse platforms such as video game con-
soles (Playstations) and graphics processing units (GPUs). Some VC projects are
able to customize their code to benefit from performance features of these plat-
forms. This creates an instance of a general resource allocation problem where
jobs have disparate performance profiles depending on the platform of execution.
In addition, volunteers can specify resource allocation preferences over a subset
of VC projects that they want to participate in, essentially constraining the
possible jobs the server can allocate to a volunteer host and ultimately hinders
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the maximum throughput of projects. On the other hand, ignoring volunteer’s
preferences for performance sake can upset the donors who can withdraw their
resources. Server scheduling policies decide which jobs to assign to volunteer
hosts given a set of unallocated jobs and volunteer preferences. Ideally these
policies should optimize allocation of jobs across heterogeneous volunteer re-
sources and, at the same time, preserve volunteer preferences in the best way
and with the highest performance. This task is made more challenging by the
increasing heterogeneity of VC systems.

To address this challenge, we propose a novel optimization procedure that
actively allocates volunteer resources to improve project throughput and pre-
serve volunteer preferences. Our optimization procedure is based on constraint
optimization techniques (COP) and provides a robust framework for maximiz-
ing the contributions of diverse resources. We evaluate our approach against
the current, most advanced allocation strategies of BOINC using EmBOINC,
a full-scale emulation of the BOINC platform using realistic trace populations
of volunteer hosts (including heterogeneity, churn, availability, reliability). This
paper shows the increase in project throughput obtained with our approach
and discusses the trade-off between volunteer preferences and project
throughput.

This paper is organized as follows: Section 2 presents a short overview of
important background concepts such as VC, BOINC, our emulation of BOINC
projects, and COP. In Section 3 we introduce our optimization procedure. Sec-
tion 4 compares our approach with the current practice scheduling policies of
BOINC. Section 5 concludes the paper and presents some future work.

2 Background and Related Work

2.1 Volunteer Computing

Volunteer Computing (VC) projects employ computing resources (e.g., desktops,
notebooks, and servers) owned by ordinary people and connected to the Internet.
Traditionally, VC projects target large search problems in science and, therefore,
generate large sets of jobs that are distributed across VC resources. Replication
of jobs is used to address the volatility of these systems as well as other issues
like malicious attacks, hardware malfunctions, or software modifications that
ultimately affect the reliability of results. Replicas of jobs (job instances) are
distributed to different VC resources (hosts) that execute them. When finished,
the hosts send their results to the project server, which collects the results and
distinguishes between successful and unsuccessful results. Unsuccessful results
are those that either are erroneous or are returned too late, i.e., timed-out.

2.2 BOINC

BOINC (Berkeley Open Infrastructure for Network Computing) [1] is an open-
source system that harnesses the computing power and storage capacity of thou-
sands or millions of PCs owned by volunteers for scientific simulations. The
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computing resources available to a BOINC project are highly diverse: the hosts
differ by orders of magnitude in their processor speed, available RAM, disk space,
and network connection speed. Recently, the heterogeneity of BOINC platforms
has been enriched by the adding of GPUs and Playstations. The BOINC model
involves projects and volunteers. Projects are organizations (typically academic
research groups) that need computing power. Projects are independent and have
different resource requirements. Volunteers participate by running the BOINC
client software on their computers (hosts). Volunteers can attach their hosts
to one or multiple projects (preferred projects). When a BOINC client is at-
tached to a project, it periodically issues a request to the project’s server. The
request includes a description of the host and its current workload, descriptions
of recently-completed jobs, and a request for new jobs based on the volunteer’s
preferences. The reply from the server may contain a set of new jobs. Multi-
ple job results may be returned; this reduces the rate of scheduler requests and
accommodates clients that are disconnected from the Internet for long periods.

2.3 Scheduling in BOINC

Initially BOINC scheduling policies relied on greedy and naive policies. Recently,
more sophisticated server-side scheduling policies have been implemented in sev-
eral BOINC projects. Currently, World Community Grid has a number of criteria
for job assignment [2], based on host and job diversity (e.g., size of the job and
speed of the host relative to an estimated statistical distribution, disk and mem-
ory requirements for the job to be completed, homogeneous redundancy [3] and
host error rate). A scoring-based scheduling policy uses a linear combination of
these terms to select the best set of jobs for a given host. Projects can adjust the
weights of these terms, or they can replace the scoring function entirely. None
of these policies search for trade-off between volunteer preferences and project
requirements.

2.4 Emulating BOINC

The scheduling policies embedded in the BOINC server have a large impact on
the project throughput and other performance metrics. Unfortunately, it is diffi-
cult (if not impossible) to do controlled performance experiments in the context
of a large VC project because there are many factors that cannot be controlled
and because poorly-performing mechanisms can waste volunteer resources. How-
ever, exploring new policies can be done in simulated environments, where it is
possible to test a wider range of hypotheses in a shorter period of time with-
out affecting the BOINC community. To evaluate our scheduling approach we
use EmBOINC (Emulator of BOINC Projects), a trace-driven emulator that
models heterogeneous hosts and their interaction with a real BOINC server [4].
By plugging into a BOINC server, EmBOINC triggers the server’s daemons to
generate and distribute jobs to the EmBOINC hosts. EmBOINC uses statistical
information obtained from real BOINC traces to characterize volatile, heteroge-
neous, and error-prone hosts. As it occurs in real BOINC projects, EmBOINC
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can emulate different projects running simultaneously. Projects can share the
simulated hosts partially or completely. For every project, the associated hosts
can have different levels of heterogeneity, errors, availability, and reliability. Us-
ing EmBOINC, different patterns for job generations as well as different policies
for job distribution and validation can be studied.

2.5 Constraint Optimization

Many historical problems in the AI community can be transformed into Con-
straint Satisfaction Problems (CSP). Early domains for constraint satisfaction
problems included job shop scheduling [5] and resource allocation [6]. Many of
these domains involve overly constrained problems that are difficult or impossible
to satisfy for every constraint. Recent approaches to solving problems in these
domains rely on optimization techniques that map constraints into multi-valued
utility functions. Instead of finding an assignment that satisfies all constraints,
these approaches find an assignment that produces a high level of global utility.
A typical constraint optimization problem (COP) begins with a constraint graph
mapping of a problem. The COP mapping is defined as a set of n variables and
m constraints producing the tuple < X,D,U > where:

– X = {x1,..,xn} is a set of variables, each one assigned to a unique agent
– D = {d1,..,dn} is a set of finite domains for each variable
– U = {u1,..,um} is a set of utility functions such that each function involves a

subset of variables in X and defines a utility for each combination of values
among these variables

An optimal solution to a COP instance consists of an assignment of values in
D to X such that the sum of utilities in U is maximal. An example COP in-
stance for the standard graph coloring problem with weighted utilities is shown in
Figure 1.

Fig. 1. COP Example: Simple graph coloring problem with utility functions. Coloring
shown is optimal for this problem, and utility values are next to the constraints.

3 Methodology

The idea behind our approach is that we can increase throughput for BOINC
projects by intelligently coordinating schedules for volunteers. To achieve this, we
develop a constraint optimization (COP) mapping that pursues high throughput
while trying to adhere to the volunteer’s preferences.
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Fig. 2. Overview of our constraint optimization approach

3.1 Approach Overview

In Figure 2 we show the different components of our solution to optimize BOINC
schedules. The process can be run continuously in a real-time environment be-
cause it only interacts with the BOINC server through its database. Thus, the
flow through the diagram can be considered a cycle, beginning with the input
factors and ending with an update to the BOINC database. The input factors
are passed to the mapping layer (mapping application) to convert the actual
BOINC scheduling data and parameters into a constraint graph. The constraint
graph is used as a general representation for a COP and is passed into the op-
timization algorithm. The optimization algorithm determines a new containing
allocation schedules for each volunteer’s resources to the BOINC projects. These
allocation schedules are then updated in the database and are used to determine
which jobs to return when a volunteer requests new work.

3.2 Input Factors

The first step in our approach is to define input factors that we will consider
for the optimization. The value of each factor directly affects the outcome of the
optimization procedure. A list of these factors and the actor responsible for pro-
viding their value appears in Table 1. In addition to these definable factors, input
values are also derived from the BOINC database about volunteer resources (e.g.,
estimated flops) and project characteristics (e.g., GPU/coprocessor support).

3.3 Mapping BOINC Schedules to COP

The next step is to map the input factors into a coherent problem representation.
We use a constraint optimization representation, so we will provide a mapping
from the input factors to a constraint graph. A constraint graph contains vari-
ables as nodes and constraints as edges. We consider two types of variable nodes:

Allocation Schedule (AS) represents the allocated volunteer schedule. The
AS factor listed earlier determines the starting value for this variable. Possi-
ble variable assignments represent new allocation schedules for the volunteer.
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Table 1. Input factors

ID Factor Actor Description
VP Volunteer Pref-

erences
Volunteer Set of projects preferences for a volunteer.

Volunteers assign 1 to preferred projects and
0 otherwise.

PTN Project
Throughput
Need

Scientist A target number of results returned per
project per day. Specified in GFLOPS/s or
by job deadline.

AS Allocation
Schedule

BOINC-COP The specific allocation of volunteer resources
to different projects. The current set of allo-
cation schedules is input and a new set of
allocation schedules is output. Percent per
project per volunteer.

TvP Throughput vs.
Preference

Scientist A weight between 0 and 1 for favoring project
throughput over volunteer preferences, where
0 means full matching of volunteer prefer-
ences and 1 complete ignore.

Project Throughput Need (PTN) represents a level between 0 and 1 to
which the project needs additional volunteer resources. In relation to the
TN factor listed earlier, a value of 1 means that the project needs additional
resources and is currently short of its target. A value of 0 means that the
project has no use for additional resources and has already met its through-
put target. A value in between means that a project has met its throughput
target but could use additional resources.

Each volunteer has one AS variable and each project has one PTN variable.
We now create binary constraints between each volunteer (AS variable) and ev-
ery project (PTN variable) the volunteer is willing to work for. This constraint
returns a utility value that represents the utility of a volunteer’s current alloca-
tion schedule for a given project’s level of throughput need. The value of this
constraint, U(N,M) for project N and volunteer M is:

U(N,M) = PN (ASM ) · PTNN · CM (N)
·(WAT + (1−WAT ) · V PM (N)) (1)

Where:

– PN (ASM ) is the percent allocated to project N in the schedule of M
– PTNN is the level of throughput need for project N (between 0 and 1)
– CM (N) is the contribution of volunteer M to project N in GFLOP/s
– WAT is the weight for optimizing project throughput (between 0 and 1)
– V PM (N) is volunteer M ’s preference for project N (between 0 and 1)

These variables and constraints form the constraint graph representation of our
original input factors. We now take this general COP representation and apply
our optimization algorithm to find a high utility scheduling policy.
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3.4 Optimization Algorithm

Our optimization algorithm takes as input the constraint graph formed in the
previous section, and solves for a new scheduling policy containing allocations
that optimize each volunteer’s resources to the BOINC projects. Our algorithm
is a modified version of the stochastic gain algorithm described in [7]. We add
support for derived variables and random gain delays. The following steps are
performed in parallel for each variable:

1. Get max local gain (best schedule for current state of PTN variables)
2. With probability p, change to max assignment (new value for AS variable;

setting p too high can prevent full convergence)
3. Derive new values from neighbors (for PTN variables from all schedules)

These three local search steps are performed for a number of cycles; at a specified
maximum amount of time the algorithm is terminated and the best utility as-
signment encountered so far is chosen. The algorithm converges with low enough
p. We implemented a delay in number of cycles between changes to the same
AS variable to also help with convergence. The algorithm can scale to tens of
thousands of variables. If we require optimization of larger sets of volunteers,
we can pre-process the set and cluster volunteers into groups that share simi-
lar preferences and resource contribution characteristics. Then we simply treat
each group as a super-volunteer with one volunteer variable which represents an
identical allocation schedule assigned to all volunteers in the group.

3.5 Integration with BOINC Server

The output from the optimization algorithm is a set of allocation schedules for
each volunteer. We store these allocation schedules in the BOINC database.
Modifying the BOINC server to use our allocation schedules is easily done. The
BOINC scheduler uses a scoring mechanism to handle each request for work
from a volunteer. Each unassigned job receives a score for possible assignment
to the requesting volunteer. The highest scoring set of jobs that fill the amount
of time requested by the volunteer are sent. To integrate our allocation schedules
we simply add a value to the score if the job matches the volunteer’s allocation
schedule. The schedule contains a number between 0 and 1 for each project
for this volunteer. We generate a random number between 0 and 1 and if it is
less than the schedule allocation number than that job receives a higher score.
Thus, over time the allocation of jobs will match the percentages specified in the
schedule. Typically the optimization process, run in parallel with the BOINC
scheduler, took less than one minute to complete. Large systems can tune the
frequency of optimization, or obtain faster, approximate optimizations.

4 Evaluation

To evaluate our approach, we use EmBOINC and consider different scenarios
matching the behavior of real BOINC projects.
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4.1 Performance Metrics

With EmBOINC it is possible to conduct extensive experiments targeting dif-
ferent performance metrics. We measure the following metrics:

Throughput-based metrics include project throughput in terms of total re-
sults returned to the scientist or results returned per day.

Preference metrics count the total number of jobs executed by volunteers for
preferred and non-preferred projects.

Deadline-based metrics count the number of job results that completed prior
to the deadline given by the scientist.

4.2 Scenarios

We tested our approach in two orthogonal scenarios with respect to the way jobs
are generated. We considered three projects running simultaneously.

Scenario 1. In this scenario we tested the ability of our solution to optimize
throughput with uniform generation of jobs. Project 1 (uses only CPU) and
3 (uses CPU or GPU) were given a target of 20% of the overall through-
put each. Project 2 (uses only CPU) targeted 60% of the throughput. The
scenario generated 4000 jobs for Projects 1 and 3 and 12000 for Project
2. This scenario is typical for projects without deadlines like SETI@Home
(http://setiathome.berkeley.edu).

Scenario 2. In this scenario we tested the ability of our solution to optimize
throughput with irregular generation of jobs. For Project 2 we randomly
injected 8 batches of 1500 jobs over 25 days, with a 10 day deadline for
each batch. For Projects 1 and 3 we kept a uniform generation of 4000 jobs
each. This scenario is similar to the real-world case in Critical Assessment
of techniques for protein Structure Prediction (CASP). During the biennial
CASP competition (http://predictioncenter.org/), new targets (amino acid
sequences) are released to the participants almost every day with a deadline
of 15 days for the target 3D prediction. Projects such as Predictor@Home
and Rosetta@Home belong to this class of scenarios.

We ran our simulations using a fixed amount of simulated time (25 days). We
used a base set of 500 volunteers, of which 20% have GPUs. Each volunteer
randomly chose 1 or 2 preferred projects of the 3 possible. All other host char-
acteristics (e.g., CPU speed, memory) were randomly generated based on trace
data from real-world BOINC projects.

4.3 Results

Figure 3(a) shows total throughput (number of results) for the three projects in
Scenario 1 using BOINC and different levels of TvP for our constraint optimiza-
tion (COP) approach. A low TvP means closer matching to volunteer preferences,
where TvP equal to zero means perfect matching. The gray bar is jobs executed
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Fig. 3. Throughput (number of results) for the two different scenarios

by volunteers for their preferred projects, and the white bar is jobs executed for
non-preferred projects. If we fully comply with volunteer preferences (TvP=0),
our system has the same performance as BOINC. As we increase the TvP fac-
tor, we increase the total throughput of the system, but we diverge from volunteer
preferences. A complete violation of volunteer preferences is not needed to achieve
high levels of throughput, as TvP setting of 0.25 already achieves higher through-
put than BOINC (+12%). Figure 3(b) shows the same metric for the project with
deadlines in Scenario 2. In this scenario, batches of jobs are randomly injected,
with a 10 day deadline for each batch. Throughput is the number of results for
Project 2 returned to the BOINC server before their deadline. As in Scenario 1, the
gray bar is jobs executed by volunteers for their preferred projects, and the white
bar is jobs executed for non-preferred projects. If we fully comply with volunteer
preferences (TvP=0), our system performs slightly better than BOINC (+7.4%).
As we increase the TvP factor, the throughput increases significantly. Again, we
do not need to completely violate the volunteer preferences; with a TvP setting
of 0.25 we gain 39.6% throughput. Increasing the TvP factor allows our system
to re-allocate volunteer resources to jobs with upcoming deadlines. Note that the
percentage of jobs performed for non-preferred projects is minimal (1.6%).

Overall, we see that our approach increases throughput for both uniform and
irregular job generation scenarios. Increasing the TvP factor allows us to achieve
higher throughput at a cost of making volunteers execute jobs for non-preferred
projects. A TvP trade-off of 0.25 provides maximum throughput with minimum
volunteer preference violation. The reason for increase in total throughput is not
due to additional idle cycles (we had the same resource idle time for the runs); it is
because we use the resources more efficiently. For both approaches we made sure
that there werenew jobs available for every volunteer request. The results were val-
idated by repeating each simulation three times with the same observed behavior.

5 Conclusions and Future Work

We presented a novel optimization procedure based on constraint optimiza-
tion techniques that actively allocates volunteer resources to improve project
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throughput and, at the same time, aims to preserve volunteer preferences. We
show two scenarios that exhibit increased project throughput (up to 39.6%) for
a minimal trade-off in execution of jobs for non-preferred projects. Our results
show that it is possible to balance the needs of scientists with the preferences of
volunteers in VC projects. In the future, we intend to extend our approach to
optimize credit given to volunteers. Currently, volunteer credit is based on the
number of FLOPS executed by the volunteer. However, in some scenarios scien-
tists may want to assign greater credit per FLOP for one project than another.
In this case the volunteer would want to optimize the amount of credit they
earn. This is similar to scenarios in grid and cloud computing, and we intend to
examine how our approach can be applied to these related problems.
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Abstract. Reformulating an algorithm to mask communication delays
is crucial in maintaining scalability, but traditional solutions embed the
overlap strategy into the application. We present an alternative approach
based on dataflow, that factors the overlap strategy out of the applica-
tion. Using this approach we are able to reduce communication delays,
meeting and in many cases exceeding performance obtained with tradi-
tional hand coded applications.

Keywords: parallel programming, latency tolerance, non-SPMD, coarse
grain dataflow.

1 Introduction

Spurred on by the multi-core processor, scalable systems have the potential to
enable simulations of remarkable fidelity and complexity, leading to new scientific
discovery. However, improvements in processor performance amplify the cost of
off-chip data motion, and applications must cope by with this trend by tolerating
latency. Implementing and tuning an application to overlap communication with
computation is daunting for the domain scientist, and a challenge even for the
expert programmer. Traditionally, the overlap strategy is embedded into the
application, and relies on split phase coding. Software development is tedious
and prone to error, and the application suffers from non-robust performance.

Overlap strategies expose opportunities to mask communication costs by re-
laxing the total ordering imposed by traditional bulk synchronous implementa-
tion, e.g. with MPI [1]. A compiler may be able to determine a suitable partial
ordering in some cases, but often the partial orderings are difficult to analyze,
even by hand.

A natural way to realize partial orderings is by means of a task precedence
graph, or task graph for short. Once the program has been expressed in terms of a
task graph, a scheduler executes the partially ordered tasks according to the flow
of data, e.g. dataflow [2,3,4,5], realizing overlap automatically. We have imple-
mented this approach with a run time library, with run time services to support
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the data flow semantics via background threads. These services reorder commu-
nication and computation tasks dynamically according to the flow of informa-
tion, automatically choreographing communication to move it out of the critical
path of computation. We have implemented applications using this approach,
enabling us to factor policy and scheduling decisions out of the application code.

This paper makes two contributions. First, we show that a task precedence
graph formulation is able to support latency tolerance, meeting and in many
cases exceeding performance of traditional split phase encodings. Moreover, this
formulation separates implementation policy from correctness. Second, we show
that the approach supports application specific scheduling without affecting cor-
rectness of user code. Our task precedence graph supports performance meta-
data [6] that may be used to improve performance, in particular, to fine tune
the scheduler.

2 Task Precedence Graph Representation

Scientific applications spend most of their time executing loop nests. We may
describe a loop nest using an Iteration Space Graph (ISG), which represents
the underlying dependence structure. Any scheme to parallelize an application
must preserve the dependencies in the constituent ISGs. We may construct a
task precedence graph using this ISG in which each task corresponds to a region
of the iteration space. We call the resultant graph a TaskGraph. In a classic
MPI implementation tasks are usually mapped 1:1 to processors. However, in
order to mask data transfer delays, Little’s law [7] prescribes that we render
many tasks for each processor. As a result, we must solve a scheduling problem.
Herein lies the difficulty: classic overlap strategies rely on split phase algorithms
that embed overlap strategy into the application source code, resulting in high
software development costs, and difficulty in porting code to new hardware.

Alternatively, we may execute the TaskGraph under the dataflow seman-
tics [2,3,4]. Parallelism arises among independent tasks and interdependent tasks
are enabled according to the flow of data among them. There is no need to embed
scheduling policies into the application since these are handled by background
services.

We have constructed a library, called Thyme, which enables us to implement
applications in this way. Thyme avoids the need to write complicated split phase
algorithms and decouples the overlap strategy from application correctness. Al-
though Thyme’s API may be used to develop applications directly, we envision
that it will ultimately become part of a run time support library for a compiler.
Space limitations prevent us from discussing this API, which, together with a
detailed presentation of the implementation, will be described elsewhere.

Thyme is currently implemented as a C++ class library on top of MPI and
pthreads, and implements two primary datatypes – Task and TaskGraph. A
Thyme program constructs and executes a set of TaskGraphs under the control
of the Run Time Services which process task completions and arrivals, move data
among dependent tasks, and invoke a Scheduler. The services are decentralized,
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and run on all processing modules, communicating as necessary to manage Task-
Graph execution. A TaskGraph is a distributed data structure and it executes
according to the owner computes rule. Each task is assigned an owning process-
ing module, but any processor within the module may execute the task, since
processors share memory within a node.

The Scheduler maintains a priority queue of tasks from the TaskGraph that are
readybut not yet executing. Each task has an associated priority. This information
exists as performance meta-data [6] decorating the task graph. Meta-data may be
be specified by the programmer in order to improve performance, but does not af-
fect correctness since task graph execution preserves all dependence constraints.
Thus, the programmer is free to explore application-specific scheduling without
reformulating the application. (The Thyme user may substitute their own sched-
uler in place of the default in order to further tune application performance.)

3 Experiments

We ran on two large-scale systems. DataStar, located at the San Diego Supercom-
puter Center, is an IBM system running AIX 5.2, with 8-way nodes containing
1.5 GHz Power4+ processors with 16 Gigabytes of shared memory, connected by
a Federation switch. Thunder, located at Lawrence Livermore National Labora-
tory, is a Linux cluster running CHAOS version 3.3, with a Quadrics QSNET-II
interconnect based on Elan4 and Elite4 components. Each ”Madison Tiger4”
node comprises four Itanium2 CPUs running at 1.4 GHz, with 8 Gigabytes of
shared memory. We compiled on DataStar using mpCC r, which invoked version
8.0 of the xlC r compiler. IBM’s ESSL version 4.2.0.3 provided the high perfor-
mance matrix multiply routine dgemm() and FFTW 3.0 provided the FFT. We
compiled on Thunder with mpiicpc, which invoked icpc 9.1. Intel’s �MKL 8.1.1
provided dgemm and FFT (the latter through the FFTW 3.0 interface).

We tested Thyme’s ability to achieve overlap with three applications com-
ing from Colella’s seven application motifs [8]. Jacobi3D, a 3-D iterative Pois-
son solver (Dirichlet Boundary Conditions); MMULT, Matrix Multiplication,
and the NAS-FT parallel benchmark, ver. 3.0 [9], which is dominated by a 3D
Fast Fourier Transform. For each application we compared the Thyme imple-
mentation against two variants written with MPI. The baseline variant (BASE)
uses blocking communication and does not attempt to overlap communication
with computation. The explicit overlap variant (OLAP) uses asynchronous non-
blocking communication to implement a split-phase algorithm to overlap commu-
nication with computation. The Thyme variant does not make MPI calls, since
the run time services handle data motion automatically. These services comman-
deer one core per node to carry out their activities. Thus, although Thyme uses
the same number of processors as non-Thyme variants in our experiments, fewer
processors actually perform the computation.

We also report an IDEAL running time, which is the time required to per-
form computational work only. We obtained this time by disabling communi-
cation in BASE. Although the computed results are incorrect, the amount of
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computational work performed is not affected. This allows us to indirectly mea-
sure the cost of communication and thus establish an upper bound on the po-
tential for improving performance by masking data motion costs.

Jacobi3D. Jacobi3D iteratively updates a 3D mesh using a 7-point stencil. We
split the mesh uniformly and employ ghost cells to store border data from (up
to) six neighboring sub-domains. The BASE variant used an 8× 4× 8 processor
geometry which is optimal for 256 processors. Ghost cells are exchanged prior to
each iteration using SendRecv. The OLAP variant pre-fetches ghost cells [10]. It
further subdivides each processor’s subdomain into an inner core and an outer
annulus. The annulus is a thin shell, one cell thick, encircling the inner core and
inscribed inside the ghost region. Unlike the outer annulus, the computation on
the inner core does not depend on the ghost cells; it is relaxed simultaneously
with ghost cell exchange. Once all the ghost cells have all arrived, the outer
annulus is then relaxed. The Thyme variant subdivides the mesh into many
more tasks than processors. It uses a hierarchical decomposition to split the
data first over nodes, and then over processors within a node. We used different
node geometries on Thunder’s 4-way nodes than on DataStar’s 8-way nodes:
4 × 4 × 4 and 4 × 2 × 4, respectively. The processor geometries were the same
on both platforms: 4× 4× 4. Each task relaxes one block and depends on up to
seven others from the previous iteration: the block in the current position plus
up to six nearest neighbors. In the BASE and OLAP variants each processor
stores its mesh as one contiguous memory area. The Thyme variant stores its
data as separate contiguous blocks, improving cache locality.

We ran Jacobi3D for 25 iterations on 256 processors using problem sizes vary-
ing from 3203 to 16003, beyond which communication is not a significant bot-
tleneck. Fig. 1 (top) shows that the THYME variant enjoys a clear performance
advantage over BASE, overlapping 43-78% of the communication on Thunder
and 10-80% on DataStar. The OLAP variant not only failed to improve the
running time but actually increased it. As noted by Baden and Shalit, the thin
outer annulus has large strides and this slows down the updates to cells in the
outer annulus considerably [11].

Thyme’s graph-based execution model is well suited to this application.
Rather than using thin annular faces, we break up the mesh into numerous
small cubes, each stored in a contiguous area of memory. Relaxation exhibits
good cache locality over these cubes, avoiding the computation time penalty
imposed by OLAP’s thin outer annulus.

We observed that execution from one iteration was frequently intermingled
with that of the next, such that iteration boundaries no longer serve as pre-
cise synchronization point. We found no discernible pattern in task execution
order from run to run. This implies that flexibility in scheduling may be helping
performance and that an optimal schedule may be difficult to predict.

Matrix Multiplication. MMULT computes the matrix product C = A × B,
formulating the algorithm as a sequence of blocked outer products and sub-
dividing the matrices over a square 2-d processing geometry. The strategy is
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Fig. 1. Data-driven execution improves performance by overlapping communication
with computation. Results are shown for Jacobi3D (top), MMULT (middle) running on
DataStar (left) and Thunder (right), and for NAS-FT running on 64 and 128 processors
of Thunder (bottom, left and right, respectively). No OLAP variant was implemented
for FT.
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similar to SUMMA [12]. Each submatrix is further subdivided into panels of
width (or height) nb. The algorithm proceeds in N/(nb

√
P ) steps, where the

processing geometry has P virtual processors. The panels circulate by row (for
A) and by column (for B) and each processor computes a partial matrix product
which is summed into its local portion of C (matrix multiply-add, mpy-add).
Communication involves four nearest neighbors, proceeds in just one direction,
and is periodic. BASE performs each mpy-add before transferring a panel of
A and B; OLAP initiates panel transfer and then performs the mpy-add in
parallel. THYME mirrors the behavior of the OLAP variant; the graph depen-
dencies cause the panels to be passed around their respective rows and columns
in pipelined fashion. Each task performs a mpy-add and depends on the left
neighbor to receive a panel of A and the upper neighbor to receive a panel of B,
passing, after execution, A to the right and B downwards. We used the vendor-
provided dgemm routine to carry out mpy-adds and used two panels (nb = 2) per
block, which was optimal.

We ran MMULT on 256 processors with problem sizes ranging from 4, 0962

to 20, 4802, the largest size where communication had a significant affect on
performance. Fig. 1 (middle) shows the result. THYME achieves near-optimal
performance on Thunder, overlapping 61-93% of the communication. The re-
sults are not as clear-cut on DataStar, where the Thyme and baseline variants
realize more or less the same performance. This is true because mpy-adds are
17-39% slower than on DataStar than on Thunder (except for the smallest prob-
lem size, where DataStar’s mpy-adds were faster). Thus, DataStar runs incur a
smaller fraction of communication time, and with less communication, there is
less benefit to hiding it.

Thyme could not improve on the hand-coded OLAP variant. This is true
because the communication pattern is highly constrained to nearest neighbors,
and thus the flexibility of Thyme’s data driven model doesn’t offer an improve-
ment. However, this flexibility doesn’t penalize performance either. Unlike the
hand-coded OLAP variant, the Thyme variant is free from split phase coding
and embedded policy decisions, enhancing performance portability.

We used performance meta-data to guide task scheduling in the THYME vari-
ant of MMULT. The scheduler’s priority queue exhibits LIFO behavior when
the task priorities are equal. Thus, newly-ready tasks get scheduled before older
readied tasks. While generally beneficial for cache locality, this behavior disrupts
the pipeline of block transfers directed by the TaskGraph, tending to serialize
computation. Processors would execute tasks over newly arrived blocks, starv-
ing neighboring processing nodes and causing long wait times. We were able to
improve performance, without having to reformulate the application, by sim-
ply assigning older tasks a higher priority than newly ready ones. This entailed
annotating the graph with appropriate meta-data. The effect is to alter the
scheduler’s behavior toward a FIFO without affecting correctness. This behav-
ior was friendlier to the pipeline structure of the graph and resulted in a 20%
performance improvement.
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NAS-FT. The NAS-FT benchmark includes a costly transpose operation for
setting up the FFT, and thus can benefit greatly from masking communication
delays. The publicly available code [9] serves as the BASE variant. NAS-FT
employs a 1-d virtual processor geometry in the Z dimension such that each
processor receives a slab of the mesh. Each slab is further subdivided into 2D
sheets of size NX×NY ×1, where NX and NY are the leading dimensions. The
algorithm has 3 steps. After performing a 2D FFT on each of the NZ sheets,
BASE invokes a total exchange AllToAll to transpose the data so each processor
has slabs of the complete Z dimension. The processors complete the transform
by computing 1-d FFTs along the Z dimension. The Thyme variant treats each
sheet as a task. Thus, communication is much finer grained than with BASE
and is interleaved with communication. The graph dependencies force the final
1-d FFTs to wait for all the 2D transforms to complete, so there are NX 1D
transform tasks over sheets of size 1×NY ×NZ.

We measured the execution time for three different problem sizes over various
numbers of processors and ran for 20 iterations. The problem sizes were 5123

(NAS-FT Class C), plus two larger sizes to test the effects of increasing the
sheet size (1024× 1024×512) and the number of sheets (10243). Current results
are from Thunder only. We did not attempt to reformulate the 2224 line BASE
variant to overlap communication with computation (OLAP).

Fig. 1 (bottom) shows that Thyme is able to hide communication significantly–
37-65%–depending on the problem size and number of processors. The application
incurs a 35-43% communication overhead.

There is room for improvement in NAS FT, in particular, to employ a 2-d
”stick” decomposition in lieu of the 1-d decomposition used currently. Thyme
is currently implemented using MPI, however, and the difficulty in realizing
overlap with a stick decomposition under MPI has been documented [13]. We are
investigating an alternative implementation to support sticks and thus improve
scalability.

4 Discussion

Graph-based execution models began appearing in the 1970s with classic
dataflow [2,3,4]. A large grain variant followed [5]. SMARTS [14] integrated
task and data parallelism and provided an API for coarse-grain macro-dataflow.
It has been demonstrated on shared memory only. OSCAR[15] had similar
goals to SMARTS, but operated on static (compile time) graphs. CILK[16] and
Mentat[17] treated functional parallelism. SciRun[18] and UIntah[19] support
graphical composition of data flow graphs of components and dynamic load bal-
ancing of task graphs. Tarragon (Cicotti and Baden) [20] supports fine grain
communication and was originally targeted to cell microphysiology. Husbands
and Yelick [21] demonstrated thread scheduling techniques for tolerating latency
in dense LU factorization.

In the context of this prior work (and similar to Tarragon) Thyme’s contri-
bution is a systematic approach to supporting latency tolerance on distributed
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memory via the dataflow model, and the ability to modify scheduling behav-
ior by annotating the graph with meta-data. Compared with traditional split
phased encoding, Thyme provides an abstract description of the underlying vir-
tual process structure that may be manipulated to optimize execution

To understand the role that the graph can play in tolerating latency, con-
sider Charm++ [22] and Adaptive MPI [23]. Charm++ supports overlap via
processor virtualization and asynchronous remote method invocation on shared
C++ objects. AMPI (Adaptive MPI) employs virtualized MPI processes and is
built on top of Charm++. None of these models employ an explicit dataflow
graph to realize overlap. Charm++ employs a more general model than Thyme,
embedding dependence information in the form of remote method invocations
involving global objects. The task structure is implicit, however, and cannot be
manipulated as a free-standing object as with Thyme. The Charm++ develop-
ers allude to difficulties with an implicit call graph, in particular, in coupling
multiple graphs. Charisma [24] was developed to meet this need.

When a Charm++ method invocation blocks, or an AMPI receive blocks,
the thread yields to another, which may block for the same reason. Indeed, our
efforts to run an MPI variant of Jacobi3D under AMPI on DataStar failed to
improve performance–and actually slowed it down in some cases. Thyme’s meta-
data offer an improvement over virtualization by taking the guesswork out of
scheduling. They inform the scheduler about tasks that have all their input data
ready, avoiding the guesswork of the “block and yield” model. If the number of
cores per processor continues to grow over time, then the significance of informed
scheduling will continue to grow as well.

5 Conclusions and Future Work

We have demonstrated that a data-driven formulation enables an application to
tolerate latency without embedding scheduling and other policy decisions into
the code. The approach provides an opportunity for increased performance be-
cause it allows the user to experiment with alternative implementation policies,
including application-specific task scheduling in MMULT and tuned data decom-
positions in Jacobi3D. Thyme admits the use of newly arrived data to enable
computation, masking the latency of data still in transit.

Our current implementation is restricted to Cartesian geometries, but covers a
range of uniform and irregular problems including: uniform and multilevel finite-
difference methods, such as structured adaptive mesh refinement and multigrid,
and mesh-based particle methods (but not “tree codes” [25]). So called unstruc-
tured finite element methods need a different type of iteration space representa-
tion, but the general principles apply.

Systems with many core CPUs will benefit from Thyme’s programming model,
in particular, thread-aware schedulers that treat symbiosis and cache locality. A
steady growth in on-chip parallelism will put pressure on communication sub-
systems, while at the same time providing an opportunity to optimize execution
by expending inexpensive processing cycles.
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Although the Thyme API is compact–only a couple of thousand lines of C++–
programmers can obtain the benefits of the model without having to learn an en-
tirely new API. We envision that Thyme will become part of a run time support
library for a compiler or application library. To this end, we are currently inves-
tigating source-to-source translation techniques using Quinlan’s ROSE [26] in-
frastructure. ROSE enables the user to access and transform the abstract syntax
tree (AST); full knowledge of function arguments and dependence information
is available for subsequent analysis and transformation. Translation support can
realize semantic level optimizations on the Thyme library classes and automati-
cally generate calls to the Thyme API. The application programmer can thereby
obtain the benefits of Thyme’s graph-driven execution model while remaining
aloof of many of the details.
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tion on thousands of processors. In: Proceedings of SC 2002 (2002)
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Abstract. In many data grid applications, data can be decomposed into
multiple independent sub-datasets and distributed for parallel execution
and analysis. This property has been successfully employed by using Di-
visible Load Theory (DLT), which has been proved as a powerful tool for
modeling divisible load problems in data-intensive grid. There are some
scheduling models have been studied but no optimal solution has been
reached due to the heterogeneity of the grids. This paper proposes a new
model called Iterative DLT (IDLT) for scheduling divisible data grid ap-
plications. Recursive numerical closed form solutions are derived to find
the optimal workload assigned to the processing nodes. Experimental re-
sults show that the proposed IDLT model obtains better solution than
other models (almost optimal) in terms of makespan.

Keywords: Divisible Load Theory, Data Grid, Load Balancing.

1 Introduction

In the last decade, data grids have increasingly become popular for a wide range
of scientific and commercial applications [1]. Load balancing and scheduling play
a critical role in achieving high utilization of resources in such environments [2].
Scheduling an application is significantly complicated and challenging because
of the heterogeneous nature of a grid system. Grid scheduling is defined as the
process of making scheduling decisions involving allocating jobs to resources over
multiple administrative domains [8,9]. Most of the scheduling strategies try to
reduce the makespan or the maximum completion time of the task which is
defined as the difference between the time when the job was submitted to a
computational resource and the time it completed. makespan also includes the
time taken to transfer the data to the point of computation if that is allowed by
the scheduling strategy [5].

In other hand, in many data intensive grid applications, data can be de-
composed into multiple independent sub datasets and distributed for parallel
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execution and analysis. High Energy Physics (HEP) experiments fall into this
category [7]. HEP data are characterized by independent events, and therefore
this characteristic can be exploited when parallelizing the analysis of data across
multiple sites. In [11], the DLT paradigm has emerged as a powerful tool for mod-
elling data-intensive computational problems incorporating communication and
computations issues [5]. An example of this direction is the work by [3] where the
DLT is applied to model the grid scheduling problem involving multiple sources
to multiple sinks. In that model, they did not consider the communication time.
Whereas, the scheduling in grid applications must consider communication and
computation simultaneously to achieve high performance. Some related materi-
als to the problem addressed in this paper can be found in [4,7,8,9,11].

2 Scheduling Model

We consider the problem of scheduling large-volume loads (divisible loads) within
in multiple sites. Communication is assumed to be predominant between such
cluster nodes and is assumed to be negligible within a cluster node [3,4]. This
section describes the scheduling model, the notations, the cost model, and the
optimality criterion that are used in our research.

We use the scheduling model that was used by [3,4,8]. It can be described as
follows. The target data intensive applications model can be decomposed into
multiple independent sub tasks and executed in parallel across multiple sites
without any interaction among sub tasks [5]. Lets consider job decomposition
by decomposing input data objects into multiple smaller data objects of arbitrary
size and processing them on multiple virtual sites. For example in theory, the
HEP jobs are arbitrarily divisible at event granularity and intermediate data
product processing granularity. Assume that a job requires a very large logical
input data set D consists of N physical datasets and each physical dataset (of
size Lk) resides at a data source (DSk, for all k = 1, 2, . . . , N) of a particular
site. Figure 1 shows how D is decomposed onto networks and their computing
resources.

The scheduling problem is to decompose D into datasets (Di for all i =
1, 2, . . . ,M) across M virtual sites in a Virtual Organization given its initial
physical decomposition. We assume that the divisible data can be analyzed at
any site.

2.1 Notations and Definitions

All notations and their definitions used throughout this paper are shown in
Table 1.

2.2 Cost Model

The execution time cost (Ti) of a subtask allocated to the site i and the turn
around time (TTurn Around Time) of a job J can be expressed as follows
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Fig. 1. Data decomposition and their processing

Table 1. Notation and Definition

Notation Definition
M The total number of nodes in the system
L The loads in data file
αi The fraction of load that node i will receive from the data file
Li The amount of load that node i will receive from the data file
wj The inverse of the computing speed of node i

Z ini The link between node i and the data source
Z outi The link between node i and the aggrator

Ti The processing time in node i

Fig. 2. The communication and computation of sources within the system (optimal
case)
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Ti = Tinput cm(i) + Tcp(i) + Toutput cm(i, d)

and

TTurn Around Time =
N

max
i=1

{Ti},

respectively. The input data transfer Tinput cm(i), computation Tcp(i), and out-
put data transfer to the client at destination site d, Toutput cm(i, d) are presented
as

Tinput cm(i) = Li · 1
Zi
, Tcp(i) = Li · wi · ccRatio

and
Toutput cm(i, d) = f(Li) · Zid

respectively. Where Li = L · αi and the function f(di) is an output data size
and ccRatio is the non-zero ratio of computation and communication. The turn
around time of an application is the maximum among all the execution times of
the sub tasks.

The problem of scheduling a divisible job ontoM sites can be stated as deciding
the portion of original workload (D) to be allocated to each site, that is, finding
a distribution of αi which minimizes the turn around time of a job. The proposed
model uses this cost model when evaluating solutions at each generation.

2.3 Optimality Criterion

In all literatures related to divisible load scheduling [7,9], an optimality criterion
is used to derive an optimal solution which stated as follows. It states that in order
to obtain an optimal processing time, it is necessary and sufficient that all the sites
that participate in the computation must stop at the same time. Otherwise, load
could be redistributed to improve the processing time. The timing diagram for this
distributed system in optimal case is depicted in Fig. 2.

3 Proposed IDLT Model

The load scheduling problem is to decompose D into datasets (Di for all i =
1, 2, . . . ,M) across M virtual sites in a Virtual Organization given its initial
physical decomposition. This model includes two steps

3.1 Initial Solution

The proposed model will start from a good initial solution. ADLT and A2DLT
models will be used for this purpose. The best solution (minimum makespan)
will be considered as an initial solution of the iterative model. As it is explained
in [8,9,11], ADLT and A2DLT models produced good results for computation
and communication intensive applications, respectively.
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3.2 The Iterative Model

The optimality criterion that discussed in section 2.3 will be used in the design
of the load distribution strategy. The IDLT model involves the following steps

1. First, we divide the load using one of the adaptive DLT models.
2. Calculate the makespan using the cost model.
3. If all nodes finish at the same time, go to step 8 else go to step 4.
4. Then, we calculate the summation (Sum) of the processing time of the nodes.
5. Next, we calculate the average time by avg = Sum/M .
6. After that, we redistribute the load depending on the average (avg) based on

the iterative numerical equation that will be discussed later in this section.
7. Go to step 2
8. The current time is the final makespan.
9. End

Here, we will discuss step by step the derivation of a closed form equation
by which one can calculate the optimal fraction of the load that has to be
assigned to each processing node in order to achieve the minimum makespan
and the optimal data allocation for each processor. The processing nodes (wi),
communication links (Zi)and applications types (ccRatio) were assumed to have
different values.

After we calculate the makespan as an initial solution to the IDLT model,
we will compute the

∑M
i=1 Ti where M is the number of the processing nodes.

Based on cost model, we have

Ti = Li · z ini + wi · Li · ccratio+ Li · z outi (1)

where z ini and z outi is the input communication time and output communi-
cation time of link i, respectively. Then, compute the average of completion time
as

avg =
∑M

i=1 Ti

M
. (2)

In any iteration, the makespan of any nodes must equal to (avg) in order to get
the optimal solution. It means that, the load is distributed among the processing
node M equally. While the average time is the processing time of load α that is
calculated by (1), we can recalculate the amount of α if we have the (avg). In
general, if avg is

avg = α · z + α · w (3)

The load fraction α can be calculated by (4),

α =
avg

z + w
(4)

In this case, for any iteration, after we calculate the time average of processing
any load, we can calculate the amount of this load. Furthermore, if the processing
time of the first node to process α1 is

avg = α1 · z in1 + α1 · w1 · ccRatio+ α1 · z out1 (5)
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The α1 will be calculated by:

α1 =
avg

z in1 + (w1 · ccRatio) + z out1
(6)

Consequently, the α2 of the second node will be calculated as

α2 =
avg

z in2 + (w2 · ccRatio) + z out2
(7)

Finally, the αM of the Mth node will be

αM =
avg

z inM + (wM · ccRatio) + z outM
(8)

Equation (8) is correct only in the last iteration (when we get the optimal solu-
tion). But in the first iteration, the last node will take the rest of the load only
as

αM = (1 − (α1 + α2 + · · ·+ αM−1)) · L (9)

There are M -1 equations. An additional equation is called a normalization equa-
tion, which states that the summation of the all the allocation fractions should
be 1.

α1 + α2 + · · ·+ αM = 1 (10)

The load of the last node does not equal the load that produces the (avg) time.
Thats means, the last node still does not take the optimal load. Here, we will
compute the new makespan (the makespan will be calculated by cost model
that discussed in Section 2.2 every iteration).

Consequently, we will carry out these steps in the second iteration. In this
iteration, the makespan will be reduced but still not optimal. Therefore, we will
carry out these steps until certain termination condition happens. The termi-
nation condition here is the optimality criterion. All nodes must finish the load
processing at the same time.

The IDLT model for single source produces almost optimal solution after
some iterations. There is a very small different among the nodes processing time
(small fractions). In this model, all nodes will take the new load based on the
new average. It means that all nodes will finish at the same time. For the last
node will take the rest of load without considering the average. For the next
iteration, the new average will be reduced. The last node will take more load
than previous iteration. After some iterations the last node will finish as same
time as the others.

4 Experimental Results

To measure the performance of the proposed IDLT model against CDLT, ADLT
and A2DLT models, randomly generated experimental configurations were used
[5,8,9]. The estimated expected execution time for processing a unit dataset on
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Table 2. Results IDLT Model: Step-by-Step

Steps Node 1 Node 2 Node 3 Node 4 Node 5
0 5643.84 1440.41 2993.02 843.48 1108.35
5 1822.61 1822.61 1822.61 1822.61 1757.71
10 1799.71 1799.71 1799.71 1799.71 1798.61
11 1799.49 1799.49 1799.49 1799.49 1799.00

Fig. 3. Comparison of various iterations for IDLT model, (a) initial step, (b) and (c)
intermediate steps, and (d) final step

each site, the network bandwidth between sites, input data size, and the ratio
of output data size to input data size were randomly generated with uniform
probability over some predefined values. The network bandwidth between sites
is uniformly distributed between 1 Mbps and 10 Mbps.

We examined the overall performance of each model by running them under
100 randomly generated Grid configurations. We varied the parameters, ccRatio
(0.001 to 1000), rcb (10 to 500), and M (1 to 100). Thus, from series of experi-
ments, it can be concluded that the IDLT gives an optimal solution and all nodes
stop at the same time.

Let considers the system and loads with processing nodes M=5 and ccRatio
=0.001, respectively. Using the IDLT model, we have the experimental results as
shown in Table 2 and Fig. 3. In an initial solution, the maximum completion time
or makespan is 5643.84 seconds. It is reduced until makespan 1799 seconds. In
the last step, all nodes finished the processing at the same time (at 1799 Seconds).
Furthermore, when we increase the number of iteration, all nodes will finish at
almost the same time (1799.32 seconds) and it is improved approximately 68%.

Figure 3 showed that, the five processing nodes finish at almost same time. It
means that, in the last iteration, the load is distributed to the processing node
almost equally.
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Fig. 4. Makespan vs. ccRatio for CDLT, ADLT, A2DLT and IDLT(M=100)

Fig. 5. Makespan vs. data file size for CDLT, ADLT, A2DLT and IDLT(M=100 and
ccRatio=0.001)

To show how these models perform on different type of application (different
ccRatio=100), we executed the model and plotted all the results as shown in
Fig. 4. From the plotted graph, the IDLT model is the best for any type of
application. As expected, the IDLT model produce the almost optimal solution
from single source.

Different size of data files are used considering large scale data grid. It is varied
from 1 GB to 1 TB. Figure 5 clearly showed that the IDLT model produce better
results for all sizes.

The convergence metric records how the initial makespan value minimized
during the iteration between the initial and optimal solutions. Figure 6 de-
picts the convergence of the models for the average out of ten executions for
when the ccRatio is equal to 1000. All models have same results, whereas
the result of IDLT model is significantly reduced as the number of iteration
increased.
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Fig. 6. Convergence for IDLT model for single source (ccRatio=1000))

5 Conclusion

In this paper, we have developed an effective iterative model for optimal divisible
load allocation. The IDLT model is proposed for load allocation to processors
and links for scheduling divisible data grid applications. The experimental results
showed that the proposed IDLT model is capable of producing almost optimal
solution for single source scheduling. Hence, the proposed model can balance
the processing loads efficiently and can be embedded into the existing data grid
schedulers.

References

1. Tierney, B., Johnston, W., Lee, J., Thompson, M.: A Data Intensive Distributed
Computing Architecture for Grid Applications. Future Generation Computer Sys-
tems 16(5), 473–481 (2000)

2. Xiao, Q.: Design and Analysis of a Load Balancing Strategy in Data Grids. Future
Generation Computer Systems 16(23), 132–137 (2007)

3. Tang, M., Lee, B.-S., Tang, X., Yeo, C.-K.: The Impact of Data Replication on
Job Scheduling Performance in the Data Grid. Future Generation Computer Sys-
tems 22(3), 254–268 (2006)

4. Wong, H.M., Veeravalli, B., Dantong, Y., Robertazzi, T.G.: Data Intensive Grid
Scheduling: Multiple Sources with Capacity Constraints. In: Proceeding of the
IASTED Conference on Parallel and Distributed Computing and Systems, Marina
del Rey USA, 7-11 (2003)

5. Kim, S., Weissman, J.B.: A Genetic Algorithm Based Approach for Scheduling De-
composable Data Grid Applications. In: IEEE Proceeding of the International Con-
ference on Parallel Processing, Washington DC, USA, vol. 1, pp. 406–413 (2004)

6. Venugopal, S., Buyya, R., Ramamohanarao, K.: A Taxonomy of Data Grids for
Distributed Data Sharing, Management and Processing. ACM Computing Sur-
veys 38(1), 1–53 (2006)

7. Abraham, A., Buyya, R., Nath, B.: Nature’s Heuristics for Scheduling Jobs on
Computational Grids. In: Proceedings of 8th IEEE International Conference on
Advanced Computing and Communications, pp. 45–52 (2000)



174 M. Othman et al.

8. Othman, M., Abdullah, M., Ibrahim, H., Subramaniam, S.: Adaptive Divisible
Load Model for Scheduling Data-Intensive Grid Applications. In: Shi, Y., van Al-
bada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2007. LNCS, vol. 4487, pp.
446–453. Springer, Heidelberg (2007)

9. Othman, M., Abdullah, M., Ibrahim, H., Subramaniam, S.: A2DLT: Divisible Load
Balancing Model for Scheduling Communication-Intensive Grid Applications. In:
Bubak, M., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2008, Part
I. LNCS, vol. 5101, pp. 246–253. Springer, Heidelberg (2008)

10. Viswanathan, S., Veeravalli, B., Robertazzi, T.G.: Resource-Aware Distributed
Scheduling Strategies for Large-Scale Computational Cluster/Grid Systems. IEEE
Transaction of Parallel and Distributed Systems 18(10), 1450–1461 (2007)

11. Bharadwaj, V., Ghose, D., Robertazzi, T.G.: Divisible Load Theory: A New
Paradigm for Load Scheduling in Distributed Systems. Cluster Computing 6(1),
7–17 (2003)



Dynamic Resizing of Parallel Scientific Simulations:
A Case Study Using LAMMPS

Rajesh Sudarsan1, Calvin J. Ribbens1, and Diana Farkas2

1 Department of Computer Science, Virginia Tech, Blacksburg, VA 24060
sudarsar@vt.edu, ribbens@vt.edu

2 Department of Materials Science and Engineering, Virginia Tech, Blacksburg, VA 24061

Abstract. Large-scale computational science simulations are a dominant com-
ponent of the workload on modern supercomputers. Efficient use of high-end
resources for these large computations is of considerable scientific and economic
importance. However, conventional job schedulers limit flexibility in that they
are ‘static’, i.e., the number of processors allocated to an application can not be
changed at runtime. In earlier work, we described ReSHAPE a system that elim-
inates this drawback by supporting dynamic resizability in distributed-memory
parallel applications. The goal of this paper is to present a case study highlighting
the steps involved in adapting a production scientific simulation code to take ad-
vantage of ReSHAPE. LAMMPS, a widely used molecular dynamics code, is the
test case. Minor extensions to LAMMPS allow it to be resized using ReSHAPE,
and experimental results show that resizing significantly improves overall system
utilization as well as performance of an individual LAMMPS job.

Keywords: LAMMPS, parallel clusters, dynamic scheduling, data redistribution.

1 Introduction

Today’s terascale and petascale computers exist primarily to enable large-scale compu-
tational science and engineering simulations. While high-throughput parallel applica-
tions are important and often yield valuable scientific insight, the primary motivation
for high-end supercomputers is applications requiring hundreds of compute cores, with
data sets distributed across a large aggregate memory, and with relatively high inter-
process communication requirements. Such calculations are also characterized by long
running times, often measured in weeks or months. In this high-capability computing
context, efficient utilization of resources is of paramount importance. Consequently,
considerable attention has been given to issues such as parallel cluster scheduling and
load balancing, data redistribution, performance monitoring and debugging, and fault-
tolerance. The goal is to get the maximum amount of science and engineering insight
out of these powerful (and expensive) computing resources.

A constraint imposed by existing cluster schedulers is that they are ‘static,’ i.e., once
a job is allocated a set of processors, it continues to use those processors until it finishes
execution. Even if there are idle processors available, parallel applications cannot use
them because the scheduler cannot allocate more processors to an application at run-
time. A more flexible approach would allow the set of processors assigned to a job to
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c© Springer-Verlag Berlin Heidelberg 2009



176 R. Sudarsan, C.J. Ribbens, and D. Farkas

be expanded or contracted at runtime. This is the focus of our research—dynamically
reconfiguring, or resizing, parallel applications.

We are developing ReSHAPE, a software framework designed to facilitate and ex-
ploit dynamic resizing. In [1] we describe the design and initial implementations of
ReSHAPE and illustrate its potential for simple applications and synthetic workloads.
An obvious potential benefit of resizing is reduced turn-around time for a single appli-
cation; but we are also investigating benefits such as improved cluster utilization, op-
portunities for new priority-based scheduling policies, and better mechanisms to meet
quality-of-service or advance reservation requirements. Potential benefits for cluster uti-
lization under various scheduling scenarios and policies are considered in [2]. Efficient
data redistribution schemes are described in [3].

In this paper we investigate the potential of ReSHAPE for resizing production com-
putational science codes. As a test case we consider LAMMPS [4,5], a widely used
molecular dynamics (MD) simulation code. One of us uses this code on a regular basis
to study the mechanical behavior of nanocrystalline structures [6]. In a typical case we
run LAMMPS on 100-200 processors for hundreds of hours. LAMMPS has three char-
acteristics typical of most production computational science codes: a large and com-
plex code base, large distributed data structures, and support for file-based checkpoint
and recovery. The first two characteristics are a challenge for resizing LAMMPS jobs.
However, file-based checkpointing offers a simple but effective way to resize LAMMPS
using ReSHAPE. We describe the changes required in the LAMMPS source to use it
with ReSHAPE. Experimental results show that resizing significantly improves overall
system utilization as well as the performance of an individual LAMMPS job.

Recent research has focused on dynamic reconfiguration of applications in a grid en-
vironment [7,8]. These frameworks aim at improving the resources assigned to an ap-
plication by replacement rather than increasing or decreasing the number of resources.
Vadhiyar and Dongarra [9] apply a user-level checkpointing technique to reconfigure
applications for the Grid. During reconfiguration, the application writes a checkpoint
file. After the application has been migrated to the new set of resources, the check-
pointed information is read and redistributed across the new processor set. The DRMS
framework proposed by Moreira and Naik [10] also uses file-based data redistribution to
redistribute data across a reconfigured processor set. Cirne and Berman [11] describe an
application-aware job scheduler for reconfiguring moldable applications. The scheduler
requires a user to specify legal processor partition sizes ahead of time.

The remainder of the paper is organized as follows. Section 2 introduces ReSHAPE
and describes the modifications required to use LAMMPS with ReSHAPE. We summa-
rize experimental results in Section 3. Section 4 summarizes and concludes the paper.

2 ReSHAPE Applied to LAMMPS

2.1 ReSHAPE Framework

The architecture of the ReSHAPE framework consists of two main components. The
first component is an application scheduling and monitoring module which schedules
and monitors jobs and gathers performance data in order to make resizing decisions
based on scheduling policies, application performance, available system resources, and



Dynamic Resizing of Parallel Scientific Simulations: A Case Study Using LAMMPS 177

the state of other running and enqueued jobs. The second component of the framework
consists of a programming model for resizing applications. This includes a resizing
library and an API for applications to communicate with the scheduler to send perfor-
mance data and actuate resizing decisions. The resizing library includes algorithms for
mapping processor topologies and redistributing data from one processor topology to
another. ReSHAPE targets applications that are homogeneous in two important ways.
First, the approach is best suited to applications where data and computations are rel-
atively uniformly distributed across processors. Second, at a high-level the application
should be iterative, with the amount of computation done in each iteration being roughly
the same. While these assumptions do not hold for all cluster jobs, they do hold for a
significant number of large-scale scientific simulations. A more detailed discussion on
ReSHAPE is available in [1,3].

2.2 Extending LAMMPS for Resizing

LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator) is a classi-
cal molecular dynamics code which models particles interacting in a liquid, solid,
or gaseous state. Like many computational science codes, LAMMPS uses domain-
decomposition to partition the simulation domain into 3D sub-domains, one of which
is assigned to each processor. LAMMPS is a good candidate for ReSHAPE-enabled re-
sizing since it scales well and includes an outer loop executed many thousands of times,
with a relatively constant amount of work done during each iteration of that outer loop.
The point at which an iteration of this outer loop finishes is a natural candidate for a
resize point, i.e., a point at which the code should contact the ReSHAPE scheduler to
potentially be resized. To explore the potential of using LAMMPS with ReSHAPE, we
modified the LAMMPS source to insert ReSHAPE API calls. By leveraging the exist-
ing checkpoint-recovery capabilities of LAMMPS, we can extend the code to support
resizing with only a few small changes, described next.

LAMMPS reads an input script to set problem-specific parameter values and runs the
simulation. A similar script is used to restart a computation using a restart file. Figure 1
shows a sample ReSHAPE-instrumented LAMMPS input script and restart script, with
our changes marked in bold. These input files would be very familiar to a LAMMPS
user. Only two additional commands—reshapeinit and reshape—are needed to sup-
port resizing. The LAMMPS command parser must be extended to recognize these two
commands. The only other modifications to the existing LAMMPS code base are re-
placing all occurrences of MPI COMM WORLD with RESHAPE COMM -WORLD,
and including an additional call to the ReSHAPE initialization method in the LAMMPS
main program, executed only by newly spawned processes. The reshapeinit command
in the input script causes ReSHAPE’s initialization method to be called. The reshape
command takes two arguments: the total number of iterations to be run and a restart
file name. The existing LAMMPS restart command is used to indicate the number of
iterations after which a checkpoint file will be generated. We use these restart points as
potential resize points for ReSHAPE. In particular, we use the run command to specify
the number of iterations to execute before stopping. This value must be the same as the
value given in the restart command, e.g., 1000 in Figure 1. In this way, LAMMPS
executes a predetermined number of iterations, generates a restart file, contacts the
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Fig. 1. LAMMPS input script (left) and restart script (right) extended for ReSHAPE

ReSHAPE scheduler, and then depending on the response from the scheduler, either
does a restart on the current processor set or on some larger or smaller processor set.

The reshape command executes a new method which uses the ReSHAPE API to
communicate with the ReSHAPE scheduler. Depending on the scheduler’s decision,
the resizing library expands, contracts or maintains the processor size for an application.
The application clears its old simulation box and re-initializes the system with the new
processor size. A new method is implemented to rebuild the process universe each time
the processor set size changes after resizing. The application re-initializes the system
with new parametric values from the restart file and resumes execution. All the newly
spawned processes initialize ReSHAPE before receiving the restart information from
processor rank 0.

3 Experimental Results and Discussions

This section presents experimental results to demonstrate the potential of dynamic re-
sizing for MD simulation. The experiments were conducted on 50 nodes of Virginia
Tech’s System X. Each node has two 2.3 GHz PowerPC 970 processors and 4GB of
main memory. Message passing was done using OpenMPI [12] over an Infiniband in-
terconnection network.

We present results from two sets of experiments. The first set focuses on benefits of
dynamic resizing for individual MD applications to improve their execution turn-around
time; the second set looks at the improvements in overall cluster utilization and through-
put which result when multiple static and resizable applications are executing concur-
rently. In our experiments, we use a total of five different applications—LAMMPS plus
four applications from the NAS parallel benchmark suite [13]: CG, FT, IS, LU. We use
class A and class B problem sizes for each NAS benchmark, for a total of nine different
jobs. For LAMMPS we use an EAM metallic solid benchmark problem. The problem
computes the potentials among the metallic copper atoms using an embedded atom po-
tential method (EAM) [14]. It uses NVE time integration with a force cutoff of 4.95
Angstroms and has 45 neighbors per atom. The different problem sizes used for the
MD benchmark are listed in Figure 2. We generate a workload of 17 jobs from these
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Table 1. Job workloads and descriptions

(a) Experiment workloads

Workload nApps Applications

W1 17

LMP2048 (1), IS-B (1),
FT-A (4), CG-A (3),
CG-B (3), IS-A (2),
LU-A (1), LU-B (2)

W2
17

LMP256 (2), LMP2048 (1),
LMP864 (3), LU-B (1),
FT-A (2), FT-B (1), IS-A (1),
CG-B (2), CG-A (2),
LU-A (1), IS-B (1)

(b) Application description

App Name nProcs nIters
LMP2048, LMP864 30 16000

LMP256 20 16000
CG-A 16 1000
CG-B 32 40

IS-A, FT-A 8 200
FT-B 32 100
IS-B 16 200

LU-A 64 200
LU-B 32 10

nine job instances, with each newly arriving job randomly selected with equal probabil-
ity. Table 1(a) lists the different workloads used in our experiments. The number listed
in parenthesis for each job is the number of jobs for each application in the job trace
for that particular workload. All the LAMMPS jobs execute for 16000 iterations and
the timing results are recorded after every 1000 iterations. The jobs reach their resize
points after every 1000 iterations. All NAS benchmark applications are configured to
expand only in powers-of-2 processor sizes, i.e., 2, 4, 8, 16, 32 and 64. The starting pro-
cessor size and the number of iterations for each job are listed in Table 1(b). The arrival
time for each job in the workload is randomly determined using a uniform distribution
between 50 and 650 seconds.

3.1 Performance Benefit for Individual MD Applications

Although in practice it is not always possible to run a single application on an entire
cluster, it is not uncommon to have a large number of processors available at some point
during a long running application. These processors can be alloted to a running applica-
tion, so as to probe for a processor configuration beyond which adding more processors
will not benefit the application’s performance, i.e., to look for a ‘sweet-spot’ proces-
sor allocation for that job. ReSHAPE uses this technique to probe for sweet spots for
resizable applications. It uses an application’s past performance results, and a simple
performance model, to predict whether the application will benefit from additional pro-
cessors. Based on the prediction, the scheduler decides whether an application should
expand, contract or maintain its current processor size.

To get an idea of the potential of sweet spot detection, consider the data in Figure 2,
which shows the performance of the LAMMPS benchmark with various problem sizes
at different processor configurations. All jobs start with 10 processors and gradually add
more processors at every resize point as long as the expand potential [2] of an applica-
tion remains greater than the fixed threshold performance potential. The threshold value
of the performance potential can vary based on the scheduling policy implemented in
the system. We observe that the performance benefits due to resizing for small jobs
(LMP32 and LMP108) are small; these jobs reach their sweet spots at only 40 pro-
cessors. As expected, jobs with larger problem sizes show greater performance benefit
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Fig. 2. Identifying the execution sweet spot for LAMMPS. The table shows the number of atoms
for different LAMMPS problem sizes.

Table 2. Performance improvement in LAMMPS due to resizing. Time in secs.

Number nResize Iteration time Improvement Overhead
of Atoms Static ReSHAPE Time % Time %

32000 3 330.98 168 162.98 49.24 29.31 17.98
108000 3 1132.56 443 689.56 60.72 29.42 4.27
256000 4 2601.30 909 1692.30 65.05 48.25 2.85
864000 8 8778.02 2529 6249.02 71.18 145.68 2.33

2048000 9 20100.86 5498 14602.00 72.64 198.51 1.36

with more processors. For example, LMP864 reaches its sweet spot at 90 processors.
LMP2048 shows a performance improvement of 11.6% when expanding from 90 to 100
processors and has the potential to expand beyond 100 processors. The jobs continue
to execute at their sweet spot configuration till they finish execution. Table 2 compares
the improvement in performance due to resizing for LAMMPS jobs for different prob-
lem sizes with the associated overhead. For jobs with smaller problem sizes, the cost
of spawning new processors and redistributing data contributes a significant percentage
of the total overhead. By reducing the frequency of resize points for smaller jobs, the
overhead can be outweighed by performance improvements over multiple iterations at
the new processor size. For a production science code such as LAMMPS, ReSHAPE
leverages the existing checkpoint-restart mechanism and uses the restart files to redis-
tribute data after resizing. The table shows the number of resize operations performed
for each problem size. We observe that as the problem size increases, LAMMPS bene-
fits more from resizing, with relatively low overhead cost. For example, as the problem
size increased from 32000 to 2048000 atoms, the performance improvement increased
from 49.24% to 72.64% whereas the redistribution overhead decreased from 17.98% to
1.36%. The performance improvements listed in Table 2 include the resizing overhead.

3.2 Performance Benefits for MD Applications in Typical Workloads

The second set of experiments involves concurrent scheduling of a variety of jobs on a
cluster using the ReSHAPE framework. We can safely assume that when multiple jobs
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are concurrently scheduled in a system and are competing for resources, not all jobs can
adaptively discover and run at their sweet spot for the entirety of their execution. In this
experiment, we use a FCFS + least-impact policy to schedule and resize jobs on the
cluster. Under this policy, arriving jobs are scheduled on a first-come, first-served basis.
If there are not enough processors available to schedule a waiting job, the scheduler tries
to contract one or more running jobs to accommodate the queued job. Jobs are selected
for contraction if the ReSHAPE performance monitor predicts those jobs will suffer
minimal performance degradation by being contracted. More sophisticated policies are
available in ReSHAPE and are discussed in detail in [2].

We illustrate the performance benefits for a LAMMPS job using three different sce-
narios. The first scenario uses workload W1 and schedules a single resizable LAMMPS
job with 16 static jobs. The second scenario also uses W1 but schedules all jobs as re-
sizable jobs. The third scenario uses workload W2 to schedule 6 instances of LAMMPS
with 11 instances of CG, FT, IS and LU as resizable jobs.

Figure 3(a) shows the processor allocation history for the first scenario. LMP2048
starts execution at t=0 seconds with 30 processors. At each resize point, LMP2048
tries to expand its processor size by 10 processors if there are no queued jobs. The
granularity with which a resizable application expands at its resize point is set as a
configuration parameter in ReSHAPE. At t=3017 seconds, LMP2048 expands to 90
processors and maintains that size until t=3636 seconds when a new static job, CG-B,
arrives with a processor request of 32 processors. The scheduler immediately contracts
LMP2048 at its next resize point to 60 processors to accommodate the new job. At
t=3946 seconds, LMP2048 further contracts to 50 processors to accommodate a CG-A
application. Finally, LMP2048 reduces to its starting processor size to accommodate
another CG-B application at t=4686 seconds. Due to the lack of additional processors,
LMP2048 maintains its starting processor size till it finishes its execution. Figure 3(b)
compares system utilization using ReSHAPE with static scheduling. Static scheduling
requires a total of 8837 seconds to complete the execution for all the jobs whereas
ReSHAPE finishes the execution in 6728 seconds. An improvement of 20.4% in system
utilization due to dynamic resizing translates into a 36.4% improvement in turn-around
time for LMP2048.

Figure 3(c) shows the processor allocation history for the second scenario where all
the jobs are resizable. Similar to the first scenario, LMP2048 starts execution at t=0 sec-
onds and gradually grows to 90 processors. Due to contention for resources among jobs,
all CG, LU, FT-B and IS-B jobs run at their starting processor configuration. IS-A and
FT-A are short running jobs and hence they are able to resize quickly and grow up to 32
processors. Although LMP2048 is a long running job, it is able to expand because of its
small and flexible processor reconfiguration requirement at its resize point. LMP2048
contracts to 60 processors at t=3618 seconds and further to 50 processors at t=3916 sec-
onds to accommodate two CG applications. It contracts to its starting processor size at
t=4655 seconds and maintains the size till it finishes execution. For the same workload
W1, ReSHAPE finishes the execution of all the jobs in 6588 seconds with an overall
system utilization of 75.3%.The turn-around time for LMP2048 improves by 36.8%.

Figure 3(d) illustrates a third job mix scenario where multiple instances of the
LAMMPS application and applications from the NAS benchmark suite are scheduled
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Fig. 3. Processor allocation and overall system utilization for a job mix of static and resizable
LAMMPS jobs

Table 3. Performance results of LAMMPS jobs for jobmix experiment. Time in secs.

LAMMPS jobs Job completion time
ReSHAPE Static Improvement %

Scenario 1 LMP2048 5301 8337 3036 36.4
Scenario 2 LMP2048 5268 8337 3069 36.8

Scenario 3

LMP2048 7239 8469 1257 15.0
LMP864 3904 3726 -178 -5.0
LMP864 3892 3763 -129 -3.0
LMP864 3756 3744 -12 -0.3
LMP256 1370 1592 222 14.0
LMP256 1704 1594 -110 -7.0

together as resizable applications. LMP2048 increases from 30 to 60 processors at 1337
seconds and contracts immediately to its starting processor size to allow scheduling
of other queued jobs. LMP2048 expands again and maintains its processor size at 40
till it finishes execution. LMP256 expands from its starting processor configuration to
30 processors and maintains its size at 30 till completion. LMP864 starts its execu-
tion at t=7173 seconds, and executes at its starting processor size due to unavailability
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of additional processors. It expands to 40 and 50 processors at t=10556 seconds and
t=10760 seconds, respectively, and finishes with 60 processors at t=10929 seconds. The
remaining LAMMPS jobs execute at their starting processor configuration. Static
scheduling finishes the execution of W3 in 10997 seconds whereas ReSHAPE requires
only 10929 seconds. With ReSHAPE, the overall utilization is 88.1%, an improvement
of 9.3% compared to static scheduling.

Table 3 summarizes the performance improvements for LAMMPS jobs in all three
scenarios. The performance of LMP2048 improved by 36.4% and 36.8% in scenarios 1
and 2, respectively, whereas in scenario 3 the performance improved by only 15%. We
observe that LMP864 and LMP256 jobs perform better with static scheduling than with
ReSHAPE. The degradation in performance is due to the data redistribution overhead
incurred by the application at each resize point. In the third scenario, all three LMP864
and one LMP256 jobs execute either at their starting processor configuration or close
to it. In our current implementation, LAMMPS considers each run to the resize point
as an independent execution step. It requires a restart file to resume the execution af-
ter resizing. The restart file is required even when the application does not resize at
its resize point. Thus, an additional overhead cost is incurred in writing and reading
the restart files resulting in performance degradation. LMP256 suffers a maximum per-
formance degradation of 7% whereas LMP864 loses performance by 5% compared to
static scheduling. However, note that the statically scheduled LAMMPS jobs did not
write any restart files, which in practice is unusual.

4 Conclusion

In this paper we describe the steps required to resize a well known molecular dynamics
application and evaluate resulting performance benefits. We present a case study using
LAMMPS and identify the minor modifications required to execute it with ReSHAPE.
Experimental results show that dynamic resizing significantly improves LAMMPS ex-
ecution turn-around time as well as overall cluster utilization under typical workloads.

Although data redistribution using file-based checkpointing is expensive (compared
with message-passing based redistribution available for some common distributed data
structures [3]), we find that it is a realistic approach for production scientific codes such
as LAMMPS. This approach takes advantage of checkpoint and recovery mechanisms
already available in the code; deep understanding of distributed data structures is not
required. The extra overhead is relatively modest for long-running applications as long
as resizing is not done too often, and in fact, may not be any added cost at all since
the usual (statically scheduled) case would write checkpoint files periodically anyway.
We also note that this approach requires no changes to the ReSHAPE framework. The
ReSHAPE runtime environment treats resizable LAMMPS jobs like any other resizable
job, irrespective of how data redistribution is accomplished.
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Abstract. MPI is the de-facto standard for message passing in parallel
scientific applications. MPI-IO is a part of the MPI-2 specification defin-
ing file I/O operations in the MPI world. MPI-IO enables performance
optimizations for collective file I/O operations as it acts as a portability
layer between the application and the file system. The goal of this study
is to optimize collective file I/O operations. Three different algorithms for
performing collective I/O operations have been developed, implemented,
and evaluated on a PVFS2 file system and over NFS. The results indicate
that different algorithms promise the highest write bandwidth for differ-
ent number of processors, application settings and file systems, making
a one-size-fits-all solution inefficient.

1 Introduction

Many scientific applications utilizing parallel computers have to analyze tremen-
dous amounts of data. The main challenge for such applications is the limited
performance of individual magnetic hard drives, respectively of the entire I/O
subsystem attached to typical clusters. Compared to the performance of CPU,
memory and networking cards, a magnetic hard drive offers multiple orders of
magnitude of higher latencies and lower bandwidths. Operating Systems try to
hide the latency of file I/O operations by applying buffering and caching tech-
niques, which show significant performance improvements for certain (regular)
scenarios, but lead to performance degradation for applications having more
irregular I/O patterns. In order to overcome the bandwidth limitations, most
systems combine multiple disks to a single logical unit in a RAID configura-
tion [1], such that files can be striped over multiple disks. The I/O performance
of an application will thus depend on characteristics of the storage device, the
file system utilized, the network interconnect used between compute nodes and
the storage as well as in-between the compute nodes, and the I/O pattern of the
applications.

The MPI 2 specification [2] includes routines for handling files in a parallel
application, leveraging existing concepts from MPI 1, such as process groups and
derived data-types. Among the most important features of the MPI I/O specifi-
cation is the notion of a file view, which defines the portion of a file accessible to
a particular process. Declaring a file view allows the MPI I/O implementation

G. Allen et al. (Eds.): ICCS 2009, Part I, LNCS 5544, pp. 185–194, 2009.
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to pre-calculate offsets for the subsequent I/O operations from a process, de-
tect overlap or the lack of overlap between individual processes, and potentially
prefetch data items for read operations.

The MPI I/O interfaces offer both blocking and non-blocking operations to
access a file, as well as the notion of individual vs. collective I/O operations.
The latter offers the possibility to concatenate data from multiple processes, po-
tentially avoiding a sequence of small, individual file requests, but post a single,
large I/O request instead. ROMIO [3], the most wide-spread implementation of
MPI I/O as of today, utilizes so-called two-phase collective I/O operations [4],
which combines the data and posts I/O requests similarly to what we described
in this paragraph. This approach has also been taken by some file systems to
accumulate multiple user-level requests [5,6], and has been extended in various
ways, e.g. to reduce the amount of meta-data required to be communicated be-
tween the processes by using derived data types [7] instead of lists of offsets.
In [8], an adaptive approach for parameters that are passed as file hints is pre-
sented to optimize the performance of collective I/O operations on the SX vector
computer with the GFS [9] file system. Yu et. al. exploit the file joining feature
of Lustre to optimized collective write operations [10].

In this paper we analyze the performance characteristics of three different
algorithms to implement collective write operations. Although the algorithms
here can easily be transformed and used for read operations as well, we stick
with write operations due to space limitations. The first algorithm is based on
the two phase collective I/O algorithm described above, having the option to
group internally the processes and thus vary the number of processes executing
file I/O operations. The second is a modification of the two-phase collective I/O
algorithm which does not optimize the file access to the hard drive, but the com-
munication occurring during the shuffle operation. Lastly, the third algorithm
avoids any communication between the processes and has each process handle
its own I/O requests. We explore the performance behavior of these algorithms
over a PVFS2 file system and over NFS, and compare them to the performance
numbers achieved using ROMIO.

The remainder of the paper is organized as follows: section 2 gives details to
the three algorithms explored in this paper. In section 3 we present the results
obtained over PVFS2 and NFS. Finally, in section 4 we summarize this work
and outline the future work in this area.

2 Collective Write Algorithms

This section describes the algorithms that have been implemented within this
study. Two of the algorithm are derived from the two-phase collective I/O ap-
proach used in ROMIO, while the third algorithm acts similarly to individual I/O
routines. The routines have been implemented in a stand-alone library utilizing
the profiling interface of MPI to intercept the MPI Init and the MPI Finalize
functions. The library implements a subset of the MPI I/O routines defined in
the standard. In MPI Init the library reads a configuration file which specifies
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the algorithm to be used for collective I/O operations. This allows us to test
various algorithms without having to recompile the library.

For simplicity of low level I/O operations, a file I/O layer is introduced consist-
ing of four simple interfaces, namely open, read, write and close. Two different
implementations for the lower level I/O operations are available as of today. The
synchronous low level I/O functions use pwrite/pread while the asynchronous
version relies on the aio write/aio read [11] operations. Both sets of routines
eliminate the need for seek operations, since the user has to provide explicitly
the offset into the file for every operation. Since our results did not show a signif-
icant impact on using the synchronous or asynchronous low-level I/O functions
for the platforms tested, we stick for the sake of simplicity to the synchronous
low-level I/O operations for the rest of the paper.

2.1 Dynamic Segmentation Algorithm with Multiple Writers

This algorithm follows mostly the two-phase collective I/O operations outlined
in the introduction. Its main goal is to combine data from multiple processes
in order to minimize the number of I/O operations presented to the file system
and avoid rewinds on the disk if possible. In a first step, all processes share
location information about the data to be written with each other. Using two
MPI_Allgather() operations, all processes share the list of file offsets and num-
ber of elements to be written with each other within the given collective write
operation. Thus, every process has the knowledge of the operations to be per-
formed by every other process. All processes can than sort these lists in an
ascending order of the file offsets. The lists are divided in cycles of operation,
where in each cycle, a fixed number of bytes are written to disk. A process can
calculate how many elements it has to contribute for the write operation in that
cycle. Using an extended version of the MPI_Gatherv() function, each process
sends its elements contributing in the current cycle to the writer process assigned
to him.

Note, that there can be more than one writer process, depending on the
number of writer processes defined in the configuration file. Each writer process
would handle the I/O for a certain number of processes. For example, for 24
processes and 4 writers, the processes would be grouped such that processes
0 − 5 will have the rank 0 as a writer, processes 6 − 11 process 6 as a writer,
processes 12 − 17 process 12 as a writer and so on. The writers would gather
all the information and data needed from the other processes in their group and
perform the actual write to disk.

Figure 1 shows a case where three processes are writing collectively with
a cycle size of five bytes using a single writer process, namely rank zero. It
shows that the operation is performing sequential disk access under optimal
conditions with each process contributing varying amount of data in each cycle.
Furthermore, it highlights one of the important characteristics of this algorithm,
namely the fact, that a process might not be actively involved in every cycle of
this algorithm. Thus, while the algorithm optimizes the disk access operations,
the communication pattern deployed is suboptimal due to the fact that the data
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Fig. 1. Sketch of the write dynamic segmentation algorithm with a single writer

contributed by a particular process varies per cycle and thus does not make use of
all communication channels in each cycle. The communication costs are affected
however positively when using multiple writers in this algorithm, since it leads
to the forming of smaller subgroups of process, which each execute internally a
gather operation. Thus, the congestion typically occurring at the root process of
the gather operation is avoided by having multiple root processes.

Since large write-all operations are typically executed in multiple cycles, one
of the open questions is whether the size of the temporary buffer used for con-
catenating data from multiple processes, in the following referred to as the cycle
buffer, shall be fixed and independent of the number of writer processes, or
whether it should scale with the number of writers. We will evaluate both op-
tions in the subsequent results section.

2.2 Static Segmentation Algorithm

In this algorithm, data is gathered from all processes at a root process which will
perform the low-level write operation. Data is written in fixed chunks, with the
size of the chunk being a parameter of the configuration file read in MPI Init.
In contrary to the previous algorithm, the root process gathers a fixed number
of bytes from all processes in each cycle. Thus, the algorithm does not necessarily
reduce the overall number of I/O requests presented to the file system, but reduces
the number of processes executing these I/O requests. Furthermore, due to the
fact that every process contributes in every cycle a constant amount of data, this
algorithm makes a better use of the communication resources in the cluster.

Figure 2 shows a scenario where three processes are writing collectively with
cycle buffer size of two bytes. It shows that the operation is performed in three
cycles. After the 1st cycle, the file pointer needs to be moved back for the next cy-
cle. Note, that the algorithm does not support as of today the notion of multiple
writers, i.e. one process is only allowed to execute I/O operations. Similarly to
the dynamic segmentation algorithm, the question on whether to scale the cycle
buffer with the number of processes or whether to keep it constant independently
of the number of process used, arises.
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Fig. 2. Sketch of the write static segmentation algorithm

At first sight, this algorithm seems counterintuitive to the common knowledge
which states, that file access operations are the most time consuming part of
collective I/O operations. However, many large scale installations provide huge
caches on the I/O nodes, which effectively decouple the compute cluster form the
storage devices, and thus show - from the application perspective - virtually no
sensitivity to irregular or strided file access patterns [12]. Furthermore, one of the
distinctive features of a technology currently on the rise, solid state hard drives
(SSD), is its insensitivity to irregular access in the file. For these two scenarios,
the static segmentation algorithm optimizes the second most time consuming
operation, namely the communication occurring during the shuffle step.

2.3 Individual Write

This algorithm avoids communication operations entirely and has each process
write its data individually to the hard drive. The MPI File write all opera-
tion exposes therefore the behavior that the application would face when us-
ing individual MPI File write operations instead of the collective version. The
main difference compared to the latter approach is that the collective operation
internally structures the I/O operations in cycles, similarly to the previous al-
gorithms, in order to overlap the I/O operations with the calculation of the file
offsets based on the file view and the merging of different segments.

Note, that this algorithm has also been extended by using a scheduling ap-
proach to control the number of processes concurrently performing I/O opera-
tions, and thus limit the burden on meta-data servers for some file systems. Due
to space limitations we skip however this (fourth) algorithm.

3 Performance Evaluation

This section presents the performance evaluation of the three algorithms pre-
sented previously. For the dynamic segmentation algorithm using multiple writ-
ers, we explore the performance using 1, 2, 4, 8, 12, and 24 writers. We also
compare these algorithms to the performance of ROMIOs MPI File write all
routine. The ROMIO algorithm has been executed without passing any addi-
tional hints to the library, since the main goal of using ROMIOs implementation
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within this context is to have a baseline for the comparison of our algorithms.
The cluster used for these tests consists of 24 single process dual-core AMD
Opteron nodes and 5 dual-processor quad-core AMD Opteron nodes, providing
a total of 88 compute cores. The nodes are connected by a 4x InfiniBand network
interconnect. It has a parallel file system (PVFS2) mounted as ’/pvfs2’, which
utilizes 22 hard drives, each hard drive is located on a separate compute node.
The PVFS2 file system internally uses the Gigabit Ethernet network to commu-
nicate between the pvfs2-servers. The home file system on is NFS mounted from
the front-end node.

We executed a simple benchmark in which processes collectively write
max size bytes of data for a given number of iterations to the file. The file
view is determined by another parameter (segment size), which allows to control
the size of the data portion ’owned’ by a process. To explain the correlation
between the two parameters, consider an example, where max size is set to 8
bytes, while segment size is set to 2 bytes. In a four process test case, a call to
MPI File write all having to write max size bytes of data per process would
lead to process 0 having to write two bytes each at offsets (0,8,16,24), process
1 writing two bytes each at the offset (2,10,18,26) and so on. We measure the
execution time of the test required to write all data to file, and calculate the
bandwidth achieved by taking the size of the overall file created and overall ex-
ecution time. Each test has been executed three times, and we present here the
maximum bandwidth achieved through these runs.

3.1 Results Achieved over PVFS2

When writing over PVFS2, each process executes MPI_File_write_all opera-
tions writing 20MB of data per function call, writing all-in-all 1GB of data to
file. Note, that we did perform tests with even larger files, which lead however to
the same performance numbers that we present in this paper. Thus, the overall
file size for the 24 processes test cases is 24GB and for the 48 processes test cases
is 48 GB. Furthermore, we vary the segment size (2MB, 10MB, 20MB) and the
cycle buffer size (1MB, 10MB, 20MB) for our tests.

The results of the first set of tests executed over PVFS2 are shown in Fig. 3.
For both, the 24 and the 48 processes tests, the dynamic segmentation and
the static segmentation algorithm were using scaling cycle buffers, as explained
in the according subsections. Both graphs have in common, that the dynamic
segmentation algorithm with 24 writers and the individual algorithm achieve
the highest bandwidth. More generally, as the number of writers increase in
the dynamic segmentation algorithm, so does the bandwidth achieved for those
operations. The static-segmentation algorithm shows a bad performance in these
tests. ROMIO is achieving a reasonably good performance, although the two
top performing algorithms are significantly outperforming the default ROMIO
version.

All algorithms show increasing performance with increasing segment sizes.
The main reason for this is that the number of data blocks that have to be
sorted and potentially merged is decreasing, since the size of each data block is
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Fig. 3. Performance Comparison for 24 processes (left) and 48 processes (right) with
varying the segment size and keeping the cycle buffer size constant at 20MB

Table 1. Performance Breakdown (in seconds)of the Dynamic Segmentation and In-
dividual Algorithms over PVFS2 with 24 and 48 processes with segment size and cycle
buffer size being 20 MB

Gathering I/O Total
24 48 24 48 24 48

Dynamic 24 0.74 2.97 33.18 99.39 34.91 104
Dynamic 12 1.8 5.24 46.62 232.28 50.08 239.63
Dynamic 1 25.88 49.46 285.14 755.75 325.74 837.83
Individual N/A N/A 39.8 86.49 39.8 86.49

increasing. ROMIO shows a significantly lower sensitivity to the segment size
than our algorithms, probably due to the usage of derived data types [7] instead
of lists of offsets for the according operations.

Comparing the performance of the 24 and 48 process test-cases, it is notable,
that the overall bandwidth of all algorithms drops when using two processes per
node. Tabel 1 shows the performance breakdown of the dynamic segmentation
and individual algorithms. Both cases (24 and 48 processes) show that most of
the time is spent in I/O operations, and a smaller fraction is spent on the data
gathering operations. However, the data also indicates, that although the data
volume doubles between the two cases, both the I/O and the communication
costs increase more severely, e.g. by a factor of 2-5. Note that for the 48 processes
case, we were not able to get a result for the static segmentation algorithm due to
the enormous amount of temporary buffer required for that scenario (960MB).
With a fixed cycle buffer size, the algorithm could finished successfully, but
performed poorly overall.

In Fig. 4, we analyze the effect of the cycle buffer size on the algorithms. For
this, we execute the same write tests keeping the segment size constant at 20MB.
The results show that increasing the cycle buffer size improves the performance
but not by a huge factor. The individual algorithm is an exception there, where
increasing the cycle buffer size does not necessarily yield a better performance.

Finally, table 2 shows the difference between fixed and scaling cycle buffer
sizes when using the dynamic segmentation algorithm. The results show that
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Fig. 4. Comparing the performance of some of the algorithms while varying the cycle
buffer size and keeping the segment size constant at 20MB

Table 2. Bandwidth comparison (MB/sec) of the Dynamic Segmentation algorithm
with Constant vs. scaling cycle buffer size of 20 MB and a segment size of 20 MB

24 procs 48 procs
constant scaling constant scaling

Dynamic 1 74.47 82.27 55.09 68.7
Dynamic 2 116.52 139.31 86.87 95.35
Dynamic 4 189.37 223.48 112.72 133.59
Dynamic 8 328.27 403.49 110.21 204.81
Dynamic 12 330.99 494.89 71.59 198.53
Dynamic 24 350.41 694.82 280.26 538.81

having each writer write the specified cycle buffer size in a cycle would be better
than dividing the cycle buffer size over all the writers in each cycle. The reason
would be that with the scaling cycle buffer size, the actual I/O is done with
larger sequential chunks of data as compared with small chunks of the fixed
cycle buffer size. Another common observation between the two approaches is
that increasing the number of writers over PVFS2 still provides better results.

3.2 Results Achieved over NFS

Although NFS is considered to not be well suited for parallel I/O, it is as of today
the most wide spread file system on small and medium size clusters. End-users
experimenting with MPI I/O over NFS should not see a performance degrada-
tion compared to sequential POSIX I/O even on this file system, since this will
discourage them from using MPI I/O in their codes.

In order to keep the execution time of our tests within a reasonable time
frame, we set each process to write only 100MB of data. Tests have been executed
with various cycle buffer size (1MB, 10MB, 20MB), and keep the segment size
constant at 2MB.

The results that were gathered over NFS show significant deviations from the
PVFS2 results. For the dynamic segmentation algorithm, the lower the number
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Fig. 5. Performance Comparison for 24 processes (left) and 48 processes (right) with
varying the cycle buffer size and keeping the segment size constant at 2MB

of writers, the better the performance. The static segmentation algorithm using
scaling cycle buffers performs well in that case, compared to the other algorithms.
Most algorithms that we tested outperformed ROMIOs version in this setting.
Since the cycle buffer size is not relevant for ROMIO, the graph shows only one
bar for ROMIO. Independent of the algorithm used, the user still would observe
a performance hit when using MPI I/O over NFS compared to the raw write
performance of a single hard drive ( 35 MB/s sustained).

4 Summary

In this paper, we described three algorithms for MPI-IO collective write opera-
tions, the dynamic segmentation, static segmentation, and individual algorithms.
The testing was done over two file systems, PVFS2 and NFS. The results show
that there is a large room for optimizations within the collective I/O operations.
The performance of the algorithms depended on the file system, number of pro-
cesses and the file view (segment size) utilized by the processes, and lead in fact
to different algorithms delivering the best performance.

Future work in this area includes further extending some of the algorithms
described above, e.g. including the ability to have multiple writers for the static
segmentation algorithms, and extend the individual algorithms by sophisticated
scheduling approaches in between the processes to limit the burden on meta-data
servers. Furthermore, we plan to evaluate the performance of the algorithms on
a wide variety of hardware and software configurations in collaboration with
various institutions, including a RAID of SSD disks. Preliminary tests on a
Lustre file system have already been performed and revealed again a highly
different behavior of the algorithms. The long term goal of the project is to
develop a flexible module for collective I/O operations that can easily adjust
to various hardware and software configurations and choose the right algorithm
dynamically, using dynamic runtime adaption techniques.

Acknowledgments. This research was funded in part by a gift from the Silicon
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Abstract. This paper presents an application-level non-blocking mul-
ticast scheme for dynamic DAG scheduling on large-scale distributed-
memory systems. The multicast scheme takes into account both network
topology and space requirement of routing tables to achieve scalability.
Specifically, we prove that the scheme is deadlock-free and takes at most
logN steps to complete. The routing table chooses appropriate neigh-
bors to store based on topology IDs and has a small space of O(logN).
Although built upon MPI point-to-point operations, the experimental
results show that our scheme is significantly better than the simple flat-
tree method and is comparable to vendor’s collective MPI operations.

1 Introduction and Motivations

Multicore architectures are capable of running many threads simultaneously and
require future parallel software be fine-grained and asynchronous [1,2,3]. An
approach to developing scalable parallel software is to place fine-grained compu-
tations in a directed acyclic graph (DAG) and schedule them dynamically (data-
driven or demand-driven) [4]. Although a centralized DAG scheduler works well
on SMPs, it will not scale well on systems with thousands of nodes or tens of
thousands of cores. One way to overcome the scalability problem is to adopt a
decentralized scheduler, that is, each node runs a private DAG scheduler and
communicates with other nodes regarding data dependences only when neces-
sary. Ideally, the distributed scheduler has no globally shared data structures, no
requirement of much space to store DAGs, and no blocking operations. Further-
more, it respects the critical path, takes into account data locality, maintains
load balancing, and performs communication efficiently.

Instead of solving all the problems at once, we study how to perform com-
munication efficiently during dynamic DAG scheduling. The most common com-
munication operation used to execute DAGs is multicasting where a completed
task must notify its descendants that are blocked awaiting its output (Fig. 1).

� This material is based upon work supported by the Department of Energy Office of
Science under grant No. DE-FC02-06ER25761 and by Microsoft Research.
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P3

...1024

P0 P2P1

Fig. 1. Data multicast from parent to children in a DAG

MPI libraries provide users with optimized broadcast operations on nearly all
high performance machines. Due to the dynamic and irregular parent/children
relationship in general DAGs, there could be 2N possible subsets of processes
for broadcasting, where N is the number of processes. For every finished task
and its corresponding children, one has to call MPI Comm create() followed by
MPI Bcast to realize the multicast. Even if we ignore the time to create the com-
munication groups, multiple MPI broadcasts involving the same process have to
be executed in sequence because MPI broadcast is a collective operation. Figure
1 shows an example where P3 is involved in three communication groups with
broadcast roots P0, P1, P2, respectively.

This paper presents a novel multicast scheme to enable dynamic DAG schedul-
ing on large-scale distributed systems with tens of thousands of processors. The
multicast scheme is non-blocking, topology-aware, scalable, and deadlock-free,
and it supports multiple concurrent multicasts. We compare its performance to
a flat-tree multicast and a vendor MPI Bcast. Based on the experimental results,
our multicasting scheme is significantly better than the simple flat-tree method
and comparable to the optimized collective MPI broadcast.

2 Computation Model

2.1 Symbolic Task Graph

We represent the semantics of programs with loop nest control structures by
polyhedrons such that each task instance corresponds to a unique coordinate
or iteration vector. A task instance is denoted by a tuple (type, iteration
vector). By identifying data dependences between tasks, we are able to con-
struct the whole DAG. Similar to the method introduced by [5], we define a task
graph symbolically as follows: G = 〈T,E〉, where

T = {task t : t = (type,u)}.

The set of edges are defined by a set F of symbolic functions:

F = {fi for certain task type i} and fi : {u} → T.

Given a task instance (t,u), ft(u) generates a set of tasks that are dependent
on task (t,u).
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2.2 Programming Model

We designed a simple application programming interface (API) and implemented
a runtime system prototype to support dynamic DAG scheduling. After the user
implements the API routines, the underlying runtime system can automatically
parallelize and execute the DAG on shared- or distributed-memory systems. The
ANSI C programming interface routines are listed below:

int get_children(const Task t, Task children);
int get_num_parents(const Task t);
void set_entry_task(const Task t);
void set_exit_task(const Task t);

Note that we can obtain the child tasks easily by calling get children() if
the finished parent task is given. As long as each member of the multicast group
is notified of the parent task, it is able to deduce the whole group immediately.
If the get children() function is not feasible, the group members have to be
included explicitly in messages.

3 Multicast Scheme Overview

When a set of processes are executing a DAG, multiple sources may want to
notify different groups of children simultaneously. The new multicast method
is able to provide this functionality automatically. The multicast scheme is es-
sentially an application-level routing method. Every process owns a compact
routing table. Although each process only has knowledge of a few neighbors,
the whole group of processes is represented by a collection of hierarchical trees.
Most importantly, every process is the root node of its own multicast tree. The
routing algorithm simply follows the tree to multicast data to a set of children.

In Fig. 2, the process on node 001 wants to multicast data to {010, 100, 101}.
For this system with eight nodes, it takes three steps to complete the multicast.
There could be at most eight processes running (at leaf nodes) on the system,
but certain processes will be mapped to serve as ”virtual masters” responsible for
their corresponding subtrees. Our method to build the routing table guarantees
that there exists a path from the source to every destination by filling in ”virtual
masters” (Lemma 1 in Sect. 7). The path length is bounded by logN .

4 Topology ID

To improve communication performance, it is critical to know the communication
cost between a node and the other nodes on a system. One could build a N × N
table to describe the latency and bandwidth information between every pair of
nodes. But for a system with millions of nodes, it is too costly to build and maintain
such a big table. Another natural approach is to use hierarchy as an abstraction to
achieve scalability.The hierarchyabstractionhas been widely used on the Internet,
for example for DNS and IP addresses, as well as for message passing operations
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100 101 110 111

Fig. 2. Data multicasting in a data flow graph

on computational Grids. Instead of exposing all the other nodes to the source, the
hierarchy technique utilizes a hierarchical tree to send data level by level. This way
each node only communicates with a small number of nodes so that the system
keeps scaling. We assign each node a topology ID on the system. Working like ZIP
codes, we assume the longer the common prefix of the two nodes’ topology IDs,
the closer they are and the smaller the latency. When a process is running on a
node with topology ID x, we say the process has topology ID x.

5 Extention to the Plaxton Neighbor Table

In this section, we briefly describe the Plaxton neighbor table and our extension
to support multicasting. Plaxton uses an incremental routing approach similar
to hypercube routing which resolves the destination node address dimension by
dimension [6]. Supposes a system has n = 2m nodes, where m is a multiple
of b. Plaxton assumes that each node has a label which is independently and
uniformly distributed at random between 0 and n−1. Instead of using a random
label for each node, we assign a topology ID tid ∈ [0...n− 1] to each node. The
topology ID reflects the latency relationship (near or far) between two nodes,
and is expressed as a sequence of m

b digits with the base 2b. For instance, if one
system has 4096 = 212 nodes, base = 23 leads to a 4-digit octal topology ID.

Every node has its own neighbor table T . Table T consists of r rows and c
columns, where r is equal to the number of digits (=m

b ) and c is equal to the
digit’s base (= 2b). Table entry T [i, j] stores the forwarding node address. In
the case of application-level multicasting, we store an MPI rank as a forwarding
address. Let node x have a topology ID of id(x) = d0d1 . . . dr−1. If table entry
T [i, j] in node x contains node y which has topology ID id(y), then id(x) and
id(y) must satisfy the following two conditions:

(1) id
(x)
0 id

(x)
1 . . . id

(x)
i−1 = id

(y)
0 id

(y)
1 . . . id

(y)
i−1 = d0d1 . . . di−1,

(2) id
(x)
i �= j and id

(y)
i = j.

Please note that there could exist a set Y of nodes meeting the above conditions
for node x. For instance, table entry T [3, 5] in a node with octal topology ID
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012345 can contain any node with a topology ID ∈ 012[{0 − 7}/3}][0 − 7]+.
Therefore a decision function is needed to choose the best candidate. For in-
stance, Plaxton chooses y∗ = Miny∈Y CommCost(x, y) as the best neighbor.

In the case of Y = ∅, Plaxton assumes an ordering in the set of n nodes
and picks a node y that matches node x in the suffix i, i + 1, . . . , r − 1 digits
with the highest order. In contrast to the full Plaxton neighbor table, we leave
those entries empty and prove this modification avoids cycles in application-level
multicasting (Theorem 2 in Sect. 7).

5.1 Compact Routing Table

While routing tables are usually used to connect nodes, we use them to connect
processors and processes in the context of application-level multicasting. Assume
a system has n processors and the base of topology IDs is equal to c, then the
routing table will have log2(n)

log2(c)
rows and c columns. The routing table occupies a

small amount of space even for large-scale systems. If a system has one million
(220) cores, a base of 16 results in a routing table of 5 rows by 16 columns that
equals 80 entries. If one has a billion (230) cores, the routing table is of 6 rows
and 32 columns given the base 32. Every table entry just stores a single integer.

6 Algorithms

This section describes how every process builds its own routing table when the
application first starts and how the process constantly receives messages and
forwards them to proper destinations.

6.1 Building a Local Routing Table

Before doing any real work, each MPI process first builds a local routing table.
Each process’s topology ID is assigned by users based on the network topology.
In Fig. 3, a process scans every other process ID and compares that process’s
topology ID to its own topology ID to fill in the routing table. When there are
multiple processes that are legitimate to be stored in T[i,j], we either pick a
process randomly or find the closest process. In our experiments on Myrinet, the
random method is slightly better than the nearest neighbor method.

6.2 Forwarding Algorithm

While participating in the multicast, a process works as either an internal node or
a leaf in the multicast tree. Whenever the root is given, the locations of receivers
become fixed in the particular multicast tree. Data will always flow from root to
leaves. Figure 3 shows how to find the next level of tree nodes in the multicast
tree to which to forward. The index of the next level (i.e., stage) should be at
least one level further from the root. The program looks up the table and gets a
forwarding process for each child and stores it in array destinations.
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typedef struct {
int table[NUM_LEVELS * NUM_COLS];
int topo_ids[MAX_NUM_PROCESSES];

}* NeighborTable;

int *candidates[NUM_LEVELS * NUM_COLS];
NeighborTable my_tbl;

for(p = 0; p < nprocs; p++) {
if(p == my_pid) continue;
topid = my_tbl->topo_ids[p];
level = longest_prefix(my_top_id, topid);
column = get_kth_digit(topid, level);
idx = level * NUM_COLS + column;
candidates[idx][counters[idx]++] = p;

}

/*choose proper neighbor from candidates*/
choose_best_neighbor(my_tbl, candidates);

while(1) {
...
Received a message from process prev_topid;
stage = longest_prefix(my_top_id, prev_topid)+1;
for(i = 0; i < num_children; i++) {

p = get_children(i);
if(p == my_pid) continue;
top_id = my_tbl->topo_ids[p];
lcl = longest_prefix(my_top_id, top_id);
if( lcl >= stage) {

column = get_kth_digit(top_id, lcl);
forward = TBL_ENTRY(my_tbl, lcl, column);
if(!is_element(forward, destinations)) {

destinations[idx++] = forward;
}

}
}
Send message to processes in destinations[];

}

Fig. 3. Algorithms for the non-blocking multicast scheme

7 Theorems

Lemma 1. Suppose process Px has a topology ID x and needs to send data
to process Pz with topology ID z. Then there always exists a process Py stored
in Px’s neighbor table such that Px can forward data to Py and LCD(y, z) ≥
LCD(x, z) + 1.

Proof. Let LCD(i, j) compute the longest common prefix length of i and j.
Suppose i = LCD(x, z), Px will forward data to a process with a topology
ID of the form x0x1 . . . xi−1zi ∗ . . . ∗. It is easy to see that at least z have the
form. So one of the processes of Pz ∪ {processes with ID x0x1 . . . xi−1zi ∗ . . . ∗}
will get the forwarded data. Therefore such a process must exist. By definition
of LCD, we know x0x1 . . . xi−1 = z0z1 . . . zi−1 and xi �= zi. Given i and z,
the forwaring algorithm chooses the process stored in the ith row and the zith
column. Any process located in T [i, zi] will be the target to which Px forwards
data and it must exist. WLOG, let it be Py with topology ID y. Since Py is in
T [i, zi] of Px’s neighbor table, y0y1 . . . yi−1 = x0x1 . . . xi−1 = z0z1 . . . zi−1 and
yi = zi. Therefore, y0y1 . . . yi = z0z1 . . . zi. In other words, LCD(y, z) = i+ 1 ≥
LCD(x, z) + 1.

Lemma 1 proves that the forwarding method is always successful even if there
exist empty entries in the process’s routing table. For every step of forwarding,
the longest common prefix length to the destination increases by at least one.

Theorem 1 (Reachability). It is always possible to route a message from
process Px to process Pz and it takes at most m steps to reach Pz. m is the
number of digits in topology IDs.

Proof. By Lemma 1, there ∃Py such that Px can forward data to Py and
LCD(y, z) ≥ LCD(x, z) + 1. Since topology ID z has m digits, it takes at most
m steps to send data to Pz.
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Theorem 2 (Deadlock-freedom). The forwarding mechanism guarantees
that there is no cycle during the forwarding process.

Proof. Suppose process x1 wants to send a message to xp, but there is a cycle
x1 → x2 . . .→ xk → x1 formed before the message reaches xp. If LCD(x1, xp) =
d0d1 . . . dl1 , then by Lemma 1,

LCD(x2, xp) = d0d1 . . . dl1 . . . dl2

LCD(x3, xp) = d0d1 . . . dl1 . . . dl2 . . . dl3

. . .

LCD(xk, xp) = d0d1 . . . dl1 . . . dl2 . . . dl3 . . . dlk

LCD(x1, xp) = d0d1 . . . dl1 . . . dl2 . . . dl3 . . . dlk . . . dlk+1

There is a contradiction if we compare the first LCD(x1, xp) and the last
LCD(x1, xp). Therefore, the forwarding mechanism guarantees there is no cycle.

8 Related Work

MPICH-G2 uses depth to represent where an MPI process is located in a com-
putational Grid [7]. The depths include levels of wide area, local area, system
area, and machine-specific area. The topology table represented by depths and
colors is a global table for the whole grid and needs to be accessible by every
process. Our topology ID representation has a distributed compact table and
requires much less space.

Plaxton introduces local neighbor tables at each node [6]. Our work is an
extension to Plaxton’s neighbor table where we build routing tables for MPI
processes instead of nodes. Since a user’s processes are always a subset of all
the nodes on the system, we modify the table-building method to allow empty
entries (or ”holes”) in the routing table. In addition, we design a multicast
scheme based on the extended routing table. Wu [8] designs a deadlock-free
prefix-based multicasting scheme for irregular networks. Each outgoing channel
of a node is assigned a label. The multicast packet is first forwarded up to the root
and then forwarded down to leaves. But the whole system is based on a single
spanning tree. In our multicast method, every process has its own spanning tree.
Panda proposes a Hierarchical Leader Based approach to support one-to-many
multicasting [9]. The set of nodes are grouped into subsets explicitly so that
each subset is represented by a leader. Banerjee et al. also uses a hierarchical
clustering method to multicast the data stream to large receiver sets [10]. In
contrast, our method builds routing tables to form hierarchies automatically
(represented by spanning trees).

Bayeux uses the structure of Tapestry to provide an application-level multicast
scheme for streaming multimedia applications [11,12]. Bayeux builds a distribu-
tion tree based on four control messages: JOIN, LEAVE, TREE, PRUNE. To
construct a distribution tree, the source server must advertise the session infor-
mation first. Then the clients have to join the session to form a tree. We don’t
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need to construct distribution trees and simply use the implicit spanning trees
to multicast data.

9 Experiments

We conducted experiments on a cluster machine with 64 nodes each with two
processors. The cluster is connected by a Myrinet network. We also did experi-
ments on a SGI Altix 3700 BX2 machine which has a fat tree network topology.
The performance result on the SGI machine is similar to that on the cluster and
is not shown here due to the space limitation.

9.1 Effect of Segments

The performance of the non-blocking multicast method could be affected by the
segment size. Given a message size, we can choose to send it out once or in a num-
ber of segments. Figure 4 considers two message sizes: 512KB and 1MB. For each
message size, we use different segments with sizes from 64Bytes to the whole mes-
sage size and run it on a range of processors from 4 CPUs to 128 CPUs. Based on
the data from Fig. 4, a segment size between 1KB and 32 KB always produces the
best performance. Therefore in the experiments described in Sect. 9.2, we choose
the segment size 8KB for our multicast method whenever possible.
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Fig. 4. Performance of multicast varies with different segment size on Myrinet

9.2 Experimental Results

We compare our non-blocking multicast method (labeled as ”dag mcast”) to
Myricom’s MPICH-MX 1.1 MPI Bcast (labeled as ”mpi bcast”) and a straight-
forward implementation that uses a flat-tree to perform multicasting (labeled as
”flat mcast”). The flat-tree method simply sends the message to every destina-
tion one by one. Both flat mcast and dag mcast are implemented using point-
to-point MPI Send and MPI Recv operations.

We conducted experiments on a range of processors from 16 up to 128. From
Fig. 5, we can see that both dag mcast and mpi bcast are significantly better
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Fig. 5. Multicast performance on a cluster connected with Myrinet

than flat mcast. And the non-blocking multicast method is comparable to the
highly-optimized collective MPI Bcast. Note that the time to invoke MPI Init
and MPI Comm create was not counted for the mpi bcast experiments (in favor
of mpi bcast). The reason why the non-blocking multicast method is slower
than MPI Bcast is because our implementation is built over MPI point-to-point
operations and we cannot do similar optimizations as MPI collective operations
do (e.g., broadcast may be implemented as scatter followed by allgather,
optimal binomial tree is built in advance). Although MPI Bcast is faster, it is
difficult to create communication groups and do collective broadcasts for every
distinct group in dynamic DAG scheduling programs.

10 Conclusion

Our non-blocking multicast scheme is designed to support dynamic DAG
scheduling on distributed-memory machines. While it is possible to use
MPI Bcast directly to implement it, creating communication groups and per-
forming collective operations for arbitrary sets of parent/children is cumbersome
to program. We have designed a multicast scheme, using topology IDs, compact
routing tables, and multiple spanning trees. The multicast scheme is proven
to be deadlock free, scalable in terms of time and space, topology-aware, and
non-blocking. Our experimental results show that performance of our scheme is
significantly better than the simple flat-tree method and comparable to vendor-
optimized collective MPI operations.
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Abstract. We present the living application, a method to autonomously
manage applications on the grid. During its execution on the grid, the
living application makes choices on the resources to use in order to com-
plete its tasks. These choices can be based on the internal state, or on
autonomously acquired knowledge from external sensors. By giving lim-
ited user capabilities to a living application, the living application is able
to port itself from one resource topology to another. The application per-
forms these actions at run-time without depending on users or external
workflow tools. We have applied this new concept in a special case of a
living application: the living simulation. Today, many simulations require
a wide range of numerical solvers and run most efficiently if specialized
nodes are matched to the solvers. The idea of the living simulation is
that it decides itself which grid machines to use based on the numerical
solver currently in use.

1 Introduction

A grid application consists of a range of tasks, each of which may run most
efficiently using a different set of resources. Most of these applications, however,
use a fixed resource topology even though certain tasks could benefit from using
different resources. This can be due to the computational demands of these tasks
or due to a change in resource availability over time. A wide range of work has
been done on developing external management systems that allow applications
to change grid resources during execution. This includes workflow systems [1,2,3]
or grid schedulers with migration capabilities [4,5] that support resource switches
that are either part of a predefined workflow or requested by the user.

An application management system that autonomously switches at run-time
has been proposed by [6], where a hierarchically distributed application man-
agement system dynamically schedules and migrates a bag-of-tasks style MPI
application, using a static hierarchy of schedulers to accomplish this.

A self-adaptive grid application that does not require external managers has
been presented in [7]. Although this application does not use grid scheduling,
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it is able to autonomously migrate to different locations and change its num-
ber of processes. This has been accomplished by allowing all processes to share
knowledge and cooperate in managing the application’s topology.

In this work, we propose the living grid application, in which the application
also decides where to run, and which is also able to migrate itself at run-time to
another computer when needed. The intelligent migration from one computer to
another can be realized over a long baseline, but does not need to be designed
this way (see Sec. 2). We have applied this method to a multi-scale simulation
on an intercontinental grid of semi-dedicated computers.

2 Living Application

2.1 Rationale

A flexible approach is needed to execute a complex grid application with multiple
tasks and a diverse palette of resource requirements. The application should then
be able to switch between tasks at run-time and between the resources required
for each of these tasks, while maintaining the integrity of its data during these
switches.

A switch requires the application to terminate its current execution, output
its current state, and from that reinitialize the application using a new resource
topology suited for the task at hand. Previously this has been done on a grid
only in orchestration with a workflow manager. A job submitted by a workflow
manager lacks the ability to change its resource topology during execution, as
it does not have the privileges to make use of grid schedulers. When running
an application with multiple tasks, this results in a ’bouncing’ pattern where
the manager submits jobs which return once a switch is required, only to be
instantly submitted again to handle a different task. In the most favorable case,
the performance loss introduced by bouncing and managerial overhead can be
limited, but even then the successful completion of the simulation depends on the
availability of an external manager, which is a potential single point of failure.

2.2 How the Living Application Works

The living application switches between sites and tasks dynamically and without
external dependencies. It is based on four principles:

1. It makes decisions on which tasks to do and which resources to use.
2. It makes these decisions based on knowledge it has acquired at run-time.
3. It changes resources and switches between tasks.
4. It operates autonomously.

As a living application operates autonomously on the grid, it obtains its priv-
ileges on its own without interacting with an external workflow manager or user.

Upon initialization, the application is locally equipped with the tools and
data to perform the required tasks and the criteria for switching between tasks
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or resource topologies. It is then submitted as a job to the grid with the initial
resource requirements defined by the launcher. The living application begins
execution on the grid and continues to do so until either a switch or a termination
is required.

The conditions for switching or termination are determined prior to the start
of the calculation or during run-time, but they are not necessarily static. They
can rely on the internal state of the application, or on information from external
sensors. When the conditions for a switch have been met, the application will
migrate to different grid resources, switch to a different task, or both.

The switching between tasks requires two steps, which are finalizing the old
task (and any program it still uses) and starting up the new task. During this
switch, the application-specific data should be left intact. The switching between
sites requires a larger number of actions, which are:

1. Creating a set of files consisting of the current application, files with its
parameters and data and a script that specifies the methods and conditions
for switching and termination.

2. Creating a job definition for the application on the new resources.
3. Authenticating (independently) on the grid.
4. Transferring the files to the remote site (if this is not done automatically by

a resource broker).
5. Submitting the job, either through a resource broker or by directly accessing

the head nodes of grid sites.
6. Reinitializing the living application on the new site.

Additional file transfer may be required, if the application has locally written
data that is required elsewhere. The application could initiate the transfer of
output files either during run-time (e.g. if separate files are written) or just
before a job terminates on one machine (if data is appended to a single large file
or data transfer would cause overhead at run-time).

The living application requires some user privileges to initiate data transfers
and to autonomously migrate from one site to another. We obtain these privileges
by using a grid client interface to access a credential management service. The
details of this method are discussed in Sec. 2.3. The application requires access
to the grid client interfaces on all participating nodes to request these privileges
during execution. Once these privileges are granted, the application can perform
authentication, data transfers and job submissions to the grid.

2.3 Security Considerations

User privileges on the grid are provided by an X.509 grid proxy [8] which requires
the presence of a certificate, a private key and a correct pass phrase typed in by
the user. This proxy is represented by a temporary file with limited lifetime. The
easiest way to provide user privileges to a living application would be to equip
it with this file, transporting it as it migrates, allowing it to reuse the proxy on
remote locations. However, this approach has three drawbacks:
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First, the presence of a proxy file on a remote site poses a security risk. If the
file is not read-protected or stored in a shared account, it may be possible for
other grid users to copy the proxy. The possession of this proxy enables them to
impersonate the living application user for the duration of the proxy’s lifetime,
providing them with rights and resources that they could otherwise not use.
Even if the proxy is on a dedicated account and read-protected, local users with
admin rights are able to copy it and use it for impersonation.

Second, it is not possible to cancel the application after the first stage, as the
proxy is initialized only at startup, after which it travels around on remote sites.
This may cause a malfunctioning application to continue running and migrating
until the proxy lifetime is exceeded. An application that is equipped for self-
reproduction may iteratively spawns multiple successors which could lead to a
grid meltdown.

Third, for the same reasons as before it is also not possible to prolong the life-
time of the proxy. This could cause the application to terminate prematurely once
the proxy lifetime is exceeded. Specifying an excessively long lifetime relieves this
problem, at the expense of increasing exposure to the other two drawbacks.

To reduce these drawbacks we have chosen to use an intermediary MyProxy
server [9] in our implementation. The user initializes his or her proxy on the
MyProxy server and defines a unique password. External sources use this pass-
word to access the server and initialize credentials with a limited life-time (nor-
mally set to 12 hours). The living application is provided with this password,
and can therefore obtain these user privileges. If the password is stolen, others
may be able to get the same privileges, but the user can block further access at
any time by destroying the credential.

During application execution, the user can also extend the lifetime of his
MyProxy credential by renewing it. It is also possible to replicate the credentials
to other MyProxy servers, which allows the application to use remote MyProxy
servers if the local server has died, rather than terminating itself upon switching.

2.4 Living Simulation

A special case of the living application is the living simulation. Today, simulations
of complex systems, in which the dynamic range exceeds the standard precision
of the computer, call for a wide range of numerical solvers [10]. Each of these
solvers may run most efficiently on a different computer architecture. Most such
simulations, however, are run on a single computer even though they would
benefit from running on a variety of architectures.

This can be solved by migrating the application at run-time from one com-
puter to another, in other words, by creating a living simulation. We demonstrate
the concept of the living application by applying it to the (living) simulation of
two galaxies merging.

The term living simulation has been previously defined as simulations that fine-
tune their behavior at run-time based on input from external sensors, e.g. to pro-
vide input for performing adaptive load balancing [11]. In our definition we provide
the simulation with user privileges and expect it to function autonomously.
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3 Discussion

A living simulation is based on the principle that it autonomously switches
between sites and solvers when required. This switching is done dynamically
and without external dependencies. The simulation is locally equipped with the
required solvers, the switching criteria and the initial conditions. It is then sub-
mitted as a job to the grid with the initial resource requirements defined by
the launcher. The living simulation begins calculating on the grid and contin-
ues to do so until either a switching condition or a termination condition has
been met.

By using the idea of the living applications, we have implemented and tested
a living simulation, in which the merger of two galaxies, each with a central

Table 1. Specifications for the test nodes. The first column gives the name of the
computer followed by its country of residence (NL for the Netherlands, US for the
United States). The subsequent columns give the type of processor in the node, followed
by the amount of RAM, the operating system, and the special hardware installed on
the PC. Both nodes are connected to the internet with a 1Gbit/s Ethernet card.

name location CPU type RAM OS hardware
[MB]

darkstar NL Core2Duo 3.0GHz 2048 Debian Nvidia 8800 Ultra
zonker US 2x Xeon 3.6GHz 2048 Gentoo GRAPE 6A

Fig. 1. Simulation snapshot of one of the runs, where the two galaxies approach for an
initial interaction
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supermassive black hole (SMBH), is simulated. We used a GPU-enabled tree
code [12,13] for the early stages of the merger and switched to a GRAPE-enabled
direct integrator [14] during later stages, when the separation between the two
SMBHs was sufficiently small. We tested the overhead of our simulation using
two machines with Globus middleware, one of which was equipped with GRAPE
dedicated hardware (GRAvity PipE, [15]) and the other with a Nvidia 8800 GTX
Ultra GPU. A specification for both nodes can be found in Tab. 1.

During our living simulation runs, the simulation performed three switches.
The overhead caused by autonomously switching between machines was
marginal, amounting to ∼ 4 percent of the three hours it for a 64k parti-
cle run to complete. A sample snapshot from on of our runs can be found in
Fig. 1.

4 Conclusion

We introduced the living application as a way to manage complex applications
on a large distributed infrastructure. Due to the autonomous nature of a liv-
ing simulation, it is important to provide a mechanism that allows the user to
terminate it. By having the simulation retrieve its extended privileges from a cre-
dential management service (MyProxy), users are able to revoke the privileges
of the simulation regardless of its location. In addition, we can make repeated
use of short-lived proxy credentials instead of a a single long-lived credential,
which poses a larger security risk.

We have applied this concept in a living simulation of two galaxies merg-
ing. Our approach allows the simulation to use the optimal compute resources
for each of the two solvers, switching resources whenever a different solver is
required. In our example case, the solvers were a tree code and a direct N -
body method, which were optimized for two kinds of special-purpose hardware,
namely a GPU (tree) and a GRAPE (direct). The switches between these two
solvers take place without user intervention, remote output retrieval or external
managers. The execution time was only affected marginally by overhead such as
caused by job migration and data transfer over the grid.

The creation of grid species enables us to give a simulation the ability to
autonomously use the grid, acquire and apply internal knowledge, and migrate
themselves. If we expand the awareness of a living simulation by letting it inherit
more advanced sensing and scheduling abilities, we will be able to apply it to
problems of greater complexity. In that way we could allow our simulation to
evolve to a more complex organism.
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Abstract. This paper shows an evaluation of processes rescheduling
over an irregular BSP (Bulk Synchronous Parallel) application. Such
application is based on dynamic programming and its irregularity is pre-
sented through the variation of computation density along the matrix’
cells. We are using MigBSP model for processes rescheduling, which com-
bines multiple metrics - Computation, Communication and Memory - to
decide about processes migration. The main contribution of this paper
includes the viability to use processes migration on irregular BSP appli-
cations. Instead to adjust the load of each process by hand, we presented
that automatic processes rebalancing is an effortless technique to obtain
performance. The results showed gains greater than 10% over our multi-
cluster architecture. Moreover, an acceptable overhead from MigBSP was
observed when no migrations happen during application execution.

1 Introduction

The dynamism and adaptivity are keywords in the new scenarios of parallel and
distributed computing [1]. For example, the dynamism can be seen at the ap-
plication level as well as a characteristic of the parallel machine architecture.
In the first case, processes can change their amount of computation and/or
their pattern of communication at any moment during application runtime. The
dynamism related to infrastructure is demonstrated, for instance, through the
fluctuation of processors load and availability, as well as in bandwidth due to
either congestion in the network or modifications on its utilization. This kind
of dynamism and uncertainty are challenges found in large distributed systems
like grids [1]. Considering both ideas of dynamism, properties established previ-
ously may not be proven during runtime making dynamic scheduling pertinent.
Dynamic scheduling can deal with the adaptivity issue since decisions managed
during runtime can trigger changes in the scheduler behavior itself and adapta-
tions that guarantee an acceptable level of application performance.

In this context, we address the issue of adaptivity through the control of
processes migration over grid environments. We have developed a model called
MigBSP that controls processes rescheduling on BSP (Bulk Synchronous Par-
allel) applications [2,3]. MigBSP performs an automatic load (processes) rebal-
ancing among the resources without changing the application’s code and acts
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without previous knowledge about the application’s behavior. Our model can
be seen as a dynamic rescheduler that treats both cases of dynamicity related
above. Especially at application level, it uses two patterns - one for Computa-
tion and other for Communication - in order to measure the processes’ regularity
regarding their performed instructions as well as communicated bytes at each
superstep. Besides computation and communication phases of a superstep, our
model observes the costs to decide about the processes transferring. Finally, con-
trary to existing approaches [2], MigBSP performs the rescheduling according to
the system state using an adaptable interval between calls for migration.

Aiming to perform an evaluation of MigBSP, we modeled an heterogeneous
multi-cluster architecture and an irregular application. The application is based
on dynamic programming (DP), which is a popular algorithm design technique
for optimization problems [4]. In practice, there are many irregular DP appli-
cations where the workload varies across the matrix. Firstly, alternatives to
achieve performance on such application include: (i) the mapping of the most
loaded cells to faster processors; (ii) to determine appropriate data partitioning
scheme on the fly or; (iii) to apply receiver-initiated load balancing algorithms
inside the application. However, these techniques require an effort to recognize
the target architecture previously and/or change application’s code by hand.
On the other hand, a possibility is to use automatic processes migration. In
this way, our model acts at middleware level attempting to gain performance
effortlessly.

This paper presents the impact of MigBSP over an irregular DP application.
We will observe the impact of the load computation density on choosing pro-
cesses for migration and on the regularity of rescheduling calls. As general ideas,
migrations take place to faster resources (since the application is CPU-bound)
and are considered viable as far as the load increases along the matrix.

2 MigBSP: Processes Rescheduling Model

Figure 1 (a) shows a superstep s in which the processes are not balanced among
the resources. The main idea of MigBSP is to reduce the time of each superstep.
Figure 1 (b) shows the expected result with processes redistribution after the
end of superstep s. The architecture is heterogeneous and composed by clusters,
supercomputers and local networks. The model requires that the involved nodes
allow all-to-all asynchronous communications. The heterogeneous issue consid-
ers the processors’ clock (all processors have the same architecture), as well as
network speed and level (Fast and Gigabit Ethernet and multi-clusters environ-
ment, for instance). This architecture is assembled with Sets (different sites) and
Set Managers. Set Managers are responsible for scheduling, capturing data from
a specific Set and exchanging it among other managers.

MigBSP answers the following issues: (i) “When” to launch the migration;
(ii) “Which” processes are candidates for migration; (iii) “Where” to put an
elected process. In [3] we described the ideas to treat these questions in details.
However, such work does not deal with irregular applications.



Applying Processes Rescheduling over Irregular BSP Application 215

BSP Processes BSP Processes

(a) Superstep s: Load 
(processes) is not 

balanced among the 
resources

(b) Superstep s+1: 
Situation after 
applying the 

algorithms of the load 
rebalancing model

Time Communication

Local
Processing

Barrier

Fig. 1. Supersteps in different situations

The decision for processes remapping is taken at the end of a superstep (af-
ter the barrier). This migration point was chosen because in this moment it is
possible to analyze data from all BSP processes at their computation and com-
munication phases. Aiming to generate the least intrusiveness in application as
possible, we applied two adaptations that control the value of α. α is updated
at each rescheduling call and will indicate the interval to the next one. Aiming
to store the variations on system state, a temporary variable called α′ is used
and updated at each superstep through the increment or decrement of one unit.
α is filled with α′ value in the moment of rescheduling call. The adaptations’
ideas are: (i) to postpone the rescheduling call if the system is stable (processes
are balanced) or to turn it more frequent, otherwise; (ii) to delay this call if a
pattern without migrations on ω past calls for rescheduling is observed. Aiming
to analyze the system stability, the times of the slowest and fastest processes
at each superstep are captured as well as the average time is computed. Only
the processes that perform any computation activity enters to observe system
stability. A variable D is used to indicate a percentage of how far the slowest
and the fastest processes may be from the average to consider the processes
balanced.

The answer for “Which” is solved through our decision function called Poten-
tial of Migration (PM). Each process i computes n functions PM(i, j), where n
is the number of Sets and j means a Set. The idea consists in performing a subset
of the processes-resources tests at the rescheduling moment. PM(i, j) is found
using Computation, Communication and Memory metrics. The relation among
them is based on the notion of force from physics. Computation and Communi-
cation act in favour of migration, while Memory works in an opposite direction.
Computation metric - Comp(i, j) - considers a Computation Pattern Pcomp(i)
that measures the stability of a process i regarding the amount of instructions
at each superstep. This value is close to 1 if the process is regular and close
to 0 otherwise. This metric also performs a computation time prediction based
on all computation phases between two activations of processes rescheduling.
For this prediction it is used the Aging concept. In the same way, Communi-
cation metric - Comm(i, j) - computes the Communication Pattern Pcomm(i, j)
between processes and Sets. Furthermore, this metric uses communication time
prediction considering data between two rebalancing activations. Memory met-
ric - Mem(i, j) - considers process memory, transferring rate between considered
process and the manager of target Set, as well as migration costs.

PM(i, j) = Comp(i, j) + Comm(i, j)−Mem(i, j) (1)
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PM(i, j) selects the candidate processes for migration (see Equation 1). A
high PM(i, j) means that process i has high computation time, high commu-
nication with processes that belong to Set j and presents low migration cost.
BSP processes calculate PM(i, j) locally. At each rescheduling call, each process
passes its highest PM(i, j) to its Set Manager. This last entity exchanges the
PM of its processes among other managers. There are two heuristics to choose
the candidates, both based on a decreasing ordered list of PMs. The heuristics
are: (i) processes that have PM higher than a MAX(PM)×x are candidates,
where x is a percentage; (ii) choose just one process.
PM(i, j) of a candidate process i is associated to a Set j. The manager of this

Set will select the most suitable processor to receive the process i. Before any
migration, its viability is verified considering the following data: (i) the exter-
nal load on source and destination processors; (ii) the BSP processes that both
processors are executing; (iii) the simulation of considered process running on
destination processor; (iv) the time of communication actions considering local
and destination processors; (v) migration costs. Concerning this, we computed
two times: t1 and t2. t1 means the local execution of process i, while t2 encom-
passes its execution on the other processor and includes the migration costs. For
each candidate is chosen a new resource (if t1 > t2) or its migration is canceled.

3 Irregular DP Application

Dynamic programming is a method of solving problems exhibiting the properties
of overlapping subproblems and optimal substructure [4]. DP algorithms can be
classified according to the matrix size and the dependency relationship of each
matrix cell. An algorithm for a problem of size n is called tD/eD if its matrix
size is O(nt) and each matrix cell depends on O(ne) other cells. In this paper we
work with 2D/1D DP algorithms, which are all irregular with load changes along
the matrix’s cells. In particular, we observed the functioning of Smith-Waterman
algorithm [5] that is a well-known algorithm for local sequence alignment.

Smith-Waterman algorithm proceeds in a series of wavefronts diagonally
across the matrix. Figure 2 (a) illustrates a 4×4 matrix with a column-based
processes allocation. The more intense the shading, the greater is the load com-
putation density of the cell. Each wavefront corresponds to a superstep. For
instance, Figure 2 (b) shows a 4×4 matrix with 7 supersteps. This organization

p1 p2 p3 p4

s1

s2

s3

s4 s5 s6 s7

p1 p2 p3 p4

(a) Computational load 
density along the matrix

(b) Mapping of supersteps and 
communications among the cells

Fig. 2. Irregular BSP dynamic application organization
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brings the following conclusions: (i) 2n− 1 supersteps are computed in a square
matrix with order n and; (ii) each process will be involved on n supersteps.

At each superstep, each process computes a block of data and sends it to other
process. Figure 2 (b) shows the communication among the processes. Considering
that cell a, b (a means a matrix’ line, while b is a matrix’ column) needs data
from the a, b− 1 and a− 1, b other ones, we have an interaction from process pb
to pb+ 1. We do not have communication inside the same column.

4 Evaluation Methodology

We are using simulation in three scenarios: (i) Application execution simply; (ii)
Application execution with scheduler without applying migrations; (iii) Appli-
cation execution with scheduler allowing migrations. Scenario ii indicates the
overhead associated with scheduling calculus and message passing between pro-
cesses and Set Managers, as well as among Set Managers properly. The analysis
of scenarios i and iii shows the performance when migrations are applied.

The configuration of scenarios ii and iii depends on the Computation Pattern
Pcomp(i) of each process i. Pcomp(i) increases or decreases depending on the
prediction of the amount of performed instructions at each superstep. PIt(i)
represents this prediction for superstep t and process i. It is based on the Aging
concept, in which uses the idea that the prediction is more strongly influenced by
recent values. The formula to compute PIt(i) is shown below. k means superstep
1 or the superstep after the last call for processes rescheduling. It(i) represents
the amount of instructions executed by process i during superstep t.

PIt(i) =
{
It(i) if t = k
1
2PIt−1(i) + 1

2It(i) if k < t ≤ k + α− 1

Pcomp(i) is updated at each superstep following the Algorithm 1. We consider
a specific process as regular if the forecast is within a δ margin of fluctuation
from the amount of instructions performed. In our experiments, we are using
106 as the amount of instructions for the first superstep and 109 for the last one.
The increase of load computational density among the supersteps is uniform.
Considering this, we applied δ equal to 0.01 (1%) and 0.50 (50%) to scenarios ii
and iii, respectively. This last value was used because I2(1) is 565.105 and PI2(1)
is 287.105 when a 10×10 matrix is tested (19 supersteps). The percentage of 50%
enforces instruction regularity in the system. Both values of δ will influence the
Computation metric, and consequently the choosing of candidates for migration.
Scenario ii tends to obtain negatives values for PM since the Computation Met-
ric will be close to 0. Consequently, no migrations will happen on this scenario.
Following with the parameters, we tested the behavior of square matrixes of
order 10, 25, 50, 100 and 200. In addition, we performed a column-based map-
ping, where process pi is responsible for column i of the matrix. Each cell of a
10×10 matrix needs to send 500 Kbytes and each process occupies 1.2 Mbyte in
memory (700 Kbytes for other data). The cell of 25×25 matrix communicates
200 Kbytes and each process occupies 900 Kbytes in memory and so on.
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Algorithm 1. Computation Pattern Pcomp(i) of the process i
1: for t from superstep k to superstep k + α − 1 do
2: if PIt(i) ≥ It(i).(1 − δ) and PIt(i) ≤ It(i).(1 + δ) then
3: Increases Pcomp(i) by 1

α
up to 1

4: else
5: Decreases Pcomp(i) by 1

α
down to 0

6: end if
7: end for

R3

Cluster ICE
I1...I112

Cluster Frontal
F1...F6

Cluster Corisco
"C1...C16"

Cluster Aquario
A1...A20

R1 R2

Cluster Labtec
"L1 ,,, L20"

"L1...L20" <-> "R1" = 1 Gbps
"C1...C16" <-> "R1" = 100 Mbps
"F1...F6" <-> "R2" = 100 Mbps
"I1...I112" <-> "R2" = 1 Gbps
"A1...A20" <-> "R3" = 1 Gbps
"R1" <-> "R2" = 1 Gbps
"R2" <-> "R3" = 1 Gbps

"L1...L20"= 1.5 GHz
"C1...C16"= 1 GHz

"I1...I112"= 1.6 GHz
"F1...F6"=  1 GHz

Network Connections
Processing CapacitySet 1

Set 2

Set 3

Set 4

Set 5

"A1...A20"=  2 GHz

Initial Processes-Resources Mapping

10 processes   = L {1-10}

200 processes = L {1-20}, C {1-16}, F {1-6}, I {1-112}, A {1-20}, L {1-20}, C {1-6}

25 processes   = L {1-20}, C {1-5}
50 processes   = L {1-20}, C {1-16}, F {1-6}, I {1-8}
100 processes   = L {1-20}, C {1-16}, F {1-6}, I {1-58}

Fig. 3. Testbed infrastructure and the initial processes-resources mappings

We are using the Simgrid [6] (MSG module). This simulator is deterministic,
where a specific input always results in the same output. We assembled an in-
frastructure with five Sets, as we can see in Figure 3. Each node has a single
processor. These Sets represent a real infrastructure with five clusters located
at Federal University of Rio Grande do Sul, Brazil. For sake of simplicity, we
hide the network of each cluster. Clusters Labtec, Corisco and Frontal have their
nodes linked by Fast Ethernet, while ICE and Aquario use Gigabit connection.
The migration costs are based on executions with AMPI [7] on our clusters.

Figure 3 also presents the initial processes-recourses mappings. Finally, initial
tests were executed using α equal to 2, 4, 8 and 16. Furthermore, we employed ω
equal to 3, initial D equal to 0.5 and used heuristic one to choose the candidates
for migration with x equal to 80%. We observed that our testbed environment
prioritized the heterogeneity issue. Future works include the execution of BSP
applications and MigBSP over dynamic environments. Simgrid allows to write
files informing the variation in time of bandwidth, latency and CPU capacities.

5 Evaluation and Discussions

Table 1 presents the application evaluation. 19 supersteps were crossed when a
10×10 matrix was tested. Adopting this size of matrix and α 2, 13.34s and 14.15s
were obtained for scenarios i and ii which represents a cost of 8%. The higher
is the value of α, the lower is the MigBSP overhead on application execution.
This occurs because the system is stable (processes are balanced) and α always
increases at each rescheduling call. Three calls for processes relocation were
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done when testing α 2 (at supersteps 2, 6 and 14). The rescheduling call at
superstep 2 does not produce migrations. At this step, the load computational
density is not enough to overlap the consider migration costs involved on process
transferring operation. The same occurred on the next call at superstep 6. The
last call happened at superstep 14, which resulted on 6 migrations: {(p5,a1),
(p6,a2), (p7,a3), (p8,a4), (p9,a5), (p10,a6)}. MigBSP indicated the migration of
processes that are responsible to compute the final supersteps. The execution
with α equal to 4 implies in a shorter overhead since two calls were done (at
supersteps 4 and 12). Observing scenario iii, we do not have migrations in the
first call, but eight occurred in the other one. Processes 3 up to 10 migrated in
this last call to cluster Aquario. α 4 outperforms α 2 for two reasons: (i) it does
lesser rescheduling calls and; (ii) the call that causes processes migration was
done at a specific superstep in which MigBSP takes better decisions.

Table 1. Evaluation of scenarios i, ii and iii when varying the matrix size

Scenarios mat. 10×10 mat. 25×25 mat. 50×50 mat. 100×100 mat. 200×200
Scenario i 13.34s 40.74s 92.59s 162.66s 389.91s

Scen. ii

α = 2 14.15s 43.05s 95.70s 166.57s 394.68s
α = 4 14.71s 42.24s 94.84s 165.66s 393.75s
α = 8 13.78s 41.63s 94.03s 164.80s 392.85s
α = 16 13.42s 41.28s 93.36s 164.04s 392.01s

Scen. iii

α = 2 13.09s 35.97s 85.95s 150.57 374.62s
α = 4 11.94s 34.82s 84.65s 148.89s 375.53s
α = 8 13.82s 41.64s 83.00s 146.55s 374.38s
α = 16 12.40s 40.64s 85.21s 162.49s 374.40s

The system stays stable when the 25×25 matrix was tested. α 2 produces
a gain of 11% in performance when considering 25×25 matrix and scenario iii.
This configuration presents four calls for processes rescheduling, where two of
them produce migrations. No migrations are indicated at supersteps 2 and 6.
Nevertheless, processes 1 up to 12 are migrated at superstep 14 while processes
21 up to 25 are transferred at superstep 30. These transferring operations oc-
curred to the fastest cluster. In this last call, the remaining execution presents 19
supersteps (from 31 to 49) to amortize the migration costs and to get better per-
formance. The execution when considering α 8 and scenario iii brings an overhead
if compared with scenario i. Two calls for migrations were done, at supersteps
8 and 24. The first call causes the migration of just one process (number 1) to
a1 and the second one produces three migrations: {(p21,a2),(p22,a3),(p23,a4)}.
We observed that processes p24 and p25 stayed on cluster Corisco. Despite per-
formed migrations, these two processes compromise the supersteps that include
them. Both are executing on a slower cluster and the barrier synchronization
always waits for the slowest process. Maintaining the matrix size and adopting
α 16, we have two calls for migration: at supersteps 16 and 48. This last call
migrates p24 an p25 to cluster Aquario. Although this movement is pertinent to
get performance, just one superstep is executed before finalizing the application.



220 R.d.R. Righi et al.

50 processes were evaluated when the 50×50 matrix was considered. In this
context, α also increases at each call for processes rescheduling. We observed
that an overhead of 3% was found when scenario i and ii were compared (using
α 2). In addition, we observed that all values of α achieved a gain of performance
in scenario iii. Especially when α 2 was used, five calls for processes rescheduling
were done (at supersteps 2, 6, 14, 30 and 62). No migrations are indicated in
the first three calls. The greater is the matrix size, the greater is the amount of
supersteps needed to make migrations viable. This happens because our total
load is fixed (independent of the matrix size) but the load partition increases
uniformly along the supersteps (see Section 4 for details). Process 21 up to 29
are migrated to cluster Aquario at superstep 30, while process 37 up to 42 are
migrated to this cluster at superstep 62. Using α equal to 4, 84.65s were obtained
for scenario iii which results a gain of 9%. This gain is greater than that achieved
with α 2 because now the last rescheduling call is done at superstep 60. The same
processes were migrated at this point. However, there are two more supersteps
to execute using α equal to 4. Three rescheduling calls were done with α8 (at
supersteps 8, 24 and 56). Only the last two produce migration. Three processes
are migrated at superstep 24: {(p21,a1),(p22,a2),(p23,a3)}. Process 37 up to 42
are migrated to cluster Aquario at superstep 56. This last call is efficient since
it transfers all processes from cluster Frontal to Aquario.

The execution with a 100×100 matrix shows good results with processes mi-
gration. Six rescheduling calls were done when using α 2. Migrations did not
occur at the first three supersteps (2, 6 and 14). Process 21 up to 29 are mi-
grated to cluster Aquario after superstep 30. In addition, process 37 to 42 are
migrated to cluster Aquario at superstep 62. Finally, superstep 126 indicates 7
migrations, but just 5 occurred: p30 up to p36 to cluster Aquario. These mi-
grations complete one process per node on cluster Aquario. MigBSP selected
for migration those processes that belonged to cluster Corisco and Frontal,
which are the slowest clusters on our infrastructure testbed. α equal to 16 pro-
duced 3 attempts for migration when a 100×100 matrix is evaluated (at su-
persteps 16, 48 and 112). All of them triggered migrations. In the first call,
the 11th first processes are migrated to cluster Aquario. All process from clus-
ter Frontal are migrated to Aquario at superstep 48. Finally, 15 processes are
selected as candidates for migration after crossing 112 supersteps. They are:
p21 to p36. This spectrum of candidates is equal to the processes that are
running on Frontal. Considering this, only 3 processes were migrated actually:
{(p34,a18),(p35a19),(p36,a20)}.

Table 1 also shows the application performance when the 200×200 matrix was
tested. The overhead of our model is smaller than 2% for scenario ii. Furthermore,
satisfactory results were obtained with processes migration. The system stays
stable during all application execution. Despite having more than one process
mapped to one processor, sometimes just a portion of them is responsible for
computation at a specific moment. This occurs because the processes are mapped
to matrix columns, while supersteps comprise the anti-diagonals of the matrix.
Using α 2 and considering scenario iii, 8 calls for processes rescheduling were
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done. Migrations were not done at supersteps 2, 6 and 14. Processes 21 up
to 31 are migrated to cluster Aquario at superstep 30. Moreover, all processes
from cluster Frontal are migrated to Aquario at superstep 62. Six processes are
candidates for migration at superstep 126: p30 to p36. However, only p31 up
to p36 are migrated to cluster Aquario. These migrations happen because the
processes initially mapped to cluster Aquario do not collaborate yet with BSP
computation. Migrations are not viable at superstep 254. Finally, 12 processes
(p189 to p200) are migrated to cluster Aquario when superstep 388 was crossed.
At this time, all previous processes allocated to Aquario are inactive and the
migrations are viable. However, just 10 remaining supersteps are executed to
amortize the processes migration costs.

6 Related Work

GridWay treats with time and cost optimization scheduling and migration [8].
Both migration mechanisms consider only data from CPU, like speed and load.
Bhandarkar, Brunner and Kale presented a support for adaptive load balanc-
ing in MPI applications [9]. Periodically, the application transfers control to the
load balancer using a special call. These authors present a Metis-based strat-
egy that uses the communication graph to remap the processes. AMPI [7] uses
Charm++ to offer automatic load balancing. Charm++ collects workload data
and the objects communication pattern. At each load balancing time, the load
balancer uses such data to redistribute the workload. Vadhiyar and Dongarra
presented a migration framework and self adaptivity in GrADS [1]. However,
they computed the migration cost as a fixed value. In addition, the gain with
rescheduling is based on the remaining execution time prediction over a new
resource. Thus, this work must deal with applications in which their parts are
known in advance.

Concerning the BSP scope, Jiang, Tong and Zhao presented resource load
balancing based on multi-agents in ServiceBSP [10]. Load balancing is launched
when a new task is inserted and is based on the load rank of the nodes. Schedul-
ing service sends a new task to the current lightest node. Load value is calculated
taking such information: CPU, memory, number of current tasks, response time
and number of network links. In addition, we can cite two works that present
migration on BSP applications. The first one describes the PUBWCL library,
which aims to take profit of idle cycles from nodes around the Internet [2].
PUBWCL offers migration at each superstep. All proposed algorithms just use
data about the nodes and consider the computation times from each process.
Other work comprises the PUB library [11]. The author explains that a load
balancer decides when to launch the migration, but this issue is not addressed
in [11]. He proposed centralized and a distributed strategies for load balanc-
ing. In distributed approach, every node chooses c other nodes randomly and
asks them for their load. One process is migrated if the minimum load of the
c analyzed nodes is smaller than the load of the node that is performing the
test. The drawback of this strategy is that it can create a lot of scheduling
messages.
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7 Conclusion and Future Works

This paper presented MigBSP briefly, as well as the treatment of an irregular
application executed using it. MigBSP combines data from multiple metrics to
create our decision function PM. PM considers the migration of a process i to
a Set j. Thus, we do not test all possibilities at the rescheduling moment. The
contribution of this paper is the possibility to use MigBSP over heterogeneous
environments in order to get performance on irregular BSP applications. Initially,
MigBSP was developed to deal with processes that present a regular behavior.
However, it allows to fill parameters that turn possible to adjust its functioning
to treat irregularity in an efficient manner. Section 5 presented the results and a
discussion about the application execution. The main conclusions are: (i) a simple
way to obtain performance is designing α in order to trigger the rescheduling call
close to the end of the application, since MigBSP tends to select those processes
that have more load; (ii) the greater is the load computational density of the last
supersteps, the better will be the results with the migration of the last processes
and; (iii) the application behavior implies that the processors can vary their load
during the crossing of supersteps, changing their viability to receive processes.

Future works include simulation of MigBSP over the Grid5000. We intend to
test MigBSP’s scalability over this platform.
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Abstract. Virtualization technologies provide flexible execution envi-
ronments that could bring important benefits for computational prob-
lems with strong deadlines. Large Grid infrastructures are becoming
available nowadays and they could be a suitable environment to run
such on-demand computations that might be used in decision-making
processes. For these computation, we encounter the need to deliver as
much resources as possible at particular times. These resources may be
provided by different institutions belonging to a grid infrastructure but
there are two important issues that must be satisfied. Firstly, all re-
sources must be correctly configured and all the components needed by
the application must be properly installed. If there is something small
missing that is required then applications will fail. Secondly, the execu-
tion of urgent applications must be made quickly in order to produce
useful results in time. If applications must wait in a queue, results might
be useless because they are obtained too late. To address these issues, we
describe a job management service, based on virtualization techniques,
that avoids configuration problems and increases the number of avail-
able resources to run applications with critical deadlines. We describe
the main components of our service that can be used on top of common
batch queue systems and we show some experimental results that prove
the benefits of applying time-sharing techniques on the virtual machines
to increase the performance of urgent computations.

1 Introduction

Nowadays, scientific community rely on computational resources in order to solve
most of the present scientific problems. In order to satisfy computing-intensive
problems in the minimum possible time, since the beginning of the 90s it is
possible to resort to distributed computing, because of the deployment of grid
infrastructures. These kind of infrastructures allow the users to count on many
computing resources managed in a decentralized way.

Besides, there is an emerging area in the scientific applications field, Urgent
High Performance Computing (Urgent HPC), which requires a great capacity
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of computing resources at a given time. Urgent HPC applications could take
benefit from a grid environment prepared to respond efficiently, because of the
great resources offer and variety it can supply. In fact, there are several projects
in progress which main goal is to get response from a multiple-resource sites as
quick as possible [1], but due to the grid environments nature, it is necessary to
propose new management strategies that provide not only a quick response, but
a more efficient use of the available resources for the results to be more accurate
in a shorter period of time.

Grid computing can be considered as a consolidated field in high performance
computing, however, it still presents serious limitations from the point of view of
Urgent HPC requests. Response time is an usual handicap in such environments.
Each administrative domain, in a grid infrastructure, has its own components
that take care about security and scheduling issues. All these components intro-
duce considerable delay to the jobs starting, which is a clear penalty for urgent
computing applications.

Nevertheless, time response is not the only constraint, compatibility between
the application to be launched and the execution platform is a very important
handicap as well. Libraries, permissions and the host operating system are exam-
ples of factors that can compromise the compatibility and, in consequence, the
successful execution of the jobs. Many times, users are not aware of the require-
ments of their own jobs. This kind of ignorance usually leads to a considerable
waste of time trying to guarantee the correct execution of the application on the
remote sites and sometimes it turns out to be an impossible task.

Moreover, most of scientific applications rely on models/simulators that do
not provide accurate results and the quality of the results will depend on how
many times the underlying simulation can be executed before a deadline. There-
fore, in those cases, as much executions we can deliver at a given time, the
better the results become. Consequently, we focus on increasing the number of
suitable working nodes for the underlying urgent application at a given time
independently on the sites’ particular configuration.

Virtual Machines (VMs) are becoming popular in grid computing as they
provide a way to abstract the grid resources and allow grid applications to be
run without worrying about the underlying platform of the resource. In this work,
we propose a job-management service based on virtualization techniques, that
avoid configuration problems and increases the number of available resources to
run applications with critical deadlines.

This paper is organized as follows. In the next section, the main features of
virtual machines are described. In section 3, we describe the architecture of the
job management architecture. The experimental study is reported in section 4
and, finally, the main conclusions are included in section 5.

2 Virtual Machines for Urgent Computing

As we have previously mentioned, virtual machines provide an abstraction of the
underlying computing resources allowing any kind of application to be executed
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without misleading problems. In particular, VMs provide several important ad-
vantages:

a) Physical platform isolation: thanks to the abstraction carried out by
the virtual machine monitor (VMM), tasks execution does not depend on
the host device features. Thus, any VM instance on which user can execute
his application successfully will be useful and, therefore, any working node
(WN) in the site can satisfy application demands.

b) Multiplexation capability: depending on the features of the host plat-
form, it can support multiple VM instances execution, which could provide
better performance per WN.

c) Possibility of deploying new subpool of WNs: a VM, like a real phys-
ical machine, can execute the software needed to become a new WN into
the site, able to receive and process different tasks as well as physical WNs
do. Furthermore, the fact of having multiple VMs as a part of the working
nodes set of the site, allow us to deploy a new subset, or subpool, of virtual
WNs. The idea besides that is the one referred as to VM recycling. Instead of
starting and stopping a VM each time the submitted job requires this kind of
execution environment, VM recycling deals with the idea of not stopping the
VM and keeping it alive waiting for new tasks to be executed. This recycling
strategy saves time, as the time needed to instantiate the VM is skipped.

As one can see, these features solve, or at least relieve, the main constraints
of grid environments when dealing with an urgent HPC application. How each
one of the above mentioned handicaps are overcome is subsequently listed.

– Compatibility constraints elimination: in order to be able to execute the
application in any grid site, it is sufficient to have a VM that emulates a
trusted system on which the desired application executes successfully.

– Response time reduction: as it has been previously mentioned, VM recycling
permit to deploy subpools of virtual WNs that could be managed in a differ-
ent way than the physical ones, establishing, for example, different priority
polices, even up to dedicating it exclusively for particular applications.

– Turnaround time reduction: because of the multiplexation capability, it is
possible to carry out more executions per time unit, reducing the turnaround
time of each individual task/application execution compared to a standard
batch execution.

As stated previously, this work is focused on efficient managing strategies of
the grid-available resources. To achieve this goal, we propose a grid site local-level
architecture design based on the use of Virtual Machines (VMs), as a suitable
platform for grid infrastructures in order to allow an efficient and successful
processing of urgent scientific applications under such environments.

Although this approach seems very promising, it also raises new difficulties
and new challenges that must be explored, for instance, it is needed an accurate
analysis of possible performance degradations as well as collateral effects. These
aspects will be studied in the subsequent sections.
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3 Architecture Design

Virtual machines in grid computing can be implemented in different ways de-
pending on the purpose and intention of the grid. We shall now briefly describe
two of the most significant approaches according to our work:

1.-Virtual Machines as Grid Infrastructure: this method allows Grids to be set
up and deployed easily. Grid middleware is installed and configured within virtual
machines, and users can create and use a Grid infrastructure by installing and
deploying these virtual machine images. Machines are added and removed from
the Grid when users start and terminate their virtual machines. One example of
this virtual machine grid computing implementation is Grid Appliance [2].

2.- Virtual Machines running on Grid Infrastructures: this method is based
on the use of an already existing infrastructure for supporting grid computing.
Virtual Machines are executed as processes using the grid middleware just like
normal applications. Some examples are In-VIGO [3] and Maestro-VC [4].

Our proposal fits the second approach, taking into account the possibility of
dealing with virtual resources as new WNs inside the site, as well. Figure 1 de-
picts a modular schema of the proposed architecture for an urgent job execution
site based on virtual resources. In this approach, Grid middleware layer is based
on EGEE gLite framework [5]. As one can see, there are new resource compo-
nents as VMs which have been deployed as a consequence of the execution of
an ordinary task in a physical node, consisting of VM instance starting. These
virtual nodes have the capability to become new WNs into the site. Our con-
tribution, by means of this design, consists of the Virtual Spaces Job Manager
(VSJM) component description, which is the responsible for the appropriate
deployment and management of these virtual resources.

VSJM manages the virtual resources subpool, establishing direct connection
with it, in order to be able to diversify efficiently incoming virtual-resource de-
manding jobs. This component is constituted by three subcomponents:

– Execution manager: responsible for carrying out scheduling tasks for this
sort of jobs.

– VM manager: the subcomponent in charge of VM instantiation, by sub-
mitting a VM starting up job to the Local Resource Management System
(LRMS), stopping, recycling and even migrating it.

– Job manager: this component will deal with the submission and control of
tasks to be executed in virtual resources.

In order to include to the system the capability to correctly attend incoming
requests, we lean on an extension of the EU-Datagrid Job Description Language
[6], that is, the users, by means of a JDL file, may specify which virtual envi-
ronment should be provided for their jobs. Figure 2 shows a simplified example
of an extended JDL file where we include two new attributes: the VMId, which
univocally specifies what VM image should be deployed, and the UrgencyLevel,
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Fig. 1. Virtual resources-based site architectural design approach

Executable = "fusion_app";
Arguments = "-n";
JobType = "Normal";
InputSandBox = {"fusion_app"};
VMId = e97315e469fb;
UrgencyLevel = 1;

Fig. 2. Extended JDL job description

which specifies, in a 0 to 2 scale, the emergency degree of the incoming job, in
order to efficiently attend this kind of jobs.

Based on this extended JDL file, users can order the instantiation of a VM
image specifying its VMId, which had been established once the image had been
deposited on the VM repository. Our objective is to adapt this component to
the Globus Virtual Workspaces virtual repositories management system [7] [8].

Thus, jobs get into the system through the Grid middleware layer, which de-
termines whether jobs will be executed in a physical WN, steering them directly
to the LRMS, or jobs will be executed in a virtual WN, steering them in this
case to the VSJM module. Additionally, jobs that demand a virtual environment,
which is not already deployed, will cause the VM manager to act submitting an
ordinary job to the LRMS consisting of VM starting up.

This architectural approach constitutes a solution that provides useful services
for urgent computing, from which outstand the following ones:

– Allowing usual job execution: new functions added by our system do
not interfere in the way the site operated previously.
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– Allowing VM instances executions (offered by the site or supplied
by the user): our approach contemplates the possibility of offering a se-
ries of VM images available in the site (stored in a storage element), and
accepting user images as well, depending on authorization policies.

– VMs capability to become WNs and constituting a new WN sub-
set: our system submits VMs images as normal jobs to the Local Resource
Management System without requiring any special feature.

– Transparent job submitting to VM instances: our system includes
non-intrusive techniques that allow the automatic instantiation of a resource
management system (such as Condor [9]) when a VM image is started. This
resource management system does not interfere with the Local Resource
Management System deployed in the site and is used only by our Job Man-
ager in order to submit jobs directly to VM instances. By exploiting disk
images inclusion techniques, there is no need to modify the users’ VM image
nor to make them install any extra software in their images.

– Efficient VMs recycling management: the automatic deployment of a
resource management system when each VM is started allows the execution
of multiple jobs in the same VM instance. Therefore, significant saving of
time is obtained by avoiding the overhead incurred in VM instantiation.

– Basic infrastructure that can be able to dynamically increase the
number of resources in case of emergency: our system enables the
development of intelligent scheduling strategies that can determine in an
automatic and dynamic way when it is necessary to deploy new VM instances
in order to attend to the incoming tasks load, without the need for the user
to send VMs execution jobs.

4 Performance Analysis and Experimentation

This section describes some experimental results obtained with a first prototype
that supports the basic functionality of the job management service described
in the previous section. The goal is to demonstrate feasibility of the design and
show the potential use of the virtual machine multiprogramming mechanism. Our
prototype is interfaced to Condor as Local Resource Management System. The
current stable version of Condor (7.0.4) provides direct support for managing
VM images (which includes transferring images from a submission machine to
an execution machine, starting and stopping the virtual machine, and so on).
Condor was running on a testbed made of 12 Pentium IV machines, running
Linux. The Grid middleware used for accessing the testbed was based on gLite.
And we extended the existing gLite’s job manager with additional services that
provide a basic control of virtual images and application jobs.

We carried out a set of experiments with this prototype to measure the per-
formance of two applications running in a virtualized mode and the effect of
virtual machine multiprogramming on application performance. Our multipro-
gramming scheme allows the execution of two or more virtual machines on a
physical machine. Each virtual machine can be used for a different application
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thus allowing urgent jobs to time share the CPU with other jobs running on a
different virtual machine. A graceful degradation in performance is observed but
this scheme does not require to kill or checkpoint a running job when an urgent
job enters into the system.

We have used two computing-intensive applications to carry out the experi-
mental analysis presented in this section. The first one is a Dynamic Data Driven
Genetic Algorithm for fire spread prediction (DDDGA) [10]. The second one is
BLAST [11], a well known biology application, based on searching regions of local
similarity between genetic sequences. Both applications are compute-intensive.
However, in our experiments we have used DDDGA as an example of an urgent
job that was time shared with a non-urgent job (BLAST).

There is no appreciable cost (in terms of execution time and overhead) derived
from the use of VMs as computational tool instead of a physical machine in the
case of compute-intensive applications [12]. Table 1 shows execution times of
both applications under VM and under native host.

Table 1. DDDGA and BLAST execution times (minutes)

Native host Virtual Machine
BLAST DDDGA BLAST DDDGA

58.5 10 62 11

We carried out another experiment to demonstrate the fact that it is possible
to implement an adaptive scheduling system which is able to exploit virtual
resources depending on the emergency or priority of the incoming tasks. As
VMM we have used Xen [12], which provides useful techniques to control the
VMs behavior, such as CPU limitation. The experiment presented in this work
consists on evaluating how many executions of urgent incoming jobs (DDDGA)
can be carried out in the same time of another task already in execution, without
the need neither to suspend it nor to refuse the incoming requests, depending on
the CPU limitation balance between the virtual working nodes instances. Results
are shown on table 2. The time incurred by Condor to transfer the VM image is
not included. table 2 only shows the actual time incurred in the execution of each
job once the corresponding VM was started. It is worth noting that, according
to our architecture design, each instance of a job does not require to run in a
different VM. In general, only a small set of VM can be started and then multiple
instances of the job will run there until the whole set of jobs is completed, thus
limiting the overall overhead incurred in VM transfer and initialization. In this
experiment, DDDGA and BLAST run simultaneously on the same machine but
a different amount of CPU was given to each VM. The CPU amount ranged
from a minimum of 10% to a maximum of 90% (for instance, first row in table
2 shows the results of DDDGA running in a VM that was limited to 10%, while
BLAST was running in a VM that was using 90% of the physical CPU). The
same experiment was conducted on different machines of our testbed and table
2 shows average results.
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Table 2. CPU limitation experimental results (execution times in minutes)

CPU limit #DDDGA #BLAST Whole Whole DDDGA mean BLAST mean

distribution executions executions DDDGA BLAST execution execution

(DDDGA VM- set execution set execution time time

BLAST VM) time time

10%-90% 1 2 128 132 128 66

25%-75% 2 1 82 82.5 41 82.5

50%-50% 5 1 126 129 25.2 129

75%-25% 18 1 277 287 15.39 287

90%-10% 49 1 591 602 12.06 602

As seen in table 2, it is possible to get an important benefit by taking into
account applications behavior in each case of CPU limitation. A hypothetic
situation could be the fact of having a set of non-urgent BLAST jobs queued
and/or in execution, and an urgent request for executing as many instances of
DDDGA as possible. The results obtained indicate that if the system balanced
properly the use of CPU on the virtual resources many urgent tasks could be
completed while non-urgent ones will be kept in execution, without having to
suspend them. For instance, when DDDGA was running with 90% of CPU, the
overhead on the execution time of each job was nearly negligible, compared to
the case where DDDGA was running alone (Table 1). A total of 49 instances of
DDDGA were completed at the time taken by BLAST to complete one instance.
Obviously, performance degradation of BLAST was significantly higher, but this
is an acceptable situation in a scenario in which an urgent application arrives into
the system and needs to harness as many computational resources as possible.

Further exploitation of this multiprogramming mechanism requires the study
of new scheduling policies that make an efficient use of it in order to get the
maximum performance for each node in the grid site. Open issues that can be
explored in the future include:

a) To establish useful scheduling policies for virtual resources exploitation.
b) To satisfy, by means of these techniques, multiple time constraints (i.e. jobs

deadlines) thanks to intelligent strategies based on real-time CPU and mem-
ory limitation for jobs in execution in order to provide a suitable environment
for incoming tasks, respecting both the old jobs and the new jobs deadlines.

Furthermore, the addition of some sampling mechanism will enable our sys-
tem to give feedback to the users about execution time estimations, taking into
account how many resources could be devoted to their jobs in a given period of
time, and how would be possible to resize them in terms of CPU limitation.

5 Conclusions and Future Work

This work addresses some of the problems related to execution of urgent jobs
in a distributed computing environment. We have studied and proposed an
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architecture for a job management service, based on virtual resources, that lo-
cal sites should present in order to attend successfully and efficiently incoming
computing-intensive scientific applications. By using virtualization techniques,
our system has several advantages because urgent codes will be able to run
without worrying about applications’ libraries and architecture dependencies.
The system includes separated services that are responsible, on the one hand,
for managing virtual machine instantiation and, on the other hand, for job exe-
cution on the corresponding virtual machine instances. One of our goals was to
keep interoperability with already existing Local Resource Management Systems
(LRMS) and cluster middleware. No changes are required to existing LRMS, and
the only additional software required on each cluster are the necessary compo-
nents needed by the underlying virtualization engine (Xen, VMware...).

A first prototype of our service has been built and tested on a cluster man-
aged by Condor. Several experiments were conducted to evaluate the potential
benefits that can be obtained when a multiprogramming mechanism was used
to share the execution of multiple virtual machines on a single host. Our ex-
periments demonstrate that having control over virtual resources and balancing
the amount of CPU devoted to each virtual machine enables the development of
new scheduling strategies which could be used to manage the execution of urgent
jobs by adapting the system in a way that can satisfy the incoming requests and
demands.

Future research includes the exploitation of previous knowledge about ap-
plications behavior, that may allow the system to perform efficient scheduling
policies [13]. Furthermore, we are working on defining and implementing ad-
ditional feasible features of the architectural design proposed, which deal with
issues such as automatic and dynamic VM activation according to the workload,
the ability of virtual resources booking, or multi-core architectures exploitation
in order to satisfy scientific computing intensive parallel applications.
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Abstract. Distributed parallel applications often run for hours or even
days before arriving to a result. In the case of such long-running pro-
grams, the initial requirements could change after the program has
started executing. To shorten the time it takes to arrive to a result
when running a distributed computationally-intensive application, this
paper proposes leveraging the power and flexibility of dynamic software
updates. In particular, to enable flexible dynamic software updates, we
introduce a novel binary rewriting approach that is more efficient than
the existing techniques. While ensuring greater flexibility in enhancing a
running program for new requirements, our binary rewriting technique
incurs only negligible performance overhead. We validate our approach
via a case study of dynamically changing a parallel scientific simulation.

Keywords: Dynamic Software Updates, Time-to-Discovery,
Computationally-Intensive Applications, JVM HotSwap, Bytecode En-
hancement.

1 Introduction

Scientific computing is an interdisciplinary research area that uses computer
technologies to analyze mathematical models for computationally demanding
problems, including forecasting the weather, predicting earthquakes, and simu-
lating molecular dynamics. Despite the ever increasing computing power, scien-
tific computing applications are often long-running, taking hours or even days
to arrive to a result, due to the tremendous amounts of involved computations.
An effective approach to reducing the computing time in scientific programs
is parallel processing, particularly using compute clusters and computational
grids.

In a long-running application, the initial scientific requirements could change
while the execution is in progress. To realize the changed requirements, a stan-
dard approach requires stopping the running application, changing the code, and
restarting the application. However, this maintenance approach does not utilize
the computing resources most effectively, as it leads to repeating some of the
computation.
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This work is concerned with perfective maintenance required to address
changes in requirements rather than corrective maintenance required to address
defects. We assume that the running program is correct, but needs to change to
meet some newly-discovered requirements. We are not considering the problem
of detecting and correcting program defects, which is addressed elsewhere in the
research literature [1].

This work targets distributed computationally-intensive applications that use
the JavaTMtechnology as a means to operate in heterogeneous environments.
Successful applications of the Java technology to the domain of distributed par-
allel computation include heterogeneous, Java-based, computational grids [2].
The Java Virtual Machine (JVM) provides an advanced virtual execution envi-
ronment on multiple platforms. The adaptive optimization capabilities of Just-
In-Time (JIT) compilers make the JVM suitable for executing programs written
in scientific computing languages, including X10 [3], and possibly other emerging
languages such as Fortress [4].

Although the JVM features the HotSwap API [5], which replaces loaded
classes in a running application, the signature of a replaced class must remain
the same, allowing only method body changes. This, in turn, constrains the pro-
grammer modifying the swapped classes. This paper shows how these HotSwap
constraints can be overcome to allow the programmer to update classes without
restrictions. To that end, this paper presents a novel bytecode rewriting and code
generation approach, enabling the use of the standard HotSwap to replace the
changed code in a running JVM. The approach leverages Binary Refactoring,
a technique we introduced [6] that applies semantics-preserving transformations
to the binary representation of a program. The flexible and efficient dynamic
updates enable the programmer to perfect a running application at will. The re-
sulting incremental perfective maintenance model can reduce time-to-discovery
when fine-tuning a distributed computationally-intensive application.

This paper presents a solution to the problem of updating computation-
ally intensive applications dynamically and contributes a novel dynamic update
method that can perfect long-running, distributed, JVM-based applications for
new requirements, thereby shortening their time-to-discovery; and a new binary
rewriting technique that enables the enhancement of performance-sensitive ap-
plications, with minuscule performance overhead.

The rest of this paper is structured as follows. Section 2 details our approach
to updating computationally-intensive software dynamically. Section 3 evaluates
the flexibility and efficiency of our approach. Section 4 compares our approach
with the existing state of the art. Section 5 discusses future work directions and
presents concluding remarks.

2 Updating Computationally Intensive Applications
Dynamically

Next we describe our flexible and efficient dynamic software updating system for
computationally intensive applications.
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J
JVM

J
JVM

C1

C4

C2

C3

J
JVM

HotSwap

C1

C4C3

Replacement at runtime

Fig. 1. JVM HotSwap facility

2.1 Enhancing JVM HotSwap Using Bytecode Rewriting

Fig. 1 shows how the JVM HotSwap reloads class C2’ on the fly. The replaced
application with four classes and the HotSwap program with a newer version
C2’ execute on two different JVMs; the JVM running the target application
needs to start with the appropriate debugging options and the HotSwap module
connects the JVM with its hostname and port number. The rightmost part of
Fig. 1 shows the application has the new version C2’.

Although the HotSwap API can replace loaded classes in a running applica-
tion, the signature of a replaced class must remain the same, and only method
bodies could change. Thus, adding new methods, fields, or constructors, or even
changing the signatures of existing methods or fields will render a class invalid
for HotSwap, thus hindering the programmer from updating programs at run-
time. To remove these constraints, our dynamic updating approach leverages the
ability of the JVM to load classes at runtime and uses bytecode rewriting and
code generation.

Fig. 2 shows our binary rewriting which introduces an indirection to a target
class using the Proxy Pattern. This rewrite leverages advanced optimization
capabilities of modern JVMs to inline the indirected functionality, making the
rewrite applicable for performance-sensitive applications [7]. The original class
A is translated into the proxy A and its superclass Super A. While the class
name and the method signatures of the original and proxy classes remain the
same, the method bodies are different; the overloading methods of the proxy
class invoke the overloaded methods of the superclass. The code snippet in the

A

void foo();

Super_A

void foo();

A

void foo();

class Super_A {
public void foo(){

System.out. println ("I'm foo.");
}

}

class A extends Super _A {
public void foo() {

super.foo() ;
}

}

Fig. 2. Our binary rewriting to introduce indirections
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Version 1 Version 2

Original
Bytecode

Enhanced
Bytecode

A

void foo(){}

A
void foo(){super.foo();}
Object invoke(

String name, 
Class[] argTypes, 
Object[] args){}

Super_A

void foo(){}
Object getMethodHelper(){}
Object getFieldHelper(){}

void foo(){}
void bar(int i){}

int i;
A

MethodHelper

void bar(int i){}

FieldHelper

int i;

Super_A

void foo(){}
Object getMethodHelper(){}
Object getFieldHelper(){}

A
void foo(){super.foo();}
Object invoke(

String name, 
Class[] argTypes, 
Object[] args){}

Bytecode
Rewriting

Fig. 3. Adding new members to the class A using the special helper classes

right shows that the proxy class A inherits methods from the superclass Super A
and the call to the method foo() is delegated to the superclass.

Our approach first rewrites an original program for updatability and then
changes it for new requirements dynamically. In order to make a program up-
datable, our bytecode enhancer transforms the bytecode using the techniques
described above. This approach supports a wide-range of changes to the reloaded
classes, without violating the constraints imposed by the JVM HotSwap API.1

Fig. 3 describes an example of our approach. Suppose that class A needs to be
updated with another version. Since the second version of A is structurally dif-
ferent from the first version, the current JVM HotSwap implementation cannot
reload the second version of A. Our approach makes new classes for added fields
and methods to provide the flexibility. We called them helper classes. There
are two helper classes in Fig. 3; MethodHelper is for the new method bar(int
i) and FieldHelper is for the new field int i. To make intended changes to the
running application, we can reload the proxy A and its superclass Super A us-
ing HotSwap. It is obvious that JVM loads two helper classes when it reloads
Super A.

2.2 Updating Scientific Applications on the Fly

Once a program is made updatable at the bytecode level, the JVM HotSwap can
replace at runtime the program’s classes with their newer versions containing
structural differences. Furher, the HotSwap facilities are used in exactly the
same way as shown in Fig. 1. Fig. 4 illustrates the modules and control flow of
our dynamic updating system. This system consists of the class differencing and
bytecode rewriting modules.

1 Our approach does not support the dynamic updates that change the inheritance
hierarchy–these changes are too substantial to be supported by rewriting bytecode.
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m1();
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HelperClass
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m();m();m1();

m();m();m1();

Fig. 4. Our dynamic software update system-subsystems and control flow

To generate the helper classes, our approach identifies the structural changes
between the two versions of a class. The class differencing algorithm shown in
Fig. 5 takes two versions of the same program as input and returns a collec-
tion of differences in fields, constructors, and methods. This algorithm simply
compares the fields, methods, and constructors of the classes by using the Java
Reflection API. To find out field differences, the differencing algorithm compares
the modifier, type, and name of a field. The method differences are identified by
examining the modifier, return type, name, and parameter types of a method
and constructors are distinguished by their modifier and parameter types.

Next we provide a more formal treatment of our binary rewriting techniques
using superclasses and proxies. The double vertical bar (‖) specifies pre- and
post-conditions. In X

Y , X denotes the class hierarchy of the original class before
the enhancement, while Y denotes its new hierarchy after the enhancement has
been performed. In Fig. 6, c is an original class, transformed into a proxy and
with the added superclass. The new superclass cvs is inserted between the proxy
cproxy and the initial superclass s of the original class c. Fig. 7 depicts how the
indirection works for methods and constructors. Fig. 8 details how our approach
introduces an indirection when accessing non-private fields. private <v V de-
notes the visibility V which is stronger than private visibility.

3 Case Study: Updating a Molecular Dynamics
Simulation System Dynamically

To demonstrate the efficiency of our approach, we compared the total execution
time of a Successive Over-Relaxation (SOR) [8] program with that of its rewrit-
ten version. The measurements were conducted on a compute cluster, with each
node running a dual processor AMD Opteron 240 (1.4Ghz), 1GB RAM, CentOS
version 4.2, JDK version 1.5.0, connected by Myrinet (4Gbit). Fig. 9 shows the
total overhead of the rewritten version never exceeds 2%.
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INPUT: A set C = {(c1
v1, c

1
v2), (c2

v1, c
2
v2), . . . , (c

p
v1, c

p
v2)} of class pairs to be compared.

OUTPUT: A collection of differences of fields, constructors, and methods
1 while (a set C is not empty) do
2 //Compare fields of classes

3 fieldsOfOldClass ←− ci
v1.allFields(), fieldsOfNewClass ←− ci

v2.allFields()
4 for (fieldsOfNewClass is not empty) do
5 eachF ieldOfNewClass ←− fieldsOfNewClass.nextItem()
6 for (fieldsOfOldClass is not empty) do
7 eachF ieldOfOldClass ←− fieldsOfOldClass.nextItem()
8 if ( sig . of eachF ieldOfOldClass == sig. of eachF ieldOfNewClass) then
9 isSameField = true; break;

10 end if
11 end for
12 if (NOT isSameField) then
13 differentMembers.addElement(eachF ieldOfNewClass)
14 end if
15 end for
16 //Compare constructors and methods of classes

17 methodsOfOldClass ←− ci
v1.allMethods(), methodsOfNewClass ←− ci

v2.allMethods()
18 for (methodsOfNewClass is not empty) do
19 eachMethodOfNewClass ←− methodsOfNewClass.nextItem()
20 for (methodsOfOldClass is not empty) do
21 eachMethodOfOldClass ←− methodsOfOldClass.nextItem()
22 if ( sig . of eachMethodOfOldClass == sig. of eachMethodOfNewClass) then
23 isSameMethod = true; break;
24 end if
25 end for
26 if (NOT isSameMethod) then
27 differentMembers.addElement(eachMethodOfNewClass)
28 end if
29 end for
30 end while

Fig. 5. The ClassDifferencing algorithm

A set of interfaces, I = {i1, i2, . . . , ii}
V Super(c‖cproxy, cvs) : Class c is transformed into cproxy and cvs.
c: refactored class, cproxy: proxy class of c, cvs: new superclass of c

V Super(c‖cproxy, cvs) =
c extends s implements I

cproxy extends cvs, cvs extends s implements I

Fig. 6. Indirection using superclasses

To assess the applicability of our approach to more realistic programs, we
used a parallel Molecular Dynamics Simulation (MDS) program [9,10] which
was deployed on Ibis [2], a Java-based grid programming environment. Among
other services, Ibis provides a Java API for MPI-like message passing among
cluster nodes.
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Pvs ‖...‖ denotes the rewriting by our approach.
//The transformation of constructors
Pvs ‖ public k(T1, . . . , Tn) throws C1, . . . , Ci‖ =

public k(T1, . . . , Tn) throws C1, . . . , Ci { super(T1, . . . , Tn); }
//The transformation of methods
Pvs ‖ public T m(T1, . . . , Tn) throws C1, . . . , Ci‖ =

public T m(T1, . . . , Tn) throws C1, . . . , Ci{
if ( the return type of m is void ) super.m(T1, . . . , Tn);
else return super.m(T1, . . . , Tn);

}

Fig. 7. Indirecting constructors and methods

//Access the superclass′s non − private fields
Gvs ‖...‖ represents the generation of getters and setters for fields.
Gvs ‖ private <v V T x‖ =

private <v V T getX() { return x; }
private <v V void setX(T x) { this.x = x; }

//Access non − private fields via a proxy
Pvs ‖ private <v V T x‖ =

private <v V T getX() { return super.getX(); }
private <v V void setX(T x) { super.setX(x); }

Fig. 8. Indirecting the superclass’s non-private fields

0

20

40

60

80

100

120

140

160

180

1000 3000 5000 7000

Original

Enhanced

Execution time (sec)

Problem size

1.7 %

1.0 %

0.7 %

1.2 %

Original Version of SOR

Transformed Version of SOR

Fig. 9. Refactoring overhead on Successive Over-Relaxation. – x-axis: the problem size;
y-axis: the total execution time of both the original and the enhanced versions.

We updated the MDS program dynamically twice, updating the thermostat
algorithm and the number of molecules. The thermostat algorithm maintains
or rescales the temperature constant of a molecular system by increasing or
decreasing the velocity of the molecules. Therefore, the selection of an appropri-
ate thermostat method depends on the molecular system in use. Also the initial
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Initialize positions 
and velocities of 

all molecules

Apply Lennard
Jones Potential

Update positions 
and velocities of 

all molecules

Molecular Dynamics Simulation

Dynamic Updates
Rescale velocities 

by applying 
thermostats

Rescale velocities by 
applying thermostats

(New module)

Fig. 10. Updating the rescaling module of a molecular dynamics simulation

Table 1. Changes to the Molecular Dynamics Simulation

Updates Requirements Implementations
Thermostat Rescale velocities of molecules Adding a new method
algorithm by replacing the thermostat rescale(mol[] m, int size)

algorithm and fields
The number Increase/decrease the number Adding a new method
of molecules of molecules to be simulated updateNumOfMols(int size)

number of the molecules may need to change during the simulation. Fig. 10 de-
picts the main modules of an MDS program and the thermostat module that are
updated dynamically. Table 1 summarizes the aforementioned scenarios, which
motivate dynamic changes.

While the changes above may seem simple, without dynamic updating fa-
cilities, they would require stopping the parallel execution and losing valuable
computing resources. Furthermore, these updates could not be accomplished by
using HotSwap alone. In fact, trying to use HotSwap for these updates would
throw an exception terminating the program’s execution. Finally, these changes
are a natural consequence of delivering solutions under tight deadlines. It is not
always possible to put enough care into designing a distributed parallel applica-
tion, so that it always satisfies the requirements of different users.

4 Related Work

A significant amount research has been conducted in dynamic software updating
via program transformation [11,12], custom virtual machines or runtime libraries
[13,14], and new language constructs [15,16] such as Aspect-Oriented Program-
ming (AOP) [17].



Dynamic Software Updates for Accelerating Scientific Discovery 245

Table 2. Comparison to related work on dynamic updating for Java soft-
ware(supported:+, unsupported:-, and partially supported:+/-)

Criteria Orso[11] Bialek[12] Mal.[14] Lee[21] Pre.[18] Ours

Use of Standard
-Standard virtual machine + + - + - +
-HotSwap - - - - - +
-No coding constraints + + + - + +
-No runtime library required + + - - - +
Flexibility
-Adding fields/methods - + + + + +
-Update of fields/methods - + + + + +
-No source modification + + + + + +
Efficient code - - + +/- - +

Orso et al.’s technique [11] and Bialek et al.’s system [12] transform the code
to enable its dynamic updates. Unlike our approach facilitates JVM HotSwap,
both approaches do not use HotSwap and consider an efficient implementation of
the proxy pattern for performance-sensitive applications. Furthermore, although
custom virtual machines might be more powerful in dynamic software updates,
they could lead to a severe interoperability issue in a heterogeneous computing
environment. Like Warth et al.’s Expanders [15] and Bierman et al.’s UpgradeJ
[16], dynamic updates can be provided as new language features or a service of
middleware systems. While they can express explicitly changes at the code level,
the programmer is required to learn new language constructs or tools. Similar to
program transformation, AOP-based approaches need to insert dynamic update
modules, usually aspects, into a target application before the application is ex-
ecuted [18,19,20]. Table 2 compares the proposed approach with closely related
work. While these approaches to dynamic updates are powerful and effective,
none of them is applied and tested for computationally intensive applications
such as scientific and bioinformatics programs.

5 Future Work and Conclusions

The flexibility and efficiency of our approach open a slew of future work direc-
tions, including the application of our approach to large scale grid applications,
self-adapting systems, and autonomic computing.

We have presented a new binary rewriting approach for supporting flexible and
efficient dynamic updates of JVM-based, distributed, computationally-intensive
applications. Our approach to dynamic updating works with standard JVMs and
their built-in HotSwap facility to reload classes at runtime. The performance and
flexibility advantages of our approach make it promising for reducing the time-
to-discovery in long-running scientific applications.
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Abstract. The development of optimized codes is time-consuming and
requires extensive architecture, compiler, and language expertise, there-
fore, computational scientists are often forced to choose between invest-
ing considerable time in tuning code or accepting lower performance. In
this paper, we describe the first steps toward a fully automated system
for the optimization of the matrix algebra kernels that are a foundational
part of many scientific applications. To generate highly optimized code
from a high-level MATLAB prototype, we define a three-step approach.
To begin, we have developed a compiler that converts a MATLAB script
into simple C code. We then use the polyhedral optimization system
Pluto to optimize that code for coarse-grained parallelism and locality si-
multaneously. Finally, we annotate the resulting code with performance-
tuning directives and use the empirical performance-tuning system Orio
to generate many tuned versions of the same operation using different
optimization techniques, such as loop unrolling and memory alignment.
Orio performs an automated empirical search to select the best among
the multiple optimized code variants. We discuss performance results on
two architectures.
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1 Introduction

The development of high-performance numerical codes is challenging because
performance is determined by complex interactions among the algorithm, data
structure, programming language, compiler, and computer architecture. Scien-
tists seeking high performance are thus required to master advanced concepts
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in computer science and carry out intricate programming tasks in addition to
managing the scientific content of their work. They must either invest substan-
tial time in tuning their software or accept low performance. In either case, the
productivity of the scientists degrades.

Historically, the research community has pursued two separate paths toward
the goal of making software run at near-peak levels. The first path builds on
research into compilers and their associated technologies. One of the main goals
of compilation research is to take an arbitrary code as input and produce optimal
code as output for a given language and hardware platform. The success of this
approach has been limited by a number of factors: (i) optimal mappings between
the computation graph and the hardware are expensive (often NP-complete) to
compute; (ii) potentially useful information that could aid optimization cannot
be represented in general-purpose languages such as C and Fortran; and (iii) user
control of compiler optimizations is limited and varies from compiler to compiler,
and (iv) apart from differences in execution time, it is difficult to evaluate the
effectiveness of different compiler optimizations.

When compilers alone cannot achieve the desired performance, another path
to performance optimization is to identify kernel routines that dominate the exe-
cution time of a wide variety of applications. An example is the high-performance
Basic Linear Algebra Subprograms (BLAS) libraries [1] produced by a combina-
tion of hardware vendors, independent software vendors, and researchers. Devel-
opers who write their codes calling these routines can achieve high performance
across all supported architectures, but are also subject to the limitations of the
library (e.g., portability and the types of operations available).

This paper describes a combination of the two approaches designed to over-
come some of their shortcomings. We describe our initial efforts toward the
development of software infrastructure for generating automatically tuned li-
braries for matrix algebra computations. In Section 2 we briefly discuss relevant
prior and current research efforts. In Section 3 we describe our MATLAB-to-C
compiler and the empirical performance tuning system Orio and its use in con-
junction with the Pluto tool suite to generate and empirically evaluate many
tuned versions of the C code generated by the MATLAB compiler. In Section 4
we provide performance results on two architectures. In Section 5 we conclude
with a brief summary.

2 Background

Existing optimizing MATLAB [2] compilers, such as the MaJIC MATLAB com-
piler [3], include limited local optimizations for matrix expressions but do not
perform optimizations such as loop fusion across multiple operations as we do
with the tools described in this paper. The telescoping languages project [4] uses
techniques such as strength reduction, vectorization, and procedure specializa-
tion to optimize MATLAB scripts but does not generate reusable optimized
linear algebra routines as described in this paper.

The most common approach to tuning numerical codes is for an expert to
transform the source manually, unrolling loops, blocking for multiple levels of
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cache, and inserting prefetch instructions. The pitfalls of this approach are well
understood [5]: It requires a significant amount of time and effort. Optimiz-
ing code for one particular platform may in fact make it less efficient on other
platforms and often makes it complex and hard to understand or maintain. An
alternative is the use of tuned libraries of key numerical algorithms, for example,
BLAS [6] and LAPACK [7] for dense linear algebra.

Specialized code generators circumvent the high costs of manual code gener-
ation. They include tools for basic dense linear algebra operations (ATLAS [8],
PhiPAC [9]), and sparse linear algebra (OSKI [10]) among others. While these
libraries target a specific kernel, our approach aims at enabling the definition
of arbitrary kernels involving dense matrix linear algebra. It is often impossible
to predict precisely the performance of code on modern computer architectures.
Thus, many of these specialized code generators exploit search strategies to iden-
tify the best (or nearly best) code for a particular choice of problem parameters
and machine. Most existing autotuning tools are not general but focus on a
specific domain or algorithm.

A number of source or binary transformation tools for general performance-
improving optimizations exist. LoopTool [11], developed at Rice University,
supports annotation-based loop fusion, unroll-and-jam, skewing, and tiling. A
relatively new tool, POET [12], also supports a number of loop transforma-
tions. POET offers a complex template-based syntax for defining transforma-
tions in a language-independent manner (but currently only C++ is supported).
Pluto [13] is a source-to-source transformation tool for optimizing sequences of
nested loops. Pluto employs a polyhedral model of nested loops, where the dy-
namic instance (iteration) of each statement is viewed as an integer point in a
well-defined space, called the statement’s polyhedron. Combined with a char-
acterization of data dependences, this representation allows the construction of
mathematically correct complex loop transformations. The transformations tar-
get both improved cache locality and parallelism.

3 Optimizing Composed BLAS Operations

Codes based on matrix algebra are generally constructed as a sequence of calls to
the BLAS and similar sparse matrix libraries [14]. Writing programs in this way
promotes readability and maintainability but can be costly in terms of memory
efficiency. Specifically, the retrieval of a large-order matrix at each routine call
can profoundly affect performance even when highly tuned implementations of
the BLAS (e.g., [15]) are used.

A much more efficient approach is to call a single, specialized routine that per-
forms multiple operations, rather than to make successive calls to separate BLAS
routines (e.g., see [16]). Single routines that carry out more than one linear alge-
bra operation are known as composed BLAS. As an example, consider the pair of
matrix-vector products q = Ap, s = AT r, where A is a matrix and p, q, r, and s
are vectors, that represent the computational bottlenecks of the biconjugate gra-
dient method (BiCG) [17] and of the GEMVER kernel examined in Section 3.1.
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These two operations can be implemented as a pair of calls to the BLAS routine
GEMV, or they can be rewritten as a composed BLAS consisting of a doubly nested
loop encompassing both matrix-vector products. In the former case, the matrixA
is accessed twice, whereas in the latter it is accessed only once. Our preliminary
results in prior research and in the work reported in this paper indicate that loop
fusion leads to a routine that delivers significantly better performance than does
a pair of calls to the best optimized BLAS GEMV routines for large matrix orders.
Composed routines are the focus of the work presented here, but much of what we
discuss generalizes to a much broader array of computations.

To generate highly optimized code from a MATLAB prototype of the com-
posed BLAS operation, we follow a three-step approach, illustrated in Figure 1.
This process is repeated when the MATLAB code changes or the code must
be tuned on a new architecture. To begin, we have developed a compiler that

Fig. 1. Code generation and tuning process

converts a MATLAB script
into simple C code [18].
After generating the C
code from the high-level
MATLAB prototype, we
(optionally) use the source-
to-source automatic paral-
lelization tool Pluto [13] to
optimize for coarse-grained
parallelism and locality si-
multaneously. Using the re-
sults of the Pluto analysis,
we insert annotations into
the C code, which are then
processed by our extensible
annotation system Orio to
generate many tuned versions of the same operation using different optimization
parameters. Orio then performs an empirical search to select the best among the
multiple optimized code variants.

In the remainder of this section we describe each of the tools developed by
the authors of this paper, namely, the MATLAB-to-C compiler [18] and the Orio
empirical tuning tool [19,20].

3.1 A MATLAB Compiler

Figure 2 gives an overview of the MATLAB-to-C compilation process [18]. The
MATLAB kernel specification is parsed into a high-level intermediate represen-
tation in the form of a dataflow graph, in which each node represents a parame-
ter (e.g., a scalar, matrix, or vector variable) of the kernel or an operation. This
dataflow graph is then iteratively processed until all of the implementation choices
have been made. The compilation process consists of three phases – analysis, re-
finement, and optimization – that are together iterated until all of the implemen-
tation decisions have been made. The graph is then translated into C code.
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Fig. 2. MATLAB-to-C compiler

Here we briefly describe the analysis, re-
finement, and optimization of the dataflow
graph; these are discussed in more detail
in [18]. During the analysis phase, all types
of intermediate nodes are computed and
assigned. The algorithm choice and stor-
age format determination are computed si-
multaneously. Consider, for example, the
GEMVER kernel computation: A ← A +
u1v

T
1 + u2v

T
2 ; x ← βAT y + z; w ← αAx. The multiplication of u1 and vT

1
can be implemented by iterating over rows first or over columns first, depending
on how the result is used downstream in the dataflow graph. In this case, the
result is added to the outer product of u2 and vT

2 , so we still can choose either
option as long as we make the same choice for both outer products.

The information on implementation possibilities for basic linear algebra oper-
ations is not hard-coded in the compiler; rather, this data is stored in a database,
called the linear algebra database. This separation allows us to add new matrix
formats, operations, and basic linear algebra algorithms without changes to the
compiler algorithm.

The analysis algorithm makes implementation choices using the most-con-
strained-first strategy (also known as minimum remaining values) [21]. The com-
piler chooses the node with the fewest matching implementations (in the linear
algebra database) and assigns an algorithm name to the node. If there is more
than one match, the prototype compiler picks the first. This process is repeated
with all remaining nodes in the graph.

The refinement phase resolves the implementation for each operation node in
the graph into a subgraph defining the details of the chosen algorithm. Each
subgraph is an abstract representation of the loop that implements the given
operation that also contains an iteration strategy for traversing the elements of
the matrix or vector. In the optimization step, we apply conditional rewrite rules
to optimize the dataflow graph, for example merging two subgraphs when they
share a common operand. This rule is responsible for fusing the loops of the two
matrix-vector products in the GEMVER kernel. The final step performed by the
MATLAB compiler when the graph cannot be refined further is the generation of
C code. The generator outputs a C loop for each subgraph based on a topological
sort of the graph.

3.2 Orio

Orio [19, 20] is an empirical tuning tool that takes annotated C code as input,
generates multiple transformed versions of the annotated code, and empirically
evaluates the performance of the generated codes, ultimately choosing the best-
performing version to use in production runs.



Generating Empirically Optimized Composed Matrix Kernels 253

Annotated C Code Annotations
Parser

Code
Transformations

Empirical
Performance
Evaluation

Sequence of (Nested) 
Annotated Regions

Transfomed C 
Code

Code
Generator

Optimized  C 
Code

best performing version

Tuning
Specification

Search
Engine

Fig. 3. Overview of the Orio empirical tuning process

Figure 3 illustrates the tuning process implemented in Orio. The input to
Orio is C code containing semantic comments that describe both the compu-
tation (using a syntax that is more restricted than the original C) and various
performance-tuning directives. Orio first extracts all annotation code regions by
parsing the marked-up input code. Each annotated region is then passed to code
transformation module and code generator for potential optimizations. Next the
transformed C code with various incorporated optimizations corresponding to
the specified annotations is produced. Orio generates an optimized code ver-
sion for each distinct combination of performance parameter values. Each code
variant is then executed and its performance measured. After iteratively test-
ing all code variants, the best-performing code is selected as the final output
of Orio. While each variant is computationally very cheap (a single code vari-
ant takes between a fraction of a second to a few seconds depending on the
input sizes), the search space of all possible optimized code variants can be ex-
ponentially large. Therefore, the search engine implements a number of search
heuristics (i.e., random, simplex, and simulated annealing) to effectively nar-
row the search for near-optimal performance and reduce the empirical search
time.

Figure 4 shows an annotation example used by Orio to empirically optimize
VADD operation on Blue Gene/P. The annotations contain performance hints
that instruct Orio to perform memory alignment optimization, loop unrolling,
and multicore parallelization (using OpenMP). In addition to these simple opti-
mizations, Orio supports other transformations such as loop blocking, loop per-
mutation, scalar replacement, array copy optimization, and some architecture-
dependent optimizations. The right-hand side of Figure 4 shows separate tuning
specifications used for building and running executable tests, including perfor-
mance parameter values, execution environment details, input variable informa-
tion, and the search algorithm. Orio also supports parallel search when parallel
resources are available. In this example, the parallel Orio driver simultaneously
executes 64 code variants in the same parallel job. At present, users must create
the tuning specifications manually for each architecture. When Orio is used in
conjunction with compiler tools, such as the MATLAB compiler described in
this paper, it should eventually be possible to automatically generate the tuning
specifications.
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void vadd(int n, double *y, double *x1,
double *x2, double *x3) {

/*@ begin PerfTuning(
import spec vadd_tune_spec;

) @*/

register int i;

/*@ begin BGP_Align(y[],x1[],
x2[],x3[]) @*/

/*@ begin Loop(
transform Unroll(ufactor=UF,

parallelize=PAR)
for (i=0; i<=n-1; i++)

y[i] = x1[i] + x2[i] + x3[i];
) @*/

for (i=0; i<=n-1; i++)
y[i] = x1[i] + x2[i] + x3[i];

/*@ end @*/
/*@ end @*/
/*@ end @*/
}

spec vadd_tune_spec {
def build {
arg build_command = ’mpixlc -O3 -qstrict -lm’;
arg batch_command = ’qsub -n 64 -t 10’;
arg status_command = ’qstat’;
arg num_procs = 64;
}
def performance_params {
param UF[] = range(1,32);
param PAR[] = [True, False];
}
def input_params {
param N = [10,100,1000,10**4,10**5,10**6,10**7];
}
def input_vars {
decl int n = N;
decl double y[N] = 0;
decl double x1[N] = random;
decl double x2[N] = random;
decl double x3[N] = random;
}
def search {
arg algorithm = ’Exhaustive’;
}
}

Fig. 4. Orio example: Annotated C source code (left) and tuning specification excerpt
for the Blue Gene/P (right)

4 Experimental Results

We evaluated our approach by running experiments on an Intel Xeon worksta-
tion and the Blue Gene/P at Argonne. The Intel machine has dual quad-core
E5462 Xeon processors (8 cores total) running at 2.8 GHz (1600 MHz FSB) with
2 GB RAM, running Ubuntu 8.04. Intel C compiler (v10.1) was used with -O3
option (and -parallel/-openmp for automatic/manual parallelization, respec-
tively). Each node of the Blue Gene/P has four 850 MHz PowerPC 450 proces-
sors with a dual floating-point unit and 2 GB total memory per node, running
a proprietary operating system. On the Blue Gene/P, we used IBM XLC com-
piler (v9.0), with -O3 -qstrict -qarch=450d -qtune=450 -qhot options (and
-qsmp=auto/-qsmp=noauto for automatic/manual parallelization, respectively).

Table 1 lists the composed BLAS operations used in our experiments, along
with their input and output variables. Vectors are typeset in lowercase with an
overhead arrow. Scalars and matrices are represented as lowercase and uppercase
letters, respectively. A regular uppercase denotes a row matrix, whereas a bold
uppercase symbolizes a column matrix. The extended MATLAB expression that
corresponds to each operation can be seen in the last column of Table 1.

The performance results of tuning the VADD operation on the Blue Gene/P
are given in Figure 5(a). The “Base” label designates the C implementation
generated by the MATLAB compiler. We also tested the performance of an im-
plementation that calls DAXPY twice using available BLAS libraries. Finally, we
tuned the simple C loop version using Orio, with the performance annotations
previously shown in Figure 4. In this experiment, we measured the performance
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Table 1. Composed BLAS operations used in our experiments

Name Input Output Operation
VADD −→w ,−→y ,−→z −→x −→x = −→w + −→y + −→z
ATAX A,−→x −→y −→y = AT ∗ (A ∗ −→x )

GEMVER A,a,b, B, B = A + −→u1 ∗ −→v1
T + −→u2 ∗ −→v2

T

−→u1,−→u2,−→v1 ,−→v2 , −→x ,−→w −→x = b ∗ (BT ∗ −→y ) + −→z−→y ,−→z −→w = a ∗ (B ∗ −→x )

BiCG Kernel A,−→p ,−→r −→q ,−→s −→q = A ∗ −→p−→s = AT ∗ −→r

Fig. 5. Performance results for several composed BLAS operations

for both the sequential and parallel scenarios (indicated by (S) and (P) in the
legend, respectively). Even for a very simple operation such as vector addition
the compiler alone is unable to obtain the same level of performance as the
empirically tuned versions. Furthermore, as expected, the BLAS implementa-
tion does not exploit locality and thus performed worse than the single-loop
implementation.

The experiments of the remaining operations were performed on the multicore
Intel Xeon. Included in these experiments are performance numbers for six code
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variants: the C code generated by the MATLAB compiler (“C from MATLAB”),
three BLAS-based implementations that use Intel MKL, ATLAS, and the default
BLAS library on Ubuntu 8.04, and the sequential and parallel code variants
tuned by Orio (“Orio (S)” and “Orio (P)”, respectively).

The Xeon performance results of ATAX are shown in Figure 5(b). The Orio-
tuned version that incorporates Pluto-generated loop fusion optimizations and
Orio parallelization directives achieves the best performance for most problem
sizes, outperforming the Intel MKL version by a factor of 2 to 5.7 and the
compiler-optimized C version by a factor of 4 to 7. The optimizations performed
by both Orio versions include scalar replacement, vectorization, and loop un-
roll/jam.

Figure 5(c) shows the performance of the GEMVER operation on the Xeon
workstation. Here we used the same Pluto and Orio optimizations as for the
ATAX example. Similarly, the parallel Orio version achieved the best perfor-
mance, although in this case the sequential Orio version performs almost the
same, suggesting that the compiler was not able to parallelize the code very
effectively. For this operation, substantial performance differences exist between
among the different BLAS versions, with the Intel MKL version achieving per-
formance close to that of the simple compiler code.

The performance for the BiCG kernel operation is shown in Figure 5(d).
For this operation, the Pluto analysis did not result in performance improve-
ment. Thus we are showing the results obtained only through Orio transfor-
mations, which included vectorization, scalar replacement, and loop unroll/jam.
Again the best performance was achieved by the parallel Orio version, while
all the BLAS versions performed worse than the compiler-optimized C loop
version.

5 Conclusions

We have described an approach to generating tuned linear algebra libraries from
high-level annotated MATLAB code that involves a suite of tools to (1) trans-
late the MATLAB code to C, (2) analyze the resulting loops and identify locality
and parallelism-enhancing optimizations using Pluto, and (3) annotate the re-
sulting C code with syntactic performance directives and use Orio to generate
multiple optimized versions and empirically select the one with the best per-
formance. Preliminary results from experiments with several composed BLAS
operations show that the optimized code generated by this suite of tools sig-
nificantly outperforms the versions using tuned BLAS and aggressive compiler
optimizations.

The positive initial results from our approach to generating tuned linear al-
gebra routines motivate several future lines of investigation, including closer
integration between the tools handling the different steps of the process and
more automation at each step.
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Abstract. The problem of capturing provenance for computational
tasks has recently received significant attention, due to the new set of
beneficial uses (for optimization, debugging, etc.) of the recorded data.
We develop a provenance collection system aimed at scientific applica-
tions that are based on the Common Component Architecture (CCA)
that alleviates scientists from the responsibility to manually instrument
code in order to collect provenance data. Our system collects provenance
data at the granularity of component instances, by automatically record-
ing all method invocations between them, including all input and output
parameters. By relying on asynchronous communication and using op-
timizations to handle large data arrays, the overhead of our system is
low-enough to allow continuous provenance collection.

1 Introduction

Provenance is a collection of intermediate data that explains in some level of de-
tail the transition from input data to output data in a scientific application. This
type of data collection also exists in many other computing domains, under dif-
ferent constrains and application requirements; provenance collection is similar
to logging in operating systems and to preservation of data lineage in databases.
The form and granularity of data provenance depends on the type of application
that is intended to consume this stored data. The collected data can be used
for purposes ranging from error detection and debugging, to optimization by re-
moving redundant computations, and even to accountability of individual parts
in a multi-user system [1,2]. In the scientific computing domain, provenance also
serves the role of a “paper-trail” , in concert with the source code, to document
the computational methods used to a particular scientific discovery.

In recent years, component technology has been a successful methodology for
large-scale commercial software development. Component technology encapsu-
lates a set of frequently used functions into a component and makes the imple-
mentation transparent to the users. Application developers typically use a group
of components, connecting them to create an executable application. Component
technology is becoming increasingly popular for large-scale scientific computing
in helping to tame the software complexity required in coupling multiple dis-
ciplines, multiple scales, and/or multiple physical phenomena. The Common

G. Allen et al. (Eds.): ICCS 2009, Part I, LNCS 5544, pp. 259–268, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



260 K. Damevski and H. Chen

Component Architecture (CCA) [3] is a component model that was designed to
fit the needs of the scientific computing community by imposing low overhead
and supporting parallel components. CCA has already been used in several sci-
entific domains, creating components for large simulations involving accelerator
design, climate modeling, combustion, and accidental fires and explosions [4].
These types of applications usually contain a large number of connected compo-
nents, each of them at the granularity of one numerical computation. As individ-
ual components are often contributed by separate teams and reused for several
applications, many of them are treated as black boxes. Applications based on
the CCA model can leverage data provenance to establish whether a partic-
ular component behaves properly and to localize bugs and inconsistencies in
application development. In addition, we can use the collected data to prune
computations that do not have side-effects when there is a match in the input
data, by supplying the already recorded output data. This strategy greatly im-
proves performance and it has been employed, outside of the component space,
by computational studies, which repeatedly execute the same application to ex-
plore its the parameter space [5]. We design a system to collect provenance data
in CCA applications with these uses of the data in mind.

In order to collect provenance data, one needs to instrument the application
by inserting invocations to a serialization routine. This can be a time-consuming
and repetitive task, and a perfect candidate for automation. Automatic instru-
mentation makes it easy to start collecting data for any CCA application, even
if the application consists of many individual component instances. We choose
to collect data at the boundary between components, capturing and recording
all communication flow between a pair of components, including method invo-
cations and associated input parameters, output parameters and return values.
The component boundary is an appropriate place to collect data for the majority
of CCA applications we have encountered because the collected data is usually
of acceptable granularity to be used together with the component instances in
order to enable provenance applications such as accountability, debugging, and
the removal of redundant computation (where the computation was previously
completed and its input and output data were recorded). It is also the only place
where automatic instrumentation is easily attainable. In this paper, we describe
our implementation of a method to automatically instrument CCA components
in order to collect provenance data. Our goals in designing our system for col-
lecting provenance are to: 1)capture all the provenance data that passes between
component instances and 2)impose low overhead so that provenance will be col-
lected continuously, even in deployment scenarios.

We organize the discussion of our provenance gathering system as follows.
Section 2 contains background and discussion of the problem. In Section 3 we
show a detailed view of our design and implementation of the CCA provenance
collection framework, while in Section 4 we discuss some of the preliminary
benchmarks we have taken of our system. Finally, we finish with conclusions
and future work of the project in Section 5.
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2 Background and Problem Specification

Provenance is a technique in wide use in both core computer science and com-
puter application domains. It can be most generally explained as the preserva-
tion of metadata regarding a specific data product. Simmhan et al.’s summary
of provenance in e-Science [6] establishes a taxonomy of provenance techniques
based on the following criteria: 1) application of provenance, 2) subject of prove-
nance, 3) representation of provenance, 4) provenance storage and 5) provenance
dissemination. These criteria provide a vehicle for examining a provenance sys-
tem, considering both provenance collection and provenance querying and use. In
our work we only consider the collection of provenance data, while dissemination
and use of this data is outside of the scope of this paper.

The CCA model consists of a framework and an expandable set of compo-
nents. The framework is a workbench for building, connecting and running com-
ponents. A component is the basic unit of an application. A CCA component
consists of one or more ports, and a port is a group of method-call based in-
terfaces. There are two types of ports: uses and provides. A provides port (or
callee) implements its interfaces and waits for other ports to call them. A uses
port (or caller) issues method calls that can be fulfilled by a type-compatible
provides port on a different component. A CCA port is represented by an in-
terface, which is specified through the Scientific Interface Definition Language
(SIDL). A SIDL specification is compiled into glue code that is later compiled
into an executable together with the user-provided implementation code. The
prevalent way of compiling SIDL is by using the Babel compiler [7]. Babel has
the capability of compiling SIDL to bindings for several popular programming
languages (C++, Java, Python, Fortran77 and Fortran95), which allows creat-
ing applications by combining components written in any of these languages.
Babel has a large and growing user community and has become a cornerstone
technology of the CCA component model.

Component technology is different in its approach compared to scientific work-
flows and grids. Scientific workflows and grid services are intended to guide an
application from the highest level combining few complex tasks, while compo-
nent applications are decomposed into many finer-grain tasks. This makes the
demands of a provenance system applied to CCA unique, compared to exist-
ing approaches in other scientific software domains, in terms of quantities of
collected data and common usage scenarios.

Collecting provenance data imposes some overhead on the execution of an ap-
plication, and if this overhead is high, it may be tempting to turn off provenance
collection in order to “squeeze out” more performance from of the machine. One
of the principal goals of our system is to keep the overhead low in order to en-
able continuous provenance collection. In order to accomplish this goal, we need
to have the provenance collecting system work in the background throughout
the application runtime (as a daemon), and send data to it asynchronously. In
addition, scientific applications that are based on CCA often handle large pieces
of data; it is not uncommon for an application to have multidimensional ar-
rays that are hundreds of megabytes or even gigabytes in size. When designing
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provenance collection infrastructure, we need to be careful to avoid in-memory
copies of large data, and eliminate needless performance overhead.

3 System Design

We designed and implemented a provenance collection system for CCA appli-
cations. Our design provides automatic code instrumentation with provenance
calls that incur low application execution overhead. To automate the instru-
mentation process we need to add provenance collection code to the stub code
of each CCA component, and to accomplish this we add functionality to Ba-
bel. The inserted provenance collection code will execute before and after every
SIDL-defined method, gathering all the input parameters (in and inout) before
the method executes and all the output parameters (out, inout and method re-
turn parameters) post execution. For instance, a SIDL definition of a CCA port
containing only one method is given below. To properly collect the provenance
data of the component which provides the IntegratorPort, we need to capture
the two in parameters passed to integrate before the method executes, and the
return value (of type double) after the execution completes.

interface IntegratorPort extends gov.cca.Port {
double integrate(in double lowBound, in double upBound);

}

The SIDL language is relatively restrictive; it does not allow class variables and
forces everything to be expressed in terms of interfaces, classes and methods.
Therefore, the data types we are concerned in recording consist of: objects,
SIDL-defined base types and arrays of base types. We designed our system to
record each of these types, with differing levels of ease.

3.1 Automating Provenance Collection

Once properly modified, the Babel compiler creates special stubs for each method
of an instrumented CCA port. These stubs copy the input and output parameters
of a method, write them into a message which is later saved to disk as provenance.
Since SIDL base types can only be defined as parameters of methods in the
language, it is relatively straightforward to generate provenance collection code
for each allowable base type (e.g. int, long, float, double, fcomplex, dcomplex,
string, bool). On the other hand, this makes the serialization of objects passed as
method parameters difficult to automate. Our approach is to force objects that
can be serialized to implement a Serializable interface. Through this interface,
each object must define how it can be written to disk and also reconstructed from
its disk image. Our instrumented stubs detect whether an object implements
Serializable, and will only then invoke the proper serialization methods on the
object. Objects that do not know how to serialize themselves are ignored for
provenance collection.
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SIDL also defines an opaque type, typically used to represent a pointer to
memory. Babel defines opaque as a sequence of bits that are relayed exactly
between function caller and callee, which maps to a void* in C/C++. In order
for our system to capture the data to which this pointer points to, we require
an additional parameter defining the length of the data. Extra parameters can
be defined with SIDL and passed into the Babel compiler using the %attrib
keyword. We use this mechanism to specify the length of the data pointed to
by an opaque type in SIDL, and enable our provenance system to record it. For
instance, using our integrator example from before, we may have:

interface IntegratorPort extends gov.cca.Port {
void integrate(in opaque %attrib{length=20} data);

}

In the scientific domain, arrays are the predominant data type used to represent
various data (e.g meshes, fields, matrices, etc.) Unlike opaque types, the length of
an array does not need to be externally specified because it is part of each array’s
“struct” in Babel, and is easily obtainable through method calls available in the
Babel runtime. Since arrays consist of sequences of SIDL base types, they appear
straightforward to handle by our provenance system. However, some arrays in
this domain can grow to millions (or more) of elements, so we need to be careful
in designing our system to handle them. Below, we propose some prescriptions
and optimizations in provenance collecting large CCA arrays.

In order to gather all of the provenance data in one place, as well as pro-
vide a single location for querying of such data, which can happen even as it
is being written to disk, we need a provenance collection component. Such a
component would provide us with a well defined interface and encapsulation
for both provenance storage and query. To communicate data asynchronously
to the provenance collection component we use an event mechanism. This pub-
lish/subscribe asynchronous communication mode allows the provenance com-
ponent to subscribe to one or more topics in which running components can
deposit provenance information. Events decouple the provenance sending from
the provenance receiving, writing to disk (or database or other medium) across
space and time, enabling a low overhead design. To deliver data to the provenance
component, our instrumentation code serializes all the parameters going in and
out of a method into a message and publishes it. The provenance component
contains a daemon thread that periodically grabs all published messages and
writes them to disk. Fig. 1 illustrates an example of this type of communication
in our provenance gathering system.

3.2 Optimizations for Large Data

Arrays are often encountered in CCA applications, and some of them can grow
to contain a considerable amount of data. CCA components are most often at
the granularity of one task, and often a single application passes large arrays
to several components. In a shared address space, these arrays are passed by
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Fig. 1. Displays an example of two application components (Component1 and Compo-
nent2) and our provenance collection component. When Component1 invokes a method
on Component2, our system publishes the method’s input parameters using an event
message, which is later collected by the provenance collection component.

reference at very little performance cost, so a single method may be invoked
many times with a large array as a parameter. Our system is designed to capture
all data going in and out of a method invocation, serializing and pushing all this
data to disk. In the case of these large arrays, this may be a task that can badly
influence the performance and scalability of provenance collection.

One operation we need to avoid is in-memory copies of large arrays. If an
array is sufficiently large, an in-memory copy may exceed physical memory size
and may lead to OS thrashing. In order to record large arrays properly, we have
to circumvent our system’s default operation: copying of memory to construct
an event message. We add a synchronous way to directly communicate to the
provenance component in order to serialize large arrays directly to disk. We need
a synchronous call for this operation as we need to ensure that the array is not
modified by a component before our system finishes writing it for provenance. We
only rely on this mechanism if we detect that an array is too large to copy, leaving
unchanged the base system of asynchronously sending data via publish/subscribe
for smaller arrays.

Another scenario we want to avoid in the context of large arrays is needlessly
serializing the same array that may appear in multiple method invocations (to
the same method or a different one). For instance, a visualization component
may be invoked every n seconds passing to it the latest data, which may often
be unchanged, or a component may simply forward a received array to another
component which will do all the work. These are patterns in which our prove-
nance collection system would make several copies of a large data array, costing
us application performance and disk space. In order to avoid this scenario we
use a very fast hash function to compute a checksum that will enable us to
quickly and accurately compare two arrays and determine if they are the same.
If two SIDL arrays are in-fact the same array, then their resulting checksums will
match and we can avoid the space and time cost of storing one of them. Storing a
checksum requires a very small amount of space (usually between 8 and 128 bits),
however computing it requires that we perform an operation across the length
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of the array. We dismiss the option of computing a checksum using a portion of
the array, as it runs a risk of checksum collision. Obtaining the same checksum
for different arrays would cause our system not to store an array, which would
result in incorrect provenance data and is something we must avoid. Although
the cost of computing a checksum may take on the order of seconds for a large
array, it is still several fold less than the time needed to store such an array to
disk, while also not considering the aforementioned storage space savings.

4 Results

To show the feasibility of our approach, and not as an end in themselves, we per-
formed some experiments. These proof of concept scenarios explored the choices
of hash functions for the redundant copy avoidance optimization in large arrays
and explored the overhead of our provenance system for a simple application:
solving a boundary condition problem. All experiments were performed on a
single machine with an 2 GHz Intel Core 2 Duo processor and 1GB of RAM.
We made modifications to the Babel compiler provided for automatic insertion
of the instrumentation code, and used SCIJump [8], a research CCA component
framework that provides low overhead and support for parallel and distributed
computing, to conduct our experiment.

4.1 Hash Function Selection

In choosing a hash function to optimize the recording of large arrays we should
consider the tradeoff between its performance and the likelihood of collisions
in the resulting checksums. Since one of the purposes of this optimization is
to reduce overall application overhead, we have to consider the performance
cost of hash function computation for a large data array. We cannot afford
commonly used hash functions (such as MD5 or SHA) because of the enormous
computational load in computing a checksum based on the whole array. While
performance is very important, we cannot risk raising the probability of hash
function collisions. A strategy we adopt in order to reduce the likelihood of
collisions is to make the computed checksum itself larger; a larger checksum
reduces the likelihood of collisions by several-fold.

To locate a reasonable and fast hash function, we considered some of the per-
formance benchmarks of hash functions in the Crypto library [9], but concluded
that all of the functions in this commonly used library are too expensive. The
work of Maxino [10] evaluates and compares the speed and collision potential of
very fast hash function for embedded system design, and recommends one’s com-
plement addition (also know as the Internet Checksum) as the most reasonable
choice in fast hash functions, compared to commonly used XOR, and two’s com-
plement addition. To further reduce the likelihood of collision in the checksum,
while not greatly increasing computational time, we extended the one’s comple-
ment addition algorithm’s checksum size to 64-bits for our provenance system.
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Fig. 2. The heat distribution component application for which we collected data prove-
nance using our system. The Driver component communicates to and from each of the
component instances implementing computational tasks.

In this way, the checksum computation produces a small additional time over-
head in our system, while providing us with reasonable confidence that checksum
collisions will not occur.

4.2 Provenance Overhead in Applications

To validate our design and determine the overall overhead, we implemented our
provenance system and used it to collect the provenance of an application. The
application we chose solves the heat distribution problem over a small L-shaped
2D domain. It consists of several components, each of which computes a part of
the solution (see Fig. 2).

We measured that the provenance collection added less than 1% overhead
to the execution time of our application, which is in line with the goals we set
forth. We note that this application did not need any of the large data optimiza-
tions which we designed, due to the small size of its computational problem.
The application did, however, record data containing most SIDL-defined types,
resulting in approximately 1KB/method invocation of data logged.

It is possible to design applications where our kind of provenance collection
would incur a larger overhead; if the problem is decomposed into a very fine
grain resulting in frequent inter-component communication (method calls) that
do not spend much time computing. Each method call and its parameters would
be recorded by our system, raising the overhead percentage to a higher level
than we have encountered here. Although this is possible, it is not the usual way
that CCA (or components in general) is applied to a scientific problem.
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5 Related Work

The need for data provenance has been widely acknowledged and is evident is
many computer domains. Here we intend to only review systems similar to our
provenance collection scheme for software components. The provenance survey
by Simmhan et al. [6], provides a good overview of provenance applications across
different domains. We direct the reader’s attention again to this survey for an
overview of provenance activities unrelated to scientific software architectures
(such as components, workflows, and web services).

The Karma framework [11] collects provenance in the context of web service
scientific applications. This provenance service is general and supports different
web service systems by using event (publish-subscribe) standards for web services
(WS-Eventing). This is the same communication mechanism, in the software
component rather than web service domain, that we chose to use in our system.
Our work extends Karma in providing an automated approach for provenance
collection. Karma further addresses provenance query and visualization, which
we do not attempt in our work so far.

Scientific workflows are a software architecture similar to components; work-
flows usually encompass a wider variety of tasks (such as database data col-
lection, batch job system control etc.) and decompose a problem in a coarser
grain than CCA. Altintas et al. present a provenance collection system [12] that
requires minimal user effort and a system for “smart” re-runs which mine the
provenance information for repetitive data. The provenance data in their system
is collected by a special provenance recorder which listens and collects events
that are produced by the workflow by default. However, this mechanism does
not handle external data automatically, requiring special API calls. External
data is probably the majority of the interesting data in workflow applications.
Therefore, the provenance collection part of their work would likely require a
fair amount of non automatic instrumentation of applications.

6 Conclusions and Future Work

This paper presents a design for automated provenance collection in CCA com-
ponent applications that requires no user intervention and provides low overhead
(1̃% in the application we tested) in order to be useful in deployment scenarios.
We designed our provenance collecting system to record data being communi-
cated through each component instance’s ports and interfaces. Optimizations
were necessary in order to handle large data arrays and the way they are often
communicated between component instances. We posit that provenance data
collected in this way is usable for debugging, accountability of untrusted com-
ponent instances, as well as optimizations by removing computations for which
we have previously gathered the output.

The future work of this project is to explore techniques of even further re-
ducing the overhead that our system imposes on CCA applications in two ways:
1)by considering novel ways to overlap computation and collection of provenance
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data, and 2)by extending our approach to encompass new applications that may
have a different computation to communication ratios. Each of these advances
in our system is important in achieving broad applicability and acceptance in
the CCA and applications communities.
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Abstract. We present a modular approach to realizing fine-grained
adaptation of program behavior in a parallel environment. Using a com-
positional framework based on function call interception and manipula-
tion, the adaptive logic to monitor internal program states and control
the behavior of program modules is written and managed as a separate
code, thus supporting centralized design of complex adaptation strategies
for adapting to dynamic changes within an application. By ‘catching’ the
functions that execute in synchronization across the parallel environment
and inserting the adaptive logic operations at the intercepted control
points, the proposed method provides a convenient way of synchronous
adaptation without disturbing the parallel execution and communica-
tion structure already established in the original program. Applying our
method to a CFD (computational fluid dynamics) simulation program to
implement example adaptation scenarios, we demonstrate how effectively
applications can change their behavior through fine-grained control.

1 Introduction

Implementing adaptive execution of an application in a distributed or paral-
lel environment has been of much interest in recent years. The approaches to
support program adaptation include: languages and compilers for specifying
adaptation strategies [1, 2, 3] and runtime platforms or middleware for adap-
tive execution [4, 5, 6, 7]. These efforts are primarily centered around resource
management to achieve efficient utilization of the environment, such as adaptive
load-balancing and scheduling of application tasks, to match resource constraints
or dynamic operating conditions of the environment. Adaptation schemes are
‘coarse-grained’ in these approaches in that cooperating processes of a dis-
tributed application are each abstracted as a task and adaptation strategies
are designed to reassign the tasks onto the resources or to reorganize the execu-
tion flow among them. The metrics to initiate adaptation are usually based on
measured history or estimates of the application execution time, which is a func-
tion of the environment’s operating conditions such as available resources (e.g.,
number of processors) or physical characteristics of the resources (e.g., network
bandwidth).
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Even with such support, however, adaptation schemes where functional be-
havior needs to be adjusted in response to internal changes to program state
can be hard to design. Key challenges include the need for specifying adap-
tive parallel control points and monitoring state changes within the program,
the need for executing parallel adaptation without disturbing the original exe-
cution flow, and the lack of support for centralizing adaptive logic operations
in a separate module, thereby providing a compositional approach to dealing
with the increased complexity of parallel adaptive applications. On the whole,
coarse-grained approaches such as supported by runtime systems do not provide
mechanisms to access fine-grained aspects of program state or to manipulate
fine-grained behavior of the processes of a parallel application.

To address the issues, this paper presents a modular method for implement-
ing fine-grained adaptive behavior with parallel programs using a function call
interception (FCI) framework called Invoke [8]. Our work makes the following
contributions:

– Factoring out the adaptation logic: A new code that implements the intended
adaptive logic is written in a separate module and inserted by intercepting
the functions of interest in a running application. This enables adaptation
without code modification. We specifically target MPI programs written in
the SPMD (Single Program, Multiple Data) style.

– Fine-grained control: Adaptation of program behavior such as simulation
parameter adjustment or algorithm switching can be initiated in response to
changes in internal computation states.

– Synchronous adaptation: By ‘catching’ global computation functions in the
original program and plugging in new codes at the intercepted places, adap-
tive operations can be safely carried out without disturbing the parallel
execution structure already established in the original program.

2 Compositional Approach for Parallel Adaptation

Invoke is a composition framework with a set of FCI APIs, through which every
call to a function of interest is intercepted and program control is diverted to an
associated handler, a piece of newly inserted code responsible for monitoring and
modifying the target function’s behavior. By specifying a target function to be
manipulated by Invoke, we essentially define an adaptive control point over the
original program, where newly developed modules can be introduced to maneu-
ver the program toward the intended adaptive behavior. Thus, as Fig. 1 shows,
composition through Invoke enables one to separately reason about application-
specific adaptive strategies, factor them out in a centralized code, and plug in
the adaptation code at control points to build an adaptive application.

2.1 Fine-Grained Program Adaptation

By defining adaptive control points at the interfaces of subprogram modules, the
compositional approach conveniently achieves effective, fine-grained control over
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global_f();

global_g();

main() {

}

original program

interceptparallel environment

Invoke

dispatch

adaptation code

− global_g()

 ....

 : global_g_hndl()

− global_f()
 : global_f_hndl()

check & adjust
global_f()

global_f_hndl():

global_g()
check & adjust

global_g_hndl():

Symbol Table

Fig. 1. Composition of an adaptive parallel application using Invoke

application behavior, where adaptation strategies can be designed to monitor
and react to changes in internal program states. Global state variables can be
accessed from the adaptivity code by declaring these variables as external. The
Invoke framework also provides function parameter control APIs, which enables
an extra level of flexibility in fine-grained adaptation. Function arguments are
usually not exposed as globals in a program but still can hold important runtime
program state for certain adaptation purposes. Through the parameter control
APIs, dynamic program states that are communicated between modules can not
only be accessed to check the computational progress, but also be manipulated to
adjust the program’s runtime behavior. We had previously presented such adap-
tation for sequential environments in [9] but here we focus on parallel execution
environments.

2.2 Synchronous Parallel Adaptation

Implementing parallel adaptive behavior through the existing Invoke composi-
tional framework requires adaptive logic operations to take place synchronously
at clearly defined program control points that are shared across all the participat-
ing processes. This is important for implementing fine-grained adaptation strate-
gies with SPMD programs where program behavior needs to change dynamically
in response to changes in program state, because asynchronous adaptation in a
parallel program can cause race conditions among the processes and make the en-
tire computation invalid. For example, if one process changes a global simulation
parameter or algorithm, and continues the computation, before another process
makes the corresponding adaptation, the result may be inconsistent. Therefore,
a synchronous adaptation mechanism is essential for implementing fine-grained
adaptation in a parallel environment, where program behavior (typically in re-
sponse to changes in internal program states) needs to adapt dynamically.

Synchronous adaptation can degrade performance if the adaptivity code in-
volves extra global communication and synchronization. To mitigate the poten-
tial performance slowdown caused by adaptive global operations, we plug in the
adaptivity code at global synchronization points that are already established
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in the original program, thus placing separate barriers (one from the original
code and the other from the new adaptivity code) close together and making the
combined overhead smaller. By having the adaptivity operations “piggyback”
onto the existing communications that are executed synchronously across the
parallel environment, monitoring and adjusting the program states can also be
performed synchronously without explicitly using extra global operations.

3 Adaptive CFD Simulations

In this section, we apply our framework to the GenIDLEST CFD simulation
code [10] to automatically adjust the simulation time step value and dynami-
cally change the flow model. Written in Fortran 90 with MPI to simulate CFD
problems, GenIDLEST solves the time-dependent incompressible Navier-Stokes
and energy or temperature equations.

The simulated problem is a pin fin array geometry as shown in Fig. 2. Ex-
tended surfaces or fins have been used extensively to augment the heat/mass
transfer from or to a surface primarily by increasing the transfer area and/or
increasing the heat/mass transfer coefficient. Reducing the size and weight re-
quirements of equipment necessitates the need for optimal designs of these sys-
tems, which in turn requires a detailed understanding of flow and heat transfer
characteristics. The schematic and the geometric parameters of the pin fin array
under consideration, along with the dimensions of interest, are listed in Fig. 2.
The slenderness ratio is set to 1. For the GenIDLEST simulation, we divided the
geometry into 16 block structures so that the maximum degree of parallelism is
16, where each block is assigned to one MPI process.

SD SL ST H D

2.0 1.414214 2.828427 1 1

Fig. 2. Schematic and Geometric Parame-
ters of Pin Fin Array under Consideration

Read input
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Fig. 3. GenIDLEST Execution Flow

3.1 Automatic Adjustment of Simulation Time Step

The stability of the simulation depends on the time step size used. Based on ob-
served Courant-Friedrich-Levi (CFL) numbers one could discern if the simulation
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is proceeding towards convergence or is becoming unstable. Current practice of
running GenIDLEST simulations records intermediate results at the end of a
preset number of iterations onto the disk, thereby allowing the user to stop the
execution and restart from the last known stable state when the user determines
the running simulation is diverging. By plugging in a simple adaptivity module,
the enhanced GenIDLEST simulation (requiring no modifications to the origi-
nal GenIDLEST code) will incrementally adjust the time step value at runtime,
allowing the computation to proceed in a stable manner.

Implementation: Fig. 3 shows the execution flow of the GenIDLEST simu-
lation. At the end of every preset number of iterations, a local CFL number is
calculated by each MPI process, and then the global CFL value is computed us-
ing a reduction operation (mpi allreduce) across all the processes. This point is
a good candidate for adaptivity code insertion, since by catching and imposing
operations at this synchronization point, the newly inserted code can also be
executed in synchronization, thereby avoiding dangerous race conditions among
the processes. Furthermore, catching the global reduction call also makes it easy
to monitor the global CFL number because its value is passed as the second
parameter of the function. Invoke’s parameter accessing APIs can be utilized
to access this value. In the adaptive logic, we employed a simple multiplica-
tive increase, multiplicative decrease algorithm with upper (CFL U THRESHOLD)
and lower (CFL L THRESHOLD) threshold values for the CFL number, such that
the time step is increased or decreased by a preset factor if the current CFL
number becomes out of the bounds defined by the thresholds. Importantly, the
entire adaptive logic operations are performed synchronously at the call sites of
mpi allreduce without involving any extra global operations, thereby achieving
efficient parallel program adaptation. The implementation aspects of this and
the following adaptation scenarios are summarized in Table 1.

Experimental Results: Fig. 4 shows the results of GenIDLEST enhanced with
the constructed adaptivity module for the pin fin array simulation, with different
initial values of time step ranging from 10−3 to 10−5. CFL U THRESHOLD and
CFL L THRESHOLD were set to 0.5 and 0.25, respectively. The graphs show how
the CFL value changes as the time step parameter is controlled by the new

Table 1. Implementation Aspects of GenIDLEST Adaptation

Change of Time Step Change of Flow Models

Purpose improve stability enhance accuracy
Type of Scheme automatic adjustment user’s dynamic decision

States to Monitor
CFL number communicated by
mpi allreduce

stream-wise velocity written to a log

Control Point mpi allreduce in calc cfl calc cfl in time integration loop

Adaptive Logic
adjust time step to confine CFL
number within certain bounds

switch flow model (i les) and acti-
vate turbulent data structures

Communication not necessary broadcast of user’s decision
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Fig. 4. Automatic Adjustment of the Time Step Parameter

module, thereby maintaining the stability of the simulation. Interestingly, it also
shows that the time step in all cases converge to somewhere around 1.7× 10−4,
which might be the optimal value for the model, regardless of different starting
values. Therefore, an adaptive logic based on a sophisticated CFD theory might
be devised to find the optimal time step for more generalized problems through
our composition method.

3.2 Runtime Change of Flow Models

The predicted heat transfer and flow characteristics depend on the selection of
the appropriate flow model. A fundamental distinction is between laminar and
turbulent flow models, and simulations of interest often require a switch from
one to the other. This problem becomes acute when the Reynolds number is
in the transition region between laminar and turbulent flows. Thus it becomes
important to change the flow model from laminar to turbulent once instabilities
arise in the flow field, for a simulation that is started assuming the flow is laminar.

Two Large Eddy Simulation (LES) turbulent models are considered in this
study – Smagorinsky model (SM) and dynamic Smagorinsky model (DSM) [11].
The most commonly used model is the Smagorinsky model, where the eddy vis-
cosity of the subgrid scales is obtained by assuming that the energy production
and destruction are in equilibrium. The drawback of this model is that the model
coefficient is kept constant, while in reality it should vary within the flow field
depending on the local state of turbulence. The dynamic Smagorinsky model
computes the model coefficient dynamically, which overcomes the deficiencies of
the Smagorinsky model by locally calculating the eddy viscosity coefficient to
reflect closely the state of the flow [11]. The advantage of the DSM model is that
the need to specify the model coefficient is eliminated, making the model more
self-contained, but with an additional computational expense of 10-15%.

Implementation: The simulated flow model in GenIDLEST is set initially by
the user through an input specification parameter, namely i les: 0 for laminar,
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1 for Smagorinsky, and 2 for Dynamic Smagorinsky model. Hence, the program
state needs to be accessed and changed at runtime via this variable. Importantly,
the change should be made synchronously across all processes to maintain the
consistency of the parallel computation. To this end, we plug in the adaptivity
module at the call site of the CFL reduction function as shown in Fig. 3, because
it is executed in synchronization across all the MPI processes, providing a safe
place for carrying out adaptation operations without modifying the original code
and disturbing the parallel execution flow already established in the original
GenIDLEST. Specifically, the adaptivity code checks if the user wants to change
the flow model, for which we make use of Unix signals (e.g., SIGUSR1) that can
handle immediate, unanticipated user decisions to switch the flow model. These
user-sent signals set a flag in the root process, which will pause accordingly
with a simple user interface in the next iteration to accept the user’s adaptation
decisions, which in turn are broadcast to the other processes.

Experimental Results: The variation of the velocity in the direction of flow
(stream-wise) is plotted in Fig. 5, showing the points in time when the flow mod-
els are switched from laminar to SM and then to DSM. The stream-wise velocity
initially decreases, as the simulation proceeds towards the solution, which occurs
till about 0.6 time units. After this simulation time, we see that the stream-wise
velocity tends to vary with time, indicating the development of flow instabilities,
and implying that the initial assumption of laminar flow is no longer valid. Thus
the model is switched to SM at time 1.0. The drawback with the SM model, as
mentioned earlier, is that the model coefficient is set to a constant value, but in
reality the coefficient varies with the local state of turbulence, thus it becomes
imperative to change the model from SM to DSM. This switch is done after a
few hundred iterations (at time 1.4) to make sure that the switch from lami-
nar to turbulent model does not introduce instabilities in the computation. The
switch from laminar to turbulent flow model has a significant effect on the heat
transfer. This is shown in Fig. 6(a) and 6(b), which show the variation of the
Nusselt number at the channel walls, which is a measure of heat transfer at that
location. The dotted line shows the region of interest, which is at the front of
the pin in the line of fluid flow. The laminar flow model does not capture the
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Fig. 6. Dynamic Flow Model Change from Laminar to Turbulent in a CFD Simulation

heat transfer effects at the front of the pin, predicting lower heat transfer rates
at the pin front than the turbulent model, thus justifying the model switch from
laminar to DSM. This switch shows the capabilities of the adaptive scheme, since
to effect the switch without it would have meant stopping the current execution
and then restarting the simulation after effecting the required change.

4 Adaptation Overhead

The runtime overhead of our adaptation method comes from catching the func-
tion calls at adaptive control points, which in itself does not involve any global
operations that cause communication overhead. The catching overhead is mea-
sured at 0.10μs per call on average on an AMD Opteron 240 1.4GHz dual-
processor machine with 1GB memory, which translates to 140 CPU cycles. Since
the catching cost is fixed, the relative overhead depends on the number of inter-
ceptions and the entire execution profile of an application. That is, the overhead
increases as the number of adaptive control points increases. Still, the catch-
ing cost is relatively insignificant if the application spends most of its time on
executing other parts of the computation than at control points.
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In the adaptive GenIDLEST simulations, control points are intercepted only
once at the end of every preset number of iterations of the time integration
loop, while most of the computing time is spent inside the loop. As a result, the
catching overhead is negligible compared to the whole simulation profile. For
example, Fig. 7 shows execution time of the GenIDLEST simulations where the
Invoke framework is imposed at control points in the time step change and in
the flow model change scenario, respectively, but with no adaptation operations.
Across the 3 configurations with varying number of processors, the costs for
catching 500 calls of mpi allreduce during 500 time steps in the time step
change example were measured to be less than 0.7% in all cases compared to
the original GenIDLEST simulations (Fig. 7(a)). Similarly, the overhead is less
than 0.95% for catching 1000 calls of calc cfl during 1000 time steps in the
flow model change example (Fig. 7(b)).

5 Related Work

In the language and compiler approaches for implementing program adaptation,
our work is similar to Program Control Language (PCL) [2] in that centralized
design of adaptation strategies can be specified at a high level for distributed
programs. The expressive power of PCL comes from its underlying framework
which offers a global representation of the distributed program as a graph of task
nodes, the static task graph (STG), connected by edges indicating precedence
relationships. Each adaptation primitive of PCL maps to a sequence of graph-
changing operations on the STG of the target program. The Invoke framework
provides more fine-grained control than PCL STGs by supporting monitoring
and manipulating of state variables internal to a program.

In Grid and cluster computing, there is a large body of research work on
runtime platforms for supporting program adaptation at the level of middle-
ware or runtime platforms [4,5,6,7]. However, as their objective is to implement
middleware support for adaptation between the application and the underlying
execution layer, these efforts focus on resource management towards efficient
utilization of the environment, such as load-balancing and scheduling of appli-
cation tasks, where coarse-grained strategies based on resource constraints or
external operating parameters are employed. In contrast, our work implements
a parallel adaptation framework that can adjust fine-grained aspects of pro-
gram state and behavior by monitoring dynamic progress of the computation
itself.

Dynamic binary instrumentation tools such as DynInst [12] offer a modular,
language-independent way of code modification, so that new code modules can be
transparently combined with existing software. Since the accompanying overhead
is significant while they perform code instrumentation at program runtime, they
are usually developed for sophisticated programs analysis purposes [13] rather
than as a tool to realize program behavior adaptation.
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6 Conclusions

The proposed compositional framework offers a modular way of implementing
fine-grained program adaptation in a parallel environment. By defining adaptive
control points at the functions that execute in synchronization across the parallel
environment, adaptive logic operations can safely be executed without interfering
with the parallel execution structure of the original program. In future work,
we intend to define ‘adaptivity schemas’ that abstract our recurring templates
of adaptivity and that can be ‘weaved’ over an unmodified program, akin to
aspect oriented programming. We also intend to explore more dynamic and less
synchronous scenarios of parallel program adaptation.
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Abstract. MPI-I/O is a part of the MPI-2 specification defining file I/O
operations for parallel MPI applications. Compared to regular POSIX
style I/O functions, MPI I/O offers features like the distinction between
individual file pointers on a per-process basis and a shared file pointer
across a group of processes. The objective of this study is the evaluation
of various algorithms of shared file pointer operations for MPI-I/O. We
present three algorithms to provide shared file pointer operations on file
systems that do not support file locking. The evaluation of the algorithms
is carried out utilizing a parallel PVFS2 file system on an InfiniBand
cluster and a local ext3 file system using a 8-core SMP.

1 Introduction

The MPI standards provide many features for developing parallel applications on
distributed memory systems, such as point-to-point communication, collective
operations, and derived data types. One of the important features introduced in
MPI-2 is MPI-I/O [1]. The MPI I/O routines provide a portable interface for
accessing data within a parallel application. A feature defined in MPI-I/O is the
notion of a shared file pointers, which is a file pointer jointly maintained by a
group of processes.

There are two common usage scenarios for shared file pointers in parallel
applications. The first one involves generating event logs of a parallel application,
e.g., to document the progress of each application process or to generate error
logs. For these scenarios, users typically want to know the chronological order of
events. Without shared file pointers, the parallel applications would be required
to coordinate events with the other processes in a sequential manner (in the
order in which these events occurred) [2]. Using a shared file pointer, the MPI
library will automatically order the events, and ease the generation of parallel
log files significantly. The second usage scenario uses a shared file pointer for
assigning chunks of work to each processes in a parallel application. If a process
has finished computing the work currently assigned to it, it could read the next
chunk from the shared input file using a shared file pointer. Thus, no additional
entity is required to manage the distribution of work across the processes.

Although there are/were some file systems that have support for shared file
pointers such as VESTA [3], the majority of file systems available today do not
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provide a native support for these operations. Thus, the MPI library has to
emulate shared file pointer operations internally. Today, the most wide-spread
implementation of MPI I/O is ROMIO [4]. ROMIO relies on a hidden file which
contains the shared file pointer for each MPI file. In order to modify the shared
file pointer, a process has to lock the hidden file and thus avoid simultaneous
access by multiple processes. However, many file systems have only limited or
no support for file locking. As a result, shared file pointer operations often do
not work with ROMIO [5]. Furthermore, since file locking is considered to be
expensive, the performance of shared file pointer operations in ROMIO is often
sub-optimal.

An alternative approach for implementing shared file pointer operations has
been described in [6]. The solution proposed is to implement the shared file point-
ers using passive target one-sided communication operations, such as MPI Win -
lock and MPI Win unlock. A shared file pointer offset is stored in an MPI win-
dow. If a process wants to execute a read or write operation using the shared
file pointer, it has to first test if any other process has acquired the shared file
pointer. If this is not the case, it will access the shared file pointer from the
root process. Else, it will wait for the signal from the process that currently
has the shared file pointer. However, this approach is not available in a public
release of ROMIO as of today, since it requires an implementation of one-sided
operations, which can make progress outside of MPI routines, e.g. by using a
progress thread [6]. In [7] Yu et.al. present an approach similar to one algorithm
outlined in this paper by using the file-joining feature of Lustre to optimize the
performance of collective write operations. In contrary to our algorithms how-
ever, there approach is bound to a specific file system and is not used to optimize
shared file pointer operations.

In this paper we present three alternative algorithms for implementing shared
file pointer operations on top of non-collaborative file systems. The first approach
utilizes an additional process for maintaining the status of the shared file pointer.
The second algorithm maintains a separate file for each process when writing
using a shared file pointer. The third approach utilizes also an individual file
on a per process basis, combines however the data of multiple MPI files into
a single individual file. The remainder of the paper is organized as follows. In
section 2 we describe the algorithms that have been developed, and document
expected advantages, disadvantages and restrictions. Section 3 describes the test
environment and the results of our evaluation over a parallel PVFS2 file system
and a local ext3 file system. For the latter we also compare the performance of
our algorithms to the ROMIO implementation of shared file pointers. Finally,
section 4 summarizes the results of the paper and presents the ongoing work in
this area.

2 Shared File Pointer Algorithms

The aim of designing new algorithms for shared file pointer operations is to avoid
dependencies of the file systems on file locks, and to improve the performance of
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shared file pointer operations. In the following, we describe three algorithms to
achieve these goals, namely using an additional process to maintain the shared
file pointer, using an individual file per process and MPI file, and using a single
file per process across all MPI files. The algorithms described in this section have
been implemented as a standalone library using the profiling interface of MPI,
and use individual MPI file pointer operations to implement the algorithms.
In order to do not mix up the individual file pointers to an MPI file and the
shared file pointer, each MPI File is opened twice providing two independent
MPI handles.

2.1 Using an Additional Process

The main idea behind the first algorithm is to have a separate process that
maintains the shared file pointer. This mechanism replaces the hidden file used by
ROMIO maintaining the shared file pointer, thereby preventing the file locking
problems mentioned previously. In the current implementation, the additional
process is created by dynamically spawning a new process upon opening a file.
However, in a long term we envision to utilize an already existing process, such as
mpirun for this purpose, since the workload of the additional process is relatively
low in realistic scenarios.

Upon opening a new MPI file, all processes of a process group defined by an
intra-communicator collectively spawned the management process using MPI-
Comm spawn. MPI Comm spawn returns a new inter-communicator that consists
of a local group containing the already existing processes and a new remote group
containing the newly spawned process. This inter-communicator will be used for
communication between the local and remote groups. The management process
initializes and stores the shared file pointer. Whenever a participating application
process wants to perform an I/O operation using the shared file pointer, it first
requests the current position of the shared file pointer respectively the file offset
from the management process. The management process puts all requests in a
request-queue and sends the current value of the shared file pointer offset back to
the requesting process, and increases the value by the number of bytes indicated
in the request.

The collective version of the write operation (MPI File write ordered) for
shared file pointers is implemented in multiple steps. First, a temporary root
process, typically the process with the rank zero in that communicator, collects
from each process in the group the number of bytes that they would write to
the main file using a gather operation. The temporary root process sends the
request to the management process with the total number of bytes to be written
as a part of this collective write operation, and receives the offset of the shared
file pointer. It than calculates the individual offset for each process based on the
shared file pointer offset and the number of bytes requested by each process, and
sends it to each process individually. Note that an alternative implementation
using MPI Scan could be used to determine the local offset for each process.
Each process then writes to the main file using the explicit offset collective
blocking write file routine MPI File write at all. Thus, the collective notion
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of the operation is maintained. The collective read algorithm works in a similar
fashion. This algorithm is able to implement the full set of functions defined
in the MPI standard, and does not have any major restrictions form the usage
perspective.

2.2 Using an Individual File Per Process and MPI File

This algorithm prevents file locking on the main file during collective and non-
collective write operations using the shared file pointer by having each process
write its data into an individual data file. Henceforth, the file that is opened and
closed in the application would be referred to as the main file. At any collective
file I/O operation the entire data from the individual files are merged into the
main file based on the metadata information stored along with the application
data. Metadata is the information about the data, which is being written into
the data file, and contains the information shown in Table 1.

Table 1. Metadata Record

Record Id ID indicating the write operation of this record
Timestamp Time at which data is being written to the data file
Local position Offset in the individual data file
Record length Number of bytes written to the data file

In the following, we detail the required steps in this algorithm. Each process
opens an individual data file and a metadata file during the MPI File open
operation. During any individual write operation, each process writes the actual
data into its individual data file instead of the main file. The corresponding
Metadata is stored in the main memory of each process using a linked list.
Once a limit to the number of nodes in the linked list is reached, for example,
as indicated by the parameter MAX METADATA RECORDS, the linked list is
written into the metadata file corresponding to that process. During the merging
step, we first check for metadata records in the metadata file before reading the
records from the linked list. The most important and time-consuming operation
in this algorithm is that of merging independent data written by each of the
process. Note that merging needs to involve all processes in the group. Hence, it
can be done only during collective operations such as MPI File write ordered,
MPI File write ordered begin, and MPI File close.

The merging of data requires the following five steps:

1. All processes compute the total number of metadata nodes by combining the
metadata nodes written by each of the processes using an MPI Allgather
operation.

2. Each process collects the timestamps and record lengths corresponding to all
metadata nodes stored on each process using an MPI Allgatherv operation.

3. Once each process receives all the metadata nodes containing the timestamps
and record lengths, it sorts them based on the timestamps in an ascending
order.
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4. Each process assigns a global offset to the sorted list of the metadata nodes.
The global offset corresponds to the position at which the data needs to be
written into the main file.

5. Once each process has global offsets assigned to each metadata record, it
reads the data from the local data file using the local file offset from the
corresponding metadata node, and writes the data into the main file based
on the global offset, which was computed in the previous step.

For the merging step we also envision the possibility to create the final output file
in a separate post processing step. This would give applications the possibility
to improve the performance of their write operations using a shared file pointer,
and provide an automatic mechanism to merge the separate output files of the
different processes after the execution of the application.

This implementation has three major restrictions:

– The individual file algorithm does not support read operations using the
shared file pointers. The assumption within this prototype implementation
is that the user indicates using an MPI Info object that shared file pointers
would not be used for read operations, respectively the MPI library should
not choose this algorithm if the required guarantee is not given, but fall back
to a potentially slower but safer approach.

– In order to be able to compare the timestamps of different processes, this
algorithm requires a globally synchronized clock across the processes. While
there are some machines providing a synchronized clock, this is clearly not
the case on most clusters. However, there are algorithms known in the lit-
erature on how to synchronize clocks of different processes [8], which would
allow to achieve a relatively good clock synchronization at run time. Nev-
ertheless, this algorithm has the potential to introduce minor distortions in
the order of entries between processes.

– This implementation can not support applications that use both individual
and shared file pointers simultaneously. In our experience this is however not
a real restriction, since we could not find any application using both type of
file pointers at the same time.

An additional hint passed to the library using an Info object could indicate
whether the merge operation shall be executed at runtime or in a post-processing
step.

2.3 Using a Single Individual File Per Process

This algorithm offers a slight variation from the individual file per process al-
gorithm. It maintains a single data and meta data file per process across all
the files that have been opened by that process. Data pertaining to multiple
files are written into single data and metadata files. The main reason behind
this approach is to ease the burden on the metadata servers of the file systems,
whose main limitation is the number of simultaneous I/O requests that can be
handled.
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The main difference between this algorithm and the one described in the previ-
ous subsection is in the handling of collective write operations. When a metadata
node is written to the metadata file for an individual operation, each process can
individually determine the according timestamp of this operation. However, for
collective operations, the data needs to be written in the order of the ranks of the
processes. To ensure this behavior, the timestamp corresponding to the process
with rank zero is broadcasted to all processes in the communicator, and used
for the corresponding collective entry. To identify the collective operations at file
close, each process maintains a linked list with the timestamps corresponding to
the collective operations.

This algorithm has the same restrictions as the ’individual file per process
and MPI file algorithm’ described above.

3 Performance Evaluation

In the following, we present the performance of the algorithms described in the
previous section. The three algorithms have been evaluated on two machines,
namely, the shark cluster and marvin, an 8 core SMP server. The shark cluster
consists of 24 compute nodes and one front end node. Each node consists of a
dual-core 2.2GHz AMD Opteron processor with 2 GB of main memory. Nodes
are connected by a 4xInfiniBand network. It has a parallel file system (PVFS2)
mounted as ’/pvfs2’, which utilizes 22 hard drives, each hard drive is located
on a separate compute node. The PVFS2 file system internally uses the Giga-
bit Ethernet network to communicate between the pvfs2-servers. Since two of
the three algorithms presented in this paper only support write operations, our
results section also focuses due to space constraints on the results achieved for
various write tests.

Marvin is an eight processor shared memory system, each processor being
a 2GHz single-core AMD Opteron processor. The machine has 8 GB of main
memory and a RAID storage as its main file system using the Ext3 file system.

The results presented in this section are determined by using a simple bench-
mark program which writes data to a single file using either of the four shared
file pointer write operations defined in MPI-2.

3.1 Results Using a PVFS2 File System

In the first test we constantly increase the total amount of data written by fixed
number of processes. Tests have been performed for all four write operations us-
ing shared file pointers, namely, MPI File write shared, MPI File write or-
dered, MPI File iwrite shared, MPI File write ordered begin. Due to space
limitations, we show the results however only the blocking versions of these oper-
ations. Note that as explained in section 1, ROMIO does not support shared file
pointer operations over PVFS2 [5]. In the following subsections, results obtained
after comparing all three algorithms are listed. Every test has been repeated
at least three times, and the minimum execution time has been used for each
scenario.
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Fig. 1. Performance Comparison for Individual, Blocking write operation (left) and
Collective Blockgin write-operations (right)

On PVFS2, the benchmark is run for each of the four write operations using
shared file pointer. In each test case, data has been written from 10 MB to 10
GB among eight processes.

Figure 1 (left) gives the performance of individual and blocking write oper-
ation over PVFS2 file system. For the individual file and single file implemen-
tations, we show two separate lines for the execution time before merging (i.e.,
before calling MPI File close) and after merging. The reason for showing two
lines is that these two algorithms are especially designed to minimize the time
spent within the write operation itself, since the merging operation can poten-
tially be performed in a post-processing step.

The individual file and single file implementations before merging of the data
perform at par with the additional process implementation. All three implemen-
tations, with individual and single file performance compared before merging of
data, show a relatively high bandwidth in the range of 140 MB/s to 240 MB/s,
while writing 2-10 GB of data. The individual file algorithm achieves an overall
bandwidth of around 50 MB/s after merging, while for the single file version
bandwidth drops to around 10 MB/s including the merging step. The latter
is the result of the large number of reduction and communication operations
required in the merging step for that algorithm.

Figure 1 (right) gives the performance of the collective and blocking write op-
eration over the PVFS2 file system. Note that the individual file implementation
of the collective operations does not require merging, since the data is written
directly into the main file for collective operations. Hence, only the single file im-
plementation performance before the merging is compared with that of the other
two implementations. All the three implementations perform similarly, only the
performance of the single file method after the merging deviates significantly.
The performance improves as the amount of data being written increases.

Performance of the three algorithms has also been evaluated using by writing
a fixed amount of data, and varying the number of processes writing the data.
Accordingly, on PVFS2 2GB of data is being written by varying the number
of processes from 2 to 32. The left part of Fig. 2 shows that the additional
process algorithm mostly outperforms the other two implementations. Although
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Fig. 2. Performance Comparison for Individual, Blocking write operation (left) and
Collective Blockgin write-operations (right) for varying numbers of processors

it performs reasonably well up to 16 processes, the performance drops sharply for
32 processes. This performance drop can be due to either of the two reasons: the
management process could be overwhelmed by the increasing number of (small)
requests with increasing number of processes, or the file system or the hard drive
could get congested with increasing number of requests.

Which of these two contributes stronger to the performance degradation ob-
served for 32 processes can be answered by looking at the numbers of the col-
lective write operations in the right part of Fig. 2. This graph shows the same
behavior for the additional process implementation. However, as collective op-
erations in this model only require one request to the management process per
collective function call, but generate the same number of I/O requests to the
hard drive and the file system, we are confident that the performance drop ob-
served in the previous measurements is not due to a congestion at the additional
process managing the shared file pointer.

3.2 Results Using an EXT3 File System

In this subsection, the benchmark is run using all four write operations of the
MPI specification for shared file pointer operations using all the three algorithms
described earlier on a local file system using Ext3. The test machine utilized
consists of eight single core AMD Opteron processors. Since the Ext3 file system
supports file locks, the performance of ROMIO over Ext3 could be compared
with our three implementations. In each case, data from 1 GB to 10 GB is
written among eight processes. The left part of Fig. 3 gives the performance of
the individual and blocking write routine over Ext3 file system, while the right
part shows the performance of the collective write routine. ROMIO performs
better than the three new algorithms for smaller amounts of data. However, as
the amount of data written increases, the performance of ROMIO decreases. The
additional process implementation performance in these scenarios is better than
ROMIO. There could be various reasons behind the additional process algorithm
not being able to completely outperform ROMIO, such as
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– All the evaluation has been done using eight processes. Marvin is a shared
memory system which has eight processors. In the case of the additional
process algorithm, when an additional process is spawned (the ninth in this
case), the performance might decrease as nine processes run on eight pro-
cessors.

– Secondly, when the dynamic process management feature is used, Open MPI
restricts the communication among the original process group and the newly
spawned processes from using shared memory communication. Instead, it
uses the next available communication protocol, which is TCP/IP in case of
Marvin. Hence, slow communication between the local and the remote groups
of processes could be a factor affecting the performance of the additional
process algorithm.

– Thirdly, in case of ROMIO, since the hidden file is small, it might be cached
by the file system or the RAID controller. Hence, processes accessing the
hidden file might not touch the hard drive, but access the hidden file from
the cache to read and update the shared file pointer offset value.

4 Summary

This study aims at designing portable and optimized algorithms to implement
shared file pointer operations of the MPI I/O specification. We have developed,
implemented and evaluated three new algorithms for I/O operations using shared
file pointers. Our evaluation shows, that the algorithms often outperform the
current version in ROMIO, although there are notable exceptions. However, the
algorithms do represent alternative approaches which could be used in case the
file system does not support file locking. The ’additional process’ algorithm is
most general of the three approaches, and we plan to further extend it by over-
coming the restrictions discussed in section 3, most notably having the man-
agement process being executed in an already existing process, such as mpirun.
Furthermore, as of today, we have not yet evaluated the difference between the
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single file and the individual file approaches in case of multiple MPI files, and
the impact on the Metadata server of the file system. The ultimate goal is to
provide a collection of algorithms and give the end-user the possibility to select
between those algorithms using appropriate hints.
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Abstract. The WiBro operates at the 2.3GHz broadband and the communica-
tion infrastructure is a cellular system. The WiBro is based on IEEE 802.16e 
standard and it is designed to maintain connectivity on mobile environment at a 
speed of up to 60 km/h. ACR(Access Control Router) manages several 
RAS(Radio Access Station). When mobile node moves to another domain from 
the present domain, which is managed by different ACR, MN sends Binding 
Update to HA (Home Agent) or CN (Correspondent Node). However ACR may 
be a single point of performance bottleneck because the ACR should not only 
handle signaling traffics but also process data tunneling traffic for all MNs reg-
istered in its domain. In this paper, we propose ACR load balancing method by 
priority queue. Quantitative results of the performance analysis show that our 
proposal has superior performance.  

Keywords: Wibro, ACR, real time data, non real time data, queue. 

1   Introduction 

In February 2002, Korean government allocated 100 MHz bandwidth of 2.3GHz 
spectrum band for wibro(Wireless Broadband)system. WiBro allows subscribers to 
use high-speed Internet more economically and more widely, even when moving at 
the speed of about 60km per hour [1]. As illustrated in figure 1, the wibro system 
consists of PSS(Portable Subscriber Station), RAS(Radio Access Station), ACR (Ac-
cess Control Router) and IP based backbone networks[2,3]. 

Figure 1(a) and (b) show two cases of WiBro structure. Figure 1(a) has two subnets 
and each ACR manages several RAS within a subnet.  

In this paper, we only consider the situation when a mobile node moves to another 
subnet, which is managed by different ACR.  

All mobile nodes included in an ACR are to have mobility. Therefore, if MN in-
creases to control by ACR, ACR grow BU(Binding Update). As a result, ACR cannot 
respond quickly to real time data rather than non real time data. 

The rest of the paper is organized as follows. Section 2 presents the previous works 
about mobile multimedia process in WiBro. Section 3 proposes our method. Section 4  
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Fig. 1. A structure of WiBro  

evaluates the performance and analyzes numerical results. Finally, we conclude this paper 
in section 6. 

2   Related Work 

Shim, Kim and Ra [4] proposed a handover scheme for an efficient and reliable mul-
ticast routing over WiBro service. In order to dynamically manage each multicast 
flow and minimize the frequency of the multicast group join while guaranteeing the 
optimal path, they adopted FA based multicast routing scheme that is based on hierar-
chical architecture among ACR and RASs.  

This paper has attempted to justify that sleep mode can be effective even in a mo-
bile environment by adopting the optimized initiation process [5] and Wu and Kim 
proposed an efficient direction and speeds based handover connection control 
schemes for increasing the utilization of channels and reduce a probability of new 
connection blocking rate [6]. 

They proposed an efficient IPv6 based fast handover scheme for seamless inter-
domain mobility support over WiBro networks considering cross-layer approach [7]. 
The FMIPv6 protocol has problem to be used with WiBro system, owing to difficulty 
in utilizing the layer 2 handover information. So, Shim, Kim and Lee proposed 
mechanism that can provide effective fast handover in IPv6 based WiBro system [8] 
and W. Lee et al proposed an adaptive vertical handoff decision scheme called Ubi-
Comm which is an improved handover decision algorithm that avoids the ping-pong 
effect [9]. In [10], they proposed algorithm utilizes the user based scheduling to re-
lieve the MAP(Mobility Anchor Point) overhead problem and to modify the normal 
proportional fair scheduling algorithm to guarantee user based QoS.  

3   Proposed Method 

As mentioned above, ACR  may be a single point performance bottleneck because the 
ACR should not only handle signaling traffic but also process data tunneling traffic 
for all MNs registered to the ACR domain. There are many works performed on mul-
timedia data process, but not on BU (Binding Update) process in ACR. As such, we 
propose new method to operate BU in ACR’s waiting queue in order to update new 
location of MN rapidly. 
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Fig. 2. The process of proposed method 

We show the priority process of ACR in (a) of Fig 2. For an instance, if ACR has 
many MN of mobility, ACR increases the overall BU process. Compared to the exist-
ing method, which has only one queue, waiting time is increased. Besides, existing 
method employs FIFO. However, if our proposed method is applied, there would be 
two queues and the general performance is improved when the waiting time de-
creases. Fig. 3 shows proposed system model. 

 

Fig. 3. The picture is proposed method  

4   Numerical Analysis 

4.1   Mobility Model 

We assumed that there is hexagonal cellular network architecture, as shown in Fig. 4. 
Each ACR domain consists of the different number of range rings, D.  Rings of cells 
surround each cell as illustrated in Fig. 4 [11]. Each ring d (d>=0) is composed of 6d 
cells. The innermost cell “0” is called the center cell. The number of cells N (D) is 
calculated using the following equation:  
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Fig. 4. Hexagonal Cellular Network Architecture (D=8, D=4) 
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Hexagonal cellular network architecture (D=8) of Fig. 4 shows the proposed hex-
agonal cellular network architecture of traffic characteristics. 

The two-dimensional model used in Markov chain model with respect to the user 
mobility model is considered [12]. In this model, the next position of an MN is equal 
to the previous position in addition to a random variable whose value is drawn inde-
pendently from an arbitrary distribution. Besides, an MN moves to another cell area 
with a probability of 1-q and it remains in the current cell with probability, q. Given 
an MN located in a cell of ring d (d>0), the probability that a movement will cause an 
increase (p+(d)) or decrease(p-(d)) in distance from the center cell is given by 
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The state k of a Markov chain is defined as the distance between the current cell of 
the MN and the center cell. This state is equivalent to the index of a ring in which the 
MN is located. Therefore, the MN is said to be in state k if it is currently residing in 

ring d. The transition probabilities 1, +ddα   and   1, −ddβ   represent the probabilities of 

the distance of the MN from the center cell increasing or decreasing, respectively. 
They are given as follow, where q is the probability that an MN stays in the current 
cell: 
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1, −ddβ  = (1-q) p- (d)         if  Dd ≤≤1  (4) 

We denote pd,D as the steady-state probability of state d within a ACR domain con-
sisting of D range rings. As stated in Equation (3) and Equation (4), Pd,D can be ex-
pressed in the form of the steady state probability P0,D as shown below: 
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where 1, +ddα   and 1, −ddβ   are obtained from Equation(3) and Equation(4) 

4.2   Cost Functions 

The total cost, consisting of location update cost and paging cost, should be consid-
ered when analyzing the performance of wireless/mobile networks. The total cost is 
divided into location update cost and packet delivery cost. In our proposed scheme, 
we divide total cost into new location update and packet delivery cost. Clocation, Cnew-

location, and Cpacket denote the location update cost, new location update and the packet 
delivery cost, respectively. As such, the total cost of MIPv6 (Ctotal) and the proposed 
scheme (Cnew-total) can be obtained as follows:  

packetlocationtotal CCC +=  (7) 

highpacketlocationNEWhightotalnew CCC −−−− +=  (8) 

lowpacketlocationNEWlowtotalnew CCC −−−− +=  (9) 

4.2.1   Location Update Cost 
MN registers its CoA with the CNs and the HA, when a MN moves into a new do-
main.  
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where τ and k indicate the unit transmission costs in a wired and a wireless link, re-
spectively. PCHA and PCCN denotes the processing costs for binding update proce-
dures at the HA and the CN, respectively. Given DHA-ACR{1,2,3}, DACR{1,2,3}-RAS, DRAS-

MN and DCN-ACR{1,2,3} as the hop distance between nodes, NCN represents the number 
of CNs that is communicating with the MN. 

In terms of the random walk mobility model, the probability that a MN performs a 
global binding update is as follows: 

1,, +⋅ DDDDP α  (14) 

Specifically, if a MN is located in range ring D, the boundary ring of a ACR domain 
is composed of D range rings, and performs a movement from range ring D to range 
ring D+1.  

T
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where T is the average cell residence time. 

4.2.2   Packet Delivery Cost 
The packet delivery cost, PACKETC  , in WiBro can then be obtained as follows:  

MNCNACRPACKET CCC −+=  (17) 

MNCNHIGHACRHIGHPACKET CCC −−− +=  (18) 

MNCNLOWACRLOWPACKET CCC −−− +=  (19) 

ACRC  in Equation(17) indicates the processing cost for packet delivery at the 

ACR, while MNCNC −  in figure 3 denotes the packet transmission cost from the CN to 

the MN. 

In WiBro, the processing cost at the ACR is divided into the lookup cost ( lookupC ), 

the routing cost ( routingC ) and the waiting time ( waitC ) in queue. The lookup cost is 

proportional to the size of the mapping table, whereas the size of the mapping table is 
proportional to the number of MNs located in the coverage of a domain [13]. On the 
other hand, the routing cost is proportional to the logarithm of the number of ARs 
within a particular domain [14]. The waiting time denotes the priority [15]. Therefore, 
the processing cost at the ACR can be expressed as Equation (25). In Equation (25), 
λ  denotes the session arrival rate while S denotes the average session size in the unit 
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of packet. α  and β  are the weighting factors, and 
MNN  shows the total number of 

users located in a domain.  

The M/G/1 model assumes (i) Poisson arrivals at rate λ; (ii) a general service dis-
tribution; and (iii) a single server. This follows since there is only a single server. 
Considering expectations of both sides of customer’s wait in queue yields 

=QW  Average work as seen by an arrival. 

However, owing to Poisson arrivals, the average work as seen by an arrival will 
equal V, the time average work in the system. Hence, for the model M/G/1  

VW Q =  (20) 

The proceeding in conjunction with the identity  

2
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λλ +=  (21) 

yields the so-called Pollaczek-Khintchine formula: 
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Priority queuing systems are ones in which customers are classified into types and 
then given service priority according to their type. Consider the situation where there 
are two types of customers, who arrive according to independent Poisson processes 

with respective rates 1λ and 2λ . Let i
QW denote the average wait in queue of a type i 

customer, i = 1, 2. Our objective is to compute i
QW . 

The work in the system is exactly the same as the work when there is no priority 
rule but rather a first-come, first-served (called FIFO) ordering. However, under FIFO 
the preceding model is just M/G/1 with 

21 λλλ +=  (23) 

which follows since the combination of two independent Poisson processes is itself a 
Poisson process whose rate is the sum of the rates of the component processes.  
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This paper assumes that the average number of users located in the coverage of an 
AR is K. Therefore, the total number of users can be obtained using Equation (26). 
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MNN  = 
ARN   ×   k  (26) 

ACRC    =  λ  ⋅⋅ S ( lookupC   +  routingC   +  waitC )  

 =  λ  ⋅⋅ S ( α MNN   +  )log( ARNβ  +  
QW  ) 

(27) 

HIGHACRC −
 =  λ  ⋅⋅ S ( lookupC   +  routingC   +  waitC ) 

                =  λ  ⋅⋅ S  ( α MNN  +   )log( ARNβ  + 1
QW  ) 

(28) 

LOWACRC −    =   λ  ⋅⋅ S ( lookupC   +  routingC   +  waitC ) 

                = λ  ⋅⋅ S  (  α +MNN  )log( ARNβ  +  2
QW  ) 

(29) 

Since WiBro supports the route optimization, the transmission cost in WiBro can 
be obtained using Equation(28). As mentioned before, τ  and k  denote the unit 
transmission costs in a wired and a wireless link, respectively. 

SkDDD

DDSC

RASACRACRCNCNHA

RASACRACRCNMNCN

⋅⋅+⋅++

⋅⋅−⋅⋅=

−−−

−−−

λ
λτ

))(

)()1((

}3,2,1{}2,1{}2,1{

}3,2,1{}2,1{}2,1{  (30) 

5   Numerical Results 

In this section, we provide some numerical evaluation to demonstrate the performance 
of proposed scheme as compared with existing method. The parameter values for the 
analysis are referred from [16], [17] and [18]. They are shown in table 1.  

Table 1. Numerical simulation parameter for performance analysis 

Parameter DHA-
ACR{1,2}

DCN-
ACR{1,2}

DRAS{1,2,3}-
MN

DACR{1,2}-
RAS{1,2,3}

value 0.1 0.2 1 2 8 6 1 2
Parameter DHA-

CN
NCN PCHA PCCN PCACR DACR1-

ACR2
1 2

value 6 2 24 6 10 1 0.1 0.2  

Fig. 5 shows the variation in the location update cost as the average cell residence 
time is changed in the random-walk model. In a comparison of our proposed scheme 
with the existing method, our proposed scheme reduces the location update cost from 
16% to 8% approximately. 
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(a)                                           (b)  

 
(c)  

Fig. 5. Location update cost as function of average cell residence time of MN  

6   Conclusion 

The proliferation of the internet services with provision of a variety of multimedia 
content, as well as demand for portable internet service via various mobile terminals 
such as notebook PC, PDA, and cellular phone is increasing rapidly. However, cur-
rent roaming procedures are very slow and unstable when we use real-time applica-
tions. In this paper, our work focuses on mobility based on the WiBro. We distinguish 
BU priority in ACR. The performance analysis and the numerical results presented in 
this paper show that our proposal has superior performance compared to the existing 
method. The proposed scheme reduces the location update cost by more than 15% 
approximately. 
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Abstract. Mobile P2P networks have potential applications in many
fields, making them a focus of current research. However, mobile P2P
networks are subject to the limitations of transmission range, wireless
bandwidth, and highly dynamic network topology, giving rise to many
new challenges for efficient search. In this paper, we propose a hybrid
search approach, which is automatic and economical in mobile P2P net-
works. The region covered by a mobile P2P network is partitioned into
subregions, each of which can be identified by a unique ID and known to
all peers. All the subregions then construct a mobile Kademlia (MKad)
network. The proposed hybrid retrieval approach aims to utilize flooding-
based and DHT-based schemes in MKad for indexing and searching ac-
cording to designed utility functions. Our experiments show that the
proposed approach is more accurate and efficient than existing methods.

1 Introduction

Mobile communication technology continues to proliferate in recent years, and
mobile P2P network has been suggested as a potential solution for efficient data
sharing, message transferring, information retrieval etc. As a consequence, many
new applications naturally arise in telecommunication, commercial and civil-
ian environments, such as mobile phone file sharing, commercial advertisements
(ads) broadcasting [1] and traffic estimation [2], making them a focus of current
research. Mobile devices (peers) in mobile P2P networks interact during physical
encounters in the real world and engage in short distance wireless exchanges of
data. Typically, mobile P2P networks enable direct real-time sharing of services
and information among distributed peers. In contrast to wired P2P networks
that are composed of static peers, mobile P2P networks are subject to the wire-
less bandwidth, limitations of transmission range, and highly dynamic network
topology, giving rise to new challenges for research on routing, search, data
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consistency maintenance, etc. The following two scenarios motivate our research
on search in mobile P2P networks.

Scenario 1: Retrieving commercial ads information. A mobile P2P net-
work can be constructed for dispatching instant and latest commercial ads. For
example, staffs in a supermarket or petrol station can use their handheld devices,
e.g., PDA and handphone, to publish the instant ads on today’s promotion and
discount information. Customers of interest with mobile devices can share the
information with others when they are moving on roads because of the incentive
mechanism. Mobile peers in an initiative mode can search other mobile peers’
information under this environment to retrieve commercial ads of their interests.
In such a mobile network, the influence of instant ads can be broadcasted and
increased to more customers and wider areas.

Scenario 2: Retrieving traffic information. Many centralized traffic infor-
mation systems have been deployed to provide traffic information of a region
for mobile users, e.g. drivers, by broadcasting the information into air. In such
traditional centralized mobile networks, each mobile peer has to communicate
with the central server. However, many drivers have experienced the common
woe of slow response or losing signals on their mobile devices when the band-
widths are most needed. Consequently, traffic information may not be updated
timely and continuously, often leading to unpleasant traffic jams. In mobile P2P
networks, peers can generate realtime text messages regarding the traffic and
share them with other peers to understand the traffic situations just in time.
If a mobile peer is heading to city, he/she can initiatively send a query to the
mobile P2P network constructed by all the active mobile devices in the area
to get the current traffic information of the city. In such an environment, the
query is first forwarded to the mobile peers having city traffic information and
then the results are routed back the querying peer. Having timely traffic infor-
mation, mobile peers can avoid traffic jams and improve the traffic situations of
the city.

In this paper, we study the problem of search in mobile P2P networks, where
each published message is a document. We use the boolean model (i.e. exact
match) to retrieve information in mobile P2P networks. In traditional struc-
tured P2P networks, Distributed Hash Table (DHT) [3] based data retrieval
techniques, given a key, the query will be routed to a specific peer, which is re-
sponsible for storing the value associated with the key. However, due to the peers’
frequent mobility, the DHT-based retrieval technique alone is not expected to
perform equally well in mobile P2P networks due to high DHT maintenance cost.
In unstructured P2P networks, the flooding-based technique is the most popular
data retrieval one. Flooding entails message processing at every peer. However, it
is expensive in terms of communication cost and computational resources in mo-
bile P2P networks. To achieve efficient retrieval, we propose a Hybrid Retrieval
approach (HR), which is automatic and economical. In the mobile network, a
region partition service can be deployed to be known to all participating peers
since vehicle-based peers have the GPS function. The region covered by the
network is divided into subregions that construct a mobile Kademlia (MKad)
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network. HR is designed to utilize flooding-based and DHT-based schemes for
quick search.

The main contributions of this paper include: First, we present a novel mobile
DHT based on subregions: MKad and its maintenance mechanisms. Second, we
propose an effective and efficient search approach named Hybrid Retrieval (HR)
in mobile P2P networks. HR is self-adaptive to choose either flooding-based
scheme or DHT-based scheme for efficient indexing and searching by analyzing
their expected search cost according to cost functions in mobile P2P networks.
Third, we confirm the effectiveness and efficiency of our methods by conducting
an extensive performance measured by search recall, query latency, query routing
efficiency.

The remainder of this paper is organized as follows: Section 2 reviews the
related work. In Section 3, we propose a mobile DHT based on Kademlia. We
present a hybrid retrieval approach in Section 4. In Section 5, we show the
experimental results. Finally, Section 6 concludes the paper with a discussion
about our future work.

2 Related Work

There are few existing works on search in mobile P2P networks. The Geographic
Hash Table (GHT) system [4] has been initially developed for data storage in
sensor networks. Its benefits would be that a responsible cell may be empty
without any negative influences, where a perimeter used for storing the location
information would simply be outside of the responsible cell. Thus, the robust-
ness is increased. In contrast, GHT may increase complexity of the scheme in
combination with a higher network load for maintaining the information in the
system. GHT stores information in those peers that form a perimeter around a
point. This point in Hierarchical Location Service (HLS) [5] would be the center
of the responsible cell. The peer closest to this point is responsible for regularly
sending the information to the other members of the perimeter. If the closest
peer fails, another member of the perimeter will sent an update after a timer has
expired and a new closest peer can be elected. The geographic location system
(GLS) [6] is a scalable location service that performs the mapping of a node
identifier to its location. GLS can be combined with geographic forwarding to
implement unicast.

Rybicki et al. [2] proposed a new paradigm to implement traffic information
systems, using an infrastructure-based P2P network consisting of vehicles. This
approach has several advantages over traditional VANET-based systems. In ad-
dition, it might also be possible for both VANET and P2P based systems to
coexist and complement each other. Wolfson et al. [7] proposed a novel search
algorithm called Rank-Based Broadcast (RBB) based on device proximity for
discovery of local resources in mobile P2P networks. Eriksson et al. [8] presented
Cabernet for delivering data to moving vehicles, which uses WiFi access points
encountered during drives for network connectivity and provides a beneficial way
to use the WiFi networks from moving vehicles.



306 Q. Xu et al.

3 A Novel Mobile DHT

3.1 Preliminaries

Most file queries are for highly replicated objects in P2P networks [9]. However,
queries for rare objects are also substantial [10]. Both studies correctly reflect
different aspects of the Zipfian distributions. The head of the Zipfian popular-
ity distribution was shown in [9], and hence the query requests are measured
based on the objects that match the top 50 queries seen. On the contrary, [10]
focuses on the long tail of the distribution. Individual rare objects in the tail
may not be requested frequently. However, these queries represent a substantial
fraction of the workload, and are worth optimizing. The popularity distribution
of a file-sharing workload is flatter than what we would expect from a Zipfian
distribution [11]. Therefore, both frequent and rare objects are important for
retrieval.

3.2 Region Partition

For an administrative region covered by a mobile P2P network, we divide it into
a number of subregions based on system requirements in a recursive manner
for maintenance. The region is first divided into two half subregions (Re and
Rw) based on the north/south direction (i.e. longitude), where Re and Rw are
respectively represented by 1 and 0; and then for Re and Rw, they are also
divided into two half subregions (Rn and Rs) based on the east/west direction
(i.e. latitude), where Rn and Rs are respectively represented by 1 and 0 as
well. The above procedure that is shown in Fig. 1 is recursively processed until
the differences in longitude and latitude of a subregion are both less than given
thresholds LO and LA. Consequently, the whole administrative region is divided
into multiple geographical subregions, which form the network topology. Each
subregion is represented by a unique region ID, and each peer uses this embedded
service to keep the location information of all subregions in the whole network.
Since the network topology consists of geographical subregions, each subregion
is responsible for a set of keys of data objects. The keys of data objects are
distributed among the subregions, such that each key is mapped to a subregion
R. This key-to-subregion mapping is known to all peers by using a variety of
Kademlia [3] named Mobile Kademlia (MKad). Note that the key-to-subregion
mapping is used in MKad, while the key-to-peer mapping is utilized in the
original Kademlia.

In MKad, each subregion has a unique ID and each key is a 160-bit identifier.
Every document is associated with a home subregion, where the document is
initially stored. To assign 〈key, value〉 pairs to particular subregions, MKad relies
on a notion of distance between a subregion ID and a key identifier, where key
is a 160-bit identifier of a word or document and value is a word or document
itself. Given a subregion ID R and a key, MKad defines the distance between
them as their bitwise exclusive or (XOR) interpreted as an integer, d(R, key) =
R
⊕

key. Since XOR is unidirectional, it ensures that all lookups for the same
key converge along the same path, regardless of the originating peer. Thus,
caching 〈key, value〉 pairs along the lookup path alleviates the load of hot spots.
In MKad, there are four subregions with respect to a object: query subregion,
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Fig. 1. The procedure of region partition
(k = 2, k is the number of closest subregions
to the key)

Algorithm 1. Maintaining the MKad network

Input: R is a set of regions
Output: the MKad network
// Publish rare words
foreach subregion R ∈ R do1

Gather new words W of R based on gossip2
foreach word w ∈ W do3

R publishes the word w4

// Drop indexes of popular words
foreach subregion R ∈ R do5

R count #requested of each word6
foreach word w ∈ W do7

if w′s#requested ≥ Θth then8
Drop the popular word w’s index9

key subregion, replica subregion and home subregion in our proposed approach.
For example, they are respectively regions: 11010, 00011, {00010, 00001} and
10001 as shown in Fig. 1.

3.3 Aggregation for a Word

To obtain the aggregation for a word w in a subregion, there are two possible
approaches. One is gossip-based approach, where peers exchange their current
aggregates with their neighbors till the aggregates almost converge to the global
values; the other is hierarchy-based approach, where peers come into being a
hierarchy and pass the aggregates in a bottom-up manner along the hierarchical
path. Hierarchy-based approach requires a super peer mechanism, which is hard
to be implemented in mobile P2P networks. Therefore, we utilize gossip-based
approach to obtain w’s aggregation.

When a peer is moving out of a subregion, its aggregation results and cached
documents are transferred to some peers within the subregion which have the fol-
lowing features: 1) low mobility speed; 2) close to the center of the subregion, or
moving towards the center; 3) enough cache space. A peer with low mobility and
locating near the subregion’s center is probably selected to store the aggregates,
since it will leave the subregion in the near future with a low probability. In our
proposed scheme, gossip-based aggregation has two functions: identifying rare
words and publishing new words into MKad. We also differentiate mobile peers
by their movements, which could be intra-subregion movement or inter-subregion
movement. For an intra-subregion movement, a peer moves only within the same
subregion, thus the overheads are trivial. For an inter-subregion movement, on
the contrary, a peer moves out of its initial subregion to a neighboring subre-
gion. Peers need to check their positions periodically to detect an inter-subregion
movement.

3.4 MKad Network Maintenance

For each peer in mobile P2P networks, its storage space is limited and thus it
is not able to store excessive objects. On the other hand, it is also expensive
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to maintain too many popular objects in the MKad network due to the limited
bandwidth. Popular objects are expected to be dropped from the MKad network
if they can be easily and quickly found by flooding-based techniques. Here we
use gossip-based aggregation to decide if a word is popular or rare. We present
an algorithm shown in Algorithm 1 for maintaining the MKad network. For new
words, they are often rare. Thus they are published in the MKad network (lines
2-4). Given a word, if its number of request is not less than Θth where Θth is a
threshold, the word is regarded as a popular one. Then, the indexes of popular
words are dropped from the MKad network (lines 5-9).

4 Hybrid Retrieval

For information retrieval in mobile P2P networks, generally two search schemes
can be applied: flooding-based scheme and DHT-based scheme. We first present
their cost models, followed by the hybrid retrieval algorithm which can auto-
matically select the more efficient scheme for a query word.

For the flooding-based scheme, the total expected search cost for a query word
w is given in [12]: Mu(w) =

∑N
i=1 CuiPr(X > ui−1), where a search strategy

with TTL values u = [u1, u2, · · · , uN ], X is the object w’s location, Cui is the
search cost of with TTL value ui, and u0 = 0 is assumed. Cui was mentioned
in [13] that the number of messages incurred with a TTL value of ui is roughly
ui + βui

2, where β is a constant with respect to the network parameters. The
search policy that minimizes this cost reads as following:

F (w) = Mu∗
(w) = argmin

u∈U

N∑
i=1

CuiPr(X > ui−1) (1)

where U denotes the set of all admissible search strategies (TTL sequences), i.e.,
all vectors u such that ui < ui+1 for all 1 ≤ i ≤ N − 1. Formula 1 can be solved
backward in time using standard dynamic programming techniques [12].

For DHT-based scheme, the search cost can be approximately modeled as
below:

D(w) =
‖Rw −Ro‖

γ
+

∑
Ri∈R

‖Ri −Ro‖
γ

y(Ri, w) (2)

where Ro is the originating subregion for the query w, Rw is the subregion that
is responsible for the index of w according to MKad, y(Ri, w) is the boolean
function returns 1 if Ri publishes w, or 0 otherwise, γ is the transmission range,
and ‖.‖ represents the distance between two subregions.

Based on a simple flooding algorithm presented in Algorithm 2, Algorithm 3
outlines our method - HybridRetrieval. When a peer sends a query q which
may contain multiple words, the peer generates a query message containing the
following two fields: 1) its identity, and 2) the set of query words. If the search cost
of flooding-based scheme is not greater than that of DHT-based scheme (line 5),
it floods the query with a given TTL L to determine if any of its neighbors have
query answers (line 5). If not, the requesting peer can use the MKad protocol



Hybrid Retrieval Mechanisms in Vehicle-Based P2P Networks 309

Algorithm 2. Flooding

Input: Po is the query originator, R is a
subregion, q is a query, L is a TTL

Output: search results S
// Ro is the originating subregion
if R is not Ro then1

foreach peer P ∈ R do2
Retrieve results S for q from P3

else4
P = {Po}5
while L − − > 0 do6

P=Get peers from P with7
flooding-based scheme
foreach peer P ∈ P do goto 38

Return gossip-based aggregation results to Po9

Algorithm 3. HybridRetrieval

Input: Po is the query originator, q is a query
Output: search results S
foreach word w ∈ q do1

if w is indexed in MKad then2
q’s key subregion Rkey = Rw3
break4

// w is the 1st word of q indexed in MKad
if F (w) ≤ D(w) then Flooding(Po, Ro, q, L)5
else6

Achieving the home regions Rhome via Rkey7
foreach Rh ∈ Rhome do8

Routing the query q to Rh9
Flooding(Po, Rh, q, 1)10

to get a subregion (Rkey) of query word according to the query (line 7). The
home subregion of w is determined by searching the subregion whose region ID
is the closest to the key of w. Peers that locate outside the home subregion drop
the query message without further processing. Flooding is restricted within a
subregion for quick query response and savings in network bandwidth (line 10).

A peer that routes the query message towards the destination subregion checks
its location in the message’s header to determine if it is within that subregion.
The first peer that receives the query message inside the destination subregion
floods the message within the subregion to locate the peers holding the docu-
ments including the requested key words. Each peer in that subregion processes
the query message to determine if it has the requested documents. When the
documents are located, the response is sent back to the original requesting peer
and the query process expires.

5 Experimental Studies

5.1 Experimental Setup

For the simulations, a discrete event simulator NS-2 (http://www.isi.edu/nsnam
/ns/ ) is employed with the IEEE 802.11 MAC layer. The NS-2 simulation model
simulates peers moving in an unobstructed plane. GPSR [14] is used as the
wireless routing protocol. We have modified it to provide routing to subregions
instead of specific destinations by forwarding the packet towards the subregion
and using the flooding-based scheme inside the subregion.

To measure the performance of our search schemes, we simulate the algorithms
on various mobile network topologies by varying the number of peers from 100 to
1000, mean speeds from 1 to 20 m/s, and motion regions from 1500m × 1500m
to 4000m × 4000m. The default parameters: # of peers is 400, # of document
objects is 10,000, transmission range of a peer is 250m, motion region is 2000m
× 2000m, mean speed is 10m/s, length or width of a region is 250m.

5.2 Data Set

We utilize TREC data from the 2GB Web track (WT2G) to simulate documents
(ads or traffic information), and their associated words as their descriptive tags.
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The top n words within each document are associated with the tags that are
valid in describing the document. The words used to describe a document are
drawn from its corresponding Web document. It makes the simulations more
realistic. We use word frequency to simulate the strength of description that a
word has in a document. The relative popularities of documents are arbitrarily
assigned according to a Zipf distribution.

5.3 Retrieval Models

A series of experiments are conducted to study several combinations of routing
query messages and search in mobile P2P networks. In our experiments, we used
simulations to evaluate HR and compared its performance to three other search
models in vehicle-based mobile P2P networks. The same partition service of a
region is utilized in the four models, which is known to all participating peers.

The four search models read as follows: 1) Flooding: Search using the
flooding-based scheme alone. 2) GLS+MKad: Grid Location Service (GLS) [6]
builds an ad hoc network’s area by using a fixed grid. Each peer maintains 1-
and 2-hop neighbor lists. The neighbor lists are built from piggyback messages
and indicate a peer’s location as well as other parameters like the peer’s 1-hop
neighbors. In addition, an appropriate cell size is carefully selected regarding
the transmission range of the peers. Each peer in a cell knows about all other
peers in the same cell. 3) HLS+MKad: Hierarchical Location Service (HLS) [5]
divides the area of a mobile network into smaller areas called cells and assign
each peer a set S of these cells. Position updates and requests are sent to (possi-
bly different) subsets of S. The selection of the subset depends on a hierarchical
grouping of the cells of S and the position of the peer which computes the sub-
set. The intersection of two subsets computed for the same peer is non-empty
in HLS. 4) HR: All the subregions construct the MKad network. HR chooses
either flooding-based scheme or DHT-based scheme for efficient indexing and
searching by analyzing their expected search cost according to cost functions in
mobile P2P networks.

GLS and HLS are both position-based routing approaches and do not support
search in mobile P2P networks. Thus, we integrate the MKad function into them
and use it to get the relevant peers for a given query. Furthermore, GLS and
HLS are utilized to route between a response peer and a requesting peer.

5.4 Evaluation Methodology

We adopt three performance metrics to evaluate retrieval in mobile P2P net-
works, i.e., retrieval accuracy, query latency and query routing efficiency.

Recall For automatically-generated queries, it is expensive for us to acquire
relevance judgments in mobile P2P networks. Instead, we used the retrieval
results from a single large collection as the baseline, whereafter measuring how
well the P2P network could reproduce this baseline. The single large collection
is the subset of the experimental test data set used to define peer contents, and
agreement is measured over all the data retrieved for each query. Although this
methodology is not perfect, it is reasonable because distributed retrieval systems
are not better than the “single collection” baseline. Accuracy is measured with



Hybrid Retrieval Mechanisms in Vehicle-Based P2P Networks 311

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 100 200 300 400 500 600 700 800 900 1000

R
ec

al
l

the Number of Peers

Flooding
GLS+MKad
HLS+MKad

HR

(a) Recall

 0

 0.5

 1

 1.5

 2

 2.5

 3

 100  200  300  400  500  600  700  800  900 1000

Q
ue

ry
 L

at
en

cy

the Number of Peers

Flooding
GLS+MKad
HLS+MKad

HR

(b) Latency

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 100  200  300  400  500  600  700  800  900 1000

th
e 

N
um

be
r 

of
 M

es
sa

ge
s

the Number of Peers

Flooding
GLS+MKad
HLS+MKad

HR

(c) Routing Efficiency

Fig. 2. Effect of Peer Densities

forms of set-based recall (R = |A∩B|
|B| ), where A is the set of the retrieval data

in P2P networks, B is the set of the retrieval data using the subset collection of
the single test data set. R(q) captures the fraction of relevant data a retrieval
algorithm is able to identify and present to the user.

Query Latency. The query latency is the elapsed time for a query to get its
response. It records the overall query processing time.

Query Routing Efficiency. Query routing efficiency is usually measured by
the average number of query messages routed for each query in mobile P2P
networks.

5.5 Experimental Results and Analysis

Experiment 1: Effect of Peer Densities We consider the effects of peer densi-
ties on query recall, latency and routing efficiency of different methods. Fig. 2(a),
2(b) and 2(c) show that HR yields the best performance on query recall, latency
and routing efficiency. HR uses the proposed utility functions and carefully se-
lects query techniques: flooding and MKad, which can significantly improve the
three metrics when the query is initialized and forwarded between peers. HR
uses the flooding-based technique to search popular words and uses GPSR to
return retrieval results. On the other hand, HR uses MKad to locate rare words
and uses the flooding-based scheme to find them only in single subregions.

However, GLS and HLS only use MKad to locate words. In the static P2P
networks, the query recall of DHT techniques is relatively high. However, the
performance drops greatly because mobile P2P networks are highly dynamic. On
the other hand, GLS and HLS achieve a much worse query performance than HR
because they produce much more update packets leading to higher network load
and network congestion in the end. Moreover, there is a tradeoff between the
maintenance cost for the MKad network and the query effectiveness regarding
GLS and HLS.

Obviously, the flooding-based technique is the worst on three metrics among
the four approaches because of three general reasons: 1) it is ineffective and
inefficient to return the query answers; 2) it is less effective for locating rare
items: 28.1% of all queries receive 5 or fewer results, and 12.3% of queries receive
no results in this experiment, although it is highly effective for locating popular
words, which are retrieved in large quantities. On the other hand, although it is
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Fig. 3. Effect of Mobility Speeds

highly efficient for locating popular words, where the queries have good lookup
time, it has bad returning time; 3) it is less efficient for locating rare objects
and the results have poor response time. For queries that return a single result,
the first result arrives after 7.2 seconds on average. For queries that return 5 or
fewer results, 5.6 seconds elapsed on average before receiving the first result in
this experiment. However, HR uses the designed utility functions to select the
query techniques for improving the query recall, latency and routing efficiency.
As the peer density increases, HR can construct stabler MKad network to search
rare words and locate much more popular words with smaller TTL.

Experiment 2: Effect of Mobility Speeds To evaluate the scalability of HR
with respect to mobility speeds, we increase the mobility speeds from 1m/s to
20m/s. We still evaluate three metrics: query recall, latency and routing efficiency
of four approaches. The results presented in Fig. 3(a), 3(b) and 3(c) indicate that
HR still achieves significantly better query performance than the other three
methods.

It is more difficult for the flooding-based mechanism to locate rare words
and return retrieval results at higher speed. The network load in GLS and HLS
increases with growing peer speed because more updates are sent that lead to
worse query routing efficiency. On the other hand, a higher load produces more
collisions resulting in re-queries and in unwanted delays in GLS and HLS. Facing
to high peer speed, HR still has better query performance than the other three
methods because it is based on subregions besides the proposed cost functions.
On the other hand, HR construct the MKad network only for rare objects, which
is effective and efficient at high speed. On the contrary, both GLS and HLS are
not effective and efficient to construct the MKad network for all the objects at
high speed.

Experiment 3: Effect of Motion Regions with a Fixed Peer Density
We consider the effect of motion regions with a fixed peer density (100 peers
per square kilometer) on query performance of four methods. Fig. 4(a), 4(b) and
4(c) show the results of query recall, latency and routing efficiency. Similarly,
HR can retrieve significantly better query performance than previously proposed
methods. Clearly, the flooding method is the worst among the four approaches,
which does not need to be elaborated any further.

To improve the query performance, the proposed utility functions in HR help
to carefully select query techniques: flooding and MKad. Moreover, HR uses
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Fig. 4. Effect of Motion Regions with a Fixed Peer Density

GPSR to locate response peers and return query results to a requesting peer.
Since GPSR makes greedy forwarding decisions using the only information about
a router’s immediate neighbors, both query latency and query efficiency are im-
proved further. However, GLS and HLS only use MKad to locate words. Besides
previous explanations in experiment 1 and 2, their query messages in a larger
region must be forwarded to requesting peers and response ones via a longer dis-
tance, which is a more difficult task in mobile P2P networks with fast movers.

6 Conclusions and Future Work

In this paper, we gave two scenarios to motivate our research on search in mobile
P2P networks. And then we proposed hybrid retrieval policies to utilize flooding-
based and MKad-based schemes for quick search in mobile P2P networks. Our
experiments show our approach yields better performance. In particular, the
query response time and the number of messages per query are reduced sub-
stantially without losing accuracy. We believe that possible directions to future
work include some research topics such as extending our method with coopera-
tive cache in mobile P2P networks, evaluating the MKad network’s performance
and maintenance cost, improving the simple flooding algorithm, and examining
the impact of diverse duplication mechanisms in our retrieval model.
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Abstract. This paper provides compound algorithm for Unrestorable
Flow Optimisation (UFO) problem formulated for computer networks
protected by p-cycles, created on the base of mathematical model and
solution approaches proposed in our complementary paper [1]. Compo-
nents of the algorithm have been selected carefully and then experimen-
tally tested in order to compose the best final algorithm. Results of the
wide computer tests on common benchmarks have been also presented
as well as some practical conclusions following from the research made.

Keywords: Computer network, survivability, optimization, p-cycles,
UFO problem.

1 Introduction

In [1] we have shown that Unrestorable Flow Optimization (UFO) problem, as
a complicated task, may be decomposed into several auxiliary subproblems with
dedicated solution methods. The mentioned above paper outlines also solution
methods without practical realizing comments. This paper refers chiefly to so-
lution algorithms derived from theory, [1] and their numerical properties tested
for the best practical performance. Paper [1] is complementary to this research.

2 Algorithm Components

Consider the problem of allocating demands into p-cycles while restoring the
net flow in case of failure. The problem can be modeled by Multiple Knapsack
Problem (MKP) which is strongly NP-hard. One can find several approximate
and exact algorithms for MKP in [2]. In our research we use a greedy algorithm
for MKP, based on principle of best fit rule – element is packed into this knap-
sack in which most of free space is left. This algorithm has pseudo-polynomial
complexity O(nm) (n is a number of elements and m is a number of knapsacks)
acceptable in practice, taking into account that overall solution is approximate.
Up to now, research have been made using commonly Greedy algorithm for
MKP; quite recently there have been proposed and analyzed profits of usage
branch-and-bound algorithm for MKP in UFO problem in [3].

G. Allen et al. (Eds.): ICCS 2009, Part I, LNCS 5544, pp. 315–324, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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Next subproblem, described in [1], consists in determining the maximum spare
capacity of all p-cycles. For non-disjoint p-cycles there can be written set of
linear equations or inequalities, where criteria function, as mentioned in [1] is
to maximize sum of residual capacity of all p-cycles. This forms a set of linear
equations and can be solved using algorithm dedicated Linear Programming
task. Simplex method, as most popular and easiest to use, has been chosen.

At the end, for each demand there have to be prepared a set of alternative
routing paths. Because demands are defined from source to target nodes, k-SPD
algorithm based on Dijkstra’s Shortest Path Algorithm, can be used [4].

2.1 Generation of p-Cycles

The optimal configuration of p-cycles protecting the network can be either con-
structed from scratch or selected among certain subset of p-cycles called cycle-
candidates set. The number of all possible cycles in network with the full mesh
topology (i.e. full undirected graph) is ω(2V ), i.e. is rising faster than 2V , where
V is the number of vertices in the net, see [5] for detail. Thus, assuming usage of
the step-by-step search technique, even for quite small networks, the total num-
ber of cycle candidates is usually too big to store all of them in the computer
memory and then to check any of them. Therefore, two alternative approaches
one can propose next: (a) use pre-generated set of cycle candidates, of limited
reasonable cardinality, generated in advance, in off-line mode, (b) generate on-
line cycle candidates on demand, whereas the number of generated cycles is a
priori unknown. The former approach is called pre-generation technique, whereas
the latter – enumeration technique, [5,6]. In both cases a “good” p-cycles are
expected from the generation algorithm. The problem of generation cycle com-
ponents is nontrivial and has been studied among others in [5,6,7,8,9,10].

The presented paper provides research made for conception (a). Application of
(b) remains an open research task. A decision process, which particular p-cycles
are used for protection, will be done by tabu search (TS) algorithm, see Section
2.2 for detail. In order to evaluate the impact of generation scheme onto overall
solution quality, we tested four different generation algorithms, to compare re-
sults obtainable for different sets of p-cycles. A lot of algorithms generate larger
set of p-cycles by extending a small one with the help of some transformations.
We refer here to the well-known algorithm Straddling Link, proposed first time
in [9]. It is quite simple and never generates more cycles than number of spans in
network. In [7,11] there have been described several different algorithms provid-
ing rules for transformations from simple p-cycles to complex ones. Among them,
three have been chosen as the most promising: SP-Add (Span Add), Expand and
Grow, described in [7].

2.2 Tabu Search

It has been shown, [1], that UFO problem is strongly NP-hard. Thus the use
of heuristic or metaheuristic algorithms is fully justified. We decided to apply
Tabu Search (TS) technology, because of good results achieved for many other
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applications in optimization. Referring the reader to foundations of TS, [12],
we present here only implementations of its crucial elements in our case. Each
solution of our problem will be represented by current configuration of p-cycles
(a subset of components selected from the whole candidates set) plus current set
of routing paths (only one path is selected for each flow demand). Quality of the
solution is measured by the amount of unrestored flow, expressed as fraction of
total flow. The whole evaluation of UFO value consists of calculation of capacities
for chosen p-cycles (an LP task) and determining which demands can be restored
(by solving the sequence of MKP instances), see [1] for detail.

Because our solution consists of two inhomogeneous structures (p-cycles and
routing paths) the move (transformation) from the current solution can be either
p-cycle move or routing path move. All moves, generated from the current solution,
generate its neighborhood. Let us describe these transformations more precisely.
First, because of small change philosophy, we assume that transformed solutions
differ from original one by single element. For transformation performed on rout-
ing configuration, we had to choose solution which will not increase drastically
the size of TS neighborhood. For example, if there are three alternative routing
paths for some demand, two new neighboring solutions will be generated for this
demand — each of them corresponds to one of two remaining routing path (ex-
cept this already used). Thus, having k alternative paths and d demands, (k−1)d
new neighboring solutions will be generated. For p-cycles transformations we have
defined three possible changes (three neighbors) for each component of p-cycle :
add one p-cycle to current configuration from candidates set (not used yet), re-
move one p-cycle from current configuration, exchange one p-cycle from current
configuration into one from candidates set (not used yet). Each new element in
neighborhood is generated by performing only one of mentioned transformations.
Whole neighborhood coming from p-cycles set transformation is done by perform-
ing for each p-cycle in current configuration following steps: (a) remove a compo-
nent p-cycle; (b) add n times randomly chosen with weights (value of AE ([11])
metric as weight) p-cycle from candidates set; (c) exchange current cycle compo-
nent into one from candidates set being not far than |l| steps from actual. p-Cycles
in candidates set are sorted decreasingly by value of AE metric. We see that pa-
rameters l and n values has significant influence on size and type of generated TS
neighborhood. Next, we will call l a size of p-cycles neighborhood and n as number
of randomly chosen p-cycles.

The starting solution of TS is created by using the following principles: (1)
for each demand, the first (shortest) path on the candidate list is set, (2) current
configuration of p-cycles contains single component, the first one from the list
of candidates (with greatest value of metrics AE).

Tabu list (short term memory of the search history) is considered as the crucial
control element of TS, since it is responsible for proper behavior of the whole
algorithm (it prevents cycling). In our implementation we assume that tabu list
stores the move made, both types of moves on the common list. The move to be
performed is considered as tabu if its inverse move is stored on tabu list. The
form of inverse move is easy to define for the moves introduced earlier.

Selection of TS control parameters is discussed in Section 3.4.
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3 Computational Results

The quality of proposed (metaheuristic) algorithm will be evaluete in computer
test on common benchmarks.

3.1 Common Benchmarks

For network optimization tasks there exists a library, called SNDlib [13], pro-
viding a set of network topologies, as well as all necessary information about
flows and possible routes. SNDlib consists of several network topologies, which
are in most cases real networks, or at least advanced projects, e.g.: COST-266,
germany50, poland, france. Test described in this paper have been performed
using COST-266 topology, because it is quite similar to COST-239 (COST-239
is the project older than COST-266). COST-239 was used in most of papers in
literature dealing with p-cycles optimization.

3.2 Generation Technology Test

First performed test compares the behavior of algorithm depending on p-cycles
generation algorithm. Four, mentioned in Section 2.1, algorithms have been
tested. Results are presented on the Fig. 1, where one routing path for each
demand is used. First and most obvious conclusion is that the Grow algorithm
finds final result using smaller number of TS iterations. Grow also descends to-
ward final result quicker that other algorithms. We see that best results are
achieved using p-cycles set from Grow algorithm, but it is quite interesting that
for this combination, the TS algorithm needed less time to find better result than
using other p-cycles algorithm. So the configuration of parameters giving the best
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Table 1. Comparison of parameters of p-cycles generated by four mentioned algo-
rithms, for COST-266 topology

SLA SP-Add Expand Grow

number of p-cycles 45 96 89 1214
av. value of AE metrics 1.27 1.49 1.56 1.74
av. p-cycle length 7.20 11.04 13.01 21.38
av. number of straddling-spans 1.17 2.88 3.96 8.48
average generation time in seconds 0.0019 0.0076 0.0061 2.65

results produce them in shorter time than other, worse configurations. Only one
disadvantage of this solution is that the time needed to generate p-cycles candi-
dates set using Grow algorithm is significantly longer than for other algorithms.
Average time needed for generation sets of p-cycles and parameters of those sets
for test COST-266 topology, for tested four algorithms arepresented in Tab. 1.

3.3 Alternative Routing Paths Test

In Section 3.2 there have been analyzed influence of chosen p-cycles generation
algorithm on final result. But as mentioned in [1], this is not only one control
parameter. Second one, no less important is the number of alternative routing
paths for each demand. Moreover during whole optimization in TS, the most
useful path is chosen for each demand, so giving more optional paths, algorithm
receives wider range of possible solutions. On Fig. 2 there have been presented
comparison of p-cycles generation algorithm but for three alternative routing
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demand
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Table 2. Comparison of example results depending on used p-cycles generation al-
gorithm and number of alternative routing paths; presented values stands for % of
unrestorable flow

SLA SP-Add Expand Grow

1 kSPD 3.84 6.70 6.87 3.68
3 kSPD 0.67 1.25 1.28 0.35
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Fig. 3. Comparison of results for each p-cycles generation algorithm depending on
number of alternative routing paths for each demand

paths for each demand. Comparing Fig. 1 and Fig. 2 one can notice, that giv-
ing more alternative paths improve the way that overall algorithm works. First
improvement is that for each p-cycles generation algorithm TS descending to-
ward final result is quicker. Second conclusion is that, TS is working longer
(bigger number of TS iterations till stop condition). It is because using more
alternative paths, allow TS algorithm to tune more the final result. Also, as
previously, the best p-cycles generation algorithm is Grow.

Presented results on Fig. 1 show only general behavior of two described op-
tions. Exact results are presented in Tab. 2. Analyzing those results one can
see that using three alternative paths improve the quality of final result several
times. So without any additional resources, only changing the routing, adjusting
it for chosen set of p-cycles, we can improve the level of final protection.

Comparing results of mentioned test with tests for only one routing path, we
see that only changing flow in network, we can highly improve the protection per-
formed by p-cycles set. So it is highly recommended that p-cycles optimization
should be accompanied with dedicated routing.

One can ask, why not use more routing paths, if it gives such improvement.
The answer is presented on Fig. 3. We can see that the best improvement of
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quality of final result is when changing from one to three alternative routing
paths for each demand. Adding more paths till five, practically do not change
the quality of received final result. What is important, adding more alternative
paths increase the time of computation – Fig. 4.

For more that three routing paths, possible improvement is not worth because
of amount of time needed to finish computations. What more, the increase of
time needed for all algorithms except Grow is higher than for Grow.

Analyzing presented results for time of computation and time needed to gen-
erate a set of p-cycles (presented in Section 3.2) we can see, that using Grow is
highly recommended because of best preformed results and shortest computa-
tion time, even taking into account time needed to generate p-cycles set. This
additional time is several hundred times smaller that time saved in TS.

3.4 Finding the Optimal Configuration

In whole process of finding final solution several elements are important. Two
main were analyzed and discussed in Section 3.2 and 3.3. Other are: size of tabu
list, number of TS iterations till algorithm stops, size of p-cycles neighbourhood,
number of random p-cycles configuration change. All mentioned parameters have
been tested within defined ranges, to find which of them and how much influence
the quality of final result.

During tests we have notices that TS algorithm was falling into cycle nearby
found local minimum. In this case, we decided to try to block this cycles, as
this prevents algorithm for further search. Those cycles came from situation,
when reaching local minimum, TS while generating neighborhood received most
of solutions with the same value of criteria function. Also there have to be
mentioned, that in basic structure tabu list does not protect before cycles. We
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decided to filter TS neighborhood – solutions having the same value of criteria
function were not analyzed. Results presented in this paper compare version of
TS with and without filtering.

Because of limited size of this paper, we are unable to present all results and
comparisons, so we decided to present only conclusions drawn from performed
tests. The conclusions are:

1. we have not notices influence of size of p-cycles neighborhood on quality of
final result;

2. there exists dependency of quality of final result on number of randomly
chosen p-cycles configuration – till the value of 5 it increases the quality,
bigger values practically do not change anything;

3. for algorithm without filtering the neighborhood one can notice link between
final solution quality and length of tabu list – longer list improves the quality,
but influence is quite small;

4. for algorithm with filtering the neighborhood we have not noticed link be-
tween the quality of final solution and tabu list size – probably tabu list
blocks only one step back and filtering process prevents algorithm from back-
tracking;

5. we have notices direct influence of number of TS iterations till stop on quality
of final result – there is an improvement till value of 20, after this value there
is no increase in quality;

6. analyzing all parameters, we have notices that algorithm with filtering neigh-
borhood, generally gave better results that without filtering;

7. in all cases for option with filtering solutions and without, best results were
received using Grow p-cycles generation algorithm;

8. quite surprising was that second best results were received using SSA p-cycles
generation algorithm – the one that generates simplest and most basic
p-cycles;

9. computations using Grow algorithm gave better results, because p-cycles set
generated by this algorithm consists of p-cycles form SSA algorithm (which
was second best) and some additional p-cycles with different feature, which
improved the quality of final solution, over single set from SSA.

3.5 Final Solution Quality Test

In Section 3 there have been presented received results. The best parameters
configuration have been identified and discussed. In this section we will analyze
the quality of received results. Because for now one have performed such research
like described in this paper, there is no point which we can refer to. Test have
been performed for TS algorithm with filtering and without. Both of them have
started from same basic solutions, which ”unrestorability” was 64.15%. In Tab. 3
there have been presented average received results for 100 repeats. Also there
are some statistic parameters of results sample. Time of computations for TS
with filtering was ca. 30% longer that without. We can see that both versions
have reached 0.0% of unrestorability and both have done it four times. Median
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Table 3. Comparison of results quality for TS algorithm with filtering and without,
for optimal algorithm configuration, for COST-266 topology; values are value of un-
restorability in %

without filtering with filtering

av. result value 0.62 0.43
best value 0.00 0.00
best value found no. of times 4 4
worst value 5.11 3.82
median 0.35 0.35
standard deviation 0.87 0.42
av. deviation 0.49 0.17

is the same, version with filtering have much lower deviation from average value.
Additionally there have been done T-Student statistic tests to confirm that both
samples differ each other. Tests were positive.

4 Conclusions

We have presented a set of algorithms building overall solution for UFO prob-
lem formulated in our paper [1]. Presented algorithms are first ever developed for
UFO problem. Performed tests analyze wide range of parameters influencing the
quality of final result. Notice, we have proposed a joint optimization of routing
and selecting p-cycles, which most of authors in literature have avoided, called
them too complex. We have found configuration of the net ensuring unrestorable
flow below 1% of total flow in network, and in many situations achieving 100%
of restorability. Taking into account that this optimization is done in advance,
we have enough time to find best solution. We have also confirmed that the com-
bination of p-cycles with different size (generated by Grow algorithm) provides
best restorability.
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Abstract. This paper deals with Unrestorable Flow Optimisation
(UFO) problem in networks protected by p-cycles. This novel protec-
tion technique is used as the efficient tool for ensuring survivability of
computer networks. In this paper there have been formulated mathe-
matical model of UFO problem, discussed its theoretical properties, and
proposed the original solution algorithm based chiefly on metaheuris-
tics. The algorithm combines k-shortest paths method, multi knapsack
problem, p-cycles generator, linear programming and some local search
procedures.

Keywords: computer network, survivability, optimisation, p-cycles,
UFO problem.

1 Introduction

Survivability of computer networks and systems is located among the most im-
portant subjects in modern computer engineering and science. This research
topic embraces the wide spectrum of particular technological and theoretical
problems derived from computer architecture area, network topology, commu-
nication protocols, transmission, coding, cryptography, etc. The topology of the
computer network has crucial meaning for its survivability, since physical cre-
ation of the net links is much more time-consuming and troublesome than pro-
ducing a new (or spare) device, furthermore faults of network links and nodes
are still the common problem. The idea of usage p-cycles is quite new, but have
been widely developed among recent years. p-Cycles are very favorable in com-
parison with traditional ring or mesh topologies. In this paper, we present and
discussed the new optimization problem, generated by the concept of network
protection by using p-cycles, where the criteria is not a cost, but the level of
restorability ensured by using currently available net resources.

This paper is organized as follows. Section 2 provides brief introduction into
p-cycles idea. Section 3 describes, in detail, new problem of unrestorable flow
optimization, called hereinafter the UFO problem. Section 4 discusses some its
properties and solution methods. Conclusions one can find in Section 5. Because
of the strong NP-hardness of UFO problem, this paper introduces basically the
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mathematical model, then discusses its essential properties including layer de-
composition and computational complexity and, at the end, provides a wide
spectrum of solution methods. Particular algorithms, as well as experimental
results based on standard benchmarks are shown in separate our paper [1].

2 Background of p-Cycles

Traditionally, the most popular solution for providing restorability in computer
networks was to use either ring or mesh topology. Ring offers short restoration
time as well as simple restoration scheme, however its design and operation is
rather complex and the usage of total transport bandwidth is inefficient. Mesh
is easy to design, optimize and operate, but have greater than ring restoration
time. Mesh networks don’t require as much spare capacity as rings, because in
the restoration process capacity demand can be split between different links. On
the other hand, rings are so efficient in the restoration process because there
are no need to search for restoration path. Obviously, there is a great need to
find topology, which aggregates all advantageous properties of mesh and ring
networks. This idea was fully realized in the concept of p-cycles, that means
“fast as ring”, “efficient as mesh”, preconfigurable and protected.

In normal non-failure state, routing for flow demands between pairs of nodes,
is done using one of many routing techniques. Set of p-cycles is formed in advance
while configuring network, to be ready to use in case of any failure and perform
real-time recovery. p-Cycles are not an ordinary cycles. Let us consider a mesh
network and choose some cycle (Fig. 1 a). In classical cycle protection approach,
this cycle protects all spans being “on-cycle”. In the paper [2] it is shown that
cycle established on mesh network protects also “straddling spans”, i.e. spans
between cycle nodes, but not belonging to the cycle (Fig. 1 b). Observe, that
in case of failure of “straddling span” the arc of cycle can be used to transfer
whole flow from this failed span. This property allows one to extend protection
provided by p-cycles on straddling spans as well. Fig. 1 c shows which spans
cannot be protected using this properties.

In case of failure of “on cycle” span, there is one path which can be used to trans-
fer flow (Fig. 2 a). But for failure of “straddling span” there are two different paths,
which can be used for recovery process. Arc of the cycle can be used as a path, or
both arcs to achieve lower load on links (Fig. 2 b and c). Because without using
any additional links and spare capacity we achieve much higher level of protec-
tion, protected are not only cycle spans but also “straddling spans”. “Straddling
spans” have twice the leverage of an on-cycle span in terms of efficiency because
when they fail, the cycle itself remains intact and can thereby offer two protection
paths for each of unit of protection capacity. This spans are not limited to be inside
a cycle, each span between two nodes of the cycle is protected by this idea.

Notice, we do not need any additional spare capacity to protect “straddling
spans”, because the spare capacity from ring spans is used to protect those spans.
This means that we can protect much more spans and link capacity using the
same amount of spare capacity as in the ring model. Thus, under the some costs,
we can achieve higher level of network survivability.
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(a) (b) (c)

Fig. 1. p-Cycles in the mesh network

(a) (b) (c)

Fig. 2. p-Cycles protection schemes for various types of failure

3 The UFO Problem

In the literature, most papers dealing with survivable networks concentrate on
ensuring 100% survivability. But only few authors have considered (not only
mentioned) problem, where 100% of restorability may not be achievable. For
networks protected by p-cycles, in [3] there has been proposed problem in which
the level of restorability is maximized, assuming fixed amount of spare capacity.

Another paper [4] mentions about different idea — minimization of
unrestorable flow in the network with fixed capacities, where no additional ca-
pacity is necessary, since restoration is done within available spare capacity, left
after optimization of all flow demands. This problem, called by us Unrestorable
Flow Optimisation (UFO), will be studied extensively in our paper. Below, we
define it formally as follows. (Notation based on [5] and [6] will be used.)

We have given: network topology, link capacities, traffic demand matrix, can-
didate paths for demands, p-cycles configuration. Optimization over working
flows in normal non-failure state of the network is done, for protection in the
case of single link failure. The objective is to minimize the unrestored flow, i.e.
flow that due to limited link capacity cannot be restored using p-cycles.

Indices
e, l = 1, . . . , E network links (spans)
d = 1, . . . , D demands
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p = 1, . . . , Pd candidate paths for flows realizing demand d
q = 1, . . . , Q p-cycles
s = 1, . . . , S failure states

Constants
D set of all demands
E set of all spans
Q set of all p-cycles
Qe ∈ Q set of p-cycles which can be used for restoration span e
De ∈ D set of demands using span e
δedp = 1, if link e belongs to path p realizing demand d; 0 otherwise
hd — volume of demand d
ce — capacity of link e
βeq = 1, if link e belongs to p-cycle q; 0 otherwise
εeq = 1, if p-cycle q can be used for restoration of link e; 0 otherwise i.e.

link e either belongs to p-cycle q or is a straddling span of q
γeq — coefficient of restoration paths provided for failed link e by an

instance of p-cycle q (= 1 for an on-cycle link; = 0.5 for a straddling
span; = 0 otherwise)

Variables
xdp = 1 if demand d uses path p; 0 otherwise (binary)
fe — load of link e associated with working demands
ydeq = 1 if demand d uses path p-cycle q for restoration in the case of failure

of link e; 0 otherwise
zde = 1 if demand d is not restored in the case of failure of link e; 0 otherwise
gel — load of link e associated with p-cycle in the case of failure of link l

Overall optimization criteria function is:

min
y,z

U(y, z;x,Q) = min
y,z

∑
e

∑
d

zdehd, (1)

with constraints:

zde +
∑

q

εeqydeq = Ade, e = 1, . . . , E, d = 1, . . . , D (2)

gel =
∑

d

∑
q

Beldqydlq, e = 1, . . . , E, l = 1, . . . , E (3)

gel ≤ se, e = 1, . . . , E, l = 1, . . . , E, (4)

where Ade, Beldq, are constants used to make equations more clear for fixed x:

fe =
∑

d

∑
p

δedpxdphd, e = 1, . . . , E, (5)

Ade =
∑

p

δedpxdp, e = 1, . . . , E, d = 1, . . . , D, (6)
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Beldq =
∑

p

δldpxdpβeqγlqhd, e = 1, . . . , E,

l = 1, . . . , E, d = 1, . . . , D, q = 1, . . . , Q, (7)

and:
se = ce − fe, e = 1, . . . , E. (8)

Auxiliary variable se, defined in (8) and used in constraint (4), will be called
residual spare capacity, left after fulfilling all traffic demands from set D trans-
fered over paths determined by x. Auxiliary constant Ade takes only binary
values, Ade ∈ {0, 1}, which means that either there is no possibility to restore
demand d in case of failure of span e (then zde = 1 and all ydeq = 0, q = 1, . . . , Q)
or there exists possibility of restoring d in case of failure of span e using one cho-
sen p-cycle q (then ydeq = 1 and zde = 0). The formulated optimization problem
is a Mixed Integer Linear Programming (MILP) task. However, because of the
problem size, and well-known weakness of the general MILP solution methods,
we give up MILP techniques and transform the problem into new one.

Using equation (2) in (1) and substituting equation (3) into inequality (4),
the problem receives the following form:

min
y,z

U(y, z;x,Q) = min
y

∑
e

∑
d

(Ade −
∑

q

εeqydeq)hd

=
∑

e

∑
d

Adehd −max
y

∑
e

∑
d

∑
q

εeqhdydeq, (9)

∑
d

∑
q

Bledqydeq ≤ sl, e = 1, . . . , E, l = 1, . . . , E. (10)

In these equations index e stands for span being damaged; when another index
l is used also for spans, it refers to other span which has been influenced by
damaged span e.

First element in equation (9) is constant and does not have any influence on
the form of optimal solution, but only on its value. Problem (9) described by
second element with constraint (10), can be solved by a sequence of problems
known in literature as Knapsack Problem (KP) or Multiple Knapsack Problem
(MKP). Constraint (10) determines whether there is a need to consider KP either
or MKP case. Transformation of (9) – (10) into MKP is shown below.

Consider right side of equation (9) for fixed span e in a form:

max
y

∑
d

∑
q

Cedqydeq, (11)

where:
Cedq = εeqhd, (12)

with constraints: ∑
d

∑
q

Bledqydeq ≤ sl, l = 1, . . . , E. (13)
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For fixed e, exists d×q binary decision variables ydeq. So the criteria function (11)
corresponds to optimal packing Q knapsacks with elements 1, 2, . . . , D. In order
to match constraint (13) with constraints from MKP [7], the new notion rq will be
used, called hereafter residual capacity of p-cycle q. Value rq stands for maximum
flow which can be added to all spans in p-cycle q, without exceeding residual
capacity of the spans. Calculation of p-cycle residual capacities is a complex
problem – we will discussed it, in detail, in Section 4.3. For further considerations,
we assume that capacity of p-cycle meet constraint rq > 0 and:

sl =
∑

q

βlqrq. (14)

Substituting (14) in constraint (13) one can obtain:∑
d

∑
q

Bledqydeq ≤
∑

q

βlqrq, l = 1, . . . , E. (15)

Condition (15) is then transformed into sequence of Q × E conditions in the
following form: ∑

d

Bledqydeq ≤ βlqrq, q = 1, . . . , Q, l = 1, . . . , E, (16)

what makes stronger constraint that original (15). Summing inequalities (16) by
sides for each l (this is relaxation) inequality (13) will be received. Observe in
definition (7) that value Bledq does not depend on l, so:

Bledq = B∗
edq =

∑
p

δedpxdpγeqhd, (17)

because (16) is fulfilled obviously for βlq = 0, while this condition have to be
fulfilled additionally for βlq = 1. Using (17), constraint (15) can be transformed
into: ∑

d

B∗
edqydeq ≤ rq, q = 1, . . . , Q. (18)

for those l for which βlq = 1. It corresponds to missing constraint for knapsacks
capacities 1, . . . , Q in MKP (constraints (18) are identical for all l). If Q = 1
(special case) MKP is simplified and takes form of KP.

Finally, value:
max

y

∑
e

∑
d

∑
q

Cedqydeq, (19)

can be calculated step by step, analyzing possibility of restoring flow fe using
p-cycles after the failure of span e, for all e ∈ E such fe > 0. If only fe = 0
nothing have to be restored — ydeq = 1, zde = 0, e ∈ E because hd = 0 for
d ∈ D. So (19) can be finally written in a form:

max
y

∑
e∈E+

∑
d∈De

∑
q∈Qe

Cedqydeq, (20)

where: E+ = {e ∈ E : fe > 0}.
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4 Solution Proposal

Solution proposal tends to decomposition of the problem (1) – (8) leading to the
series of known, simpler cases.

4.1 Decomposition

In the context of Section 3 one can propose quite natural layer decomposition of
optimization problem into several sub-problems. At the begin we have the net-
work with known topology, span capacities and costs and a set of flow demands.
Each demand determines flow transfer between pair of nodes (from source to
destination). In order to satisfy these demands routing paths have to be found.
This problem is known in the literature as multicomodity flow (MCF). MCF
problem requires the set of paths (for example k shortest paths k-SP) between
specified pair of nodes, among which MCF selects the set of the best ones ([5]).
Observe, the configuration of paths satisfying demands need be advantageous
for p-cycles configuration. Our overall aim is to find the optimal set of p-cycles;
this can be done by metaheuristic algorithm, which goes through the solution
space by certain search trajectory verifying candidates on p-cycles. Successive
p-cycles in this space are pre-generated by using a reasonable generator. One
among many described in literature can be used.

For fixed set of p-cycles and fixed routing paths realizing demands we have
to solve the UFO problem. Its optimal solution is created by independent check-
ing of restorability for each span with nonzero flow. If this span transfers single
commodity flow, its restorability case can be simply evaluated. Otherwise, if the
span transfers multicommodity flow, the Multiple Knapsack Problem (MKP) is
used to find optimal restoration scheme (described briefly in Section 4.2). Both
cases require the evaluation of so called spare capacity of the cycle. For disjoin
cycles, inside current p-cycles configuration, such evaluation can be made inde-
pendently and the problem is not troublesome. If cycles inside current p-cycles
configuration are not disjoint, the problem of finding real spare capacity of cy-
cles can be written as special linear programming (LP) problem — described
in Section 4.3.

4.2 Minimisation of Unrestorable Flow

Let us consider criteria function (1) in the mathematical model from Section 3.
In order to calculate its value we need to known matrix zde, where hd is known
in advance as the input data for this problem. According to the description in
Section 3, all routing paths have to be chosen for this calculations (realizing all
flow demands) and dedicated configuration of p-cycles also have to be known,
with its residual capacities calculated. Algorithm for calculation of zde values is
presented in Lis. 1.1. All symbols are consistent with those from Section 3. This
algorithm refers to equations (9) – (10). It examines all spans e ∈ E+ in the
network, whether whole flow from De can be restored using p-cycles Qe in case
of failure of each particular span.



332 A. Smutnicki

Listing 1.1. Pseudocode of algorithm for calculation zde values.

for e ∈ E do
begin
(Re, Ue) = checkRestoriationPosibility(e,De, Qe) ;
for d ∈ Re do zde = 0 ;
for d ∈ Ue do zde = 1 ;

end ;

The key role plays function checkRestoriationPosibility(); it determines
whether all flow demands can be restored or not in case of failure of span e.
If all flow demands cannot be restored, the function returns two sets of: Re for
restorable, and Ue for unrestorable demands, minimising the total amount of
unrestored flow.

One can distinguish four following scenarios in case of failure of span e (We
say that particular span belongs to p-cycle, if it is either on-cycle span or
a straddling-span on this p-cycle.):

1. span e does not belong to any p-cycle, so Qe = ∅; thus definitely flow from
span e cannot be restored, so ydeq = 0, q = 1, . . . , Q and in consequence
zde = 1, d ∈ De;

2. flow on span e consists of only one commodity |De| = 1 and span e belongs
to one p-cycle, so |Qe| = 1; flow can be either restored or not, depending on
residual capacity of this p-cycle;

3. flow on span e is a multicommodity flow, |De| > 1 and span e belongs to one
p-cycle, so |Qe| = 1 — flow can be restored or not depending on residual
capacity of this p-cycle;

4. flow on span e is a multicommodity flow and span e belongs to more than
one p-cycle, so flow can be restored or not depending on residual capacity
of those p-cycles.

Case (1) is obvious. Case (2) is simple – flow can be restored if hd ≤ rq (hd

is a value of flow for demand d, rq is a residual capacity of p-cycle q). In case
(3), the total flow for span e can be restored if

∑
d∈De

hd > rq. In this case,
the selection of demands to be restored is significant — it is the optimization
problem, modeled by using Knapsack Problem. The most complex case (4) is
modeled by MKP, as already mentioned.

4.3 p-Cycles Residual Capacities

According to description in Section 3 there is no possibility to add any spare
capacity, only existing spare capacity in working spans can be used. This assump-
tions generates several additional constraints. The most important is a decision
problem how much of spare capacity have to be assigned to each of used p-cycles,
in situation when at least two cycles have common span — Fig. 3. In this sit-
uation sum of p-cycles capacities cannot exceed span spare capacity. Additionally



Unrestored Flow Optimization in Survivable Networks Based on p-Cycles 333

maximization of sum of whole p-cycles spare capacity is desired. Mathematical
formulation of this problem is described below. Let us define:
rq — capacity of p-cycle q;
se — available spare capacity on span e;
rmax
q — maximum potential capacity of p-cycle q (defined in equation (21));
βeq = 1 if span e belongs to p-cycle q;

Maximum potential capacity of each p-cycle is bounded by value:

rmax
q = min{se : e = 1, . . . , E, e ∈ q}. (21)

For each span we have constraint:∑
q

rqβeq ≤ se, e = 1, . . . , E (22)

Total amount of p-cycles capacity should be maximised:

max
∑

q

rq, q = 1, . . . , Q (23)

taking into account constraints:

0 ≤ rq ≤ rmax
q , q = 1, . . . , Q (24)

The problem (23) – (24) is a typical linear programming task, so simplex
method can be recommended here to solve it.

Fig. 3. Example of configuration where two p-cycles have common span

4.4 Problem Complexity

Two described previously problems, namely the finding of zde values and calcu-
lation of residual capacities, are only activities performed during the evaluation
of the current (fixed) p-cycles and the current routing paths configuration. In the
pessimistic case, we have to solve certain MKP problem(s), which is, according
to [7], strongly NP-hard. So the process of evaluation single solution is strongly
NP-hard, too. Note, that the generation of the set of p-cycles candidates (in
the local search algorithm) appears to be also quite complicated problem, see [1]
for detail, because the number of possible cycles in network has non-polynomial
character; the similar remarks refers also to generation of the set of paths – can-
didates for realizing routes for each demand.
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5 Conclusions

We have formulated problem of increasing computer network survivability by us-
ing p-cycles as an combinatorial optimization problem. The problem alone has
been neither discussed nor solved in the literature, yet. Although the problem
can be modeled as a general MILP task, presented by us transformations show
that it is quite complicated case. We have also shown that problem is strongly
NP-hard, which suggests that the most suitable solution methods should rely on
metaheuristic approaches. We have also shown original decomposition method
and then proposed highly dedicated algorithm for each particular subproblem.
Due to limited size of the paper, we have presented here the primal part of ex-
tensive studies made for the problem stated – detailed analyzes of the algorithm
as well as wide experimental research on common benchmark test are presented
in the complementary paper [1], also submitted for this conference.
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Abstract. We are interested in the simulation and optimization of gas
transport in networks. Different regions of the network may be mod-
elled by different equations. There are three models based on the Euler
equations that describe the gas flow in pipelines qualitatively different:
a nonlinear model, a semilinear model and a stationary also called al-
gebraic model. For the whole network, adequate initial and boundary
values as well as coupling conditions at the junctions are needed. Using
adjoint techniques, one can specify model error estimators for the sim-
plified models. A strategy to adaptively apply the different models in
different regions of the network while maintaining the accuracy of the
solution is presented.

Keywords: model adaptivity, adjoint equations, gas flow.

1 Introduction

During the last years, there has been intense research in the field of simula-
tion and optimization of gas transport in networks [2,3,4,8,9]. The equations
describing the transport of gas in pipelines are based on the Euler equations, a
hyperbolic system of nonlinear partial differential equations, mainly consisting of
the conservation of mass, momentum and energy. The transient flow of gas may
be described appropriately by equations in one space dimension. For the whole
network, adequate initial and boundary values as well as coupling conditions at
the junctions are needed.

Although solving one-dimensional equations does not pose a challenge, the
complexity increases with the size of the network. Thus, we present a hierarchy
of models that describe the flow of gas in pipelines qualitatively different: The
most detailed model we use consists of the isothermal Euler equations (continuity
equation and momentum equation). A common simplification of the momentum
equation leads to a semilinear model, which is only valid if the velocity of the
gas is much less than the speed of sound, that is, |v| � c. Further simplifications
lead to the steady state model. Obviously, simplified models are sufficient in
network regions with low activity in the gas transport, while sophisticated models
should be used to resolve high solution dynamics accurately. Since the whole
network behaviour can change in both space and time, an automatic steering of
the model hierarchy is essential. Existent software packages like SIMONE [11]

G. Allen et al. (Eds.): ICCS 2009, Part I, LNCS 5544, pp. 337–346, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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may use stationary as well as transient models for the simulation. However, for
the simulation process one model has to be chosen. The different models are
introduced in Sect. 2. The modelling of the network as well as the boundary and
coupling conditions are presented in Sect. 3.

In order to estimate the model error of the simplified models, that is, of the
semilinear and the steady state model with respect to some quantity of interest,
one has to solve adjoint systems on the network. For the adjoint equations,
appropriate coupling conditions are required, which are introduced in Sect. 4.
There, we also present a strategy, how to decide in which regions of the network
which model has to be used to reduce the complexity of the whole problem,
whereas the accuracy of the solution is maintained. We give numerical examples
of this algorithm in Sect. 5.

2 Model Hierarchy

In this section, we introduce a hierarchy consisting of three different models.
Each model results from the previous one by making further simplifying as-
sumptions [1]. The most complex model is the nonlinear model followed by the
linear model. The most simple model used is the algebraic model (see Fig. 1).

nonlinear model semilinear model algebraic model|v| � c ut = 0

Fig. 1. Model hierarchy

2.1 Nonlinear Model

The isothermal Euler equations, which describe the flow of gas, consist of the
continuity and the momentum equation:

∂ρ
∂t + ∂(ρv)

∂x = 0, ∂(ρv)
∂t + ∂(ρv2)

∂x + ∂p
∂x = −gρh′ − λ

2dρ|v|v (1)

together with the equation of state for real gases ρ = p
z(p,T )RT .

Here, ρ denotes the density, v the velocity of the gas, p the pressure, g the
gravity constant, h′ the slope of the pipe, λ the friction coefficient, d the diameter
of the pipe, R the (special) gas constant, T the temperature of the gas (assumed
to be constant) and z = z(p, T ) the compressibility factor.

For the sake of simplicity, we assume the pipe to be horizontal and the com-
pressibility factor z to be constant. This results in a simplified equation of state
ρ = p

c2 with constant speed of sound c =
√
RT . Since the mass flow M can be

traced back to the flow rate under standard conditions (M = ρvA = ρ0q), the
system can be rewritten in the following way:

pt + ρ0c2

A qx = 0, qt + A
ρ0

px + ρ0c2

A

(
q2

p

)
x

= −λρ0c2|q|q
2dAp . (2)
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Here, ρ0 and q denote density and flow rate under standard conditions (1 atm
air pressure, temperature of 0 ◦C), A the cross-sectional area of the pipe.

The characteristic speeds are the eigenvalues of the Jacobian of the system,
which are λ1/2(u) = v ∓ c. Hence, for subsonic flow, the characteristics travel in
opposite directions with characteristic speeds λ1/2 depending on the velocity of
the gas.

2.2 Semilinear Model

If the speed v of the gas is much smaller than the speed of sound, we can neglect
the nonlinear term in the spatial derivative of the momentum equation in (1).
Together with the equation of state as above, this yields a semilinear model

ut + Aux = ψ(u) (3)

with u =
(

p
q

)
, A =

(
0 c2ρ0

A
A
ρ0

0

)
and ψ(u) =

(
0

−λρ0c2|q|q
2dAp

)
.

For this model the characteristic speeds are λ1/2 = ∓c. Thus, information always
travels in both directions with sonic speed.

2.3 Algebraic Model

A further simplification leads to the stationary model: Setting the time deriva-
tives in (3) to zero results in

qx = 0, A
ρ0

px = −λρ0c2|q|q
2dAp . (4)

Thus, q is constant in space and the exact solution for p is

p(x) =
√

p(x0)2 + λρ2
0c2|q|q
dA2 (x0 − x) .

Here, p(x0) denotes the pressure at an arbitrary point x0 ∈ [0,L]. Setting x0 = 0,
that is, p(x0) = p(0) = pin at the inbound of the pipe, and x = L, that is,
p(x) = p(L) = pout at the end of the pipe, yields the algebraic model [10].

For the other two models, we computed characteristic speeds at which
information propagates in different directions. Since this model is stationary,
information given at any place instantaneously influences all other points.

3 Modelling of the Network

We now want to describe the gas flow on networked pipelines. For this purpose,
we model the network as a directed graph G = (J ,V) with edges J (pipes) and
vertices V (nodes, branching points). Each edge j ∈ J is defined as an interval
(xa

j , x
b
j) with a direction from xa

j to xb
j . Of course, all intervals are disjoint.

Then, for any inner node v, we can define two sets of edges. Let the set of
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v1

v2

v3

v4
1

2

3

4

5

6

7

δ−v2
= {2}

δ+v2
= {4, 5}

Fig. 2. A small network; the ingoing pipes of node v2 are δ−v2 = {2} and the set of
outgoing pipes is δ+

v2 = {4, 5}

ingoing pipes be denoted by δ−v , that is, the set of any edge j ∈ J with endpoint
xb

j being adjacent to v. Then, analogously, δ+v denotes the set of outgoing pipes
(see Fig. 2). Inside each pipe, one of the models described above holds. In order
to obtain a unique solution, we have to pose coupling conditions at the inner
nodes of the network as well as boundary conditions at the sources and sinks.

3.1 Coupling Conditions

A first coupling condition is the conservation of mass at each inner node. Let
v ∈ V be a node with ingoing pipes j ∈ δ−v and outgoing pipes i ∈ δ+v . Then,
Kirchhoff’s law (conservation of mass) yields∑

j∈δ−
v

q(xb
j , t) =

∑
i∈δ+

v

q(xa
i , t) .

Next, we need further coupling conditions and there are several possibilities.
The most common condition used is the equality of pressure at the node v as
pointed out in [3]: p(xb

i , t) = p(xa
j , t) ∀i ∈ δ+v , j ∈ δ−v .

3.2 Boundary Conditions

Let Jin denote the set of ingoing pipes of the network, i.e. the pipes connecting
the sources with the network and let Jout denote the set of outgoing pipelines
connected with sinks.

Since for subsonic flow the characteristics of the nonlinear model propagate in
different directions and for the semilinear model the characteristics always prop-
agate in reverse directions, one can prescribe the characteristic variables only
on opposing sides of a pipe. Thus, there are some limitations on the boundary
conditions of the edges.

One possibility is to specify the pressure p at one end of the pipe and the flow
rate q at the other. So, we usually prescribe the pressure at xa

j , j ∈ Jin (sources)
and the flow rate at xb

j , j ∈ Jout (sinks).
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3.3 Gas Flow on the Network

We can now describe the flow of gas on the network. With the notations Ω =⋃
j∈J [xa

j , x
b
j ] and Q := Ω × (0, T ), the equations for the nonlinear model read

as follows:

ut + f(u)x = ψ(u) in Q
p(x, 0) = p0(x) in Ω
q(x, 0) = q0(x) in Ω
p(xa

i , t) = wi(t) i ∈ Jin, t ∈ (0, T )
q(xb

i , t) = vi(t) i ∈ Jout, t ∈ (0, T )
p(xb

i , t) = p(xa
j , t) ∀v ∈ V , i ∈ δ−v , j ∈ δ+v , t ∈ (0, T )∑

i∈δ−
v

q(xb
i , t) =

∑
i∈δ+

v

q(xa
i , t) ∀v ∈ V , t ∈ (0, T )

wi(t) > 0 i ∈ Jin, t ∈ (0, T ) .

(5)

For the semilinear and the algebraic model, the equations are analogous to (5)
with the corresponding PDE or algebraic equation in the first line. The bound-
ary conditions p(xa

i , t), i ∈ Jin, t ∈ (0, T ) and q(xb
i , t), i ∈ Jout, t ∈ (0, T ) are

determined by control variables/functions wi(t) and vi(t). Since the flow rate at
the sinks is given by the consumers, the variable that can be controlled by us
will only be the pressure at the sources.

4 Adjoint Equations on the Network

A possibility to achieve a compromise between the accuracy of the model and
the computational costs is to use the more complex model only when necessary.
Using the solution of adjoint equations as done in [5,6], we deduce a model
error estimator to measure the influence of the model on a user-defined output
functional.

Let the functional M be of the form

M(u)=
∫

Q

N(u)dtdx +
∑

i∈Jin

∫ T

0
Nxa

i
(q)dt +

∑
i∈Jout

∫ T

0
Nxb

i
(p)dt +

∫
Ω

NT (u)dx . (6)

As pointed out in [6], we only need to solve the dual problem of the simplified
models in order to obtain a first order error estimator. Let ξ = (ξ1, ξ2)

T be the
solution of the dual problem of the semilinear model (3) or the algebraic model
(4) with respect to the functional M .

For a given solution u∗ = (p∗, q∗)T of the semilinear equations, the adjoint
system on the network reads as follows:

ξt + AT ξx = −∂uψ(u∗)T ξ − ∂uN(u∗)T in Q

ξ(·, T ) = ∂uNT (u∗(·, T ))T in Ω

ξ1(xa
i , t) = − Ai

ρ0c2 ∂qNxa
i
(q∗(xa

i , t)) i ∈ Jin, t ∈ (0, T )
ξ2(xb

i , t) = ρ0
Ai
∂pNxb

i
(p∗(xb

i , t)) i ∈ Jout, t ∈ (0, T ) .

(7)
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The adjoint system for the algebraic equations is similar to that of the semilinear
model, only that the time derivative and the initial conditions vanish. Thus, one
cannot measure the influence of the algebraic model at the final time T , which
means that the last term of 6, i.e.

∫
Ω
NT (u)dx, has to be left out. For the adjoint

systems, one also has to specify coupling conditions. Conservation of mass and
equality of pressure at the node v yield for the adjoint variables:

1
Ai
ξ1(xb

i , t) = 1
Aj
ξ1(xa

j , t), i ∈ δ−v , j ∈ δ+v , t ∈ (0, T ) ,∑
i∈δ−

v

Aiξ2(xb
i , t) =

∑
j∈δ+

v

Ajξ2(xa
j , t), t ∈ (0, T ) .

4.1 Error Estimators

We now use the adjoint equations to assess the simplified models with respect to
the quantity of interest. Let u = (p, q)T be the solution of the nonlinear model
(2) and uh =

(
ph, qh

)T the discretized solution of the semilinear model (3). Then
the difference between the output functional of u, M(u), and M(uh) is

M(u)−M(uh) =
∫

Q

N(u)−N(uh)dt dx +
∑

i∈Jin

∫ T

0
Nxa

i
(q)−Nxa

i
(qh)dt

+
∑

i∈Jout

∫ T

0
Nxb

i
(p)−Nxb

i
(ph)dt +

∫
Ω

NT (u)−NT (uh)dx .

Taylor expansion of first order yields

=
∫

Q

∂uN(uh)(u− uh)dtdx +
∑

i∈Jin

∫ T

0
∂qNxa

i
(qh)(q − qh)dt

+
∑

i∈Jout

∫ T

0
∂pNxb

i
(ph)(p− ph)dt +

∫
Ω

∂uNT (uh)(u − uh)dx +H.O.T.

with H.O.T. being higher order terms. Inserting the solution ξ of the adjoint sys-
tem (7), we get a first order error estimator for the model and the discretization
error respectively as in [6]:

M(u)−M(uh) ≈ ηm + ηh (8)

with the estimators ηm and ηh as follows:

ηnl−sl
m =

∫
Q

−ξT

(
0

ρ0c2(qh)2

Aph

)
x

dxdt (9)

ηnl−sl
h =

∫
Q

ξT
(−uh

t −Auh
x + ψ(uh)

)
dxdt . (10)
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Since the algebraic model can be solved exactly, the discretization error disap-
pears and one only gets an estimator for the model error

ηsl−alg
m =

∫
Q

−ξT

(
p
q

)
t

dxdt (11)

with ξ being the solution of the adjoint equations either of the semilinear model
(7) or of the algebraic model. Here, u = ( p

q ) denotes the solution of the stationary
model (4).

4.2 Adaptive Switching Strategy

With the estimators defined above we may now derive a strategy to switch
adaptively between the models. For this, we divide the time interval (0, T ) into
equal subintervals (Tk−1, Tk), k = 1, . . . , NB, with T0 = 0 and TNB = T . Thus,
we can split up the computational domain Q = Ω × (0, T ) into NB blocks
Qk = Ω × (Tk−1, Tk), k = 1, . . . , NB, of equal size (see Fig. 3(a)).

We start with simulating the first block Q1. Each pipe is assigned to one
of the three models. Then, we solve the corresponding adjoint system in order
to estimate the model error using (9) and (11) respectively. The model error
estimator onQ1 can now be computed for each pipe separately. For the semilinear
case (9) this reads as follows.

ηm =
NB∑
k=1

∫
Qk

−ξT

(
0

ρ0c2(qh)2

Aph

)
x

dxdt

=
NB∑
k=1

∑
j∈J

∫ Tk

Tk−1

∫ xb
j

xa
j

−ξT

(
0

ρ0c2(qh)2

Aph

)
x

dx dt =:
NB∑
k=1

∑
j∈J

ηm(k, j)

with the “local” estimators ηm(k, j).
Given a tolerance TOL, one can decide in which pipe the model used is ap-

propriate and in which it is not. We want to accept the model if the relative
deviation of the simpler model uh from the exact solution of the more complex
model u is below TOL, that is,

∣∣M(u)−M(uh)
∣∣ / ∣∣M(uh)

∣∣ ≤ TOL. Provided that
the discretization error is nonsignificant compared to the model error, we can
approximate

∣∣M(u)−M(uh)
∣∣ by |ηm|, which yields

|ηm| ≤ TOL
∣∣M(uh)

∣∣ . (12)

Just like the error estimator ηm, we can evaluate the target functional M at
every pipe j ∈ J and every time interval (Tk−1, Tk), k = 1, . . . , NB individually,
giving Mk,j , that is, M(uh) =

∑NB

k=1
∑

j∈J Mk,j(uh). Thus, for inequality (12)
to hold, it suffices to claim

|ηm(k, j)| ≤ TOL
∣∣Mk,j(uh)

∣∣ , ∀k ∈ {1, . . . , NB}, j ∈ J . (13)
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Ω
Q1

Q2

Q3

...

QNB−1

QNB

0
T1

T2

T

(a)

t

adjoint-based
decisions

T1

T2

NL LIN

ALG

LIN ALG

ALG

(b)

Fig. 3. (a) Partition of the computational domain; (b) Scheme of the adaptive switching
(ALG = algebraic model, LIN = semilinear model, NL = nonlinear model)

If any of the estimators ηm(k, j) violates (13), the computation of this time
interval has to be repeated and the models used in these pipes have to be ex-
changed by a more complex model. For those pipes of which the estimators fulfil
inequality (13), one can evaluate the estimators “downwards”. If these also fulfil
(13), a more simple model may be used in the next time step. For a scheme of
the switching strategy, see Fig. 3(b).

5 Numerical Results

We give an example of the algorithm for a small network. It consists of nine
pipes Le1 to Le9, one source Qu, four inner nodes M1 to M4 and three sinks Se1
to Se3 (see Fig. 4(a)).

All pipes have a diameter of 1m and a roughness of 5 · 10−5 m. The lengths
of all except two pipes is 10km. The pipes Le4 and Le6 are both 5km long. The
simulation time totals T = 14400 s with time step size Δt = 5 s. The block size
was chosen the size of a time step.

As boundary conditions we use constant pressure at the source Qu and a
constant flow rate at sinks Se2 and Se3. The gas consumption at sink Se1
is chosen time-dependently with initially q(xb

4, t) = 250 m3

s for t ≤ 100 s and
q(xb

4, t) = 300 m3

s for t ≥ 105 s and a linear increase in-between. The ini-
tial conditions are chosen stationary (Fig. 4(b)). The target functional used
is M(p, q) =

∫
Q p dx dt, the “Quantity of Interest” is thus the pressure measured

over the whole network.
In this setting, only two models were used: the semilinear model (3) and the

algebraic model (4). A reference solution was computed using the semilinear
model. The equations were solved using an implicit box scheme [7]. Figure 5
shows the simulation process at times 115 s and 7075 s.

Figure 6 compares the pressure of the adaptive solution with the reference
solution at sink Se1 for two different tolerances.
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Fig. 4. (a) A small network; (b) Initial conditions; at every node the pressure p is
given, at the sources and sinks additionally the flow rate q is specified below
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Fig. 5. Two snapshots of the simulation process using the adaptive switching strategy
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Fig. 6. Comparison of the pressure with the reference solution at sink Se1 for different
values of TOL

6 Summary

We introduced a model hierarchy for the simulation of gas transport in networked
pipelines. This hierarchy consists of a nonlinear and a semilinear system of
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hyperbolic partial differential equations and of an algebraic steady state model.
We discussed coupling and boundary conditions for the wellposedness of the
whole system. For the network, adjoint equations as well as adjoint coupling
conditions were given that allow us to valuate the different models with respect
to a quantity of interest. An algorithm was developed that switches adaptively
between the three models using model error estimators deduced from the adjoint
systems. The additional computational effort is approximately that of solving the
original system. In the case of locally restricted dynamical effects we observed
for a test network a significant reduction of complexity, while a certain accuracy
is maintained. As a side result we gain an estimator for the discretization error
for free.

Based on our results we want to proceed in testing the switching strategy for
more complex systems including compressor stations and valves. Furthermore,
an integration into an optimization framework is planned.
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Abstract. We introduce a novel methodology to formally specify complex multi-
agent systems. Our approach allows us to redefine computational problems in
terms of agents that perform certain tasks. In our view, a system is formed by the
combination of atomic and complex agents. Atomic agents are in charge of exe-
cuting atomic tasks while complex agents reunite and summarize the properties
of their underlying atomic agents. Basically, our approach consists in specify-
ing the smaller parts of the problem as atomic agents. Each atomic agent is in
charge of executing a small transformation of resources. Afterwards, the system
will recombine them to form complex agents that will embrace the knowledge
of several atomic agents. All agents are located on a superstructure of communi-
cation cellules created to record the hierarchy of the tasks. In order to provide a
useful framework, we have developed a tool that fully implements all the stages
of the methodology.

1 Introduction

Computational science embraces the concept of aiding the development of other studies
in different fields through the use of new computational means. Therefore it has to create
open systems that can be applied to a great extent of problems. In addition, it is relevant
to take into account that the people to which computational science is directed are not,
in general, computer scientists. Therefore, its easiness of use is a must. In this paper we
report on a formalism that allows to solve complex problems through the use of agents.
We propose a method to factorize the problem, being the first step to break down the
problem into the smaller parts possible and assign an agent to each of those tasks. Then,
the produced system allows to make petitions that will create other agents that, through
recombination, are able to condense the information of several agents, so that they can
solve a complex situation.

This paper extends and enhances our previous work presented in [1]. We have sim-
plified some of the notations, so that the resulting formalism is much easier to use.
Although we have simplified our approach, the expressive power of the framework
remains the same, being able to solve the same problems that we confronted in [1].

Even though there are general purpose formalisms to formally describe complex
concurrent systems (such as Process Algebras and Petri Nets) they are not suitable to
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describe agents since these languages and notations do not provide specific operators
to deal with the inherent characteristics of agents. However, there has been already sev-
eral studies to formally describe the use of intelligent electronic agents that are nested
into one another (see, for example, [2,3] for two approaches based on Petri Nets and
automata, [4,5] for approaches based on process algebras, and [6,7] for approaches
based on finite state machines). Most of these approaches have been created in favor
of comprehensibility. Therefore they facilitate to derive and apprehend new properties.
However, due to its complexity, these formalisms are not supported by suitable user-
friendly tools. Thus, the specification of a system is a task that cannot be carried out by
somebody that is not a real specialist in formal methods.

Our approach is able to assimilate the systems that we are interested in to a common
places structure in which one is able to locate the rest of the structure from higher order
points. If we use the subway lines as a metaphor, we only need to know the location of
the different stations, but the exact location of that small fruit shop that we are trying
to reach is bounded to the location of the closest metro station. Once we arrive to that
particular metro station, we will check the neighborhood map so that we can find the
shop; we do not need to know in advance all the local maps associated with all the
stations of the network. This is how our systems will work: Once we have all the atomic
agents, each time that a new complex agent, embracing the knowledge of several atomic
agents, is created we will refer to this new agent when making subsequent calls to the
system. In this line, we are able to forget how atomic actions are performed because
we have a higher order element to which we can call upon. In any case, even with a
complex structure, atomic agents are still the ones that execute real tasks.

Using another metaphor we could say that our approach produces systems that are
similar to economic structures in which there exist intermediate agents that gives us the
result of the transformation of resources as a final product. These agents, in a hidden
way, contract the prime manufacturers that create these resource transformations. An-
other point in favor of our approach is that it allows us to have an unbounded growth
(equivalently, subdivisions as small as needed) either by adding agents in between ex-
isting ones or by assigning new atomic agents to the system that we had before. It is
important to note that the way our systems are subdivided, in so called communication
cellules, facilitates their deployment in a distributed system in which one can obtain a
perspective of variable magnitude of the global tasks. This holds as long as we keep the
hierarchical structure of the ensemble.

The rest of the paper is organized as follows. In Section 2 we introduce some auxil-
iary notation. Section 3 represents the bulk of the paper. There we define the syntax of
the proposed formalism, giving a running example of a system implemented with our
tool. In Section 4 we briefly describe the technical details of the architecture of the tool
developed to specify the systems. Finally in Section 5 we present our conclusions.

2 Preliminaries

In this section we introduce some notation that will be used throughout the rest of the
paper. First, since users have different preferences, in order to properly design agents the
first step consists in expressing these preferences. In order to extract preferences from
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users several mechanisms have been presented in the literature (see [8,9,10]). In this
paper, preferences in a given moment will be given by a utility function. These functions
associate a value (a utility measure) with each possible combination of resources a user
could own. Alternatively, other mechanisms such as preference relations could be used
(see e.g. [11] for conditions to transform one of the possibilities into the other).

In order to manage resources we will denote them as elements of a vector x̄. We
consider a special resource to record the performance of the system. The time that it
takes to complete the tasks of the system will also be considered as another resource. A
vector of resources is a vector of real numbers in which each number denotes the total
amount of a specific resource. Along this paper we consider that n is the number of
resources of the system.

Definition 1. Let x̄ ∈ IRn be a vector. We have that xi represents the i-th component
of x̄. Let x̄, ȳ ∈ IRn be two vectors. We write x̄ + ȳ to denote the addition of x̄ and ȳ.
We say that q̄ is the addition of x̄ and ȳ if 1 ≤ i ≤ n we have qi = xi + yi.

We denote by 0̄ ∈ IRn the vector having all the value components equal to zero. We
write x̄ ≤ ȳ if for all 1 ≤ i ≤ n we have xi ≤ yi.

A utility function is defined as any function fu : IRn → IR. We denote the set of all
utility functions by F . ��
Intuitively, given a utility function fu, We say that fu(x̄) > fu(ȳ) means that x̄ is
preferred to ȳ. For instance, if we have x̄ = (x1, x2) representing the first element of
the resource vector the number of apples and the second element the number of or-
anges, fu(x̄) = 3 · x1 + 2 · x2, means that, for example, the agent is equally happy
owning 6 apples or 9 oranges. Let us consider another agent whose utility function is
fu(x̄) = 1 · x1 + 2 · x2. Then, both agents can make a deal if the first one gives 3
oranges in exchange of 4 apples: After the exchange both are happier. Alternatively, if
x2 represents the amount of money instead of oranges then the first agent would be a
customer while the second one might be a vendor. Utility functions allow a great ex-
pressivity in preferences. For instance, fu(x̄) = x1 ·x2 denotes that variety is preferred.
A usual assumption is that no resource is a bad, that is, if the amount of a resource is in-
creased, so does the value returned by the utility function. Using a derivative expression,
this property can be formally expressed as Δfu(x1,...,xn)

Δxi
≥ 0 for all x1, . . . , xn ∈ IR

and 1 ≤ i ≤ n. This requirement does not constrain the expressive power of util-
ity functions, as the existence of any undesirable resource can be always expressed by
considering a resource representing the absence of it.

Next we introduce a collection of identifiers to be able to univocally identify cel-
lules, agents and paths in the system. In the next section, we will formally define these
concepts.

Definition 2. Let w be a system (see Definition 8). The set of all possible systems is
represented by W . We denote by IDC the set of cellule identifiers that are assigned
uniquely to each of the cellules. The function newIdCellule : W → IDC returns an
unused identifier for the world w. We use a special identifier nill ∈ IDC to denote an
empty cellule. We denote by IDA the set of agent identifiers that are assigned uniquely
to each of the agents belonging to the system. The function newIdAgent : W → IDA

returns an unused identifier for an agent. We denote by IDP the set of path identifiers,
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that are assigned uniquely to each of the paths. The function newIdPath : W → IDP

returns a fresh identifier for a path. ��

3 Definition of the Formalism

In this section we present our formal language to specify complete systems as well as
all the agents taking part in them. The basic notion to define the behaviour of agents is a
transition, that is, a transformation of resources carried out by a specific agent. Atomic
and complex agents will both hold transitions as a way to accomplish tasks, but only
atomic agents will actually perform the transformation of resources. A transformation
of resources is represented by a tuple z̄ ∈ IRn. Intuitively, a positive component of
the tuple xi unit of the i-th resource while a negative component xj denotes that the
transition consumes xj units of the j-th resource.

Definition 3. A transition of the system is represented by the tuple (z̄, idp) where z̄ ∈
IRn is the transformation of resources and idp ∈ IDP identifies the path that is in charge
of executing the transition. The set of all transitions is denoted by TR. ��
A path is a sequence of transitions. It is conformed of transitions, in a specific order,
through concatenation. Paths allow to specify the situation where a complex agent has
to execute several consecutive tasks.

Definition 4. A path is a sequence of transitions. If tr1, . . . , trm ∈ TR then p =<
tr1, . . . , trm> represents the path conformed by them. We have that pi denotes the i-th
element of the path, that is the transition tri. The set of all paths is denoted by P . We
can inductively define paths as follows:

– <>∈ P .
– If tr ∈ TR and p ∈ P then tr · p ∈ P .

Thus, paths are either empty or are conformed by adding an element to a path. ��
Next we show how to represent agents. We can distinguish between complex and atomic
agents. Atomic agents assume the responsibility of actually implementing tasks, and
complex agents cluster and delegate in the ulterior ones to accomplish complex tasks
and summarize the properties of the agents that are implicity inside of them.

Definition 5. An agent is a tuple a = (id, ib, P ) where id ∈ IDA is a unique identifier
for this agent, ib ⊆ M is the input buffer where messages will be stored, and P ⊆
P × IDP is the set of paths defining the possible behaviours of this agent, being each
path labeled with an identifier. Intuitively, the meaning of this set of paths is that this
specific agent will achieve through any of this paths a similar global transformation of
resources. In other words, every path takes him from the same initial state towards a
similar final state, differing one from each other in the kind of transformations that they
perform.
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We denote by A the set of all agents. We define the function VTr : IDP → P as
follows. LetP = {(<trα

1 , . . . , tr
α
m>,α), (<trβ

1 , . . . , tr
β
m′>, β), . . .} be a set of paths.

We define VTr(α) =< trα
1 , . . . , tr

α
m >. We also define the function VA : IDP → IDA

that returns the agent that performs this path. ��
Let a = (id, ib, P ) be an agent and P = {(< trα

1 , . . . , tr
α
m >,α), (< trβ

1 , . . . , tr
β
m′ >

, β), . . .} be the set of paths of agent a. We define the function VP : IDP → IRn using
the auxiliary function VPAux : P × IDA → IRn as VP(α) = VPAux(VTr(α), VA(α))
being defined as:

VPAux(<>, id) = 0̄

VPAux(<tr1, tr2, . . . , trn >, id) = z̄ +

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

VPAux(<tr2, . . . , trn >, id) if tr1 = (z̄, idp)∧
id = VA(idp)

VPAux(VTr(idp), VA(idp))+ if tr1 = (z̄, idp)∧
VPAux(<tr2, . . . , trn >, id) id 	= VA(idp)

An agent is atomic if it has only one path, that path is conformed by a single tran-
sition, and the agent itself is in charge of executing the transition. Formally, a =
(id, ib, P ) is an atomic agent if | P | = 1 and there exists p =< tr1, . . . , trm >∈ P
such that for all 1 ≤ i ≤ m if tri = (z̄i, idp) then VA(idp) = id.

During the rest of the paper we consider that agents use messages to communicate
among them. The next definition introduces the different kinds of messages that can be
sent.

Definition 6. A message is given by a tuple (t, s, ob, r̄) such that t ∈ {BROADCAST,
REPLIES, START JOB, FINISHED JOB}, denotes the nature of the message, s ∈ IDP ∪
{null} the path origin of the message. In some cases this path can have the value null.
The next item ob ∈ IDP ∪ {�} is the objective of the message, it can be a specific
path of an agent, or a broadcast message. The last component, r̄ ∈ IRn represents a
transformation of resources. In the rest of this paper, we denote by M the set of all
messages. ��
Example 1. Let id ∈ IDA be an agent identifier, p1, p2 ∈ IDP be paths identifier, and r̄
be a vector of resources. A message m = (BROADCAST, null, �, r̄) represents a broad-
cast message (�) sent by a petition wanting to find an agent that accomplish the trans-
formation induced by r̄. If we have a message m = (REPLIES, p1, p2, r̄); m denotes
the message from agent VA(p1) that offers the path p1, that replies to agent VA(p2) to
the petition of performing a certain task of the path p2, and specifies the transformation
of resources r̄.If we have a message m = (START JOB, p1, p2,−), m now represents
the message from agent VA(p1) which is performing the path p1 for asking to start the
job to the path p2 of the agent VA(p2). Finally, if m = (FINISHED JOB, p1, p2,−), then
m is the message from agent VA(p1) to agent VA(p2) to indicate that the path p1, which
is a sub-path of p2, has just finished. ��
Cellules are elements that serve as baskets of agents to reunite, organize, conglomerate
and handle petitions as well as calls to the agents.
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Definition 7. A cellule is a tuple (A, id, Sons,Father, ib) where

– A ⊆ IDA is the set of agents that belong to the cellule.
– id ∈ IDC is a unique identifier for this cellule.
– Sons ⊆ IDC is the set of identifiers of the sons of this cellule. If Sons = ∅ then

we are in a node cellule.
– Father ∈ IDC is the identifier of the cellule that is father of this cellule. If Fa-

ther=nill then we are in the initial cellule, from which all other cellules are de-
fined.

– ib ⊆M is the input buffer where messages will be stored.

We denote by C the set of all cellules. ��
Next, we define the whole system that contains in a tree like structure implicity defined
by the father-son relationship, the cellules that conform the whole system.

Definition 8. We say that our system (sometimes called world) is defined with a so
called origin cellule from where the tree of cellules hang and by the vector of resources
available in the system. Therefore, a system is a pair w = (c, x̄) where c ∈ IDC is the
origin cellule, and x̄ is the set of resources with which we deal in this world x̄ ∈ IRn.

We will use a running example to illustrate previously introduced concepts. In order
to ease the presentation, we have simplified the real system that we have represented in
our formalism. ��
Example 2. Let us consider that we have the world represented in Figure 1. As we
observe in the figure, we have six cellules, labeled from I to V I and eight agents dis-
tributed in them. For example, let us consider agent a3 = (id3, ib3, P3). P3 is the set
of paths that this agent can perform, ib3 represents the input buffer of this agent and
id3 is the identifier of this agent. The set of paths P3 contains a unique pair (pair, path
identifier) P3 = {(< (z̄a, κ)>, κ)}. The path identifier is κ the first element of the pair
represents the chain of transitions that compose this path. In this case the path is formed
by a unique transition. This transition, < (z̄a, κ) > represents that it is performed by
the path κ of the agent id3 = VA(κ) and the exchange of resources after performing
this transition is noted by z̄. This means that the resources of the world will change by
applying x̄← x̄+ z̄a, in other words, it will generate a formwork unit, by wasting 50
units of money, 40 units of wood, and 20 time units.

For example let us suppose that agent a1 = (id1, ib1, P1) has two different paths.
(< (z̄g, κ), (z̄g, μ) >,α) and (< (z̄h, κ), (0̄, ν) >, β). Next we explain one of these
paths. The path identified by α, has two transitions in it. The first transition, denoted by
(z̄g, κ), represents that this agent has to call to the α-path of agent VA(κ) to perform it,
and the transformation of resources by applying this transition is x̄← x̄+z̄g. Then, after
performing this transition the resources of the world would change to x̄← x̄+ z̄a + z̄g.
Let us remember that the agent id3 = VA(κ) transformation function for the path κ is
z̄a. Let us note that the agent performing this transition earns money by calling another
agent. ��
All agents that are not atomic are complex, there are two ways to create agents one is to
insert an atomic agent during the creation of the system and the other is through peti-
tions to the system, being the system in charge of recombining atomic and/or complex
agents already embedded in the system to create a new complex agent.
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Fig. 1. Representation of a world
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Fig. 2. Schematic diagrams of world behaviour

Definition 9. We say that a petition is a tuple pet = (fu, ȳ, ō) where fu ∈ F is a
utility function, ȳ ∈ IRn is the vector of resources that is added to the resources already
existing in the world, and ō ∈ IRn is the objective of the transitions, that is, the vector
of resources that we expect to have after performing the petition. ��
Intuitively, if we have a petition pet = (fu, ȳ, ō) is a petition, and a = (id, ib, P ) is
the agent that has created the petition, if ∃ p ∈ TR such that exists (p, idp) ∈ P :
VP(idp) + x̄+ ȳ ≥ ō.

We will explain the main messages by applying a petition (see a graphical represen-
tation in Figure 2). Let us consider a petition pet = (fu, ȳ, ō). The first component of
pet contains the initial resources, ȳ = [1000, 500, 500, 100, 0, 100, 0, 0, 500], the sec-
ond one is a utility function (in this case fu = 10 · x1 + 5 · x9), and the third element
is the objective tuple of resources ō = [0, 0, 0, 0, 1, 0, 1, 0, 0].

The first diagram of Figure 2 denotes that pet = (fu, ȳ, ō) is inserted in the world
w = (I, x̄). When a new petition is inserted in the world, the resources of the petition
are added to the existing vector of resources. After this initial stage, the world “asks”
to its structure of cellules if there are any agent(s) which can achieve the objective
function ō.

4 Implementation

In this section we present our tool that facilitates the task of representing the different
components of our framework. First, we are going to enumerate some of the technical
requirements of the tool. Next, we will comment on some relevant parts of the imple-
mentation, and we will show how the example can be represented.

The tool has been developed using J2EE Technology (Java, JDK 1.5, EJB) and the
Netbeans software. It makes usage of MVC architecture, to enable ease of maintenance,
and uses session facade and proxy design patterns. It also uses Java Swing components
in order to develop Graphical User Interfaces(GUI).

The tool offers four different ways to create systems. The first one is by using an input
XML-formatted file which contains all the description data of the system. Another way
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to introduce a model is by using Java Database Connectivity (JDBC). JDBC is an API
for the Java programming language that defines how a client may access a database. It
provides methods for querying and updating data in a database. The third way to input a
system is by using the editor included in the GUI. The user may customize the editor and
make sure the Editor Presentations command group is checked under the Commands
tab. The last way to create systems is by loading serializable models saved previously.
Serializability of a class is enabled by the class implementing the java.io.Serializable
interface. By using an MVC design, the system can easily make it. When a model is in
the tool, it can be also saved in the same ways, by using an XML formatted file, in a
database, and by serialization of the model.

For the representation of the world, cellules, and agents we have used threads. A
java.lang. Thread object maintains bookkeeping and control for this activity. In fact,
by representing each of the components by using threads we let the system represent a
more realistic world. For example agent a1 can be waiting until agent a3 has finished
its task, while the world continues receiving petitions, and the cellules continue send-
ing messages between the agents. The tool also introduces priority among the threads.
Each Thread has a priority, ranging between 1 and 10. Priorities have no other impact
on semantics or correctness. In particular, priority manipulations cannot be used as a
substitute for locking. Priorities can be used only to express the relative importance or
urgency of different threads, being these priority indications useful to take into account
when there is heavy competition among threads waiting to be executed. For example
the initial cellule normally has bigger priority than other cellules; the reason is that
management of petitions and the data traffic flow is mainly done through this cellule.

Another important task in a concurrency scheme is the management of shared mem-
ory, being the buffers implemented as circular buffers using a single, fix size. Circular
buffers are also used for data transfer between processes. The tool uses monitors in the-
ses buffers to synchronize accessing threads. Conceptually, a monitor is a class whose
data members are private and whose member functions are implicitly executed with
mutual exclusion. In addition, monitors may define waiting conditions that can be used
inside the monitor to synchronize the members functions.

5 Conclusions and Future Work

The work presented in this paper provides a useful framework for the developing of
complex computational systems. With the presentation of the tool we offer the possibil-
ity of use to specialists from different fields, not being constrained its applicability to
the field of computing technology and therefore being useful as a computational science
tool.

The work will be extended to allow testing and checking of conformance of the sys-
tem implemented with it. Other future line of work will be to develop the structure of the
cellules in an AVL tree-like structure, so that the message flow will be re-equilibrated.
Another possible continuation of the work will be to specify and implement the sub-
division of cellules when the number of agents that they withholds surpasses a limit,
this allows not to surcharge a specific computational resource in which the cellule may
be implemented, like a specific processor, and derive its work flow to another resource.
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Finally, we are currently working on a complex application of our methodology to the
construction world.
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Abstract. Nowadays, the Grid is the focus of multiple researches. Our work is 
centered on Resource Management for Grids as it is an opened and current 
research area. Decentralized, scalable and efficient resource search algorithms are 
one of the key issues for resource management in large Grid systems. Resource 
search is required in order to allocate applications and data efficiently and to 
maintain the quality of service at runtime, just to mention some examples. In this 
work, we propose a scheme that presents essential characteristics for self-
configuring search and is able to handle dynamic resources, such as memory 
capacity. Our approach consists on a hypercube topology connecting the nodes 
and a scalable and self-configuring search procedure. The algorithm improves the 
probability of reaching the alive nodes in the Grid even in the presence of non-
alive ones (inaccessible, crashed or heavy loaded nodes). In this paper, after the 
theory’s description, we present some results obtained by running our search 
protocol on the GridSim simulator. We have evaluated 6 different metrics 
performing several resources searches and we show the arithmetic media for each 
measure. 

Keywords: GridSim, Hypercube, Self-Configuring, Search Algorithms. 

1   Introduction 

The Grid includes a large number of dynamic and heterogeneous resources that are 
geographically distributed. Its main objective is to use the available resources 
provided by administrative domains, also named Virtual Organizations (VO) [1]. Grid 
Resource Management in general and Resource Search in particular is an opened 
research topic. This challenge plays a fundamental role, for example, allowing the 
system to allocate grid-enabled applications and data efficiently and to maintain the 
quality of service of the applications at runtime. In most of the current grids Resource 
Management solutions are based on centralized or hierarchical structures that are not 
appropriate for large systems because they are not scalable enough. By the other hand, 
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several scalable and decentralized Peer-to-Peer (P2P) resource searching algorithms 
have been proposed for Grid systems. Nevertheless, P2P searching techniques were 
designed for non-dynamic content as files, and the Grid requires addressing dynamic 
resource data such as available memory, processor load, etc., for which, the P2P 
search is not suitable. Besides, as pointed out by Ian Foster and al. [2], “it is necessary 
to address failure, using scalable self-configuring protocols so to have a worldwide 
computer within which access to resources can be negotiated as and when needed”.  
Motivated by this open research area, we present a scalable and decentralized 
architecture that allows the search of distributed resources preserving the VO’s 
autonomy. The architecture is based on an overlay network with hypercube topology 
that interconnects nodes and each node represents a VO. We also present a self-
configuring resource search algorithm that is able to adapt himself to environments 
where some nodes might be non-alive (crashed, inaccessible, high-loaded,…) when a 
resource is queried. Finally, we present some results obtained by running our search 
protocol on the GridSim simulator. We have evaluated 6 different metrics performing 
several resources searches and we show the arithmetic media for each measure. 

One of the challenges of Grid Resource Searching is to be resilient in the presence 
of node failures. This resilience has different aspects: static resilience and routing 
recovery. As the present work is focused on the resource discovery algorithm this 
paper only addresses static resilience [3], that is, how well our approach can locate 
required resources before routing tables are updated by the routing recovery algorithm 
in order to remove non-alive nodes from the overlay. The other issue, routing 
recovery, deals with the fact that when failures occur, the routing tables are depleted 
in the remaining nodes. Routing recovery is not addressed in this paper, as this issue 
is related to the building and maintaining of the overlay topology.  

The rest of the paper is organized as follows: In Section 2 we present an overview 
of our network architecture. Section 3 describes our resource search procedure. An 
overview of related work is presented in Section 4. In Section 5, the performance of 
the algorithm is shown. Conclusions and our future work can be found in Section 6. 

2   The Hypercube Overlay Architecture 

In actual Grid environments, the administrative domain (VOs), do not join or leave 
the Grid continually but occasionally. Most of the current VOs that form a Grid have 
powerful servers within their high performance local area networks and maybe they 
are interconnected by very high speed core networks. The servers seldom fail and 
they join and leave the system infrequently. Therefore the Grid Resource System can 
be organized in a stable and regular topology with low-diameter configurations, 
efficient searching and routing algorithms that address node failures. Each VO 
belonging to our environment, named HGrid, provides available resources and makes 
them accessible through software entities named Grid Information System (GIS) [4]. 

In HGrid, the interconnections between nodes have the topology of a hypercube. 
An n-dimensional hypercube (Hn) has N = 2n nodes, where each node represents a 
GIS and they have an identifier from 0 to 2n-1. Two nodes are neighbors in the m-th 
dimension if the binary representations of their identifiers differ exactly by the m-th 
bit. Then, in a complete hypercube Hn, each node has exactly n neighbors. Fig. 1  
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Fig. 1. H1) The architecture for the interaction among 2 nodes, a one-dimensional hypercube,  
H2) 4 nodes, a two-dimensional hypercube and H3) 8 nodes,  three-dimensional hypercube 

illustrates the architecture for 2, 4 and 8 nodes respectively. An overlay network with 
a hypercube topology connecting each GIS in a grid environment allows each VO to 
contribute their resources while assuring their autonomous management. The 
resources offered by a VO can join or leave the system at any time updating its own 
GIS. Every GIS keeps a small routing table of only n entries (n = log2N) 
corresponding to their n neighbors. Also, each GIS has the responsibility to verify 
which of its neighbors are still alive. The term alive is applied to a neighbor node that 
can be reached across the network. Then, a node that has crashed, is inaccessible or is 
heavily loaded by traffic is considered a non-alive node.  

3   Resource Search Using HGRID 

We present a scalable self-configuring resource search algorithm that is able to adapt 
him automatically to dynamic environments. Inside HGrid, the approach named 
Algorithm-H, is performed to search a resource/s requested by a client. It is a self-
configuring protocol by adapting itself when some nodes are in a non-alive state 
(inaccessible, crashed or heavy loaded nodes). As we said before, we do not address 
the building and maintaining of the hypercube topology when a node joins or leaves 
the overlay. Changes in the overlay network make the routing tables be re-mapped 
and this does result in some overhead. However, some of the results published 
regarding the scalability of hypercube overlays used in other environments seem to 
address this challenge and offer an adequate solution [5].  

We assume that in Grid environments the VOs joins or leaves the Grid 
occasionally, so the overhead of building and maintaining the hypercube overlay is 
smaller than in an extremely transient environment - where a significant fraction of 
the nodes are joining or leaving at any time. Since an incomplete hypercube could 
be re-built as a complete hypercube where the void spaces are completed by 
replicating some of the GIS, we have considered the number (N) of GIS is always a 
power of 2, so all the nodes have n-neighbors - where n is the dimensionality of the 
hypercube. Finally, in our proposal it is possible to initiate a search request from 
any of the GIS nodes alive and to propagate the request to the rest of nodes. But for 
generality reasons, all the examples used from now on assume that GIS 0 is the start 
node. 
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Fig. 2. The Search Procedure in a H4 hypercube. a) Decomposing a hypercube H4 into four 
hypercubes. b) Searching in the 3-dimensional hypercube marked with 3 in a). Each reached 
node applies the same procedure based on the received vector. c) A possible reorganization of 
the case showed in b). Before sending the query, every reached node can reorganize its 
hypercube of several forms. 

3.1   The Search Procedure in a H4 

The search starts when a client connects to a GIS node and it requests a resource/s. If 
the start node does not have the resource/s requested, then it starts a search. Next, we 
show the search in a 4-dimensional hypercube: 

1) The start node 0, in decimal notation, of a 4-dimensional hypercube is connected 
across its 4 neighbor nodes to 4 different hypercubes. These 4 hypercubes are a 
hypercube of 20 nodes in dimension 0, one of 21 nodes in dimension 1, one of 22 
nodes in dimension 2 and finally, one of 23 nodes in dimension 3. In Fig. 2.a) we 
have marked these hypercubes with 0, 1, 2 and 3, respectively. Notice that these 4 
hypercubes contain all the nodes of the overlay except the initial node. 

2) When the start node does not have the requested resource/s, it starts a search by 
sending the query to each of its neighbors. It is the 1st step of 4. In this step, the 
nodes reached are marked by the sub-index 1 in Fig. 2.a) as 01, 11, 21 and 31. 

3) Each reached node receives a first vector along with the request. This vector 
indicates the dimensions through which the request will be send in case of it 
cannot be satisfied by the reached node.  

4) Each reached node applies the same procedure described in previous steps - 1), 2) 
and 3) - for its neighbours formed by the received dimensions. We show in Fig. 
2.b) the 3-dimensional hypercube marked with 3 in Fig. 2.a). Each GIS node has 
an identifier in H4, the decomposed hypercube dimension of which it forms a part, 
the vector received and the search algorithm step when it is requested. In Fig. 2.b), 
the node 1010 forms a part of a 1-dimensional decomposed hypercube, the node 
receives the vector 0 and it is reached in the step 2 of the search procedure. 

5) Before sending the query, each reached node can reorganize its hypercube of 
several forms. We show in Fig. 2.c) a possible reorganization of the case 
illustrated in Fig. 2.b) for the 3-dimensional hypercube marked with 3 in Fig. 2.a). 
In Fig. 2.c), the node 1010 forms a part of a 0-dimensional decomposed 
hypercube, the node receives an empty vector (marked by (-)) and it is reached in 
the step 2 of the search algorithm. When a node receives an empty vector, it does 
not propagate this vector anymore. Notice that the nodes covered in 2c) are the 
same nodes those reached in 2.b), nevertheless, the node 1010 propagates the 
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query to nobody in Fig. 2.c) and propagates to one neighbour (the node 1011) in 
Fig. 2.b). 

6) What does happen if node 1011 has the required resource(s) and node 1010 is a 
non-alive node? In this case, if node 1000 knows that node 1010 is not alive 
(maybe it is crashed), it reorganizes its hypercube as in Fig. 2.c) and the node 
1011 is not reached across the non-alive node by trying to be queried to another. 

7) The search procedure reorders the vector received with the resource query in order 
to send the query at maximum number of nodes that was possible. 

8) Each reached node receives a second vector, too. The search procedure tries to 
requested GIS nodes through nodes in an alive state, by avoiding the non-alive 
ones. This second vector is not illustrates in Fig. 2, but it is shown in Fig. 3. 

 

 

Fig. 3. Flow Diagram of the Algorithm-H 

Propagating the requests in this way, the effect of non-alive nodes is reduced. 
Making the arrangement in the vector received, non-alive nodes would propagate the 
request to fewer neighbors than alive ones. Consequently, the algorithm tries to 
isolate the nodes that are in a non-alive state so that they become leaf nodes - if it is 
possible. For the start node and for each node that receives a non-empty vector, if 
only one neighbor node of those to which the search must be propagated is in a non-
alive state, the total number of nodes reached at the algorithm last step is not affected. 
Related to the alive nodes unreachable due to the fact its non-alive parent’s node, 
Algorithm-H tries to reach them using the va list. In Fig.3, the flow diagram is 
illustrated. 

3.2   A Complete Example Using Algorithm-H  

Fig. 4 illustrates a complete example. We transform the hypercube representation to 
that of a tree-like structure in order to illustrate better our search procedure (notice, 
some child nodes could appear more than once during subsequent time steps). 



362 A. Gallardo et al. 

 

Fig. 4. Algorithm-H: A request of a resource/s P started at node 0000 in a 4-dimensional 
hypercube (A complete example) 

A request for service P starts at node 0000 in a four-dimensional hypercube. We 
assume that none of the nodes has the service requested (note that this is the worst 
case). In the example, the value of the list vd at the start node is {0, 1, 2, 3} and the 
ordering after calling the statusNeighbors() function is {3, 0, 1, 2}. In this case 0, 1 
and 2 are located at the last three positions of vd = {3, 0, 1, 2} because we assume 
that neighbors in dimensions 0 (0001), 1 (0010), 2 (0100) and  are non-alive nodes. 
The neighbor in dimension 3 (1000) is the last alive node - the only one in this case. 

In the first step, the start node’s neighbor in dimension 3 (1000) receives the 
service request P, the list vd = {0, 1, 2} and va = {3} since it is the last alive neighbor.  
The algorithm tries to reach nodes 0010, 0101 and 0110 (whose parent nodes are non-
alive) by sending the list va = {3} to node 0010 to be used in the third stage. 

In the second step, looking at node 1001, the message composed of the resource 
request P along with the lists vd = {1, 2} and va = {3} is received. If the node is unable 
to satisfy the request - processRequest() returns false -, vd is not sorted  because its 
neighbor in dimension 1 (1011) and its neighbor in dimension 2 (1101) are alive 
nodes. Although va = {0} is received by the node 1001, it does not propagate the 
message to its neighbor in dimension 0 (1000) because it is its parent node. 

In the third phase, looking at node 1011, the message composed of the resource 
request P along with the lists vd = {2} and va = {3,0} is received. If processRequest() 
returns false, its neighbor in dimension 2 (1111) receives P, vd = {} and va = {3,0} and 
nodes (0111) and (1110) receive P, vd = {} and va = {}, due to the list va = {3,0}.  

In the fourth stage, the resource request P is received from node 1011 (0011 is the 
neighbor in dimension va [0] = 3) to the node 0011. Notice that 0011 was not reached 
in the 2nd step due to the non-alive node 0001 but it is reached now. 

In five steps almost all of the alive nodes inside the four-dimensional hypercube 
are visited (except node 0110) even when three neighbors of the start node (0001, 
0010 and 0100) and two more nodes (1010 and 1100) are presumed to be non-alive. 
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4   Related Work  

The Globus Toolkit's Monitoring and Discovery System (MDS) defines and 
implements mechanisms for resource discovery and monitoring in Grid environments 
[6]. Motivated by these issues, recently there have been several studies using the P2P 
model to build a decentralized architecture of VOs. Most of them adopt Distributed 
Hash Tables (DHTs) and a few of them introduce unstructured P2P topologies. All 
these studies indicate that some P2P models could help to overcome the challenges 
posed by the dynamic environment in Grids. Adriana Iamnitchi and Ian Foster [7] 
suggest a decentralized architecture similar to the Gnutella P2P system. This approach 
is not able to guarantee that some required information that exists in the system can be 
found even when the system has no failures. Moreover, a peer could be often reached 
several times by the same query. Our approach assures that nodes are reached only 
once. In the absence of failures all nodes in the system are reached and if some 
failures occur the most nodes are reached.  

DHT based systems handle unexpected node failure through redundancy in the 
network and some of them also do node asynchronous lookups periodically to 
compensate for disappeared nodes – for example, Kadmelia [8]. To enable efficient 
searches a DHT needs to have the data-item distributed. Our approach does not 
require distributing the data-items but each request sends from 0 to N-1 messages. 

Keeping the state of highly dynamic data-items updated - such as available 
memory or CPU processing - requires sending a large amount of messages in DHTs 
approaches– as in SWORD [9]. In DHTs, the data-item that belong to a VO, are 
geographically distributed and, an updating operation reaches O(log N) of distributed 
peers before inserting the data item (where N is the total number of peers). Our 
approach takes advantage of the high quality network available inside a VO (probably 
a LAN): updates are more efficient inside a VO than among distributed VOs. 
Furthermore, HGrid is more efficient in the insert phase as it is performed locally.  

A node in the traditional DHT has no control over the distribution of its data items, 
and the number of data items belonging to others that it has to store. DGRID [10], a 
model for supporting GIS over the DHT Chord, maintains the resource information in 
the originating VO by increasing the total number of DHT nodes. Unlike traditional 
DHTs, DGRID is by design resilient to node failures without the need to replicate 
data items. The meaning of resilient to node failures is defined as the ability to locate 
existing resources whose originating VO is still alive. The approach presented in this 
paper has the same resiliency to node failures as in DGRID and also guarantees that 
any data item can be located in O(log N) overlay hops.  

In HGrid, changes in the overlay network when a grid node joins or leaves the 
system do not cause resource information (data-items) to be remapped, whereas in 
traditional DHTs, it causes both routing tables and data-items to be remapped. 

Recently, an unstructured topology based on hypercube has been proposed for use 
on Data Grids [11]. The nodes in this work contain pointers to shared data. Data Grids 
need to improve locality among distributed data - which are stored as pointers in the 
overlay nodes. In order to improve the locality of data, the paper imposes a hypercube  
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Fig. 5. HGrid and Algorithm-H: For each parameter, once set the (PGIS, PREC) values, we 
performed 20 resources searches and we obtained the arithmetic media   

 

 
 
 
 
 
 

Fig. 6. The Computers used on our experiments with HGrid and Algorithm-H’s searches 
 
GIS’s topology - named DGIS. After this, it proposes a transposition algorithm in 
order to optimize the overlay network’s topology according to the access statistics 
between peers - that is, to improve the data locality. However, the algorithm showed 
does not address non-alive nodes and failures.  

Finally, we have evaluated HGrid and Algorithm-H in previous works. For 
example, in [12], we show the percentage of average of failed paths across different 
search algorithms (HaoRen et al.’s algorithm - a non fault-tolerant algorithm 
described in [11] - and Algorithm-P - our previous Algorithm-H fault-tolerant 
protocol described in [13]. 

5   Performance Evaluation 

In Fig.5, we tested the static resilience of Algorithm-H inside 1 to 10-dimensional 
HGrid overlays. The experiments run in 2 computers described in Fig.6. All HGrid’s 
GIS had a PGIS probability - probability of failure - and a probability PREC - probability 

Characteristics  Computer-1  Computer-2

CPU P4 2.6GHz C2D 1.6GHz 
RAM Memory 1.5 Gb 2 Gb 

Hard Disk 1 x 120GB + 1 x 160GB 1 x 160GB 
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to have the resource/s requested when the queried arrives to a GIS. PGIS can be seen as 
the percentage of non-alive nodes  that can be in and PREC as the percentage of 
resources requested presents in the HGrid hypercube when a search is performed. The 
BRITE [14] and the GridSim [15] was used to create automatically the IP Internet 
topology and the HGrid, respectively. Given a (PGIS, PREC) we started 20 requests for 
service P at and we calculated the arithmetic media for each measure.  

We have evaluated the following metrics for each resource/s search in HGrid using 
Algorithm-H: a) the total number of messages sent in the hypercube overlay, b) 
number of branches opened where a branch is each of the searching ways in which it 
is divided the requested message initiated by the client, c) for each opened branch, the 
number of application hops, d) for each branch established, the network hops 
performed through routers in the overlay,  e) by simulation, the search estimated time, 
where the time was set as the difference between the time when the request resource 
arrives at the last GIS and the moment in which the user initiates his search and the 
number of the resources found during the search in HGrid. In Fig.5 we show the inter-
relation between the metrics b) - e) and the total messages application sent - a). 

To summarize, our results confirm that the static resiliency of the algorithm shown 
is very efficient for current non-extremely transient Grid environments. It offers high 
lookup guarantees and it seems to be scalable with the number of nodes. 

6   Conclusions and Future Work 

The present approach allows the search of geographically distributed resources while 
preserving the autonomy of each individual VO. Unlike traditional approaches based 
on DHTs our scheme is suitable for efficiently handling dynamic attributes such as 
memory capacity without generating overhead across distributed nodes. HGrid using  
Algorithm-H is able to adapt him automatically to environments where nodes could 
be heavily loaded or even crashed, without requiring any node to have the global state 
information. We refer to this property as self-configuring. In the absence of non-alive, 
if some node present in the overlay is able to satisfy the request this node will be 
found in few steps (less than the hypercube dimension). Therefore the proposed 
scheme offers lookup guarantees in the absence of faulty nodes. If non-alive nodes are 
present, the algorithm also offers lookup guarantees in some cases.  

To conclude, there are interesting areas that have opened up as a result of this work 
as comparing several metrics between the present approach and some actual DHT-
approaches, to evaluate if the router layer affects to the overall resource searches, new 
search algorithms - design and simulation -, the incorporation of topology 
maintenance protocols and performing studies related to other topologies such as ring 
or mesh. Finally,  deploy the algorithms into a real GRID is a good form to end this 
work, basically, a desirable final step.  
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Abstract. This paper presents evaluation of different types of Binary Decision 
Diagrams (BDDs) applied to Formal Concept Analysis (FCA). The aim is to 
increase the FCA capability to handle large formal contexts and perform faster 
operations over different types of this data structure. The main idea is to represent 
formal context using BDDs for later extraction of the set of all formal concepts 
from this implicit representation. A comparison of a concept extraction algorithm 
using contexts implemented as table and BDD are presented. BDD is evaluated 
over two different implementation libraries, BuDDy and CUDD. A ZBDDs 
(Zero-Supressed BDDs) version of the concepts extraction algorithm is also 
provided. BDD has been evaluated based on several types of randomly generated 
synthetic contexts with large amounts of objects. Contexts are evaluated 
according to the computational time complexity required to build and extract the 
set of all concepts from it. In this work, it is shown that BDD could be used to 
deal with large formal contexts especially when those have few attributes and 
many objects. To overcome the limitations of having contexts with fewer 
attributes, one could consider vertical partitions of the context to be used with 
distributed FCA algorithms based on BDD.  

Keywords: Formal Concept Analysis, Formal Context, Formal Concept, Binary 
Decision Diagrams, Zero-Supressed Binary Decision Diagrams. 

1   Introduction 

At the International Conference on Formal Concept Analysis in Dresden (ICFCA 
2006) an open problem of "Handling large contexts" was pointed out and as an 
example was cited the challenge of "how to calculate/generate all concepts of a large 
context" (e.g. 120,000 x 70,000 objects attributes). In these cases, traditional FCA 
algorithms have high computational cost and demand high execution times, making 
the extraction of all concepts infeasible for larger contexts. 

One possible solution to deal with the problem of handling large formal contexts is 
to apply a distributed solution for the processing of contexts. Partial concepts are 
obtained for later merging through a specific operator to find the final set of concepts. 
Several authors have presented formal proposals and mathematical formalisms for 
distributed application of FCA, as can be seen in [1-3]. 

It is clear the potential of FCA to represent and extract knowledge from a set of 
objects and attributes and it is even more clear the problem of dealing with databases 



368 A. Rimsa, L.E. Zárate, and M.A.J. Song 

of high dimensionality. Application in real problems often suffers from this common 
fact. In this work, an approach to meet the challenge mentioned above consists in 
applying Binary Decision Diagrams (BDDs) [4] to obtain a symbolic representation 
of a cross table (formal context) that allows a more efficient extraction of the set of all 
concepts. It will be shown that this approach is promising and that it can handle more 
efficiently with large contexts when compared with the conventional implementation 
of algorithms that handle standard tables. 

Although BDD has already been used in the FCA to represent the concept lattice 
[5], this article focus in the representation of formal contexts in BDD to achieve faster 
concepts extraction.  Different BDD libraries will be used to evaluate BDD, including 
the BuDDy [6] and CUDD [7] package. Both support several variable reordering 
methods and present a C++ interface that reference nodes automatically and 
dereference them accordingly by the garbage collector. In addition, CUDD has built-
in Zero-Suppressed BDDs [8] capabilities that were also evaluated in this work. 

This article is organized in five sections. In the second section, the main concepts 
of the FCA and BDD are reviewed. In the third section, examining the representation 
of formal contexts through BDD and the extraction of concepts from this implicit 
representation is discussed. In the fourth section, BDD is evaluated over several large 
formal contexts. In the last section, the conclusions and future works are pointed out. 

2   Formal Context 

2.1   Formal Concept Analysis 

Formal Context. Formal contexts have the notation K:=(G, M, I), where G is a set of 
objects (rows headers), M is a set of attributes (columns headers) and I is an incidence 
relation (I ⊆ G × M). If an object g ∈ G and an attribute m ∈ M are in the relation I, it 
is represented by (g, m) ∈ I or gIm and is read as “the object g has the attribute m”. 

Given a set of objects A ⊆ G from a formal context K:=(G, M, I), it could be asked 
which attributes from M are common to all those objects. Similarly, it could be asked, 
for a set B ⊆ M, which objects have the attributes from B. These questions define the 
derivation operators, which are formally defined as:  

A’:= {m ∈ M | gIm ∀ g ∈ A} ;  B’:= {g ∈ G | gIm ∀ m ∈ B} (1) 

A special case of derivate sets occurs when empty sets of objects or attribute are 
considered to be derivate: 

A ⊆ G = Ø ⇒  A’:=M ; B ⊆ M = Ø⇒  B’:=G (2) 

Formal Concept. Formal concepts are pairs (A, B), where A ⊆ G (called extent) and 
B ⊆ M (called intent). Each element of the extent (object) has all the elements of the 
intent (attributes) and, consequently, each element of the intent is an attribute of all 
objects of the extent. The set of all formal concepts in a formal context has the 
notation B(G, M, I). Since that a cross table representing a formal context is given, 
algorithms can be applied in order to determine its formal concepts and its lattice [9]. 

 



 Evaluation of Different BDD Libraries to Extract Concepts in FCA 369 

2.2   Binary Decision Diagrams 

Binary decision diagrams are a canonical representation of boolean formulas [4]. The 
BDD is obtained from a binary decision tree by merging identical subtrees and 
eliminating nodes with identical left and right siblings. The resulting structure is a 
graph rather than a tree in which nodes are eliminated and substructures are shared. 

Formally, a BDD is a directed acyclic graph with two types of vertex: non-terminal 
and terminal. Each non-terminal vertex is a distinct variable of the corresponding 
boolean formula. Also, each vertex has two outgoing arcs directed toward two 
children, corresponding to the case where variable is 0 (left) and 1 (right). A BDD has 
two terminal vertices labeled by 0 and 1, representing the truth-value of the formula 
false and true, respectively.  For every truth assignment to the boolean variables of the 
formula, there is a corresponding path from root to a terminal vertex. 

Zero-Suppressed BDD (ZBDD) is a graph representation similar to a BDD. ZBDD 
also represents boolean formulas by elimination nodes and sharing subtrees. 
However, as opposed to BDD, it does not eliminate nodes whose two edges, left and 
right arcs, points to the same node. It presented another elimination rule in which all 
nodes that the right arc points to the zero terminal node are removed [8]. The BDD 
rule to merge identical subtrees is still present in ZBDD. 

   
(a) Binary Decision Tree (b) BDD  (c) ZBDD 

Fig. 1. Graph representation for formula (a ∧ b) ∨ (c ∧ d) 

Figure 1 illustrates a BDD and a ZBDD compared to a Binary Decision Tree for 
the boolean formula (a ∧ b) ∨  (c ∧ d). Note in the ZBDD diagram that the nodes with 
two arcs pointing to the same node weren’t removed like it would be with BDD. But 
nodes in ZBDD can still be removed when the new elimination rule is applied. 

BDDs are an efficient way to represent boolean formulas. Often, they provide a 
much more concise representation compared to the traditional representations, such as 
conjunctive and disjunctive normal forms. BDDs are also a canonical representation 
for boolean formulas. This means that two boolean formulas are logically equivalent 
if and only if its BDDs are isomorphic. This property simplifies the execution of 
frequent operations, like checking the equivalence of two formulas. 

However, BDD has drawbacks. The most significant is related to the order in 
which variables appear. Given a boolean formula, the size of the corresponding BDD 
is highly dependent on the ordering. It can grow from linear to exponential according 
to the number of variables of the formula. In addition, the problem of choosing a 
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variable order that minimize the BDD size is NP-complete [4]. Despite the existence 
of heuristics to automatically order the variables, they are often ordered manually. 

3   Formal Concepts Extraction Using BDD 

When formal contexts are represented as BDDs, it is possible to implement derivation 
operators to work directly over this representation, thus allowing FCA algorithm 
independence. Unfortunately, the cost to identify the set of objects from a BDD 
concept is too expensive, thus invalidating this alternative. To overcome this problem, 
algorithms to extract concepts and/or to construct the concept lattice available in the 
literature must be adapted to handle this new form of representation. 

To demonstrate the feasibility of BDD, the adapted algorithm was the Attribute 
Intersections [10] because of its inherent characteristics that allow a more effectively 
concepts extraction from contexts with more objects than attributes. This algorithm 
implementation in BDD was divided in three primary stages (Fig. 2). In the first stage, 
the construction of the context in BDD is made. The second stage is responsible to 
extract the set of all concepts from the BDD context. The final stage is responsible to 
identify the attributes and objects from the concepts represented in BDD. These stages 
separation avoids unnecessary high cost operations while obtaining the concepts. 

 

Fig. 2. Steps to implement the Attribute Intersection algorithm in BDD 

3.1   Formal Context Construction in BDD 

To create the BDD representation, a formal context must be converted into an 
equivalent logic boolean formula. Table 1 shows an example of a formal context and 
its possible representation through a logic function (Equation 3). 

Table 1. Formal Context Example

 a1 a2 a3 
o1 X  X 
o2 X X  
o3  X   

321321321321 ),,( aaaaaaaaaaaaf ++=  (3) 

 

Note that each object is represented by a logic equation, according to the presence 
or not of its attributes. The function f(a1, a2, a3) results in a positive state (1) when an 
object is present on the context. This function returns the negative state (0) for objects 
not present in the context. Thus, any context can be represented by a logic function. 

Algorithm 1 allows the construction of BDD based on the objects presented in  
the formal context. The internal functions bdd_ithvar and bdd_nithvar are specific to 
the library BuDDy [6] and are used to define the presence or not of an attribute in the 
BDD, respectively. The CUDD library has it own function wrappers to perform this 
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operation, Cudd_bddIthvar. To obtain the respective negative variable, CUDD 
requires the use of Cudd_Not in conjunction with the Cudd_bddIthvar. Once the 
conjunction of attributes is made forming the objects (lines 7 and 9) then a disjunction 
of those objects is realized (line 12) to build the context. 

 
Algorithm 1. BDD construction based on the context. 

in:  List<Object> list 
out: BDD context 
 1: context = bddfalse 
 2: while !list.empty( ) do 
 3:   obj = list.removeFirstObject( ); 
 4:   BDD tmp = bddtrue 
 5:   for i=0; i<obj.attributes; i++ do 
 6:     if obj.hasAttribute(i) then 
 7:       tmp &= bdd_ithvar(i) 
 8:     else 
 9:       tmp &= bdd_nithvar(i) 
10:     endif 
11:   done 
12:   context |= tmp 
13: done 

 
Normally, ZBDDs are constructed by converting from a previously created BDD. 

However, to maintain coherence with the Algorithm 1, in this work, the ZDD was 
built object by object. CUDD maintains a different structure to operate ZBDD and 
positive variables reference may be achieved using the Cudd_zddIthVar. Since 
ZBDDs works with one’s complement, it is not possible to use the standard Cudd_Not 
approach to obtain the negative part of a variable. But it can be obtained by the 
Cudd_zddDiff function, using the resulting difference from a 1-node constant, thus 
acquiring the complement.  

In this work, references and dereferences of nodes were made manually when the 
CUDD library was used. In the other hand, the BuDDy C++ wrapper was used that 
allowed automatic references and dereferences of nodes. The garbage collector 
dereferences nodes automatically when memory resources are claimed. 

It is important to emphasize that the main objective of this work is to show the 
feasibility of BDD to represent formal contexts, and from that representation extract 
the formal concepts. The feasibility is shown through the manipulation of large formal 
contexts. In most cases, the BDD representation of contexts often consumes several 
memory resources. However, it is not significant enough to invalidate this new 
representation in BDD. So the BDD can be used to extract concepts more efficiently 
than the algorithms that work directly in the tabular representation. 

3.2   Extracting the Set of All Concepts in BDD 

Algorithm 2 is the kernel of the Attribute Intersection algorithm, but slightly modified 
to work with BDD. This implementation in BDD takes advantage of two distinct 
moments when the derivation operator is used (Line 4) and the intersection between 
two concepts is made (Line 8). The derivation operator is easily implemented through 
the implicit bdd_ithvar operator, which obtains a BDD representation of all objects 
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with an attribute. The intersection between two concepts is also implemented through 
an implicit BDD operation, bdd_and (&). Moreover, the concepts list was 
implemented as a hashtable to achieve a faster verification of concepts duplicity. The 
algorithm kernel is the same for the CUDD version with BDD and ZBDD. 
 

Algorithm 2. BDD construction based on the context. 

in:  BDD context 
out: List<BDD> concepts 
 1: concepts = new List<BDD> 
 2: concepts.addConcept(context) 
 3: for i=0; i<attributes; i++ do 
 4:   BDD tmp1 = context & bdd_ithvar(i) 
 5:   size = concepts.size() 
 6:   for j=0; j<size; j++ do 
 7:     BDD tmp2 = concepts.getConcept(j) 
 8:     BDD intersection = tmp1 & tmp2 
 9:     if !concepts.exist(intersection) then 
10:       concepts.add(intersection) 
11:     endif 
12:   done 
13: done 

 
Unfortunately, storing all the concepts as BDD in the list reflects a very expressive 

memory consumption. The algorithm was slightly modified to save the concept intent 
(Bi) rather than the concept (Ai, Bi) in BDD. From the intent set (Bi), one can rebuild 
the concept in BDD, thereby maintaining the essence of the proposed Algorithm 2.  

3.3   Finding the Set of Intent and Extent in Concepts Represented in BDD 

This section shows how to obtain the extent and intent of the concepts represented in 
BDD. Algorithm 3 is used to check if all objects represented by the BDD share an 
attribute in common. Algorithm 4 is used to verify whenever an object is present in 
the BDD concept. 

For the extraction of all objects (extent) of the concept, Algorithm 4 can be used to 
verify if each object that exists in the formal context is present in the concept. The 
same can be applied to the set of attributes (intent), through Algorithm 3, covering all 
formal context attributes checking whether or not they are present in the concept. 
Also, in Algorithm 4, the BuDDy bdd_varlevel operation has no correspondence in 
the CUDD library, but can be obtained by their node index value. 

 
Algorithm 3. Verify the presence of an 
attribute in a concept represented in BDD. 

in:  BDD concept, attr 
out: presence 
 1: BDD tmp = concept & bdd_ithvar(attr) 
 2: if tmp == concept then 
 3:   present = true 
 4: else 
 5:   present = false 
 6: endif 
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Algorithm 4. Verify the presence of an object 
in a concept represented in BDD. 

in:  BDD concept, objc 
out: presence 
 1: BDD tmp = concept 
 2: i = 0 
 3: while i<objc.attributes and 
 4:       tmp != {bddtrue, bddfalse} do 
 5:   if bdd_varlevel(tmp) == i then 
 6:     if obj.hasAttribute(i) then 
 7:       tmp = bdd_high(tmp) 
 8:     else 
 9:       tmp = bdd_low(tmp) 
10:     endif 
11:   endif 
12:   i++ 
13: done 
14: presence =(tmp == bddtrue) 

 
Although Algorithm 4 is used to identify if an object exists in a BDD concept, it 

was not used in the Attribute Intersection implementation. As mentioned, only the 
concepts intents are store in the list. With the intents it is not necessary to rebuild the 
BDD concept to verify objects presence. It can be done directly by checking if every 
object has the attributes of each of the intent sets on the list. 

4   Feasibility Analysis of BDD to Extract Concepts 

One of the requirements to assess the representativeness of BDD to extract concepts 
was to compare its performance under the same conditions as its tabular version. For 
this reason, it was decided to implement a unique algorithm for the situations: 
contexts represented in BDD (with BuDDy and CUDD), ZBDD (with CUDD) and by 
a table. Also, several optimizations on the table version were made to meet this 
purpose. Moreover, SCGaz (available at http://www.inf.pucminas.br/projetos/licap) 
was the tool responsible to build all contexts used in this work. This tool allows the 
construction of semi-clarified contexts, avoiding some types of attributes and objects 
redundancy, like repeated objects and also empty and full attributes and objects. 

Figure 3 shows the behavior of the Attribute Intersections algorithm for the BDD 
with BuDDy and CUDD, ZBDD and tabular version for contexts with fewer attributes 
(20 to 100) and many objects (10,000 to 60,000). To ensure that the BDD would not 
be extremely compact, the used density for all contexts was the minimum plus 10% of 
it. Moreover, lower density values result into smaller amounts of concepts, thus 
making the simulations consumes less time to execute. All software were written in 
C++ and executed on a Pentium Dual Core 2.66GHz with 2Gb of RAM running 
Linux Slackware 12.0. 
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Fig. 3. Evaluation of Attribute Intersections implemented as a table, BDD and ZBDD 

The tabular version has presented an irregular decreasing behavior because of the 
density, since with few attributes higher will be the density for these considered 
simulations. In addition to that, how the incidences are spread into the context can 
explain its irregular behavior. The BDDs and ZBDD had exponential behavior, even 
the CUDD version that may appear linear. Increase the attributes may allow to 
observe its exponential behavior. With more attributes, more nodes will be required to 
construct the BDD. Therefore, less efficient will be the operations in this 
representation. Also, as can be seen by simulations of 20 and 30 attributes, while the 
tabular version had worst time performance, the BDD maintained a very low 
execution time, despite of the higher density. So, the context BDD size is extremely 
relevant to the extraction of all concepts. 
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Table 2. Execution time for many-valued context with |M|=70, |G|=60,000 and |g’|=7 

 
Construction of 
the Context (s) 

Concepts 
Extraction (s) 

Intent and Extent 
Identification (s) 

Total (s) Total 

Table - - - 81059 0d 22:30:57 
BuDDy BDD 51 10151 9946 20148 0d 05:35:48 
CUDD BDD 192 14075 10107 24374 0d 06:46:14 

CUDD ZBDD 306 10272 9703 20281 0d 05:38:01 

Table 3. Execution time for many-valued context with |M|=70, |G|=120,000 and |g’|=7 

 Construction of 
the Context (s) 

Concepts 
Extraction (s) 

Intent and Extent 
Identification (s) 

Total (s) Total 

Table - - - 251283 2d 21:48:03 
BuDDy BDD 128 18345 33289 51762 0d 14:22:42 
CUDD BDD 569 36841 33043 70453 0d 19:34:13 

CUDD ZBDD 629 22107 34844 57580 0d 15:59:40 

The BDD with CUDD package had better performance over the table in all 
simulations, making it strongly reliable. It would be necessary more simulations with 
higher attributes to verify if there is a threshold in which the table begins to be more 
worthed. BDD with BuDDy and ZBDD had better performance over table when the 
number of concepts is not superior to 70. As the amount of objects increases, greatest 
has become the difference between the execution times of BDD implementations 
compared to the table. Thus, the implicit representation of concepts in BDD becomes 
an alternative to a more efficient extraction of concepts in these conditions. 

Considering now a threshold of 70 attributes, another simulation scenario was 
created. A many-valued context was simulated with 7 attributes, a fixed number of 10 
attribute-values per attribute and in two situations with objects, 60,000 and 120,000. 
This type of context has 7 attributes per object (|g’|=7). Table 2 and 3 presents the 
spent time consumed by these situations. 

For this type of context, BDD and ZBDD had outstanding improvement over the 
tabular version. As opposed to the previous simulations, the BDD with CUDD 
presented the least performance. In spare context, ZBDD was proven faster, but not 
enough to beat BuDDy performance. Also, CUDD required more time to build the 
context, possibly affecting the final BDD size. BDD with BuDDy and ZBDD had 
similar execution times for contexts with 60,000 objects, but taking the ICFCA’06 
challenge with 120,000 objects, the difference was quite significant, over 1 hour and a 
half. Compared to the table version, the difference between the BuDDy version was 
almost three days. Applicability to process larger contexts could be achieved with the 
use of a distributed version of an algorithm implemented in BDD.  

Note that the required time to identify the set of extents from the concepts 
represented in BDD was very significant, as seen by Table 2 and 3. This happens 
because of the used algorithm quadratic complexity relative to the number of objects. 
If more efficient algorithms were used, lower computational times may be achieved to 
process contexts. Instead of a brute force strategy to check objects presence in a 
concept, another strategy could be visiting BDD nodes in order to identify the objects. 
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5   Conclusions 

The present work is related to a challenge raised at the ICFCA’06 conference, which 
refers to the manipulation of large formal contexts. Through the use of an implicit 
representation of formal context in BDD, it has been demonstrated that this new 
representation became computationally feasible for handling large contexts, when 
compared to the conventional manipulation of a table. Although the BDD allows the 
manipulation of contexts with a large number of objects, it is restricted to contexts 
with few attributes. Thus, if the context meets this feature, a significant efficiency can 
be achieved with the application of this new alternative. 

As future work, more robust FCA algorithms could be adapted to use BDD or 
ZBDD. It’s essential to verify the feasibility of BDD application in a fast algorithm, 
like CHARM [11]. Even faster concepts extraction may be achieved with others 
algorithms applied with BDD. 
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Abstract. In this work we presents a comparison of different optimiza-
tion methods for the automatic history matching problem of reservoir
simulation. The history matching process is an inverse problem that
searches a set of parameters that minimizes the difference between the
model performance and the historical performance of the field. This
model validation process is essential and gives credibility to the predic-
tions of the reservoir model. Derivative-based methods are compared to
a free-derivative algorithm. In particular, we compare the Quasi-Newton
method, non-linear Conjugate-Gradient, Steepest-Descent and a Genetic
Algorithm implementation. Several tests are performed and the prelim-
inary results are presented and discussed.

Keywords: Reservoir simulation, History Matching, Optimization.

1 Introduction

Reservoir simulation is a powerful tool that has been extensively used in reservoir
engineering. It combines physics, mathematics, reservoir engineering and com-
puter programming. One of the main goals of the models deals with the ability
to predict the behavior of a reservoir. Unfortunately, the computational models
depend on many parameters and features of the reservoir and the prediction’s
performance of a model depends on good estimations of some physical proper-
ties, such as the permeability distribution of the reservoir. Several difficulties
arise during the validation of a model, since most of the oil reservoirs are incon-
veniently buried beneath thousands of feet of overburden. Direct observations
of the reservoir are available only at well locations that are often hundreds of
meters [1].

An alternative for model validation is the estimation of the relevant properties
by History Matching[2]. The History Matching process is an inverse problem
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that utilizes reservoir simulation to find a set of parameters that minimizes the
difference between the model performance and the historical performance of the
field. This process can be made manually or automatically.

Traditional Newton-like methods have been used before[3]. In addition, free-
derivative methods based on Genetic Algorithms were proposed in[4]. This pa-
per presents a comparison of different optimization methods used to perform
the automatic history matching in a 2D flow model. In particular we compare
the Quasi-Newton method, Conjugate-Gradient, Steepest-Descent and a Genetic
Algorithm implementation.

The paper is organized as follows: Section 2 introduces the direct problem
formulation and implementation. Section 3 introduces the inverse problem theory
and the methods implemented. Section 4 presents the methods and the computer
platform used for the tests. Section 5 and 6 present the results and conclusion
of this work, respectively.

2 Forward Problem

2.1 Theory

The problem treated in this paper is a two dimensional two-phase (water/oil)
incompressible and immiscible porous media flow in a gravity-free environment
[12]. The system of partial differential equations which governs this flow is de-
rived from the law of mass conservation and the Darcy Law. The law of mass
conservation for both phases is written as φ∂t(ραsα) + ∇.(ραvα) = Qα, where
α = w denotes the water phase, α = o denotes the oil phase, φ is the porosity
of the porous medium, and ρα, sα, vα and Qα are, respectively, the density,
saturation, volumetric velocity and flow rate in wells of the α-phase. The volu-
metric velocity (vα) is given by the Darcy law: vα = Kkrα(sα)

μα
∇pα, where K is

the effective permeability of the porous medium, krα is the relative permeabil-
ity of α-phase, which is a function that depends on saturation, and μα and pα

are, respectively, viscosity and pressure of the α-phase. In this work we consider
that the capillary pressure is null, that is, pw = po. So, from now on we will
refer to pressure simply as p. We also have that sw + so = 1. We introduce
the phase mobility and transmissibility functions, respectively: λα(s) = krα(s)

μα
,

Tα(s) = Kλα, where s = sw from now on. The volumetric velocity can then be
written as vα = −Tα∇p. We assume that the phases density and viscosity are
constant and get {

φρw∂tsw + ρw∇vw = Qw

φρo∂tso + ρo∇vw = Qo .
(1)

Now we can divide the equations in 1 by ρα and sum both and get{
φ∂ts+∇vw = qw

∇vt = qt .
(2)
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where qα = Qα

ρα
is the flow rate density of α-phase, qt = qw +qo and vt = vw +vo.

Defining total mobility as λt = λw +λo we introduce the fractional flow functions
as f(s) = Tw

Tt
= λw

λt
. System 1 is then rewritten as{

φ∂ts−∇(f(s)Tt(s)∇p) = qw

−∇(Tt(s)∇p) = qt .
(3)

To complete the model the boundary conditions must be specified. In this paper
we consider no flow boundary condition, vα.ν = 0, x ∈ ∂Ω, where ν is the outer
unit normal to the boundary ∂Ω of the domain Ω. Finally we define the initial
condition given by s(x, 0) = s0(x), x ∈ Ω.

The forwad problem treated on this paper is the system of partial differential
equations given by 3 with the boundary and initial conditions given above.

2.2 Implementation

The differential equations described in Sect. 2.1 are nonlinear and coupled. In
this work the method used to solve these equations is the so called IMPES. Our
implementation of the IMPES methods adopts an adaptive time step scheme.
The basic idea of the IMPES method is to separate the computation of pressure
from that of saturation. The coupled system is split into a pressure equation and
a saturation equation, and the pressure and saturation equations are solved using
implicit and explicit time approximation approaches, respectively. Decoupling
the system 3 we get an elliptic equation for pressure given by (4) and a nonlinear
hyperbolic equation for saturation, given by (5).

−∇(Tt(s)∇p) = qt . (4)

φ∂ts−∇(f(s)Tt(s)∇p) = qw . (5)

For the pressure computation, the saturation s in (4) is supposed to be known
and 4 is solved implicitly for p. In this work, the finite volume method was
used for spatial discretization[5]. As mentioned before, the saturation equation
given by 5 is solved explicitly. The IMPES method goes as follows: given s0;
for n = 0, 1, ... we use (4) and sn to evaluate pn; next we use (5), sn and pn

to evaluate sn+1. To guaranty the stability of this equation the time step Δt
must be sufficiently small which is an expensive requirement. To minimize this
problem, we actually used an Improved IMPES method [6]. This method uses
the fact that pressure changes less rapidly in time than saturation. Knowing
this, it is appropriate to take a much larger time step for the pressure than
for the saturation. Using the Improved IMPES method we have two different
time steps: Δtn for pressure and Δtn,l for saturation. Pressure pn corresponds
to instant tn =

∑
1<=i<=n Δt

i and saturation sn,l corresponds to instant tn,l =
tn +

∑
1<=j<=l Δt

n,j . We deduced the CFL conditions given by the next two

equations. One for cells that have injector wells Δtn,l ≤ φ(1−so,res−sn,l
i,j )

β1qn,l
w (1−f(sn,l

i,j ))
, where
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β1 > 1 and another to the other cells, given by maxf ′(sm)
∑
m

Δtn,l

φΔm
|vn

m| ≤ β2,

where 0 < β2 < 1 and m corresponds to interfaces where the flow enters the
block. To control the pressure time step Δtn we calculate the pressure variation
percentage V Pn = ||pn+1−pn||

||pn|| . If V Pn is greater than a given V Pmax pressure
time is reduced and if it is less then a given V Pmin, it is increased.

3 Inverse Problem

3.1 Theory

In this work, the inverse problem proposed aims to estimate the absolute perme-
ability field of a reservoir by history-matching its production data. We denote
by K the vector of permeability to be determined and by O the vector of pro-
duction observations and define as u = (s, p) the vector of the forward problem
unknowns (saturation and pressure). We have that u depends on the permeabil-
ity u = u(K) and O depends on both, permeability and u, O(K) = O(K,u(K)).
If Ō is the vector with the real observations we can search K that minimizes the
least square formulation

f(K) = ‖O(K)− O‖2. (6)

Note however that this is a contrained minimization problem since permeability
is a strictly positive property. In this work, we transformed this problem in an
unconstrained minimization problem via the change of variable mi = ln(Ki).
From now on, the parameters to be estimated are those of the vector m. There
are several ways for solving this optimization problem. In this work we compare
two different approaches to optimize the proposed problem: Newton-like methods
and Genetic Algorithm.

3.2 Newton-Like Methods

Newton’s iterative method for minimizing f(x) is xk+1 = xk + αkH
−1
k ∇fT ,

where Hk is the Hessian matrix of f in iteration k. However the computation of
H is almost allways unaffordable. The idea underlying Newton-like methods is
to use an approximation to the inverse of the Hessian in place of the true inverse
that is required on Newton’s method [7]. In this work we use the steepest de-
scent, the conjugate gradient and a Quasi-Newton methods. In steepest descent
method, the inverse of H is taken as the identity matrix I. The Quasi-Newton
Method iteratively builds up an approximation to the Hessian by keeping track
of gradient differences along each step taken by the algorithm. The nonlinear
conjugate gradient method is mainly an extension of the linear conjugate gra-
dient method but it may be also consider a specialization of limited-memory
Quasi-Newton methods.
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3.3 Genetic Algorithms

Genetic Algorithm (GA) is a numerical optimization algorithm inspired in nat-
ural selection and natural genetics created by Holland in the 60th decade [8].
It is an alternative optimization technique since it is stochastic and does not
need derivatives. In each generation, which corresponds to an iteration of the
algorithm, GA has not only one possible solution. Instead, it keeps a popula-
tion of individuals each representing a potential solution to the problem to be
solved. This population evolves through generations using genetic mechanisms
in search for an optimal individual. In order to use GA it is important to define
some characteristics such as the representation of an individual, a fitness func-
tion and the genetic operators to be used. In this work we used the real-code
representation which is commonly used in problems with continuous variables.
In this representation the individual is a set of real values that represents a
feasible solution. Every individual in the population is assigned, by means of a
fitness function, a measure of its goodness with respect to the problem under
consideration [8]. The fitness function used in this work is given by (6). The
most important genetic operators applied in GA are selection, crossover, muta-
tion and elitism. Selection is used to pick individuals to generate offsprings. The
approach used in this work is the rank-based selection. Crossover is the operator
that combines two individuals to generate a third one. In this work we used the
Blended-crossover approach. Mutation is an operator applied in one individual.
It introduces diversity to the population and prevents the algorithm of being
stuck in local minimums. The GA begins with an initial population that may
or not be generated randomly. To evolve to a next generation all individuals of
the population must be evaluated using the fitness function. After this, selection
is applied to choose which individuals will generate offsprings through crossover
or/and mutation. This process is repeated until a good individual is found.

4 Methods

4.1 Implementation Details and Computer Platform

The numerical solution of the forward problem was implemented in C++. To
solve the linear systems associated to the discretization of the Partial Differential
Equations the PETSc library was used [9]. The GSL library [10] was used for the
optimization with the Newton-like methods. In this work we used the steepest
descent, nonlinear conjugate gradient and Quasi-Newton methods. These meth-
ods need the objective function (6) and its gradient ∇f to be evaluated for each
solution candidate m. The objective function is calculated via the solution of the
forward problem. The calculation of the gradient ∇f is obtained via finite dif-
ference and it involves performing n+1 solutions of the forward problem, where
n is the dimension of the permeability vector to be estimated. The calculation
of the gradient ∇f was implemented in parallel using the MPI library[11] with
each component of the gradient vector calculated by a different process. The
GA was implemented in C++. The implementation also exploits parallelism via
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the MPI library and a master-slave decomposition strategy. The master process
implements all the GA operations and requests the slave processes to perform
the fitness evaluation of the solution candidates, or individuals, of the current
population. Again, each fitness calculation given by (6) involves the solution of
the forward problem. The algorithms were executed in a small cluster composed
of 8 Intel Xeon (2GHz) processing cores connected by a 1000MBits Ethernet
switch.

4.2 Numerical Experiments

The reservoir simulation we consider in this work is the classical five-spot config-
uration with 4 injection wells in the corners of the reservoir and one production
well in its center (see Figure 1). The reservoir is a square of sizes equal to 200m.
Each injection well injects a total of 100m3 per day. The reservoir’s history is
given by the oil production of the center well during 350 days of simulation. The
other parameters of the model are: porosity (0.2), relative permeability, given by
the Corey curve, irreducible water saturation (siw = 0.2) and residual oil satu-
ration (sro = 0.2). The spatial discretization used was.Δx = Δy = 7.4m. In this
work, three different synthetic histories were generated from different reservoirs
that differ only on the number of rectangular regions with different permeability
values: a reservoir model with two different permeability blocks mapped as a 1x2
mesh (half by half), K = (47.82, 142.5) (natural ordering); a model with an uni-
form 2x2 permeability mesh, K = (39.12, 67.99, 52.85, 267.68); and an uniform
3x3 permeability mesh with K = (43.22, 38.21, 55.76, 56.39, 95.61, 148.45, 36.84,
135.84, 261.57) These three synthetic histories are the targets of three different
history-matching problems. Each one of these inverse problem was solved by
the Newton-like methods and the GA, and each of the optimization methods
were executed 10 times with different initial guesses. The population of the GA

Fig. 1. 5-spot Fig. 2. Objective Function
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has a size of 100 and the mutation rate was 0.025. Convergence is achieved
when a solution candidate m satisfies f(m) < 10−6. All initial guesses were
randomly generated but satisfy f(m) > 10−3. Therefore, after convergence the
objective function is decreased by at least 3 orders of magnitude. In the case of
the Newton-like methods there is also a stop criterion to handle local minima:
∇f(m) < 10−8. In addition, for all methods we implemented a stagnation crite-
rion: the method stops if after 3 consecutive iterations f(m) is decreased by less
than 10−6.

5 Results

Figure 2 shows the objective function for the problem that has two parame-
ters or permeability values to be estimated. We note that there are infinitely
many global minima and that the shape of the function is symmetric with re-
spect to the line m = α(1, 1). The reason we have many global minima lies in
the following observation. Imagine two simulations where in the second one the
permeability is given by K2 = βK1, with K1 the permeability of the first simu-
lation. Let us further identify this simulations with s1, p1,K1 and s2, p2,K2. It
follows that from (4) we have ∇(f(s2)Tt2(s2)∇p2) = ∇(f(s2)K2λt(s2)∇p2) =
β∇(f(s2)K1λt(s2)∇p2) = ∇(f(s1)K1λt(s1)∇p1). Using this in (5) we observe
that for both simulations the saturation equation becomes exactly the same.
Thus, the production history will be the same for these simulation with differ-
ent permeability maps. Now, the fact that the shape of the objective function
is symmetric is a particular feature of the simulation we perform, the classical
five-spot. Since water injection is the same in all injection wells, 180o rotations
of the permeability distribution map do not alter the production of the centered
well.

For the simulations with the two parameters to be estimated we have per-
formed 4 different set of tests. Set 1, 2, 3 and 4 have initial guesses (initial
population for the GA) randomly chosen but that satisfy f(m) ≥ 2.5 10−3,
f(m) ≥ 2.0 10−3, f(m) ≥ 1.5 10−3 and f(m) ≥ 1.0 10−3, respectively. For the
Newton-like methods, the initial guess was taken as the permeability pair with
the smallest objective function value in the corresponding GA initial popula-
tion. In each test the algorithms were executed 10 times. Table 1 presents the
results in terms of successfull convergence of the methods. The GA is the most
robust method. It has always converged to a global minimum. The performance
of the Newton-like methods clearly depended on the proximity to a global min-
ima. The performance improves if the initial guess is close to the minima. The
Steepest-Descent (SD) achieved the worst result.

Table 2 presents some statistics of the results for set # 3. The general behavior
of the methods were similar for the other test sets. The results obtained by the
GA in terms of error (fitness) average and standard deviation (std) are at least an
order of magnitude smaller than those obtained by the CG (Conjugate Gradient)
and QN (Quasi-Newton) methods and two orders of magnitude better than those
of the SD method (Steepest Descent). However, the computational cost of the
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Table 1. Successfull convergence with 2 parameters

Initial guess (m) GA CG QN SD
f(m) ≥ 2.5 10−3 10 3 3 2
f(m) ≥ 2.0 10−3 10 4 4 4
f(m) ≥ 1.5 10−3 10 6 6 3
f(m) ≥ 1.0 10−3 10 7 7 4

Table 2. 2 parameters statistics- initial guess m - f(m) ≥ 1.5 10−3

Best fit Mean Std # of eval. (fastest) Total # eval.
GA 1.587007e-09 1.4882e-07 2.0064e-07 208 3236
CG 2.868986e-16 6.6401e-05 9.9601e-05 32 486
QN 3.400530e-17 6.6401e-05 9.9601e-05 32 462
SD 5.446458e-07 1.3550e-04 1.0114e-04 25 700

GA in terms of total number of objective function evaluations is around 8 (6)
times higher than that of the CG and QN methods (SD).

For the tests with 4 and 9 parameters we chose to compare the GA against
the CG method, as this method and the QN method achieved very similar per-
formance in the tests with 2 parameters. The two algorithms were executed 10
times with different initial guesses for the inverse problem with 4 parameters.
The GA successfully converged 6 times whereas the CG converged only once to
the desired error tolerance of 10−6. Table 3 presents some statistics of the results.
The results obtained by the GA in terms of error average and standard deviation
(std) are near two order of magnitudes smaller than those obtained by the CG.
However, the computational cost of the GA is around 6 times higher than that
of the CG. The fastest execution of the GA needed 10 times more evaluations
of the objective function than the CG method. Figure 4 presents the evolution
of the executions of the GA and CG methods. The GA is quite robust in terms
of convergence and the executions perform similarly whereas the evolution of a
CG execution highly depends on the initial guess.

Table 4 presents some statistics of the results obtained by the methods for
the History-matching problem with 9 parameters. The two algorithms were ex-
ecuted 10 times with different initial guesses. The CG successfully converged
twice whereas the GA converged only once. Nevertheless, the results obtained
by the GA in terms of error average and standard deviation are smaller than
those obtained by the CG. However, the computational cost of the GA is around

Table 3. Statistics of the tests with 4 parameters

Best fit Mean Std # of eval. (fastest) Total # eval.
GA 1.2590e-07 4.7753e-06 5.4781e-06 624 18489
CG 3.000341e-07 1.7023e-04 2.7912e-04 62 2989
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Fig. 3. GA performance for 4 parameters Fig. 4. CG performance for 4 parameters

Table 4. Statistics of the tests with 9 parameters

Best fit Mean Std # of eval. (fastest) Total # eval.
GA 9.479320e-07 3.8718e-06 3.0535e-06 4160 50960
CG 9.197778e-07 6.1349e-05 8.2611e-05 252 3940

Fig. 5. GA performance for 9 parameters Fig. 6. CG performance for 9 parameters

13 times higher than that of the CG. Figure 6 presents the evolution of the exe-
cutions of the GA and CG methods. Again, the evolution of the GA executions
were very similar whereas the evolution of a CG execution highly depends on
the initial guess.

6 Conclusion

This work presents a comparison of different optimization methods for the au-
tomatic history matching problem of reservoir simulation. The computational
model implemented was based on the formulation of a two dimensional two-phase
(water/oil) incompressible and immiscible flow in a gravity-free porous media.
The reservoir simulation considered was the classical 5-spot configuration. The
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inverse problem proposed aims to estimate the absolute permeability distribu-
tion of the reservoir by history-matching its production data. Derivative-based
methods were compared to a free-derivative algorithm. In particular, we com-
pared the Quasi-Newton method (QN), non-linear Conjugate-Gradient (CG),
Steepest-Descent (SD) and a Genetic Algorithm (GA) implementation. The GA
presented the most consistent results in terms of accuracy and convergence but
it was computationally very expensive. On the other side, the performances of
CG and QN methods were very dependent on the initial guesses. Their results
were less consistent, but the methods demanded few evaluations of the objective
function and therefore few executions of the reservoir simulator. In conclusion,
the preliminary results suggests a tradeoff in terms of robustness, towards the
Genetic Algorithm, and speed, which favors the Newton-like methods.
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Abstract. The aim of the QosCosGrid project is to bring supercomputer-like 
performance and structure to cross-cluster computations. To support parallel 
complex systems simulations, QosCosGrid provides six reusable templates that 
may be instantiated with simulation-specific code to help with developing 
parallel applications using the ProActive Java library. The templates include 
static and dynamic graphs, cellular automata and mobile agents. In this work, 
we show that little performance is lost when a ProActive cellular automata 
simulation is executed across two distant administrative domains. We describe 
the middleware developed in the QosCosGrid project, which provides advance 
reservation and resource co-allocation functionality as well as support for paral-
lel applications based on OpenMPI (for C/C++ and Fortran) or ProActive for 
Java. In particular, we describe how we modified ProActive Java to enable in-
ter-cluster communication through firewalls. The bulk of the QosCosGrid soft-
ware is available in open source from the QosCosGrid project website: 
www.qoscosgrid.org. 

Keywords: Grid computing, complex system, parallel applications, ProActive, 
Java, advance reservation, co-allocation, modeling and simulation. 

1   Introduction 

Complex systems are defined as systems with many interdependent parts which give 
rise to non-linear and emergent properties determining the high-level functioning and 
behavior of such systems [1]. Due to the interdependence of their constituent elements 
and other characteristics of complex systems, it is difficult to predict system behavior 
based on the ‘sum of their parts’ alone. Examples of complex systems include bee 
hives, bees themselves, human economies and societies, nervous systems, molecular 
interactions, cells and living things, ecosystems, as well as modern energy or  
telecommunication infrastructures. Arguably one of the most striking properties of 
complex systems is that conventional experimental and engineering approaches are 
inadequate to capture and predict the behavior of such systems. To complement the 
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conventional experimental and engineering approaches, computer-based simulations 
of complex natural phenomena and complex man-made artifacts are increasingly 
employed across a wide range of sectors. Complex systems simulations often require 
considerable compute power.  

The present paper describes the perspective and initial results of the QosCosGrid 
(Quasi-Opportunistic Supercomputing for Complex Systems) project which addresses 
the computationally intensive simulation of complex systems using parallel methods 
and grid technology. We consider the QosCosGrid approach from the perspective of 
the computational scientist, i.e. the user, as well as from the technology side. 

Complex system simulations often use supercomputers because of the high data 
volume and computing requirements of the individual computations, but also because 
the high communication overhead between the computation tasks on individual ele-
ments. However, supercomputers are expensive to acquire and maintain and, there-
fore, many users do not have access to such technology. Recently, local clusters, such 
as Beowulf clusters and other multi-core and multi-machine systems, have become 
the technology of choice for many complex systems modelers. However, with the 
advent of flexible modeling tools, complex systems simulations have become more 
and more comprehensive and complex. As a result, local clusters are increasingly 
inadequate to satisfy the required computing and communication needs. QosCosGrid 
aims to address this gap by facilitating supercomputer-like performance and structure 
through cross-cluster computations. 

In grid computing, a typical assumption is that the availability of computing  
resources depends on their local usage patterns. This opportunistic mode of grid com-
puting is highly problematic for a complex system simulation. Complex system  
simulations are characterized by a high degree of dependency among the parallel 
computations that comprise the simulation. To address this problem, QosCosGrid has 
developed advance reservation and topology-aware methods. 

2   The User Perspective 

2.1   Problems of Complex System Modeling 

Complex system simulations are now used across a wide range of scientific fields. 
However, the challenges faced by computational scientists and their demands for high 
performance computing differ substantially. Typically, there are many different ap-
proaches to model and simulate a concrete complex system. Each approach comes 
with its own requirements in terms of methods and computing technology. In an at-
tempt to address a wide range of complex systems, we developed a classification of 
the computing requirements for different complex systems simulation scenarios. Key 
to this classification scheme is the required communication topology that reflects the 
element-to-element interaction characteristics of the underlying complex system.  

2.2   Partitioning Complex System Simulations 

The main problem in the parallelization of complex system simulations is their high 
demand for inter-process communication. However, parallel computing applications 
are most efficient when there is no or little demand for inter-node communication. In 
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order to minimize execution time of a distributed complex system simulation, the 
computation needs to be partitioned such that communication between interacting 
components is minimized. In addition, the computational load of each partition, de-
termining the time between communication events, needs to be balanced. 

Instead of creating individual parallel solutions for every single complex system 
simulation, we developed a categorization of the required communication topologies 
(Fig. 1). The categorization scheme consists of six categories referred to as communi-
cation templates: Template T0 is the simplest communication template. T0 has no 
communication between the components, so the partitioning is only constrained by 
load-balancing considerations. Perfectly (or “embarrassingly”) parallel applications, 
such as parameter sweeping, falls into the T0 category. Template T5 represents the 
other end of the spectrum of communication templates. Essentially, T5 covers those 
complex systems for which it is difficult or impossible to determine a meaningful 
communication template or partitioning of the computations. Template T1 describes 
the communication topology of a non-spatial complex system, with fixed and a priori 
known element interaction pattern. Template T2 applies to complex systems whose 
element interaction patterns are changing over time. Hence the communication topol-
ogy needs to be defined by some graph transition function that provides enough in-
formation for the system’s efficient distribution. Template T3 covers classical cellular 
automata simulations. In this case, the definition of a meaningful partitioning is 
straightforward. Template T4 describes an agent-based simulations where mobile 
agents are embedded in a (spatial) coordinate system and have only local interactions. 

Various partitioning algorithms are available for each of these communication 
templates. The categorization is aimed at guiding users to understand the structure of 
a given complex system simulation and to inform the choice of parallelization tech-
niques. Hence, the scheme provides a useful guide for parallelizing of complex sys-
tems simulations.  

 

Fig. 1. Communication templates supported in the QosCosGrid system 
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2.3   Developing and Deploying QosCosGrid Applications 

For end users, the main benefit of QosCosGrid lies in the transparency of grid-
enabling complex system applications. The QosCosGrid middleware, described be-
low, transparently handles all intricate grid aspects when it deploys complex system 
applications across clusters. From the perspective of the application developer, there-
fore, there is no difference between developing code to be deployed on a supercom-
puter or on a grid. Moreover, legacy parallel code can be executed on QosCosGrid 
without any reimplementation. 

To further enhance the ease-of-use of deploying applications on the grid, a  
comprehensive Web interface has been developed. The QosCosGrid portal website1 
facilitates monitoring of the grid infrastructure, including bandwidth and latency, 
monitoring of status, usage and (advance) reservations, grid file transfer to upload 
applications and download results. 

3   The Technical Perspective 

The overall QosCosGrid architecture and the key middleware are presented in Fig. 1. 
Based on various middleware services, QosCosGrid components can be grouped into 
two levels: The Grid level domain (consisting of multiple organizations) and the Ad-
ministrative level (a single organization, typically providing and sharing one or a 
small number of computing clusters). At one of the lowest layers there is the Local 
 

 
Fig. 2. The QosCosGrid multi-tier architecture connecting different middleware services as 
well as parallel application development and deployment tools 
 

                                                           
1 http://node2.qoscosgrid.man.poznan.pl/gridsphere/gridsphere/guest/testbed/r/ 
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Resource Management System supporting job submission, control and advance reser-
vation (AR) mechanisms. Currently, QosCosGrid uses Platform Computing’s Load 
Sharing Facility (LSF). We have also successfully tested the QosCosGrid middleware 
with the Sun Grid Engine and there are possible extensions for PBSPro or Maui. 
Above this layer, there is the OpenDSP service that communicates with LSF using the 
well-adopted standard DRMAA interface that communicates with the local queuing 
system. OpenDSP exposes its functionality remotely with the OGSA-BES HPC Pro-
file compliant WS interface, and, to our knowledge, is the most efficient remote 
multi-user access to underlying queuing systems. On top of the OpenDSP service, 
there is the GRMS (Grid Resource Management Service), a main meta-scheduler 
service, which acts both at the Grid and Administrative level. From the end user per-
spective, the GRMS provides its own job description language (called Job Profile) 
that allows the topology requirements of various jobs, including sequential, parallel, 
massively parallel (with communication topology requirements) as well as workflow 
jobs to be defined and controlled on behalf of end users.  

Below we briefly describe two main programming and execution environments, 
ProActive and OpenMPI, which have been successfully integrated with OpenDSP and 
GRMS to allow end users to perform multi-cluster job submission and control. These 
well-known environments have been modified according to the complex system re-
quirements we collected. They can be distributed as powerful tools for large-scale and 
long-term computation analysis involving many computing clusters located in various 
administrative domains. The QosCosGrid middleware offers also many management 
features for local IT administrators responsible for sharing computing resources 
among many end users and their applications. 
 

OpenMPI. The MPI (Message Passing Interface) is a leading standard in the domain 
of parallel scientific applications. It provides end users with both the programming 
interface consisting of simple communication primitives and the environment for 
spawning and monitoring MPI processes. A large number of implementations of the 
MPI standard is available (both as commercial and open source). In QosCosGrid, it 
was decided that MPI serves as the input for a new OpenMPI2 distribution and we 
added enhancements to this implementation. Of key importance were the advance 
inter-cluster communication techniques that deal with firewalls and Network Address 
Translation. In addition, the mechanism for spawning new processes in OpenMPI 
needed to be integrated with QosCosGrid-developed middleware. The extended ver-
sion of the OpenMPI framework was named QCG-OMPI [2] (where QCG stands for 
QosCosGrid). 
 

ProActive Java. Even though enhanced OpenMPI is the primary execution environ-
ment in QosCosGrid, the existence of legacy Java applications based on the Repast 
Agent Simulation Toolkit [3] led to the decision to provide support for a new Java-
based parallel programming environment called ProActive [4]. The ProActive library, 
by default, uses the standard Java RMI framework as a portable communication layer. 
With a reduced set of simple primitives, ProActive (version 3.9 as used in QosCos-
Grid) provides a comprehensive toolkit that simplifies the programming of applica-
tions distributed on local area networks, clusters, Internet grids and peer-to-peer  
                                                           
2 http://www.open-mpi.org 
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intranets for Java-based applications. However, when we designed QosCosGrid, the 
standard ProActive framework did not provide any support for multi-user environ-
ments, advance reservation and cross-cluster co-allocation. To satisfy the require-
ments of complex system simulation applications and users, we developed extensions 
to the ProActive library (called QCG-ProActive) with the following goals: (1) To 
preserve standard ProActive library properties (i.e., allow legacy ProActive applica-
tions to be seamlessly ported to QosCosGrid). (2) To provide end users with a consis-
tent GRMS Job Profile schema as a single document used to describe application 
parameters required for execution as well as resource requirements (in particular net-
work topology and estimated execution time). (3) To prevent end users from the ne-
cessity to have direct (i.e., over SSH) access to remote clusters and machines. 
 

Cross-site QCG-ProActive Deployment Model. ProActive deployment involves the 
starting of the main application and the subsequent spawning on other machines 
(starting ProActive Runtimes). In the context of service-level agreements and ac-
countability, this is problematic, because it is difficult to guarantee the atomicity of 
such a two-phase deployment process. Application and ProActive Runtimes cannot be 
started at the same time because ProActive Runtimes needs to know some callback 
information that is used to contact the main application. Therefore, we proposed to 
create an external service in QosCosGrid called ProActive Node Coordinator (PNC) 
that helps to exchange initial arguments between the master application and ProActive 
Runtimes. Consequently, a local queuing system (OpenDSP with LSF) does not have 
to start ProActive Runtimes directly. Instead, we need to provide an appropriate 
wrapper script – the QosCosGrid ProActive Wrapper, which connects the PNC ser-
vice and synchronizes initial data required to start ProActive Runtimes properly. Ad-
ditionally, in order to support a cross-cluster ProActive deployment, before any job 
submission request to LSF via OpenDSP, there is an appropriate advance resource 
reservation call. The main difference, from the end user perspective, is that instead of 
a typical PAD file (ProActive Deployment Descriptor) the GRMS Job Profile is used 
as a language to describe ProActive application requirements and then the Job Profile 
is automatically converted to the corresponding PAD. 
 

Inter-cluster QCG-ProActive Communication Mechanism. The basic ProActive 
Library transport layer is based on Java RMI. The RMI communication usually 
consumes one TCP/IP port per remote object instance and ports are randomly se-
lected. Moreover, it is almost impossible to configure a firewall to forward the 
RMI traffic, which was an important issue for incorporating ProActive into Qo-
sCosGrid. To deal with this problem, the ProActive application can be configured 
to use the RMISSH communication protocol that simply creates on demand SSH 
tunnel for each outgoing RMI connection. Unfortunately, this solution does not 
work with sites behind Network Address Translation and it requires password-less 
authentication to be configured for each machine (and for every user) in the whole 
grid. Thus, in QosCosGrid project we proposed to use SOCKS server as the basic 
way to tunnel RMI traffic between clusters behind Network Address Translations 
and firewalls.   
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4   Results 

The aim of QosCosGrid is to provide supercomputing-like structure and performance 
to cross-cluster computations for complex systems simulations. In order to assess the 
performance of the infrastructure provided by QosCosGrid, performance tests were 
conducted on a simple test bed. We ran performance tests using a cellular automaton 
simulation application as a benchmark application. A cellular automaton is a lattice of 
finite state machines, in which the state of a cell is determined by the states the 
neighboring cells in the previous time step [5]. Cellular automata are a widely used 
methodology to study spatial phenomena in physics and biology.  

The regular lattice interaction topology of cellular automata makes them a prime 
candidate for parallelization and deployment on a supercomputer. A cellular automa-
ton allows for simple partitioning by mapping each part to a different core or process-
ing element. After each iteration, state information on the border cells between  
adjacent partitions is exchanged. As the size of a cellular automaton simulation in-
creases, the computational cost grows quadratically, while the communication costs 
grow only linearly.  

 

Fig. 3. Performance of a cellular automaton (CA) of increasing size (1000 x 1000, 2000 x 2000, 
5000 x 5000). The line with cross-symbols shows ideal performance (execution time of non-
parallel CA divided by number of cores). The line labeled SC shows single cluster runs, the CC 
4M line shows cross-cluster run performance in the QosCosGrid test bed. Legend: SC = single 
cluster; CC = cross-cluster; 1 M = 1 million cells = 1000 x 1000; 4 M = 4 million cells = 2000 x 
2000; 25 M = 25 million cells = 5000 x 5000. 
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Cellular automata are frequently deployed on supercomputing facilities. In this 
study we used cellular automata as a benchmark system to assess the performance of 
the QosCosGrid technology. The cellular automaton used in our study was imple-
mented in Repast J 3.0 and parallelization was performed using QCG-ProActive. We 
tested the performance in a heterogeneous cross-cluster environment, and conducted 
experiments on two small clusters (8 cores each) located in Paris (France) and Poznan 
(Poland) and connected via the Internet (no dedicated network). We compared the 
execution time of a parallel implementation of a cellular automaton executed on a 
single cluster, with the execution time in a cross-cluster run. 

The results (Fig. 3) describe performance data for three different cellular automa-
ton sizes. These results confirm that parallel execution in a single cluster is highly 
efficient for all sizes. For relatively small cellular automaton problems (i.e., 1000 x 
1000), the cross-cluster performs very poorly, as the execution time using 16 cores is 
similar to the performance of the non-parallel cellular automaton on a single core. As 
the size of the cellular automaton increases, however, the performance of cross-cluster 
execution approaches the performance in a single cluster. For the largest cellular 
automaton in the performance test (5000 x 5000), the performance of the cross-cluster 
execution becomes almost indistinguishable from the single cluster performance.  

These preliminary results show that parallel complex systems simulations with a 
relatively high computation/communication ratio can be meaningfully deployed on 
the QosCosGrid grid infrastructure.  

5   Discussion 

QosCosGrid is an end-to-end solution that is already being used by scientists for 
compute intensive parallel applications in the field of complex systems modelling. 
The advantage of QosCosGrid is that it requires no dedicated network connections or 
specific configurations. It is a multi-user environment that efficiently controls access 
to computing resources in different administrative domains. It is specifically designed 
for non-trivial parallel computations using Open-MPI with C/C++ and Fortran, or 
ProActive for Java-based legacy applications. Additional features of interest to scien-
tists include its user-friendly Web-based user interface and its reusable application 
schemas or template categories based on ProActive. 

QosCosGrid is aiming to provide a high quality of service (for users) equivalent to 
that of a dedicated supercomputing facility. To achieve this, QosCosGrid provides 
services such as co-allocation and advance resource reservation [6], which are very 
difficult to provide in dynamic grid environments. Recent efforts in these areas in-
clude that by Elmroth and Tordsson for the NorduGrid/ARC middleware [7] and the 
work by Kyriazis and colleagues [8] who concentrate on orchestrating grid resources 
in order to support application workflows. More established solutions are provided by 
Condor-G [9], and Nimrod-G [10]. After a careful review of existing open solutions 
and standards, QosCosGrid has based its services on top of exiting third-party soft-
ware. In addition, the QosCosGrid Gateway is a key feature for high-quality of ser-
vice as it provides essential support for both users and administrators. 

Mateos et al. [11] provide a useful survey that compares a number of different ap-
proaches to grid-enabling applications. They discuss a number of other Java tools 
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used in grids, apart from ProActive, such as Satin [12], which is based on Ibis [13], 
and “grid-aspecting” [14], which is based on AspectJ. The difference between these 
Javas and ProActive is in the degree of granularity and the amount of modification 
required to the application source code. Both ProActive and Satin require more exten-
sive modifications to the source than grid-aspecting, but an advantage of these modi-
fications is that applications can make more sophisticated and efficient use of grid 
resources.  

There are other projects which have aims that are similar to those of the QosCos-
Grid project, these include EGEE [15], HPC4U [16] and DEISA [17]. However, these 
projects do not provide all the functionality of QosCosGrid. EGEE does not support 
all of QosCosGrid's quality-of-service components such as advance reservation and 
check-pointing. HPC4U concentrates on parallel executions performed within clusters 
as opposed to QosCosGrid's cross-cluster execution environment. DEISA, the Dis-
tributed European Infrastructure for Supercomputing, is a grid of supercomputers 
suitable for petascale applications whereas QosCosGrid is a more “humble” system 
designed to enable distributed clusters to be combined into a resource with compute 
power similar to a single supercomputer. 

6   Conclusions 

This paper describes how QosCosGrid enables clusters in different administrative 
domains to be welded (virtually) into a single powerful compute resource which we 
call a quasi-opportunistic supercomputer. We outlined the middleware that we have 
developed to achieve this and although QosCosGrid provides extensive support via 
OpenMPI for parallel C/C++ and Fortran applications, here we have mainly focussed 
on the modifications we made to ProActive Java for supporting inter-cluster commu-
nications and dealing with firewalls and Network Address Translations. Our results, 
which are based on an ecological simulation using parallelized cellular automata, 
demonstrate the feasibility of running non-trivial parallel simulations across 
administrative domains located in different European countries. For large simulations 
there is only a minor reduction in performance when running an inter-cluster simula-
tion compared to a single cluster simulation. QosCosGrid is a largely open-source 
project which is due to be completed in mid-2009.  
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Abstract. The presented paper describes the geostatistical analysis of  
PSInSAR data. This analysis was preceded by short description of PSInSAR 
technique. The geostatistical computations showed in this article were 
performed with the R open-source software containing the gstat package. The 
analysis contains variograms computing (directional variograms) and ordinary 
kriging interpolation. The computationally costly problems in geostatistical 
analysis of PSInSAR data were discussed. 

Keywords: geostatistics, ground deformations, interferometry, kriging, 
PSInSAR. 

1   Introduction 

The computations in geosciences frequently require working with different types of 
data. Nowadays the satellite data are used very often. Among them we can distinguish 
radar and multispectral images. Both types derive information for each pixel of the 
images. Quite often, geoscientists have to analyze these remote sensing data in 
relation to ground measurements, which are usually performed for irregular and rare 
grid due to economical and physical constraints. Comparing large remotely sensed 
data with ground measurements is not only an extremely important task, but also a 
very computationally costly challenge. An example of a computationally intensive 
processing component in geographic data analysis is kriging, which is a geostatistical 
method of interpolation. 

This paper presents the analysis of PSInSAR data. PSInSAR method is 
dynamically developed branch of satellite radar interferometry. Nowadays many 
institutions have implemented the PSInSAR technique to monitor ground 
deformations. This technique cannot constitute an independent tool to study ground 
displacements and PSInSAR data have to be joined with other measurements. The 
analysis of PSInSAR data, which are huge data sets, meets several computational 
problems. In this paper the analysis of PSInSAR data was performed with the use of 
geostatistical methods. The main goal of this analysis was to interpolate values of 
ground displacements at unmeasured locations to produce maps, which can be easily 
analyzed together with satellite images or with interferograms. Performed 
interpolation gives us the opportunity to do a useful comparison between different 
datasets. This work points the main computationally costly problems in geostatistical 
analysis of PSInSAR data. 
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2   PSInSAR Data Set 

Scientists from the Politecnico di Milano (POLIMI) elaborated the PSInSAR 
(Permanent Scatterer Interferometry SAR) technique in the nineties of the 20th 
century. This method exploits sets of dozens SAR images in order to detect small (not 
bigger than several centimeters per year), long period ground deformations [1]. SAR 
(Synthetic Aperture Radar) is a form of radar mounted on the satellite. It emits its 
own microwave radiation towards the surface of the Earth and records the amplitude 
and phase of the signal, which returns to the radar antenna (each pixel of the radar 
image contains information about the phase and amplitude of backscattered signal). 
PSInSAR technique derives information about ground deformations only for PS 
points. PS points are stable radar targets, which means that PS points have time stable 
amplitude and phase in all exploited radar images. These stable radar targets 
correspond very well with man-made features on the ground, such as buildings, 
bridges, viaducts and etc., therefore the density of PS points is much higher in urban 
areas (even more than 1000 PS/km2) than it is in rural areas. PSInSAR method 
provides information about ground displacements for large areas of interest, even 
exceeding 10 000 km2. The spacing of PS points is usually very irregular. PSInSAR 
technique uses archival images, dating back to 1992, and giving us the opportunity to 
reconstruct previous ground deformations. This method enables to detect 
displacements with average annual rate equal to 0.1 mm/yr. Despite the fact that 
PSInSAR technique cannot be an independent tool for ground movements monitoring, 
it complements considerably the conventional leveling and GPS surveying. 

PSInSAR data, which have been presented in this paper, describe small, long-
lasting ground displacements, which occurred in the Upper Silesian Coal Basin 
(Southern Poland) in the years between 1992 and 2003. In this region the intensive 
coal exploitation has been carried on for more than two hundred years. This 
exploitation and complicated geological structure (a lot of faults) makes this area 
particularly endangered with terrain deformations. PSInSAR data for Upper Silesian 
Coal Basin were obtained as a result of 79 SAR images processing. These radar 
images were performed by ESA’s satellites (ERS-1, ERS-2 and ENVISAT). In the 
studied region, which covers more than 1200 km2, about 120 000 PS points were 
identified (Fig. 1). For each of them the average annual motion rate (mm/year) and 
value of coherence were calculated. For 30 000 of these PS points the values of 
monthly, relative ground deformation were also determined. Locations of PS points 
correspond very well with the land development. In this region there are also areas 
without PS points. These areas represent agricultural regions, forests and areas with 
strong ground displacements caused directly by mining activity (in this last case areas 
without PS points are located usually exactly above exploitation parcels) [2]. For the 
Upper Silesian Coal Basin the subsidence phenomenon is characteristic. The values of 
average annual motion rates in this region range from -39 mm/yr to 25 mm/yr. In 
order to explain the origin and mechanism of ground deformations in this studied 
region the PSInSAR data have to be analyzed together with geological, 
hydrogeological and mining data. This analysis has to be preceded by exploratory 
PSInSAR data study and interpolation of displacements at unobserved locations. 
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Fig. 1. Location of 30 000 PS points in the area of Upper Silesian Coal Basin (southern Poland) 

3   Geostatistical Analysis of PSInSAR Data 

The PSInSAR data analysis was performed with the use of geostatistical methods. 
Geostatistics is a subset of statistics specializing in analysis and interpretations of 
geographically referenced data [3]. In geostatistics a spatial autocorrelation among 
sample data is described. This autocorrelation is modeled by a semivariogram, which 
plots the semivariance as a function of distance. The semivariogram (empirical, 
experimental) can be estimated from Nh sample data pairs z(si) and z(si+h) for a 
number of distances (or distance intervals) hj by Eq.(1). 
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The semivariograms provide insight into the spatial structure of a random process. 
One of the main goals of geostatistics is to predict values of variable at unobserved 
locations (in space or in time). Kriging is the geostatistical method of prediction. It is 
based on the theory of the regionalized variables [4]. Interpolation of value of variable 
at an unmeasured location is based on observations of its value at nearby locations. A 
standard version of kriging is called ordinary kriging. The predictions are made as in 
Eq.(2).  
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where the 
T
0λ is a vector of kriging weights (wi) and z is the vector of n observations of 

primary locations. The values of kriging weights should reflect the true spatial 
autocorrelation structure and they are given by ordinary kriging equation system 
Eq.(3): 
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where φ is called Langrange multiplier. In addition to the estimation we can also 
calculate the prediction variance (variance of the prediction error) Eq.(4): 
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where C(s0,si) is the covariance between the new location and the sampled point pair 
and C is a sill (upper bound) of semivariogram. Values of prediction variance derive 
information about quality of used kriging model. 

Geostatistical analysis of PSInSAR data for the area of Upper Silesian Coal Basin 
was performed using R with gstat package. R is a language and environment for 
statistical computing and graphics. It provides methods for advanced statistical 
analysis. Gstat is a package, which derives functions for geostatistical analysis. The 
PSInSAR data analysis was done for 1240 randomly selected PS points and includes 
four main steps (excluding the exploratory data analysis): semivariogram estimation, 
kriging, calculation of prediction variance and cross-validation. All calculations were 
performed on a PC. 

In the first part of the analysis the values of empirical (experimental) semivariograms 
were computed. In order to check how the data's variation depends on the relative 
orientation of data locations the four directional semivariograms were calculated. They 
were performed for directions: 0, 45, 90 and 135 (where 0 is North and 90 is East) 
(Fig. 2). In the next step of analysis the isotropic semivariogram was created (Fig. 3). 
The obtained isotropic semivariogram has a shape suggesting a spherical model. This 
model was adjusted by weighted least-squares (Fig. 3). In case of selected PSInSAR 
data the distance at which the semivariogram reaches the sill (range) is equal 12.2 km 
and beyond this range no correlation exists between two values of ground displacements 
at PS points. 

The isotropic semivariogram estimation is a computationally time-consuming task 
but it has to be executed only once per data set. The same situation holds also for 
semivariogram theoretical model fitting. The semivariograms calculation can cause 
more problems in case of anisotropy that can be modeled by defining range ellipse 
[5]. In this case several directional semivariograms have to be calculated and then for 
each of them the theoretical models have to be fitted. Figure 4 shows the relation 
between numbers of used PS points and semivariogram computational times. The 
relation is distinctly non-linear. In case of large PSInSAR dataset necessity of 
calculation more than one semivariogram causes meaningful increase of 
computational time. 
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Fig. 2. Directional semivariograms for four directions (0 is North, 90 is East) 

 

Fig. 3. Experimental isotropic semivariogram with fitted theoretical model 

The goal of the next step in the geostatistical analysis of PSInSAR data was to 
predict values of ground deformations at unmeasured locations. This task was 
performed using ordinary kriging method. For PSInSAR data it is important to predict 
the values of variable for very dense grid. It is essential when the results of 
interpolation are used to study the stability of individual buildings. In case of 
PSInSAR data, kriging computations are hindered because of location of PS points, 
which is very irregular. In this work the values of subsidence were predicted for the 
grid with only 20000 nodes. The results of kriging are presented in the Fig. 5. 

Kriging is an example of computationally intensive method because it requires the 
solution of a large linear system for each grid node. In the case of large datasets analysis 
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(like PSInSAR dataset) kriging it is too computationally demanding to be run on a PC 
or low performance computing platform. The kriging produces the best results when the 
largest possible number of known points is used to predict values in no measured 
location [6]. This is the most expensive option. In case of PSInSAR data analysis even 
several thousand points can be used to estimate the variable for one grid node. 

The computational time of kriging proceeding also increases when the 
interpolation is done for the dense grid. In this work the computational times for 
kriging proceeding were measured in the R. In the first case the elapsed time was 
measured in relation to the number of grid nodes where the values of ground 
deformations were predicted. In this case the number of PSInSAR data was constant 
 

 

Fig. 4. Timing results for isotropic semivariogram algorithm for different numbers of PS points 

 
Fig. 5. Ordinary kriging output for average annual motion rate [mm/yr] 
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and equal to 1240 PS points. For the studied area five regular grids were prepared. 
The numbers of nods of these grids were corresponding to: 1250, 5000, 20000 and 
80000 nodes. As it can be seen in the Fig. 6 the relation between the computational 
time and the number of grid nodes is linear e.g. double increase of grid nodes causes 
double increase of kriging computational time. 

In the second case the number of grid nodes was constant and equal to 5000 nodes. 
In this part of work the relation between kriging computational times and numbers of 
PS points (used to interpolate values at grid nodes) was studied. It should be 
underlined that the spacing of PS points is irregular and the subsets of PS points were 
selected randomly. The number of PS points was changed from 83 to 2395 points. In 
this case the relation between the computational time and the number of PS points is 
non-linear (Fig. 7). It can be evaluated that for 120 000 PS points the computational 
time equals about 5 days and 13 hours. In order to reduce this time the kriging 
algorithm can be performed in parallel environment [7].  
 

 
Fig. 6. Timing results for kriging algorithm for different numbers of grid nodes 

 
Fig. 7. Timing results for kriging algorithm for different numbers of PS points 
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In the third part of analysis the map of prediction variance was performed (Fig. 8). 
The ability of kriging to produce this kind of map is what separates it from other 
spatial interpolation methods.  

In the last part of the geostatistical analysis the leave-one-out cross validation 
method was used to pinpoint the most problematic PS points. This algorithm of leave-
one-out cross validation is a very computationally costly procedure. In this method 
the value of variable for each individual point is assessed against the whole data set. 
Each data point is visited and the prediction is done with kriging method, but without 
using the observed value. Fig. 9 presents the timing results for leave-one-out cross 
validation algorithm for different numbers of PS points. The number of PS points was 
changed from 83 to 1241 points. The relation between the computational time and the 
number of PS points is non-linear. 

 

 
Fig. 8. Map of prediction variance 

 

Fig. 9. Timing results for cross validation algorithm for different numbers of PS points 
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4   Conclusions  

The geostatistical analysis of PSInSAR data gives good results, yet it is a very 
computationally costly procedure. In this work the analysis was performed only for 
1240 PS points selected randomly from the dataset which includes 120 000 PS points. 
Kriging is the most computationally costly task in geostatistical analysis of ground 
deformation. This task is also crucial because kriging results constitute the base for 
the geological interpretations. The maps of kriging output and prediction variance 
obtained in this work and complemented by different kind of data (geological, 
hydrogeological, mining) enable to determine the relations between values of 
subsidence and mining activity and geological structure of studied region. The 
interpolation of ground displacements for very dense grid give us also opportunity to 
monitor stability of individual objects on the ground e.g. buildings. 

For small datasets the geostatistical analysis can be run on a PC but in case of the 
whole PSInSAR dataset it is necessary to use high performance computing platform 
or distributed architectures. In order to perform the geostatistical analysis for all 
120 000 PS points the parallel kriging algorithm has to be prepared. Designing this 
algorithm the very strong irregularity in data locations has to be taken into 
consideration. 
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Abstract. Research into large-scale distributed systems often relies on
the use of simulation frameworks in order to bypass the disadvantages of
performing experiments on real testbeds. SimGrid is such a framework,
that is widely used and mature. However, we have identified a scalability
problem in SimGrid’s network simulation layer that limits the number
of hosts one can incorporate in a simulation. For modeling large-scale
systems such as grids this is unfortunate, as the simulation of systems
with tens of thousands of hosts is required. This paper describes how we
have overcome this limitation through more efficient storage methods for
network topology and routing information. It also describes our use of
dynamic routing calculations as an alternative to the current SimGrid
method which relies on a static routing table. This reduces the memory
footprint of the network simulation layer significantly, at the cost of a
modest increase in the runtime of the simulation. We evaluate the effect
of our approach quantitatively in a number of experiments.

Keywords: Grid Computing, Grid Simulation, Scalability, SimGrid,
Routing Algorithm, Boost Graph Library.

1 Introduction

Distributed and parallel processing techniques are common today in a wide range
of applications. The increasing scale and complexity of distributed applications
and systems necessitates research into more scalable and efficient algorithms and
techniques for e.g. resource management and job scheduling. The evaluation of
new algorithms on real testbeds is however impeded by their limited flexibility,
controllability and availability. In addition, the costs for building and configuring
large-scale testbeds are high.

For this reason, researchers turn to simulation to evaluate new algorithms
and techniques, especially during the initial phases of development. A widely
used simulation toolkit in this regard is SimGrid [1]. SimGrid is a toolkit pro-
viding functions for the simulation of distributed applications in heterogeneous
distributed environments. It thereby targets platforms that range from a simple
network of workstations to large-scale computational grids.
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However, we have found SimGrid to have a scalability problem that impedes
the simulation of large-scale systems such as grids. Currently, the size of the
simulated networks is mainly limited by system memory. This memory limit is
reached at roughly 4000 hosts on a machine with 8GB of memory. Although
scaling beyond this limit is possible through virtual memory, this results in ex-
tensive swapping which cripples the simulator’s performance. The large memory
requirements of SimGrid are due to the memory-intensive manner of storing the
routing information that is used in the simulated network. Another but less im-
portant problem is due to the structure of the platform (description) files that
describe the network topology in SimGrid. These files are larger than necessary,
resulting in significant startup costs of the simulation and decreased manage-
ability of those files.

This paper introduces methods for improving the scalability of the SimGrid
simulator. The network representation and the traffic routing functions in partic-
ular will be involved. SimGrid’s original route information storage and lookup
methods will be briefly discussed. Subsequently, different methods to improve
them will be described and evaluated using a proof of concept implementation.

2 Scalability Issues

This section gives an overview of the scalability issues that we have identified
in SimGrid. As mentioned before, the maximum attainable number of hosts in
a simulation is limited by the available memory in the system. We take a look
at the way SimGrid processes routing and topology information and how this
influences the memory usage of the simulator.

2.1 SimGrid Simulation Infrastructure

The low-level network simulation in SimGrid is performed by the SURF -module.
SURF provides the core functionalities to simulate a distributed system and is
also responsible for the parsing and processing of the platform files. Another
module, called SIMIX, is an intermediate layer between the low-level SURF -
module and the high-level MSG user API. SIMIX uses deployment (description)
files to describe a simulation scenario by assigning processes, which contain user-
defined logic, to hosts. A typical SimGrid simulation run will first process the
platform and deployment description files and then launch the simulation.

2.2 The Platform Files

SimGrid platform files are used to describe the topology of the network to be
simulated. These files contain an XML-based description of hosts, network links
and routing paths. The specified entities have properties like bandwidth or la-
tency for links, and processing power for hosts. Routing information is statically
specified by a list of links forming the path between each pair of hosts in the
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network. Note that the specified path from source to destination does not nec-
essarily constitute the shortest path, the route can consist of any chain of links.

A recent revision of the platform file XML schema [2] has made it possible
to specify a group of hosts using a cluster element. A cluster element in the
platform file contains a template host configuration for the cluster hosts, that
will be expanded to real hosts by SimGrid during the processing of the platform
file. This functionality reduces the amount of redundant information and thus
the size of the platform file. Specifying routes between clusters is also supported
and will result in the generation of routes between the hosts in the source and
destination clusters during the parsing process. This means that the simulation
code itself has no knowledge about clusters, and that is the cause of a first
inefficiency in the network model. Since the simulator only has knowledge about
hosts, it has to know the specific routes from and to every host in the network.

Although the inclusion of the cluster element has already led to a significant
reduction in the size of platform files, the need to fully specify the routes between
all clusters in the platform files still results in rather large files. Furthermore,
because SURF has no notion of clusters and routes between clusters, all the
individual hosts of a cluster and the associated routes between them need to be
expanded to an in-memory representation.

2.3 The Simulation Datastructures

During the parsing of the platform file, SURF stores the specified hosts and
routes, as lists of links in a xbt_dict_t1. When the parsing is finished, the
routing information is converted to one large two-dimensional array of size n×n
(with n the number of hosts) containing the network link lists. Each array-
element contains a list of pointers to the actual link data structures that make
up the route from one host to another. This array contains all topology and
routing information necessary to perform the simulation.

The use of the routing array has a substantial impact on the memory usage
of the simulator. A significant amount of information in the route array is re-
dundant, as the hosts of the same cluster have identical routes. Nevertheless, the
advantage of this method is that the lookup of a specific route is very fast as it
merely involves access to memory by direct indexing. The time and space com-
plexity of the route lookup algorithm are respectively O(1) and O(n2l) where n
is the number of hosts and l is the average number of links in a routing path.

3 Improving Scalability

As discussed before, the number of hosts in SimGrid is limited by memory. The
root of this problem lies in the way the routing information is kept in memory
and in the platform files. They both contain redundant routing information by
defining all paths between all hosts, even though a specification of the links from
1 xbt_dict_t: SimGrid uses its own dictionary data structure xbt_dict_t from the

XBT -module which associates a char* with any void* data.
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a host to its neighbours is sufficient to determine the routes between all pairs
of hosts. By eliminating this redundancy in the routing table, scalability should
improve significantly. We have implemented in SimGrid a number of routing
algorithms to calculate routes dynamically. This eliminates the need for the
extensive all-to-all routing table, reducing the memory footprint and the size of
the platform files. In this section, we present a number of routing algorithms
that calculate the required routing path at runtime. This consequently reduces
the amount of memory needed and the size of the platform files.

Table 1 contains formulas that approximate the routing tables’ memory usage
for the different algorithms, where n is the number of hosts, l the average number
of links in a path, m the average number of outgoing links per host, and c the
number of cached entries (the maximum is n).

3.1 Floyd’s Algorithm

We have implemented, in SimGrid, the Floyd-Warshall [3] algorithm for finding
the shortest path between two hosts in the network. It uses an adjacency matrix
that describes the network topology and it produces a predecessor matrix that
holds the destination hosts’ predecessor in the path between a pair of hosts, and
a cost matrix that contains the total cost of that path. The cost and predecessor
matrices are calculated before the start of the simulation itself. When this proce-
dure is completed, the list of links composing the route can be easily constructed
using the predecessor matrix.

The use of this algorithm results in a significant reduction in memory use.
The size of route information data now only depends on the number of hosts,
as opposed to the original algorithm where the length of the route path is an
important factor. This reduction comes at a cost however, as the algorithm
requires more time to initialize before the simulation starts. The route lookups
during the simulation, compared to the current SimGrid implementation, are
only slightly slower. The time and space complexity of the route initialization
algorithm are now O(n3) and O(n2) respectively. The lookup of the route link
list takes only O(l) where l is the average number of links in a routing path.

Table 1. Routing table memory usage approximation formula’s

Method Mem. Usage Formula Information stored in memory

Original n2l × sizeptr list of (pointers to) links per host pair
Floyd n2 × (sizedouble + sizeint + sizeptr) path cost, predecessor ID of path and

link-pointer per host pair
Dijkstra n × (sizeptr + sizeint) + nm host ID, adjacent host IDs and link-

pointers
Dijkstra
w. cache

n × (sizeptr + sizeint) + nm
+ nc × sizeint

host ID, adjacent host IDs, link-
pointers and cached predecessor IDs
of paths from source host
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3.2 Dijkstra Shortest Path Algorithm

A standard Dijkstra shortest path algorithm [4] can be used from within the
simulation itself, which eliminates the need for initialization of the routing table,
and it will further reduce the memory footprint. For the implementation of this
algorithm we have used the C++ Boost Graph Library (BGL) [5]. The algorithm
produces a predecessor list for all routing paths starting from one source host
to every other host in the network, based on a adjacency list. The reduction
in memory usage is due to the use of an adjacency list instead of a matrix to
represent the network as a graph.

The Dijkstra shortest path algorithm yields a significant reduction of the
memory needed. The space complexity of this algorithm is O(nm), with m the
average number of outgoing links per host. This algorithm results in a linear
instead of quadratic increase in memory usage as a function of the number of
hosts. The time complexity in this case adds up to O(n log n) for each route
lookup.

3.3 Dijkstra with Caching

The Dijkstra algorithm is a substantial improvement when it comes to memory
usage, but it has a large impact on runtime performance. To improve this situa-
tion, we have used a cache for the calculated predecessor array. All routes from
one source host to all other hosts are cached at the first lookup of a path from
the source host. The space complexity then becomes O(nm + cn), with m the
average outgoing links and c the cache size. Time complexity is still O(n log n)
for the first calculation of a route and O(log c) for all succeeding route lookups
from the cache, where c is the size of the cache. A C++ Standard Template
Library (STL) map [6], is used for the cache. The effect of this cache on actual
memory use and runtime performance depends on the simulated scenario.

3.4 Necessary Topology Changes

Implemention of the aforementioned algorithms requires some changes to Sim-
Grid, as SimGrid allows one to describe a route as a chain of links in the platform
files where the links do not necessary have real hosts (or other hops) in between
them. Our route calculation algorithms are not capable of working with such
a route description, because they calculate a routing path as a composition of
single links between hosts. The specification of the routes as a chain of links
does not allow one to derive the network topology graph, as two hosts in the
same cluster can be configured to have a completely different route to the same
destination.

Another problem is that SimGrid implicitly creates links when a cluster is
specified. To still be able to use the cluster declaration syntax in the platform
files, the generation of links for clusters in SURF was altered. SimGrid currently
only creates a backbone link in a cluster, connecting all of its hosts. The backbone
link should then be used in the platform files to link the cluster hosts to a gateway
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Fig. 1. New cluster network topology

connecting to the rest of the network. This way, all incoming and outgoing traffic
has to pass through the cluster’s gateway host. To perform a fair comparison
against the original SimGrid routing method, this network topology change is
also used with the original routing scheme. Figure 1 shows this new topology
scheme graphically.

4 Experiments

We compare the algorithms of the previous section to the original approach
used in SimGrid. We evaluate the differences in performance, memory usage
and disk space requirements. Our evaluation has been carried out with the
masterslave_forward example that comes with the SimGrid source code. This
example simulates a number of master hosts sending tasks to other slave hosts.
Platform files of various sized networks with their corresponding deployment
files were generated. The deployment files define 1 host for each cluster that
functions either as master or as a slave, and each master has 4 other slave hosts.
Each master distributes 20 “tasks” among its slaves. The tests are carried out
on a Linux 64-bit machine with 32GB of RAM. The results are taken from one
testrun, as we haven’t found a considerable variance between different runs.

4.1 Platform File Size

As discussed before, the new routing scheme eliminates the need for a full spec-
ification of all routing paths through the network. Only the links between two
adjacent hosts need to be specified. Platform files were generated using a mod-
ified version of the Java PlatformGenerator from the “contributed section” of
the SimGrid source code repository. The platform generator was used to pro-
duce platform files that comply with the Barabási–Albert (BA) network topology
model [7]. The generated platform files are based on a given number of clusters
and a network topology fulfilling the BA-laws. Each cluster connects its hosts
through a gateway host to the rest of the network.
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Table 2. SimGrid platform file sizes for an increasing number of clusters in the network

Clusters Original Size New Size % of Original

10 44K 11 K 25.1 %
100 5.5 M 126 K 2.2%
200 22.2 M 254 K 1.1%
300 49.6 M 399 K 0.8%
400 95.7 M 527 K 0.5%
800 422.4 M 1.0 M 0.2%
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Fig. 2. SimGrid’s memory usage in relation to the number of hosts in the network
(logarithmic scale)

The second and third column in Table 2 show the platform file sizes respec-
tively for the original and the new platform file structure for different cluster
counts. The last column contains the percentage of the new against the original
file size. The introduction of a new platform file structure significantly reduces
the file size to a fraction of the original size, but it implies losing the ability to
describe an arbitrary topology (e.g. a hypergraph).

4.2 Memory Footprint

Memory usage with each of the algorithms is measured by monitoring the VmSize
value of the running process’ status file in the Linux proc file system. The VmSize
is the size of the total address space of a process (not including reserved regions)
[8]. The highest value that appeared in this file during a process run is used for
the evaluation.



Improving the Scalability of SimGrid Using Dynamic Routing 413

Figure 2 depicts SimGrid’s memory usage in relation to the number of hosts2

specified in the platform file on a logarithmic scale. It is clear that the memory
usage of the original SimGrid network representation increases very fast. For
example, 20GB of memory is used at about 6000hosts. All other algorithms show
a significant reduction in memory usage, thus allowing for the simulation of larger
networks. The use of Floyd’s algorithm significantly reduces the rate of increase
and the two variants of Dijkstra’s algorithm do so even more. With Floyd’s
algorithm the simulation requires 20GB at about 16000 hosts, an improvement
of more than 250 %. Furthermore, the Dijkstra algorithms are able to handle up
to 16000hosts with about 200MB of memory.

4.3 Runtime Performance

To test the runtime performance of the algorithms, the startup time of the
simulator and the time it takes to calculate or lookup the routes has to be taken
into account. The size of the network affects the startup time for the orginal
scheme and Floyd’s algorithm, but it has no impact for the Dijkstra schemes.
However for the route lookup, the behavior is exactly the opposite. In that case,
Dijkstra takes significantly more time to perform the route calculation compared
to the other algorithms. Consequently, the amount of simulated traffic as well
as the size of the network will influence the performance.

As there is no standard benchmark for the simulator, we focus on the per-
formance of the platform initialization and the route lookups, instead of the
duration of a full simulation. We measure the time it takes to complete the
initialization functions of SimGrid, namely the MSG_create_environment and
MSG_launch_application functions for the parsing and processing of the plat-
form and deployment files respectively, and the amount of time spent looking up
a routing path. We have wrapped the route lookup in a function to be able to
profile accurately. This new function is called from the communicate function in
SURF. For the lookup time, we consider the total amount of time spent in the
wrapper function divided by the number of calls.

Initialization Performance. Table 3 clearly shows that both variants of Dijk-
stra’s algorithm result in the shortest initialization sequence. The Floyd algo-
rithm requires a significant amount of time to initialize the predecessor and cost
matrices. However, storing these on disk can remove this runtime cost for simula-
tions that reuse the same network topology. SimGrid’s original routing algorithm
is significantly slower in initialization than both Dijkstra variants, particularly
for increasing number of hosts.

2 In the tested development version of SimGrid the number of hosts appeared to be
doubled internally compared to the amount of hosts specified by the platform files,
resulting in a memory usage that is 4 times as high as it should be for the original
and the Floyd route algorithm. This explains the difference between Fig. 2 and the
formulas in Table 1.
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Table 3. Total time measurement of the platform and deployment file initialization

Clusters Hosts Dijkstra Dijkstra Floyd Original
w. cache SimGrid

10 280 74 ms 73 ms 772 ms 654 ms
50 1319 343 ms 353 ms 71874 ms 16555 ms
90 2646 806 ms 779 ms 608 s 68376 ms
150 4242 1215 ms 1213 ms 2578 s 183 s
180 5112 1483 ms 1435 ms 4450 s 267 s
250 6854 1907 ms 1968 ms 10867 s 515 s

Table 4. Average duration of a route lookup

Clusters Hosts Dijkstra Dijkstra Floyd Original
w. cache SimGrid

10 280 7629 μs 367 μs 3 μs 2 μs
50 1319 39403 μs 1672 μs 4 μs 2 μs
90 2646 91058 μs 3854 μs 4 μs 2 μs
150 4242 145 ms 6094 μs 5 μs 2 μs
180 5112 173 ms 7759 μs 5 μs 2 μs
250 6854 239 ms 9828 μs 5 μs 2 μs

Route Lookup Performance. For the route lookup performance, we have
measured the execution time of the route calculation function and compared
these timings in Table 4. The Floyd algorithm and the original routing algo-
rithm have a negligible route lookup cost, compared to the duration of other
calculations in the communicate function and the time required for solving Sim-
Grid’s analytical network model. Both Dijkstra algorithms perform much worse
in this regard. Still, the cache makes a significant difference. The efficiency of the
route cache depends on the scenario that is simulated, more specifically on the
number of network messages that are sent from the same host. We have mea-
sured an increase in average computation time per communication by a factor
of 500 for Dijkstra and by a factor of 25 for cached Dijkstra.

5 Future Work

Although our improvements are significant, still more efficient methods can be
developed. These may however require more fundamental changes to SimGrid.
A more advanced way of representing the network topology in memory can fur-
ther reduce the memory usage and also improve performance. If SimGrid has
a real notion of a clusters and its associated nodes, routing can be carried out
between clusters or cluster gateways, partially ignoring the nodes. In a hierar-
chical network representation, it would also be possible to use different routing
algorithms on different levels, each optimized for their specific network topology
or application.
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6 Conclusion

The simulation of large-scale distributed systems using SimGrid is currently
impeded by intensive memory usage of SimGrid’s network representation and
routing facilities. In addition, the platform files that describe large network con-
figurations require a significant amount of parsing time and disk space. An ad-
vantage however, is the low runtime cost of route lookups which is independent
of the number of hosts in the network.

In support of simulating large-scale systems with SimGrid, we have presented
a number of routing algorithms that considerably reduce the amount of memory
required for simulating the network. We have demonstrated that route calcula-
tion with Floyd’s routing algorithm significantly reduces the memory footprint.
Startup costs of the simulation however are heavily affected by the number of
hosts, while the route calculation is almost as fast as the original route lookup
method. The Dijkstra algorithm results in a major decrease in memory usage,
but induces a runtime cost for calculating the routes at each route lookup. In
order to mitigate this, a cached version of Dijkstra’s algorithm was introduced
that induces this cost only the first time a route is asked for, at the cost of
slightly higher use of memory. The introduction of these algorithms results in a
classical space-time tradeoff. In this regard, we have shown the implications for
each algorithm in terms of memory usage and runtime cost.
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Abstract. In contrast to the one-dimensional structure of natural language, im-
ages consist of two- or three-dimensional structures. This contrast in dimen-
sionality causes the mapping between words and images to be a challenging, 
poorly understood and undertheorized task. In this paper, we present a general 
theoretical framework for semantic visual abstraction in massive image data-
bases. Our framework applies specifically to facial identification and visual 
search for such recognition. It accommodates the by now commonplace obser-
vation that, through a graph-based visual abstraction, language allows humans 
to categorize objects and to provide verbal annotations to shapes. Our  
theoretical framework assumes a hidden layer between facial features and the 
referencing of expressive words. This hidden layer contains key points of corre-
spondence that can be articulated mathematically, visually or verbally. A se-
mantic visual abstraction network is designed for efficient facial recognition in 
massive visual datasets. In this paper, we demonstrate how a two-way mapping 
of words and facial shapes is feasible in facial information retrieval and  
reconstruction.  

Keywords: semantic network, visual abstraction, visual search, human features, 
face, face recognition, information retrieval, video analytics. 

1   Introduction 

If a picture is worth 10,000 words [5], can a word be worth 10,000 images? The an-
swer is yes. As visual abstractions, many linguistic referring expressions convey vis-
ual information with much greater efficiency than visual images. In our everyday life, 
we detect, recognize and retrieve images with words, which dramatically compress 
the representational information data space. For example, we often describe a traffic 
intersection with a letter ‘T’, or ‘X’, where we compress an image (e.g. 1 megabyte) 
to a letter (e.g. 1 byte). We also can retrieve images from our memory with words. 
This two-way transformation has been culturally supported since the invention of the 
alphabet. One central objective of this paper is to address how to improve visual 
search processes by the two-way mapping of images and words. This study will also 
demonstrate applications to real-world problems, such as the identification of faces  
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Fig. 1. Overview of the semantic visual abstraction in a network 

 

from a massive video database. Given a method to detect gaze and objects, how do we 
encode our visual information in multiple resolutions to minimize the communication 
load and maximize the efficiency for information retrieving? Figure 1 illustrates the 
architecture of a visual abstraction network. 

2   Image-Word Mapping 

For many years, cognitive scientists have investigated visual abstraction from psychologi-
cal experiments including visual search using foveal vision [17-27] and mental rotation 
[30].   Visual abstraction models have also been developed,  notably Marr’s cylinder 
model of human body structures [28] and the spring-mass graph model of facial structures 
[29]. Unfortunately, those visual abstractions don’t address the image-word two-way 
mapping issues in particular. Recently, scientists have begun to model the relationship 
between words and images. CaMeRa [8], for example, is a computational model of multi-
ple representations, including imagery, numbers and words. However, the mapping be-
tween the words and images in this system is linear and singular, lacking flexibility. An 
Artificial Neural Network model has been proposed to understand oil paintings [9], where 
Solso remarks that the hidden layers of the neural network enable the two-way mapping of 
words and visual features more effectively. With this method, Solso has argued that fewer 
neurons are required to represent more images.  However, the content of the hidden layers 
of the neural network remains a mystery.     

Because of the two- or three-dimensional structure of images and the one-dimensional 
structure of language, the mapping between words and images is a challenging and still 
undertheorized task. Arnheim observed that, through abstraction, language categorizes 
objects. Yet language, through its richness, further permits humans to create categoriza-
tions and associations that extend beyond shape alone [2]. As a rich abstractive layer, 
language permits categorizations of textures, two- and three-dimensions, and sub-shapes. 
As an abstractive layer, natural language seems to be the only method we have to  
satisfactorily describe a human subject. To explore this insight further, Roy developed a 
computerized system known as Describer that learns to generate contextualized spoken 
descriptions of objects in visual scenes [10]. Describer illustrates how a description data-
base could be useful when paired with images in constructing a composite image. How-
ever, Describer is limited in representing a simplified block world. 
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Fig. 2. The two-way mapping neural network model 

3   Descriptions for Humans 

Our own work and theoretical framework has focused on the mapping between words 
and images for human features. Why do we focus on human faces? Humans in gen-
eral and human faces in particular provide among the richest vocabularies of visual 
imagery in any modern language. Imaginative literature is a well-known source of 
such descriptions, where human features are often described in detail. In addition, 
reference collections in the English language focused on visual imagery, such as de-
scription and pictorial dictionaries, never fail to have major sections devoted to de-
scriptions of the human face. These sections are typically devoted to anatomical rather 
than social descriptions of faces based on cultural stereotypes and analogies. The 
mappings between images and faces we have been exploring are built upon cultural 
stereotype and analogical associations. 

In the following sections, we briefly overview a variety of semantic visual descrip-
tion methods, including multiple resolution, semantic differentiation, symbol-number, 
and analogy. Then, we introduce the computational implementation of the human 
description through the interaction of words and images. 

4   Multiple Resolution Descriptions 

Human descriptions function as classifiers for shape, color, texture, proportion, size 
and dynamics in multiple resolutions. For example, one may start to describe a per-
son’s torso, then her hairstyle, face, eyes, nose, and mouth. Human feature descrip-
tions have a common hierarchic structure [1]. For example, figure, head, face, eye, et 
al.  Like a painter, verbal descriptions can be built in multiple resolutions.  The words 
may start with a coarse global description and then ‘zoom’ into sub components and 
details. See Fig. 3 for a breakdown of a global description of a human head. 
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Fig. 3. Multi-resolution representation of a face 

In our research to date, we have collected over 100 entries of multi-resolution descriptions 
from imaginative literature. Our collection ranges from global descriptions to components 
and details. Due to limitations of space, we will only enlist a few samples, where the 
underlined sections represent the global levels of description, the bolded show the 
component-based descriptions, and the italicized sections, the details:  
 

• “For A lean face , pitted and scarred, very thick black eyebrows and carbon-
black eyes with deep grainy circles of black under them. A heavy five o’clock 
shadow. But the  skin under all was pale and unhealthy- looking. [11]”  

• “Otto has a face like very ripe peach. His hair is fair and thick, growing low on his 
forehead. He has small sparkling eyes, full of naughtiness, and a wide, 
disarming grin which is too innocent to be true. When he grins, two large 
dimples appear in his peach blossom cheeks.[12] 

• “Webb is the oldest man of their regular foursome, fifty and then some- a lean 
thoughtful gentleman in roofing and siding contracting and supply with a 
calming gravel voice, his long face broken into longitudinal strips by creases and 
his hazel eyes almost lost under an amber tangle of eyebrows.[13]” 

5   Semantic Differential Representation 

The Semantic Differential method measures perceptual and cognitive states in num-
bers or words arrayed on a linear scale. For example, the feeling of pain can be ex-
pressed with adjectives, ranging from weakest to strongest. Figure 4 shows a chart of 
visual, numerical and verbal expressions of pain in hospitals: No Hurt (0), Hurts Little 
Bit (2), Hurts Little More (4), Hurts Even More (6), Hurts Whole Lot (8) and Hurts 
Worst (10). This pictorial representations are very useful in patient communication 
where descriptions of pain type (e.g., pounding, burning) and intensity (e.g., little, a 
lot) lack a robust differentiated vocabulary. 

The physical feeling can be quantified with mathematical models. When the 
change of stimulus (I) is very small, one won’t detect the change. The minimal differ-
ence (ΔI) that is just noticeable is called perceptual threshold and it depends on the 
initial stimulus strength I. At a broad range, the normalized perceptual threshold is a 
constant, ΔI/I = K. This is Weber’s Law [16].  
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Fig. 4. Expressions of pain in pictures, numbers and words 

Given the perceptual strength E, as the stimulus I changes by ΔI, the change of E is 
ΔE. We have the relationship ΔE = K*ΔI/I. Let ΔI be dI and ΔE be dE, thus we have 
the Weber-Fechner’s Law:   
 

                                                   E = K*ln(I) + C                                                                                        
 

where, C is constant and K is Weber Ratio, I is stimulus strength and E is the perceptual 
strength. Weber-Fechner’s Law states that the relationship between our perceptual 
strength and stimulus strength is a logarithmic function. This perhaps explains why we 
are able to use limited words to describe a broad range of sensational experiences. 

6   Symbol-Number Descriptions 

In many cases, numbers can be added to provide even greater granularities. For example, 
the FBI’s Facial Identification Handbook [14] comes with a class name such as bulging  
 

 

Fig. 5. Bulging Eyes from FBI Facial Identification Catalog 
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eyes and then a number to give specific levels and types. The FBI has already created a 
manual for witnesses, victims, and other suspect observers to use in identifying possible 
suspect features. The catalog presents several images per page under a category such as 
“bulging eyes.” Each image in such a category has bulging eyes as a feature, and the 
respondent is asked to identify which image has bulging eyes most closely resembling 
the suspect. See Figure 5 for an example. This book is an extremely efficient and effec-
tive tool for both forensic sketch artists and police detectives. It is most commonly used 
as a tool in helping a witness or victim convey the features of the suspect to the sketch 
artist in order to render an accurate composite sketch.  

7   Analogical Descriptions 

From the multi-resolution point of view, an analogy describes in a coarse way in con-
trast to symbolic-number descriptions. Instead of describing features directly, people 
often find it more intuitive to refer a feature to a stereotype, for example, a movie 
star’s face. The analogical mapping includes structural mapping (e.g. face to face), or 
component mapping (e.g. Lincoln’s ear and Washington’s nose). Children often use 
familiar objects to describe a person, for example using ‘cookie’ as an analogical 
reference for a round face.  

Analogies are culture-based. In the Western world, several nose stereotypes are 
named according to historical figures. Many analogies are from animal noses or 
plants. Fig. 6 illustrates examples of the nose profiles as described above. We use a 
simple line drawing to render the visual presentation. 

Analogies are a trigger of experience, which involves not only images, but also dy-
namics.  The nose at the far right in Fig. 6 shows a ‘volcano nose’, which triggers a 
reader’s physical experience such as pain, eruption, and explosion. In this case, read-
ers not only experience it but also predict the consequence. Therefore, it is an analogy 
of a novel physical process that remains under the visible surface.  

 

Fig. 6. Analogical description of noses 

Given a verbal description of the nose, how do we visually reconstruct the nose 
profile with minimal elements? In this study, we use a set of 5 to 9 ‘control points’ to 
draw a profile. By adjusting the relative positions of the control points, we can recon-
struct many stereotypes of the profiles and many others in between. To smooth the 
profile contour, we apply the Spline [15] curve fitting model. See Fig. 7.  
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Fig. 7. Reconstructing a nose profile with points (black) and Spline curve (red) 

8   The Verbal Description Database for Human Features 

In this study, we have also collected over 100 verbal descriptions of human faces from 
several thesauri and descriptive dictionaries. The structure of the database is as follows: 1) 
the entity, 2) the side of the body, 3) the region of the body, 4) the part of the body, and 5) 
subtypes. The database is organized in terms of the resolution based on a hierarchy of 
human features reduced to each final descriptor. The database is intended to list all possi-
ble measurable descriptors of human features including face, body, and movement. 

 
 

Fig. 8. Interactive facial profile reconstruction based on line-drawing. The code is written in 
Java so that it is possible to run on the Internet. These descriptions can then be rendered and 
distributed on the network: http://www.cmu.edu/vis/project9.html 
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9   Interactive Facial Reconstruction 

We developed a computationally working prototype of the interactive system for 
facial reconstruction. In the system, a user selects the feature keywords in a hierarchi-
cal structure. The computer responds to the selected keyword with a pool of candidate 
features that are coded with labels and numbers. Once a candidate is selected, the 
computer will superimpose the components together and reconstruct the face. See Fig. 
8 and Fig. 9. 

As we know, composite sketches of a suspect are typically done by highly-trained 
professionals. Our system enables inexperienced users to reconstruct a face using only 
a simple menu driven interaction. In addition, this reconstruction process is reversible. 
We have designed it for use not only in facial description studies, but also in studies 
for robotic vision and professional training. 

 

Fig. 9. Interactive front facial reconstruction based on image components  

10   Conclusions 

In this study, we assume a hidden layer between the human perception of facial fea-
tures and referential words that contain ‘control points’ that can be articulated 
mathematically, visually or verbally. Our framework of a semantic network associat-
ing verbal and visual information remains in its early stages. Nevertheless, we  
countenance its long-term promise for understanding how we meaningfully and ef-
fortlessly map between visual and verbal information in the successful interpersonal 
communication about faces.  At this moment, we only have profile and frontal facial 
reconstruction models. In the future, we plan to develop both whole head and body 
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models with far more control points and referencing expressions indexed into those 
points. 

Today, we have an overabundance of data but not nearly enough attention or 
bandwidth. Image and video collections grow at an explosive rate that exceeds the 
capacity of network and human attention. In real-time surveillance systems, over a 
terabyte per hour are transmitted for only a small number of platforms and sensors. 
We believe that the visual abstraction network described in this paper is one of the 
feasible solutions that can and should be more thoroughly developed. 
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Abstract. We propose a method for the assessment and visualization of
high frequency regions of a multiresolution image. We combine both ori-
entation tensor and multiresolution analysis to give a scalar descriptor of
high frequency regions. High values of this scalar space indicate regions
having coincident detail vectors in multiple scales of a wavelet decom-
position. This is useful for finding edges, textures, collinear structures
and salient regions for computer vision methods. The image is decom-
posed into several scales using the Discrete Wavelet Transform (DWT).
The resulting detail spaces form vectors indicating intensity variations
which are combined using orientation tensors. A high frequency scalar
descriptor is then obtained from the resulting tensor for each original
image pixel. Our results show that this descriptor indicates areas having
relevant intensity variation in multiple scales.

Keywords: high frequency detection, multiresolution analysis, orienta-
tion tensor.

1 Introduction

The evaluation of high frequencies in an image is an important task for several
applications in computer vision, computer graphics and image processing. Ob-
jects in a scene are mainly distinguished by the contrast of their borders against
a background. In a signal processing point of view, this can be seen as brightness
variation with multiple frequencies.

However, object and background areas can be arbitrarily complex. One way
of estimating salient regions is to use multiresolution to capture global and local
brightness variations. Even in a non-redundant wavelet decomposition, local and
global borders occurring in the same region may carry useful information. The
problem is to combine the global information into a single image. In this sense,
orientation tensors can capture the multivariate information of several scales and
color channels [1].

In this paper, we combine both orientation tensor and multiresolution anal-
ysis to give a scalar descriptor of high frequency regions. High values of this
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scalar space indicate regions having coincident detail vectors in multiple scales
of wavelet decomposition. This is useful for finding edges, textures, collinear
structures and salient regions for computer vision methods.

2 Related Work

Orientation tensors can be used to analyze and draw conclusions about the
quality of an image. In Fronthaler et al. [2], the objective is to distinguish noisy
content from possible non-trivial structures in biometric assessments. The ori-
entation tensor is decomposed into symmetric representations from which a par-
ticular definition of quality can be estimated.

Wong and Chung [3] use orientation tensors to exploit local structural coher-
ence to improve the quality of the binary segmentation of an image. An esti-
mation of the local structural orientation through eigen decomposition of these
tensors is performed for local structure description.

In Han and Shi [4], the wavelet transform plays an important role in the task
of decomposing a texture image into several levels. Once a decomposition level is
chosen, textures are then removed from the original image by the reconstruction
of low frequencies only.

Bigun et al. [5] use a structure tensor to represent and detect more intricate
patterns than straight lines and edges to produce and filter dense orientation
fields for feature extraction, matching, and pattern recognition.

Schou et al. [6] propose a method to detect line and edge structures in multi-
channel remote sensing images. They also use tensors to represent orientation
information. Vliet and Faas [7] decompose structure tensors to analyze and rep-
resent multiple oriented structures inside a local neighborhood of an image. They
propose cluster analysis to divide the local gradient vectors that would normally
construct a single tensor into a limited number of clusters.

Most of the related works use orientation tensors or multiresolution as a step
to gather specific image information in a single scale. In this paper, a weighted
sum of orientation tensors, obtained from several multiresolution scales, is used
to combine high frequencies in only one tensor field. This resulting tensor field
captures regions having coincident high frequencies that can be used to detect
salient areas.

3 Fundamentals

3.1 Wavelets

The wavelet transform decomposes signals over dilated and translated wavelets
[8]. A wavelet is a function ψ ∈ L2( ) with a zero average:∫ +∞

−∞
ψ(t)dt = 0 (1)
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It is normalized ||ψ|| = 1, and centered in the neighborhood of t = 0. A family
of time-frequency atoms is obtained by scaling ψ by s and translating it by u:

ψu,s(t) =
1√
s
ψ

(
t− u

s

)
(2)

We are interested in wavelets which form a base of L2( 2) to represent images.
If we have an orthonormal wavelet basis in L2( ) given by ψ with the scaling
function φ, we can use

ψ1(x) = φ(x1)ψ(x2), ψ2(x) = ψ(x1)φ(x2), ψ3(x) = ψ(x1)ψ(x2) (3)

to form an orthonormal basis in L2( 2) [8].

{ψ1
j,p, ψ

2
j,p, ψ

3
j,p}[j,p]∈Z3 (4)

In this paper, we define a vector vj,p ∈  3 given by the inner product

vj,p = [I · ψ1
j,p, I · ψ2

j,p, I · ψ3
j,p]

T (5)

at scale j and position p ∈ I, where I is the input image.

3.2 Orientation Tensor

A local orientation tensor is a special case of non-negative symmetric rank 2 ten-
sor, built based on information gathered from an image. As shown by Knutsson
[1], such a tensor can be produced by combining outputs from polar separable
quadrature filters. Because of its construction, such a tensor has special proper-
ties and contains valuable information about said image.

From the definition given by Westin [9], orientation tensors are symmetric,
and thus an orientation tensor T can be decomposed using the Spectral Theorem
as shown in (6), where λi are the eigenvalues of T .

T =
n∑

i=1

λiTi (6)

If Ti projects onto a m-dimensional eigenspace, we may decompose it as

Ti =
m∑

s=1

ese
T
s (7)

where {e1,...,em} is a base of  m. An interesting decomposition of the orientation
tensor T proposed by Westin [9] is given by

T = λnTn +
n−1∑
i=1

(λi − λi+1)Ti (8)

where λi are the eigenvalues corresponding to each eigenvector ei. This is an
interesting decomposition because of its geometric interpretation. In fact, in  3,



432 T.K. de Castro et al.

an orientation tensor T decomposed using (8) can be represented by a spear (its
main orientation), a plate and a ball

T = (λ1 − λ2)T1 + (λ2 − λ3)T2 + λ3T3. (9)

A  3 tensor decomposed by (9), with eigenvalues λ1≥λ2≥λ3, can be inter-
preted as following:

– λ1>>λ2≈λ3 corresponds to an approximately linear tensor, with the spear
component being dominant.

– λ1≈λ2>>λ3 corresponds to an approximately planar tensor, with the plate
component being dominant.

– λ1≈λ2≈λ3 corresponds to an approximately isotropic tensor, with the ball
component being dominant, and no main orientation present.

Consider two orientation tensors A and B and its summation T = A+B. After
the decomposition of T using (9), the component (λ1 − λ2)T1 is an estimate of
the collinearity of the main eigenvectors of A and B.

4 Proposed Method

The method proposed in this paper uses high frequency information extracted
from wavelet analysis. For each scale j, we create a vector based on (5). This
vector contains the high frequency value at vertical, horizontal and diagonal
directions of the image I at the position p and scale j. Symmetric rank 2 tensors
are then created as

Mj,p = vj,pv
T
j,p. (10)

We find the final tensor M0,p for each pixel of the original image using

M0,p =
nj∑

j=1

kjMj,p (11)

to combine the tensors obtained at each scale j, where nj is the number of scales
and kj ∈  is the weight assigned to each scale, given by

kj =
∑np

n=1 Trace(Mj,n)∑nj

k=1
∑np

n=1 Trace(Mk,n)
, (12)

where np is the number of pixels and Trace(Mj,p) is the sum of the eigenval-
ues of Mj,p. The trace represents the amplification driven by the tensor to the
unit sphere and is a good estimator of its importance. Thus, the tensor sum
is weighted by the proportion of energy of each scale in the multiresolution
pyramid.

In order to find Mj,p in (11), we use bilinear interpolation of the tensor values,
relative to each position p in the initial image, at the subsampled image at scale
j to find the resulting tensor Mj,p for each pixel of the initial image. This is
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Fig. 1. A tensor is computed for each pixel in original image by a weighted sum of
corresponding tensors in each scale. In this example, two wavelet decompositions are
performed.

depicted in Fig. 1, where tensors are represented as superquadric glyphs whose
longer axis shows the main direction.

Note that the tensor presented in (11) is a 3×3 positive symmetric matrix with
real coefficients, and thus we may apply (9). We then find the main orientation
component (spear) of the final orientation tensor for each pixel of the input
image. This component indicates the collinearity of the interpolated tensors and
provides interesting results.

4.1 Implementation

The proposed algorithm consists of three main steps: a discrete wavelet transform
[8,10], a tensor field computation and a weighted sum of the computed tensors.
The whole process is illustrated in Fig. 2.

The number of scales to be used is a parameter of the algorithm. The DWT
splits the image into three detail components and one scale component in the
beginning of each iteration. In the next iteration, the same process is applied,
using the resulting scale component as the input image.

For each pixel of the input image, its correspondent position at the current
scale is computed with subpixel precision for each resolution. The four nearest
pixels in a given resolution are used to compute the final tensor. The vectors vj,p

described in (5) are computed for each of these pixels and then used to compute
four spear type tensors. The final tensor for the subpixel position is obtained
by combining these four tensors with bilinear interpolation. The pixel tensor is
computed by combining the nj tensors as showed in (11).

The pixel tensors are decomposed and their eigenvalues are then extracted.
The values λ1 - λ2 are computed and normalized to form the output image. Color
images are split into three monochromatic channels (Red, Green and Blue) and
the proposed algorithm is applied to each channel separately. The tensors for
each color channel are summed before eigen decomposition.
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Fig. 2. Example of the proposed algorithm using Daubechies1 to decompose the image
into two scales

The complexity of the whole process is O(nj · np), where nj is the number
of analyzed scales and np the amount of input pixels. Thus, this is an efficient
method that can be further parallelized.

5 Experimental Results

The first experiment consists of fixing an input image and varying the wavelet
function and the amount of analyzed scales. This is shown in Figures 3 and
4 where the DWT is applied with different analyzing Daubechies filters and
number of scales.

Comparing the Fig. 3b with the Fig. 3c, one may see that the number of scales
is important to capture the coarse detail from the image. Note that the church’s
floor has low frequencies that cannot be detected using only one scale Fig. 3b. This
is even clearer in Figures 4b and 4c. The ceiling is formed by coincident frequencies
on its geometric details. These details can be better observed in Fig. 4c.

Changing the analyzing filter from Daubechies1 to Daubechies3 provides a
better estimation of soft edge transitions. Figures 3b, 3d, 4b and 4d illustrate
this behavior.

The resulting eigenvectors associated to the greatest eigenvalues λ1 are shown
in Fig. 5. The tensors eigenvectors are overlayed with the original image using
the thermal color to indicate λ1 − λ2. Note that they indicate regular patterns
in high frequency regions.

In general, it can be noted that high frequencies occurring in the same re-
gion at different scales are highlighted by this method. The thermal coloring is a
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(a)

(b) (c)

(d) (e)

Fig. 3. (a) input image. (b) λ1 - λ2 with Daubechies1 and 1 scale. c) Daubechies1 and
3 scales. d) Daubechies3 and 1 scale. e) Daubechies3 and 3 scales.

smooth transition from blue to red, where blue means absence of high frequen-
cies, and red means presence of high frequencies. The green regions also indicate
high frequencies, but not as intense as those indicated by red regions. The tensors
obtained in the red regions have better estimation of higher frequencies.

The second experiment shows the time spent to apply the algorithm in color
images. The Fig. 6 shows the time in seconds in function of the number of
scales and image size. One may see the linear behavior of the algorithm, where
the slope is the number of scales. However, it is important to note that the
algorithm response time may be a bottleneck in real time applications if the
number of pixels is high. All experiments were performed on an Intel Core2 Duo
1.8Ghz CPU using a 32bit compiler.
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(a)

(b) (c)

(d) (e)

Fig. 4. (a) input image. (b) λ1 - λ2 with Daubechies1 and 1 scale. c) Daubechies1 and
3 scales. d) Daubechies3 and 1 scale. e) Daubechies3 and 3 scales.

Fig. 5. Eigenvector field overlayed with the input image
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Fig. 6. Evaluation of the running time in function of the number of scales and amount
of pixels of a color image

6 Conclusions and Future Works

A method for high frequency assessment and visualization was proposed. It is
based on the DWT decomposition and detail information merging using orien-
tation tensors. This multiresolution analysis showed to be suitable for detecting
relevant edges and salient areas in an image. Due to the multivariate nature of
tensors, the process can be easily applied in color images.

The experimental results show that the high frequency information can be
inferred by varying the DWT filters and number of scales. Coincident frequencies
in space domain are successfully highlighted. By tuning the number of scales,
one may infer texture feature regions. As shown, the linear complexity is suitable
for high performance processes.

The λ1−λ2 scalar field is one of the most used orientation alignment descrip-
tors. However, other relations can be extracted from final pixel tensors. Future
works should evaluate this remaining tensor information. As an example, there
is promising information coded in the tensor eigenvectors. It is also interesting
to investigate the tensor field instead of isolated tensors.

The discrete wavelet transform and the tensor summation can be easily par-
allelized. The use of rising technologies like GPGPUs and multicore CPUs turns
this method attractive for high performance applications.
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Abstract. Given 3D scanned anthropological models and the physical parame-
ters of a microwave imaging system, we develop a virtual human surface im-
agery system with a finite multi-physics surface model. The concealed object 
detection algorithms are developed based on the wave intensity and surface 
characteristics. The virtual human image system can be integrated into a  
systematic design process, enabling multidisciplinary innovations in security, 
privacy, healthcare, computer vision, and information visualization. This for-
ward-thinking approach intends to transform the development of human imag-
ing technologies from being device-specific and proprietary to being device-
independent and open source-oriented. It also transforms the research into a 
systematic design process, enabling multidisciplinary innovations in digital hu-
man modeling, computer vision, information visualization, and computational 
aesthetics. This study can help to design privacy-aware imaging systems in air-
ports and medical systems.  

Keywords: human body, feature recognition, 3D scan, security, privacy. 

1   Introduction 

The goal of this study is to build a general computational model for designing and 
evaluating human imaging technologies before a physical system is built. This for-
ward-thinking approach intends to transform the development of human imaging 
technologies from being device-specific and proprietary to being device-independent 
and open source. This also transforms imaging research into a systematic design proc-
ess, which requires multidisciplinary innovations in digital human modeling, com-
puter vision and information visualization. 

For example, the growing demand for three-dimensional holographic imaging sys-
tems has created significant interests in many disciplines. Current devices operate 
using a millimeter wave transceiver to reflect the signal off the human body and any 
objects carried on it. These devices penetrate items that are less dense, such as cloth-
ing and hair [5,6,7,8,9,10,11,12,13,14,15,45]. Unlike the latest metal detectors, the 
system can also detect non-metal threats or contraband, including plastics, liquids, 
drugs and ceramic weapons hidden under clothing. These high-resolution scanned 
images reveal intimate bodily details and have raised serious privacy concerns.  

Most of the research and development of human scanning systems has been done 
through unpopular projects in a few private companies or in government laboratories. 
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As a result, most of the technologies are either device specific or proprietary, which 
has slowed down the overall advancement of privacy technologies for the 3D body 
scanning systems. 

The following problems warrant a scientific investigation: 1) Given the available 
databases of anthropological models and the physical parameters of human imaging 
systems, we simulate the scanning imagery data to be used as an open source for 
broader research communities; 2) We develop effective algorithms to find the human 
surface features from the 3D scanning data; Finally, 3) we develop the algorithms to 
discern concealed objects from the human body. Fig. 1 shows an illustration of the 
framework.  

 

Fig. 1. The framework of the multidisciplinary modeling process that merges at least four 
domains: computer simulation, computer vision, information visualization and human-centered 
computing 

The physically augmented virtual human model is the central idea in the study. In 
the world of medical research and development, scientists often use so-called ‘phan-
toms’ to calibrate a new medical instrument. Affordable phantom databases and arti-
facts, such as Mathworks’ MRI brain phantom images [33], National Library of Medi-
cine’s Visible Humans [34] and DARPA’s Digital Soldier [35], significantly reduce 
development cycles and increase opportunities for interdisciplinary collaboration and 
education. Currently, there is no shared scientific benchmarking database in the secu-
rity human scanning area. In this project, we will develop digital human models that 
not only contain finite surface elements but also physical properties, for example the 
reflection of microwave beams on the skin and concealed objects beneath clothing. 
This requires high-fidelity modeling within a high frequency (900 MHz to 33 GHz) 
electromagnetic field simulation, which reaches the limit of current physical computa-
tion technologies. Compared to MRI imaging simulation, this task is more computa-
tionally challenging. We envision that our results will inspire a new area of virtual 
imaging technologies. The difficulties of our proposed project include: mapping the 
imperfect laser scanning surface data to the finite element material data, formulating 
the electromagnetic exciting sources, and calibrating the simulated model.  

The algorithm for detecting human surface features enables us to segment the hu-
man body and reduce the search space for anomalous objects. Many machine learning 
algorithms are coordinate-dependent and limited by the training data space, for exam-
ple, artificial neural networks [44]. Some algorithms only work within small bounding 
boxes that do not deliver an acceptable performance. For example, if a feature detec-
tion algorithm takes one hour to process, then it is not useful for a security screening 
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system [31,32]. In this project, we want to develop a model that is invariant to poses 
and coordinates. From a computer vision point of view, detecting features from 3D 
body scan data is nontrivial because human bodies are diverse. The technical method-
ology of function fitting has been used for extracting special landmarks, such as ankle 
joints, from 3D body scan data [31,32], similar to the method for extracting land-
marks on terrain [21,22]. Curvature calculation is also introduced from other fields 
such as the sequence dependent curvature structure of DNA [19,20]. These curvature 
calculations use methods such as chain code [30], circle fit, ratio of end-to-end dis-
tance to contour length, ratio of moments of inertia, and cumulative and successive 
bending angles. Curvature values are calculated from the data by fitting a quadratic 
surface over a square window and then calculating the directional derivatives of this 
surface. Sensitivity to data noise is a major problem in both the function fitting and 
curvature calculation methods because typical 3D scanning data is very noisy. Tem-
plate matching appears to be a promising method because it is invariant to the coordi-
nate system [31,32]. However, defining a template and where to match the template is 
challenging because it is unique to each particular feature.  

How to develop a discriminative algorithm to distinguish anomalous objects from 
human parts is a challenge. In this study, we focus on surface and density characteris-
tics, where the objects can be clustered and highlighted based on the spatial curvature 
and spatial density of object data points. Artificial anomalous objects embedded into 
the realistic 3D datasets are used to evaluate the performance of the developed algo-
rithms. This task is the most difficult but most important in the project.  

2   Physically Augmented Virtual Human Model 

We have developed a set of full-scale virtual human models based on the digital sur-
face scanning data from CAESAR database (with necessary license agreement), 
which contains 50 males and 50 females aged 16-65, where 50 of them are North 
American, 24 are Asian, and 26 are from the European survey of Italy, the Nether-
lands and other countries. As we know, all models in the database have feature land-
marks which are important anthropomorphic measurements. We keep them in our 
test-bed. However, all models wore tight underwear. Therefore, we have to remove 
that by applying a low-pass filter. 

In addition, we also use the state-of-art high fidelity laser 3D scanner1 to collect 
our own 20 samples as references. For these in-house models, we will manually anno-
tate the human landmarks. Fig. 2 shows a sample of a 3D human body scanning data 
and the output of the microwave imaging simulation from HFSS2. 

We input the human scan model to High Frequency Simulation System (HFSS) 
where we assign the microwave reflection properties to the 3D surface point clouds. 
This is a non-trivial task because no one has done the full-body microwave imaging 
simulation with HFSS before. According to state-of-the-art microwave simulation 
technology, the approach is feasible but very challenging due to the limitations of the 

                                                           
1 www.creaform3d.com 
2 http://www.ansoft.com/products/hf/hfss/ 
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current software and computers. If we succeed, it would bring a brand new direction 
for virtual prototyping of imagery devices. To accomplish the task within the limited 
time and budget, we simplify the computing problems. For example, to reduce the 
mesh resolution to fit the capacity of the HFSS model, we use the snapshots of fre-
quencies instead of frequency sweeping process and model only portions of the body 
instead of the whole. 

We researched the related patents in order to reverse engineer the technical details. 
We have found at least two kinds of systems, for example, the Ka-band (27 – 33 
GHz) device and Ku band (12 – 18 GHz) device. Due to the different wavelengths 
and scanning methods, the returning signals are different. In addition, we add anoma-
lous objects such as concealed weapons like guns and knives. Fig. 2 shows an exam-
ple of the data with the artificial noises and anomalous artifacts in voxels.  

 

Fig. 2. Real scan image from London Airport (left) and the synthetic image (right) 

3   Algorithm for Detecting Anomalous Objects on Skin 

Effectively detecting anomalous objects and distinguishing them from human body is 
the ultimate purpose of the system. As a result, it can significantly suppress the hu-
man body details as a background. Removing all the human background information 
may be not desirable because we need the location and size references. There are 
many anomaly detection methods: bump-hunting, voxel intensity based, curvature-
based and spatial density based clustering, and so on [36-43]. In this project, we  
develop two spatial analysis models for the anomaly detection: an intensity based 
detection model and a curvature-based model based detection model.  
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3.1   Intensity-Based Detection 

Metal weapons have their own signatures of intensity properties. However, there are 
too many kinds of non-metal weapons, such as liquid explosives, which emit different 
intensity signals. A fixed threshold won’t work. In this study, we use HFSS to simu-
late the scattered radio waves from the objects and human body. 

A typical human scanner’s wave range is between 500 MHz to 33 GHz, which is a 
great challenge to simulate the whole body imaging at the resolution of 1 mm with the 
existing computing resources. To simplify the problem, we crop the 3D human model 
to a solid 1 x 1 x 0.5 ft3 slab with a metal gun on the skin. We use the material prop-
erty for the body with a permittivity and conductivity matching that of sea water (ep-
silon_r = 81, and conductivity = 4 S/m).  We have a material for human muscle, but it 
is only valid up to 6GHz (epsilon_r ~= 50, conductivity ~= 6S/m), so we chose to 
stick with sea water and wouldn't expect a significant difference for the qualitative 
purposes of this simulation.  The gun has the properties of copper.  Here is a result for 
the scattered electric field due to a 1V/m incident plane wave: 

 

Fig. 3. HFSS simulation of the wave intensive image of human body with a gun at 6 GHz 

This is the plot of the magnitude of the electric field at a fixed phase.  If we plotted 
for a sequence of phases between 0 and 180, we would see the field magnitude propa-
gate across the body.  Note that the area occupied by the gun has magnitude values 
near the full 1 V/m, indicating that it reflects most of the signal, whereas the body 
reflects only around half of that.  If we look closely on the left side of the body where 
it intersects the bounding box, we can see a region of high field value (red).  This is 
due to an artificial resonance with the gun and the boundary condition on the box.  
For qualitative purposes, the effect on the rest of the simulation should localized and 
negligible. 
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Based on the simulated image samples of known materials, we can train an artifi-
cial neural network (e.g. Radial Basis Function) to recognize the signature intensity 
[30]. To adapt to a broader range of data and a greater noise level, we will preprocess 
the data with normalization algorithms and filters. 

3.2   Surface Based Detection  

In the continuous case, curvature is defined as the rate of change of slope. In our case, 
the discrete space, the curvature description must be slightly modified to overcome 
difficulties resulting from violation of curve smoothness.  

 

Fig. 4. Slice based feature detection (the object is colored in red) 

We start by slicing the digital model horizontally. We average the points between 
the slices. The curvature scaler descriptor here finds the ratio between the total num-
ber of boundary pixels (length) and the number of boundary pixels where the bound-
ary direction changes significantly. The smaller the number of direction changes, the 
straighter the boundary. In this case, we map the points on the slice to a polar coordi-
nate system because the shape of a body cross-section is in an oval shape.  

With n points, the coordination transforms are defined by equations (1)-(2): 
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Then we use a function of the radius and angles of the points to calculate the anoma-
lous features. From Figure 4, we can see that the anomalous increased the point inten-
sity of surface contour. So the intensity-based method calculates the average point 
distance of specified number of neighboring points. If the neighborhood average  
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distance exceeds the product of overall average distance and specified ratio, then the 
neighboring local area was marked as the anomalous. The algorithm is presented 
below: 

Objective: Determine two sets B and W – set of body points and set of 
alien points accordingly, where B ∪ W = P. 
1. Determine the center point and change Cartesian to polar coordinates. 
2. Select a start point and sort points by the angle to form arrangement P. 

3. from start point in the arrangement by angle Pi ∈P: 

Calculate the values of each point i: 

⊿ri – The difference between two consecutive points. 

⊿αi – The angle between tangent-vectors of two consecutive points. 

4. Calculate the global average value of |⊿r|.  
5. Check each point P for the basis condition to discriminate into body or 
alien objects:  

If k1*Avg(|⊿r|)<|⊿ri|<k3*Avg(|⊿r|) and π/k2<⊿αi<π/k4 

Then P ∈B else P ∈W, where k1,k2,k3,k4 is the threshold pre-evaluated. 

 
The surface based detection was base on the surface curvature calculation. It is well 
known how the notion of Gaussian curvature extends to such discrete surfaces S 
which formed by triangle facets. Thus the Gaussian curvature is supported on the 
vertices p ∈S. Its numerical value is the product of the principal curvatures, κ1 and κ2, 
of the given point. From the concept of Discrete Differential Geometry, the curvature 
is calculated by the following equation: 
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where A(p) is the sum of surface area of triangle facet of the vertex point p, and θ is 
the angle of the corresponding facet. 

The curvature of each point is calculated by the following equation [17]: 
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where yxyx ⋅⋅ ,  represented the first-order and second-order differential. For the se-
quenced discrete points, we use the difference to replace the differential. The interval 
expressed by curvatures which exceeds the specified threshold illuminates the anoma-
lous. Fig. 5 shows the final detection results. 

We believe that fusion of the intensity-based detection and surface based detection 
will improve the feature detection accuracy and reduce the noise.  Because we have 
the heterogeneous human models with different resolution and different orientations 
and sizes, model registration appears to be a challenge. However, for the actual hu-
man scanning systems, this is not a problem because the coordinates of the point 
clouds are known to the designers. 
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Fig. 5. Detected mobile phone object (left) and highlighted gun with the surface feature (right) 

4   Conclusions 

The goal of the proposed research is to build a virtual human imaging system for 
designing and evaluating the related technologies before a physical system is built. 
Given the available databases of anthropological models from CAESAR, 3D scanners 
and the physical parameters of human imaging systems, we simulate the scanning 
imagery data with High Frequency Simulation System (HFSS).  

The concealed object detection algorithms are developed based on the wave intensive 
and surface characteristics. This forward-thinking approach intends to transform the de-
velopment of human imaging technologies from being device-specific and proprietary to 
being device-independent and open source-oriented. It will also transform the research 
into a systematic design process, enabling multi-disciplinary innovations in digital human 
modeling, computer vision, information visualization and computational aesthetics. 

The result of this project would have impacts on privacy-aware imaging systems in 
airports and medical systems. They can also benefit custom-fit products that are de-
signed from personal 3D scanning data. Our results can be used in the reconstruction 
of ancient artifacts in digital archeology. In addition, they can be applied to medical 
diagnoses and procedures, such as virtual colonoscopy.  
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Abstract. We present an interactive visualization and clustering algorithm that 
reveals real-time network anomalous events. In the model, glyphs are defined 
with multiple network attributes and clustered with a recursive optimization  
algorithm for dimensional reduction. The user’s visual latency time is incorpo-
rated into the recursive process so that it updates the display and the optimiza-
tion model according to a human-based delay factor and maximizes the capacity 
of real-time computation. The interactive search interface is developed to en-
able the display of similar data points according to the degree of their similarity 
of attributes. Finally, typical network anomalous events are analyzed and visu-
alized such as password guessing, etc. This technology is expected to have an 
impact on visual real-time data mining for network security, sensor networks 
and many other multivariable real-time monitoring systems. 

Keywords: interaction, visualization, network anomaly, anomalous event, clus-
tering. 

1   Introduction 

The paradigm of data visualizations has shifted from merely visual data rendering to 
the model-based visual analysis [1-9][29-31]. Examples include: 1) graph models, 
such as the social interaction theory of “the six degrees of separation” [26], the 
“power law of the linked interactions [22], minimal graph cuts for analyzing the out-
liers in a very large social network [23], 2) color models such as the spectrograph [24] 
of the interaction patterns emerged from gas stations and cellular phone towers, 3) the 
geographical profiling model for investigating serial killer’s spatio-temporal patterns 
[27], 4) the cellular automata model for simulating the dynamics of mass panic in 
public places[25]. These methods computationally incorporate modeling, rules and 
visualization in one algorithm, which enables emergent pattern discovery and empiri-
cal experimentation. 

However, there are limitations to these existing approaches: 1) they are ‘off-line’ 
models, which are based on isolated databases without connections to other dynamic 
systems or continuously updated data streams; 2) they do not normally take physical 
interactions into account, e.g. location, duration and field strength; and 3) many visual 
analytics for network conditions are static, one-shot, rather than interactive or iterative.  

In this study, we focus on the following scientific problems: First, we develop a 
real-time network event simulator with realistic data streams for visual analytics. We 
construct a synthetic real-time network database from a real network server and  
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historical databases. To build such a dynamic database itself warrants scientific re-
search because it involves privacy, fidelity and bandwidth issues. We explore several 
ways to downsize the data space in orders of magnitude. We then investigate which 
method is the best for this kind of problem. We start with a shape-based dynamic 
clustering model for massive multi-attribute data points (e.g. up to 64 attributes in 
10,000 data points) in a 2D space. We then experiment with other representations, 
such as colored micro-arrays, pixel maps and 3D surfaces, etc. 

Secondly, we develop interactive visualization algorithms. Most of existing visu-
alization models that we found are non-interactive, and follow the sequence of ‘data-
process-display’. In this study we develop a set of algorithms that incorporate human 
latency, manual navigation and affection. For example, the human latency-aware 
algorithm converts a batch optimization problem to an incremental optimization prob-
lem that enables the computer to visualize more network data by an order of magni-
tude. The manual navigation of data would allow the multi-resolution system to ‘hide’ 
unnecessary data in a peripheral area and only display the user interested data at the 
highest resolution. As a result, the visualization system can handle increased network 
data by orders of magnitude.  

Finally, we study the visual detection of signatures and anomalies. The biggest is-
sue of network security is intrusion detection and recognizing whether a system has 
been compromised. There are two groups of methods: signature detection and anom-
aly detection [13-19]. Signature-based threat detection scans network traffic for a set 
of predefined attack or vulnerability patterns – similar to today’s anti-virus checking. 
It seeks the “known bad” signatures and assumes that everything else is good. On the 
other side, the behavior-based anomaly detection methods try to define the “known 
good” or “normal” behaviors and assume any deviations from the normal behavior are 
possible attacks. There are many pros and cons in these two approaches: signature 
detection won’t detect any undefined problems and it is computationally expensive 
when the signature definitions increase; the anomaly detection methods can poten-
tially detect unknown attacks, however, they often lead to false alarms because it is 
not so easy to define normal patterns. In our study, visualization is actually a detec-
tion and learning tool that combines signature detection and anomaly detection seam-
lessly.  Compared to those typical Network Intrusion Detection Systems (NIDS), 
which normally require a lengthy supervised machine learning process and a large 
volume of historical data, our approach can avoid this preparation and directly per-
form the learn-by-doing detection. Here we integrate the signature detection for 
known attack patterns (e.g. password guessing) and anomaly detection for spatial 
patterns (e.g. shape anomaly) or temporal patterns (e.g. periodicity). This provides a 
visual way to interpret the network flow and gives a human expert the possibility to 
make the final decision on the detection of an anomaly. 

2   The Real-Time Network Event Simulator 

We assume at any given time, the visualization system assimilates a real-time se-
quence of a network data set, up to 10,000 points, in which each of them has up to 64 
attributes. The update interval is within 10 seconds. The key factor in this project is  
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Fig. 1. The architecture of the network data simulator and visualization system 

how to obtain a stream of continuous network data in a realistic and non-invasive 
way. We use two data sources: 1) CMU campus real-time database, and 2) the KDD 
CUP 1999 database [11]. 

To simulate the dynamics of the network data flow, we use two computers (A as 
the data source and B as the visualization terminal) to generate the simulated continu-
ous network data. Since 2005, we have been collecting the real-time network data 
from the Andrew network server in CMU at 1 point per 10 second interval. The data-
base is in XML format. We have developed a Java code to automatically capture the 
data so that personal identifications are removed. The CMU campus live database 
gives us the real-world fresh data. Every 10 seconds, computer A passes the data to 
computer B. The visualization software updates accordingly. To effectively use the 
information, we add necessary software tools on Computer A, such as the ‘tcpdump’ 
and network traffic analysis utilities.  

Since network attacks are not frequent, we also use the captured attack data from 
the KDD CUP 1999 database [11] as a key reference for designing the algorithm. This 
data represents thousands of connections with 41 different attributes. There are 2 
kinds of attributes: continuous and discrete.  

3   Glyph-Based Dynamic Clustering and Visualization 

The pre-processing task is to normalize the continuous data so that each attribute can 
have the same level of influence when comparing one dataset to another (calculating 
the Euclidean distance). The normalization is performed dividing each attribute by the 
maximum attribute’s value of the whole data scanned during a period of time. The 
normalized attributes can also be multiplied by a coefficient weight that can be ad-
justed according to the importance of each attribute for the detection of an anomaly. 

The second step of the algorithm is to visualize each network connection and their 
41 attributes on a 2 Dimensional graphic. To resolve that, it is necessary to find a 
visualization technique that represents a multidimensional (n-D) array on a 2-D 
graphic. The star glyphs technique [12] is an elegant solution for the problem and it 
fits perfectly for this application. In the glyph’s plot, the dimensions are represented 
as equal-spaced angles from the center of a circle and each axis represents the value 
of the dimension. Figure 2 illustrates a glyph using network attributes. 
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Fig. 2. Glyph definition (left)  and the fixed position glyph display (right) 

The right image in Fig. 2 shows 400 network connections displayed in a Glyph form. 
The glyphs highlighted in red are connections that have similar attributes and conse-
quently a similar glyph’s form. The glyphs on the bottom are connections from a DoS 
(Denial of Service) attack and, comparing to all the other connections, the abnormal 
form emerges. 

The clustering process has two main purposes: first to reduce the large amount of 
data connections (that can be more than 10 thousand for big networks) and second to 
detect a possible anomaly. In order to understand how clustering data can perform 
these two tasks, it is intuitively better to imagine the clusters as galaxies and the net-
work connections as planets. Each planet has its own characteristics that are given by 
its attributes. Thus, planets with similar characteristics cluster together and form a 
galaxy. On normal network traffic, it is expected to have a large number of data 
glyphs with the same normal pattern. This data will create a cluster (like planets of a 
same galaxy). However, for the case of a network intrusion, different clusters will be 
created (like a far-away galaxy). These new clusters do not have the same patterns as 
normal data, thus they are distant from the normal cluster. If the distance between this 
cluster and the “normal” data is bigger than a certain threshold, the algorithm recog-
nizes it as an anomaly. The creation of a cluster was implemented with a simple algo-
rithm by comparing the similarity among the connections’ attributes. This comparison 
can be implemented by calculating the distance between two connections. The Euclid-
ean distance is the simplest form to measure the distance between two vectors and it is 
applied. 

The first step is to create a cluster using a first data called “reference”. The Euclid-
ean distance between this “reference” and the rest of the data is calculated. Data that 
have a distance smaller than a threshold are added to the cluster and set with a flag 
telling that they were already selected. The loop continues choosing new unselected 
“reference” data and so on. The cluster’s mean is also calculated during the process 
and used in the detection part. The anomaly detection for this algorithm is quite  
simple, and it should be improved in future work. The detection is made by adding an 
anomaly threshold: if the Euclidean distance between a cluster’s mean and the global 
mean from all the clusters is bigger than the anomaly threshold, all the data from this 
cluster are anomalies.  
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We start with a case study of network anomaly visualization. We display clusters 
of 10,000 data points, in which each point has 64 attributes in real-time on a regular 
PC. We test Principal Component Analysis, Kohonen Self Organizing Maps (SOMS) 
and Multidimensional Scaling (MDS). The MDS algorithm is to organize a multidi-
mensional data on a two dimensional graphic by coordinate pairs(x,y). The cartesian 
plane makes axes explicit and it is easier to organize data according to their character-
istics. The idea of the MDS is to measure all the data distance in an N-dimensional 
space and place it on 2D display so they obey a same mutual distance relationship. 
However, a 2D perfect configuration is not always possible. Let di j be the multidi-
mensional distance between a point i and j, calculated by the Euclidean distance. Let 
also di j be the 2-dimensional distance between the same point i and j calculated with 

the Pythogorean Theorem . If di j ≠δi j than there is a stress between the 
data and 2D representation. The stress looks to the multidimensional and 2-
dimensional distances between the point P1 and P2. The stress is calculated and the 2D 
positions have to be placed on a way that it minimizes this stress. To minimize it, we 
applied the simplex optimization algorithm.  

 
Figure 3 is an example of the latency-aware algorithm. The glyphs in red are the data 
from a highlighted cluster. The glyphs in blue and green are the other clusters organ-
ized with the MDS algorithm. 

 

Fig. 3. Example of the clustering algorithm 

4   Interactive Visualization Algorithms 

Here we develop a set of algorithms that incorporate human latency, manual naviga-
tion and affection. For example, the human latency-aware algorithm converts a batch 
optimization problem into an incremental optimization problem that enables the com-
puter to visualize more network data by an order of magnitude. The manual naviga-
tion of data would allow the multi-resolution system to ‘hide’ unnecessary data in a 
peripheral area and only display the user interested data at the highest resolution. As a 
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result, the visualization system can handle more network data by multiple orders of 
magnitude. Furthermore, in a 24/7 pervasive real-time visualization system, psycho-
logical boredom is inevitable phenomena.  

4.1   Latency-Aware Computing 

Human vision has about 0.1 second latency which has been an important factor in 
modern video and movie technologies [10]. In principle, a system need not update data 
faster than a human’s response time. In light of this, we can use the human latency to 
design many novel human-centric computing algorithms that incorporate the latency 
factor. Many visualization methods involve the time-consuming algorithms for cluster-
ing and optimization. Instead of waiting for minutes to see the updated results, the 
latency-aware algorithms are designed to synchronize the speed of human vision by 
incremental updating. This should create a new philosophy for algorithm design. 

In this study, we develop the latency-aware multidimensional scaling model. The algo-
rithm is to organize a multidimensional data on a two dimensional graphic by coordinate 
pairs(x,y). Described in Section 3, according to the Pythogorean Theorem. The stress 
looks to the multidimensional and 2-dimensional distances between the points. The stress 
is calculated and the 2D positions have to be placed on a way that it minimize this stress. 
To minimize it, we applied the simplex optimization algorithm. The only difference is that 
here we use an incremental update with a visual pulse interval (e.g. say, between 1/25 sec 
to 10 sec). Faster than 1/25 second is not necessary because human eyes can’t catch up. 
Slower than a 10 sec interval might cause anxiety.  

4.2   Search for Similar Patterns 

Human eyes are good for recognition but poor in searching a massive numerical ma-
trix. On the other hand, a computer is poor in recognition but efficient in performing a 
large searching task. Here we develop an interactive signature or anomaly search 
algorithm: Given a sample glyph with a certain patterns, the computer will search all 
the data on the screen and highlight the ones with similar patterns. Figure 4 shows an 
illustration of the results. 

 

Fig. 4. Highlighted (in red) anomalies with the fixed glyphs (at the bottom of the left image) 
and dynamically clustered ones (red glyphs in the right image)  



456 Y. Cai and R. de M. Franco 

5   Visual Transformation for Signature Detection 

Signature detection is actually a rule-based expert system, which scans network traffic 
for a set of predefined attack patterns – similar to today’s anti-virus checking. It seeks 
the “known bad” signatures.  With the help of technologies like NIDS (Network  
Intrusion Detection Systems), Sniffers and SNMP (simple network management pro-
tocol), different kinds of network attributes and thousands of data samples can be 
retrieved in a very short period of time. However, raw numeric data is difficult to 
interpret. The first scenario focuses on general normal data generation. The connec-
tion and data are made from host B to host A services (HTTP, Telnet, FTP, SMTP, 
HTTPS). We built several connections. Several connections are recorded with 
‘tcpdump’. Figure 5 shows a sequence of a normal dataset and two anomalous data-
sets. 

 

Fig. 5. Samples of normal string vs. anomalous strings 

The second scenario is to make forged data and send out lots of attack data and 
abnormal data from host A, and then record them with ‘tcpdump’. The typical case for 
creating abnormal data is to employ ‘ipmagic’, with which most IP packets can be 
manipulated in any way that we want. Following is a command to send a single 
identical packet for Land attack, which consists of same departing address and port to 
the destination address and port. It covers all attack groups, where DARPA set the 
rules to define attack categories. They are categorized with 4 groups below. 1) DoS:  
denial-of-service, 2) R2L: remote machine to local Machine, 3) U2R: user to root, and 
4) Probing: port scanning. For each group, a representative attack is conducted: ‘juno’ 
attack for DoS, ‘login’ password guessing for R2L, and the attempt for U2R and 
‘nmap’ scanning for probing attack. All the attack runs on the network are stored. 

The next step is to replay stored data in a continuous way where Linux scripts are 
used continuously. After source data is all set, by running ‘tcpreplay’ with options 
and Linux’s scripting, data can be sent in very diverse forms with source data. Fol-
lowing is an example case to send the ‘dumped_data’ with a form of randomized IP 
address and looped 100 times through the interface. After filtering, we can distract 
data from ‘tcpdumped’ data into the computer network. This data is put into visualiza-
tion software, and then the software makes moving glyphs. Figure 6 shows an exam-
ple of the anomalous event ‘password guessing.’ 
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Fig. 6. Example of ‘password guessing’ attack 

This algorithm uses the Euclidean distance among the network connections in 
order to create different clusters according to their patterns. Based on the distance 
among these clusters, anomalies can be detected. It is also possible to visualize the 
multidimensional data using the star glyphs technique. These glyphs give a visual 
representation of the numerical attributes, which allows a human to visually detect 
abnormalities by just looking at the different forms of glyphs.  

6   Conclusions 

Here we present an interactive visualization and clustering algorithm that reveals real-
time network anomalous events. We first build a real-time network event simulator 
based on the replay of the collected network log data from multiple sources. Then we 
develop the interactive visualization model that can be connected to the simulator. In 
the model, glyphs are defined with multiple network attributes and clustered with the 
recursive optimization algorithm for dimensional reduction. The user visual latency 
time is incorporated into the recursive process so that it updates the display and the 
optimization model according to the human vision delay factor and maximizes the 
capacity of the real-time computation. The interactive search interface is developed to 
enable the display of similar data points according to their similarity in attributes. 
Finally, typical network anomalous events are analyzed and visualized such as pass-
word guessing, etc.  

This technology is expected to have an impact on visual real-time data mining for 
network security, sensor networks and many other multivariable real-time monitoring 
systems. 
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Abstract. The time to solve linear systems depends to a large extent on the
choice of the solution method and the properties of the coefficient matrix. Al-
though there are several linear solution methods, in most cases it is impossible
to predict apriori which linear solver would be best suited for a given linear sys-
tem. Recent investigations on selecting linear solvers for a given system have
explored the use of classification techniques based on the linear system parame-
ters for solver selection. In this paper, we present a method to develop low-cost
high-accuracy classifiers. We show that the cost for constructing a classifier can
be significantly reduced by focusing on the computational complexity of each
feature. In particular, we filter out low information linear system parameters and
then order the remaining parameters to decrease the total computation cost for
classification at a prescribed accuracy. Our results indicate that the speedup fac-
tor of the time to compute the feature set using our ordering can be as high as
262. The accuracy and computation time of the feature set generated using our
method is comparable to a near-optimal one, thus demonstrating the effectiveness
of our technique.

1 Introduction

The solution of sparse linear systems comprises the most time-consuming portion of
many scientific simulations. There exist many classes of linear solvers, e.g., direct [7],
iterative [2], and multigrid [18] methods. Preconditioning techniques are used to im-
prove the convergence of iterative methods, leading to an even greater number of solver-
preconditioner combinations (henceforth called solvers). Earlier research [10, 19]
indicates that no linear solution method is consistently the best across different lin-
ear systems. Even with a single application, the “best” solution method can vary across
time-steps and nonlinear iterations thereby making solver selection a very challenging
problem. However, using appropriate solvers can significantly reduce the simulation
time of the application [4, 10, 19].

Recent research concerns investigating the application of machine learning tech-
niques [3, 6, 13, 14, 22] to predict efficient solvers. Classifiers are trained using a sample
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dataset of linear systems and associated solvers. Each entry in the sample dataset con-
sists of (i) the set of linear system properties (feature set), (ii) a solver and (iii) the
solution criteria. In its simplest version, the machine learning algorithm builds a binary
classifier. Given a new linear system (not in the database), a solver and a solution crite-
ria (represented in the database), the classifier predicts whether or not the solver solves
the linear system according to the given solution criteria.

Earlier work in this area [13, 14, 22] focuses primarily on generating high-accuracy
classifiers and the problem of feature selection is not addressed. Results from [11]
demonstrate that filtering out zero-variance features can reduce classifier construction
time. These results indicate the need for further investigation on the choice of features
and their impact on classifier accuracy and time for construction.

In this paper, we present a method for generating low-cost, high-accuracy classifiers.
Section 2 contains a brief overview of classification methods. Sections 3 and 4 contain
our main contributions including an ordering scheme to select features and an empirical
evaluation of its effectiveness. Section 5 contains brief concluding remarks and future
research directions.

2 Background: Supervised Learning and Feature Selection

Supervised learning involves designing a classification function based on a set of al-
ready classified data. Often k-fold cross-validation is used to improve the accuracy of
the classifiers. The database is divided into k subsets. At each instance of learning,
k-1 subsets are used as a training set , and the remaining subset is used as a testing
set. The training set is used to build the classifier and the testing set is used to ver-
ify the accuracy of the classifier. This process is repeated k times, each time with a
different subset as the testing set. The results are combined to produce the final classi-
fier whose accuracy is measured by the percentage of correctly predicted entries in the
testing sets [12, 21].

We consider an entry to be represented by a feature set f1, f2, . . . , fn. The objective
of a binary classifier is to determine whether an unknown entry E belongs to group
C = 0 or C = 1. Some common supervised learning techniques are given below,
K Nearest Neighbor (NN(k)): In this method the class of entry E is determined ac-
cording to the class of the majority of its k nearest neighbors in the feature space. The
NN(k) algorithm is sensitive to the value of k, usually the higher the value, the better
the classification.

Alternating Decision Trees (ADT): In the decision tree algorithm, each node in the tree
represents a particular feature. At each point of traversing the tree, a classification deci-
sion is made based on the value of that feature in the unclassified entry. A decision tree
with one root is known as a Decision Stump (DS). Alternating decision trees represent
a weighted and more generalized form of decision trees containing predictors as well as
decision nodes.The combined score of the visited predictor nodes and the final leaves
determines the classification of the entry. The larger the decision tree, more accurate the
classification.

Naive Bayes (NB): This method uses Bayes’ theorem to classify the input vector. A
naive bayes classifier assumes that the features defining the input vector are independent
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of each other. The classification can be expressed as; NB(E)= p(C=0)
p(C=1)Π

n
i

p(fi|C=0)
p(fi|C=1) ;

where p(fi|C = c) is the probability that fi occurs given that classification is c.

Support Vector Machines (SVM): This method is based on creating a separating hyper-
plane that maximizes the distance between the two classes in the feature space. The
support vector machine classifier can be formulated as; select w, b to minimize ‖w‖,
such that ci(w · xi − b) ≥ 1, for 1 ≤ i ≤ n, where w is the vector perpendicular to the
separating hyperplane.

Feature selection is a preprocessing step in machine learning for eliminating redun-
dant, noisy and irrelevant data [15], thereby reducing classification time and improving
prediction accuracy. Steps for feature selection consist of generating a subset of the fea-
tures, evaluating its effectiveness in improving classification, and once the final subset
is determined, validating it across different data sets [17].

Feature selection methods can be broadly categorized as (i) the filter model, where a
simple evaluation technique or filter is used to identify the feature subset (ii) the wrap-
per model, where the feature subset model is based on evaluation over a data mining
algorithm [16] and (iii) the hybrid model which uses both an independent measure (fil-
ter) as well as a datamining algorithm for feature selection.

3 Towards Low Cost Feature Selection

The evaluation of linear system features represents a significant cost in generating the
classifiers. The cost of computing a feature varies from being proportional to the size
of the matrix to being even more expensive than solving the linear system. Proper-
ties related to matrix sparsity, structure and the norms typically exhibit computational
complexity of O(n) or O(nnz), for a n by n matrix with nnz nonzeros and can be
calculated to their exact values. However, spectral properties such as the singular val-
ues, eigenvalues or the condition number can be even more expensive to calculate than
solving the linear system itself and can be approximated at best.

The cardinality of the feature set contributes to the cost of constructing and using
the classifier. Low cardinality sets can be obtained by eliminating low information or
redundant features. Low information features are those that do not contribute to the
predictive ability of the classifier. Redundant features are those which, based on certain
matrix properties, might have the same value and need not be computed multiple times.
Since many linear systems are generated and solved as part of a larger simulation pro-
cess, the properties of the matrix may not be known beforehand. Additionally, scientists
using the classifier may lack the requisite expertise to eliminate the redundant features.

Earlier research in feature selection concerns eliminating features of zero variance
since they do not contribute to the classifier prediction and identifying redundant fea-
tures based on loading vectors [11]. This technique of eliminating redundant features,
however, can be as expensive as generating an SVM classifier. In this paper, we have
extended the definition of low-information features to those whose variance is below a
certain threshold, α, not necessarily 0 (as in [11]). We also avoid identifying redundant
features based on loading vectors and instead propose inexpensive techniques based
on the variance and mean of the feature distribution. Additionally we propose a feature
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ordering scheme based on the computational complexity of feature calculation, towards
constructing a high-accuracy classifier at low cost.

Our two step method is specified below. In the first step, we eliminate low-information
features based on statistics of feature distribution, and in the second step we order the
remaining features in increasing order of computational complexity to obtain a low-cost
feature set of low cardinality.

1. Feature Set Reduction: The predictive power of a feature depends on the distribution
of its values across the dataset. Consider two extreme cases of distribution of values.
When the values of a feature remain constant across all entries in the dataset, no extra
information can be obtained from that property. At the other end, if the number of
unique values of a feature is equal to the number of entries, we can base our predictions
on just that one property.

Thus the variance across the values of an individual feature provides a good estimate
of the statistical dispersion. If a set of feature vectors exhibit exactly the same variance
and the same mean, it is extremely likely that any one feature from the set can be
expressed as a linear function of the others. We can thus select any one of these features
and eliminate the other redundant feature vectors.

2. Feature Set Ordering: The cardinality of the feature set represents the potential
dimensionality of the data space. As we increase the number of features, we project the
data points into higher dimensions which can potentially lead to better classification
results. However, a large number of features also increases the time to construct the
classifier. It is therefore desirable to construct a classifier without having to include all
features. Towards this goal we propose selecting features in increasing order of their
computational complexity to generate a high-accuracy, low-cost classifier.

Our methods operates on the original set of features, F = f1, f2, . . . , fn, to pro-
duce a smaller set F̂ by eliminating low-information and redundant features from the
set using statistical measures such as the variance, φ(fi), and the mean, μ(fi), of the
individual features. The cardinality of the feature set F̂ is further reduced to the final
set F ∗. This is achieved by ordering the remaining features in increasing order of their
computational complexity, ψ(fi), and adding these ordered features one by one to an
initially empty set F̄ until the accuracy of the classifier generated using F̄ , given by
K(F̄ ), is greater than a specified accuracy, A. The final set of features in F̄ gives the
set F ∗. The individual steps are given below;

1. Compute φ(fi) and μ(fi) for all fi ∈ F .
2. Eliminate fi if φ(fi) ≤ α.
3. For all F̃ ⊂ F , where φ(f i) = φ(f j) and μ(f i) = μ(f j); for all pairs fi, fj ∈ F̃ ,

Eliminate all but one feature fk from F̃ , such that ψ(fk) = min(ψ(fi)), for all
fi ∈ F̃ . Use tie breaking if necessary.

4. After completion of Step 3 we have the reduced set F̂ .
5. Order F̂ such that if ψ(f̂i) ≤ ψ(f̂j), then i < jwhere f̂i, f̂j ∈ F̂ .
6. Set F̄ to an empty set and i = 0.
7. While K(F̄ ) ≤ A

F̄ = f̂i ∪ F̄ .
i = i+ 1.

8. Set F ∗ = F̄
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4 Empirical Results

In this section we empirically evaluate the effectiveness of our feature selection scheme
for classifier construction. Our experiments are based on a collection of 50 symmetric
matrices1, obtained from the University of Florida Sparse Matrix Collection [5]. We
use a suite of linear solvers from the Portable Extensible Toolkit for Scientific Com-
puting (PETSc) [1]. We select a combination of ten Krylov iterators and seven pre-
conditioners and one instance where no preconditioner is used, making a total of 80
linear solvers. The Krylov methods used are: BiConjugate Gradient Squared (BCGS),
Conjugate Gradient (CG), Conjugate Gradient Squared (CGS), Chebychev, General-
ized Minimal Residual (GMRES) with restart values of 5, 30, and 60, Minimal Residual
(MINRES), Richardson, and Transpose-Free Quasi-Minimal Residual (TFQMR).

Each Krylov method is used with the set of the following preconditioners: Incom-
plete Cholesky factorization (ICC), with level of fill 0, Incomplete LU Factorization
(ILU) with levels of fill 0, 1, 2, and 3, Jacobi, and Successive Over Relaxation (SOR).
More details about the Krylov iterators and the preconditioners can be found in [1, 20].
The total number of entries in the dataset of matrices and associated solvers is 3969 (a
small percentage of entries were discarded where the simulation failed to terminate).

We use Anamod [9], developed as part of the SALSA [6] package, to calculate the
properties of the matrices. Each matrix is associated with 57 features, reflecting the
sparsity, variations within the matrix structure, the norm, and the spectral properties.
Table 1 enumerates some of the important features, the complete list of features can be
found in [8]. The complexity of calculating the features is given by O(n), O(nnz) and,
O(ls), i.e., proportional to the time taken to solve the linear system.

Our database of matrix features and solvers is classified into two groups. If for a
linear system-solver pair the solution converges in 1500 iterations, the entry is labeled
as group 1, otherwise it is labeled as group 0. In our dataset, out of the 3969 entries,
37.2% converged according to the solution criteria, which required the residual norm to
be at least 10−3. We constructed classifiers based on the learning techniques described
in Section 2. We used the Weka [21] toolkit to implement these methods on a 10-fold
cross validation of the dataset.

4.1 Analysis of Results

Features Set Reduction: We calculate the variance of the features in the dataset and
eliminate all those whose variance is lower than 102. The graph of the feature variance
is given in Figure 1. Out of the 57 properties, 20 have variance below this threshold.
We also observe that the range of accuracy is higher when the classifiers are generated
from features in the high variance range. For example, the maximum accuracy of a
classifier generated using SVM with one feature from the zero variance group is at

1 The matrix IDs are: msc00726, msc01050, msc01440, nasa2146, nasa2910, bcsstk15,
msc04515, crystk01, bcsstk16, s2rmq4m1, s3rmq4m1, s3rmt3m1, nd3k, msc10848, t2dah a,
bcsstk18, vibrobox, crystm02, dis120, bodyy4, bodyy5, bodyy6, t3dl a, bcsstk36, msc23052,
smt, wathen100, fdm2, jnlbrng1, torsion1, minsurfo, c-62, c-66, nasasrb, qa8fk, qa8fm, fi-
nan512, s3dkq4m2, s3dkt3m2, m t1, x104, shipsec8, ship 003, cfd2, augustus5, engine, pwtk,
lin, af shell4, and augustus7.
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Table 1. Partial set of matrix features for matrix A generated using Anamod

most 63.69%. A similar experiment with a classifier generated from one feature from
above the threshold range can yield as much as 80.67% accuracy.

We observe that, among the remaining 37 features there are some groups of redundant
features such as (row-variability, col-variability), (left-bandwidth, right-bandwidth), (n-
rows, diag-zerostart), (norm1, normInf, symmetry-snorm), (normF, symmetry-fsnorm),
(trace, trace-abs), etc. By eliminating all but one feature from these groups we can fur-
ther reduce the number of features to 21. Compared to the elements in the feature sets
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Fig. 1. Range of variance of different matrix parameters listed in Table 1

used in similar experiments, such as 66 in Xu et. al. [22], 57 in Bhowmick et. al. [3],
33 in Holloway et. al. [13] and 22 in Fuentes [11], the cardinality of the set is lower.

Feature Set Ordering: We order the features according to their computational com-
plexity (as given in Table 1). We provide the empirical results on the classifier accuracy
for two sets of orderings. The first ordering, henceforth called the increasing order,
is based on our strategy of adding features one by one in increasing order of compu-
tational cost. The decreasing order denotes the case when the features are added in
reverse order, i.e., the most computationally expensive feature first and so forth.

Figure 2 compares the change in accuracy as the number of features associated with
the classifier is increased. The top two sub-figures represent classifiers created using
NB, SVM and NN(k) with k=1 and k=10. The lower two sub-figures represent classi-
fiers created using ADT and DS. The left hand sub-figures represent the accuracy as
features are added in increasing order and the right hand sub-figures denote the accu-
racy as the features are added in decreasing order. The dotted lines in the figures mark
the boundary between the different groups of computational complexity, i.e., O(n),
O(nnz) and O(ls). The last value in the graphs denotes the accuracy achieved by a
classifier generated using all the 21 features. The point of the highest accuracy obtained
is marked by an ellipse.

We observe that a set of only 9 features is sufficient to create a classifier whose ac-
curacy is comparable the accuracy of the classifier constructed using all features. This
list of features in increasing order of complexity is: trace, diagonal-variance, diagonal-
average, nrows, norm1, diagonal-dominance, nnzeros, left-bandwidth, and the condition
number.

We observe that for machine learning methods SVM, NB, and NN(k) the best accu-
racy achieved by the increasing order is comparable or even higher than the best accu-
racy achieved using the decreasing order. The number of features required to obtain the
classifier with the best accuracy is almost equal across the increasing and decreasing
orders. Since the increasing order is based on selecting features of low computational
complexity, it is evident that our method will generate classifiers of lower costs.

However, in the case of the decision tree based methods (ADT and DS) the classifier
does not achieve high accuracy until the condition number is added to the feature set.
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Fig. 2. Comparison of accuracy of different classifiers. Top sub-figures: Classifiers generated us-
ing NB, SVM and NN(k). Bottom sub-figures: Classifiers generated using ADT and DS. Left
figures: Features added in increasing order of computational complexity. Right figures: Features
added in decreasing order of computational complexity.

Table 2. Comparison of time to compute feature sets with increasing and decreasing orderings

Method Feature Computing Feature Computing Speedup
Set Time (in secs) Set Time (in secs)
Decreasing Order Increasing Order

NB (condition number 113.08 (trace) .43 262.9
left-bandwidth)

NN(1) (condition number 113.08 (trace, .89 127.05
left-bandwidth) diagonal-variance)

NN(10) (condition number 113.08 (trace) .43 262.9
left-bandwidth)

SVM (condition number 113.95 (trace, diagonal-) 1.13 100.8
left-bandwidth variance, diagonal-

nnzeros, diagonal- average, nrows )
dominance )

ADT (condition number) 112.09 All 9 115.21 .97
DS (condition number) 112.09 All 9 115.21 .97

Average Speedup 125.93
Geometric Mean of Speedup 30.67

Therefore decreasing order achieves the highest accuracy classifier with fewer features
than the increasing order. We conjecture that this happens because the classification
process depends on highly localized decisions.
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Table 2 compares the time taken to compute the features for the highest accuracy
classifiers (with at most the listed 9 features). Since Anamod does not give the time for
calculating each individual feature, we obtain the timing results by computing the requi-
site feature values in MATLAB. We compute the features from a sample of the original
matrix set and project the results. The values indicate that the increasing order achieves
an average speedup of 125 (and a maximum of 262) compared to the decreasing order.
Note that in case of ADT and DS, though all 9 features were used in the increasing order
method, the feature computation time is comparable to that of the decreasing order.

We used a trial-and-error process to estimate the near-optimal feature set that gener-
ates classifiers with the highest accuracy. The highest accuracy feature sets for SVM,
NB, NN(1), and NN(10) were identical with the highest accuracy ones obtained us-
ing our increasing order strategy. The near-optimal feature set for ADT and DS coin-
cided with that obtained by the decreasing order strategy. Based on these observations,
we conclude that for most machine learning methods our strategy for feature ordering
achieves near-optimal classifier accuracy with low feature computation time.

5 Conclusions and Future Work

We have designed a technique for generating low-cost, high-accuracy classifiers based
on ordering features in increasing order of their computational complexity. Based on
the dataset and the machine learning method used, efficient feature selection can speed
up the cost of building classifiers on average by a factor of 125. Most of our feature sets
are identical to near-optimal ones demonstrating that our strategy achieves both low-
cost and high-accuracy. Though we used our feature reduction technique on a linear
system dataset, these results can easily be extended to other classification problems as
well. As part of our future research we plan to study the effect of our algorithms over a
variety of machine learning algorithms and datasets.
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Abstract. Unsaturated flow in porous media is often modeled using
the finite element (FE) method. When employing an implicit version
of the computational equations resulting from the FE discretization, a
nonlinear system of equations is generated that must then be solved
by techniques such as Newton’s method. This paper reveals results of
the effectiveness of three line search techniques when employed within
the framework of the approximate Newton method. The methods of a
bisection line search, a quadratic variation of the norm of the residual
line search, and a relaxation technique are considered, all in the context
of a parallel computing environment.

1 Introduction

Unsaturated flow in porous media creates special difficulties for any computa-
tional model, including the finite element method [4]. Often, an implicit method
is used to prevent the need for extremely small time-steps. When this technique
is employed, a significantly difficult system of nonlinear equations is generated
from the discretization, often having millions of unknowns. A common solution
to this system of nonlinear equations is to use the approximate Newton method
[5]. Often, however, the computed change in the unknown variable (total head in
the case of flow in porous media with constant density of the water) is too much,
so a globalization technique of some kind [6] must be employed. Globalization
can involve both line search algorithms and trust region methods. As it is not
always practical to consider all points inside a trust region to get the optimum
point, ways to limit the search have been developed. One such idea is the dog-leg
method [7]. However, the scope of this work is to consider only line search meth-
ods. The purpose of this paper is to show results of using the three line search
techniques of bisection, a quadratic variation of the norm of the residual, and
a relaxation technique on a test problem that has proven especially difficult to
solve. Results were obtained from a research version of a three-dimensional (3-D)
finite element (FE) groundwater program developed at ERDC and running on
the Cray XT3 using 16 cores.

G. Allen et al. (Eds.): ICCS 2009, Part I, LNCS 5544, pp. 473–480, 2009.
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2 Governing Equations

The version of Richards’ equation used in the finite element code is

∇ · (krKs · ∇φ) = η
∂S

∂t
+ SSs

∂φ

∂t
, (1)

with
φ = h + z , (2)

where kr is the relative hydraulic conductivity, Ks is the saturated hydraulic
conductivity tensor, φ is the total head, η is the porosity, S is the saturation, Ss

is the specific storage, h is the pressure head, and z is the z coordinate. kr and
S are functions of h, thus creating the strong nonlinearity.

3 Finite Element Solution

The following equation represents the completely implicit Euler discretization of
the standard continuous Galerkin technique used in the study:

1
Δt

M
(
un+1) · [un+1 − un

]
+ K

(
un+1) · un+1 = q

(
un+1) , (3)

where Δt is the time-step size; n is the time-step number; M is the mass matrix
as a function of u; un+1 is the vector of unknown total head at the nodes at
time-step, n+ 1; and q is the vector of known flow type terms at the nodes as a
function of u. Since M, K, and q are functions of the unknown vector, un+1, the
nonlinearity is evident. The residual at the nodes as a function of u is therefore

r (u) = q (u)− 1
Δt

M (u) · [u− un]−K (u) · u . (4)

Using, (4), column j of the approximate Jacobian matrix can now be determined
by

Jn+1,k+1
j =

r
(
un+1,k +Δuj êj

)− r
(
un+1,k −Δujêj

)
2Δuj

, (5)

where un+1,k is the value of un+1 at the kth nonlinear iteration, Δuj is a small
change in the jth element of the vector, un+1,k, and êj is a vector containing all
zeroes except with a one in the jth element. The linear system,

Jn+1,k+1 · δun+1,k+1 = −r
(
un+1,k

)
, (6)

can now be solved for the change in u, and the new value of un+1 at nonlinear
iteration, k + 1, now at least temporarily becomes

un+1,k+1 = un+1,k + δun+1,k+1 . (7)
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4 Line Search Techniques

If ‖δu‖∞ becomes sufficiently small, the nonlinear iteration has converged. Oth-
erwise, the process must be continued in some way. Three techniques were con-
sidered in this study, and they will now be briefly described.

4.1 Relaxation

Here, a parameter, β, where 0 < βmin ≤ β ≤ βmax ≤ 1, is used to reduce the
change in u from one nonlinear iteration to the next. That is,

un+1,k+1 = un+1,k + βk+1δun+1,k+1 , (8)

where βk+1 is the value of β at nonlinear iteration, k+1. For this option, only one
value of β is considered in a given nonlinear iteration. Various values of β have
been considered [2]. In this study, β was started at βinit and increased by βadd
if ‖δun+1,k+1‖∞ ≤ ‖δun+1,k‖∞ (that is, βk+2 = βk+1 + βadd) and multiplied
by βreduce if ‖δun+1,k+1‖∞ > ‖δun+1,k‖∞ (that is, βk+2 = βreduceβk+1). Care
was also taken not to go smaller than βmin or larger than βmax. Values that
were found to work well are βmin = 0.1, βmax = 1.0, βadd = 0.005, and
βreduce = 0.677. βinit varies depending on how aggressive the user chooses to
be. βinit was set to 0.2 in this study.

4.2 Bisection Line Search

This technique is a line search where βk+1 is successively reduced during the
given nonlinear iteration, k+1. First, using the notation, r

(
un+1,k+1

)
= rn+1,k+1,

‖rn+1,k+1‖2 is computed from (8) and (4) with βk+1 initially set to 1. If
‖rn+1,k+1‖2 is greater than ‖rn+1,k‖2, then βk+1 is reduced by one-half, and
(8) and (4) are again used to compute the residual. If the norm of this new
residual is smaller than ‖rn+1,k‖2, the process ends. Otherwise, βk+1 is again
cut by one-half, and the above algorithm is repeated. After a relatively small
number of bisections (maximum of 10), the attempt at a line search for this
nonlinear iteration is discontinued, and the next time-step is started.

4.3 Quadratic Variation of the Norm of the Residual Line Search

Using the definitions,

q1 =
∥∥r (un+1,k

)∥∥
2 =

∥∥rn+1,k
∥∥

2 ,

q2 =
∥∥∥∥r(un+1,k +

1
2
δun+1,k+1

)∥∥∥∥
2
, (9)

q3 =
∥∥r (un+1,k + δun+1,k+1)∥∥

2 ,

the norm of the residual is assumed to vary quadratically as

q = (2q1 − 4q2 + 2q3) ζ2 − (3q1 − 4q2 + q3) ζ + q1 , (10)
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when 0 ≤ ζ ≤ 1. Also, dq
dζ = 0 at

ζ0 =
3q1 − 4q2 + q3

4 (q1 − 2q2 + q3)
. (11)

Now if d2q
dζ2 > 0 and 0 < ζ0 < 1, then βk+1 = ζ0 and

un+1,k+1 = un+1,k + ζ0δun+1,k+1 . (12)

However, if this fails but q3 < q1, then βk+1 = 1 and

un+1,k+1 = un+1,k + δun+1,k+1 (13)

is used. Otherwise, the (k + 1)th nonlinear iteration is advanced one-fourth of
the way with βk+1 = 1/4 and

un+1,k+1 = un+1,k +
1
4
δun+1,k+1 . (14)

5 Test Problem with Analytical Solutions

The problem consists of a rectangular box-shaped soil sample with dimensions,
a × b × L, that is initially dry until water is poured at the top of the sample
(see the vertical cross-sectional view in Fig. 1). This 3-D problem has analytical
solutions [9,10], and it can be made arbitrarily difficult by changing a parameter,
α. In this particular test, b is made small, so the two-dimensional (2-D) version
of the boundary conditions and analytical solution is used. The initial condition
is φ = hd + z, where hd is the pressure head of the soil when it is very dry.
The boundary condition on the sides and bottom are the same as the initial
condition, and the boundary condition on the top is

φ =
1
α

ln
[
eαhd +

(
1− eαhd

)
sin

πx

a

]
+ L , (15)

where x is the x coordinate. Also, kr is modeled by the quasi-linear equation
[1,8],

kr = eαh , (16)

and S varies linearly with kr [3,11] as

S − Sd

1− Sd
= kr , (17)

where Sd is the saturation when the soil is very dry.



Testing Line Search Techniques for Finite Element Discretizations 477

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� �a

�

�

L

Apply water at the top
� �

��������������

Fig. 1. Vertical cross-section of the test problem

5.1 Computational Details

The above described problem was run with a = 50 cm, b = 0.25 cm, L = 50 cm,
Ks = a diagonal matrix with each diagonal element being 0.1 cm day−1, hd =
−50 cm, η = 0.45, Sd = 1/3, and Ss = 0. The 2-D cross-section in Fig. 1 was first
divided into a grid of 200 × 1 × 200 cells with Δx = Δy = Δz = 0.25 cm, and
then each cell was divided into 6 tetrahedral elements, which is what the 3-D
FE groundwater program requires. Data sets for relative hydraulic conductivity
given in (16) and saturation modeled by (17) were then computed using 1001
values of pressure head and provided to the FE program input file. Inside the
program, these curves are treated as piecewise linear.

The linear solver that was used is BiCG-Stab. Before the linear system of
equations, Ax = b, as given in (6) is solved, it is normalized by

(FAF)
(
F−1x

)
= Fb (18)

or
Âx̂ = b̂ (19)

where F is a diagonal matrix whose ith term is

Fii =
1√

max (maxj |aij | , ε)
(20)

where aij is is the (ij)th component of A, and ε is a small number. After the
linear solve is completed, the final solution is computed by

x = Fx̂ (21)
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Since the equations are normalized with most of the diagonal terms of A now
being 1, no further preconditioning is done in the BiCG-Stab solver.

5.2 Line Search Test Results

Table 1 shows nonlinear count results and timings for the first time-step for differ-
ent values of α, Δt, and nonlinear iteration types when using a rather strong non-
linear convergence criterion of 10−5 for ‖δun+1,k+1‖∞. Each nonlinear iteration
requires at least one linear solve of (6) and a computation of ‖δun+1,k+1‖∞. The
bisection line search requires repeated calculation of the residual norm, ‖r (u)‖2,
which is computationally equivalent to computing the norm of the right-hand side
of (6). This is an element-by-element computation of (4). The quadratic line search
requires the computation of ‖r (u)‖2 at the middle and end of the Newton step.
The relaxation method does not require any extra computations of (4).

Each linear iteration in BiCG-Stab is dominated by two matrix-vector multi-
plications of the type, Âv, where v represents utility temporary vectors. Both
Â and v are distributed over the parallel cores, thus requiring ghost node up-
dating at strategic times using MPI. The linear solve is typically the dominant
computation.

The running times given in Table 1 do not precisely delineate the impact of the
different factors. To get at least a clearer understanding of these timing results,
the number of linear iterations in BiCG-Stab for the first five nonlinear iterations

Table 1. Nonlinear iteration count and time in seconds for the first time-step for the
three line search types, two values of α, and three values of Δt

α
(
cm−1) Δt (day) Line search type Nonlinear iteration count Time (sec)

0.05 0.1 Bisection 7 3.27
0.05 0.1 Quadratic 14 5.18
0.05 0.1 Relaxation 42 12.20

0.05 0.01 Bisection 8 2.77
0.05 0.01 Quadratic 15 4.21
0.05 0.01 Relaxation 45 8.37

0.05 0.001 Bisection 5 2.24
0.05 0.001 Quadratic 12 3.33
0.05 0.001 Relaxation 41 6.81

0.2 0.1 Bisection 23 5.58
0.2 0.1 Quadratic 29 7.97
0.2 0.1 Relaxation 168 27.89

0.2 0.01 Bisection 12 3.51
0.2 0.01 Quadratic 18 4.73
0.2 0.01 Relaxation 52 9.08

0.2 0.001 Bisection ∞ -
0.2 0.001 Quadratic 17 4.27
0.2 0.001 Relaxation 46 7.83
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Table 2. Linear iterations required for the first five nonlinear iterations for α =
0.05 cm−1, the bisection method, and three values of Δt

Δt (day) #1 #2 #3 #4 #5

0.1 63 44 50 30 3
0.01 24 15 13 10 6
0.001 7 4 3 1 1

of the first time-step are tabulated in Table 2 for α = 0.05 cm−1, the bisection
method, and the three valuers of Δt. These results show that the number of
linear iterations per nonlinear time-step is significantly reduced when the time-
step size is reduced, and this helps explain the reduction in the running times
in Table 1. For example, the reduction of running time from 3.27 sec to 2.77 sec
while the number of nonlinear iterations increased from 7 to 8 as the time-step
size is changed from 0.1 day to 0.01 day is explained by the linear iterations
going from 63 to 24, 44 to 15, 50 to 13, 30 to 10, and 3 to 6, respectively.

6 Conclusions and Further Research

Conclusions that can be drawn from the above results are as follows:

1. As α is increased, the number of nonlinear iterations for all three methods
increase.

2. The bisection method almost always was the most efficient. However, it
stalled at an unpredictable time. It stalled because 10 unsuccessful bisec-
tions generated a very small change in total head. This failure was repeated
indefinitely.

3. The relaxation method almost always was the least efficient.
4. Significant improvement in running time could potentially be achieved by

implementing a more sophisticated linear solver. This is an area of future
work.

5. Reducing the time-step size typically reduced both the number of nonlinear
iterations and the number of linear iterations per nonlinear iteration.

6. More sophisticated nonlinear solvers/globilization techniques should be in-
vestigated to improve robustness. The one nonlinear failure reported in this
paper has been observed in solving other difficult problems. Further research
is needed.
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Abstract. A non-splitting method for tridiagonalizing complex symmet-
ric (non-Hermitian) matrices is developed and analyzed. The main ob-
jective is to exploit the purely structural symmetry in terms of runtime
performance. Based on the analytical derivation of the method, For-
tran implementations of a blocked variant are developed and extensively
evaluated experimentally. In particular, it is illustrated that a straight-
forward implementation based on the analytical derivation exhibits de-
ficiencies in terms of numerical properties. Nevertheless, it is also shown
that the blocked non-splitting method shows very promising results in
terms of runtime performance. On average, a speed-up of more than three
is achieved over competing methods. Although more work is needed to
improve the numerical properties of the non-splitting tridiagonalization
method, the runtime performance achieved with this non-unitary tridiag-
onalization process is very encouraging and indicates important research
directions for this class of eigenproblems.

Keywords: Tridiagonalization, complex symmetric eigenvalue problems,
complex symmetric reflector.

1 Introduction

We discuss an algorithm for tridiagonalizing a complex symmetric (non Hermi-
tian) matrix C ∈ Cn×n. This task is a central component in reduction methods
for solving the complex symmetric eigenvalue problem (EVP)

Cx = λx with C ∈ Cn×n, C = C�. (1)

Problems of this type are a special case of general non Hermitian complex
eigenproblems. Although they do not occur as frequently in practice as real sym-
metric or complex Hermitian problems, there are many important applications
where they arise [1]. An example is the numerical solution of Maxwell’s equations
with complex material coefficients (accounting for losses) and/or certain absorb-
ing boundary conditions used in the simulation of optoelectronic devices [2].

G. Allen et al. (Eds.): ICCS 2009, Part I, LNCS 5544, pp. 481–490, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



482 W.N. Gansterer, A.R. Gruber, and C. Pacher

Especially for large n, it is pivotal to exploit the (non Hermitian) symmetry
present in problem (1) in order to be able to efficiently solve such problems.

Hardly any high quality software is available for complex symmetric eigen-
problems. Only Qmrpack [3] contains an implementation of a complex sym-
metric Lanczos algorithm. General purpose state-of-the-art software libraries for
dense numerical linear algebra computations, such as the Blas [4] and La-

pack [5] for sequential computations, or the parallel packages ScaLapack [6]
and Plapack [7], contain very few computational routines which are capable of
specifically exploiting complex symmetry. No such routine for the complex sym-
metric eigenvalue problem is currently available in these state-of-the-art soft-
ware packages. Consequently, the currently most common strategy for solving
problems (1) is to ignore their special properties and to solve them with the
technology available for general non Hermitian problems (for example, using
the routine LAPACK/zgeev): The complex symmetric matrix C is first reduced
to Hessenberg form using unitary transformations, from which eigenvalues and
eigenvectors are computed by applying standard methods for unsymmetric ma-
trices. This strategy has obvious disadvantages in terms of computational effort
and in terms of storage requirements.

The main objective of this paper is to investigate a non-splitting approach
for tridiagonalizing C and to compare it on the one hand to standard methods
for general non Hermitian eigenproblems, and on the other hand to the splitting
tridiagonalization method for complex symmetric matrices discussed earlier [2].

Related Work. Various projection methods for solving complex symmetric
EVPs have been proposed, for example, based on modifications of the non-
Hermitian Lanczos method [3,8,9], on subspace iteration [10], or on variants of
the Jacobi-Davidson method [11].

For dense matrices and/or if large parts of the spectrum are to be computed,
transformation methods (based on tridiagonalization) can be more efficient [12].
For these methods, the tridiagonalization step tends to be a dominating part
in terms of arithmetic complexity and usually also computation time. Earlier
attempts were based on modifying the conventional Householder-based tridiago-
nalization for real symmetric or complex Hermitian matrices such that symmetry
is preserved for complex symmetric problems [13]. In [13], the Householder vector
is normalized using a quasi-inner product, which has several implications: The
normalization factor can become a negative or a complex number, and the re-
sulting transformation matrices are not unitary. The idea of tridiagonalizing real
and imaginary part of C separately, connected by complex orthogonal transfor-
mations (called splitting method in the following) for tridiagonalizing a complex
symmetric matrix has been investigated in [14,2].

For computing eigenvalues and eigenvectors of the resulting tridiagonal com-
plex symmetric problem, modifications of the QR algorithm [15,16] and the
routines cmtql1 and inverm [17] have been used.

In this paper, we investigate non-splitting methods as an alternative approach
for tridiagonalizing a complex symmetric matrix C. The basic concept is very
similar to the one mentioned in [13]. However, in [13] neither a discussion of
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numerical properties (observed deficiencies in accuracy, special techniques for
overcoming them, etc.) nor a quantitative performance evaluation of this ap-
proach is given. We provide a comparison of this approach to the splitting method
in terms of numerical properties and runtime performance.

Synopsis. In Section 2 we review general properties of complex symmetric ma-
trices and we summarize the splitting method introduced earlier. In Section 3, we
derive a non-splitting tridiagonalization method for complex symmetric matrices
and relate it to generalizations of unitary Householder reflectors. In Section 4, an
experimental evaluation of this non-splitting method and a comparison to other
approaches is summarized, and Section 5 contains conclusions and future work.

2 Background

Mathematically speaking, structural symmetry is not a very distinctive feature
of complex matrices, since every matrix A ∈ Cn×n is similar to a complex sym-
metric matrix [1]. In contrast to a real symmetric matrix, a complex symmetric
matrix A is not necessarily normal and not necessarily diagonalizable [1]. Nev-
ertheless, the purely algebraic symmetry is of great interest for the development
of space- and time-efficient algorithms. Obviously, half of the information in a
complex symmetric matrix is redundant, and efficient algorithms should be able
to take advantage of this fact in terms of memory requirements as well as in
terms of computational effort.

2.1 Complex Orthogonal Transformations

As a basic guideline, there are two conditions for any transformation used in the
tridiagonalizationprocess of C: (i) It has to be a similarity transformation in order
to preserve the spectrum of C, and (ii) it has to be symmetry-preserving in order
to exploit the structural symmetry. Consequently, given a transformation matrix
G ∈ Cn×n, each transformation needs to be of the formGCG−1 in order to satisfy
the first condition and of the formGCG� in order to satisfay the second condition.
In summary, the basic transformation matrices used need to satisfy

GG� = I, (2)

which defines a complex orthogonal transformation [1] (COT) G. Note that G is
not unitary and in general ‖G‖2 > 1. Consequently, the application of complex
orthogonal transformations G potentially involves compromising numerical sta-
bility. In order to bound the numerical errors in transformation processes using
complex orthogonal matrices, their norms have to be monitored, and, if possible,
kept below some properly chosen threshold.

2.2 The Splitting Method

The splitting method, which has been introduced in [14], is based on separating
the tridiagonalization of the real part R of C from the tridiagonalization of the
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imaginary part S of C (R and S are both real symmetric matrices) as much as
possible. For example, the part below the subdiagonal of a column of R (say, of
length k) can be eliminated using a real orthogonal transformation matrix QR.
After that, a k − 1 part of the corresponding column of S can be eliminated
without causing any fill-in in R using another real orthogonal matrix QI. Both
of these operations are performed in real arithmetic, and both transformation
matrices have norm one. Eventually, a single nonzero element below the subdi-
agonal in S remains to be eliminated. This operation has to be performed in
complex arithmetic, using a 2 × 2 complex orthogonal transformation matrix,
whose norm cannot be bounded a priori.

In [2], we have investigated numerical properties and runtime performance
of the splitting method for tridiagonalizing C, and we have pointed out some
algorithmic variants which have not been mentioned in [14]. Our experimental
results showed that the splitting method can achieve good numerical accuracy,
but the runtime performance achieved was often not better than the one achieved
with the routine zgeev from Lapack [5].

3 Non-splitting Tridiagonalization Methods

Non-splitting methods for tridiagonalizing C are characterized by the fact that,
in contrast to the splitting method, they do not split up C into its real and
imaginary parts but operate in complex arithmetic on the complex symmetric
matrix as a whole. The method investigated in this paper can be derived from an
old method proposed by LaBudde [18] for tridiagonalizing any real unsymmetric
matrix. In the following, we first briefly review LaBudde’s method and then show
how it can be modified to tridiagonalize a complex symmetric matrix.

3.1 La Budde’s Method

In order to eliminate a column vector c ∈ Rn−j below the subdiagonal and a
row vector b ∈ Rn−j right of the superdiagonal in an unsymmetric real n × n
matrix, LaBudde [18] determined elimination vectors x, y ∈ Rn−j , such that the
matrices

Mα := In−j + αxy�, α �= 0, (3)
Mβ := In−j + βxy�, β �= 0, (4)

constitute a similarity transformation (MαMβ = In−j) and eliminate all entries
except the first one in the vectors c and b:

Mαc = τ1e1,

bTMβ = τ2e
T
1 ,

where e1 = (1, 0, . . . , 0)T ∈ Rn−j . Carrying out this process over columns j =
1, 2, . . . , n− 2, the given matrix can be transformed to tridiagonal form.
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It turns out that LaBudde’s method breaks down when at some point in the
process s := b�c = 0. LaBudde suggested in [18] to avoid this breakdown by a
proper choice of the parameters α and β in (3) and (4). However, it was pointed
out in [19] that there are at least two categories of matrices where it is not possi-
ble to choose α and β such that recovery from s = 0 is possible. Remedies were
proposed for these cases. Parlett [20] has pointed out that LaBudde’s procedure
applied to Hessenberg matrices is identical to well-known transformation meth-
ods. He also showed that for Hessenberg matrices s is invariant for all permissible
choices of α and β. Therefore, Hessenberg matrices form another class of matrices
where recovery from breakdown is not possible by manipulating α and β.

3.2 Adaptation for Complex Symmetric Matrices

In the complex symmetric case b, c, x, y are complex vectors and c = b, α = β,
x = y. Therefore, Mα = Mβ and Mα = MT

α . This yields the following equations:

Mα = In−j + αxxT , α �= 0, (5)
M2

α = In−j , (6)
Mαc = τe1. (7)

From (5) and (6) and from the fact that in the nontrivial case Mα �= In−j we
can conclude α = −2/xTx and thus

Mα = In−j − 2
xTx

xxT . (8)

Note that in the symmetric case Mα does in fact not depend on α any more and
thus we drop the index α in the following.

Now, the vector x has to be determined so that (7) is satisfied. From (7) we
obtain τ2 = τeT

1 e1τ = cTMTMc = cT c, where the last equation follows from
MTM = MM = I. Consequently

τ = ±
√
cT c,

and the resulting vector
τe1 = ±

√
cT c e1.

Thus, we have

Mc = ±
√
cT c e1 ⇔ c− 2

xTx
(xT c)x = ±

√
cT c e1,

which we must solve for x. Note that x can be scaled by any (complex) number
a without changing M . If we scale x such that 2

xT x (xT c) = 1 holds, then the
following solutions are easily found:

x = c∓
√
cT c e1.
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Consequently, we obtain the following equations for the components of the elim-
ination vector x:

x1 = c1 ∓
√
cT c = c1 − τ, (9)

xk = ck, k = 2, . . . , n. (10)

Note that this is analogous to the definition of the real Householder reflector.
This shows on the one hand that in the real symmetric case La Budde’s method
is identical to real Householder reflectors, and on the other hand that in the com-
plex symmetric case it leads to a direct generalization of Householder reflectors
in complex arithmetic.

3.3 Numerical Properties

Since for a vector x ∈ Cn−j , x�x = 0 is possible even if x �= 0, (8) indicates
that ||M || ≥ 1 and that breakdown and numerical problems are possible. For
the splitting method, various recovery transformations for controlling and im-
proving numerical accuracy have already been investigated [14]. Our derivation
above illustrates that the need for monitoring and improving numerical accuracy
also arises in the context of non-splitting methods. The investigation and devel-
opment of suitable recovery transformations in this context is topic of ongoing
work. In the following section, we evaluate a straightforward implementation of
the basic non-splitting method based on (9) and (10).

4 Experimental Evaluation

For our experiments, we implemented the following routines in Fortran: zsytd2
performs an unblocked non-splitting tridiagonalization of a complex-symmetric
matrix C, zsytrd performs a blocked non-splitting tridiagonalization of complex-
symmetric C, zunm2r2 performs an unblocked backtransformation of the eigen-
vectors of the tridiagonal matrix T to those of C, and zunmtr2 performs a blocked
backtransformation of the eigenvectors of the tridiagonal matrix T to those of
C. The routines compev [17] and inverm [17] were used for computing eigenval-
ues and corresponding eigenvectors of the complex symmetric tridiagonal matrix.
For comparison, the routine LAPACK/zgeev for general non Hermitian eigenvalue
problems was used.

The codes were run on a Sun Fire v40z with 4 dual-core Opteron 875 CPUs
(2.2 GHz) and 24 GB main memory. Suse Linux Enterprise Server 10, the GNU
Fortran 95 compiler, Lapack version 3.1.1 and Goto Blas 1.20 were used. The
test matrices were created randomly.

4.1 Numerical Accuracy

Denoting with (λi, xi) the eigenpairs computed by LAPACK/zgeev, and with
(λ̃i, x̃i) the eigenpairs computed by non-splitting tridiagonalization followed by
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max R (LAPACK/zgeev)
R (splitting)
E (splitting)

R (non-splitting)
E (non-splitting)

Numerical Accuracy
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Fig. 1. Residuals and eigenvalue errors for different complex symmetric eigensolvers

compev and inverm, an average eigenvalue error E and an average residual error
R have been computed according to

E := averagei

|λ̃i − λi|
|λi| , R = averagei

||(A− λ̃iIn)x̃i||2
||A||2 , i ∈ {1, . . . , n} .

Fig. 1 illustrates the experimental results. It has already been shown in [2] that
the error introduced by the splitting tridiagonalization (without the solver for the
tridiagonal problem) is only about two orders of magnitudes higher than the one
of LAPACK/zgeev. The first straightforward implementation of the non-splitting
method used here looses some more orders of magnitude in accuracy compared
to the splitting method. (Note that for LAPACK/zgeev the maximum residuals
are shown, not their averages.) This indicates the need for improvements of the
numerical properties of the non-splitting tridiagonalization approach, as already
mentioned in Section 3.3. Corresponding efforts are work in progress.

4.2 Runtime Performance

In [2] we have already illustrated that with the Goto Blas, LAPACK/zgeev tends
to outperform the splitting method in terms of runtime performance. Thus, in
Fig. 2 we compare normalized runtimes of blocked non-splitting tridiagonaliza-
tion followed by compev, inverm and blocked backtransformation (the sum of
these runtimes is denoted by nonsplit) to normalized runtimes of LAPACK/zgeev.
Fig. 2 illustrates the big potential of non-splitting tridiagonalization: Its runtime
performance is significantly better than the one of LAPACK/zgeev and conse-
quently also than the one of the splitting method. Despite a similar asymptotic
behavior, the non-splitting approach achieves on average a speed-up of a little
more than three over LAPACK/zgeev.
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compev
zunmtr2
zsytrd

nonsplit
LAPACK/zgeev
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Fig. 2. Normalized runtimes (T (n)/n2) of complex symmetric eigensolver (nonsplit)
based on non-splitting tridiagonalization, of its components, and of LAPACK/zgeev

This underlines the importance of efforts in improving the numerical prop-
erties of the non-splitting approach. If they can be improved by some properly
chosen recovery transformations in cases where the naive implementation used
here suffers from numerical inaccuracies, then a central building block can be
established for a very competitive method for solving dense complex symmetric
eigenproblems (1).

5 Conclusions and Future Work

A non-splitting tridiagonalization process for complex symmetric matrices which
can be derived from a method for tridiagonalizing unsymmetric matrices orig-
inally suggested in [18] has been investigated. It has been shown that this ap-
proach leads to a symmetry preserving generalization of complex Householder
reflectors. The non-splitting tridiagonalization process and a complex symmetric
eigensolver based on it have been analyzed in terms of numerical properties and
runtime performance.

Compared to the standard Lapack routine for general non Hermitian eigen-
problems, LAPACK/zgeev, and to the splitting method proposed and analyzed
earlier [14,2], the naive straightforward implementation of the non-splitting ap-
proach exhibits a loss of numerical accuracy (measured in terms of eigenvalue
error and in terms of residual error). Potential sources for this loss of accuracy
are clear, and work on improving the numerical properties of the non-splitting
method is in progress. In terms of runtime performance, a blocked non-splitting
approach shows very promising results. In the experiments summarized in this
paper, on average a speed-up of more than three could be achieved over compet-
ing methods. If progress can be made in the numerical aspects, then non-splitting
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methods have the potential to become a standard approach for tridiagonalizing
complex symmetric matrices.

The work summarized here motivates various further research directions. As
mentioned before, the improvement of the numerical properties of non-splitting
tridiagonalization is of utmost importance. Once this aspect is sucessfully ad-
dressed, it should be possible to develop parallelization strategies analogously
to Householder-based tridiagonalization methods for real symmetric or complex
Hermitian matrices.
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Abstract. The efficient use of multicore architectures for sparse matrix-
vector multiplication (SpMV) is currently an open challenge. One algo-
rithm which makes use of SpMV is the maximum likelihood expectation
maximization (MLEM) algorithm. When using MLEM for positron emis-
sion tomography (PET) image reconstruction, one requires a particularly
large matrix. We present a new storage scheme for this type of matrix
which cuts the memory requirements by half, compared to the widely-
used compressed sparse row format. For parallelization we combine the
two partitioning techniques recursive bisection and striping. Our results
show good load balancing and cache behavior. We also give speedup
measurements on various modern multicore systems.

1 Introduction

In contrast to computer tomography (CT), which aims at structural imaging,
positron emission tomography (PET) visualizes functional processes, by mea-
suring the distribution of a tracer consisting of radioisotopes injected into a pa-
tients body. Clinical PET scanners for example assist in tumor diagnosis. PET
research currently focuses on improving spatial resolution and sensitivity of the
technique.

A PET scanner consists of fixed detectors, usually arranged in a ring around
the subject to be analyzed. A positron-emitting radioisotope can be detected
indirectly, as positrons annihilate with electrons, creating two 511 keV gamma
photons traveling in opposite directions. When two detectors each record a pho-
ton within a certain time window, an annihilation event is assumed somewhere
along the line connecting the detectors. This line is called the line of response
(LOR). The number of detected events influences the quality of the measure-
ment, while the coverage of three-dimensional space of interest (field of view,
FOV) by LORs affects the achievable resolution. The resolution is usually bet-
ter at the center than at the edges of the field of view. The FOV is com-
monly divided into a three-dimensional grid, where each grid cell is called a
voxel.
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Fig. 1. Geometry of MADPET-II

The experimental small-animal scanner MADPET-II [8] was developed at the
Department of Nuclear Medicine. This scanner is able to resolve the issue of poor
spatial resolution by adding a second ring of detectors (see Fig. 1). This leads
to a quadratic increase of measurement data, and consequently, a significant
increase in computational demand for the post processing step, the 3D image
reconstruction.

Several algorithms can be used for reconstructing PET images. One is filtered
back-projection (FBP), which is based on an analytic solution of the Radon trans-
form. Other algorithms are based on iterative reconstruction such as the maximum
likelihood maximization (MLEM) algorithm. This algorithm usually outperforms
FBP in terms of image quality, but is more computationally intensive.

The huge memory requirements of MLEM come from fixed input data, de-
scribing the geometrical and physical properties of the scanner. This data is
arranged in a matrix which gives the probability of an event occurring in one
voxel being recorded by a given pair of detectors. This so-called system matrix is
sparse, since for voxels outside a given LOR, the detection probability is almost
certainly zero. The system matrix can be measured in a physical experiment,
or it can be computed from analytic models or by Monte Carlo simulation. The
simulation takes a number of physical effects into account, which influence the
trajectory and detection of the photons.

The MLEM algorithm is iterative meaning that it starts with an estimate of
the solution, which is then corrected in every iteration step. In each step, two
vector scaling operations and two sparse matrix-vector multiplications (SpMV
or sometimes SpMxV) are carried out. The latter operations are known for a
number of performance problems [3]. Amongst them are indirect referencing
and irregular access of the source vector as well as high load on the memory
subsystem created by the traversal of the matrix. We parallelize the MLEM
algorithm by splitting the SpMV operations into smaller ones. As target systems,
we have computer clusters using multicore processors in mind.
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2 Related Work

A comprehensive overview of iterative algorithms for image reconstruction in
general is given in [7]. Parallel algorithms for reconstructing both CT and PET
images are described in [5]. The article also provides an overview of feasible
acceleration techniques, and covers a broad range of parallel environments, from
networks of workstations, to peer-to-peer and grid computing.

During the 1990s, various approaches to parallelizing MLEM have been pro-
posed [1,2,6]. They exploit the symmetries in the scanner geometry and partition
the FOV and thus the image vector in a compatible way. All proposals are lim-
ited by the computational power available in the respective years. Thus, in all
the articles cited, image, measurement and system data is much smaller than in
our work.

Given future systems with accelerators, another method of dealing with the
huge memory requirements is computing the system matrix on the fly from a
simplified analytical model. In a previous work [4] we made use of this technique,
implementing the MLEM algorithm on the IBM Cell BE and using the fast ac-
celerator cores of the Cell processor. Currently, more work is done here to test
more accurate and faster analytical models [10].

3 The MLEM Algorithm

The MLEM algorithm was first proposed by Shepp and Vardi [11]. It can be
viewed as an implementation of the more general expectation-maximization
(EM) algorithm, applied to the problem of image reconstruction. In the fol-
lowing, we will give a short formal explanation of the algorithm.

The system matrix A = (aij) gives the probability of a photon emitted from
voxel j being recorded by detector pair i. Its number of columns m equals the
number of voxels, its n rows correspond to the n detector pairs or LORs. Let f
denote the image vector and g the measuring vector. Disregarding all stochastic
effects, we can state that the MLEM algorithm tries to approximate a solution
of the set of linear equations Af = g.

An MLEM iteration step is given by

f
(q+1)
j =

f
(q)
j

n∑
l=1

alj

n∑
i=1

aij
gi

m∑
k=1

aikf
(q)
k

. (1)

We use the superscript q to denote the iteration number. One step can be divided
into several parts. First, the forward projection (FP) is calculated:

h
(q)
i =

m∑
k=1

aikf
(q)
k (2)

This equation describes a multiplication of the sparse matrix A with the image
vector f (q). The resulting vector h(q) shows what the measurement would look
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Fig. 2. Density plot and possible partitioning of matrix II

like for the approximate image vector f (q). Subsequently, the forward projection
is compared to the actual measurement and a correction factor is derived:

c
(q)
j =

n∑
i=1

aij
gi

h
(q)
i

(3)

This step is called back projection (BP) and matches a sparse matrix-vector
multiplication, this time using the transposed matrix. Finally, the vector of cor-
rection factors and an additional scaling factor are applied to the image vector
(see Eq. 1). The scaling factor can of course be calculated before the iteration
starts.

4 Implementation

To come up with an efficient implementation of the MLEM algorithm, a fitting
storage format for the system matrix has to be created. Our two test matri-
ces, labeled I and II, describe the sensitivity of the small animal pet scanner
MADPET-II [8], which has 1152 detectors arranged in two rings (see Fig 1).
This results in n = 662976 lines of response or matrix rows. The field of view is
divided into m = 784000 voxels arranged in a 140× 140× 40 grid.

The test matrices were both generated by Monte Carlo simulation, but with
different parameters. Two million annihilation events per voxel were simulated.
Besides the information of the LOR, the simulation also returns the absorption
energy of a detection. Whether a given detection is counted for the resulting
matrix depends on a chosen energy threshold. The energy threshold for matrix
I was set to 400 keV, resulting in a 2.6 GB matrix, whereas the energy threshold
for matrix II was set to 200 keV, resulting in a 17.6 GB matrix. Matrix I has
0.12% non-zero entries, whereas the sparsity of matrix II is 0.84%.

To provide an impression of the matrix structure we include a grayscale plot
of matrix II in Fig. 2.

4.1 Matrix Storage Format

As the same number of events is simulated in every voxel, only the number of
successfully detected events needs to be stored in the matrix. Even in the longest
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running Monte Carlo simulation, the largest number of successfull recordings was
below 100, because a huge amount of generated photon pairs completely miss
any detector.

We use a modified version of the compressed sparse row format (CSR) to store
the matrix. Because of the low number of possible values of a matrix element,
an array to explicitly store the values is not needed. Let ãi denote the maximal
entry of each matrix row. In detail, the three arrays of our matrix format are
the following:

– column – An array whose length equals the total number of matrix entries.
It contains the column numbers of the entries. The elements are sorted into
sections according to their respective row number. Within the sections, the
elements are sorted in ascending order of their value.

– value – An array of length
∑
ãi +1. It contains indices of the array column.

The element value[j] points to the column number of a matrix element in
row i with a value of j − row[i] + 1.

– row – An array of length n + 1, containing indices of the array value. The
element row[i] points to the first non-zero element of row i.

As an example, we show how the following matrix is stored in our format.⎛⎜⎜⎜⎜⎝
1 1 1 1 0
0 1 2 1 0
0 3 2 0 0
0 0 0 0 0
0 0 1 1 0

⎞⎟⎟⎟⎟⎠ −→
row 0 1 3 6 6 7
value 0 4 6 7 7 8 9 11
column 0 1 2 3 1 3 2 2 1 2 3

By using this format, we can store a system matrix in about half the amount of
memory that would be required for the CSR format, due to the short length of
the array value.

It should be noted that the multiplication with the transposed matrix in the
second stage of the MLEM algorithm does not raise any additional issues. The
same matrix format can be used; only the type of access to the source and
destination vectors is interchanged. During BP the source vector is accessed
sequentially, whereas the destination vector is accessed according to the sparsity
pattern of the matrix.

4.2 Parallelization

Having cluster environments in mind, we use the message passing interface (MPI)
as a basis of our parallelization. On multicore architectures, MPI uses shared
memory for communication. Future work will evaluate the performance of a
hybrid parallelization, i.e. OpenMP within the nodes and MPI as an inter-node
communication model on computer clusters.

We use recursive bisection to parallelize the SpMV operations. Blocks of equal
numbers of non-zero matrix elements are created. We then assign each block to
one MPI process and each process is mapped to one processor core. Using this
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“owner computes” approach, each core calculates a small SpMV operation. The
partial results are gathered in an all-reduce operation. The blocks resulting from
recursively dividing matrix II three times are displayed in Fig. 2.

If the number of columns of one block is large, it can be further subdivided
into vertical stripes. In terms of strategies for cache optimization this is known
as one-dimensional blocking. The stripes are processed in sequential order by the
core processing the block. Creating stripes turns out to be especially beneficial
on machines with small last-level CPU cache, as will be shown in section 5.1.
Striping creates sections in the vector that is affected by the problem of irregular
access. The sections fit into the last-level cache. This applies to the source vector
of the multiplication during forward projection and the destination vector during
back projection.

Given this parallelization idea, a process only needs to load its assigned block
of the system matrix. Thus, the huge memory consumption of a large matrix
can be distributed to the nodes of a computer cluster or the nodes of a machine
with non-uniform memory access.

5 Experiments and Results

In this section we present results gained from tests on five machines with both
uniform (UMA) and non-uniform memory access (NUMA). We use Intel Com-
piler 10.1 with the option -O3 for compiling and OpenMPI 1.3 as MPI runtime
environment. In order to obtain reliable results we pin the MPI processes to
CPU cores using the tool taskset1. The importance of pinning will be shown
in section 5.3.

The first system consists of two Intel Xeon 5335 (Clovertown) processors at
2.6 GHz and 8 GB main memory. The Clovertown processor has four cores, with
two cores sharing a 4 MB L2 cache each. See Fig. 3 (a) for the design of this
UMA system that will be referred to as Clovertown.

The second system is equipped with two AMD Opteron 2352 (Barcelona)
processors at 2.1 GHz and 16 GB main memory. Each CPU has four cores, each
of which has a private L2 cache. All cores on a chip share a 2 MB L3 cache. This
NUMA machine will be referred to as Barcelona and is displayed in Fig. 3 (b).

The third system is a Sun Fire X4600 M2. It comprises 8 AMD Opteron 8218
(Santa Rosa) dual-core processors with 1 MB L2 cache per core. Each CPU has
access to 8GB local memory and three HyperTransport interfaces. We will refer
to this system as X4600. The precise system architecture can be found in [12].

The fourth system is made of four Intel Xeon X7460 and will be referred to as
Dunnington. The Dunnington is a hexa-core processor with a 16 MB L3 cache
shared by all cores. Furthermore, the cores are grouped into pairs with an
L2 cache of 3 MB per pair. The system is equipped with 32 GB of main memory.

The last system is an Intel Nehalem pre-production system. It consists of two
Intel Xeon X5570 running at 2,9 GHz and 12 GB DDR3 memory. The CPU has

1 http://userweb.kernel.org/∼kzak/util-linux-ng
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(a) Intel Clovertown system (b) AMD Barcelona system

Fig. 3. System architectures of test machines

four cores (HyperThreading disabled), an 8 MB L3 cache and two QPI interfaces.
This NUMA machine will be referred to as Nehalem.

Matrix I was used on Clovertown, Barcelona and Nehalem, whereas matrix II
was used on X4600 and Dunnington. This applies to all results presented below.
Also we do not report timings for the vector scaling operations in MLEM as
these operations need less time than inter-process communication.

5.1 Striping

Subdiving matrix blocks into vertical stripes proved beneficial on every system.
Most systems showed best performance with stripes of 200 000 columns in width.
This corresponds to sections of approximately 0.8 MB in the input vector (for-
ward projection) and output vector (back projection) of the SpMV operation.

The X4600 with its small L2 cache of 1 MB showed exceptional good speedup
with even smaller stripes. For example, the time per iteration step on a single
core dropped form 185 s to 52 s when using 16 vertical stripes. This corresponds
to a vector section length of 200 KB, which easily fits into the L2 cache.

5.2 Load Balancing

The bisection approach generally gives good load balancing, as can be seen in
Fig. 4. The chart displays the relative load imbalance, which we define as

Lrel =
max

i
|ti − tavg|
tavg

.

The load imbalance was measured in runs with eight processes and averaged
over five iteration steps. Fig. 4 also shows that striping improves load balancing,
especially on the X4600 system. We attribute the remaining load imbalance to
the fact that partitioning is based on the number of matrix elements per block.
A more sound fundament of block size would be the number of cache misses in
the source and destination vectors. But this approach would require dynamic
load balancing by repartitioning the large matrix after the first iteration steps,
which is inefficient.
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Lrel

Fig. 4. Relative load imbalance with striping switched off (black) and on (gray)

5.3 Core Pinning

The selection of CPU cores is essential for good speedup. The core numbers
in Fig. 5 correspond to those in Fig. 3. FP and BP denote forward and back
projection, respectively. Total time also encompasses the time needed for com-
municating the partial results. Taking the Clovertown system as an example it
can be seen, that pinning two processes to cores 0 and 2, which share a common
L2 cache, returns a speedup of only 1.1, whereas using cores 0 and 1, results in a
speedup of 1.8. On NUMA machines it is advantageous to use cores with sepa-
rate memory links (see Fig. 5 (b)). In test runs with two processes this improved
the speedup by about 25% on the Barcelona system.

N Cores FP BP Total Speed-
[s] [s] [s] up

1 0 3.75 3.89 7.64
2 0,2 3.12 3.58 6.76 1.1
2 0,1 2.11 2.13 4.30 1.8
4 0,2,4,6 1.28 1.31 2.99 2.6
4 0,1,4,5 0.83 0.85 1.95 3.9

(a) Clovertown

N Cores FP BP Total Speed-
[s] [s] [s] up

1 0 6.43 5.79 12.23
2 0,4 3.81 3.77 7.65 1.6
2 0,1 3.23 2.90 6.17 2.0
4 0,1,4,5 1.78 1.76 4.07 3.0
4 0,1,2,3 1.50 1.33 3.16 3.9

(b) Barcelona

Fig. 5. Different alternatives for process to core pinning

5.4 Speedup

Finally, we present speedup data for all five test machines. We used the best
pinning and optimal striping for these runs. Fig. 6 compares the speedup on
Clovertown, Barcelona and Nehalem, using the smaller matrix I. The column
labeled “Comm.” gives the communication time for forward (FP) and back
projection (BP), respectively. It can be seen, that Clovertown’s system archi-
tecture only scales well up to two processes. With more processes running, the
memory bandwidth of the front-side bus is saturated. The final speedup of 4.0
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N FP Comm. BP Comm. Total Speed-
[s] [s] [s] [s] [s] up

1 2.68 0.0 2.61 0.0 5.29
2 1.37 0.01 1.35 0.02 2.75 1.9
4 0.73 0.05 0.71 0.04 1.54 3.4
8 0.57 0.11 0.58 0.08 1.34 4.0

(a) Timings on Clovertown (b) Speedup on Clovertown
(black), Barcelona (darkgray)

and Nehalem (lightgray)

Fig. 6. Results for Clovertown, Nehalem and Barcelona, using matrix I

N FP Comm. BP Comm. Total Speed-
[s] [s] [s] [s] [s] up

1 26.67 0.0 25.66 0.0 52.33
2 13.28 0.13 12.81 0.12 26.34 2.0
4 6.66 0.22 6.43 0.23 13.54 3.9
8 3.38 0.22 3.29 0.21 7.10 7.4

16 2.34 0.63 2.33 0.61 5.91 8.9

(a) Timings on X4600 (b) Speedup on X4600 (black)
and Dunnington (gray)

Fig. 7. Results for X4600 and Dunnington, using matrix II

when using eight cores can easily be outperformed by Barcelona with a speedup
of 6.8.

The X4600 system scales reasonably well up to 8 cores, i.e. as long as we only
use one core per chip (Fig. 7 (a)). The final speedup is 8.9, whereas Dunnington
reaches a speedup of 12.3 on 16 cores.

6 Conclusion and Outlook

In this paper we applied two partitioning techniques, recursive bisection and
striping, to the SpMV operations in MLEM. The techniques provided good load
balancing and cache behavior. We also showed the importance of pinning MPI
processes to cores on multicore architectures. There is ongoing work to automate
this process [9]. Our approach reduces memory requirements of large matrices
by using data parallelism and distributing matrix blocks to processor cores. A
considerable amount of memory is also saved by our new matrix format. Future



500 T. Küstner et al.

work will focus on improving cache usage, by reordering rows and columns of
the system matrix.
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identify parameters for a new model such that simulation results most closely
match experimental results or to determine an optimal device design. It is well-
known that simulation-based optimization problems pose many challenges. We
consider gradient-based methods in which finite-difference approximations to
the gradient are used because analytic gradients are not available. We consider
problems with a small number of variables, so the dominant optimization cost
is the function evaluation cost. Our goal is to reduce the number of function
evaluations performed by leveraging parallelism and approximation models that
incur less computational expense.

There are many ways of parallelizing optimization algorithms such as [1]-
[5]. We focus on two variants of trust-region optimization methods. The first
is a speculative gradient technique introduced in [6]. The key assumption of
this method is that in a classical Newton method (with either line search or
trust region), the initial trial point at each iteration is usually accepted. Since
small clusters of processors are commonly available, the additional processors
can be used to begin computing finite-difference gradient components at the
trial point while the function is being evaluated. If the trial point is rejected,
nothing is lost. However, since it is usually accepted, this approach results in
substantial computational savings. The other approach we employ is the Trust-
Region Parallel Direct Search (TRPDS) algorithm developed in [7]. This method
combines the trust-region version of a Newton method with a parallel direct
search (PDS) method in a way that retains the best properties of both. In
particular, PDS is used to augment the set of search directions to offset inaccu-
racies in the numerical gradient approximations. Since PDS is inherently paral-
lel, this can be done without any additional cost when multiple processors are
available.

Approximation models are another approach to reducing the overall cost of
the optimization. There are many ways in which an approximation to a high-
accuracy model can be constructed, such as response surface and spacing map-
ping techniques for constructing surrogates in [9]. Examples of optimization
strategies that make use of approximations are described in [10]-[13]. In this
work, we consider the use of approximation models within the TRPDS algorithm.
Unlike [10] and [13], this approach incorporates the use of numerical gradients.
In addition, we do not assume that trial iterates satisfy decrease conditions by
construction as is true in classical trust-region methods and in [12]. Our work
is related to [11] in that both fall into a general class of trust-region algorithms
described in [8], and both leverage the flexibility of this class of algorithms by
using approximation models to reduce computational cost. The primary dis-
tinction is that our approach seeks to find decrease quickly at each iteration
using the approximation rather than optimizing the approximation at each it-
eration as in [11]. We will present a case study using TRPDS in conjunction
with approximations obtained by reducing accuracy of the physics model and
by constructing quadratic representations. Results suggest ways of improving
the algorithm.
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2 Speculative Gradients

Recall that a trust-region method is an optimization method in which each
iteration entails constructing a quadratic Taylor series expansion of the function
and minimizing that expansion over a region in which it is expected to be a good
approximation to the function. We refer the reader to standard references like
[19] for details, but we present a summary of the speculative gradient version of
the algorithm here.

We first note that a function gradient is required to construct each Taylor
series expansion and is computed using finite-difference calculations since an-
alytic gradient information is not available. Furthermore, let us assume that
we have p processors at our disposal. For simplicity, the algorithm is described
assuming that a function evaluation uses one processor and forward/backward
finite-differences are being performed. Generalizing to multiprocessor function
evaluations and central differences is straightforward. To maximize the use of
available processors, one processor is used to evaluate the trial point, and the
remaining p− 1 processors are used to calculate up to p− 1 components of the
finite-difference gradient. If the trial point is accepted, we have p−1 components
of the gradient available and only need to calculate the remaining n − (p − 1)
components, where n is the problem dimension. If the trial point is not ac-
cepted, no time is lost because the function evaluation is required regardless.
The speculative-gradient trust-region algorithm is shown below in Algorithm 1.
Here xk is the current iterate, s is the trial step, g(xk) is the gradient of f at
the current point, Hk ≈ ∇2f(xk) is the Hessian approximation at the current
point, δk is the size of the trust region, and

ψ(s) = g(xk)T s +
1
2
sTHks. (1)

Algorithm 1. Trust-Region Method with Speculative Gradients
Given p processors, x0, g0, H0, δ0, and η ∈ (0, 1)
for k = 0, 1, . . . until convergence do

for i = 0, 1, . . . until step accepted do
1. Find si that approximately solves the quadratic subproblem
2. Processor 0: evaluate f(xk + si)

Processor j: evaluate gj−1(xk + si) for j = 1, . . . , p− 1
3. Compute ρ = (f(xk + si)− f(xk))/ψ(si)
if ρ > η then

4. Accept step, set xk+1 = xk + si

5. Processor j: for j = 0, . . . , p− 1:
for l = j + 1, . . . , n− (p− 1), step p, do

6. Evaluate gl+(p−1)(xk + si)
7. Update Hk

else
8. Reject step

9. Update δk
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3 TRPDS with Generalized Approximation Models

In 2002, Hough and Meza developed the Trust Region-Parallel Direct Search
(TRPDS) algorithm [7]. TRPDS employs the trust-region framework but uses
the PDS algorithm of Dennis and Torczon [1] to solve a non-standard subprob-
lem, the PDS subproblem, at each iteration. Solving this subproblem entails
using PDS to minimize the function itself subject to the trust-region constraint
and a fraction of Cauchy decrease constraint. See [7] for more details.

The original motivation for TRPDS was to combine the desirable convergence
properties of trust-region methods with the robustness of PDS for low-accuracy
functions. However, this algorithmic combination has a great deal of additional
flexibility, which we leverage by extending the subproblem solution to a two-
phase approach that incorporates the use of an approximation model. The first
phase consists of using PDS to find the j best solutions to the following problem:

min
s∈IRn

m(xk + s) (2)

s. t. ‖s‖2 ≤ 2δk,

ψ(s) ≤ β‖g(xk)‖min
(
δk,

‖g(xk)‖
C

)
,

where j is an integer, m is a computationally inexpensive approximation to the
objective function, xk is the current iterate, s is the trial step, δk is the size of the
trust region, β > 0, C > 0, and ψ(s) is defined in (1). This resembles the PDS
subproblem except the objective function has been replaced by an approximation
model. Also, the constraint on ψ(s) enforces the fraction of Cauchy decrease
condition. We are using p processors and are taking j = p for simplicity of
description. In the second phase, each processor evaluates the objective function
at one of these j trial points. The point that yields the lowest function value
is returned to and processed by the trust-region framework. This variation of
TRPDS, referred to as mTRPDS, is given in Algorithm 2 below.

Algorithm 2. mTRPDS
Given p processors, x0, g0, H0, δ0, and η ∈ (0, 1)
for k = 0, 1, . . . until convergence do

1. Solve HksN = −gk

for i = 0, 1, . . . until step accepted do
2. Form an initial simplex using sN

3. Compute the p best approximate solutions s1,. . .,sp to (2) using PDS
4. Determine s ∈ {s1, . . . , sp} that minimizes f(xk + s)
5. Compute ρ = (f(xk + si)− f(xk))/ψ(si)
if ρ > η then

6. Accept step and set xk+1 = xk + si, evaluate gk+1, Hk+1
else

7. Reject step
8. Update δ
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In [7], it was observed that the TRPDS class of algorithms fits into the gen-
eralized trust-region framework of Alexandrov et al. [8], which provides much
flexibility in the choice of trust-region model and in the step computation. In par-
ticular, let a be an approximation to the objective function, f . If a(xk) = f(xk),
and ∇a(xk) = ∇f(xk), and the sequence of iterates generated during the opti-
mization satisfies a fraction of Cauchy decrease condition according to a, then
the standard trust-region convergence theory implies this class of methods will
converge to a local minimizer of f [8]. Note that a is different from the approxi-
mation, m, described in mTRPDS. The former could be any model that satisfies
the conditions above; however in mTRPDS, as in TRPDS, we fix a = ψ, where
ψ is defined in (1). Furthermore, the fraction of Cauchy decrease condition is en-
forced by the second constraint in (2), so the iterates generated by mTRPDS also
satisfy the above assumptions. Thus, as with TRPDS, mTRPDS is guaranteed
to converge according to the theory in [8].

Now that we have established the convergence properties of our TRPDS mod-
ification, we present a case study for an earth penetrator design problem.

4 Case Study for Earth Penetrator Design

To evaluate the mTRPDS algorithm, we consider two problems in earth pene-
trator design, a problem of long-standing interest to the Departments of Energy
and Defense. We consider the scenario in which there is a pre-existing hole in
the target, as depicted in Fig. 1.

The penetrator model is fairly simple in that we consider it to be a solid
“egg” made of one material. The penetrator shaft is divided into three sections,
and their lengths are varied independently. The radius is held constant. In the
first problem, we wish to find lengths that minimize the maximum acceleration

Fig. 1. The earth penetrator radius is held fixed, while the lengths are varied indepen-
dently. The goal is to find section lengths that will optimize mission performance.
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subject to bounds on the length parameters. Our optimization problem is the
following:

min
L∈IR3

F (L) = max(acceleration) (3)

s.t. li ≤ Li ≤ ui, i = 1 . . . 3,

where L is the vector containing the three unknown length parameters, Li, and li
and ui are the lower and upper bounds, respectively. In the second problem, we
wish to find lengths resulting in maximal penetration depth subject to bounds
on the length parameters. Our optimization problem is the following:

min
L∈IR3

F (L) = −(depth of penetration) (4)

s.t. li ≤ Li ≤ ui, i = 1 . . . 3.

Presto, a Sandia-developed three-dimensional explicit transient dynamics code
that is implemented using Lagrangian finite elements [14], is used to model the
mechanical deformation of the penetrator upon impact. The ACME library [15]
is used for the contact algorithms. We use a finite element model that represents
a solid, homogeneous body. The penetrator is modeled as an elastic material,
and a Mohr-Coulomb soil constitutive model is used to represent the target. The
penetrator and target models are axisymmetric. CUBIT [16] was used to develop
a parametric mesh model that was used to generate the finite element mesh for
each set of length parameters. Meshes consist of eight-node hex elements, and
the time step is chosen to satisfy the Courant stability condition.

To compare the approaches, we ran a set of computational experiments on
a Linux cluster with dual 3.6 GHz Intel EM64T processors with 6 GB RAM.
Each node runs Red Hat Enterprise Linux WS 4 and MPICH over an Infiniband
network. For mTRPDS, we chose a range of approximations constructed in the
following ways: 1) altering the mesh discretization, 2) altering the amount of
event time simulated, and 3) using a Taylor series to construct a quadratic model
of the function. The results were compared to those obtained using TRPDS and
the trust-region method with speculative gradients. In all cases, the gradient was
approximated by central differences, and a BFGS approximation to the Hessian
was employed.

We chose the number of processors to be that which is ideal for speculative
gradient computation. The penetrator design problem has three variables, so
seven function evaluations need to be done simultaneously to compute the ob-
jective and central difference gradient at the trial iterate. We used 16 processors
for each simulation and one for the optimization process, totaling 113 processors.
Thus, we also used 113 processors for the mTRPDS computational experiments.
The ideal settings for mTRPDS on 113 processors are a search pattern size (sps)
of 7 and j = 7. The optimization algorithms are implemented in OPT++, and
additional algorithmic parameters were set to their default values shown in [17].

Table 1 shows the set of algorithms and models used in the experiments and
the wall clock time for a single execution of each model. The approximation
models were named according to the following convention: MeshXk refers to the
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Table 1. This table shows the algorithm-model combinations used in experiments
and the time required for a single execution of each model. SpecGrad and TRPDS
use the truth model, where mTRPDS uses the truth model along with the specified
approximation models.

Key Algorithm Model Time for Single
Model Execution

1 SpecGrad Truth (Mesh640k, Time25ms) 2 − 3 hours
2 TRPDS Truth (Mesh640k, Time25ms) 2 − 3 hours
3 mTRPDS QuadraticModel negligible
4 mTRPDS Mesh10k 0.8 − 1.3 hours
5 mTRPDS Mesh80k 1.3 − 1.8 hours
6 mTRPDS Time6.25ms 1.1 − 1.6 hours
7 mTRPDS Time12.5ms 1.7 − 2.3 hours

(a) (b)

Fig. 2. Key is given in Table 1. (a) This figure shows the wall clock time required
to achieve a 0.1% change in the function value for (3). Variations in results are due
primarily to different numbers of iterations. (b) This figure shows the wall clock time
required to achieve an 0.1% change in the function value for (4). Variations in results
are due primarily to different costs per iteration.

model using a mesh with X thousand elements; TimeYms refers to the model
in which the event time simulated is Y milliseconds, and QuadraticModel is the
quadratic Taylor series expansion for f . The results of the experiments appear
in Figs. 2 through 4. Figure 2 shows the wall clock times to reach a 0.1% change
in the function value for the algorithms and approximations tested. We use this
criteria because investigation into behavior of the algorithms after this point
uncovered the need for further research into useful numerical stopping criteria.

For problem (4), shown in Fig. 2b, all experiments took approximately the same
number of iterations. The variations in wall clock times, therefore, are due pri-
marily to differences in the average wall clock time per iteration. We see from
Fig. 3b that there can be a notable difference in time per iteration. Further in-
vestigation into these differences revealed opportunities to improve the compu-
tational efficiency of the mTRPDS algorithm. For the depth of penetration, the
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(a) (b)

Fig. 3. Key is given in Table 1. (a) This figure shows the average time per iteration for
(3). Results suggested a need for better characterization of algorithm and approxima-
tion performance. (b) This figure shows the average time per iteration for (4). Results
suggested specific improvements in computational efficiency for mTRPDS.

Fig. 4. Log of function value vs. iteration for the four algorithms with comparable
average time per iteration for problem (3). TRPDS-based algorithms move to a solution
with a lower function value, thereby taking more iterations.

approximation models track the truth fairly well (see [18]). This indicates that
we should reduce the value of j and incorporate the computation of speculative
finite-difference gradients for those j points. It is possible that the best choice is
j = 0. This would reduce the number of truth evaluations needed at each iteration,
thereby reducing the total time. We also found that PDS was doing approxima-
tion evaluations that make little or no apparent contribution to the progress of
the optimization algorithm. Even though PDS is operating on the approximation
models, this can add up to notable time. We would like to eliminate that by de-
veloping a dynamic scheme for managing the amount of work done by PDS based
on the quality of the approximation evaluations it does.

Further investigation into the results for problem (3) show that the primary
difference in wall clock times (shown in Fig. 2a) is due to the algorithms tak-
ing different numbers of iterations. We see in Fig. 3a, however, that several
algorithm-model combinations have comparable average times per iteration. To
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get further insight, we plot the function value versus iteration number for those
variants in Fig. 4. We see that the TRPDS-based algorithms start out the same
as the speculative gradient algorithm but then move toward solutions with lower
function values, thereby taking longer. To better understand the reasons for this
behavior, further characterization of the effects of problem features on algorithm
performance is needed. Such characterization requires a set of computationally
expensive, physics-based test problems. Test problems with these characteristics
are hard to come by, as standard test sets do not meet these criteria.

5 Conclusions and Future Work

We have extended the TRPDS algorithm of Hough and Meza to include the
use of an approximation model in solving the PDS subproblem. This approach,
which we call mTRPDS, uses the approximation to identify several candidates
for the trial iterate and takes advantage of parallel processing to evaluate them.
The algorithm was studied, together with TRPDS and a speculative gradient
implementation of the classical trust-region method, in the context of two earth
penetrator optimal design problems but is generally applicable to any simulation-
based unconstrained or bound-constrained nonlinear optimization problem.

The empirical results we collected from the numerical tests suggested both
short-term, concrete areas for improving the computational efficiency of
mTRPDS and longer-term research areas. To improve computational efficiency,
we will further examine the choice of j to reduce the number of truth evalua-
tions needed. We will also develop a means of dynamically managing the amount
of work PDS performs using the approximation model. Longer-term research
includes developing meaningful numerical stopping criteria for optimization al-
gorithms and characterizing the effects of problem characteristics on algorithm
performance.
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Abstract. We describe a novel 3D finite difference method for solving the 
anisotropic inhomogeneous Poisson equation based on a multi-component 
additive implicit method with a 13-point stencil. The serial performance is 
found to be comparable to the most efficient solvers from the family of 
preconditioned conjugate gradient (PCG) algorithms. The proposed multi-
component additive algorithm is unconditionally stable in 3D and amenable for 
transparent domain decomposition parallelization up to one eighth of the total 
grid points in the initial computational domain. Some validation and numerical 
examples are given. 

1   Introduction 

The challenge in most tomographic techniques is to determine unknown complex 
coefficients or driving sources in the partial differential equations (PDEs) governing the 
physics of the particular experimental modality. Problems in neuroscience such as 
electroencephalography (EEG) and magnetoencephalograpy (MEG) source localization, 
electrical impedance tomography (EIT) or diffuse optical tomography (DOT) are 
inherently non-linear, underdetermined and ill-posed, requiring high accuracy in 
measurements and PDE inverse modeling [1]. The first step in solving such inverse 
problems is to find a numerical method to solve the direct (forward) problem. When the 
physical model is three-dimensional and geometrically complex, like the human brain, 
the high- resolution forward solution can be difficult to construct and compute.  

Until recently, most practical research in this field has opted for simplistic 
analytical or semi-analytical models of a human head in the forward calculations [2].  
With geometric information becoming more readily available from MRI or CT scans, 
finite element (FE) and finite difference (FD) approaches can now incorporate 
realistic 3D head geometry for human head model construction. However, most of the 
published models, with a few exceptions, treat the human head tissues as isotropic, 
while it is well known that brain white matter, skull and facial/scalp muscles are 
highly anisotropic, with the anisotropic ratio estimated to be between 1:3 and 1:10  
[3 and references therein]. 
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In the present study we propose an algorithm for solving the anisotropic diffusion 
equation based on multi-component (vector-additive) implicit FD methods. Not only  
are these methods unconditionally stable in 3D, but they offer the potential for high 
domain decomposition parallelization, and are promising candidates for computational 
acceleration with GPGPUs (general purpose graphics processing units) [4]. We 
introduce the algorithm and assess the serial performance of the proposed method in 
comparison with the most efficient solvers from the family of the preconditioned 
conjugate gradient (PCG) algorithms. 

2    Statement of the Problem 

The relevant frequency spectrum in EEG, MEG and EIT of the human head is 
typically below 1 kHz, and most studies deal with frequencies between 0.1 and 100 
Hz. Therefore, the physics of EEG/MEG can be well described by the quasi-static 
approximation of the Maxwell equations, the Poisson equation. The electrical forward 
problem can be stated as follows: given the positions, orientations and magnitudes of 
dipole current sources, ),,( zyxϕ , as well as geometry and electrical conductivity of 

the head volume (Ω), calculate the distribution of the electrical potential on the 
surface of the head (scalp) (ΓΩ). Mathematically, it means solving the inhomogeneous 
anisotropic Poisson equation [2]: 

 
∇ •(σ(∇u) = ϕ(x, y, z), in  Ω                                                    (1) 

 
with no-flux Neumann boundary conditions on the scalp: 

 
σ(∇u) • n = 0, on ΓΩ.                                                   (2) 

 
Here σ= σij(x,y,z) is an inhomogeneous symmetric tensor of the head tissues 
conductivity. Having computed potentials u(x,y,z) and current densities  J=- σ(∇u), 
the magnetic field B can be found through the Biot-Savart law. The similar non-
stationary anisotropic diffusion equation is relevant also in the DOT forward problem 
modeling [1] and the white matter tractography studies using diffusion tensor MRI 
imaging [5]. 

Previously, we built an iterative finite difference forward problem solver for an 
isotropic version of (1) and (2) based on the multi-component alternating directions 
implicit (ADI) algorithm [6]. It is a generalization of the classic ADI algorithm,  
but with improved stability in 3D (the multi-component FD ADI scheme is 
unconditionally stable in 3D for any value of the time step [7,8]). To describe the 
electrical conductivity in the heterogeneous biological media within arbitrary 
geometry, the method of the embedded boundaries has been used. Here an object of 
interest is embedded into a cubic computational domain with extremely low 
conductivity values in the external complimentary regions modeling the surrounding 
air. This effectively guarantees there are no current flows out of the physical area (the 
Neumann boundary conditions, (2), is naturally satisfied). The idea of the iterative 
implicit method is to find the solution of (1) and (2) as a steady state of the 
appropriate evolution (diffusion) problem. At every iteration step, the spatial operator 
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is split into the sum of three 1D operators, which are evaluated alternatively at each 
sub-step.  Such a scheme is accurate to O[τ +(Δx)2 )+(Δy)2+(Δz)2]. In contrast with 
the classic ADI method, the multi-component ADI uses the regularization (averaging) 
for evaluation of the variable at the previous instant of time. 

Parallelization of the vector-additive ADI algorithm in a shared memory 
multiprocessor environment (OpenMP) is straightforward, as it consists of nests of 
independent loops over “bars” of voxels for solving the effective 1D problem in every 
iteration. However, it is less suitable for implementation in an environment with a 
distributed memory.  In the next section we present a vector-additive algorithm of the 
domain decomposition type which is potentially amenable for implementation at 
greater parallel degree. 

3   Numerical Scheme 

In the Cartesian coordinate system, (1) is expressed as  
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To discretize this equation we will use finite difference approximation of the 

spatial derivatives on the reactangular grid ),,( kji zyx , xNi ,1= , yNj ,1= , 

zNk ,1= , where zyx NNN ,,  are the numbers of grid points in x,y, z spatial 

directions. The finite difference approximation of the second order accuracy for the 
Poisson equation with mixed derivatives can be made with a minimal stencil of 7 
points in 2D [9]. Generalization to 3D leads to a 13-point stencil, as shown in Fig. 1.  
It consists of two diagonal compartments (cells) with one common corner. The whole 
problem computational domain is represented by a 3D checkerboard lending itself for 
domain decomposition (partitioning). One can take into account only even (or only 
odd) mesh cells, each of them having eight neighboring computational cells. Every 
internal node of this checkerboard grid belongs simultaneously to two neighboring 
cells. Therefore, it is natural to introduce two components of an approximate 

numerical solution, ( um , mu −9 ), where 8,1=m  (see Fig. 1). The first component of 

such pair, mu , is considered as an internal component of the given mesh  cell while 

the second one is a complimentary component belonging to the corresponding 
neighboring mesh cell. In these notations, the finite difference approximation, L, of 
the differential operator in (1) in an arbitrary node of the grid, ),,( kji zyx , can be 

represented as  

                       uAuALu mm +=  ,                                                 (3) 
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where Tuuuu ),,,( 821 K= and Tuuuu ),...,,( 178=  are the vectors of two components 

of the approximate numerical solution in two neighboring cells on the grid with a 
common node at ),,( kji zyx .  

 
Fig. 1. Schematic view of the finite difference stencil for (1) 

In (3) factors mA  and mA  are vectors with components given by coefficients of 

the finite difference approximation for (1), which is obtained by the standard finite 
volume method [10]. As a result, the derivatives in (1) are given by the following 
finite differences: 
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Here )/(2 kmkmmk σσσσσ += , where mk σσ , are values of the conductivity 

tensor components in nodes k  and m , and zyx hhh ,,  are grid steps along the 

Cartesian axis. As it is seen from (4), variables u1

−
 and u8, which correspond to the 

most distant nodes in the two cell arrangement in Fig. 1, are absent. This means these 
nodes are not involved into the stencil.  By grouping the terms belonging to one of 
two cells in the stencil in expressions for finite difference derivatives in (4) one can 
obtain an additive representation of operator L in (3), which allows us to express the 

components of vectors mA  and mA . For instance, for A1 and A8 we have: 
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The similar expressions are obtained for three remaining pairs of operators 2A and 

7A , 3A  and 6A , 4A  and 5A . In the boundary voxels of the computational domain 

the finite difference approximation is constructed taking into account the boundary 
conditions. 

In the particular case of identity between two complimentary components 

'mm uu ≡ , the numerical scheme presented above is equivalent to a system of finite 

difference equations with a 13 diagonal matrix and dimension zyx NNNN ××= , 

where N is a total number of nodes in the grid. The high dimensionality of a finite 
difference model is a major obstacle in the computational complexity of this 
numerical problem. The introduction of additional (complimentary) solution 
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components opens an opportunity for use of the vector-additive iterative methods [7-
9], which are unconditionally stable and potentially amenable for multi-threading 
limited only by a total number of nodes in a grid. 

An application of the vector-additive iterative scheme of the domain 
decomposition type to our problem leads to an algorithm with the following key 
features. Iterative approximations for the internal components in every cell of the grid 
are computed implicitly as solutions of the system of eight linear algebraic equations 
in respect of these unknown internal components. External components (belonging to 
eight neighboring cells) in such an implicit solution are taken from the previous 
iteration step. As a result, an elementary per-voxel step of the iterative process 
consists of solving a system of linear algebraic equations of the following type: 

ϕλ
τ

+++−=
− +

+
k

m
k

m

kk

m

k

m uAuAuuA
uu

)(
1

~1

, 8,1=m ,  2/)( 9
~

mm uuu −+=  .      (5) 

Here, iteration parameters 0>τ  and 1≥λ , where k is an iteration number. 
Apparently, the calculation of the next iterative approximation requires solving a 
system of 8 equations of type (5). Thus, the computational complexity per iteration is 
Q=NQ0 /8, where Q0  is the computational cost for solving the linear system in (5) 
with a matrix 88× , and 8/N  is a number of computational cells in the checkerboard 
discretization. Assuming the Gaussian elimination algorithm for solving (5), we  
have approximately Q0 ~ (2/3)83 ≈341 floating operations per–cell at one iteration. 
Thus, the computational complexity per iteration is comparable with the standard 
PCG algorithms. The most important point is that an iterative solution in every 
computational cell can be updated concurrently as it is dependent from the 
neighboring cells input only from the previous iteration. Therefore, the structure of 
this algorithm allows natural partitioning up to N/8 parallel threads of execution. 

Theoretical estimates of convergence for this class of the vector-additive numerical 
schemes and optimal choice of iteration parameters have been developed by Abrashin 
et. al. [7,8]. An example of using the similar iterative scheme in a 2D case for the 
convection-diffusion equation was given in one of our work [9]. 

 

 
 

Fig. 2. Local error (left) and numerical solution (right) for a test analytical case (see text for 
details) 
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4   Validation and Numerical Examples  

A serial version of the proposed forward anisotropic solver was prototyped in Matlab.  
It was validated against an analytical solution and tested on a cubic phantom with 
anisotropic inclusions.   

A simple analytic test was constructed assuming that in a cubic computational 
domain with edge length 2a the solution has the form: 

 
u(x, y, z ) = (x − a)(x + a)(y − a)(y + a)(z − a)(z + a) . 

 
Apparently, such a solution satisfies the Dirichlet boundary conditions at the 

computational domain boundaries. The right-hand term, ),,( zyxϕ , has been found by 

direct analytical differentiation of ),,( zyxu according to (1) and a set of analytical 

conductivity tensor components. In Fig. 2 one can see the good agreement between 
the analytical and numerical solutions. The error between analytical and numerical 
solutions was computed in terms of the local norm. The algorithm converged at 54 
iterations with accuracy 1.e-6 for the problem size 32x32x32 voxels. In addition, we 
 

 

 
Fig. 3. Histograms of computational time (left) and number of iterations (right) to convergence 
for QMR (1), BiCG (2) and vector-additive method (3). Preconditioning: without (a), Jacobi (b) 
and IChF (c). Coefficients and accuracy: smooth, 1.e-6 (top) and heterogeneous, 1.e-4 (bottom). 
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compared performance of the vector-additive algorithm against the Quasi-Minimal 
Residual method (QMR) and BiConjugate Gradients method (BiCG) constructed with 
the same 13-point stencil, as in Fig. 1, and with different preconditioners (Jacobi and 
incomplete Cholesky factorization (IChF)) for smooth and highly heterogeneous 
anisotropic phantoms. The code for QMR and BiCG was prototyped in Matlab using 
the classic schemes [11-13].   

As seen in Fig. 3, the QMR and BiCG algorithms perform about 4-5 times better than 
the vector-additive algorithm in terms of computational time for the heterogeneous and 
smooth problems of size 64x64x64. This is not surprising, as the serial vector-additive 
algorithm in the present Matlab implementation is not optimized in terms of matrix 
operations, while the QMR and BiCG implementations are completely vectorized by 
using the standard Matlab functions. Yet, the convergence of the vector-additive 
algorithm was found to be comparable (Fig. 3, right) in terms of a number of iterations 
needed to reach the prescribed accuracy. 

For simulation of the more realistic case of the human head geometry we have 
employed a cubic phantom with the 20 centimeters edge. The phantom has several 
shells representing air, scalp, skull, Cerebro-Spinal Fluid (CSF) and different 
anisotropic inclusions modeling brain. The isotropic conductivity values of scalp 
(0.45 S/m), skull (0.018 S/m), CSF (1.9 S/m) have been chosen to be equal to the 
median values reported in the published literature [6]. The air conductivity has been 
set to 0.001 S/m. The anisotropic ratio of conductivity in the brain inclusion has been 
set to 1:10 in the orthotropic directions. The results of the current streamline 
calculations generated by a source and a sink placed in different anisotropic parts of 
brain and convergence of the vector-additive method and the BiCG method versus the 
number of discretization points along one direction are shown in Fig.4. Again, in 
terms of the number of iterations, Kε , the vector-additive algorithm performance is 
comparable with the BiCG method. One can see that both methods are converging at 
the rate of about 300 iterations for the problem size 100x100x100.  It is worth noting, 
that the Jacobi preconditioner performed much better in the case of heterogeneous 
anisotropic inclusions (comparable with performance of the IChF preconditioner), 
while in the case of the homogeneous anisotropic cube (Fig. 3, the top-right corner) 
 

 
 

Fig. 4. Anisotropic phantom simulation. Left: convergence of the BiCG( with and without the 
Jacobi preconditioner), and vector-additive method (the red line) versus the grid size. Right: the 
current streamlines inside the brain phantom. 
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the BiCG method with the IChF preconditioner converged essentially faster. The 
current streamlines shown in Fig.4, right by the thick red color lines behave as 
expected in accordance with the anisotropic ratio model chosen for the brain 
inclusions: preferably vertically for the source, horizontally for the sink and 
equidistant in the surrounding isotropic CSF. 

5   Conclusion 

We have described a novel 3D finite volume algorithm for solving the anisotropic 
heterogeneous Poisson equation based on the vector-additive implicit methods with a 
13-point stencil. The proposed multi-component additive algorithm is unconditionally 
stable in 3D and amenable for domain decomposition parallelization with a high 
number of threads, limited only by the number of grid points in the initial 
computational domain. We have introduced two major modifications to the classic 
multi-component vector-additive method suggested in [7-9]. First, we have reduced 
the number of components from four to two in 3D by using the checkerboard 
discretization which relaxes the requirements for the operational memory. In the 
original version of this method [7,8] the minimal number of components was 
estimated to be 2(D-1), where D is the dimension of a computational problem. 
Secondly, we have introduced variable iterative parameters to improve the 
convergence rate in the case of essentially heterogeneous coefficients. Finally, to the 
best of our knowledge, this is the first attempt to use the multi-component numerical 
scheme for solving 3D anisotropic problems. 

The estimated computational complexity per iteration and the method serial 
performance are found to be comparable to the most efficient iterative solvers from 
the family of the preconditioned conjugate gradient (PCG) algorithms, in particular 
the BiCG method with the Jacobi and IChF preconditioners. In the present Matlab 
implementation the serial version takes more time per iteration and to converge than 
the standard methods due to the specifics of Matlab, where the PCG algorithms are 
completely vectorized, while our method can not avoid some necessary cycles. We 
expect the serial performance to be significantly better in the case of C/C++ 
implementation. We believe the 3D vector additive method has better parallelism 
potential than PCG methods due to its cell-level data decomposition.  We expect to 
see performance improvements that overcome the sequential deficiencies as the 
resolution of the head model scales. Our next step will be a parallel implementation of 
this algorithm on a computational cluster and a GPGPU accelerator for large size 
problems based on the high-resolution (256x256x256 voxels) human MRI/CT data.  
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Abstract. In this article we discuss a simple hash function based upon proper-
ties of a well-known combinatorial design called quasigroups. The quasigroups
are equivalent to the more familiar Latin squares and one of their most important
properties is that all possible element of certain quasigroup occurs with equal
probability. Actual implementations are based on look-up table implementation
of the quasigroup, which is unusable for large quasigroups. In contrast, presneted
hash function can be easily implemented. It allows us to compute hash function
without storing large amount of data (look-up table). The hash function compu-
tation is illustrated by experiments summarized in the last section of this paper.

1 Introduction

The need for random and pseudorandom sequences arises in many applications, e.g. in
modelling, simulations, and of course in cryptography. Pseudorandom sequences are the
core of stream ciphers. They are popular due to their high encryption/decryption speed.
Their simple and cheap hardware design is often preferred in real-world applications.
The design goal in stream ciphers is to efficiently produce pseudorandom sequences -
keystreams (i.e. sequences that possess properties common to truly random sequences
and in some sense are ”indistinguishable” from these sequences).

Hash functions map a large collection of messages into a small set of message digests
and can be used for error detection, by appending the digest to the message during the
transmission (the appended digest bits are also called parity bits). The error will be
detected if the digest of the received message, in the receiving end, is not equal to the
received message digest. This application of hash functions is only for random errors,
since an active spoofer may intercept the transmitted message, modify it as he wishes,
and resend it appended with the digest recalculated for the modified message.

With the advent of public key cryptography and digital signature schemes, cryp-
tographic hash functions gained much more prominence. Using hash functions, it is
possible to produce a fixed length digital signature that depends on the whole message
and ensures authenticity of the message. To produce digital signature for a messageM ,
the digest of M , given by H(M), is calculated and then encrypted with the secret key
of the sender. Encryption may be either by using a public key or a private key algo-
rithm. Encryption of the digest prevents active intruders from modifying the message
and recalculating its check sum accordingly. It effectively divides the universe into two

G. Allen et al. (Eds.): ICCS 2009, Part I, LNCS 5544, pp. 521–529, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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groups: outsiders who do not have access to the key of the encryption algorithm and
hence cannot effectively produce a valid checksum, and insiders who do have access to
the key and hence can produce valid checksums. We note that in a public key algorithm,
the group of insiders consists of only one member (the owner of the private key) and
hence the encrypted hash value uniquely identifies the signer. In the case of symmet-
ric key algorithms, both the transmitter and the receiver have access to the secret key
and can produce a valid encrypted hash for an arbitrary message and therefore, unique
identification based on the encrypted hash is not possible. However, an outsider cannot
alter the message or the digest.

In the study of hash functions, Information Theory and Complexity Theory are two
major approaches. The methods based on information theory provide unconditional
security — an enemy cannot attack such systems even if he/she has unlimited power.
This approach is generally impractical.

In the second approach, some assumptions are made based on the computing power
of the enemy or the weaknesses of the existing systems and algorithms, and therefore,
the security cannot be proven but estimated by the analysis of the best known attacking
algorithms and considering the improvements of the hardware and softwares. In other
words, hash functions based on complexity theory are computationally secure. In this
paper, we concentrate on the second approach.

1.1 Definitions

Definition 1. A functionH() that maps an arbitrary length messageM to a fixed length
hash value H(M) is a OneWay Hash Function (OWHF), if it satisfies the following
properties:

1. The description of H() is publicly known and should not require any secret infor-
mation for its operation.

2. Given M , it is easy to compute H(M).
3. Given H(M) in the rang of H(), it is hard to find a message M for given H(M),

and given M and H(M), it is hard to find a message M ′(�= M) such that H(M ′)
= H(M).

Definition 2. A functionH() that maps an arbitrary length messageM to a fixed length
hash value is a Collision Free Hash Function (CFHF), if it satisfies the following prop-
erties:

1. The description of H() is publicly known and should not require any secret infor-
mation for its operation.

2. Given M , it is easy to compute H(M).
3. Given H(M) in the rang of H(), it is hard to find a message M for given H(M),

and given M and H(M), it is hard to find a message M ′(�= M) such that H(M ′)
= H(M).

4. It is hard to find two distinct messages M and M ′ that hash to the same result
(H(M) = H(M ′)).
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2 Construction of Hashing Function Based on Quasigroup

Definition 3. Let Q be a nonempty set with one binary operation (∗). Then Q is said
to be a grupoid and is denoted by (Q, ∗).
Definition 4. A grupoid (Q, ∗) is said to be a quasigroup (i.e. algebra with one binary
operation (∗) on the set Q) satisfying the law:

(∀u, v ∈ Q)(∃!x, y ∈ Q)(u ∗ x = v ∧ y ∗ u = v).

This implies:

1. x ∗ y = x ∗ z ∨ y ∗ x = z ∗ x⇒ y = z
2. The equations a ∗ x = b, y ∗ a = b have an unique solutions x, y for each a, b ∈ Q.

However, in general, the operation (*) is neither a commutative nor an associative op-
eration.

Quasigroups are equivalent to the more familiar Latin squares. The multiplication
table of a quasigroup of order q is a Latin square of order q, and conversely, as it was
indicated in [1,2,8], every Latin square of order q is the multiplication table of a quasi-
group of order q.

Definition 5. Let A = {a1, a2, . . . , an} be a finite alphabet, a k × n Latin rectangle
is a matrix with entries aij ∈ A, i = 1, 2, . . . , k, j = 1, 2, . . . , n, such that each row
and each column consists of different elements of A. If k = n we say a Latin square
instead of a Latin rectangle. Latin square is called reduced (or in standard form) if both
the first row and the left column are in some standard order, alphabetical order being
convenient.

All reduced Latin squares of order n are enumerated for n ≤ 10 as it is shown in [3].
Let Ln be the number of Latin squares of order n, and let Rn be the number of reduced
Latin squares of order n. It is easy to see that Ln = n!(n − 1)!Rn. The problem of
classification and exact enumeration of quasigroups of order greater than 10 probably
still remains unsolved. Thus, there are more then 1090 quasigroups of order 16 and if
we take an alphabet A = {0 . . . 255} (i.e. data are represented by 8 bits) there are at
least 256!255! . . .2! > 1058000 quasigroups.

Multiplication in quasigroups has important property: It is proved that each element
occurs exactly q times among the products of two elements of Q, q2 times among the
products of three elements of Q and, generally qt−1 among the products of t elements
of Q. Since there are qt possible ordered products of t elements of Q, this shows that
each element occurs equally often among these qt products (see [4]).

Definition 6. Let HQ() : Q→ Q be projection defined as

HQ(q1q2 . . . qn) = ((. . . (a ∗ q1) ∗ q2 ∗ . . .) ∗ qn
Then HQ() is said to be hash function over quasigroup (Q, ∗). The element a is a fixed
element from Q.
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Example 1. Quasigroup of modular subtraction has following table representation:

0 3 2 1
1 0 3 2
2 1 0 3
3 2 1 0

The table above defines quasigroup because it satisfies conditions to be Latin Square.
Multiplication in the quasigroup is defined in following manner: a ∗ b = (a + 4 −
b) mod 4. It is obvious that the quasigroup is neither commutative (1∗2 = 3, 2∗1 = 1)
nor associative. Value of hash function is H2(0013) = (((2 ∗ 0) ∗ 0) ∗ 1) ∗ 3 = 2.

2.1 Sketch of Proof of Resistance to Attacks

Hash function based on quasigroup is iterative process which computes hash value (di-
gest) for messageX = x1x2 . . . xn. Suppose thatHQ(X) = d. Hash function is preim-
age resistant when it is ”impossible” to compute from given digest source message X .
The digest d should be factorized into message Y = y1y2 . . . yn. In the first step we
can divide digest d into two parts y1 and α1, where d = y1 ∗ α1. In the second step
value α1 needs to be divided into y2 and α2 (α1 = y2 ∗ α2) and so for each element
yi, 1 ≤ i ≤ n. Because each yi has a same probability of occurrence among products
of Q, |Q|n possible choices should be checked to obtain message Y .

Definition 7. QuasigroupsQ andR are said to be homotopic, if there are permutations
satisfying the law: (∀u, v ∈ R)(u ∗ v = π(ω(u) ∗ ρ(v))).
We can imagine homotopy of quasigroups as permutation of rows and columns of quasi-
group’s multiplication table.

Example 2. Table of quasigroup, which is homotopic with quasigroup of modular sub-
traction:

0 3 2 1
2 1 0 3
1 0 3 2
3 2 1 0

The table was created from table of modular subtraction. The second and the third
row were exchanged. Permutations π, ρ are identities and ω = [0213]. For example
1 ∗ 0 = ω(1) ∗ 0 = 2 ∗ 0 = 2.

This example can be considered as a method how to construct new quasigroups. In fol-
lowing text we will use quasigroups homotopic with quasigroup of modular subtraction.
Three random permutations will be generated and table will be used to modify original
table. Such quasigroup we call ”table quasigroup”. Disadvantage of this method is huge
space complexity (n2 elements must be stored).

Homotopy gives us possibility to compute result of multiplication without table.
Three functions must be chosen to calculate permutations π, ρ, ω. Then the multipli-
cation is defined as follows: a ∗ b = π((ω(a) + n− ρ(b)) mod n) .
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A sequence of n elements were divided into several parts; these were rotated in
various directions and exchanged among themselves. Hereafter presented function P1
compute one of these permutations i.e. P1(x) = ω(x). Two other permutations are
implemented in the same way.

const unsigned int cQuasiGroupA2::P1(unsigned int x) const
{

unsigned int Dimension2 = m_Dimension / 2;
if (x < Dimension2 * 2)
{

if (x & 1)
x = 2 * ((x / 2 + 1) % Dimension2) + 1;

else
x = 2 * ((x / 2 + Dimension2 - 1) % Dimension2);

}
return x;

}

This enables us to work with large quasigroups. Works that are already known use
quasigroups of small order only, or only a small parts of certain quasigroup are there
used mainly as a key for Message Authentication Code [3]. These are represented as
a look-up table in main memory. Hypothesis mentioned above will be tested in next
section.

3 Experimental Results

A simple application was created to verify our hypothesis and expectations. Inputs to the
application were sets of distinct words, which were extracted from particular text file. The
first input was file bible from Canterbury Corpus [5] (section Large files) and it was about
4 megabytes long. About 10000 distinct words were extracted from this file. The sec-
ond was file latimes from TREC document corpus (see http://trec.nist.gov).
The file contained Los Angeles Times volumes 1989 and 1990. And it was about 450
megabytes long. We extracted 200000 distinct words from this text file.

To get statistical data about distribution of words in range of hash values and other
properties imaginary hash table have been implemented and values in the table were
measured. We observed several parameters:

1. divergences in numbers of words in slots for given size of hash table between our
hash function and uniform distribution of words in table,

2. distribution of lengths of slots,
3. how many bits are changed, when one bit in input has been inverted,
4. probability of bits alternation in given position, when one bit in input has been

inverted.
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3.1 Distribution of Words in Slots

The distribution of words in slots of hash table is figured in charts 1, 2. It can be seen
from charts 1(a) and 1(b) that distribution of words in slots of imaginary hash table
is quite uniform, both for table quasigroup and for analytic one. But in chart 2 there
are differences between table and analytic quaisgroup. Moreover analytic results have
regular shape. This error is caused by constant parameters of functions that compute
permutations in analytic quasigroup.
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Fig. 2. Distribution of words in slots for file latimes, hash size 5003

3.2 Distribution of Lengths of Slots

We can observe good correspondence between distribution of table quasigroup and an-
alytic quasigroup in chart 3(a) for the file bible. For file latimes there is absolute diver-
gence in chart 3(b).

3.3 Probability of Change of Particular Number of Bits

We focus on influence of inputs change on resultant value of hash function. Step by step
every bit in each input word was inverted and value of hash function was computed.
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Fig. 4. Probability of change of particular number of bits

Then Hamming distance between hash values for original word and modified one was
measured. It can be seen from chart 4 that both distribution curve has the same shape
and they are very close together. It is interesting especially for chart 4(b) with respect of
bad characteristic of slots distribution in chart 3(b). Next we perform experiments with
analytic quasigroup of order 216 and 232 i.e. for 16 and 32 bit long numbers. Result of
the experiment is given in chart 5.

3.4 Probability of Bits Alternation in Given Position

Alternations of bits in specific positions in result of hash function were observed. The
experiment runs with the same conditions as previous experiment, but we kept track
to positions of changed bits. Only minor errors can be seen (chart 6) between table
quasigroup and analytic quasigroup. The changes are uniformly distributed over all bits
in resultant hash value.
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4 Conclusion and Future Works

We presented hash function based on non-associative algebraic structures. This work is
continuation of our paper [6]. The presented hash function can be easily implemented.
Comparison between look-up table and analytic quasigroup implementation is given.
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Analytic quasigroup has some faults in it properties, but there is no need to store large
table. For real usage arithmetic of long numbers (i.g. 512 bits) must be adopted. Non-
associative structure - neofield - could be incorporated in our future works.
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Proceedings of Velikonočnı́ kryptologie, Brno, pp. 1–8 (2002)
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Abstract. Origin-based algorithm(OBA) for traffic assignment prob-
lem has been demonstrated preferable to the widely accepted and used
Frank-Wolfe algorithm and path-based algorithms. Note that OBA can
not avoid path enumeration of concerned network, which will lead to
two disadvantages. One is the intensive memory requirements and the
other is the difficulties in manipulating and storing paths. In order to
solve these problems, we first propose the lower and upper bounds of
the Hessian matrix, which can be calculated without path enumeration.
Then use the lower bound of Hessian matrix to approximate the direction
of the origin-based algorithm. According to our computational results,
the modified origin-based algorithm(MOBA) improves the convergence
performance greatly. The results indicate that MOBA can deliver better
and more reliable convergence than OBA and saves much more CPU
time especially when large-scale networks are being considered.

Keywords: Traffic Assignment, Origin-based Algorithm, Second Deriva-
tive, User Equilibrium.

1 Introduction

Traffic assignment problem (TAP) is the key problem for the long term planning
and evaluation of urban transportation network. It is to assign the traffic flows
of each OD (Origin-Destination) pair to links of urban transportation network
in terms of certain principle, and count out all link traffic flows. There are many
principles for TAP, but the most often used principles are the first and second
principles of Wardrop, i.e. User Equilibrium principle and System Optimum
principle [1]. In order to find a solution satisfying the User Equilibrium principle,
Beckmann et al. proposed a convex mathematical programming [2][3] which
became the main tool for solving traffic assignment problem. Since the work of
Beckmann et al, many algorithms have been suggested to solve it. All of them
can be broadly divided into three categories according to the solution space the
algorithm resides, i.e., the link- path- or origin-based algorithms.

The link-based algorithms, including Frank-Wolfe (FW) algorithm given by
LeBlanc et al. [4] and several modified FW algorithms [5][6][7][8][9], yield link-
based solutions. The path-based algorithms, including disaggregated simplicial

G. Allen et al. (Eds.): ICCS 2009, Part I, LNCS 5544, pp. 530–539, 2009.
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decomposition (DSD) algorithm [10], gradient projection (GP) algorithm [11][12]
and conjugate gradient projection (CGP) algorithm [13] etc., can determine both
an aggregate link-based solution and an individual path-based solution which
is not available for link-based algorithms. The origin-based algorithm(OBA)[14]
can provide both an aggregate link-based solution and a constructive path-based
solution. In the past, path-based algorithms and origin-based algorithm were
not considered as a viable solution approach for large-scale network problems
because of intensive memory requirements and difficulties in manipulating and
storing paths. However, path-based algorithms and origin-based algorithm are
now made possible due to the dramatic advances in computing technology.

Recent researches [13][14] have shown and demonstrated that the origin-based
algorithm excels not only the FW algorithm but also some path-based algorithms
such as DSD, GP and CGP. Although OBA was designed for solutions with high
levels of accuracy, it also can not avoid manipulating and storing paths in each
iteration of the algorithm. Plentiful computational experiments of OBA also indi-
cate that most of the CPU time of the OBA is to enumerate and manipulate paths
of the restricting subnetwork Ap(α)(see [14]).

Motivated by the problems discussed above, we give a second derivative ap-
proximation to modify the origin-based algorithm. By using this approximation,
the modified origin-based algorithm (MOBA) can avoid enumerating and manip-
ulating paths of the restricting subnetworks and outperforms OBA in the speed of
convergence and memory requirements. The remaining sections of this paper are
organized as follows. Section 2 describes the traffic assignment problem and intro-
duces the origin-based algorithm. The modified origin-based algorithm by using
second derivative approximation is then proposed in section 3. Section 4 describes
the computational results generated by OBA and MOBA from two real networks
including Sioux Falls and Barcelona network. Finally, a brief conclusion is given
in section 5.

2 User-Equilibrium Traffic Assignment and Origin-Based
Algorithm

Before introducing the user equilibrium traffic assignment model and the origin-
based algorithm, we give the following notations which are used in this paper.
G G = (N ,A) represent an urban transportation network
N N = (1,2,· · ·, N) the set of nodes
A the set of all directed links
O the set of origin nodes
D the set of destination nodes
a a = [at, ah] the directed link of the network
at the tail node of link a
ah the head node of link a
xa the traffic flow on link a
ca the traffic cost on link a
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ca the first-order derivative of the cost of link a
xp

a the traffic flow on link a from origin p
αp

a the proportion of the traffic flow from origin p that arrived at ah through link a
μp

a the average cost of link a for origin p
σp

i the average cost from origin p to node i
νp

a the average first-order derivative of the cost of link a for origin p
ρp

i the average first-order derivative of the cost from origin p to node i
gp

i the traffic flow arrived at i from origin p
cr the cost of path r, which is equal to total costs of all links on the paths
Ap the restricting subnetwork for origin p
B(i) the set of all directed links whose head node is i
bp
i the basic link of the links in B(i) for origin p

op(i) the topological order of node i for Ap

lcnp
i the last common node of all paths from origin p to node i

Rij the set of paths connecting i and j
Rij [Ap] the set of paths in Ap connecting i and j
fr

ij the flow on path r connecting i and j
δr↪a

ij the path-link incidence matrix
qij the total traffic demand between i and j, when i = j, qij = 0.

2.1 User Equilibrium Formulation

It is well known that TAP can be formulated as an optimization program with
a nonlinear objective function and linear constraints. Consider an urban trans-
portation network represented by a directed graph G = (N ,A). For convenience,
we suppose O = D = N . Using the above notes, the User Equilibrium (UE) traf-
fic assignment problem can be written as

min Z =
∑
a∈A

∫ xa(α)

0
ca(�)d�

s.t.
∑

a∈B(i)

αp
a = 1, 1 ≤ i, p ≤ N, i �= p

αp
a ≥ 0, ∀a ∈ A, 1 ≤ p ≤ N

(1)

where α = (α1, α2, · · ·, αN ), αp = (· · ·, αp
a, · · ·),a ∈ A is the variable of the

mathematical programming, and αp
a is defined as,

αp
a =

xp
a∑

b∈B(ah) x
p
b

(2)

especially when the total traffic flow from origin p that arrived at ah is zero, we
let any one of the proportions of those links with head node ah be one and the
others be zero. xa(α) is defined as,

xa(α) =
N∑

i=1

xi
a(α) =

N∑
i=1

N∑
j=1

∑
r∈Rij

f r
ij · δr,a

ij =
N∑

i=1

N∑
j=1

∑
r∈Rij

qij
∏
b⊆r

αi
bδ

r,a
ij (3)

For each origin p and every node j �= p we choose one link bpj ∈ Ap : (bpj )h = j
as the basic link of the links with head node j for origin p, call all other links
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with head node j in the restricting subnetwork Ap(if there are any) the non-
basic links for origin p and denote them as NBp

j = {a ∈ Ap : ah = j; a �= bpj};
NBp = ∪j∈N ;j �=pNB

p
j . Then α can be viewed as a function of αNB:

αp
bp

j
(αNB) = 1−

∑
a∈NBp

j

αp
a
NB, ∀j ∈ N \ {p}, ∀p ∈ N (4a)

αp
a(αNB) = αp

a
NB, ∀a ∈ NBp, ∀p ∈ N (4b)

αp
a(αNB) = αp

a
NB = 0, ∀a ∈ A\Ap, ∀p ∈ N (4c)

Using (4), (1) can be simply changed into,

min Z =
∑
a∈A

∫ xa(αNB)

0
ca(�)d�

s.t. αp
a
NB ≥ 0, ∀a ∈ A, 1 ≤ p ≤ N

(5)

It is simply to prove that (1) equals to the famous Beckmann’s transformation
[2]. Convergence algorithms for solving it have been studied since the 1960s.

2.2 Origin-Based Algorithm

The origin-based algorithm operates directly on the space of the traffic flow
proportion. It makes successive moves as an approximate Newton direction at
each iteration. The main body of the algorithm can be found in [14].

3 Modified Origin-Based Algorithm

Our plentiful computational experiments and investigation of OBA indicate that
there is no efficient and quick methods to find the last common nodes of the
restricting subnetwork Ap(α) and we cannot but enumerate all paths of the
restricting subnetwork in the algorithm. We also found the last common nodes
were only used to calculate the approximation of the Hessian matrix. Hence if we
can propose a new Hessian matrix approximation without using the last common
nodes to replace that of the OBA, we will avoid path enumeration. Below the
lower bound and upper bound of the Hessian matrix will be calculated firstly,
then a novel Hessian matrix approximation is determined by these bounds. The
novel approximation will be used to modify the origin-based algorithm.

Before giving the bounds of the Hessian matrix, we need the following defini-
tions and propositions.

Definition 1. For any origin p, and any two nodes i and j, we define the fol-
lowing formal expression as the proportion of the flow from origin p that arrives
at node j through node i.

χp
i→j =

{∑
r∈Rij [Ap]

(∏
a⊆r α

p
a

)
, ∀p ∈ N , i �= j

1, i = j
(6)
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Definition 2. For any origin p and node j, the following equation is defined as
the average cost from origin p to node j.

σp
j =

∑
r∈Rpj[Ap]:a⊆r

cr ·
∏
a⊆r

αp
a (7)

Definition 3. For any origin p and link a, the following equation is defined as
and the average cost of link a for origin p.

μp
a =

∑
r∈Rpah

[Ap]: a⊆r

cr ·
∏

a′⊆r: a′ �=a

αp
a′ = ca + σp

at
(8)

Definition 4. For any origin p, the topological order of all nodes in Ap is defined
as a one-to-one function o : N → {1, 2, · · ·, N} such that, ∀a = [i, j] ∈ Ap ⇒
op(i) < op(j), and particularly op(p) = 1.

Definition 5. The total flow arrived at node j from origin p is defined as,

gp
j =

N∑
i=1

∑
r∈Rpi[Ap];

j∈r

qpi

∏
a⊆r

αp
a =

N∑
i=1

qpi ·χp
p→j ·χp

j→i =
N∑

i=1

qpi ·χp
j→i, ∀p ∈ N (9)

Using these definitions, the following equations can be easily gotten,

σp
j =

∑
a∈Ap: ah=j

αp
a ·

∑
r∈Rpj[Ap]: a⊆r

cr ·
∏

a′⊆r: a′ �=a

αp
a′ =

∑
a∈Ap: ah=j

αp
a · μp

a (10)

μp
a = ca +

∑
r∈Rpat [Ap]: a⊆r

cr ·
∏
a′⊆r

αp
a′

= ca +
∑

r∈Rpat [Ap]: a⊆r

∏
a′⊆r

αp
a′ ·

∑
e⊆r

ce

= ca +
∑

a′∈Ap

ca′ · χp
p→a′

t
· αp

a′ · χp
a′

h→at

= ca +
∑

a′∈Ap;op(a′
h)<op(ah)

ca′ · αp
a′ · χp

a′
h
→at

(11)

∂xa′

∂αp
a

=
N∑

i=1

∑
r∈Rpi[Ap];a′⊆r;a⊆r

qpi ·
∏

e⊆r;e�=a

αp
e

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

N∑
i=1

qpi

∑
r∈Rpi[Ap];a⊆r;a′=a

∏
e⊆r;e�=a

αp
e = gp

ah
, a′ = a

0, a′h = ah, a
′ �= a

αp
a′ · χp

a′
h→at

· gp
ah
, op(a′h) < op(ah)

χp
ah→a′

t
· αp

a′ · gp
a′

h
, op(a′h) > op(ah)

(12)
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∂xa′

∂αp
a
NB =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
gp

ah
, a′ = a

−gp
ah

a′ = bpah

0, a′h = ah, a
′ �= a, a′ �= bpah

αp
a′ · gp

ah
· (χp

a′
h→at

− χp
a′

h→bp
ah t

), op(a′h) < op(ah)

0, op(a′h) > op(ah)

(13)

Hence the first-order and second-order derivatives of the variables αNB can be
describe as,

∂Z

∂αp
a
NB =

∑
a′∈A

∂Z

∂xa′
· ∂xa′

∂αp
a
NB =

∑
a′∈A

ca′ · ∂xa′

∂αp
a
NB

= ca · gp
ah
− cbp

ah
· gp

ah
+

∑
a′∈Ap;

op(a′
h)<op(ah)

ca′ · αp
a′ · gp

ah
· (χp

a′
h→at

− χp
a′

h→bp
ah t

)

= gp
ah

(μp
a − μp

bp
ah

) (14)

∂2Z

∂αp
a
NB2

=
∑
a′∈A

[ ∂2Z

∂xa′2
·
( ∂xa′

∂αp
a
NB

)2
+

∂Z

∂xa′
·
( ∂2xa′

∂αp
a
NB2

)]
=

∑
a′∈A

c′a′ ·
( ∂xa′

∂αp
a
NB

)2

= (c′a + c′bp
ah

) · gp
ah

2 +
∑

a′∈Ap;
op(a′

h)<op(ah)

c′a′ · αp
a′

2 · gp
ah

2 · (χp
a′

h→at
− χp

a′
h→bp

ah t

)2 (15)

Notice that,

χp
p→i · χp

i→j =
∑

r∈Rpj[Ap];
i∈r

∏
a⊆r

αp
a ≤

∑
r∈Rpj[Ap]

∏
a⊆r

= χp
p→j

and for any node j and any origin p, it is easy to prove χp
p→j = 1 by Lemma 4

of [14], then,
0 ≤ χp

i→j ≤ 1, ∀p ∈ N , 1 ≤ i, j,≤ N

Hence the upper bound of the Hessian matrix will be,

∂2Z

∂αp
a
NB2

≤ c′a · gp
ah

2 + c′bp
ah
· gp

ah

2 +
∑

a′∈Ap;
op(a′

h)<op(ah)

c′a′ · αp
a′

2 · gp
ah

2 (16)

Because,

∂2Z

∂αp
a
NB2

= c′a · gp
ah

2 + c′bp
ah
· gp

ah

2

+
∑

a′∈Ap;op(a′
h)<op(ah)

c′a′ · αp
a′

2 · gp
ah

2 · (χp
a′

h→at
− χp

a′
h→bp

ah t

)2

≥ c′a · gp
ah

2 +
∑

a′∈Ap;a′∈B(at)

c′a′ · αp
a′

2 · gp
ah

2 · (1− χp
at→bp

ah t

)2

+c′bp
ah
· gp

ah

2 +
∑

a′∈Ap;a′∈B(bp
ah t

)

c′a′ · αp
a′

2 · gp
ah

2 · (χp
bp

ah t
→at

− 1)2(17)
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and there is no loop for any restricting network Ap, hence

χp
at→bp

ah t

= αp
[at,b

p
ah t

]

χp
bp

ah t
→at

= αp
[bp

ah t
,at]

Therefore the lower bound of the Hessian matrix is

∂2Z

∂αp
a
NB2

≥ c′a · gp
ah

2 +
∑

a′∈Ap;
a′∈B(at)

c′a′ · αp
a′

2 · gp
ah

2 · (1 − αp
[at,b

p
ah t

])
2

+ c′bp
ah
· gp

ah

2 +
∑

a′∈Ap;
a′∈B(bp

ah t
)

c′a′ · αp
a′

2 · gp
ah

2 · (αp
[bp

ah t
,at]

− 1)2

≥ c′a · gp
ah

2 + c′bp
ah
· gp

ah

2 (18)

Using the bounds of the Hessian matrix, we can get the following approximation
of Newton direction of the variables αNB,

Δdn
a =

μn
bn

at
− μn

a

(c′a + c′bn
at

) · gn
at

, ∀a ∈ NBn, n ∈ D.

Thus for any origin p, we have,

Δαp
a
NB =

⎧⎨⎩max
{
−αp

a
NB, λ ·

μp

b
p
ah

−μp
a

(c′a+c′
b
p
ah

)·gp
j (αNB)

}
, gp

ah
(αNB) > 0

−αp
a
NB, gp

ah
(αNB) = 0

, ∀a ∈ NBp (19a)

Δαp
a
NB = 0, ∀a ∈ A\Ap (19b)

where λ is a step size which will be determined by the following algorithm.
Modified Origin-based Algorithm

Initialization
For p from 1 to N

Ap = tree of minimum cost paths from origin p
xp = all-or-nothing assignment using Ap

Calculate αp by using (2)
End for

Main loop
While x does not satisfy the convergence condition do

For p from 1 to N
Update restricting subnetwork Ap

Update origin-based link flows for origin p
End for

End while
Update restricting subnetwork for origin p



Second Derivative Approximation for Origin-Based Algorithm 537

Remove unused links from Ap

Compute maximum cost ui from p to i for all i ∈ N
For a = [at, ah] in A

If uat < uah
add link a to Ap

End for
Find topological order for new Ap

Update data structures
Update origin-based link flows for origin p

Using (14) and (18) to compute average costs and Hessian approximations
For step size λ = 2−k, k = 0, 1, 2, 3, · · ·

Using (19) to compute flow shifts Δαp for λ
Projection and aggregate flow shifts
If new value of objective function is less than the old then stop

End for
Apply flow shifts
Update total link flows and link costs.

4 Numerical Examples

Below we will illustrate both OBA and MOBA by the following networks whose
basic characteristics are presented in Table 1. All programs are coded in C! and
executed on a microcomputer with P4 2.0G, 512M. For fair comparison, common
data structures for storing network topology and links and same convergence cri-
terion are used in both OBA and the modified algorithm(MOBA). The following
steps are used for the comparison of algorithm performance.

Table 1. Basic Characteristics of Test Urban Networks

Netork Origin Destination Node Link OD Pair
Sioux Falls 24 24 24 76 528
Barcelona 97 108 930 2,522 7,922

Step 1. Solve TAP by LCFW (a modified Frank Wlofe algorithm)[8], with very
large number of iteration and highly strict convergence criterion. Tag
its final solution as Ideal Optimal Solution(IOS) and denote it with
xI = (· · · , xI

a, · · · ). The intuitive reason for choosing LCFW is that it
outperforms the other algorithms(including FW, GP etc.[8]) and it can
avoid path enumerations.

Step 2. Considering that there is only one flow pattern that minimizes pro-
gram (1)[3], we use the following convergence criterion in both OBA
and MOBA.

ε =
∑

a∈A(xa(n)− xI
a)2∑

a∈A xI
a
2 (20)

where xa(n) is the link flows of the n-th iteration of the algorithms. When
ε is less than a given small positive constant such as 1.0 × 10−n, n =
0, 1, 2, · · · , the algorithms will stop.
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Figure 1 and 2 show the relationship between the objective function value(OFV)
and CPU time of the two algorithms for Sioux Falls network and Barcelona net-
work. Figure 3 and 4 show the convergence of the two algorithms as measured
by log ε vs. CPU time for those two real networks. From those four fights, we
knew the performance of the modified origin based algorithm is better than that
of origin-based algorithm. The modified algorithm is superior to the origin-basd
algorithm in convergence and calculation time. At the same precision, the CPU
time of the modified algorithm is only one third of the origin-based algorithm,
even less than that. And the modified algorithm can solve the traffic assignment
problem for large-scale network in an ideal time.

5 Conclusion

In this paper we provide a modififed origin-based algorithm based on esitimation
of the lower and upper bounds of the Hessian matrix for, which can be calculated
without path enumeration. In this algorithm we use the lower bound of Hessian
matrix to approximate the direction of the origin-based algorithm. According
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to our computational results, the modified origin-based algorithm(MOBA) im-
proves the convergence performance greatly. The results indicate that MOBA
can deliver better and more reliable convergence than OBA and saves much more
CPU time especially when large-scale networks are being considered.
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Abstract. Irregular and sparse scientific computing programs frequently
experience performance losses due to inefficient use of the memory sys-
tem in most machines. Previous work has shown that, for a graph model,
performing a partitioning and then reordering within each partition im-
proves performance. More recent work has shown that reordering heuris-
tics based on a hypergraph model result in better reorderings than those
based on a graph model. This paper studies the effects of hierarchical re-
ordering strategies within the hypergraph model. In our experiments, the
reorderings are applied to the nodes and elements of tetrahedral meshes,
which are inputs to a mesh optimization application. We show that cache
performance degrades over time with consecutive packing, but not with
breadth-first ordering, and that hierarchical reorderings involving hyper-
graph partitioning followed by consecutive packing or breadth-first order-
ings in each partition improve overall execution time.

1 Introduction

Irregular scientific computing applications often achieve less than 10% of peak
performance on current high performance computation systems, whereas on
some systems dense matrix multiply can achieve more than 90% of peak perfor-
mance. This gap in performance between dense (and regular) computations and
sparse (and irregular) computations has been called the “sparse matrix gap.”
The sparse matrix gap can be attributed primarily not to poor scaling but to
poor single-processor performance because of irregular memory references.

In this paper, we focus on irregular memory references due to indirect ar-
ray addressing, which occurs in many applications such as partial differential
equation solvers, molecular dynamics simulations, finite element analysis, mesh
manipulation applications, and computations involving sparse matrix data struc-
tures. Figure 1 shows a loop with indirect array references that traverses trian-
gular elements in a mesh. Each array entry in data could contain multiple fields
such as the x and y coordinates of the corresponding vertex. Indirect memory
references such as data[n1[i]] can exhibit poor data locality, and therefore
cause performance problems. Improving data locality in irregular applications
has been shown to improve parallel performance even more than serial perfor-
mance [1,2,3,4].

G. Allen et al. (Eds.): ICCS 2009, Part I, LNCS 5544, pp. 540–549, 2009.
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// iterate over triangles

for (int i = 0; i < numTri; i++)

{

    // access data for 

    // each vertex

    ... data[ n1[i] ] ...

    ... data[ n2[i] ] ...

    ... data[ n3[i] ] ...

}

Fig. 1. Iteration over mesh elements, example triangular mesh, and index arrays storing
the mesh. For each triangle i, the vertex indices are stored in n1[i], n2[i], n3[i].

Previous research has studied various heuristic data and computation reorder-
ings for improving data locality [2,5,6,7,8,9,10], but automatic determination of
the reordering strategy that results in the best performance improvement re-
mains an open problem. Toward solving this problem, this paper contributes a
performance study of how hypergraph partitioning combined with a low overhead
consecutive packing reordering [7] or a high performance hypergraph breadth-
first ordering [10] affects the execution of a mesh optimization algorithm. In the
context of Fig. 1, a data reordering involves reordering the entries in the data
array. Each iteration of the loop in Fig. 1 is a computation. Figure 1 shows an
example triangular mesh for use with the code in Fig. 1, where the data associ-
ated with one triangle is visited at each iteration of the loop. The data for each
node in the mesh, (0), (1), etc., is stored in the corresponding entry in the data
array. The index arrays store the mesh topology. An iteration, or computation,
reordering involves rearranging the values in the index arrays and logically cor-
responds to permuting the order that triangles in the mesh are visited. Both
the data and computation reordering problems can be modeled as the minimal
linear arrangement problem, which is NP-complete.

Previous work on data reordering for irregular applications observed that hier-
archical, or hybrid, heuristics can result in a 5 to 10% performance improvement
over local heuristics alone [5]. Hierarchical heuristics perform a graph parti-
tioning and then use a local reordering heuristic within each partitioning. The
hierarchical technique proposed in [5] entails a graph partitioning , followed by
a breadth-first ordering within each partition.

More recent research showed that local reordering heuristics (e.g., consecutive
packing and breadth-first ordering) based on the hypergraph model perform up
to 30% better than those based on a graph model in computations when three
or more pieces of data are accessed within each iteration of the loop [10]. A
hypergraph model groups any number of nodes into hyperedges. For the example
in Fig. 1, each triangle could be represented with a hyperedge.

This paper studies the effect of hierarchical reordering in concert with a
hypergraph-model based consecutive packing (Hyper-CPACK) or breadth-first
ordering (Hyper-BFS) heuristics. We hypothesize that the performance of a
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computation when the data has been reordered using consecutive packing will de-
grade over the course of the computation. We also hypothesize that performing
a hypergraph partitioning followed by a consecutive packing within each par-
tition will improve performance because of the degradation within a partition
having less effect than degradation over the full computation. For a breadth-first
ordering based on a hypergraph model (Hyper-BFS), we hypothesize some im-
provement with hierarchical reordering, but not much because previous work [11]
has shown that a breadth-first ordering using a hypergraph model achieves a high
percentage of the memory bandwidth limit.

This paper makes the following contributions: algorithms for hierarchical re-
ordering within the hypergraph model for both consecutive packing and breadth-
first orderings within each partition; experimental results showing that cache
performance degrades over time with consecutive packing and not with breadth-
first on a hypergraph; and experimental results showing that hierarchical re-
ordering on the hypergraph prevents the performance degradation since the local
reorderings are performed within partitions.

2 Heuristics Using the Hypergraph Model

The distinguishing feature of hypergraphs are hyperedges, which are capable of
connecting any number of nodes. Figure 2(a) shows the hypergraph that models
relationships between the nodes in the mesh in Fig. 1. In the figure, the square
vertices with parenthesized numbers directly correspond to nodes in the mesh.
The filled-in squares are hyperedges connecting all the vertices of the element
the hyperedge represents. Figure 2(b) is a dual hypergraph (i.e. each element
in the mesh becomes a vertex and elements that share nodes are placed in the
same hyperedge) for the hypergraph in Fig. 2(a). Hyper-BFS and the hierarchical
version of Hyper-BFS use both the hypergraph and the dual hypergraph.

We use various combinations of six orderings for the experiments in this paper:
original order, Hyper-BFS, Hyper-CPack, Hyper-Pack, HierBFS (Hierarchical
BFS), and HierCPack (Hierarchical consecutive packing). We know from earlier
work that heuristics based on hypergraph models outperform graph models [10];
we know hierarchical orderings are capable of limiting the growth of the working
set, therefore in this work we hypothesize and show that combining hierarchical
orders with hypergraph models do well.

Hypergraph Consecutive Packing (Hyper-CPack): One heuristic that
most naturally generalizes to a hypergraph model is consecutive packing. The
consecutive packing heuristic [7] packs the data associated with nodes in the
hypergraph in the order that they are visited within the computation. For the
example in Fig. 1, that means visiting the triangles in their given order and
packing data for nodes as each node is seen in that order. It is critical that the
tetrahedrons should be ordered well in this scheme, which is why our baseline
mesh orderings start with tetrahedrons lexicographically sorted by the nodes
they contain. Consecutive packing is commonly used because of its low overhead
and reasonable resulting performance improvement.
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Fig. 2. The hypergraph (left) and dual hypergraph (right) models of the relationship
between data and computation. The small black squares represent hyperedges. Num-
bers in parentheses represent nodes in the original mesh.

Hyper-CPack on the example in Figure 1 first orders the nodes of triangle 0:
(0), (4), (5); then triangle 1: (2); and so on. The nodes in the first elements are
guaranteed to be near each other, but the nodes in the later elements can be
spread out because some of them have already been placed by earlier elements
in which they are included. Therefore we hypothesize that the performance will
deteriorate for the elements/iterations near the end of the ordering.

Hypergraph Breadth-First (Hyper-BFS): Hyper-BFS [10] also operates on
the hypergraph. It starts at the first node and performs a breadth-first traver-
sal, placing the nodes in the order the traversal visits them. Our experience
suggests that the choice of starting node does not significantly affect the final
performance. Hyper-BFS on the hypergraph visits all neighboring nodes that are
part of the same hyperedge, before going on to other neighboring nodes. When
Hyper-BFS orders a neighboring node, it orders all currently unordered nodes
that are part of the same element before it orders other neighboring nodes.

Hypergraph Partitioning (Hyper-Part): Hypergraph partitioning decom-
poses the nodes of a hypergraph into disjoint sets. A reordering heuristic based
on hypergraph partitioning then orders the nodes by partition. We have not
done an extensive study, but differences between mesh partition quality given
by various partitioners do not appear to have a significant effect our results.
This is probably due to the fact that we are using the partitioners for single core
data locality and not for parallelization. We use PaToH [12] as our hypergraph
partitioner. If a hypergraph partitioner is used alone, the nodes and elements
within each partition are left in their original order. If used as part of a hierar-
chical reordering, the local reordering is used within each partition created by a
hypergraph partitioner. For these experiments, we set the size of the partitions
so that the memory accesses of the computations for each partition fit into 1/2
of the L2 cache, following [13].

Hierarchical Consecutive Packing (HierCPACK): The hierarchical re-
ordering heuristics, which are the new contributions of this paper, start with
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a hypergraph partitioning of the nodes and then perform a local reordering of
the nodes within each partition. Hierarchical consecutive packing proceeds by
visiting each hyperedge in the hypergraph model in the order that the hyper-
edges will be visited during run-time computations and packing the nodes in
those hyperedges on a per partition basis. The algorithm visits all hyperedges in
order and then maintains one packing lists of nodes for each partition. The final
ordering concatenates all of the packing lists.

Hierarchical Breadth-First (HierBFS): Hierarchical Breadth-First also uses
a hypergraph partitioning for hierarchical reordering. A breadth-first traversal
over the nodes in each partition provides the local ordering. As with the non-
hierarchical breadth-first ordering over a hypergraph, both the primal and dual
hypergraphs are used to perform this reordering.

The algorithm first selects a root node for the breadth-first traversal from
each partition. Next, it loops though the partitions, and for each partition it
uses a queue data structure to perform a breadth-first traversal of the nodes
based on adjacent hyperedges. Then, it loops through all unvisited neighbors in
all the hyperedges and adds those to the new ordering and a queue. When it has
searched through all the hyperedges for the root node, which can be found by
accessing the dual hypergraph, it repeats the process for the next node in the
queue. This process continues until all nodes in the partition have been added
to the new ordering or it runs out of nodes in the queue. If the queue runs out
before all the nodes in the partition have been visited, it searches the nodes for
one in this partition that has not yet been visited and uses it as a new root node.

3 Experimental Results

We test the efficacy of the data and iteration/element reorderings by reorder-
ing real mesh data sets and feeding the reordered meshes into the FeasNewt
mesh-quality optimization benchmark [11]. FeasNewt optimizes the quality of
the tetrahedra by adjusting the coordinates of the internal mesh vertices. Higher-
quality tetrahedra improve the accuracy and speed of computations or simula-
tions using a discretization method. This approach does not change the topology
of the mesh or the external shape.

FeasNewt has calculations and memory access patterns similar to those found
in many scientific computing applications [11]. FeasNewt’s gradient evaluation,
Hessian computation, and a sparse matrix-vector product take the majority of its
execution time. The gradient evaluation and Hessian computations iterate over
mesh elements while the matrix-vector product operates on a sparse matrix with
a row for each mesh node with non-zero blocks for higher-numbered neighboring
mesh nodes. Although FeasNewt iteratively optimizes the mesh quality until
convergence is reached, none of the reorderings used in this study alter the
number of convergence iterations.

For input, we use six irregular tetrahedral meshes modeling different physi-
cal entities and from varying mesh generators (see Table 1). The sources of the
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Table 1. Mesh data-set information

Mesh # Nodes # Elements Size in MB Comments
1-001.mesh 120,399 725,258 25.4 INRIA and TetGen

dna.mesh 185,823 938,168 33.3 INRIA and TetGen
ductbig.mesh 177,887 965,759 31.5 CUBIT

gear.mesh 285,640 1,595,392 58.3 CUBIT
sf2.mesh 378,747 2,067,739 61.6 CMU UMS

ucol.mesh 477,977 1,955,366 67.0 BioMesh

meshes include tetrahedral volume mesh generated using TetGen [14] using sur-
face meshes from the INRIA Gamma team research database [15] (INRIA and
TetGen), meshes generated using CUBIT [16], a mesh of the San Fernando Val-
ley in Southern California from the CMU Unstructured Mesh Suite [17] (CMU
UMS), and a mesh of parts of the circulatory system, generated as part of
BioMesh Project [18], courtesy Chaman Singh Verma at Argonne. For the orig-
inal ordering (baseline), the mesh node ordering provided by a mesh generator
is used and all mesh elements are lexicographically sorted.

Our experiments were performed on a quiescent HP-xw9300 with 2 GB of
memory and dual 64-bit AMD Opteron 250 2.4 GHz processors with 128 KB
L1 cache and 1 MB L2 cache per processor. The code is single-threaded and
therefore uses only one of the processors.

3.1 Effect of Hierarchical Reordering

Hierarchical data reordering improves performance over local reordering strate-
gies alone (Hyper-CPack and Hyper-BFS), although for Hyper-BFS the improve-
ment is minimal. Execution times for the full FeasNewt benchmark and the
Hessian computation only are shown in Fig. 3(a) and 3(b), respectively. The
execution times are normalized to the execution time for the benchmark when
the original ordering is used and shown for each mesh and reordering strategy.

(a) FeasNewt benchmark. (b) Hessian computation only.

Fig. 3. Normalized execution times for various data reorderings on a number of input
meshes. All data reorderings are followed by Hyper-CPack iteration reordering.
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Fig. 4. L1 miss rates by segment over a run for ductbig (left) and dna (right). All data
reorderings are followed by a Hyper-CPACK iteration reordering.

The hierarchical reordering strategies show the most improvement for most of
the meshes for full FeasNewt benchmark execution times. In some cases, the
performance improvement over the original mesh ordering is 40%.

One observation for Fig. 3(a) is that although the hierarchical reordering
clearly improves over the local ordering consecutive packing, the hierarchical
reorderings do not significantly improve over a global ordering based on hyper-
graph partitioning. One exception to this is the gear mesh, where hierarchical
reorderings are the only reorderings that do not cause a slowdown. Possible fu-
ture work is determining whether hierarchical reorderings can be “proven” safe
from the standpoint of never causing slowdown.

3.2 Fine-Grained Cache Miss Results

We now demonstrate why hierarchical reordering improves over a consecutive
packing alone. The performance due to a consecutive packing degrades over
time, and hierarchical reordering evens out the performance benefits by doing
consecutive packing within localized partitions. We observe this degradation by
using a novel approach to studying the effect of data reordering. Specifically,
we break the loop over tetrahedrons in the Hessian computation into equal-
sized segments and record the cache miss rates for each segment. This approach
exposes the data ordering quality as the computation progresses through the
iteration ordering.

We use PAPI [19] to instrument FeasNewt to record L1 cache, L2 cache,
and TLB hits and misses at 32 regular intervals, hereafter called segments, in
the Hessian computation. The Hessian computation is performed multiple times
per outer convergence loop. We therefore record a weighted running average for
each segment’s measurements. Execution times for these segments as well as
the overall benchmark execution time were recorded. We present the minimum
execution time from three runs.

To determine if Hyper-CPack and Hyper-BFS degrade over time and if hi-
erarchical reordering with HierCPack and HierBFS stop this degradation, we
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observe the L1 cache miss rate by segment over the runs. Figure 4 shows L1
cache miss rates for the 32 segments of the Hessian loop. The graphs show the
data reorderings for the ductbig and dna. The trends seen in ductbig and dna
are typical of the trends seen in the other meshes, except for sf2. sf2 does not
show much improvement in the cache miss rate over the segments, because it
appears to already be well ordered.

Hyper-CPack does show the expected degradation over time, and HierCPack
levels out this degradation and reduces the the overall cache misses as hypothe-
sized ( See the triangles pointing down and the triangles pointing up in Fig. 4).
HierCPack can eliminate the performance degradation of Hyper-CPACK. Unlike
Hyper-CPACK, Hyper-BFS does not show a degradation. Nonetheless, HierBFS
still has consistently lower miss rates than Hyper-BFS and marginally better
performance.

4 Related Work

Making decisions among all of the reordering heuristics is an open problem.
Some work has done comparison among subsets [2,3,8,20]. However, since such
comparisons might be relevant only to the specific benchmarks and datasets in
the study, no clear winner exists. Typically, an ordering is selected due to results
from earlier work on similar problems, or the desire to keep reordering costs
low. Other work has used metrics to select among various reorderings without
comparing execution time, with some success [10].

Many earlier studies on memory system performance of irregular codes have
focused on reordering for data locality and other optimizations for sparse matrix-
vector multiplication [3,9,21,22]. The mesh optimization benchmark [11] used in
our experiments includes a symmetric, blocked sparse matrix multiply as well as
iteration over a large tetrahedral mesh data structure. We observe that orderings
based on a model of computation over the mesh data structure also improve the
performance of the sparse matrix-vector multiply. Techniques specific to sparse
matrices such as register tiling [9] might lead to even further performance benefits
in the mesh optimization benchmark.

Our work differs from previous research in that the effect of data reordering on
execution time and the memory hierarchy is explored at a finer granularity and in
the context of multiple real datasets for a single benchmark. Previous work [23]
has looked at the degradation of performance as the relationship between nodes
in a molecular dynamics application changes. The granularity that we look at is
smaller, since we focus on segments of one sweep over the mesh.

This paper studies the detailed differences between two local reordering heuris-
tics and a hypergraphpartitioning heuristic coupled with a local reordering heuris-
tic. Al Furaih and Ranka [5] showed experimentally that hierarchical reorderings
within a graph model improve performance, and later research has used some form
of partitioning followed by a reordering within each partition [1,24]. This paper
provides a similar basis for performing hierarchical reordering in reorderings based
on hypergraph models. Selecting between hierarchical reorderings on a graph
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model versus a hypergraph model remains an open problem, but we hypothesize
that, based on previous comparisons between the two models [10], hierarchical re-
ordering on the hypergraph model will prevail.

5 Conclusion

Reordering the data and computation within irregular applications is important
for improved data locality and performance. This paper presents new hierarchical
heuristics based on a hypergraph model of the data reuse between computations.
The new heuristics, hierarchical consecutive packing and hierarchical breadth-
first, depend on a hypergraph partitioning followed by local reorderings within
each partition. Our results show that hierarchical consecutive packing does im-
prove performance in comparison with consecutive packing alone. More detailed
experiments show that consecutive packing degrades in performance later in
the ordering. When partitioning is done before the consecutive packing, each
partition degrades separately and the overall degradation is not as severe. Hier-
archical reordering does not improve significantly over a breadth-first ordering
of the nodes in a hypergraph. Based on hardware counter results, we conclude
that a breadth-first reordering on the hypergraph model does not result in the
same degradation as consecutive packing and therefore does not benefit much
from the grouping provided by hypergraph partitioning.
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Abstract. Random number sequences are used in a wide range of applications 
such as simulation, sampling, numerical analysis, cryptography, and recreation. 
The quality of random number sequences is critical to the correctness of  
these applications. Many statistical tests have been developed to test various 
characteristics of random number generators such as randomness, independence, 
uniformity, etc. Most of them are based on testing on a single sequence. When 
multiple sequences are employed in an application, their potential correlations are 
also concerned. In this paper, we explore the techniques of using the Minkowski 
functionals and their extensions, the Minkowski valuations, to study the 
mathematical morphology of two dimensional binary image generated by pair-
wise random number sequences, and apply this method to describe and compare 
the properties of several well-known pseudo- and quasi-random number 
generators. 

Keywords: Minkowski functionals, random number, random number test, point 
pattern. 

1   Introduction 

Random number sequences are desired to display no describable deterministic patterns, 
but follow a certain statistical distribution. The quality of a random number generator is 
usually measured by efficiency, uniformity, independence, randomness, reproducibility, 
and aperiodicity. To test the quality of random number sequences, many statistical tests 
suites are available [1, 2]. Most of these tests are designed for testing a single sequence. 
However, in many applications such as parallel Monte Carlo, multiple sequences are 
involved and the potential correlations among these sequences may also affect the 
correctness of these applications. To ensure random behavior across multiple random 
number sequences, studies of statistical testing on interleaving sequences [3] as well as 
averaging sequences have been used in the past [4]. In this paper, we explore the testing 
of sequence correlations in two dimensions (2D).   
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The study of the pair-wise random number sequence correlation is the foundation 
of the analysis of correlations among multiple sequences. To identify the correlations 
between sequences, a tool to describe point distribution in 2D quantitatively is 
required. Recently, the Minkowski functionals have been used to quantify patterns 
found in galaxies, neuronal cells, and metal foams as well as random point patterns [5, 
6, 7]. In 2D, the Minkowski functionals correspond to area V0, perimeter V1, and Euler 
characteristic V2, i.e.:  
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where κ  denotes the curvature of along the boundary P∂ . The Minkowski 
functionals distill the complexity of an image into a small number of descriptors. 
However, they cannot fully describe morphological properties such as heterogeneity, 
symmetry, and anisotropy of images. To overcome the shortcoming, they are 
extended to the Minkowski valuations, which are the higher order moments of the 
Minkowski functionals [8]. The first- and second-order moments are of particular 
interest. Correspondingly in 2D, there are three first-order moments, V0, V1, and V2, 
also referred to as the Minkowski vectors, given by: 
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where x is the position vector. Moreover, the Minkowski vectors are usually 
normalized by their associated Minkowski functionals for a better geometric 
interpretation. These so-called centroids are defined as:  

),02,1,0(/ ≠== iiii VifiVVp  (3) 

where 0p is the center of mass, 1p is the center of perimeter, and 2p is the center of 

curvature. The second-order moments define the second-order Minkowski tensors, 
V0

2,0, V1
r,s, and V2

r,s
, viz: 
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where )2,0(),1,1(),0,2(),( =sr  indicates the degree of the tensor product of each 

vector with itself. However, only four of the above seven tensors carry independent 
information [9] and we will concentrate on the mass and perimeter tensors: 

mass tensor : ,20,2
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perimeter tensor : .
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In this paper, we compare the Minkowski functionals of 2D binary images of the 
random number sequences generated by several well-known pseudo- and quasi-
random number generators. We investigate the difference of the pseudo- and  
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quasi-random number sequences from the theoretical values, and their Minkowski 
valuations. We also study the Minkowski functionals in 2D random point distribution 
when correlation between random number sequences occurs. The remainder of the 
paper is organized as follows: Sect. 2 describes the general method of Minkowski 
functionals study of random number sequences, Sect. 3 introduces the measures of the 
Minkowski functionals and valuations, Sect. 4 analyzes the sequences generated by 
the random generators mentioned above, and Sect. 5 finalizes the conclusions.  

2   Computation of the Minkowski Functionals and Valuations 

The definitions of Minkowski functionals are given in equation (1). For binary images 
on a square lattice, the Minkowski functionals are linear combinations of elements 
including faces, edges, and vertices. The computation of Minkowski functionals is 
simply counting the total number of faces 

2n , edges 
1n , and vertices 

0n . The area, 

perimeter and Euler characteristic are computed by  

12120 24, nnVnV +−== , .0122 nnnV +−=  (7) 

Michelsen et al. provided programming examples for counting 
2n , 

1n , and 
0n  of 

2D and 3D binary images [6]. Later Blasquez and Poraudeau gave a more efficient 
algorithm on 3D binary images by examining only half of a voxel’s neighbors and 
using binary decision diagrams [10]. Their method can also be applied to 2D images. 

In 2D, two random number sequences are mapped to x and y coordinates of the 
points in a square lattice of LL× . The double precision random numbers are 
multiplied by d and truncated to get an integer in [0, L). Grains (discs or squares) are 
attached to the points and their sizes grow gradually. Figure 1 shows a square grain. 
As the lattices are square, it is reasonable to use square grains. A long sequence is 
divided into k subsequences and the Minkowski functionals are computed on each 
subsequence. As a result, this approach reveals both global and local properties.  

 

Fig. 1. Square grain with edge length of 2r+1 

We consider a collection of N points whose x and y coordinates are generated from 
uniform, uncorrelated random number sequences. In the bulk limit, when the volume 
approaches infinity and the density ρ  is fixed, the averages 

Ni NV /  are given by 

[7]: 
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where 
NiV  denotes the average of the Minkowski functionals of the point ensemble 

with density ρ  and im  denotes the mean values of the Minkowski functionals of a 

single grain. 
By applying the normalized Minkowski functionals on a square lattice, and 

substituting the Minkowski functionals for a single square grain of edge length a, the 
theoretical values of point distribution of uniform, uncorrelated random number 
sequences can be derived as 

,)1(,4,1 2/1 n

N

nn eneaUeA −−− −==−= χρ  (11) 

where 2an ρ=  and A , U , χ , are the normalized Minkowski functionals 

( NVLNVULVA /,/,/ 2

2/1

1

2

0 === χ ) of a square [7]. Figure 2 shows the Minkowski 

functional curves with various densities. As the density decreases, the spans of the 
curves increase. While mapping a fixed length subsequence of random numbers to a 
lattice, a larger lattice size L yields a lower density and smoother curves, but demands 
more computation. In computation practice, one can control the density to be around 
1% for a reasonable resolution.  
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Fig. 2. Minkowski functionals as a function of square grain length 

When computing the Minkowski valuations of 2D binary images, the equations (5) 
to (6) are used and the center of mass p0 and the mass tensor V0

2,0 are integrated on the 
pattern area, while the perimeter and curvature centroids p1 and p2, and perimeter 
tensor V1

2,0 are integrated on the pattern boundary [9]. An efficient algorithm is given 
by Zhang et al. [11].  

3   Measures of the Minkowski Functionals and Valuations 

As the grain size grows, the image will eventually cover the whole lattice. The grain 
size of the full coverage is related to the largest gap. The perimeter curve first 
increases and then decreases to zero due to most grains at smaller size are isolated and 
their growth mainly contributes to increasing perimeter. When the growth of grains 
reaches a certain size and the overlapping dominate the process, as a result, the 
perimeter curve starts to decrease and eventually drops to zero if periodic boundary 
conditions are applied. The Euler characteristic curve can be explained in a similar 



554 X. Zhang et al. 

way. Initially, all of the grains are isolated and the Euler characteristic is 1. As the 
grains grow and overlapping occurs, the Euler characteristic decreases. When most of 
the grains overlap, the structure is dominated by holes and thus the Euler 
characteristic drops to negative. When the grains continue to grow, the holes start to 
be filled out and finally the Euler characteristic is 0 when the full coverage is reached.  

Due to the discretization errors and the variations of random number generators, 
the experimental results may deviate from the theoretical values. To measure this 
difference, we compute the area between the two Minkowski functional curves using 
the trapezoid equation. Let )(rF be the theoretical curve and )(rFn

be the curve of a 

random number sequence, then the area is 
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where *r is the grain radius when the full coverage is reached for both curves.  
In addition, we measure the distances dP of the centroids of the area, perimeter, or 

Euler characteristic P from the image center C,  

.CP −=dP  (13) 

For a normalized square lattice with length 1.0, C is (0.5, 0.5).  
Another important property of the random number sequences is the isotropy. The 

isotropy X is measured by the ratio of the two eigenvalues, λ1 and λ2, of a Minkowski 
tensor,  

.
21

21

λλ
λλ
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−=X  (14) 

We measure the ratios of the eigenvalues of the area and perimeter tensors. 

4   Random Number Generators 

The middle-square method for random number generation was firstly suggested by 
John von Neumann. It has proved to be a comparatively poor source of pseudo-
random numbers. The fundamental idea of the middle-square method is to take the 
square of the previous random integer and to extract the middle digits [2]. For 
example, one can take a four digit random integer 8653 and square it to get 74874409, 
and then take the middle 4 digits to create the next random integer of 8744. Most of 
the starting values will soon lead to a sequence with cycle of 6100, 2100, 4100, 8100, 
6100 … or degenerate to zero. With more digits, the period is larger and the quality is 
better.   

Linear Congruential Generator (LCG), 64 bit Linear Congruential Generator 
(LCG64), Multiplicative Lagged Fibonacci Generator (MLFG), Lagged Fibonacci 
Generator (LFG), and Combined Multiple Recursive Generator (CMRG) are well-
known “good” pseudo-random number generators provided by the SPRNG (Scalable 
Parallel Random Number Generators) library [12]. Parameterization is used in 
SPRNG library to generate parallel, independent random number sequences.  
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Quasi-random number sequences, also called low-discrepancy sequences, are 
designed to improve convergence rate of Monte Carlo integration. The sequences 
intend to provide high uniformity instead of randomness to achieve low discrepancy. 
The Halton, Faure’, and Sobol are popular quasi-random number generators [13].   

In this article, we study the Minkowski functionals of the pseudo-random number 
sequences generated by LCG, LCG64, LFG, MLFG, and CMRG provided by the 
SPRNG library and the middle-square generator as well as the Halton, Faure’, and 
Sobol quasi-random number sequences. For each of the pseudo- or quasi-random 
number generator, we generate 100 pairs of sequences with length 1,024,000. Each 
pair of these sequences is divided to 100 pairs of subsequences and mapped to the two 
axes of a square lattice of size 10241024×  to form a 2D binary image. Square grains 
are attached to the points. The growth is cut off at r equals 100. Periodic boundary 
conditions are used for all the cases. The Minkowski functional measures given in the 
last section are computed with the results given in Tables 1, 2, and 3.  

Table 1. Area bounded by the Minkowski functional curve from random number sequences and 
the theoretical uniform uncorrelated point distribution 

AD  UD  χD   

Mean Std Mean Std Mean Std 
Pseudo-random number sequences 

Middle-square  
6 digits 

60.0637 29.1301 57.8705 35.7068 26.0772 29.9295 

Middle-square  
8 digits 

80.3811 20.2021 45.9626 26.5424 41.1672 40.6423 

LCG 0.0122 0.0071 0.4052    0.0062 0.2946 0.0088 
LCG64 0.0122 0.0072 0.4055    0.0063 0.2947 0.0087 
LFG 0.0123 0.0072 0.4054    0.0063 0.2947 0.0088 
MLFG 0.0123 0.0072 0.4053 0.0063 0.2949 0.0088 
CMRG 0.0124 0.0072 0.4053    0.0063 0.2946 0.0088 

Quasi-random number sequences 
Sobol 0.4451 0.2704 1.7844 0.7816 0.8696 0.3007 
Halton 0.5408 0.2506 2.2789 0.8433 1.1447 0.3475 
Faure 1.1830 0.9434 3.6864 2.1378 1.5648 0.3856 

The middle-square generators have extreme large D  values, since degeneration 
occurs in many cases. The generators in SPRNG show very close means and standard 
deviations in Table 1 and demonstrate good match with theoretical values of the 
Minkowski functionals. Figure 3 shows the distribution of AD , UD , and χD  of the 

LCG samples.  
The values of quasi-random numbers vary dramatically, since their high uniformity 

and poor randomness by design. As a result, some obvious patterns can be observed 
in Fig. 4 for Sobol and Faure’ sequences. The averaged Minkowski functionals as a 
function of radius are plotted in Fig. 5 for the LCG, Sobol, Halton, and Faure’ 
sequences. When degeneration happens in the middle-square generator, the density 
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Fig. 3. Distributions of curve areas of the LCG sequences 

(a) LCG (b) Halton (c) Sobol (d) Faure’ 

Fig. 4. 2D images of paired sequences generated from pseudo- and quasi-random number 
generators 
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Fig. 5. Averaged Minkowski functionals as a function of the grain size 



 Minkowski Functionals Study of Random Number Sequences 557 

decreases and also causes a great deviation from the theoretical curve. The sequences 
such as Sobol and Halton with smaller gaps have their area values A grow faster and 
reach 1 (i.e., full coverage) at a smaller grain size, while the Faure’ sequences have 
large gaps and reach the full coverage slowly. The degenerated patterns of middle-
square reach their full coverage at a grain size greater than the cutoff radius 100. 

The means and standard deviations of the distance of the centroids from the image 
center and the eigenvalue ratios are listed in Tables 2 and 3, respectively. The SPRNG 
pseudo-random number generators demonstrate similar characteristics. The quasi-
random number generators yield rather different values due to their inherent patterns. 
The area and perimeter centroids of the quasi-random number generators are closer to 
the center with smaller variances, and the eigenvalue ratios of the quasi-random 
number sequences are smaller than pseudo-random numbers, which indicates better 
uniformity and isotropy.  

Table 2. Distances of centroids from the image center 

0dP  1dP  2dP   

Mean Std Mean Std Mean Std 
Pseudo-random number sequences 

LCG 0.0013 0.0006 0.0907 0.0215 0.0894 0.0185 
LCG64 0.0013 0.0006 0.0910 0.0223 0.0898 0.0191 
LFG 0.0013 0.0006 0.0907 0.0221 0.0894 0.0189 
MLFG 0.0013 0.0006 0.0910 0.0219 0.0898 0.0188 
CMRG 0.0013 0.0006 0.0908 0.0221 0.0897 0.0189 

Quasi-random number sequences 
Sobol 5.8681e-005 3.0018e-005 0.0589 0.0093 0.0622 0.0338 
Halton 2.3473e-004 1.5721e-004 0.0753 0.0174 0.1336 0.3001 
Faure 1.2252e-004 5.5186e-005 0.0465 0.0075 0.1911 0.3698 

Table 3. Eigenvalue ratios of mass and perimeter tensors 

0,2
0V

X  
0,2

1V
X   

Mean std Mean Std 
Pseudo-random number sequences 

LCG 0.0018 0.0012 0.0835 0.0382 
LCG64 0.0018 0.0012 0.0838 0.0383 
LFG 0.0018 0.0012 0.0835 0.0388 
MLFG 0.0018 0.0012 0.0837 0.0379 
CMRG 0.0018 0.0012 0.0841 0.0388 

Quasi-random number sequences 
Sobol 0.0002 0.0002 0.0096 0.0122 
Halton 0.0004 0.0003 0.0340 0.0331 
Faure 0.0001 0.0001 0.0055 0.0106 
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5   Correlation Identification 

RANDU is an infamous pseudo-random number generator that has been used for 
decades on IBM mainframes [14]. If we simply generate random number doublets to 
build 2D binary images, it yields similar Minkowski values to those of the SPRNG 
generators provided in Tables 1-3. However, if we generate triplets x,y,z from a 
sequence and constructed a pair of random sequences in which one sequence comes 
from the x, and the other from 6x-9y+z, all points fall into 15 lines in a stripe, as shown 
in Fig. 6(a), which indicates strong correlation [15]. In contrast, when a good random 
number generator is used, the points should fill in the stripe as shown in Fig. 6(b).  

We compute the Minkowski functionals of the 2D binary images created by 
RANDU and LCG and CMRG in SPRNG, for 100 sequences and plot their averages 
as a function of the grain size. One can easily observe the difference between 
RANDU and SPRNG generators in Fig. 7. The area between the Minkowski 
functional curve and x-axis in Fig. 7(a) is 11.26 for RANDU, and 17.0359 for LCG 
and CMRG.  

 
(a) RANDU 

 
(b) LCG 

Fig. 6. Images of the RANDU and LCG sequences generated from x and 6x-9y+z 
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Fig. 7. Averaged Minkowski functionals as a function of grain size for RANDU, LCG, and 
CMRG sequences generated from x and 6x-9y+z 

6   Conclusions and Discussions 

In this paper, we discussed the method of applying the Minkowski functionals and 
valuations to study random number sequences. Pairs of sequences are mapped to 2D 
lattices to form a binary image. Grains are attached to the points. We compute the 
Minkowski functionals and valuations as a function of the grain size. A close match 
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of the Minkowski functional curves with the theoretical curves of uniform 
uncorrelated point distribution indicates good randomness. The locations of the 
centroids of mass and perimeter, along with the ratios of mass and perimeter tensors 
give us some insight on the uniformity, symmetry, and isotropy of the patterns 
generated by random number sequences. Our examples given in this paper also 
showed that the Minkowski functionals are able to identify degenerated sequences, 
highly uniform sequences, and sequences with correlation. In summary, the 
Minkowski functionals and valuations can provide meaningful indication of the 
quality of random number sequences and are potential tools for testing new developed 
random number generators as a complementary to the existing statistical tests.  
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Abstract. In physics and fluid mechanics, the boundary layer is the
fluid layer in the immediate vicinity of a bounding surface. It is impor-
tant in many aerodynamic problems. This work presents a numerical
simulation of the bidimensional laminar boundary-layer problem consid-
ering a steady incompressible flow with no-slip condition on the surface
by Autonomous Leaves Graph based on finite volume discretizations. In
addition, a Modified Hilbert Curve numbers the control volumes. Ini-
tially, the numerical solution of the flat-plate problem is compared to its
analytical solution, namely Blasius Solution. Secondly, simulations of the
flow along a NACA airfoil shape are presented. Computer experiments
show that an adaptive mesh refinement using the Autonomous Leaves
Graph with the Modified Hilbert Curve numbering is appropriate for
a aerodynamic problem. Finally, results illustrate that the method pro-
vides a good trade-off between speed and accuracy.

Keywords: Finite Volume Method, Adaptive mesh refinement, Bound-
ary Layer Problem, NACA airfoils, Space-filling curves, Hilbert Curve.

1 Introduction

Numerical solution of partial differential equations (PDEs) may require the use
of a mesh refinement strategy that concentrates more mesh points where the
solution and/or its derivatives rapidly change. The Autonomous Leaves Graph
(ALG) was proposed for the Finite Volume Method and a space-filling curve
named Modified Hilbert Curve (MHC) was proposed in order to number the
mesh control volumes [1]. ALG children nodes become autonomous as their par-
ent node is deleted. Neighboring control-volume nodes which were generated
from different parent volume nodes can be directly linked whether they have
the same refinement level. On the other hand, they are indirectly linked through
transition nodes in case they have different refinement levels. All modifications in
the graph are merely local. In addition, an algorithm based on the Hilbert Curve
construction is used in order to implement the numbering of the control-volume
nodes.

Thus, this work presents a Finite Volume solution of the boundary layer prob-
lem using the ALG scheme. Boundary layers have been of great importance in
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the study of viscous fluid flow. In 1904, Ludwig Prandtl made the biggest break-
through by demonstrating the existence of a thin boundary layer in fluid flow.
Moreover, he found that there exists a thin layer near an object surface, where
the viscous aerodynamic forces are as important as the inertial forces [2].

After this brief introduction, section 2 describes the Boundary Layer Problem.
Next, section 3 shows the numerical method. Afterwards, section 4 shows the
experimental results. Finally, section 5 draws some considerations.

2 Boundary Layer Problem

Let ε = Δ
L , where Δ is the velocity boundary-layer thickness and L is the refer-

ence length used in the Reynolds number [3]. Using a magnitude analysis order,
no term in the y-momentum equation is larger than ε in the estimated magni-
tude and the well-known governing Navier-Stokes equations of viscous fluid flow
can be greatly simplified within the boundary layer. Notably, the PDE char-
acteristic becomes parabolic, rather than the elliptical form of the full Navier-
Stokes equations. This greatly simplifies the solution of the equations. Thus, the
Navier-Stokes equations for a bidimensional steady incompressible flow in Carte-
sian coordinates are given by the momentum and the continuity equations, i.e.
the nonlinear governing PDEs in terms of dimensional variables are given by [3]

Continuity :
∂u

∂x
+
∂u

∂y
= 0, (1)

Momentum : u
∂u

∂x
+ v

∂u

∂y
= −1

ρ

dp

dx
+ ν

∂2u

∂y2 , (2)

where p is pressure, ρ is the fluid density, ν is the kinematic viscosity and u and
v are the horizontal and vertical components of the vector field.

3 Description of a Discrete Formulation of the Boudary
Layer Problem Based on the Finite Volume Method

This work considers the bidimensional control volume depicted in Fig. 1. After-
wards, the discretization of (1) and (2) are presented in the next sections.

3.1 Continuity Equation

In this work, the Finite Volume discretization of (1) is

Continuity : vk+1
P − vk+1

S = uk+1
W − uk+1

P . (3)
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Fig. 1. Bidimensional control volume (adapted from [5])

3.2 Momentum Equation

The Finite Volume discretization of the momentum equation was divided in
two parts: the discretization of the flat-plate Boundary Layer Problem and the
Boundary Layer Problem with a NACA airfoil in the domain.

Discretization of theFlat-Plate BoundaryLayer Problem. When it comes
to the flat-plate Boundary Layer Problem, it has no pressure gradient flow [4].
Thus, since pressure is invariant, i.e. dp

dx = 0 because the inviscid flow over a flat
plate yields a constant pressure over the surface, (2) can be rewritten as

Momentum : u
∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2 . (4)

Integrating (4) in the control volume yields

Momentum :
∫ e

w

∫ n

s

(u
∂u

∂x
+ v

∂u

∂y
)dydx =

∫ e

w

∫ n

s

ν
∂2u

∂y2 dydx . (5)

Applying the Divergence theorem, (5) yields

Momentum :
∫ n

s

u(u) · n̂xdy +
∫ e

w

v(u) · n̂ydx =
∫ e

w

ν′
∂u

∂y
· n̂ydx (6)

or ∫ n

s

(uu|e − uu|w)dy +
∫ e

w

(vu|n − vu|s)dx =
∫ e

w

(νn
∂u

∂y
|n − νs

∂u

∂y
|s)dx . (7)
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Assuming that the flow in the middle of the control volume edge represents the
average of its variation in the edge [5], (7) can be rewritten as

Δy(uu|e − uu|w) +Δx(vu|n − vu|s) = Δx(νn
∂u

∂y
|n − νs

∂u

∂y
|s) . (8)

Using an Upwind Differencing Scheme [6] yields

uPuP − uPuW + vPuP − vPuS =
ν

h
(uN − 2uP + uS), (9)

where h = Δx = Δy and ν = νn = νs. Afterwards, (9) is divided by uP

for convenience. In addition, uW is considered in the previous iteration. Thus,
algebraic manipulations yield

uk+1
P − uk+1

N (
ν

huk
P

)− uk+1
S (

vk
P + ν

h

uk
P

) = uk
W − 2

ν

uk
P

− vk
P , (10)

where ν is the kinematic viscosity, h represents the vertical and horizontal edge
size of a control volume. Including, (uW , vW ), (uN , vN ), and (uS , vS) are the
west, north and south neighbors of the control volume (uP , vP ), respectively.

To summarize, the here proposed Finite Volume equations are written in
(3) and (10), which are numerical approximations of the mathematical modeling
given in (1) and (4), respectively. Fig. 2 depicts the discretization scheme adopted
where the circles represent the control volumes of the Finite Volume mesh.

Fig. 2. Adopted discretization scheme of the momentum and continuity equations,
respectively



564 S.L. Gonzaga de Oliveira and M. Kischinhevsky

Finite Volume Discretization of the Momentum Equation of the
Boundary Layer Problem. The usual boundary conditions can be applied as
where the subscript e in Fig. 3 refers to conditions on the Boundary Layer edge.
The pressure gradient term in (2) is evaluated in the boundary-layer border.
Since ue(x) is specified, dp

dx can be evaluated applying equations that govern the
inviscid outer flow (Euler’s equation) [3]

dp

dx
= −ρue

due

dx
. (11)

Taking this into account, the here proposed Finite Volume discretization of the
momentum equation is written in (12), which is a numerical approximation of
the mathematical modeling given in (2).

uk+1
P − uk+1

N (
ν

huk
P

)− uk+1
S (

vk
P + ν

h

uk
P

) = uk
W − 2

ν

uk
P

− vk
P + ueP

uk
eP − uk

eW

huk
P

. (12)

Fig. 3. Flat-plate Boundary Layer process (adapted from [3])

4 Experimental Investigation

Tests were performed with air kinematic viscosity ν = 1.5 · 10−5 m2

s . Refinement
decisions are performed in both 2D directions verifying the difference of the
absolute value between two control volumes.

4.1 Flat-Plate Boundary Layer Numerical Simulation

The Analytical Solution. Since no pressure gradient exists and a constant
Boundary Layer edge velocity occurs for this flow as well, all the profiles along
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the plate can be represented by a single curve with the proper dimensionless.
For the solution of this constant property, the flat-plate flow is known as the
Blasius Solution, which shows that for a flow with Reynolds number (Re) much
larger than unity, i.e. Re>>1, the velocity profiles have the same dimensionless
shape in the Boundary Layer region. More precisely, a dimensionless similarity
variable in the normal direction is given by [7]

η = y

√
u∞
2νx

, (13)

where x, y are the distances from the flat-plate leading edge, u∞ is the air velocity
in the free-stream region, and ν is the air kinematic viscosity.

Subsequently, the parallel velocity to the plate is dimensionless by the edge
velocity u∞, which is the free-stream velocity for this particular case. Thus, the
Boundary Layer thickness over a flat plate is given by [7]

% =
5x√
u∞x

ν

. (14)

A Numerical Simulation. Tests of the flat-plate Boundary Layer Problem
were performed with u∞ = 200, u∞ = 10 and a limit of eight refinement levels
for each control volume. Initially, Blasius solutions are depicted in Fig. 4.

Fig. 4. Blasius Solution to ν = 1.5 · 10−5 m2

s
, u∞ = 200 and u∞ = 10

One example of the tests performed is depicted in Fig. 5 comprising of x =
[0; 1], y = [0; 0.1] and u∞ = 200. Fig. 5 shows the Modified Hilbert Curve for
numbering the mesh control volumes. Besides, Fig. 5 shows the Boundary Layer
in the bottom of the domain.
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Fig. 5. Flat-plate Boundary Layer Problem with ν = 1.5 · 10−5, u∞ = 200 (x=[0;1],
y=[0;0.1])

The numerical average error is the difference between the numerical simulation
and the Blasius Solution

error =
∑n

i=1 |Simulationi −Blasiusi|
n

, (15)

where n is the number of control volumes.
Tests comparing the adaptive mesh refinement (AMR) and the non-AMR

solutions were performed. Exemplifying, the non-AMR used 340 control volumes
whereas the test with the AMR, presented in Fig. 5, used 164 control volumes,
which makes up 42.2% less control volumes in relation to the non-AMR test.
Along the same lines, the AMR scheme spent 234 milliseconds whereas the non-
AMR scheme spent 469 milliseconds. Considering the numerical average error
between the simulation and Blasius solution, it is 5.62 · 10−4 in such test.

Figure 6 depicts a test performed with x=[0;1], y=[0; 0.01] and u∞ = 10
in order to show that the results correspond to the Blasius Solution. In this
test, 340 control volumes were generated for the non-AMR scheme whereas the
test performed to the AMR scheme generated 169 control volumes, which is
49.7% less of the total amount of control volumes in the non-AMR scheme.
In addition, the AMR scheme spent 813 milliseconds whereas the non-AMR
scheme spent 1282 milliseconds. In this test, a numerical average error between
the numerical approximation and the Blasius Solution is 8.31 · 10−3. Table 4.1
summarizes those results. Moreover, Table 1 presents a comparison of the number
of control volumes and time between the adaptive and the non-adaptive schemes
(processing time in milliseconds).
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Fig. 6. Flat-plate Boundary Layer Problem with ν = 1.5 · 10−5, u∞ = 10 (x=[0;1],
y=[0;0.01])

Table 1. Comparison between the adaptive and the non-adaptive schemes
u∞ 200 10

Tests Control volumes Time Control volumes Time
Non-AMR 340 469 340 1282

AMR 164 234 169 813
Error 5.62 · 10−4 8.31 · 10−3

4.2 Boundary Layer Numerical Simulation with a NACA Airfoil in
the Domain

A NACA0012 airfoil is presented in the domain with 35o of angle of attack. This
test was performed with u∞ = 250 and u∞ = 350. Figure 7 shows a Boundary
Layer numerical simulation with a NACA0012 in the domain and a limit of six
refinement levels for each control volume. Figure 8 represents the vector field of
the flux of a test. Figure 9 shows a test making up 7474 control volumes. This
test was performed with u∞ = 350 and a limit of 10 refinement levels for each
control volume.

5 Consideration Remarks

This work presents a numerical simulation of the Boundary Layer Problem by
ALG based on the Finite Volume Method. The flat-plate Boundary Layer nu-
merical simulation is compared to the Blasius Solution. A NACA0012 airfoil
is numerically simulated showing that ALG and MHC (this for numbering the
control volumes) are adequate to simulate a complex problem such as in aero-
dynamics. In future works, ALG based on triangular control volumes should be
investigated.
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Fig. 7. Numerical simulation of the Boundary Layer Problem with a NACA0012 airfoil
in the domain, u∞ = 250 and 35o of angle of attack (x=[0;1], y=[0;1])

Fig. 8. Directions of the vector field (u, v)
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Fig. 9. Boundary Layer numerical simulation with the NACA0012 airfoil in the domain
and u∞ = 350
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Abstract. Adaptive mesh refinement techniques are used in order to
decrease the computational cost associated with the numerical solution
of Partial Differential Equations. In this work, the refined mesh is rep-
resented by a graph data structure. More precisely. this scheme follows
the Autonomous Leaves Graph concepts. The objective is to construct
an adaptive mesh refinement with lower cost than tree-based schemes.
Moreover, the Autonomous Leaves Graph was initially proposed with the
Finite Volume Method and a Modified Hilbert Curve was used for the
total-ordering of the control volumes. This work proposes to integrate
the Autonomous Leaves Graph and the Finite Element Method as well
as to adapt the Modified Hilbert Curve for this scheme. Furthermore,
a non-conforming h-adaptive strategy is implemented. This approach is
applied in the solution of the Poisson equation problem and the experi-
mental results are discussed.

Keywords: Finite Element Method, h-adaptativity, Autonomous
Leaves Graph, Space-filling curves, Numerical Methods, Hilbert Curve,
Non-conforming meshes.

1 Introduction

Adaptive mesh refinement (AMR) strategies are important in several areas of engi-
neering and uniform meshes have been widely used in order to solve such problems.
However, uniform meshes are not a computationally viable choice for solving a sys-
tem ofPartialDifferential Equation (PDEs) in which steep gradients, singularities,
or discontinuities need to be captured. Thus, since a tree-based structure provides
a simple scheme for h and p-refinement, it has been broadly used. In this struc-
ture, the parents and the refined children elements are represented in the same
computational data structure, generating an overhead when scanning the neigh-
bors elements in order to assemble the resulting linear system.

The research in this field had a relevant advance when the Autonomous Leaves
Graph (ALG) was proposed for the Finite Volume Method and a space-filling
curve, named Modified Hilbert Curve (MHC), was proposed in order to number
the control volumes [1]. This present work proposes the ALG technique for the
Finite Element Method (FEM) and an adaptation of the MHC for this scheme
as well.
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In the following section, the ALG is briefly presented. Next, Section 3 describes
the MHC adaptation to FEM-ALG. Afterwards, Section 4 shows the numerical
results. Finally, Section 5 draws some concluding remarks.

2 Data Structure

Consider a bidimensional domain in a unit square Ω = [0, 1]2. This square is
discretized into four new equal ones, obtaining four square discrete places. The
discretized domain is represented in Fig. 1.

The graph of Fig. 1 shows black circles, which are called here as black nodes.
Black nodes represent the discrete places of the discretized domain in Fig 1. In

Fig. 1. An initial discretized domain and a graph that represents it

Fig. 2. Refinement process
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addition, the gray circles of the graph represent transition nodes. They furnish
connectivity information between nodes with different level of refinements. The
ones in Fig. 1 represent connectivity information within the boundary of the
domain.

In the refinement process, an element in a level n is replaced by four black nodes
and four transition nodes in a level n+ 1. This process is sketched in Fig. 2.

3 MHC Adaptation

The ALG was proposed as a graph data structure in which each node represents
a control volume. Similarly, this present work proposes a graph data structure
in which each node represents a finite element.

Since non-conforming meshes are not represented by the Hilbert Curve, the
original ALG proposed the MHC in order to number the barycenter of the control
volumes. The MHC was implemented by a linked list. Likewise, this present work
implements two linked lists in order to number: i) the barycenter of the finite
elements (likewise the original ALG)), i.e. a linked list to number the finite
elements and ii) the vertices of the non-conforming finite elements. Moreover,
since in the FEM the values are evaluated in the element vertices, the second
linked list is an adaptation of the MHC algorithm in order to number the vertices
of the finite elements. Figure 3 depicts an example of the vertice numbering by
the adaptation of the MHC.

Each node of the second linked list represents a mesh vertex as well as retains
relevant information about which finite element it belongs to. Furthermore, each

Fig. 3. Example of the vertice numbering by the adaptation of the MHC
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node of the second linked list is allocated for this purpose whereas the pointers
of the first linked list (which numbers the proper finite elements) are included in
the proper graph nodes. In other words, there is a pointer in each graph node and
these pointers implement the (first one) linked list to number the finite elements.

3.1 Assembling the Resulting Stiffness Matrix

The goal of those structures is to assemble the resulting stiffness matrix with the
adequate connectivity information among neighbor elements. Furthermore, each
line of the stiffness matrix is associated with a mesh vertice and is represented
by a different simple linked list. In addition, since this scheme produces a sparse
stiffness matrix, only non-zero values as well as their position are saved into the
linked lists that represent the stiffness-matrix lines.

Notice that there are a linked list to number the finite elements, a linked list
to number the vertices and each line of the resulting stiffness matrix is also a
linked list.

Those linked lists that represent the stiffness-matrix lines are updated by
a computational procedure that scans the vertex-linked list. It applies a linear
interpolation of the associated corner-element values in order to solve the hanging
nodes.

Numerical results show that this numbering scheme produces a sparse sym-
metric positive-definite matrix [2]. Moreover, the Conjugate Gradient Method
was used in order to solve the resulting stiffness matrix.

4 Numerical Results

Firstly, results of two patch tests of the Laplace Problem is presented. Besides,
the rule 2:1 was used in order to control the number of refinements. Secondly, a
Poisson equation problem that involves steep gradients is solved. A 4×4 Gauss-
Legendre Quadrature on four-node bilinear quadrilateral elements was applied.
In the numerical tests, the maximum permissible error in the energy norm was
set to five percent (ηmax = 0.05).

4.1 AMR Strategy

Consider the elliptic boundary-value problem

−∇2u(x) = f(x) in Ω, (1)

subject to the boundary conditions

u = 0 on ∂Ω . (2)
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The variational form of these equations can be written in the bilinear form

B(u, v) =
∫
∇u∇vdΩ, (3)

where v ∈ H1
0 (Ω).

Observe that H1
0 (Ω) is the Sobolev Space of functions with square-integrable

derivatives and the values on ∂Ω vanish.
One can define the error as

error = u− uh, (4)

where u is the real solution and uh is the numerical approximation. However,
since this local measure is not computationally convenient, mathematical norms
are introduced in order to measure the error. The energy error norm is related
to the weak form in Eq. (3), thus,

||e||2 = B(e, e) =
∫
∇e∇edΩ . (5)

Since the exact solution field is generally unknown, the approximate solution is
post-processed in order to obtain a more accurate measure for the gradient of
uh [3]. The relative percentage error in the energy norm is

η =
||e||
||u|| , (6)

where ||u|| is the exact energy norm.
A simple criterion in order to achieve a solution with an acceptable error is

ηmax ≤ η, (7)

where ηmax is the maximum permissible error percentage in the whole domain
and

η =
||e||

(||uh||2 + ||e||2) 1
2
. (8)

The error should be equally distributed among the elements in order to obtain
an optimal mesh

||e|| = √
m||e||i, (9)

where m is the number of elements.
The error can be expressed for the entire domain using the admissible ele-

mentar error [4]
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||e||i ≤ ηmax

(
(||uh||2 + ||e||2)

m

) 1
2

≡ e−m . (10)

Furthermore, if the error in an element is

ξi =
||e||i
e−m

> 1, (11)

the error in the element i is larger then the criterion and, therefore, it needs to
be refined.

4.2 Validation

The Laplace problem
∇2u = 0, Ω = [0, 1]2, (12)

with u = g(x) = x1 + x2 over ∂Ω is solved.
The analyical solution is u(x) = x1 +x2. In this test, ηmax = 0.0 was adopted

in order to refine the elements. Figure 4 depicts an example of the accuracy of
this test.

Fig. 4. Uniform refinement of the Laplace Problem comprising 1089 vertices
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Table 1. Table 1: Laplace Problem results

Mesh Number of elements Number of vertices Energy norm error
a 16 25 1.7X10−17

b 256 289 4.4X10−18

c 1024 1089 2.2X10−18

Fig. 5. Mesh of the Laplace Problem with 41 vertices and the associated MHC

Table 1 shows a comparison of the energy norm error among different meshes.
A better numerical approximation when more elements are in the mesh is
obtained.

Another test admitted 0.05 as the maximum error (ηmax). Figure 5 shows an
example mesh for this test. Fig. 6 presents a graphic of the vertice quantity by
the error of the energy semi-norm H1, showing the convergence of the solution.

4.3 Test in the Poisson Equation Problem

Consider the Poisson equation problem in Ω = [0, 1]2 with Dirichlet boundary
conditions

−∇2u = f(x, y) . (13)
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Fig. 6. Refinament convergence rate where n is the number of equations

Fig. 7. Mesh of the Poisson equation problem with 248 elements
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Fig. 8. Behavior of the solution uh for the Poisson equation problem

with condition u = 0 over ∂Ω.

The source term is given by

f(x, y) = −90x8y10(1− x)(1 − y) + 20x9y10(1− y)−
90x10y8(1− x)(1 − y) + 20y9x10(1 − x) . (14)

The analitical solution is u(x) = x10y10(1 − x)(1 − y). Figure 7 shows a mesh
for this test. Figure 8 shows that FEM-ALG represents the gradient close to the
point (1, 1).

5 Concluding Remarks

FEM-ALG is a novel technique for the adaptive mesh refinement that integrates
the FEM and the ALG. This scheme intends to be more computationally efficient
than other AMR schemes when searching for connectivity information among
elements with different levels of refinement since the refinement process is merely
local when updating all the involved structures.

This work shows experimental results of this scheme in the Poisson equa-
tion problem. More experiments shall be performed in the heating conduction
equation and in the wave equation in future works. Moreover, future works
will describe the unrefinement process. Besides, future works will describe the
integration of new techniques in order to treat hanging nodes as well as the
integration of mesh-free methods in order to apply the shape functions on non-
conforming meshes.
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Abstract. In this paper we derive the recurrent formulae for any inte-
gers powers of certain asymmetric matrices five order which covers also
constans tridiagonal matrices and some asymmetric (and symmetric)
pentadiagonal matrices. Since we find also the Binet’s formulae for the
elements of the powers of these matrices, it is possible to operate with
powers series of these matrices. We note that this method is alternative
to the Jordan method decomposition.

Keywords: tridiagonal matrices, asymmetric matrices.

1 Introduction

The scope of the paper is to determine the recurrent formulae for the pow-
ers of certain asymmetric matrices belonging to the class M5×5(C), involving
constans tridiagonal matrices that have a very wide application. The recur-
rence method, which is an alternative to the Jordan’s decomposition method,
Leonard’s algorithm, Putzer’s algorithm and the method of characteristic poly-
nomial [1,2,3,4,5,6,7], seems fast and facilitating the definition of integers powers
of any matrices. The paper is a follow up on [8] (which is inspired by [9,10], see
also [11]), where the cases of the third and fourth order asymmetric matrices
are discussed and where also the complex powers of these matrices are defined.
Apart from the proposed formulae, the authors also present a computational
example of the application of this procedure.

2 Basic Recurrence Formulae

Let us set now:

G5(a, b, c, d, e, f, g, A,B, y) :=

⎡⎢⎢⎢⎢⎣
a y b y2 c y3 e y4 g
b A y d y2 f y3 e
c d B y d y2 c
e f d A y b
g e c b a

⎤⎥⎥⎥⎥⎦ (1)

for any a, b, c, d, e, f, g, A,B, y,∈ C.
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Lemma 1. Let a1, b1, c1, d1, e1, f1, g1, A1, B1, y,∈ C. If

d1 = b1 + y e1,

f1 = c1 + y g1,

A1 = a1 + y c1,

B1 = a1 + y c1 + y2 g1,

then we get

(
G5(a1, b1, c1, d1, e1, f1, g1, A1, B1, y)

)k

=

= G5(ak, bk, ck, dk, ek, fk, gk, Ak, Bk, y) (2)

for every k ∈ N, where the following recurrence formulae hold:

ak+1 = a1 ak + y b1 bk + y2 c1 ck + y3 e1 ek + y4 g1 gk, (3)

bk+1 = b1 ak +A1 bk + y d1 ck + y2 f1 ek + y3 e1 gk, (4)

ck+1 = c1 ak +B1 ck + y2 c1 gk + d1 dk

= B1 ck +Bk c1 − y c1 ck + d1 dk, (5)
ek+1 = e1 ak + f1 bk + d1 ck +A1 ek + y b1 gk, (6)
gk+1 = g1 ak + e1 bk + c1 ck + b1 ek + a1 gk, (7)
dk = bk + y ek, (8)
fk = ck + y gk, (9)
Ak = ak + y ck, (10)

Bk = ak + y ck + y2 gk. (11)

We note that if additionally we have c1 = g1 = e1 = 0 then G5(a1, . . . , y) is
a tridiagonal matrix.

The proof of the lemma by an easy induction arguments follows.
Now we want to find the Binet’s formulae for the elements ak, bk, ck, ek

and gk. To this aim it is sufficient to designate twenty five coefficients ξi for
ξ ∈ {α, β, γ, δ, ε} and i = 1, 2, 3, 4, 5, for which the following system of equations
hold:

ak = α1 t
k + β1 u

k + γ1 v
k + δ1 w

k + ε1 z
k, (12)

y1/2 bk = α2 t
k + β2 u

k + γ2 v
k + δ2 w

k + ε2 z
k, (13)

y ck = α3 t
k + β3 u

k + γ3 v
k + δ3 w

k + ε3 z
k, (14)

y3/2 ek = α4 t
k + β4 u

k + γ4 v
k + δ4 w

k + ε4 z
k (15)

y2 gk = α5 t
k + β5 u

k + γ5 v
k + δ5 w

k + ε5 z
k, (16)

for every k ∈ N and for some t, u, v, w, z ∈ C independent on k.
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From identities (3)–(7) and (12)–(16) if we compare the coefficients of pow-
ers uk+1, vk+1, wk+1 and zk+1 it is easily established the following system of
equations

ξ1 = ξ21 + ξ22 + ξ23 + ξ24 + ξ25 , (17)
ξ2 = 2 ξ1 ξ2 + 2 ξ2 ξ3 + 2 ξ3 ξ4 + 2 ξ4 ξ5, (18)

ξ3 = 2 ξ1 ξ3 + 2 ξ2 ξ4 + 2 ξ3 ξ5 + ξ22 + ξ23 + ξ24 , (19)
ξ4 = 2 ξ1 ξ4 + 2 ξ2 ξ3 + 2 ξ3 ξ4 + 2 ξ2 ξ5, (20)

ξ5 = 2 ξ1 ξ5 + 2 ξ2 ξ4 + ξ23 , (21)

for every ξ ∈ {α, β, γ, δ, ε}.
Sketch of solution of the system (17)–(21):

Substracting equations: (21) from (17) and next (18) from (20) we obtain
respectively:

ξ1 − ξ5 =
(
ξ1 − ξ5

)2 +
(
ξ2 − ξ4

)2
, (22)

ξ2 − ξ4 = 2 ξ1
(
ξ2 − ξ4

)
+ 2 ξ5

(
ξ4 − ξ2

)
= 2

(
ξ2 − ξ4

) (
ξ1 − ξ5

)
,

i.e., (
ξ2 − ξ4

) (
1− 2

(
ξ1 − ξ5

))
= 0. (23)

From (23) we have, that either ξ2− ξ4 = 0 or ξ1− ξ5 = 1
2 . If ξ2 = ξ4 then by (22)

either ξ1 = ξ5 or ξ1 − ξ5 = 1. On the other hand, if ξ1 − ξ5 = 1
2 , then by (22)

ξ2− ξ4 = ± 1
2 . Finally, the equations system (17)–(21) is extended to include one

of the following four equations:

1. ξ2 = ξ4 and ξ1 = ξ5,
2. ξ2 = ξ4 and ξ1 − ξ5 = 1,
3. ξ1 − ξ5 = 1

2 and ξ2 − ξ4 = 1
2 ,

4. ξ1 − ξ5 = 1
2 and ξ2 − ξ4 = − 1

2 ,

reducing the number of solutions to 28 vectors from R5 (all calculations were
performed in Mathematica). Surely, out of the 28 vectors, we are interested in
only five different ones. It should be indicated that in view of equations (3)–(7),
the required vectors must comply with the following orthogonal conditions:

5∑
i=1

ζi ηi =
5∑

i=1

ζi η5−i = 0

for every ζ, η ∈ {α, β, γ, δ, ε}, ζ �= η. From this point, it is easy to derive the
following solution:⎡⎢⎢⎢⎢⎣

α1 β1 γ1 δ1 ε1
α2 β2 γ2 δ2 ε2
α3 β3 γ3 δ3 ε3
α4 β4 γ4 δ4 ε4
α5 β5 γ5 δ5 ε5

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
12

1
4

1
3

1
4

1
12

−1
4
√

3
1
4 0 − 1

4
1

4
√

3
1
6 0 − 1

3 0 1
6

−1
4
√

3
− 1

4 0 1
4

1
4
√

3
1
12 − 1

4
1
3 − 1

4
1
12

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (24)
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Moreover, we can generate the following formulae

t = a1 − b1
√

3 y + 2 c1 y + g1 y
2 − e1

√
3 y3, (25)

u = a1 + b1
√
y − g1 y

2 − e1
√
y3, (26)

v = a1 − c1 y + g1 y
2, (27)

w = a1 − b1
√
y − g1 y

2 + e1
√
y3, (28)

z = a1 + b1
√

3 y + 2 c1 y + g1 y
2 + e1

√
3 y3. (29)

Corollary 1. We have⎡⎢⎢⎢⎢⎣
a c 0 0 0
b a c 0 0
0 b a c 0
0 0 b a c
0 0 0 b a

⎤⎥⎥⎥⎥⎦
r

= G5
(
αr, βr, γr, δr, εr, fr, gr, Ar, Br,

c

b

)
, (30)

where

αr =
1
12

tr +
1
4
ur +

1
3
vr +

1
4
wr +

1
12

zr, (31)

y1/2 βr =
−1

4
√

3
tr +

1
4
ur − 1

4
wr +

1
4
√

3
zr, (32)

y γr =
1
6
tr − 1

3
vr +

1
6
zr, (33)

y3/2 εr =
−1

4
√

3
tr − 1

4
ur +

1
4
wr +

1
4
√

3
zr, (34)

y2 gr =
1
12

tr − 1
4
ur +

1
3
vr − 1

4
wr +

1
12

zr, (35)

y1/2 δr = y1/2 βr + y3/2 εr =
√

3
6

(
zr − tr

)
, (36)

4 y fr = 4
(
y γr + y2 gr

)
= tr − ur − wr + zr, (37)

4Ar = 4
(
αr + y γr

)
= tr + ur + wr + zr, (38)

3Br = 3
(
αr + y γr + y2 gr

)
= tr + vr + zr, (39)

and

t = a−
√

3 b c,

u = a+
√
b c,

v = a,

w = a−
√
b c,

z = a+
√

3 b c.

Remark 1. All formulas (2)–(16) and (30)–(39) hold true also for all k, r ∈ Z,
since G5

(
a1, b1, . . . , g1, A1, B1, y

)
is the diagonal matrix (see also [8] for more
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comments). The powers in the respective formulas should be chosen in the fol-
lowing way:

xr := exp
(
r (ln |x|+ iArg x)

)
.

3 Example

Now the numerical example of application of our formulae will be given. Let
us set: a1 = 1, b1 = 1, c1 = −1, e1 = −1, g1 = 1, d1 = 1 − i =

√
2 e−i π/4,

f1 = −1 + i =
√

2 ei 3 π/4, A1 = 1 − i =
√

2 e−i π/4, B1 = −i, y = i. For these
values, we have

G5(a1, b1, . . . , B1, y) =

⎡⎢⎢⎢⎢⎣
1 i 1 i 1
1 1− i 1 + i 1− i i

−1 1− i −i 1 + i 1
−1 −1 + i 1− i 1− i i

1 −1 −1 1 1

⎤⎥⎥⎥⎥⎦ .
By (25)–(29) we get

t = 1−
√

3 i− 2 i− 1 +
√−3 i

= − exp
(1

2 (ln 3 + i π
2 )
)− 2 i+ exp

( 1
2 (ln 3 + i 3 π

2 )
)

= −
√

3 exp
(
i π

4

)− 2 i+
√

3 exp
(
i 3 π

4

)
= −√6− 2 i,

u = 2 + i
√

2,
v = i,

w = 2− i
√

2,

z =
√

6− 2 i.

Then by (2) we have

Gk
5(a1, b1, . . . , B1, y) = G5(ak, bk, . . . , Bk, y), k ∈ Z,

where

ak =
1
12

(− (
√

6 + 2 i)
)k +

1
4
(
2 + i

√
2
)k +

1
3
ik +

1
4
(
2− i

√
2
)k

+
1
12

(√
6− 2 i

)k
,

ei π/4 bk = −
√

3
12

(− (
√

6 + 2 i)
)k +

1
4
(
2 + i

√
2
)k − 1

4
(
2− i

√
2
)k

+
√

3
12

(√
6− 2 i

)k
,

i ck =
1
6
(− (

√
6 + 2 i)

)k − 1
3
ik +

1
6
(√

6− 2 i
)k
,
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e−i π/4 ek = −
√

3
12

(− (
√

6 + 2 i)
)k − 1

4
(
2 + i

√
2
)k +

1
4
(
2− i

√
2
)k

+
√

3
12

(√
6− 2 i

)k
,

gk = − 1
12

(− (
√

6 + 2 i)
)k +

1
4
(
2 + i

√
2
)k − 1

3
ik +

1
4
(
2− i

√
2
)k

− 1
12

(√
6− 2 i

)k
,

2 ei π/4 dk =
(
2 + i

√
2
)k − (

2− i
√

2
)k
,

4 i fk =
(− (

√
6 + 2 i)

)k − (
2 + i

√
2
)k − (

2− i
√

2
)k +

(√
6− 2 i

)k
,

4Ak =
(− (

√
6 + 2 i)

)k +
(
2 + i

√
2
)k +

(
2− i

√
2
)k +

(√
6− 2 i

)k
,

3Bk =
(− (

√
6 + 2 i)

)k + ik +
(√

6− 2 i
)k
.

For example, for k = −1 we get

G−1
5

(
a1, . . . , B1, y

)
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
6 − 3i

10
2
15 − i

30 − 2
5 − 2

15 − i
30

1
6 + 3i

10

− 1
30 − 2i

15
1
6 + i

10
1
10 + i

10 − 1
10 − i

6 − 2
15 − i

30
2
5

1
10 − i

10 − i
5

1
10 + i

10 − 2
5

1
30 − 2i

15
1
10 + i

6
1
10 − i

10
1
6 + i

10
2
15 − i

30
1
6 + 3i

10
1
30 − 2i

15
2
5 − 1

30 − 2i
15

1
6 − 3i

10

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

4 Final Remarks

1◦ It’s some natural problem how to defined some power series of G5. For exam-
ple, how eG5 should be defined? By Lemma 1 it can be defined in the following
way:

exp
(
G5(a, b, c, d, e, f, g, A,B, y)

) ≈
≈

N∑
k=0

1
k!

G5(ak, bk, ck, dk, ek, fk, gk, Ak, Bk, y) =

= G5

( N∑
k=0

1
k!
ak,

N∑
k=0

1
k!
bk, . . . ,

N∑
k=0

1
k!
Bk, y

)
,

where N can be chosen arbitrary with a given accuracy, because of the Binet’s
formulae (12)–(16). On the other hand, we have the following exact formula:

exp
(
G5(a, b, c, d, e, f, g, A,B, y)

)
= G5(â, b̂, ĉ, d̂, ê, f̂ , ĝ, Â, B̂, y),
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where ⎡⎢⎢⎢⎢⎣
â

y1/2 b̂
y ĉ

y3/2 ê
y2 ĝ

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
12

1
4

1
3

1
4

1
12

−1
4
√

3
1
4 0 − 1

4
1

4
√

3
1
6 0 − 1

3 0 1
6

−1
4
√

3
− 1

4 0 1
4

1
4
√

3
1
12 − 1

4
1
3 − 1

4
1
12

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣
et

eu

ev

ew

ez

⎤⎥⎥⎥⎥⎦ ,

for the definition of the parameters t, u, v, w, z see formulae (25)–(29), and

d̂ = b̂+ y ê,

f̂ = ĉ+ y ĝ,

Â = â+ y ĉ,

B̂ = â+ y ĉ+ y2 ĝ.

In the connection with these deliberations it is intriguing in some sense that
Mathematica have some problem with symbolic Jordan decomposition of the
matrix G5(a1, b1, . . . , B1, y) from our example.

2◦ Why are only the matrices 5×5 discussed in the paper? It turned out that
generalizations of the case 3 × 3 (from [8]) onto 4 × 4 and 5 × 5 matrices are
unique in a certain sense. The case of the 6× 6 matrix:

G6 :=

⎡⎢⎢⎢⎢⎢⎢⎣
a y b y2 c y3 e y4 g y5 k
b A y d y2 f y3 h y4 g
c d B y d y2 f y3 e
e f d B y d y2 c
g h f d A y b
k g e c b a

⎤⎥⎥⎥⎥⎥⎥⎦
with respective recurrence relations for its elements don’t work. In consequence
the generalization n × n, n ≥ 6, are not so strong (it is necessary to use less
number of parameters or others recurrence relations).
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Abstract. In this paper we present the results of a numerical simulation of the 
dynamics of a periodically forced spherical particle in a quiescent Newtonian 
fluid at low Reynolds number. We describe the simulation and tests performed 
to validate our simulation. We have obtained results which are physically 
reasonable and hence we have confidence in our results. We include the effects 
of both convective and unsteady inertia on the dynamics at low Reynolds 
numbers. The inclusion of inertia results in additional linear and nonlinear 
terms in the equations representing a fading memory of the entire history of the 
motion. The nonlinearity though small in the parametric regime of interest, 
gives rise to some interesting features in the solution of the problem. 

Keywords: Low Reynolds numbers, quiescent fluid, spherical particle, periodic 
force. 

1   Introduction 

The motion of a spherical particle in a fluid at low Reynolds numbers has been of 
appreciable interest for more than a century, starting with Stokes [1], and his interest 
on the effects of fluid friction on the motion of pendulums and hence in accurate time 
keeping. His fundamental expression for the force acting on a spherical particle has 
motivated many researchers to obtain better approximations for the hydrodynamic 
force acting on spherical particles. Lovalenti and Brady [2] have summarized work 
prior to 1993 in their paper and have also derived an expression for the hydrodynamic 
force undergoing arbitrary time-dependent motion at small Reynolds numbers. In this 
paper we use the expression derived by Lovalenti and Brady [2] for the hydrodynamic 
force on a rigid spherical particle undergoing arbitrary time-dependent motion at low 
Reynolds numbers, to obtain expressions for the particle displacement and particle 
velocity of a periodically forced spherical particle in a quiescent Newtonian fluid at 
low Reynolds numbers. 
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Our work is motivated by the prior work of Ramamohan and coworkers on the 
dynamics of periodically forced particles at zero Reynolds numbers i.e., by complete 
neglect of both unsteady and convective inertia. Kumar and Ramamohan [3] have 
shown that rheological parameters of suspensions can be controlled using periodic 
perturbations and that small changes in controllable parameters lead to large changes 
in rheology. In the present work, our interest is in studying periodically forced 
suspensions at low Reynolds numbers. The present system is one of the simplest 
experimentally realizable fluid dynamical systems, at low Reynolds numbers, which 
can atleast in principle show nonlinear behavior. Further this is an ideal system to 
investigate fundamental questions about the average behavior of periodically forced 
systems of nonlinear oscillators and the relationship of the dynamics of a single 
oscillator to the dynamics of the average behavior of a large number of such 
oscillators. Here we note that the periodic forcing occurs both at the individual 
particle level as well as at the level of the averages [4]. This provides a nonlinear 
coupling between the microlevel of the individual particle and the macrolevel of its 
averages. In this work we take the first step in the direction of analyzing this problem 
by determining the effects of a periodic force on the dynamics of a neutrally buoyant 
spherical particle in a quiescent incompressible Newtonian fluid at low but nonzero 
Reynolds numbers. This is the simplest possible extension including inertia to the 
problem studied for over a decade by Ramamohan and coworkers and summarized in 
Asokan et al. [5]. The inclusion of inertia results in a delay between the variation of 
the external force and the variation in the response of the particle to the external force. 
The expression for the hydrodynamic force FH on a spherical particle undergoing an 
arbitrary motion in an arbitrary time dependent uniform flow field, given by Lovalenti 
and Brady [2] is used to derive the expression for the particle velocity and 
displacement using Newton’s law and the results are validated by performing several 
tests on the software. We have generated a number of phase plots (plots between 
particle displacement and particle velocity) and displacement time series and velocity 
time series from our simulation. We have analyzed these phase plots and time series 
using the TISEAN software package, Hegger et al, [6] for nonlinear behavior. 

2   Formulation of the Problem 

The Lovalenti and Brady [2] formalism for the hydrodynamic force on a rigid sphere 
undergoing arbitrary time – dependent motion in an arbitrary time dependent uniform 
flow field at small Reynolds numbers is given by the following expression: 
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This expression is obtained by using the reciprocal theorem and the details of the 

derivation can be found in Lovalenti and Brady [2]. Here, 
∞−= UUU ps is the slip 

velocity of the fluid. pU  is the velocity of the particle. ∞U  is the velocity of the 

fluid as ∞→r . Re is the Reynolds number, defined as Re = aUc/ν based on a 

characteristic particle slip velocity, Uc, a denotes the characteristic particle dimension 
and ν  is the kinematic viscosity of the fluid. ppUF s

H
s .6  || π−=  

and ).(6  ppUF s
H

s −−=⊥ δπ , where δ  is the idem tensor of order 2 and unit 

vector
)()(

)()(

sYtY

sYtY
p

ss

ss

−
−

= , here )()( sYtY ss − is the integrated displacement of the particle 

relative to the fluid from time s to the current time t. Sl is the Strouhal number and 
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.  

For our problem, we consider a neutrally buoyant sphere in an infinite body of a 
quiescent fluid and consider the effects of an external periodic force acting on the 
sphere along the x – axis. We use equation (1) to obtain the equation governing the 
unidirectional motion of a sphere in a quiescent fluid, starting with zero velocity at 
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Transforming the integral with respect to A, we get 
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Hence the two singular terms cancel each other as s→t, and thus we obtain an 
expression for the hydrodynamic force on a sphere in a quiescent fluid as: 
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The equation of motion for a neutrally buoyant particle immersed in a fluid is 
given by 

),()(
)(
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 (5) 

Using equation (4) with the external periodic force Fext = F0  sin(t), where time has 
been scaled with respect to the frequency of the external periodic force field, along 
the x direction and using Newton’s law, we obtain equations for the particle velocity 
Up and position Yp with velocity and position equal to zero at time equal to zero in the 
form  
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3   Methodology 

We developed software using Numerical Recipes in FORTRAN [7] to solve equations 
(5a) and (5b) using an embedded Runge-Kutta method with adaptive step size. The 
integral in the equation (5b) was evaluated at each time step by Romberg 
extrapolation. The function with respect to ‘A’ was defined by a user supplied 
function subprogram. We used the ODEINT, RKQS, RKCK subroutines from 
Numerical Recipes [7] to implement the Runge – Kutta method. The Romberg 
extrapolation was performed using the QROMB subroutine. The integral was 
evaluated using TRAPZD and the interpolation during the numerical quadrature was 
performed by POLINT. The tolerance for both the Romberg extrapolation and the 
Runge - Kutta solver was taken as 10-5. Further reduction of the tolerance did not 
result in any significant change in our results. The entire program was written in 
double precision. The initial conditions for both the velocity and the position of the 
particle were taken as zero. ε was taken as 0.04; smaller values of ε did not 
significantly change the results. The software was tested for consistency by compiling 
the program with two compilers namely, Intel Fortran and F90. We generated 5,000 
data points taken at an interval of π/200 in both the dimensionless velocity and 
dimensionless position. We note that there are certain novel features of these 
equations, namely a nonlinear history term that results in certain special features in 
the solutions.    

The results of both the programs matched except for minor differences of the order 
of 10-5. In addition to this, we performed the following tests to check the validity of 
our results.  
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TEST1: We performed a perturbation analysis of the problem, using Re1/2 as the 
perturbation parameter. The particle displacement and particle velocity matched with 
our numerical solutions upto Re ≈ 0.05. The deviation from the perturbation solution 
may be due to the fact that even though Re is small, ‘A’ in equation (4), need not be 
small for all ‘t’ and ‘s’. This test is an important test on our software as it showed that 
the numerical solutions obtained by our software are correct. 

TEST2: The solution of the problem of the motion of a spherical particle of greater 
density than the fluid starting from rest derived using the assumptions of Reynolds 
number Re<<1 and Strouhal number Sl known from the literature ( Fig. 5. of 
Lovalenti and Brady [2] ) was reproduced. 
TEST3: We assumed that the velocity of the fluid at infinity was a constant i.e., 

0UU =∞  and we set ReF = 0. Under these assumptions, we obtained 0UU p →  as 

∞→t , which is as expected. 

TEST4: We generated a number of outputs using 00 =U  and 00 ≠U  and 

compared the results as 00 →U . We found that the results matched for  00 =U  

and 00 →U , up to an order of 10-5. 

TEST5: When we change the initial direction of the motion, namely replacing ReF by 
- ReF, the phase space plot is reflected about the zero velocity axis. That is, we obtain 
the reflection of the phase space attractor about the zero velocity axis when the 
direction of the first motion is reversed. We consider this as an important result which 
demonstrates the correctness of our results. Our results show a preferred direction in 
the solution. Since the only physical direction in our problem is the initial direction of 
the external force, a reversal of that direction should result in a reversal of direction in 
the solution. We find that this is indeed the case. 

TEST6: We observed that there is a shift of position of the attractors when we change 
the initial condition of Yp. Changing Yp at t = 0, results only in a shift of attractors as 
there is only a change in the frame of reference, which does not affect the physics of 
the problem. This confirms the fact that a change in the initial position only results in 
a change in coordinate system and not in any physical parameter. This further 
increases our confidence in our results. 

We note here that, Up ≠ 0 at t = 0, does not make any physical sense, since if we 
consider Up ≠ 0 at t = 0, then there must be some particle velocity at negative time 
too. Moreover, in a quiescent fluid, the particle velocity is due to the application of 
the external periodic force which is applied only from t = 0. 

These tests give us considerable confidence in our simuation. 

4   Results and Discussions 

Typical phase space plots (plots of particle velocity versus particle position) are 
plotted in Fig. 1. for different values of Re and ReF. We note that these plots represent 
a bounded region of phase space and hence the plots represent an attractor in phase 
space. We observe that here, as ReF increases the attractor size also increases, 
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establishing the obvious relation between the amplitude ReF of the forcing term and 
the size of the attractors. As the amplitude of the periodic force increases, the particle 
also oscillates with greater amplitude, covering a greater surface area in the attractor 
plot. One can observe from the figure that as Re increases, the area bounded by 
attractors decreases, showing the effect of inertia on the motion of the particle. We 
can observe that for small ReF, especially for ReF = 0.01 and different Re, the 
attractors are different from the other attractors shown in Fig. 1. We note here, that 
near ReF = 0.01, there exists a bifurcation due to the occurrence of a band of higher 
harmonics or quasi periodicity in the power spectrum and also the presence of kinks 
at the two extremes of the phase plots as shown in Fig. 1. At low ReF, the nonlinearity 
is comparatively large compared to the external periodic force. Re represents the 
magnitude of the inertial term, namely a resistance to the change in motion. Hence as 
Re increases, the resistance to the change in motion also increases diminishing the 
size of the attractors.  

The existence of higher harmonics or quasi periodicity is found in these regimes in 
the power spectrum. We observe that the power spectrum plots are coherent with that 
of the Stokes’ flow case, showing the effect of periodic force on the motion of the 
particle dominating over the other parameters. However the phase plots in Fig. 1. 
follow a small spiral, which is due to the presence of damping term in the expression 
(5b). One can also note that there is a slight drift in the initial motion of the particle as 
shown in Fig. 1. From this figure it is evident that there are kinks at the two extremes 
in the phase space plots which occur around zero magnitudes of the velocity of the 
particle and hence relatively inertial (nonlinear) effects, since near zero velocity, the 
rate of change of the velocity is highest. On increasing the resolution of our 
calculations and hence increasing the sampling frequency, these kinks do not change 
showing the effects of nonlinear term dominating near ReF = 0.01. Typically, these 
kinks increase in magnitude at large Re.  

When we apply a phase shift of π to the sinusoidal forcing term the attractors shift 
their direction. That is, when we apply a force in an initially negative direction (the 
opposite direction) Yp shows a reflection about the Yp = 0 axis and thus we obtain a 
reflection of the attractor. The reflection property of these attractors is evident upon 
reversing the direction of first motion indicating that these features are not a 
numerical artefact. Figure 2 show the phase plots when the direction of the amplitude 
of the force is changed and the attractors form a reflection of each other about the axis 
Yp = 0, as expected. Since the direction of the force represents the direction of initial 
motion and also there is a fading memory, the particle shows an initial displacement 
and at large times the periodic motion manifests itself, approximately. 

We compared the results of the problem with the Stokes’ flow results. We have 
considered the amplitude ratio as the ratio of the amplitude of the motion of the 
particle in our problem with the Stokes’ flow amplitude. We note that except for ReF 
= 0.01 and higher Re, the amplitude ratio with respect to Re and ReF shows a 
decreasing trend. This might be due to the effect of inertia of the fluid. In the regime 
of ReF = 0.01, we observe a greater dependence of the amplitude ratio on Re and ReF. 
This is reasonable since we see a greater effect of nonlinearity in this region. We also 
observe that as Re increases the amplitude ratio decreases, showing the effect of 
inertia is to reduce the amplitude of the motion. 
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Fig. 1. The phase portrait for various Re and low ReF. These attractors show kinks at the two 
extremes for ReF = 0.01, clearly showing the effect of the nonlinearity, namely a bifurcation 
near ReF=0.01. 

We observed that there is a definite relationship between the mean particle 
displacement Yp,mean and the amplitude of the external periodic force ReF. This is as 
expected since the magnitude of the initial motion is determined by the amplitude of 
the periodic external force and by the value of Re. As Re increases we note that 
Yp,mean decreases and as ReF increases Yp,mean  increases. 

We obtained the relationship between Re, ReF and amplitude of the velocity of the 
particle. We observe that the amplitude of the velocity increases with increase in ReF 
and decreases with increase in Re, describing the effect of the periodic force and 
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inertia and effect on the amplitude of the velocity of the particle. Using TISEAN [6], 
we performed tests for the possibility of chaos in the system and found that there 
occurs a bifurcation at low ReF and high Re, there is no chaos in the system. 

 

Fig. 2. The phase portrait obtained at Re = 0.3 and ReF = ±0.1. The phase portrait shows the 
reflection property of the solutions of our problem, indicating that there is a physical basis to 
our results. 

5   Conclusion 

In this paper, we have attempted to determine the effects of a periodic force on a 
sphere in a quiescent fluid at low Reynolds numbers. We observe that the particle 
oscillates around a mean position, due to the periodic force on the particle. There is a 
net displacement of the mean position of the particle in the direction of first motion. 
The presence of higher harmonics in the full problem for small ReF and high Re are 
noticed and this shows that though there is a nonlinear term in the equation, its effect 
is small in the parametric regime which we have considered except at low values of 
ReF and large values of Re. It is also observed that increasing Re was responsible for 
an increase in the resistance to the change in particle motion and hence a decrease in 
attractor area and increasing ReF leads to an increase in the amplitude of the motion of 
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the particle. Besides, a reflection of the attractor on changing the initial direction of 
motion is obtained. Our results of the dependence of the mean position of the particle 
and the amplitude of the velocity of a particle on the problem parameters, such as Re 
and ReF may be used to estimate appropriate physical parameters of the system by 
suitable experiments. We hope that this work will excite further interest in this area. 
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Abstract. This article presents a local control approach to linear vehicle
platooning. Linear platoon systems are sets of vehicles that use local or
global perception capabilities to form a train configuration, without any
hard grip element. Public transportation is beginning to interest in pla-
toon systems as a technological base to conceive new services. The main
problem related to platoon system’s control corresponds with maintain-
ing inter-vehicle distance. In literature, the platoon’s geometry control
problem is treated according to two approaches: global or local vehicle
control. This paper focuses on a local approach which does not require
sophisticated sensors and/or costly road equipment. This local control
approach intends to obtain very good global matching to arbitrary tra-
jectories, only from local perception which consists in measuring the
vectorial distance between a given vehicle and its predecessor. The be-
havior of each platoon vehicle is determined from a physics inspired multi
agent interaction model based on a virtual spring-damper. Furthermore,
stability, platoon safety properties are checked using physics and math-
ematical proofs. Finally, simulation is used to measure trajectory error
and inter-vehicle distance evolution.

Keywords: Platoon, local control, stability proof, simulation.

1 Introduction

Platoon systems can be defined as sets of vehicles that apply local or global per-
ception capabilities to adopt and maintain a train-like or other geometric config-
uration or formation. Train platoon configurations are also called linear platoons.
Control of vehicles’ movement within a linear platoon can be decomposed into
two main subproblems: longitudinal control and lateral control. Longitudinal
control consists in controlling braking and acceleration in order to stabilize the
distance between following vehicles. Lateral control consists in determining a
vehicle’s direction according to the platoon’s trajectory. Linear platoon configu-
rations (Cf. Fig. 1) attract considerable attention as an approach to innovative
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Fig. 1. Example of linear platoon simulation in front of System and Transportation
laboratory (SET)

transportation systems [1]. Their main impact [2], when applied to urban trans-
portation, are: (i) reducing private car affluence (i.e. avoiding traffic jams), (ii)
improving security thanks to automatic driving assistance (obstacle detection
and avoidance, automatic car parking,...). Platoon based transportation systems
are supposed to exhibit a set of convenient properties: adaptability to particular
user’s service requests, reconfigurability to accommodate a variable number of
resources, depending on demand and others.

From the scientific and technological point of view, platoon system’s control
includes some relevant challenges. The main problem related to platoon systems
relates to inter-vehicle distance control. In literature, the control of platoon’s
global geometry can be divided into two main approach: global or local vehicle
control. Within the global approaches each following vehicle is made aware of the
leading vehicle trajectory. This solution generally uses some positioning systems
such as GPS [9,10]. According to the global control strategy, the leading vehicle
broadcasts driving information (steering and speed) to each follower vehicle (i. e.,
the European Chauffeur project [11]). This approach yields very good trajectory
following but the global position perception by GPS or other technology implies
some road adaptation to avoid tunneling or canyon effects. Moreover, a safe,
reliable communication network between vehicle is required. To concluded, the
global control approach gives the best results with strong constraints on sensors
(high cost), road adaptation and communication reliability between vehicles.

On the other hand, local control consists in computing the vehicle’s command
references (acceleration and direction) only from vehicle’s own perceptions. Most
of the lateral or longitudinal control strategies proposed within local approaches
based on PID (Proportional, Integral, Derivative) controllers [12,13,14] or other
regulation-loop based algorithm [11,15,16,17,23]. Some other works, propose to
base on simulated physical phenomena to calculate vehicle’s control references.
For instance, Gehrig and Stein [18] take inspiration from physical particle forces.
Soo-yeong Yi and Kil-to Chong [19] model immaterial grip by means of an
impedance control mechanism. The local approach has been criticized because
of their relatively poor trajectory matching and the accordion effect they pro-
duce during platoon evolution. Indeed, naive local control approaches increase
the trajectory matching error since a follower vehicle tends to anticipate the
direction change. On the other hand the local approach, unlike the global one,



Bending Virtual Spring-Damper 603

does not require any sophisticated and highly fallible sensor and can be used in
any environment, without any road upgrading.

The paper proposes a local approach which improves the trajectory in any
curved trajectory. This approach is based on a virtual spring-damper which
bends to avoid curve anticipation. This paper is structured as follows. The For-
mal (behavior and interaction) Models are presented. Then, stability proofs are
presented using mathematical and physical points of view. Finally simulation
results are shown. This paper concludes by stressing main contributions and by
drawing some perspectives and future works.

2 Formal Models

2.1 Behavioral Model

In the approach presented here, an alternative to centralized control, vehicles are
autonomous entities in mutual interaction. Consequently, the intended embod-
iment for the local platoon control algorithms is a reactive multi-agent system
(RMAS). Reactive agents are relatively simple entities that behave based on their
own local perceptions [3]. The reactive approach is one of the most interesting
due to its robustness, adaptability and simplicity.

The behavior of each vehicle agent is determined from a physics inspired
model that minimizes interactions: each vehicle relates only with the preceding
one in the platoon. Steady platoon motion over arbitrary trajectories emerges
as a global result of individual behaviors. Statechart of Fig. 2 is a high level
representation of vehicle agent behavior. The global behavior integrates two

EndPercept/

initCompute

StopCompute

Waiting

[distance > safetyDistance]

[distance =< safetyDistance]C

/ computeSpeed && EndCompute

/ safetyStop && EndCompute

Waiting measuring

/ initPercept

/ EndPercept
&& ReadAnglDist

start || EndCompute 
PERCEPTION

VEHICLE CONTROL

Fig. 2. Inserted vehicle agent behavior
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parallels sub behaviors one corresponding to the perception and the other to the
action. The vehicle perception behavior correspond to the measure of the inter-
vehicle vectorial distance using a sensor such as a laser range finder. When the
perception cycle is ended, the vehicle control behavior starts. The A distinction
is made between the inter-vehicle distance being under the safety distance or not.
The safety distance represents the distance required to perform a safety stop.
If the inter-vehicle distance is under the safety distance, function safetyStop is
called, which triggers a safety stop operation. If the distance is above the safety
distance, the function computeSpeed is called to compute the new vehicle’s speed
reference from the physics inspired interaction model.

2.2 Interaction Model

Physics inspired interaction model is used to specify the response of an agent,
as determined by its perceptions. The model proposed in this paper is based
on three virtual forces: spring force F s, damping force F d and surface friction
force F f , as in [5,6], augmented by torsion force F l, introduced to improve
the interaction model in curved trajectories, by adding a flexion force to the
impedance control model. The virtual link forces are calculated from a classical
spring damper model with stiffness k, damping h and spring’s un stretched length
l0. Each vehicle i is represented by its position Xi = [xi,yi]. The mass of the
vehicle is denoted as m (we assume that each vehicle has the same mass). The
distance between vehicles is d = ‖Xn+1 −Xn‖.

Longitudinal and lateral control references can be determined from just these
three forces (F s, F d, F f ), by calculating a new acceleration value. However,
simulations and experimentations [6] have exhibited an increase in trajectory
error from one vehicle to its follower. This error is due to limitations of the
linear impedance control model (Cf. Fig. 3 left). Figure 3 shows the accelera-
tion anticipation and its consequence, trajectory error. To avoid this problem,
we propose to add a force, due to the flexing of the impedance control. This
force counters the acceleration anticipation. This force is deduced from a virtual
moment, result of a flexing spring Moment = km ∗ θ ∗ z with km the torsion
spring parameter and θ the spring angle of flection. This force is computed as

Fig. 3. Acceleration problem and issue
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the vector product of the distance between the moment application point and
the preceding vehicle position (C.f Fig. 3 right).

Those forces allow to compute the vehicle’s acceleration, by using Newton’s
law of motion determined relatively to the preceding vehicle reference:

Spring force F s = −k(‖Xn+1 −Xn‖ − l0)un+1 n

Damping force F d = −h(Ẋn+1 − Ẋn)
Friction force of the surface F f = −λẊn

Torsion force F torsion = MA ∧Moment

Acceleration value:

m∗γ = −k(‖Xn+1−Xn‖−l0)un+1 n−h(Ẋn+1−Ẋn)+−λẊn+MA∧Moment
(1)

By discrete integration, we can then determine speed and vehicle state (po-
sition and orientation). Then the command reference can be computed. In our
case, it consists in vehicle direction and speed 1. Model parameters are deter-
mined by considering the vehicle’s characteristics and constraints.

3 Inter-Vehicle Distance Stability Analysis

Analysis of the interaction model by applying classical laws allows to prove that
the interaction model satisfies a set of platoon stability properties. The next
section presents two kinds of proofs: one applying a direct approach and the
other using an energetic point of view.

3.1 Platoon Stability Based on Transfer Function

Platoon stability is treated following the “string stability” problem which has been
studied in 1977 by Caudill and Garrard [8]. A platoon is said to be stable if, un-
der no other excitations, the error magnitude decreases as it propagates along the
vehicle stream. Here, we proposed to prove the string stability relatively to longi-
tudinal control. Formally speaking, if the transfer function of the system composed
of two successive vehicles exhibits a magnitude less or equal to 1, string stability is
obtained [21,22]. In order to verify this property, the control law of vehicles i and
i− 1 must be expressed with θ = 0 (Longitudinal control): let us suppose A equal
to X(s)i

X(s)i−1
. From laws of motion applied to vehicles i and i− 1, we obtain{

m ∗ Ẍi = −kXi − hẊi

m ∗ ¨Xi−1 = −kXi−1 − hẊi−1
(2)

From these equations A can be deduced: A = h∗s+k
s2+h∗s+k .

String stability is guaranteed only if: |A(jω)| ≤ 1. This condition is verified with
k ≤ m∗ω2

2 . This study proof that our system is stable to any frequency. The error
propagation will be attenuated through the platoon.
1 The choice of a command law takes into account the characteristics of the test vehicle

used in our laboratory.
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3.2 Inter-Vehicle Distance Stability Proof Based on Energy

We intend to check if the stability2 of the system is kept in run time. To this
end we apply Lyapunov stability of motion conditions [7,20]. The system energy
results from the addition of kinetic and potential energies. We take vehicle i as
reference frame to express the energy.

E = Ekinetics + Epotential = Ekinetics + Epot(Fs) + Epot(Ftorsion)
E = 1

2 ∗m ∗ (Ẋ.Ẋ) + 1
2 ∗ k ∗ (X.X) +

∫
X

∫
θ
F .dY dθ

(3)

By applying Lyapunov stability of motion conditions [7,20], we obtain[
∂E(x,y,θ)

∂x
∂E(x,y,θ)

∂y

]
=
[
x2

2(kmsin(θ)− h)
y2
2(kmcos(θ) − h)

]
(4)

The derivative of Energy is negative if the angular h ∗ km is greater than
1 since θ ∈ [−π/2, π/2] . Applying Lyapunov stability of motion conditions
as in [6,4], shows that the system is stable when time tends to infinity. Thus,
the distance between vehicles tends to the un stretched spring length when the
platoon moves without environmental influence, if the condition on rotation
angle (θ ∈ [−π/2, π/2]) is verified.

4 Experimentation Results

The physics inspired interaction model previously defined was the base to the
specification of the local platooning control algorithms. Based on those algo-
rithms, simulation experiments were designed and performed to check a set of
safety platoon conditions. The simulations have been made on a simulator able
to take into account vehicle dynamics properties. The simulator has 3D graphic
display capabilities developed with OpenSceneGraph3, in connection with a dy-
namics engine4 used to model the physical aspects (realistic model of a car
moving in a material environment.) The vehicle dynamics have been modeled
as a physical box with 4 shock absorber wheels. Vehicle models integrate the
dynamic properties of a real vehicle. Simulations have been realized in order to
visualize inter-vehicle distance and vehicle position evolution within a platoon
(C.f Fig. 4).

In order to perceive the environment and the preceding vehicle, the model of
a laser range finder has been included in the follower vehicles. The laser mea-
surement system is based on a time-of-flight measurement principle. Simulations
have been performed to verify the platoon evolution during startup and lateral
displacement situations.
2 platoon stability is represented by the stabilization of the distance between each

follower vehicle.
3 http://www.openscenegraph.org/projects/osg
4 http://www.ode.org/

http://www.openscenegraph.org/projects/osg
http://www.ode.org/
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Fig. 4. 3 Dimensions simulator: platoon of 5 vehicles into a station (rays correspond
to the second vehicle laser range finder)

4.1 Platoon Startup

The simulation starts with 4 platoon vehicles at 1.6 meter of inter-vehicle
distance.

The first vehicle is controlled by the user. Each follower vehicle follows the
preceding one, by executing its own perception-based behavior. Figure 5 shows
the inter-vehicle distance during the platoon evolution. The inter-vehicle dis-
tance value is initialized to 1.6 meter with a vehicle speed of 30 km/h then a
safety stop is performed. All inter-vehicle distances decrease to 0.5 meter. This
shows that there are no collisions but only some little oscillations in simula-
tions.

4.2 Platoon Lateral Displacement

Platoon lateral displacement simulation (station entering and exiting) have been
realized to check that each vehicle follows correctly its predecessor.

Figures 6 illustrates platoon evolution during station exiting, by tracing both
the leader and follower trajectories. This figure exhibits a little increase in

Fig. 5. 3D simulator: inter-vehicle distance evolution
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X

Y

Fig. 6. 3D simulator: Trajectory error during the station exit

Wheel rotation Curve medium maximum
(degree) radius error error

5.73 18 m 12 cm 14 cm
11.46 9 m 30 cm 40 cm
17.2 6 m 50 cm 65 cm
22.9 4.5 m 55 cm 67 cm
28.65 3.6 m 67 cm 75 cm

Fig. 7. 3D simulator: trajectory error in curve

trajectory error from one vehicle to its follower. The maximum of this error
does not exceed the width of a wheel (C.f Fig. 6 left).

4.3 Relationship between the Curve and the Trajectory Error

The simulation presented next was intended to show the relationship between
the bend radius and the trajectory error as presented previously.

This simulation corresponds to the vehicle starting with a given wheel angle.
Then, the simulator computes the evolution of the distance error. Figures 7 and
table illustrates the error in the curve. This error increases with the magnitude
of the wheel angle.

5 Conclusion

The aim of this article was to present a better local platoon control based on the
bending of a virtual spring damper. Platoon control, as presented in this paper,
bases only on local perception capabilities. Each vehicle behavior is deduced from
a physics inspired interaction model an embodied in a reactive agent architecture.
The use of physics inspired forces enables an easier tuning of the interaction
model parameters and the adaptation to any kind of vehicle. Besides, the physic
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model has been used to prove platoon stability, by using classic physical proof
method: energy analysis. Analogously, another stability proof have been realized
following a transfer-function approach. To assert the transition from abstract
to concrete, simulations have been implemented to show the applicability of
the theoretical model. Some simulations have been made on a 3D simulator
which integrates vehicle dynamic properties (maximal speed and acceleration,
....). These experimentations exhibit a little curved trajectory error during the
platoon evolution and indicate that the presented approach improves platoon
quality. We are now working on the application of this model on real vehicles.
Moreover, we are also advancing into further research on the use of Formal
Models in order to prove some application properties and to ensure a zero default
embedded software for real vehicles.
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Abstract. We consider the class of Dandelion-like codes, i.e., a class of
bijective codes for coding labeled trees by means of strings of node la-
bels. In the literature it is possible to find optimal sequential algorithms
for codes belonging to this class, but, for the best of our knowledge, no
parallel algorithm is reported. In this paper we present the first encoding
and decoding parallel algorithms for Dandelion-like codes. Namely, we de-
sign a unique encoding algorithm and a unique decoding algorithm that,
properly parametrized, can be used for all Dandelion-like codes. These al-
gorithms are optimal in the sequential setting. The encoding algorithm
implementation on an EREW PRAM is optimal, while the efficient imple-
mentation of the decoding algorithm requires concurrent reading.

1 Introduction

Trees are one of the most studied class of graphs in Computer Science; they are
used in a large variety of domains, including computer networks, computational
biology, databases, pattern recognition, and web mining. In almost all applica-
tions, tree nodes and edges are associated with labels, weights, or costs. Examples
range from XML data to tree-based dictionaries (heaps, AVL, RB-trees), from
phylogenetic trees to spanning trees of communication networks, from indexes
to tries (used in compression algorithms). Many are the usual representations
of tree data structures: adjacency matrices, adjacency lists, parent vectors, and
balanced parentheses are just a few examples. An interesting alternative is based
on coding labeled trees by means of strings of node labels.

String-based codes for labeled trees have many practical applications. For
example, they are used in fault dictionary storage [1], distributed spanning tree
maintenance [2], generation of random trees [3], Genetic Algorithms [4]. In this
paper we restrict our attention to bijective string-based codes in which the length
of the string must be equal to n−2 [5] (n is the number of nodes of the encoded
tree). The first bijective string-based coding for trees is due to Prüfer [6]. since
then, many other bijective codes have been introduced [7,8,9,10,11,12,13,14].

Concerning algorithmic aspects of these codes, there is a wide literature present-
ing optimal sequential algorithms for encoding and decoding all of them. In partic-
ular we refer to [15] for the class of Prüfer-like codes (the first 4 codes in Table 1)

� Work partially supported by Sapienza University of Rome under the project “Strut-
ture Dati e Tecniche Algoritmiche Evolute per Modelli di Calcolo Innovativi”.

G. Allen et al. (Eds.): ICCS 2009, Part I, LNCS 5544, pp. 611–620, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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Table 1. Costs of known algorithms for bijective string-based codes. Parallel costs are
expressed as the number of processors × maximum execution time.

Sequential Parallel
Encoding Decoding Encoding Decoding

Prüfer [6] O(n) O(n) O(n) O(n
√

log n)
2nd Neville [13] O(n) O(n) O(n

√
log n) O(n

√
log n)

3rd Neville [13] O(n) O(n) O(n) O(n
√

log n)
Stack-Queue [9] O(n) O(n) O(n

√
log n) O(n

√
log n)

θn [10] O(n) O(n) unknown unknown
Happy [14] O(n) O(n) unknown unknown

Dandelion [14] O(n) O(n) unknown unknown
MHappy [7] O(n) O(n) unknown unknown
Blob [11,14] O(n) O(n) unknown unknown

Chen [8] O(n) O(n) unknown unknown

and to [7] for the other codes. A survey of optimal sequential algorithms can be
found in [16]. Also parallel algorithms have been studied [7,17,18,19], but results
are known only for Prüfer-like codes. More results related to sequential and paral-
lel algorithms for bijective codes canbe found in [20] andare summarized inTable 1.

In this paper we make a further step in understanding the feasibility of encod-
ing and decoding in a parallel setting. We focus on the class of Dandelion-like
codes introduced in [21] and we present efficient parallel algorithms for encod-
ing and decoding all these codes. This class contains the second block of codes
(rows 5 to 8) in Table 1. Dandelion-like codes are especially useful in Genetic
Algorithms (GA) since experimental analysis show that Prüfer-like codes per-
form poorly (with respect to GA requirements) [22] while Dandelion-like codes
achieve best results [21]. The techniques we use for Dandelion-like codes can be
also exploited to obtain efficient parallel algorithms for encoding and decoding
the Blob code (rows 5 in Table 1).

The paper is organized as follows: after a few preliminary definitions, in Sec.3
we recall the Dandelion code, together with examples. In Sec.4 we recall the class
of Dandelion-like codes and introduce an encoding and a decoding algorithm
that, properly parametrized, can be used for all codes in the class. In a sequential
setting these two algorithms run in linear time and are therefore optimal. In
Sec.6 we discuss how to parallelize our algorithms for the PRAM model. For the
encoding algorithm we obtain optimal linear cost implementation on an EREW
PRAM. The decoding algorithm requires O(n log n) cost on a CREW PRAM.

2 Preliminary Definitions

In this section, we introduce some definitions that will be useful in the rest of
this paper. As usual, the notation [a, b] represents the integer interval from a to
b, both included.

Definition 1. A labeled n-tree is an unrooted tree with n nodes, each with a
distinct label selected in the set [0, n− 1].
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Fig. 1. Example of Dandelion encoding algorithm execution

Since in this paper we only deal with labeled trees, we will refer to them simply
as trees. In the following all trees will be regarded as rooted in the fixed node 0
and its edges will be oriented upward from a node to its parent; an example is
depicted in Fig.1a.

Definition 2. Given a function g from the set [0, n] to the set [0, n], the func-
tional digraph G = (V,E) associated with g is a directed graph with V =
{0, . . . , n} and E = {(v, g(v)) for every v ∈ V }.
For this class of graphs the following lemma holds:

Lemma 1. A digraph G = (V,E) is a functional digraph if and only if the
out-degree of each node is equal to 1.

Functional digraphs are easily generalizable for representing functions which are
undefined in some values: if g(x) is not defined, the node x in G does not have
outgoing edges.

As an example consider a rooted tree T and let p[v] be the parent of v for
each v in T . T is the functional digraph associated with the function p.

In the following, when no confusion arise, we will consider vectors as functions
and vice versa. The notation u � v identifies the directed path from node u to
node v; u � u is the degenerate path of length 0. Loops will be considered as
cycles of length 1.

3 The Dandelion Code

We now recall the Dandelion code (originally introduced in [14]) as reinterpreted
in [7] in which a tree T is transformed into a functional digraphGg. InitiallyGg =
T , thus the function g is equivalent to the parent vector of T . The Dandelion
code choose node 1 to play a special role and rearrange all nodes in 1 � 0 into
cycles; the resulting digraph will correspond to a function g such that g[0] is
undefined and g[1] = 0. Let us detail the rearrangement of nodes in 1 � 0:

Let 1 = v1, v2, . . . , vl = 0 be all nodes in 1 � 0 and let mi = max{vi, . . . , vm}.
Among them we choose all nodes such that mi = vi (excluding vl); these nodes
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identify a subsequence f1, f2, . . . , fk of sequence v1, v2, . . . , vl−1. We assign f0 =
1. As an example consider the tree of 11 nodes, labeled from 0 to 10 in Fig.1a in
which the path 1 � 0 is (1, 4, 6, 8, 3, 0). We obtain f0 = 1, f1 = 8, f2 = 3. The
algorithm proceeds by set g[fi] = g[fi−1] for each i from k down to 1. During
this process all nodes in the original path between 1 and 0 are partitioned into
several cycles (or loops). At the end the path 1 � 0 is reduced to a single edge
(1, 0) and the resulting codeword is g[2], g[3], . . . , g[n− 1]. In our example, since
f0 = 1, f1 = 8, and f2 = 3, the algorithm set g[3] ← g[8] = 3, introducing a loop,
and g[8] ← g[1] = 4, introducing a cycle. Fig.1d shows the resulting digraph: the
associated codeword is W = [6, 3, 6, 1, 8, 8, 4, 1, 9].

The procedure can be easily inverted to obtain the tree T corresponding to
any given codeword W = w1, w2, . . . , wn−2. Initially reconstruct the functional
digraph corresponding to g defined as: g[0] is undefined, g[1] = 0, and g[i] =
wi−1. Then, identify all cycles C1,C2, . . . ,Ck in Gg. For each cycle Ci, let us
call characteristic its maximum node fi = max{v ∈ Ci}. W.l.o.g. assume that
characteristic nodes are numbered such that f1 > f2 > . . . > fk.

The reconstruction of the original path 1 � 0 is obtained reinserting all nodes
of each cycle in between 1 and 0. Cycles are selected in descending order with
respect to their characteristic values and, for each i from 0 to k − 1, we set
g[fi] = g[fi+1] (where f0 = 1). At the end we set g[fk] = 0: Gg is now equal to
the tree T corresponding to the given codeword W .

As an example of decoding consider the codeword W = [6, 3, 6, 1, 8, 8, 4, 1, 9].
It is easy to see that, according with the reconstruction described above, we
initially obtain the functional digraph represented in Fig.1d. This graph has two
cycles: one is a loop on node 3, and one is induced by nodes 6, 8, and 4. Thus
we obtain f0 = 1, f1 = 8, f2 = 3. Then we set g[1] ← g[8] = 4, g[8] ← g[3] = 3,
and g[3] ← 0. Now Gg is exactly the tree represented in Fig.1a.

4 Dandelion-Like Codes

In this section we report the class of Dandelion-like codes introduced in [21]. We
describe them in terms of functional digraphs in the style of [7] and we explicitly
present one optimal encoding and one optimal decoding parametrized algorithms
that can be used for all these codes.

Looking at the Dandelion code presented in Sec.3 it is easy to see that several
details can be changed to originate different codes:

1. use minimum instead of maximum to compute fi nodes among those in the
path 1 � 0 (the characteristic nodes in the decoding procedure);

2. search downward in the path from fi to 1 instead of searching upward in the
path from fi to 0;

3. invert the orientation of all edges in cycles.

A summary of the 23 bijective codes obtained by all possible combinations of the
three changes is reported in the following table – it is to notice that in [21] the
8 bijective codes reported were selected among 16 codes generated considering 4
possible changes of the decoding phase. Codes are numbered according with [21].
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Code max/min up/down edge orientation Code name
C1 max up preserve Dandelion [14]
C2 max down invert Happy [14]
C3 max down preserve MHappy [7]
C4 max up invert
C5 min up preserve θn bijection [10]
C6 min down invert
C7 min down preserve
C8 min up invert

Encoding Algorithm. In this section we present an algorithm able to encode
all the 8 Dandelion-like codes. In Program 1 we report only the fragment of
code that transforms a tree into a functional digraph: obtaining the codeword
from the functional digraph and vice versa is straightforward (see Sec.3). The
Dandelion-Like Encoding Algorithm has three parameters:
1. μ ∈ {min,max} specifies whether to search for minimum or maximum val-

ues;
2. �� ∈ {up, down} establishes if the μ values should be searched upward or

downward;
3. invertEdges is a boolean value that discriminates whether the orientation

of cycle edges should be inverted or not.
The value μ��(v) represents, for each v in the path 1 � 0, the maximum/
minimum value above/below node v (including v itself). Thus, depending on
the parameters μ and ��, the function μ��(v) can be one of the followings:

maxup(v) = max{w ∈ v � 0} maxdown(v) = max{w ∈ 1 � v}
minup(v) = min{w ∈ v � 0} mindown(v) = min{w ∈ 1 � v}

Let us now analyze the algorithm. All values μ��(v) can be computed with simple
forward/backward scan of the path 1 � 0; at the same time all fi are identified.
This requires O(n) time. In line 4, if �� = down, the highest node before fi+1
is identified. Indeed, in this case, fi should form a cycle with all node above it
and below fi+1. This operation can be performed in linear time traversing the
path 1 � 0 once again. The same time bound holds for lines 5–6. Line 7 can
efficiently be implemented in the following way: each node v in the path 1 � 0
sets itself as the new parent of its current parent (i.e., p′[p[v]] = v) and all values
in p are updated according with the values in p′. The overall time complexity of
the Dandelion-Like Encoding Algorithm is linear.

Consider, as an example, the encoding of the tree shown in Fig.1a with all
possible codes. The various codes identify the following nodes in line 2:

C1,C4 : f1 = 8, f2 = 3 C2,C3 : f1 = 4, f2 = 6, f3 = 8
C5,C8 : f1 = 3 C6,C7 : f1 = 4, f2 = 3

thus introducing the following cycles in the functional digraph Gp:
C1,C4 : (4, 6, 8), (3) C2,C3 : (4), (6), (8, 3)
C5,C8 : (4, 6, 8, 3) C6,C7 : (4, 6, 8), (3)

The resulting codewords are: C1 = [6, 3, 6, 1, 8, 8, 4, 1, 9], C2 = [6, 8, 4, 1,
6, 8, 3, 1, 9], C3 = [6, 8, 4, 1, 6, 8, 3, 1, 9], C4 = [6, 3, 8, 1, 4, 8, 6, 1, 9],
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Program 1. Dandelion-Like Encoding Algorithm
Parameters: μ, ��, invertEdges

Input: a tree T represented by its parent vector p
Output: a functional digraph Gp such that p[0] = undef and p[1] = 0
1. Compute μ��(v) for each v in 1 � 0 excluding 1 and 0
2. Identify all nodes f1, f2, . . . , fk such that μ��(fi) = fi

3. f0 = 1; fk+1 = 0
4. if �� = down then fi = {v ∈ 1 � 0 : p[v] = fi+1} ∀ 1 ≤ i ≤ k
5. for i = k down to 1 do p[fi] = p[fi−1]
6. p[1] = 0
7. if invertEdges then invert all edges in cycles

Program 2. Dandelion-Like Decoding Algorithm
Parameters: μ, ��, invertEdges

Input: a functional digraph Gp such that p[0] = undef and p[1] = 0
Output: a tree T represented by its parent vector p

1. Find all cycles Ci and their characteristic nodes fi according to μ
2. if (μ = max and �� = up) or (μ = min and �� = down) then
3. Sort {fi} in decreasing order
4. else Sort {fi} in increasing order
5. if invertEdges then invert all edges in cycles
6. f0 = 1; fk+1 = 0
7. if �� = down then fi = {v ∈ Ci : p[v] = fi} ∀ 1 ≤ i ≤ k
8. for i = 0 to k − 1 do p[fi] = p[fi+1]
9. p[fk] = 0

C5 = [6, 4, 6, 1, 8, 8, 3, 1, 9], C6 = [6, 3, 8, 1, 4, 8, 6, 1, 9], C7 = [6, 3, 6, 1, 8,
8, 4, 1, 9], and C8 = [6, 8, 3, 1, 4, 8, 6, 1, 9].

Notice that the 8 codes are all different from each other, even thought, on this
small example, different codes produce the same codeword.

Decoding Algorithm. We now describe how to invert the transformation: given
a functional digraph we identify its cycles and compute, for each cycle Ci the char-
acteristic node fi according with the function specified by the parameter μ. Then
all cycles are broken and their nodes are placed in between 1 and 0 in such a way
that the original path 1 � 0 of the tree is reconstructed. If invertEdges is true
then, before breaking cycles, the edge orientation should be reestablished.

Let us now describe how to reconstruct the correct order among the char-
acteristic nodes. If μ = max and �� = up then greater fi must be below any
other characteristic node, thus the fi values must be ordered in decreasing or-
der: f1 > f2 > . . . > fk. On the other hand, if �� = down then the greater fi

must be placed above any other characteristic node, thus implying an increasing
order: f1 < f2 < . . . < fk. If μ = min the orders are reversed. So, the path 1 � 0
have to be rebuilt according with the ordering of the fi: 1 � f1 � . . . � fk � 0.

Finally notice that, if �� = up then the characteristic node should be above
all nodes of its cycle, otherwise it should be below them. This is all we need to
correctly rebuild the path 1 � 0 of the original encoded tree.



Parallel Algorithms for Dandelion-Like Codes 617

Program 3. Identification of Characteristic Nodes
function Analyze(v)
1. status(v) = inP rocess
2. if status(p[v]) = inP rogress then compute μ value in cycle p[v] � v
3. else if status(p[v]) 	= processed then Analyze(p[v])
4. status(v) = processed

main
1. for v = 2 to n − 1 do
2. if status(v) 	= processed then Analyze(v)

The computation of the reverse function is detailed in Program 2. Line 1 can
be implemented by means of a recursive function that follows the outgoing edge
of each node until it identifies a cycle, then an auxiliary function is used to
compute the min/max value in that cycle (see Program 3). This requires O(n)
time. An integer sorting algorithm can be used to sort the fi values in increasing
or decreasing order and cycles edges can be inverted as described in the analysis
of the encoding algorithm. Line 7 (if required) identifies the only node v in the
cycle of fi such that p[v] = fi, each such node becomes new value for fi: this
require O(n) time. Thus, the overall decoding procedure requires linear time.

5 Parallel Implementation

In this section we present a parallel version of the encoding and decoding al-
gorithms proposed in Sec.4. Our algorithms are described for the theoretical
PRAM model and costs are expressed as the number of processors multiplied by
the maximum time required by a single processor.

We choose the PRAM classical model because we do not need to address any
specific hardware. In the last decade, PRAM model has been deemed useless
by many researchers because it is too abstract compared with actual parallel
architectures. As noted in the introduction, this trend is changing. At SPAA’07,
Vishkin and Wen reported about the recent advancements achieved at the Uni-
versity of Maryland within the project PRAM-On-Chip [23]. The XMT (eXplicit
Multi-Threading) general-purpose computer architecture is a promising parallel
algorithmic architecture to implement PRAM algorithms. They also developed
a single-instruction multiple-data (SIMD) multi-thread extension of C language
with the intent of providing an easy programing tool to implement PRAM al-
gorithms. It has primitives like: Prefix Sum, Join, Fetch and Increment, etc.
Thus we think that PRAM is robust, reasonable, and well studied theoretical
framework for describing high level parallel algorithms.

In the following we will consider PRAM with Exclusive Write (EW) and either
Exclusive Read (ER) or Concurrent Read (CR). Due to the lack of space, we
don’t explicitly recall the well known basic techniques used in this section; we
refer the interested reader to [24].

Parallel Encoding. We now describe how to encode Dandelion-like codes on
an EREW PRAM; the parallel algorithm is detailed in Program 4.



618 S. Caminiti and R. Petreschi

Program 4. Dandelion-Like Parallel Encoding Algorithm
Parameters: μ, ��, invertEdges

Input: a tree T represented by its parent vector p
Output: a functional digraph Gp such that p[0] is undefined and p[1] = 0
1. Compute min(Tv) and level(v) for each v ∈ T
2. Create P corresponding to the path 1 � 0
3. Compute μ��(v) for each v ∈ P excluding 1 and 0
4. Identify all nodes f1, f2, . . . , fk such that μ��(fi) = fi

5. f0 = 1; fk+1 = 0
6. if �� = down then
7. for i = 1 to k in parallel do fi = pred[fi+1]
8. for i = 1 to k in parallel do p[fi] = p[fi−1]
9. p[1] = 0
10. if invertEdges then
11. for v ∈ P in parallel do p[p[v]] = v

Initially we compute, for each node v, min(Tv): the minimum value in the
subtree rooted at v. If min(Tv) = 1 then v is in the path 1 � 0. This operation
requires O(log n) time with O(n/ logn) processors by using the Rake technique.
With the same bounds we can compute the top-down level of each node (Euler
Tour technique): exploiting this information we are able to create a vector P
containing the sequence of all nodes in the path 1 � 0.

The function μ��(v) can be computed for all nodes in P (with the same time
and processors bounds of the above operations) regarding this path as a tree TP

and computing the max/min value in the subtree of each node. If �� = down
then TP have to be rooted in 0, otherwise it must be rooted in 1. To order the
fi values we can use Prefix-Sum on vector P assigning 1 to nodes v such that
μ��(v) = v and 0 otherwise.

The three cycles of lines 7, 8, and 11 require O(1) with n processors and do
not imply concurrent reading or writing. The value pred[v] (the predecessor of
v in the path 1 � 0) can be computed in the following way: for each node in
v ∈ P set pred[p[v]] = v. Applying Brent’s Theorem all these operations can be
scheduled on O(n/ logn) processors in O(log n) time. The overall cost is linear
and thus the algorithm is optimal.

Parallel Decoding. The most demanding step in the paralleldecoding algorithm
is the computation of characteristicnodes. It can be obtained inO(log n) time with
O(n) processors on a CREW PRAM in a Pointer Jumping like fashion: for each
node we follow the outgoing edge searching for the max/min value in the ascending
path (the parameter μ discriminate whether to search for maximum or minimum
values). After each step we set p[v] = p[p[v]], thus obtaining a single Pointer Jump.
The procedure is detailed in Program 5: the value asc(v) is the min/max value
in the ascending path of v. At each step asc(v) is compared with asc(p[v]) and
eventually updated. Notice that we explicitly flag whether the value asc(v) comes
from v itself or has been encountered in the proper ascending path. At the end of the
logn iterations if asc(v) = v and self(v) is false, we can state that v is the min/max



Parallel Algorithms for Dandelion-Like Codes 619

Program 5. Parallel Identification of Characteristic Nodes
1. p[0] = 0
2. for each node v ∈ T in parallel do asc(v) = v; self(v) = true
3. for j = 1 to �log n� do
4. for each node v ∈ T in parallel do
5. if asc(p[v]) = μ{asc(p[v]), asc(v)} then
6. asc(v) = asc(p[v]); self(v) = false
7. p[v] = p[p[v]]

Program 6. Dandelion-Like Parallel Decoding Algorithm
Parameters: μ, ��, invertEdges

Input: a functional digraph Gp such that p[0] is undefined and p[1] = 0
Output: a tree T represented by its parent vector p

1. Identify all characteristic nodes f1, f2, . . . , fk according with μ and ��
2. if invertEdges then
3. for each v ∈ cycles in parallel do p[p[v]] = v
4. f0 = 1; fk+1 = 0
5. if �� = down then
6. for i = 1 to k in parallel do fi = pred(fi)
7. for i = 0 to k − 1 in parallel do
8. p[fi] = p[fi+1]
9. p[fk] = 0

node in its cycle. Indeed, a value equal to v has been found in the proper ascending
path of v, this means that there exists a path v � v, i.e., a cycle. Moreover, no
node smaller/greater that v has been encountered in this cycle. All these nodes can
be enumerated with Prefix-Sum to generate the (increasing or decreasing) ordered
sequence of the characteristic nodes f1, f2, . . . , fk. We assume that a copy of p is
used in Program 5, since the original vector p will be required latter in the decoding.

Once characteristic nodes have been identified, a further Pointer Jumping
can be used to broadcast a flag in their ascending paths, thus identifying all
nodes belonging to some cycle. The rest of the Decoding Algorithm proceeds as
detailed in Program 6. Namely, all the three cycles of lines 3, 6, and 8 require
O(1) time with n processors, provided that the pred values are computed for all
nodes belonging to any cycle (as described in Parallel Encoding for nodes in P ).

6 Conclusions and Open Problems

Concluding, we want to remark that also for the Blob code [11,14] it is possible
to obtain parallel algorithms with the very same costs of those presented in
this paper. This result can be obtained combining ideas presented in this paper
with the redefinition of the Blob code in terms of transformation of trees in to
functional digraphs given in [7]. With respect to Table 1, it remains an open
problem to study parallel algorithms for the Chen code.
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10. Eğecioğlu, Ö., Remmel, J.: Bijections for Cayley Trees, Spanning Trees, and Their
q-Analogues. J. Comb. Th. 42A, 15–30 (1986)

11. Kreweras, G., Moszkowski, P.: Tree codes that preserve increases and degree se-
quences. J. Disc. Math. 87, 291–296 (1991)

12. Moon, J.: Counting Labeled Trees. William Clowes and Sons, London (1970)
13. Neville, E.: The Codifying of Tree-Structure. In: Proc. of Cambridge Philosophical

Soc., vol. 49, pp. 381–385 (1953)
14. Picciotto, S.: How to Encode a Tree. PhD thesis, U. California, San Diego (1999)
15. Caminiti, S., Finocchi, I., Petreschi, R.: On Coding Labeled Trees. TCS 382, 97–108

(2007)
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Abstract. An easy method of checking balancedness degree as well as
run quantification in sequences obtained from LFSR-based keystream
generators has been developed. The procedure is a deterministic alterna-
tive to the traditional application of statistical tests. The computation
method allows one to check deviation of balancedness and run distribu-
tion goodness from standard values. The method here developed can be
considered as a first selective criterium for acceptance/rejection of this
type of generators of cryptographic application.
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1 Introduction

Transmission of sensitive information between two interested parties needs sev-
eral security requirements (confidentiality, integrity, non repudiation, authentica-
tion ...) that can be satisfied by means of design, assessment and implementation
of cryptographic algorithms and security protocols.

Confidentiality makes use of an encryption function currently called cipher
that converts the plaintext into the ciphertext. Ciphers are usually divided into
two large classes: stream ciphers and block-ciphers. Stream ciphers are very fast
(in fact, the fastest among the encryption procedures) so they are implemented
in many technological applications e.g. algorithms A5 in GSM communications
[7] or the encryption system E0 used in the Bluetooth specifications [1]. Stream
ciphers try to imitate the ultimate one-time pad cipher and are supposed to
be good pseudorandom generators capable of stretching a short secret seed (the
secret key) into a long sequence of seemingly random bits (the keystream se-
quence). This sequence is then XORed with the plaintext in order to obtain the
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ciphertext. Most generators producing keystream sequence are based on Linear
Feedback Shift Registers (LFSRs) e.g. see [6] and [8]. The pseudorandom output
sequence is a periodic sequence generated as the image of a nonlinear Boolean
function in the LFSR stages.

Desirable properties for such sequences can be enumerated as follows: 1) large
period, 2) large linear complexity, 3) good statistical properties. There are well-
known proposals [2], [4], [9], [11], [12] for which conditions 1) and 2) above are
perfectly satisfied. Nevertheless, how to generate sequences with good statistics
is a feature that even now remains quite diffuse, see [3].

Balancedness and adequate distribution of 1′s and 0′s in the output sequence
are necessary (although not sufficient) conditions that every keystream generator
must satisfy. Roughly speaking, a binary sequence is balanced if it has approx-
imately the same number of 1′s as 0′s. On the other hand, a run of 1′s (0′s)
of length k is defined as a succession of k consecutive 1′s (0′s) between two 0′s
(1′s). The runs of 1′s are called blocks while the runs of 0′s are called gaps. It is
a well known fact [6] that in a pseudorandom binary sequence of period T there
are T/2 runs distributed as follows: half the runs have length 1, one quarter of
the runs length 2, one eighth of the runs length 3, and so forth. Moreover, half
the runs of any length are gaps, the other half are blocks. That is to say, in a
pseudorandom binary sequence the number and distribution of digits is perfectly
quantified.

Due to the long period of the output sequence (& 1077) in cryptographic ap-
plications, it is unfeasible to produce an entire cycle of such a sequence and then
analyze the number and distribution of 1′s and 0′s. Therefore, in practice, por-
tions of the output sequence are chosen randomly and different statistical tests
[11](monobit test, run test, poker test, serial test ... ) are applied to all these sub-
sequences. Nevertheless, passing the previous tests merely provides probabilistic
evidence that the LFSR-based keystream generator produces a sequence with
certain characteristics of pseudorandomness.

In this work, deterministic expressions to compute the degree of balancedness
and number of runs in one period of the output sequence are proposed. If the
computed values are not in the expected range, then the generator must be
rejected.

2 Notation and Basic Concepts

Any L-variable Boolean function can be expressed canonically in terms of its
minterms [5], that is the logic product of the L variables (a1, a2, ..., aL) where
each variable can be in its true or complementary form. Examples of minterms
of L variables are:

a1a2 ... aL, a1a2 ... aL, a1a2 ... aL

where the superposition of variables represents the logic product. In addition,
any L-variable Boolean function can be uniquely expressed in Algebraic Normal
Form (A.N.F.) or Muller expansion [10] by means of the sum exclusive-OR of



Deterministic Computation of Pseudorandomness in Sequences 623

logic products of different orders in the L variables. A simple example of Boolean
function in A.N.F. is:

f(a1, a2, ..., aL) = a1a2 ⊕ a2aL−1 ⊕ aL

where ⊕ represents the exclusive-OR logic operation.
In mathematical terms, a LFSR-based generator is a L-variable nonlinear

Boolean function, F : GF (2)L − {0} → GF (2), whose L input-variables are the
stages of the LFSRs. At each clock pulse the LFSRs generate new stage contents
that will be the new input-variables of F . In this way, the generator produces
the successive bits of the output sequence or generated sequence. A LFSR-based
keystream generator is nothing but a nonlinear Boolean function F given in
its A.N.F. Moreover, the LFSRs involved in this kind of generator are maximal
length-LFSRs [6], that is LFSRs whose characteristic polynomials are primitive.
In this case, their output sequences are called PN-sequences. Balancedness and
run distribution of PN -sequences have been extensively studied in the literature.
See for example [6] and [13].

Let A be an arbitrary maximal length-LFSR of length LA and ai (i = 1, ...,LA)
the binary content of the i-th LFSR stage. A minterm of LA variables is denoted
by Ai...j whether such a minterm includes the variables ai ... aj in their true form
while the other variables are in complementary form.

Let ΛL denote the set of L-variable Boolean functions in A.N.F. and ΦF the
minterm function of F . In fact, ΦF : ΛL → ΛL, such that, given F , ΦF substi-
tutes every term of F by its corresponding minterm. For a nonlinear function in
A.N.F., e.g. F (a1, a2, a3) = a1 a2 a3 ⊕ a1 a3 ⊕ a2 ⊕ a3, we have:

ΦF = A123 ⊕A13 ⊕A2 ⊕A3.

On the other hand, every minterm considered as a generator applied to the
LA stages of A generates a canonical sequence with an unique 1 and period
T = 2LA − 1, see [11].

Once the nonlinear function F given in its A.N.F. has been converted into its
minterm expansion, the basic ideas of this work can be summarized as follows:

1. The number of minterms in the representation of F equals the number of 1′s
in the output sequence as every minterm provides the generated sequence
with an unique 1.

2. The contiguity of such minterms in the ordered minterm succession deter-
mines the run distribution in the output sequence.

Let us now generalize the previous statements to more than one LFSR. Let
A, B, ..., Z be N LFSRs whose lengths are respectively LA, LB, ... , LZ (sup-
posed GCD(Li,Lj) = 1, i �= j). We denote by ai (i = 1, ...,LA), bj (j =
1, ...,LB), ... , zk (k = 1, ...,LZ) their corresponding stages. The global minterms
associated with the generator have now LA + LB + ... + LZ variables and are
of the form, e.g. Aij Bpqr ... Zs , that is to say the ordered product of the indi-
vidual minterms of each LFSR. As before every global minterm considered as
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a generator applied to the stages of the LFSRs generates a sequence with an
unique 1 and period T = (2LA − 1)(2LB − 1) ... (2LZ − 1) [11]. In brief, every
LFSR-based generator can be expressed in terms of its global minterms as well
as global minterms determine balancedness and run distribution in the output
sequence.

3 From A.N.F. to Global Minterm Expansion

Previously to the conversion algorithm, the following facts are introduced:
Fact 1: For every Boolean function F the following equality holds [10]

F = ΦF ◦ ΦF (1)

where the symbol ◦ denotes the composition of functions.
Fact 2: For every LFSR A, the exclusive-OR of all the minterms [11] is:

A12...LA ⊕A12...LA−1 ⊕ ...⊕A2...LA ⊕ ...⊕ALA ⊕ ...⊕A2 ⊕A1 = 1. (2)

The previous equation can be rewritten as:

A
′
1 ⊕A1 = 1. (3)

On the other hand, the total number of terms in (2) is:

LA∑
i=1

(
LA

i

)
= 2LA − 1 (4)

while the number of terms in A1 = a1a2 ... aLA is [10]:

Nt (A1) = 2LA−1. (5)

Thus, the number of terms in A
′
1 will be:

Nt (A
′
1) = 2LA−1 − 1. (6)

Appropriate notation will be used for the rest of LFSRs.

3.1 Conversion Algorithm

Input: N (number of LFSRs), LA, LB, ..., LZ (lengths of the LFSRs) and a
nonlinear function F in A.N.F.

For instance, NZ = 2, LA = 2, LB = 3 and F (a1, a2, b1, b2, b3) = a1 b1.

– Step 1: Compute ΦF

ΦF = A1B1.
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– Step 2: Substitute every minterm by its corresponding function in A.N.F.
and cancel common terms (if there exist)

ΦF = (a1 a2 ⊕ a1)(b1 b2 b3 ⊕ b1 b2 ⊕ b1 b3 ⊕ b1) =

a1 a2 b1 b2 b3 ⊕ a1 a2 b1 b2 ⊕ a1 a2 b1 b3 ⊕ a1 a2 b1⊕
a1 b1 b2 b3 ⊕ a1 b1 b2 ⊕ a1 b1 b3 ⊕ a1 b1.

– Step 3: Compute F (ai, bj) = ΦF ◦ ΦF

F (ai, bj) = ΦF ◦ ΦF = A12B123 ⊕A12 B12 ⊕A12B13 ⊕A12B1⊕
A1 B123 ⊕A1B12 ⊕A1B13 ⊕A1B1.

Output: F expressed in terms of its global minterms.
Once the function F has been expressed in terms of its minterms, balancedness

and run distribution in the output sequence can be analyzed.

4 Balancedness in the Keystream Sequence

The number of 1’s in the generated sequence coincides with the number of global
minterms in the expression of F or, equivalently, the number of terms in ΦF (Step
2 ). An illustrative example of application is presented.

4.1 A Numerical Example

Example 1 : Let A,B,C be three LFSRs of lengths LA,LB,LC respectively. The
generating function is chosen:

F = a1b1 ⊕ b1c1 ⊕ c1 (7)

(Geffe’s generator [13]) and the minterm function ΦF is computed:

ΦF = A1B1 ⊕B1C1 ⊕ C1

= A1B1(C′
1 ⊕ C1)⊕ (A′

1 ⊕A1)B1C1 ⊕
⊕(A′

1 ⊕A1)(B′
1 ⊕B1)C1

= A1B1(C′
1 ⊕ C1)⊕ (A′

1 ⊕A1)B′
1C1 .

The number of 1′s in the output sequence can be directly obtained by counting
the number of terms in ΦF via the equations (5) and (6). According to this simple
rule, the number of 1′s in the output sequence obtained from a Geffe’s generator
is given by:

No. 1′s = 2LA−12LB−1(2LC − 1) + (2LA − 1)(2LB−1 − 1)2LC−1. (8)

Remark that the previous expression is function exclusively of the lengths of the
LFSRs. In a practical range, we say Li & 120, and keeping in mind that the
sequence period is T = (2LA − 1)(2LB − 1)(2LC − 1), the number of 1′s in the
output sequence is:

No. 1′s & T/2.

Consequently, the generated sequence is balanced.
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5 Run Distribution in the Keystream Sequence

The computation of runs in the output sequence is based on the following result.

Proposition 1. Let us consider the ordered minterm succession of a maximal
length-LFSR of length L. If the minterms including an arbitrary index i are
replaced by 1 and the minterms not including the index i are replaced by 0, then
the resulting binary sequence is the reverse version of the PN-sequence generated
by the LFSR.

The previous result is a straight application of the LFSR linear recurrence rela-
tionship given by its characteristic polynomial. Thus, a minterm succession can
be treated as a PN -sequence. Now, keep in mind the following remarks:

1. The number of runs of any length of a PN -sequence is perfectly quantified.
Indeed, each m-gram (every one of the 2m possible configurations of m bits
(m = 1, ...,L)) will appear exactly 2L−m times throughout the PN -sequence
except for the L-gram 00 . . .0 that will not appear any time.

2. In the global minterm succession each m-gram of any LFSR will coincide
once with each one of the m-grams of the other LFSRs.

Based on these considerations, the computation of runs in the output sequence
can be carried out as it is shown in the following example.

Example 2 : For two LFSRs, A and B, of lengths LA and LB respectively (LA

< LB) and generating function F = a1b1, we proceed:

ΦF = A1B1 = (a1 ⊕ a1a2 ⊕ . . .⊕ a1a2 . . . aLA)(b1 ⊕ b1b2 ⊕ . . .⊕ b1b2 . . . bLB)

F = ΦF ◦ ΦF = (A1 ⊕ A12 ⊕ . . .⊕A12...LA)(B1 ⊕B12 ⊕ . . .⊕B12...LB )

Notice that the minterm expansion of F will only include products of individual
minterms with the index 1. Let us now introduce the following notation:
Y denotes an arbitrary minterm of A or B including the index 1.
N denotes an arbitrary minterm of A or B not including the index 1.
SecA denotes the ordered succession of minterms of A in format Y/N .
SecB denotes the ordered succession of minterms of B in format Y/N .

It is clear that an 1 in the output sequence corresponds to a minterm product
Y Y (for example, A1B12) while a 0 in the output sequence corresponds to the
minterm products Y N, NY or NN (for example, A1B2,A23B13 or A3B2). See
the formation rule in Table 1.

Now we can compute the number of runs of different lengths.

Table 1. Global minterm formation rule for F in Example 1

SecB SecA Output bit
Y Y 1
N Y 0
Y N 0
N N 0
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5.1 Runs of Length 1

Blocks: They are runs of the form ”0 1 0” that come from minterm structures

SecB : ∗ Y ∗
SecA : ∗ Y ∗

The symbol ∗ denotes Y or N . The 3-gram NYN will appear 2LA−3 times
in SecA and 2LB−3 times in SecB, the 2-gram NY ∗ will appear 2LA−2 times in
SecA and 2LB−2 times in SecB, and so forth.

The different configurations of minterms able to generate a block of length 1
are depicted in Table 2 at columns with heading ”Configurations”. The columns
with heading ”No. of config.” show the number of times that such configurations
appear on their corresponding minterm sequences.

Thus, the number of blocks of length 1 will be the sum of all suitable config-
urations multiplied by the number of times that such configurations appear

NB(1) = (2LB −1 + 2 · 2LB −2 + 2LB −3) 2LA −3 . (9)

Gaps: They are runs of the form ”1 0 1” that come from minterm structures

SecB : Y ∗ Y

SecA : Y ∗ Y

The different configurations of minterms able to generate a gap of length 1
are depicted in Table 3.

Thus, the number of gaps of length 1 will be the sum of all suitable configu-
rations multiplied by the number of times that such configurations appear

NG(1) = (2LB −3 + 2LB −2) 2LA −3 . (10)

Table 2. Configurations of minterms producing blocks of length 1

Configuration No. of config. Configuration No. of config.
SecB ∗ Y ∗ 2LB −1 ∗ Y N 2LB −2

SecA N Y N 2LA −3 N Y Y 2LA −3

SecB N Y ∗ 2LB −2 N Y N 2LB −3

SecA Y Y N 2LA −3 Y Y Y 2LA −3

Table 3. Configurations of minterms producing gaps of length 1

Configuration No. of config. Configuration No. of config.
SecB Y N Y 2LB −3 Y ∗ Y 2LB −2

SecA Y Y Y 2LA −3 Y N Y 2LA −3
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5.2 Runs of Length n

The procedure can be generalized in order to compute the number of runs of
length n (n = 1, ...,LA − 2).

Blocks: They are runs of the form ”0 1 . . . 1 0” (with n consecutive 1′s) coming
out from minterm structures

SecB : ∗ Y . . . Y ∗
SecA : ∗ Y . . . Y ∗

with n minterms Y in both sequences. The different configurations able to gen-
erate a block of length n and their number are depicted in Table 4.

Thus, the number of blocks of length n will be:

NB(n) = (2LB −(n+2) + 2 · 2LB −(n+1) + 2LB −n) 2LA −(n+2) . (11)

Gaps: They are runs of the form ”1 0 . . . 0 1” (with n consecutive 0′s) coming
out from minterm structures

SecB : Y ∗ . . . ∗ Y

SecA : Y ∗ . . . ∗ Y

with n symbols ∗ in both sequences. Notice that in SecA there will be 2n different
configurations able to generate a gap of length n ranging from Y N . . . N Y up
to Y Y . . . Y Y . Some of such configurations and their number are depicted in
Table 5.

Thus, the number of gaps of length n will be:

NG(n) = (
n∑

i=0

(
n
i

)
2LB −(n+2−i) ) · 2LA −(n+2). (12)

Therefore, the number of runs of any length up to LA − 2 can be easily
computed in the proposed example. Equations (11) and (12) give us the exact

Table 4. Configurations of minterms producing blocks of length n

Configuration No. of config. Configuration No. of config.
SecB N Y . . . Y N 2LB −(n+2) ∗ Y . . . Y N 2LB −(n+1)

SecA Y Y . . . Y Y 2LA −(n+2) N Y . . . Y Y 2LA −(n+2)

SecB N Y . . . Y ∗ 2LB −(n+1) ∗ Y . . . Y ∗ 2LB −n

SecA Y Y . . . Y N 2LA −(n+2) N Y . . . Y N 2LA −(n+2)

Table 5. Configurations of minterms producing gaps of length n

Configuration No. of config. Configuration No. of config.
SecB Y ∗ . . . ∗ Y 2LB −2 Y N . . . N Y 2LB −(n+2)

SecA Y N . . . N Y 2LA −(n+2) Y Y . . . Y Y 2LA −(n+2)
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Table 6. Numerical example

n No. of blocks %Deviation(blocks) No. of gaps %Deviation(gaps)
1 4608 13,8 % 1536 62,0 %
2 1152 43,1 % 1152 43,1 %
3 288 71,5 % 864 14,6 %
4 72 85,7 % 648 28,1 %
5 18 92,8 % 486 92,1 %

number of blocks and gaps that can be found in the output sequence. Remark
that NB and NG depend exclusively on the LFSR’s lengths LA and LB and
on the run length (n). There is no dependency on the primitive characteristic
polynomials. Consequently, different LFSRs of the same length primitive char-
acteristic polynomials will produce output sequences with the same number of
blocks and gaps.

According to these expressions, it can be seen that the analyzed function
F does not match the expected values. For a numerical example LA = 7 and
LB = 8, see results in Table 6. For n = 1, NB > NG. For n = 2, equations (11)
and (12) coincide. For n ≥ 3, NB < NG. As expected, there are more gaps than
blocks because the formation rule in Table 1 is not balanced.

The upper limit LA − 2, LA being the length of the shortest LFSR, follows
from the fact that blocks and gaps of length n include n + 2 bits but we can
only guarantee the presence of at most LA-grams. At any rate, the designer of
keystream generators is basically interested in the runs of low length (e.g. up to
length 15) while in, for instance, cryptographic applications every LFSR length
takes values in the range Li & 120.

6 Conclusions

An easy and efficient method of checking the degree of balancedness and number
of runs in the output sequence of keystream generators has been presented.
From the concept of global minterm, it is possible to derive general expressions
for the number of 1′s (0′s) as well as for the number of runs in the output
sequence of any LFSR-based generator. Then, the obtained values are compared
with the expected values for a sequence to be pseudorandom. The result of this
comparison implies the assessment of such a sequence generator.

In this work, such a method has been applied exclusively to nonlinear gener-
ating functions. Nevertheless, these ideas concerning the analysis of the global
minterms seem to be suitable for more general pattern generators. Consider, for
instance, the multiple-speed generators [11] that can be expressed in terms of a
more complex generating function or the shrinking generator [11] whose global
minterms can be obtained by removing certain individual minterms from one of
the LFSRs. In both cases, the developed method can be adapted and applied to
these schemes in order to evaluate certain aspects of pseudorandomness in the
generated sequences.
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Abstract. This paper describes two parallel simulated annealing algo-
rithms for the job shop scheduling problem with the sum of job comple-
tion times criterion. Some properties of the problem associated with the
block theory have been presented and discussed. These properties allow us
to introduce the effective neighborhood based on the adjacent swap type
moves. In this paper, an original method for parallel calculation of opti-
mization criterion value for set of solutions, recommended for the use in
metaheuristics with single- and multiple- search trajectories is proposed.
Additionally, the vector calculation method, that uses multiple mathe-
matical instructions MMX supported by suitable data organization, is
presented. Properties of parallel calculations are empirically verified on
the PC with Intel Core 2 Duo processor on Taillard’s benchmarks.

Keywords: parallel metaheuristics, scheduling, optimization, job shop,
simulated annealing.

1 Introduction

Job shop scheduling problems follow from many real cases, which means that
they own good practical applications as well as the industrial significance. Be-
cause of NP-hardness of the problem, despite the criteria value form, heuristics
and metaheuristics are recommended as “the most reasonable” solution methods.
The majority of these methods refers to the makespan minimization. We mention
here, as an example, a few recent studies: Jain, Rangaswamy, and Meeran [7];
Pezella and Merelli [11]; Grabowski and Wodecki [4]; Nowicki and Smutnicki [10].

The job shop problem with general regular criteria is commonly regarded as
harder than the job shop problem with the makespan criterion, mainly because
of the lack of special properties that would reinforce the solution algorithm.
Moreover, till now, there have not been discovered for the problem any sequen-
tial accelerators (properties that can speed up computations throughout skillful
aggregation and decomposition of calculations). In this context, parallelization
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techniques are the only methods allowing ones, practical instances in reasonable
time to be solved. Therefore they are especially desirable.

Some heuristics algorithms based on dispatching rules for the considered prob-
lem are presented in papers of Holthaus and Rajendran [6], Bushee and Svestka
[3]. For the other regular criteria such as the total tardiness there are proposed
metaheuristics based on various local search techniques: simulated annealing [5],
[14], tabu search [2] and genetic search [8].

In this paper we propose a genuine method of cost function computing in
parallel by using multi-processor system as well as a single-processor system with
multiple mathematical instructions MMX. The obtained results can be applied
directly to modern PCs equipped with a few processors, multi-core processors
or processors with multiple mathematical instructions.

2 The Problem

We consider a manufacturing system with any structure consisting of m ma-
chines of a unit capacity given by the set M = {1, . . . ,m}. In the system, there
are processed n jobs given by set J = {1, 2, ..., n}. The job j-th requires the
sequence of nj operations indexed consecutively (lj−1 + 1, ..., lj−1 + nj), where
lj =

∑j
i=1 ni, is the total number of operations of the first j jobs, j = 1, 2, ..., n,

(l0 = 0), and o =
∑n

i=1 oi. The operation x is to be processed on the machine
μx ∈M during an uninterrupted processing time px > 0, x ∈ O = {1, 2, . . . , o}.
Our aim is to find the schedule under the following constraints: (1) each machine
can process at most one product at a time, (2) each product can be processed
by at most one machine at a time, (3) operations cannot be preempted.

The set of operations O can be decomposed into subsets Ok = {x ∈ O :
μx = k}, each of them contains operations to be processed on the machine k,
k ∈ M . Let the permutation πk defines the processing order of operations from
the set Ok on machine k, and let Πk be the set of all permutations on Ok. The
processing order of all operations on machines is determined by the m-tuple
π = (π1, π2, ..., πm), where π ∈ Π1 ×Π2 × ...×Πm.

For any operation j ∈ O and processing order given by π we define the machine
predecessor/successor sj , sj as well as the technological predecessor/successor
tj , tj , according to the expressions below

sπi(j)
=

⎧⎨⎩
0 j = 1

πi(j − 1) j = 2, . . . , nj ,
sπi(j)

=

⎧⎨⎩
πi(j + 1) j = 1, . . . , nj − 1,

0 j = nj ,

tπi(j) =

⎧⎨⎩
0 j = li−1 + 1, i ∈ J

j − 1 otherwise,
tπi(j) =

⎧⎨⎩
0 j = li, i ∈ J

j + 1 otherwise,

Note that if the index of predecessor of the operation j is 0, then j is the
first operation of proper job or/and the first operation processed on the proper
machine. Similarly, if the index of successor of the operation j is 0 then j is the
last operation of proper job or/and the last operation processed on the proper
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machine. The machine predecessor/successor depends on π, but for simplicity in
a notation we will not express it explicitly.

The schedule for the fixed processing order π is described by event vectors
S = (S1, . . . , So) and C = (C1, . . . ,Co), where values Sj and Cj denote the
starting time of operation j and its completion time. The schedule has to satisfy
the following constraints

Ctj
≤ Sj tj �= 0, j ∈ O, (1)

Csj
≤ Sj sj �= 0, j ∈ O, (2)

Cj = Sj + pj j ∈ O. (3)

Because of equation (3), the schedule can be represented by a single event vector,
and we use C to this aim. The schedule C, for the fixed π, is feasible if it satisfies
conditions (1)–(3). The constraint (1) follows from the technological processing
order of operations inside job, whereas (2) from the unit capacity of machines.
Our aim is to find the feasible processing order π∗ ∈ Π , so that

Csum(π∗) = min
π∈Π

Csum(π), (4)

where Csum(π) =
∑n

i∈OL Ci is the sum of jobs completion times and OL = {i :
i = li, i ∈ O} is the set of the last operations of jobs.

It is convenient to represent the processing order π and the schedule C by
using the following direct graph G(π) = (O,R ∪ E(π)) with a set of nodes O
and a set of arcs R ∪ E(π), where R = {(tj , j) : tj �= 0, j ∈ O} E(π) = {(sj , j) :
sj �= 0, j ∈ O}. The node j ∈ O represents the j-th operation of a certain job
and has the weight pj . Arcs from the set R represent the processing order of
operations in jobs and correspond to the constraint (1), whereas arcs from set
E(π) represent the processing order of operations on machines and correspond
to the constraint (2). All arcs from both subsets have the weight zero. Let us
start from some well-known facts.

Property 1. The processing order π is feasible if G(π) does not contain a cycle.

Consider the graph G(π) for a feasible π. Denote by Ui the longest path (i.e.
sequence of nodes) going to node i and by di the length (including pi) of Ui,
i ∈ O.

Property 2. For each feasible processing order π, there exists a feasible schedule
C of the problem, such that Ci = di and each Ci is as small as possible, i ∈ O.

The path Ui can be written as Ui = (ui(1), ui(2), . . . , ui(wi)), where ui(x) ∈ O,
1 ≤ x ≤ wi, and wi is the number of nodes in this path. Clearly, ui(wi) = i. Each
path Ui, i ∈ O can naturally be decomposed into several specific subpaths, so
that each subpath contains nodes linked by the same type of arcs. We define block
as the maximal subsequence B∗

i = (ui(g∗i ), ..., ui(h∗
i )) of Ui such that μui(g∗

i ) =
μui(g∗

i +1) = . . . = μui(h∗
i ) and (ui(j), ui(j + 1)) ∈ E(π) for all i = g∗i , . . . ,h

∗
i − 1,
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g∗i < h∗
i . A block corresponds to a sequence of operations (jobs) processed on the

same machine without inserted an idle time. In further considerations we will be
interested only in non-empty blocks, i.e. containing at least two operations.

Based on the properties of the job shop problem with the makespan criterion
[4] one can prove the following properties of the problem.

Theorem 1. Let B1
i , B

2
i , . . . , B

ri

i be decomposition of Ui, i ∈ OL for the acyclic
graph G(π). If the acyclic graph G(α) has been obtained from G(π) through the
modifications of π so that Csum(α) < Csum(π), then in G(α) at least one opera-
tion x ∈ Bk

i is executed on earlier position than an original one in permutation
πμx , for some k ∈ {1, 2, ..., ri} and some i ∈ OL.

Property 3. Let Bk
i = (ui(gk

i ), ..., ui(hk
i )), k ∈ {1, 2, ..., ri}, i ∈ OL for the

acyclic graph G(π). If the graph G(α) has been obtained from G(π) through the
interchanging two successive operations of Bk

i that G(α) is acyclic.

Property 4. All paths Ui, i ∈ O and their lengths can be found in the time O(o).

3 Simulated Annealing

Simulated annealing (SA) method applies an analogy to the thermodynamic
cooling process to avoid local minima and escape from them. The search trajec-
tory is guided through the set of solutionΠ in a ”statistically suitable” direction.
The SA application to our problem is described briefly as follows. In each iter-
ation the new processing order π′ is selected randomly among those from the
neighborhood N(π) of current processing order π. This processing order (solu-
tion) can provide either Csum(π′) ≤ Csum(π) or Csum(π′) > Csum(π). In the
former case π′ is accepted immediately as the new solution for the next itera-
tion, i.e. π = π′. In the latter case π′ is accepted as the new solution with the
probability exp(Δ/T ), where Δ = Csum(π′) − Csum(π) - and T is a parameter
called a temperature at iteration. The temperature T is getting changed along
iterations by the use of a cooling scheme. A number of iterations, say m, is
performed at the fixed temperature. Although the cooling should be carried out
very slowly, most of the authors consider the change of the temperature at every
iteration (m = 1). Two schemes of the temperature modification are commonly
used: geometric Ti+1 = λiTi and logarithmic Ti+1 = 1/(1 + λiTi), i = 1, . . . , N ,
where N is the total number of iterations, λi is a parameter, and T0 is an initial
temperature.

Aarts and van Laarhooven [1] have also made several suggestions concern-
ing the choice of initial solution π0, initial temperature T0, λi, m and the
stopping criterion. They have proposed to select π0 at random, which helps
with randomizing the search and removing solution dependence on π0. The
initial temperature is set to be k = 10 times the maximum value Δmax =
max1≤i≤k(Csum(πi) − Csum(πi−1)) between any two successive perturbed so-
lutions when both are accepted, where πi is the current solution in i-th iteration
of algorithm. The initial temperature is set T0 = −Δmax/ ln(p), where p = 0.9,
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the logarithmic cooling scheme parameter λi = ln(1 + δ)/3σi where δ is the
parameter of closeness to the equilibrium (0.1 - 10.0) and σi is the standard de-
viation of Csum(π) for all π generated at the temperature T . The value m equals
the number (or its fraction) of different solutions that can be reached from the
given one by introducing a single perturbation.

3.1 Neighborhood

The neighborhood N(V, π) of a solution π is defined as a set of new solutions
generated by the set of moves V (π). The move v ∈ V (π) transforms (perturbs)
solution π ∈ Π into another one π(v) ∈ Π . One of the well-known transition
operators for the job shop problem is the swap operator which takes two adja-
cent operation x and y and insert the operation y into the original position of
operation x and x into the original position of operation y. The swap move can
be unambiguously described by the pair of adjacent operation v = (x, y). The
set of moves V (π) consists of all such moves that can be applied to π. For each
machine i ∈ M there are nk − 1 possible swap moves. Thus, the size of this set
and neighborhood is o−m =

∑m
k=1(nk − 1). Unfortunately, N(V, π) contains a

huge number of unfeasible solutions as well as a quite large number of solutions
worse than π.

Based on the Theorem 1 and Property 3 we can reduce the set V (π) to the set
X(π) ⊂ V (π) which consists of only feasible and perspective moves. Formally,
the set X(π) is defined by the following formula

X(π) = {(x, y) ∈ V (π) : x = ui(j), y = ui(j + 1),

j = gk
i , . . . ,h

k
i − 1, k = 1, . . . , ri, i ∈ OL}. (5)

The size of X(π) strongly depends on the distribution of blocks in π.

3.2 The Representative Neighborhood

As already mentioned, in each iteration, the SA algorithm selects in N(X,π)
randomly a single solution neighboring to π. We consider also an alternative
method of selecting neighbors which refers to the idea of representatives, see
Nowicki and Smutnicki, [9], applied to the tabu search method for the permu-
tation flow shop problem with a makespan criterion. This method has been also
successively applied by Yamada and Reeves [12] for the permutation flow shop
problem with the total completion time criterion.

In the representative neighborhood the large original neighborhood N(X,π) is
shared into small subsets (clusters). The representative of the cluster is the best
solution in this cluster. Selection is made among representatives. Notice that
selection of representatives requires significantly greater computational effort
than for the conventional SA method. Hence, this method is useful for problems
having effective accelerators and/or effective methods of parallel computing.
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4 Parallel Computation of the Objective Function

In this section we propose the original method of parallel computation of Csum

criterion for the given set of neighbors N(π) of the current solution π. At the be-
gin, we will analyze properties of π and π(v), where v is a move. In the description
we refer to the well known method of computing Ci, i ∈ O values.

Fact 1. Values Ci, i ∈ O, can be found by using the recursive formula

Ci = max(Csi
,Cti

) + pi, where C0 = 0. (6)

The application of (6) is correct if nodes of the graph are revised in a suitable
order. Let Tπ = (t1, . . . , to) be a topological order of nodes in graph G(π). Note
that Tπ can be perceived as a permutation of elements from the set O.

Fact 2. The topological order Tπ, for the fixed feasible π, can be found in the
O(o) time.

Fact 3. Values Ci, i ∈ O, for the fixed feasible π, can be found by running (6)
for i = t1, . . . , to. It requires the O(o) time.

Using Facts (1)–(3) one can propose the following Procedure C of calculating Ci,
i ∈ O, for the fixed π. The computational complexity of this procedure is O(o).

PROCEDURE C

Step 1. Find the topological order Tπ. If it does not exist return the unfeasible
solution.

Step 2. Calculate values Ci, i ∈ O, by using (6) for i = t1, . . . , to, where
(t1, . . . , to) = Tπ.

Let us analyze the quick method of obtaining Tπ(v) and Ci, i ∈ O, after the
swap move v = (x, y) made from π. Let T−1

π be the inverse permutation to
Tπ. The element T−1

π (x) denotes the position of x in Tπ. Clearly, we have
T−1

π (x) < T−1
π (y) for move v = (x, y). It is easy to verify that Tπ(v) can be ob-

tained by reordering in Tπ elements from position T−1
π (x) to position T−1

π (y). It
takes O(T−1

π (y)−T−1
π (x)+1) time. For frequently met case T−1

π (y) = T−1
π (x)+1

the computation complexity is O(1). Unfortunately, regarding to Ci, the change
of completion time of two swapped operations should be broadcasted to all suc-
cessive operations; then updating of Ci from the position T−1

π (x) to position o,
in Tπ(v) obtained by reordering Tπ, requires O(o − T−1

π (x) + 1) time.
Now, we are ready to present our parallel computing method dedicated to

the fast calculation of objective function values for a set of neighbors. Among
the known parallel computation models we select the vector calculations which
are the most promising now and easy in hardware implementation. The selected
model is the special case of the single instruction multiple data (SIMD) model.

Assume that the vector processor operates on vectors consisting of s ele-
ments. Let Vs = {v1, . . . , vs} be a subset of parallel computed neighbors and let
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Ci = (C
1
i , . . . ,C

s

i ), where C
k

i , k = 1, . . . , s, denote completion times of opera-
tions i ∈ O calculated for the k-th neighbor. In a similar way we define the vector
of processing times P i = (P

1
i , . . . , P

s

i ), obviously P
1
i = P

2
i =, . . . ,= P

s

i = pi.
For each v = (x, y) ∈ Vs we define three positions in Tπ : (i) fTπ (v) = T−1

π (x)
the first position of updating Tπ, (ii) lTπ(v) = T−1

π (y) = T−1
π (sx) the last posi-

tion of updating Tπ, (iii) lC(v) the last position of updating C
k
. The lC(v) =

T−1
π (y) if operation y is the last operation executed on the proper machines and
lC(v) = T−1

π (sy) in the opposite case. Finally, we reorder moves from the set Vs

according to the non-decreasing value of lC(v). The proposed method is outlined
in the Procedure P.

PROCEDURE P

Step 0: set C0 = 0.
Step 1: for i = 1 to o do
Step 1.1: Calculate values Cti by using (6).
Step 1.2: for each k such that lC(vk) = i do
Step 1.2.1: execute move vk in π

Step 1.2.2: reorder Tπ from position fTπ(vk) to lTπ(vk)

Step 1.2.3: calculate values C
k

ti
from position fTπ(vk) to lC(vk).

Step 1.2.4: restore π and Tπ

The initial Step 0 is clear. In the Step 1.1 all values of the vector Cti are
calculated in parallel. This step is performed for t1, . . . , to and takes O(o) time.
It is easy to verify that computations in Step 1.1 are performed according to
order Tπ determined by π. Therefore, for each πv, v ∈ Vs it is necessary to
recalculate the completion times for all operations whose position have changed,
i.e. from the position fTπ (vk) to lTπ (vk) and additionally for the successor of the
operation y.

The computational complexity of the Step 1.2.1 is O(1), for Step 1.2.2 and
1.2.4 is O(lTπ (vk) − lTπ (vk)). Step 1.2.3 is the most time consuming and takes
O(lC(vk)−lTπ (vk)) time. The total time required by Step 1.2 is O(

∑
v∈Vs

(lC(v)−
fTπ(v))). In the optimistic case, namely lC(vk)− lTπ(vk) = 2 for all k = 1, ..., s,
the computational complexity of the algorithm is O(o + s).

4.1 Multiple Mathematical Instructions

Contemporary used PCs are equipped with processors having the extended in-
struction MMX set. These special instructions allow one to make vectoring com-
putations. The single instruction operates in a single processor cycle on extended
registers (8 bytes). In the MMX set, it can be distinguished three groups of vec-
tor instructions operating on vector 8×1, 4×2, 2×4, where the former number
denotes the vector size and the latter number – the data size. Since for the
tested instances all performed values (Ci, pi) can be coded on two bytes, we can
perform vectoring operation on the vector of a size equals 4.
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The seven main steps of parallel computation of expression (6) using MMX
intrinsics are shown in Fig. 1. In the steps 1 and 2, the MMX registers mm0 and
mm1 are loaded by data following from the vectors Csi and Cti respectively.
The calculation of value max(Csi ,Cti) are decomposed into two steps: 3 and 4.
At first, the value of max(0,Csi − Cti) are calculated by using subtracts with
saturation MMX intrinsic (step 3), the result is stored into the mm0 register.
Afterwards the content of the mm0 register is increased by Cti (step 4). The
values of vector P i are stored in the mm1 register (step 5) and added to the
contents of the mm0 register (step 6). The final results (contents of the mm0
register) are stored into memory in the step 7.
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Fig. 1. Parallel computation of expression (6) for the given operation i

5 Computational Experiments

We have implemented three algorithms based on the simulated annealing method.
In the first algorithm PSA-R we have used the representative-based neighbor-
hood. From the neighborhood N(X,π) we can select randomly s = 4 neighbors
and we compute in parallel the value of the objective function. From the set
obtained now we select the best solution. In the second PSA algorithm, for each
solution s = 4 moves from X(π) are generated at random. Moves are applied
in turn to order π until a new solution is accepted. The objective function for
all the solutions is computed in parallel. It is easy to observe that PSA emu-
lates a traditional one-thread simulated annealing (SA) algorithm. The classic
SA algorithm is the third from the implemented and tested algorithms.

Algorithms were coded in Visual C++ 2008 Express Edition, ran on a PC with
Intel Core 2 Duo 2.66 GHz processor and the Windows XP operating system, and
tested on 50 benchmark instances provided by Taillard [13]. The benchmark set
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contains 5 groups of hard instances in different sizes. For each size (group) n×m :
15×15, 20×15, 20×20, 30×15, 30×20 a set of 10 instances was provided. In our
tests all the values of tuning parameters for algorithms are found in the automatic
way described in the previous section. Each algorithm was terminated after per-
formed 1000 iterations. At the fixed temperature, the SA-R algorithm performs n
iteration, whereas SA and PSA algorithms 4n iteration, i.e. all algorithms calcu-
lated the objective function value for the same number of solutions.

For each test instance and for each run of algorithm we have collected the fol-
lowing values: πref – reference solution – the best solution found in all runs of
algorithms, PRD = 100 · (Csum(π) − Csum(πref ))/Csum(πref ) – the value of
the percentage relative difference between Csum function values for the solution
π and reference solution πref , CPU – total computations time (in seconds). For
each instance and for each algorithm based on 10 solutions generated during each
of 10 runs we have calculated the following values:MPRD – minimal PRD value,
APRD – average PRD value, ACPU – average computation time (in seconds).

Table 1. Computational results of PSA-R, PSA and SA for PRD and CPU values

Group PSA-R PSA (SA) ACPU time Speedup ratio
MPRD APRD MPRD APRD PSAR PSA SA PSAR PSA

15×15 1.27 2.72 0.11 1.07 3.9 10.3 18.7 4.7 1.8
20×15 1.38 3.10 0.11 1.21 6.7 19.3 34.2 5.1 1.8
20×20 0.51 1.72 0.23 1.43 11.3 33.6 61.6 5.4 1.8
30×15 0.60 3.02 0.42 1.45 14.8 46.9 81.2 5.5 1.7
30×20 0.20 2.23 1.11 1.97 26.1 83.9 147.2 5.6 1.8

Table 1 shows results of computational experiments. The main observation is
that the proposed method of SA algorithm parallelization significantly reduces
the computation time. The speedup values are from 4.7 to 5.6 and increase
with the increasing number of machines. It is easy to notice that the speedup is
greater than the theoretical one (≤ 4) (we are obtaining superlinear speedup).
The additional speedup is obtained due to the MMX instruction utilization,
which eliminates branches in the executing code. The branches are essential for
implementation of max function in x86 set of instruction. Comparing compu-
tations time of PSA and SA one can observe that the speedup is significantly
smaller (1.8). With respect to PRD values it has been pointed that PSA provides
better results than PSA-R for the majority of groups of instance. For the first
five groups the MPRD values are from 0.5 to 1.4 for PSA-R, whereas from 0.1
to 0.4 for PSA (SA). In the last group of instances, conversely PSA-R provides
better results (MPRD=0.2) than PSA-R (MPRD=0.2). It can be notice that for
this group of instances we observe the highest speedup value.

6 Conclusions

To the best of our knowledge, this is the first paper which deals with the small-
grain parallelization of algorithms for the job shop problem. A special attention
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has been paid to the kind of parallelism which can be easily applied to the new
generation of processors installed in PCs, with multiple cores (dual, quad, etc.)
as well as with the extended set of instructions (such as MMX and SSE2). The
proposed methods have been applied successfully to various simulated annealing
metaheuristics for the job shop problem with Csum criterion.
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Abstract. The Simple API for Grid Applications (SAGA) can be used
to develop a range of applications which are in turn composed of multiple
sub-tasks. In particular SAGA is an effective tool for coordinating and
orchestrating the many sub-tasks of such applications, whilst keeping the
application agnostic to the details of the infrastructure used. Although
developed primarily in the context of distributed applications, SAGA
provides an equally valid approach for applications with many sub-tasks
on single high-end supercomputers, such as emerging peta-scale comput-
ers. Specifically, in this paper we describe how SAGA has been used to
develop applications from two types of applications: the first with loosely-
coupled homogeneous sub-tasks and, applications with loosely-coupled
heterogeneous sub-tasks. We also analyse and contrast the coupling and
scheduling requirements of the sub-tasks for these two applications. We
find that applications with multiple sub-tasks often have dynamic char-
acteristics, and thus require support for both infrastructure-independent
programming models and agile execution models. Hence attention must
be paid to the practical deployment challenges along with the theoretical
advances in the development of infrastructure-independent applications.

1 Introduction

There exist many scientific problems that are solved by the collective analysis
of many independent tasks, e.g., Monte-Carlo simulations, or parameter sweeps.
There also exists a large class of scientific problems that involve applications that
can either be decomposed into smaller coupled sub-tasks via the of choice an
appropriate algorithm [1], or are naturally composed of coupled sub-tasks. The
decomposition of an otherwise monolithic application into smaller components
of computation, in principle makes them amenable to efficient distribution.

In this paper, we discuss Replica-Exchange (RE) and Ensemble Kalman-Filter
(EnKF) based applications, as representative prototypes of applications with
coupled sub-tasks. Although similar at some levels, they possess important dif-
ferences. For RE based simulations, the sub-tasks are identical (ie. replicas),
whereas for the EnKF the sub-tasks are heterogeneous. Additionally the nature
of coupling between the sub-tasks in the former (regular intervals and pair-wise)
is very different from the latter (irregular and a global-synchronisation point).

It is important to appreciate the difference between loosely-coupled when
typically used in the context of parallel applications versus when used in the

G. Allen et al. (Eds.): ICCS 2009, Part I, LNCS 5544, pp. 641–650, 2009.
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context of distributed applications. For the former, loosely-coupling is most often
a reference to the application’s tolerance of latency in message passing. For
distributed applications loose (or tight) coupling has more context: it could be
a reference to the flexibility in scheduling and placing the sub-tasks or even a
flexibility in choice of resources the different sub-tasks are mapped to. Although
both applications we investigate are classified as loosely-coupled, the nature of
the coupling between their sub-tasks varies. It is important to appreciate The
nature of the coupling of the sub-tasks, in addition to imposing constraints on
scheduling and resource mapping strategies, also determines the feasibility of any
speculative computing. Thus, along with the size and number of sub-tasks, the
nature of coupling determines the overall development and deployment strategy.

In addition to some similarity between application characteristics, what binds
the two together, is our adopted approach of developing distributed applications.
The Simple API for Grid Applications (SAGA) [2] provides a simple, standard,
programmatic approach to codify distributed applications such that they can
be seamlessly run on any underlying infrastructure. Critically, this allows the
application developer to focus on supporting the application characteristics and
exploiting the relative strengths of different infrastructure whilst not worrying
about adapting to the details of the infrastructure. Not being coupled to the
details of the underlying infrastructure is a necessary condition for applications
whose resource requirement might increase or those that want to make oppor-
tunistic use of newly available resources. In other words independence from spe-
cific infrastructure, is a necessary condition for dynamic applications to achieve
the desired agile-execution models and thus be adaptive. The aim of this paper
is to discuss how SAGA has been used to develop two applications with multiple
sub-tasks in a way such that these applications can be deployed and executed on
both distributed as well high-end machines, with a minimal, if not no-changes.

Lingering problems associated with deployment on production Grids has made
the uptake of Grids challenging and unattractive to the end-scientist. In a nut-
shell, our experience is consistent with and indicates that one of the reasons
deployment on general-purpose Grids is difficult, because Grids are comprised
of many “isolated” components. We believe that this contributes to a currently
unmanageable number degrees-of-freedom and failure modes. Although program-
ming models and conceptual frameworks exists to unify the uptake of “grids or
supercomputers” as required, practical considerations make this currently unre-
alistic and motivate the end-scientist to settle for the the solution that is often
simpler to deploy. Whereas this has consequences for all distributed applications,
it influences the development and uptake of dynamic distributed applications.
Although the focus here is on utilising distributed machines, the same approach
can be used for monolithic large machines. We demonstrate the validity of the
SAGA approach for high-performance computing on large single machines.

2 SAGA: A Standard Programming Interface

The Simple API for Grid Applications (SAGA) is an API standardization effort
within the Open Grid Forum (OGF) [3] an international standards development
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Fig. 1. Schematic diagram showing how SAGA supports the development of three
simple, but important ways of developing distributed applications. Layered schematic
of the different components of the SAGA landscape. The core API supports the main
functionality required by distributed applications. Middleware specific adaptors make
applications developed using SAGA grid portable.

body concerned primarily with standards for distributed computing. SAGA
provides a simple, POSIX-style API to the most common Grid functions at a suf-
ficiently high-level of abstraction so as to be able to be independent of the diverse
and dynamic Grid environments. The SAGA specification defines interfaces for the
most common Grid-programming functions grouped as a set of functional pack-
ages. The SAGA Version 1.0 specification defines the following packages:
– File package - provides methods for accessing local and remote filesystems,

browsing directories, moving, copying, and deleting files, setting access per-
missions, as well as zero-copy reading and writing. The replica package sup-
port the same functionality for logical files.

– Job package - provides methods for describing, submitting, monitoring, and
controlling local and remote jobs.

– Stream package - provides methods for authenticated local and remote socket
connections with hooks to support authorization and encryption schemes.

– RPC package - is an implementation of the OGF GridRPC API [4] definition
and provides methods for unified remote procedure calls.

The SAGA Runtime Engine can dynamically load environment specific adaptor
(see Fig. 1). The two critical aspects of SAGA are its simplicity of use and the fact
that it is a proposed standard. It is important to note, that these two properties
provide the added value of using SAGA for distributed application development.
Simplicity arises from being able to limit the scope to only the most common and
important grid-functionality required by applications. Standardization represents
the fact that the interface is derived from a wide-range of applications using a col-
laborative approachand theoutputofwhich is endorsedby thebroader community.

2.1 Developing Distributed Applications with SAGA

SAGA can be used to develop and support distributed applications in many
different ways; the exact way in which it is used, in addition to the application
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characteristics, depends upon factors such as how the application needs to be
used. For simplicity, in this paper, we will discuss only three different approaches
for distributed application development (schematically summarized on the left
side of Fig. 1). First, applications can use SAGA directly for standardised and
simple distributed function calls that work on nearly all middleware systems.
Typically, applications developed using direct SAGA calls are explicitly dis-
tributed. Secondly, SAGA can be used to create infrastructure independent
frameworks (that support patterns such as MapReduce), which provide dis-
tributed capability and which can be used by applications to be implicitly dis-
tributed. Thirdly, SAGA can be used to support usage modes that provide ac-
cess to distributed infrastructure, such as bulk job-submission or hierarchical
job-submission over different machines. For this case too, applications are typ-
ically implicitly distributed, and the knowledge/control of utilizing distributed
infrastructure is left to the SAGA-based framework that supports the usage-
mode. The RE application that we will discuss in the paper belongs to the third
category, whilst the EnKF based application is of the first type.

3 Applications with Loosely-Coupled Homogeneous
Sub-tasks: Replica-Exchange

RE [5] simulations can be used to understand important physical phenomena –
ranging from protein folding dynamics to binding affinity calculations required
for computational drug discovery. For RE simulations utilizing as many dis-
tributed resources as possible, is critical for the effective solution of the scientific
problem [6]. Distributed RE simulations must be able to orchestrate different re-
sources in a complex and dynamic environment. Writing such an applications is a
complex task for a myriad number of reasons [7]. In the following a SAGA-based
RE framework developed for molecular dynamics simulations is described.

3.1 Application Description

Even with the most powerful computing resources at the moment, straight-
forward Molecular Dynamics (MD) simulations are unable to reach the rele-
vant time-scales required to study conformational changes and searches. This is
partly due to the inherent limitations in the MD algorithm – a global synchro-
nization is required at the end of each time step. This limitation provides an
important motivation for research into finding ways to accelerate sampling and
enhance “effective” time-scales studied. Generalized ensemble approaches – of
which Replica-Exchange Molecular Dynamics (REMD) [5] are a prominent ex-
ample – represent an important and promising attempt to overcome the general
limitations of insufficient time-scales, as well as specific limitations of inadequate
conformational sampling arising from kinetic trappings. In the simplest formula-
tion, RE is an algorithm whereby one single long-running simulation is be substi-
tuted for an ensemble of shorter-running similar simulations, but which are very
loosely-coupled, ie, the interval between exchange attempts is much larger than
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the interval over which the simulations run; this also make the RE formulation
of physical problems excellent candidates for distributed environments.

3.2 Application Architecture

There are many architectural aspects of the framework used to implement RE
simulations. However, we will focus on the abstractions that we create using
SAGA that enable efficient job-submission on any underlying infrastructure.
Details of the architecture and abstractions can be found in Ref. [6,7]. Here we
present the architecture in the context of an application consisting of loosely-
coupled multiple sub-tasks. RE simulations can be thought of as consisting of
two distinct components: the simulation engine/mechanism used for each replica
process, and the orchestration-coupling mechanism between the individual repli-
cas. Our current RE framework uses NAMD for the former and a SAGA-based
framework for orchestration and coordination of the replica sub-tasks.

The developed RE framework [7] comprises of the RE-Manager – the central
master deployed on the user’s desktop, and the Replica-Agents, that reside on the
machines where RE simulations are carried out. The RE-Manager orchestrates
all replicas, i. e. it is responsible for the parameterization of replica tasks, file
staging, job spawning and the conduction of the replica-exchange itself. The
Replica-Agent is responsible for spawning and monitoring the sub-tasks.

In particular, queueing delays can represent a major bottleneck: a single
crowded resource can slowdown the simulation arbitrary. Thus, to achieve an
optimal time to solution, RE sub-tasks need to be dispatched efficiently. A com-
mon principle to prevent this is the usage of Glide-In jobs, which represent a
placeholder for a set of sub-tasks (see Ref. [8]). For a Glide-In job, a sufficiently
large chunk of resources is requested. Smaller sub-tasks can then rapidly be
executed through the Glide-In job. Figure 2 summarizes the abstractions used
within the RE framework.

While the implementation of the enhanced job model is entirely based on
SAGA we can utilise other frameworks, such as the original Condor Glide-In [8].
Currently, we are actively working on a Condor adaptor for SAGA [9], which
will also support native Glide-In functionality for Condor Jobs; our enhanced job
model will then serve as abstraction, while the Condor level Glide-In will be used
where appropriate. Irrespective of that, however, the strengths of our approach
are the following: A general purpose Glide-in mechanism that does not require
either Condor, or Globus and in which sub-tasks are part of a Glide-In meta-job,
can be controlled at the application-level using simple ssh if needed. Secondly, the
same mechanisms can be used to exploit distributed resources [6], as well as single
high-end resources, without any changes in application code. This represents the
basis of our claim of independence from underlying-infrastructure.

3.3 Application Deployment

We have shown how using the SAGA Glide-In infrastructure on multiple Tera-
Grid/LONI resources, the time-to-solution can be reduced [10]. Continuing with
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Fig. 2. Replica Exchange Framework Abstractions: The Replica-Agent is used as place-
holder job for all sub-tasks running on a single cluster. The RE-Manager can control
both the Replica-Agents and the replica jobs using a SAGA-based user-level job API.
By using this efficient way to allocate resources, queuing times are minimized and
the time to completion can be dramatically reduced when using multiple and single
resources.

Fig. 3. SAGA Glide-In Performance: The figure shows the average runtime of a RE
simulation with 16 RE processes running on 16 cores each on QueenBee. The Glide-In
framework provides the possibility to effectively cluster RE jobs to receive a significant
reduced time to solution (upto 80%) even on a single machine. The plot on the right
shows the number of active Glide-Ins over a six-hour run on the TeraGrid. The plot
in red (using the left-hand y axis) illustrates how the average time between exchange
attempts (inverse of physical efficiency) decreases as the number of Glide-Ins increases.
The plot in green shows the speedup.

the theme that well developed abstractions can serve across the spectrum –
distributed HPC machines (such as the TeraGrid) to single high-end supercom-
puters (such as Abe or QueenBee) to many smaller machines flocked together
(Condor style high-throughput), we focus on using the same infrastructure to



Developing Scientific Applications with Loosely-Coupled Sub-tasks 647

reduce the time-to-solution on a single machine. This is also a test of the scala-
bility of the SAGA-based Glide-In framework on a single machines.

Figure 3(a) shows that the Glide-In framework is especially beneficial if there
are fluctuations in the queue-time for the sub-tasks (which is almost always!).
The more sub-tasks are spawned, the more likely such delays become. While
with the SAGA Glide-In framework the runtime only modestly increase with
more than 8 replicas, the runtime rapidly rises when using regular Globus job
for spawning NAMD tasks. The unpredictable nature of these queueing times
becomes obvious by the high standard deviation found in the measurements.

Figure 3(a) shows that the SAGA Glide-In framework can provide a reduced
time to solution even on a single machine by avoiding queuing time delays and
fluctuations for every sub-task and allowing the efficient dispatching of RE tasks
solely through the Replica-Agent. During our experiments we were able to mea-
sure speedups of up to 80% compared to the non Glide-In approach. Fig. 3(b)
shows several measures of how the use of SAGA framework results in efficient
and effective deployment.

4 Loosely-Coupled Heterogeneous Sub-tasks:
Kalman-Filter Simulations

Ensemble Kalman filters (EnKF) are widely used in science and engineering [11].
EnKF are recursive filters that can be used to handle large, noisy data. The data
can be the set of results and parameters of ensembles of different models of a
particular physical system. The ensembles are run through the KF to obtain the
true physical state of the data [11], to effectively solve the inverse problem.

4.1 Application Description

In EnKF, an ensemble of forward models are run with different parameters. The
data they produce is assimilated at the end of each stage, the parameters are
corrected, and the models are run again. This process is repeated several times
until a pre-determined criteria has been met. The ensemble of forward models
are run as sub-tasks on possibly different machines, launched by a master filter
task using SAGA. SAGA is also used to control the flow of data between the
filter and the ensemble of models.

The variation in model parameters often has a direct and sizable influence on
the complexity of solving the underlying equations, thus varying the required
runtime of different models. Since we need both parameters and results for the
EnKF, a mechanism to assign models to available resources based on their ex-
pected time to completion and resource requirement is useful. Such a mechanism
estimates the time a model will spend in the queue of a resource, the time it
needs to run, and the time required to migrate the data it requires/produces
back and forth, and based on that attempt to minimize the time required to
perform each Kalman filter iteration. In fact, with changing resource simulation
requirements (as is the case with models that find themselves lagging behind
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the rest of the model pack), a mechanism which can take advantage of faster,
cheaper or more powerful machines is even more advantageous [12].

We have developed a mechanism whereby EnKF can be solved using
multiple-resources, using application-level scheduling applied dynamically [13],
ie mapping the sub-tasks requirement to the resources available at the instant the
sub-tasks become available and ready to run, as opposed to a priori static method
of job submission. For the problem size studied, the sub-tasks required mostly
less than 32 processors. For this paper we used the earlier developed frameworks
and deployed it on a single large machine – NCSA’s Abe 1. A mechanism (multi-
ple, distributed versus single machine) that is more efficient for physical models
with sub-tasks that have typically low processor counts, will not necessarily be
the more efficient as the typical sub-task size increases. Therefore it is crucial
that any general-purpose solution be usable on both single large machines to
multiple machines. We can enhance throughput further by applying the Glide-
In mechanisms discussed in the earlier section, which facilitate dynamic tasks
being aggregated from similar sub-tasks. We will report on the results of this
and whether the framework can be used on high-end petascale supercomputers
in future work.

While concurrently running on various machines is advantageous by simple
virtue of the fact that more resources would be available for running the forward
models, it is also more technically challenging than running on a single machine.
Authentication, job launching, multiple executables in correct paths for differ-
ent architectures and file systems, and of course file transfer across the different
machines are all possible points of failure. These are just some of the additional
reasons why a high-level interface such as SAGA is required to hide the het-
erogeneity of different distributed systems. In spite of that, several challenges
remain – technical, sociological as well as policy level, some specific examples of
relevance we discuss in the next section.

5 Deploying on Distributed Resources

As mentioned in the opening section, using SAGA we have developed program-
ming and execution models, whereby applications are independent of the under-
lying infrastructure, i.e., either use a monolithic mammoth machine, or multiple-
distributed machines, depending upon the physical problem being investigated,
without any modification at the application-level code. In spite of these theoret-
ical advances, in practise end-users often find it more convenient to use single
resources, even if not optimally-efficient. The smooth and effective deployment
of distributed applications on heterogeneous resources remains is a difficult task.
To highlight just some of the challenges of deploying advanced application on
general-purpose distributed infrastructure, we mention the fact that at best 33%

1 We wanted to use Ranger, but BQP was not available on Ranger, and would not
have been before the submission of this paper.
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of the resources we tried were usable (ie two in three were not usable) . We
mention two problems that we encountered and led to a high amount of com-
plexity: different library versions and broken Globus installations. Also, Globus
installations on TeraGrid machines proved to be quite different. For example,
the Globus GRAM2 versions on Abe and QueenBee map the RSL count element
different: While on QB the count element is mapped to the number of cores, on
Abe this element describes the number of nodes. Further standardization of this
aspect is required in the future. The GRAM2 on Ranger (in particular the Sun
GridEngine adaptor) was completely unusable due to the lack of support for
MPI jobs.

Deploying our applications on ranger was not a straightforward task. SAGA
requires a recent installation of the BOOST library which we had to compile
ourselves. When we were finished compiling our applications, we ran into a job
submission problem on a particular login node. Moving past the firewall and
GRAM2 issues, getting the right certificates that are recognized on the machine,
we discovered there were even more issues that need to be resolved: GridFTP
was not working, the Globus/SGE script had a small error in it that had to be
corrected. These issues are outlined in tickets 4957, 5111, 5130, 5145, 5172 and
5174. It is important to note that we encountered excellent response time and
expert system administrators who resolved all of these issues promptly, but reit-
erates the complexity of utilising multiple resources from general-purpose grids.
The aim here is not to criticise any provider – resource or software product, but
to simply highlight the practical challenges of deploying distributed applications.

6 Conclusions and Discussions

SAGA provides the abstractions and the ability to create applications with mul-
tiple sub-tasks that can exploit multiple and different infrastructure types. We
have demonstrated this via the implementation of two distinct, specific applica-
tions but both representative of a broader class of applications and running them
in two different execution environments without changing the application in any
way! The specific applications differed not only in the types of sub-tasks (homo-
geneous versus heterogeneous) but also in the nature of the coupling between
the sub-tasks.

It is interesting to note that simple, naive implementations of these applica-
tions are possible; these would require these applications to be “grid-unaware”
(or implicitly distributed). Although we don’t provide details here, the real power
of these applications arise from their ability to have an agile execution model,
i.e., by being adaptive to dynamic resource requirements or availability. In other
words, in order to develop applications that have agile execution models, more
often than not, applications need to explicitly control the distributed aspects,
i.e., be grid-aware We posit that SAGA provides an important mechanism to
develop explicitly distributed applications.

Optimal scheduling of sub-tasks remains a challenge of distributed computing;
however as demonstrated, for adaptive applications, scheduling can often be
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done effectively at the application level. This is possible because, as shown,
adaptive applications don’t necessarily need tight co-scheduling, but often just
lightweight-coupling between resources. This is yet another advantage of an agile-
execution model.
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Abstract. Modeling and Simulation of Multiphysics Multiscale Systems 
(SMMS) poses a grand challenge to computational science. To adequately 
simulate numerous intertwined processes characterized by different spatial and 
temporal scales spanning many orders of magnitude, sophisticated models and 
advanced computational techniques are required. The aim of the SMMS 
workshop is to encourage and review the progress in this multidisciplinary 
research field. This short paper describes the scope of the workshop and gives 
pointers to the papers reflecting the latest developments in the field. 
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1   Introduction to the Workshop 

The progress in understanding physical, chemical, biological, sociological and 
economical processes strongly depends on adequacy and accuracy of numerical 
simulation. All the systems important for scientific and industrial applications are 
inherently multiphysics and multiscale: they involve interactions amongst a wide range 
of physical phenomena operating at different spatial and temporal scales. Complex 
flows, fluid-structure interactions, plasma and chemical processes, thermo-mechanical 
and electromagnetic systems are just a few examples essential for fundamental and 
applied sciences. Numerical simulation of these multiphysics and multiscale problems 
requires development of sophisticated models and methods for their integration, as well 
as efficient numerical algorithms and advanced computational techniques.  

To boost scientific cross-fertilization and promote collaboration of the diverse 
groups of specialists involved, we have launched a series of mini-symposia on 
Simulation of Multiphysics Multiscale Systems (SMMS) in conjunction with the 
International Conference on Computational Sciences (ICCS) [1].  

The sixth workshop in this series, organized as a part of ICCS-2009, expands the 
scope of the meeting from physics and engineering to biological and biomedical 
applications. This includes computational models of tissue- and organo-genesis, 
tumor growth, blood vessel formation and interaction with the hosting tissue, 
biochemical transport and signaling, biomedical simulations for surgical planning, 
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etc. The topics traditionally addressed by the symposium include modeling of 
multiphysics and/or multiscale systems on different levels of description, novel 
approaches to combine different models and scales in one problem solution, advanced 
numerical methods for solving multiphysics multiscale problems, new algorithms for 
parallel distributed computing specific to the field, and challenging multiphysics 
multiscale applications from industry and academia. 

A large collection of rigorously reviewed papers selected for the workshops 
highlight modern trends and recent achievements [2]. It shows the progress made in 
coupling different models (such as continuous and discrete models; quantum and 
classical approaches; deterministic and stochastic techniques; nano, micro, meso and 
macro descriptions) and suggests various coupling approaches (e.g. homogenization 
techniques, multigrid and nested grids methods, variational multiscale methods; 
embedded, concurrent, integrated or hand-shaking multiscale methods, domain 
bridging methods, etc.). A number of selected papers have been published in the 
special issues of the International Journal for Multiscale Computational Engineering 
[3], collecting state-of-the-art methods for multiscale multiphysics applications.  
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their diligent work, which led to the very high quality of the conference. The 
organization of this event was partly supported by the Virtual Laboratory for 
e-Science Bsik project.  
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Abstract. We analyze and simulate a near continuum MagnetoGas-
Dynamic(MGD) flow inside a two-dimensional microchannel with a low
magnetic Reynolds number assumption. Complex physics such as rar-
efication, electric and magnetic effects are considered in the asymptotic
solutions. This work represents an extension from the classical Hartmann
flow in a two-dimensional channel of infinite length to a microchannel of
finite length. We obtain a non-dimensional equation that relates the pres-
sure ratio, Reynolds number, Mach number, magnetic Reynolds number
and magnetic force number. We also solved for asymptotic solutions of
compressible gas flow based on the velocity-slip and temperature-jump
wall boundary conditions while maintaining a consistent quasi-isothermal
assumption. Numerical solutions of the same formulation are obtained
for validation of the present analytical solutions.

Keywords: multi-scales, micro-flows, rarefication flows, Hartmann flows.

1 Introduction

Microchannels are important components for many Micro-Electro-Mechanical
Systems(MEMS).The study of gaseous flows inside microchannels has been an
interesting research topic. There are many reports in the literature about gas
flows in microchannels and micro-tubes. [1] A microchannel for fuel cells, for
example, is of dimensions of micrometers, whereas a channel of conventional di-
mensions is of order of centimeters to meters. It is well accepted that for near con-
tinuum gas flows through microchannels, the Navier-Stokes equations are valid if
a slip wall boundary condition is used. Many researchers have obtained theoret-
ical solutions for the flow distributions along a microchannel with an isothermal
assumption, including the pioneering work by Arkilic et al,[1] and Zohar et al.[2]
Numerically, there are many methods for simulating compressible flows in a mi-
crochannel: with the direct simulation Monte Carlo method, the Information
Preservation method,[3] gas-kinetic BGK-Burnett equation solutions.[4] Discus-
sions of thermal heating effects are reported as well.[5]

One important problem related to gas flow inside a microchannel is conduc-
tive gas flows under external magnetic and electric fields, or MagnetoGasDy-
namic(MGD) flows. These fields can significantly affect the internal gas flow
field, while different placements of electric field enables the channel to perform
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as a generator, a pump, a flux meter, or an accelerator.[6] This work is an ex-
tension from the classical Hartmann flow[6] to a flow in a microchannel of finite
length with the follow differences. First, for pressure driven gas flows inside a
microchannel, usually there are large density changes inside the microchannel,
and the average velocity can not remain unchanged in order to maintain a con-
stant mass flow rate. Second, the boundary conditions are different. For Hart-
mann flow, there is essentially no variation in the flow direction; wall boundary
conditions are nonslip and constant temperature; one can use periodic bound-
ary conditions (except for pressure) at the inlet and outlet.[7] However, for mi-
crochannel flows with density variations and rarefication effects, we will not use
periodic boundary conditions at inlet and outlet; further, we will specify a set
of general velocity-slip and temperature-jump wall boundary conditions, which
include the continuum no-slip and temperature boundary conditions as a special
case. Third, the pressure gradient inside a microchannel of finite length is not
assumed constant throughout. Simply taking a linear pressure distribution as-
sumption (after the Hartmann flow) for the present microchannel flow will result
in an inaccurate solution.

The work in this paper is a natural extension from two previous work by Ark-
ilic et al [1] and Cai et al.[5]Along the same vein, the present study follows Cai’s
previous approach [5] for treatments of microchannel MGD flows. A few works
appeared in recent years in the same area of MGD microchannel flow.[8,9] There
are some differences between the present approach and others: 1. Our study in-
cludes a governing equation for temperature necessitated by the Joule heating
effects to obtain the temperature field;[5] by comparison, the past work com-
pletely neglects the energy equation. 2. We utilize the low magnetic Reynolds
number assumption, which is crucial to simplify the MGD equations; we have not
noticed any previous treatment for the same problem in the literature. Without
this assumption, the magnetic field variations in general should be considered;
thus it is unlikely that such asymptotic approach can be consistently formulated.
3. According to the X-momentum equation, we provided the governing relation
between the Re and Ma numbers and two other nondimensional parameters for
magnetic and electric fields. We then conducted a consistent order of magni-
tude analysis. 4. We obtain a full set of asymptotic solutions in a microchannel
flow. The nonlinear pressure solution implies that without it the solution for
U-Velocity is incorrect.

2 Problem Description and Order Estimations

As illustrated by Figure 1, a microchannel has a height of 2d and a length of
L, and the average compressible gas properties of pressure, density, velocity and
number density are po, ρo, Uo, no at the channel outlet. The averaged outlet quan-
tities are adopted to normalize the following governing equations and boundary
conditions. The inlet pressure is several times larger than the outlet pressure,
their pressure ratio is denoted as P . The coordinate origin is set at the inlet
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center point, and the X-axis is along the channel centerline, the Y-axis is along
the direction normal to the channel wall. Further we assume:

1. External magnetic field is fixed at a value (0, B0, 0), along the Y-direction
only, electric field is along the Z direction only (0, 0, Ez).

2. The flow is well approximated with a quasi-isothermal assumption.[5]As
such, gas viscosity, μ, thermal conductivity, k, magnetic permeability, μm,
and electric conductivity, σ, are treated as constants.

3. The magnetic Reynolds number, Rσ = (2d)Uoμoσ, is very small. It renders
a negligible induced magnetic field, Bx compared with B0.

4. The flow is two-dimensional, hence ∂/∂z = 0, w = 0.
5. We assume the electric field is linked with the magnetic field with Ez =

−KuoB0, and 0 < K < 1.[7] Hence, we can combine the electric field into
the magnetic field to estimate orders of magnitude for different forces.

6. The channel is not short, which means ε = 2d/L is small.

A proper order estimation for several nondimensional parameters is crucial to
simplify the governing equations. Hence, we need first to estimate the orders
of magnitude for several nondimensional parameters, including Mach number,
Ma = Uo/

√
γRTo, Reynolds number, Re = (2d)ρoUo/μ, magnetic force number,

Rb = B2
0/(ρoU

2
o μm), magnetic Reynolds number, Reσ = (2d)Uoμoσo, Knudsen

number, Kn = λ/(2d) ∼
√

πγ
2

Ma
Re , and Hartmann number, Ha =

√
ReRσRb.

These nondimensional numbers are based on the quantities at the outlet, and
the external magnetic field.

By choosing the whole flow domain as an integral domain [5] and exercising
the X-momentum equation globally, we obtain:

2d(Po − Pi + ρoU
2
o − ρiU

2
i ) = μ

Ui + Uo

2d
2L − σB0(Ez +

Uo + Ui

2
B0)(2d)L

Further, we drop those terms with Ui because Ui << Uo for a pressure driven
gas flow inside a microchannel. Then, the following simple relation is obtained:

ε
(
1 + 1/(γMa2)(1 − 1/P )

)
∼ 1/Re + RσRb (1)

where P = pi/po, and ε = 2d/L. The parameter K, which is a key physical
factor for the microchannel flow, presents the ratio between the electric field
and the magnetic field. Here it is considered to be the same order, or less than,
the magnetic field effects, and it is combined into the factor RσRb.

Eqn.(1) contains four nontrivial terms: 1) the momentum change term, rep-
resented by ε on the left hand side; 2) the pressure drop term applying at the
channel inlet and outlet, ε/(γM2

a)(1−1/P ), on the left hand side; 3) the viscous
force along the wall surfaces, 1/Re, on the right hand side; and 4) the mag-
netic/electric force which applies to the whole domain, RσRb, on the right hand
side. There are many choices to balance these terms: all terms can share the same
order of magnitudes; or three terms share the larger order while the other term is
smaller; or two of the four terms are larger while the other two terms are equally
smaller; or two of the four terms are large, one term is relatively small and the
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other term is the smallest. Hence, from the above four permutations, there will
be at least 1 + C3

4 + C2
4C2

2 + C2
4C1

2 = 23 classes of combinations, and most of
these combinations can have many detailed subclasses as well. Here we are inter-
ested in investigating the interactions among viscous stress, pressure drop and
magnetic/electric field effects. Different parameter orders may result in different
simplified governing equations and different flow solutions, including hypersonic,
supersonic and transonic flows, as we illustrated in our previous paper.[5] Here
we are specially interested in slow MGD flows under effects of strong pressure
difference, strong viscous effects along channel wall, and strong MGD force. In
this study, we select two viable cases with the following parameter combinations
which satisfy (1):

1. Re ∼ ε, Ma ∼ ε, Kn ∼ 1; Rb ∼ 1/ε2, Rσ ∼ ε; Ha ∼ 1;
2. Re ∼ 1, Ma ∼ ε1/2, Kn ∼ ε1/2; Rb ∼ 1/ε, Rσ ∼ ε; Ha ∼ 1;

Previously[5] we showed that the Reynolds and Mach numbers in these two
cases render a balance between the viscous effects and the pressure drop term.
We intend to set Rσ at least one order smaller than Rb to create a very small
induced magnetic field, but the magnetic interaction factor Q = RσRb is assumed
to be as strong as the terms for viscous force and pressure drop.

3 Asymptotic Solutions

Here the flow quantities are normalized with the averaged properties at the out-
let, and the X-, Y-coordinates are normalized with L, 2d correspondingly.[1,5]
With the two sets of parameters previously selected, the non-dimensional nor-
malized governing equations and boundary conditions are:[10]

ε
∂(ρu)
∂x

+
∂(ρv)
∂y

= 0, p = ρT = nT (2)

ε
∂

∂x
(ρuu +

p

γM2
a

) +
∂(ρvu)

∂y
=

1
Re

(ε2
4
3

∂2u

∂x2 +
∂2u

∂y2 +
1
3
ε

∂2v

∂x∂y
) + Q(K − u) (3)

ε
∂(ρuv)

∂x
+

∂

∂y
(ρv2 +

p

γM2
a

) =
1

Re
(ε2

∂2v

∂x2 +
4
3

∂2v

∂y2 + ε
∂2u

∂x∂y
) (4)

ερu∂T
∂x + ρv ∂T

∂y = εγ−1
γ u ∂p

∂x + γ−1
γ v ∂p

∂y + 1
RePr (ε2 ∂2T

∂x2 + ∂2T
∂y2 ) + (γ−1)M2

Re

[
2(∂u

∂x )2ε2

+2(∂v
∂y )2 + (ε ∂v

∂x + ∂u
∂y )2 − 2

3 (∂u
∂x ε + ∂v

∂y )2
]

+ QK(K − u)

(5)

u1(x, y)|y=±1/2 = ΘuKn(x)|y=±1/2
∂u1(x, y)

∂n
|y=±1/2 (6)

T |y=±1/2 − Tw = ΘT
2γ

Pr(γ + 1)
Kn(x)

(∂T

∂n

)
y=±1/2 (7)
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where the relations |v| < |u| and |Bx| << |B0| are used to simplify the source
terms in the momentum and energy equations, Θu = (2 − σu)/σu and ΘT =
(2 − σT )/σT . In (6) for the nondimensional velocity boundary condition, a tem-
perature gradient term is omitted because it is smaller than the velocity gradient
with the two specific groups of nondimensional parameters.

Further, we assume the following expansions u = u1 + εu2 + ..., v = v1 + εv2 +
..., p = p1 + εp2 + ..., ρ = ρ1 + ερ2 + ..., n = n1 + εn2 + ...., T = 1 + εT2. The
last one implies a quasi-isothermal assumption.[5] Specifically, from p(x, y) =
ρ(x, y)(1 + εT2(x, y)), we obtain p1 = ρ1 as the zero order relation and the
isothermal assumption proposed by Arkilic et al[1] is relaxed.

For the two sets of parameters, the Y-momentum equation simplifies as:

∂p1(x, y)
∂y

= 0 (8)

With the low magnetic Reynolds number assumption, the magnetic term is at
least one order smaller than the pressure term. From (8) we have p1(x, y) =
p1(x), which greatly simplifies the following derivations.

The simplified X-momentum equation is:[6]

∂2u1

∂y2 − H2
au1 = −H2

aK +
εRe

γM2
a

dp1

dx
(9)

The slip wall boundary conditions result in different solutions from the classical
Hartmann flow solutions. The final U-velocity solution is,

u1(x, y) = C1
εRe

γM2

dp1

dx
cosh(Hay) − εRe

H2
aγM2

dp1

dx
+ K (10)

where C1 = 1
H2

aC2
− KγM2

C2εRe(dp1/dx) , C2 = cosh(Ha

2 ) + ΘuKn(x) sinh(Ha

2 )Ha.

The zero-order solution for the V-velocity is obtained from the zero-order of
the continuity equation, v1 = 0, and the next order can be obtained from the
continuity equation, by using the relation ρ1 = p1:

∂(p1(x)u1(x, y))
∂x

+
∂(p1(x)v2(x, y))

∂y
= 0

and the result is:

v2(x, y) = A1 sinh(Hay)[− 1
2

d2p2
1

p1dx2 + A2
d2p1
p1dx2 ] + A3K

dp1
p1dx sinh(Hay)

+y εRe
2H2

aγM2
d2p2

p1dx2 − dp1
p1dxKy

(11)

where A1 = εRe
γM2H3

a cosh(Ha/2) , A2 = ΘuHaKno tanh(Ha/2), A3 = 1
Ha cosh(Ha/2) .

The temperature distribution can be obtained by the following simplified energy
equation and the temperature-jump wall boundary conditions:

1
RePr

∂2T2

∂y2 = −γ − 1
γ

u1
dp1

dx
− (γ − 1)M2

εRe

(
∂u1(x, y)

∂y

)2

− QK(K − U) (12)
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The solution for the temperature field is:

T2(x, y) = RePr

(
N3

H2
a

cosh(Hay) +
N5

4H2
a

cosh(2Hay) +
N6

2
y2 + N8

)
(13)

where N8 is determined by the temperature jump boundary condition:

N8 = Tw−1
εRePr − N3

H2
a

cosh
(

Ha

2

)
− N5

4H2
a

cosh(Ha) − N6
8 − ΘT

2γKn(x)
Pr(γ+1)

[ N3
Ha

sinh
(

Ha

2

)
+ N5

2Ha
sinh(Ha) + N6

2 ]

Moreover N1 = C1
εRe
γM2

dp1
dx , N2 = − εRe

H2
aγM2

dp1
dx + K, N3 = −γ−1

γ N1
dp1
dx + QKN1,

N4 = −γ−1
γ N2

dp1
dx − QK2 + QKN2, N5 = − (γ−1)M2

2εRe N2
1 H2

a , N6 = N4 − N5.
The density distribution is approximated as ρ(x, y) = p1(x)/(1 + εT2(x, y). It is
evident that the density is not constant at any specific station with x=constant.

The pressure distribution is crucial to the whole set of solution since p(x) and
its gradients dominate the coefficients for u(x, y), v(x, y) and T (x, y). Evaluating
the V-velocity along the upper channel wall results in the following equation:

D1
d2p2

1

dx2 + D2
d2p1

dx2 + D3K
dp1

dx
= 0 (14)

where D1 = −
(

tanh(Ha/2)
2H3

a
− 1

4H2
a

)
εRe
γM2 , D2 = tanh2(Ha/2)

H2
a

εRe
γM2 ΘuKno and D3 =

− 1
2 + tanh(Ha/2)

Ha
. The boundary conditions, p1(0) = P and p1(1) = 1 lead to the

following exact solutions to the nonlinear ordinary differential equation:

1. if K = 0, i.e., in the absence of the electric field effect:

p1(x) =
−D2 +

√
D2

2 + 4D1(D1P 2 + D2P + D4x)
2D1

(15)

where D4 = D1(1 − P 2) + D2(1 − P ).
2. if K > 0, i.e., with a uniform electric field:

2D1p1(x) + (
2D1G1

D3K
+ D2) ln[D3Kp1(x) − G1] = −xD3K + G2D3K (16)

The two boundary conditions exactly determine the coefficients G1 and G2
in the above solution: G2 = 2D1

D3K + (2D1G1
D2

3K2 + D2
D3K ) ln(D3K − G1) + 1 and

2D1(P − 1) − D3K = (2D1G1
D3K + D2) ln

(
D3K−G1

D3KP−G1

)
. Solving for G1 requires

an iterative method. However, for a given set of non-dimensional numbers,
G1 and G2 are completely determined.

4 Numerical Validations

We perform numerical computations to solve the low magnetic Reynolds number
MGD equations, and compare the results with the corresponding analytical re-
sults. The computations are performed with a well-tested general Navier-Stokes
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equation solver. The flow parameters are: ε = 0.06, L = 20 μm, p1 = 2 atm,
p2 = 1 atm, T1 = 300 K, σu = σT = 0.85, oxygen gas, γ = 1.4, Pr = 0.72,
μ = 1.919×10−5 sec.N/m2, wall temperature Tw = 300 K, Rb = 1/ε and Rσ = ε.
When the magnetic field is enabled, K is chosen to be 0.0, 0.5 or 0.9. Many of
these simulation parameters are the same as those in our previous paper[5] on a
neutral gas flow case.

Figures 2-3 correspond to a case with K = 0.5, the so-called “impedance
match” case for Hartmann flow.[7] Figures 2 shows comparisons of U-velocity
results, where the velocity-slip effects are evident along the wall while some dis-
crepancies are shown at the outlet boundary. Figure 3 shows comparisons of
numerical and analytical temperature results. In general, the temperature fields
have the same trends with large discrepancies. Figures 4-6 are based on four
different cases: 1) no magnetic and electric fields; 2) K = 0; 3) K = 0.5; and 4)
K = 0.9. We intend to show some trends by comparing the results from these
four cases. Nonuniform strength of sources terms are added to the X-momentum
and the energy equations for the last two cases. Figure 4 shows the pressure
distributions along the flow direction, with the linear pressure distributions sub-
tracted out. The lines without soiled symbols are analytical results, while those
with solid symbols represent the numerical simulation results for the last case.
Though numerical solutions are obtained for all cases, here we merely present one
case of K = 0.9 for clarity. It is clear that the linear pressure gradient assumed
in the Hartmann flow is not applicable here and it may result in inaccuracies if
used carelessly. For these four test cases, at any specific station pressure level
increases from case 1 to case 4, indicating that the extra magnetic field or electric
field results in increasingly stronger impedance to the flow field. For Cases 1 and
2, the numerical and analytical results are essentially the same; while for the last
two cases, the nonlinearities become more appreciable. Larger discrepancies are
found for cases 3 and 4 than those of cases 1 and 2. Figure 5 shows the different
U-velocity profiles for the four test cases at the middle station of the channel,
x/L = 0.5. The electric and magnetic fields are shown to strongly influence the
velocity profiles. Numerical and analytical results are close. For clarity, only the
numerical results of case 4 are shown. Figure 6 displays the profiles of velocity

Fig. 1. Illustration of the problem,
B = (0, B0, 0), E = (0, 0, Ez)
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slips along the upper walls for these four test cases. In general, the slip velocities
increase as gas flows downstream, and numerical results are found to agree with
analytical results. Essentially, for the last two cases, the gas flows are both Fanno
and Rayleigh flows due to the wall friction and Joule heating effects. Hence, with
stronger Joule heating effects in case 4, the subsonic flow increases its speed more
significantly towards the sonic speed than the that of case 3. Now, we will exam-
ine the discrepancies found on the results. 1) The numerical simulation results
are from the whole MGD equations, while the analytical solutions are based on
the simplified asymptotic equations. If we consider the truncation error O(ε) as
an upper limit, there is about 6% theoretical difference with ε = 0.06; 2) The
analytical results are actually based on the assumption that the channel is in the
middle of flow field without entrance effects; however, for numerical solutions,
the entrance effects are not avoidable due to the presence of significant friction
occurring at the inlet region. The uniform free stream needs to “adjust” to the
channel flow around the inlet entrance. The inlet and outlet boundary condi-
tion treatment is very subtle, and the outlet boundary condition treatment is
important since the gradients there are large. However, these end boundary ef-
fects are not included in the asymptotic solutions at all. Significant discrepancies
therefore show up in the V-Velocity and temperature profiles. If we use further
longer simulation case, most probably the results shall be better. 3) Betweens
the analytical and numerical solutions, the pressure fields already have some
discrepancies, and with the small length dimension, dp/dx and dp2/dx2 must
be huge quantities. For the temperature field, the dp/dx term dominates in the
coefficients, and (dp/dx)2 appears in the coefficients N5 and N6. Hence, it is not
surprising to see that the temperature profiles have poorer agreement than the
velocity and pressure results. 4) Analytically, here we only consider the leading
term for the electric and magnetic field effects but since they are coupled in the
source terms for the momentum and energy equations, some nonlinear effects
are possible. Figures 7 and 8 show the temperature profiles and the temper-
ature gradients along the upper wall boundary. As discussed earlier, it is very
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difficult to obtain accurate temperature profiles, especially when both electric
and magnetic fields are considered. Hence, these plots only show the analytical
results. For cases K = 0.5 and K = 0.9, there are Joule heating effects in the
energy equation. For K = 0.9, stronger Joule heating deposits more energy into
the field, resulting in a much higher increase in the temperature field. As shown
in Fig. 7, a portion of gas close to the wall is actually hotter than the wall.
Correspondingly, for the last case, heat flux is transferred into the wall instead
from the wall, as shown by Fig. 8. There, it also indicates one important effect
associated with an MGD gas flow inside a microchannel: along the wall, even
when the temperature change is very small, the normal temperature gradient
can be huge because of the narrow channel height.[5] Hence, this shows that the
heat transfer problem in microchannels is of practical importance. For Case 1
(K=0) without any electric and magnetic field effects, the temperature gradient
reaches an order of 1 × 106 K/m. By contrast, with magnetic and electric field
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effects, (K=0.9), the magnitude of temperature gradient becomes much larger
and variant, as shown in Fig.8.

5 Conclusion

We reported an analysis of rarefied MGD gas flows inside a 2D microchannel with
velocity-slip and temperature-jump boundary conditions assuming that the mag-
netic Reynolds number is low and the flow is quasi-isothermal. By carefully com-
paring different orders of magnitude for the pressure drop, viscous shear stress
at the channel wall, and the magnetic forces, two sets of parameters are selected
and used to simplify the MGD equations. This study yields asymptotic solutions
for velocity components, pressure and temperature. With stronger Joule heating
effects, the Rayleigh process effects become significant, and the average pressure,
velocity and temperature inside the channel increases. In general, the pressure
gradient along the flow direction is nonlinear inside the channel, and the velocity
and density distributions are nonuniform. Numerical solutions of the same for-
mulation are obtained to validate these asymptotic solutions; explanations are
provided for the discrepancies found between these solutions.

Future work may include other asymptotic solutions with different set of
parameters, and the corresponding solutions to three-dimensional or axially
symmetric flows.
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Abstract. Two-phase closed thermosyphons are widely-used in various energy 
intensive industries including chemical, transportation and other industries for 
their inherently high heat transfer efficiency, simple construction and reliable 
operational performance. However, the performance parameters of two-phase 
closed thermosyphons including the distribution of internal pressure, steam and 
liquid phase mass fractions, velocity and wall temperatures are obtained primar-
ily via experimental investigations. In this paper numerical methods are dis-
cussed and a two-fluid model is employed to describe the two-phase flow and 
heat transfer processes in a two-phase closed thermosyphon. The IPSA (Inter 
Phase Slip Algorithm) algorithm is employed to solve the coupled interactions 
of steam and liquid phases along the phase interface. Flow patterns and distribu-
tion of parameters under different conditions are predicted with numerical  
results agreeing well for the most part with experimental results. Thus, the nu-
merical method and solution procedures are claimed to be of practical utility 
and can in essence be used profitably to simulate flow and heat transfer phe-
nomena in thermosyphons and other types of heat pipes. 

Keywords: IPSA algorithm, two-phase flow, numerical simulation,  
thermosyphon. 

1   Introduction 

With the integration of electronic circuits and greatly increasing power capacity of 
power appliances, cooling methods with improved efficiency that can provide suitable 
thermal environments for electronic equipments are required, as electronic components 
are constantly being miniaturized in size. Today, electronic cooling technologies have 
become one of the key considerations in design and operation of electronic equipment 
[1-3]. State-of-the-art cooling technologies and developments related to high power 
electronic devices include a variety of processes ranging from phase-change cooling, 
forced convection cooling, natural convection cooling and micro heat exchanger cool-
ing [4]. Heat pipe electronic cooling is a kind of phase-change cooling technology 
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possessing several striking advantages, i.e., a large equivalent thermal conductance, 
excellent packaging flexibility, passive operation and high reliability [4]. 

Heat pipes including two-phase closed thermosyphons are a promising phase-
change electronic cooling technology for the various advantages offered including 
high heat transfer efficiency, simple construction and reliable operational perform-
ance. In order to analyze their running performance and to further design more effi-
cient and reliable two-phase closed thermosyphons, designers and researchers must 
possess a sound understanding of the internal two phase flow details and heat transfer 
characteristics in a thermosyphon, in  particular looking at the subcooled boiling 
process for the liquid including vapor release from the saturated liquid, vapor conden-
sation back to the liquid, upward flow of vapor and downward flow of condensed 
liquid, and different flow regimes varying according to internal flow characteristics as 
regulated by the operational conditions of thermosyphons. Since the inherent internal 
flow and heat transfer details are very complicated, the performance parameters of 
two-phase closed thermosyphons including the distribution of internal pressure, steam 
and liquid phase mass fractions, velocity and wall temperatures are currently primar-
ily obtained and even designed by exclusively devising appropriate experimental 
studies. 

Computational simulation procedures employing advanced engineering mathe-
matical and physical models via high performance computers have been playing more 
and more important roles in most engineering fields for the inherent advantages of-
fered including efficiency and accuracy, especially for cases where measurements are 
impractical. Specifically, regarding the numerical simulation of two phase flow phe-
nomena within heat pipes, state-of-the-art solutions initially analyze the internal va-
por-liquid two phase flow regimes, to subsequently identify flow characteristics for 
the different flow zones and finally appropriate mathematical and physical models are 
numerically solved. 

In this paper, a specific numerical method including a two-fluid model is employed 
to describe the two-phase flow and heat transfer processes in a two-phase closed 
thermosyphon. Widely used IPSA algorithm [5-7, 9] is employed to solve the coupled 
interaction of steam and liquid phases along the phase interface. Flow patterns and 
distribution of parameters under different conditions are predicted. Numerical results 
agree well with experimental results. 

2   Mathematical Model and Numerical Method  

To numerically simulate the complex heat transfer and two-phase flow phenomena in 
the thermosyphon configuration studied , a two-fluid model is employed. The two-
fluid model provides an effective means of representing the coexistence of laminar 
and turbulent flows. It considers the system to be composed of two fluids that coexist 
simultaneously in time and space but possess different volume fractions and can natu-
rally reflect the exchange of mass, momentum and energy between the two fluids and 
is well suited to describe the whole computational domain. 

When the two-fluid model is applied to predict the thermo-fluid details within the 
thermosyphon, the following assumptions are naturally made to achieve a workable 
numerical model: (1)The heat conduction resistance between the outer surface of the 
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pipe and the inner wall of the pipe is neglected;  (2)The thermodynamic properties of 
the working vapor and liquid are assumed to be constant ,i.e., vapor and liquid phases 
are saturated; (3)Vapor and liquid flows are laminar and incompressible; (4)The 
evaporation and condensation processes only occur at the vapor-liquid interface. 

The basic governing equations in two dimensions describing the heat transfer and 
flow of the vapor phase within the studied thermosyphon are provided in Eqs (1) to (4). 

Continuity equation for the vapor: 
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Energy equation for the vapor: 
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The basic governing equations in two dimensions describing the heat transfer and 
the flow of the liquid phase within the thermosyphon are given in Equations (5) to (8). 

Continuity equation for the liquid:   
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Momentum equations for the liquid:  
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Energy equation for the liquid: 

( ) ( )22222222 hvR
y

huR
x

ρρ
∂
∂+

∂
∂ Q

A

C
Jhhm

y

h
R

w

c
&&

2

2
21212

2
2

2

2
2 Pr

+−−−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

=
μ

 (8) 



668 Z. Ma, A. Turan, and S. Guo 

In equations (1) to (8), x and y are axial coordinate and diametrical coordinate,  re-
spectively; 1R  and 2R  are the volume fractions of vapor phase and liquid phase re-

spectively; 21m&  is the  interphase mass transfer rate between the vapor and liquid , 

(kg/(m3.s)).  1u  and 1v  are axial and radial velocity of the vapor phase respectively, 

(m/s) while 2u and 2v  denote the axial and radial velocity of the liquid, (m/s).  1μ and 

2μ  are the dynamic viscosity coefficients for the vapor and liquid (N.s/m2), while 1h  

and 2h  signify the specific enthalpies of the vapor and liquid, respectively (kJ/kg). 1ρ  

and 2ρ  are the densities of the vapor and liquid, (kg/m3).  21F  refers to the interphase 

friction between the vapor and liquid on the phase interface, (N). cJ  is heat transfer 

rate between the vapor and liquid (W/s) while Q& refers to the heat addition to the 

thermosyphon, (W/s) with  wC2  denoting the length of the wetted perimeter, (m). 

Finally, 2A is the contact area of the liquid phase with the pipe wall, (m2) and 1Pr  and 

2Pr  are the Prandtl numbers for the vapor and liquid phases respectively. 

During the numerical calculation, 1R  and 2R  must satisfy Eq. (9). 

0.121 =+ RR  (9) 

The mass transfer rate between the vapor and liquid phases, 21m& , can be described 

as given by Eq. (10).  

fg

c

h

J
m =21&  (10) 

where fgh  is the vaporization latent heat of the working liquid, in kJ/kg. 

Heat transfer rate between vapor phase and liquid phase, cJ ,  is defined as given by 

the sum of vapor phase heat transfer rate 1cJ  and the liquid phase heat transfer 

rate 2cJ .   

21 ccc JJJ +=  (11) 

( )sc hhRRcJ ,1122121 −= ρ  (12) 

( )sc hhRRcJ ,2222132 −= ρ  (13) 

Friction force between the vapor phase and the liquid phase, 21F , can be written as 

in Eq. (14). 

( )12221121 uuRRcF −= ρ  (14) 

Here 1c , 2c  and 3c  in Eq.(11)-Eq.(14) are different empirical constants, while sh ,1  

and sh ,2 are the specific enthalpy of the vapor phase and the liquid phase along the 

phase interface respectively. 
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A conservative finite-volume method with a staggered variable arrangement [7] is 
used to solve the nonlinear, coupled system of partial differential equations outlined 
in the previous section. The solution domain is subdivided into a large number of 
differential control volumes for the scalar variables and velocities. Nodal values of the 
scalar quantities are located at the geometric centres of their control volumes while 
the velocities are stored on the scalar control volume faces. Temporal derivatives are 
discretized by a fully implicit first order backward Euler scheme. Regarding the pre-
sent cases investigated, the equations arising from the discretization procedure can be 
assembled in the form of a quasi-tridiagonal matrix which is solved via an Alternating 
Direction Implicit (ADI) version of the direct Thomas-algorithm. The discretized 
equations are numerically coupled and the solution is henceforth obtained by employ-
ing the widely available iterative and segregated IPSA-solver methodology developed 
by Spalding [7]. At each time step, the volume fractions and the velocity fields are 
initially predicted using the previous time step pressure field, which are then corrected 
via the solution of a “pressure correction equation” derived from the overall mass 
conservation requirement. The values of pressure and velocities are subsequently 
updated to satisfy mass-conservation to yield converged values to be used as the ini-
tial field for recalculating the flow variables at the next level of iteration. The IPSA-
procedure is iteratively repeated until a pre-set convergence criterion is met. As an 
additional convergence enhancement, the Partial Elimination Algorithm (PEA) is also 
employed. Convergence of the method is generally declared as the sum of the abso-
lute residual norms falls below 0.001 for all the variables. 

3   Results and Discussions  

The thermosyphon studied in this paper employed water as the working media and the 
heat pipe was made of bronze [10]. The thermosyphon was 1.1 meters long and its 
inner diameter and wall thickness are 25mm and 2.5mm respectively. According to the 
relevant operational characteristics as validated upon performing appropriate meas-
urements, the lengths of evaporator and condenser sections, including the isothermal 
region are given as: the axial length of the evaporator section is about 510mm, while 
the axial length of condenser section is specified to be 420mm. Finally, the axial length 
of isothermal section is assumed to be 170mm. Heat addition density is specified as 
10~60kW/m2. 

Fig.1 indicates the average wall temperature in the evaporator section under differ-
ent heat addition densities. With the increase of heat addition density which signifies a 
higher total heat transfer quantity, the average wall temperature in evaporator section 
increases. From Fig.1, one can see the computational results agree well with the ex-
perimental results. The computational field also suggests a linear relationship regarding 
the variation of the average temperature in evaporator section versus the heat addition 
density. The experimental results which deviate somewhat from the predicted compu-
tational line are suggestive of external influences brought on by the particular experi-
mental procedures, the test setup and other operational and measurement inaccuracies. 
Such factors arise mainly from practical heat transfer considerations that could not be 
strictly prevented using the current experimental setup to provide for rigorous adia-
baticity in the adiabatic section of the working hardware. 
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Fig. 1. Wall temperature in the evaporator section varying with heat addition density 

 
Fig. 2. Heat transfer coefficient varying with heat addition density 
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Fig.2 indicates the heat transfer coefficient in evaporator section under different 
heat addition densities. With the increase of heat addition density signifying a higher 
total heat transfer quantity, the heat transfer coefficient in the evaporator section in-
creases. As different from Figure 1, the relationship between the heat transfer coeffi-
cient and the heat addition density is non-linear. The calculation results fit the ex-
perimental results better under the higher heat addition densities 
(40kW/m2<q<60kW/m2) as opposed to the lower heat values 
(10kW/m2<q<38kW/m2). Within the experimental range of heat addition densities, 
the heat transfer coefficient for the evaporator section of the thermosyphon could 
reach as high as 4.6kW/m2.K. 

Using the particular numerical methodologies adopted here, one can gain addi-
tional relevant information for the heat transfer and two-phase flow details in the 
thermosyphon which generally are not accessible by experimental means. Fig.3 de-
picts the axial velocity distribution of the vapor phase under different heat addition 
densities.  

With the increase of heat addition density, the axial velocity of the vapor in-
creases. For a certain heat addition density value, the axial velocity increases gradu-
ally from zero in the evaporator section while it decreases gradually to zero in the 
condenser section and reaches a maximum value in the adiabatic section. The axial 
velocity of vapor could reach as high as 10m/s when the heat addition density is 
given as 1.97kW, a result predicted to cause substantial flow induced vibration and 
turbulence. 

 
Fig. 3. Axial velocity distribution of vapor phase varying with heat addition density 
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Fig. 4. Radial velocity distribution of vapor phase in evaporator section varying with heat addi-
tion density 

Fig.4 indicates the radial velocity distribution for the vapor phase in the evaporator 
section under different heat addition densities. In this particular set of circumstances, 
the radial velocity of the vapor from the center initially increases from zero and there 
exists a maximum radial velocity. The radial velocity values for the vapor increase 
with the increase of the heat addition density. From Figures 3 and 4, one can draw the 
conclusion that axial velocity of vapor is considerably larger than the radial component 
; however, since the radial velocity displays a larger variation vis a vis the axial, here it 
is shown conclusively that the flow field details in a typical thermosyphon are indeed 
very complex and numerical simulations henceforth provides for more detailed design 
and development information. 

4   Conclusions 

In this paper models to numerically simulate the heat transfer and two-phase flow 
details within a certain thermosyphon design are presented. Based on the widely em-
ployed SIMPLE and IPSA algorithms, successful computations highlighting the in-
herent operational characteristics of a typical design are carried out. Specifically, 
relevant flow and heat transfer details are revealed as influenced by the external op-
erational working conditions. Furthermore, the celebrated IPSA algorithm as em-
ployed in the current effort strictly indicates that it can profitably and effectively be 
used to solve two phase flow problems including phase change. 
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The predicted results agree well on the whole regarding the influence of opera-
tional parameters on the performance of the particular thermosyphon geometry. The 
linear relationship between the average temperature in the evaporator section and the 
heat addition density is conclusively borne out while the relationship involving the 
heat transfer coefficient and the heat addition density turns out to be highly non-
linear. Within the experimental range of heat addition densities, the heat transfer coef-
ficient for the evaporator section of the thermosyphon could reach as high as 
4.6kW/m2.K. The axial velocity of the vapor increases with the increase of heat addi-
tion density. The axial velocity of the vapor is substantially larger than the radial 
component; however, since the radial velocity variation is shown to be substantial vis 
a vis the axial, here it is shown conclusively the flow details in a typical thermosy-
phon are indeed extremely complex and hence appropriate numerical simulations 
provide vital design and development information seriously lacking for innovative 
hardware design exercises. 

Since only a limited number of numerical simulation studies on the internal vapor-
liquid two-phase flow and heat transfer details in heat pipes and thermosyphons have 
been published [11-15], the numerical methodologies employed and successfully used 
in this paper can be used as a basis for further studies and hopefully in designing 
reliable hardware development correlations. 
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Abstract. Both the particle based Direct Simulation Monte Carlo (DSMC) 
method and a compressible Navier-Stokes based continuum method are used to 
investigate the flow inside micronozzles and to predict the performance of such 
devices. For the Navier-Stokes approach, both slip and no-slip boundary condi-
tions are applied. Moreover, the two methods have been coupled to be used  
together in a hybrid particle-continuum approach: the continuum domain was 
then investigated by solving the Navier-Stokes equations with slip wall bound-
ary condition, whereas the region of rarefied regime was studied by DSMC. 
The section where the domain was split was shown to have a great influence in 
the prediction of the nozzle performance. 

Keywords: Direct Simulation Monte Carlo, Coupled Method, Rarefied Gas 
Flow, Slip Regime, Micronozzle. 

1   Introduction 

Various trends in the spacecraft industry are driving the development of so-called  
micro-satellites (which have a typical volume of 1 dm3). For missions that require a sat-
ellite propulsion system, the existing propulsion systems are too large and too heavy. To 
address this problem, in The Netherlands a large multidisciplinary research program is 
being carried out [1] aimed at the development of micro-propulsion systems with a typi-
cal thrust in the order of mN. Such propulsion systems can be used to maintain or adjust 
the orbit of space micro-satellites or to provide long duration low thrust acceleration. 

One of the simplest forms of micropropulsion is the cold gas thruster: the gas, 
pressurized in a microtank, is accelerated and expanded through a convergent-
divergent nozzle. The typical dimensions of the throat of the nozzles are below one 
millimeter. Due to these small characteristic dimensions, there are some important 
differences in the gas flow field in such a micro-nozzle, compared to conventional 
large scale nozzles. The increase of the surface-to-volume ratio and the reduction of 
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the Reynolds number lead to the presence of large viscous losses and to the formation 
of thicker boundary layers (relative to the geometrical dimensions), with a consequent 
lower efficiency of such systems. Also the effect of surface roughness, with a charac-
teristic length comparable to the throat diameter, cannot be neglected. These aspects 
of micro-thruster flow have been investigated in [2].  

Another important aspect of micro-nozzle gas flow, especially when going even 
further down in thrust to the μN range, is the effect of rarefaction. At these low thrusts 
and small nozzle dimensions, the throat diameter and gas flow boundary layer thick-
ness become comparable to mean free path of the molecules and we enter a different 
gas flow regime. An important parameter in this respect is the Knudsen number,  
defined as the ratio between the mean free path of the gas molecules λ, and a charac-
teristic length L of the flow: 

Kn
L

λ=  (1) 

When Kn > 10, molecule-molecule interactions are negligible compared to mole-
cule-wall interactions, and the flow is in the so-called free molecular regime. This  
regime can be accurately and efficiently modeled through free-flight (ballistic) mo-
lecular models. When Kn < 0.1, the flow is dominated by intermolecular interactions 
and can be described by continuum equations, such as the Navier-Stokes equations. 
However, for 0.1 > Kn > 0.01 important deviations from the Navier-Stokes solutions 
occur in the vicinity of solid walls. This is the so-called slip flow regime, requiring 
the use of modified boundary conditions for momentum and energy transfer at the 
walls. For 10 > Kn > 0.1, molecule-molecule and molecule-wall interactions are 
equally important, and the flow is in the so-called transition regime. In this regime, 
neither continuum models nor free molecular models can be applied. 

When operated in space, the gas flow in micro-nozzles experiences all regimes 
mentioned above, from the continuum regime (in the gas chamber and the convergent 
part of the nozzle), to slip flow and transition regimes (in the divergent part of the 
nozzle), up to the free molecular regime (far from the exit of the nozzle). The need to 
accurately and consistently model all these regimes is a challenge from a computa-
tional point of view. 

Some attempts have been made to use Navier-Stokes equations with slip wall 
boundary conditions, for example in [3] [4] [5] [6]. However, such an approach is not 
accurate when the Knudsen number exceeds 0.1, see e.g. [16] [17]. In the transition 
regime, the most accurate and flexible method to use is Direct Simulation Monte 
Carlo (DSMC) [22]. It is more efficient than deterministic molecular models such as 
Molecular Dynamics (MD), and more flexible and generally applicable than methods 
based on direct solution of the Boltzmann equations. Full DSMC simulations, for dif-
ferent micronozzle configurations were performed in [7] [8] [9] [10]. 

In principle, DSMC is valid for all flow regimes. However, in order for its solu-
tions to be accurate the requirements on number of modeled particles, grid size and 
time step size increase severely with decreasing Knudsen number. As a result, the 
computational expenses of a proper DSMC simulation scale with Kn-4. In practice it is 
therefore not possible to use DSMC in all flow regions, and the application of DSMC 
to an entire micro-nozzle flow cannot be expected to be accurate in the low Kn  
number zones.  
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In order to overcome this problem, a hybrid Navier-Stokes / DSMC model can be 
considered. The method applies the continuum approach in low Kn regions, while 
DSMC is applied in regions where rarefaction effects need to be considered. Some of 
these hybrid models were proposed in [11] [12] [13] [14] [15]. 

In the present paper, the performance of a μN thrust micro-nozzle is evaluated 
through different numerical models, i.e. Navier-Stokes equations with slip flow 
boundary conditions, full DSMC, and coupled Navier-Stokes / DSMC. After a brief 
introduction on the studied problem (Section 2), the coupled hybrid approach will be 
explained in the Section 3, while the numerical results will be shown in Section 4. 
Conclusions and some remarks will be addressed in Section 5. 

2   Description of the Problem 

The studied nozzle is shown in Fig. 1. This geometry is typical for micronozzle 
thrusters as used in practice [1] [2]. Two different regions can be distinguished: a 
convergent part, where the flow is accelerated from the initial subsonic velocity to the 
sonic condition (which is reached at the throat), and a divergent part, where the flow 
expands to the outlet in a supersonic regime. 

The analyzed configuration has both convergent and divergent angles equal to 20°, 
an inlet area equal to 7.27 times the throat area, and an outflow area of 23.23 times 
the throat area. The throat radius is 3.56 μm, while a sharp angle is considered to con-
nect the convergent and the divergent. In the inlet, nitrogen gas is introduced at a 
fixed pressure and temperature of respectively P0=3.5 bar and T0=300 K. A vacuum 
condition is assumed outside. The walls are modeled as isothermal at T0=300 K. Un-
der these conditions, the ideal thrust Tideal computed from the 1D isentropic flow  
theory [18], is about 25 μN. 

 
Fig. 1. The nozzle geometry configuration considered in the present study, with the geometric 
parameters of interest 

3   Numerical Approach 

3.1   The CFD Solver 

All the CFD simulations presented in this paper have been obtained with the general 
purpose code Fluent version 6.3 [19]. The studied nozzle has a conical shape and 
therefore a 2D-axisymmetric flow is considered. The grid, generated with Gambit 
[20], consists of quadrilateral elements, with 100 grid cells in the radial direction and 
about 600 grid cells in the axial direction. The nitrogen gas is treated as an ideal gas, 
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with temperature dependent viscosity and thermal conductivity computed from kinetic 
theory. As an initial guess for the solution, the pressure Pe at the outflow was com-
puted from the 1D isentropic flow theory [18]. 

The solved equations include the continuity equation, the momentum balance (Na-
vier Stokes) equations in compressible form, and the thermal energy equation. The 
equations were discretized in space using a second order upwind scheme, and solved 
using Fluent’s explicit coupled pressure based solver. This choice was done in order 
to enable the option to impose a slip velocity boundary condition at the wall, accord-
ing to the formulas by Maxwell and von Smoluchowski [21], approximated by the 
solver as explained in [19]. 

3.2   Direct Simulation Monte Carlo 

The DSMC method, as developed originally by G.A. Bird, is comprehensively de-
scribed in [22]. This method is not based on solving partial differential equation, such 
as the Navier-Stokes equations, but describes the state of the system by computing the 
positions and velocities of computational particles, each of which represents an as-
signed number of particles in the real flow. The computational domain is divided into 
grid cells, through which the particles can move. All the properties of the particles are 
stored and updated each time step during the calculation. First, the particles are 
moved as if they did not interact, and any particles that reach a boundary are proc-
essed according to the appropriate boundary condition. Second, after all the particles 
have moved, a certain number of particles from each grid cell are randomly selected 
for collisions, according to one of the collisions models [22]. This decoupling be-
tween the translational movement of the particles and their collisions is accurate only 
when the time step is a fraction of the mean collision time. On the other hand, the 
random selection of the particles as possible candidates to be collision partners leads 
to the restriction that their mean separation needs to be a fraction of the mean free 
path. This means that the cell size should be small enough in order to avoid that en-
ergy or momentum are transported over long distances in an unrealistically short time. 
Finally, the number of particles per cell needs to be high enough to avoid repeated 
collisions between the same particles and make the collision process statistically accu-
rate. All these constraints make DSMC computationally expensive. 

The DSMC solver used in the present study has been implemented in the 3-
dimensional general purpose DSMC code X-Stream [24] and validated for a wide 
range of problems [25], amongst which the case of a low pressure micronozzle as 
studied in [9]. In all the simulations presented in this paper, a Variable Soft Sphere 
(VSS) model has been used, with the corresponding parameter set from the literature 
[22]. For the interaction between the nitrogen particles and the isothermal silicon 
walls a thermal accommodation coefficient of 0.5 was assumed, according to the for-
mula provided in [23]. In order to model axial-symmetry, a radial weighting factor 
has been introduced, as described in [22] [25], such that a molecule located far from 
the axis represents more real molecules than one near the axis. 
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3.3   The Hybrid CFD / DSMC Approach 

Figure 2 shows a first comparison between the solutions obtained from a full CFD 
simulation, both with a partial slip (wall accommodation coefficient 0.5) and a no-slip 
wall boundary condition, and the solutions from full DSMC. When assuming partial 
slip at the wall, the CFD solution matches the DSMC solution much better, particu-
larly in the divergent. However, it cannot be expected that the full DSMC solution  
accurately represents the ‘true’ flow physics, since the DSMC computational re-
quirements, as explained above, could not be satisfied in the whole domain, in par-
ticular in the convergent part of the nozzle where the pressure is high and the  
Knudsen number is low. 

Because of the above, we will develop a hybrid approach, applying CFD with  
partial slip in the upstream (convergent) part of the domain, and DSMC in the down-
stream (divergent) part of the domain. 

 

Fig. 2. Comparison of Mach number contours from the solution obtained by full CFD (half up-
per picture) and full DSMC (half bottom picture). On the left, a no-slip velocity was imposed at 
the wall for the CFD problem, while on the right a slip flow boundary condition with accomo-
dation coefficient 0.5 was applied. 

In the present paper a single step coupling approach between CFD and DSMC has 
been conducted. First, a CFD simulation is performed for the entire nozzle. From this 
an estimation of the local Knudsen number throughout the nozzle is made, see Fig. 3. 
Four different definitions for Kn have been considered, depending on the definition of 
the characteristic length L in (1). 

If L is taken to be the throat diameter Dt, (1) becomes: 

t

Kn
D

λ=  (2) 

To account for local variations in characteristic length scales of the flow, a more 
accurate definition of Kn can be obtained using the gradient length scale of a certain 
physical quantity: 

QKn Q
Q

λ= ∇  (3) 
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Figure 3 shows Knudsen numbers based on (a) the throat diameter, and gradient 
length scales of (b) pressure, (c) density and (d) temperature. When the maximum of 
the four computed values of Kn exceeds a value of approximately 0.1, the continuum 
CFD approach is considered to be inaccurate. From Fig. 3 it is clear that this is the 
case for (a large part of) the divergent. 

Therefore, the computational domain was subsequently split between a CFD part 
upstream, and a DSMC part downstream of a certain vertical division plane. The pre-
dicted solution from CFD at this division plane was then applied as inlet boundary 
condition for a DSMC solution downstream from the division plane. We considered 
division planes located at the throat, and 6, 12, 18 and 24 μm downstream the throat; 
these sections will be referred, respectively, as Th, L1, L2, L3 and L4. 

 

Fig. 3. Knudsen number contours evaluated by (2) (upper left picture), and (3) with pressure 
(upper right picture), density (bottom left picture) and temperature (bottom right picture) as 
characteristic quantity, from the solution obtained by full CFD with no slip wall boundary  
condition 

4   Results 

To compare the full CFD, full DSMC and hybrid CFD/DSMC approaches for model-
ing the gas flow in the micro nozzle, we will focus on the predicted nozzle perform-
ance. This performance is evaluated through two parameters. The first is defined as: 

real

ideal

T

T
η =  (4) 

where the ideal thrust Tideal is given by the 1D isentropic flow theory, and the real 
thrust Treal is computed from 

( )real e e a

outlet
area

T m V p p dA⎡ ⎤= + −⎣ ⎦∫  (5) 
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The subscript e refers to the conditions at the exit section of the nozzle, while the 
subscript a refers to the ambient conditions outside the nozzle. 

The second performance parameter is the specific impulse, defined as: 

sp
T

I
m g

=  (6) 

which describes the change in momentum of the satellite per unit of propellant weight 
(on earth), so that the higher it is, the less propellant is needed to gain a certain 
amount of momentum. 

The nozzle performances as computed from the different modeling approaches 
have been listed in Table 1. 

Table 1. Nozzle performance evaluated by the solutions from different numerical approaches 

Configuration T, mN η Isp, s 
full CFD, no-slip wall 1.96×10-2 84.52 68.44 

full CFD, partial slip wall 2.06×10-2 88.78 68.98 
full DSMC 2.00×10-2 86.26 66.71 

CFD slip, DSMC from Th 1.99×10-2 86.04 66.85 
CFD slip, DSMC from L1 2.04×10-2 87.83 68.02 
CFD slip, DSMC from L2 2.05×10-2 88.29 68.37 
CFD slip, DSMC from L3 2.06×10-2 88.97 68.90 
CFD slip, DSMC from L4 2.07×10-2 89.33 69.17 

When a slip wall boundary condition is applied, the full CFD approach predicts a 
higher performance than the full DSMC approach both in terms of thrust and specific 
impulse. The presence of slip velocity allows the flow to reach higher velocities at the 
outflow. In general, as can be noted from Fig. 2, the use of slip flow boundary condi-
tions leads to a decrease of the subsonic part of the boundary layer in the divergent, 
and to an overall decrease of the thickness of that boundary layer. This leads to a lar-
ger expansion of the flow, with a consequent higher velocity and a lower pressure in 
the outlet. This can be observed through the investigation of the exit profiles for  
velocity and pressure, as shown in Fig. 5. 

On the other hand, a full CFD simulation with no-slip wall boundary condition 
gives an under-prediction of the nozzle thrust compared to full DSMC. This lower 
thrust can be related to the presence of a thicker subsonic boundary layer and to a 
consequent lower mass flow and no velocity close to the wall. In contrast with the un-
derprediction of the thrust, the full CFD simulation with no-slip boundary condition 
leads to an overprediction of the specific impulse compared to the full DSMC solu-
tion, because the mass flow in this case is lower than the one observed when a partial 
slip wall is modeled. In general, both the full CFD and the hybrid CFD/DSMC solu-
tions led to a higher specific impulse than the full DSMC solution. 

From Table 1 it can be seen that the thrusts and specific impulses predicted by the 
hybrid CFD/DSMC modeling approach, depend on the location of the vertical divi-
sion plane between the CFD and DSMC regions. When the division plane is located at 
the throat, the thrust and specific impulse predicted by the hybrid solution are similar 
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to those of a full DSMC solution. When the division plane is located far downstream 
in the divergent, the thrust and specific impulse predicted by the hybrid approach are 
similar to that of a full CFD solution. This because a DSMC solution started too far 
downstream from the throat does not properly take into account the whole domain 
where rarefied effects are present and is not able to simulate the full expansion of the 
flow, with a consequent too high exit pressure (5). The solution from the hybrid ap-
proach, both in terms of efficiency and of the flow field inside the nozzle, approaches 
that of a full DSMC approach when most of the divergent is solved with DSMC. This 
is also visible in Fig. 4. 

 

Fig. 4. Comparison of Mach number contours from the solution obtained by full CFD and  
partial slip wall velocity (half upper picture) and DSMC with inlet boundary conditions ex-
trapolated from the CFD solution (half bottom picture), at the throat (left), section L2 (right) 

 

Fig. 5. Profiles for the exit velocity (left) and exit pressure (right) obtained by CFD, DSMC and 
coupled CFD/DSMC 

5   Conclusions 

A fixed micronozzle configuration allowing a thrust of about 25 μN has been studied 
through CFD, DSMC and coupled CFD/DSMC simulations. The continuum model, 
both with no-slip and slip flow at the walls, showed different results from DSMC for 
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the flow field inside the nozzle in the divergent, especially close to the outflow, where 
strong rarefied effects start to appear. In general, a better agreement between DSMC 
and CFD was observed when a slip wall boundary condition was implemented. From 
this point of view, a fully CFD simulation with slip wall could be considered accurate 
enough to predict the flow field inside a 25 μN thruster. 

On the other hand, although the outflow velocity in the expansion core of the noz-
zle was close to the solution from DSMC, a full CFD solution with slip boundary 
condition was found to overpredict the thrust compared to a DSMC solution. It was 
found that this is due to the fact that a CFD solution – even with slip wall boundary 
conditions – overpredicts the pressure field in the outflow region, which enhances the 
nozzle performance, both in terms of efficiency and of specific impulse. A static hy-
brid CFD / DSMC approach confirmed the importance of the pressure term in the cal-
culation of the thrust of the nozzle, and showed that a great part of the divergent needs 
to be modeled by DSMC to allow the prediction of a full expansion. In this case, the 
final solution strongly depends on the division plane downstream from which DSMC 
is applied, and approaches to the full DSMC solution when a larger part of the diver-
gent is solved through DSMC. 

Since the present, static and one-way, coupling between CFD and DSMC proved to 
be rather sensitive to the exact location of the division plane between the two compu-
tational regions, there is a need to develop an adaptive, two-way coupling approach, 
in which the results from the DSMC solution in the downstream part of the nozzle are 
used to update the boundary conditions for the CFD solution in the upstream part, and 
an adaptive overlap region is applied to ensure that the CFD and DSMC solutions are 
consistent with each other. We believe that such an approach can be realized using the 
coupling between a general purpose CFD code such as Fluent, and a DSMC code 
such as X-Stream. It should be pointed that numerical issues in the interface between 
the two methods could also play a role. Since the difference in the performance as 
predicted by the various approaches is less than a few percents, extra cases with even 
lower thrusts and nozzle dimensions should be studied to conclusively determine the 
merits of the various simulation approaches for micro nozzle gas flow. This is object 
of current investigation. 
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Abstract. Modeling of multiphase flow and transport in highly hetero-
geneous porous media must capture a broad range of coupled spatial and
temporal scales. Recently, a hierarchical approach dubbed the Multilevel
Multiscale Mimetic (M3) method, was developed to simulate two-phase
flow in porous media. The M3 method is locally mass conserving at all
levels in its hierarchy, it supports unstructured polygonal grids and full
tensor permeabilities, and it can achieve large coarsening factors. In this
work we consider infiltration of water into a two-dimensional layered
medium. The grid is aligned with the layers but not the coordinate axes.
We demonstrate that with an efficient temporal updating strategy for
the coarsening parameters, fine-scale accuracy of prominent features in
the flow is maintained by the M3 method.

Keywords: multiscale, hierarchical, two-phase flow, heterogeneous
porous media, infiltration.

1 Introduction

High fidelity simulations of multiphase flow and transport in porous media play
a key role in driving scientific advances in a broad range of complex multiscale
applications, including carbon sequestration, aquifer assessment and protection,
and nuclear waste disposal. However, there are fundamental mathematical and
computational hurdles that arise from the wide range of strongly coupled spatial
and temporal scales. For example, the permeability of porous media is highly
heterogeneous and may span several orders of magnitude, from nearly imperme-
able barriers to high-permeable flow channels. To address this challenge we have
developed the new Multilevel Multiscale Mimetic (M3) method [1].

The M3 method builds recursively a problem-dependent multilevel hierarchy
of models. Each model preserves important physical properties of the continuum
model, such as local mass conservation. In contrast to two-level methods, such
as the multiscale finite element methods [2,3,4], the multiscale mortar finite
element method [5] and the Multiscale Finite Volume (MSFV) method [6], the
multilevel hierarchy facilitates large total coarsening factors, of 100 or more in
each coordinate direction.
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Building and maintaining the hierarchy of models incurs only a moderate com-
putational overhead especially for a small coarsening factor on each level. The
M3 method supports unstructured polygonal meshes, and is readily extended
to unstructured polyhedral meshes. In addition, it can handle full permeability
tensors and accommodates general coarsening strategies to capture accurately
the complexity of the heterogeneous subsurface environment.

The M3 method [1] merges two computational strategies to balance accuracy
and efficiency in two-phase flow simulations. The first strategy is the algebraic
coarsening developed by Y. Kuznetsov for single phase flows that reduces the
degrees of freedom inside coarse-grid cells [7]. The second strategy is a novel
approach to the conservative coarsening of velocities on the edges of a coarse-
grid cell. This combination ensures that the coarse-scale system has the same
sparsity structure as the fine-scale system, and with recursion leads to a multi-
level algorithm. Due to its algebraic nature, the method can be adapted to other
discretizations of the same algebraic form, such as the mixed finite element and
finite volume methods.

In this work we demonstrate the capabilities of the M3 method for infiltration
into a stratified porous medium that is composed of sloping and non-uniform lay-
ers and strongly anisotropic inclusions. The majority of two-level methods solve
localized fine-scale flow problems to capture the influence of fine-scale structures.
Formulation of local problems with appropriate localized sources and boundary
conditions can be problematic, particularly for anisotropic media [8]. The mul-
tiscale mortar finite element method [5] offers a more robust approach for this
case, as the accuracy can be controlled via refinement of the mortar space. The
M3 method uses a different mechanism for controlling the accuracy via efficient
incorporation of global information into the hierarchy of models. Numerical ex-
periments demonstrate that the M3 method can maintain fine-scale solution
accuracy, even with large coarsening factors, while significantly reducing the
overall simulation time.

The paper outline is as follows. In Section 2, we present the mathematical
model of the infiltration problem. In Section 3, we describe essential features of
the M3 method. In Section 4, we illustrate the effectiveness of the method with
the simulation of water infiltration into a layered anisotropic porous medium.

2 Mathematical Model of a Two-Phase Flow

We consider the flow of two immiscible phases, non-wetting (e.g., air, denoted
a) and wetting (e.g., water, denoted w), in a two-dimensional domain subject
to gravity (see, e.g., [9,10]). The effects of compressibility and capillary pressure
are neglected. Conservation of each phase implies,

φ
∂Sj

∂t
+ ∇ · uj = −qj , j = a, w , (1)

where Sj and uj are the saturation and the velocity of phase j, respectively, and
the porosity, φ, is assumed constant. The Darcy velocity of phase j is given by,

uj = −K · λj(∇pj − ρjg) , (2)
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where K is the absolute permeability tensor; λj = krj/μj is the relative mobility
of phase j, with krj the relative permeability and μj the viscosity; ρj is the
density and g is the gravitational acceleration vector.

Assuming that the two phases fill the pore volume we have the constraint
Sa +Sw = 1. This may be combined with the sum over j of (1) to yield the bulk
fluid conservation law,

∇ · u = qa + qw . (3)
Here the total or bulk fluid velocity, u = ua + uw, may be written in the form,

u = −K(λ∇p − (λaρa + λwρw)g), (4)

where λ = λw + λa is the total mobility, and neglecting capillary pressure we
have set p = pa = pw to be the reference pressure. Thus, the two-phase system
that we model is comprised of an elliptic equation for the pressure, obtained by
substitution of (4) into (3), and a hyperbolic equation for the water saturation,
S = Sw, given by (1) with j = w. The initial and boundary conditions used to
close the model are given in Section 4.

3 Multiscale IMPES Method

3.1 Time Integration and Fine-Scale Discretization

We use the IMPES (IMplicit Pressure and Explicit Saturation) time integration
method. First, the pressure equation is solved to define the velocity field. Second,
the hyperbolic equation for the water saturation is integrated explicitly using the
single-point upwind finite volume method [11].

To discretize the pressure we consider a polygonal partition of the domain Ω,
denoted Ωh, that is the union of the polygonal cells ei, i = 1, . . . , N . We apply
the Mimetic Finite Difference (MFD) method [12] to the first-order form of the
pressure equation, given by (4) and (3). For each cell ei, we define one pressure
unknown, pi, which represents the integral average of p. Similarly, for each edge
�j , we define one unknown, uj, which represents the average normal flux u · n
(a scalar) through this edge. The MFD discretization of the pressure equation
reads [

M(Sn) BT

B 0

] [
un

pn

]
=

[
qn

g

qn

]
. (5)

Here n denotes the time step, M(Sn) is the mass matrix computed using the
current saturation and B is the discrete divergence operator. The source qn

g cap-
tures Dirichlet data and the gravitational term in (4), and qn captures Neumann
data and the source/sink term in (3).

3.2 Two-level Method for the Pressure Equation

We begin by describing a two-level coarsening method, a building block for the
multilevel method. Let N0 = N , N1 ≤ cN0, with 0 < c < 1, and

ΩH =
N1⋃
I=1

EI , EI =
⋃

i∈F(EI)

ei,
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Fig. 1. Schematic of the two steps of the two-level upscaling method for a 2×2 square
macro-cell. The cell-centered pressure unknowns are represented by circles, and the
velocity unknowns are represented by arrows. The first step is an equivalent reduction,
while the second step is approximate.

where F(EI) is a set of indices of fine-grid cells forming the macro-cell EI .
We assume that the coarse-grid partition ΩH is non-overlapping and conformal.
Note that each macro-edge of a macro-cell EI is not necessarily a straight line,
as it is simply a collection of fine-grid edges.

The two-level method consists of two steps, which are illustrated in Fig. 1. For
simplicity, we omit the time superscript n, and consider aggregation of four cells
into a single macro-cell. First, for each macro-cell, we eliminate all internal flux
unknowns, and replace all internal pressure unknowns with a single pressure [7].
By construction, this single pressure on each macro-cell is the volume-weighted
average of the corresponding fine-grid pressures:

PI =

∑
i∈F(EI)

pi|ei|∑
i∈F(EI)

|ei|
.

This first step is an equivalent modification of the original system (see [1] for
details). The unknowns in the resulting system are shown in Fig. 1(middle).

The second step is to perform a conservative flux coarsening procedure that
leaves one flux unknown UJ per macro-edge LJ . Mass conservation dictates that
the coarse flux on a macro-edge must be a weighted sum of the corresponding
fine-grid fluxes. This coarsening makes the final structure of the reduced system,
shown in Fig. 1(right), identical to the original system. For each fine-grid flux
uj we introduce the coarsening parameter αj , as follows

uj = αjUJ . (6)

This parameter is related to the first moment of the flux, and plays an impor-
tant role in the M3 algorithm. It is used to define the interpolation of the flux,
and it influences the coarse-scale pressure model. Suppose that the problem (5)
is solved exactly. Then we can calculate coarse-grid fluxes UJ and derive coars-
ening parameters αj . Such parameters will make the upscaling procedure exact.
However, these parameters are functions of time, and accurately recomputing
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them at each time step would be equivalent in cost to the fine-scale IMPES for-
mulation. In the M3 method these parameters are derived from an approximate
solution of the fine-scale problem (5) and we recompute these parameters only
when it is necessary to maintain accuracy (see Section 3.3).

3.3 Multilevel Hierarchy of Pressure Models

The two-level coarsening method results in coarse-grid equations that have the
same structure as the fine-grid equations. Hence a multilevel algorithm fol-
lows naturally by applying this process recursively, and generates a hierarchy of
discrete upscaled pressure models. To maintain the accuracy of this hierarchy
without compromising the overall performance of the method, efficient update
strategies are required. We have implemented the local and global update strate-
gies described below.

Local Update Strategy. Here, the M3 method is focused on the total mobility.
The total mobility changes significantly in the vicinity of a sharp water front.
The M3 method updates cell-based matrices (over the whole hierarchy) that are
affected by these changes. More precisely, we use the criterion proposed in [13],

1
1 + ελ

≤ λn

λn−1 ≤ 1 + ελ,

where ελ is the user defined threshold, usually 0.1. If this condition is violated,
the cell-based matrices are updated.

Global Update Strategy. In simulations of flow through porous media with
long correlation lengths, or strong anisotropy, local updates of the hierarchy are
not sufficient to maintain the accuracy. In these cases, the elliptic nature of the
pressure equation is accentuated and global information is needed. Therefore, we
recalculate flux coarsening parameters during the simulation. These updates are
equi-distributed in time approximately every few hundred time steps. The impact
of these updates on the accuracy of the simulation is discussed in Section 4.

To maintain the overall performance of the simulation, an efficient global ap-
proximation strategy for the α’s is needed. In [1] we proposed to leverage the
strength of a robust variational multigrid method for this purpose. The saddle-
point problem (5) is hybridized and reduces to a symmetric positive-definite
problem for the Lagrange multipliers. We use preconditioned conjugate gradi-
ent iterations with Ruge-Stüben algebraic multigrid [14] as the preconditioner,
denoted PCG(AMG), to solve approximately for the Lagrange multipliers. The
convergence tolerance εr is usually set to 10−2 − 10−3, and is reached in only
a few (3-10) iterations. This approach captures critical changes in global flow
behavior. In our original study [1] we demonstrated its effectiveness for highly
heterogeneous porous media with long correlation lengths. Here we focus on the
challenging problem of infiltration into a strongly anisotropic medium.
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4 Numerical Experiments

In our numerical experiments we model the infiltration of water into an un-
saturated two-dimensional porous medium, shown schematically in Fig. 2(a).
Initially the pore space is filled with air and a small residual water saturation.
The medium is composed of four sloping layers and two elongated inclusions,
and is partly motivated by the study in [15]. The interfaces of these features are
not aligned with the coordinate axes. A structured orthogonal mesh is mapped
onto these features so that each mesh cell has homogeneous properties. A 32×32
mesh is shown in Fig. 2(b), while the mesh used in our numerical experiments
is 128×128. Based on this mapping, we define a local coordinate system at the
centroid of each mesh cell that is aligned with the associated layer or inclusion.
In this local coordinate system the absolute permeability tensor is assumed to
be diagonal. The diagonal permeability tensors, as well as their anisotropy ra-
tios, are presented in Table 1. Note that since the local coordinate axes are not
aligned with the Cartesian axes, the absolute permeability is a full tensor in the
Cartesian system.

P = 1 atm

Zone 1

Zone 2

Zone 3

Zone 4

q = 2cm/day

z

x

Zone 6

Zone 5

(a)

2m

8m

8m2m

10m

10m

(b)

Fig. 2. Computational domain: (a) sloping layered structure with strongly anisotropic
inclusions in Zone 5 and 6, (b) a structured mesh 32x32 is mapped onto the stratigraphy.
The fine 128x128 computational mesh is constructed in a similar way.

To complete the definition of the two-phase flow model given in Section 2, we
define the relative permeability curves as,

krw(S) = (S∗)2 , kra(S) = (1 − S∗)2 , S∗ =
S − Swr

1 − Swr − Snwr
, (7)

where S∗ is the normalized wetting phase saturation, and Swr = Snwr = 0.1 are
the residual saturations of the wetting and non-wetting phases, respectively. In
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Table 1. Absolute hydraulic permeability tensors are diagonal in the local coordinate
system of each zone. Note that the anisotropy ratio is 100 within the inclusions (Zones 5
and 6 ) and 50 in Zone 2.

Zone Kx(m2) Kz(m2) Kx/Kz

1 4 × 10−12 4 × 10−12 1
2 5 × 10−12 1 × 10−13 50
3 5 × 10−12 5 × 10−12 1
4 9 × 10−12 9 × 10−12 1
5 5 × 10−11 5 × 10−13 100
6 5 × 10−11 5 × 10−13 100

addition, the initial saturation is set to a constant, S(t = 0) = Swr = 0.1; the
porosity is constant, φ = 0.2; and the phase viscosities are μw = 1.0× 10−3, and
μa = 1.8 × 10−5, both in units of kg · (m · s)−1. Boundary conditions are shown
schematically in Fig.2(a) with no-flow everywhere except for the water source in
the upper left and the fixed pressure in the bottom right. Fig. 2(b) shows the
dimensions of the domain (10m×10m), with the infiltration and fixed pressure
conditions spanning 2m each.

To study the efficiency and accuracy of the M3 method for this infiltration
problem, we generate a reference solution using the standard IMPES method on
a 128×128 mesh. The saturation at T=6 days is plotted in Fig. 3, where lighter
colors represent higher water saturation. Here the rapid flow along both highly
anisotropic inclusions is apparent. Also evident is the influence of gravity, which
has quickly drawn the fluid down once it passed through the first inclusion. In
fact, this arm is now reconnecting with the main flow.

Fig. 3. Reference solution: water saturation profile at T = 6 days computed on mesh
128x128 with the fine-scale IMPES method
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Since the fine-mesh is a logically structured quadrilateral mesh, the simple
aggregation strategy shown in Fig. 1 is readily applied. Thus, we coarsen by
a factor of two in each direction, recursively, until the desired total coarsening
factor has been reached. We set the mobility threshold, ελ = 0.1, which controls
adaptive local updates of the hierarchy. Global updates of the flux coarsening fac-
tors (i.e., the α’s) are made uniformly in time. The tolerance of the PCG(AMG)
iteration for these updates is εr = 10−3. The time step is adapted according to
the stability analysis developed by Coats [16].

We conduct two series of tests with this configuration of the M3 method.
First we consider a fixed total coarsening factor of 32 in each coordinate direc-
tion, which gives 4 × 4 coarse-grid for the pressure solve. We integrate to a time
of T=6 days, and examine the affect of increasing the number of updates to
the α’s, from 12, to 60, and finally 120. The saturation at T=6 for these three
scenarios are shown in Fig4(a)-(c). Comparing the result with only 12 updates
in Fig4(a), to the reference solution in Fig.3, we see that a number of features
have evolved either too slowly (e.g., the flow along the upper inclusion), or too
quickly (e.g., the closure of the unsaturated space under the lower inclusion). In-
creasing to 60 updates, Fig.4(b) begins to correct these problems, but there are
still significant differences in the flow along the upper inclusion. Finally, Fig.4(c)
shows that with 120 updates we recover accuracy comparable to the fine-scale
solution, accurately capturing the highly anisotropic flow through both the up-
per and lower inclusions. To understand the cost of these multiscale simulations
relative to the fine-scale IMPES simulation, it is useful to note that these update
scenarios correspond to an average of 2972.7, 613.6 and 320.7 time-steps per up-
date, respectively. Moreover, these updates are based on approximate solutions
computed using only 5-10 V-cycles each. The large total coarsening factor leads
to an overall speedup of more than 5 times, for all update scenarios considered
here. Overall, the computational cost of the pressure solver is now negligible,
compared to the cost of the transport.

(a) (b) (c)

Fig. 4. Multiscale solutions for different numbers of updates: (a) coarsest mesh 4x4,
2972.7 time-steps per update, (b) coarsest mesh 4x4, 613.6 time-steps per update, (c)
coarsest mesh 4x4, 320.7 time-steps per update
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(a) (b) (c)

Fig. 5. Multiscale solutions for different coarsening factors: (a) coarsest mesh 16x16,
275.5 time-steps per update, (b) coarsest mesh 8x8, 270.7 time-steps per update, (c)
coarsest mesh 4x4, 265.8 time-steps per update

In the second set of tests we integrate to T=6 days with the number of updates
of the α’s fixed at 150, and consider different total coarsening factors of 8, 16,
and 32. The results are shown in Fig.5(a)-(c) and confirm that accuracy compa-
rable to the fine-scale solution has been achieved in all cases. This demonstrates
that with an appropriate number of updates the accuracy of multiscale solution
deteriorates very slowly as the total coarsening factor increases. The M3 method
is very flexible and robust with respect to the total coarsening factor, and hence,
it may be applied to very large-scale simulations where other two-level upscaling
methods are insufficient.

5 Conclusion

In this research we extended the M3 method to include gravity, and studied
its effectiveness on a challenging anisotropic infiltration problem. We created a
porous medium with sloping non-uniform layers and two strongly anisotropic
inclusions, and we used a logically structured mapped grid to capture these
features. The M3 method performed very well, achieving accuracy comparable
to the fine-scale solution, at a fraction of the computational cost. As in the
original study [1], updating the flux coarsening parameters enabled the use of
large coarsening factors, a factor of 32 here, while maintaining both accuracy and
overall efficiency. This further highlights the importance of the global information
that is provided by the updates of the flux coarsening parameters (the α’s).
In the future we plan to develop an error indicator that will guide a time-
adaptive update strategy for these parameters. We anticipate that this advance
will further improve our ability to balance accuracy and efficiency. In addition we
are interested in extending this hierarchical methodology to upscale the transport
equation.
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Abstract. We propose algorithms for computational upscaling of flow
from porescale (microscale) to lab scale (mesoscale). In particular, we
solve Navier-Stokes equations in complex pore geometries and average
their solutions to derive properties of flow relevant at lab scale such
as permeability and inertia coefficients. We discuss two variants of tra-
ditional discretizations: a simple algorithm which works well in periodic
isotropic media and can be used when coarse approximations are needed,
and a more complex one which is well suited for nonisotropic geometries.
Convergence of solutions and averaging techniques are major concerns
but these can be relaxed if only mesoscopic parameters are needed. The
project is a proof-of-concept computational laboratory for porous me-
dia which delivers data needed for mesoscale simulations by performing
microscale computational simulations.

1 Introduction

Computational modeling of flow in porous media such as aquifers and oil-gas
reservoirs has been constrained until recently to the scales of physical observa-
tion and of experiments such as Darcy-scale (lab-scale ≡ mesoscale). For sim-
ulations in large porous reservoirs it has been necessary to upscale the models
and parameters of flow to macroscale.

In this paper we pursue the upscaling from microscale, i.e., porescale to
mesoscale (lab or Darcy scale). While relevantmathematical theory was developed
decades ago via homogenization [1] and volume–averaging [2], the computational
modeling at porescale had remained unfeasible until recently when advances in
micro-imaging were accompanied by increases in computational power and devel-
opment of discrete models such as network and lattice models [3,4,5,6].

In this paper we are interested in continuum models, i.e., traditional discretiza-
tions of partial differential equations adapted to porescale such as studies in [7,8].
We investigate conditions under which simple algorithms can be used efficiently
to deliver reliable quantitative information from microscale to mesoscale. Our
project can be seen as a first step of a computational laboratory for modeling

G. Allen et al. (Eds.): ICCS 2009, Part I, LNCS 5544, pp. 695–704, 2009.
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flow over a range of scales; the model at mesoscale can be further upscaled to
macroscale following e.g. [9,10].

The following problem is of interest for stationary incompressible viscous flow.
It is well known that linear flow models are not valid beyond certain Reynolds
numbers [11,12,13,14,15,16]. At porescale the relevant linear and nonlinear mod-
els are the Stokes and Navier-Stokes equations, respectively. At mesoscale those
are Darcy and non-Darcy models where it is now believed that in the nonlin-
ear laminar regime it is the inertia rather than micro-turbulence effects that
are most important. However, the identification of a particular transition regime
between Darcy and non-Darcy flow model as well as a universal mathematical
form of an anisotropic non-Darcy model are still a subject of current research
and controversies [2,16,17,18,19,20,21], and the values of associated coefficients
reported in literature vary significantly.

Consider then a scenario in which data for linear flow at Darcy scale, i.e. per-
meability K, is known, but no data for modeling inertia effects (denoted by β) is
available.We propose to i)use a computational porescalemodel with inertia effects
from which we ii) derive data β for nonlinear models at Darcy scale. In i)-ii) we fo-
cus on 2D porescalemodels with isotropic mesoscale but iii) one can extend i)-ii) to
anisotropic nonlinear laws at mesoscale that emerge from complicated anisotropic
porescale geometries, and thereby aid current theoretical developments.

The main difficulties of i)-iii) are the following. First, standard discretization
techniques for Navier-Stokes equations are well studied but their use in complex
geometries requires fine grids and is in general nontrivial. Second, calculating
average quantities from computational data is only superficially straightforward
since the stability of results with respect to grids and algorithms over a large
range of Reynolds numbers must be ensured. Next, as concerns iii), realistic
data on porescale geometries such as [5] should be used, and their uncertainty,
and dependence of results on averaging regions needs to be accounted for. Fi-
nally, computational efficiency of the proposed “on-demand” porescale modeling
laboratory must be considered.

In this paper we focus on a proof-of-concept realization of i)-ii); details on
iii) will be addressed in a forthcoming paper. In Sections 2 and 3 we describe
the relevant physical and computational models, respectively. In Section 4 we
propose the method of upscaling and in Section 5 we discuss the results.

2 Computational Models

Let Ω ⊂ IRd, d = 2, 3, be an open bounded domain occupied by porous medium
and the fluid within. Let ΩF � Ω be the part of Ω occupied by the fluid, that is,
the domain of flow, and let rock (solid) part be ΩR = Ω \ΩF . Let ∂Ω denote the
boundary of Ω, and let Γ = ∂ΩF \ ∂Ω be the interior boundary (between rock
and fluid domains) while the external boundary of flow ∂ΩF ∩∂Ω is divided into
inflow Γin and outflow Γout parts. We also denote by η the unit outward normal
to the boundary and by τ the unit tangent. For simplicity no special notation is
used for numerical solutions.
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Flow at porescale. We consider an incompressible Newtonian fluid of velocity u
and pressure p flowing in ΩF . The fluid’s viscosity is denoted by μ and the den-
sity ρ ≡ 1. We consider flow driven primarily by external boundary conditions,
such as in a lab core. We prescribe velocity at the inlet and impose an out-
flow condition at the outlet. On internal boundaries we assume no-slip condition
u = 0. We assume that the Reynolds number Re is correlated to the magnitude
of inflow velocities.

At microscale (porescale), for steady-state flow, in the absence of forces and
mass source/sink terms, the momentum and mass conservation in Eulerian frame
are expressed by Navier-Stokes equations and continuity equation [14]

u · ∇u − μ 	 u = −∇p, (1)
∇ · u = 0. (2)

In 2D (d = 2) it is convenient to consider the formulation in terms of the vorticity
vector ω = ∇×u and the (scalar) stream function ψ defined by u = ∇× ψ [14].
Taking ∇× equation (1) and noticing ∇ × (∇p) = 0, one obtains the system

u · ∇ω = μΔω, (3)
Δψ = −ω. (4)

The last equation follows from standard calculation ω = ∇ × (∇ × ψ) = ∇(∇ ·
ψ) − Δψ, which, with (2), for 2D flow reduces to (4). We can get p from

− Δp = (∇(u · ∇)) · u = 2(
∂ux

∂x

∂uy

∂y
− ∂ux

∂y

∂uy

∂x
) (5)

For small Re the nonlinear convective terms associated with u· are dropped
from (1) and (3) and we have the (linear) Stokes approximation

− μ 	 u = −∇p, (6)

which is valid when viscous effects dominate in the flow. For larger Re the
inertia effects associated with u· cannot be neglected. We recall that, up to the
definition/units of characteristic quantities, the linear laminar flow regime is for
Re < 1, the nonlinear regime is for 1 ≤ Re < 100, and that turbulence may
occur for Re ≥ 100 [13,16]; however, turbulence rarely occurs in porous media.

Flow at Darcy scale. At mesoscale the boundaries between ΩF and ΩR are no
more recognized, One considers an average pressure P :=< p > and velocity
(flux) U :=< u > where the averages over a volume V (x) centered at x ∈ Ω
are defined as < q >V ≡< q > (x) ≡ 1

|V (x)|
∫

V (x) q(y)dy. (In what follows we
drop subscript V ). Conservation of mass after averaging yields ∇· < u >= 0;
note that derivatives in ∇ are taken with respect to large scale variable x. The
flow in Ω at mesoscale is driven by boundary conditions which are averages of
porescale external boundary conditions.
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Darcy’s law is a linear momentum equation at mesoscale which can be proven
[22,1] to be an average of Stokes flow (6)

μK−1 < u >= −∇ < p > . (7)

where the values of a symmetric permeability tensor K are measured in a lab and
have been obtained experimentally for many porous materials [16]. K reflects
geometry at porescale, and K−1 measures resistance of porous medium to the
flow. For heterogenous media K = K(x), for isotropic media K = KI. Due to
large viscous dissipation and interstitial effects common in porous media, Darcy’s
law is a good approximation for a large class of flow phenomena.

In the nonlinear laminar regime with significant inertia, averaging (1) yields

K−1(< u >) < u >= −∇ < p > . (8)

The 1D model for K first proposed by Forchheimer [11] was K−1(U) := μK−1 +
β|U |, while multidimensional isotropic version [12,16,13,15] reads

K−1(< u >) < u >:=
(
K−1μ + β| < u > |

)
< u >= − < ∇p > . (9)

The form of nonlinear map K for general anisotropic 2D and 3D media has
been the subject of theoretical research for general anisotropic 2D and 3D media
[17,8,21,18,20,19]. Even if the model (9) for K is accepted, the data for coefficient
β are not universally available and/or consistent.

Mathematical upscaling from micro- to mesoscale. There are essentially two
methodologies that apply. The first, with the use of homogenization theory (H)
[22,1], requires periodic geometry but gives elegant theorems on convergence
of the averages of microscale quantities to the appropriate mesoscale quantities
when the size of periodic cell goes to 0. The second, volume averaging (VA), does
not restrict geometry and proposes that the averaged quantities are reasonably
stable if the averaging region (REV ≡ Representative Elementary Volume) is
large enough [19]. However, it may be difficult to quantify what size of REV is
sufficient; see [23,24] for related work on elasticity and our forthcoming work.

3 Computational Models for Porescale

For the flow in ΩF we consider two algorithms H and VA described below
which are useful in similar contexts as, respectively, the mathematical upscaling
methods H and VA. For other algorithms see [25,26].

We illustrate the algorithms with the following scenario. All flow in Ω is
from left to right. The pore geometries are idealized: we envision rock grains
as very long cylinders so that every cross-section can be approximated by a 2D
computational region with ΩR being a union of solid disks replicated periodically.
The ratio of disk diameters to the size of the period denoted by D ranges from
0.6 to 0.9 in this study; see Fig. 1 and 3.
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Algorithm H. This simple algorithm solves for (ω, ψ) in d = 2 and uses simple
structured grids over ΩF and therefore can be easily adapted to interpret data
from porescale imaging [5] without significant investment of time in grid genera-
tion. It is based on a central finite difference formulation enhanced by treatment
of boundary conditions and post-processing, following [27,28,29].

The discretization of (3) and (4) yields

(μΔh − (u · ∇h))ω = 0, (10)
Δhψ = −ω. (11)

where the numerical Laplacian Δh has the usual 5-point stencil and the advective
term is computed using second order central differences. The coupling in the
model is resolved by iteration: given ωn, i) compute ψn+1 from (11), then ii)
calculate velocity un+1 from ψn+1, then iii) solve (10) for ωn+ 1

2 , and finally iv)
compute ωn+1 = λωn+ 1

2 + (1 − λ)ωn where λ is the relaxation parameter.
In this algorithm steps i) and ii) require that boundary values of ψ and ω are

known, respectively. This is the most delicate part of the algorithm and crucial
for porescale computations: an idea how to implement inlet, outlet, and no-slip
conditions follows; we refer to [26,28,29] for details.

For structured rectangular grids over a periodic cell Ω, the boundary Γ is com-
posed of vertical and horizontal segments only, and the external boundary has
either vertical or horizontal Γin, Γout. Consider vertical Γin. On inlet boundary,
u = (ux, 0) is given and hence ψ has to be constant and given as the integral
of ux while vorticity is given from (4). On the vertical portion of the outlet
boundary we have ∂ω

∂x = 0 and ∂ψ
∂x = 0.

In the interior, we have no-slip boundary conditions u = 0; it follows that
ψ ≡ const. To find useful conditions for ω, we approximate its second derivative
as follows. Consider Taylor expansion ψ(x+ δx, y) = ψ(x, y)+ δx∂ψ

∂x + δx2

2
∂2ψ
∂x2 +

O(δx3). But uy = −∂ψ
∂x = 0 thus −ω = ∂2ψ

∂x2 = 2(ψ(x+Δx,y)−ψ(x,y))
δx2 + O(δx).

Fig. 1. Results of algorithm H, D = 0.6. Shown are profiles of p overlaying contours
of u for Re = 1, 100, (left and right) on three grids: coarse, fine, and very fine (top to
bottom). Even though the pointwise values appear unresolved on the coarse meshes,
the computed averages and K and β are stable on all grids.
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Fig. 2. Convergence of relaxation iteration in algorithm H. Left: standard benchmark
problem of Poiseille flow [26]. Right: flow in geometry as in Fig. 1. The iteration error
(both) is defined as discrete l2 norm of the stream function ψ.
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Fig. 3. Results of VA for D = 0.9 with Re = 1 (top) and Re = 100 (bottom).
Shown are contours of pressure p (left) and zoomed in velocity u profiles: component
x (middle) and y (right).

To recover (post-process for) the velocities and pressures, we use central finite
differences in the interior of the domain and appropriate one-sided differences at
the boundary. The pressure is found from (5).

As seen in Fig. 1, the algorithm works reasonably well for a range of Reynolds
numbers and grids that are not very fine. The difficulties arise since finding an
optimal value of λ in step iv) may be a problem; see Fig. 2. The simplicity of H
is in that it consequently uses the same Poisson solver for which very efficient
solvers and preconditioners [26,25] are available. As an alternative, a coupled
solver for (10)–(11) can be written but this requires sophisticated nonsymmetric
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solvers and preconditioners. Overall, the algorithm H works well for small peri-
odic domains Ω but may scale poorly to large regions, complex geometries, and
large Re.

Algorithm VA. This algorithm solves for (u, p) and can be used in complicated
geometries but requires substantial pre-processing; it follows an industry stan-
dard in computational fluid dynamics [30,31]; general unstructured grids can be
used in 2D and 3D. We omit the details but provide an example which illustrates
the grids and complexity of computations, see Fig. 3.

4 Upscaling Algorithms from Porescale to Mesoscale

Strictly speaking, the work reported in this paper does not require any com-
putations at mesoscale, i.e., in Ω. However, keeping in mind our future goals,
we choose to upscale from microscale to some chosen computational grid at
mesoscale. In this paper we choose the conservative cell-centered finite difference
method equivalent to lowest order Mixed Finite Element method on rectangles
[32]; this provides a bridge to macroscale following [9,10].

The idea is as follows: we impose a mesoscale cell-centered grid over Ω in a
way which defines principal directions of flow that we anticipate will prevail at
mesoscale (This may help to avoid handling full tensor K at mesoscale). With
each center of mesocale grid (Xj , Yj), we have an associated cell Ωj over which we
average to get values Pj . Velocities are computed over unions of regions so that
they are associated with locations “dual” to those for pressures [32]; see Fig. 4
for illustration. Ideally, the locations (Xj , Yj) coincide with centers of mass of
Ωj and the velocity components are computed in the direction of principal axis.
However, there are ways to handle situations when this does not hold.

Assume now that porescale results (u, p) are available. We then compute U
and P as discussed above. Next, by inverse modeling, we identify resistance of
the medium K−1 in the discrete counterpart of (8).

p3

p1 p2

p4 p3

p1 p2

p4

Fig. 4. Left: averaging region for a small periodic region Ω, case D = 0.7. The x-
component U can be computed from averaging over regions Ω1, Ω3 and Ω2, Ω4. Right:
general averaging region, case D = 0.9.
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D ∈ (0.7, 0.9) and on grid size (results computed for coarse and fine grids).

Note that for small Re, the resistance K−1 reduces to K−1 as in (7). Thus, if
data is available for a large range of Re from creeping flow to nonlinear laminar
regime, then one could hope to identify the appropriate model of tensor K. In
particular, if the medium is isotropic at mesoscale, then (9) is valid. In other
words, given K and K and knowing U, one can compute β for any Re. Clearly
if the model for K is valid and the computational algorithm is successful then
β remains reasonably constant throughout the nonlinear laminar regime; this
appears true in our results, see Fig. 5.

We stress that stability of K and β is not guaranteed with just any ad-
hoc averaging technique; in particular, the choice of REV, principal axis and
their orientation, and of the boundary conditions, plays a significant role. In
addition, there is currently no general explicit mathematical model and virtually
no experimental work for anisotropic inertia represented by K.

5 Discussion

Fluid flow in porespace is subject to viscous effects, inertia effects, and dissipation
on the solid boundaries. In order to approximate the flow accurately for large
Re, we need to ensure that the grid is fine enough in the channels where the
solid boundaries are the closest to each other.

Using algorithm H we observed reasonable convergence for D ≤ 0.6. How-
ever, more work needs to be done before the algorithm H can scale to more
complicated geometries with D > 0.6 and for large Re. In particular, we are
considering a transient regularization of (3) which will help the convergence.

The use of algorithm VA was promising for realistic porosities i.e. D > 0.9.
However, VA requires care in gridding and monitoring convergence of the iter-
ations. Here the difficulties are related to proper porescale grid definition with
respect to principal axis. There is also the relative lack of availability of VA due
to its commercial implementation.

Overall, regardless of the porescale algorithm chosen, for some grids and some
Re, the profiles of (u, p) may reveal local instabilities. However, this does not
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necessarily lead to an instability of mesoscale properties at least with the aver-
aging method that we proposed. In fact, K and β appear stable for a large range
of values of Re as well as appear convergent with respect to the grid size, see
Fig. 5. We note that both K and β are nonlinear quantities of interest in the
sense of [24]; see also [33] for recent related work on multiscale modeling.

Current and future work includes convergence analysis as well as serious com-
putational studies aiding the theoretical modeling of tensor K. Our project is a
prototype of a computational laboratory which can provide on-demand model
data for flow with inertia in porous media.
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Abstract. In-stent restenosis, the maladaptive response of a blood ves-
sel to injury caused by the deployment of a stent, is a multiscale problem
involving a large number of processes. We describe a Complex Automata
Model for in-stent restenosis, coupling a bulk flow, drug diffusion, and
smooth muscle cell model, all operating on different time scales. Details
of the single scale models and of the coupling interfaces are described,
together with first simulation results, obtained with a dedicated software
environment for Complex Automata simulations. The results show that
the model can reproduce growth trends observed in experimental studies.

Keywords: Complex Automata, in-stent restenosis, multiscale mod-
eling.

1 Introduction

A stenosis is a narrowing of a blood vessel lumen due to the presence of an
atherosclerotic plaque. This can be corrected by balloon angioplasty, after which
a stent (metal mesh) is deployed to prevent the vessel from collapsing. The injury
caused by the stent can lead to a maladaptive biological response of the cellular
tissue (mainly smooth muscle cells). The abnormal growth can produce a new
stenosis (re-stenosis). The multiscale nature of this process has been discussed
in detail previously by Evans et al. [1].
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The geometry of the stent employed influences the biological events occurring
in the vessel following deployment. Stent length, strut thickness, number, cross-
sectional shape and arrangement all influence the hemodynamics and degree of
injury/stretch observed within the stented segment [2]. These in turn, are critical
determinants of the severity of restenosis observed. Additionally, stents may be
coated with active compounds targeted at the biological processes responsible for
driving the progression of a restenosis which, when eluted locally at the stented
site, can prevent proliferation of smooth muscle cells and neointimal growth.

The development of a multiscale in silico model capable of testing both the
influence of stent geometry and that of drug elution is motivated by the desire for
a better understanding of the dynamics regulating restenosis. Thus providing a
potentially powerful tool for improved understanding of the biology, and to assist
in the process of device/therapy development.

As in many other biological systems, the dynamics of in-stent restenosis span
many orders of magnitude through the scales, from the smallest microscopic
scales up to the largest macroscopic ones. The wealth of experimental data that
is now available has made in silico experimentation an attractive tool in systems
biology, allowing hypothesis testing and formulation of predictions which can
be further tested in vitro or in vivo [3]. The next challenge is to study, not
only fundamental processes, on all these separate scales, but also their mutual
coupling across the scales and to determine the emergent structure and function
of the resulting system [4].

Based on the conceptual description of the relevant processes and their charac-
teristic scales as presented in [1], we propose a simplified CxA model of in-stent
restenosis, coupling a lattice Boltzmann bulk flow (BF) solver (for the blood
flow), an agent based model for smooth muscle cell (SMC) dynamics (simulat-
ing growth, cell cycle, physical and biological cell-cell interaction), and a Finite
Difference scheme for the drug diffusion (DD) within the cellular tissue.

In section 2 we introduce the main ideas behind the CxA approach. In section
3 following a short introduction on instent restenosis, we present the multiscale
model. We describe the main characteristics of the single scale solvers, which
have been developed independently from one another, and independently from
the ultimate application. Then, in section 4 we discuss how the coupling between
these models has been realized using a CxA dedicated software environment.
Preliminary numerical results are presented in section 5, and conclusions are
discussed in section 6.

2 Complex Automata Modeling and Simulation

Recently we introduced Complex Automata (CxA) as a paradigm for multiscale
modelling and simulation [5,7,8]. A multiscale system is decomposed into mutu-
ally interacting single scale models. The multiscale system can be represented
graphically on a Scale Separation Map (SSM), where the horizontal and verti-
cal axes represent the temporal and spatial scales. An example of such SSM is
shown in Fig. 1 for the multiscale model of in-stent restenosis (as discussed in
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detail in section 3). The single scale models and their interactions are drawn on
the map. The single scale models are discrete and explicitly update their state
to a next time step using a well defined evolution operator, in the form of col-
lision+propagation1 . An essential step in the modelling process is the inclusion
of specific coupling templates, designed to mimic the dynamic behavior of the
multi-scale process as accurately as possible.

The conceptual ideas behind the CxA approach have been used to develop
the COAST Multiscale Coupling Library and Environment (MUSCLE) [11,12], a
software environment where a CxA can be implemented naturally. The coupling
library is based on JADE, a multiagent platform, where both the kernels (i.e. the
single scale models) and the conduits (i.e. the multiscale couplings) are treated
as agents. The single scale models do not need to be aware of each other, and
the information concerning the coupling and the global setup are held by the
framework. The structure of the coupling library allows a complete independence
from native codes, which can be replaced with a different source, provided the
interface with respect to the framework (i.e. the wrapper agent) remains the
same. Kernels communicate via smart conduits (special agents which implement
the multiscale coupling) using two communication primitives, a non-blocking
send operation and a blocking receive operation. Often, conduits perform filtering
operations, in order to match the input and output of the different single scale
models. The details of coupling for this particular application are discussed in
section 4.

3 Multiscale Model of In-Stent Restenosis

In a previous work [1], the processes key to the restenosis system and their
mutual coupling were identified and considered in terms of their temporal and
spatial scales, allowing us to generate a comprehensive Scale Separation Map [1].
In this paper, we consider a simplified model focused on SMC behavior, and the
interaction with blood flow and drug eluted from the stent. A simplified SSM
is shown in Fig. 1. After deployment of the stent, which is actually modelled
in a separate box as an initial condition (using the SMC model itself, see sec-
tion 4), SMCs start to proliferate. This proliferation depends on the blood flow
(specifically the wall shear stress) and the concentration of drug (in the case of a
drug eluting stent). The blood flow, in turn, depends on the lumen domain (and
therefore changes due to the proliferation of SMC), and the concentration of drug
depends on the SMC domain itself (and therefore also on SMC proliferation).

In the current model we assume that scale separation between the single scale
models is confined to the temporal scale. The SMC proliferation is the slowest
process, dictated by the cell cycle whereas flow is a fast process, dictated by one
heart beat. Due to the specific value of the diffusion coefficients and the typical
size of the tissue level, the temporal scale of the diffusion process resides between
1 The terminology collision-propagation is borrowed from the lattice gas automata

framework (see e.g. [9]), and it has been recently shown to be equivalent to other
update paradigms [10].
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Fig. 1. The simplified SSM

the flow and the SMC scales. In future models we will also explicitly consider
spatial scale separation.

The blood flow inside the vessel is modeled as a Newtonian incompressible
flow. We employ a lattice Boltzmann Method to obtain a numerical solution (see
for example [9,13]). The observable related to the bulk flow (BF) model is the
wall shear stress on the vessel boundary (WSS). This is needed as input for the
SMC model, after being properly mapped (section 4).

The dynamics of smooth muscle cells are simulated using an Agent Based
Model (SMC model), where each cell represents a single agent, identified by a
set of state-variables: position, radius, biological state, drug concentration and
structural stress. Each SMC agent evolves in time according to the current state,
and to the states of neighboring cells. The solver comprises a physical solver, sim-
ulating the structural dynamics of cells, and a biological solver which simulates
the cell cycle, according to a biological rule set. More detail of the SMC model will
be published elsewhere [14]. Cells are represented by their centres and potential
functions, which determine non-linear repulsive and attractive inter-cell forces.
In additional, boundary forces, viscous friction and radial elastic forces modeling
the primary fibre direction of real 3D SMCs and motility forces modeling cell
migration are taken into account [14]. At every iteration step, new equilibrium
positions of SMCs are computed by iterating a finite difference scheme until
steady state is reached. Next, the structural stress is calculated and provided as
input to the biological solver.

The biological solver contains a model of the cell cycle, consisting of a dis-
crete set of states, a quiescent state G0, a growth state G1 and finally a mitotic
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state S/G2/M, when a mother cell eventually divides into two new daughter
cells. Progression through the cell cycle takes place at a fixed rate, depending
on the time step, and culminates in mitosis (division). Cells may enter or leave
the inactive phase of the cell cycle (G0) depending on certain rules, which take
into account contact inhibition (based on neighbor count), structural stress, and
local drug concentration (for all cells) and wall shear stress (WSS) and oscil-
latory stress index (OSI) for cells in contact with the fluid. Low WSS or high
structural strain are individually capable of inducing agent proliferation if drug
concentration and contact inhibition criteria allow.

Drug eluting stents represent an effective way of inhibiting neointimal for-
mation. We include this additional aspect in the CxA model by implementing
a drug diffusion sub-process. Since drug is eluted from the stent and diffuses
into the cellular tissue, the spatial domain for the Drug Diffusion Model coin-
cides with the space occupied by SMCs. The stent struts act as a source, whilst
the boundaries between flow and cells are considered sinks (assuming that drug
eluted into the lumen is continuously flushed away by the faster blood flow).
Since biological tissues are heterogeneous in nature, we assume that this process
can be described using a generic anisotropic diffusion.

The diffusion tensor is chosen such that the diffusion along the artery axis or
tangentially to a cross section is at least 10 times higher than the diffusion in
the radial direction [15,16]. To solve the diffusion equation numerically we use a
Finite Differences (FD) approach, solved by a Propagation-Collision loop, which
complies with the CxA modeling language. According to [16], the time scale to
reach the steady state is of the order of minutes. Therefore, when coupling DD
and SMC, we are largely interested in the steady drug concentration (the time
step for the SMC model, which uses as input the drug concentration, is of the
order of 1 hour).

4 CxA Implementation: Connection Scheme, Kernels,
Conduits

In order to combine the single scale models in a CxA setup, we need to define a
communication graph, the Connection Scheme (CS), which specifies in detail the
communication topology of the CxA, i.e. which pairs of single scale models, the
kernels of the CxA, communicate. For the simplified model of in-stent restenosis,
the CS is shown in Figure 2.

At each SMC iteration, the cell configuration defines a new domain for the BF
solver. The conduit from SMC to BF converts the array of positions and radii of
the cells into a computational mesh, decomposed into fluid and solid nodes for
the flow solver.

Similarly, a conduit from SMC to DD converts the array of positions and radii
of the cells, into a computational mesh for the drug diffusion solver, marking the
nodes as tissue, source, or sink.

plus .1emIn somecases, the interactionbetweenkernels is slightlymore complex,
and multiple inputs are required for computing an output. This is the case for the
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Fig. 2. The Connection Scheme, showing the single scale models (Bulk Flow, SMC,
Drug Diffusion), the Init agent (used to generate the initial structural stress condition
in the tissue), the mapper agents and the conduits. For each single scale models it is
specified whether it is mesh-based (BF, DD) or Agent-based (SMC).

mapper agents in (Fig. 2). For example, since the SMCagents aremoving, each time
an input for the SMC model has to be computed, the SMC itself has to send its cur-
rent state, to allow the coupling agent to map the values to each agent.

The values of fluid shear stress at the boundary affect the biological evolu-
tion of the cells. Given the fluid output, and the current cell configuration, a
mapper agent computes the shear stress on each surface cell. Depending on the
discretization used in the flow solver, different approaches can be used. If the
flow grid is coarser than the spatial scale of the SMC model (for example, the
radius of the cells), a proper algorithm must be used in order to determine which
cells are in contact with the flow, then for each cell position, the shear stress
is extrapolated from the closest boundary fluid nodes. Alternatively, if the flow
discretization is sufficiently fine, allowing more fluid boundary nodes to inter-
act with single cells, the shear stress on the cell surface can be calculated by
averaging the values of the closest nodes.

Given the current drug concentrations and the cell configuration, the map-
per agent approximates the concentration on each cell. As is the case for the
shear stress approximation, the algorithm used depends on the grid size of the
DD model. If the grid is sufficiently fine, with many lattice nodes per SMC,
the concentration on a cell can be integrated. If a coarse DD grid is used, the
concentration for each cell will be extrapolated using the closest nodes.

The single scale models, BF, SMC, DD, are implemented in different program-
ming languages (FORTRAN90, C++, JAVA), wrapped as JAVA agents [11,12],
and connected as shown in the Connection Scheme (Fig. 2). In the current setup
we have 25 agents (3 kernels, 20 conduits and 2 mappers) which participate in
the main computation of our prototype application. These can be distributed
across multiple CPUs and machines to gain an advantage in computing speed.

5 Simulation Results

As a benchmark geometry for the 2D CxA model, we consider a vessel, of length
1.5 mm and width 1.0 mm, where two square struts of side length 90 μm have
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Fig. 3. Initial Condition for the CxA model, including initial cell configuration, equili-
brated after deployment, and blood flow (the flow is shown in the lumen as streamlines,
and the fluid shear stresses are color coded (red high, blue low)

Fig. 4. Results with bare metal stent after 400 time steps (∼18 days). The flow is
shown in the lumen as stream lines, and the fluid shear stresses are color coded (red
high, blue low).

been deployed. The vessel wall has a thickness of 120 μm. Smooth muscle cells
are generated with an average radius of 15 μm, densely packed inside the wall.
To obtain the initial conditions based on the above geometry, an initial stress
configuration compatible with the initial geometry must be provided. To do this,
cells are stent deployment is simulated, iterating the structural SMC solver until
a stationary state is reached. The initial cell configuration resulting from this
procedure is shown in Fig. 3. The struts are shown in black, the SMC in red.

We have run the simulation for 400 time steps of the SMC model (Δt = 1
hour) for both a bare metal stent and a drug eluting stent. The final results are
shown in Fig. 4 and 5 respectively. The preliminary results of the model demon-
strate smooth muscle cell proliferation in response to injury caused by the stent
deployment. Proliferation is modulated by flow, local mechanical stress, and
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Fig. 5. Results with a drug eluting stent after 400 time steps (∼18 days)

drug concentration (of particular note is the inhibitory effect observed when a
drug eluting stent is simulated). The smooth muscle proliferation currently ob-
served appears to share more in common with tumour cell growth, than the
slower, more regulated hyperplastic response we would expect to see in a coro-
nary artery following stent deployment. We are currently in the process of run-
ning more extended simulations and validating the model against a biological
data-set obtained from stented porcine arteries. As parameters are tuned using
archival quantitative data (from the literature), and experimental measurements,
we hope to reproduce the positive correlation between neointimal growth rate
and injury index. The next step will be to run a full 3D version of the model,
enabling the influence of the stent geometry on the restenosis response to be
investigated.

6 Conclusions

We have shown how Complex Automata methodology can be applied in a chal-
lenging multiscale model of in-stent restenosis. In particular, we described a
conceptual multiscale model of in-stent restenosis, implementing the coupling of
single scale algorithms for three different subprocesses with different time scales.
The model has been realised employing a dedicated coupling library. The prelim-
inary results demonstrate that the CxA model can be successfully implemented
within this framework.

The individual models are at a relatively early stage of development and re-
quire further improvement. During the lifetime of the project we aim to achieve
integration of a parallel flow solver (to achieve more detailed local hydrodynam-
ics) and enhancement of the complexity of the SMC Agent rule-set. Moreover,
the current 3-box CxA model might be improved further by including additional
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processes modelling thrombus formation and endothelial cell loss/re-growth. Val-
idation of the improved and additional individual models using quantitative data
derived from in vivo and in vitro experimentation will allow assessment of model
accuracy, thus indicating the limitations of the models.

This first realisation of the coupled CxA is an important milestone on the
journey towards a full multiscale model of in-stent restenosis, the subject of
ongoing research.

Acknowledgments. This research is supported by the European Commission,
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2 IT’IS Foundation, CH-8004 Zürich, Switzerland
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Abstract. Experimental investigations of tumors often result in data re-
flecting very complex underlying mechanisms. Computer models of such
phenomena enable their analysis and may lead to novel and more efficient
therapy strategies. We present a generalized finite element mechano-
chemical model of a solid tumor and assess its suitability for predicting
therapy outcome. The model includes hosting tissue, tumor cells (vital
and necrotic), nutrient, blood vessels and a growth inhibitor. At a certain
time instant of the tumor development virtual therapies are performed
and their outcomes are presented. The model is initiated with param-
eters either obtained directly from the available literature or estimated
using multi-scale modeling. First results indicate the usefulness of multi-
physics tumor models for predicting therapy response.

1 Introduction

According to the World Cancer Report, 12 million new cancer diagnoses are
expected worldwide this year, and by 2010 it will be the leading cause of death.
Better understanding tumor formation is of utmost social, economic and politi-
cal importance, and finding more effective therapies may be regarded as one of
the biggest challenges of our time. Computer simulation may bring new insights
into the underlying mechanisms and may help to predict and optimize the ef-
fects of therapies. Simulation of such complex systems are computationally most
demanding, yet the rapid development of hardware, especially emerging dis-
tributed parallel computing concepts, enable more and more realistic modeling
of physiological systems. Tumor development has been studied extensively over
the last three decades, reviews and exhaustive survey of the approaches can be
found elsewhere [1,2] or more recently in [3]. A further discussion of the relevant
literature may be found in our previous works [4,5]. We continue to rely on the
established methods from solid mechanics and chemical engineering. The finite
element method (FEM) is particularly suitable for describing strain-induced cel-
lular responses, gaining acceptance as an influential player in simulating tissue
development [6,7]. With such a representation we can account for mechanical
tissue deformations induced by developing pathologies and capture its interplay
with the chemical environment. We focus on benign, vascularized, solid tumor
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growth and present a significantly enhanced version of our previous model [8].
Extensions include:

1. more realistic boundary conditions for the growth factor and oxygen;
2. tumor compartmentalization;
3. deformation of the vascular system (displacement due to tumor growth);
4. effects of applying a growth inhibitor.

We do not only aim to simulate the tumor growth but also employ the model
to study the effect of therapies. After describing the model we present its appli-
cation to the simulation of embolization and the administration of angiostatin.
Once precise experimental data are available for particular tumor types, we can
integrate this quantitative knowledge into our framework and offer practical tools
of clinical relevance.

2 Definition of the Model

The basis of our model is a set of mass and force balance equations. The
mass transport of all constituents is modeled with reaction-convection-diffusion
equations. Growth factor, endothelial cells, oxygen, and growth inhibitor are
transported through the tissue, and may enter chemical reactions anywhere in
the whole domain, which is shown schematically in Fig. 1. The components of
this linked bio-chemo-mechanical model are described in the following equations
where ci denotes a concentration of a constituent, Di is its diffusion coefficient
and Rij the reaction/source term. We assume no flux boundary conditions where
the inflow from the environment is not accessible.

The growth factor is produced in hypoxic regions of the tumor and decaying
naturally or through inhibition:

∂c1

∂t
= D1∇2c1 + R11(c3) − R12c1 − R13c4 (1)

R11(c3) =

⎧⎪⎨⎪⎩
R0

11, c3 ≥ thigh
1

R0
11 + 5 · R0

11 ·
(

thigh
1 −c3

tlow
1 −thigh

1

)
, tlow

1 < c3 < thigh
1

6 · R0
11, c3 ≤ tlow

1

(2)

Fig. 1. Compartments of the model. The tumor (Ω2) consisting of necrotic and viable
part, is embedded into the host tissue (Ω1). δ denotes the respective interfaces.
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with no flux boundary condition of on δΩ1. The density of endothelial cells (EC)
is formulated accordingly:

∂c2

∂t
= D2∇2c2 + ∇ · (c2u) + ∇ · (c2d) (3)

u =
(

k0 k1

k1 + c1
∇c1

)
(4)

where d is a mechanical displacement field and a Dirichlet boundary condition is
applied on δΩ1. The oxygen concentration in the tissue obeys a reaction-diffusion
equation of the form

∂c3

∂t
= D3∇2c3 + R31(c3, c2) − R32(c3) (5)

with no flux boundary condition on δΩ1. Here (c3, c2) is the source term, which
depends on the vasculature and blood flow. Angiostatin (AST) is provided ex-
ternally as a drug that diffuses and decays naturally:

∂c4

∂t
= D4∇2c4 − R4c4 (6)

with no flux boundary condition on δΩ1. We complete the above system of mass-
balance equations by adding a force-balance equation describing the mechanical
stress resulting from the evolution of the system as a consequence of tumor
growth (Newton equilibrium equation)

∇ · σ + f = 0. (7)

σ is a second order tensor, f is the external force field. Here we pose a no dis-
placement boundary condition everywhere on δΩ1 and an initial strain condition
in Ω2.

Growth Model: Healthy tissue is in a dynamic balance between proliferation and
ceasing of cells, in consequence the number of cells remains nearly constant. The
process of controlled cell death - apoptosis - is an integral part of the constant
renewal of tissue in the natural cell cycle. The control mechanism is part of the
homeostasis required by living organisms to maintain their internal states within
certain limits. The down-regulation of apoptosis in tumorous tissue leads to an
over-proportional growth. Apoptosis involves a series of biochemical events. The
natural mechanism of apoptosis is controlled by intrinsic and extrinsic agents.
Once initiated, apoptosis results in a characteristic cell shrinkage, blebbing, and
DNA fragmentation. Such, the cell may be phagocytosed safely without exposing
the tissue with potentially harmful intracellular debris. In contrary, necrosis is an
uncontrolled death, e.g. due to hypoxia or toxic agents, and is characterized by
an uncontrolled bursting of the cell membrane with a release of the constituents.
This leads to a local inflammation and only partial resorption of the debris can
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be achieved. The overall density of cells inside the tumor N can be therefore
decomposed into two compartments, vital N+ and necrotic N− cells:

N(t, x, y) = N+(t, x, y) + N−(t, x, y). (8)

In our model, proliferation is constrained by the availability of oxygen [7,9]
and space [10]. We account for tumor cells proliferation, apoptosis and necrosis.
Necrotic cells formed from hypoxic tumor cells. g+, g−−, g− are the individual
growth rates for each mechanism:

growth: g+ = h+
c3

(c3)h+
σ (σ)

ln 2
T +

2
, (9)

necrosis: g− = h−
c3

(c3)
ln 2
T−

2
, (10)

apoptosis: g−− =
ln 2
T−−

2
. (11)

We neglected the pressure-growth dependency h+
σ = 1. Populations N+ and N−

are

∂N+(t, x, y)
∂t

= N+(t, x, y)[g+ − g− − g−−], (12)

∂N−(t, x, y)
∂t

= N+(t, x, y)[g−]. (13)

All the equations introduced above are solved numerically with a generalized
convection-diffusion-reaction solver relying on a standard finite element dis-
cretization. The domain has been mapped with triangular meshes, typically
consisting of 50-100.000 triangles.

Tissue Mechanics: Tumor progression and regression is modeled as initial strain
condition. Volumetric strain is:

ε0(t) =
dV (t)
V (t)

=
dN(t)
N(t)

≈ ΔN

N(t)
. (14)

The discrete form yields the population growth ΔN/N at timestep i:

ΔN

Ni
=

(N+
i+1 + N−

i+1) − (N+
i + N−

i )
N+

i + N−
i

(15)

and can also be negative, meaning cell degradation and removal. To solve the pre-
sented equations we rely on a commercial FEM package, Comsol Multiphysics.
We verified this solver extensively with common benchmarks like flow past a
cylinder, forced convection or a wall mounted bar sinking with gravity, where
we found very good agreement with the reference solutions.
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3 Example Application

In this section we present an application of our model to evaluate therapeutic
effects. The realism of the simulation is obviously very sensitive to the parameter
choice and determination of these parameters is a challenging part of tumor
simulation. The parameter set of any specific tumor type is not fully known.
Some of the parameters are difficult to access by experiment, others are being
reported differently by different authors. It is not the aim of this study to take
precise, well-defined parameters for one particular tumor type. Instead, for this
study we want to prove the feasibility of the presented modeling approach and
will rely on the literature or estimates to obtain the model parameters.

3.1 Model Parameters

Besides the set of parameters listed in Fig. 2 we will elucidate only the ones
determined via additional considerations. The delivery of oxygen depends on the
partial pressure difference in the blood and the tissue. It increases in hypoxic
regions, while in regions with high concentrations only little oxygen is delivered:

R31(c3, c2) = R0(c2) − Rp(c2)(c3 − c0
3). (16)

The reaction term parameters R0, Rp and c0
3 depend on factors such as the EC

density c2. The actual terms are derived in the next section.

O2 consumption: The actual value of oxygen consumption [11,12] depends on
many factors, including the tissue location, physical activity and altitude. For
the consumption we assume a logistic term

R32(c3) = Rsat
(c3)

p

(c3)
p +

(
ch
3

)p , (17)

Parameter Description Value SI Units Reference

E[R^2] =E[A}/pi Expectancy value of R^2 1,40E-11 m^2 MacGabhann 2007

gamma wall thickness to radius ratio 1,50E-01 - MacGabhann 2007 (Kretowski, Liver: 0.1-0.2)

Po2^{blood} Blood oxygen partial pressure 6,67E+03 Pa Ji 2006 (Shibata 2001)

C_2^0 normal vessel density 2,50E+01 kg vessels / m^3 tissue MacGabhann 2007

alpha^tissue oxygen saturation in tissue 2,92E-07 m^3 O2/(m^3 tissue)/Pa Ji 2006 (Ursino 0.024 ml O2/(ml tissue)/atm)

D_3 Diffusion coeff. of O2 in tissue 2,40E-09 m^2/s Ji 2006, Salathe(1.5e-5 cm^2/s)

c_3^h half saturation conc. 1,95E-05 m^3 O2 / m^3 tissue Ji 2006 (Pcrit=0.5 mmHg)

c_3^0 median O2 conc 1,87E-03 m^3 O2 / m^3 tissue Mayer 2008 (9 mmHg), Hoeckel 1991 (13mmHg in parous women)

p shape of consumption curve 1,00E+00 - Ji 2006

D_1 Diffusion coeff. of VEGF_164 in tissue 1,04E-10 m^2/s estimated by MacGabhann 2007

D_1 Diffusion coeff. of TAF in tissue 5,00E-11 m^2/s Anderson & Chaplain 1998

R_12 linear reaction coeff. 1,00E-06 1/s unclear, Szczerba, 2008

R_11^0 TAF source factor 2,00E-13 mol/m3/s Assuming 20kDa, unclear, refer to model in MacGabhann 2007

c_1 typical "typical" VEGF level measured in 

serum (women, ovaries, uterus)

4,00E-03 g/m^3 Agrawal 1999, 2000

t_1^low O2 threshold for hypoxic reaction 3,89E-05 m^3 O2 / m^3 tissue Mac Gabhann 2007

t_1^high O2 threshold for hypoxic reaction 7,78E-04 m^3 O2 / m^3 tissue Mac Gabhann 2007

D_2 Diffusion coeff. of EC 1,00E-14 m2/s Anderson 1998, Szczerba, 2008

k0 chemotactic coefficient 2,60E-04 m5/s/mol Stokes 1990

k1 chemotactic coefficient 1,00E-07 mol/m3 Stokes 1990

Fig. 2. Summary of the model parameters. The references not covered by the bibliog-
raphy of this paper can be found in an earlier publication [8].
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where ch
3 is the concentration at which the reaction term reaches half maximum

and p controls the shape of R32(c3). This reflects the fact that the consumption
is bounded by the amount of oxygen available but also saturates if oxygen is
unlimited.

Oxygen Source Terms: The approximate form of the oxygen source terms can
be estimated based on following observations. For a vessel segment of length L,
radius Rs and wall thickness ws the exchange of oxygen with the surrounding
tissue depends on the oxygen gradient, respectively the partial pressure difference
across the vessel wall (Fick’s first law)

QO2 = dS Dw
O2

αw
O2

(
P blood

O2
− P tissue

O2

) 1
ws

, (18)

where dS = 2π RsL is the surface of the vessel segment and Dw
O2

is the diffusion
constant in the vessel wall. Oxygen concentration in the tissue is proportional
to the oxygen partial pressure according to Henri’s law

P tissue
O2

= c3/αtissue
O2

, (19)

where the parameter αtissue
O2

is the oxygen solubility. The term αw
O2

(P blood
O2

−
P tissue

O2
) 1

ws
is the oxygen concentration gradient across the vessel wall. For a

short segment, the partial pressure in tissue P tissue
O2

and the blood P blood
O2

is
approximately constant. In a given volume V the total oxygen delivered to the
tissue is the sum of contributions from all segments within V

QV
O2

= 2πL

N∑
k

RkDw
O2

αw
O2

(
P blood

O2
− P tissue

O2

) 1
wk

. (20)

The EC density c2 includes the vessel wall and lumen, within the volume V it is

c2 =
1
V

N∑
k

L · R2
k π =

L

V

∑
k

R2
k π. (21)

Solving (21) for the segment length L and inserting the result in (20), gives a
relation between the oxygen flow QV

O2
and EC density. Under the assumptions

of constant blood oxygen partial pressure and constant wall thickness to radius
ratio γ, the terms can be simplified further. Finally, the source terms can be
deduced by dividing the oxygen flow by the volume V

R31(c3, c2) =
QV

O2

V
= c2

2/γ · Dw
O2

αw
O2

(
P blood

O2
− P tissue

O2

)∑
k R2

k/N
(22)
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We recognize the term
∑

k R2
k/N as the expected value E[R2].

R31(c3, c2) = c2
2/γ · Dw

O2
αw

O2
P blood

O2

E[R2]
− c2

2/γ · Dw
O2

αw
O2

/αtissue
O2

· c3

E[R2]
(23)

= RAc2 − RBc2c3 (24)

It is easy to verify that the derived source term corresponds to the generic form
proposed in (16) with appropriate selection of the terms R0 and Rp.

3.2 Initialization and Growth

The simulations are initiated with a small cluster of tumor cells in the center of
the host tissue surrounded by vessels on each side. The corresponding high EC
density is visible in Fig. 4 as a decaying gray shadow gradient at the box walls.
The tumor promotes directed vessel growth via secretion of tumor angiogenic
factors (TAF), leading to EC migration from the adjacent parent vessels. In
this vascular phase the tumor expands virtually unbounded and will eventually
cause physiological problems due to compression of the surrounding tissue. The
EC density increase the corresponding vessels’ diameter and wall thickness in
time, which in turn modulates their oxygen delivery rate. For large vessels, blood
flow increases and diffusion through the wall decreases. For capillaries it is the
contrary: most of oxygen exchange is realized here, but the net mass flux is small.
To obtain the distributions of vessel diameters we solve a Dirichlet problem inside
the domain by fixing the vessel diameters at the boundaries to the expected
diameters (feeding arterioles, 50μm). The equation parameters are determined
experimentally to achieve capillaries of about 5μm radius in the center of the
domain. The unregulated tumor growth is presented in Fig. 4 left (EC) and Fig. 3
(oxygenation map). Non-symmetrical compartments develop despite the initial
boundary symmetry. EC density is realized with a typical capillary buildup in
the center of the host tissue in form of a frequently observed vascular capsule.

Fig. 3. Examples of compartment formation within the tumor (white outline with
mesh) of necrotic and viable tissue for different necrosis thresholds. The oxygenation
map is color coded, the inner areas denote oxygen isocontours of the threshold level.
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Fig. 4. EC density within the host tissue. Left: unregulated growth; center: emboliza-
tion of the lower vessel; right: tumor after angiostatin infusion.

Four branches of vessels are clearly visible, connecting the tumor to the feeding
arteries on the periphery. The tumor itself is penetrated by a dense network of
capillaries, as often actually observed.

Growth inhibition through embolization: Embolization is a minimally-invasive
procedure involving a selective occlusion of blood vessels, by introducing an ar-
tificial embolus (coil, particle, foam, plug). The purpose of embolization is to per-
manently block the blood flow to the tumor, leading to immediate tissue hypoxia
and eventually necrosis. In our simulation the tumor grows initially unbounded,
supported by the accompanying angiogenesis for 4 months. The virtual emboliza-
tion procedure is performed by disabling the lower feeding artery. We implement
it by replacing the Dirichlet boundary condition by a non-penetration condition.
Note, that we do not remove any existing daughter vessels that sprouted off. This
relatively well approximates the fact that only blood supply is eliminated, but
neither the blood vessels nor endothelial cells. The EC density concentration 6
months after treatment in Fig. 4 (center) shows an asymmetric appearance. The
vessel density in the lower half is greatly reduced, which corresponds to a ceasing

Fig. 5. Development of total tumor mass under different conditions. Solid line: no
treatment; dashed line: Angiostatin treatment; dot dashed line: embolization.
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of the respective feeding vessel. The capillary core is still maintained, and shows
only slight signs of asymmetry in the lower part. Obviously the capillaries still
sufficiently supply the tumor with oxygen, such that the vessel network can be
maintained through preexisting anastomosis. As the daughter vessels were not
removed, they are still a part of a network and continue to deliver oxygen. In
Fig. 5 we can, however, observe that the total mass of the tumor is somewhat
lower than in the unregulated case.

Growth inhibition through Angiostatin: Next we test the infusion of angiostatin
(AST), a potent inhibitor of angiogenesis. There are several ways angiostatin
influences the tumor and the underlying mechanisms are not fully understood
[13,14]. In the study we introduce angiostatin locally in the 4th month of tu-
mor development and continue its administration till the end of month 10. This
inhibitor neutralizes the growth factor directly as described by (2). We apply
AST off-center in the lower left quadrant and not inside the tumor, to prevent
the vessels from reaching the tumor at all. In Fig. 4 (right) we notice a strongly
asymmetric EC density distribution, where the AST supplied area is excluded
from any vessel growth. The local concentration of AST does not actually pre-
vent the vessels from connecting to the tumor. Instead, the EC density builds
clearly defined feeding vessels around the AST supplied area. The EC density
accumulates outside the AST application region and is able to form a dense
capillary capsule. We were not able to find data in the literature for the reaction
rate between AST and the TGF, and it was arbitrarily set 1:1, justified to some
extent by the similar molecular weights of the two factors.

4 Discussion and Outlook

The results from our extended model are in a reasonable qualitative agreement
with commonly available findings. The improved modeling of EC added further
physiological realism, since we managed to model the capillary penetration of the
tumor and are now able to achieve tumor compartmentalization as seen in Fig. 3.
This approach generates reasonable results, which make it a viable alternative to
the expensive explicit modeling of the vessels. The origin of asymmetric pheno-
types from symmetric boundary conditions we will consider closely with refined
meshes. We will further extend the scope of our model, to cover also other aspects
like thermal effects, hormonal, radiation or chemotherapy. The tumor model is
generally difficult to validate since many of the parameters are unknown or carry
large measurement errors. It is the most difficult challenge to quantify these effects
on the cellular level, which is the reason why the simulation outcome can not be
currently validated against the physiological findings. After all the development
of the tumor may be assessed on the macroscopic level, comparing the tumor re-
gression to in vivo diagnostic observation (CT, US, MRI). We are convinced of the
great value of the computational model once parameters are available from mea-
surements. Here we are especially interested in verifying mechanical effects as it is
one of the major benefits of relying on FEM methods for the simulation.
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Simulating Individual-Based Models of
Epidemics in Hierarchical Networks
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Abstract. Current mathematical modeling methods for the spreading
of infectious diseases are too simplified and do not scale well. We present
the Simulator of Epidemic Evolution in Complex Networks (SEECN),
an efficient simulator of detailed individual-based models by parame-
terizing separate dynamics operators, which are iteratively applied to
the contact network. We reduce the network generator’s computational
complexity, improve cache efficiency and parallelize the simulator. To
evaluate its running time we experiment with an HIV epidemic model
that incorporates up to one million homosexual men in a scale-free net-
work, including hierarchical community structure, social dynamics and
multi-stage intranode progression. We find that the running times are
feasible, on the order of minutes, and argue that SEECN can be used to
study realistic epidemics and its properties experimentally, in contrast
to defining and solving ever more complicated mathematical models as
is the current practice.

1 Introduction

Faithful simulations of epidemics in population networks require explicit mod-
eling of a large number of static and dynamic properties of the network and
the epidemic. However, current research often performs rigorous mathematical
studies of non-representative simplifications. Examples of such network proper-
ties are degree distribution, community structure, assortativity, node and edge
types, edge weights and temporal variance; properties of epidemics include infec-
tion stage progression, infectiousness, drug efficacy and immunity. In particular,
epidemics are typically simulated using standard mean-field approximations or
master equations extended with one or a few of these properties, but extending
these to more representative models is difficult.

It is widely accepted that current mean-field approximations and master equa-
tions of epidemics are unrealistic and that more social and epidemiological details
should be considered [1,2,3,4], so various biological and social systems are thought
of asnetworkswithvarious complexproperties [5,6,7,8,9].At present,however, epi-
demic studies using such complex networks focus on only one or a few such proper-
ties, such as degree correlation [10,11,12,13,14,15,16], topology [17,16,18,19,20,21],
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edge weights [22,21], temporal variance [23], and epidemic dynamics [24,25]. At the
other extreme and similar in spirit to our work is EpiSims [26], which uses detailed
infrastructure and traffic data of a single city and simulates on the scale of seconds;
however it does not extend easily to other and larger populations.

In this paper we present the Simulator of Epidemic Evolution in Complex
Networks, or SEECN1, with which detailed individual-based models can be sim-
ulated experimentally, based on available data. In SEECN, nodes and edges are
organized hierarchically and have arbitrary properties that dictate the temporal
evolution of the network and the epidemic. This evolution is driven by a set
of dynamics operators that can be parameterized independently and in terms
of the node and edge properties; for example, sexual relationships (edges) form
and break depending on both nodes’ gender and age. Their hierarchical organi-
zation reduces the model complexity and reflects how network data is typically
available; for example, commuter traffic statistics may be available per province
within a country, and per city within a province.

A consequential concern with such an expressive approach is running time,
which is a challenge to optimize since scale-free networks often exhibit low de-
grees of locality and memory access patterns are not known a priori. We show
how SEECN reduces computational complexity by exploiting hierarchical struc-
ture, improves cache efficiency by choosing an appropriate data structure and
buffering edge traversals, and achieves parallelization with load balance. Our ex-
periments show that these improvements reduce the running time to the extent
that the simulator is practical even for detailed and highly entropic models.

This paper is organized as follows. In Section 2, SEECN is defined at a high-
level with a minimum of implementation details, implying its expressiveness.
Then, in Section 3, we discuss its algorithms and improvements. The experiments
are presented in Section 4, and their results are shown and discussed in Section 5.
Finally, we conclude in Section 6.

2 The SEECN

A simulation is boot-strapped by generating a representative network G =
(V, E), after which temporal dynamics are iteratively performed that drive the
epidemic or change the network. See Fig. 1. We define dynamics as processes that
change the network state in some way. All dynamics (including the network gen-
erator) are implemented as separate dynamics operators Di, or operators, which
can be parameterized independently or reuse existing parameters. A model is a
set of parameterized operators {D1, D2, . . . , Dd}.

To differentiate dynamics in a heterogeneous population, we augment each
node x ∈ [0, ‖V ‖) and edge (x, y) ∈ E with a property vector vx ∈ V or w(x,y) ∈
W , respectively, and parameterize operators in terms of these vectors. Each
value vx[i] (or w(x,y)[j]) of such a vector is one of a predefined set V [i] (W [j]) of
possible values for a specific node property i, such as gender or infection stage,
or edge property j, such as type of relationship. Then, an operator implements a
1 Pronounce as “season”.
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E d g e  d y n a m i c s I n f e c t i o n  p r o p a g a t i o n I n f e c t i o n  p r o g r e s s i o n . . .

=  H e a l t h y ,  

I n f e c t i o n
s t a g e  A ,

I n f e c t i o n
s t a g e  B .=

=

Fig. 1. Dynamics operators are applied sequentially to a network in one time step. The
network has two communities, each with more internal than external edges.

transition probability matrix of ‖V‖×‖V‖ or ‖V‖2 · ‖W‖×‖V‖2 · ‖W‖ elements,
essentially defining first-order stochastic differential equations for all network
state2. Adding and removing nodes3 and edges are special cases.

We use a separate operator for each type of dynamics, simplifying model
specification. In this way, semantically different dynamics can be independently
parameterized and turned on or off. In practice, each operator usually ‘ignores’
most of the parameter space; for instance, infection propagation changes only
the receiving node’s state, not that of the edge or the originating node.

In particular, the network generator G(h, p, q, N) is a special operator that is
executed first and once. The first parameter is a network recipe h : [0, N)2 �→
[0, 1], which specifies the probability of each possible edge to be generated. Sec-
ond, p : V �→ [0, 1] and q : W �→ [0, 1] specify the prior probability of any node
or edge having a particular state. Lastly, N is the number of nodes.

The recipe is constrained as a modular network with hierarchical organization,
or hierarchy, where the network is iteratively partitioned into subhierarchies. All
nodes within a particular subhierarchy have equal connection probabilities to
nodes of all other subhierarchies not contained by or containing the former. In
particular, we define a community such that node x and y belong to the same
community iff ∀z P ((x, z) ∈ E) = P ((y, z) ∈ E). In the worst case, the commu-
nities are precisely the lowest subhierarchies (which are not partitioned further),
however in some cases multiple subhierarchies may be combined. Ultimately, a
typical network’s recipe is simplified with additional a priori statistical structure
that we can exploit in our algorithms and analyses. Note that a single partition
into N subhierarchies yields a recipe with no additional structure.

In addition to the benefit of a simplified recipe, we use hierarchical orga-
nization because many population networks appear hierarchical, and data is

2 A state of a node or edge is a specific instance of its property vector; the network
state is the combined state of its nodes and edges.

3 Currently we only replace nodes, keeping network size constant.
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often available in this way. For example, one may use travel statistics between
provinces in a country, and between cities in a province. In this way, in the ab-
sence of individual data, each contact’s probability can be estimated by travers-
ing the hierarchy and multiplying the appropriate connection probabilities.

Finally, if network G0 is an instance of a recipe, it changes over time step
i ≥ 0 as Gi when iteratively applying d dynamics operators, as

Gi+1 = D1 (D2 (. . . Dd (Gi) . . .)) ,

G0 = G (h, p, q, N) .

(Here, D(Gi) is shorthand for applying the operator to all existing nodes and
edges at time step i.) Any statistic can then be calculated from the succession
(Gi)i, e.g., infection incidence, prevalence or treatment uptake.

SEECN’s current implementation has some limitations. Most prominently,
the hierarchy is constrained to that of “Kronecker graphs” [27] because of its
good qualitative correspondence to real networks in absence of more detailed
parameters that enable defining a recipe. This results in a recursive partitioning
into two subhierarchies with equal connection probabilities at all levels. Further,
edge probabilities are independent of property vectors; although this shortcom-
ing can be significant, it can be partly overcome by changing the parameters
for disease propagation.4 Lastly, nodes are only removed or added, but do not
migrate between communities.

3 Algorithmic Improvements

A primary concern with detailed individual-based simulations is running time.
Many real networks are approximately scale-free [28], but such networks are no-
toriously difficult to partition and access patterns are highly irregular. Moreover,
multiple simulation runs must be combined to obtain statistical significance, and
typical applications include parameter-searching and impact evaluation of pa-
rameters. Therefore, a simulator should run fast in order to be useful.

For ease of presentation, we characterize operators as one of the following
primitives that compute in O(N), O(|E|), and O(N2) instructions5, respectively.

Node operators visit all nodes, e.g., progression and removal.
Edge operators visit all existing edges, e.g, infection propagation.
Recipe operators visit all possible edges, e.g., network generation.

Our algorithmic improvements focus on computational complexity, cache effi-
ciency and parallelization. Firstly, recipe operators dominate computation time
and become a bottleneck for larger graphs even though such operators are cache
efficient. The second bottleneck is due to cache misses, because the simulator
performs many random memory accesses per little computation. Finally, an ob-
vious but non-trivial improvement is parallelization.
4 For instance, if unsafe sex with an HIV-infected person is less frequent, its infection

probabilities are reduced.
5 We distinguish computational complexity, in terms of instruction count, from run-

ning time complexity, which includes communication and memory access overhead.
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3.1 Improving Computational Complexity

For recipe operators, we can exploit regularity imposed by hierarchical recipes.
In contrast, the complexities of node and edge operators cannot be improved,
assuming that every existing node and edge is relevant for the evolution of the
epidemic. The following observation holds even if edge probabilities depend on
property vectors since there is a constant number of possible states.

Many (ω(1)) entries of a recipe are equal if C ∈ o(N), where C is the number of
communities. Since edge probabilities are equal for all nodes within a community,
recipe operators compute in terms of communities instead of nodes. For example,
to generate edges for a node its degree is drawn from a suitable distribution, since
each community’s contribution to a node’s degree is binomially distributed. For
larger communities these approach Poisson distributions that sum up. Then,
each edge’s neighbor node id is selected by first selecting a community id [0, C)
and then a random node id within that community.

Thus, recipe operators require O(NC) instructions. In worst-case, though, C ∝
N in which case it remains O(N2); for Kronecker graphs, C = log2 N [29].

3.2 Improving Cache Efficiency

Random memory access dominates running time due to visiting and traversing
edges, both of which require special attention [30] and are discussed in turn. Node
and recipe operators can visit node structures and random number generators
in order, so this section focuses on edge operators.

Network dynamism further constrains the choice of data structure and sug-
gests the classic adjacency matrix (see left of Fig. 2). To remain efficient, all
memory should be pre-allocated and not be (de)allocated constantly, which
would fragment memory. The adjacency matrix stores edges contiguously per
node and reserves equal capacity 0 < D ≤ N for each node. Visiting all edge
sides of one node is in cache. However, in scale-free networks only a small frac-
tion of nodes uses its full capacity, in which case visiting the first edge side of the
next node is (almost) always a cache miss. Thus, the adjacency matrix incurs
an expected 〈M〉 = N cache misses per node.

An alternative is the Jagged Diagonal Storage (JDS) [31] which stores node
x’s ith edge in the ith of D arrays, at element x of N (see right of Fig. 2). In
JDS, all edge sides are visited per such array, and a cache miss occurs only when
some node’s ith edge is accessed while B ≥ 1 previous nodes had less than i
edges. To minimize this probability we renumber nodes on expected degree.

We can show that, for visiting all edge sides, JDS incurs fewer expected cache
misses 〈M〉 than the adjacency array, as follows. We assume that a cache miss
occurs if two memory accesses are separated by B or more edge structures. Node
x has degree d with probability fx(d), and Fx(d) =

∑d
i=0 fx(i). The probability

P (Mx ≥ m) of node x incurring at least 0 < m ≤ D cache misses is then
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Fig. 2. A comparison of memory access patterns between the adjacency array and JDS
for a scale-free network

P (Mx ≥ m) =
D∑

d=1

fx(d) ·
L∏

y=1

Fx−y(d − m)

≤
D∑

d=1

fx(d) · Fx−1(d − m) (L = 1)

≤
D∑

d=1

fx(d) · Fx(d − m) <
1
2

(∀d′ Fx(d′) ≥ Fx−1(d′))

(For binomial fx.) In other words, most nodes will incur no cache miss at all.
Although this does not prove that 〈M〉 < 1 for all possible sets of parameters, we
have been unable to find such sets experimentally. Computed using the above,
〈M〉 ≈ 0.6 for the simulations in the next section.

The second source of cache misses is due to traversing edges, which we reduce
by queuing and sorting updates. Operators in SEECN queue updates, which
dictate state changes for a neighboring node. Eventually the updates are sorted
on node identifier and performed in order, splitting the traversal problem into
a sorting part and an edge visiting part. For improved efficiency, the updates of
multiple independent operators may be combined.

3.3 Parallelization

Because edge traversals dominate running time for large graphs, and usually
|E| ∈ Ω(N), we partition the network with respect to edges. In contrast, node
operators are relatively inexpensive because they access all nodes in order. More-
over, node structures must already be accessed for edge operators, e.g., to update
a node’s degree after edge removal or addition.

Therefore we partition the network at the granularity of nodes, in contiguous
ranges, while balancing the expected total number of edges to be handled by each
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process. Although SEECN could exploit the hierarchical community structure
to partition the network more optimally, the current partitioning algorithm is
simplified by assuming no assortativity beyond that in expected degree; in fact,
Kronecker is such a generator [29]. This assumption implies that a node x with
expected degree 〈dx〉 expectedly incurs 〈dx〉 / 〈dy〉 more interprocess edges than
node y, and therefore the optimal partition is to balance the expected number of
edges to handle by any process i out of p. The probability that an edge connects
two nodes of different processes is (p − 1)/p.

In terms of implementation, few changes need be made. Most prominently,
each process’ update queue (Section 3.2) must be split into p queues, one for
each process; at intermediate steps the queues can easily be transferred at once,
benefiting from high communication bandwidth. Exploiting high bandwidth is
important because the size of a queues scales as O(|E|) for increasing N .

4 Experiments

In this section we perform benchmark experiments using one, four and six-
teen processes. The epidemic model is fairly complex and represents HIV in
a population of homosexual men. This model assumes a hierarchical network
with power-law exponent 1.6, and classifies nodes as healthy, acute, (un)treated
asymptomatic, or (un)treated AIDS, each of which have distinct infectiousness,
life expectency and duration of relationships. The details are presented elsewhere
[29], where good qualitative correspondence with historical data was found.

We experiment with three variants of SEECN to evaluate the impact of cache
efficiency and load balance. The first algorithm (cached or C) queues updates but
does not renumber the nodes on descending degree (Section 3.2) and does not
sort the queues. As variations to cached, the second algorithm (load-balanced
or LB) renumbers the nodes and the third (sorted or S) also sorts the queues.6

The latter two algorithms partition the graph into equal expected edge counts
per process, whereas the cached algorithm must resort to balancing the number
of nodes due to the irregular distribution of edges over nodes.

The experiments are run on a Linux cluster of 680 dual-core Intel Xeon nodes
at 3.4 GHz. We allocate one process per compute node (homogenizing commu-
nication overhead) and use TCP/IP over Infiniband. We implement SEECN in
C++, parallelize it with MPI, and compile it with GCC 4.1.2 and MPICH2 1.0.8.
SEECN’s code is not hand tuned and uses the standard STL sorting algorithm.

5 Results

The sequential experiments show the impact of cache efficiency of both visiting
(load-balanced) and traversing (sorted) edges, for increasing N . The results
are shown in Fig. 3. We could not experiment with network sizes of over 220

because a single process would run out of memory.
6 Particularly, we do not analyze the impact of using the JDS instead of the adjacency

array, because only JDS is implemented.
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Fig. 3. The sequential running times (on logarithmic scale) of generating the network
(G) and performing all other dynamics in a single time step (D), and the parallel
speedups of both using 4 and 16 processes. All data points are averages of five runs,
and each run had 100 time steps of dynamics (standard error is too small to show).

Firstly, the results suggest indeed that the running time scales as |E|. The
lorarithmic running time plots of the sorted generator and dynamics operators
have slopes of 2.26 and 2.30. The theoretically expected slope for the logarith-
mic edge count is 2.3 (not shown) because |E| ∝ 2.3log2 N [29], in the absence
of a maximum degree. It is also interesting that the fraction of edge visits and
traversals that are cache efficient without sorting queues decreases with increas-
ing network size, because both slopes for the LB algorithm are about 2.45.

Secondly, the performance benefit of renumbering nodes and visiting them in
order is significant for smaller graphs (N ≤ 216), for which sorting queues has
no benefit. However, the number of updates per time step grows as |E|, so the
average number of updates per node increases, whereas the number of initial
visits (i.e., not caused by an update) remains constant. Consequently, for larger
graphs (216 < N ≤ 220) the benefit of cache efficient initial visits diminish while
the benefit of sorting updates and performing them in order increases.

For the parallel case we show the speedup of the cached and sorted algo-
rithms over the same range as for the sequential case in Fig. 3. Clearly, balancing
the number of nodes is less efficient than balancing edge counts. For an increas-
ing number of processes, sorted’s efficiency curves are about 0.5 and almost
constant; in contrast, cached’s efficiency curves drop from 0.4 to 0.25.

The speedups remain roughly constant over our range of N , which would be
the case if both processing and communication time would be dominated by
the number of updates and therefore by |E|. Communication overhead that is
sublinear in |E| in the absence of additional assortativity is not possible (without
load imbalance), so we consider our parallelization efforts successful.
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6 Conclusion

In this paper we show that detailed, individual-based models of epidemics can
indeed be simulated in reasonable running time; in particular, we discuss and
implement algorithmic improvements and evaluate the impact of buffering edge
traversals, sorting these traversals, and parallelizing with balanced numbers of
nodes or edges. For a representative epidemic model we find a constant sequen-
tial running time reduction of almost factor 2, and a constant parallel eficiency
of roughly 0.5. As a result, a detailed simulation of HIV among one million per-
sons in a hierarchical and scale-free network over 25 years (100 time steps) takes
two minutes using 16 processes. We conclude that for simulating epidemics, ex-
perimentation can be an expressive and convenient alternative to mathematical
modeling, and that parameter searching and impact evaluation are feasible.
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6. Wuchty, S., Ravasz, E.: lászló Barabási, A.: The architecture of biological net-

works. In: Complex Systems in Biomedicine. Kluwer Academic Publishers, Dor-
drecht (2003)

7. Barabási, A.L., Oltvai, Z.N.: Network biology: understanding the cell’s functional
organization. Nature Reviews Genetics 5(2), 101–113 (2004)

8. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.U.: Complex net-
works: Structure and dynamics. Physics Reports 424(4-5), 175–308 (2006)

9. da Costa, F.L., Rodrigues, F.A., Travieso, G., Boas, P.R.V.: Characterization of
complex networks: A survey of measurements. Advance. Advances In Physics 56,
167 (2007)

10. Sloot, P.M.A., Ivanov, S.V., Boukhanovsky, A.V., van de Vijver, D.A.M.C.,
Boucher, C.A.B.: Stochastic simulation of HIV population dynamics through com-
plex network modelling. Int. J. Comput. Math. 85(8), 1175–1187 (2008)

11. Pastor-Satorras, R., Vespignani, A.: Epidemics and immunization in scale-free
networks. In: Bornholdt, S., Schuster, H.G. (eds.) Contribution to Handbook of
Graphs and Networks: From the Genome to the Internet. Wiley-VCH, Berlin (2002)



734 R. Quax, D.A. Bader, and P.M.A. Sloot

12. Pastor-Satorras, R., Vespignani, A.: Epidemic dynamics and endemic states in
complex networks. Physical Review E 63, 66117 (2001)

13. Moreno, Y., Pastor-Satorras, R., Vespignani, A.: Epidemic outbreaks in complex
heterogeneous networks. The European Physical Journal B - Condensed Matter
and Complex Systems 26(4), 521–529 (2002)

14. Zhou, C., Kurths, J.: Hierarchical synchronization in complex networks with het-
erogeneous degrees. Chaos: An Interdisciplinary Journal of Nonlinear Science 16(1),
015104 (2006)

15. Barthelemy, M., Barrat, A., Pastor-Satorras, R., Vespignani, A.: Dynamical pat-
terns of epidemic outbreaks in complex heterogeneous networks. Journal of Theo-
retical Biology 235, 275 (2005)

16. Sorrentino, F.: Effects of the network structural properties on its controllability.
Chaos 17(3), 033101 (2007)

17. Petermann, T., Rios, P.D.L.: The role of clustering and gridlike ordering in epi-
demic spreading. Physical Review E 69, 066116 (2004)
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19. Grabowski, A., Kosiński, R.A.: The SIS Model of Epidemic Spreading in a Hierar-
chical Social Network. Acta Physica Polonica B 36, 1579 (2005)

20. Verdasca, J., da Gama, M.M.T., Nunes, A., Bernardino, N.R., Pacheco, J.M.,
Gomes, M.C.: Recurrent epidemics in small world networks. Journal of Theoretical
Biology 233(4), 553–561 (2004)
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Abstract. We present a continuous time/discrete space model of biofilm
growth, starting from the semi-discrete master equation. The probabil-
ities of biomass movement into neighboring sites depend on the local
biomass density and on the biomass density in the target site such that
spatial movement only takes place if (i) locally not enough space is avail-
able to accommodate newly produced biomass and (ii) the target site has
capacity to accommodate new biomass. This mimics the rules employed
by Cellular Automata models of biofilms. Grid refinement leads formally
to a degenerate parabolic equation. We show that a set of transition rules
can be found such that a previously studied ad hoc density-dependent
diffusion-reaction model of biofilm formation is approximated well.

1 Introduction

Most bacterial populations live as microbial depositions on immersed surfaces
(called substratum in the biofilm context). These biofilm colonies are not a con-
sequence of active or even deliberate aggregation of microorganisms but of im-
mobilization and cell division. Once cells become sessile they start to produce an
extracellular polymeric network in which they are themselves embedded (EPS).
Thus, they are heavily restricted in their mobility. Living in biofilm colonies is
quite different from living as a suspended population. For example, the colony
offers protection against mechanical washout or antibiotic attacks.

As long as the conditions are locally favorable to sustain microbial growth,
cells will increase in size and eventually divide. The local expansion of a biofilm
is primarily driven by this growth process. As new cells require more space, the
neighbors must make way. The bacteria closer to the food source grow faster
than the bacteria further away, e.g. the ones close to the substratum. This can
lead to the characteristic ”biofilm mushroom structures” [10] which appear as
if the biofilm is growing toward the region with higher food concentrations. In
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Fig. 1. Schematics of one time step of biomass spreading in cellular automata models,
cf [12,13], (left to right): If the biomass in a grid cell approaches or exceeds maximum
packing density (yellow grid cells), mass is moved into neighboring sites. If empty
neighboring grid cell are found the excess biomass is placed there (grey), otherwise
re-shuffling takes place (existing biomass is placed in a neighboring cell [grey-yellow],
the excess biomass of which is placed in a suitable empty site).

contrast to chemotaxis, however, this is not an active movement up the nutrient
gradient but a consequence of the fact that life under conditions of abundance
is more conducive to population growth than under conditions of starvation.

The most widespread technique in modern biofilm modeling, and in fact the
modeling concept that first was used to describe multi-dimensional biofilm
formation are cellular automata, e.g. [2,7,12,13,14], cf Fig. 1. Deterministic con-
tinuum models include the density-dependent diffusion model [3], which is for-
mulated as a traditional spatially structured population and resource dynamics
model. Despite the good phenomenological agreement between different model
approaches [10,17] no attempts have been made so far to relate these seemingly
so different models to each other. We formulate here a discrete space, continu-
ous time model, starting from the master equation that describes the probability
that bacteria move from one site on a regular lattice into a neighboring site and
vice versa. This movement follows stochastic rules which qualitatively mimic
those in [12]. The probability of biomass movement into neighboring sites has
to account for two particular aspects: (i) It depends on the availability of space
in that site (volume filling, cf [11]), and (ii) as long as there is capacity to ac-
commodate new biomass locally the incentive to move into a neighboring site is
small (quenching). Semi-discrete master equation models lend themselves in an
often straightforward manner to deriving deterministic continuous models. Our
goal is to derive from this spatially discrete description the phenomenological
nonlinear diffusion model [3]. In fact, since this was originally introduced in an
ad hoc fashion, the semi-discrete approach described here can be understood as
an a posteriori derivation of this model.

Semi-discrete master equation models for spatially structured populations
have been developed for many different types of migration in ecology and cell
biology, such as aggregation and (chemo-)taxis, cf. [1,9,11,16]. The advantage
of the approach is that phenomenological migration rules are easily formulated
based on assumptions on the individual level, while the well-developed machinery
of differential equations can be used to study the model on the population level.
The biofilm model presented here has qualitative properties that are distinct
from other master equation models, since it has to account for the properties (i)
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and (ii) above. Moreover, since the driving force behind spatial expansion of the
biofilm is population growth, this needs to be included in every biofilm model.

2 The Spatially Discrete Master Equation

We consider an equidistant discretization of the real line and denote by T ±
i the

probability that biomass moves from the ith grid cell into neighbor cell i ± 1,
cf. Fig. 2. We follow common practice and equate the dependent variable ui

with the population density in the ith site on the lattice. Like most biofilm
models, we subsume EPS and cells in this variable. Since the site’s capacity to
accommodate bacteria is limited, we normalize the density with respect to the
maximum density, i.e. we interpret it as the volume fraction of site i occupied by
the population. Thus, 0 ≤ ui ≤ 1 is mandatory. The T ±

i can also be understood
as mass transfer rates. The master equation reads

dui

dt
= T +

i−1ui−1 + T −
i+1ui+1 − (T +

i + T −
i )ui + Kiui, (1)

where T ±
i = αq±i with a scaling factor α that depends on time-scale and length

scale, i.e. distance between two sites h. More specifically, for diffusion problems
α scales with h2 , such that limh→0 αh2 = α0 > 0. The probability q±i of a jump
from location i to location i ± 1 depends on the densities in both sites, i.e. on ui

and on ui±1. We make the general ansatz

q±i = q(ui)p(ui±1). (2)

In cellular automaton biofilm models like [12], spatial spreading of biomass takes
place if the local biomass density ui reaches or exceeds the maximum cell packing
density, i.e. u ≈ 1. Then a given or randomly chosen amount of the local biomass
density is placed in a neighboring grid cell according to some stochastic local rule.
In the continuum model [3], on the other hand, the spatial spreading is described
deterministically: biomass is not moved into neighboring sites as long as newly
produced biomass still easily fits into the local site. As ui increases and gets
close to 1, T ±

i increases. Moreover, the bigger the volume fraction in the target
site, the smaller is T ±

i . Thus, we assume q(u) to be a monotonously increasing
function and p(u) to be a monotonously decreasing function. Assuming sufficient
smoothness, we have for p, q the properties

Fig. 2. Schematic of movement of biomass between neighboring lattice cells. The prob-
ability for biomass to move from cell i into cell i ± 1 is denoted by T ±

i etc.
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q(0) = 0, q′(u) ≥ 0, q(1) = 1,

p(0) = 1, p′(u) ≤ 0, p(1) = 0.
(3)

In (1), Ki is the net biomass production rate in grid cell i. This is the ac-
tual force driving the expansion of biofilm colonies. If Ki is a positive constant
the model describes unrestricted exponential growth. In most biofilm systems,
growth is eventually not everywhere unlimited. Limitations can be induced by
local limitation of nutrients, iron, oxygen (aerobic case) etc. or by large amounts
of growth inhibitors such as protonated lactic acids, proton ions [i.e. low pH], or
oxygen (anaerobic case). Modeling these effects is conceptually straightforward.
Each growth limiting substrate is described by an additional transport-reaction
equation, which is coupled with (1) in the reaction term Ki. The growth limita-
tion mechanisms listed above are due to an increase of biomass in the system.
For example, the more bacteria there are in the system the more nutrients are
depleted, etc. In many biofilm systems the net growth rate can become negative,
e.g if nutrients are locally completely depleted and natural cell loss dominates.
Under this light, assuming Ki = const is the most challenging case because
biomass production is highest and, thus, biomass spreading most pronounced.

The relationship between the spatially discrete and a continuous description
is established by passing the grid cell size h in (1) to the continuous limit, h → 0.
Assuming enough smoothness we approximate q(ui±1) and p(ui±1) in the usual
way by Taylor polynomials about ui,

q(ui±1) = q(ui) + (ui±1 − ui)q′(ui) + (ui±1 − ui)2q′′(ui)/2 + O((ui±1 − ui)3)

p(ui±1) = p(ui) + (ui±1 − ui)p′(ui) + (ui±1 − ui)2p′′(ui)/2 + O((ui±1 − ui)3).

Interpreting ui as a quantity in the cell center xi, we can interpolate the grid
function ui by a continuous function u with u(t, xi) = ui(t). For given t we
approximate u(t, xi±1) by Taylor polynomials

u(t, xi±1) = ui(t) ± h
∂ui(t)

∂x
+

h2

2
∂2ui(t)

∂x2 + O(h3)

where ∂ui

∂x is short-hand for ∂u
∂x (·, xi). Substituting these expressions into (1) we

obtain after dropping O(h3) terms and sorting by powers of ∂ui/∂x

∂ui

∂t
= Kui + αh2 [p(ui)q(ui) + u (p(ui)q′(ui) − q(ui)p′(ui))]

∂2ui

∂x2 +

+ αh2 [p(ui)q′′(ui)ui + 2q′(ui)p(ui) − uiq(ui)p′′(ui)]
(

∂ui

∂x

)2

.

(4)

Defining now the density dependent diffusion coefficient

D(u) := p(u)q(u) + u (p(u)q′(u) − q(u)p′(u)) (5)

equation (4) can be written as a diffusion-reaction equation in divergence form

du

dt
=

∂

∂x

(
D(u)

∂u

∂x

)
+ Ku. (6)
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3 An Inverse Problem

A density-dependent diffusion-reaction model for biofilm formation was intro-
duced in [3] and has been studied since numerically and analytically in its orig-
inal and extended versions, e.g. in [4,5,6,8]. The pecularity of that model lies in
the form of the nonlinear diffusion coefficient D(u), namely

D(u) = δua(1 − u)−b, a, b ≥ 1. (7)

For small u � 1 this type of nonlinear diffusion acts like the porous medium
equation, while for large u ≈ 1 it shows fast diffusion effects. The interplay of
both effects is required to describe a growing biofilm. It was shown in [6] that
solutions of this model remain bounded by and separated from unity, u < 1 − η,
for a η > 0, as long as the biofilm/water interface stays away from the boundary
of the domain somewhere. Thus, the singularity is never reached. It follows then
with standard arguments about degenerate diffusion-reaction equations, cf [15],
that initial data with compact support imply solutions with compact support. In
our application this means that the interface between biofilm and surrounding
liquid is sharp and propagates at finite speed.

We try to find jump probabilities q(u) and p(u) with (3) such that the
diffusion-reaction model (6) with (7) is recovered. This is a constrained scalar
boundary value problem for two unknown functions. It is transformed into an
ordinary boundary value problem by introducing one more assumption on q
and/or p. We propose

p(u) := 1 − uq(u). (8)

It is easily verified that p satisfies (3) if q does and vice versa. With (8) equation
(5) becomes the linear ordinary differential equation

uq′(u) + q(u) = D(u), (9)

which degenerates for u = 0. Moreover, the right hand side of (9) blows up for
u = 1. We introduce the following regularization with small parameter ε > 0,
which was already used in the analysis of the biofilm model (6), (7) in [6,8].

Dε(u) =

{
δ (u+ε)a

(1−u)b , for u < 1 − ε,

δε−b, for u ≥ 1 − ε.
(10)

The unique solution qε of the regularized initial value problem

(u + ε)q′(u) + q(u) = Dε(u), q(0) = 0 (11)

is obtained as the strictly increasing function

qε(u) =
1

u + ε

∫ u

0
Dε(s)ds,

which is bounded for every ε > 0 and 0 ≤ u ≤ 1. Moreover, 1 < qε(1) < ∞ for
every small enough ε. Thus, continuity and monotonicity imply that there exists



740 H. Khassehkhan, T. Hillen, and H.J Eberl

a ũε < 1 such that qε(ũε) = 1, while qε(u) < 1 for u < ũε and qε(u) > 1 for
u > ũε. Hence, qε(u) does not belong to the desired class of functions

G := {g ∈ C([0, 1]) : g(0) = 0, g(1) = 1, g(u1) ≤ g(u2) ∀ u1 < u2}.

Thus the problem of finding an exact solution of (11) in G is ill-posed and the best
we can hope for is to find a function rε(u) ∈ G that solves (11) approximately.
Thus, we are looking for the function in G with the smallest distance from qε,

min
r∈G

‖qε − r‖2. (12)

This minimization problem is solved by the function

rε(u) =
{

qε(u), for u ≤ ũε,
1, for u > ũε,

(13)

because rε ∈ G and

‖qε − rε‖2
2 =

∫ ũε

0
(qε(s) − rε(s))2ds +

∫ 1

ũε

(qε(s) − rε(s))2ds.

The first integral vanishes for r(u) = rε(u) as defined above, and, since qε(u) > 1
and r(u) ≤ 1 for u > ũε, the second integral becomes minimal if r(u) = 1
for u > ũε. Passing the regularization parameter to the limit, ε → 0, then
rε(u) → r(u) pointwise, where

r(u) =
{

φ(u), for u ≤ ũ,
1, for u > ũ,

, with φ(u) =
1
u

∫ u

0
D(s)ds. (14)

Function φ(u) is the strictly increasing solution of the initial value problem
(9) with q(0) = 0 and ũ is the unique value such that φ(ũ) = 1. Note that
limu→1 φ(u) = ∞. Obviously r ∈ G. We choose q(u) := r(u). It remains to
validate how good this approximation is for practical purposes. We recall from
[6] that the solution of (6) with (7) satisfies u < 1−η for a η > 0, which depends
on the parameters and the initial data. Thus, if ũ > 1 − η then (6) with (7) is
equivalent with the PDE model that one obtains from the lattice model with
jump probability q(u) = r(u) from (14). Otherwise they are equivalent as long as
the solutions remain bounded by ũ, i.e. for a finite time interval. Unfortunately,
the proof in [6] does not allow to compute quantitative estimates for η, so that
we have to fall back on comparisons with computer simulations. For example,
in the 2D and 3D simulations of the single-species growth model in [4,5,6], the
solution reached values above u ≈ 0.99 but remained below u ≈ 0.9999, thus, we
have the numerical estimates η̂ > 10−4. In all three cases the exponents in the
biomass diffusion coefficient were a = b = 4 and the biofilm motility coefficient
δ < 10−12. Then∫ u

0
D(s)ds = uφ(u) = δ

(
u + 4 ln(1 − u) − −18u2 + 30u − 13

3(1 − u)3
− 13

3

)
. (15)
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Fig. 3. η̃ = 1 − ũ as a function of the biomass mobility parameter δ

On the other hand the value η̃ := 1−ũ can be computed from (15). It is plotted
in Fig. 3 for δ covering several orders of magnitude. η̃ decreases as δ decreases. In
all cases, ũ remained above the maximum values of u in the numerical simulations
reported above, i.e η̂ > 1 − ũ =: η̃ by at least one order of magnitude. Thus
the nonlinear diffusion-reaction model that is derived from the semi-discrete
master equation (1) with the jump probabilities T±

i (u) = αq(ui)p(ui±1), q(u) :=
r(u), p(u) := 1 − uq(u) is in these simulations indeed equivalent to the double-
degenerate density-dependent diffusion-reaction model.

We remark that (6) can also be written in the Laplacian form

ut =
∂2

∂x2

(∫ u

0
D(s)ds

)
+ Ku. (16)

Hence,(1) is equivalent with the finite difference discretisation of (16)

dui

dt
= α (ui−1q(ui−1) − 2uiq(ui) + ui+1q(ui+1)) + Kui. (17)

Note that assuming p(u) ≡ 1 instead of (8), i.e. transition probability does not
depend on density in target site, also leads to (9) and thus to (17).

4 Numerical Results

We conduct computer simulations of the semi-discrete model in two space dimen-
sions on a n × m grid. Nutrients are assumed to be nowhere limited, K = const.
In interior grid points 1 < i < n, 1 < j < m the 2D variant of (1) reads

d

dt
ui,j = Kui,j + T +,0

i−1,jui−1,j + T −,0
i+1,jui+1,jT 0,+

i,j−1ui,j−1 + T 0,−
i,j+1ui,j+1

− (T +,0
i,j + T −,0

i,j + T 0,+
i,j + T 0,−

i,j )ui,j ,
(18)

where T ±,0
i,j = αq(ui,j)p(ui±1,j) and T 0,±

i,j = αq(ui,j)p(ui,j±1). The derivation of
the 2D equivalents of (4) and (6) follows the same procedure as in 1D, albeit
notation and calculations are more cumbersome. The inverse problem in Section
3 is independent of the problem dimension.
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Fig. 4. 2D Simulation of biofilm growth on a 128 × 128 grid. Shown are for selected
time instances t the biomass densities ui,j .The bottom right insert shows maxij uij(t)
and the occupancy function ω(t), i.e. the fraction of grid cells with u > 10−6.

In i = 1, i = n, j = 1, j = m, (18) is corrected such that no exchange
of biomass across the lattice boundaries takes place, mimicking homogeneous
Neumann conditions. We set in the ”virtual grid points” u0,j := u1,j , un+1,j :=
un,j, ui,0 := ui,1, ui,m+1 := ui,m and eliminate them from (18). The system of
nm ordinary differential equations is integrated by the Runge-Kutta-Fehlberg
method RKF4(5).

We use a 128×128 grid. Cells are inoculated in three spherical pockets around
the grid cells (i, j) = (1, 1) [radius ρ = 0.1n, initial biomass density u0 = 0.8],
(i, j) = (n/2, 1) [ρ = 0.11n, u0 = 0.75], and (i, j) = (n, 1) [ρ = 0.12n, u0 = 0.7].
We take q(u) from (14) and p(u) = 1 − uq(u). For the coefficients of D(u) we
pick a = b = 4 and δ = 10−12m2/d, for the biomass production rate K = 6/d.
With a simulation domain of 100 × 100μm2, h corresponds to 0.78125μm.

In Fig. 4 we show for selected t the biomass density ui,j(t), interpolated
between grid cells by the visualization software. Initially the three colonies

Table 1. Results of a grid refinement study. Reported are the values N1 :=
1

nm

∑
i,j |uij(tp) − ũij(tp)| for three selected time steps, where ũ is the projection of

the coarser grid onto the finer grid.

grid refinement t = 0.15 t = 0.25 t = 0.30
h = 1/16 → 1/32 0.025910 0.046667 0.056930
h = 1/32 → 1/64 0.010767 0.017459 0.021014
h = 1/64 → 1/128 0.003537 0.005473 0.006467
h = 1/128 → 1/256 0.001828 0.002741 0.003442
h = 1/256 → 1/512 0.000873 0.001184 0.001365
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Fig. 5. Biofilm/water interface at t = 30 for grid sizes h = 1/128, 1/256, 1/512 [green,
magenta, brown]

solidify, i.e. u increases, first without notable expansion. Later, the colonies ex-
pand spherically. Eventually, neighboring colonies merge and a homogeneous
thick layer of biomass develops that expands exponentially. This is a conse-
quence of the abundance of food and agrees with all other biofilm models. The
simulation is stopped before the entire lattice is filled with biomass. The biomass
density remains clearly below the cut-off value ũ that was computed above.

In order to investigate how the solution of the spatially discrete model changes
with grid refinement, we repeat and compare the simulations on grids of size
2k × 2k, where k = 4, ..., 9. Table 1 shows the convergence of the grid refinement
study. This is visually supported by Fig. 5 where the biofilm/water interface is
plotted for subsequent grids. These agree well within plotting accuracy.

5 Conclusion, Discussion, and Future Work

Spatially discrete master equations are routinely used to derive population mod-
els that can be studied with the well developed machinery of partial differential
equations. We use this approach to derive a highly nonlinear diffusion-reaction
model of biofilm expansion. The underlying mechanisms are quite different than
for other biological systems. Most notably, spatial spreading of biomass is driven
by production of new biomass and takes place only if locally no space is available
to accommodate newly produced cells. In the continuous limit this is rendered
by a combination of degenerate and fast diffusion. In numerical simulations we
could show that the spatially discrete master equation and the continuous model
agree well. The assumptions that we made to define the probabilities for biomass
movement mimic the stochastic rules that are used in cellular automata biofilm
models. Therefore, we understand the master equation model as a link between
discrete stochastic and continuous deterministic biofilm models.

In our current study the equivalence of spatially discrete and continuous model
rests on empirical computer simulations. While it follows from continuity that
both models agree exactly for some time, the question how long this equivalence
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is valid certainly warrants more rigorous mathematical analysis. On the modeling
side, future research will involve the extension of the approach to mixed-culture
biofilm systems and to biofilm systems with preferred spreading directions, e.g.
biofilms that predominantly creep over the substratum rather than forming patchy
biofilm colonies. Moreover, for realistic applications the biofilm population models
need to be coupled with models of resource dynamics, as already indicated above.
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Abstract. Multiphysics and multiscale–or coupled–systems share one
fundamental requirement: Construction of coupling mechanisms to im-
plement complex data exchanges between a system’s constituent mod-
els. I have created a graphical schema for describing coupling workflows
that is based on a theoretical framework for describing coupled sys-
tems. The schema combines an expanded set of traditional flowchart
symbols with pictograms representing data states. The data pictograms
include distributed mesh, field, and domain decomposition descriptors
and spatiotemporal integration and accumulation registers. Communica-
tions pictograms include: blocking- and non-blocking point-to-point and
M ×N parallel data transfer; parallel data transposes; collective broad-
cast, scatter, gather, reduction and barrier operators. The transformation
pictograms include: intergrid interpolation; spatiotemporal integral op-
erators for accumulation of state and flux data; and weighted merging
of output data from multiple source models for input to a destination
model. I apply the schema to simple problems illustrating real situations
in coupler design and implementation.

1 Introduction

Coupled systems are increasingly prevalent in computational science and en-
gineering. Multiphysics models combine subsystem models to achieve higher-
fidelity simulation of the greater whole and superior solutions in their constituent
processes. Multiscale models capture spatiotemporal-scale interactions by cou-
pling separate models that operate on disparate time and length scales. Multi-
physics and multiscale models share a common requirement for data exchange
mechanisms that allow their constituent subsystems to compute their respective
states—the coupling problem (cp) [1]. In many cases, coupled systems contain
constituent subsystems possessing high levels of computational complexity that
warrant parallel processing. Coupling in distributed-memory parallel environ-
ments is particularly difficult—the parallel coupling problem (pcp) [1].

Most coupled models are built by multidisciplinary teams from legacy model
codes. Coupling mechanisms—or couplers—confront coupled model designers

G. Allen et al. (Eds.): ICCS 2009, Part I, LNCS 5544, pp. 745–754, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



746 J.W. Larson

with complexity in choices of operation order (e.g., computation of fluxes fol-
lowed by interpolation, or vice versa) and algorithms (e.g., M × N data trans-
fer), creating the potential for uncertainty or even software bugs. This raises
the question: Is there a compact way to express coupling workflow complexity
that allows rapid, up-front analysis of coupler design? In this paper I propose
a graphical schema for elucidating coupling workflows and employ it to explore
coupler design.

Symbols and symbolic diagrams are widely used in place of words to com-
municate ideas. Symbol sets for diagrams are available for various disciplines,
including electrical engineering, meteorology, and computer science [2]. Compu-
tational workflows traditionally are characterized by using flowcharts [3,4] that
specify control flow and processing operations in a system. Flowcharts, however,
depict processing at a high level of granularity—in some cases line by line of
code. If we are to use flowcharts, it must be at a coarse level of code granularity,
but with sufficient detail to capture often-repeated operations such as intergrid
interpolation. Data flow diagrams [5] capture the data states in various parts of
a system and how information flows through a system; they do not offer detail
pertaining to the transformations driving the data flows. The Unified Modeling
Language (uml) [6] provides diagrams for elucidating system structure and be-
havior. The activity diagram depicts a series of processing steps in a system;
ovals represent processing activities and their progression is represented by con-
necting arrows. The state diagram depicts a series of states of a system; squashed
boxes represent system states, connected by labeled arrows denoting processing
steps or guard expressions. uml’s graphics are easy to draw, but subtle, and
it’s easy for nonspecialists such as computational scientists to make errors using
uml [7]. None of these existing solutions suffices to cover the complete problem
of documenting the transformations and data states of a coupling workflow.

I have concluded that an approach that incorporates elements of flowcharts
and data flow diagrams will best suit the problem at hand. My graphical schema
leverages flowcharts but augments some of its well-known symbols with pic-
tograms that represent processing activities relevant to coupling. The schema
is derived from a theoretical framework for the cp and pcp. In Section 2 I
summarize this theoretical framework, defining terms for both the schema and
discussion for the remainder of this paper. In Section 3 I define the schema’s
pictograms and drawing conventions. In Section 4 I construct schematics illus-
trating some commonly encountered coupling mechanisms.

2 Coupling in Multiphysics and Multiscale Models

Below I define terms and provide a theoretical overview of data trafficking in the
cp and pcp; further details are available in [1]. A coupled system is constructed
from N interacting models—or constituents—{C1, . . . , CN}. Each model has a
spatial domain Γi plus time; intersections between spatial domains result in
overlap domains Ωij = Γi ∩ Γj . Each model’s domain boundary ∂Γi is the in-
tersection of its overlap domains; that is, ∂Γi ≡ ∩j �=iΩij . Coupling entails data



Graphical Notation for Diagramming Coupled Systems 747

exchange between models. Denote each model’s state variables, inputs, and out-
puts as (Ui, Vi, Wi). Each of these entities is a set of variables; for example, U
comprises the wind, temperature, pressure, and humidity fields for a simple at-
mosphere model. A model solves its equations of evolution on a spatial domain
Γ ; thus the state on the domain is a vector field resulting from the Cartesian
product U×Γ . A model’s inputs (outputs) is also a vector field V ×∂Γ (W ×∂Γ ).

Models Ci and Cj are coupled if and only if at a minimum Ci provides output
to (receives input from) Cj. This requires Ωij �= ∅. In some cases the data depen-
dency relationship is immediately obvious; that is, Wi ∩ Vj �= ∅ or Wj ∩ Vi �= ∅.
In other cases, Vi (Vj) is computable from Wj (Wi) by a coupling transformation
Tij : Wj → Vi (Tji : Wi → Vj). Thus far we have described explicit coupling.
Implicit coupling between models Ci and Cj constitutes an overlap between their
respective state variables; that is, Ui ∩ Uj �= ∅. Implicit coupling requires a self-
consistent, simultaneous solution for shared-state variables using a solver Sij

(ordering of indices i and j is irrelevant).
Coupling events play a crucial role in the time evolution of multiscale and

multiphysics systems. The time signature of the data exchanged is either instan-
taneous or integrated; integrated data exchanges involve the delivery of time inte-
grated (averaged) flux (state) data from a source model to a destination model,
which applies integrated fluxes incrementally during intervals between coupling
events. Some coupled systems employ integrated data delivery to loosen inter-
model couplings; see Section 4 of [1] for further discussion. Similarly, multiscale
models may use spatially integrated data delivery to transfer information from
smaller to larger length scales.

Thus far we have discussed bipartite coupling. In principle, a constituent Ci

can receive the same input data from more than one model—for example, Cj

and Ck. In this situation, merging of data is required if there is a second-order
overlap domain Ωijk ≡ Γi ∩ Γj ∩ Γk �= ∅ and Tij and Tik produce some of
the same input fields among Vi. Higher-order merges may occur on higher-order
overlap domains, for example, a k−1-way merge on the kth order overlap domain
Ωn1,...,nk

≡ Ωn1 ∩ · · · ∩ Ωnk
for n1 �= · · · �= nk. Multipartite (k-way) implicit

coupling occurs on Ωn1,...,nk
if Un1 ∩ · · · ∩ Uk �= ∅ for n1 �= · · · �= nk; in this case

a k-way self-consistent solver Sn1,...,nk
is required.

Coupled system models are implemented on digital computers by using numer-
ical analysis techniques that discretize space and time. A model’s gridpoints de-
rive from a discretization Δi(Γi); its boundary gridpoints are Δi(∂Γi). The state,
inputs, and outputs of a numerical model Ci are its state vector Ui ≡ Ui×Δi(Γi),
input vector, Vi ≡ Vi × Δi(Γi), and output vector Wi ≡ Wi × Δi(Γi). Thus an
explicit coupling transformation delivering data from Cj to Ci is Tij : Wj →
Vi; Tij will likely comprise a field variable transformation Fij that embodies
natural-law relationships between Wj and Vi and a mesh transformation Gij that
maps the same variable defined on gridpoints in Δj(Ωij) to values defined on
the gridpoints in Δi(Ωij). In principle, these operations do not commute; that
is, Gij ◦ Fij �= Fij ◦ Gij . This feature is a source of coupling uncertainty and a
motivator for graphical representation of coupling workflows.
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Thus far we have assumed a von Neumann uniprocessor computer architec-
ture. Introduction of concurrency complicates the cp, leading to the pcp. In a
single address space, the complication is parallelization of the data transforma-
tions Tij and any solvers required by implicit couplings. Distributed-memory ar-
chitectures introduce further complications—domain decomposition of coupling
data, parallel data transfer, and concurrency in model execution. Domain decom-
position of data across a pool of K processes is accomplished by the partitioning
operator P(·); each model will have its own domain decomposition Pi(·). Thus,
for model Ci resident on a pool of Ki processes, Pi(Γi) = {γ1

i , . . . γKi

i }, with γν
i

the portion of Γi resident on the νth process; similarly, Pi(Ωij) = {ω1
ij , . . .ω

Ki

ij },
Pi(Ui) = {u1

i , . . . , u
Ki

i }, Pi(Vi) = {v1
i , . . . , vKi

i }, and Pi(Wi) = {w1
i , . . . , wKi

i }.
Parallelization of Tij and any implicit solvers requires parallel data transfer to
deliver data from the source model Cj to the destination model Ci; this amounts
to adding a data movement operation Hij to the mesh and field variable trans-
formations. The data mover Hij is a one-way parallel data (i.e., M ×N) transfer
or a two-way parallel data redistribution (i.e., a transpose). Process composition
is the mapping the models to pools of processes or cohorts. On a uniprocessor
system, serial composition is the only option; models run in turn successively
on the single resource. Multiprocessors allow further mapping strategies: parallel
composition, in which models are mapped to nonoverlapping process pools and
execute simultaneously on their respective cohorts; hybrid composition, which
nests serial and parallel compositions to create complex process maps; and over-
lapping composition in which cohorts of two models partially intersect.

3 Graphical Schema Specification

The schema must enable users to capture the functionality present in coupling
workflows. It must make clear, at a glance, design choices in terms of parallelism,
process composition, and number of executable images. The pictograms must be
easy to draw by hand to encourage use on paper and whiteboards. The symbol
set must be sufficiently complete to cover a wide variety of coupling functions as
outlined in Section 2. The schema must be extensible to allow users to create new
symbols for coupling functions specific to their applications. The standard color
scheme should be black and white to allow ease of sketching and to allow user-
defined color coding as an additional degree of freedom in diagram construction.

Figure 1 displays the symbols and line conventions in the schema. Rectangles
with rounded corners represent subsystem models. Model elements are drawn
with either solid or dashed lines depending on the model’s layout in the system’s
process composition. Ellipses represent the field, mesh, and domain decomposi-
tion data exchanged and processed during coupling. The graphical schema in-
herits a number of conventions from flowcharting: rectangles with sharp corners
represent processing operations; a rhombus indicates a decision point; parallel-
ograms indicate i/o operations; a triangle represents extraction of a subset of
data from a data object; an upside-down triangle represents merging of multiple
data objects into a single object; and a circle (upside-down house) represents
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a continuation point to a corresponding continuation point elsewhere on the
same diagram (on another diagram). A burst symbol indicates parallel commu-
nications such as MPI point-to-point and collective operations. Directed arrows
represent processing paths. Processing paths do not cross but may touch in the
case of iterative processing. When space is tight in a diagram, one can draw
processing paths appearing to cross (e.g., Figure 5), but as with flowcharts, the
crossing is not significant. One may draw one of the paths with a “bump” in
it to represent this skewness—a convention adopted from circuit diagrams. For
parallel systems, dashed and dotted lines are employed as needed to identify pro-
cessing occurring on a subset of the parent cohort; for example, differing types of
lines emerging from the decision rhombus with the criterion “MyID == Root?”
distinguish processing paths for root and nonroot processes.

The semantics of the schema are defined as follows. A line connecting a data
(processing) element to a processing (data) element signifies an input (output)
relationship to (from) the processing element. A line connecting two processing
elements signifies flow of control in the direction dictated by the arrow; input
data to the destination processing element is treated separately. A data element
may serve as input to multiple processing elements and a processing element
may have multiple outputs.

Model boxes can be annotated with pertinent information such the name of
the model, as parallel or uniprocessor, parallelism mechanism, and number of
processing elements. Data symbols can be annotated with descriptive informa-
tion such as model name, grid name, and list of fields. Processing boxes can be
annotated with the name of the algorithm embodied by the box; this is also
the convention for adding new processing symbols. Continuation symbols are
by definition annotated by a label indicating the continuation point; shading or
blackening a continuation symbol indicates that the rest of the system in that
direction of the workflow is regarded as a black box.

Multiple model boxes with dashed edges represent a serial composition (Fig-
ure 2 (a)). Multiple model boxes with solid edges represent a parallel composition
(Figure 2 (b)). A model box with thickened solid edges indicates a separate ex-
ecutable image; in diagrams for which no model box of this type is present, the
system is a single executable. Nesting of solid and dashed model boxes represents
hybrid compositions; dashed (solid) model boxes represent serial (parallel) com-
position nested within a parallel (serial) composition (Figures 2 (b) and (c)).

Model Model Data Processing Input / 
Outuput

Decision

Merge

Extract

BA
Communications

Connectors

Paths

Skew Paths

Fig. 1. Shapes of basic symbols used to diagram coupling workflows
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Fig. 2. Graphical conventions for representing process compositions: (a) serial com-
position, (b) parallel composition, (c) hybrid composition with parallel compositions
embedded within a serial composition, (d) hybrid composition with serial composi-
tions embedded within a parallel composition, (e) hybrid composition with multiple
embedding levels, (f) overlapping composition

Multiple levels of nesting represent deeper levels of hybrid composition (e.g.,
Figure 2 (e)). Intersecting boxes indicate overlapping composition (Figure 2 (f)).

Coupling relies on the description of field and mesh data, and in the PCP

on domain decomposition of these data. Figure 3 (a) displays the pictograms
for state, input, and output vectors, discretized domains and overlap regions,
and domain decomposition objects. In some cases, it is convenient to incorpo-
rate field data with its resident mesh and domain decomposition in a simple
object called a bundle[8], and a separate symbol is provided for this purpose.
Pictograms for time- and space-integrated data objects are included. An “ac-
cumulator” is included for use either in place of the integrated field objects or
to represent results of global reductions (e.g., MPI REDUCE()) across a process
pool. Not all of the data pictograms used in this paper are shown in Figure
3 (a). Pictograms for state, coupling. and mesh data partitioned across a pro-
cess pool are labeled by using notation from Section 2; {u,v,w,Δ(γ),Δ(ω)} in
place of {U,V,W,Δ(Γ ),Δ(Ω)}. Also, for ease of hand-drawing of schematics,
the bold-face notation on pictograms may be replaced with vector symbols; for

example,
→
U or U∼ in place of U. Integrated data may also be represented by using

triangular brackets—〈W〉, 〈w〉, and so on.
Figure 3 (b) displays the core set of pictograms used to depict intercomponent

data movers Hij and communications operations commonly used in couplers,
including blocking- and nonblocking point-to-point messaging and M ×N trans-
fers, parallel data transposes, broadcasts, scatters, gathers, and synchronization.
Other communications pictograms are created by annotating an empty burst
symbol—for example, a global reduction.
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StateFields

U
InputFields

V
OutputFields

W Δ(Γ)
DomainMesh

Overlap
Mesh

Decomp

Bundle
Accumulator

∫
dt

Time 
Integrated

∫
dx

1-D Space 
Integrated

∫ ∫
dA

Area
Integrated

∫ ∫ ∫
dV

Volume
Integrated

Blocking Msg Nonblocking Msg
Barrier Broadcast Gather

Scatter

Nonblocking M X N Blocking M X N Transpose
Miscellaneous

e.g., REDUCE()

∫ ∫ ∫
dV

Volume Integral

∫
dt

Time Integral

∫
dx

Space Integral(1D)

∫ ∫
dA

Area Integral

Interpolation Weighted MergeRenormalization

(a)

(b)

(c)

Fig. 3. Detailed pictograms for representing (a) data, (b) communications, and (c)
data transformation

Figure 3 (c) displays the core set of data transformation pictograms, includ-
ing intergrid interpolation, temporal and spatial integration, renormalization to
enforce conservation of flux integrals, and weighted merging.

4 Examples

A common coupled systems problem is intermodel data transfer. Figures 4
and 5 show the model-coupler communications patterns for versions 2 and 3
of the Community Climate System Model, respectively; see [8] for further de-
tails. Figure 4 depicts the communications between a model employing hybrid
MPI/OpenMP parallelism and a coupler that is solely OpenMP parallel but
possesses one MPI process. The models are in parallel composition, each imple-
mented in a separate executable. Distributed output data w is gathered from the
atmosphere’s cohort to its root, yielding W. Nonroot processes wait in a barrier
until the root finishes communicating with the coupler. A single blocking MPI
message containing W is sent to the coupler, which receives it as input V. The
coupler in turn posts a single blocking message to the atmosphere and continues
processing upon completion. The atmosphere receives this message as V, and
scatters the message to its processes, yielding v. Figure 5 depicts parallelized
M × N data transfer between two separate executables, both possessing multi-
ple MPI processes. The atmosphere sends its distributed output w in parallel to
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the coupler. Once the parallel send has completed, the atmosphere receives its
distributed input v from the coupler. All communications are blocking overall;
that is, an MPI Waitall() is invoked to ensure that the model and coupler evolve
together.

Fig. 4. Coupling workflow between two models featuring serialized communications

Three key types of data transformations used in coupling are shown in Figure 6.
Figure 6 (a) depicts integrated data delivery processing. A model takes distributed
instantaneous output w and integrates it with respect to time, accumulating fluxes
and averaging state data. This process is performed over a coupling cycle period,
and the decision box determines whether the model should continue or pause to
couple to the rest of the system. Figure 6 (b) shows a scheme for enforcing conser-
vation of interfacial fluxes under interpolation. Distributed input data v defined
on Grid 1 are received and integrated across the two- dimensional boundary. The
data are then interpolated to yield input defined on Grid 2; they are integrated on
this grid over the boundary. The values of v, defined on Grids 1 and 2, together
with their respective integrals, are then passed through a renormalization func-
tion, which computes the ratio of the integrals obtained on Grids 1 and 2 and uses
their ratio to rescale the values of v residing on Grid 2, thus conserving global flux
integrals across the boundary.
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5 Conclusions

I have proposed a graphical schema for describing intermodel data coupling
that combines control and data flow. The schema is derived from a theoretical
framework for describing intermodel coupling. The schema is rich enough to
describe a wide variety of intermodel coupling situations, and user-extensible. I
have employed the schema to depict commonly-encountered coupling workflows.

Associating the schema with software entities—for example, a generic cou-
pling infrastructure toolkit such as the Model Coupling Toolkit (MCT) [9]—will
enable graphical program specification for coupler mechanisms. This will require
mappings between the schema and MCT’s classes and methods, combined with
code generation infrastructure, and is an exciting area for future investigation.
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Abstract. The paper describes an efficient implementation of a pho-
toabsorption model for modern thin photovoltaic (PV) cells. As the mod-
elling of solar cells constitutes a multiphysic and multiscale problem, a
special attention was paid to the speed while retaining a reasonable ac-
curacy. The model is restrained to a normal incidence but accounts for
the whole solar spectrum. Applied transfer matrix method yields an ac-
curate distribution of the light intensity in the semiconductor structure.
Usage of equivalent parameters makes it possible to simulate both plain
semiconductor material and a quantum dot superlattice based material,
which is used to enhance the PV device performance.

Keywords: photovoltaic cell, photoabsorption, carrier generation,
multiple wavelength.

1 Introduction

Solar cells answer a call for alternative energy by providing a source of a reli-
able, long lasting power supply. Most designs of solar cells rely on semiconductor
materials based on silicon or III-V semiconductors. Space electronic equipment
requires improvements in solar cell efficiency to deliver more efficient, lightweight
solar cells. Recently proposed approaches to enhance the efficiency utilize the
novel nanomaterials containing quantum dots [1], and new concepts of cell de-
sign. A proper models and simulation techniques are needed to speed-up the
development on novel solar cell devices and reduce the related expenses.

Modeling of a photoabsorption in solar cells is a complex problem that in-
volves multiphysics simulations of multiscale problem at different levels [2]. Re-
cent trend of using quantum dots to enhance the performance of a solar cell
by broadening an absorption spectrum and reducing a recombination rate re-
quires modeling at a quantum level. A spatial distribution of the light intensity
in the structure is obtained at a macroscopic level because of the dimensions of
the solar cell. Carrier generation and recombination rates are used in transport
equations in order to calculate a carrier distribution.

Our goal is to develop a simulation tool NanoTCAD [3] that will accurately
predict a performance of a solar cell and allows an inside view that helps in future
� Corresponding author.
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designs. The NanoTCAD simulator already implements transport equations in
semiconductor devices. It can compute a steady-state or a transient. Because
of solar cells we are now interested more in the steady-state. A simulation of
a typical design takes 100 – 600 thousands volume elements. For a simulation
of a small problem without details with only 8,000 elements the computation
on 2GHz Pentium PC takes about 25 seconds and such simulation represents
only one point on a I-V curve. Therefore CPU time saving is highly desirable,
especially in time dependent problems, e.g. a radiation damage modelling.

This paper is focused on a simplified and yet accurate model of photoab-
sorption to be included into the simulator. The essential part is to compute an
electromagnetic field (EM) distribution inside the solar cell. We want to achieve
this without a necessity to implement a full electromagnetic solver that would
substantially slow down the 3D computation.

2 Geometry of Solar Cells

We consider a sandwitch structure of a solar cell with upper electrodes organized
in a grid and creating rectangular windows for the light to enter into the struc-
ture. The incident solar light is a plane wave limited by the window between
electrodes impinging the top surface along the normal. A part of the solar cell is
depicted in Fig. 1. The aperture defines a horizontal cross section of the beam.
It is assumed that the cross section of the beam doesn’t vary in the vertical
direction due to a shallow geometry of solar cells. Formally, the horizontal area
can be split into three parts: (i) the area under the window where a plane wave
penetrating in a vertical direction is assumed – carrier transport and photoab-
sorption occur, (ii) the area outside the window with no light intensity – electron
transport but no photoabsorption, (iii) area near the window edge – diffraction
and scattering take place. This model is suitable for solar cells because the win-
dow is much larger than the wavelength so that diffraction and scattering effects
on a border of the cross section can be neglected.

The light propagating through the window of a solar cell can be decomposed
into periodic fields

E(x, y, z) =
∫

Ẽ(kx, ky; z)ei 2π
λ0

(kxx+kyy+βz)
dkxdky (1)

with value
β =

√
εr − k2

x − k2
y (2)

It is obvious that for (k2
x +k2

y) << εr, the value of β is almost constant, meaning
that all waves propagates at about the same phase velocity, and hence, the
horizontal profile is changing very slowly. The relative difference of the electric
field caused by neglecting kx, ky in the expression above is∣∣∣∣E − E(kx = ky = 0)

E(kx = ky = 0)

∣∣∣∣ = |ei 2π
λ0

(β−√
εr)z − 1| ≈

∣∣∣∣∣π(k2
x + k2

y)z
λ0

√
εr

∣∣∣∣∣ (3)
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Fig. 1. A schematic multilayer structure with a window for incident light created by
electrodes (black). Incident irradiation I0, reflected power flux RI0 and two polariza-
tions EP , ES of the electric field shown. Shaded areas respresents regions without
light.

for components with small kx and ky. Considering a typical value of
√

εr to be
3, it is required that (k2

x + k2
y)z << λ0. For an aperture with a diameter a the

components that matter have wavenumbers up to 2π/a (i.e.
√

(k2
x + k2

y) = λ0/a).
For a structure with a height about λ0 and a window diameter about 1 cm the
estimated relative error in the center of a window that corresponds to one Fourier
component is about 10−4.

3 Plane Waves in the Structure at a Single Wavelength

All properties within one layer are assumed to be constant but dependent on a
free space wavelength λ0. Electrooptical properties of each layer are described
by a refractive index n and an extinction coefficient k. A general solution in the
jth homogeneous layer is a superposition of two counterpropagating waves

Ej(z) = E+
0je

+iKj(z−z0j) + E−
0je

−iKj(z−z0j) (4)
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with e−iωt time factor. The complex vectors E+
0j and E−

0j represent the values
of plane wave components in a reference depth z = z0j (chosen at the top of the
layer j) propagating downwards and upwards, respectively. Each propagating
wave is a solution of the Helmholtz equation

∇2Ej(z) + K2
j Ej(z) = 0 (5)

with a wavenumber

Kj = K0(nj + ikj) =
2π

λ0
(nj + ikj) (6)

Given the assumption about geometry and the normal direction of incidence,
the EM fields vary only along the normal. Any solution of such problem can
be decomposed into two independent polarizations (Fig.1) — S (E = ŷEy, H =
x̂Hx) and P (E = x̂Ex, H = ŷHy) — that are just a mutual rotation and both
are described by the same Helmholtz equation (5).

Natural light is not polarized. It means an equal contribution of both polar-
izations. As we are interested in the power intensity (proportional to |E|2 =
|Ex|2 + |Ey|2) and solutions for both polarizations are identical, the formula

E(z) = E+
0 e+iK(z−z0) + E−

0 e−iK(z−z0) (7)

for a scalar equivalent field intensity E = |E| can be used instead. The overall
solution is tailored by applying a continuity boundary conditions across the layer
interfaces for tangential components of the electric and magnetic fields assuming
one of the polarizations.

The usual approach is to use the transfer matrix method [5]. An electric field
at each point is represented by two complex fields E+ and E−. In a homogeneous
layer they are given by the subexpressions of (7) or in a matrix form(

E+(z)
E−(z)

)
=

(
e+iK(z−z0) 0

0 e−iK(z−z0)

) (
E+(z0)
E−(z0)

)
(8)

A transition across an interface between two layers is defined by boundary
conditions for the electric and magnetic fields(

1 1
1/Z1 −1/Z1

) (
E+

1
E−

1

)
=

(
1 1

1/Z2 −1/Z2

) (
E+

2
E−

2

)
(9)

where Zi is an intrinsic impedance of the layer i with refraction index ni and
extinction coefficient ki and relates to the intrinsic impedance Z0 of vacuum as

Zi =
Z0

ni + iki
≈ 377Ω

ni + iki
(10)

One can find that(
E+

1
E−

1

)
=

1
2

(
1 + Z1/Z2 1 − Z1/Z2
1 − Z1/Z2 1 + Z1/Z2

) (
E+

2
E−

2

)
(11)
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The total electrical field can be reconstructed by assuming no backward prop-
agating wave in the bottom layer (i.e. E−

0 = 0) and a unit amplitude of the for-
ward wave (E+

0 = 1). Then, applying matrix operations (8),(11) yield a recursive
formulas for layers above

E+
0,j = (aE+

0,j+1 + bE−
0,j+1) · exp[+iKj(z0,j − z0,j+1)] (12)

E−
0,j = (bE+

0,j+1 + aE−
0,j+1) · exp[−iKj(z0,j − z0,j+1)] (13)

with coefficients a = 1 + Zj/Zj+1 and b = 1 − Zj/Zj+1. Once all amplitudes are
known, they are scaled in order to match the actual incident irradiance I0, i.e.
the forward propagating wave in air must be

E+
air =

√
2Z0I0 (14)

The transfer matrix method calculates the reflectance of the structure for an
ideal case. Since the real parameters of semiconductors are not exactly known,
and because of a surface roughness and scattering from edges of the window, the
experimentally measured reflectance can differ from the calculated one. Fortu-
nately, there is an easy calibration.

Let Iu be the incident irradiance and Ru a measured reflectance supplied by
a user. Then, power (1 − Ru)Iu transmitted into the structure should be pre-
served. If the calculated reflectance from the first layer is R0, then the equivalent
irradiance used in the calculations is

I0 = Iu
1 − Ru

1 − R0
. (15)

4 Carrier Generation Rate

Linear photoabsorption refers to a phenomenon of capturing a photon that causes
a generation of one electron-hole pair (e-h). It can be described by the classical
electrodynamics or by the quantum mechanics. In the classical electrodynamics
the interaction with material is described by a complex permittivity, or alterna-
tively, by a refraction index and an extinction coefficient. At this level we are able
to calculate a light intensity distribution in the material which is important for
an energy absorption. The absorbed energy is used for an electron transition and,
hence, links both, classical and quantum mechanical, approaches together.

The total carrier generation rate is contributed by all spectral components for
which a photoabsorption occurs. First, an expression for a single frequency will be
found, then an integration over the spectrum will be discussed. All calculations
assume one dimensional layer structure where the field distribution is well known.

4.1 Single Wavelength

The horizontal profile of the light intensity is well defined. The absorbed power
per unit volume can be calculated directly as

dPab

dV
=

ωε0ε
′′

2
|E|2 = 2nkK0

|E|2
2Z0

(16)
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where ω = K0c = 2πc/λ0 is an angular frequency of the light, c speed of the
light in vacuum, n+ ik the complex refraction index, Z0 the intrinsic impedance
of vacuum and

|E|2 = |E+(z) + E−(z)|2 (17)

The electric field (E+ + E−) is given by (7). The amplitudes E+
0 , E−

0 and the
reference position z0 relate to a layer at the given position z. It is easy to show
that

|E|2 = |E+
0 |2e−2kz′

+ |E−
0 |2e+2kz′

+ 2�
{
E+

0 (E−
0 )∗ei2nz′}

(18)

To save space, a shorted the notation

z′ = K0(z − z0) (19)

was used. The value of K0 is defined by (6) and the asterisk (∗) denotes a complex
conjungated value.

Our simulation tool NanoTCAD uses a volume element method. The following
expression is the power P cell

ab absorbed in one cell of the volume element method
for given wavelength λ0 of the light

P cell
ab =

∫
cell

dPab

dV
dV = A

∫ z2

z1

dPab

dV
dz (20)

The integration over x and y can be taken care of by a simple multiplication by
a horizontal cross sectional area A of the cell. The integration along z has to be
conducted properly. Knowing positions of the top and bottom walls of the cell,
denoted by z1 and z2 (z1 < z2) and the primitive function of (17) which is

1
2K0k

[
−|E+

0 |2e−2kz′
+ |E−

0 |2e+2kz′]
+ �

{
E+

0 (E−
0 )∗

K0n
ei2nz′

}
(21)

the absorbed power can be expressed as

P cell
ab =

An

2Z0

[
|E−

0 |2e+2kz′
− |E+

0 |2e−2kz′
+ 2

k

n
�

{
E+

0 (E−
0 )∗ei2nz′}]K0(z2−z0)

z′=K0(z1−z0)
(22)

The refraction index n for ordinary materials is non-zero, so the expression is
well defined. Once the power absorbed in a cell is calculated, the electron-hole
generation rate in the cell can be obtained as [4]

dNe−h/dt =
η

h̄ω
P cell

ab (23)

where the internal quantum efficiency η is a property of the material and h̄ω
is energy of photons at a given wavelength. The equation represents the total
generation rate of the whole volume element at the given wavelength.
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4.2 Spectrum of the Solar Light

The solar radiation outside the Earth’s atmosphere is described by air mass 0
(AM0) spectrum. The total amount of delivered power is known as a solar con-
stant S. Its value was determined to be 1366.1W/m2 [6]. We use 2000 ASTM
Standard Extraterrestrial Spectrum Reference (E-490-00) obtained from [6] for
simulation of solar cells. Abrupt (noise like) changes in the spectrum (Fig.2)
can prevent an observation of a convergence of a numerically evaluated spectral
integral because of a random choice of sample points. Therefore a cumulative
spectral density Φ was introduced. An irradiance in interval of energies E1 . . . E2
is then

dΦ(E1, E2) = |Φ(E1) − Φ(E2)| (24)
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Fig. 2. Part of the AM0 spectrum. Data from E 490 00.

4.3 Multiple Wavelengths

Since the system is linear, the field distribution (7) can be calculated under an
assumption of a unit incident irradiance I0 yielding the absorbed power within
one cell at the specified frequency calculated from (22) to be P cell

1 . Then, it is
multiplied by a true incident power within a small interval of energies dE

dP cell
ab = P cell

1
dΦ(E)

dE
dE = P cell

1 dΦ(E) (25)

For a multicolor light, the e-h pair generation rate is an integral of the ex-
pression (23) over the whole spectrum of the incident light (e.g. AM0)

dN cell
e−h/dt =

∫
η(E)

P cell
1 (E)

E

dΦ(E)
dE

dE (26)
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Notice that also P cell
1 has to be recalculated for every λ according to (22).

There are two reasons for that: (i) material properties are frequency dependent
and (ii) optical distance (phase difference) between layers changes as well.

The integral (26) will be evaluated numerically. The lower limit is given by
the lowest energy with a nonzero quantum efficiency η. The upper limit is given
by the spectrum itself. We choose to cut-off the spectrum at 99% of the total
energy.

The integration of (26) can be performed in a semianalytical way: (i) the
spectrum is split into M subintervals, (ii) an analytical integration is performed
in each subinterval, (iii) partial results are summed together

dN cell
e−h/dt =

∫ h̄ωSTOP

h̄ωSTART

Gcell
1 dΦ =

M−1∑
i=0

∫ h̄ωi+1

h̄ωi

Gcell
1

dΦ

dE
dE (27)

Here, Gcell
1 = η(E)P cell

1 (E)/E is a generation rate in a cell for a monochro-
matic light with a unit incident irradiance, h̄ωi are the split points and E is an
integration variable that runs over all photon energies h̄ω.

In order to do the analytical integration on subintervals the following approx-
imations were made

1. the spectral density dΦ/dE is constant on each subinterval
2. the generation rate can be approximated by a piecewise linear function

Gcell
1 (h̄ω) ≈ Gcell

1 (h̄ωi) +
Gcell

1 (h̄ωi+1) − Gcell
1 (h̄ωi)

h̄ωi+1 − h̄ωi
(h̄ω − h̄ωi) (28)

This approach results in a simple expression

dN cell
e−h/dt =

M−1∑
i=0

Gcell
1 (h̄ωi) + Gcell

1 (h̄ωi+1)
2

dΦ(h̄ωi, h̄ωi+1) (29)

5 Numerical Results and Discussion

The modeling of 3D electromagnetic field calls for accurate models of semicon-
ductor properties. The refraction and extinction coefficients necessary to calcu-
late an absorption rate are usually obtained by the ellipsometry technique and
can be found in the literature [7,8].

The model was implemented into MatlabTM for testing purposes. 99% of the
AM0 spectrum was considered in the computation. The spectrum was further
cut-off at the longest wavelength at which a photoabsorption occurs yielding
a range of photon energies 1.375 eV – 4.16 eV. This range was divided into M
subinterval. An convergence of the total deposited charge was observed and
M = 100 chosen based on 1% error. A distribution of a e-h generation rate
G was computed on a standard 3GHz PC within a fraction of second. Unlike
in the NanoTCAD implementation, the generation rate was calculated along a
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Fig. 3. A carrier generation rate in the solar cell structure along a vertical axis in the
center of the window

vertical axis only in the center of the window. The actual implementation has
to compute G for every cell of the volume element method.

It is not possible to calculate the generated photocurrent without solving
transport equations. Therefore only its order was calculated assuming 60% ex-
ternal efficiency [4] and compared with a typical value of 10mA/cm2 for GaAs
solar cell.

The testing model comprises of a structure in Fig. 1. The cumulative genera-
tion rate per unit cross section saturates at 1.46×1021 pairs/m2/s what represent
100% external quantum efficiency. Since most of the structure is created from
GaAs a factor of 0.6 was used to account for the external quantum efficiency,
thus yielding 0.85×1021 pairs/m2/s or 13.6mA/cm2 which is in the expected
order.

For illustration purposes a distribution of a volume generation rate G is
displayed in Fig. 3. In each material the generation rate decays exponentially
with a corresponding attenuation constant. The wiggles observed between 2 and
3.15μm are due to an interference of forward and backwards waves. It seems
that the main source of the reflection is the bottom InGaP layer that manifest
itself by a 50 nm wide spike of increased light absorption. Similar behavior of a
smaller relative amplitude is observed above the top InGaP layer.

6 Conclusions

A photoabsorption model for solar cells and technical details of the computa-
tion were presented. Extra assumptions were made for solar cell applications:
the structure irradiated by a plane wave, a size of the solar cell window much
larger than the wavelength, scattering on the edges of the window and on
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inhomogeneities as well as a scattering due to a photon recycling neglected. The
material properties were described by an index of refraction and an extinction
coefficient. In this paper are considered to be known.

The described approach resulted in a MatlabTM implementation of the pho-
toabsorption model for testing purposes and yielded preliminary results. An
absorption rate for one test case is presented in the previous section. The e-
h generation is mostly defined by the material properties. The total deposited
charge of 13.6mA/cm2 is found to be in the expected order of magnitude.

The full implementation into NanoTCAD is still an ongoing work. The test
cases include plain binary and ternary III-V semiconductors but the model is
intended for quantum dots superlatices (QDS) as well. Equivalent parameters of
QDS have to be calculated separately.
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Abstract. Nanoelectronics and photonics applications of single wall carbon 
nanotubes (SWNT) are feasible only if SWNTs have specific chirality. The 
knowledge of the detailed mechanism for SWNT synthesis would allow one to 
optimize the chemical vapor deposition (CVD) process and may help to gain 
control over selectivity of SWNT synthesis. While it is not probably feasible to 
study this mechanism experimentally, it could be analyzed using molecular 
simulations. Here we propose multiscale computer modeling of CVD process. 
High theory level can be used for di- and tri-atomic fragments, in order to 
generate parameters for bond order force field. In turn, force field simulations 
will be used to characterize the chemical origin and thermochemical properties 
of the intermediates and transition states. This will allow predicting the rate 
constants for the elementary steps, which are then used in kinetic Monte Carlo 
simulations to describe SWNT growth at realistic time scales. 

1   Introduction 

Single wall carbon nanotubes (SWNT) are cylindrical molecules with unique properties. 
Many potential applications have been proposed for carbon nanotubes, including 
conductive and high-strength composites; energy storage and energy conversion 
devices; sensors; field emission displays and radiation sources; hydrogen storage media; 
and nanometer-sized semiconductor devices, probes, and interconnects. Some of these 
applications are now realized in products, others are demonstrated in prototypes. One of 
the difficulties for nanoelectronic  applications of single-walled nanotubes is efficient 
separation of the nanotubes of different chirality. Increasing chiral selectivity of SWNT 
synthetic process could solve this problem. 

There are successful attempts for selective synthesis of SWNT [1]. Lolli et. al. 
found that using a CoMo catalyst the chirality distribution of the groeing SWNTs can 
be reproducibly altered by varying the reaction temperature, the gaseous feed, or the 
cluster surface morphology. Specifically, increasing the temperature results in 
increase in nanotube diameter, without a change in the chiral angle. In contrast, by 
changing the support from SiO2 to MgO, SWNT with similar diameter but different 
chiral angles are obtained. Clearly, different chirality distributions obtained when 
varying catalysts support or reaction conditions demonstrate that it is the result of 
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chirality-specific differences in the growth kinetics, which in turn depends on the 
nanotube cap-metal cluster interaction. To fully control SWNT synthesis, one needs 
guidelines for optimizing the catalyst structure and experimental conditions, which 
are difficult to obtain without the detailed knowledge of the mechanism for SWNT 
catalytic synthesis. 

Computer simulations may be helpful to establish this mechanism. However, only 
a few examples are found in the literature that attempt to simulate the SWNT growth. 
Reactive empirical bond order (REBO) force field was employed to model the 
catalyzed growth of nanotubes by CVD and investigates nanotube stability as a 
function of nanotube type, length and diameter through molecular dynamics (MD) 
approach [2], Since REBO parameters are not available for metals, no catalyst 
nanoparticles (NP) were considered in this study. The effect of iron cluster size on the 
structure defects and diameter of the SWNT was reported [3]. Specifically, the study 
showed that for large particles, containing at least 20 Fe atoms, the caps grow in 
diameter until they have the same diameter as the cluster. Unfortunately, artificially 
fast growth rate that made MD simulations feasible, resulted in formation of 
extremely defective nanotubes. Therefore, it is of interest to simulate catalytic SWNT 
growth using kinetic models, rather than direct MD approaches. The free energies of 
the intermediates and reaction barriers need to be obtained, then kinetic Monte Carlo 
(MC) modeling can be used to determine the effect of reaction conditions on SWNT 
morphology. 

Here we describe multiscale approach to SWNT growth simulation. First, hybrid 
DFT is used for di- and tri-atomic fragments, to generate parameters for reactive bond 
order force field. At the next step SWNT/nanocluster systems are constructed, and 
their geometry is optimized for initial and final structures for different steps of SWNT 
growth. These structures are then used in MD simulations to identify additional 
reaction intermediates necessary to build a kinetic model for stepwise SWNT growth. 
We will start with SWNT having N hexagonal carbon rings in it. The SWNT growth 
process towards the addition of next ring has number of possibilities through different 
intermediates with varied reaction rates. Rate constant k for each reactive step will be 
calculated using Arrhenius equation (1).  

RTEaAek /−=  
(1) 

Here A is the pre-exponential factor, R is the gas constant, T is the temperature, and 
Ea is the activation energy. that is necessery for the reactive system to cross the barrier 
from one intermediate to the other. A transition states is defined as the state 
corresponding to the highest energy along this reaction coordinate and is always a 
first-order saddle point in the energy map. Each transition state can be determined 
computationally with normal mode analysis by following a specific reaction 
coordinate corresponding to a single imaginary frequency. When the rate constants of 
the intermediate formation are known, the kinetic model for catalytic growth can be 
developed and implemented in Kinetic Monte-Carlo code. Finally, the resultant 
growth rates calculations using kinetic Monte-Carlo technique will be repeated for 
SWNT of different chirality. The developed protocol will be used to study SWNT 
growth with different catalysts under different temperature and feed rate conditions. 
The specific combinations of these conditions optimized for maximum selectivity will 
be selected for experimental verification.  
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Here, we have investigated bond dissociation energetics for different spin 
multiplicities in gas-phase neutral hydrides, formed by 3d-transition metals from Sc to 
Cu. Broken-symmetry approach was adapted in order to get the qualitatively correct 
description of the bond dissociation. The resultant calculations from the current study 
will be used to parameterize REBO force field for transition metals. 

2   Theoretical Methods 

Density functional theory (DFT) [4, 5] in Kohn-Sham formalism combined with 
approximate exchange-correlation functionals [6] has become a method of choice for 
the calculation of numerous properties of molecules and solids. Advantage of DFT is 
considerably lower computational cost as compared to high level multireference ab-
initio methods of Wave Function Theory (WFT) [7]. Unlike force-field approaches, 
DFT does not need tedious empirical parameter fitting to produce acceptable results.  

In the past decade Transition Metal (TM) hydrides had been used as benchmark 
system to study efficiency of Density Functional Theory methods. Barone et. al. used 
pure and hybrid DFT functionals BLYP and B3LYP to study transition metal 
complexes which includes first row TM hydrides and their cations [8]. B3LYP was 
found to give accurate dissociation energies, but somewhat overestimate the bond 
lengths and dipole moments. In a detailed study of 3d transition metal systems 
including monohydrides Furche and Perdew [9] were not able to reproduce these 
dissociation energies with the same functionals and basis sets. Presumably, their SCF 
procedure systematically converged to a different local minimum, as symmetry-
adapted (SA) unrestricted Kohn-Sham formalism (UKS) was used by Borane et. al. 
and Broken Symmetry orbitals were used by Furche and Perdew. Among various 
semilocal (LSDA, BP86, PBE, TPSS) and hybrid density functionals (B3LYP, 
hTPSS), Furche and Perdew recommend functional TPSS as workhorse of TM 
compounds. Jensen et. al. [10] has investigated performance of five different density 
functionals (B3LYP, BP86, PBE0, PBE, BLYP) for diatomics of first row transition 
metal systems. They concluded that success of a functional is system specific, which 
means all of these functional are more accurate for certain system and less accurate 
for others. 

Wavefunction theory (WFT) methods were also employed repeatedly to study TM 
hydrides. WFT uses different approximations to exact solution of the Schrodinger 
equation given by full configuration interaction (CI) method. Most of them involve 
multireference SCF procedure (CASSCF or MCSCF) to treat the static correlation, 
supplemented by double excitations (SDCI or SOCI) to account for dynamic electron 
correlations. The electronic structure of NiH was investigated using single reference 
CI methods three decades ago [11] and, more recently with multireference methods 
with or without relativistic effects [12-14]. Potential energy curves had been also 
calculated for other first row TM hydrides, including TiH [15-17], CoH [18], CuH 
[14, 19], VH [20], and ScH [21]. Bauschlicher et al. [20] studied the first row TM 
hydrides (TiH, VH, CrH, MnH, FeH, NiH) using CASSCF/SDCI method. Related 
method MCSCF+SOCI was used by Koseki et al. to study both ground and excited 
state PECs of the five first row TM hydrides (ScH, TiH, VH, CrH, MnH) recently 
[22-24]. 
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Another approximation to full CI was taken by Reiher et. al. [25] to study CoH. 
They used density matrix renormalization group (DMRG) technique that allows 
performing CI iteratively without the need to explicitly store any long Slater 
determinant expansion. DMRG is making study of larger systems involving transition 
metals feasible, and accurately predict the energy gaps between different spin states.  

In this contribution we study diatomic transition metal hydrides, using two DFT 
functionals and compare their accuracy to the experiment, and WFT results. 

3   Computational Details 

All calculations were done with Gaussian03 program [26] using all-electron 
Wachters+f basis set [27, 28]. Spin-polarized (unrestricted) DFT was used throughout 
with no spatial symmetry constraints (broken symmetry, BS). Initial guess was 
generated by using Harris functional [29] which is the default option in Gaussian03. 
Self-consistent field (SCF) convergence threshold was set to 10-7, and relaxed to 10-5 
in a few problematic cases. Initial guess was followed by either geometry 
optimization or scan along interatomic distance to plot the potential energy curve. In 
some cases (CrH, VH) Harris guess lead to SCF convergence problems, and Hartree-
Fock (HF) orbitals were used as a guess. In a few cases where geometry optimization 
was terminated due to convergence failure, and converged KS orbitals were used as 
initial guess (BMK orbitals in case of TPSS non-convergence and vice versa).  

A potential complication in the study of systems with nearly degenerate energy 
levels is the danger of obtaining distinctly different SCF solutions as local energy 
minima. When different solutions are obtained for the equilibrium geometry and for 
the dissociation limit, the energy difference is no longer physically meaningful. In 
order to ensure consistency of SCF solution for all geometries, we built entire 
potential energy curves and verified that it does not have discontinuities indicating the 
switch from one SCF solution to another. SCF process was started with fractional 
occupation numbers (FON) around the Fermi level by using keywords SCF=Fermi 
and IOp(5/22=5). The occupational numbers became integer at the final SCF cycles. 
The stability of the SCF solution was checked and KS orbitals were re-optimized (if 
unstable) using keyword Stable=Opt.  

Molden [30] graphical interface was used to examine Kohn-Sham orbitals at the 
dissociation limit, and at the points where potential curves were found to be non-
monotonic. For one case (CrH) in order to obtain SCF solution with the lower energy, 
spin-polarization of σ-bond had to be inverted to have minority spin density localized 
on H atom using the keyword Guess=Alter. 

4   Results and Discussion 

4.1   Dissociation Energies and Dipole Moments 

Potential Energy Curves (PEC) for neutral hydrides for ScH, VH, MnH and CrH in 
various multiplicities are reported in Fig.1-4, together with available wave function 
theory (MCSCF+SOCI) curves. Dissociation energies for neutral hydrides in 
equilibrium geometry are reported in Table 1. Comparison with experimental data 
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[32-38], some of the published Wave Function Theory [22-24, 31] and DFT data [39] 
are also listed. To calculate the root mean square (rms) deviations for all theoretical 
values we used experimental data including the error bars. Based on rms values for 
bond dissociation energies, BMK gives the best agreement with experiment, followed 
by two WFT methods. 

Table 1. Dissociation energies (kcal/mol) of neutral TM hydrides and root mean square (rms) 
deviations from the experimental values. Dipole moments (Debye) for neutral metal hydrides 
calculated with BMK and TPSS, compared with experiment and several WFT levels. 

 

Dipole moments calculated with BMK and TPSS functionals are also reported in 
Table 1 and compared to the experimental data reported by Steimle et al. [41-44] and 
WFT results compiled by Chong et al. [40]. One can see from the Table 1, BMK and 
TPSS values for the dipole moments are in close agreement with experiment for TiH, 
FeH and CrD. For NiH the TPSS is in much better agreement with experiment, than 
BMK ones. For NiH and CoH the WFT results are in strong disagreement with each 
other, which indicated the severe difficulties in description of the electronic structure 
of these molecules. This clearly merits the future investigation. 

4.2   Potential Energy Curves and Spin Gaps 

The potential energy curves for TM hydrides are plotted on Fig. 1-4. The first two 
lowest multiplicities for ScH (Fig 1) are close in energy but differ in the bond length, 
so that singlet is more stable at the shorter, and triplet at longer bond length according 
to BMK results. On the contrary, TPSS overstabilizes singlet at all distances. Only 
singlet multiplicity is reported in the previous works [31, 9, 21, 45] including WFT 
study by Koseki et. al. [23]  

 
 

a Ref.[22-24],b Ref.[31],c Ref.[32],d Ref.[33],e Ref.[34],f Ref.[35],g Ref.[36],h Ref.[37-38],i Ref.[39], 
j Ref.[40],k Ref.[41], l Ref.[42], m Ref.[43], n Ref.[44] 

Binding Energy ScH TiH VH CrH MnH FeH CoH NiH CuH

Multiplicity 1 3 4 3 5 2 4 6 5 7 4 3 2 1 rms
TPSS 95.5 64.9 67.8 59.4 64.6 68.3 55.9 57.9 53.0 52.8 60.9 65.7 76.1 69.0 7.75

BMK 50.8 50.2 48.7 43.6 55.7 43.7 48.1 52.5 37.2i 34.8 41.0 46.4 59.5 61.8 1.38

MCSCF+SOCIa 47.3 43.3 36.6 42.7 37.8 44.2 21.8 33.6 1.84

MCPFb 51.0 47.3 53.0 48.7 21.9 39.4 45.0 44.7 64.3 61.6 1.63

Exp.
47.5 

±2.0c

48.9 

±2.1d

49.1 

±1.6e

44.5 

±1.6e

30.2 

±4.4f

37.5 

±1.9g

46.0 

±3.0h

59.4 

±3.0h

61.0 

±4.0h

Dipole Moments 47.5 48.9 49.1 44.5 30.2 37.5 46 59.4 61

BMK 1.870 2.600 2.570 2.000 2.654 2.500 1.800 3.100 1.379 1.106 2.576 2.471 3.165 2.952

TPSS 2.530 2.800 2.616 2.100 2.497 2.900 2.600 2.905 2.053 0.756 2.630 2.566 2.304 2.468

SDCIj 1.421 1.959 1.899 1.788 4.250 1.296 4.098 3.895 3.676 3.880

CPFj 1.776 2.554 2.308 2.319 3.779 1.227 1.311 1.448 1.806 2.749

MCPFj 1.641 2.432 2.185 2.021 3.807 1.239 2.901 2.743 2.557 2.951

Exp. 2.455k 3.510l(
CrD)

2.630m 2.440n
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Fig. 1. Potential Energy Curves of ScH with 
multiplicity 1 and 3, calculated by TPSS, BMK, 
and WFT [23] methods 

Fig. 2. Potential Energy Curves of VH with 
multiplicity 3 and 5, calculated by TPSS, 
BMK, and WFT [24] methods 

Two spin multiplicities for VH are reported on Fig 2 at WFT level [24]. Both BMK 
and TPSS reproduce this ordering, although the spin gap in BMK is twice larger than 
in WFT. BMK result seems to be more reliable as it closely reproduces experimental 
De for the multiplicity 5 [34]. The two multiplicities for MnH (Fig 3) are almost 
degenerate in both BMK and TPSS, while WFT favors M=7 by 11 kcal/mol. Three 
Multiplicities of CrH are reported at WFT [3] (Fig 4), all with different dissociation 
limits. Both WFT and DFT predict the ground state to have the multiplicity of 6. 
BMK and especially TPSS underestimate the spin gap at equilibrium, as compared to 
the WFT predictions, while reproduce it fairly well at the dissociation limit. 

The energy difference between the high and low spin states was studied previously 
by several authors and found to depend strongly on the fraction of HF exchange. This 
can be attributed to the fine balance between the negative HF exchange energy 
contribution from the electron of the same spin, which is opposite in sign to the 
electronic correlation contribution arising from the repulsion between any two 
electrons regardless of their spin. A method which includes the exchange and neglects 
the correlation (such as HF) will favor high multiplicities by maximizing the number 
of electrons with the same spin. On the contrary, self-interaction error in pure DFT 
favors low-spin states. Attempts to improve the relative spin-state energies description 
of density functionals include hybrid DFT schemes as well as DFT+U [46]. It was 
recently shown that DFT+U is capable of providing the qualitatively correct splitting 
in low- and high-spin iron porphyrins [46] and FeO+ [47]. However, when hybrid 
DFT approach is adapted, the accurate spin energy gaps can be obtained by adjusting 
fraction of HF exchange in DFT functional [48]. Conradie and Ghosh [49] studied 
Fe(+2) spin-crossover complexes and found that pure functionals such as BLYP, 
PW91 and BP86 incorrectly favor spin-coupled form (covalent description), while 
hybrid functionals such as B3LYP lean in the other direction. To correct the latter, 
they suggested using B3LYP* [50-52] with reduced amount of Hartree-Fock exchange 
in B3LYP from the standard 20% to 15%; the B3LYP* functional has been found to 
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Fig. 3. Potential Energy Curves of MnH with 
multiplicity 5 and 7, calculated by TPSS, 
BMK, and WFT [22] methods 

 

Fig. 4. Potential Energy Curves of CrH with 
multiplicity 2,4 and 6, calculated by non 
relativistic TPSS, BMK, and WFT (14) 
methods 

give improved results. Harvey [53] also found an 15% fraction of exact exchange 
yields accurate results in many other cases. It appears that the large fraction of HF 
exchange is necessary for correct prediction of the dissociation energies, while 
smaller fraction is in better agreement with experimentally observed spin-gaps. 

5   Conclusion 

As a first step in design of the reactive bond order forcefield for TM compounds, we 
used two exchange-correlation functionals including explicit dependence on the 
kinetic energy density (τ-functionals) to study neutral hydrides formed by 3d-
transition metals (Sc-Cu). One of the functionals selected contained large fraction of 
Hartree-Fock exchange (BMK), and another one was a pure DFT functional (TPSS). 
Watchers basis sets [28], augmented with f-functions by Hay et. al. [29] were used. 
We have taken particular care to obtain the consistent SCF solution, including the 
stability analysis and Fermi smearing. In order to ensure the stability of Slater 
determinant in the entire range of interatomic distances, the potential energy curves 
were plotted and inspected for discontinuities. When found, the discontinuities were 
eliminated by using the lower energy orbitals as initial guess to continue the curve 
smoothly. The spin orbitals at the dissociation limit were inspected and reordered if 
necessary.  

Qualitatively correct description of the bond dissociation was ensured by allowing 
the spatial and spins symmetry to break, which resulted in some spin-contamination for 
several systems at equilibrium. However, our calculated BMK dissociation energies are 
in better agreement with experiment than those obtained with high level wavefunction 
theory methods from the literature. The next step in this study will be the validation of 
BMK functional for the metal-metal and metal-carbon potential curves. These curves 
will be used to calibrate parameters for the reactive bond order force field and the 
subsequent Molecular Dynamics study of SWNT/metal growth process.    
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Abstract. Maxwell’s equations are the foundation of electromagnetics,
its extensive applications make computational electromagnetics a new
rapidly growing subject. However, since the electric and the magnetic
fields are coupling in the Maxwell system, the numerical solution of the
full system of Maxwell’s equations is extremely expensive in terms of
computer time. Darwin model, which decouple the coupled system, is
such a good approximation to Maxwell’s equations. In three dimensional
space case, it neglects the transverse component of the displacement cur-
rent; while in two dimensional space case, Darwin model is equivalent to
TE, TM models. For these reasons, it is worthwhile to investigate Dar-
win model, and a lot of works have been done to it. In this paper, we
review the advance in the Darwin model and introduce some of our new
results about the exterior problems of Darwin model and its numerical
solutions with infinite elements methods.

Keywords: Maxwell’s equations, Darwin model, infinite element method,
exterior problem.

1 Introduction

More and more modeling and simulation of electronic devices are related to the
computation of electromagnetics which becomes a very important branch in the
present computational science. However, since the multiphysics fields of electric
and magnetic fields are coupling together in the Maxwell’s equations, there are
many challenges in dealing with the coupling system directly, and the numerical
solutions may be very expensive in terms of the computational cost. On the
other hand, for some problems, such as the simulations of charged particle beams
when no high frequency phenomenon or no rapid current charge occurs, Darwin
model, which appears as a correction of the quasi-electrostatic model, including
the electric fields generated by magnetic induction, is a good approximation
to Maxwell’s equations. This model is obtained by neglecting the solenoidal
part of the displacement current in the Maxwell’s equations, and exhibits an
elliptic character with infinite propagation speed. Thus, the multiphysics fields
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of electricity and magnetics are separated in several single physical field systems
which are easy to solve.

It has been proved in 1992 by P.Degond and P.A.Raviart [1] that Darwin
model in three dimensional cases approximates Maxwell’s equations up to the
second order of the dimensionless parameter η = v̄/c for magnetic field B and
to the third order of η for electric field E, provided that η is small, where v̄
is characteristic velocity and c is light velocity. While in two dimension cases,
Darwin model is equivalent to TE, TM models without any approximation [15].

Some earlier investigations have been done by D.W.Hewett and C.W.Nielson
etc, please refer to [2,3,4] for a derivation of the Darwin model from the plasma
point and its numerical implementation by streamline methods in two dimen-
sional bounded domains.

In1995,P.Ciarlet andJ.Zou [5] have studied theH(curl; Ω) andH(curl, div; Ω)
variational formulations for the Darwin model in three dimensional bounded do-
mains, and proved the well-posedness of the variational systems.

Since quite a number of problems in applications are related to unbounded
domains, L.Ying and F.Li [6] in 2002 considered Darwin model of electric field
with boundary value conditions in two dimensional exterior domains.

Recently, the Darwin model of magnetic field has been considered by C.Liao
and L.Ying [7], the results are similar. An analysis of the Darwin model of ap-
proximation to Maxwell’s equations in 3-D unbounded domains was given in[16].

At the same time, three dimensional exterior problem of Darwin model of both
electric and magnetic fields and the numerical computation has been studied by
N.Fang and L.Ying [8].

The following contents are organized as: In Section 2 we recall the relationship
of Maxwell’s equations and Darwin model. While in Section 3 we review the work
in the foretime and introduce our recent results. And a short conclusion is given
in Section 4.

2 Maxwell’s Equations and Darwin Model

Maxwell’s equations in vacuum are of the following form in the space-time do-
main Ω × (0, T ), where Ω is an open simply connected domain Ωc in R3 with
Lipschitz-continuous boundary ∂Ω. (All the variables and function spaces in
bold are denoted by vector ones):

1
c2

∂E
∂t

− ∇ × B = −μ0J, (Ampère law) (1)

∂B
∂t

+ ∇ × E = 0, (Faraday law) (2)

∇ · E =
ρ

ε0
, (Gauss′ law) (3)

∇ · B = 0. (no source assumption of magnetic) (4)

Where E = E(x, t), B = B(x, t) denote the electric field and the magnetic field
respectively, and ρ = ρ(x, t), J = J(x, t) are respectively the charge and current
densities satisfying
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∂ρ

∂t
+ ∇ · J = 0, (charges′ conservation law). (5)

The positive constants c, ε0, and μ0 are respectively the light velocity, the electric
permittivity, and the magnetic permeability in vacuum, which are related by

ε0μ0c
2 = 1.

The relationship of Darwin model and Maxwell’s equations are discussed in [1]
when adding some initial conditions and assuming ∂Ω a perfect conductor. Since
the electric field E can be decomposed into a sum of some transverse component
ET and some longitudinal component EL. Substituting the decomposition into
equation (1) and neglecting the term ∂ET

∂t , one can get

∇ × B = μ0J +
1
c2

∂EL

∂t
. (6)

Then the Maxwell’s equations (1) − (4) will be reduced to the following Darwin
model, see [1,14] for deduction details:
(i) EL = −∇Φ, and Φ is the solution of the following Dirichlet problem:

− 	Φ =
ρ

ε0
, in Ω, (7)

Φ = C(t), on ∂Ω, (8)
Φ → 0, at infinity. (9)

Where C(t) is an arbitrary function only depend on time t if Ω are bounded
domains. If Ω represents exterior domains, C(t) is a constant independent of
time t, for example C(t) = 1 if satisfying the boundary assumptions in [5].
(ii) B satisfies

− 	B = μ0∇ × J, in Ω, (10)
∇ · B = 0, in Ω, (11)

B · n = B0 · n, on ∂Ω, (12)
(∇ × B) × n = μ0J × n, on ∂Ω. (13)

(iii) ET satisfies

	ET =
∂

∂t
∇ × B, in Ω, (14)

∇ · ET = 0, in Ω, (15)
ET × n = 0, on ∂Ω, (16)

< ET · n, 1 >= 0, on ∂Ω. (17)

The coupling multiphysics fields of Maxwell’s equations are reduced to three
single physical field systems. EL relies on problem (i), a simple Poisson equation.
B are solved by problem (ii), then plugging it into problem (iii), one can get ET .
All the mathematical challenges to Darwin model are how to solve the problems
(ii) and (iii).
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3 Darwin Model and Its Numerical Methods

Both problem (ii) and problem (iii) contain equation ∇ · u = 0, i.e. (11) and
(15), and it is very difficult to deal in numerical computations. All the numerical
studies of Darwin model to problems (ii) and (iii) in fact were carried on to this
point and gave their own ways to manage it.

D.W.Hewett and J.K.Boyd analyzed the solutions of Darwin model by stream-
line method in [3], and they discussed methods for calculating the magnetic field
without formal vector decomposition and offered a new procedure for finding the
inductive electric field. As a consequence, the numerical efforts required for each
of the field time-steps are reduced, and more importantly, the needs to specify
several nonintuitive boundary conditions are eliminated.

In P.Degond and P.A.Raviart’s paper [1], they studied appropriate decompo-
sitions of vector fields which give rise to the well-posedness of the Darwin model.
Besides, they obtained a by-product, that is the uniqueness of the variational
formulations of the elliptic boundary value problem of Darwin model.

Later works are processed to tackle Darwin model through mixed variational
methods by using Babuska and Brezzi’s saddle point theory [12], which is said:

Let X and Q be two Hilbert spaces with norms ‖ · ‖X and ‖ · ‖Q respectively,
a(·, ·) and b(·, ·) be two continuous bilinear forms defined respectively on X × X
and X×Q, and f(·) and g(·) be two continuous linear forms defined respectively
on X and Q. Then the problem : Find (u, p) ∈ (X, Q) such that

a(u, v) + b(v, p) = f(v), ∀ v ∈ X,
b(u, q) = g(q), ∀ q ∈ Q

(18)

is called a saddle point problem. Let V be a closed subspace of X defined as

V = {v ∈ X; b(v, q) = 0, ∀ q ∈ Q}.

Assume that there exist two positive constants α and β such that

a(v, v) ≥ α‖v‖2
X , ∀ v ∈ V, (V-ellipticity) (19)

and

sup
v∈X

b(v, q)
‖v‖X

≥ β‖q‖Q, ∀ q ∈ Q. (inf-sup condition) (20)

Then there exists a unique solution to the saddle point problem (18).
So the key point turns to investigate the mixed variational formulations of

the Darwin model and to verify the V-ellipticity and the inf-sup condition.
The details to discuss the variational formulations of Darwin model were

given by P.Ciarlet,JR and J.Zou in [5]. They have studied the H(curl; Ω) and
H(curl, div; Ω) variational formulations for Darwin model in three dimensions,
and proved the well-posedness. Nedelec’s finite element method is used to solve
the H(curl; Ω) variational formulation where ∇ · u = 0 is naturally satisfied in
such finite element method. Moreover, they discussed a standard finite element
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method of so called Hood-Taylor finite element [12] for the H(curl, div; Ω) vari-
ational formulation. Convergence and the error estimates were obtained without
requiring the physical domains to be convex. They did not give numerical ex-
periments.

Since quite a number of problems in applications are related to exterior do-
mains, L.Ying and F.Li in 2002 considered the exterior problem of Darwin model
in [6]. They first considered Darwin model of electric field with boundary value
conditions in two dimensional exterior domains. In order to show the coercivity
in weighted space W whose elements belong to H(curl, div; Ω) in finite domain
while in the infinity distance belong to weighted space H1,∗(Ω) (see [9] for a
definition), they spent a lot of energy and at last made clear that

‖u‖∗ = {‖∇ × u‖2
0 + ‖∇ · u‖2

0+ < u · n, 1 >2
∂Ω} 1

2

is only a semi-norm on W. With analytic function theory, they got a null space
V0 of two degrees of freedom. Then they were able to establish the variational
formulation and proved its well-posedness in the quotient space W/V0. Nu-
merical examples by infinite element methods were given as well, and P2 − P0
elements and square exterior domain with triangle meshes were chosen to im-
plement the calculations. They got a so-called transfer matrix [10] in virtue of
Stoke’s equations since the solution of Darwin model was just that of Stoke’s
equation with appropriate boundary value and inhomogeneous terms. Numerical
results illustrated three-order convergence under L2-norm and one-order conver-
gence under ‖·‖∗ norm, which was quite good in accordance with the theoretical
error estimate results.

Later on, the magnetic field of Darwin model has been considered by C.Liao
and L.Ying [7]. The results are similar, and the difference is that there are
three degrees of freedom in the null space because the boundary conditions are
different. Although differing from a function in V0, they manage to prove the
uniqueness of the solutions if imposing a boundary condition at the infinity
u||x|→∞ = 0 for Darwin model. This was once left as an open problem in [6].

Meanwhile, the three dimensional exterior problem of Darwin model and its
numerical computation has been studied by N.Fang and L.Ying [8]. Quite dif-
ferent from the two dimensional exterior domains cases, ‖ · ‖∗ is just a norm in
three dimensional case, such fact was proved through potential theory. So the
well-posedness of the variational formulations were able to proved directly in
W. Moreover, for the need of investigating the Darwin model, they proved an
important decomposition that any function in exterior domain Ω belonging to
L2(Ω) can be decomposed to the sum of a gradient function and a rotational
function, i.e. For any f ∈ L2(Ω), it has the decomposition f = ∇φ + ∇ × u,
where φ ∈ Hc = {φ ∈ H1,∗(Ω); ∇φ × n = 0}, u ∈ B0 (see [8] for the defini-
tions). Numerical experiments with infinite element method are carried on for
axisymmetric fields. The difficulty is that the variational formulation has to be
considered in some weighted Sobolev spaces, the results show the convergence
once again.
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Fig. 1. Sketch maps of first layer grids in two spacial dimensions and three dimensional
axisymmetric space cases

The infinite element method, which is suitable particularly for unbounded
domain problems and singular problems, has its complete academic foundations
and wide applications [10]. One great character of the infinite element method
distinguished it with other methods is to design a similar triangulation with
infinite grids for the question domain. The similar triangulation, which divides
the interested domain into layers one by one with a proportionality, is the same
as that of classical finite element methods in each layer. The outstanding point
is that the infinite element method can approximate an exterior problem to the
infinite or a singular problem to the singular position. Of course, it will get a
discrete system with infinite algebraic equations. However, because in each layer
the stiffness matrices are similar in a proportion, there exists a real transfer
matrix which can transfer the values from one layer to the other layers. Thus,
the whole computational workload for the infinite element method is reduced to
solve a classical finite element in the first layer and to find the transfer matrix.
For many exterior or singular problems, such as elliptic problems and singular
problems, it is economical and efficient to use the infinite element method to
find the solutions.

The following are parts of the numerical results of Darwin model in two spacial
dimensions [6,7] and three dimensional axisymmetric space cases with infinite
element methods [8]. Fig.1 are sketch maps of the first layer grids of the infinite
element triangulations in two spacial dimension and three dimensional axisym-
metric domains.

Example 1. (Tested by F.Li [6]) Two dimensional Darwin model of electric field
with exact solutions

u = (
cos θ

r
,
−sin θ

r
).

It calculates the errors on the (m+1) layers, where N is the number of nodes on
Γ0. One can find in Table 1 more than two order and nearly one order convergence
under corresponding norms which obeys the theoretical results.
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Table 1. ξ = 1.20, m=20, errors of the electricity field Darwin model

N ‖ u1 − u1h ‖0 order ‖ u2 − u2h ‖0 order ‖ u − uh ‖∗ order
16 7.097883E-02 7.104025E-02 0.705941
32 9.723456E-03 2.8678 9.723475E-03 2.8691 0.385342 0.8734
64 1.591538E-03 2.6110 1.142021E-03 3.0899 0.196713 0.9700
128 1.341634E-04 3.5684 1.491097E-04 2.9371 9.862373E-02 0.9961

Example 2. (Tested by C.Liao [7]) Two dimensional Darwin model of magnetic
field with exact solutions

u1 =
x3 − 3xy2

(x3 − 3xy2)2 + (3x2y − y3)2
, u2 =

3x2y − y3

(x3 − 3xy2)2 + (3x2y − y3)2
,

the numerical results are similar as Example 1, see Table 2.

Table 2. ξ = 1.10, m=20, errors of the magnetic field Darwin model

N ‖ u1 − u1h ‖0 order ‖ u2 − u2h ‖0 order ‖ u − uh ‖∗ order
16 0.203937 0.205719 1.403172
32 2.987612E-02 2.7712 3.101684E-02 2.7696 0.543875 1.3674
64 4.002932E-03 2.8999 4.170768E-03 2.8547 0.180869 1.5884

Example 3. (Tested by N.Fang [8]) Three dimensional axisymmetric cases, an
exact solution expressed in cylindrical coordinate is

ũ = (ũ, ṽ) = (− 3
16

rz

(r2 + z2)5/2 ,
1
16

r2 − 2z2

(r2 + z2)5/2 ). (21)

Table 3. ξ = 1.20, m=20, errors of the electric field Darwin model

N ξ ‖ Ẽ − Ẽh ‖L2
1

order ‖ Ẽ − Ẽh ‖† order
17 1.200 0.121738 1.087437
33 1.100 0.024777 2.29669 0.457862 1.24794
65 1.050 6.38095E-03 1.95716 0.226430 1.01585
129 1.025 1.84555E-03 1.78972 0.125478 0.85163

Table 4. ξ = 1.20, m=20, errors of the magnetic field Darwin model

N ξ ‖ B̃ − B̃h ‖L2
1

order ‖ B̃ − B̃h ‖† order
17 1.200 0.512389 2.384971
33 1.100 0.118179 2.11627 1.081343 1.14115
65 1.050 3.03803E-02 1.93981 0.520884 1.05379
129 1.025 8.47473E-03 1.84189 0.267462 0.96163
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Table 5. Errors with different ξ′s with N = 33 in domain S2

ξ ‖ Ẽ − Ẽh ‖L2
1
‖ Ẽ − Ẽh ‖† ‖ B̃ − B̃h ‖L2

1
‖ B̃ − B̃h ‖†

2.60 0.989638 3.374672 4.513487 7.374385
1.85 0.330322 2.264038 2.163367 5.536487
1.54 0.120657 1.743531 0.058450 4.115571
1.20 0.024218 1.087437 0.014065 2.384973
1.05 0.027387 0.845684 0.011470 1.314983
1.01 0.020547 0.837463 0.009477 1.237863

Table 6. The solved components of electric field on Γ0 with N = 33 and different ξ′s

nodes ξ = 1.80 ξ = 1.50 ξ = 1.20 ξ = 1.10 ξ = 1.01 exact values
1 -0.1210545 -0.1257055 -0.1260910* -0.1260891 -0.1215592 -0.1250000
2 -0.1126088 -0.1176541 -0.1190080 -0.1186574 -0.1145254 -0.1193081
3 -0.0975158 -0.1024953 -0.1040261 -0.1037537 -0.9970447 -0.1040640
4 -0.0797613 -0.0829016 -0.0837716 -0.0827922 -0.0791954 -0.0836353
5 -0.0595527 -0.0615719 -0.0626015 -0.0618062 -0.0603292 -0.0626099
6 -0.0429919 -0.0439044 -0.0443304 -0.0437183 -0.4435603 -0.0441075
7 -0.0281114 -0.0286289 -0.0294198 -0.0290186 -0.0297962 -0.0294402
8 -0.0186065 -0.0186243 -0.0187584 -0.0184425 -0.0189317 -0.0186243
10 0.0389879 0.0396177 0.0397538 0.0396909 0.0399477 0.0396062
11 0.0444103 0.0457516 0.0461985 0.0462046 0.0464945 0.0460800
12 0.0480863 0.0503425 0.0512331 0.0513768 0.0512298 0.0513873
13 0.0497539 0.0527489 0.0539654 0.0542693 0.0535041 0.0536656
14 0.0451329 0.0484963 0.0500021 0.0505106 0.0472572 0.0506029
15 0.0363879 0.0395276 0.0407025 0.0410631 0.0272850 0.0402827
16 0.0194135 0.0214026 0.0221285 0.0225052 0.0036119 0.0225464
17 -0.0001567 0.0002899 0.0001114 0.0003259 0.0014535 0.0000000
18 -0.0204573 -0.2158120 -0.0222988 -0.0225053 -0.0006429* -0.0225464
19 -0.0372877 -0.0394444 -0.0404561 -0.0403204 -0.0294834 -0.0402827
20 -0.0466633 -0.0492025 -0.0503285 -0.0502459 -0.049193 -0.0506029
21 -0.0505969 -0.0528761 -0.0537361 -0.0537916 -0.0563653 -0.0536656
22 -0.0487024 -0.0505964 -0.0513363 -0.0514396 -0.0524078 -0.0513873
23 -0.0442433 -0.0454351 -0.0460040 -0.0463146 -0.0465934 -0.0460800
24 -0.0387989 -0.0394013 -0.0396301 -0.0397049 -0.039857 -0.0396062
26 -0.0190566 -0.0192702 -0.0190187 -0.0188858 -0.0157653 -0.0186243
27 -0.0283864 -0.0291424 -0.0291973 -0.0292054 -0.0254894 -0.0294402
28 -0.0424493 -0.0442339 -0.0444911 -0.4438434 -0.0412477 -0.0441075
29 -0.0576513 -0.0609854 -0.0622284 -0.0623327 -0.0616994 -0.0626099
30 -0.0758385 -0.0813233 -0.0834862 -0.0835264 -0.0857989 -0.0836353
31 -0.0920192 -0.0999494 -0.1037470 -0.1041031 -0.1100688 -0.1040640
32 -0.1040798 -0.1137892* -0.1184702 -0.1188476 -0.1290048 -0.1193081
33 -0.1094091* -0.1204418 -0.1260022 -0.1264943* -0.1389577 -0.1250000

Max error* 0.12473 4.4154E-02 1.1926E-02 1.1950E-02 0.17522
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Table 3 and Table 4 show that about first order convergence under the norms
‖ · ‖† for both the magnetic and the electric field are obtained. Table 5 lists
the errors in the domain S2 = {x; 1 ≤ |r|, |z| ≤ 32}, and the error tends a
level when ξ decrease. Here ξ is the proportionality constant of infinite element
triangulation, and m is the numbers of layers been calculated.

Example 4. (Tested by N.Fang [8]) Comparisons of local quantities of interest
are made in Table 6 for the axisymmetric electric field case. Axisymmetric mag-
netic field and two dimensional space cases are similar [6,7,8]. The numerical
experiments illustrate that one can find “good” solutions by refining the meshes
and decrease the proportion ξ at the same time.

4 Conclusions

It gives at least a way to deal with some multiphysics models by decomposing
the coupling system. Darwin model is such a successful example which approxi-
mates Maxwell’s equations well enough. Hereto, Darwin models are thoroughly
studied both in bounded domains and exterior domains especially by variational
methods. Our investigations in establishing the general theory are mostly about
the exterior problems. Suitable tools like analytic functions theory, potential
theory and weighted Sobolev spaces are utilized to finish the theoretical anal-
ysis. Besides, infinite element methods are effective to simulate the models in
unbounded domains, this was verified by the numerical experiments. Of course,
as an approximate model to Maxwell’s equations, Darwin model are worthy of
further study. It leaves to combine the problems of (i), (ii) and (iii) together.
Some related works such as adaptive finite elements to Darwin model are being
studied by the authors.
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Abstract. The performance of an iterative method for solving a system of linear 
equations depends on the structure of the system to be solved and on the choice 
of iterative solvers in combination with preconditioners. In this paper, the 
performance of a specified set of linear solvers and preconditioners provided by 
PETSc and Hypre is evaluated based on three data sets from subsurface finite 
element flow models. The results show that simple preconditioners are robust 
but do not enable convergence behavior that scales with problem size. They 
also show that it is important to choose an appropriate type of solver for 
different kind of simulations.  

Keywords: Sparse parallel solvers, iterative solvers, PETSc, Hypre, and finite 
element. 

1   Introduction 

Simulations of groundwater [3] and watershed [1] flow require the solution of a 
nonlinear system of partial differential equations (PDE). Discretization of the PDE 
spatial domain on a finite-element mesh results in a set of time-dependent, nonlinear 
algebraic equations that may be solved by a Newton or Modified Picard algorithm. 
These algorithms require the solution of one or more large sparse systems of linear 
equations at each time-step, of the form,   

Ax  = b (1) 
 

where A=[ai j] is an n ×n matrix and b a given right-hand-side vector.  
WASH123 is a simulation code used for modeling time-dependent surface and 

subsurface flows, and the coupling between the two flow regimes [2]. WASH123 uses a 
modified Picard algorithm to solve the nonlinear problem of three-dimensional (3-D) 
subsurface flow, and the resulting linear systems can be shown to be symmetric and 
positive definite (SPD) in all cases. Also, the matrix A may vary over the course of a 
time-dependent simulation depending on the forcing, coupling, and boundary 
conditions. A significant part of the computation time of a WASH123 simulation is 
spent solving the linear system [5], [6]. Therefore, the performance of linear solvers is 
of great interest. 
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Iterative methods are most often used for linear problems involving a large number 
of variables because of the memory and scalability restrictions of direct methods, such 
as LU decomposition. Krylov subspace methods are an important class of iterative 
solution solvers [4], [8]. This class includes the Conjugate Gradient (CG) method, 
which is robust for SPD matrices. Tracy and Gavali have previously tested a wide 
range of iterative solvers [4] on matrices arising from the FEMWATER code, a 
predecessor of WASH123. Their results suggest that CG remains a competitive 
method for matrices in the range of a few million unknowns, but leaves open the 
question of the most effective preconditioner. In practice, combining a Krylov 
subspace method with a preconditioner is essential, especially for an ill-conditioned 
linear system. Therefore, this study tests the effectiveness of iterative solvers 
combined with various preconditioners to determine those most effective for 
subsurface and coupled watershed flow applications. 

The convergence criterion for an iterative method is typically tied to the residual,      
rk = b -Axk, where superscript k denotes the kth iteration. The PETSc convergence 
criterion was used: 

 ||rk||2 <  ε ||b||2 (2) 

where ε is relative tolerance, ε=10-12 for linear system A and B; ε=10-16 for linear 
system C. 

2   Numerical Libraries 

Two numerical libraries were used in this study: PETSc [4] and Hypre [9]. Both 
provide parallel routines for solving large sparse linear systems. PETSc, the Portable, 
Extensible Toolkit for Scientific computation, provides a variety of preconditioners 
and Krylov subspace solvers. This study used Jacobi, Block Jacobi (BJacobi), 
successive overrelaxation (SOR), and the Additive Schwartz method (ASM) as 
preconditioners for CG. BJacobi and ASM were implemented with one block per 
processor. The individual blocks were solved with ILU(0). Hypre [9] in addition 
provides multigrid preconditioning, and the study also used Hypre’s algebraic 
multigrid method, boomerAMG, as a preconditioner for CG. The study also 
experimented with the Support Tree Conjugate Gradient (STCG) method [7], as 
implemented in PETSc [4]. The STCG method is potentially more effective than CG 
where A is a generalized Laplacian [7], but relatively little is known about its 
performance in practical applications. 

3   Test Problems 

The choice of the best iterative solver may strongly depend on the grid size, the aspect 
ratio of the grid, and physical parameters of the problem. Typically, the convergence 
rate of the iterative solver is strongly connected to the condition number of the matrix, 
κ(A). Therefore, this study used three sets of data, which try to depict the important 
role of these characters.   
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3.1   Linear System A  

The FEMWATER code [3] was used to create linear system A. The data set is 
generated from a pump-and-treat model developed for remediation of contaminated 
groundwater. The 3-D mesh contains 102,996 nodes, 187,902 elements, and 8 
material types, for a total of 31 layers. FEMWATER uses Picard linearization, which 
produces a symmetric, positive-definite (SPD) linear system. The condition number 
of the coefficient matrix A, κ(A)= 2.7 x 106. 

3.2   Linear System B 

The WASH123D watershed code was constructed based on its first-principle, 
physics-based mathematical model [2]. In WASH123D, the cross-section-averaged 1-
D diffusive wave equation, the depth-averaged 2-D diffusive wave equation, and the 
3-D Richards equation were solved with semi-Lagrangian for canal network flow and 
overland flow, and Galerkin finite element methods for variably saturated subsurface 
flow, respectively [2]. Also, the computational domain is discretized with finite 
element meshes; each element can be assigned with a different material type to 
account for heterogeneity; and each material may have its own set of physical model 
parameters. The 3-D subsurface flow in this coupled watershed model is governed by 
the Richards equation, solved by Picard linearization, but employs a modular software 
approach. 

The 3-D mesh contains 59,409 nodes, 84,996 elements, and includes 17 material 
types for a total of six layers. Figure 1 shows the 3-D computational mesh of this 
linear system B.  

Similar to the linear system A above, the matrix B is symmetric and positive 
definite, with condition number κ(B)=3.9 x 109; thus this linear system is  
ill-conditioned. 

 
Fig. 1. The 3-D computational mesh of data set B 

3.3   Linear System C 

Linear system C was also generated by the WASH123 code, from the same model as 
linear system B, using finer mesh. The 3-D mesh for this system contains 2,124,108 
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nodes, 4,018,700 elements, and includes 17 material types for a total of 20 layers. The 
resulting matrix is symmetric and positive definite. 

4   Test Results 

A C code was written to read these data sets and then call the PETSc functions to 
create a sparse parallel matrix A in AIJ format, a parallel vector b, and independent 
solution xtrue, which was used to compare with solution from PETSc and Hypre for 
the purpose of verification. The code was compiled and run on a Cray XT4 containing 
2,152 compute nodes; each has 2.1GHz AMD Opteron 64-bit quad-core processors 
and 8 GBytes of dedicated memory. 

Tables 1-3 compare the convergence and performance of different preconditioners 
for CG and STCG methods, respectively. As expected, preconditioning can significantly 
increase performance of Krylov subspace solvers. Without preconditioning, the solvers 
often fail to converge. Both CG and STCG methods using the Jacobi preconditioner are 
robust solvers for all three linear systems but not necessarily the most efficient. ASM is 
the most effective preconditioner for linear systems B and C. The ASM preconditioner 
option –pc_asm_type basic was employed, which uses the full restriction and 
interpolation operator. The option –pc_asm_type restrict is the PETSc default, but it 
does not converge for linear systems A, B, or C.  

Table 1. Solver time, number of iterations, and residual norm using CG (shaded) and STCG 
(white) methods for linear systems A (two cores) 

System CG STCG 
PC Residual 

Norm 
X10-9 

Iteration Time  
(sec) 

Residual 
Norm 
X10-9 

Iteration Time 
(sec) 

None 1348.94 5700 39.61 1348.94 5700 41.03 
Jacobi 3.22 670 4.73 3.22 670 4.90 
Bjacobi 10.20 210 3.98 3.22 210 4.05 
SOR 4.08 272 5.34 4.08 272 5.43 
ASM 12.59 220 5.02 12.59 220 5.08 

Table 2. Solver time, number of iterations, and residual norm using CG (shaded) and STCG 
(white) methods for linear system B (two cores) 

System CG STCG 
PC Residual 

Norm 
X10-9 

Iteration Time 
(sec) 

Residual 
 Norm  
X10-9 

Iteration Time 
(sec) 

None NC NC NC NC NC NC 
Jacobi 9.05 20340 76.58 9.05 20340 78.75 
Bjacobi 9.05 20340 78.11 9.05 20340 80.62 
SOR 6.93 18784 173.28 6.93 18784 176.00 
ASM 18.93 2818 34.66 18.93 2818 35.07 

Note: NC means not converge. 
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Table 3. Solver time, number of iterations, and residual norm using CG (shaded) and STCG 
(white) methods for linear system C (two cores) 

System CG STCG 
PC Residual 

Norm 
X10-13 

Iteration Time 
(sec) 

Residual 
Norm 
X10-13 

Iteration Time  
(sec) 

None NC NC NC NC NC NC 
Jacobi 1.37 105960 17123.40 1.37 105960 17836.93 
Bjacobi 5.50 47517 18269.13 5.50 47517 18611.86 
SOR 1.21 57391 22968.26 1.21 57391 23381.96 
ASM 6.24 30784 15994.27 6.24 30784 16220.26 

Note: NC means not converge. 
 

 

Fig. 2. Relative error versus solver time using CG method for linear system A Relative error ||b 
–AXk|| / ||b –AX0|| 

 

 

Fig. 3. Relative error versus solver time using CG method for linear system B Relative error ||b 
–AXk|| / ||b –AX0|| 
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Fig. 4. Relative error versus solver time using CG method for linear system C Relative error ||b 
–AXk|| / ||b –AX0|| 

 

Fig. 5. Relative error versus number of iterations using CG method with Jacobi preconditioner 
for linear systems A, B, and C. Relative error ||b –AXk|| / ||b –AX0||. 

Figures 2-4 compare convergence of the residual norm for different 
preconditioners using the CG method. For linear system A, Block-Jacobi is the most 
efficient in terms of solver time, followed by ASM, SOR, and Jacobi. However, for 
linear systems B, ASM converges in the fewest iterations and requires the least 
amount of time, followed by the Block-Jacobi, SOR, and Jacobi. For linear system C, 
ASM converges slightly faster than others, followed by Jacobi, Block-Jacobi, and 
SOR. 

The convergence behavior of the three linear systems is compared in Figure 5 for 
the Jacobi preconditioner. The behavior of the three systems follows the same pattern; 
an initial, relatively slow rate of convergence is followed by an abrupt change to a 
more rapid rate of convergence. The initial stage appears to be approximately linear, 
or slightly faster, in the number of iterations, while in the latter stage, convergence is 
faster than quadratic. For these linear systems, which are closely related in terms of 
the underlying PDE, the initial rates of convergence are very similar, i.e., the error is 
reduced at the same rate for each linear system.   
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Fig. 6. Solver time using CG and STCG methods combination with Jacobi, Block Jacobi, SOR, 
and ASM preconditioners for linear system A 

 

 

Fig. 7. Solver time using CG and STCG methods combination with Jacobi, Block Jacobi, SOR, 
and ASM preconditioners for linear system B 

Figures 6-8 show the scaling of solver time with the number of processors using 
CG and STCG methods. For linear system A, the performance scales linearly up to 
about 16 processors and then flattens out, indicating that fewer than 5000-10,000 
nodes per processor results in lower parallel efficiency. The various preconditioners 
have similar scaling behavior for system A. For linear system B, performance scales 
erratically in the range from one to four processors but scales linearly in the range 
from 4 to 32 processors. Beyond 32 processors, the performance flattens out for all 
preconditioners except ASM, which arguably demonstrates linear scaling from 4 to 
128 processors. The number of blocks used in the Block-Jacobi and ASM 
preconditioners depends on the number of processors; because of this, their solver 
time running on one processor may be less than that on two, four, or eight processors. 
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For linear system C, performance does not scale linearly in the range from one to four 
processors. This problem is due to on-chip memory contention since four cores share 
memory in the same node on the Cray XT4 system. The performance scales linearly 
in the range from 4 to 256 processors.   

Figure 9 shows the scaling of solver time with the number of processors using 
boomerAMG method from Hypre for linear systems A and B. The preliminary results 
are based on a residual tolerance of ε=10-7. 

 

 

Fig. 8. Solver time using CG and STCG methods combination with Jacobi, Block Jacobi, SOR, 
and ASM preconditioners for linear system C 

 

Fig. 9. Solver time using boomerAMG method for linear systems A and B 
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5  Summary and Future Work 

Jacobi-CG appears to be the most robust method for solving moderately ill-
conditioned SPD problems in the range of a few hundred-thousand unknowns. 
However, it is well known that the number of CG iterations will not scale linearly 
with matrix dimension. As WASH123 problems become larger, the number of Jacobi-
CG iterations required to achieve a fixed error tolerance will grow, causing the 
solution time to increase faster than the number of unknowns. This study found that a 
multilevel preconditioner was effective for linear system B but was not effective with 
the same preconditioner for the closely related system C. The authors are therefore 
continuing to experiment with algebraic multigrid and multilevel preconditioners. 
Even though the cost per iteration of these preconditioners is relatively high for 
problems in the range of a few hundred-thousand unknowns, they may prove to be 
more efficient for problems with tens or hundreds of millions of unknowns, where the 
number of CG iterations is likely to be prohibitive. The authors also continue to 
investigate the convergence of CG in time-dependent problems, where a reasonable 
initial guess is available from the previous time-step, and convergence may be 
relatively fast. 
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Abstract. There are two major types of approaches for solving the in-
compressible Navier-Stokes equations. One of them is the so-called pro-
jection method, in which the velocity field and the pressure field are
solved separately. This method is very efficient, but is difficult to be
extended to another multi-physics problem when an appropriate split-
ting is not available. The other approach is the fully coupled method in
which the velocity and pressure fields stay together throughout the com-
putation. The coupled approach can be easily extended to other multi-
physics problems, but it requires the solution of some rather difficult
linear and nonlinear algebraic systems of equations. The paper focuses
on a fully coupled domain decomposition based parallel inexact New-
ton’s method with subspace correction for incompressible Navier-Stokes
equations at high Reynolds numbers. The discussion is restricted to the
velocity-vorticity formulation of the Navier-Stokes equations, but the
idea can be generalized to other multi-physics problems.

1 Introduction

In this paper we develop inexact Newton type methods [6] that use local subdo-
main corrections for large nonlinear systems of algebraic equations, arising from
the discretization of nonlinear partial differential equations. All systems consid-
ered in the paper have a common feature – local high nonlinearities. In other
words, the nonlinear system may have many equations, but only a small percent-
age of them are highly nonlinear compared to the rest of the equations. These
local high nonlinearities often correspond to boundary or interior layers, or cor-
ner singularities [3,16]. Global inexact Newton’s methods may be used to solve
the system, but often computing time is wasted since all equations are treated
equally as if they were all highly nonlinear. We introduce local zeroth- and
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first-order Jacobi method to remove the local high nonlinearities and therefore
improve the efficiency and the effectiveness of the outer global inexact Newton’s
method [7,15], which performs well on equations with roughly the same level of
nonlinearities.

We provide numerical results to demonstrate its effectiveness as compared
to the classical inexact Newton’s method. As an example, we show numerically
that the method performs well for solving the two-dimensional nonlinear driven
cavity flow problem [8]. Using the velocity-vorticity formulation, in terms of
velocity u, v, and vorticity ω, the driven cavity flow problem on unit square
Ω = (0, 1) × (0, 1) is ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−Δu − ∂ω

∂y
= 0

−Δv +
∂ω

∂x
= 0

− 1
Re

Δω + u
∂ω

∂x
+ v

∂ω

∂y
= 0.

(1)

Here Re is Reynolds number. The boundary conditions are:

bottom, left and right: u = v = 0; top: u = 1, v = 0.

The boundary condition on ω is given by its definition:

ω(x, y) = −∂u

∂y
+

∂v

∂x
. (2)

We vary the Reynolds number in the experiments. Using the usual uniform
mesh finite difference approximation with the 5-point stencil (upwinding for the
convective terms and central differencing for the other terms) we obtain a system
of nonlinear equations in the form of

F (u) = 0, (3)

where u = (u1, · · · , uN )T , F = (f1, · · · , fN )T and fi = fi(u1, · · · , uN). Here N is
the total number of unknowns. Classical Newton type algorithms, e.g. [6], do not
assume that nonlinearities in functions f1, · · · , fN are too much different. This
is often fine when the number of functions is small, but is not acceptable when
N is sufficiently large. Recent experiences show that, in many large scale multi-
physics problems, the nonlinearities are far from balanced. In many situations,
only a small percentage of the components of F are highly nonlinear. To improve
the efficiency of Newton’s methods, in this paper, we develop a locally adaptive
version of Newton’s method which uses some special treatments for the highly
nonlinear components of F .

For solving large scale problems, parallel processing is a must, and we assume
here that domain decomposition [14] is used with a partition of the vector u, as
well as F , into subdomains

uΩ1 , · · · , uΩp , and FΩ1 , · · · , FΩp .
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With this partition, the nonlinear system takes a block form as follows.⎧⎪⎪⎪⎨⎪⎪⎪⎩
F1(uΩ1 , · · · , uΩp) = 0
F2(uΩ1 , · · · , uΩp) = 0
...
Fp(uΩ1 , · · · , uΩp) = 0

(4)

The classical Newton’s method goes like⎛⎜⎜⎜⎜⎜⎜⎝

un
Ω1

...
un

Ωk

...
un

Ωp

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝

un−1
Ω1

...
un−1

Ωk

...
un−1

Ωp

⎞⎟⎟⎟⎟⎟⎟⎠ + J−1

⎛⎜⎜⎜⎜⎜⎜⎜⎝

F1(un−1
Ω1

, · · · , un−1
Ωk

, · · · , un−1
Ωp

)
...
Fk(un−1

Ω1
, · · · , un−1

Ωk
, · · · , un−1

Ωp
)

...
Fp(un−1

Ω1
, · · · , un−1

Ωk
, · · · , un−1

Ωp
)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (5)

As one can tell from (5), all functions Fi participate in all iterations no matter
where the high nonlinearities are.

On the other hand, there is another well-known method called nonlinear Ja-
cobi method[12], and its block form can be presented as follows: Let un

Ω1
, · · · , un

Ωp

be the current approximate solution on each subdomain, then the new iteration
on subdomain Ωi, un+1

Ωi
, is computed by solving

Fi(un
Ω1

, · · · , un+1
Ωi

, · · · , un
Ωp

) = 0, (6)

using Newton’s method on Ωi with un
Ωi

as the initial guess. These subdomain
problems can be solved independently. This nonlinear Jacobi method has the
perfect parallelism, and is a local method in the sense that if the output of the
subdomain function on Ωk is more nonlinear than others, then more subdomain
Newton iterations are needed only on this particular subdomain. No other sub-
domain needs to participate in the lengthy iterations, as the global Newton’s
method does. However, the nonlinear Jacobi method is not being used much
in practice because of its slow convergence. The focus of this paper is to com-
bine the non-proliferation properties of Jacobi and the fast convergence of global
Newton’s methods.

For simplicity, we assume that the high nonlinearity is mainly in the area
of Ωk, and as a result, the subdomain residual function ‖FΩk

‖2 is larger than
residuals in other subdomains, i.e.,

‖FΩk
‖2 ≥ ‖FΩi‖2, i �= k.

In other words, the subsolution in the kth subdomain un
Ωk

is not as good as
subsolutions in other subdomains. To improve the situation in subdomain Ωk, or
say to balance the overall nonlinearity, we could stop the global Newton iteration
temporarily and focus on subdomain Ωk using the following subdomain Newton
iterations:

un,m
Ωk

= un,m−1
Ωk

− J−1
Ωk

FΩk
(un

Ω1
, · · · , un,m−1

Ωk
, · · · , un

Ωp
), (7)
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with the initial guess un,0
Ωk

= un
Ωk

. Suppose Algorithm (7) converges, then the
subdomain Newton iterations will result in

lim
m→+∞un,m

Ωk
= vn

Ωk
,

that is
vn

Ωk
= vn

Ωk
− J−1

Ωk
FΩk

(un
Ω1

, · · · , vn
Ωk

, · · · , un
Ωp

),

which implies that
FΩk

(un
Ω1

, · · · , vn
Ωk

, · · · , un
Ωp

) = 0. (8)

Now the question is whether the locally updated solution (un
Ω1

,· · ·, vn
Ωk

, · · · , un
Ωp

)
is better than the non-updated solution (un

Ω1
, · · · , un

Ωk
, · · · , un

Ωp
) according to the

overall residual function as defined in (3).
This algorithm can be extended for other multi-physics problems, such as the

semiconductor device simulation problem in [11], the fluid-structure interaction
problem in [2], and the magnetic reconnection problem in [13]. However, we’ll fo-
cus on the incompressible Navier-Stokes equations in this paper for now. And the
rest of the paper is organized as follows. In Section 2, we introduce two parallel
inexact Newton’s methods with subspace correction. These algorithms are appli-
cable for general nonlinear problems with local high nonlinearities. In Section 3,
we provide some numerical results for solving the incompressible Navier-Stokes
equations.

2 Subdomain Jacobi–Newton Methods

Suppose ũn is the current approximate solution from the global Newton’s method.
For many PDE problems with local high nonlinearities, the surface plot of F (ũn)
would show a peak, say in Ωk, which is way higher than its neighboring regions.
ManymoreNewton iterations areneeded to remove this peak.During theseNewton
iterations, the components of ũn on subdomains Ω1, · · · , Ωk−1, Ωk+1, · · · , Ωp do
not change much at all. In other words, the calculation on these subdomains is just
a waste of time.

In order to isolate and to remove the peak, it seems to be a good idea not to
use the original system (4), but to use the following nonlinear system of equations

Gn(u) =
(
Gn

1 (u), · · · , Gn
p (u)

)T = 0

defined as: ⎧⎨⎩
Gn

k (u) = Fk(u) = 0

Gn
i (u) = Fi(u) − Fi(ũn) = 0, i �= k.

(9)

We can clearly see that Gn(u) = 0 amounts to smoothing the worst nonlinearity
in the kth subdomain while maintaining others. That is, this approach eliminates
the worst nonlinearity without over-correcting the rest of the components.
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The only issue is that the new nonlinear system (9) is as expensive to solve as
the original system (4). In the rest of the paper, we propose two approximations
to (9). Based on these approximate peak removing algorithms, we introduce the
so-called Subdomain Jacobi–Newton (SJN) methods.

Algorithm 1 (Subdomain Jacobi–Newton Framework). For n=1, 2, · · · ,

1. Perform the classical Newton iteration and generate a tentative iterate ũn.
2. Convergence test. If ‖F (ũn)‖ ≤ εr‖F (u0)‖ or ‖F (ũn)‖ ≤ εa, a solution is

found, or else go to next step. Here, εr and εa represent the relative and
absolute machine epsilons, respectively, for the computation.

3. Inner iteration.
(a) Peak-finding. Find k such that ‖Fk(ũn)‖2 ≥ ‖Fi(ũn)‖2, ∀i �= k and

‖Fk(ũn)‖2 ≥ ρ‖F (ũn)‖2 where 0 < ρ < 1. If such a k does not exist, set
un = ũn and go back to step (1).

(b) Peak-removing. Form a new system of equations; solve it by one of the
Jacobi methods using ũn as the initial guess; call the solution vn.

(c) Substitution. If ‖F (vn)‖2 < ‖F (ũn)‖2, un = vn. Or else un = ũn. Go
back to step (1).

One can adjust parameter ρ so that only truly unbalanced nonlinearity in the
context of the problem under consideration will be treated by this process. Next,
we’ll introduce two Jacobi methods to be used with the above algorithm.

2.1 A Zeroth-Order Jacobi Method

The standard nonlinear Jacobi method on one of the subdomains can be de-
scribed using the global Newton’s method on the following system:⎧⎨⎩

Hn
k (u) = Fk(u) = 0,

Hn
i (u) = uΩi − ũn

Ωi
= 0, i �= k,

(10)

i.e., it approximates the equation Gn
i (u) = Fi(u) − Fi(ũn) = 0 for i �= k, with

Hn
i (u) = uΩi − ũn

Ωi
= 0.

That is, it uses piecewise constant to approximate the solution for i �= k, where
k is the index of a subdomain where uΩk

is considered ‘bad’, e.g., having the
largest residual ‖Fk‖2.

An advantage of this approach is, except on Ωk, that all equations are trivial;
i.e., no calculation is necessary to obtain the solution.

2.2 A First-Order Jacobi Method

To remedy the crude approximation used in the zeroth-order Jacobi method, we
form a new system of equations,
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⎧⎪⎨⎪⎩
Hn

k (u) = Fk(u) = 0,

Hn
i (u) =

∂Fi(ũn)
∂u

(u − ũn) = Ji(ũn)(u − ũn) = 0, i �= k,

(11)

i.e., it approximates the equation Gn
i (u) = Fi(u) − Fi(ũn) = 0 for i �= k, with

Hn
i (u) =

∂Fi(ũn)
∂u

(u − ũn) = Ji(ũn)(u − ũn) = 0.

In other words, it approximates the difference in Fi at ũn using its differential
at ũn.

We remark here that the algorithms just proposed are similar in spirit to
the recently introduced nonlinear preconditioning algorithms [4,5,9], but the
nonlinear treatment here is more local.

3 Numerical Experiments

To demonstrate the efficiency and effectiveness of the new algorithms, we present
somenumerical results for solving the incompressibleNavier-Stokes equationswith
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different Reynolds numbers. The implementation of the proposed algorithms is
done using PETSc [1], and the results are obtained on an IBM BG/L. Both the
zeroth order and the first order algorithms are implemented, but the first order al-
gorithm is consistently better than the zeroth order algorithm, therefore, we will
only report some preliminary experimental results of the first order algorithm.

The results are obtained for solving (1) on a 256 × 256 mesh with 256 pro-
cessors. In all tests, the initial iterate is zero for u, v and ω. We stop the global
and local nonlinear iteration if

‖F (un)‖ ≤ εr‖F (u0)‖

where εr = 10−6 and 10−5 are used for the global Newton iterations and the
SJN iterations, respectively. The linear iteration for solving the global Jacobian
system is stopped if the relative tolerance

‖F (un) − F ′(un)M−1
n (Mnpn) ‖ ≤ ηr‖F (un)‖

is satisfied with ηr = 10−4. The absolute tolerances for all iterations are 10−10.
Here M−1

n is an additive Schwarz preconditioner [14] constructed using the Ja-
cobian matrix F ′, and a partition of computational domain into 256 subdomains
in a checker board fashion. The overlapping size is set to 2, and the subdomain
linear systems are solved by LU factorization.

In Fig. 1, we show the history of the norm of the residual of several test runs
with different Reynolds numbers using the classical inexact Newton’s method [3]
(marked with “∗”) and the new algorithm (marked with “◦”). As the Reynolds
number increases, the nonlinear system becomes more difficult to solve. In fact,
the classical method with the standard line search fails to converge once the
Reynolds number exceeds 102. We did not try to employ other techniques, such as
pseudo-time stepping [10] or parameter/mesh continuations [15,16], to improve
the convergence of the classical method. On the other hand, SJN converges for
a much larger range of Reynolds numbers as shown in Fig. 1 without employing
any of the special tricks. In Fig. 2, we show an example of the surface plots of
the residual function corresponding to the vorticity of the flow. The top picture
is before a local high nonlinearity is removed, and the bottom picture shows the
plot after the local Jacobi solver is applied to partially remove the local high
nonlinearity.
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Abstract. The second edition of the workshop on Bioinformatics’ Chal-
lenges to Computer Science aimed to discuss the gap between bioinfor-
matics tools and biomedical simulation and modeling. This short paper
summarizes the papers accepted for the workshop, focusing on bioin-
formatics applications at the genomics and molecular level as well as
simulation and management at the biomedical level, and gives a brief
outlook on future developments.

Keywords: Bioinformatics, Data Management and Integration, Mod-
elling and Simulation of Biological Systems, Data Visualization.

1 Bioinformatics - An Overview

Bioinformatics[1,2] is an interdisciplinary field linking biology with computer sci-
ence. In the strictest interpretation of the term, see e.g. http://www.wikipedia.org,
bioinformatics is defined as the application of computer science to advance the
field of molecular biology. However, for this workshop we have adopted a broader
definition, which covers development of advanced algorithms and computational
tools to study biomedical problems in general. In addition to classical bioin-
formatics, this includes the development and use of mathematical models to
describe the aggregate behavior of cells, tissues, organs and organ systems, a
field often referred to as systems biology or integrative biology.

Bioinformatics is a field under rapid development, as improvements of both
computer hardware, algorithms and data acquisition allow the construction and
analysis of increasingly complex and detailed models and datasets. However, al-
though substantial progress has been made, the potential benefit from computer
science tools in biomedical science is huge, and still far from being fully utilized.
Continuing along the track started with its first edition [3], the current edition of
the workshop on Bioinformatics’ Challenges to Computer Science aims to discuss
the gap between bioinformatics tools and biomedical simulation and modeling.

G. Allen et al. (Eds.): ICCS 2009, Part I, LNCS 5544, pp. 807–809, 2009.
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2 Goals

The aim of this workshop was to bring together scientists from computer and
life sciences, to discuss future directions of research. As noted above, our broad
definition of the bioinformatics term essentially divides current research into
two categories; one dealing with data management and analysis on the genetic
and molecular scale, and another dealing with development and application of
advanced system level models. While both of these branches have obtained con-
siderable progress in the past, and may continue to do so for many years to
come, a closer interaction between the two groups hold an even larger potential.

3 Workshop Summary

The papers of the present workshop cover a broad range of applications. The first
session is devoted to applications of simulation studies and signal analysis. Indolfi
et al. focus on the role of real-time image processing in medicine and present a
novel software tool able to assist the physician during pre-implant analysis and
thus supporting an optimal stent choice. The paper by Peters et al. deals with
the application of electrical impedance tomography to assess cardiac ejection
fraction. Numerical methods based on biophysical models are used to analyze
the potential of this tool. The third paper of the session, by Palumbo et al.,
describes the integrated analysis of different biomedical signals of the lower limb
to characterize various physical exercises. Muscles activity and training effective-
ness were evaluated by monitoring electromiography (EMG) signals, metabolic
data, oxygen uptake and heart rate, with the overall aim to develop a system
able to manage different information coming by various electronic devices.

The papers of the second session focus on the application of computer science
tools in genetics and molecular biology. The paper by Zhang et al. focuses on
an important research problem in DNA microarray data analysis, the discovery
of gene co-regulatory relationships, and describes an improved algorithm for
the analysis of gene co-regulation. Menif et al. address the Haplotype Assembly
Problem (HAP), an important aspect of Single Nucleotide Polymorphisms (SNP)
analysis, and present a set of algorithms for Minimum Fragment Removal based
on the processing of strings. The paper by Miceli et al. addresses the protein
structure prediction problem, central for the understanding of protein function,
and compares several available automatic secondary structure prediction tools.

In addition to the listed papers, the workshop includes time slots for discussion
of future directions in bioinformatics. These slots will be used for discussing
potential future development of the presented research results, with particular
focus on potential directions of mutual benefit and joint interest.

4 Conclusions and Outlook

Bioinformatics tools hold a huge potential for use in medical research and clinical
practice. Both the analysis of genetic information offered by classical bioinfor-
matics and the study of systems behavior with detailed mathematical models
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may lead to huge benefits for drug development and personalized health care.
However, the full potential of the field can only be achieved by successfully com-
bining these two branches of the field. Aquisition and analysis tools for genetic
data may be combined with system level models to perform patient specific com-
puter simulations of organs and organ systems. This link from the Genome to
the Physiome (see for instance the NSR (National Simulation Resource) Phys-
iome Project - http://nsr.bioeng.washington.edu/) has been defined as a future
grand challenge of biomedical research, and is subject of substantial research
world wide. In the discussion slots of the current workshop we will attempt to
provide a link between the presented research results, and to identify poten-
tial collaborative projects that would help to bridge the gap between the two
branches.

Acknowledgements. We would like to thank the members of the program
committee for the invaluable assistance on reviewing the papers and the orga-
nizers of ICCS for promoting this workshop.
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Abstract. Quantitative angiography has becoming largely used in in-
terventional cardiology thanks to positive outcomes in terms of patients
survival indexes and life quality. This technique is based on positioning
a medical stent in a laparoscopic intervention to cure coronary stenoses.
Patients gain an immediate benefit from such a procedure by avoiding an
open-heart surgery procedure. Stent positioning is guided by using con-
trast liquid and angiographic X-Rays images, which are used to define
stent dimensions. Physicians may have difficulties in optimally estimat-
ing the stenosis size in order to choose the most appropriate stent mainly
because there is no absolute reference on the angiographer screens. In this
paper we present an innovative software tool able to assist the physician
pre-implant analysis and thus supporting an optimal stent choice.

1 Introduction

To date, angiography has been the primary tool to asses procedural outcomes
after a number of cardiac surgery such as: coronary angioplastic or stent implan-
tation. Its principal role has been to identify major complications (dissections,
thrombus) resulting from the procedure. The agioplastic cardiology has changed
a lot in the last 40 years. It now makes use of highly advanced clinical and
surgery techniques (i.e. laparoscopy, angiographic imaging, biomedical stents).
One of the most critical factors of this type of surgery is that patient is awake
and conscious of what is going on around him during each step of the clinical
activity, during both the disease discovery and the surgery phase. This implies
that the patient will immediately feel improvements or aggravations of his health
condition and this suggests that decisions should be taken faster than what hap-
pened in the past. Nevertheless, in order to avoid stent thrombosis, drug eluting
stents, as well as bare metal ones, should be perfectly deployed. Thus the es-
timation of diameter and length of the coronary vessels as well as overlap of
stents at the origin of large collateral branches, is critical. Currently, optimiza-
tion techniques to physicians in order to measure coronary stenoses are included
in software tools coming with angiography equipment. Nevertheless such soft-
ware tools are either too expensive or difficult in use since the estimation is done
via a dedicated catheter to be used just for this application.
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In this paper we present Cartesio, an innovative software tool to be used
by physicians working in emodynamics surgery rooms. It helps in making a
pre-implant analysis for the estimation of the dimensions of the stent to be
implanted. The tool interacts with virtually any angiographic equipment by
acquiring its high-resolution video signal and offering a set of functions to zoom,
pan, playback, measure and draw a virtual stent over the acquired video frames.
Each rendered measurement or stent pre-implant analysis can be exported as
a bitmap image on the file system or saved in an experiment repository on
a relational database for future reference. The software uses a new patented
balloon catheter with radio-opaque iridium markers positioned at 10 mm from
each other.

Cartesio allows the operator to calibrate the images by making the operator
click over two radio-opaque markers. After the angiographic images are cali-
brated the operator can use a software measurement tool to measure distances
in millimeters instead of pixels. Furthermore, once the calibration is performed,
all of the parameters of the virtual stent (i.e. diameter, length) can be expressed
in millimeters. Measurements help physicians to evaluate the exact dimension
of the stenosis. After determining such a dimension the physician can set the
parameters of the virtual stent and visualize it over the vessel structure. The vir-
tual stent is rendered in real time and can be moved along a previously drawn
curve path following the desired vessel. The physician have a precise preview of
what will be implanted and, if desired, he can change some parameters or move
the stent to better fit the disease. By using such a procedure he can take better
and more conscious decisions before the real angioplastic surgery.

A clinical advantage of the system is the visual analysis of radio-opaque mark-
ers to establish the stent length and the virtual reconstruction of coronary stent
in the angiographic image allowing a further visual double-check analysis before
the device is irreversibly implanted.

In this paper we describe the software main features, its architecture and its
use in an emodynamics surgery room. Physicians can control the Cartesio tool
via a wireless trackball mouse installed at the patient table and visualize its
output in one of the monitors connected to the angiographer.

2 Related Works

During the last ten years many researchers have exploited novel techniques to ex-
tract informations from image data acquired via angiographic equipment. These
techniques allow to build models used by physicians in order to take better
decisions or to execute calculations (i.e. distance evaluations, angles, vessels di-
ameter) and simulations (i.e. blood flow changes, blood pressure, impact of a
vessel dissection).

One of these techniques is Virtual Reality which is used to build geometrical
models of real objects in order to perform complex simulations. Once a virtual
object has been placed in a virtual scene, often called virtual world, a scientist
can define physical parameters both for the object (i.e. mass, color, material) and



812 C. Indolfi et al.

for the world (i.e. gravity, humidity, electric field). Performing simulations in the
virtual world is usefull because results are easily reproducible and no real object
is involved. Furthermore simulation results can be used to confirm or reject hy-
potheses. In [14] a complete study about the impact of Virtual Reality simulations
over clinical practice is described. Fourty-five experienced interventionalists were
recruited and asked to use a commercially available VR simulator to perform a
carotid artery stent (CAS) procedure. All subjects rated the simulator highly in
terms of realism and training potential and the investigator was able to correlate
total and fluoroscopic time of the procedures to the physician’s experience level.

Similar investigations about the value of a computer-aided clinical procedures
has been explored in various areas of the clinical activity. As an example, we
report how similar approaches have been exploited in the neurosurgery field,
where biomedical stents are used to cure aneurysms. In [10] a technique for
pretreatment planning and visualization of a virtual stent across the aneurysm
neck is presented. The authors state that suh a method provides information
not otherwise available regarding the location of portions of the stent not visible
on fluoroscopy. Furthermore, using the method during a treatment, the operator
shows an enhanced ability to determine the location of coils in relation to the
stent boundaries, thus avoiding parent artery compromise. In [13] the authors
simulate the fluid dynamics effects of positioning multiple stents in the case of
an aneurysm in order to prevent a rupture risk. The geometry of a wide-necked
saccular basilar trunk aneurysm was reconstructed from a patient’s computed
tomographic angiography images and three models of commercially available
stent were used during simulations. The study showed that The complex flow
pattern observed in the unstented aneurysm was suppressed by stenting and the
effect was increased by deploying multiple stents.

In literature we can find many papers describing techniques to enhance stent
visualization, both in place or virtually, because this has proven to be useful to
the physician in deciding how to treat a disease or to evaluate the state or the evo-
lution of a treatment. In [8] the visualization of different coronary artery stent is
compared with respect to the detectability of in-stent stenoses during computed
tomography in a plastic vessel phantom. The study shows how 16-slice computed
tomography is necessary for this task if compared to 4-slice performances. In [9]
the ability to assess the coronary artery lumen is measured in the presence of
coronary artery stents in multislice spiral computed tomography. In [11] the au-
thors compare some postprocessing techniques for three-dimensional computed
tomography in order to visualize normal arterial branches, measure aneurysm di-
ameters and neck lengths as well assessment of vessel patency and presence of
endoleaks. In [7] the accuracy of 16-row multidetector computed tomography is
measured when used to visualize peripheral artery stents and to the appraise in-
stent stenoses. In [12] a computer program is exploited to plan stent-grafting for
thoracic aortic aneurysm with complicated morphology.The program, called Semi
Automatic Virtual Stent (SAVS) designer, uses three-dimensional computed to-
mography data to allow the design of a virtual stent which can be used as a guide
to shape a real straight stent to be implanted.
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The IVUS technique [6] is becoming largely used in the emodynamics surgery
and allows an estimation of the vessel dimension and shape by using a dedicated
catheter that has to be inserted before angioplastic stent positioning. This tech-
nique, even if is currently considered the gold optimization technique, has two
main disadvantages: it is expensive and requires a pre-analysis phase that has
to be performed before inserting the guide with the guide catheter. The use of
Cartesio and the radio-opaque marked catheter has the advantage of performing
both measurements and guide inserting in the same phase.

Most of the times the angiographer can generate planar images, which means
that the physician has to choose the most reliable planar projection of the vessel
in order to perform reliable measurements. In order to solve this problem, many
efforts have been made by the research community to extract three dimensional
models from a pair of planar images taken via the angiographer at different
angles. This has lead to two main results: (i) the extraction of a tree of vessels
representing connections among vessels and their position in space [3,2]; (ii)
the creation of a full 3D model with polygons describing vessels narrowings and
enlargements, useful to execute punctual simulations of blood flow or just to
better visualize stenoses from inside the vessel [1,4].

Currently Cartesio has been implemented on planar images and the prob-
lem of coronary vessels that are not exactly projected on the image plane can
be measured by using local calibration that is always guided by radio-opaque
catheter that follows the vessel.

Finally many software tools have been defining by major vendors. For instance
the edge-detection support tool from the General Electric workstation allows to
measure the diameter and the variation of stenosis profile in the vessels.

3 The Cartesio Tool

3.1 Requirements and Functionalities

The main phases followed by a phisician during the cardiac surgery activity are:

patient disease discovery phase during which he inserts a catheter through
the femoral artery to the heart and, by the injection of a contrast medium
to distinguish the vessels shapes, he acquires a set of video sequences with
different projections;

disease evaluation phase where the phisician analyzes all the video sequences
and frames in order to elaborate and possibly verify a clinical hypothesis on
the disease;

plan of action phase in which the medical equipe decides what to do and how,
evaluating potential problems and consequences and minimizing the decision
time;

intervention phase where the surgery activity is eventually implemented.

The tool has been designed following such phases and offers useful function-
alities over the flat angiographic image acquisitions, such as: video signal ac-
quisition, video live, storing, zooming with bi-cubic interpolation, calibration,
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(a) Acquiring video (b) Calibrated

(c) Measuring (d) Stent drawing

Fig. 1. Four interaction phases with the Cartesio tool

measurements of the coronary diameter and length. In addition the software is
also able to reconstruct in the coronary angiographic segment the stent that
operator have selected for a specific lesion. Moreover, it is required to store the
data acquired during analysis in the Dicom standard image format on a local
repository, data that can be reused for case studies. For instance, in figure 1,
screenshots related to the Acquisition, Calibration, Measuring and Stent drawing
and positioning simulation phases are depicted.

The software tool has also been developed to perform procedures both on-line
and off-line. In the first case the software tool allows to calibrate and measure ves-
sels and coronaries interactively during the procedure. The second case allows to
perform measurements on the images stored in a standard DICOM1 repository.
Many Interventional Units have a shared Picture Archiving and Communication
System (PACS ) able to store and retrieve medical images from a large number
of equipment in the DICOM format. With the ability to use images stored in
the DICOM format, Cartesio offers physicians the ability to perform simula-
tions even after the coronarography analysis, simulating stent positioning and
deciding strategies for future treatments.

1 Digital Imaging and Communications in Medicine (DICOM ) is a standard for han-
dling, storing, printing, and transmitting information in medical imaging. It includes
a file format definition and a network communications protocol.
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Moreover the Cartesio tool includes classical image manipulation techniques
such as: acquiring a video sequence from the angiographer, choosing the best
contrast frame on which build the virtual stent model, calibrating the image,
measuring distances (i.e. vessel diameters, stenosis diameters), designing the
vessel path, choosing the stent parameters and interactively moving it along the
designed path.

3.2 Architecture

The system architecture is structured as a set of components all connected to-
gether through a communication bus, as depicted in figure 2.

Each component of the system implements a common interface enabling it
to send and receive messages from the bus. In the initialization phase of the
module, it searches for the bus object and makes a subscription. Every other
module connected to the bus receives notifications in a publisher/subscriber
fashion and our API provides both the pull and the push models. The main
Cartesio modules are:

Communication Bus is used by all the other modules to exchange messages
and notify events in a publisher/subscriber fashion; when a module initializes
itself it registers with the Communication Bus in order to receive and send
messages to the other modules;

Command Interpreter together with the User Interface module it is in charge
of transforming commands issued by the operator into instructions to be send
the other Cartesio modules;

Rendering and Business Logic module implements the logic of the system
and offers math, geometric and measuring functionalities to other modules
(i.e. conversion functions to transform pixel into millimeters and back); fur-
thermore it holds the state of the system, the data structures and period-
ically generates rendered images to be shown on the screen by combining
bitmap angiographic images with vector data (i.e. curve paths, lines, points,
measurement labels);

Video Acquisition module works with both JMF (Java Media Framework)
video sources (i.e. low resolution USB video signal) and distributed digital
video streams (i.e. native code video components sending acquired video over
a TCP/IP network);

Persistence module offers functionalities to import exams in the DICOM for-
mat, both for didactica and post-therapy planning, and to export data both
on file system, in the XML format, and on a relational database (R-DBMS );

Cartesio is part of a Distributed Electronic Patient Record, in which the pa-
tient’s personal data and family history are enriched with clinical files and DI-
COM images documenting exams results. The patient files are included during
the coronarography planning and all files with biological data and DICOM im-
ages are included in the Electronic Patient Record for future reference.

Main modules are depicted in figure 2. In the following we briefly discuss
the Video Acquisition module and we sketch the Rendering module as the main
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Fig. 2. Module architecture of the Cartesio tool

algorithmically challenging. The acquisition module consists in acquiring an high
resolution and high frequency analog video signal generated from angiographic
equipment. The lack for a video signal standard in medical applications have
lead to a plethora of different specifications, which makes really hard to design
an acquisition platform working for every equipment, even for instruments from
the same vendor. We managed to acquire all of the video signals generated by
equipment found in our structure, by using the following strategy:

1. measuring peak-peak voltage, identifying the video sync signal and resolu-
tion;

2. identifying the acquisition signal frequency;
3. tuning the acquisition module in order to correctly hook the video signal

and in order to acquiring data in main memory.

The data volume generated during the video signal digitalization is, in gen-
erale, very large. For instance, for the General Electrics Innova System, the
acquired full-resolution video signal generates a data flow of approximately 20
Megabytes per second. For this reason, while Cartesio has been implemented us-
ing the Java language, the video acquisition component has been coded in native
code in order to maximize the frame rate. After the signal has been correctly
grabbed and digitalized, it is made available to Cartesio. Note that, due to the
large amount of data, an ad-hoc communication channel between the image ac-
quisition native component and the Cartesio image manipulation module has
been designed.

The Rendering module is in charge to position and visualize vector data over
the bitmap angiographic images in Cartesio. It interpolates the stent path, de-
signed by the physician across a vessel of interest, through a set of Bezier curves
[5] connecting a set of control points. By moving or adding control points on the
angiographic image, the interpolation curve is recalculated in real time. Along
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the curve path the operator will be able to move and resize the virtual stent. The
stent shape will be visible after the definition of the stent diameter and length,
by calculating two bezier curves equidistant from the main stent path.

4 Experiments and Conclusions

Since June 2008 the Cartesio tool has been testing in Emodynamic Department
of University ”Magna Græcia” of Catanzaro Medical School Hospital. As a first
setup Cartesio has been installed on a 2Gb RAM quad core computer with Mi-
crosoft Window operating system. The video signal has been acquired from the
video output of an Rx machine General Electrics Innova 2100. The system has
been installed in the emodynamics surgery room and can be controlled both
by the physician during the interventional procedure or by a technician outside
the operating room. According to our tests, Cartesio measurement facilities and
simulations improve the evaluation of correct stent choice thus optimizing the in-
terventional procedure in terms of time and confidence. The improved capability
in correctly evaluating the stent dimensions has been confirmed by expert oper-
ators. The only drawback is mainly that the physician has to choose a correct
projection for acquiring the angiographic images (i.e. planar w.r.t. the diseased
coronary) in order to allow uniform measurement analyses through the whole
image. The software has also been tested with the italian SIAS angiographer and
also on the General Electrics Advantic, with similar performances.

We conclude claiming that Cartesio is a software tool that both enhances the
real-time visualization of the angiographic images and offers new image process-
ing functionalities supporting the surgery procedures. Currently the tool is in
use in two surgery rooms in the University of Catanzaro Medical School Hos-
pital, and data have been storing in the Cartesio DICOM database. We are
improving the software tool by adding multiple point calibration and designing
a collaborative version allowing the operator to share the virtual stent simula-
tion environment with remote collegues. Such a collaborative environment could
bring new emodynamic techniques to remote hospital or clinical structures not
having the expertise in using novel or advanced angioplastic techniques.
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Abstract. Cardiac ejection fraction is a clinically relevant parameter
that is highly correlated to the functional status of the heart. Today the
non-invasive methods and technology that measure cardiac ejection frac-
tion, such as MRI, CT and echocardiography do not offer a continuous
way of monitoring this important parameter. In this work, we numerically
evaluate a new method for the continuous estimation of cardiac ejection
fraction based on Electrical Impedance Tomography. The proposed tech-
nique assumes the existence of recent Magnetic Resonance (MR) images
of the heart to reduce the search space of the inverse problem. Sim-
ulations were performed on two-dimensional cardiac MRI images with
electric potentials numerically obtained by the solution of the Poisson
equation via the Boundary Element Method. Different protocols for cur-
rent injection were evaluated. Preliminary results are presented and the
potentialities and limitations of the proposed technique are discussed.

1 Introduction

Cardiac ejection fraction indicates the measure of the blood fraction that is
pumped from each ventricle in each step of the heart cycle. The ejection fraction
of both left ventricle (EFLV) and right ventricle (EFRV) can be determined.
But the clinical use of EFLV is more common and it is frequently called ejection
fraction (EF). By definition, the ejection fraction is calculated in the following
way:

EF =
PV

EDV
=

EDV − ESV

EDV
(1)

where PV is the volume of blood pumped, that is given by the difference between
the end-diastolic volume (EDV ) and the end-systolic volume (ESV ). Cardiac
ejection fraction is a relevant parameter that is highly correlated to the func-
tional status of the heart. To determine EF, different techniques can be used,
like echocardiography, cardiac magnetic resonance and computed tomography.
However, because of the costs of these techniques, they can not be used for con-
tinuous monitoring. In this work, we numerically evaluate a new method for the
continuous estimation of cardiac ejection fraction based on Electrical Impedance
Tomography (EIT).
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c© Springer-Verlag Berlin Heidelberg 2009



820 F.C. Peters, L.P.S. Barra, and R.W. dos Santos

EIT is a technique that reconstruct conductivity distribution images inside
a conductor domain based on protocols of current injection and potential mea-
surement on the boundary of the domain. This technique has a large utilization
on geophysics, monitoring of industrial activities [1] and on biomedical engi-
neering [2,3,4]. In this last area, the EIT is considered as a viable technique for
monitoring long periods, since it is not based on ionizing radiation. The EIT
spacial resolution is not as high as the traditional imaging methods. Neverthe-
less, its portability, low cost and time resolution are the main advantages of the
technique.

The aim of the present work is to present a study on the viability of EIT
to the continuous monitoring of cardiac ejection fraction. Previous work have
shown preliminary results on the same topic [5,6,7]. In this work, we extend
previous results and give new contribution in many aspects: 1) We develop a
more realistic 2D model that includes the lungs. Because of their low conduc-
tivity, these regions behave as a barrier to the electrical currents and poses new
challenges to the problem. 2) The results presented in this work were obtained
using the Levenberg-Marquardt method [8] for the solution of the inverse prob-
lem associated to EIT. Previous work have adopted different methods, such as
the Powell’s method [9], Genetic Algorithms [10,11] and FAIPA (Feasible Arc
Interior Point Algorithm) [12]. 3) Different protocols for current injection are
evaluated for the estimation of cardiac ejection fraction.

Preliminary results are presented and the potentialities and limitations of the
proposed technique are discussed. The results suggest the proposed technique is
a promising diagnostic tool that offers continuous and non-invasive estimation
of cardiac ejection fraction.

2 Methods

2.1 2D Models Based on Magnetic Resonance Images

From magnetic resonance (MR) images, the regions of interest, in this case the
two ventricles were manually segmented in two different phase: end of the systole
and the end of diastole. Each curve of the segmentation was parameterized by
a spline, with a minimum number of points. The left ventricle (LV) spline has
7 control points and the right one (RV) 8 points. The external boundary of
the thorax and the boundaries of the lungs were also segmented. For simplicity,
these curves are assumed constant during the heart cycle. Figure 1 shows a
segmentation example.

The goal of our method is to recover the shape of the internal cavi ties of
the heart, presently considered in two-dimensions, from electric potential mea-
surements. Therefore, with two coordinates for each spline control point the
methods would need to estimate a total of 30 ((7+8)*2) parameters. To reduce
the number of parameters to be estimated the following strategy was adopted.

During MRI segmentation we have used the same number of control points for
the splines in both systole and diastole phase. This allows us to restrict the search
space forcing that each control point i belongs to a line that connects the position
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Fig. 1. Manual segmentation of an MR image. The boundary of the lungs is represented
in blue and the boundary of the ventricle cavities in red.

at systole and diastole. Thus, a linear interpolation is used, parameterized by
a scalar ti, between the values of the coordinates of each control point i. The
spline relative to the end of systole can be obtained with ti = 0, ∀i, and the
one relative to the end of diastole with ti = 1, ∀i. Doing so, the method goal
is to recover the shape of the ventricular cavities via the estimation of the 15
parameters ti, with i = 1...15.

2.2 Forward Problem and Governing Equations

The proposed 2D model splits the domain in regions that represent different
biological tissues, heart cavities, lungs and torso. Each tissue can be mainly
electrically identified by its conductivity. Grimnes [13] presents the main factors
that influence the properties of biological tissues. Although they may be classified
in only four groups, epithelium, muscle, connective tissue and nervous tissue, the
tissues can be divided in thirty kinds in accordance to their electrical properties
[14]. In addition, the value of the conductivity of each tissue depends on the
frequency of the electrical current, on the temperature, on the presence of water,
among other issues.

Table 1. Resistivity values of biological tissues that are found in the literature

Tissue Resistivity (Ωcm) Reference
150 Barber and Brown [16]

Blood 150 Yang and Patterson [17]
100 Schwan and Kay [18]
400 Patterson and Zhang [19]

Heart 250 Yang and Patterson [17]
400 - 800 Baysal and Eyuboglu [20]
727 - 2363 Barber and Brown [16]

Lung 1400 Patterson and Zhang [19]
600 - 2000 Baysal and Eyuboglu [20]
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In this work, we assume the conductivity of each tissue is taken as known,
constant and isotropic. These are all simplified assumption, since biological tis-
sues are usually heterogeneous and anisotropic. However, biological tissues are
difficult to characterize, and the reported values vary substantially in the litera-
ture. Table 1 presents some resistivity values for blood, heart and lung found in
the literature.

For the remaining tissues that compose the section of the thorax, that from
here on we call the torso region, Bruder et al. [15] proposes a mean resistivity
of 500Ωcm. The conductivity of the air is 1020Ωcm, but the conductivity of
the lung filled of air is difficult to determine. Rush et al. [21] presents a very
simplified resistivity distribution model characterized by the presence of cavities
filled of blood, surrounded by homogeneous material with resistivity ten times
greater. The same scheme, properly extended to include the lung regions, is used
in this work. Preliminarily, the resistivity of the blood is here taken as 100Ωcm
and the torso to be 1000Ωcm. Two different values were tested for the resistivity
of the lungs: 20000Ωcm (Ratio of Lung to Torso resistivity (RLT) of 20) and
50000Ωcm (RLT of 50).

The forward problem consists of calculating the electrical potential on the ex-
ternal boundary of the torso that is generated by the current injection on a pair
of electrodes. Given that our 2D model has three regions with different but con-
stant and isotropic conductivities (heart cavities, lungs and torso) the electrical
potential at each point of the regions, φ, must satisfy Laplaces’ equation:

∇2φ = 0 (2)

and the boundary conditions are

σL∇φ = σT ∇φ , x ∈ Γ1

σB∇φ = σT ∇φ , x ∈ Γ2

σT
∂φ

∂n
= Ji , x ∈ Γ ie

3

∂φ

∂n
= 0 , x ∈ (Γ3 − Γ ie

3 )

where Γ1 is the interface between the lung and torso region, Γ2 is the interface
between the blood and the torso region, Γ3 is the external boundary of the
thorax, Γ ie

3 is the part of Γ3 where the ith electrode is, Ji is the electrical
current injected on the ith electrode and σL, σB and σT are the conductivities
of the lung, blood and torso, respectively.

In the present work, the forward problem is solved by the Boundary Element
Method (BEM) [22]. Further details of the implementation can be found in [23].

2.3 The Inverse Problem

The inverse problem associated to EIT aims to recover the shape of the ventric-
ular cavities via the estimation of the vector t, that contains the 15 parameters
ti, with i = 1...15 (as described in Section 2.1). This is done via the minimization
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of an objective function that measures the distance between measured electri-
cal potential values (φ̄j) taken from a pair of electrodes identified by j on the
external boundary and the computed ones (φ(t)j) that depends on the heart
cavity shape parameterized by t and is calculated as described in Section 2.2.
Therefore, the goal is to find the best parameter vector t that minimizes Eq. 3:

F =
1
2

m∑
j=1

(φ(t)j − φ̄j)2 (3)

where m is the number of measurements and depends on the current injection
pattern. In this work, the “measured” electrical potential values (φ̄j) were also
synthetically generated, i.e., also numerically obtained.

This minimization problem is solved by the method known as Levenberg-
Marquardt [8]. The implementation of the method and the subroutines that
compute the objective function are done in Fortran77.

2.4 Numerical Experiments and Stimulation Patterns

For the 2D problem in consideration the areas of the transversal section of the
cavities were assumed to be proportional to their volumes, i.e. a cylindrical
approximation so that EF is calculate by:

EF =
EDA − ESA

EDA
(4)

where EDA and ESA are the areas of the transversal section of the ventricle at
the end of the diastole and at the end of the systole, respectively.

From MR images taken at the end of the systole and at the end of the diastole
the cardiac ventricles were manually segmented and in accordance to (4) the
EF of the left ventricle is 59.24% and the EF of the right ventricle is 29, 95%.
After that, a cardiac disfunction was synthetically generated. The simulated
disfunction consists of a modified cardiac cycle in which the end-diastolic volume
is the same as in the normal cycle but the end-systolic volume is greater than
the normal one. In this new cardiac cycle, the EF of the left ventricle is 33.01%
and the EF of the right ventricle is 16.19%. These are the target values to be
estimated by the here proposed method.

Two patterns of electrical current injection were tested: a diametrical one,
with electrodes evenly distributed along the torso boundary; and an adaptive
one, with electrodes that are near the region of interest. The first yields a set
of 104 measurements and the second one yields a set of 78. The arrows of the
Fig. 2 present the pairs of electrodes sequentially used for current injection in
each pattern.

As mentioned before in Section 2.1 we have also tested two different 2D mod-
els. Each with a different value for the resistivity of the lungs: 20000Ωcm (Ratio
of Lung to Torso resistivity (RLT) of 20) and 50000Ωcm (RLT of 50). Finally,
for each of 4 optimization problems (2 Stimulus Patterns times 2 RLT models)
we have tested the optimization method with two different initial guesses. One
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Fig. 2. Two stimulation patterns used in this work. The first one is the diametrical
and the second one is the adaptive.

Fig. 3. A typical target (pink) and the two initial guesses (green) given to the opti-
mization procedure: (a) ti = 0,∀i ; (b) ti = 1, ∀i

guess is the parameter set t that corresponds to the shape of the ventricles at
the end of the diastole of normal heart, i.e. ti = 1, ∀i and the other at the end
of the systole for the normal tissue, i.e. ti = 0, ∀i . The initial guesses and the
targets can be compared in Fig. 3. Thus, the method was executed a total of 8
times (2 Stimulus Patterns times 2 RLT models times 2 initial guesses).

3 Results

Table 2 presents the results of our numerical experiments that aims the EF esti-
mation of the synthetically generated cardiac disfunction. The columns present
the results for the models with different values for the resistivity of the lungs:
Ratio of Lung to Torso resistivity (RLT) of 20 and RLT of 50. Each couple
of rows presents the comparison of the two stimulation pattern implemented:
diametrical and adaptive pattern. In addition, for each pair (stimulus pattern,
RLT) results are presented for two different initial conditions. The first one cor-
responds to the shape of the ventricles at the end of the diastole of the normal
heart, i.e. ti = 1, ∀i and the other at the end of the systole for the normal
heart, i.e. ti = 0, ∀i. The last row of the table presents the target EF values for
comparison.
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Table 2. Values of the ejection fraction estimated for the synthetic cardiac disfunction
for two RLT ratios and two different stimulation patterns. The last row shows the
target values.

RLT= 50 RLT= 20
Initial EF (%) EF (%)
Guess RV LV RV LV

Diametrical Pattern

ti = 0 13.00 34.41 15.32 34.22

ti = 1 16.09 32.21 15.80 33.04

Adaptive Pattern

ti = 0 12.97 35.86 20.54 29.94

ti = 1 18.72 32.84 20.89 29.40

Target 16.19 33.01 16.19 33.01

Figure 4 allows a geometrical comparison between the final results and the
actual target curves. It is important to emphasize that, to make the compari-
son fair, the results presented in this figures are obtained with the same initial
guesses, ti = 1, ∀i.

The results show that in general the error in the computed ejection frac-
tion of the left ventricle is smaller than the one of the right. The mean ab-
solute error of the left ventricle results is 1.64 while the right ventricle ones
is 2.42. Moreover, except in one case, the diametrical pattern provides results
closer to the actual values than the other pattern. The diametrical pattern
provides a mean absolute error of 1.00 while the error of the adaptive pat-
tern is 3.06. About the initial guess, both of them provided good results. But
the best ones are obtained with the guess on the original diastole curve with
a mean absolute error of 1.54 against an error of 2.52 for the other initial
guess.

The geometrical results presented in Fig. 4, showing only the ventricular cav-
ities, suggest that the results become worst in the case the lung resistivity is
greater. This behavior is expected because greater resistivities around the region
of interest tend to block the electrical current to reach this area. For instance,
for the best experimented pattern, the diametrical one, the mean absolute error
obtained with the greatest resistivity (RLT = 50) is 2.2 times the error obtained
with the other lung resistivity (RLT = 20).

Using the diametrical pattern, the best result was obtained for the left ven-
tricle and RLT of 20. The absolute error in the value of the ejection fraction is
of 0.03. It is possible to see this result in Fig. 4(b). In this case it is very difficult
to see the difference between the result and the target and it is the best of the
8 tested cases. About the adaptive pattern, the best one was obtained for the
left ventricle and RLT of 50. In this case, the absolute error in the value of the
ejection fraction is 0.17.
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Fig. 4. Some results for the diametrical and the adaptive pattern and the target

4 Conclusions

The presented results suggest that the proposed methodology allows a suitable
indication of the cardiac ejection fraction. We observed that the error in the
ejection fraction predictions for the right ventricle are greater than those found
for the left ventricle and this is in agreement with other techniques, such as with
echocardiography.

Concerning the different patterns for current injection tested in this work, the
errors obtained with the diametrical pattern are smaller than those using the
adaptive pattern, in general. However this fact does not discard the use of the
adaptive pattern, as it presents good results and spends around 19 min. in a
Pentium 4, 3.00 GHz, for a complete solution, 25% less then the diametrical.

Comparing the results obtained with different lung resistivities we may con-
clude that the inverse problem becomes more difficult to be solved as the RLT
increases. Therefore, the results suggest the current injection should be triggered
during the expiratory phase, when the air volume and the corresponding lung
resistivity are smaller.
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The preliminary results presented in this work suggest the proposed tech-
nique is a promising diagnostic tool that may offer continuous and non-invasive
estimation of cardiac ejection fraction.
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Abstract. Electronic devices have been useful to evaluate  muscle fatigue and 
activation, co-ordination and metabolic consuption among different sports 
activities. Since these important variables have not been investigated during 
fitness training, the present study aims to analyze the activity of the major 
muscles of the lower extremity during training activities on a cardiofitness 
apparatus (Cardio WaveTM, Technogym® - Gambettole, Italy). This device is 
able to stimulate the multiplanar movements of lower limbs by combining 
various types of movement according to the physical principles of human 
motion. Working simultaneously on three axes by a sliding movement of lower 
limbs should activate different muscle groups following four positions at 
different intensity level. Muscles activity and training effectiveness were 
evaluated by monitoring Electromiography signal, metabolic data, oxygen 
uptake and heart rate. The goal of this research is to develop a system able to 
manage different information coming by varius electronic devices. 

Keywords: EMG, Cardiofitness, Wavelet. 

1   Introduction 

More and more people are deciding to start exercising in a fitness center in order to 
increase muscle strength and reduce body fat. Several models of cardiofitness 
machines are available to practitioners who freely choose the exercise modality. 
However, incorrect exercise intensities and positions are related to inefficacious 
training and incidence of injuries 1..  

Cardio WaveTM (CW) is a cardiofitness apparatus specifically designed to allow 
movements along three axes (Fig. 1) by combining different movements which 
extensively train lower limb muscles according to four positions:  

• Basic (B): with chest erect. 
• Intermediate (I): with chest leant forward. 
• Advanced (A): with chest and hands leant forward the ground. 
• Free style (F): with arms free to oscillate. 

Each position is meant to train different muscle groups. 
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Fig. 1. Cardio Wave device positions: a) Standard , b) Advanced, c) Intermediate, d) Freestyle 

During whatever sport activity fatigue is indicated by a decrease of muscle strength 
and power. Most studies of neuromuscular activity and fatigue have evaluated 
isometric and cyclical contractions. However, these types of contractions may not be 
representative of muscle activity and fatigue during physical exercise 2.. Indeed, 
available data suggest that the development of fatigue is specific to contraction type, 
intensity and duration of activity 3.. An exercise of the type that occurs during a 
fitness training session is characterized by a variety of muscle activities.  

In order to investigate lower limb muscle activity and training optimization at the 
four positions (i.e. B, I, A, F) and in the 3 intensity levels, several parameters were 
monitored. Particularly  Electromyography (EMG),  Hearth Rate (HR), Oxygen 
uptake (VO2) and Lactate threshold  (LA) were recorded by means of four different 
devices. 

EMG was used to display muscle activation patterns and interpret both dysfunction 
and functional muscle recruitment 4.. HR is an important parameter to evaluate a 
specific exercise task in terms of the strain it places on the individual’s aerobic system 
5.. Both LA threshold and VO2 are predictors of aerobic exercise capacity 6..   

Aim of this research was to evaluate training activities using the information 
coming from different electronic devices. 

2   Methods 

2.1   Subjects 

During a test session nine healthy subjects - 5 trained and 4 untrained - with no 
history of musculoskeletal injuries and free from cardiac or metabolic disorders were 
recruited. They agreed to participate in the study. All subjects were selected on a 
voluntary basis from a fitness center population. They represented a wide spectrum of 
body weight, height, age and muscle strength. They ranged in age between 25 and 33 
years with a mean value of 27.4 years. Their weight ranged from 65.4 kg to 99.8 kg 
with a mean value of 75.9 kg. Their height ranged from 167 cm to 177.8 cm with a 
mean value of 171.5 cm.  

We considered as trained group the subjects that claimed to train at least twice a 
week at a moderate intensity (60-70% HRmax), for a minimum duration of 45 minutes 
/ session.  

Before training sessions all groups performed a 20-minute stretching protocol for 
lower limbs 7. for 30 seconds. This exercise was repeated 3 times for each muscle 
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group. After a 10-minute warming-up on the ergometer, subjects were asked to 
perform randomly in all the four positions allowed by CW. 

2.2   Data Recording 

Commercial electronic devices are used to monitor different physics parameters for 
subject recruited and for each training session (Table 1). 

Vastus medialis (VM), rectus femoris (RF) and biceps femoris (BF) muscles were 
selected for EMG analysis, as they are the most stimulated muscles in this kind of 
exercise.  

The subjects were prepared for placement of EMG electrodes: the skin of each 
electrode site was shaved and cleaned carefully with alcohol in order to have a low 
inter-electrode resistance. The activity of each muscle was recorded by means of a 
couple of electrodes (Ag-Ag/Cl; Aurion s.r.l., Milan, Italy; 20 mm diameter, 20 mm 
inter-electrode distance). The electrodes were placed longitudinally on the motor 
point areas of the muscle examined. EMG signals were recorded telemetrically and 
the electrodes were placed on the RF, mid-way between the anterior superior iliac 
spine and the superior border of the patella; the BF over the long head, half-way 
between the ischial tuberosity and lateral femoral epicondyle; the VM at 80% on the 
line between the anterior spina iliaca and the joint space in front of the anterior border 
of the medial ligament 8..  

To reduce movement artefacts, the electrodes were taped to the skin with an elastic 
bandage. Moreover, the usage of a wireless device allowed not to interfere with the 
subject’s movements. EMG activity was acquired  by using  a wireless low power 
signal conditioning electronics device (ZeroWire Aurion s.r.l., Milan, Italy), in order 
to achieve both a stable input impedance and a high value of signal amplification (up 
to 100,000 V/V); a 2 KHz sample frequency was used for analog- to -digital  
conversion. 

VO2, HR and La concentrations were measured at rest and during exercise and 
recovery 9, 10.. 

During the test session, VO2 was monitored continuously using a smaller portable 
gas analyzer (FitmateProTM, Cosmed, Rome, Italy), in order to assess cardio 
respiratory function. This device allowed the direct measurement of VO2 max during an 
up to maximal exertion incremental exercise protocol, the extrapolation of VO2 max 
during a sub-maximal incremental exercise, and the Estimation of VO2 max based on 
the results achieved during some standard field tests. 

Heart Rate was monitored by telemetric heart-rate bands (Polar, Kempele, Finland) 
with the registration of values during each minute of exercise on CW. We considered 
the last minute for statistical purposes 11-13.. The 4.0 mmol/l La threshold was 
measured with a lactate-meter (Accu-check, Roche Diagnostic, France) at rest and 
during exercise (at the end of each 3-minutes step) and recovery (3, 6, 9 minutes after 
performing the test).  

All recording data coming from different devices  were independently collected , 
were stored in a common database and processed togheter with a custom-written 
software in order to obtain information useful to a training activity analysis. Data 
coming from different devices use a storage memory of about 300 MegaByte for any 
subject. The computational time necessary to complete one test session is about 2 
hours for any participant.  
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Table 1. Evaluated parameters during exercise 

Time (min:s) Intensity (RPM) Parameter recording 
   
00:00 120 EMG VO2  HR 
04:00 200 EMG VO2 LA HR 
08:00 300 EMG VO2 LA HR 
12:00 STOP   LA HR 
15.00 STOP   LA  
18:00 STOP   LA  
21:00 STOP   LA  

 

 

Fig. 2. Data flow 

2.3   Fatiguing Protocol 

We used a fitness-specific intermittent exercise protocol, which provided a fatiguing 
activity. Each subject performed 4 test sessions, one for each CW position (i.e., B, I, 
A, F). During a test session, subjects randomly performed the same 12-minute 
exercise at different intensities (4-minute step at three different intensities: low - 120 
RPM, middle - 200 RPM and high intensity  -300 RPM) imposed by the CW machine 
in the same position. In each session, subjects warmed up by 4 min/step at the three 
intensities selected; each session was separated by 180 min of recovery, but the 
subjects could only make 2 sessions per day in order to aid muscle fatigue recovery. 

2.4   Data Processing  

In order to test the different parameters for the purpose of evaluating muscle activity 
and fatigue, EMG data were analyzed by using LabView 8.0 software (National 
Instruments corp., Austin, TX, USA).  
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Continuous Wavelet Transform (CWT) was used in order to identify particular 
time-frequency signal models. Wavelet analysis is becoming a common tool for 
studying the localized variations of power within a time series. By decomposing a 
time series into time–frequency space, it is possible to evaluate both the dominant 
modes of variability and how those modes vary in time 14, 15.. 

In particular, in order to analyze EMG signals, Mean Instantaneous Frequency 
(MIF) was calculated. Starting from the spectrographic analysis of the signal, we 
aimed at pointing out how the signal’s central frequency changes in time.  MIF 
represents the power of spectral response for each subject studied. MIF is a mean 
value calculated to get a group parameter aimed at estimating how much the strength 
of muscle contraction and the degree of muscle fatigue vary in time 15.. MIF 
represents power spectral response for each subject trial: from MIF vector a mean 
value is calculated in order to obtain a clustering parameter. 

 

 

Fig. 3. EMG Wavelet Spectrogram 

As for HR, LA and VO2 measures, once the data coming from the test were stored, 
the data themselves were processed by means of statistical tools. The processing was 
made in order to evaluate the change of each parameter according to the different 
positions and intensity levels.  

In particular, for the EMG data, for each muscle a 4 (Positions) x 3 (intensity level) 
x 2 (Groups) ANOVA for repeated measures was applied to verify statistical 
differences in EMG data expressed as percentages of basal values. After data 
processing it is useful to analyse correlation between data coming from different 
devices. 

3   Results 

The data resulting from each test use a lot of storage memory and present a variety of 
typologies since they are the results of a processing of various signals. As a 
consequence, computational time to get the information about the quality of a training 
session is long. 

MIF for each single muscle in the three intensity levels in both groups was 
computed in order to evaluate contraction power variation for each of them, thus 
underlining fatigue level. In tables 2 and 3 mean values of MIF in the four positions 
investigated for the different intensities are shown. From EMG’s statistical analysis, 
no difference emerged between groups.  
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Table 2. MIF Values for T group at different positions and intensity levels 

 Muscle VM RF  BF 
 Intensity 120 200 300 120 200 300 120 200 300 

B 53.2 46.6 46.7 77.5 52.3 49.7 70.2 51.2 45.8 
I 92.3 78.6 79.1 98.5 79.7 80.1 70.3 78.0 79.3 
A 72.3 53.4 51.6 90.2 77.8 60.2 90.6 74.3 58.1 

P
os

it
io

ns
 

F 80.6 61.3 59.9 78.8 60.1 61.2 92.4 70.3 71.2 

Table 3. MIF Values for UT goup at different positions and intensity levels 

 Muscle VM RF  BF 
 Intensity 120 200 300 120 200 300 120 200 300 

B 70.5 60.2 60.1 100.1 82.2 77.6 130.1 82.0 80.0 
I 82.3 73.5 72.9 99.6 81.0 80.0 82.6 78.6 70.5 
A 78.6 66.4 67.0 99.8 96.5 83.4 120.8 102.3 99.0 

P
os

it
io

ns
 

F 60.0 47.6 51.3 71.2 48.3 54.6 98.6 120.0 140.1 

 

 

Fig. 4. Maximum Heart Rate value at different positions and intensity level for T and UT 
groups 

 
Fig. 5. VO2 mean value at different positions and intensity level for T and UT groups 
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About HR and VO2 we observed a statistically significant difference only during 
the position F at the middle intensity among trained and untrained subjects, but the 
post hoc analysis did not show any significant difference (figure 4 and 5). 

We did not find any significant difference for the blood lactate values in both 
groups. 

 

Fig. 6. Mean value of lactate peak at different positions and intensity level for T and UT groups 

3   Discussion 

On the basis of the results obtained, indications useful for the optimization of the 
training sessions were found. For instance, we observed an increase of the exercise 
intensity and muscular activation during the training session in F position. In UT 
group there was a trend towards a higher value of MIF, probably due to the lower 
economy of this intense exercise. However, the lack of statistical significance 
between T and UT may be attributed to the lower number of subjects. 

As above mentioned, the insufficient statistical relevance of the data can also 
depend on the inefficiency of the whole measuring and processing procedures. These 
difficulties lengthen measuring and processing times a lot, thus making the 
monitoring of a high number of subjects difficult. 

This problem might be solved by using a structure based on computer grids. In 
fact, nowadays this technology is very used for similar applications in different 
research fields 16, 17. (figure 7). Generally speaking, grid computing is the 
application of several computers to a single problem at the same time. It is usually  
about scientific or technical problems that require a great number of computer 
processing cycles or access to large amounts of data. 

Ideally, a grid should provide full-scale integration of heterogeneus computing 
resources of any type: processing units, storage units, communication units, and so on 
18.. For this problem a data grid can be used. It has the data storage capacity as its 
main shared resource. Such a grid can be regarded as a massive data storage system 
built up from portions of a large number of storage devices. Particularly, a remote 
user (e.g. a researcher) can manage data coming from different fitness centres and 
process them by using the grid resources at the same time, which would allow to 
manage also a much bigger database. Grid could be seen as a way to store data and to 
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Fig. 7. Scheme of the proposed system on the grid 

make them available to multiple users. The computing resources must satisfy basic 
requirements 18.: They must have enough computing power and data storage capacity 
to properly run the grid platform; they do not need to be directly connected to each 
other but they must know some entity that takes it to the grid; they can be indirectly 
connected through routers, gateways, hubs, switches, bridges, and wireless 
connections, by which a data packet can be sent from one computing resource to 
another. 

For a data grid, the overall data storage capacity of a grid is the sum of the storage 
capacity made available for the grid in all its nodes and the performance of a data grid 
heavily depends on its communication links. 

4   Conclusion 

The paper presented a integrated system to manage and analyze different data in order 
to evaluate the training in cardiofitness activity. EMG, LA, HR and VO2 were 
monitored during a training session and stored in a local database. The data were 
processed and a statistical analysis was performed in order to give usefully 
information to optimize the training session. Moreover a database containing all the 
monitored parameters for the different subjects was made. Future work will deal with 
the application of this system on the grid in order to improve its efficiency, reducing 
computational times and making the monitoring of a high number of subjects easy. 

References 

1. Siscovick, D.S., Weiss, N.S., Fletcher, R.H., Schoenbach, V.J., et al.: Habitual vigorous 
exercise and primary cardiac arrest: effect of other risk factors on the relationship. J. 
Chronic. Dis. 37(8), 625–631 (1984) 



 Analysis of Muscle and Metabolic Activity during Multiplanar-Cardiofitness Training 837 

 

2. Rahnama, N., Reilly, T., Lees, A., Graham-Smith, P.: Muscle fatigue induced by exercise 
simulating the work rate of competitive soccer. J. Sports Sci. 21(11), 933–942 (2003) 

3. Enoka, R.M., Stuart, D.G.: Neurobiology of muscle fatigue. J. Appl. Physiol. 72(5), 1631–
1648 (1992) 

4. Youdas, J.W., Hollman, J.H., Hitchcock, J.R., Hoyme, G.J., et al.: Comparison of 
hamstring and quadriceps femoris electromyographic activity between men and women 
during a single-limb squat on both a stable and labile surface. J. Strength Cond. Res. 21(1), 
105–111 (2007) 

5. Johnson, J.H., Prins, A.: Prediction of maximal heart rate during a submaximal work test. 
J. Sports Med. Phys. Fitness 31(1), 44–47 (1991) 

6. Kawabata, T., Suzuki, T., Miyagawa, T.: Effect of blood volume on plasma volume shift 
during exercise. Journal of Thermal Biology 29(7-8), 775–778 (2004) 

7. Bandy, W.D., Irion, J.M., Briggler, M.: The effect of static stretch and dynamic range of 
motion training on the flexibility of the hamstring muscles. J. Orthop. Sports Phys. 
Ther. 27(4), 295–300 (1998) 

8. Hermens, H.J., Freriks, B.: The State of the Art on Sensors and Sensor Placement 
Procedures for Surface ElectroMyoGraphy: A proposal for sensor placement procedures, 
Enschede - The Netherlands: Roessingh Research and Development (1997) 

9. Kang, J., Chaloupka, E.C., Mastrangelo, M.A., Hoffman, J.R., et al.: Metabolic and 
perceptual responses during Spinning cycle exercise. Med. Sci. Sports Exerc. 37(5), 853–
859 (2005) 

10. Green, J.M., McLester, J.R., Crews, T.R., Wickwire, P.J., et al.: RPE-lactate dissociation 
during extended cycling. Eur. J. Appl. Physiol. 94(1-2), 145–150 (2005) 

11. Kang, J., Mangine, G.T., Ratamess, N.A., Faigenbaum, A.D., et al.: Influence of intensity 
fluctuation on exercise metabolism. Eur. J. Appl. Physiol. 100(3), 253–260 (2007) 

12. Green, J.M., McLester, J.R., Crews, T.R., Wickwire, P.J., et al.: RPE association with 
lactate and heart rate during high-intensity interval cycling. Med. Sci. Sports Exerc. 38(1), 
167–172 (2006) 

13. Dolbow, D.R., Farley, R.S., Kim, J.K., Caputo, J.L.: Oxygen consumption, heart rate, 
rating of perceived exertion, and systolic blood pressure with water treadmill walking. J. 
Aging. Phys. Act. 16(1), 14–23 (2008) 

14. Kumar, D.K., Pah, N.D., Bradley, A.: Wavelet analysis of surface electromyography to 
determine muscle fatigue. IEEE Trans. Neural Syst. Rehabil. Eng. 11(4), 400–406 (2003) 

15. Ren, X., Yan, Z., Wang, Z., Hu, X.: Noise reduction based on ICA decomposition and 
wavelet transform for the extraction of motor unit action potentials. J. Neurosci. 
Methods 158(2), 313–322 (2006) 

16. Frizziero, E., Gulmini, M., Lelli, F., Maron, G., et al.: Instrument Element: a new Grid 
component that enables the control of remote instrumentation. In: Proceedings of the Sixth 
IEEE International Symposium on Cluster Computing and the Grid Workshops 
(CCGRIDW 2006). IEEE, Los Alamitos (2006) 

17. Lelli, F., Frizziero, E., Gulmini, M., Maron, G., et al.: The many Faces of the Integration 
of Instruments and the Grid. International Journal of Web and Grid Services 3(3), 239–266 
(2007) 

18. Costa, S.R.R., Neves, L.G., Ayres, F., Mendonca, C.E., et al.: GridBR: The challenge of 
grid computing. Grid and Cooperative Computing, pt. 1, 601–607 (2004) 

 



Gene Specific Co-regulation Discovery: An
Improved Approach�

Ji Zhang, Qing Liu, and Kai Xu

CSIRO Tasmanian ICT Centre
Hobart, TAS, Australia 7001

{Ji.Zhang,Q.Liu,Kai.Xu}@csiro.au

Abstract. Discovering gene co-regulatory relationships is a new but im-
portant research problem in DNA microarray data analysis. The problem
of gene specific co-regulation discovery is to, for a particular gene of in-
terest, called the target gene, identify its strongly co-regulated genes and
the condition subsets where such strong gene co-regulations are observed.
The study on this problem can contribute to a better understanding and
characterization of the target gene. The existing method, using the ge-
netic algorithm (GA), is slow due to its expensive fitness evaluation and
long individual representation. In this paper, we propose an improved
method for finding gene specific co-regulations. Compared with the cur-
rent method, our method features a notably improved efficiency. We
employ kNN Search Table to substantially speed up fitness evaluation
in the GA. We also propose a more compact representation scheme for
encoding individuals in the GA, which contributes to faster crossover
and mutation operations. Experimental results with a real-life gene mi-
croarray data set demonstrate the improved efficiency of our technique
compared with the current method.

1 Introduction

DNA microarray is an enabling technology to provide a global view of the ex-
pression of a large number of genes. A gene microarray data set is typically
presented as matrix where each row represents a gene and each column is the
experimental condition (such as time point) when the gene expression is ex-
tracted. Finding gene co-regulatory relationships is an important research focus
in microarray data analysis. One interesting research problem, called Single Gene
Approach for gene microarray analysis [14], was recently studied by [17]. This
problem can be formulated as follows: for a particular gene of interest, called tar-
get gene, identify its strongly co-regulated genes and the condition subsets where
such strong gene co-regulations are observed. The discovered co-regulated genes
and the associated condition subsets are specific to the target gene, which can
help biologists to better understand and characterize it. This is useful in many
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applications such as the investigation of the most differentially expressed genes
in a disease study or the function prediction of unknown genes.

This paper proposes two boosting techniques aiming to achieve a noticeable
efficiency improvement for the method proposed in [17]. The major technical
contributions of this paper are summarized as follows:

1. First, we employ kNN Search Table [16] to find the lower and upper bounds
of the distance between the target gene and its kth most co-regulated genes
in the data set. These bounds can be utilized to substantially speed up
fitness evaluation in the GA and facilitate the procurement of the top con-
dition subsets where the target gene is most co-regulated with other genes
in the microarray data set. We have also devised a better way to specify the
parameter values that are used in the approximation scheme;

2. We also propose a more compact representation scheme for encoding con-
dition subsets in the GA, which contributes faster crossover and mutation
operations.

3. Experimental results with a real-life gene microarray data demonstrate the
better efficiency of our technique than that of the existing method in discov-
ering gene specific co-regulations.

The remainder of this paper is organized as follows. Section 2 presents the ap-
proach to efficiently find the top co-regulated condition subsets for the target
gene using kNN Search Table. A more compact individual representation scheme
is proposed in Section 3 to speedup the GA by reducing the overhead of crossover
and mutation operations. We report the experimental results in Section 4 and
the last section concludes this paper.

2 Related Work

Clustering analysis is probably the most commonly used technique for studying
gene co-regulations by grouping closely co-regulated genes together. The major
clustering algorithms in discovering gene co-regulations include hierarchical clus-
tering method [11], k-means algorithm [11], Self-Organization Maps (SOMs) [12]
and SVD-based clustering algorithm [8]. Because they perform clustering based
on the entire set of conditions (i.e., full dimensionality), thus they miss out those
interesting co-regulations embedded in the lower dimensional condition subsets.
To find the gene co-regulations in some subsets of conditions, a few subspace
clustering methods for gene expression data, such as Coupled Two-Way Cluster-
ing [7], bi-cluster [3] and δ-cluster [15], are also proposed. However, a common
key drawback for clustering methods, no matter whether they find co-regulations
on the full or partial dimensionality, is that there is no guarantee that the target
gene’s most-co-regulated genes are in the same cluster where the target gene
is located. Quite likely, they are located in a few different clusters because the
results of clustering are quite sensitive to the parameters such as the number
of clusters to be obtained or the value of the inter-cluster dis-similarity metric
that users choose. In addition, the clustering analysis needs to be performed in a
large number of condition subsets, which is rather expensive. As such, clustering
is not a direct nor efficient way for discovering gene-specific co-regulations.
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There are also some work on gene co-regulation discovery from time series
perspective by considering the explicit temporal nature of the features in the
gene microarray data [1][2][4][5][6]. However, there are cases that the features do
not have explicit temporal meaning and gene co-regulations may occur in the
subsets of features that are far apart from each other in the gene microarray
data set.

In [17], the authors proposed an approach for mining local gene-specific co-
regulation using genetic algorithm (GA) [9]. The basic idea of this approach is
to first find the condition subsets in which the target gene g is most significantly
co-regulated with others and the co-regulated genes of g are then selected from
its nearest neighbors in these condition subsets. A sliding window is used to scan
all the conditions sequentially and the search of condition subsets is performed
within each window position. This method is able to find the closely co-regulated
genes for the target gene and the associated condition subsets where such co-
regulation occur. However, this method is slow. The major speed bottleneck of
this approach is the fitness computation in the GA, which involves a kNN search
for the target gene in each condition subset. The typically large number of genes
in the microarray data and the number of condition subsets evaluated in the GA
lead to a slow kNN search.

3 Searching Co-regulated Condition Subsets Using kNN
Search Table

In [17], the fitness function of the target gene in each condition subset is defined
as the distance between it and its kth nearest gene in the microarray data set.
Such kNN search has to be performed in all the subspaces that are explored by
the GA, leading to a slow speed for the whole method. Using indexing methods
to speed up kthNN search is not efficient due to two major reasons. First, since
a large number of condition subsets may be evaluated in the GA, it will be
expensive to index the genes in each possible condition subset. Second, for gene-
specific co-regulation discovery problem, we may be only interested in a small
number of target genes, thus the high cost associated in building indexing cannot
be amortized by the one-time performance gain by using the indexing.To solve
this problem, we draw on the kNN Search Table proposed in [16] to speed up
computation of fitness function. A kNN Search Table for a target gene g, denoted
as T g, is a M×k table containing its k nearest neighbors in each single dimension
of full data space with M dimensions. The entry xij of the table represents the jth

nearest neighbor of g in the ith dimension, where 1 ≤ i ≤ M and 1 ≤ j ≤ k. Using
kNN Search Table, we can compute very efficiently the lower and upper bounds
of the distance between the target gene and its kth nearest neighbor in any
condition subset s, denoted by fk

min(g, s) and fk
max(g, s), respectively. Interested

readers can refer to [16] for the computation of fk
min(g, s) and fk

max(g, s) using
kNN Search Table and the proof of their correctness.

The idea of using kNN Search Table for speeding up the fitness computation
of condition subset s with respect to the target gene g is to approximate the
fitness by using the linear combination of fk

min(g, s) and fk
max(g, s) as follows:

fitnessapp(g, s) = αfk
min(g, s) + βfk

max(g, s)
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Fig. 1. kNN Search Table

where α + β = 1. Unlike setting α = β = 1
2 as in [16], we calculate the accurate

fitness, fk
min and fk

max for a specified number of condition subsets in the GA to
set the values for α and β for each condition subset s such that the following
equation is satisfied:

fitnessaccurate(g, s) = αfk
min(g, s) + βfk

max(g, s)

subject to α + β = 1. The average of α and β of the test condition subsets are
computed and used for the fast fitness approximation of all the other condition
subsets in the GA.

kNN Search Table is advantageous in the following two aspects: 1) The con-
struction of kNN Search Table w.r.t. the target gene only involves finding its
kNNs in each one-dimensional condition subset, therefore its construction cost
is only O(NM), which is linear with respect to both number and dimension-
ality of genes in the gene microarray data set. For the whole gene microarray
data, only one kNN Search Table needs to be pre-computed for a target gene;
2) The total complexity for computing fk

min(g, s) and fk
max(g, s) is O(k2|s|2),

which becomes independent of N and M .
Since fitness(g, s) is approximated in the GA, the accuracy of computation

is thus somehow affected. To address this problem, we can perform a refinement
step on the top condition subsets we obtain in the GA that are stored in the
so-called CandidateSet. Instead of using fk

min and fk
max for a fast fitness approx-

imation, the refinement step computes the accurate fitness for top candidate
condition subsets and the top-k condition subsets among them will be returned.
Admittedly, evaluating each condition subset in this refinement process is more
expensive than the approximation as it involves more accurate computations.
However, the number of candidate condition subsets is typically much smaller
than the total number of condition subsets approximated in the GA. In addition,
a pruning optimization strategy can be further devised to speed up the computa-
tion, which operates as follows. After the fitness of n candidate condition subsets
have been accurately evaluated, we start to maintain the minimum fitness(g, s)
for the top-k condition subsets we have found thus far, denoted as MinFit.
Those unevaluated condition subsets that satisfies fk

max(g, s) < MinFit cannot
become the top-k condition subsets and can therefore be safely pruned. This is
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because that MinFit is monotonically increasing as we examine more condition
subsets in the refinement step.

Once the top-ranked condition subsets have been found by the GA, the next
step will be finding the co-regulated condition subsets from these top-ranked
condition subsets. This step will be much trivial than the step of finding the top
co-regulated condition subsets. It only involves finding the k most co-regulated
genes of the target gene in each of those top-ranked condition subsets.

4 Shorter Individual Representation

A straightforward representation scheme for condition subsets in the GA is the
standard binary encoding; all individuals are represented by strings with fixed
and equal length M , where M is the number of dimensions of the Microarry data
set. Using binary alphabet Σ = {0, 1} for gene alleles, each bit in the individual
will take on the value of ”0” and ”1”, respectively, indicating whether or not its
corresponding attribute is selected

However, for a high-dimensional microarray data set with M dimensions, we
will end up with a long binary string with a length of M for representing each
condition subset. A high computational overhead is involved in the frequently
preformed crossover and mutation of long binary strings. Therefore, a short rep-
resentation of individuals is desirable. To this end, we employ integer string,
instead of binary string, to represent each condition subset in the GA that fea-
tures a much shorter length. Each integer can represent a few binary bits, which
contributes a remarkable reduction of the length of individual representation. If
we assume that the number of binary bits needed for representing each integer
is L, L ≤ M (integers are in the range of [0, 2L − 1]), then length of an integer
string for representing a condition subset will be only approximately M

L of the
length of the binary string used to represent the same condition subset.

Even though it features a more compact representation and enables faster
crossover and mutation operations, the integer string representation changes the
behavior of mutation and tends to result in abrupt mutations more frequently,
which may lead to loss of useful segments of bits that might just turn out to be
part of potentially good solutions.

To solve these problems while, at the same time, preserve the desired advan-
tages of integer representation, we propose efficient methods to seamlessly sim-
ulate the genetic operations of binary string using integer string representation.
We derive ways for quickly obtaining crossover and mutation results between
any pair of integers that are consistent with those of binary strings.

For crossover operations, we propose Crossover Lookup Table (CLT). It is
a 2L × 2L table with each entry being a pair of integers corresponding to the
crossover result of a given pair of integers. The crossover locus lc is generated
randomly in the range of [1, M −1]. Notice that, from an integer string’s perspec-
tive, the crossover locus will only be located on the boundary of two adjacent
integers or within a single integer. In the former case, two integer strings can
be directly crossovered in the same way as the binary strings. In the later case,
all the integers after the one that the crossover locus is located can also be
crossovered in the same way as the binary strings. The crossover result of the
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Fig. 2. An example of Crossover Lookup Table (identifier = 1, L = 2)

Fig. 3. A crossover example of two integer strings (M = 8, L = 2, lc = 3)

pair of integers where crossover locus is located can be obtained by looking up
the appropriate Crossover lookup Table based on the value of (lc mod L). As
there are L − 1 different crossover locus inside an integer, thus we need to pre-
computed L − 1 different CLTs. Each table is uniquely identified by an integer
i ∈ [1, L − 1]. Figure 2 gives an example CLT with identifier=1 when L = 2.
Figure 3 is a crossover example of two integers by means of the CLT given in
Figure 2.

For mutation operations, we quantify the Mutation Transition Probability Ta-
ble (MTPT). It is also a 2L ×2L table with each entry representing the mutation
transition probability from one integer to another. An integer is mutated to an-
other based upon their transition probability initiated from this integer. Let us
suppose that two integers a and b differ in l bites in their binary representations
(0 ≤ l ≤ L ≤ M), the mutation transition probability from a to b, denoted as
Pr(a, b), is computed as Pr(a, b) = pl

m(1 − pm)(L−l). Unlike CLT, there is only
one MTPT that needs to be pre-computed for a given gene microarray data
set. Suppose L = 2 and pm = 0.1, we need to compute the mutation transition
probability from integer 2 to 3. As they differ in only 1 bit in their binary repre-
sentations, thus Pr(2, 3) can be computed as Pr(2, 3) = 0.11 ·(1−0.1)2−1 = 0.09.

When using a shorter integer representation for condition subsets in the GA,
we can achieve an approximate M

L times performance boost in crossover and
mutation operations for M -dimensional gene microarray data if each integer in
the string is represented by L binary bits. The pre-computed CLT and MTPT
contribute to a remarkable performance gain of crossover and mutation in the GA
by transforming them to simple lookup operations from lookup tables, without
the frequent on-the-fly conversion between integer and binary strings.
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5 Experimental Results

The Spellman’s data set is used in our experiments that can be downloaded
from http://genome-www.stanford.edu/cellcycle/data/rawdata. This data set
contains all the data for the alpha factor, cdc15, and elutriation time courses,
and includes the data for the Clb2 and Cln3 induction experiments. We used
only the alpha-factor and CDC28 data set for our experiments. This data set
contains 6178 genes under 35 experimental conditions (time points).

The main focus of our experimental evaluation is to investigate the efficiency
boost of the existing method when the two strategies we propose (i.e., fitness
evaluation using kNN Search Table and shorter individual representation scheme
using integer strings) are employed. Efficiency comparison is conducted in the
experiment between the baseline method (i.e., no boosting strategies are used)
and the method with only one boosting strategy is used. In this way, we can
obtain a clear idea as to the magnitude of improvement that can be achieved
using each strategy. For all the experiments, the number of generations and
population size are fixed as 200 and 50 respectively in the GA. The efficiency
are investigated under varying number of genes and conditions. The original gene
microarray data is properly sampled to obtain new data sets with desired number
of genes and conditions for experimental purposes. At the end of this section,
we will also investigate the effectiveness of our proposed improved method.

5.1 Efficiency Improvement Using kNN Search Table

We first study the efficiency boost of the method using kNN Search Table.
Figure 4 and 5 show the execution time of the method using kNN Search Table,
compared with the baseline method. By using kNN Search Table, the method
can achieve a remarkable improvement of efficiency, especially when the number
of genes and conditions of the microarray data set are high. The magnitude of
speed improvement could be over 70% for the microarray data we use in the
experiment. As we have analyzed earlier, the complexity of using kNN Search
Table to approximate the fitness of condition subsets in the GA is independent of
the number of genes and the number of condition of the microarray data set, thus
approximately horizontal curves for the boosted method are observed in both
figures. Note that the execution time of the improved method increases only
slightly when dealing with data sets with higher number of genes or conditions.
Such increase comes from the refinement step where the top co-regulated condi-
tion subsets for the target gene are obtained based on the top-ranked condition
subsets returned by the GA. Insteading of using kNN Search Table, this step
involves evaluating all the genes in the data set whose complexity is depended
on the number of genes and conditions.

5.2 Efficiency Improvement Using Shorter Representation

The second experiment investigates the efficiency improvement of the method
by using integer strings for representing condition subsets in the GA. The ex-
perimental results are presented in Figure 6 and 7, respectively. As these results
show, employing integer string representation is able to contribute to another
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Fig. 4. Efficiency improvement using
kNN Search Table (under varying num-
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Fig. 5. Efficiency improvement using
kNN Search Table (under varying num-
ber of conditions)
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integer representation (under varying
number of genes)
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integer representation (under varying
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10-15% speed improvement. Also, as the number of genes or conditions increase,
the magnitude of speed inprovement using integer representation is somewhat
decrease. This is because that the cost of fitness function dominates the whole al-
gorithm more severely when the number of genes or conditions increase, making
the efficiency contirubtion of integer representation relatively less remarkable.

5.3 Effectiveness Study

Besides efficiency improvement, we are also interested in studying the effective-
ness of the method in gene specific co-regulations discovery when the boosting
strategies are used. A general rationale is that the effectiveness of the method
should not be severely compromised when its speed can be improved notice-
ably. In this experiment, we study the final co-regulated condition subsets of the
target gene obtained using the improved method, compared with the baseline
method. As we know, as long as the condition subsets for gene co-regulation of
the target gene can be correctly identified, it will then become trivial to find
its co-regulated genes in these condition subsets. Therefore, we only need to
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Fig. 8. Effectiveness of the improved method

evaluate how good are the final co-regulated condition subsets obtained by the
GA. The ground-truth result, i.e., the true top-k condition subsets where the
strongest co-regulation for the target gene, needs to be found first using the
brute-force search method. Based on the ground-truth result, the result of the
improved method can be evaluated.

In this experiment, we vary the number of top condition subsets to be returned
by the GA, denoted by Ns, and study the percentage of the true top-k that are
found using the boosting strategies under three top-k values, 10, 50 and 100.
Intuitively, the larger Ns is, the higher chance will be for the final results of the
GA to include the true top-k condition subsets. As approximation is used in
the GA, Ns should be set relatively large (yet still much smaller than the total
number of condition subsets that are evaluated in the GA) in order to provide a
sufficiently large room to include the true top-k condition subsets. We evaluate
the different values for Ns, ranging from 100 to 1000, in this experiment. The
results, as presented in Figure 8, show that we will be able to obtain all the
true top-k condition subsets as long as the Ns is reasonably large (the required
value for Ns is increased when top-k goes up). In other words, we only need to
evaluate the fitness of a small number of condition subsets accurately to find the
true top-k condition subsets, and the fitness of all the other condition subsets
can be quickly approximated using kNN Search Table.

6 Conclusions

In this paper, we propose an improved method for discovering gene specific co-
regulations based on genetic algorithm (GA). We employ kNN Search Table to
substantially speed up fitness evaluation in the GA. We also propose a more
compact representation scheme for encoding condition subsets in the GA, which
contributes faster crossover and mutation operations. Our method features a
better efficiency than the current method (up to a 70%-80% speed boost). The
experimental results demonstrate the good efficiency and effectiveness of our
technique in discovering gene specific co-regulations.
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Abstract. Understanding protein biological function is a key issue in modern
biology, which is largely determined by its 3D shape. Protein 3D shape, in its turn,
is functionally implied by its amino acid sequence. Since the direct inspection of
such 3D structures is rather expensive and time consuming, a number of software
techniques have been developed in the last few years that predict a spatial model,
either of the secondary or of the tertiary form, for a given target protein starting
from its amino acid sequence.

This paper offers a comparison of several available automatic secondary struc-
ture prediction tools. The comparison is of the experimental kind, where two
relevant sets of proteins, a non-redundant one including 100 elements, and a 180-
protein set taken from the CASP 6 contest, were used as test cases. Comparisons
have been based on evaluating standard quality measures, such as the Q3 and
SOV.

1 Introduction

Proteins are the basic constituents of living beings. They form the basis for structural
components of cells as well as for metabolic processes involved in organic life. Under-
standing protein functions has, therefore, a central role in the analysis of the biological
mechanisms underlying life processes. A protein biological function is largely deter-
mined by its 3D shape [15], which is functionally implied, in its turn, by the sequence
of amino acids that form the protein [3]. The amino acidic sequence of a protein is
called its primary structure, whereas its 3D shape is encoded in two different represen-
tations, namely, its secondary and its tertiary structure [15]. To illustrate, the tertiary
structure of a protein tells, with respect to a given 3D fixed axis origin point, the ex-
act positions of protein constituent atoms. The secondary structure, instead, provides
information about the composition of the protein structure in terms of regular substruc-
tures. In fact, amino acids tend to dispose themselves within some few substructures,
namely, sheets consisting of β-strands (denoted E in the following) laterally connected
to form a pleated sheet, and α-helices (denoted H in the following). Moreover, amino
acids might contribute to form kinds of irregular structures, which link regular ones
to one another, and which are usually referred to as loops (denoted L in the sequel).
Thus, a secondary protein structure is denoted by a sequence of letters over the alpha-
bet E, H, L, one letter for each of the amino acids occurring in the primary structure
of the protein. These letters are called the conformational states of the amino acids.

G. Allen et al. (Eds.): ICCS 2009, Part I, LNCS 5544, pp. 848–857, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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All that given, the relevance of associating secondary and tertiary structure with pro-
tein amino acid sequences is immediately understood. To do that, complex lab methods
(that are, X-ray crystallography and nucleic magnetic resonance spectroscopy (NMR))
can be employed, which are however expensive and time-consuming. As a result, pro-
tein sequence discovering rate is much higher than protein structure identification rate
and, therefore, while some millions of protein primary structures are known to date,
only a few tens of thousands of secondary and tertiary structures have been discovered
[2]. This is the reason why a large interest has been witnessed in the community towards
computational methods for predicting [10,25,26,28] such secondary and tertiary struc-
tures [4,5,13,16,17,21,22,29]. Prediction methods, though fast and cheap to run, do not
achieve to date the same accuracy as lab methods in reconstructing protein structures.

This paper is concerned with comparing computational methods for protein sec-
ondary structure prediction. Therefore, in the following, we will make no further ref-
erence to tertiary structures. In this setting, this paper offers an experimental analysis
of several available protein secondary structure predictors. The analysis has been con-
ducted by using two relevant data sets (a non-redundant and a CASP protein set), which
will be described below and overall including 280 proteins. The experimental evalua-
tion has been carried out by querying a set of available prediction tools over proteins
having known secondary structure, in order to evaluate their accuracy according to qual-
ity evaluation parameters, namely, the Q3 and the SOV, which are commonly adopted
in the literature [23,27]. Both the average behavior of each predictor on the whole data
sets and its specific accuracy for each protein are reported and analyzed so as to result
in a comparison of the (relative) performances of the considered prediction tools.

It is worth mentioning here that monitoring tools like those published by EVA server
[7] can be referred to in order to verify the quality of results delivered by prediction tools
made available on-line, providing the evaluations Q3 and SOV for secondary structure
prediction. In particular, at for today, the average values for such parameters are 75.9%
for Q3 and 72.7% for SOV , according to data reported at http : //cubic.bioc.
columbia.edu/eva/sec/res sec.html, where 100% would be the value scored by
the perfect predictor for both parameters. International challenges, such as the biannual
CASP competition [30], have been instituted to encourage studying and designing high-
quality synthetic predictors, even if CASP focuses on 3D structure prediction tools.

The work presented in this paper differs in both objectives and contributions from
those either resulting from the CASP competition or obtained using the EVA server,
for the following reasons. First, we notice that CASP is intended to evaluate the impact
of current prediction methods and techniques in helping experts to design 3D structure
predictions; in fact, groups competing in CASP are not constrained to exploit automatic
tools only; rather, they can refine “by hand” resulting predictions with the guide of
current human expertise in the field. As a consequence, CASP is meant to determine a
measure of human capabilities in predicting protein structures with the aid of available
automatic tools, rather than on evaluating prediction tools “per se”. So, CASP is, in
a sense, expert-oriented. On the contrary, the purpose of EVA is to determine what
confidence a biologist should rely on a given specific tool “as they are” to be a good
predictor, by monitoring the quality of its predictions on a wide variety of proteins
and a large time range. Therefore, EVA is intended to evaluate the performances of the
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single tools, where different protein data sets may be used in evaluating a tool, with no
reference whatsoever to those which were used to evaluate other tools.

Therefore, neither CASP, nor EVA address direct experimental cross-comparison
between prediction tools, which is the focus of this paper, inasmuch as the objective of
our work is to provide a thorough comparison of tool performances on protein data sets
specifically selected to be both statistically and biologically relevant.

The rest of the paper is organized as follows. The next section presents a very brief
overview of main tool categories, whereas Section 3 introduces data sets and predic-
tion tools we exploited for our experimental evaluations, illustrates the experimental
results, and discusses about predictor performances as resulting from the experiments
is reported. Finally, in Section 4, some conclusions are drawn.

2 Secondary Structure Prediction Methods

As already stated, secondary structure prediction consists in associating a string of char-
acters representing amino acids conformational states to the string representing the pri-
mary structure of a protein sequence, whose structure is not determined experimentally.
The correctness of the prediction can only be determined by comparing the predicted
string with the secondary structure obtained from lab methods (called its observed struc-
ture), once it has been singled out [26]. It is largely accepted that evaluation of quality of
a prediction is done by using Q3 and SOV parameters, where Q3 punctually measures
the percentage of correctly guessed structures for the target protein, i.e., the conforma-
tional state of single amino acids, whereas SOV is obtained by computing per-segment
overlaps [7].

Protein secondary structure prediction methods (as well as tertiary ones) can be clas-
sified as either ab initio methods or evolution-based methods (aka, homology-based
methods). In the first case protein structure prediction is based on evaluating the mini-
mal free energy [6]. Indeed the three dimensional conformation of a protein is defined
by the spatial conformation of amino acids chain that correspond to that structure fea-
turing the lowest free energy determined by the mutual interactions of amino acids.
This is the idea underlying the development of ab initio methods. However, an exhaus-
tive search of all possible configurations of a polypeptide chain is such a formidable
task that ab initio methods usually produce satisfactory results just in case of chains
with a low number of amino acids, in which cases, it is actually feasible to evaluate
the energy configuration of the folding process rather precisely. Simulating algorithms
(such as Monte Carlo methods) are useful in the case of proteins with a low number
of amino acids, or in the case of prediction processes guided by information used to
select (and, thus, reduce) the number of possible configurations to test for good. As an
example, the Rosetta [24] predictor uses a Monte Carlo algorithm to reduce the possible
combinations of amino acids while predicting single regions.

Counter-wisely, evolution-based methods look at the target protein’s primary struc-
ture, comparing this protein sequence with known ones published in available databases
and trying to exploit evolutionary protein relationships (e.g., with protein family iden-
tification). Then, comparative modeling algorithms are used to build a spatial configu-
ration for the unknown structure. Given a set of proteins that are evolutionary related
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to the target one, comparative based algorithms construct a multi alignment and deduce
correspondences between amino acids, possibly identify regions affected by insertion,
deletion ad modification caused by evolution, and build a structure corresponding to
amino acids that did not change. Finally the outside region is designed and the final
structure is optimized. Such methods strictly rely on how close is the evolutionary rela-
tion among the target protein and a set of known proteins. Sequence alignments may be
performed by using algorithms of global alignment, such as the Needleman and Wunsch
[19], or by using local alignment algorithms such as BLAST [1]. Multiple alignments
can be performed using Clustal and TCoffee algorithms [11,31].

In the next section, the main methodologies on which each of the considered tools is
based are also specified.

3 Experiments on Protein Prediction

In this section we present the experimental framework we adopted to compare the per-
formance of nine secondary structure prediction tools, that are: Jufo [18], Prof [20],
Porter [21], Psipred [17], Nn-predict [14], all exploiting neural network-based
approaches; HMMSTR/Rosetta [4], based on an ab initio method; SAM [13], based
on linear hidden Markov models; Gor IV [8], using frequency analysis of amino acid
conformational states; Hnn [9], based on a hierarchical and modular approach.

To begin with, we describe the data sets we have exploited in experiments and, then,
we illustrate in detail the experimental tests we carried out using the aforementioned
prediction tools.

3.1 Data Sets

In order to carry out a robust analysis of the performances of the analyzed tools, we
considered two protein data sets.

The former data set includes 100 proteins from the PDB25Select database [12], a set
purposely constructed to be non-redundant. Proteins in this data set are in fact character-
ized by a sequence identity which is less than 25%; this feature eliminates, in practice,
the possible bias determined by testing homologues proteins, which could unfairly give
an advantage to those techniques better working on that kind of proteins. This clearly
makes the performance analysis more statistically relevant. This data set, which we will
call PDB25 in the following, is shown in Figure 1(a), where proteins are identified by
their PDB id [2].

The second data set we considered includes 180 proteins from the CASP 6 edition
[30] and available at http : //predictioncenter.org/. Structures of proteins selected
for CASP represent both a non-trivial and a biologically relevant test-bed for protein
structure prediction tools. This data set, called CASP in the following, is reported in
Figure 1(b) where, again, each protein is identified by its PDB id.

3.2 Quality Parameters

In order to test the accuracy of analyzed prediction tools, we exploited the well known
SOV and Q3 parameters described in [23,27]. We recall that Q3 represents the
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PDB25 Proteins
1AAF 1ARB 1BBPA 1CAUA 1CPCL 1FHA 1GPS 1HLE 1LTSA 1PAZ
1PPFE 1TNFA 1XIMA 2BPA3 2GBIA 2MADL 2POR 3RUBS 4ICD 7APIB

9WGAA 1BBT1 1CAUB 1EGF 1FIAB 1GRCA 1HSBA 1LTSC 1MUP 1PPN
1RHD 1SNC 1YCC 2CBH 2GLSA 2MEV1 2RN2 3CD4 3SC2A 4INSB
7ZNF 2AAK 1ATX 1BBT2 1CBN 2END 1FNB 2HSDA 1LTSD 1NIPB
1PDA 1PRCC 1RND 1TABI 1TRB 256BA 2CCYA 2HAD 2MEV4 2SCPA
3CHY 3SC2B 4RCRH 8ABP 1AAPA 1AVHA 1BGC 1FXIA 1MAMH 1OIAA

1PRCM 1RPRA 1TEN 1TREA 2AAA 2CDV 2HHMA 1ABA 1CD8 1D66A
1ERP 1GSSA 1IFC 1MDAA 1RRO 1TFG 1TROA 2ACHA 2CPL 2MHU
3DFR 2SN3 3SICI 4SGBI 8ADH 1BOVA 1CDTA 1DFNA 1EZM 1GLAF

(a)

CASP Proteins
1STZA 1SUWA 1T70A 1S12A 1SUMB 1TD6A 1T6SA 2BH8A 1VDHA 1VGGA
1WD7A 1WD5A 1WD6A 1WDEA 1WDIA 1WDJA 1WDVA 1WFXA 1WHZA 1WTYA
1WJ9A 1WJGA 1WK4A 1WKCA 1VLCA 1BNKA 1HKA 1XFKA 1WG8A 1GA7A
1G6EA 1B9KA 2A2UA 1L7CA 1VL7A 1VLOA 1J3GA 1VQUA 1XCBA 1VM0A
1VKPA 1ZWJA 2FNOA 2J85A 1E68A 1W33A 1KRHA 1EXSA 1M33A 1TR0A
1G7DA 1IZNA 1QGOA 1GGWA 1L7AA 1FW9A 1N2XA 1DW9A 1BVB 2EZM
1DPTA 1J90A 1MZHA 1KOYA 1JWEA 1G6UA 1C8UA 1TZ9A 1FZRA 1E91A
1CI8A 1BQV 1E2XA 1I8UA 1UZCA 1J83A 1QFJA 1E4FT 1Y0BA 1XQAA
1Y12A 2CV4A 1VKKA 1CCWA 1MKIA 1B7GO 1NG4A 1EUGA 1BG8A 1NO5A
1IM8A 1IZMA 1YLIA 1INO 1DBUA 1MW5A 1FWKA 1TVGA 1M3SA 1PV1A
1TE7A 1S04A 1FL9A 1MW7A 1YK3A 1N91A 1NYNA 1NKVA 1XQBA 1M2FA
1E3JA 1H7MA 1G8PA 1G291 1BL0A 1B93A 1EWQA 1Q74A 1VLPA 1NTFA

1XG8A 1XV2A 1F35A 1E54A 1RKIA 1MOPA 1GA6A 1QJVA 1YEMA 1XE1A
1BD9A 1JADA 1BYFA 1BHE 1I74A 1NBUA 1NXJA 1R9QA 1W81A 1BK7A
1C94A 1QMHA 1IJXA 1NVTA 1UE6A 1E6WA 1B0NA 1B0NB 1D3BA 1YUDA
1TZAA 1H5PA 1GAKA 1IY9A 1FC3A 1VLIA 1X9BA 1EH2 1J6UA 1UWDA
1VL4A 1O12A 2AJRA 1VLAA 1X9AA 1O0WA 1O0XA 1O0YA 2B8NA 1VKWA
1VPQA 1O13A 1U07A 1ON9A 1BKB 1GEQA 1WIWA 1WK2A 1VJVA 1QY6A

(b)

Fig. 1. The exploited protein data sets: (a) The PDB25 data set. (b) The CASP data set.

percentage of amino acids correctly predicted by a prediction tool t for a given in-
put protein p. Conversely, the SOV parameter represents the percentage of segments
correctly predicted by the prediction tool t for the protein p, where a segment is a por-
tion of a secondary structure made exclusively of the same conformational state (e.g.,
of α-helices, or of β-strands, or of loops) and satisfies some other structural constraints.
The interested reader is referred to the cited references for a more formal definition of
Q3 and SOV .

Q3 and SOV measure two quite different (and often contrasting) characteristics of
the predictions. Consequently, neither Q3 nor SOV alone are suitable to measure the
overall accuracy of a tool. Thus, in order to embed into a single parameter informa-
tion provided by both Q3 and SOV , we considered a further parameter, that we call
Prediction Accuracy, defined as:

PA =
2
3

· SOV +
1
3

· Q3

which is simply obtained as a weighted mean of SOV and Q3; more precisely, since
SOV takes into more account structural kind of information which Q3 does not con-
sider, it appears sensible to weigh the SOV more than the Q3. Such weights have been
also tested experimentally.
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Tests have been carried out as follows. Each analyzed prediction tool has been re-
quired to predict the secondary structure of each considered protein. Then, each pre-
diction has been compared with the real, known, structure to compute Q3, SOV and,
consequently, the PA.

We next provide a description of the measures recorded in our tests; a discussion of
the corresponding results is addressed in the next section.

3.3 Results

Table 1 summarizes the results we obtained by comparing different prediction tools.
In particular, it shows the average PA scored by each prediction tool as well as the
corresponding standard deviation on (i) the PDB25 data set, (ii) the CASP data set, (iii)
all proteins included in either data sets.

Table 2 considers Q3 and SOV separately; in particular, it shows the average Q3
(resp., SOV ) scored by each tool on (i) the PDB25 data set, (ii) the CASP data set, (iii)
all proteins.

Finally, in Figure 2 some graphs are presented showing the percentage of test cases in
which each predictor resulted in the set of the best ones (again, distinguishing between
PDB25 and CASP data sets). The set of the best predictors results by simply consid-
ering the best performances up to a given tolerance threshold. In particular, since the
differences in the PAs of the various tools are often very small we considered different
levels of “tolerance” in determining the set of best predictors.

To illustrate, let pi be an input protein, let tj be a tool, PAij the PA of the tool tj on
protein pi and PA∗

i the best value of PA obtained for pi. In order to select the set of
best predictors on each pi we considered the following formula:

bestTools(pi) = {tj | PAij ≥ (1 − τ)PA∗
i }

where τ ∈ [0, 1] is the “tolerance” factor, stating the maximum tolerated deviation from
the best PA. We computed the best sets of tools for each protein using the follow-
ing three levels of tolerance: (i) τ = 0.00, which selects only those predictors scoring
exactly the best PA; the results for this case are shown in Figures 2(a) and 2(b). (ii)
τ = 0.05, which considers those predictors scoring a PA within 5% of the best PA;
the results for this case are shown in Figures 2(c) and 2(d). (iii) τ = 0.15, which con-
siders those predictors scoring a PA within 15% of the best PA; the results for this
case are shown in Figures 2(e) and 2(f).

3.4 Discussion

From an overall analysis of the results we obtained from experiments, we note that the
PDB25 data set actually turned out to be a more demanding test-bed than the CASP set.
Indeed, the average PA’s measured on the CASP proteins is larger than the PA scored
on PDB25 proteins for all tools except Gor IV and HMMSTR/Rosetta. This result is
quite interesting because it points out that possible homologies between proteins can
simplify the structure prediction process not only for those tools based on comparative
modeling, but, actually, for most of them.
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Table 1. Average PA and corresponding standard deviation for each prediction tool

PDB25 Proteins CASP Proteins All Proteins
Tool Technique Avg PA st.dev. Avg PA st.dev. Avg PA st.dev.
Jufo neural networks 70.10 13.49 74.39 10.49 72.86 11.83
Prof neural networks 71.56 14.45 73.14 9.71 72.58 11.65
Porter neural networks 87.04 10.69 92.10 6.85 90.29 8.77
Psipred neural networks 77.64 11.95 80.63 9.23 79.56 10.38
Nn-predict neural networks 55.11 11.26 57.76 10.08 56.82 10.59
HMMSTR/Rosetta ab initio 73.43 14.07 72.84 14.01 73.05 14.03
Sam linear hidden Markov models 75.20 13.131 79.06 9.34 77.68 11.00
Gor IV freq. analysis of amino acid conf. states 61.21 11.96 60.81 10.11 60.95 10.81
Hnn hierarch. and modular approach 62.46 11.74 64.25 10.68 63.61 11.10

(a) PDB25 – τ = 0.00 (b) CASP – τ = 0.00

(c) PDB25 – τ = 0.05 (d) CASP – τ = 0.05

(e) PDB25 – τ = 0.15 (f) CASP – τ = 0.15

Fig. 2. Percentage of times each prediction tool has been detected among the best ones at various
tolerance levels
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Table 2. Average Q3 and SOV scored by each prediction tool

PDB25 CASP All
Tool AvgQ3 AvgSOV3 AvgQ3 AvgSOV3 AvgQ3 AvgSOV3
Jufo 74.67 67.64 75.34 73.31 75.16 71.49
Prof 75.88 69.34 75.24 72.06 75.50 71.19
Porter 90.34 85.33 93.19 91.54 92.20 89.40
Psipred 81.21 76.03 82.41 79.71 82.05 78.44
Nn-predict 62.53 51.34 62.33 55.41 62.40 54.00
HMMSTR/Rosetta 79.36 70.56 75.47 71.49 76.82 71.17
Sam 79.25 73.11 80.56 78.29 80.09 76.44
Gor IV 65.87 58.93 62.83 59.77 63.92 59.43
Hnn 66.82 60.45 67.25 62.71 67.08 61.83

Second, the average performance of the analyzed tools appears notable, especially
when compared to the complexity of the exploited data sets. To illustrate, while the aver-
age PA recorded for the top scoring tools in our tests agrees with the results reported in
http : //cubic.bioc. columbia.edu/eva/sec/res sec.html, it turns out that sig-
nificant improvements can still be achieved in prediction accuracy, as long as the quality
attained by the tools on a protein-to-protein basis is still uncertain for almost all of them,
which is well mirrored in the values of the standard deviation of the PA we recorded
in our tests (see Table 1). This demonstrates that the guarantee for a sufficiently high
precision of the prediction still remains rather low, in general, which eventually implies
that the predictions yielded by those tools, even if quite good on the average, can hardly
be looked at as a reliable reference by biologists.

A further interesting observation that can be drawn from Table 1 is that our results
do not allow the identification of a prominent technique for protein secondary structure
prediction, even if recent trends seem to pay much attention on neural network-based
approaches. As for neural network-based techniques, in particular, on the one hand,
they showed rather varying results in terms of PA (one of them, namely Porter, appears
as the best predictor in the analyzed set, whereas another one of them, namely Nn-
predict, scored the lowest average PA) while, on the other hand, tools based on different
techniques scored competitive PAs. This, again, suggests that there is still space for
improvements in protein structure prediction accuracy.

The analysis of Table 2 confirms our former claim that neither Q3 nor SOV alone
can provide a reliable measure of the tools prediction accuracy. Indeed, the analy-
sis of this table points out that there are cases of pairs tools (e.g., Sam and HMM-
STR/Rosetta), scoring, respectively, the best Q3 and and the best SOV , making it dif-
ficult to figure out which one attains the best quality prediction. In this respect, our
choice of defining the PA as a composed quality parameter englobing both the Q3 and
the SOV , seems to be a sensible one.

Finally, as for the percentage of proteins upon which a predictor can be counted
among the best ones, we can observe from Figure 2 that the general trend of the various
tools is actually independent of the tolerance degree. Clearly, the higher the tolerance is,
the higher the percentage associated with each tool will be. The interesting observation
is that the overall ranking of the various tools is almost invariant with respect to the
tolerance degree. In more detail, these graphs show that, on the employed data sets,
Porter was the best performing tool both in terms of average PA and, notably, also in
terms of number of successes.
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4 Conclusion

In this paper we have illustrated an experimental campaign we have developed in order
to compare the quality of predictions returned by protein secondary structure predictors.
Analyzed predictors include the systems Jufo [18], Prof [20], Porter [21], Psipred [17],
Nn-predict [14], HMMSTR/Rosetta [4], SAM [13], Gor IV [8], Hnn [9].

Two test data sets were selected: one non-redundant set (used to minimize the in-
fluence of homology amongst tested proteins on returned predictions) and a second set
of proteins taken from those used in CASP, the well-known biannual protein prediction
contest.

The experimental results showed that some of the available predictors are able to
score quite good average accuracies, but the quest for a truly reliable automatic tool
is still open, as the predictions are still characterized by significant standard deviations
(which means that, for a given generic protein, the confidence for the returned prediction
to have a high accuracy is largely unpredictable).
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1   Introduction to the Workshop 

Welcome to the Workshop on Using Emerging Parallel Architectures for 
Computational Science. This workshop has been motivated by the significant 
transformation of the computing landscape in recent years with the emergence of 
more powerful processing elements such as GPUs, FPGAs, Cell B.E., multi-cores, 
etc. On the multi-core front, Moore's Law has transcended beyond the single 
processor boundary with the prediction that the number of cores will double every 18 
months. Going forward, the primary method of gaining processor performance will be 
through parallelism. Multi-core technology has visibly penetrated the global market.  
Accordingly to the Top500 lists, the HPC landscape has evolved from supercomputer 
systems into large clusters of dual or quad-core processors. Furthermore, GPUs, 
FPGAs and heterogeneous multi-cores have been shown to be formidable computing 
alternatives, where certain classes of applications witness more than one order of 
magnitude improvement over their GPP counterpart.  Therefore, future computational 
science centers will employ resources such as FPGAs, GPUs and Cell architectures to 
serve as co-processors to offload appropriate compute intensive portions of 
applications from the servers.  This workshop provides a forum for exploring the 
capabilities of emerging parallel architectures to accelerate computational science 
applications.  

The technical program was put together by the Workshop Chairs Bertil Schmidt 
and Douglas Maskell and 19 members of a distinguished program committee. The 
workshop received 23 submissions. After an initial screening 21 submissions were 
reviewed by at least three experts in the field. Based on the reviews, 16 papers were 
selected for presentation at the workshop and inclusion in the workshop proceedings. 
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the workshop next year. 
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Abstract. Current many-core GPUs have enormous processing power, and 
unlocking this power for general-purpose computing is very attractive due to 
their low cost and efficient power utilization. However, the fine-grained 
parallelism and the stream-programming model supported by these GPUs 
require a paradigm shift, especially for algorithm designers. In this paper we 
present the design of a GPU-based sparse linear solver using the Generalized 
Minimum RESidual (GMRES) algorithm in the CUDA programming 
environment. Our implementation achieved a speedup of over 20x on the Tesla 
T10P based GTX280 GPU card for benchmarks with from a few thousands to a 
few millions unknowns. 

1   Introduction 

Single core performance is leveling off, and recent growth has focused on on-chip 
parallelism and multiple cores. Chip designers are increasing processing capability by 
building multiple processing cores in one chip package and keep increasing the 
numbers of cores that can fit into a chip. Moore's Law has a new interpretation: it is 
the number of cores that doubles every 18 months [1]. Following this trend, 
commodity hardware is delivering formidable processing power at rather moderate 
cost and GPU is taking the lead. For example, the latest T10P GPU core embedded in 
a NVIDIA GTX280 graphics card delivers over a TFLOP [2], at a price tag of less 
than $500. Other competing venders in graphics and general purpose computing have 
similar offerings.  
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and was partially conducted as part of the NSF Center for Autonomic Computing at Rutgers 
University. The authors would also like to thank NVIDIA for their technical support. 



 Solving Sparse Linear Systems on NVIDIA Tesla GPUs 865 

The huge performance available on GPUs has generated interest in using it for 
general purpose computing [3,4,5]. GPUs are stream processors and were historically 
designed for shader operations that involve applying a series of shader kernels to a 
large collection of data elements called a stream. This is a restricted form of 
parallelism, and while it simplifies the hardware and software required to implement 
it, mapping general-purpose computing to this paradigm is often difficult.  

In this paper, we explore the use of GPUs for solving large sparse linear systems 
using the Generalized Minimal RESidual (GMRES) [6] algorithm. This is an 
important algorithm because many scientific applications can be transformed into 
solving a sparse linear system, and GMRES is the classical iterative method when the 
coefficient matrix is asymmetric. Our preconditioned GMRES implementation 
achieves a speedup of over 20x on the Tesla T10P based GTX280 GPU card, relative 
to a serial version1, for benchmarks with from a few thousands to a few millions 
unknowns. Close to the highest speedup was achieved for the largest input. 

 

 

Fig. 1. Architecture overview of a Tesla T10P core for general-purpose computation 

2   Backgrounds and Related Work 

An architectural overview of the TESLA T10P GPU architecture, from the 
perspective of general purpose computing, is presented in Fig. 1. Note that graphics 
related details are omitted. 

Tesla T10P SIMD core is an SIMD array of scalar processors. It has 30 
multiprocessors with 8 Thread Processor (cores) each, resulting in a total of 240 

                                                           
1 The serial version of GMRES was based on the FORTAN version in SPARSEKIT, which was manually 

translated to ANSI C. The C version performed the same or better than the FORTRAN version for all 
benchmark inputs. The code was compiled using the Intel® icc version 10.1 compiler with optimization 
flag –O2, and executed on the Intel® Harpertown core clocked at 3.0GHz. Optimization flag –O2 was 
chosen because the codes performed slightly better using –O2 as compared to using –O3. 
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cores. Each multiprocessor has one instruction issue unit, which broadcasts 
instructions to the scalar cores [2,7]. The flexibility offered by T10P cores includes 
the ability to execute scalar threads with arbitrary branch behaviors and memory 
access patterns. In [2], this exposure of the SIMD units as individual programmable 
scalar units is called Single Thread Multiple Thread (SIMT). However this flexibility 
comes at a cost if it is not exploited properly [2,7]. 

The GPU platform also has a more complex memory structure. In case of the 
T10P, cores have access to a set of off-chip memory spaces: global memory, local 
memory, constant memory, and texture memory. Constant and texture memory are 
cached but global and local memory are not. The on-chip memory includes a small 
shared memory (16KB on a T10P chip) that is local to each multiprocessor and can be 
used as software managed cache. The instruction cache is transparent to programmers. 
For general purpose computing on a GPU, most programmers only use global 
memory, shared memory, and local memory. The latency of a global memory access 
is about 400 core clock cycles, and that of a shared memory access is 1 cycle if there 
are no bank conflicts [7].  

The connection between CPU memory and GPU memory is through a fast PCIe 
16x point-to-point link. The transfer time for a given size data chunk can be computed 
as the following. 

B

S
tt ctransfer +=  (1) 

GB/s 5.05  :device host to 5.76GB/s,  :host  to Devicebandwidth.    :B

d transferebytes    :  S

13.3 :device host to,9.95  :host  to Deviceoverhead. startupconstant      the: sstc μμ
 

 

Note that the above equations as well as the constants are derived using actual transfer 
times measured for a range of data sizes (1024 B to 64 MB). 

2.1   Support for Programming on GPU 

Programming GPUs for general purpose computing is not easy. Earlier programming 
models were based on shading languages such as HLSL, GLSL [8] and Cg [9], which 
are graphics oriented and have to be used with the OpenGL or DirectX APIs. In these 
models, computation was essentially organized as a sequence of shading operations 
(kernels) on graphics data (streams). Programmers had to make explicit calls to these 
graphics APIs to manage streams and launch kernel calls.  

With the advent of Brook [10], direct general-purpose stream programming is 
supported on the GPU platform. General-purpose computation on a GPU is directly 
expressed as kernels acting on streams using this model. The model also eliminates 
the unnatural graphics API calls in the prior models. CUDA [7] added even more 
flexibility by allowing scattering, which enables direct and random access to DRAM 
associated with a GPU and makes programming on GPU almost as flexible as a CPU. 
Other features of CUDA include the exposure of the on-chip fast shared memory, 
local synchronization, and atomic operations on memory.  
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2.2   Related Work 

In the area of matrix computation, Galoppo et al. [11] studied the peak performance 
of a GPU dense matrix decomposition algorithm. Volkov et al. [12] also investigated 
the implementation of dense matrix computation and claimed to approach peak 
performance on the G80 series GPUs using their matrix-matrix multiply routine. In 
[13], Garland gave an introduction to sparse matrix algorithms on NVIDIA GPUs. 
Data parallel approach to GPU programming using the primitive segmented scan was 
presented in [14]. Boltz el al. [15] discussed an iterative solver for symmetric sparse 
matrix. These previous efforts focused on handling the peculiarities of the GPU 
platform while implementing a particular algorithm or algorithmic building block 
using the programming environment provided by the vendors. They showed 
impressive results and demonstrated the tremendous potential of GPUs as 
coprocessors. 

GMRES is a widely used iterative method for solving large linear systems, and its 
parallelization has been attempted on various platforms using different approaches. In 
[16], a hybrid parallelized GMRES on GRID systems was presented. Compared to 
our method, it is a distributed memory implementation and involves computation of 
eigenvalues that requires more computation and does not efficiently use the GPU 
hardware. An earlier parallel implementation using PVM message passing was 
reported in [17]. It was programmed using a parallel version of basic linear algebra 
operations for distributed memory computers. It was designed for the linear systems 
derived from 5-point finite difference discretizations and exploited its particular 
communication patterns for efficiency. Our implementation nonetheless is for generic 
sparse linear systems. 

Conjugate gradient is a related iterative algorithm that solves symmetric positive-
definite linear systems, and its implementation without preconditioning on an earlier 
NVIDIA GPU platform was reported in [15]. This implementation was based on an 
awkward graphics API and focused on issues that arose while mapping the algorithms 
to this unwieldy API. Our preconditioned GMRES solves generic sparse matrixes and 
has a powerful parallelized preconditioner. 

3   Parallelizing GMRES for Stream Processing Using GPUs 

A key aspect of programming applications to use GPUs involves partitioning the 
computation into a partition that runs on the CPU and another partition that runs on 
the GPU. The purpose of this partitioning is to offload selected, for example, compute 
intensive, portions to the GPU, while still using the CPU for other aspects such as 
global synchronization. Note that typically it is not beneficial to offload a complete 
application to the GPU due to the limitations of the stream-processing model. Stream 
processing is most appropriate when similar operations (kernels) are applied to a large 
collection of homogeneous data elements. A kernel is applied independently to each 
element without communication during execution. This limits the computation that 
can be implemented as a single kernel and therefore, most applications require a 
sequence of kernel calls. Additionally, an application may need to communicate with 
other entities or use other services, which may not be accessible from a GPU. 
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Application partitioning presents several challenges. It requires programmers to 
manually identify which computations are appropriate for the GPU and to keep track 
of the computations running on the CPU and on the GPU, as well as manually initiate 
and manage data transfers between the two. This style of programming is not only 
tedious but also error-prone, and significantly impacts programmers’ productivity. 

To address this issue, we propose to create a high-level library that can 
transparently offload compute-intensive operations to GPU for certain classes of 
applications, and that presents, on the CPU side, a set of abstract data types as basic 
building blocks for programming numeric applications. These abstractions include 
vectors, dense matrices and sparse matrices. These data types maintain memory 
regions within GPU and CPU memory spaces and support synchronization between 
them. A set of basic operations similar to the BLAS level 1, are included. Problem 
specific operations such as those used in GMRES are implemented over these basic 
operations. The method to parallelize GMRES for the Tesla T10P GPU using CUDA 
is presented below. 

3.1   GMRES Iterations 

GMRES is a well-known iterative method to solve large sparse non-symmetric 
systems of the form bAx =  and was proposed by Saad and Schultz in 1986 [16]. 
GMRES generates a basis of dimension m  for the Krylov subspace 

},...,,,{),( 12 vAVAAvvspanvAK m
m

−=  for a given initial residual v . The Krylov basis 

is constructed with the Arnoldi algorithm which is typically implemented in terms of 
the modified Gram-Schmidt orthogonalization process to generate the orthogonal 
basis },...,,{ 21 mvvv of the Krylov subspace ),( vAKm . 

Given the Krylov basis, an intermediate solution mx  in the m-th iteration is given 

by the solution of the least squares problem: minimize
2

 Axb − , 

where ),( 00 rAKxx m+∈  and 00 Axbr −=  is the residual associated with the initial 

guess 0x . 

As m increases, the computational cost increases at least as )( 2nmO , and memory 

cost increases as )(mnO . In large systems, this limits the largest value of m that can 

be used. Restarted GMRES is applied to remedy this situation. After a fixed number 

m of iterations, the solution mx  is used as the initial guess 0x to restart a new 

GMRES. 
However, GMRES does not always converge, and even when it converges, it may 

take too many iterations to reach the desired residual tolerance. Preconditioning is a 
technique to improve this situation. It replaces the system bAx =  with the modified 
systems  

bMAxM 11 −− = . (2) 

or  
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xMxbxAM ˆ,ˆ 11 −− == . (3) 

 

The desired properties of M include 1) the modified system AM 1− converges fast, 
2) linear systems cMy = easy to solve; 3) easy to parallelize. The preconditioned 

GMRES algorithm is shown in List 1. 
The most expensive operations of this algorithm are computing the 

term jvAMw 1−= . It requires solving a linear system with coefficient matrix M and a 

matrix-vector multiplication. In parallelizing this algorithm, we choose to find a 

preconditioner that makes computing the vector term jvAMw 1−= amenable to be 

distributed in different processors. For the time being, we do not seek parallelizing the 
GMRES algorithm itself. 

List 1. Left-preconditioned Generalized Minimum Residual algorithm with restarts 

START:  
compute ,0

1
0 xAMbr −−=  

ββ / and  , 010 rvr ==
 

for j=0,1,2,…m do 
    compute 

jvAMw 1−=  

    for i=1,2,3,…,j do 
          wvh T

iij =  

          
iijwhww −=  

    end do 
    compute 

jjjjj hwvwh ,11,1 / and +++ ==  

end do 

//solve the least square problem my such that it is 

yHey
ˆmin 1 −β , Ĥ is the matrix constructed from 

ijh // 

mmm yVxx += 0  

//test for termination condition // 
if satisfied,  
    goto DONE  
else 

     mxx =0  

      goto START 
end if 
DONE: 
output 

mxMx 1−=  
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3.2   Parallelizing Matrix Vector Multiplication and Pre-conditioning 

Sparse matrix vector multiplication appears in computing the term jvAMw 1−= , and 

hence requires us to choose a strategy that is compatible with the parallel solve 
operation in the preconditioning matrix. 

In the serial GMRES, incomplete LU decomposition is often used as the 
preconditioner as it can greatly improve the convergence rate. It is illustrated in the 
following equation. 

ELUA += . (4) 

 
For a sparse matrix A, it is LU-decomposed but only at the locations where A 

originally has non-zeros. The term E accounts for the dropped elements. 

 

 

Fig. 2. Block ILU preconditioner is less effective than the conventional ILU, but has plenty of 
parallelism to exploit. This fits well in the data parallel model of computation on GPU. Each 
individual block is sparse and back/forward substitutions are used to compute vLU 11 −− . The 
typical block size used in the experiments was 32. 

We parallelize ILU by using its variant block-ILU [19], which incurs further 
drops by conducting ILU only along the main diagonal. Coefficient matrix A is 
divided into equal sized sub-matrices and then locally decomposed using ILU, as 
shown in Fig. 2. 

Because these blocks do not communicate to each others in decomposition and also 
in solving it, this scheme fits well in the data parallelism paradigm. A stream now is a 
collection of sub-matrices along the main diagonal. 

With this parallelizing scheme for the preconditioner, we can now easily compute 
in parallel the sparse matrix vector multiplication by computing a lot of small matrix 
vector multiplication on the main diagonal blocks. General sparse matrix vector 
multiplication is investigated in [13]. 

However, the preconditioner computed from this block ILU is in general less 
effective than the conventional ILU computed from the whole matrix and hence 
requires more iterations to reach the same level of residual. 
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3.3   Polynomial Preconditioner 

A preconditioner can be enhanced by computing a polynomial of it and use this new 
matrix as the preconditioner. This technique is discussed in [19]. The following is a 
polynomial preconditioner of order s.  

]...[1 sNNIM +++=− . (5) 

with 

][ 11 ALUIN −−−= ω . (6) 

We implement a polynomial preconditioner using the block ILU preconditioner 
and empirically compare its effectiveness. 

Note that this polynomial preconditioner is not computed explicitly but through a 
series of forward-backward substitutions and matrix vector multiplications, built from 
the operations discussed in above. 

4   Experimental Evaluation 

The parallel GMRES was tested on the Tesla T10P GPU using a set of matrix data 
from the oil field simulation data of ConocoPhillips. The order of the system ranges 
from ~2000 to ~1.1 million. The serial version was run on Intel Harpertown clocked 
at 3.0GHZ and the parallel version on the same machine, with a NVIDIA GTX 280 
GPU card. They were compiled using the Intel ICC version 10.1 and used CUDA 
SDK version 2.0. Table 1 presents the experimental results for different matrices. 
Residual tolerance 1e-2 reflects the actual value requested in a modeling application 
at ConocoPhillips. 

Table 1. Experimental evaluation of GMRES on Tesla T10P GPU. Polynomial order=1, 
GMRES restart=20, final residual=1e-2. Times are in seconds. 

Matrix N Serial 
Iters. 

Parallel
Iters. 

Serial 
Time 

Parallel 
Time 

Speedup Mem Trans. Diff. bewteen 
Solutions 2 

Sample 1 1946 3 6 0.0018 0.0060 0.3 5.30% 1.8e-05 

Sample 2 192096 10 20 9.41 1.16 8.1 2.30% 8.0e-03 

Sample 3 184102 13 19 7.67 0.326 23.5 3.60% 1.3e-04 

SPE 10_1 132000 40 40 4.82 0.70 6.8 2.70% 2.4e-02 

SPE 10_2 1122000 140 100 436.33 22.10 19.7 1.30% 2.1e-03 

 
The effect of polynomial enhancement is shown in Fig. 3, for one of the matrices. 

As evident in the figure, polynomial enhancement is effective, i.e., as the order of the 
polynomial increases, the number of iterations required to reach a desired precision 
decreases. However, as the order increased, each iteration requires more computation. 
Our empirical study showed that a low order, i.e., 1~2, yields the best result for the all 
the matrices tested. 
                                                           
2 Difference of solutions is measured as ||x1 – x2||/||x2|| (2-norm), where x1 and x2 are the 

parallel and serial solutions respectively. 
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Fig. 3. Effectiveness of polynomial enhancement. Matrix=85x220x60, n=1,122,000, number of 
non-zero = 7,780,000, restart=20. 

5   Conclusions 

The parallel implementation of GMRES on the Tesla T10P GPU presented in this 
paper has shown very encouraging speedups (up to ~ 20x), which confirms the great 
potential benefits of offloading computation to GPUs. In parallelizing GMRES, 
block-ILU plays a crucial role, as it not only parallelizes the preconditioning 
computation but also naturally decomposes the matrix-vector multiplication and the 
subsequent polynomial enhancement. Discovering this strategy requires deep 
understanding of the iterative algorithms and also the characteristics of the GPU 
hardware. This highlights the necessity for collaborations between domain experts 
and parallel program developers, as well as the need for higher-level programming 
support. 

In the empirical study presented, it was observed that a low degree (s < =2) was a 
well-balanced choice from the perspective of effectiveness of polynomial 
enhancement. When the degree is larger, even though the preconditioner is still 
improves, the additional computation incurred dominates the gains due to reduced 
iterations. 

In our implementation using C++, the serial version of GMRES was around 1000 
lines of codes, while the parallel one was roughly 5000 lines of code. From the 
productivity standpoint, this partly illustrates the additional work needed in parallel 
programming on GPU with CUDA. 

The small C++ library developed helped hide the details of GPU programming for 
numerical algorithms from the applications experts and enabled the access of the GPU 
platform from a broader audience. 
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Abstract. We present a particle-mesh N-body integrator running on
GPU using CUDA. Relying on a grid-based description of the gravita-
tional potential, it can simulate the evolution of self-interacting ‘stars’
in order to model e.g. galaxies. All the steps of the application have
been ported on the GPU , namely 1/ an histogramming algorithm with
CUDPP, 2/ of the resolution of the Poisson equation by means of FFT
with CUFFT and multi-grid relaxation, 3/ of an optimized finite-
difference scheme to compute the accelerations of stars and 4/ of an
update procedure for positions and velocities. We present several tests
at different resolution, and reach a speedup from 2 to 50 depending on
the resolution and on the test case.

1 Introduction

By essence, astrophysics lack of laboratory experiments and from this intrinsic
limitation emerges the need to rely on numerical simulation in order to un-
derstand the observations. Among the different fields of astrophysics, galactic
dynamics has been a playground for numerical simulations for almost 50 years
and it has been accompanied by numerical cosmology which ignited some of the
largest scientific calculations ever made (see e.g. [1,2,3]). They both heavily re-
lies on the use of N-Body integration techniques. Among the latter, one can cite
direct N-Body integration (PP hereafter), Particle-Mesh (PM) and its exten-
sions (P3M, AP3M), Tree-codes and AMR integrators. The recent introduction
of ready-to-use API for General Purpose Graphical Processor Units (GPUs here-
after) will strongly impact this domain by providing an easy way to boost the
performances of existing codes. Numerical experiments might be made faster
and incidentally larger and hopefully more realistic. Several implementations of
PP-methods (see e.g. [4, 5]) have previously been made available on GPU. In
such integrators, pairwise interactions between stars are explicitly computed,
implying a O(n2) complexity and thus limiting the number n of particles taken
into account (typically 104 − 105 on a single machine). We present here an
attempt to fully develop on GPU a Particle-Mesh integrator for galactic dynam-
ics, a method that can easily model the evolution of millions of bodies. Using
CUDA, the API developped by NVidia for its devices, the overall speedup with
respect to pure CPU computation spans from 2 to 50 thus promising interesting
perspectives for future simulations. First, the principles of PM integrators and

G. Allen et al. (Eds.): ICCS 2009, Part I, LNCS 5544, pp. 874–883, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



A Particle-Mesh Integrator for Galactic Dynamics Powered by GPGPUs 875

the parallelization are briefly described in section II. Performances compared to
CPU computation are presented in the following section, before the conclusion.

2 An Overview of the Particle-Mesh Integrator

The purpose of N-Body integrations is to simulate the mechanical evolution of
a dynamical system due to its inner (an sometimes external) interactions. The
motion of a ’star’x at position x and velocity v is modified as time goes by
according to the laws of motion:

x(t + dt) = x(t) + v × dt (1)
v(t + dt) = v(t) + γ × dt (2)

γ = −∇φ, (3)

where γ stands for the star’s acceleration and φ(x) stands for the gravitational
potential applied to the star at its location. The potential is a scalar field and
is related to the spatial distribution of matter via the Poisson equation ∇2φ =
4πGρ(x), where ρ(x) stands for the density of stars at a position x. The density
can be computed from the knowledge of the stars positions, which in turn makes
it possible to predict the motion of these bodies through the evaluation of the
potential. A handful of methods exist to solve this situation (see e.g. [6, 7] for a
review in an astronomical context) and the following sections will focus on the
so-called particle-mesh method (PM hereafter).

Running a PM integrator with realistic problem sizes (1283 and larger) on
the researchers desktop machine can be time consuming. We aim at setting the
foundations of a fast PM integrator able to run large simulations on desktop
machines. It would ease the access to the results of large and more accurate
simulations and/or accelerates the mass production of simulated catalogs by

GridParticles

Positions x
Velocities v Density

Potential

ForceAcceleration

Histogramming

FFTMultiGrid

Finite
Difference

Interpolation

Update

Fig. 1. Flow of operations in a PM calculation. One cycle corresponds to one time
step. Operations on the left hand side of the diagram act on ’particles’ data, while the
right hand side operations act on fixed grid data.
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quickly providing large sets of small numerical experiments. We implemented
all of the steps involved in such calculation on GPU with CUDA, as the SIMD
programming mode and the libraries of the CUDA toolkits could fit the steps of
our method. We mostly take advantage of the multithreading abilities of these
devices to accelerate the computation.

PM-driven N-Body integrations loop over a well-defined sequence of elemen-
tary steps, which can be listed as follow and summarized in figure 1 (see e.g.
[6, 7, 8] for details):

1. Density evaluation : knowing the position of the particles, the density ρ is
evaluated on a 3D regular grid. Following an algorithm described by [8], we
implemented an SIMD Nearest-Grid-Point assignment scheme. It relies on
the radix sort and the scan primitives included in the CUDPP library. We
also used a ’mixed’ algorithm which still uses the GPU for finding the nearest
cells to the particles but updates the density on the CPU. It simplifies the
calculations but involves recurrent data transfers between the host and the
device.

2. Potential evaluation: the density ρ being available, the potential is computed
on the same 3D grid via the resolution of the Poisson equation. It is usually
achieved with FFT [8] or multi-grid (MG hereafter) relaxation [9]. MG tech-
niques are less efficient than FFT but can be used for any kind of boundary
conditions (while FFT assumes periodic computational domain). MG can
also solve the modified gravity versions of the Poisson Equation [10]. Paral-
lelizations of both have been widely studied and implemented [11, 12]. We
developed both versions on the GPU, using the CUFFT API for FFT and
writing from scratch a MG solver.

3. Accelerations calculation: the forces in the 3D grid are directly available from
the potential using finite differentiation. We adapted this entire step to the
GPU and optimized it from a SIMD point-of-view while taking into account
data locality problems.

4. Interpolation: the data representation switches back to a particle description.
Each body is being independently assigned an acceleration by interpolation
at its position of the 3D grid of forces.

5. Velocities and positions update: the accelerations lead to the update of the
velocities and the velocity update allows to update the positions. In practice,
we used a common leapfrog scheme, where velocities and positions are up-
dated in a staggered fashion. This step is parallel by nature as each particle
is being assigned an acceleration and therefore a velocity and a position.
From this point, a new density can be computed and a new time step can
be started.

These five steps have been adapted for GPUs and, more important, the entire
sequence has been integrated for GPUs in order to limit performance losses due
to data transfer from/to the CPU or main memory. That means that, as soon
as the input data (initial positions and velocities) are calculated or read from a
file, the data is sent to the GPU once and for all and needs to be brought back
on the host only to be written to the output file.
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3 Performances

3.1 Setup of the Experiments

The subsequent experiments were performed on three sets of initial conditions.
First a Plummer sphere [13] where the particles are distributed isotropically
and satisfy a well-defined profile. The velocity distribution is chosen in order to
balance the gravity and the sphere remains coherent over long period of time.
Second, we simulated an exponential disk, where particles are distributed in a
thin plane and velocities are similar to the one measured in real disc-like galaxies.
This experiment is set up to be unstable by nature, allowing spiral arms to
develop for instance. The third type of simulations consists simply in particles
randomly distributed in a cubic space with random velocities. It is similar to
cosmological simulations that are ignited from a quasi-uniform distribution of
matter. All the simulations are performed on the same volume using 323, 643 and
1283 particles/density cells : smaller problems are of little interests while the next
power of 8 (2563) surpasses the current capacity some routines such as CUFFT
and CUDPP sort and compact. These larger situations will be addressed on
short term as hardware and software improve and our set of simulation already
provides a good insight on the perspectives offered by GPUs. The time step is
chosen in order to achieve an energy conservation of ΔE/E ∼ 10−3 over a time
unit, where the energy is defined as E =

∑
particles

v2−φ(x)
2 . The tests were run

on a single GeForce 8800 GTX device.
For comparison, we developed a CPU version of the PM integrator, written in

C, compiled using the Intel C compiler. CPU-driven simulations were performed
on Opterons Dual-Core at 2.2 GHz, which also hosts the GPU we used. Let
us emphasize that by no means the CPU version should be considered as fully
optimized version, even though loops were optimized by the compiler. Comparing
with the PM sequence of existing codes (like Gadget or Ramses [1,3]) might be
irrelevant because of critical algorithm differences. The following results should
be more considered as a demonstration of the quick gains that can be achieved
on GPUs with moderate coding skills.

On the CPU, Fourier transforms were performed with the FFTW 3.1.2 library
using the single-float precision version and multi-threading was not enabled (as
in e.g. [14] used hereafter as a comparison). On both the GPU and CPU, FFTs
were performed using complex-to-complex transform. The multi-grid calculation
involved 3 V-cycles with five levels of restrictions, using 5 pre- and post-recursion
smoothing steps. It ensures the same level of energy conservation as the FFT
calculation ΔE/E ∼ 10−3. The energy fluctuations were found to be identical
between the CPU and GPU versions, even though not all floating point opera-
tions are IEEE compliant on GPU.

Each of the steps of the integrator is timed separately and ran 1000 times.
As explained in section 2, we used two different histogramming procedures, one
that involves a partial CPU calculation (“GPU Mixed Histo” hereafter) and one
“Full GPU” version that suppresses all CPU calculations at the cost of complex
sorting and compact routines.



878 D. Aubert, M. Amini, and R. David

3.2 Overall Performance

According to our experiments, the GPU versions of the PM integrator can be
significantly accelerated, depending of the type of simulation and the number
of cells. As a first broad picture, the figure 2 presents the overall speedup of
Full-GPU and GPU-Mixed Histo calculations compared to the CPU version for
323, 643 and 1283 simulations. Using FFTs for the Poisson equations, the gain
measured for the Full GPU ranges from a factor 1.6 to 11.5 while the mixed
version experiences a speedup from 2.5 for the smallest versions to 18 for the

Fig. 2. The overall speedup compared to the CPU version using an FFT (top panel) or
a multi-grid (bottom panel) solver, shown as a function of the number of cells. Please
note that y-scales are different in the two panels. Blue lines with circular symbols
stand for the full-GPU calculations, while red ones with diamonds stand for the GPU
simulations with the histogramming partially performed on the host.
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largest simulation. Using the multi-grid relaxation, the speedup is at least a
factor 10 for both versions of the histogramming and reaches a level of 43 for
the Full-GPU versions and 52 for the GPU-Mix 1283 calculations. Focusing on
the 1283 simulations, the GPU-mixed versions are almost twice faster than the
GPU versions, while Multi-Grid based calculations are almost equivalent if one
considers the Full-GPU or GPU-mixed calculations. One can also note that the
random calculations are less efficient when the histogram is performed on the
CPU. All these trends result from different limitations and specificities that are
detailed hereafter.

3.3 Bottlenecks

CPU and GPU versions are limited by different bottlenecks. It can be seen from
Fig. 3 which details the execution times of the different steps involved in a
single timestep for the 1283 simulations. Histogramming on the GPU and Mixed
histogramming are shown side by side even if only one of these implementations
is used in a given simulation run. The same remark holds for the FFT-based and
the MG-based Poisson solvers.

The CPU version depends heavily on the performance of the Poisson solver:
about 75 % of a timestep is spent solving the Poisson equation when the FFT solver
is called while this proportion is close to a 100% when the MG solver is used.

Meanwhile, the Full-GPU version is more influenced by the density calcula-
tion. Histogramming is not naturally suited to SIMD calculations and involves

Fig. 3. Absolute timings for the different stages of a single time step for the CPU and
the GPU versions for 1283 simulations. For a given run, histogramming is performed
either on the GPU (Histo) or on the CPU (HistoMix). Also the Poisson equation is
solved using FFT or Multi-Grid relaxation (MG). For the CPU version, the Histo and
HistoMix routines are identical.
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complex operations (sorting/segmented scan). If FFT is used for the Poisson
equation, 60 % of its computational time is spent constructing the density. Us-
ing MG, the fraction of time spent in the histogramming is lowered to levels of
10% to 20%, but only because MG is less efficient than FFT.

Finally, the Mixed-Histo calculation manages to divide by two the duration of
histogramming in the overall calculation compared to the full GPU even though
costly transfers are involved (except for the random distribution, see section
3.4). In FFT-based simulations, the same amount of time is then spent in the
Poisson solver and in the histogramming. It explains the significant increase of
performance observed in the overall calculation when switching to this type of
histogram. In MG-based calculation, the weight of the histogramming becomes
even less important than it was. A moderate increase in perfomance is then
observed, as reported in figure 2.

3.4 Sub Components Analysis

In addition to the absolute timings in Fig. 3, the speedups (compared to the CPU
versions) of the sub components of a time step are shown in Fig. 4. From these
measurments, we deduce that the overall speedup of the GPU version compared
to the CPU results mainly from a large gain in the resolution of the Poisson
equation, moderated by the low efficiency of the histogramming and sustained
by the speedups achieved in all the other steps of the calculation. The analysis
of the individual sub components follow.

Poisson solver. From Fig. 3, it can be noted that the resolutions of the Poisson
equations are extremely time consuming for the CPU versions and among them
the multi-grid calculations are ten times slower than FFTs. The same difference
can be noted on the GPU versions, even though the speedup on GPU is 40 (for
the FFT) or 60 (for the Multi-Grid). Let us emphasize that the FFT-driven
resolution of the Poisson equation involves two Fourier transforms in opposite
directions and an isotropic filtering. If we consider only the FFTs, our measure-
ments showed that CUFFT is 2, 16 and 40 times faster than FFTW for the 323,
643 and 1283 experiments. It differs from measurements of [15] with a different
GPU but are consistent with the tests of [14].

Important speedups are measured for the multi-grid relaxation, where both
GPU and CPU code were written from scratch. Speedup is achieved using the
high-level parallelism of the computations involved in the restrictions, prolon-
gations and the Gauss-Seidel iterations. We think greater speedups might be
reached by fine-tuning the GPU routines, especially with a greater use of shared
memory for the redundant operations of restrictions/prolongation.

Histogramming. On the downside, no gain can be observed for the histogram-
ming step on the GPUs. Even worse, this computation can be 5 times slower
on 1283 simulations an can go down to 10 times slower on the full GPU version
for 323 particles simulations (not studied here otherwise). The GPU-mix histo-
version performs the most expensive step on the host but still, the data transfer
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(transfer rate and latency) results in this computation step being twice slower
than computation performed only on the CPU. The mixed version fill the gap
for the sphere and disc simulations, but are at least 15% slower than the CPU
versions.

It should be mentionned that higher order assignment scheme exist (Cloud-
In-Cell, Triangular-Shaped-Cloud) where particles contribute to more than one
cell [6], resulting in the calculation of 8(CIC) or 27 (TSC) histograms per
timestep. The CPU or mixed-GPU may suffer from these successive calculations.
Conversely, the algorithm described by [8] requires only one sort and may become
more competitive as higher order (and more accurate) assignement schemes are
used.

Interestingly, the random case simulations are less favorable to the CPU ver-
sions in terms of histogramming: it cannot be as efficient as it writes data in
memory due to the fact that particles are spread in all the computation box,
presumably due to cache misses. In the two previous cases, the particles were con-
fined in certain sub regions (disc or sphere), ensuring a certain level of cache hits.
Meanwhile, the SIMD GPU histogramming routine relies on sort/scan primitives
which do not depend strongly on the particle distribution.

Accelerations and updates. All the other stages of the calculation are sig-
nificantly speeded up on GPU, with speedups ranging from 5 to 120 compared
to the CPU versions.

We noticed that the speedups of velocity updates increase as the particles
are spread in a larger portion of the grid, especially comparing disc simulations
to random simulations. To compute the velocity of a particle, a given thread
(or the CPU) finds the cell it belongs to and uses the associated acceleration.
Consequently, CPU is less efficient to access memory in a random fashion as a
larger fraction of the grid is occupied by particles (see also Fig. 3): it results

Fig. 4. Speedup for the different stages of a single time step for the the GPU-Mix and
full GPU simulations on a 1283 grid
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in a greater speedup in favor of the GPU. Conversely, if particles are strongly
clustered, memory access scheme gets close to neighboring accesses to the mem-
ory, which are more likely to be cached on the CPU.

Finally, it should be noted that the force/acceleration computation is more
efficient along the x direction. It results from the storage of the grids in memory
which favors certain directions in terms of contiguous memory access among
threads.

4 Conclusion and Perspectives

Using CUDA API we developed a Particle-Mesh N-Body integrator that runs
on common graphic devices. All the steps of the algorithm were parallelized
and we obtain speedups that ranges from 2 to 50 depending on the size of
the problem and the choice of techniques. The density computation and the
Poisson solver are the critical part of the implementation. We implemented a full
GPU histogramming algorithm and solve the Poisson equation by means of FFT
and MG relaxation. For large problems, the resolution of the Poisson equation
is at least 40 times faster on the GPU using FFT and 60 times faster using
multi-grid relaxation, while the histogram computation is hardly accelerated on
GPU. Combined with the 10-100 speedups obtained on all the other steps (cell
assignment, acceleration computation/interpolation, velocity/position update) a
significant acceleration of the code is observed : for a typical 1283 data set we
achieve speedups of 12 for FFT based calculations and up to 45 for MG based
ones. If the histogramming is partially performed on the host, higher speedups
of 20 for FFT-based and 50 for MG-based simulations are observed.

In a near future, we plan first to assess larger problems (2563, 5123) in order
to reach astrophysically relevant resolutions. Using devices with larger memory
capabilities and supporting atomic operations, it should be within our reach us-
ing the Multi-Grid Poisson solver and an improved version of the histogramming
routine (following e.g. [16]). If such large situations can be handled, running large
multi-GPU simulations would be the next step to reach the billion particles with
GPU speedups. However, it remains still unclear how communications between
GPUs through the hosts may lower the speedups obtained with a single device.

From an astrophysical point of view, the results obtained are encouraging.
Furthermore, this PM development is accompanied by two other codes : GPU
version of a non-linear FAS Multi-Grid solver for the modified Newtonian dy-
namics and the CUDA transcription of a cosmological radiative transfer code.
For these two other codes, speedups range from 10 to 80 compared to CPU ver-
sions. It opens interesting perspectives of an easy access to HPC-like calculations
in their desktop machines with a set of well-suited API’s enabled for GPUs.
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Abstract. The development of high performance dense linear algebra
(DLA) critically depends on highly optimized BLAS, and especially on
the matrix multiplication routine (GEMM). This is especially true for
Graphics Processing Units (GPUs), as evidenced by recently published
results on DLA for GPUs that rely on highly optimized GEMM. How-
ever, the current best GEMM performance, e.g. of up to 375 GFlop/s in
single precision and of up to 75 GFlop/s in double precision arithmetic
on NVIDIA’s GTX 280, is difficult to achieve. The development involves
extensive GPU knowledge and even backward engineering to understand
some undocumented insides about the architecture that have been of key
importance in the development. In this paper, we describe some GPU
GEMM auto-tuning optimization techniques that allow us to keep up
with changing hardware by rapidly reusing, rather than reinventing, the
existing ideas. Auto-tuning, as we show in this paper, is a very practical
solution where in addition to getting an easy portability, we can often
get substantial speedups even on current GPUs (e.g. up to 27% in cer-
tain cases for both single and double precision GEMMs on the GTX 280).

Keywords: Auto-tuning, matrix multiply, dense linear algebra, GPUs.

1 Introduction

Recent activities of major chip manufacturers, such as Intel, AMD, IBM and
NVIDIA, make it more evident than ever that future designs of microprocessors
and large HPC systems will be hybrid/heterogeneous in nature, relying on the
integration (in varying proportions) of two major types of components:

1. Multi/many-cores CPU technology, where the number of cores will continue
to escalate while avoiding the power wall, instruction level parallelism wall,
and the memory wall [2]; and

2. Special purpose hardware and accelerators, especially GPUs, which are in
commodity production, have outpaced standard CPUs in performance, and
have become as easy, if not easier to program than multicore CPUs.

The relative balance between these component types in future designs is not
clear, and will likely vary over time, but there seems to be no doubt that future
generations of computer systems, ranging from laptops to supercomputers, will
consist of a composition of heterogeneous components.

G. Allen et al. (Eds.): ICCS 2009, Part I, LNCS 5544, pp. 884–892, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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These hardware trends have inevitably brought up the need for updates on
existing legacy software packages, such as the sequential LAPACK [1], from the
area of DLA. To take advantage of the new computational environment, our
current research shows that successors of LAPACK have to incorporate algo-
rithms of three main characteristics: high parallelism (to efficiently account
for the many-cores available), reduced communication (to account for the
exponentially increasing memory wall), and heterogeneity-awareness (mean-
ing, algorithms to be properly split between the components of the heterogeneous
system so that the strengths of each component are properly matched to the re-
quirement of the algorithm). This is reflected for example in the Matrix Algebra
on GPU and Multicore Architectures (MAGMA) project [3], a recent effort on
developing a successor to LAPACK but for heterogeneous/hybrid architectures,
with current stress on Multicore + GPU systems.

Our overall goals, as related to auto-tuning and the MAGMA project, are to
investigate opportunities for automating the transition to MAGMA and more-
over, automating the tuning process of the newly discovered algorithms, both
for the sake of productivity and for correctness in the new, complex, and rapidly
changing computational environment. However, the techniques developed and in-
corporated in MAGMA so far show that a transition from LAPACK to MAGMA
can not be done automatically or with minor modifications, as in many cases
new algorithms that significantly differ from algorithms for conventional archi-
tectures will be needed [3]. Indeed, experiments show that the easy approach,
that has been successful in the past, to use current LAPACK and simply call
BLAS on the GPU leads to significant loss of performance (that can be of or-
der 3× and higher). Nevertheless, this approach can lead to high performance,
but only after some modifications and for routines that map well on the GPU,
like Cholesky (e.g. Dongarra et al. [8] report up to 327 GFlop/s in single preci-
sion on a pre-released at the time NVIDIA T10P). Naturally, previous attempts
to wrap some of the work needed in transitions like this in frameworks, have
also failed to produce convincing results. For example the FLAME project [10],
is a framework to facilitate the implementation of a class of DLA algorithms.
Originally designed before the appearance of multicores, had to be continuously
updated to meet the challenges of emerging architectures. Still, in the context
of GPUs in particular, the latest results from FLAME developers show a single
precision Cholesky factorization running at up to 156.2 GFlop/s, and a single
precision LU factorization at up to 142 GFlop/s [4]. Although impressive, com-
pare this performance with, accordingly, 315 GFlop/s and 309 GFlop/s [11] for
the new algorithms (all these results are for the GTX 280). The main point
here is that emerging architectures have motivated the development of new al-
gorithms that have a much larger design space than previously needed. Early
autotuners for example only targeted the BLAS, under the assumption that
a few parameters (e.g. block sizes) were enough to capture enough of the al-
gorithmic design space of higher level algorithms (LU, etc.) to attain a large
fraction of peak performance. This assumption was adequate to keep LAPACK
and ScaLAPACK reasonably efficient for many years, but as described above
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it is far from adequate going forward. This is even more true for frameworks
that are rooted in the old sequential environments preceding the introduction of
multicores.

This brief outline motivates us to use auto-tuning (as a major component
of the new MAGMA efforts) to keep up with the rapidly innovating hardware
and continually growing design space so that we get to rapidly reuse, rather
than reinvent, the new ideas. Indeed, the work that we describe in this paper on
developing GEMM autotuners shows that we can significantly accelerate current
results not only on emerging GPUs (e.g. when GPUs recently added support for
double precision arithmetic) but also on current GPUs for which the algorithms
were originally designed. Moreover, we have discovered that in the new hardware
environment our design spaces critically depend not only on the architecture but
also on problem sizes. The implication is that there may be different optimal
algorithms for the same problem, and discovering these algorithms and their
tuning on a case by case study may be impractical even for an expert. Auto-
tuning is preferable.

The rest of the paper is organized as follows. In Section 2, we give background
information on auto-tuning for DLA. Section 3 describe our GEMM autotuner
for GPUs. Next are performance results (Section 4) and finally conclusions and
future directions (Section 5).

2 Auto-tuning for CPUs

Automatic performance tuning (optimization), or auto-tuning in short, is a
technique that has been used intensively on CPUs to automatically generate
near-optimal numerical libraries. For example, ATLAS [12,7] and PHiPAC [5]
are used to generate highly optimized BLAS. In addition, FFTW [9] is suc-
cessfully used to generate optimized libraries for FFT, which is one of the
most important techniques for digital signal processing. There are generally two
kinds of approaches for doing auto-tuning, specifically model-driven optimiza-
tion and empirical optimization. The idea of model-driven optimization comes
from the compiler community. The compiler community has developed various
optimization techniques that can be effectively used to transform code writ-
ten in high-level languages such as C and Fortran to run efficiently on mod-
ern CPU architectures. These optimization techniques include loop blocking,
loop unrolling, loop permutation, fusion and distribution, prefetching, and soft-
ware pipelining. The parameters for these transformations such as the block
size and the amount of unrolling are determined by analytical models, which
are commonly used in the compiler community. While model-driven optimiza-
tion is generally effective to make programs run faster, it may not give optimal
performance to special-purpose libraries for linear algebra and signal process-
ing. The reason is that analytical models used by compilers are only simpli-
fied abstractions of the underlying processor architectures, and they must be
general enough to be applicable to all kinds of programs. Thus, the limited
accuracy of analytical models makes the model-driven approach not so attrac-
tive for the optimization of highly special kernels for linear algebra and signal
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processing, if the approach is solely used. In contrast to model-driven optimiza-
tion, empirical optimization techniques generate a large number of parametrized
code variants for a given algorithm and run these variants on a given plat-
form to discover the one that gives the best performance. The effectiveness
of empirical optimization depends on the chosen parameters to optimize, and
the search heuristic used. A disadvantage of empirical optimization is the time
cost of searching for the best code variant, which is usually proportional to the
number of variants generated and evaluated. Contrarily, model-driven optimiza-
tion has a O(1) cost, since the parameters can be derived from the analyti-
cal model. Therefore, a natural idea is to combine these two approaches, and
it gives the third approach, a hybrid approach that uses the model-driven ap-
proach in the first stage to limit the search space for the second stage of empirical
search.

Another aspect of the auto-tuning, besides the compiler and empirical tuning
where an optimal computational kernel is generated as it is installed on one
system, is adaptivity which can be regarded in various aspects [6]. The main
aspect is to treat cases where tuning can not be restricted to optimizations at
design time, installation time, or even compile time. In those cases, mechanisms
of adaptivity can be incorporated in software, where tuning information captured
in prior runs can be used to tune future runs.

With the success of auto-tuning techniques on generating highly optimized
DLA kernels on CPUs, it is interesting to see how the idea can be used to
generate near-optimal DLA kernels on modern high-performance GPUs.

3 GEMM Autotuner for GPUs

In this section we present our preliminary study on the idea of auto-tuning
on modern GPUs. In particular, we design a GEMM “autotuner” for NVIDIA
CUDA-enabled GPUs. Here autotuner refers to an auto-tuning system that au-
tomatically generates and searches a space of algorithms.

There are two core components in a complete auto-tuning system: a code gen-
erator and a heuristic search engine. The code generator generates parametrized
code variants according to a pre-defined code template. The heuristic search
engine then runs these variants and finds out the best one using a feedback
loop, i.e., the performance results of previously evaluated variants are used as a
guidance for the search on currently unevaluated variants.

In [11], Volkov and Demmel present kernels for single-precision matrix mul-
tiplication (SGEMM) that significantly outperformed CUBLAS 1.0 on CUDA-
enabled GPUs, using an approach that challenges those optimization strategies
and programming guidelines that are commonly accepted. In this paper, we fo-
cus on the GEMM kernel that computes C = αA × B + βC. Additionally, we
investigate auto-tuning on both single precision and double precision GEMM
kernels (i.e., SGEMM and DGEMM). The SGEMM kernel proposed in [11]
takes advantage of the vector capability of NVIDIA CUDA-enabled GPUs. The
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Fig. 1. The algorithmic view of the code template for GEMM

authors argue that modern GPUs should be viewed as multi-threaded vector
units, and their algorithms for matrix multiplication resemble those earlier ones
developed for vector processors. We take their SGEMM kernel for computing
C = αA×B+βC as our code template, with modifications to make the template
accept row-major input matrices, instead of column major used in their original
kernel.

Figure 1 depicts the algorithmic view of the code templates respectively for
both SGEMM and DGEMM. Suppose A, B, and C are M×K, K×N, and M×N
matrices, and that M, N, and K are correspondingly divisible by BM, BN, and
BK (otherwise “padding” by zero has to be applied or using the host for part
of the computation). Then the matrices A, B, and C are partitioned into blocks
of sizes BM×BK, BK×BN, and BM×BN, respectively (as illustrated on the fig-
ure). The elements of each BM×BN block of the matrix C (denoted by BC on
the figure, standing for ’block of C’) are computed by a tx × ty thread block.
Depending on the number of threads in each thread block, each thread will
compute either an entire column or part of a column of BC. For example, sup-
pose BM = 16 and BN = 64, and the thread block has 16 × 4 threads, then
each thread will compute exactly one column of BC. If the thread block has
16 × 8 threads, then each thread will compute half of a column of BC. After
each thread finishes its assigned portion of the computation, it writes the results
(i.e., an entire column or part of a column of BC back to the global memory
where the matrix C resides. In each iteration, a BM×BK block BA of the matrix
A is brought into the on-chip shared memory and kept there until the compu-
tation of BC is finished. Similarly to the matrix C, matrix B always resides in
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the global memory, and the elements of each block BB are brought from the
global memory to the on-chip registers as necessary in each iteration. Because
modern GPUs have a large register file within each multiprocessor, a significant
amount of the computation can be done in registers. This is critical to achiev-
ing near-optimal performance. As in [11], the computation of each block BC
= BC + BA×BB is fully unrolled. It is also worth pointing out that in our
SGEMM, 4 saxpy calls and 4 memory accesses to BB are grouped together,
as in [11], while in our DGEMM, each group contains 2 saxpy and 2 memory
accesses to BB. This is critical to achieving maximum utilization of memory
bandwidth in both cases, considering that the different widths between float
and double.

As outlined above, 5 parameters (BM, BK, BN, tx, and ty) determine the
actual implementation of the code template. There is one additional parameter
that is of interest to the actual implementation. This additional parameter de-
termines the layout of each block BA of the matrix A in the shared memory,
i.e., whether the copy of each block BA in the shared memory is transposed or
not. Since the share memory is divided into banks and two or more simultane-
ous accesses to the same bank cause the so-called bank conflicts, transposing the
layout of each block BA in the shared memory may help reduce the possibility of
bank conflicts, thus potentially improving the performance. Therefore, the actual
implementation of the above code template is determined or parametrized by 6
parameters, namely BM, BK, BN, tx, ty, and a flag trans indicating whether to
transpose the copy of each block BA in the shared memory.

We implemented code generators for both SGEMM and DGEMM on NVIDIA
CUDA-enabled GPUs. The code generator takes the 6 parameters as inputs, and
generates the kernel, the timing utilities, the header file, and the Makefile to build
the kernel. The code generator first checks the validity of the input parameters
before actually generating the files. By validity we mean 1) the input parame-
ters confirm to hardware constraints, e.g., the maximum number of threads per
thread block tx × ty ≤ 512, and 2) the input parameters are mutually compat-
ible, e.g., (tx × ty)%BK = 0, BM%ty = 0, and BN%tx = 0. By varying the
input parameters, we can generate different variants of the kernel, and evaluate
their performance, in order to identify the best variant. One way to implement
auto-tuning is to generate a small number of variants for some matrices with
typical sizes during installation time, and choose the best variant during run
time, depending on the input matrix size.

4 Performance Results

The performance results in this section are for NVIDIA’s GeForce GTX 280.
First, we evaluate the performance of the GEMM autotuner in both single

and double precision. Figure 2, Left compares the performance of the GEMM
autotuner in single precision with the CUBLAS 2.0 SGEMM for multiplying
square matrices. We note that both CUBLAS 2.0 SGEMM and our auto-tuned
SGEMM are based on V.Volkov’s SGEMM [11]. The GEMM autotuner selects
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Fig. 2. Performance comparison of CUBLAS 2.0 vs auto-tuned SGEMM (left) and
DGEMM (right) on square matrices

the best performing one among several variants. It can be seen that the per-
formance of the autotuner is apparently slightly better than the CUBLAS 2.0
SGEMM. Figure 2, Right shows that the autotuner also performs better than
CUBLAS in double precision. These preliminary results demonstrate that auto-
tuning is promising in automatically producing near-optimal GEMM kernels on
GPUs. The most attractive feature of auto-tuning is that it allows us to keep up

Fig. 3. Performance comparison of the auto-tuned (solid line) vs CUBLAS 2.0 (dotted
line) DGEMMs occurring in the block LU factorization (for block sizes BS = 64 on
the left and 128 on the right) of a matrix of size 6144 × 6144. The two kernels shown
are for multiplying N×BS and BS×N−BS matrices (denoted by N×N−BS×BS), and
N×BS and BS×BS matrices (denoted by N×BS×BS)
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with changing hardware by automatically and rapidly generating near-optimal
BLAS kernels, given any newly developed GPUs.

The fact that the two performances are so close is not surprising because
our auto-tuned code and CUBLAS 2.0’s code are based on the same kernel,
and this kernel was designed and tuned for current GPUs (and in particu-
lar the GTX 280), targeting high performance for large matrices. In practice
though, and in particular in developing DLA algorithms, it is very important
to have high performance GEMMs on rectangular matrices, where one size is
large, and the other is fixed within a certain block size (BS), e.g. BS = 64, 128,
up to about 256 on current architectures. For example, in an LU factorization
(with look-ahead) we need two types of GEMM, namely one for multiplying
matrices of size N×BS and BS×N−BS, and another for multiplying N×BS and
BS×BS matrices. This situation is illustrated on Figure 3, where we compare
the performances of the CUBLAS 2.0 vs auto-tuned DGEMMs occurring in the
block LU factorization of a matrix of size 6144 × 6144. The graphs show that
our auto-tuned code significantly outperforms (up to 27%) the DGEMM from
CUBLAS 2.0.

These results support experiences and observations by others on “how sensi-
tive the performance of GPU is to the formulations of your kernel” [13] and that
an enormous amount of well thought experimentation and benchmarking [11,13]
is needed in order to optimize performance.

5 Conclusions and Future Directions

We highlighted the difficulty in developing highly optimized codes for new ar-
chitectures, and in particular GEMM for GPUs. On the other side, we have
shown an auto-tuning approach that is very practical and can lead to optimal
performance. In particular, our auto-tuning approach allowed us

– To easily port existing ideas on quickly evolving architectures (e.g. demon-
strated here by transferring single precision to double precision GEMM de-
signs for GPUs), and

– To substantially speed up even highly tuned kernels (e.g. up to 27% in this
particular study).

These results also underline the need to incorporate auto-tuning ideas in our soft-
ware. This is especially needed now for the new, complex, and rapidly changing
computational environment. Therefore our future directions are, as we develop
new algorithms (e.g. within the MAGMA project), to systematically define their
design/search space, so that we can easily automate the tuning process as demon-
strated in this paper.
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Abstract. The limiting factor for efficiency of sparse linear solvers is
the memory bandwidth. In this work, we describe a fast Conjugate Gra-
dient solver for unstructured problems, which runs on multiple GPUs
installed on a single mainboard. The solver achieves double precision
accuracy with single precision GPUs, using a mixed precision iterative
refinement algorithm. To achieve high computation speed, we propose
a fast sparse matrix-vector multiplication algorithm, which is the core
operation of iterative solvers. The proposed multiplication algorithm ef-
ficiently utilizes GPU resources via caching, coalesced memory accesses
and load balance between running threads. Experiments on wide range of
matrices show that our matrix-vector multiplication algorithm achieves
up to 11.6 Gflops on single GeForce 8800 GTS card and CG implemen-
tation achieves up to 24.6 Gflops with four GPUs.

1 Introduction

Recently, GPUs have attracted HPC community, because of their peak com-
pute capability and high memory bandwidth, compared to conventional CPUs.
Moreover, today’s GPUs achieve relatively small cost and power consumption vs.
their performance. APIs developed by manufacturers like CTM [1] and CUDA [2]
made GPUs easy to program as a highly parallel multi-core coprocessor, not only
for graphic applications but also for non-graphic applications.

Several advantages of GPU computing is mentioned above. On the other hand,
it is not easy to achieve high utilization of GPU resources for the solution of un-
structured sparse linear systems. The performance of the sparse matrix-vector
multiplication (MxV), which is in the core of sparse linear iterative solvers, is lim-
ited by the memory bandwidth rather than peak computation power. Although
new generation GPUs are capable of being programmed for general purpose com-
putations, they are originally optimized for graphics applications. Therefore, to
achieve high performance, thread level parallelism and memory access methods
on a set of streaming multi-processors should be carefully thought.

Another drawback of GPUs is, for most of them, lack of double precision
support for floating point operations. Hence, solvers without CPU support suffer
from loss of accuracy in solution. In order to achieve double precision accuracy,
we adopt a mixed precision iterative refinement algorithm [6].

In this work, we implement a fast Conjugate Gradient (CG) solver with multi-
GPU support. To the best of our knowledge, this is the first multi-GPU solver

G. Allen et al. (Eds.): ICCS 2009, Part I, LNCS 5544, pp. 893–903, 2009.
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for unstructured sparse systems. All basic operations of the single precision CG
solver are implemented on GPUs. We propose a fast MxV algorithm.Proposed
MxV algorithm achieves high utilization of GPU resources by coalesced memory
accesses, caching, and load balancing between working threads.

We evaluate performance of the proposed algorithms over a wide range of
well-known matrices. We compare the performance of our MxV algorithm on
the GPU with a CPU implementation and two näıve GPU implementations.
Experiments confirm that our algorithm on the GPU is several times faster
than other implementations. Performance of the parallel solver degrades to some
extent due to the communication between GPUs and the CPU in each iteration.
Still, we achieve average speedup of 2.83 over single GPU on 4 GPUs for big
matrices in the dataset. Although we have reported results only for CG algorithm
in this work, our approaches can be efficiently applied for other sparse linear
methods with GPU support.

2 Background

2.1 Sparse Matrix Storage Formats

Since many of the entries in sparse matrices are zero, there is no need to explicitly
store them. There are many compressed storage formats for sparse matrices [17].
In this section, we only mention two of them related to our work.

Compressed Storage by Rows (CSR) stores nonzeros of the matrices in row
order. For indexing nonzeros, two arrays are used. The elements in the row
pointer array point the first nonzero in each row. There are number of rows + 1
elements in this array where the last element is kept for indicating boundary of
the last row. The other array stores the column indices of the nonzeros in row
order. Fig. 1 depicts an example for CSR and the pseudocode of MxV (y = Ax)
for a CSR-stored matrix A with n rows. In the example, row ptr and col ind
stand for row pointers and column indices, respectively.

JDS format is not as straightforward as CSR. It can result with better perfor-
mance for MxV on vector processors. In order to store a matrix in JDS format,

for i ← 0 to n − 1 do
y[i] ← 0
for j ← row ptr[i] to row ptr[i + 1] − 1 do

y[i] ← y[i] + values[j] × x[col ind[j]]

Fig. 1. A CSR example and pseudocode of MxV for CSR-stored matrices
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for i ← 0 to max nz − 1 do
for j ← jd ptr[i] to jd ptr[i + 1] − 1 do

r ← j − jd ptr[i]
y[perm[r]] ← y[perm[r]] + values[j] × x[col ind[j]]

Fig. 2. A JDS example and pseudocode of MxV for JDS-stored matrices

matrix rows are reordered according to the number of nonzeros in each row in de-
creasing order. Then, all nonzeros of the matrix are shifted to the left. Columns
of the new compressed matrix are called jagged diagonals. Nonzero values of the
compressed matrix are stored in an array in column order. Corresponding col-
umn indices of each nonzero in the original matrix are written in another array.
One more array is kept to point the beginning indices of each jagged diagonal.
Finally row permutation is stored in an array, where elements of the array that
correspond to the rows of the compressed matrix, point the row number in the
original matrix. Fig. 2 depicts an example for JDS and the pseudocode for MxV
of JDS-stored matrices. In the figure, perm, jd ptr and col ind respectively stand
for permutation, jagged diagonal pointer and column index arrays. max nz is the
maximum of the number of nonzeros of each row.

2.2 Mixed Precision Iterative Refinement for Conjugate Gradients

Conjugate Gradient method is used to solve linear systems Ax = b, where ma-
trix A is symmetric and positive definite. Solvers on GPUs that do not support
double precision floating point operations suffer from loss of accuracy in the
result. Therefore, in this work we adopt a mixed precision iterative refinement
algorithm for CG [6] which is based on inner-outer iteration method [9]. The
algorithm explained in [6] is tested on conventional processors, but reported to
be applicable on GPUs, also. Authors report that the mixed precision algorithm
achieves faster solution of the same or even better accuracy compared to the full
double precision solver.

Basically, mixed precision algorithm runs the preconditioned CG. However,
instead of using a fixed preconditioner, preconditioner is solved using a single
precision sparse iterative method, in each iteration. Operations other than the
inner solver run in double precision. Single precision inner solver may also use
preconditioned CG method if a preconditioner is available or any other iterative
method that result in symmetric and positive definite operations. Inner solver
runs for a predetermined number of iterations and takes most of the time of the
overall solution.
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2.3 General Purpose Computation on GPUs and CUDA

New generation GPUs can be thought as many-core stream-processing units.
Taking into account the superiority of peak performance over conventional CPUs,
GPUs are great resources not only for graphics processing, but also for data-
parallel computing. Using GPUs for non-graphics applications is not a new idea,
but with development of new APIs that hide the graphics-related interface and
drastic increase in hardware performance, usability and popularity of general
purpose computing on GPUs increased significantly [7].

Compute Unified Device Architecture (CUDA) is NVIDIAs new generation
GPU architecture. It is also the name of the software for programming this
architecture. A CUDA GPU contains number of SIMD multiprocessors. GPU
has a device memory that is accessible by all processors. Each multiprocessor
contains its own shared memory and read-only constant and texture caches that
are accessible by all processors within the multiprocessor. CUDA API supports
programming different memory types.

CUDA GPU devices are capable of running high number of threads in parallel.
Threads are grouped together as thread blocks, so that each block of threads
are executed on the same multiprocessor. As a result, threads in the same block
can communicate through fast shared memory.

Threads in different blocks can communicate through device memory. How-
ever, access to the device memory is very slow compared to the shared mem-
ory. Hence, device memory accesses should be refrained as possible and accesses
should be coalesced to attain high performance. If memory access is organized in
the right pattern, half of the threads that are scheduled to execute instructions
in the same time and in the same block can access to the device memory in a
single coalesced read or write instead of many simultaneous accesses. Coalescing
is possible if threads access consecutive memory addresses of 4, 8 or 16 bytes
and base address for coalesced access should be multiple of 16 times size of the
memory type accessed by each thread.

CUDA supports single precision floating point operations based on IEEE 754
standard, with some deviations [2].

2.4 Sparse Iterative Solvers on GPU

GPU memory can be efficiently utilized for solvers where the matrix has a regular
structure [10,11]. In this work, our target is to solve systems with irregular sparsity.

The first GPU-based Conjugate Gradient solver for unstructured matrices is
proposed by Bolz et al. [4]. To utilize memory bandwidth, blocked CSR (BCSR)
matrix storage is used in [5] instead of CSR. BCSR decreases number of memory
fetches from the device memory to some extent, however number of elements
to be multiplied increases. They achieve 1 to 6.5 Gflops CG performance on
QuadroFX 5600 card with a limited dataset of 5 matrices.

Both of the above-mentioned works solve systems in single precision floating
point. Göddeke et al. propose mixed precision solutions for FEM simulations
on banded matrices [10]. They extend the multi-grid solver to run on a GPU-
enhanced cluster in [11]. Georgescu and Okuda [8] use an iterative refinement
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mult ← 0
for i ← 0 to nz count[t] − 1 do

j ← jd ptr[i] + t
mult ← mult + values[j] × x[col ind[j]]

y[perm[t]] ← mult

Fig. 3. CSR-like multiplication of JDS-stored matrix. Code for GPU thread t.

algorithm [14] to obtain double precision accuracy, for general matrices. They do
not make considerable afford for faster kernel operations, instead prefer a näıve
implementation based on CSR format.

3 GPU-Enhanced Conjugate Gradient Solver

We implement the mixed precision algorithm explained in [6] and summarized
in Section 2.2. Core operations of single precision inner solver run on the GPU,
while double precision refinement iterations run on the CPU. We implement CG
for inner solver, assuming that we have no preconditioner readily available.

CG consists of several kernel operations: MxV, SAXPY, vector dot product,
norm and scalar operations. Since MxV dominates the running time, fast imple-
mentation of MxV is required for faster CG.

3.1 Efficient Sparse Matrix-Vector Multiplies on GPU

We propose an efficient MxV algorithm on GPUs based on JDS storage and
CSR-like multiplication. The matrix is stored in JDS format to achieve coalesced
reads from the device memory. Each GPU thread multiplies one row of the
matrix and computes one output vector element. The proposed MxV procedure
for each GPU thread t is depicted in Fig. 3. Note that, for each thread to realize
multiplication we need to have one more array (called nz count in the figure) to
store number of nonzeros of each row.

In this multiplication scheme, consecutive threads access to the consecutive
indices in arrays values, col ind, nz count and perm. So, reads from these arrays
can be coalesced, instead of many simultaneous reads. Note that, as mentioned
in Section 2.3, to achieve coalescing base addresses of coalesced reads should be
multiple of 16 times size of the data type to be read. Namely, elements of jd ptr
should be multiple of 16. We pad zeros to arrays values and col ind for each
jagged diagonal to have multiple of 16 entries.

Unfortunately, writing to the output vector y cannot be coalesced because of
the irregular access caused by perm array. Still, unlike JDS multiplication given
in Fig. 2, CSR-like multiplication has an advantage of writing the output vector
only once.

Since in JDS format matrix rows are sorted according to their nonzero count
in decreasing order, better computational load balance is naturally obtained. The
variation of nonzero counts between threads within the same block is smallest.

In JDS format, row indices are not consecutively ordered. To access values
in row t, indices should be calculated using jd ptr array. Many accesses to this
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array may be costly if it is deployed to the device memory. We place this array
to read-only constant cache to avoid slow reads. Reading from constant cache
is as fast as reading from registers, if active threads in the same block read the
same address. In case of cache miss, cost of reading from constant memory is
equal to reading from device memory. Size of the cached array jd ptr is equal
to the maximum of the number of nonzeros of rows. For all of our experimental
data, this array completely fits into constant cache, hence no cache miss occurs.

We bind x array to the texture cache in our implementation.

3.2 Other Operations

Not only MxV, but all operations of the inner CG solver other than scalar
division operation are efficiently implemented on the GPU. Dot products and
norms are implemented as in the parallel reduction example of NVIDIA’s CUDA
SDK [12], in logn steps, where n is the size of the vectors in computations. Each
output element of SAXPY operation is calculated by a different thread.

3.3 Multi-GPU Algorithm

CUDA supports multiple GPUs run together for an application. Compared to
main memory, GPUs have limited device memory. For applications which require
a lot of storage, device memory limitations may be a bottleneck for GPUs. For
this reason, sometimes running algorithms on multiple GPUs is not only required
for faster applications but to overcome memory bottleneck.

We propose a data-parallel CG algorithm to run on multiple GPUs and a
CPU located on the same board. Rows of the matrix and corresponding vector
entries are distributed amongst GPUs. Since MxV takes most of the iteration
time, we assign nonzeros of the matrix equally to each GPU, so that loads of
MxV is balanced amongst GPUs.

CPU creates a thread for each GPU and coordinates the communication
amongst them. In every iteration, each GPU communicates with the CPU for
them to exchange input vector entries of the matrix-vector multiply. Host CPU
holds a global array, where each GPU writes to and reads from for communi-
cating vector entries. When inner solver terminates, solution vector computed
by the inner solver is copied to the CPU and refinement iteration on the CPU
begins.

Other than above-mentioned communications, scalars are communicated be-
tween GPUs and the CPU to compute global results of the locally computed
values. In the resulting algorithm, threads synchronize in three points: once
before MxV to exchange input vector of the multiplication, and two times to
compute scalars.

4 Experimental Results

We evaluate performance of proposed MxV and CG methods on single and
multiple GPUs. In our experiments, an AMD Phenom 9850 2.5 GHz Quad-Core
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Fig. 4. MxV performance comparison of the proposed algorithm

processor, 4 GB main memory and four GeForce 8800 GTS 512 GPU cards are
used in the hardware platform. CUDA version 2.1 is used for coding on Linux
2.6.23 OS.

42 matrices that are symmetric and positive definite with real value entries
from Sparse Matrix Collection of University of Florida [3] are used for perfor-
mance evaluation. Matrix dimensions vary from 1,440 to 1,585,478 and number
of nonzeros vary from 46,270 to 55,468,422.

4.1 MxV Performance

We compare performance of the proposed algorithm on the GPU with a CPU
implementation using highly optimized OSKI sparse matrix kernel library [18].
To demonstrate the validity of the algorithmic improvements, we also compare
our algorithm with basic JDS and CSR implementations on the GPU. Each
thread block contains 512 threads for all implementation on the GPU. In the
CSR implementation, each GPU thread multiplies one row of the matrix. For
JDS implementation, each thread computes one element of the matrix and we
pad zeros to matrices to achieve coalescing, as explained in Section 3.1. Since
output vector y is accessed number of nonzero times for basic JDS multiplication,
accesses on this array in irregular order drastically degrades the performance.
Hence, we let each thread t multiplying a nonzero in row r to write rth index of a
temporary array y temp. By this way, writes on y temp can be coalesced. In the
end of the multiplication, y temp is reordered into y, using the row permutation
array.

Comparison results are given in Gflops in Fig. 4. Matrices on x axis are sorted
according to the number of nonzeros they contain. GPU-Proposed stands for our
proposed multiplication algorithm based on JDS storage and row multiplication.
GPU-CSR and GPU-JDS stand for basic CSR and JDS implementations on
GPU, respectively. CPU-OSKI stands for our CPU implementation using OSKI.

During MxV, for each nonzero, one multiplication and one addition opera-
tion is executed. Therefore, we calculate flops by dividing two times number of
nonzeros by execution time. CPU, CSR-based GPU, JDS-based GPU and our
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algorithm respectively achieve 0.68, 1.32, 2.38 and 6.09 Gflops, on average for
matrices in the dataset.

Variation of the performance of our algorithm and JDS-based implementation
on test matrices is greater than other implementations. Utilization of GPU re-
sources is lower for smaller matrices, hence the algorithm is slower. This is more
obvious for JDS-based implementation. Matrix structure greatly affects our al-
gorithm’s performance. For sparser matrices such as G3 circuit and thermal2
(4.8 and 7 nonzeros per row, respectively), and denser matrices such as exdata 1
and nd24k (378.2 and 398.8 nonzeros per row, respectively), algorithm is slower
than the average. The algorithm is also slower for matrices whose nonzeros are
distributed over the whole matrix, such as F1. This is due to the large num-
ber of cache misses on the input vector of multiplication. On the other hand,
algorithm is faster for matrices whose consecutive rows (columns) share many
columns (rows). For instance, s3dkq4m2, whose nonzeros are ordered around the
diagonal, is one of the fastest in our dataset.

Note that the main reason behind the outstanding performance of our algo-
rithm is memory coalescing. In our experiments, we found out that CSR imple-
mentation on GPU performs slightly better than our algorithm, if we do not pad
0s to jagged diagonals hence coalesced memory reads do not occur.

Effective memory bandwidth of the proposed MxV algorithm is 36.3 GB/s for
matrices in the dataset, on average. The GPU used in experiments has maximum
memory bandwidth of 64 GB/s, that is, bandwidth utilization of our algorithm
is 57%.

4.2 CG Performance

In this section, we evaluate the performance of single and multiple GPU CG
algorithms and CG on the CPU. Performance of inner CG solver iterations of the
mixed precision algorithm is given in flops. We do not make convergence analysis
of the mixed precision algorithm, since exclusive analysis is already done in [6]
and the algorithm is shown to be faster than double precision CG on conventional
CPUs while not sacrificing accuracy of the solution. Also, we do not observe any
increase in number of iterations for GPU-enhanced algorithms to achieve same
accuracy with CPU implementation of both inner and outer solver. Since double
precision operations occupy only a small portion of the overall execution time,
the performance of the mixed precision algorithm increases speeding up the
single precision inner solver. We implement double precision outer iterations on
the CPU.

Performance of the inner CG solver on different platforms is given in Fig. 5.
The chart on the left depicts CG performance in Gflops and the chart on the right
depicts the speedups of the multi-GPU algorithm over single GPU algorithm.
For smaller matrices in the dataset, communication cost between CPU and GPU
dominates the overall execution time of multi-GPU algorithm, hence employing
more GPUs do not increase performance of the solver. For this reason, in the
figure, we omit results for matrices that have less than 5 million nonzeros. CG
performance is 5.01, 8.62 and 13.85 Gflops with single GPU, 2 GPUs and 4
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Fig. 5. CG (inner solver) performance. Left: comparison of single and multi-GPU al-
gorithms with CPU implementation Right: Multi-GPU speedups over single GPU .

GPUs, respectively, on average. This means that 2 GPUs speeds up single GPU
algorithm by 1.73 and 4 GPUs by 2.83.

It is interesting to observe the big variation on the speedups. We observe only
slight speedups for some matrices, while for two matrices we observe superlinear
speedups. The most important factor affecting the performance of the multi-
GPU algorithm is number of communicating input vector entries between the
CPU and GPUs. Some of the other factors affecting the performance are the
balance of vector sizes between processors and the cache affect.

For the densest matrix in the dataset, nd24k, we observe superlinear speedups,
while for the sparsest matrix, G3 circuit, speedup is only 2 for 4 GPUs. The
imbalance of vector sizes of nd24k on 4 GPUs is 24%. During 4-GPU CG com-
putation, while communicating input vector entries for MxV, maximum sending
GPU sends 86 KB to the CPU and maximum receiving GPU receives 166 KB
from the CPU. Since MxV dominates the total CG time, imbalance of vector
sizes become negligible. On the other hand, for the sparsest matrix G3 circuit
imbalance of vector sizes is 6%, maximum sending GPU sends 730 KB and max-
imum receiving GPU receives 732 KB, for 4 GPUs. Here, GPU communication
dramatically affects the performance, since computation count per communicat-
ing data is very low. For crankseg 2, where speedup is below 2 for this matrix
on 4 GPUs, the imbalance of vector sizes is 35%, maximum sending GPU sends
86 KB and maximum receiving GPU receives 207 KB receives almost all vec-
tor entries that it does not compute. The density and number of nonzeros of
this matrix is about half of nd24k. Still, we cannot explain the performance
difference between these two matrices by just the communication and vector
imbalance. The speed down of the other crankseg matrix implies that matrix
structure also affects the performance difference among matrices. We found out
that the variation of number of jagged diagonals across matrices assigned to dif-
ferent GPUs is incomparably high for crankseg matrices, where for nd24k, there
is almost no variation. Sparsity patterns of distributed matrices across GPUs
are too different for crankseg matrices, so that even we assume no communi-
cation, ideal speedup is impossible due to the difference in cache utilization of
parallel GPUs. For these types of matrices, a clever row distribution algorithm
emerges.
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5 Conclusion and Future Work

In this work, we have demonstrated efficient utilization of GPUs for solution
of general sparse symmetric linear systems with double precision solution ac-
curacy. We have implemented a mixed precision CG solver on multiple GPUs
and evaluated its performance on a wide range of matrices. The performance of
the proposed algorithm reveals that stream processing on modern GPUs can be
useful for increasing memory bandwidth utilization for sparse linear solvers. The
proposed MxV algorithm, which is the most time-consuming operation of the CG
solver, utilizes constant and texture caches, as well as coalesced memory reads
from the device memory. As a result, we achieve the fastest MxV implementation
for unstructured sparse matrices on the GPU, to the best of our knowledge.

Number of cache misses on input vector considerably affects the run time of
MxV. It is very difficult to find algorithms to increase the cache utilization for
input vector. There are some works dedicated to decrease the number of cache
misses for CSR multiplication, which is an NP-complete problem [15,16]. We
plan to study on better cache utilization for the input vector of the proposed
MxV algorithm in future.

Our multi-GPU algorithm achieves 13.85 Gflops for CG on 4 GPUs, on av-
erage. Communication between GPUs and the CPU significantly degrades the
performance of the multi-GPU algorithm. Performance of the multi-GPU algo-
rithm can be further increased by direct GPU to GPU communication. We await
CUDA support for direct inter-GPU communication instead of communication
through the CPU.

In the future, we plan to study on scalable implementation of the parallel
algorithm to run on a GPU cluster. Although we demonstrate results only for
the CG solver in this work, proposed techniques can also be applicable for other
symmetric or asymmetric iterative solvers.
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Abstract. We present several algorithms that solve the single-source shortest-
path problem using CUDA. We have run them on a database, composed of 
hundreds of large graphs represented by adjacency lists and adjacency matrices, 
achieving high speedups regarding a CPU implementation based on Fibonacci 
heaps. Concerning correctness, we outline why our solutions work, and show 
that a previous approach [10] is incorrect. 

Keywords: Shortest path algorithms, GPU, CUDA. 

1   Introduction 

Computing shortest paths in a graph is one of the most fundamental problems in 
computer science and network optimization. In particular, the Single-Source Shortest-
Paths (in the sequel, SSSP) problem, which computes the weight of the shortest path 
from a specific vertex (source) to all other vertices, in a weighted directed graph, is a 
heavily studied problem in graph theory. 

Probably, the most well-known algorithm solving this problem for the case of 
graphs with nonnegative edges was given by Dijkstra in 1959 [1], and nearly all the 
subsequent proposals are based on it. In spite of its early formulation, this classic 
solution is still presented in almost every textbook on algorithms [2]. After the 
simplest Dijkstra´s implementation, which uses arrays to represent min-priority 
queues and runs in  time, where  is the number of vertices, many authors have 
designed different data structures to implement these queues and achieve better and 
better asymptotic running times. In particular, Fibonacci heaps [3] can be used to get log ), where  is the number of edges. 

As [4] points out, Dijkstra’s algorithm is inherently sequential since its efficiency 
depends on a fixed ordering of the vertices. The Bellman-Ford algorithm allows all 
vertices to be considered in parallel but at the cost of being not efficient. Different 
formulations of parallel algorithms for the SSSP problem are reviewed in detail in [5]. 
In particular, a specific proposal for incorporating parallelism into Dijkstra’s 
algorithm has been the introduction of parallel priority queues [6]. However, the 
literature contains few experimental studies on parallel algorithms of the nonnegative 
SSSP problem. Some of the more recent works study the use of supercomputers for 
solving large graphs. [7] reports performance results on the multithread parallel 
computer Cray MTA-2, using the Δ-stepping parallel algorithm of [5]. [7] exhibits 
remarkable parallel speedup when compared to competitive sequential algorithms, for 
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low-diameter sparse graphs of 100 million vertices and 1 billion edges. On the other 
hand, [8] contains an experimental evaluation of [6] on the APEmille supercomputer, 
but restricted to graphs with no more than thousands of vertices.  

However, some modern applications, such as data mining, network organization, etc. 
require large graphs with millions of vertices, and some of the previous algorithms 
become impractical, when we do not have a very expensive hardware at our disposal. 
Fortunately, Graphics Processing Units (GPUs) supply a high parallel computation power 
at a low price. Moreover, they have become very popular since the languages involved in 
their programming have evolved from graphics APIs to general purpose languages. One of 
the best examples is the CUDA API [9] of NVIDIA. As a consequence of this evolution, 
the so called General Purpose Computing on GPU (GPGPU) [11] has consolidated as a 
very active research area, where many problems that are not directly related to computer 
graphics are solved using GPUs. The aim of all these GPU-based implementations is to 
achieve better running times than their CPU-based counterparts. 

With this new technology available, the natural challenge is: “how can GPUs be 
used to solve the SSSP problem?”. Unfortunately programming with CUDA must be 
carefully taken, basically because CUDA programming model is very restricted 
concerning synchronization, and the unique proposal we are aware of ([10]) is not 
correct. Apart from giving a counterexample, in this paper we present different 
correct solutions, based on Dijkstra´s algorithm, that are experimentally compared 
using a database of hundreds of randomly generated large graphs. 

2   Dijkstra´s Algorithm Overview 

Dijkstra´s algorithm solves the SSSP problem for directed graphs ,  in which 
every edge ,  has a positive weight , 0. Let  and  be the number 
or vertices and edges respectively. We assume that vertices are numbered from  to 1, and that 0 is the source vertex. The algorithm splits the set of vertices in two 
parts: the set  of resolved vertices ( -vertices) and the set  of unresolved vertices ( -
vertices), and it keeps a shortest-path estimate  for each vertex , which actually 
coincides with the shortest path weight for -vertices. For -vertices,  holds the 
weight of the shortest special path (SSP) to  w.r.t. , that is, the shortest path among 
the paths to  that exclusively traverses -vertices before reaching .  

The algorithm implements a loop. Each iteration is composed of three steps: (1) the 
estimates for -vertices are relaxed using the last vertex added to , which we will 
call the frontier vertex, (2) the minimum estimate for -vertices is computed, and (3) 
a -vertex with the minimum estimate is promoted to , and becomes the new 
frontier. Figure 1 presents a typical Dijkstra’s algorithm implementation that includes 
the variable f to hold the current frontier vertex. Regardless of the graph 
representation we chose, it runs in . 

The soundness of the algorithm is based on two fundamental properties that can be 
proved. First, anytime a new frontier arises in the third step, its estimate actually 
coincides to the weight of its shortest path, thus it can be safely promoted to . 
Second, in order to relax the estimates of a -vertex  using the current frontier vertex  , the SSP to  w.r.t.  cannot traverse more -vertices after visiting , hence we 
only consider the previous estimate and ,  when updating . 
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void DDijkstra (c) {  

forall vertex i { c[i]=INFINITY; u[i]=true;} 

  c[0]=0; u[0]=false;  

  f=0; mssp=0; 

  while (mssp!=INFINITY) { 

    forall unresolved vertex j { 

         c[j]= min(c[j], c[f]+w[f,j]);} 

    mssp= INFINITY; 

forall unresolved vertex j  

        if(c[j]<mssp){ mssp=c[j]; f=j;} 

    u[f]=false;     

  }//while  

}  

Fig. 1. Dijkstra’s algorithm implementation 

3   Parallelizing Dijkstra’s Algorithm 

Dijkstra´s algorithm handles a unique frontier vertex even when the estimates of 
several -vertices coincide with the minimum computed in the second step. In these 
cases, the algorithm simply chooses one of them to compose the new frontier. In 
consequence, it requires a different iteration to promote each of them to . 
Fortunately, this set of -vertices, which we will call , can be processed at once 
because the previous two properties remain:  

1. Their estimates actually coincide with the weight of their shortest paths. 
2. In order to relax the estimate of a remaining -vertex , the SSP to  w.r.t.  

cannot traverse more -vertices after visiting one -vertex, hence only the 
previous estimate and min ,  must be considered when updating 

. In particular, note that only one -vertex can belong to the SSP to  w.r.t. . 

 

Fig. 2. Dijkstra’s algorithm adapted to compound frontiers 

 
Therefore the notion of compound frontier can be used to design the Dijkstra’s 
algorithm Adapted to Compound Frontiers (DA2CF) presented in Fig. 2. Although 
the algorithm is composed of the same three basic operations, their implementations 
must suitably handle compound frontiers: 

void DDA2CF(c) { 

  initialize(c, f, u); 

  mssp = 0; 

  while (mssp != INFINITY) { 

    relax(c, f, u); 

    mssp = minimum(c, u); 

    update(c, f, u, mssp); 

  }//while 

}

void iinitialize(c, f, u) { 

  forall vertex i { 

    c[i] = INFINITY;  

    f[i] = false; 

    u[i] = true; 

  }//for 

  c[0] = 0;  

  f[0] = true;  u[0] = false; 

}
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1. relax(c, f, u) must relax the shortest path estimate for every -vertex using -
vertices. Hence it must compute , ,  for every pair of 
vertices  and . 

2. minimum(c, u) must find the minimum estimate of the -vertices, called mssp.  
3. update(c, f, u, mssp) must update the set of -vertices by removing those vertices 

whose estimate is equal to mssp, which will compose the new set of -vertices. 

There are many ways to implement these operations. Although sequential solutions 
could be easily written by means of the obvious single loop (two nested loops for the 
relax procedure), the operations can be performed in parallel, by launching a thread 
for each iteration of the loop (the main loop for relax). 

Figure 3 shows two versions of the relax procedure. On the left, relax_F processes 
-vertices: “for each -vertex we visit all of its successors, relaxing  for those 

vertices that are still unresolved”. Observe that the sentence c[j]=min(c[j], 

c[i]+ ω(i,j)) could produce concurrency inconsistencies if two -vertices i and i’ 
accessed the same -vertex j and the worst value c[i]+ ω(i,j) were finally left. In 
order to prevent such inconsistencies, we use the atomic instruction atomicMin(x,y) 
that allows only one thread to store the minimum of x and y in the variable x. 

CUDA devices of compute capability 1.0 do not support atomic functions, thus we 
propose another approach that does not use them. Figure 3 on the right presents the 
relax_U procedure which focuses on -vertices instead of -vertices: “for each -
vertex, we visit all of its predecessors, relaxing its -value when a -vertex is found”. 
Notice that this approach requires predecessors instead of successors. 

A parallel version of the minimum function is a more difficult task, because of its 
sequential nature. Fortunately, different reduction procedures have been already 
adapted to the stream model [12, 13, 14]. In this paper we have adapted the reduce3 
method included in the CUDA SDK 1.1 [15] to obtain the minimum1 procedure of Fig. 
4 on the right. 

Finally, we parallelize the update procedure as Fig. 4 on the left shows. In the 
sequel, DA2CF_F and DA2CF_U will denote the algorithms that use relax_F and 
relax_U, respectively. 

 

Regarding asymptotic complexity, let us compare the Dijkstra´s algorithm of Fig. 
1, that runs in , to the sequential versions of the DA2CF algorithm that result  
 

void rrelax_F(c, f, u) { 

  forall i iin parallel do { 

    if (f[i]) { 

      forall j successor of i do { 

        if (u[j])  

         atomicMin(c[j],c[i]+w[i,j]); 

      }//for 

    }//if 

  }//for 

}

void rrelax_U(c, f, u) { 

  forall i iin parallel do { 

    if (u[i]) { 

        if (f[j])  

         c[i]= min(c[i],c[j]+w[j,i]); 

      }//for 

    }//if 

  }//for 

}

      forall j predecessor of i do { 

 

Fig. 3. Processing frontier (left) or unresolved (right) vertices within the relax operation 
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when the “in parallel” qualifier is erased. Firstly, notice that the number of iterations 
required for the main DA2CF-loop depends more heavily on the given graph; since 
the size of the arising compound frontiers influences its termination. Hence, we 
analyze its worst case. We focus on adjacency lists since they fit better to large graphs 
and they provide the algorithm of Fig. 1 with smaller running times. The worst case 
corresponds to a complete graph requiring  iterations (the frontier size is always 1), 
DA2CF_F also takes a time in , but with a greater constant due to the 
management of the f array. However, DA2CF_U takes a time in , since the 
edges arriving at an unresolved vertex are repeatedly processed while it remains 
unresolved. In order to evaluate the general case, we experimentally run CUDA 
implementations on randomly generated graphs. 

4   CUDA Implementations 

The adjacency list representation of a graph is made up of three arrays:  for vertices, 
 for edges and  for weights. Array  is used to access the adjacency list of each 

vertex. Specifically, the adjacency list of the vertex  appears in  and  from index 
 to index 1 1 (Fig. 5 on the left). In order to deal with the last vertex in 

the same way, an extra component is added at the end of  such that . In 
consequence, array  is of size 1 and both  and  are of size . 

There are two possible interpretations for the data occurring in . Vertices belonging to 
the adjacency list of vertex  can be understood as successors or predecessors. Formally, in 
the predecessor interpretation, there is an edge to  from each adjacent vertex, whereas in 
the successor interpretation the edge goes from  to each adjacent vertex. Graphs must be 
represented in the proper interpretation before execution, since the relax procedure 
requires either successors (relax_F) or predecessors (relax_U), but not both. 

 

 

 

 

void update(c, f, u, mssp) { 

  forall i in parallel do { 

    f[i] = false; 

    if (c[i] == mssp) { 

      u[i] = false; 

      f[i] = true; 

    }//if 

  }//for 

} 

 

void minimum1(u, c, minimums) { 

  forall i in parallel do { 

    thid = threadIdx.x; 

    i = blockIdx.x*(2*blockDim.x)+threadIdx.x; 

    j = i + blockDim.x; 

    data1 = u[i] ? c[i] : INFINITY; 

    data2 = u[j] ? c[j] : INFINITY; 

    sdata[thid] = min(data1, data2); 

    __syncthreads(); 

    for (s = blockDim.x/2; s>0; s>>=1) { 

      if (thid<s) { 

        sdata[thid]=min(sdata[thid],sdata[thid+s]); 

      }// if 

      __syncthreads(); 

    }// for 

    if (thid==0) minimums[blockIdx.x]= sdata[0]; 

  }// forall 

} 

Fig. 4. Updating the frontier (left), and computing the minimum sssp with CUDA (right) 
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4.1   Implementations 

We have sequential C implementations corresponding to the sequential versions of 
DA2CF_F and DA2CF_U, that we respectively call FCPU and UCPU. Before presenting 
the pure CUDA implementations, we have tried some hybrid systems running on 
both, CPU and GPU. Since the minimum function is inherently sequential, we have 
restricted this function to run on CPU. Moreover, in order to fit the requirements of 
any CUDA device, we have focused on the relax_U procedure. Hence, we have 
designed three hybrid implementations based on the DA2CF_U algorithm: UH1, UH2 
and UH3 which respectively run the update procedure, the relax_U procedure, and both 
update and relax_U on the GPU. 

In order to run the complete algorithm on GPU, we must run additional passes of 
the minimum function, since the minimum1 kernel of Fig. 4 only reduces each block to a 
single value. Thus, we have implemented another kernel, called minimum2, to execute a 
second pass on GPU. The obtained values are finally minimized on CPU in a 
sequential manner, because the number of these values is too small. Hence, we have 
two fully GPU-implemented solutions based on the DA2CF_U algorithm, UGPU and 
UGPU+2min that apply one and two minimization passes, respectively. Based on the 
DA2CF_F algorithm, we also have two fully-GPU solutions, but this time they have 
been designed to analyze the cost due to simultaneous accesses to the c array. Thus, 
apart from the FGPU solution, we have another one, called FGPU_no_Atomic, that does not 
use the atomic function atomicMin but a non-atomic function min. We introduce the 
latter solution only for measuring purposes, since it is not correct in a parallel 
environment. Anyway, both solutions apply a single minimum pass. 

4.2   Exploiting CUDA Resources 

It is possible to accelerate the UGPU solution by using some CUDA features. 
Concretely, in this subsection we exploit texture cache and shared memory to improve 
the implementation of the relax_U kernel. Let us call the corresponding solution 
UGPU_PLUS. 

In order to retrieve the boundaries of the adjacency list, the i–th thread must access 
 and 1 , whereas the 1 –th thread must access 1  and 2 . 

Thus, the value 1  is shared by the two threads, and can be brought only once if 
shared memory is used. Then, each thread  reads  from global memory, writes it 
to shared memory, and after that, it reads 1  from shared memory directly. A 
special case is the last thread of a block, since it will bring both  and 1 . 

Notice that two threads can access the array f for the same vertex j. To accelerate 
the corresponding readings, the array can be accessed through a texture, taking 
advantage of the texture cache. Thus, it is possible for threads of the same block to 
read f[j] from the cache and not from global memory. 

4.3   A Bugged Implementation 

Let us explain the problem we have found in the solution presented in [10]. The 
authors propose an implementation of Dijkstra´s algorithm which relaxes using the 
frontier, in a similar way to our relax_F procedure. However, instead of the atomic  
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Fig. 5. Left: The adjacency list representation. Right: Counterexample to [10]. 

function atomicMin, they use the following code to relax a vertex j which is successor 
of a frontier vertex i: 

if (uc[j] > c[i]+w[i,j])  uc[j] = c[i]+w[i,j]; 

where the array uc, called the updating cost array, holds a copy of the array c before 
relaxing. Indeed, as the authors explain, the new cost is not reflected in c, but is 
updated in uc, in order to avoid read-after-write inconsistencies. Later, they dump uc 
onto c in the update kernel. 

Unfortunately, this technique is not enough to avoid write-after-write 
inconsistencies. Concretely, if two frontier vertices i and i’, whose related threads 
are simultaneously running, satisfy uc[j]>c[i]+w[i,j] and uc[j]>c[i’]+w[i’,j] at the 
same time for the same -vertex j, then both threads will make the above if-condition 
true. Thus, there will be no control on the final value assigned to uc[j]. Since 
debugging concurrent programs is highly difficult, we have defined the graph of Fig. 
5 on the right in order to increase the number of these critical situations. 

We have run their implementation on a GeForce 8800 GTS, similar to the GeForce 
8800 GTX used in [10], with =1024 and 32 threads per block. Furthermore, we have also 
tested the undirected version of the graph, since the authors do not specify the kind of 
graph they manage. In any case, observe that vertices ranging from 1 to 2 will 
compose the frontier after the first iteration. Actually, 1, for 12, and 1 1 INFINITY, after the first iteration. Hence, every vertex  1 2 , tries to relax 1  to a different value during the second iteration. 
In consequence 1  ends with a value that randomly changes from execution to 
execution, instead of computing the right solution 1 2. 

Since threads of different blocks cannot be synchronized in CUDA, solving this 
bug requires the use of atomic functions in the relax_F implementation. Unfortunately 
such functions are only available from compute capability 1.1, so solving this bug for 
the cards GeForce 8800 GTS and GTX demands a deeper modification of the 
algorithm. This is actually the aim of our relax_U kernel. 

5   Adjacency Matrices 

In the case of adjacency lists, it is difficult to conceive a method to allow threads to 
collaborate when reading from global memory. On the opposite, when adjacency 
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matrices are used, threads must visit every element of each column or row, and so, 
threads can cooperate to bring elements of arrays f, c or u to shared memory. 

As we did for the adjacency list representation, we can consider two kind of 
implementations: one that looks for predecessors (UCPU and UGPU), and another one 
that looks for successors (FCPU and FGPU). In UGPU, each thread t must look for its 
predecessors by visiting the –th column. In order to make threads collaborate, the 
exploration is divided in chunks of  elements, where  is the number of threads in a 
block. The arrays f and c are also divided in chunks of  elements. Before visiting 
the chunk of the column, each thread brings a component of the chunk of f and c into 
shared memory. That way, the information of the arrays f and c is already available 
when each predecessor within the chunk is processed. Once a chunk is dispatched, the 
next one is processed identically. 

On the other hand, FGPU processes frontier vertices, so each thread explores a row. 
Threads can also collaborate similarly, but this time they bring elements of u. 

6   Results and Discussion 

We have tested all the implementations using an Intel CORE 2 QUAD Q6600 2.40 
GHz 2GB DDR memory, and a NVIDIA GEFORCE GTX 280, which has 30 
multiprocessors and 1 GB of GDDR3 memory, using 256 threads per block. The 
database is composed of randomly generated graphs with a number of vertices that 
ranges from 1 to 11 M for adjacency lists, and from 1 to 15 K for adjacency matrices. 
The database includes 25 graphs for each of these sizes. The degree of each graph is 
fixed, so every vertex has the same number of adjacent vertices. The chosen degree is 
7 for adjacency lists, while /5 for matrices. Concerning lists, graphs have been 
generated using the predecessor interpretation, so we have also turned each graph into 
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Fig. 6. Results for adjacency lists. Units: seconds for the y-axis and 220 vertices for the x-axis. 



912 P.J. Martín, R. Torres, and A. Gavilanes 

0

100

200

300

400

500

600

700

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

U-CPU

F-CPU

U-GPU

F-GPU

F-GPU-noAt

FH

 

Fig. 7. Results for adjacency matrices. Units: ms. for the y-axis and 210 vertices for the x-axis. 
 

its successor interpretation. Notice that the degree of the graph can not to be kept after 
this operation. Edge weights are integers that randomly range from 1 to 10. 

Figures 6 and 7 show the results we have obtained comparing the average times for 
each solution to a CPU-solution, called FH, implemented using Fibonacci Heaps and 
based on the SPLIB library [16]. Most of our solutions, including some CPU ones, 
run faster on these graphs since the arising frontiers are large. Thus, our solutions 
only require a few iterations to solve the problem. Concretely, around 45 are enough 
to solve the largest graphs represented with adjacency lists. 

Let us analyze the results for the adjacency list representation presented in Fig. 6. 
The figure shows that fully CUDA-implemented solutions (UGPU, UGPU+2min and FGPU) 
are more efficient than partially CUDA-implemented ones (UH1, UH2 and UH3), which 
is due to the overhead connected to the data movement between CPU and GPU. The 
figure also shows that a two-pass minimization behaves as a single one, since UGPU 
and UGPU+2min overlap. This can be explained comparing the number of values 
provided by minimum1 to those provided by minimum2. Notice that these numbers are / 2  and / 2 , respectively, where  is the number of threads per block. Since 

 ranges from 1 2  to 11 2  and we have chosen 256 2 , these numbers 
finally range from 2  to 11 2  for minimum1 and from 2  to 11 2  for minimum2. 
Therefore, the number of values that must be copied from GPU to CPU, in order to be 
minimized on CPU, is similar for UGPU and UGPU+2min; so there is no difference in time 
consumption. The figure also shows that exploiting CUDA resources leads to better 
results, since UGPU_PLUS is slightly faster, obtaining a factor near 10X w.r.t. FH. 

Concerning solutions based on the relax_F procedure, Fig. 6 shows that processing 
unresolved vertices is slower than processing the frontier, even for parallel 
implementations, since FGPU is quite faster than UGPU. Also notice that FGPU_no_Atomic 
behaves as FGPU

 because the simultaneous accesses to the same c-component are rare 
when the degree is small. These solutions reach a factor around 60X w.r.t. FH. 

Regarding adjacency matrices (Fig. 7), the more vertices the graph has, the higher 
is the degree. Thus, the frontier sets are huge, and relax_F based solutions are slower 
than relax_U based ones. To summarize, UGPU is the fastest, achieving a factor of 32X 
w.r.t. FH. Finally, the figure gives more insight about how atomic operations affect 
the overall performance, since FGPU_no_Atomic is usually faster than FGPU. 
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7   Conclusions 

GPUs can be used to speed up solutions to many problems, including classic problems. 
Nevertheless, the CUDA programming model is very restricted concerning 
synchronization, so implementations must be carefully designed, and intuitions about 
their correctness should be given at least. 

In the paper we have shown different CUDA solutions for the SSSP problem, 
considering adjacency lists and matrices. We have also explained the bug we found in 
[10], which is basically due to write-after-write inconsistencies. In order to solve this bug, 
two approaches have been shown. On the one hand, atomic functions can be used for 
devices of compute capability 1.1 and higher. On the other one, the usual relax procedure 
can be reversed in order to process unresolved vertices instead of frontier vertices. 
Although processing unresolved vertices is theoretically less efficient, the latter approach 
is the only applicable solution to any CUDA device.  
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Abstract. GPUs are now considered as serious challengers for high-
performance computing solutions. They have power consumptions up to
300W. This may lead to power supply and thermal dissipation problems
in computing centers. In this article we investigate, using measurements,
how and where modern GPUs are using energy during various computa-
tions in a CUDA environment.

1 Introduction

As GPUs gained in flexibility through high-level languages such as CUDA, GPUs
gained interest for the acceleration of tasks usually performed by a CPU thanks
to the high computational power of GPUs. Therefore we are witnessing a tremen-
dous growth in the usage of GPUs for high-performance solutions in computing
centers. However, as long as the main goal of GPU was to serve in desktops,
their power consumption was secondary. Even though that the ratio of Single
Precision GFLOP per W is always in favor of GPUs compared to traditional
CPUs (4 SP GFLOP/W for a GTX280 and 0.8 SP GFLOP/W for a core i7
960), these processors are known to have high power consumption. Therefore
new challenges need to be solved in order to spread their usage in computing
centers where 1 dollar spent in power supply corresponds to 1 dollar spent in
cooling system.
This work investigates how and where the power consumption is located

within a GPU board by analyzing the relations between the measured power
consumption, the required time and the type of units that are stressed to per-
form a defined operation. There are several solutions to measure or estimate the
power consumption of a processor. There exist power estimations based on cycle-
level simulation like in Wattch [1] or SimplePower [6] that rely on a low-level
description of the architecture which is unavailable for current GPUs. Functional
approaches and tools such as SoftExplorer [4] to estimate power consumption
at assembly or C levels were proposed for VLIW processors or DSPs. Another
� This work is sponsored by the French ANR (BioWic project) as well as generous
hardware donations from nVidia corporation.
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solution is to physically measure the power consumption. The measurements can
also be used to calibrate some models used for power estimation. Previous work
have shown that in the context of multimedia applications for modern out of
order processors, CMP is more energy efficient than SMT [3]. [5] and [2] provide
good references for power consumption and reduction aspects.

In this paper we consider Nvidia GPUs used for GPGPU (General Purpose
computing using GPU) in a CUDA environment. During the analysis, functional
blocks are identified, and their consumption is characterized using physical mea-
surements. The considered blocks correspond to units that are usually stressed
while executing common kernels on the GPU: register file, memory hierarchy
and functional units. In addition to the power estimation, our analysis gives us
some information on the organization of the memory hierarchy, the behavior of
functional units and some undocumented features.

A modern GPU board is described in Section 2. The measurement process
and the parameters extraction method from CUDA are described in Section 3.
Results and their analysis for several GPUs are presented in Section 4.

2 Description of a GPU Card

High-end GPUs considered in this work are sold with other component on a
dedicated graphics card. These components consist in the GPU, the graphics
BIOS, graphics memory, digital to analog converters, dedicated accelerators, an
interface with the motherboard, a cooling device and power adapters.

While CPU manufacturers have moved toward higher power efficiency, the
power required by GPUs has continued to rise. Although the power provided
by power supplies have followed the necessary trend, a PCI-e add-in card can
draw a maximum of 75W through the standard connector, as specified in PCI
Express CEM 1.1. GPU manufacturers provide extra power to the GPU by now
using 8-pin (6-pin) wire-to-board connector that provide up to 150W (75W)
additional power. This leads up to 300W for one GPU card.

2.1 Description of Nvidia GPUs

In this paper we consider GPUs that are compatible with the DirectX 10 stan-
dard which provides a unified architecture where vertex and pixel shaders share
the same instruction set and processing units. In order to efficiently exploit data
parallelism, GPUs include a large number of replicated copies of these units
operating in a single-instruction multiple-data (SIMD) fashion. GPUs handle
high-latency instructions such as memory accesses by overlapping them using
thousands of threads.

The unified architecture proposed by the DirectX 10 standard has been im-
plemented in hardware since the release of the NVIDIA GeForce 8. An example
of this architecture is depicted in Figure 1. The GPU has its own memory which
bandwidth is usually an order of magnitude higher than system memory band-
width. The graphics processor is seen as a set of multiprocessors. Each multipro-
cessor consists in numerous processing elements (PEs) operating in SIMD. At each
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(a) Memory diagram. (b) Memory hierarchy.

Fig. 1. Diagram of G92 architecture

clock cycle, all the PEs in a multiprocessor execute the same instruction sequence,
but operate on different data. These multiprocessors incorporate various types of
memory such as a register file, a scratchpad memory shared by all the PEs in a
SIMD block, and read-only constant cache and texture cache. In addition, PEs
can also read or write global memory available on the graphic card.

The GeForce 8 has a shared cached constant memory accessible in broadcast
mode only, a global memory accessible with coalescing (with additional align-
ment constraints), and a shared memory that allows coalesced, broadcast, and
other patterns. Memory accesses that do not match these patterns are replaced
by as many serial accesses as necessary, resulting in decreased performance. For
example, the Tesla C870 embeds 1.5 GB of global memory with a peak band-
width of 77 GB/s, which is more than 10 times the bandwidth available between
a CPU and system memory. Multiprocessors integrate various computational
units in order to implement the functionalities offered by the shaders: general
computational units with embedded multiply-accumulators, texturing and filter-
ing units, a dedicated unit to evaluate mathematical functions (e.g., sine, cosine,
reciprocal, and reciprocal square root), and attribute interpolation units. Com-
putational units can handle integer and floating-point arithmetic and there is
no overhead associated with mixing both operations. Each multiprocessor of the
GeForce 8 is able to execute a warp of 32 floating-point additions, multiplica-
tions, multiply-and-adds or integer additions, bitwise operations, comparisons,
minimum or maximum of 2 numbers in 4 clock cycles. As there is no 32-bit in-
teger multiplication in hardware, evaluating such an operation requires 16 clock
cycles for a warp. For instance, one GPU of the GeForce 9800GX2, depicted in
Figure 1, has 16 multiprocessors and each SIMD block is composed of 8 PEs and
2 functional evaluation units.

3 Measurement and Tests Description

We measure the power consumption of several Nvidia graphics card supporting
the CUDA API described in Table 1. This includes a Tesla C870 card used for
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Table 1. Main characteristics of the tested graphic cards. Frequencies of the GPU,
computational units and memory are given, as well as the manufacturing process, the
number of transistor and the temperature provided by the integrated sensor.

GPU Commercial name Core Computing Memory Fab. # of Temp.
freq. freq. freq. Process trans.

(MHz) (MHz) (MHz) (nm) ×109 (◦C)
G80 Tesla C870 575 1350 800 90 0.681 58
G92 GeForce 9800 GX2 600 1512 1000 65 2×0.754 61
GT200 T10P Prototype 900 1080 900 65 1.4 39

scientific computing, a dual GPU high-end graphics card 9800 GX2 and a T10P
compute processor engineering sample.

The considered GPUs are tested in a desktop environment with a MSI X48
Platinum motherboard, an Intel Core 2 Duo E8400 processor with 6 MB L2
cache running at 3 GHz, four 1GB Corsair TWIN3X2048-1333C9DHX DDR3-
1333 9-9-9-24 memory modules, and a 750 W Corsair HX750W power supply.
This configuration is described in Figure 2. Our motherboard based on an X48
Intel chipset offers two PCI-e x16 2.0 and two PCI-e x4 1.0 slots through a bridge.
The tested GPUs are included in a separated Tesla D870 box connected to the
system through a dedicated bridge (NForce 100). Our software configuration
uses Linux Ubuntu 8.04, with CUDA 2.0 and proprietary graphic drivers Nvidia
177.13.

Fig. 2. Overview of our test configuration
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To measure the power consumption we use a Tektronix TDS 3032 oscilloscope
with the built-in analogue 20 MHz low-pass filter. The first input measures the
current with a clamp sensor CA60, while the second measures voltage. The
product of both measurements gives us the power consumption of the GPU
through the external power. We took into consideration the power provided to
the PCIe bus as well as the external power of the GPU. We noticed during our
tests that the main source of power is provided by the external link, as during
computation only 10 to 15 extraW are coming from the PCI bus.

We are aware that the measurements collected using this methodology are
subject to caution. First, we not only measure the power consumption of the
GPU but we also measure the power consumption of the whole board that in-
cludes the GPU, the graphic memory, DC/DC voltage converters, and others
ICs (bridge, video chipset, . . . ) However we assume that we will notice a dif-
ference in the power consumption only if these parts are stressed. Secondly, we
measure the consumption ahead of the board voltage regulators which include
small capacitors (decoupling). This means that the power consumption may be
missestimated. We design short tests such that some variations in ambient tem-
perature or the cooling system will not affect the results. Sampling rate is 50
kHz which allows us to measure the power consumption at task level but not at
instruction level.

4 Results

4.1 Global Power Consumption

We measure the computation time and the average power required by common
GPGPU algorithms (matrix transposition, matrix multiplication and cuBLAS)
on 1024 × 1024 random matrices. The implementations of GPGPU algorithms
used for these tests are the ones included in the Nvidia CUDA SDK 1.2. Results
are reported in Table 2.

We observed during our tests that before the Linux driver was loaded, the
GT200 was using around 20W, which corresponds to the power saving mode, as
officially claimed by Nvidia. Once the driver is loaded, the power consumption of
the GT 200 rises to 51W while idle. Surprisingly, we noticed that even though the

Table 2. Average power consumption PAvg , computation time T and corresponding
energy E measured for the execution of common GPGPU algorithms (Naive and opti-
mized matrix transposition, matrix multiplication, cuBLAS)

GPU Idle Trans. naive Trans. optimized MatMul cuBLAS sgemm
PAvg T E PAvg T E PAvg T E PAvg T E

(W) (W) (ms) (J) (W) (ms) (J) (W) (ms) (J) (W) (ms) (J)
G80 68 103 2.4 0.247 127 0.30 0.038 132 25 3.3 135 11.8 1.59
G92 71 94 3.66 0.344 105 0.45 0.047 117 23.3 2.73 122 11.4 1.39
GT200 51 73 4.11 0.300 83 0.50 0.042 114 13 1.48 113 7.44 0.84
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GT200 includes low-power GDDR3 compared to the Tesla C870 and a smaller
fabrication process, the GT200 requires more energy than the Tesla C870 to
perform a naive or an optimized matrix transposition. As the energy depends
on memory access patterns on data which are located in memory bank modulo
the bus width, the example choosen (matrix of size 1024) is in favor of the C870
with a bus width of 384 bits compared to the 512 bits of the GT200 that raise
bank conflicts when accessing data. Nevertheless, the GT200 requires twice less
energy than the G80 on the matrix multiplication or cuBLAS example. This
suggests that memory access patterns play a major role from performance as
well as power consumption perspectives.

4.2 Multiprocessor

Considered GPUs integrate several multiprocessors with their own front-end:
instruction fetch, decode, issue logic and execution units, etc. We run tests where
the number of active multiprocessors varies from 1 to the maximum (16 for
G80 and G92 and 30 for GT200). Results are reported in Figure 3. We observe
that power consumption rise linearly with the number of multiprocessors up to
respectively the maximum, one half and one third of the available multiprocessor
for the G80, G92, GT200. This implies that the scheduling strategy for blocks to
execute is different between the G80 and the G92 / GT200. We can deduce that
the scheduling strategy for G92 and GT200 for blocks execution is to execute
one block per group of texture processors which includes 2 multiprocessors for
the G92 and 3 multiprocessors for the GT200. This means that the scheduling
strategy of the G92 and GT200 is optimized for bandwidth usage, whereas the
one used in the G80 is optimized for energy saving when the executed kernel is
computationally bounded.
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4.3 Execution Units

We measure the power consumption of various units within the GPU. We com-
pare the power consumption of instructions predicated to true (that are really
executed) and instructions that are predicated to false and we notice a significant
variation. This means that instructions predicated to false are fetched, decoded
but are not executed. This is unlike scalar architectures such as ARM or IA-64
behave, were predication is used to avoid pipeline stalls. On GPUs, predication
is only used for SIMD control flow, while pipeline stalls are avoided using multi-
threading. We measure the power used with various combination of units (MAD
units, MAD and MUL units, MAD and complex function evaluation units and
double-precision unit). Results are reported in Table 4.

4.4 Memory Hierarchy

We measure how the memory hierarchy impacts the power consumption of
GPUs. To measure the consumption, we developed a pointer chasing bench-
mark to access each level of the memory hierarchy. This benchmark includes a
loop that traverses an integer array with various strides. 3 consecutive reads of
one block of 128 bytes that will exploit coalescing are measured. Time is mea-
sured using the internal cycle counter of one multiprocessor. Only one warp on
one multiprocessor is used. The size of the array and the stride vary. In order
to minimize measurement noise, the minimum values among 10 executions are
reported. Results for memory latency are given in figure 4.

The observed latency for each GPU varies between 300 and 800 ns. In Figure
4.a (C870), we observe 3 steps at respectively 345 ns, 372 ns and 530 ns depending
on the locality of the access. G92 behaves the same way with respective latencies
of 325, 350 and 500 ns. We believe that these variations come from TLB hits and
misses. Therefore, these results suggest a size of 4 KB per page with a 32-entry
fully associative TLB. Results suggest that the second TLB level is accessed
in 16 cycles on the G80 and G92 and 18 cycles on the GT200. However, our
tests do not allow us to determine if it consists in an actual TLB or of a page
table entry (PTE) cache. It is possible that it is shared with the second level of
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Table 3. Energy per memory request depending on where data is located. Energy
results (nJ) per memory request of 128 bytes correspond to the measured power con-
sumption divided by the measured bandwidth.

Memory access G80 G92 GT200
Coalesced stream read 124.4 103.4 80.6
L1 texture 60.7 28.3 25.6
L2 texture 62.3 48.0 66.7
Texture miss 102.2 110.6 83.1

constant cache included in each texture processor. This cache may be used for
instructions, constants, and PTEs.

DRAM is divided into pages that need to be precharged before each access
and subsequently unloaded. According to our tests, DRAM page misses do not
impact measured latency and power consumption. This may come from the fact
that the memory controller optimizes page activation and unloading according
to the address and type of memory access waiting in the buffer and that the
access latency is made constant based on the worst case to simplify the design
of the memory controller.

The latencies of texture memories are given in Figure 5. We observe the
same steps as in Figure 4 plus the variation due to the two texture caches.
By comparing the latency of a cache miss in the texture cache with a memory
read in the same conditions, we estimate at 30 to 50 cycles the overhead due to
texture filtering and the extra cache access depending on the GPU generation.
We also measured that the latency to access the L2 cache and to go through the
memory crossbar should be between 35 and 50 cycles.

We measured the energy required for one memory request of 128 bytes exe-
cuted by a warp on the G80, G92 and GT200 architectures. Results are reported
in Table 3. The G80, G92 and GT200 are respectively made of 16, 16 and 30 mul-
tiprocessors. Kernels used for the tests are launched with 512 threads/block with
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Table 4. Number of instructions, measured power P, number of cycles per instruction
and the energy required per warp for ALU operation on G80, G92 and GT200

G80 G92 GT200
Operation # P CPI E P CPI E P CPI E

inst. (W) (nJ/warp) (W) (nJ/warp) (W) (nJ/warp)
MAD 32 107 4.75 8.57 100 4.29 5.06 91 4.3 5.31
Pred 32 90 2.38 2.43 93 2.39 2.14 75 2.36 1.75
MAD+MUL 64 117 3.19 7.24 111 2.83 4.61 102 2.82 4.44
MAD+RCP 40 115 3.96 8.63 110 3.55 5.63 98 3.54 5.14
RCP 8 98 15.89 22.07 96 16 16.28 81 15.99 14.81
MOV 32 118 2.31 5.34 113 2.46 4.21 101 2.46 3.79

as many blocks as multiprocessors. The instruction count reflects the number of
operations that can be executed in a single warp. The measured power corre-
sponds to the average power measured during the whole computation. CPI gives
the number of clock cycles per instruction which corresponds to the number of
clock cycles measured with the internal cycle counter divided by the number of
threads per block. The energy per warp corresponds to extra power required to
perform a specific operation for a warp multiplied by the computational time. We
observe that the L1 texture cache of the G80 requires the same amount of energy
per byte as the L2 texture cache. This is certainly due to the small bandwidth
performance of the L1 texture cache (76 GB/s for L1 and L2 texture cache).
However we cannot explain the small performance of the L2 texture cache of the
GT200. The comparison of Table 3 and 4 leads to the conclusion that executing
MAD is 7 to 15 times more energy efficient than accessing memory on a G80.

5 Conclusion

This article presents some measurements and an analysis on how computations
and memory accesses impact the power consumption of some Nvidia GPUs (G80,
G92, GT200) in the CUDA framework. Memory accesses can significantly de-
grade the performance and power consumption such that the G80 may be a
better alternative than the latest GT200 in some specific cases. Our tests show
how blocks of threads are dispatched among the multiprocessors when the num-
ber of multiprocessors is larger than the number of blocks and how it could
negatively impact the power consumption for computationally bounded kernels.
We also compare the energy required for various operations for a given warp
with the energy required for a memory access and show that computations are
up to 7 to 15 times more power efficient than memory accesses.

Our tests show that environmental conditions such as temperature and mea-
surement equipment can impact the results by 10 to 15%. Therefore we are
currently working on minimizing the impact of the environment by executing
the same tests with others tools in a different environment. We also plan to
measure the clock gating impact and perform comparisons between Nvidia and
ATI GPUs for a given workload.
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Abstract. Modern Graphics Processing Units (GPU) are very power-
ful computational systems on a chip. For this reason there is a growing
interest in using these units as general purpose hardware accelerators
(GPGPU). To facilitate the programming of general purpose applica-
tions, NVIDIA introduced the CUDA programming environment. CUDA
provides a simplified abstraction of the underlying complex GPU archi-
tecture, so as a number of critical optimizations must be applied to the
code in order to get maximum performance. In this paper we discuss our
experience in porting an application kernel to the GPU, and all classes of
design decisions we adopted in order to obtain maximum performance.

1 Introduction

Driven by the huge computing demand of the graphics applications, Graphics
Processing Units (GPU) have become highly parallel, multithreaded and many-
core processors. Modern GPUs deliver a very large amount of raw performance
that have drawn attention to the scientific community, with a growing interest
in using these units to boost the performance of their compute-intensive ap-
plications. That is, to use the GPUs as general-purpose hardware accelerators
(General-Purpose Computation on GPUs, or GPGPU [2]).

Developing GPGPU codes using the conventional graphics programming APIs
is a very hard task and with many limitations. This situation motivated the
development of general parallel programming environments for GPUs [11,12].
NVIDIA CUDA (Compute Unified Device Architecture) [11], one of the most
widespread models, is built around a massively parallel SIMT (Single-Instruction,
Multiple-Thread) execution model, supported by the NVIDIA GPU architec-
ture [7], and provides a shared-memory, multi-threaded architectural model for
general-purpose GPU programming [10].

CUDA provides a convenient and successful model at programming scalable
multi-threaded many-core GPUs, across various problem domains [5]. However,
the simplified abstraction that CUDA model provides does not permit to extract
maximum performance from the underlying GPU physical architecture without
applying a set of optimizations to the parallel code [8,13]. We can distinguish two
classes of optimizations. The first class corresponds to techniques that fall within

G. Allen et al. (Eds.): ICCS 2009, Part I, LNCS 5544, pp. 924–933, 2009.
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the programming model, that is, those that improve the use of the architectural
resources defined at CUDA level. The second class includes those optimizations
that fall outside the programming model. We consider in this class techniques at
a level lower than CUDA, that is, that must be included in the parallel execution
implementation of the programming model.

This paper discusses our experience in porting application kernels to a GPU
accelerator, with the aim of obtaining maximum performance. In order to have
enough room for optimization, we have selected as a working example a kernel
showing non-linear access patterns to memory, the fast Fourier transform (FFT).
We will show that if the optimization efforts are only within the CUDA model,
the obtained performance is much lower than the expected peak one. We have
to resort to additional low-level techniques in order to improve significantly the
resulting performance. An important issue is that these techniques are hard to
apply and very dependent on the kernel computational structure. A final issue
we also analyzed refers to the algorithm chosen to implement the kernel.

Due to its interest, several contributions can be found in the literature fo-
cused on porting FFT algorithms to graphics processing units [1,3,6,9,14]. More
recently works about CUDA implementations report higher performance [4,15].
This is accomplished by a much more efficient use of GPU resources, through
the application of many optimization techniques (CUDA level and low level).
The implementation described in [4] behaves specially well. They use a different
algorithm for FFT, a hierarchical Stockham.

2 CUDA Programming Model

NVIDIA CUDA is both a hardware and software architecture for issuing and
managing computations on the GPU, making it to operate as a truly generic
data-parallel computing device. An extension to the C programming language
is provided in order to develop source codes.

From the hardware viewpoint, the GPU device consists of a set of SIMT mul-
tiprocessors each one containing several processing elements. Different memory
spaces are available. The global device memory is a unique space accessible by
all multiprocessors, acting as the main device memory with a large capacity. Be-
sides, each multiprocessor owns a private on-chip memory, called shared memory
or parallel data cache, of a smaller size and lower access latency than the global
memory. A shared memory can be only accessed by the multiprocessor that owns
it. In addition, there are other addressing spaces for specific purposes.

CUDA execution model is based on a hierarchy of abstraction layers: grids,
blocks, warps and threads. The thread is the basic execution unit that is actually
mapped onto one processor. A block is a batch of threads cooperating together
in one multiprocessor and hence all threads in a block share the shared memory.
A grid is composed by several blocks, and because there can be more blocks than
multiprocessors, different blocks of a grid are scheduled among the multiproces-
sors. In turn, a warp is a group of threads executing in an SIMT way, so threads
of a same block are scheduled in a given multiprocessor warp by warp.
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Two kinds of codes are considered in the CUDA model: those executed by
the CPU (host side) and those executed by the GPU, called kernel codes. The
CPU is responsible of transferring data between host and device memories as
well as invoking the kernel code, setting the grid and block dimensions. Memory
accesses and synchronization schemes are the most important aspects to take
into account. Warp addresses issued by SIMT memory access instructions may be
grouped thus obtaining a high memory bandwidth. This is known as coalescing
condition. Otherwise, access will be serialized and the resulting latency will be
difficult to hide with the execution of other warps of the same block.

3 Experiences in Optimizing the FFT in CUDA

We have selected as a benchmark a kernel code showing non-linear access pat-
terns to memory: the Fast Fourier Transform (FFT). Basically, the FFT follows
a divide and conquer strategy in order to reduce the computational complexity
of the discrete Fourier transform (DFT), which provides a discrete frequency-
domain representation X [k] from a discrete time-domain signal x[n]. For a 1-
dimensional signal of N samples, DFT is defined by the following pair of trans-
formations (forward and inverse): X = DFT (x) : X [k] =

∑N−1
n=0 x[n]Wnk

N , 0≤
k < N , and x = IDFT (X) : x[n] = 1

N

∑N−1
k=0 X [k]W−kn

N , 0 ≤ n < N , where the
powers of WN = e−j 2π

N are the so-called twiddle factors.
The design decisions to develop an efficient GPU implementation of a kernel

code like FFT may be classified into three levels:

– Algorithm level: It refers to the algorithm chosen to implement the kernel.
The basic strategy is the well-know Cooley-Tukey decomposition, but some
other strategies, like the Stockham approach, have been shown to behave
better in SIMD architectures. In addition, the selection of the radix param-
eter has strong influence in the performance.

– CUDA level: Once the algorithm has been configured, it must be mapped
into the CUDA architecture. The resulting performance depends strongly on
two main issues: parallelism extracted and memory hierarchy exploitation.
Both issues are closely related to platform features, and are clearly influenced
by the problem memory access patterns.

– Code level: The CUDA architecture hides many low-level details of the un-
derlying hardware platform. This way, an important fraction of the overall
performance may depend on a series of low level tricks that would help the
compiler to generate an efficient object code.

Algorithm level. In this paper we have considered a radix-2, DIT (Decimation
In Time), Cooley-Tukey implementation. Although this algorithm requires an
initial bit-reversal stage, however it could be used in signal transformations where
such bit-reversal operation is not required (e.g., Walsh). This is not the case of
the Stockham method, which is auto-sorted.
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Fig. 1. Radix-2 decimation-in time FFT in terms of butterfly operators
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Fig. 2. (a) Computing 3rd and 4th stages of the FFT; (b) computing 5th and 6th stages
of the FFT using the pattern of 3rd and 4th stages over a properly permuted input

The radix-2, DIT, Cooley-Tukey FFT organizes the DFT computations, as
shown in Fig. 1, in terms of basic blocks, known as butterflies. The computation
is carried out along log2 N stages being computed N coefficients per stage. Before
the first stage, input coefficients must be bit reversed (omitted in the figure).

Focusing on memory locality, we observe that if the input coefficients are lo-
cated into consecutive memory positions, the reference patterns of higher stages
will exhibit poorer locality features than the lower ones. In addition, if the input
coefficients are permuted properly, it is possible to carry out one of the stages
using the access pattern of another, simply by using the corresponding twid-
dle factors. Such an equivalence is depicted in Fig. 2 showing how 5th and 6th
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Fig. 3. Mapping of the input signal from global to shared memory spaces

stages can be performed with the access pattern of the 3rd and 4th ones, after
permuting the coefficients. This mapping is denoted as: [5 : 6] → [3 : 4].

CUDA level. The goal in the CUDA version is to obtain a high degree of
parallelism taking into account system constrains, specifically those related to
the memory hierarchy. The basic idea consists of mapping input signal samples
placed in global (device) memory into the data parallel cache (shared memory),
performing all possible computations with these local data and then copying the
updated samples back to the global memory. This process may be repeated with
different mapping functions until all stages are done.

Fig. 3 depicts how the input signal is repeatedly mapped from global memory
into shared memory spaces. This mapping try to maximize coalesced accesses to
global memory. The figure also shows a number of parameters defined to describe
our CUDA version, named as ctFFT (from Cooley-Tukey FFT) from now on.
First, we consider that the input signal size is a power of two (2n samples). This
signal is subdivided into equal-sized subsignals, which are further subdivided into
fixed-size chunks of 2c samples. A set of 2k chunks, separated among themselves
a distance of 2s chunks, are grouped and assigned to the same CUDA block.
So, each subsignal contains a total of 2s chunk blocks, or a total of 2(s+k+c)

samples. Hence, the size of each CUDA block is of 2(c+k) samples, and the
complete input signal contains a total of 2n−(c+k) such blocks. There is a size
restriction for CUDA blocks, as each one will be processed in parallel in a single
GPU multiprocessor, so it must be fitted completely in the shared memory.

With the above data mapping strategy, ctFTT proceeds as a series of syn-
chronized phases, as follows:

– Initial Phase: Processing of CUDA blocks composed of consecutive chunks
(s = 0). The first k + c FFT stages can be accomplished with these data
blocks ([0 : (k + c − 1)] → [0 : (k + c − 1)]).

– Intermediate Phase 1: After finishing these first k + c stages, we can
continue with the remaining FFT stages. These stages should not overlap
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Fig. 4. (a) Bit-block addressing defining the mapping of the input signal from global
to shared spaces, and (b) addressing for the bit reversal operation

the previous ones already processed, so we must select the suitable CUDA
blocks to be transferred to shared memory. Stage overlapping is avoided if
we select blocks corresponding to values of s that are integer multiple of
k. So, in the first intermediate phase, we process CUDA blocks composed
of chunks separated k chunks, that is, s = k. These data allow to compute
the following k FFT stages: [s + c : s + c + k − 1] → [c : c + k − 1] =
[k + c : 2k + c − 1] → [c : c + k − 1].

– Intermediate Phase i: In general, the above procedure is repeated. Now,
we take CUDA blocks corresponding to s = ik, that allow to compute a
bunch of k FFT stages: [s + c : s + c + k − 1] → [c : c + k − 1] = [ik + c :
(i + 1)k + c − 1] → [c : c + k − 1].

– Final Phase: The last FFT stages to be computed could be less than k. If
the total number of intermediate phases is P , in this final phase the next
FFT stages are computed: [s + c : n] → [c : n − s] = [(P + 1)k + c : n] →
[c : n − (P + 1)k]. The number of intermediate phases can be calculated as
P = �(n − (k + c))/k�, if this number is positive.

ctFFT organizes parallel execution by assigning to each thread two main tasks:
(i) copying of two signal samples from global to shared spaces, and (ii) processing
of a single FFT butterfly, accessing two signal samples stored in shared memory.
So, the total number of threads is 2n/2 = 2n−1 (radix-2). These threads are
organized in a grid of (nBlock.x, nBlock.y) thread blocks, and each of these
thread blocks groups (nThreads.x, nThreads.y) threads. With this grouping of
threads, the data mapping shown if Fig. 3 can be defined by mapping bit-blocks
of the memory addresses, as depicted in Fig. 4 (a). The b bit in both addresses
allows to distinguish between the two signal samples assigned to the same thread,
and it is in use during the copy-in and copy-out operations (global to shared and
shared to global). During the computation of a butterfly in the i FFT stage, the
thread accesses the corresponding signal samples in shared memory by inserting
a bit 0 or 1 in the i bit of the shared memory address composed of the bit-blocks
threadIdx.y|threadIdx.x. Note that if c is larger than the number of threads in
a single warp, then coalescing condition is completely fulfilled.

As a DIT implementation is considered here, the initial bit reversal operation
applied to the input signal is required. Fig. 4 (b) shows how this operation is
implemented in ctFFT. Basically, it consists in a coalesced copy of the input
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signal samples to the shared memory, storing them in positions given by the bit
reversal of the thread bit-block identifiers. Afterwards, these samples are copied
back to the corresponding positions in global memory (not in-place).

Code level. Among the low-level optimization techniques, we can highlight
four with high impact on the code performance: loop unrolling, padding, constant
propagation and thread synchronization. Padding is used to reduce shared mem-
ory bank conflicts. Constant propagation avoids unnecessary arithmetic instruc-
tions, specially when computing padding functions. Additional non-mandatory
thread barrier synchronizations are beneficial. For example, after completing
global memory accesses. We consider that most of these optimizations should be
implemented in the CUDA compiler, but our experience shows that without the
help of the programmer, the compiler fail to apply many of these techniques.

4 Experimental Evaluation

In this section we experimentally evaluate ctFFT. All experiments were con-
ducted on a NVIDIA GeForce 280 GTX GPU, which includes 30 multiprocessors
of eight processors each (240 cores in total), working at 1.3GHz with a device
(global) memory of 1 GB. Each multiprocessor has a 16KB parallel data cache
(shared memory). Codes were written in C using the version 1.0 of NVIDIA
CUDA [11]. NVIDIA provides its own FFT library (CUFFT), that we take as a
reference in order to assess the quality of our optimized CUDA version (ctFFT).

Fig. 5 (top) shows the performance of ctFFT compared to CUFFT. These
plots correspond to the CUDA version discussed in the previous section, con-
sidering only CUDA level optimizations, specially, coalescing (no low-level). Ac-
cording to the CUFFT interface, two dimensionality parameters are taken into
consideration: the signal size and the number of signals of the given size to be
processed (known as a batch of signals). The number of FLOPS is calculated
using the equation 5bN log2 N , for a batch of b signals of N samples per signal.

From the plots it can be seen that in cases of batches of large signals, our
ctFFT outperforms CUFFT. However, CUFFT is better for a large number
of batches of small signals. In addition, ctFFT allows to process larger signals
than CUFFT. The CUFFT library is unable to perform the transform beyond
223 samples [11] whereas our implementation can manage up to 226 samples,
making a better exploitation of the available device memory. Fig. 5 bottom
summarizes all these results (GFLOPS in the plot at the left, relative GFLOPS
in the plot at the right). The bottom-right plot allows to determine for which
signal configurations ctFFT outperforms CUFFT.

The above results show that the best performance attained is almost 40
GFLOPS, which is much lower than the peak performance of the GPU plat-
form. And there are no other relevant performance strategies at CUDA level
that we can use to further improve the parallel code. So, only two alternatives
remain, either change the original FFT algorithm, that maps better into the
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Fig. 5. Performance in GFLOPS of ctFFT compared to CUFFT

GPU architecture, or apply low-level optimization techniques. These optimiza-
tions fall outside the CUDA programming model, are dependent on the specific
CUDA code at hand, and represent a hard effort to apply.

Table 1 (a) illustrates the change in performance that ctFFT underwent when
an incremental series of low-level optimization techniques were applied. These
figures were obtained for a batch of 215 signals of 29 samples per signal, in such
a way that each signal fits completely in the shared memory of a CUDA block.
This table shows a broad range of achieved performance results, from 17.5 to
229 GFLOPS, depending on different optimizations and algorithms used. At
present, the best known FFT implementation on CUDA [4] performs a peak of
300 GFLOPS (based on considerable hand-coded low-level optimizations). The
first column in the table corresponds to a ctFFT version where all computa-
tions are carried out over the global memory, using coalesced accesses (shared
memory is not used). The second column is the CUDA version analyzed in the
previous section. This version uses the shared memory as a cache of the global
one, resulting in about 2× performance improvement. The next two columns



932 E. Gutierrez et al.

Table 1. Incremental performance improvements: (a) applying low-level optimizations,
(b) for different memory access patterns (batch of 215 signals of 29 samples)

(a)

ctFFT
(global) ctFFT

+
unrolling

+
padding

+
radix-4

+
radix-8

+ constant
propagation

GFLOPS 17.5 35.1 59.5 63.5 106 116 130
Incoherent ld/st 0 0 0 0 0 0 0
Warp serialize 0 806·103 668·103 649·103 428·103 255·103 221·103

(b)

DIT, no
bit reversal

DIF,
wo/ synch

DIF,
w/ synch Stockham

GFLOPS 142 167 199 229
Incoherent ld/st 0 0 0 0
Warp serialize 189·103 211·103 170·103 95·103

add loop unrolling and padding low-level optimizations to ctFFT. The perfor-
mance improvement due to padding is lower than expected because the padding
function must be simple in order to not introducing too much overhead. The use
of a higher radix (than 2), as shown in the next two columns, allows to increase
the performance even more. The reason for this behaviour is a more intensive
(re)use of the processor registers, that represent the fastest level of the memory
hierarchy. For radices beyond 8, the performance degrades due to two effects.
First, the fixed number of registers limits the number of active threads per mul-
tiprocessor (this is called occupancy). Second, for a higher radix, the number
of threads per block decreases, reducing the opportunities of hiding memory la-
tency via warp scheduling. Constant values resulting from padding functions can
be precomputed and propagated directly in the code. This optimization has an
important impact in the performance, as shown in the corresponding column.

Table 1 (b) corresponds to other four implementations we have developed for
the same signal configuration, and also including all the previously discussed
low-level optimizations. This table show the impact in performance of various
memory access patterns. The first one is ctFFT but with the bit reversal stage
omitted. The second and third columns correspond to the radix-8, DIF (Dec-
imation In Frequency) version of the Cooley-Tukey algorithm. The difference
between them is the inclusion or not of additional non-mandatory thread bar-
rier synchronizations. Finally, the fourth column corresponds to the Stockham
algorithm, developed using similar strategies than discussed for ctFFT.

Basically, the performance of ctFFT is modest due to two main reasons: the
cost of the bit reversal operation, and the loss of parallelism due to conflicts in
shared memory banks. Other interesting measurements included in tables are the
number of incoherent loads/stores and the warp serialize parameter (obtained
by activating CUDA PROFILE). The first one shows the number of non-coalesced
accesses to global memory. In all evaluated cases, coalescing was perfect. Warp
serialize represents the number of threads serialized due to shared memory bank
conflicts. Note that the low-level optimizations reduces significantly this num-
ber, with a clear effect in performance. But also the memory access pattern
associated to the algorithm (Cooley-Tukey/Stockham, DIT/DIF, radix-2/-4/-8)
has an important impact. The lowest number of warp conflicts correspond to
Stockham version (radix-8, DIF).
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5 Conclusions

This paper discusses our experience in porting application kernels to GPU ac-
celerators using CUDA. In particular, a FFT benchmark was chosen due to its
non-linear memory access patterns that allow to play with many design issues
when mapping it to the complex GPU architecture. According to our experience,
developers should take into account three classes of design issues: at algorithm
level, at CUDA level and at code level (low level). In any level we may observe
strong impact in performance. We specially highlight low-level optimizations,
that may increase the performance of the CUDA version by one order of mag-
nitude. However, the bad part is that these techniques are very dependent on
the specific CUDA code and represent a hard effort to apply. New programming
environments should include technology to automatize, at least partially, these
essential and high-impact low-level optimizations.
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Abstract. This paper presents two discrete computational geometry algorithms 
designed for execution on Graphics Processing Units (GPUs). The algorithms 
are parallelized versions of sequential algorithms intended for application in 
geographical data mining. The first algorithm finds clusters of m points, called 
m-clusters, in the rasterized plane. The second algorithm complements the first 
by identifying outliers, those points which are not members of any m-clusters. 
The use of a raster representation of coordinates provides an ideal data stream 
environment for efficient GPU utilization. The parallel algorithms have low 
memory demands, and require only a limited amount of inter-process commu-
nication. Initial performance analysis indicates the algorithms are scalable, both 
in problem size and in the number of seeds, and significantly outperform com-
mercial implementations. 

Keywords: GPU algorithms, Geographical data mining, CUDA programming. 

1   Introduction 

Traditional computational geometry algorithms are applied to subsets of the plane,  
using real values to designate point coordinates. Thus, there are an infinite number of 
points in the domain of the problem. 

In Geographical Information Systems (GIS) the use of a raster representation de-
fines a finite number of points (or pixels) in the problem domain. There are several 
advantages to using a raster of vector data for spatial processing: the raster data model 
is well-suited for GIS applications aimed at the analysis of the spatial variability of 
geographic phenomena, it is more effective in the representation of continuous sur-
faces, and it can be exploited for accelerated processing and display [1]. 

Recently, Gudmundsson, van Kreveld and Narasimhan [2] presented several com-
putational geometry algorithms suitable for applications in geographical data mining. 
Their algorithms find clusters of points on the plane and identify outliers, assuming 
two types of land cover and defining a cluster via its bounding square. In this paper, 
we present parallelized algorithms to solve the same problems without these assump-
tions and restrictions. Furthermore, our algorithms are optimized to execute on  
Graphics Processing Units (GPUs). GPUs, in addition to being highly parallelized 
computational units, are particularly well-suited for spatial applications. 
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1.1   Graphics Processing Units 

GPUs, ubiquitous on video cards and familiar to the gaming community, have been 
steadily increasing in speed, capacity and number of processing units. Given the insa-
tiable demand of modern graphics applications, it seems reasonable to assume that 
they will continue to do so. Until recently, GPU usage was largely limited to the ren-
dering expected of a video card. That has begun to change with the advent of General 
Purpose computation on Graphics Processing Units (GPGPU), and the new languages 
and environments developed in support of that goal. Languages used to program 
GPUs typically use the Single Instruction Multiple Data (SIMD) style of coding. A 
program specifies a sequence of operations that is to be applied to the vertices of a 
polygon or to the pixels comprising an image to be rendered.  These operations exe-
cute in parallel on different processing units, each on their own unique vertex or pixel. 

General purpose computation on GPUs extends this methodology to operate on non-
rendering data. For example, one of the new GPU programming languages is called 
CUDA (Computer Unified Device Architecture) [3], designed for NVIDIA's GPUs. 
CUDA has a number of elements in common with other Data Parallel Languages, such 
as MPL [4], C* [5] and Parallaxis [6]. In CUDA, the programmer specifies a kernel, a 
piece of code that is executed in parallel on all of the processing elements in a GPU. 
During parallel execution, each processing element is responsible for one pixel (or data 
object), and the kernel contains precisely the set of operations that is to be applied to 
every element.  Programmer-defined “blocksize” and “gridsize” attributes partition the 
data and direct its redistribution to processing elements. 

CUDA's run time environment schedules the parallel execution of the code in the 
kernel on the multiple processing units inside the GPU. The local variables within a 
kernel belong to a particular instance of a kernel and each instance of the kernel has 
its own version (copy) of those variables. In some ways the kernel resembles a class; 
many instances of the kernel may be active at the same time, each with its own "in-
stance" local variables. 

Special operations allow the programmer to move data between main memory on 
the "host" computer and the device memory on the GPU card. 

1.2   Computational Geometry / Geographical Data Mining 

Designing and developing algorithms for GPU execution is an active research area. 
Some of these algorithms use graphic primitives to find approximate solutions to 
computational geometry problems. Given the nature of GPUs and the displays upon 
which solutions are ultimately rendered, it is natural to work in the domain of pixels, 
using integer coordinates. For example, Hoff et al. [7] describe an algorithm to calcu-
late generalized Voronoi diagrams. Fan et al. [8] based their algorithm for natural 
neighbor interpolation on the same discretization of the plane. Denny [9,10] uses 
GPU primitives to implement algorithms that solve the problems of: determining the 
smallest homothetic scaling of a star-shaped polygon enclosing a set of points, finding 
the largest empty homothetic scaling of a polygon completely contained inside an ar-
bitrary region, and adding a new point to an existing Voronoi diagram such that the 
resulting Voronoi region has maximal area. 
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The remainder of this paper is structured as follows: a parallelized algorithm for 
finding clusters of m points is described in section 2. Section 3 contains a modified 
algorithm for finding outliers. Initial performance results are presented in section 4.  
Finally, section 5 presents our conclusions. 

2   Finding M-Clusters 

Clusters can be defined in different ways [11]. One way is to think of a cluster as a 
“large enough” subset of points that are close to each other. In GIS, finding properties 
of point sets is known as point pattern analysis [12]. 

Based on this notion of a cluster, we present the following definitions: let P be a 
set of n points in the plane, representing the objects that are being analyzed for clus-
tering. These n points are known as seeds. Let r denote a distance of interest. The set 
of points in a cluster should lie inside a circle of radius r or smaller. Let m denote the 
minimum number of points required to form a cluster. The problem then, is to identify 
subsets of m points (or more) that are inside a circle of radius r or smaller. We refer to 
this group of points as an m-cluster.  

Gudmundsson's paper contains a detailed discussion of the issue of the precision of 
the results when one "snaps" the coordinates of the seeds to integer coordinates, and 
one of the algorithms presented in that paper uses integer coordinates for the seeds. 
The following example illustrates the integer approach. 

Consider a raster surface of size 12 × 12 with 4 seeds located at the coordinates: 
(4,4), (5,10), (6,2) and (7,9).  Assume that we have specified that we need m = 3 seeds 
per cluster and that the radius of every m-cluster should be r = 4.2 or smaller. For this 
particular set of input data, two points qualify as centers of 3-clusters: (6,5) and (6,6). 
In the raster surface of Figure 1, the ‘×’ symbol denotes the locations of the seeds and 
‘·’ denotes the locations of the centers of m-clusters. 

 

Fig. 1. An example showing two 3-clusters, one centered at (6,5) and another at (6,6) 

Note that a seed may be a member of more than one m-cluster, and that an m-
cluster may contain more than m seeds. Note also that more than one pixel may be a 
candidate center for the same m-cluster. The criterion for choosing a particular center 
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for an m-cluster depends on the specific application. For example, it may be important 
to choose the candidate center pixel with the smallest resultant m-cluster radius. 

2.1   Sequential M-Clustering Algorithm 

We next describe a sequential algorithm that calculates the set of m-clusters for a set 
P of points. The area is represented by a raster surface of size xSize × ySize, which is 
the sub-plane of interest. The seeds are assumed to be inside the area covered by the 
raster surface. The algorithm looks for points on the raster surface that are the (ap-
proximate) centers of circles of radius r or smaller that contain at least m points, out 
of the original n points. The pseudo-code for this algorithm is given in Figure 2. 

For every pixel x in the raster surface 

   Initialize counter to 0  

   For every seed s in the set of n seeds 

      Find the distance d from pixel x to seed s  

      If distance d is less than or equal to radius r 

         Increment counter by 1  

   If counter is greater than or equal to m then 

 This pixel on the raster surface is the center 
 of a circle of radius r or smaller that 
 contains at least m out of the n seeds, thus 
 this is the center of an m-cluster 

Fig. 2. Pseudo-code to find m-clusters on a raster surface 

The complexity of this sequential algorithm is O(xSize*ySize*n). Gudmundsson's 
algorithm uses bounding squares instead of circles to define the distance (radius) test; 
and it is not equivalent to compare complexities with the algorithm presented here. It 
is clear that the complexity of the presented algorithm is high; however, it is not in-
tended to be competitive with other approaches in a sequential setting.  Its advantage 
lies in its suitability for highly efficient parallelism on a GPU. 

2.2   Parallelized M-Clustering Algorithm 

The pseudo-code presented in Figure 2 correctly calculates an approximation to the 
m-clusters but is inefficient when only a single processor is available. However, dur-
ing the early 1990s, massively parallel machines such as the MasPar and the Connec-
tion Machine 2 allowed programmers to devise algorithms based on the assumption 
that a processor was available for every pixel [13].  As the processing power and the 
number of processing units inside a GPU increases, these types of algorithms are be-
coming relevant again.  Fundamentally, a GPU’s multiple processing units work in 
tandem in the same SIMD fashion as the earlier generation of parallel machines. 
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Flynn wrote: "If parallel processors are going to solve ... problems, the problems' rep-
resentation should be designed for these machines. ... We need to represent problems in 
a cellular form, which could be addressed by computers in which each element has its 
own memory. This is crucial if we want to effectively use parallel processors." [14] 

The sequential algorithm given in Figure 2 lends itself nicely to a rewrite in a  
programming language for GPUs, precisely in the spirit of Flynn's statement. Each 
processing element, which will be responsible for calculations of one pixel, need only 
contain enough local memory to hold the locations of all of the seeds.  An added 
benefit is that the parallel version of the algorithm works with limited interprocess 
communications, as all calculations are local. 

Since each processing element is responsible for one pixel, the computations per-
formed in the sequential code for every element of the raster surface compose the 
CUDA kernel. The following pseudo-code sketches the CUDA implementation of the 
sequential algorithm presented above in Figure 2. 

// In the Host  

Allocate seeds in constant memory  

Copy seeds to GPU  

Allocate space (matrix) in GPU global memory  

Clear matrix  

Launch the kernel  

Synchronize threads  

Copy matrix back to Host  

Free memory 

// In the GPU (one pixel per processing element): 

NumOfClosePoints = 0;  

For each seed s 

Calculate the distance from this pixel to seed s 

      If (distance <= radius) 

            NumOfClosePoints++;  

If (NumOfClosePoints >= m) 

Mark this pixel as the center of an m-cluster 

Fig. 3. CUDA pseudo-code to find m-clusters on the raster surface 

Notice that there are no data dependencies among instances of the kernel, implying 
that each instance of the kernel can execute independently of all others. The amount of 
memory declared and used inside each kernel is extremely small, which is important 
when programming today's GPUs with their limited number of internal registers. 

Processing units inside GPUs are called stream processors.  Current high-end 
GPUs contain 128 stream processors. CUDA's run-time environment manages  
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scheduling and execution, in parallel, of as many instances of the kernel as the num-
ber of available stream processors. Thus, if there is one stream processor available for 
every pixel in the raster surface, then all kernels can execute simultaneously on the 
entire data set. Therefore, the time complexity of this parallel approximate algorithm 
is O(n) where n is the number of seeds. 

If the number of required instances of the kernel is larger than the number of proc-
essing units, i.e. the number of pixels in the problem is greater than the number of 
processing elements, then the run-time environment will schedule "batches" of kernel 
executions. This process continues until all required kernel instances have finished 
their execution. 

Thus the parallel algorithm is independent of the number of available stream proc-
essors. If the number of pixels exceeds the number of stream processors, computation 
is automatically batched. If the number of available stream processors increases, the 
algorithm scales appropriately and correctly. 

This algorithm is similar to a parallel algorithm for finding the Voronoi diagram 
and another for finding the Order-k Voronoi diagram as presented in [15]. The Vo-
ronoi diagram algorithm has recently been implemented using CUDA on an NVIDIA 
GeForce GPU and the complexity of the parallel algorithm has been shown to be lin-
ear on the number of seeds [16]. 

3   Finding Outliers 

Statistically, an outlier is a point that is distant from the rest of the data and therefore 
does not belong. Using the definitions presented in section 2, we define an outlier as a 
point (a seed) that does not belong to any of the m-clusters found in the original set of 
points P.  Correspondingly, it is possible to modify the cluster algorithm presented in 
the previous section to instead identify outliers. 

The key observation is that as the algorithm calculates the center-to-seed distances 
required to identify an m-cluster, it is possible to record the identifications of the 
seeds that correspond to those distances. Thus, once a point in the raster surface is 
verified as the center of a circle of radius r or smaller that contains at least m seeds, 
the identities of each of those m seeds in the m-cluster are known.  By definition, any 
seed not belonging to an m-cluster is an outlier. 

The following example illustrates a set of seeds with one outlier. The raster surface 
is again assumed to be of size 12 × 12. There are five seeds with coordinates (1,1), 
(8,8), (8,10), (9,8) and (9,10). For this example, the maximum cluster radius r is de-
fined to be 2.0 and each cluster must contain at least m = 3 seeds. 

The state of the raster surface is depicted in Figure 4. In this diagram, the locations 
of the seeds are represented by the ‘+’ symbol. The outlier seed, represented with an 
‘*’, is the seed located at coordinate (1,1). 

Since our outlier algorithm is based on a modification of the m-clustering algo-
rithm given in the previous section, we do not present any pseudo-code. A description 
of the required modifications follows. 

In the sequential version of the outlier code, an array of counters, containing one 
entry for every seed, is initialized to zeroes. Whenever a point is identified as the  
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Fig. 4. The seed located at (1,1) is an outlier 

center of an m-cluster, the counters for each of the seeds belonging to that m-cluster 
are incremented. Once the entire raster surface has been examined, the counters for 
the outlier seeds will still contain zeroes. 

In the parallelized version of this code, each kernel maintains an array of integers 
called localInCluster. The array localInCluster contains one entry for every 
seed and all of entries are initialized to zero. A second array, referred to as globalIn-
Cluster, is maintained in the shared memory area of the GPU. It also contains an entry 
for each seed, again initialized to zero. Each time the distance between a seed and the 
pixel associated with a kernel is determined to be within the radius r, the corresponding 
entry in localInCluster is set to 1. Thus, after calculating the distances from this 
pixel to all seeds, localInCluster contains a zero only in those entries correspond-
ing to seeds that are at a distance greater than the radius from this pixel. If it is deter-
mined that the pixel associated with this kernel is the center of an m-cluster, all non-zero 
values in localInCluster are written to their corresponding entries in globalIn-
Cluster. When all kernels have completed execution, the entries in globalIn-
Cluster will contain zeroes only in the entries corresponding to seeds that were not 
part of any cluster. Those seeds are precisely the outliers. 

The complexity of the parallel algorithm is again determined to be O(n), where n is 
the number of seeds. Interestingly, the execution time of this algorithm was found to 
be very similar to that obtained for the m-clustering code. Unlike the data independent 
nature of the m-clustering code, the outlier code manifests the possibility of “write” 
contentions when updating the entries in the globalInCluster array. However, 
the similar execution times and speedups we obtained seem to indicate that contention 
is not a significant problem. 

4   Results 

To test the correctness of the parallel SIMD algorithms and the efficiency of the GPU 
implementations, the algorithms were executed on a machine with an NVIDIA GTS 
8800 video card containing 128 stream processors. 
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There is no publicly available implementation of the Gudmundsson algorithm. 
However, there are commercial GIS programs that solve the same problem, which 
we use for comparison, to calculate the speedups obtained by our GPU  
implementation. 

Several experiments were performed to test the scalability of our algorithms.  
Table 1 contains the execution times of the m-clustering algorithm for a set of 1024 
seeds with increasing problem size, i.e. number of pixels. A superset of the data given 
in Table 1 is plotted in Figure 5. 

Table 1. Execution time of the m-clustering algorithm for increasing problem size. Number of 
seeds is fixed at 1024. 

Image size Number of pixels Execution time (ms) 
256 65536 16.39 
512 262144 43.35 

1024 1048576 135.37 
2048 4194304 473.14 
4096 16777216 1703.89 

 

Fig. 5. Scalability of the m-clustering algorithm 

The table and corresponding graph demonstrate that the algorithm scales well as 
the size of the image increases.   

The next set of experiments tested whether the algorithm could scale linearly on 
the number of seeds. The size of the raster surface was fixed at 2048 × 2048, meaning 
the problem size was fixed at 4194304 pixels. As in the above experiment, the GTS 
8800 video card was the test platform. Executions times are given below in Table 2 
and plotted in Figure 6. 

Once again it is apparent that the algorithm performs efficiently, scaling linearly 
as the number of seeds is increased. This suggests that this combination of data par-
allel algorithm and GPU technology will continue to be effective on ever larger 
datasets. 
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Table 2. Execution time of the m-clustering algorithm for increasing number of seeds. Problem 
size (number of pixels) is fixed at 4194304. 

Number of seeds Execution time (ms) 
256 227.87 
512 317.01 
768 407.50 

1024 498.71 
1280 586.99 
1536 677.40 
1792 766.81 
2048 856.44 

 

Fig. 6. Scalability of the m-clustering algorithm 

Speedup tests were conducted against the commercial program ArcGIS v9.2 run-
ning on an Intel Core 2 duo 2.16GHz processor with 2GB RAM. The tests involved 
performing cluster and outlier analysis on the US Dam dataset. Given 1000 points 
(seeds), ArcGIS took 17 sec., while our algorithm took 0.499 sec. for 1024 points, a 
speedup over 34.  To analyze 2000 points, ArcGIS took 36 sec., while our approach 
took 0.856 for 2048 points, a speedup over 42. Clearly, the sub-second performance 
of the parallelized method enables a more “interactive” or real-time experience for us-
ers. In addition, the large speedups suggest that it will be possible to perform data 
mining on the much larger datasets expected of the future. 

5   Conclusion 

We have presented two parallel raster algorithms optimized for GPUs: the first one 
finds clusters of at least m points in size, and the second one discovers outliers. Both 
algorithms have been implemented using CUDA, a programming language for GPUs. 
The performance results are encouraging and indicate that the algorithms are fast, 
scalable, linear in the number of seeds, and able to significantly outperform the im-
plementation found in commercial programs. 
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The algorithms presented here take advantage of large numbers of stream processors 
and should scale well as the number of stream processors increases in newer GPUs. The 
low memory demand and the use of a raster format make these algorithms highly efficient 
in GIS spatial processing. Today’s GPUs promise significant performance improvement 
for applications using raster processing in GIS systems. 
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Abstract. The Jaccard/Tanimoto coefficient is an important workload,
used in a large variety of problems including drug design fingerprinting,
clustering analysis, similarity web searching and image segmentation.
This paper evaluates the Jaccard coefficient on three platforms: the Cell
Broadband EngineTMprocessor Intel R©Xeon R©dual-core platform and
Nvidia R©8800 GTX GPU. In our work, we have developed a novel
parallel algorithm specially suited for the Cell/B.E. architec-
ture for all-to-all Jaccard comparisons, that minimizes DMA
transfers and reuses data in the local store. We show that our
implementation on Cell/B.E. outperforms the implementations on com-
parable Intel platforms by 6-20X with full accuracy, and from 10-50X in
reduced accuracy mode, depending on the size of the data, and by more
than 60X compared to Nvidia 8800 GTX. In addition to performance,
we also discuss in detail our efforts to optimize our workload on these
architectures and explain how avenues for optimization on each architec-
ture are very different and vary from one architecture to another for our
workload. Our work shows that the algorithms or kernels employed for
the Jaccard coefficient calculation are heavily dependent on the traits of
the target hardware.

1 Introduction

Recent years have seen a resurgence in the number of hardware choices available
to programmers. Multi-core processor architecture cores, which have multiple
processing elements on a single chip are now the norm of the industry [1]. A
vast number of hardware choices are now available to a high-performance com-
puting programmer: general-purpose processors available from IBM, AMD and
Intel have upto 8 cores, Cell/B.E. architecture has 8 special vector cores called
SPEs and a PPC core called PPE, and more recently GPUs, capable of run-
ning hundreds of threads, primarily meant for graphics processing tasks are
also being evaluated for high-performance computing. This has very important
implications for many industries, which could now accelerate their workloads

G. Allen et al. (Eds.): ICCS 2009, Part I, LNCS 5544, pp. 944–953, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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using these multi-core chips, and thus not relying only on single-thread per-
formance. One such workload, which could benefit from multi-core technology
is the Jaccard-Tanimoto index [2], which is is a correlation coefficient for
determining the similarity between two binary strings, or bit vectors. Jaccard
coefficient finds it’s application in a wide variety of areas such as drug design
[3], similarity searching on the Internet [4], financial applications [5] and social
network analysis [6].

2 Jaccard Coefficient: Sequential and Parallel Algorithm

The Jaccard coefficient is mathematically defined as follows: given two equal
length bit vectors x and y, with entries indexed from 0 to n, the Jaccard index
computes:

Jaccard =
c

a + b + c

Computationally for 2 vectors x and y, c is the number of bits set in the and
product , and a + b is the number of bits set in the xor product of the 2 vectors
x and y.

Algorithm 1: Jaccard Index: All-to-all kernel computation
Data : (1) n vectors S1, S2, . . . . Sn each of length b

Result: The Jaccard index J(i, j) obtained by computing the Si vector
with the Sj vector, i ≤ n, j ≤ n.

begin
k = 0
(1) for (i = 0; i ≤ n; i = i + 1) do

(2) for (j = i + 1; j ≤ n; j = j + 1) do
(2.1) J(k) = J(Si, Sj)
k = k + 1

end

Algorithm 1 shows the overall Jaccard computation, in which every binary
vector is being compared with every other vector; henceforth, we will refer to
the computation in Algorithm 1 as the Jaccard workload. As can be seen,
the Jaccard workload does not have any dependence among the values being
stored at the different locations, since we can precompute the address of storing
of any coefficient Jij independently; the index for storing the (i, j) is ni− i(i+1)

2 −
i − 1 + j.

Algorithm 2 shows an optimal parallel load-balanced approach which assigns
all the vector comparisons of n elements in a queue, and divides the queue
elements equally among the processing elements p.
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Algorithm 2: Parallel Jaccard Algorithm
Data : (1) n vectors S1, S2, . . . . Sn each of length b

(2) Threads having ID’s 1, 2 .... thread max
(3) An output array J for storing the Jaccard coefficients
(4) A queue Q of length n(n−1)

2

Result: The Jaccard index S(i, j) obtained by aligning the Si vector with
the Sj vector, i ≤ n, j ≤ n.

begin
k = 0
queue length = n(n−1)

2
(1) for (i = 0; i ≤ n; i = i + 1) do

(2) for (j = i + 1; j ≤ n; j + 1) do
(2.1) Q[k].f irst = Si

(2.2) Q[k].second = Sj

(2.3) Q[k].f irst element = i
(2.4) Q[k].second element = j
(2.5) k + +

(2) for (i = thread id; i ≤ queue length; i = i + thread max) do
(2.1) i = Q[i].f irst element
(2.2) j = Q[i].second element

(2.3) J [ni − i(i+1)
2 − i − 1 + j] = J(Q[i].f irst, Q[i].second)

end

3 Jaccard Index on Multi-core Architectures

3.1 Jaccard Index on the Cell/B.E. Architecture

The Jaccard-Tanimoto kernel for two vectors x and y, essentially consists of
summing the bits in the and product and the xor product of the two vectors
over their entire lengths, and dividing the bits set in the and product by this
sum, in single precision. Mathematically,

Jaccard =
count bits(x and y)

count bits(x and y) + count bits(x xor y)

where count bits specifies the number of bits set to 1 in the vector. This kernel
can be thus broken up into 4 primary operations:

– Computing the and (and xy) and the xor (xor xy) product of the 2 vectors
along their entire lengths, where and xy and xor xy are the vectors denoting
the and and the xor product of the two vectors.

– Counting the bits set in and xy and xor xy, to obtain bits and xy and
bits xor xy.
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– Summing bits and xy and bits xor xy to obtain bits sum xy.
– Divide bits and xy by bits sum xy, and typecast the value as float to obtain

jaccard xy.

SPEs have instruction support for 128-bit and and xor products, which can then
be used for the first operation, defined previously. Step 2 is the pop-count opera-
tion used in several important kernels, along with Jaccard coefficient. There are
several known algorithms for pop-count on general-purpose purpose processors,
as we discuss in Section 4, but we make use of the cntb [7] instruction which is
part of the SPE instruction set. The cntb counts the number of ones in a byte,
which can then be used to count the bits in the and and the xor product of
the two vectors. The cntb instruction applies to 128-bit values, and for a 128-bit
number x will return 16 8-bit values in the 128-bit result, each 8-bit value denot-
ing the number of ones in the 8-bits of the input vector. The vectors bits and xy
and bits sum xy need to be then summed across their 128 bit lengths to count
the total number of ones in the entire 128-bit vector.

Our current implementation for summing the bits uses sumb instruction across
two vectors (in our case bits and xy and bits xor xy), with appropriate shuffling
using the si shufb instruction In case the length of the input vectors is more
than 128 bits (in our case it is 256 bits), this process needs to be repeated in
blocks of 128 bits each, until the entire input vector length is finished. Using
this approach, we are able to compute two vectors of type vector short, the last
elements of which are total bits and xy and total bits xor xy respectively. cuflt
instruction, to change the vector int vectors to the vector float types. We extract
the last elements of each of the sum vectors using the instruction shli, and then
perform a scalar division, to return the result. This scalar division operation takes
up more than 50% of the cost of the entire kernel in the SPE pipeline, excluding
the DMA costs. We could also return the results to a lesser accuracy upto 12
bits, and then keep the entire kernel fully SIMDized: this could be implemented
by computing the reciprocal estimate of the vector containing total bits xor xy,
and then multiplying it by the vector containing total bits and xy, to find an
approximated Jaccard coefficient. The advantage of this strategy is that the
kernel is fully SIMDized, however at the expense of accuracy. . We show the
results for both these approaches in the Section 6.

A Novel Parallel Jaccard Algorithm on Cell/B.E. architecture. Our
parallel algorithm on Cell/B.E. for all-to-all comparisons finds a substantially
optimal parallel solution through a runtime comparison of work allocated to
every SPE.

Given n vectors numbered 0 to n − 1, we divide the Jaccard workload as
follows: The vectors are divided amongst the SPEs by allocating nvecs to each
SPE in a round-robin fashion. A result vector of size nvecs floating point values
is also allocated in the each of the SPU local store. When the first nvecs (we call
them master vectors) are DMAed to the SPE local store, the SPE computes the
Jaccard coefficient within each pair of the nvecs vectors. The result array for
each ith vector (comparisons from (i+1)th to (nvecs−1) vectors) is stored to the
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PPU memory, before the computation for vector i + 1 begins. Each of the result
values of (i, j) Jaccard comparison are actually 16-bytes to allow DMAs from
any (i, j) value to the PPE memory. Before these all-to-all computations among
nvecs vectors are completed, another DMA request for the next nvecs ( nvecs
to 2 ∗ nvecs − 1 indices) are sent: we call them slave vectors. Once the Jaccard
computation among every pair in the master vectors is completed, the Jaccard
coefficient among this new set of nvecs vectors (called slave vectors) and the
master vectors is then initiated. This process of streaming in the nvecs vectors
(slave vectors is repeated, until the entire set of n vectors in completed. Once
the entire set of the slave vectors is completed, the next set of master vectors is
streamed in; this process is continued until the end when all the computations
are finished. Thus through this approach, we find the unique solution that max-
imizes reuse of the data streamed into the local store of the processing element.
We perform all-to-all comparisons among every set of vectors that is streamed
into the local store of the processing element, i.e. the master vectors (when they
are streamed in), and then also between the master vectors and the slave vec-
tors. This leads to maximal reuse of the data. In addition, our algorithm overlaps
computation with communication to hide the latency of the data. For example,
data is DMAed from main memory such that it arrives when comparisons among
other data are being performed, e.g., when comparisons among master vectors
are being performed, the slave vectors are being DMAed into the local store of
the processing element. When one set of slave vector computations has started,
the next set of slave vectors are already being streamed into the local store. In
our experimental results, we actually vary the nvecs variable with the number
of SPEs, to show the optimal number of nvecs variable for the number of SPEs.
Thus there are competing interests which are balanced by the run-
time tests which select an nvecs value that is optimum based on these
considerations. We show the detailed results of the implementation so far in
the Section 6, which show that we achieve a super-linear speedup by optimizing
several characteristics.

4 Jaccard Coefficient on General-Purpose Processors

In the last few years, almost all the hardware manufactures including IBM,
Intel and AMD have released multi-core general-purpose processors. For our
comparisons, we decided to evaluate the Intel Xeon 5160 processor, which is a
dual-core processor. Due to the availability of the scalar and vector registers
(128 bits), with L1 and L2 caches for data access in general-purpose processors
[8], there is a high number of algorithms, that we could experiment with for the
entire Jaccard coefficient calculation and the pop-count operation, in general.

The fastest approach for the pop-count operation (as shown by runtime tests),
which leverages the caches on the Xeon, is to precompute the pop-count of
unsigned numbers upto x bits, and store them in a table. We could then simply
perform a lookup of the table at the index (equal to the number itself), and find
out directly the number of bits set to 1, for the pop-count. The number x has to



Evaluating the Jaccard-Tanimoto Index on Multi-core Architectures 949

be chosen, considering that a fast access to the table is extremely important for
this strategy; the Xeon 5160 has an individual 32 KB of L1 cache for each core,
and a shared 4 MB L2 cache shared between two cores. It is important that the
table fits into the L2 cache atleast, since we are looking at random indices, we do
not expect the prefetching strategy to work well; for our experiments, we chose
the table to work for unsigned numbers upto 16-bits, or (216−1) elements, which
is 65535 numbers. Each of these numbers are stored as type char datatypes,
which makes the total size of the table close to 65 KB, which fits the table
easily into the L2 cache. Thus, for the popcount operation for 256-bit vectors as
in our input, using the table lookup, we will have to do 16 table lookups each
for the and and the xor vectors. We could use the table-lookup approach with
the 128 bit and and the xor operations for the entire Jaccard coefficient. On
the other hand, we could also use the general-purpose registers for the and and
the xor operation as well. We could, thus do 64-bit and and xor operations,
and then perform the pop-count using the table-lookup. It actually turns out
that not using vector registers is infact faster, due to the overhead of moving
data from vector registers to the scalar registers. We have manually unrolled the
loops in using the 64-bit and and the xor operations, for optimal performance
for the 256-bit vectors. Our implementation is parallelized by POSIX threads
using Algorithm 2, and we report results for execution on multiple cores of the
Xeon 5160.

5 Implementation of Jaccard Coefficient on GPUs

In recent years, there have been a number of efforts to use GPUs, as a high-
performance computing platform for data-parallel computations. CUDA, re-
cently released by Nvidia allows the programmers to use GPUs for scalable
computing, without the need of mapping their problem in terms of OpenGL
APIs. For further details on CUDA, please refer to [9] . On the Nvidia GPU,
we have partitioned of the problem as explained in Algorithm 2, we now discuss
some of the details specific to Nvidia platform. To begin the computation, the
entire input array which we compute upon, is transferred to the GPU global
memory using the CUDA APIs. The GPU we evaluated, 8800 GTX has 768 MB
of global memory, which allows the output and the input arrays to be stored
prior to the computation, for upto 8192 input vectors. The host CPU allocates
memory on the GPU using cudaMalloc and transfers the input array to the
GPU global memory using cudaMemcpy primitive which can be used to transfer
memory to and from the GPU memory, based on the arguments given to the
function. The computation is performed by the grid of thread blocks, with the
number of threads in a block (Db) and the number of blocks in the grid (Dg),
being specified as part of the function definition. These parameters are given in
command-line by the user, to experiment with these values for optimal kernel
execution. We allocate each of the input vectors, in a round-robin fashion among
each thread as shown in Algorithm 2, which then proceeds to do the all-to-all
computation with all the indices greater than the input vector index.
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For our workload, we have declared a one-component Db and Dg, which refers
to the number of threads in a block.

The global function, which is called by the host, to allocate and and transfer
memory to the GPU memory, calls a device function, which actually runs the
kernel of the Jaccard computation. We timed the various kernels on the GPU, to
find out the fastest kernel executing on the GPU: our final kernel used is parallel
bits approach, which uses the right-shift, and and the addition operation, for
the pop-count operation: these operations are generally considered fast on the
GPUs. We load the 256-bit input vectors using the built-in vector types uint4,
since they allow 128-bit load instructions. Storing of the Jaccard coefficients as
well as loading of the input vectors is still being performed to/from the global
memory, without trying to use the shared memory resource for this. This, could
be one of the bottlenecks in our implementation, as access to shared memory is
much faster than access to the global memory. Due to space constraints, we are
unable to give any further details on our implementation on GPUs.

6 Results

We show our results for three different multi-core architectures: Cell Broadband
Engine heterogeneous chip, Intel Xeon 5160 and the Nvidia 8800 GTX. Our
input datasets contain fingerprint bit vectors for 257271 of the compounds in
the NCI compound database. The bit vectors are 166-bits long, zero padded to
256 bits. The bit vectors are stored as contiguous with 32 bytes per vector; thus
the input dataset is more than 8 MB in size.

6.1 Experimental Setup

For all three platforms, we present results varying the number of input vectors
and the number of threads on each platform. Our code uses a common set of
C files, and are compiled by a GNU Makefile framework for compiling for all
the three platforms. This common platform makes it easier, for us to work with
a common code base. The Intel Xeon 5160 was a two-processor system, with
two Intel Xeon 5160 dual-core processors running at 3.0 Ghz connected through
a 1.33 Ghz system bus. Each dual-core has a 4 MB L2 cache, and a 32 KB
L1 cache for data and a 32 KB L1 for instructions. Our platform for the Cell
Broadband Engine uses the IBM BladeCenter QS21; QS21 has 2 Cell Broadband
Engine chips running at 3.0 Ghz, that are also part of the Playstation 3. The
GPU platform is Nvidia 8800 GTX, which has 16 multiprocessors, with the size
of the global memory as 768 MB. The shared memory used among threads in
a block is 16 KB, and the number of registers per multiprocessor is 8192. The
host system is Intel Core 2 Quad CPU with more than 2 GB of memory, and
runs Fedora Core 7 kernel 2.6.23. The host files were compiled with gcc version
4.1.2, and the CUDA files were compiled with nvcc version 1.1, the object files
(CUDA and C) were linked in with gcc.
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Table 1. Performance of Intel Xeon

Number of In-
put Vectors

Threads Time (in sec-
onds)

2048 1 49.76
2 27.25
4 21.13

4096 1 200.87
2 105.59
4 70.16

8192 1 832.21
2 408.37
4 257.87

6.2 Results and Analysis

Table 6.2 shows the results for the Intel Xeon 5160, upto 4 threads. The results
represent the times for the fastest Jaccard kernel explained in Section 4; we time
each of the kernels, and the time in the Table 6.2 represent the lowest time of all
the available kernels. Each of the threads run on a single-core: thus, 2 threads
are running on a single Intel Xeon 5160 chip, and 4 threads on both the chips.
The parallelization has been implemented with POSIX threads.

Table 6.2 shows the results for the QS21 platform, with number of SPEs
varying from 1 to 16; the times shown represent the best values by varying nvecs
variable. We time execution on each SPE varying the nvecs variable, and the time
in the Table 6.2 represent the lowest time for possible values of nvecs. The nvecs
variable are varied from 16 to 1024 in our experiments, in multiples of 2. For lower
SPEs, a higher nvecs gives the optimal result, as load-balancing is not of critical
importance, but for higher SPEs, lower nvecs gives better results. Since each Cell
Broadband Engine chip has 8 SPEs, 16 SPEs represents running the Jaccard
coefficient on both the Cell Broadband Engine chips in the QS21. Comparing
the results to the Intel platform, it is important we do a chip-to-chip comparison:
thus, results for 4 threads on the Intel platform is equivalent to results
for 16 SPEs on the Cell Broadband Engine. Table 6.2 shows the times for
both the full and the reduced accuracy mode; more details on the reduced-
accuracy mode were discussed in Section 3.1. The fully SIMDized reduced-
accuracy mode, actually is 2-4X faster than the one with the scalar
division. This is due to two factors: the scalar division on the SPE is actually
being performed by multiple instructions, and thus ends up taking a significant
time of the total kernel. Also, with the reduced-accuracy mode, we keep the total
kernel completely SIMDized as well.

Table 6.2 shows the best results for the Jaccard workload on a single Nvidia
8800 GTX GPU. We time all possible combinations of threads and blocks; the
times in Table 6.2 represent the lowest time for all possible combinations varying
the thread layout (number of threads in a block Db and the number of blocks
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Table 2. Performance of Cell/B.E. architecture with varying number of SPEs

Number of In-
put

Number of
SPEs

Time (in sec-
onds)

Time (in sec-
onds)

Vectors (reduced-
accuracy)

(full-
accuracy)

2048 1 29.33 74.50
2 16.37 40.25
4 7.148 19.41
8 1.481 7.96
16 .242 0.815

4096 1 77.67 198.47
2 42.846 107.61
4 22.24 58.13
8 10.58 27.13
16 2.758 10.88

8192 1 320.814 801.18
2 163.416 423.11
4 89.15 219.66
8 56.199 111.13
16 23.12 42.85

Table 3. Performance of Nvidia 8800 GTX

Number of In-
put Vectors

Time (re-
duced ac-
curacy) in
seconds

2048 148.75
4096 587.87
8192 2385.14

in the grid Dg), in multiples of 2. The debugging switch mentioned before, will
also compare the GPU execution results with the host machine to make sure the
results are computed and stored correctly. As we mentioned before in Section 3.1,
GPU division operation is not fully IEEE compliant, as it can only be performed
through a reciprocal estimate. Thus, these results are equivalent to the
reduced-accuracy mode of the Cell Broadband Engine. As can be seen
from Table 6.2, GPU results so far are much slower than the Intel and the
Cell/B.E. architecture; however it is to be noted that global memory is still
being used for loading the inputs and storing of the results; this leads to reduced
bandwidth and is a bottleneck in the implementation.
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7 Conclusion

In this paper, we have evaluated the Jaccard workload on a variety of platforms
including the Cell Broadband Engine, Nvidia 8800 GTX GPU and multi-core
Intel Xeon 5160. We have developed a novel parallel algorithm for the
Cell Broadband Engine, that finds a substantially optimal parallel
solution through a runtime comparison of work allocated to SPEs.
The Cell Broadband Engine is shown to be upto 10X better in full
accuracy, and upto 50X better in reduced accuracy mode over the
comparable Intel platform.
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Abstract. Multiple sequence alignment is an important tool in bioinformatics. 
Although efficient heuristic algorithms exist for this problem, the exponential 
growth of biological data demands an even higher throughput. The recent 
emergence of accelerator technologies has made it possible to achieve a highly 
improved execution time for many bioinformatics applications compared to 
general-purpose platforms. In this paper, we demonstrate how the PlayStation®3, 
powered by the Cell Broadband Engine, can be used as a computational platform 
to accelerate the distance matrix computation utilized in multiple sequence 
alignment algorithms. 

Keywords: multiple sequence alignment, cell broadband engine. 

1   Introduction 

Multiple sequence alignment (MSA) of many nucleotides or amino acids is an 
important tool in bioinformatics. It can identify patterns or motifs to characterize 
protein families, and is therefore utilized to detect homology between sequences as 
well as to perform phylogenetic analysis. Many MSA heuristics have been proposed 
to reduce the exponential complexity of computing optimal MSAs. Heuristic MSA  
implementations include MSA[1], ClustalW[2], T-Coffee[3], MAFFT[4], DIALIGN 
P[5] and PRALINE[6]. ClustalW[2] has over 26,000 citations in the ISI Web of 
Science and is considered to be one of the most popular MSA tools. It is based on the 
progressive alignment method. Although not optimal, this method can produce 
reasonably good alignments at a good efficiency. However, the exponential growth of 
biological data demands an even better throughput. Thus, software approaches to 
improve the performance of ClustalW have been introduced, including caching[8, 9] 
and parallel processing[10-12]. 

The recent emergence of accelerator technologies such as FPGAs, GPUs and 
specialized processors have made it possible to achieve an improvement in execution 
time for many bioinformatics applications compared to current general-purpose 
platforms at a low cost. Recent usage of easily accessible accelerator technologies to 
improve the ClustalW algorithm include FPGA[13] and GPU[14].  

Our profiling of ClustalW has revealed that distance matrix computation is the most 
time consuming stage and typically takes up more than 90% of the overall runtime. 
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Therefore, accelerating this phase would greatly improve the performance as a whole. In 
this paper, we investigate how the Cell Broadband Engine, a heterogeneous multi-core 
architecture, can be used as a computational platform to accelerate the distance matrix 
computation in ClustalW. By taking advantage of multiple processors as well as SIMD 
vectorization, we are able to achieve speedups of two orders of magnitude compared to 
the publicly available sequential ClustalW implementation.  

The rest of this paper is organized as follows. Section 2 highlights important 
features of the Cell Broadband Engine. Section 3 briefly describes the ClustalW 
algorithm. Section 4 presents our mapping of the distance matrix computation onto 
the Cell Broadband Engine. Experimental results are presented in Section 5. Section 6 
concludes the paper. 

2   Cell Broadband Engine 

The Cell Broadband Engine[15] (Cell BE) is a recently introduced single-chip 
heterogeneous multi-core processor, which is developed by Sony, Toshiba and IBM. 
The Cell BE offers a unique assembly of thread-level and data-level parallelization 
options. It is operating at the upper range of existing processor frequencies (3.2 GHz 
for current models). Several examples of bioinformatics applications that has been 
ported to the Cell BE architecture include Folding@Home[16], FASTA[17], Smith-
Waterman[18] and RAxML[19].  

The Cell BE combines an IBM PowerPC Processor Element (PPE) and eight 
Synergistic Processor Elements (SPEs)[20]. An integrated high-bandwidth bus called 
the Element Interconnect Bus (EIB) connects the processors and their ports to 
external memory and I/O devices. The block diagram of the Cell BE architecture is 
shown in Figure 1. 

 

 

Fig. 1. Block diagram of the Cell Broadband Engine Architecture 
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The PPE is a 64-bit Power Architecture core and contains a 64-bit general purpose 
register set (GPR), a 64-bit floating point register set (FPR), and a 128-bit Altivec 
register set. It is fully compliant with the 64-bit Power Architecture specification and 
can run 32-bit and 64-bit operating systems and applications. Each SPE is able to run 
its own individual application programs. Each SPE consists of a processor designed 
for streaming workloads, a local memory, and a globally coherent Direct Memory 
Access (DMA) engine. The EIB is a 4-ring structure, and can transmit 96 bytes per 
cycle, for a bandwidth of 204.8 Gigabytes/second. The EIB can support more than 
100 outstanding DMA requests. 

The most distinguishing feature of the Cell BE lies within the variety of the 
processors it has, i.e. the PPE and the SPEs. Heterogeneous multi-core systems can 
lead to decreased performance if both the operating system and application are 
unaware of the heterogeneity. The PPE is designed to run the operating system and, in 
many cases, the top-level control thread of an application, while the SPEs is 
optimized for compute intensive applications, hence, providing the bulk of the 
application performance.  

The SPE can access RAM through direct memory access (DMA) requests. The 
DMA transfers are handled by the Memory Flow Controller (MFC). The MFC 
provides the interface, by means of the EIB, between the local storage of the SPE and 
main memory. The MFC supports DMA transfers as well as mailbox and signal-
notification messaging between the SPE and the PPE and other devices. Data 
transferred between local storage and main memory must be 128-bit aligned. The size 
of each DMA transfer can be at most 16 KB. DMA-lists can be used for transferring 
large amounts of data (more than 16 KB). A list can have up to 2,048 DMA requests, 
each for up to 16 KB.  

The PS3 uses the Cell Broadband Engine as its CPU, hence making it possible for 
users to create a high-powered computing environment for a fraction of the cost of a 
Cell Blade server. The PS3 utilizes seven of the eight SPEs, in which the eighth SPE 
is disabled to improve chip yields, i.e. chips do not have to be discarded if one of the 
SPEs is defective. Only six of the seven SPEs are accessible to developers as one is 
reserved by the operating system. Generally available PS3’s can be used for scientific 
high performance computing through installation of Linux (e.g. Fedora Core or 
Yellow Dog). Programs can be developed the using freely available C-based Cell BE 
SDK[21].  

3   Multiple Sequence Alignment 

ClustalW is highly popular sequential MSA software. It implements a progressive 
alignment method[22], i.e. it adds sequences one by one to the existing alignment to 
build a new alignment. The order of sequences to be added to the new alignment is 
indicated by a phylogenetic tree, which is called a guide tree. The guide tree is 
constructed from the similarity of all possible pairs of sequences stored in the distance 
matrix. Overall, the three stages of the ClustalW algorithm can be summarized as 
follows: 
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1. Distance matrix computation: each pair of sequences is aligned separately to 
calculate a respective distance value. These values are stored in a so-called 
distance matrix. 

2. Guide tree construction: the guide tree is calculated from the distance matrix 
using the neighbor-joining algorithm[23]. The guide tree defines the order 
which the sequences are aligned in the next stage. 

3. Progressive alignment: The sequences are progressively aligned in accordance 
to the guide tree. 

Given n number of sequences of length m, the distance matrix computation has a 
quadratic complexity of O(n2m2). Profiling the three stages of ClustalW using gprof 
shows that the distance matrix computation is the most computationally intensive 
phase and typically takes up more than 90% of the overall runtime. Hence, it can be 
concluded that accelerating the distance matrix computation would provide a good 
speed up for the ClustalW. 

Given a set of n sequences S = {S1, S2, …, Sn}. The distance of two sequences Si, Sj 
∈ S, is defined by Equation (1). 
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where nid(Si,Sj) denotes the number of exact matches in the optimal local alignment 

of Si and Sj with respect to the given scoring system and li and lj denotes the length of 

Si and Sj, respectively. 
Liu et.al[14] states that given two sequences S1 and S2 with affine gap penalties α 

and β and the substitution table sbt, a matrix NA(i,j) (1≤ i ≤ l1, 1≤ j ≤ l2) can be 
recursively defined as shown in Equation 2. 
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Using the matrix NA(i,j), the distance value d(Si,Sj) can then be redefined as shown in 
Equation 3. 

},min{

),(
1),( maxmax

ji
ji ll

jiNA
SSd −=  (3) 

A more detailed explanation and proof of these formulas is described in[14]. 

4   Mapping onto the Cell BE Architecture 

Figure 2 illustrates the mapping of distance matrix computation onto the Cell BE.  

 

Fig. 2. Mapping of our distance matrix computation algorithm onto the Cell B.E. 
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The algorithm starts by reading the input dataset. The PPE then preprocesses and 
divides the dataset into equal size blocks for each SPEs to process. Since the blocks 
are independent of each other, no thread synchronization is necessary during the 
calculations. The mailbox functions spe_in_mbox_write and spu_read_in_mbox are 
used to ensure that all the SPEs obtain their respective contexts in their local memory. 
Using the context data, each SPE then transfers any required information and 
necessary sequences. To improve transfer efficiency, the database sequences in main 
memory and in the local storage are aligned within the cache line and data structures 
are initialized during the transfer of the sequence. Once it has finished calculating all 
its respective nid(Si,Sj) scores, each SPEs sends the scores to the PPE in the form of a 
list. The PPE compiles the lists, calculates the distance values, and stores them in the 
distance matrix. The matrix is then written to a text file. The SPE pseudocode is 
shown in Figure 3. 

 

Fig. 3. Pseudocode of the SPE code 

The nid(Si,Sj) scores are computed in the SPEs in parallel using the Single 
Instruction Multiple Data (SIMD) registers using SPU intrinsics[24]. The pseudocode 
of the nid score calculation is shown in Figure 4. 

Based on Equation (3), nid(Si,Sj) can be computed without computation of the 

actual traceback, which can cost a lot of resources from storing the complete dynamic 

programming matrix especially for long sequences. Since all elements in the same 
minor diagonal of the dynamic programming matrix can be computed independent of 

each other in parallel, the computation is done in minor diagonal order. Given are the 

vector registers vH, vE, vF, vNA, vNE and vNF containing the values HA, E, F, NA, NE 
and NF, respectively. For each loop of c (1 ≤ c ≤ (l1+l2−1)), the values of HA, E, F, NA, 

NE and NF are computed. Calculations of the vH, vE, and vF vectors are done by 

utilizing the spu_cmpgt intrinsic, which compares each element of a vector with the 
corresponding element of another vector, to create vector masks. The masks are then 

used as patterns to generate the resulting vector using the spu_sel intrinsic, which 

selects the corresponding bit from either vector in accordance to a provided pattern 
vector. The masks used in the vE, vF and vH computations are used to determine the 

value of the corresponding vNE, vNF and vNA vectors, respectively.  

Initialization; 
Fetch the context data from the mailbox; 
Fetch the set of sequences using DMA transfer; 
While there are sequences to be processed 
 Calculate nid score; 

Compile the nid scores into a list nidlist; 
Send nidlist to PPE using DMA transfer; 
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Fig. 4. Pseudocode of nid score calculation 

5   Performance Evaluation 

A set of experiments has been conducted using different numbers of protein 
sequences i.e. 400 sequences of average length 408, 600 sequences of average length 
462, 800 sequences of average length 454, and 1000 sequences of average length 446. 
The measured runtimes are then compared to the original ClustalW implementation 
and the GPU-ClustalW implementation described in[14].  

All experiments have been carried out on a standalone PS®3 with Fedora Core 9.0 
operating system and the Cell Software Development Kit (SDK) 3.1. The sequential 
ClustalW application, available online at http://www.bii.a-star.edu.sg/achievements/ 
applications/clustalw/, was benchmarked on an Intel Pentium 4 3.0 GHz processor 
with 1 GB RAM running on Windows XP. The GPU-ClustalW implementation was 
conducted with Nvidia GeForce 7900 GTX graphic card with a 717 MHz engine 
clock speed, a 1.79 GHz memory clock speed, 8 vertex processors, 24 fragment 
processors, and a 512 MB memory, running on Pentium 4 3.0 GHz, 1 GB RAM with 
Windows XP. 

Table 1 shows the performance evaluation of our parallel algorithm using the 
above mentioned datasets. The term n(m) describes a dataset containing n sequences 
 

Table 1. Runtime comparison of distance matrix computation. The timing is measured in 
seconds. 

#sequences 
(average length) 

400 
(408) 

600 
(462) 

800 
(454) 

1000 
(446) 

ClustalW 833.1 1697.0 2966.6 4409.6 
GPU-ClustalW 73.7 150.0 249.0 368.8 
Playstation® 3 11.0 20.4 29.5 40.8 

 

Initialization; 
Load gOpen to vector vGapOpen; 
Load gExtend to vector vGapExtend; 
For c = 1 to l1+l2-1 
 Load the necessary vector registers for  
        minor diagonal computations; 

Calculate vector register of E vE; 
Calculate vector register of NE vNE; 

 Calculate vector register of F vF; 
Calculate vector register of NF vNF; 

 Calculate vector register of HA vH; 
 Calculate vector register of NA vNA; 
Extract nid as NA(imax,jmax); 
Return nid;  
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with an average length of m. By using all 6 SPEs available on the Playstation®3, our 
parallel algorithm achieves a runtime of 40.82 seconds for a dataset input of 1000 
sequences of average length 446.  

 
Fig. 5. Speed-up comparison of our implementation on the Playstation® 3 with ClustalW and 
GPU-ClustalW 

Figure 5 shows the speed-up obtained by our implementation compared to the 
ClustalW and GPU-ClustalW. Our implementation obtains an average speed-up of 
91.87x over all the datasets compared to the ClustalW implementation, with a peak 
speed-up of 108.03x for the 1000(446) dataset. The average speed-up of our 
implementation over the GPU-ClustalW is 7.87x, with a peak speed up of 9.03x for 
the 1000(446) dataset. 

Table 2. Detailed performance analysis of our parallel algorithm. The terms T and S describe 
the runtime and the speed-up compared to the previous row, respectively. 

#sequences 
(average length)

Processor 400 
(408) 

600 
(462) 

800 
(454) 

1000 
(446) 

  T S T S T S T S 
Baseline  
ClustalW 

Pentium 4  
3.0 GHz 

833.1 N.A 1697.0 N.A 2966.6 N.A 4409.6 N.A 

Baseline  
ClustalW 

PPE 667.86 1.24 1361.13 1.24 2379.0 1.24 3536.2 1.24 

Non-vectorized  
code 

PPE 357.89 1.87 717.83 1.89 1702.08 1.80 1871.08 1.89 

Vectorized code PPE+1SPE 57.15 6.26 113.41 6.33 168.54 7.83 237.12 7.89 
Vectorized code PPE+6SPEs 11.01 5.19 20.36 5.57 29.53 5.71 40.82 5.81 
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Table 2 shows a more detailed performance analysis of our parallel algorithm using 
the above mentioned datasets. It compares the runtimes of our implementation and the 
baseline ClustalW on various processors. The performance analysis breaks down the 
speedup obtained by each phase of the improvement made by our implementation. 
The non-vectorized code is implemented according to the algorithm described in 
section 3, without the use of SIMD vectorization. The vectorized code is implemented 
according to section 4. 

6   Conclusion 

We have presented a parallel algorithm on the Cell B.E. heterogeneous multi-core 
system for the distance matrix computation used in multiple sequence alignment 
algorithms. Our implementation on the Playstation®3 achieves an average speed-up 
of 91.87x compared to the publicly available sequential ClustalW implementation.  
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Abstract. The Sun UltraSparc T2+ processor was designed for throughput com-
puting and thread level parallelism. In this paper we evaluate its suitability for
computational science. A set of benchmarks representing typical building blocks
of scientific applications and a real-world hybrid MPI/OpenMP code for ocean
simulation are used for performance evaluation. Additionally we apply micro
benchmarks to evaluate the performance of certain components (such as the mem-
ory subsystem). To recognise the capabilities of the T2+ processor we com-
pare its performance with the IBM POWER6 processor. While the UltraSparc
T2+ is targeted on server workloads with high throughput requirements via low-
frequency core design and massive chip multithreading capabilities, the ultra-
high frequency core design of the IBM POWER6 optimised for instruction-level
parallelism follows a contrary approach. The intention of this evaluation is to in-
vestigate whether the current generation of massive chip multithreading proces-
sors is capable of providing competitive performance for non-server workloads in
scientific applications.

Keywords: Sun UltraSparc T2+, Niagara2, Evaluation, Computational Science.

1 Introduction

The improvement of single-core processor performance has reached technological lim-
its known as power, memory, and instruction-level parallelism (ILP) walls. Chip mul-
tithreading technologies (CMT) [15] are considered as a viable approach to overcome
most of these limitations. CMT is based on the employment of multiple cores per chip
usually in combination with simultaneous multithreading (SMT) capabilities. CMT de-
signs adhere to the principle that with lower frequencies and a higher number of SMT
enabled cores, performance gains can be achieved while keeping power consumption
at modest levels. These CMT/SMT design principles are incorporated in the Sun Ultra-
Sparc T2 processor (codenamed Niagara-2) [14].

The Sun UltraSparc T2 was designed as a scalable solution for fast growing datacenter
applications, its main target being emerging web- and database markets. The massively
multithreaded nature of the T2 chip reflects the market’s need for a high throughput so-
lution that can serve hundreds of clients on one single processor die. In April 2008 the
T2+ processor [18] was introduced as an SMP extended version of the T2 processor al-
lowing multiple processors to be used within a single system. The achievable savings in

G. Allen et al. (Eds.): ICCS 2009, Part I, LNCS 5544, pp. 964–973, 2009.
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system costs per customer make massively multithreaded architectures very appealing to
growing businesses, but for computationally intensive scientific computing applications
it is unclear if these architectures can provide enough raw computational power.

In this paper we evaluate the suitability of the T2+ processor for computational sci-
ence. A comprehensive measurement-based performance analysis study of the T2+
processor involves microbenchmarks, a collection of typical scientific kernels, and a
real world ocean simulation application. We use microbenchmarks for the performance
evaluation of certain system components. This includes an evaluation of the sustain-
able memory performance with the STREAM memory microbenchmark [8]. The NAS
parallel benchmarks [1] serve as representatives of commonly used building blocks
for scientific applications. To complement our performance evaluation study we use a
real-world hybrid MPI/OpenMP Fortran90 code [4] that simulates the western intensi-
fication of wind-driven ocean currents.

To highlight the limitations and capabilities of the T2+ processor we provide a per-
formance comparison with the IBM POWER6 [6] processor. While the UltraSparc T2+
is designed for server workloads with high throughput requirements via low-frequency
core design and massive chip multithreading capabilities, the ultra-high frequency core
design of the IBM POWER6 optimised for instruction-level parallelism follows a con-
trary architectural approach. Our aim is to find out if the current generation of massive
chip multithreading processors is able to provide competitive performance for non-
server workloads in scientific applications.

This paper is structured as follows. Section 2 gives an overview of the tested com-
puting systems. The benchmarks are presented in Section 3. Section 4 presents and dis-
cusses the results of our performance analysis. Related work is discussed in Section 5.
Finally, Section 6 concludes the paper and briefly describes future work.

2 Experimentation Platforms

In this section we describe the hardware and software environments of the computer
systems used in our performance analysis study: (1) Sun T5140 Server and (2) IBM
BladeCenter JS22. Table 1 summarises the main features of the analysed systems.

Cross Bar

L2$ L2$ L2$L2$ L2$ L2$ L2$ L2$

Coherency Unit Coherency Unit Coherency UnitCoherency Unit

Memory Controller Unit Memory Controller Unit

System Interface PCI Express

UltraSPARC T2 Plus

FPU
SPU

Core 2

FPU
SPU

Core 3

FPU
SPU

Core 4

FPU
SPU

Core 5

FPU
SPU

Core 6

FPU
SPU

Core 7

FPU
SPU

Core 8

FPU
SPU

Core 1

Fig. 1. T2+ processor block diagram[18]

SUN UltraSparc T2 Plus. The Sun
T5140 Server [17] is comprised of two
Sun UltraSPARC T2 Plus (codenamed
Niagara-2) multi-core processors. The T2
Plus processor [14], which was intro-
duced in April 2008, is an SMP extended
version of the T2 processor allowing mul-
tiple Chip-level MultiThreading (CMT)
processors to be used within a single sys-
tem (shown in Figure 1). In the T2 ar-
chitecture, massive chip multithreading is
favoured over single thread performance.
With concurrent execution possibilities of

64 threads per chip sustained processor performance and scalability are crucially de-
pendent on efficient memory access mechanisms. Hence, the eight SPARC cores are
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Table 1. Testing environments

System Sun T5140 Server IBM BladeCenter JS22
CPU’s 2x 1.2 GHz Sun UltraSparc T2+ 2x 4 GHz POWER6
Cores (System) 8(16) 2(4)
L1 instr. cache (core) 16KB 64KB
L1 data cache (core) 8KB 64KB
L2 cache (CPU) 4MB 2x 4MB
L3 cache (CPU) - 32MB
HW Threads (CPU) 8x 8 (SMT) 2x 2 (SMT)
HW Threads (System) 128 8
Memory 8x 4GB 667MHz FBDIMM 8GB DDR2 DRAM
OS Solaris 10 5/08 AIX 6.1
C Compiler SUN Studio C 5.9 IBM XLC/C++ 10.1
Fortran Compiler Sun Fortran 95 8.3 IBM XLF 12.1
Optimization -O3 (max) -O5 (max)
MPI OpenMPI 1.2.5 -

connected via a high bandwidth crossbar to eight memory banks of a shared 4MB L2
cache. Each core can execute up to eight threads simultaneously. One core provides
two integer execution units (EXU), one floating point and graphics unit (FPU) and a
specialised stream processing unit (SPU) for cryptographic acceleration. The L2 cache
banks are connected to two memory controllers (MCU).

IBM POWER6. The IBM BladeCenter JS22 is comprised of two IBM POWER6 multi-
core processors. In comparison to the UltraSparc T2 the IBM POWER6 microarchitec-
ture [6] follows a contrary architectural approach. Ultra high frequency core design
(up to 4.7Ghz) optimised for ILP is favoured over massive chip multithreading (that is
TLP). Based on the POWER5 microprocessor, the POWER6 architecture implements
two high-frequency simultaneous multithreading (SMT) cores per chip. SMT enables
simultaneous execution of up to two threads per core. With its 4MB core-private L2
caches and a large shared 32MB L3 cache the POWER6 microarchitecture is optimised
for performance and computational power. The SMP interconnect facilities enable sys-
tem configurations of up to 32 POWER6 processors.

Operating system and environment. Our goal was to evaluate the systems under re-
alistic conditions. To achieve this, we used typical vendor setups where applicable.
This means, that we used the vendor’s operating system and compiler tool-chain (see
Table 1), and allowed maximum compiler optimisation. For OpenMP and MPI compi-
lation the corresponding tools and flags in the compiler tool-chain were used.

Scheduling policies. Consistent with our goal to use realistic conditions, we did not
manipulate the operating system scheduling policies. With the OpenMP scheduler we
also didn’t change the policy, except for comparison runs with the NAS Benchmarks on
the T2+, where we were interested in a single chip performance evaluation. Since the
systems were delivered with SMP dual- chip configurations we needed to delegate the
execution of OpenMP [11] threads to a specific processor. This was achieved via
the native task schedulers.
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3 Benchmarks

In this section we describe the software used for performance analyses. We use a collec-
tion of microbenchmarks for performance evaluation of individual system components
(such as the memory subsystem). The NAS Parallel Benchmarks serve to evaluate the
performance of typical building blocks that frequently appear in computational science
applications. As an example of scientific applications, we use an ocean simulation code
with a hybrid MPI/OpenMP programming model.

Microbenchmarks. The STREAM Memory Benchmark [8] is a synthetic benchmark
that measures the performance of four operations on large vectors: (1) copy, (2) add,
(3) scale (involves multiplication operations), and (4) triad (combines copy, add and
scale). The main goal of the STREAM benchmark is a realistic evaluation of sustainable
memory performance. Cache Bench is a specialised memory benchmark designed for
evaluation of memory hierarchy performance. Different tests are used including read,
write, modify operations and the memset() and memcpy() functions from the C library.
Each test is executed using several vector sizes [9]. DGEMM [3] tests the floating point
performance of a double precision Matrix-Matrix multiplication via hardware optimised
Level-3 Blas routines [2].

NAS Parallel Benchmarks. This benchmark suite was originally developed by the Nu-
merical Aerodynamic Simulation (NAS) program at the NASA Ames Research Center
for effective evaluation of platforms for computational fluid dynamics (CFD) applica-
tions. The NAS parallel benchmark (NPB) suite [1] has proven to be a credible solution
for measuring computational performance of parallel computer systems. In our perfor-
mance evaluation study we use a C version of NPB 2.3 parallelised with OpenMP [11]
that was developed by the Omni OpenMP Compiler Project [10]. We have selected four
NPB benchmarks: FT, CG, LU, and EP. The FT benchmark executes a 3-D fast Fourier
Transform (FFT) based kernel. In the CG benchmark a Conjugate Gradient method is
used to approximate the smallest eigenvalue of a sparse matrix. The EP (Embarrassingly
Parallel) kernel generates pseudo-random numbers and can be used as an estimation of
the systems scalability. In the LU application benchmark a block lower triangular-block
upper triangular system of equations is solved [1]. In our performance experiments all
benchmarks have been executed with the problem size indicated as Class B.

Ocean Simulation. This is a real-world hybrid MPI/OpenMP Fortran90 code [4] that
simulates the western intensification of wind-driven ocean currents [16]. A 2D Stommel
Model of Ocean Circulation (2D-SMOC) is solved by using a five-point stencil and
Jacobi iteration. We use this application to complement the performance evaluation
results of Micro- and NAS benchmarks.

4 Results

In this section we present the performance evaluation results obtained using micro
benchmarks, NPBs, and the ocean simulation application. Our primary aim is to eval-
uate the suitability of the T2+ processor for computational science. We use the perfor-
mance results of the POWER6 processor for comparative purposes only.
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4.1 Microbenchmarks

Memory access is a limiting factor of the performance of many scientific computing ap-
plications. For an estimation of sustainable memory performance we used the STREAM
memory benchmark (see Section 3) with a variable number of threads. All operations
were executed on large vectors. The performance results obtained are depicted in Fig-
ure 2(a). With increased thread count the T2+ based system is able to constantly increase
overall memory bandwidth until up to 16 threads. On the POWER6 system the memory
performance gain in multithread runs is less intense. We may observe that for single
thread runs the memory bandwidth of the T2+ based system is about five times lower
compared to the POWER6.

(a) STREAM (Triad) (b) Cachebench

Fig. 2. Performance evaluation of the memory subsystem using STREAM and Cachebench

Figure 2(b) depicts the evaluation of memory bandwidth using Cachebench for var-
ious vector sizes. Data was acquired in single thread runs of the read/modify/write test
with vector lengths between 256 byte and 100MB. A bandwidth drop can be seen be-
tween the L1 (8KB) and the L2 cache on the T2+. The change between the L2 cache and
the main memory is less distinctly observable via this test for the T2+. On the POWER6
based system we see drops between L1 and L2 cache at 64KB and between L2 and the
main memory at the L2 cache size of 4MB. We may observe that Cachebench perfor-
mance results of T2+ are significantly lower than POWER6 for all tested vector sizes.

Figure 3(a) depicts the evaluation of sustainable floating point performance using
DGEMM benchmark. This benchmark uses system vendor SMP optimised Level3-Blas
subroutines with a fixed matrix dimension and a variable number of threads. The bench-
mark results confirm the design principles of the T2+ system with low single thread
performance but excellent scaling capabilities. The maximum performance of 37.18
GFlop/s is achieved on the POWER6 system in a 4-thread run. For the DGEMM bench-
mark the use of SMT on POWER6 system shows a steep performance drop when the
number of SMT threads is larger than the number of physical cores. This is contrary to
the T2+ system where a maximum performance of 16.69 GFlop/s is observable at the
maximum number of 128 available SMT threads (please note that our evaluated T2+
based system has 16 physical cores).
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(a) DGEMM Performance in GFlops (b) NPB EP Execution Time

(c) NPB LU Execution Time (d) NPB FT Execution Time

Fig. 3. Performance results for the DGEMM, NPB EP, NPB LU, and NPB FT benchmarks

4.2 NAS Parallel Benchmarks

In this section we investigate the performance of a subset of the NPB benchmarks on
the T2+ and POWER6 based systems. The aim is to identify NPBs that perform well
on T2+ based systems. We used the problem size that in NPB is indicated as Class
B in all presented experiments. On the T2+ based system the maximum number of
SMT threads was set equal to the number of available logical CPUs (128). On the
POWER6 based systems we performed experiments up to the limit of 8 SMT threads.
With these settings we could investigate performance of the systems under demand for
heavy resource sharing and per core context switching.

Figure 3(b) depicts performance evaluation results obtained using the NPB EP bench-
mark. The NPB EP benchmark generates pairs of Gaussian random deviates. This em-
barrassingly parallel task is obviously very well suited for the massively multithreaded
T2+. The T2+ based system exhibits a nearly linear speedup. We may observe that the
highest achievable performance of the NPB EP benchmark on T2+ based system is
higher than on POWER6. This is due to the larger number of cores and better SMT
capabilities of T2+. But, the POWER6 system clearly outperforms the T2+ in single
thread performance and computational core power.
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The performance evaluation results obtained using the NPB LU benchmark are de-
picted in Figure 3(c). NPB LU benchmark uses a symmetric successive over-relaxation
(SSOR) method to solve a seven-block-diagonal system. A pipelined algorithm is used
to solve the triangular systems [5]. We may observe in Figure 3(c) that for large num-
bers of threads the T2+ based system outperforms the POWER6. However, due to the
LU synchronisation overhead, the increase of performance with the number of threads
is not as high as for EP.

Figure 3(d) depicts performance evaluation results obtained using the NPB FT bench-
mark. The FT benchmark performs a 3-D FFT by execution of three 1-D FFT routines.
Therefore the 3-D data is copied into 1-D work arrays for each dimension. Before the
final 1-D FFTs are performed, array transposes take place [13]. With elevated commu-
nication demand the scaling abilities of the T2+ are limited. For FT benchmark the T2+
is unable to reach the POWER6 system’s performance in any of our test cases. We may
observe that on the T2+ system almost no speedup can be achieved with more than 32
threads.

Figure 4 depicts the speedup of the EP and CG benchmarks on the T2+ based system.
For this evaluation we compared the speedup of the system when both T2+ chips are
used with the case when only one of the available two chips is used. Although we ran
these tests with all problem sizes, only Class B tests will be discussed here. The Class
B provided the most interesting results, by being able to utilise the available resources.

(a) Speedup NPB EP (b) Speedup NPB CG

Fig. 4. The speedup of EP and CG benchmarks on the T2+ based system. Speedup when both
available T2+ processors are used is compared to speedup when a single T2+ processor is used.

The speedup of EP benchmark is depicted in Figure 4(a). If both T2+ chips are used,
the EP benchmark shows the best speedup of 76.15 when executed with 128 threads.
Up to 32 threads the speedup is nearly linear. If only one of the available two T2+
chips is used, the speedup is slightly lower and reaches its maximum with 64 threads
for both benchmarks. For more than 64 threads there is no performance improvement
if a single T2+ chip is used, but also no dramatic performance drop. This is due to the
embarrassingly parallel nature of the EP benchmark.

Figure 4(b) depicts the speedup of the CG benchmark. The CG benchmark uses a
Conjugate Gradient method to approximate the smallest eigenvalue of a sparse matrix.
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Due to the communication demand of the CG benchmark the single chip run can take
advantage of data locality. For 64 threads the execution of the CG benchmark on a single
chip shows better speedup and performance (measured in absolute execution time) than
the case when both chips are used. For more than 64 threads there is a clear performance
drop for both cases. In this experiment the SMP interconnect seems to be a bottleneck
when a high number of threads is used.

4.3 Ocean Simulation

In this section we investigate the performance of a real-world Ocean Simulation ap-
plication on our T2+ based system. This application is implemented in Fortran90 and
parallelised using MPI and OpenMP (see Section 3). While the initial data partitioning
is done via message passing, the Jacobi iterations are parallelised with OpenMP [11].
The nature of this application allows an investigation on the impact of combination
of these programming models. Therefore, we conducted multiple performance experi-
ments for various numbers of MPI processes and OpenMP-threads. Figure 5 depicts the
performance results obtained on the T2+ based system.

(a) OpenMP (b) OpenMP/MPI

Fig. 5. Performance results for the ocean simulation application

In Figure 5(a) are presented performance results obtained when the number of MPI
processes is constant (a single MPI process is specified) and the number of OpenMP
threads is varied from one to 128. The results reveal that this application scales well on
the T2+ based system when the number of OpenMP threads is varied. The best result
(21.92 seconds) is achieved when all 128 OpenMP threads are used.

Figure 5(b) depicts the performance results that are obtained for various combina-
tions of the number of MPI processes and OpenMP threads, where the sum of MPI
processes and OpenMP threads is kept constant at 128. The best result (11.25 seconds)
is obtained for 64 MPI processes each having two OpenMP threads.

5 Related Work

There exist many different techniques for performance evaluation of highly parallel
computer systems. Measurement-based performance evaluation approaches are
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commonly used for the evaluation of existing computer architectures, while the model-
based approaches are typically used to answer what-if questions for future architectures
that are under the development. In [12], a measurement-based approach is used for
the evaluation of the Intel Woodcrest processor for scientific computing using a set of
benchmarks. An evaluation of the STI Cell/B.E. processor using scientific computing
kernels is presented in [20]. In [7], a model-based approach is used for performance
evaluation of bioinformatics applications on GPU-accelerated architectures. In [19], a
sparse matrix-vector multiply kernel is optimised for different multicore platforms. This
approach may have the benefit of discovery of algorithmic optimisations for a specific
hardware.

In this paper we present a comprehensive measurement-based performance analysis
study of the T2+ processor, which aims at investigating the suitability of this processor
for computational science. For this purpose we use, alongside the NAS parallel bench-
marks, a collection of microbenchmarks and a real world ocean simulation application.

6 Conclusions

CMT systems like the SUN UltraSparc T2+ are especially well suited for server work-
loads with a high level of thread parallelism. In our experimental evaluation for the
scientific computing domain we observed excellent scaling capabilities on workloads
with little or no inter-thread communication such as the NPB EP benchmark. However,
for problems with higher communication demand (such as NPB CG benchmark) or un-
predictable memory access patterns the T2+ shows performance drawbacks. Due to the
high number of threads, increased communication overhead becomes more severe on
the T2+ than on high frequency multi-core designs like the IBM POWER6. This issue
is further aggravated in SMP configurations where multiple T2+ processors are used.
We have observed that for communication-intensive codes such as NPB CG, better per-
formance may be achieved using only one of the two available T2+ processors. Using
a real-world ocean simulation hybrid code we conducted multiple performance experi-
ments for various numbers of MPI processes and OpenMP-threads. The best result was
obtained for a combination of a rather larger number of MPI processes with a small
number of OpenMP threads.

In the future we plan to investigate the performance of emerging multi-core systems
using model-based evaluation techniques.

Acknowledgements. The authors are grateful to Martin Wimmer for numerous discus-
sions and helpful comments regarding the work presented in this paper.
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Abstract. Many important scientific, engineering and financial appli-
cations can benefit from offloading computation to emerging parallel
systems, such as the Cell Broadband EngineTM(Cell/B.E.). However,
traditional remote procedure call (RPC) mechanisms require significant
investment of time and effort to rewrite applications to use a specific
RPC system. As a result, offloading functions to remote systems is not
viable for many applications. IBM R© Dynamic Application Virtualization
TM(DAV) insulates the application developer by automatically generat-
ing stub libraries that allow direct calling of remote procedures without
application source code modification. In this paper, we describe DAV
automates the conversion of client applications to use remote procedure
calls. DAV can generate stub libraries for a wide variety of client ap-
plications running on a variety of architectures, allowing allows simple
and fast remote procedure call enablement of applications with minimum
programming effort.

Keywords: Offload computing, computer architecture, parallel
computing, remote procedure call.

1 Introduction

Offloading computation onto remote computer systems is a useful way to accel-
erate computationally intensive applications. For example, in the financial ser-
vices sector, spreadsheet applications are used to evaluate options prices using
the Black-Scholes formula. This is a computationally intensive algorithm which
can be significantly accelerated on specialised processors such as the Cell/B.E.
[2]. Offloading the Black-Scholes formula onto remote high performance systems
significantly improves performance of the spreadsheet, allowing faster response
to financial market conditions. Offloading calculations from the application to
the remote library is a significant challenge in the industrial setting however.

Traditional remote procedure call (RPC) mechanisms enable applications to
call functions from libraries running on remote machines. These systems require
the client application to use a specific API, forcing an application rewrite. The
time and effort required is significant and, as a result, offloading functions using
traditional remote procedure call mechanisms is often not viable. Such RPC
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mechanisms can also create maintenance problems since changes in the API
require rewriting the client applications. In the industrial domain, these problems
are a major barrier to offloading computation to systems optimised for particular
types of processing, such as machines based on the Cell/B.E. processor, which
is heavily optimised for numerical computing [2].

The Virtualizer component of IBM Dynamic Application Virtualization (DAV)
addresses this problem. Based on library and function specific tags supplied by the
library developer, the Virtualizer generates libraries that exactly mimic the inter-
face of the local machine libraries. As a result, no application code changes are re-
quired to offload functions to remote machines using DAV. The client application
need only relink to the Virtualizer generated libraries, instead of the native code
libraries. The Virtualizer currently generates stub libraries C, C++ and Java stub
libraries. These stub libraries are generated from simple tags in a small domain-
specific language. Furthermore DAV can be extended to support other languages
and applications if required.

This paper presents an overview of DAV and the Virtualizer tool and we
discuss the efficacy of using generative code techniques to eliminate application
code changes when offloading functions to remote machines. The paper starts
with an overview of the DAVsystem in section 2.1. Section 3 then continues
with a discussion of the problems faced in automatically generating libraries
that handle variables and function parameters with unknown size and usage.
In section 4 we describe how Virtualizer uses a simple domain-specific language
to describe the size and usage of parameters, and a generator to automatically
generate interface code for remote procedure calls. Finally in section 5, a brief
discussion of a traditional remote procedure call system, RPCGen, is included.

2 DAV Overview

2.1 DAV Architecture

The default DAV data transport system provides a flexible, extendable, light
weight, low-latency infrastructure to allow client applications to access libraries
on remote systems, giving clients access to multiple remote libraries, or services,
through a central broker. Services register availability with the broker, which
then maintains information on the available services. To increase availability of
a service, multiple instances of a service can be run concurrently on multiple
machines. In order to access an DAV service, client applications send a service
request to the broker and the broker then chooses the best available service
node to process the request. The client processes its service request by interacting
directly with this service node. DAV services can run on various high performance
architectures including x86 processors and the Cell/B.E. processor. Thus the
broker provides a single interface to multiple services, running on multiple nodes
with heterogeneous architectures.

DAV can use other transport systems. For example, DAV could use a third party
grid scheduling system. This is possible since DAV defines a simple interface API.
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Fig. 1. DAV Architecture

Any transport subsystem that implements this API can be used by DAV. By im-
plementing a wrapper interface for this grid scheduling system, an organisation
can use DAV to allow their applications to easily offload calculation to remote
machines, whilst utilising their investment in their existing grid infrastructure.

The DAV code generator generates client-side stub libraries that duplicate the
interface of the original native code libraries. These libraries enable client appli-
cations to call remote library functions without changing the application source
code. For an application to use DAV services, the library developer must write
tags, which are included in the library header file, for all the functions in the li-
brary to be offloaded. The Virtualizer takes the modified header file as input and
uses the DAV tags to generate client-side stub libraries and server-side skeleton
libraries. The server-side skeleton libraries are automatically deployed to the re-
mote server using the DAV deployment tool. To access the offloaded library, the
client application need only be linked to the generated client stub libraries instead
of to the original native code libraries. Once the DAV service has been started and
registered with the broker, the offloaded library is available for use.

Traditional function offload systems require that the client application is
rewritten to use a specific API; a process which is often difficult and time-
consuming. The resulting code can be difficult to maintain since changes to
the API require rewriting of the client application. Automatically generating
libraries that handle all communication to and from the DAV services addresses
these problems, making DAV-enabled applications easy to use and maintain.
If the DAV infrastructure changes then the developer need only regenerate the
stub libraries and relink the application.

2.2 DAV Application Areas

Performance is is often limited by the hardware platform running an application.
For example, a spreadsheet performing computationally intensive data analysis
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is limited by the desktop computer it is run on. Meanwhile, specialised high
performance computing systems such as the Cell/B.E. processor can deliver sig-
nificant performance improvements over standard processors for many common
computing kernels [3,8]. Larger multiple processor machines such as clusters of
x86 or Cell/B.E. processors now provide significant processing power and DAV
offers an excellent solution to accessing the performance of these systems from
existing applications.

DAV is initially targeted at the financial services sector, but it has applications
in other fields of business, science and engineering. For example many science
and engineering applications are based on standard linear algebra packages such
as BLAS [4]. The Cell/B.E. delivers significant performance for many of the
core BLAS routines, and DAV provides a straightforward way to access this
performance.

3 RPC Challenges

Many languages, including C, do not have self-describing data structures. Given
a pointer to a data structure, the language doesn’t know the size or shape of
the data structure. Pass-by-reference array parameters are an example of this
problem. Unless the size of the array is known at compile time, then extra in-
formation must be passed to the function to indicate the size of the array. An
example of this is shown in figure 2. Unknown parameter sizes are a problem
for remote procedure offload systems such as DAV, since the operand data must
be transferred to the remote server and unless the size of the data is known,
data transfer is not possible. Thus some mechanism is required to specify the
size of pass-by-reference parameters to allow DAV to generate correct stub li-
braries.

Pass-by-reference parameters can also be modified within a function, or a
function may allocate memory to a pointer passed as a parameter. As a result,
operand data may only need to be sent, retrieved, or sent and retrieved. The
C language syntax does not specify how a pointer passed to a function is used
inside the function and, to maximise efficiency, data should only be transferred
when necessary. Again, a mechanism is required to specify the transfer direction
of pass-by-reference parameters.

4 A Solution: DAV Tags

DAV tags provide a solution to automatic transfer of pass-by-reference parame-
ters. Using these tags, the library developer can specify that a function is to
be hosted in the remote library, and the size and transfer direction of any
pass-by-reference parameters. DAV tags are based on the DOxygen/JavaDoc
tags used to specify documentation information within application source code.
DAV tags can also pass other information to the Virtualizer, such as the li-
brary name or information about structs. The format of the DAV tags is as
follows:
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/**IBMDAV*
@tagType value
@property value
@property value
... */

There are three main tag types:

1. Library tags specify settings for the entire library including adding prefixes
or suffixes to DAV exported functions.

2. Function tags set properties for specific functions, including the size and
transfer direction of pass-by-reference parameters and return values.

3. Struct tags are used to inform the Virtualizer about any structs used by DAV
exported functions, including the size of any pointer type struct members.

Various property tags are used by the three tag types, and are shown in table 1.

Table 1. DAV semantic property tags

Property Tag Purpose Used with
@library <name> Library name -
@func <name> Virtualize function <name> -

@struct <name> Describe struct <name> -
@param[in|out|inout]<name> Function-param details @func, @struct

@return Specify size of returned data @func
@dimensions [<size>] Specify size of an array @param, @return

@ type string Denote string parameter @param, @return
@prefix <p>, @suffix <s> Function prefix or suffix @library
@lib options “<options>” Additional linker options @library

Figure 2 shows a C function that takes two pointers to arrays as operands,
along with an integer to specify the size of the arrays. Also shown in figure 2
are the tags required for the Virtualizer to create stub libraries for the function.
The Virtualizer handles the integer parameter s, automatically because it is a
scalar type, but extra information is required for the two pointer parameters
to describe the data that they point to. In this case, they are both pointers to
arrays of size s. The first array, a, is input only, whilst the second, z, is both
an input and an output since it is modified by the function. The @param and
@dimensions tags are used to pass this information to the Virtualizer.

Figure 3 shows the code generation process used by the Virtualizer. The user
runs the Virtualizer from the command line, passing the library header file in-
cluding tags, as input. The Virtualizer checks the syntax of the C header def-
initions and of the tags, and parses the header file using the Eclipse C/C++
parser, CDT. Function prototype information is extracted and stored in a tem-
porary internal representation. The tags are extracted from the header file using
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/**IBMDAV* @function calcArray
@param[in] a @dimensions[s]
@param[inout] z @dimensions[s] */

double calcArray( double *a, double *z, int s ){
double res = 0;
for (int i = 0; i < size; i++) {

z[i] = a[i]{*}2;
res += z[i];

}
return res;

}

Fig. 2. Function with DAV tags for unknown parameter size and transfer direction

CDT and passed to the Java parser-generator, Javacc, which extracts the in-
formation from the tags and stores it. The Virtualizer processes the stored tag
and the header file information, combining them into a single XML document.
Using XSLTs, the Virtualizer produces the source code for both client-side stub
libraries and server-side skeleton libraries. Finally the client-side stub library is
compiled on the client system. The server-side skeleton library is then deployed
to the machine that will run the service using the DAV deployer tool.

When run using the tag information shown in figure 2, the Virtualizer will
produce a client-side stub library that exports a calcArray function with iden-
tical syntax to the original native code function. This function consists of code
to construct the transportable data, manage calling of the remote DAV func-
tion and extract the returned result data. All interactions with the underlying
infrastructure are completely contained by the generated function, so no code
changes to the client application source are required.

By using generative code techniques DAV supports a variety of client types
including C, C++, Java and VBA applications. C/C++ are supported for server
side libraries. All standard basic types in each language are supported as well
as strings, arrays, two dimensional arrays and data structures. Pointers to all
of these types, including pointers to arrays of up to two dimensions, are also
supported. All supported types are natively supported, no DAV specific types
are required, so DAV requires no client side code changes of any kind.

5 Related Work

RPCGen is an example of a traditional API based RPC mechanism [5]. RPC-
Gen simplifies the use of RPC by generating stub libraries that wrap much of the
RPC API. However RPCGen still requires significant code changes to the client
application. RPCGen remote procedures use a different function call syntax to
the original native code functions, and some parameter types, such as variable
length arrays, must use RPC specific data types instead of the native C types.
As a result the client application code must be changed to allow RPCGen re-
mote procedures to be used. A significant amount of work is required to convert
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Fig. 3. Code generation process

double *matrix = new double[N*N];
for ( int i = 0; i < N; i++ ) {
matrix[i] = i;

}
result res;
result *resPtr;
double sum = summat(&m, *N, &resPtr);

Fig. 4. Original Native Source Code

an application to use RPCGen remote procedures, as shown by comparing the
original source in figure 4 with the source modified to use RPCGen in figure 5.

CORBA is an object request broker system that allow applications written
in different languages to exchange data objects [1]. CORBA uses a language-
independent interface definition language (IDL) to define the interface between
client applications and the object broker system. This interface code is then
compiled into language-specific stub and skeleton libraries using the IDL com-
piler provided with a CORBA implementation. The use of an interface definition
language allows CORBA implementations to insulate the application developer
from some of the complexity of the CORBA object broker system. However sub-
stantial code changes are still required, as can be seen in figure 6. Component
Object Model (COM) from Microsoft is another technology that allows different
applications to interact though a common object format [6]. In a similar fashion
to CORBA, COM uses an IDL to define the interface between applications and
the COM data transport system.
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double *matrix = new double[N*N];
for ( int i = 0; i < N; i++ ) {
matrix[i] = i;

}
matrices m;
m.matrix_len = N*N;
m.matrix_val = matrix;

result res;
result *resPtr;
double sum = *summat(&m, *N, &resPtr);

Fig. 5. Example of use of RPCGen specific types for 2d matrix function

CORBA_ORB_var = CORBA_ORB_init();
ifstream in(Example.ref);
char s[1000];
in >> s;
CORBA_Object_var obj = orb->string_to_object(s);
Example_var p = Example::_narrow(obj);

double *matrix = new double[N*N];
for (int i = 0; i < N; i++) {
matrix[i] = i;

}
result res;
double sum = p->summat(matrix, N, &res);

Fig. 6. Example of CORBA code changes for a 2d matrix function

Automatically partitioning an application to distribute it across multiple sys-
tems is a related problem to the one we address. An example is J-Orchestra
[7] which can automatically partition and distribute Java bytecode programs to
execute just as if they were running on a single system. J-Orchestra works by
rewriting the Java bytecode to insert an extra level of indirection into all object
references. By intercepting memory accesses in this way, references to objects on
remote systems can be redirected, and similarly local method invocations can be
replaced by remote procedure calls. It is important to note that J-Orchestra only
works because Java has well-behaved references and self-describing data struc-
tures. Redirecting all memory references would be much more difficult in C/C++
because general pointers can be used to access arbitrary parts of memory.

6 Experimental Results

To maximise the performance gain from calculation offload to a remote system
using DAV, the offload overhead must be minimised. There are two main causes
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Table 2. DAV latency performance data

Performance Test Latency (μs)
Local Transport 59.9
DAV Transport (localhost interface) 260
DAV Transport (remote server, Gigabit Ethernet) 406

of overhead in an DAV request. The first is the data marshalling overhead which
is the time required to pack and unpack request and result data into a trans-
portable format. The second overhead is the cost of transporting the data to the
remote system. To measure the data marshalling overhead, a different transport
subsystem is used, which is called the local transport. The local transport is a
skeleton transport that processes requests on the client machine, and does not
use the network stack at all. Measuring the time required to process requests
using the local transport allows measurement of the calculation overhead from
using DAV to process requests. The network stack overhead is measured using
the standard DAV transport by running the client and server on the same ma-
chine, accessing the server through the network stack localhost interface. Finally
the latency is measured for a client accessing a remote service over a typical
network. Latency figures are presented for these three scenarios. The test func-
tion used is shown in figure 2. The operand arrays contain 4 elements each. As
a result the time required to execute the test function is very small compared
to the overall time required to process a remote request. The client machine is
a 2.4 GHz Intel Core 2 processor running Windows, and the server machine is a
3.0 GHz Intel Xeon processor running Linux.

The performance figures in table 2 show that processing required for a single
small DAV request is low, and overall takes less than 60 microseconds. Processing
an DAV request using a service running on the client machine, accessed through
the localhost network interface adds a further 200 microseconds to this figure.
This reflects the increased processing overhead caused by moving data through
the network stack. Finally, processing the DAV request over a Gigbit Ethernet
network takes a little over 400 microseconds, which shows the cost of transporting
the request and result data across the network.

Functions with high computational complexity are easier to accelerate, since
the offload overhead is small compared to calculation time. For large data vol-
umes, the speed of the network system is the critical factor in determining offload
overhead, since the cost of making the remote function call is small compared
to the cost of transporting the data. For small data volumes, where the data
transport cost is low, the cost of the function call is comparitvely large. We can
see from the above figures that DAV has a low function call overhead, allowing
DAV to accelerate even relatively small calculations.

7 Conclusion

Traditional RPC mechanisms require significant application code changes to of-
fload functions onto remote machines. This a major barrier to adoption of offload
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computing in industry, because customers are reluctant to significantly modify
their software. DAV’s Virtualizer tool addresses this issue and eliminates any
application code changes when converting to remote procedure calls, substan-
tially simplifying the process of converting an application. The Virtualizer uses
a straightforward set of tags to allow the developer to supply information about
unknown variables and function parameters such as pointers to arrays. When
supplied with these tags in the library header file, the Virtualizer generates
source code for client stub libraries and server skeleton libraries that wrap all
interactions with the DAV infrastructure, completely insulating the client appli-
cation. The external interface of the client-side stub library is identical to the
original native code library, so no application code changes are required to en-
able an application to use remote procedures. Furthermore the client application
is protected from any changes to the middleware API. If the API changes, then
the source code for the libraries need only be regenerated, and the application
rebuilt using the new libraries. This greatly reduces the effort required by indus-
trial users of DAV to offload computations from the desktop to more powerful
cluster computers. The use of domain-specific generative code techniques allows
DAV to substantially reduce the cost and effort required to write and maintain
applications that offload calculation to remote systems.
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Abstract. This paper studies the efficiency of using Pattern Search (PS) on 
bound constrained optimization functions on a Graphics Processing Unit (GPU) 
computing platform.  Pattern Search is a direct search optimization technique 
that does not require derivative information on non-linear programming 
problems.  Pattern Search is ideally suited to a GPU computing environment 
due to its low memory requirement and no communication between threads in a 
multi-walk setting.  To adapt to a GPU environment, traditional Pattern Search 
is modified by terminating based on iterations instead of tolerance. This 
research designed and implemented a multi-walk Pattern Search algorithm on  
a GPU computing platform. Computational results are promising with a 
computing speedup of 100+ compared to a corresponding implementation on a 
single CPU.  

Keywords: Nonlinear Optimization, Pattern Search, GPU, CUDA. 

1   Introduction 

Graphics Processing Unit (GPU) computing is an emerging technology of parallel 
computing due to its low cost per instruction.  Modern GPU computing technology 
features a ‘Single Instruction – Multiple Threads’ mode, which is amenable to heavy 
and repetitive computation. Researchers have employed GPU in many fields such as 
physically-based simulation, financial engineering, and image/video processing [8].  
Several researchers have employed GPU for optimization. Li et al. (2006) studied 
parallel Particle Swarm Optimization [6]. Zhu et al. (2008) examined parallel Tabu 
Search for the Quadratic Assignment Problem [11].  This paper examines using the 
GPU for unconstrained nonlinear optimization with bound constraints with Pattern 
Search, a direct search method commonly found in non-linear optimization.  The 
objective is to minimize a nonlinear function f(x) subject to range constraints that 
ai≤xi≤bi where nx ℜ∈  and ℜ→ℜnf : .  Such global optimization problems over 

continuous spaces are ubiquitous throughout the scientific community. When the 
objective function is non-linear and non-differentiable, direct search approaches are 
the methods of choice. 

                                                           
* Corresponding Author. 



 Multi-walk Parallel Pattern Search Approach on a GPU Computing Platform 985 

Direct search methods are characterized by neither requiring nor explicitly 
approximating derivative information. Direct search methods are considered as ‘zero-
order methods’, which are different from ‘first-order methods’ such as steepest 
descent method, or ‘second-order methods’ such as Newton’s method. The ‘order’ of 
a method indicates the highest order term being used in the local Taylor series 
approximation to the nonlinear function f. With ‘zero-order’, direct search methods 
work directly with f, instead of with a local approximation to f.  

Pattern Search methods are a subset of direct search methods.  Pattern Search is 
traditionally employed when the gradient of the function is not reliable when 
performing the search [3], [4], [9]. This robustness makes Pattern Search a safe choice 
for solving many different types of problems [1]. Parallel Pattern Search methods 
have been proposed in the past research in CPU platforms [2], [3].  However, instead 
of running multiple simultaneous searches, their methods assign the individual search 
direction to CPUs within the pattern search. In this paper, we present a ‘Single 
Instruction – Multiple Threads – Pattern Search’ (SIMT-PS) algorithm developed on a 
GPU platform. This algorithm takes the approach of starting multiple simultaneous 
Pattern Searches from massive random starting points to generate a large computation 
tasks to the GPU. Significant speedup in computation and optimization speed can be 
achieved with this promising approach, as suggested by our computational 
experiments results.   

The remainder of this paper is organized as follows. Section 2 presents background 
information on the GPU computing. Section 3 provides an overview of the Pattern 
Search. Section 4 discusses the analysis and implementation of the SIMT-PS on a 
GPU computing platform. Section 5 presents computational experiment results and 
analysis. Conclusions and future research tasks are summarized in Section 6.  

2   GPU Computing 

GPU computing is an exciting new computing environment that is fundamentally 
different than the traditional CPU environment. A GPU is designed to process 
thousands of threads simultaneously enabling high computational throughput across 
large amounts of data. This research selects the Compute Unified Device Architecture 
(CUDA) technology from nVidiaTM to implement our algorithm. The CUDA 
environment allows a software developer to program a GPU for general purpose 
computing in a C programming environment [8].  

The CUDA environment is designed to run thousands of threads concurrently with 
a same instruction set in a data parallel manner. Each thread runs an instruction set 
called a ‘kernel’.  Developers in a GPU environment have several different memory 
locations to store data.  A kernel can employ ‘registers’ as fast access memory. The 
communication among threads can be realized with ‘shared memory’, which is a type 
of very fast memory that allows both read and write access during kernel run time. 
However, during a Pattern Search, all the searches are completed independently. 
Hence there is no need to use any ‘shared memory’ to exchange the information 
between threads during run time.  

The communication between CPU and GPU can be done through global device 
memory, constant memory, or texture memory on a GPU board. Global device memory 
is a relatively slow memory location that allows both read and write operations. Texture 
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memory is relatively fast memory that is read-only. Constant memory is fast read-only 
memory whose size cannot be dynamically changed in runtime. An investigation of the 
Pattern Search reveals that there is no read-only data during the searches, as the data are 
constantly updated. Therefore, texture memory and constant memory are not used in our 
implementation of the SIMT-PS algorithm. The nVidia GeForce GTX 280 GPU 
hardware employed in this paper has 30 multi-processors. Each multi-processor has 8 
processors (or cores). This amounts to 240 data-parallel processors (cores) on one GPU 
board. Each multi-processor has 16K shared memory, 16K registers, 64K constant 
memory, and access to 1GB global device memory and texture memory for larger data 
storage [7]. Due to the different performance of memory locations and the limited 
amount of fast and flexible memory locations, algorithm implementation and design 
choices must be guided by memory limitations. 

After compilation by the CUDA environment, a program runs as a kernel in a 
GPU. A kernel takes input parameters, conducts computations, and outputs the results 
to device memory where the result can be read by the CPU. Each thread must perform 
the same operation in the kernel, but the input data can be different. The CPU owns 
the host code that prepares input data and accepts output values from the GPU.  The 
CPU is also responsible for reading and writing data files, storing solution values, and 
managing threads. The output data from the GPU is written to global device memory 
to be retrieved by a CPU program. Also, code with excessive conditional branching 
should also be avoided in a GPU environment since all threads execute the same 
instructions. The communication between the CPU and GPU requires some overhead 
time.  To compensate for the overhead time, developers must send tasks to the GPU 
that are significantly larger than the communication overhead.   

In our SIMT-PS algorithm, the initial solutions are generated by the CPU and then 
passed to GPU for Pattern Search. The solutions are constantly changing during the 
Pattern Search procedure. Hence, the solution data must be kept in the Global Device 
Memory. To minimize the impact of repetitive read and write access with the Device 
Memory, the solution array data are organized into a coalesced structure. At the end 
of Pattern Search, the solution data are copied back to the CPU host memory for 
further processing. The CPU-GPU communication is thus minimized. The 
computational experiments results also suggest that a multi-walk Pattern Search is an 
appropriate design for the GPU computing platform due to its low memory 
requirement and simple repetitive tasks. 

3   Pattern Search 

The basic Pattern Search algorithm is a direct search method that does not require 
derivative or second derivative information [9]. While this robustness makes Pattern 
Search a safe choice for solving many different types of problems [1], this research 
selects Pattern Search due to the memory limitation and the desire to avoid excessive 
branching in GPU hardware. The basic PS algorithm moves along the coordinate axes 
or other user defined positive spanning set to improve an existing solution in a greedy 
way.  The step size Δ is reduced, typically in half, when an improvement is not found 
for any direction.  

The feature of Pattern Search makes it amenable to parallel computing as it 
involves frequent objective function evaluations. For a complex objective function, 
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this repetitive function evaluation computation task becomes very heavy and thus 
makes the Pattern Search a questionable selection as a direct search method on a 
single CPU platform. Parallel computing can alleviate this problem. Parallel Pattern 
Search methods have been proposed in the past research in CPU platforms [2], [3]. In 
a GPU parallel computing platform, the benefit can be much more evident, as GPU 
computing does not have the large overhead of a CPU cluster which often seriously 
reduces the benefit of parallel computing. Therefore, the savings on the computation 
time of Pattern Search on a GPU computing platform can be tremendous.    

Alternatives to Pattern Search include Nelder-Mead simplex search method and 
gradient based methods [5].  The Nelder-Mead simplex search requires data storage 
for d+1 solution vectors each of size d where d is the number of variables in the 
problem.  Gradient methods based methods require O(d2) memory.  The Pattern 
Search method requires a single solution vector with d elements, the cost of the prior 
solution, and the current step sizes for d+3 memory elements per search thread.  For 
current GPU hardware and our algorithm design, a number of 15360 parallel threads 
achieved the best speedup performance, as presented in Section 5.  For example, with 
a 100 variable problem, single precision storage, and 15360 threads, Pattern Search 
requires 6 MB of memory compared to over 600 MB for a gradient based method and 
Nelder-Mead simplex search method.  Given the current limitation in memory in GPU 
hardware, this difference in memory requirement is a tremendous advantage for 
Pattern Search over alternative methods that require more memory. In addition, this 
small memory consumption makes it possible for Pattern Search to work as a sub-
component in a bigger problem-solving framework. 

4   ‘Single Instruction – Multiple Threads – Pattern Search’  
(SIMT-PS) Algorithm 

Pattern Search is modified for the GPU SIMT computing environment by conducting 
multiple searches in parallel and searching a fixed number of iterations instead of a 
limit based on solution tolerance. Each thread represents one independent search. Let 
x denote the solution vector of a particular thread composed of d elements.  The initial 
values of x are set randomly based on a uniform distribution from the lower bound to 
the upper bound. 

  xi = Uniform[ai, bi]  i = 1, 2…, d    (1) 

From this initial seed point, we improve each thread using a Pattern Search 
algorithm.  

Our pattern denoted by { }−+−+≡ dd eeee ,,...,, 11D  is defined by the unit coordinate axes 

where d is the dimension of the problem where ej is the standard unit base vectors. 
The PS is initialized by setting the step size Δi to a user specified initial Δo. The PS in 
this paper explores the coordinate axes for improving solution for k iterations. In 
general, the pattern can be user defined positive spanning set but the coordinate axis is 
the easiest to implement.  If the search does not find an improvement for any 
direction, then the step size Δi is reduced by half. A classical PS is typically stopped 
once the step size is less than a user specified tolerance, but in our algorithm, the PS is 
stopped after a fixed number of iterations.  With a large number of threads in a SIMT 
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computing environment, waiting until all threads reach convergence is not an 
effective use of computing resources. If a thread reaches convergence to a user 
specified tolerance Δtol before the iteration limit reached, this research resets the step 
size Δi to the initial Δo to make use of computer resources that otherwise would be 
idle.  Fig. 1 presents the steps of the algorithm. All threads are initialized to random 
starting solutions for the solution vector x and step sizes of Δo.  For kmax iterations the 
algorithm performs a Pattern Search operation on all threads for each variable of the 
problem.  If no improvement is found for any variable during an iteration, the step 
size is reduced by half.  Finally, the best solution is selected from all of the threads 
(Fig. 1).  

 
For all threads (done in GPU) 

a) Initialize the step size to Δo and the solution xi to a random starting solution where xi= 
Uniform[ai, bi]; 

// loop until max iteration  
For (iteration k = 0 … kmax) 
    For (dimension j = 1 … d) 

b) If )()( iiji xfexf ≤Δ+ +  and )()( iiiiji exfexf Δ+≤Δ+ −+  then
ijii exx Δ+= + . 

c) Else If )()( iiji xfexf ≤Δ+ −  and )()( iiiiji exfexf Δ+≤Δ+ +−  then
ijii exx Δ+= − .  

    End For (each dimension) 
d) If no improvement throughout all d dimensions,  Δi = Δi / 2; If Δi = Δtol, reset Δi = Δo; 
End For (k iterations) 

End For (threads) 
e) Select best thread based on solution cost (done in CPU) 

Fig. 1. Procedure of the SIMT-Pattern Search algorithm 

5   Computational Results and Analysis 

The proposed Single Instruction Multiple Thread –Pattern Search (SIMT-PS) 
algorithm for the general optimization functions has been implemented in Visual C++ 
2005 environment with the CUDA environment for programming the GPU. The 
computational experiments were executed on a Dell Precision 7400 Workstation 
computer with an Intel® Core™ 2 Duo 2.5GHz CPU, 3GB memory, and an nVidia 
GeForce™ GTX 280 GPU. For benchmarking, the algorithm was also implemented 
with CPU-based only functions to compare the computation speed to the GPU-
accelerated implementation. The same computer was used in testing both CPU and 
GPU versions. The GPU version of the algorithm requires many threads to unleash its 
full potential.  The peak speedup performance is expected when the number of threads 
is sufficient to keep the multi-processors busy at the same time. The GeForce GTX 
280 GPU employed in this research has 30 multi-processors.  Due to register 
constraints, each multi-processor can support 2 blocks with each block having 256 
threads.  In our hardware, 15360 (30 multi-processors * 2 blocks per multi-processor 
* 256 threads per block) provides good performance per thread.  As anticipated by 
this analysis, Table 1 shows that the GPU code reaches peak performance relative to 
the CPU code when the number of threads is 15360.  
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Twelve benchmark functions have been selected for these computational 
experiments [10]. These benchmark functions are listed in the Appendix A. The Δo is 
set to be equal to (parameter range / 20). During the search process, Δ can be reduced 
to as small as Δtol, which is set to be Δo/2

16. 
We hope to first gain better understanding of how and where the SIMT-PS 

improve over its corresponding CPU implementation. To attain this goal, we picked 
the first benchmark function in the Appendix A, the Ackley function, for this 
investigation. Table 1 shows a comparison of computation times between the 
proposed SIMT-PS and CPU implementation of the same algorithm. Both software 
implementations execute the same search to ensure a fair comparison. The tests were 
conducted on Ackley function with dimension 20 (i.e., 20 variables). For the SIMT- 
PS algorithm, the recorded time is combined CPU and GPU code running time, 
including initialization overhead. As shown in Table 1, the computation time 
increases as the number of threads (parallel searches) increases. As the number of 
threads increases, the GPU codes performance per thread improves whereas the CPU 
performance remains relatively constant. The speedup values are calculated by 
dividing the CPU PS algorithm times by the SIMT-PS algorithm times. 

Table 1. Comparison of computation times between the SIMT-PS and the PS algorithms as 
function of thread numbers (Ackley Function, 20 variables, 20 PS iterations, average of 10 
Monte Carlo Runs, time shown in milliseconds) 

Threads  GPU Code CPU Code Speedup 

2048 21.9 1267.1 57.86 

4096 29.7 2543.7 85.65 

8192 51.6 5098.4 98.81 

12288 64.1 7629.6 119.03 

15360 76.6 9535.9 124.49 

 
To understand the performance improvement on specific computational tasks 

within the algorithm, we examined the run time of different portions of the code in 
both the GPU and CPU algorithm implementations.  As can be seen from Table 2, 
Pattern Search on the GPU platform significantly reduced the computation time for 
the search process. The ‘Other functions’ listed in the Table 2 include problem 
initialization, initial objective function evaluations and summary computation. The 
‘Select Best Thread’ operations in both versions are completed with CPU code, but in 
the SIMT-PS algorithm, additional time is needed for memory manipulation.   

Table 2. CPU and GPU time breakdowns for each task and their comparison (15360 threads, 
20 variables, 20 PS iterations, time shown in milliseconds) 

Task GPU Code CPU Code Time % 

1) Other functions  33.81 46.60 72.5% 

2) Select Best Thread 6.57 4.65 141.5% 

3) Pattern Search 35.73 9446.68 0.4% 
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Two concerns when designing GPU programs are CPU overhead for preparing for 
GPU tasks and the communication overhead between the CPU and the CPU. We 
conduct several tests with different numbers of threads to determine the times spent 
on each GPU task. The results are presented in Table 3. These tests are conducted 
with the assistance of CUDA Visual Profiler software, a tool for analyzing GPU 
kernel performance, available for download from nVidia website [7]. The ‘GPU’ 
column is the total time on GPU in executing the task. The ‘CPU’ column is the 
overhead time needed in CPU in order to run the corresponding GPU task. The ‘% 
GPU time’ column is found by dividing each GPU task times by the total time spent 
in the GPU. The actual time spent on each GPU task is the sum of the ‘GPU’ and 
‘CPU’ columns. The results show that the Pattern Search kernel take the majority of 
the time spent on GPU. The CPU-GPU memory synchronization takes a very small 
portion of the GPU time. The results also show that the CPU overhead is reasonably 
small in our implementation. Tracking CPU and communication overhead is an 
important performance tuning tool when developing GPU-enabled algorithms. 

Table 3. GPU time and corresponding CPU overhead time used on each GPU task (15360 
threads, 20 variables, for a short run, time shown in μ-seconds) 

GPU Task Calls GPU μsec CPU μsec 
Percent of 

Time 

Pattern Search 21 729850 110 98.5% 

Initial Fitness Functions 22 1138 199 0.2%  

Memory Synchronization 107 9717  1.3% 

 
As shown in Table 4, the performance of the GPU version of the code is 

significantly faster than the CPU version of the code on 12 test problems as listed in 
the Appendix A. The speedup ranged from 30 to 138.  The performance improvement 
is generally greater on problems where the objective function requires more time to 
evaluate and the overall solution time is longer. 

Time to solution is a critical performance measure for an optimization procedure. 
Table 5 shows the comparison between the SIMT-PS and the PS with a run time limit 
of 1 second. Since the SIMT-PS algorithm is very fast (typically finishes within 100 
milliseconds for a 30 variable and 20 iteration Pattern Search), we make it run 
repetitively from different initial solutions once one round of parallel Pattern Search 
is over. Given enough time, both CPU and GPU versions of our implementation 
should give satisfactory results. When time is limited, the result obtained with GPU-
accelerated SIMT-PS algorithm is better, as it has time to search wider search space. 
The optimal solutions of all test problems are 0. In fact, the CPU PS implementation 
for some test functions cannot finish one round of Pattern Search within 10 seconds, 
but we let the CPU code run to finish at least one Pattern Search. The actual time 
spent by each algorithm is also listed in Table 5.  
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Table 4. Comparison of Computation Times between the SIMT- PS and its corresponding CPU 
Implementations on all 12 test functions (15360 threads, 20 variables, 20 PS iterations, time 
shown in milliseconds) 

# Problems CPU GPU Speedup 

1 Ackley 9523.4 78.2 121.8 

2 Griewank 9675 92.2 104.9 

3 Penalty1 63537.5 484.3 131.2 

4 Penalty2 61865.6 509.4 121.4 

5 Quartic 2375 51.6 46.0 

6 Rastrigin 9465.6 70.3 134.6 

7 Rosenbrock 6421.9 70.3 91.3 

8 Schwefel 1.2 15353.1 117.2 131.0 

9 Schwefel 2.22 1890.7 50 37.8 

10 Schwefel 2.21 2120.3 46.9 45.2 

11 Sphere 1393.7 45.3 30.8 

12 Step 6943.8 50 138.9 

Table 5. Time limited results comparison between the SIMT-PS and its corresponding CPU 
Implementation (10 Monte Carlo runs, 15360 threads, 30 variables, 20 PS iterations, max 10 
seconds, time shown in milliseconds) 

    Best Solution Mean Best Solution Actual Time Spent 

# Problems CPU PS SIMT- 
PS 

CPU PS SIMT- 
PS 

CPU PS SIMT- 
PS 

1 Ackley 0.000 0.000 0.000 0.000 19,907 10,074 
2 Griewank 0.064 0.004 0.126 0.007 21,271 10,070 

3 Penalty1 0.000 0.000 0.001 0.000 140,970 10,041 

4 Penalty2 0.008 0.000 0.021 0.000 136,574 10,374 

5 Quartic 0.000 0.000 0.000 0.000 10,131 10,066 

6 Rastrigin 54.588 18.196 73.593 24.666 21,036 10,076 

7 Rosenbrock 22.340 1.020 25.946 13.146 14,430 10,078 

8 Schwefel 1.2 4,417.340 279.460 5,036.064 539.862 46,755 10,251 

9 Schwefel 2.22 0.000 0.000 0.000 0.000 13,441 10,042 

10 Schwefel 2.21 12.900 3.200 17.660 3.510 12,494 10,027 

11 Sphere 0.000 0.000 0.000 0.000 11,708 10,045 

12 Step 0.000 0.000 0.000 0.000 15,142 10,030 

6   Conclusions and Future Research 

On a GPU computing platform, Pattern Search is an effective optimization method for 
nonlinear bound constrained optimization due to its small memory requirement and 
fast parallel objective function evaluations.  Using GPU hardware can generally speed 
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up Pattern Search by a factor of 100 compared to CPU implementations. On a 
hardware cost per computing operation comparison, GPU computing is currently 
attractive for optimization heuristics. Research and practitioners who solve 
optimization problems with heuristics always benefit from low cost computing 
resources.  Improved computing resources can be deployed to solve problems quicker 
or to find better solutions. This low cost platform should encourage heuristic 
designers to develop algorithms that are effective in a data parallel, low memory 
environment.  The approach taken in this paper of using a simple search procedure 
with a massive number of search threads is a promising approach for applying GPU 
technology to optimization problems.  As future research, computational studies 
exploring the performance of alternative heuristics in low memory data parallel 
environments would aid the adoption of GPU technology to optimization problems. 
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Appendix A – Test Functions 

Due to the page limit, only two test functions are described here. Other functions 
definition can be found in reference [10]. 

1) Ackley Function: 
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3) Generalized Penalized Function 1 
4) Generalized Penalized Function 2 
5) Quartic Function 
6) Rastrigin Function 
7) Rosenbrock Function 
8) Schwefel’s Problem 1.2 
9) Schwefel’s Problem 2.22 
10) Schwefel’s Problem 2.21 
11) Sphere Function 
12) Step Function 
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Abstract. Today’s general purpose computers lack in meeting the re-
quirements on computing performance for standard applications in bioin-
formatics like DNA sequence alignment, error correction for assembly,
or TFBS finding. The size of DNA sequence databases doubles twice
a year. On the other hand the advance in computing performance per
unit cost only doubles every 2 years. Hence, ingenious approaches have
been developed for putting this discrepancy in perspective by use of
special purpose computing architectures like ASICs, GPUs, multicore
CPUs or CPU Clusters. These approaches suffer either from being too
application specific (ASIC and GPU) or too general (CPU-Cluster and
multicore CPUs). An alternative is the FPGA, which outperforms the
solutions mentioned above in case of bioinformatic applications with re-
spect to cost and power efficiency, flexibility and communication band-
widths. For making maximal use of the advantages, a new massively
parallel architecture consisting of low-cost FPGAs is presented.

1 Introduction

Bioinformatics algorithms are most demanding in scientific computing. Most
of the times they are not NP-hard or even of high asymptotic complexity but
the sheer masses of input data make their computation laborious. Furthermore,
the life science thus bioinformatics research field is growing fast and so is the
input data that wait to be processed. Besides the massive amount of data to
be processed, the field of bioinformatics algorithms have another characteristic
in common: simplicity. Algorithms for the big areas of bioinformatics like se-
quence alignment, motif finding, and genome assembly that are used all around
the world are impressively simple in their computation. We refer to Smith, Wa-
terman [9], Needleman, Wunsch [10], or BLAST [11] as examples for simple
yet effective and popular sequence alignment algorithms; expectation maximiza-
tion (EM/MEME) [12], projection algorithm [13] for motif finding; EulerSR [8]
and Edena [7] for genome assembly. All these programs use only very simple
but repetitive operations on the input data: very simple arithmetic operations,
string matching and comparison.

G. Allen et al. (Eds.): ICCS 2009, Part I, LNCS 5544, pp. 994–1003, 2009.
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Standard CPUs are designed for providing a good instruction mix for almost
all commonly used algorithms [2]. Therefore, for a class of target algorithms they
can not be as effective as possible in terms of the design freedom. The same with
the described purpose: here the arithmetic requirement is too simple to demand
a full CPU and the string matching does not fit well at all to the hardware
structure of a CPU. Hence many clock cycles will be consumed even for simple
comparisons of nucleotides. Also, most of the algorithms above have a trivial
approach to parallelization inherent another characteristic that does not fit too
well with standard CPUs. The result of this are high runtimes or necessity for
PC clusters, massive consumption of computer memory, and not to forget a vast
amount of energy used - thus bare money to be spent.

This motivates the use of special purpose hardware. Several approaches exist
to introduce special hardware to bioinformatics: Special ASIC [16], GPUs [17]
and FPGAs [19] [20] [21] for example. FPGAs are to be named in particular be-
cause they can be adjusted exactly to the demands of an application like an ASIC
and yet being able to readjust if the application changes slightly or even com-
pletely which is a powerful ability in a fast changing field like bioinformatics with
a lot of different applications as mentioned above [1]. In this article we present
a massively parallel special purpose hardware based on low cost FPGAs called
COPACOBANA 5000. Its architecture and name is based on a similar machine
presented earlier. It is the Cost-Optimized PArallel COde Braker ANd Analyzer
(COPACOBANA) 1000 [4] The original purpose of this machine was cryptanal-
ysis: fast code breaking of the DES standard and some further attacks [3]. It also
proved to be applicable for bioinformatics though, allowing speedups of a factor
10,000 at a fraction of the energy costs in motif finding application compared to
a single PC [14] [15].

The new architecture presented here makes use of the high applicability of
FPGA chips in bioinformatics. The design goal is gaining a maximal speedup by
maximizing the number of chips working together at low hardware costs and low
energy consumption. The connection of the chips is realized by a sophisticated
bus system allowing as much throughput as possible in order to be able to deal
with the huge amounts of input data.

This paper is organized as follows: In Section 2 a first approach to massive
parallelization with FPGAs is shown. Section 3 describes the new architecture
allowing higher data throughput and bigger FPGA chips to challenge the big
problems of bioinformatics in short time. In Section 4 the applicability and the
estimated speedups gained and energy saved by this architecture are shown.
Section 5 concludes the paper.

2 Copacobana 1000

COPACOBANA 1000 (Fig. 1) is a massively parallel reconfigurable architecture
consisting of 120 low-cost FPGAs. Its hardware architecture has been devel-
oped according to the following design criteria: First, it was assumed that com-
putationally costly operations are trivial parallelizable in terms of interprocess
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Fig. 1. The Copacobana 1000 machine
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Fig. 2. The Copacobana 1000 architecture

communication requirements. Second, the demand for data transfer between host
and nodes is low due to the fact that computations heavily dominate commu-
nication requirements. A communication of low bandwidth between the parallel
machine and a host computer is transferring instructions and results. Hence, a
single conventional computer as front end is sufficient to transfer the required
data packets to and from the acceleration hardware. The COPACOBANA is
connected by a local area network (LAN) interface. Third, all target algorithms
and their corresponding hardware nodes demand for very little local memory,
which can be provided by the on-chip RAM modules of an FPGA.

Since the cryptanalytical applications demand for plenty of computing power,
a total of 120 FPGA devices on the COPACOBANA cluster have been in-
stalled. By stripping down the hardware functionality of COPACOBANA to
the bare minimum, an optimal cost-performance ratio for code breaking has
been achieved. For the optimal cost-performance ratio, the system was designed
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on basis of small FPGA chips which come with a high ratio of logic ressources
per cost. Further optimization on system level lead to a partitioning into 20
subunits that can be dynamically plugged into a backplane. Fig. 2 illustrates
this architecture. Each of these modules in DIMM form factor hosts six low-cost
Xilinx Spartan-3 XC3S1000 FPGAs that are directly connected to a common
64-bit data bus on-board. The data bus of the module is interfaced to the global
data bus on a backplane. While disconnected from the global bus, the FPGAs
on the same module can communicate via the local 64-bit data bus. Addition-
ally, control signals are run over a separate 16-bit address bus. For simplicity, a
single master bus was selected to avoid interrupt handling. Hence, if the com-
munication scheduling of an application is unknown in advance, the bus master
will need to poll the FPGAs. The front end of COPACOBANA is a host PC
that is used to initialize and control the FPGAs, as well as for accumulation of
results. Programming can be done in different levels for all or one specific subset
of FPGAs. Data transfer between FPGAs and a host PC is accomplished by a
dedicated control interface. This controller has also been designed as a slot-in
module so that COPACOBANA can be connected to a computer either via a
USB or Ethernet controller card. A software library on the host PC provides low-
level functions that allow for device programming, addressing individual FPGAs,
and storing and reading FPGA-specific application data. With this approach,
more than one COPACOBANA device can easily be attached to a single host
PC.

3 Copacobana 5000

The new architecture COPACOBANA 5000 consists of an 18 slot backplane
equipped with 16 FPGA-cards and 2 controller cards. The latter connect the
massively parallel FPGA-computer to an in-system off-the-shelf PC. Each of the
FPGA-cards carry 8 high performance FPGAs interconnected in a one dimen-
sional array. Additional units are supporting the mentioned functional units as
for example a 1.5kW 1 main power supply unit, 6 high-performance fans and a
19-inch rack of 3 hight units (3HE) for the housing.

3.1 Bus Concept

The interconnection between the individual FPGA-cards and between the FPGA-
cards and the controller is organized as a systolic chain:

There are fast point-to-point connections between every two neighbors in this
chain. The first controller communicates with the first FPGA on the first card
and the last FPGA on the last card is connected to the second controller. To
speed up global broadcasts there are possible shortcuts in the chain between
adjacent FPGA-cards. The point-to-point interconnections consist of 8 pairs of
wires in each direction. Each pair is driven by low voltage differential signalling

1 On output site: 125A + 12V.
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(LVDS) with a speed of 250MHz, thus achieving a data-rate of 2Gbit/s. Figure 3
shows the overall architecture of COPACOBANA 5000.

3.2 Controller

The root entity of control is running on a remote host computer. This machine
is integrated into a local area network (LAN) which allows to connect to the
COPACOBANA 5000. Two scenarios are considered here. The first is that the
database is physically located inside the COPACOBANA machine e.g. on an
SATA hard drive attached to the embedded PC. In this case the remote computer
functions as user terminal only. The second scenario is that the embedded PC
is used for an easy access to standard interfaces only. Here 2 Gigabit Ethernet
LAN ports which is standard for recent main boards are of interest for the
second scenario. The database has to be transfered over the LAN. In any case
the remote host computer is initiator of every activity. The next instance is the
embedded PC. Here the control information is translated for COPACOBANA
and dropped into the system. In most cases it is not required for the higher
level control instance to check if a command is executed successfully or not in
the lower level of control hierarchy. However, it is possible if demanded by the
implemented algorithm for example.

One board is plugged into a PCIe interface connector of the embedded PC.
On this card an FPGA transceives the data and control by a proprietary wire
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Fig. 4. Data Path of the Copacobana 5000 FPGA-Card

connection to the second half of the controller. Here another FPGA decodes the
incoming data and instructions and drops them into the bus system of COPA-
COBANA 5000.

3.3 FPGA-Card

The FPGA-card is depicted in Fig. 4. It consists of 8 FPGAs of the type Xil-
inx Spartan-3 5000 for running the application and an additional FPGA which
comes with a fixed configuration. The latter is routing the systolic datastreams.
This simple protocol provides address information in header fields of the data
stream. All FPGAs are globally clocked synchronously. Each clock cycle the data
are transferred from one FPGA to the adjacent one building a huge communi-
cation pipeline. Inside the system this systolic data flow allows a throughput of
2Mbit/s for each direction. The protocol acquires an overhead of 20%. Between
the controller-cards and the embedded PC the maximum data-rate is limitid to
250MByte/s due to the PCIe connection. The dissadvantage of the high throuput
is a considerable amout of latency depending on the path the data are travelling.

3.4 Backplane

The backplane is holding the plugged cards mechanically, generating and dis-
tributing the clock signals, distribution the power, and finally connecting the
cards for communication. The FPGA-card can transfer the incoming data to
the next slot or it can take the data out of the stream. In this case an empty
data field will go systolically through the bus pipeline from slot to slot. Another
card can insert new data into this empty slot. The two counterrotating systolic
dataflows allow to minimize the worst case latency to half of the total number
of slot times the clock cycle time. But instead of a single master shared bus, the
new machine connects one ascending slot and one descending slot to each single
card. This leads to a ring of point to point connections. As the system is globally
clocked the incoming data are registered. As result the bus system is working
similar to a parallel shift register.
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3.5 Memory

The big problem of using FPGAs in bioinformatics is the memory consumption.
As mentioned in the introduction, the volume of input data is huge. FPGAs on
the contrary are rather small in memory capacity. Our approach to solve this
disparity is to use the connecting bus as a kind of memory replacement for the
input data. Most of the mentioned algorithms have in common that they use only
a small portion of memory (kilobytes) to store intermediate and end results. On
the other hand they have to access huge amounts of data (gigabytes) to generate
these results. The latter data needed for the application will be provided on the
bus so every chip has access to the input data without storing it on chip site.
However, some algorithms demand quite a lot of memory for the intermediate
results as well some sequence alignment or assembly algorithms for example. To
be able to handle those algorithms too (for a decent set of input parameters)
we provide external local memory located next to each FPGA chip to guarantee
applicability for most purposes.

In order to avoid a bottleneck, the raw input data have to pass the system with
high throughput. Fortunately the target algorithms are latency insensitive due
to the high locality of the parallelized bioinformatics algorithms. For ensuring a
very high throughput in the design of the bus system, the I/O capabilities of the
FPGA has to be analyzed carefully. The highest throughput can be achieved by
connecting communicating chips by point-to-point lines of a short length [5] [6].

In addition, each FPGA is equipped with some external local memory. There
is a 32MByte chip connected to each individual Spartan-3 5000 chip.

3.6 Software

Communication with COPACOBANA 5000 follows the principle of Memory-
mapped-I/O (MMIO). By this a host software writes and reads data to and
from addressed FPGAs, and inside to addressed IO-registeres. The latter are
application specifically used for data or control words. The control words are
commonly incooperated into finite state machines. A communication framework
builds a bridge between the two user programmed entities, the host software
and the user FPGA core. Both are connected by a framework interface. At host
site an Application Programming Interface (API) provides easy access to the
machine by a set of communication library calls for the MMIO commands. The
API supports Java and C++. On the other side of the framework interface an
Relationally Placed Macro (RPM) has to be embedded into the user FPGA
configuration. One side of this macro connects to the physical bus system via
IO-blocks and inside the FPGA the macro connects to the user implementation
as API for FPGA design, for example in VHDL. The common communication
principle of Memory-mapped-I/O is easy to understand by the user. Together
with the given communication framework a user does not need to know the
COPACOBANA 5000 in detail. However, the knowledge about the architecture
is helpful for implementing parallel algorithms efficiently.
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Table 1. COPACOBANA Performance in Exhaustive Key Search on DES

Intel Pentium-4
3.0GHz

Copacobana 1000 Copacobana 5000
(est.)

encryption speed 2 · 106 1
s

6.5 · 1010 1
s

3.0 · 1011 1
s

average search time 571years 6d10h 1d10h

energy consumption 750MWh 93kWh 62kWh

Table 2. COPACOBANA Performance in Motif-Finding

Intel Xeon 5150
2.6GHz dual core

Copacobana 1000 Copacobana 5000
(est.)

Cowpox 144h 1h40m 21m

Virus (230kbp) 21.6kWh 1.0kWh 0.63kWh

Rickettsia 2, 575h 4h10m 52m

canadensis (1.2Mbp) 386.2kWh 2.5kWh 1.6kWh

Bacillus 11, 236h 16h45m 3h30m

subtilis (5.1Mbp) 1685.4kWh 10.1kWh 6.3kWh

kbp : kilo base pairs, Mbp : Mega base pairs.

4 Performance Estimation

In this section the performance is compared between a PC, a COPACOBANA
1000 and the estimated performance of the COPACOBANA 5000.

The COPACOBANA 1000 originally was intended for running cryptanalytical
applications. In Table 1 the performance of an exhaustive key search on DES is
compared between an Intel Pentium-4 3.0GHz and the implementation on the
COPACOBANA 1000. The estimated values for the COPACOBANA 5000 are
simply based on the number of FPGAs and the size of the chip. Each Spartan-3
5000 comes with 4.5 times of the logic ressources compared to the Spartan-3 1000.
Furthermore the new machine hosts 128 user FPGAs and the old one 120. Hence,
the new machine has approximately 4.8 times more computing performance. This
assumption is legitimately due to fact that both chips are based on the same
technology and are different in the size only.

Despite that fact, a proof of concept for the applicability in bioinformatics
has been developed. In Table 2 the results of this research are shown. The tar-
get application is motif finding on DNA sequences. The implementation on the
COPACOBANA 1000 has been tested and the performance compared to a stan-
dard computer has been measured. The estimation of the performance of the
COPACOBANA 5000 is based on the number and size of FPGAs as explained
above. Probably the performance will exceed these values due to the optimized
bus.
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One of the most interesting aspects is the one of power consumption. COPA-
COBANA 1000 and COPACOBANA 5000 are extremely power efficient for the
considered applications. Observe that already a single run of one exhaustive key
search on the Data Encryption Standard (DES) by use of PCs 2 saves costs of
power consumption in the scale of the purchase costs of a COPACOBANA 5000.

5 Conclusion

Bioinformatics applications are computationally extremely demanding. It is fair
to believe that analyzing biological research data as for example DNA sequence
data with conventional PCs and super computers is far too expensive. The only
promising way to tackle existing computing machines is to build special purpose
hardware, dedicated solely to suitable algorithms such as those presented in this
paper.

Conventional parallel architectures turn out to be far too complex and, thus,
are not cost efficient in solving bioinformatics problems. Most of these problems
can be parallelized easily and we show the architecture of the recent design the
COPACOBANA 5000 which results from the algorithmic requirements of the
targeted cryptanalytic problems.

Recapitulating, the COPACOBANA machines are the first and currently the
only available cost efficient massively parallel FPGA-computers . The COPA-
COBANA 1000 was intended to, but is not necessarily restricted to solving prob-
lems related to cryptanalysis. A proof of concept confirmend the applicability
for high-performance bioinformatics computing.

The work at hand presents the design and architecture of a cost efficient ad-
vancement of the old design fulfilling the request for bioinformatics computing.
The COPACOBANA 5000 will host 128 low-cost FPGAs. We showed, by ex-
trapolating a successfully implemented proof of concept on the COPACOBANA
1000 that the new hardware architecture will reach increased performance by a
factor of five compared to the old machine and better than a standard computer
in orders of magnitude.

Future work includes completion and optimization of all performance relevant
design issues. The implementations have to be optimized to guarantee best pos-
sible throughput. The first prototype of COPACOBANA 5000 is to be presented
in May 2009.

References

1. DeHon, A.: The Density Advantage of Configurable Computing. IEEE Computer
Magazine 33(4), 41–49 (2000)

2. Hennessy, J.L., Patterson, D.: Computer Architecture: A Quantitative Approach
(1995)
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Abstract. Many bioinformatics studies require the analysis of RNA or
DNA structures. More specifically, extensive work is done to elaborate
efficient algorithms able to predict the 2-D folding structures of RNA
or DNA sequences. However, the high computational complexity of the
algorithms, combined with the rapid increase of genomic data, triggers
the need of faster methods. Current approaches focus on parallelizing
these algorithms on multiprocessor systems or on clusters, yielding to
good performance but at a relatively high cost. Here, we explore the
use of computer graphics hardware to speed up these algorithms which,
theoretically, provide both high performance and low cost. We use the
CUDA programming language to harness the power of NVIDIA graphic
cards for general computation with a C-like environment. Performances
on recent graphic cards achieve a ×17 speed-up.

Keywords: GPGPU, RNA, secondary structure, minimum free energy.

1 Introduction

The computation of secondary structural folding of RNA or single-stranded DNA
is a key element in many bioinformatics studies and, as such, has been extensively
studied for many years. The firsts to propose an algorithm to predict the folding
structure of RNA or DNA sequences were Waterman, Smith and Nussinov et al.
[1,2]. This algorithm was based on dynamic programming with a complexity of
O(n3), yet their approach had several issues.

Following this pioneer work, several improvements have been done leading to
different kinds of dynamic programming algorithms. We can cite: (1) the com-
putation of the most stable structure through energy minimization running in
O(n3), introduced by Zuker and Stiegler [3] which outputs a single optimal struc-
ture and its corresponding energy ; (2) the computation of a partition function
over all possible structures for deriving additional properties of the thermody-
namic ensemble such as the base pairing probabilities of any base pair, intro-
duced by McCaskill [4] ; (3) the computation of suboptimal structures [5] which
generates all structures within a given energy range of the optimal one. Imple-
mentations of those algorithms are found in two major packages, ViennaRNA
and Unafold [6,7].
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Despite many huge efforts to reduce the algorithmic computational complex-
ity, execution times are steadily increasing due to the fast growing of genomic
databases and, for the last years, the relative stagnation of the microprocessor
frequencies. One solution is to use multi-core systems or clusters, which can yield
good performance but at a high cost. Another approach is the use of computer
graphics hardware, which possibly exhibits a higher performance/cost ratio than
clusters.

Indeed, the raw power of graphics processing unit (GPU) has a faster in-
crease rate than traditional microprocessors. Moreover, recent improvements in
the programmability of GPUs have opened the way to new applications from
which GPUs were not initially designed for. General purpose computation on
GPU (GPGPU) is now a field of research investigated in many domains re-
quiring high performances. Among many others, successful applications include
bioinformatics with the Smith-Waterman sequence alignment [8,9].

In this paper, we investigate how GPUs can be used to accelerate the compu-
tation of the minimum free energy of RNA or DNA sequence folding. We use the
implementation of the Unafold package given in the function hybrid-ss-min [7].
This function is intensively used in different programs of the Unafold package
and represents the most time consuming part. We show that adding a graphical
board can speed-up the whole program by a factor ×17 compared to a sequential
execution on a one-core microprocessor.

Although the RNA folding algorithm studied uses dynamic programming just
like the Smith Waterman algorithm, they should not be confused. Both algo-
rithms are very different, thus previous GPU implementations of the Smith
Waterman algorithm [8,9] did not prefigure the feasibility of an efficient GPU
implementation here. On the contrary, its complexity in terms of memory access
patterns and parallelization issues makes it a real challenge.

The rest of paper is organized as follows: In Section 2, we introduce the folding
algorithm. In section 3, the GPU implementation of the folding algorithm is
explained. Finally, section 4 gives the performance results obtained on different
platforms.

2 Folding Algorithm

This section briefly exposes the principles of the folding algorithm as imple-
mented in the Unafold package in the function hybrid-ss-min [7].

2.1 RNA Structure

RNA or Ribonucleic acid is a chain of nucleotide units. There are four different
nucleotides, also called bases : adenine (A), cytosine (C), guanine (G) and uracil
(U). Two nucleotides can form a bond thus forming a base pair, according to
the Watson-Crick complementarity: A with U, G with C; but also the less stable
combination G with U, called wobble base-pair. All the base pairs of a sequence
force the nucleotide chain to fold into a system of different recognizable domains
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like hairpin loops, bulges, interior loops or stacked regions. This is called the
secondary structure of the sequence. The different loop types are introduced in
Fig. 1. The secondary structure can also form complex patterns like pseudoknots
which consist of two base pairs i·j and k·l that do not verify the nesting property
i < j < k < l. The secondary structure is often determinant in the functional
role of the RNA molecule.

2.2 Energy Model

The algorithm is designed to find the most stable structure of a RNA sequence.
It is used in many bioinformatics pipelines such as the search of micro RNAs
where the stability of the secondary structure is an important feature.

A secondary structure is described by a list of base pairs i · j where each
base forms at most one pair. The algorithm is based on a decomposition of the
secondary structure into its constituent loops. Each loop is associated with an
experimentally measured energy according to its sequence, length and type. The
stability (free energy) of a structure is the sum of the energies of all its loops.

In the dot bracket representation given in Fig. 1, an unpaired base is depicted
by a dot, and a pair by a matching pair of parenthesis. In the model used,
matching pairs of parenthesis have to be well nested, i.e there are no pseudoknots.
This restriction is a requirement to allow a relatively fast dynamic programming
approach as the one developed by Zuker and Stiegler. Indeed, it ensures that
the secondary structure of each subsequence i, j can be computed independently
from the rest of the sequence, a required feature for dynamic programming.

2.3 Algorithm

The dynamic programming algorithm uses three tables: Q′
i,j is the minimum

energy of folding of a subsequence i, j given that bases i and j form a base
pair; Qi,j and QMi,j are the minimum energy of folding of the subsequence
i, j assuming that this subsequence is inside a multiloop and that it contains
respectively at least one and two base pairs. A simplified model of the recursion
relations can be written as:

Q′
i,j =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
min

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Eh(i, j)
Es(i, j) + Q′

i+1,j−1
min

k,l∈]i;j[2
Ei(i, j, k, l) + Q′

k,l

QMi+1,j−1

⎫⎪⎪⎪⎬⎪⎪⎪⎭ if pair i · j is allowed

∞ if pair i · j is not allowed

(1)

QMi,j = min
i<k<j

(Qi,k + Qk+1,j) (2)

Qi,j = min
{
QMi,j , min(Qi+1,j , Qi,j−1), Q′

i,j

}
(3)

Eh(i, j) Ei(i, j, k, l) and Es(i, j) are respectively the energies of:
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AAAAAAGGGAAAAGAACAAAGGAGACUCUUCUCCUUUUUCAAAGGAAGAGGAGACUCUUUCAAAAAUCCCUCUUUU
((((.(((((...(((.((((((((....)))))))))))...(((((((....))))))).....))))).)))) (-24.5)

1

2

3

4

5

6

Fig. 1. Secondary structure. The secondary structure begins in 1 with stacked base
pairs (two closing base pairs with both sides of the loop of length zero). 2 is an interior
loop (two closing base pairs with both sides non null). 3 shows a multiloop (several
closing base pairs). 4 is a bulge loop (two closing base pairs with one loop side of length
zero and the other greater than zero. 5 and 6 are hairpin loops (one closing base pair).
The structure can also be written in a dot bracket representation where an unpaired
base is a dot and a base pair is a matching pair of parenthesis. The free energy of the
structure (−24.5) is the sum of the energies of its constituent loops.

– Eh(i, j): a hairpin loop closed by the pair i · j.
– Ei(i, j, k, l): an interior loop formed by the two base pairs i · j, k · l.
– Es(i, j): two stacked base pairs i · j and (i + 1) · (j − 1).

These functions compute energies through the use of lookup tables containing
energy parameters according to the size and sequence of the loop.

Ej being the minimum free energy of subsequence 1 . . . j, the minimum free
energy En of the whole sequence is then obtained through the recursion:

Ej = min
{

Ej−1, min
1<k<j

(Ek−1 + Q′
k,j)

}
(4)

Dynamic programming using this recursion computes the minimum free energy
of a sequence of length n in O(n2 · L2 + n3) by restricting the loop size of
interior loops to L. The corresponding secondary structure is then obtained by
a trace-back procedure.

3 GPU Implementation

3.1 Architecture and Programming

GPUs are massively parallel architectures providing cheap high performance
computing. We choose in our work CUDA as it combines high performance with
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the ease of use of a C-like environment [10]. The latest NVIDIA GPU, the GT200,
is divided into 30 multiprocessors each being a SIMD unit of 8 32-bit processors.
A GPU procedure is a kernel called on a set of threads, divided in a grid of
blocks each running on a single multiprocessor. Furthermore Blocks are divided
in warps of 32 threads that must execute the same instruction simultaneously.
Thus, branching (if-then-else control flow instructions) does not impact perfor-
mance as long as each thread within a warp take the same code path. Moreover,
only threads within a block can be synchronized and can share the fast on-chip
shared memory. One key difference with a traditional CPU implementation is
that the programmer has to explicitly handle several memory spaces of differ-
ent performance, size, scope and lifetime: global, texture, constant and shared
memory as well as registers.

3.2 Parallelization Scheme

Algorithm 1 shows the main loops of the computation along with the several
ways to expose parallelism. We chose a mixed approach: we compute the mini-
mum free energy of folding of several sequences in parallel, each one being itself
parallelized. According to this parallel scheme, we can provide the GPU with
many independent tasks together with a low memory consumption. The number
of sequences being computed simultaneously is adapted according to their length:
one large sequence can provide enough independent tasks to the GPU whereas
small ones have to be computed by groups. We also implemented a multi-GPU
algorithm by dividing work among GPUs at the coarse-grained level, each GPU
computes a different group of sequences.

i

1

n

1 n.  .  . j.  .  .

.
X

1

n

1 n

.

.

.

.

.

Fig. 2. Left: Data dependency relationship. Each cell of the matrix contains the
three values Q′, QM and Q. As subsequence i, j is the same as subsequence j, i only
the upper half of the matrix is needed . The computation of cell i, j needs the lower left
dashed triangle and the two vertical and horizontal dotted lines. Right: Paralleliza-
tion. According to the data dependencies, all cells along a diagonal can be computed
in parallel from all previous diagonals.
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Figure 2 shows the data dependencies coming fromthe recursion (1) to (3). They
imply that, given all previous diagonals, all cells of a diagonal can be processed in-
dependently. Three kernels are designed for the computation of Q′

i,j , QMi,j and
Qi,j , according to equations (1) to (3). Each one computes one diagonal of several
sequences. The whole matrix is then processed sequentially through a loop over all
diagonals. The next step corresponding to equation (4) is a combination of reduc-
tions (search of the minimum of an array) which is parallelized in another kernel.
The final step, the traceback procedure for computing the secondary structure, is
currently left on the CPU as its execution time is far lower.

3.3 Optimization Key Points

Memory accesses are the bottleneck of the implementation. Here, the data are
divided into three groups: the base sequence, the three tables Q′, QM ,Q and
the energy parameters needed for the computation of loop energies. Maximum
performances are obtained when available memory resources are used to their
maximum and when the best match between the different memory spaces and
type of data are found. Here, the texture memory is used for the sequence and
parts of the tables which both show some spatial locality in their access pat-
tern, as for the computation of one cell QMi,j where equation (2) shows that
accesses to all elements of a line and column of matrix Q have to be made.
For energy parameters, the best choice is the constant memory. However, its
small size compels us to also employ the global memory for the least used ones.
Lastly, the shared memory is kept for storage of intermediate results in the
computation.

Another important issue of the implementation comes from equation (1)
which shows that the computation of table Q′ is not the same for all cells:
if the pair i · j is forbidden then cell Q′

i,j is set to ∞. This hurts the SIMD
model of GPU which, as stated section 3.1, says that in order to get full perfor-
mance all threads of a warp must execute the same instruction path. To solve
this issue our implementation computes on CPU an index of all the cell po-
sitions that have their base pairs allowed, which is then handed to the GPU.
This increases the amount of data transferred between the CPU and the GPU
but decreases branching in GPU kernels. Moreover CPU computation can be
overlapped with GPU computation thus allowing us to better use all available
resources.

We found that for maximum efficiency the parallelization has to be done
up to the the finest grain achievable, to ensure the GPU reaches its maximum
potential while using the less memory possible. Different levels of parallelization
are exploited: parallelization across several sequences, across several cells of a
diagonal, and across tasks required for the computation of a single cell itself: the
search of a minimum is parallelized on several threads of a same block sharing
intermediate results through shared memory.
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Algorithm 1. Main function and parallelizable loops
1: Input: N sequences of length L
2: Output: minimal energy of the N sequences
3: Coarse-grained level: parallelization over multiple sequences
4: for sequence s in [1; N ] do
5: for diagonal d in [1; L] do
6: Medium-grained level: parallelization over multiple cells of a diagonal
7: for i in [1; L − d] do
8: j ← i + d
9: Fine-grained level: parallelization over the minimization computation

10: compute Q′(i, j, s), QM(i, j, s), Q(i, j, s)
11: end for
12: end for
13: compute EL(s)
14: end for

4 Results

GPU and CPU implementations are both compared on different graphic cards
and processors. The main testing platform is an octo-core Xeon E5430 2.66Ghz
(4 × 6MB L2 cache) with 8GB RAM and two NVIDIA Tesla C870 cards, each
having 16 multiprocessors. We also test older processors, a Pentium 4 3Ghz
(1MB L2 cache), a Core2 6700 2.66GHz (4MB L2 cache), and the latest high-
end graphic card the NVIDIA GTX280 with 30 multiprocessors.

4.1 Analysis on 120 Bases-Long Sequences

Problem specifications. A typical use of the algorithm is the computation
of the secondary structures of many small RNA sequences. The search of micro
RNAs in a whole genome requires, for example, to know the secondary struc-
ture of millions of sequences of length approximately 120 [11]. Therefore we
first choose to test the algorithm on sequences of this length, here with 40000
randomly generated sequences.

Figure 3 reports running times in seconds and the corresponding speedup
achieved by different combination of cards versus one or eight CPU cores. Our
CPU multi-core implementation is done on a coarse-grained level by parallelizing
the work over multiple sequences, corresponding to line 4 of algorithm 1.

Results. We achieve a speed-up of about ×10 for one Tesla card versus one
core of a Xeon. An interesting point is that although the algorithm was originally
developed with the Tesla, it scales well with the latest graphic card. The GTX280
is 70% faster than the Tesla with a speed-up of ×17 versus one core of a Xeon,
which roughly corresponds to the increase of memory bandwidth between the
two cards. With the two Tesla, the speed-up becomes ×19, and two GTX280 get
×33.1, which shows that the processing power of cards adds up well when used
together.
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Fig. 3. Left: Execution Time. Time spent in seconds for the computation of the
minimum free energy of 40000 randomly generated sequences of length 120, energy
only (option -E of the hybrid-ss-min function). Processors are: P4 a pentium4 3.0Ghz
(1MB cache), C2 is one core of a core2 2.66 Ghz (4MB cache), Xeon and Xeon*8
are respectively one and eight cores of Xeon 2.66Ghz (6MB cache). Graphic cards are
NVIDIA Tesla C870, GTX280, bi-Tesla C870, and bi-GTX280. Right: Correspond-
ing speed-up. Acceleration ratio of graphic cards versus Xeon processor, one core or
octo-core configuration.

Accuracy. Our GPU implementation uses exactly the same algorithms and
thermodynamic rules as Unafold, thus the results and accuracy obtained on
GPU is exactly the same as the standard CPU Unafold function.

Performance / cost analysis. When using a parallelized version of the al-
gorithm on the eight CPU cores, speed-ups are much less (Figure 3), yet the
performance/cost ratio is clearly in favor of the GPU implementation. Indeed
our results show that a system with two GTX280, easily doable for 2500 euros,
would be roughly equivalent to four octo-core computers costing a total of more
than 8000 euros.

As for standard computers at everyone disposal, the advantage of GPUs is
also obvious: considering every systems are now dual-cores, adding a GTX280
would allow to get at least ×8 performance even if both CPU cores are used, at
a cost of about 400 euros.

4.2 Analysis across Varying Sequence Lengths

The algorithm is then experimented upon with various sequence lengths. Speed-
up of Tesla and GTX280 versus one Xeon processor core are showed in figure 4.
It should first be noted that the GTX 280 is always at least 50% faster than the
Tesla except for very long sequences, where it begins to lack memory (Tesla has
1.5 GB whereas GTX 280 has 1.0 GB). We see that performance is good for short
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Fig. 4. Speed up comparison. Speed up of Tesla C870 and GTX 280 graphic card
versus one core of a 2.66 Ghz Xeon for randomly generated sequences of different
lengths. Solid line is Tesla C870, dashed line is GTX 280.

sequences (Tesla gets ×10 speed-up), then it comes to a minimum for 1000 bases
long sequences (Tesla gets ×7) and it rises again for very long sequences (×12
for Tesla with sequence of length 9000 ). This comes from the fact that different
portions of the code do not have the same computational complexity and GPU
efficiency. With n the length of a sequence, QM computation is in O(n3) whereas
Q′ computation is in O(n2). The efficiency of the O(n2) part decreases when n
increases due to different memory access patterns, which explains the decrease
in performance. The O(n3) part of the algorithm is always very efficient on GPU
but only becomes a preponderant part of the algorithm for long sequences, which
explains the overall speed up increase we observe for long sequences.

4.3 Comparison Against GTfold

A.Mathuriya et al. implemented a CPU multicore algorithm for RNA secondary
structure prediction which uses what we call in algorithm 1 the medium-grained
level [12]. They compute in their study the folding of the HIV-1 sequence and
a set of 11 Picornaviral sequences on a 32-core IBM P5-570 server. Table 1
compares the running time they obtain against our GPU implementation on one
Tesla C870 card. It shows that an expensive 32-core server only gets ×1.6 the
performance of a single GPU.

Table 1. Running times on HIV-1 sequence (9781 nucleotides) and a set of 11 Picor-
naviral sequences (7124 to 8214 nucleotides), cf [12] for sequence accession numbers

GTfold 32-core IBM P5-570 GPU Tesla C870 Unafold 1 core Xeon
HIV-1 84 s 133 s 1876 s

11 Picornavirus 480 s 765 s 7902 s
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5 Future Work

This work is the first step in parallelizing RNA folding algorithm on GPU.
It shows that GPUs can deliver significant speed-ups even on algorithms with
complex memory access patterns.

However, although GPUs recently became easier to use, an efficient GPU im-
plementation remains a lengthy process. For years programmers have developed
purely sequential algorithms, yet it appears that future systems will become
more and more highly parallel architectures. Thus, a future challenge will be to
find a way to facilitate implementation of algorithms for a parallel execution; on
multi-core chips using the MIMD paradigm, on GPUs using the SIMD paradigm,
and the trickiest task, on a combination of both.
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Abstract. We consider a metaheuristic optimization algorithm which
uses single process (thread) to guide the search through the solution
space. Thread performs in the cyclic way (iteratively) two main tasks:
the goal function evaluation for a single solution or a set of solutions
and management (solution filtering and selection, collection of history,
updating). The latter task takes statistically 1-3% total iteration time,
therefore we skip its acceleration as useless. The former task can be accel-
erated in parallel environments in various manners. We propose certain
parallel small-grain calculation model providing the cost optimal method.
Then, we carry out an experiment using Graphics Processing Unit (GPU)
to confirm our theoretical results.

1 Introduction

Almost all combinatorial optimization tasks formulated for scheduling problems
are strongly NP-hard. Currently known exact solution algorithms (dedicated to
find global optimum) own exponential computational complexity which causes
unacceptable long solution time for instances that come from practice. In this
context one can propose two, not mutually conflicted, approaches, which allow
one to solve large-size instances in acceptable time: (1) approximate methods
(chiefly metaheuristics), (2) parallel methods. The best hybrid combination of
both is the one which we really needed.

The most promising metaheuristic algorithms search solution space in a cer-
tain intelligent way. Quality of the best solutions generated by these algorithms
strongly depends on the number of analyzed solution, and thus on the running
time. Time and quality have opposing tendency in such a sense, that finding
a better solution requires a significant computation time growth. Through the
parallel processing one can increase the number of checked solutions (per time
unit). In this paper there are proposed several solutions algorithms dedicated to
a single solution analysis employed in widely used metaheuristics.

In the scope of a single-thread search, dedicated fundamentally for uniform
multiprocessor system of small granularity, one can distinguish a few parallel
approaches taking into account various design technologies and different needs
applied by modern discrete optimization algorithms, namely: (a) single solution

G. Allen et al. (Eds.): ICCS 2009, Part I, LNCS 5544, pp. 1014–1023, 2009.
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analysis (dedicated for simulated annealing SA, simulated jumping SJ, random
search RS), (b) local neighborhood analysis (for tabu search TS, adaptive mem-
ory search AMS, descending search DS), (c) analysis of population of distributed
solutions (for genetic approach GA, scatter search SS). In each case special at-
tention should be paid to efficiency, cost and speedup of methods depending on
the used parallel computing environment. For each algorithm, theoretical eval-
uation of its numerical properties as well as comparative analysis of potential
benefits from proposed approaches are expected. In this paper we deal chiefly
with the approach (a).

In this paper we use the following notions which are fundamental in the par-
allel computing area, see e.g. [4]: theoretical parallel architectures, theoretical
models of parallel computations, granularity, threads, cooperation, speed up,
efficiency, cost, cost optimality, computational complexity, real parallel architec-
tures and parallel programming languages.

This work constitutes the continuation of authors research on constructing
efficient algorithms applied to solve hard combinatorial problems ([2,5,6]).

2 Permutation Flow Shop Problem

We consider, as the test case, the well-known in the scheduling theory, strongly
NP-hard problem, called the permutation flow-shop problem with the makespan
criterion and denoted by F ||Cmax. Skipping consciously the long list of papers
dealing with this subject we only refer the reader to the recent reviews and the
best up-to-now algorithms [5,6].

The problem has been introduced as follows. There is n jobs from a set J =
{1, 2, . . . , n} to be processed in a production system having m machines, indexed
by 1, 2, . . . , m, organized in the line (sequential structure). A single job reflects
one final product (or sub product) manufacturing. Each job is performed in m
subsequent stages, in a common way for all tasks. The stage i is performed by
machine i, i = 1, . . . , m. Each job j ∈ J is split into a sequence of m operations
O1j , O2j , . . . , Omj performed on machines in turn. The operation Oij reflects
processing of job j on the machine i with the processing time pij > 0. Once
started job cannot be interrupted. Each machine can execute at most one job at
a time; each job can be processed on at most one machine at a time.

The sequence of loading jobs into system is represented by a permutation
π = (π(1), . . . , π(n)) on the set J . The optimization problem is to find the
optimal sequence π∗ so that

Cmax(π∗) = min
π∈Π

Cmax(π). (1)

where Cmax(π) is the makespan for permutation π and Π is the set of all permu-
tations. Denoting by Cij the completion time of job j on the machine i we have
Cmax(π) = Cm,π(n). Values Cij can be found by using the recursive formula

Ciπ(j) = max{Ci−1,π(j), Ci,π(j−1)} + piπ(j), i = 1, 2, . . . , m, j = 1, . . . , n, (2)
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with initial conditions Ciπ(0) = 0, i = 1, 2, . . . , m, C0π(j) = 0, j = 1, 2, . . . , n.
Computational complexity of (2) is O(mn).

Values Cij from the equation (2) can be also determined by using a graph
model of the flow shop problem. For a given sequence of jobs execution π ∈ Π
we create a graph G(π) = (M × N , F 0 ∪ F ∗), where M = {1, 2, . . . , m},

N = {1, 2, . . . , n}, F 0 =
m−1⋃
s=1

n⋃
t=1

{((s, t), (s + 1, t))} is a set of technological

arcs (vertical) and F ∗ =
m⋃

s=1

n−1⋃
t=1

{((s, t), (s, t + 1))} is a set of sequencing arcs

(horizontal). Arcs of the graph G(π) have no weights, but each vertex (s,t) has
weight ps,π(t). The time Cij of completing job π(j), j = 1,2,...,n on the machine
i, i = 1,2,...,m equals the length of the longest path from the vertex (1,1) to the
vertex (i,j), including the weight of the last one. For the F ||Cmax problem the
value of the criterion function for the fixed sequence π equals the length of the
critical path in the graph G(π).

(1,1) (1,2) (1,3) (1,n-1) (1,n)

(2,1) (2,2) (2,3) (2,n-1) (2,n)

(m,1) (m,2) (m,3) (m,n-1) (m,n)

(3,1) (3,2) (3,3) (3,n-1) (3,n)

1 2 3 n-1 n... jobs

machines

1

2

3

m

M

Fig. 1. Graph G(π)

3 Searching

We consider a solution method which uses only one thread to manage the search
process. The process executes cyclic iterations consisting of: (1) numerical calcu-
lations (i.e. the goal function value determination), (2) managing functions (i.e.
solution selection, calculations memory realization, solution acceptation). Ac-
tivities connected with managing take statistically 1-3% of the iteration’s time.
Therefore, its acceleration by using parallel environment gives us insignificant
benefit. From the other side, the numerical calculations acceleration by imple-
menting in the parallel or distributed architecture may significantly improve the
efficiency of the solution space’s search algorithm.

We take advantage of the following well-known facts for the PRAM parallel
computer model:
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Fact 1. Sequence of prefix sums (y1, y2, ..., yn) of input sequence (x1, x2, ..., xn)
such, that

yk = yk−1 + xk = x1 + x2 + ... + xk for k = 2, 3, ..., n

where y1 = x1 can be calculated in time O(log n) on the EREW PRAM machine
with O(n/ log n) processors.

From what we have stated above we can assume that the sum of n values
can be calculated in time O(log n) on O(n/ log n) – processors EREW PRAM
machine.

Fact 2. The minimal and the maximal value of input sequence (x1, x2, ..., xn)
can be determined in the time O(log n) on the EREW PRAM machine with
O(n/ log n) processors.

Fact 3. The value of y = (y1, y2, . . . , yn) where yi = f(xi), x = (x1, x2, . . . , xn)
can be calculated on the CREW PRAM machine with n processors in a time
O(c) = O(1), where c is a time needed to calculate the single value of yi = f(xi).

Fact 4. The problem formulated in the previous fact can be calculated in the
time O(log n) on O(n log n) processors.

If we do not have such a big number of processors we can use such a fact to keep
the same cost:

Fact 5. If the algorithm A works on p – processors PRAM in the time t, then
for every p′ < p exists an algorithm A′ for the same problem which works on p′

– processors PRAM in time O(pt/p′).

In each iteration we have to find a goal function value for a single fixed π.
Calculations can be spread into parallel processors in a few ways.

Theorem 1. For a fixed π the value of criterion function for problems F ||Cmax

and F ||Csum can be found on the CREW PRAM machine in the time O(n+m)
by using m processors.

Proof. Without the loss of generality one can assume that π = (1, 2, . . . , n).
Calculations of Ci,j by using (2) have been clustered. Cluster k contains values
Cij such that i + j − 1 = k, k = 1, 2, . . . , n + m − 1 and requires at most m
processors. Clusters are processed in the order k = 1, 2, . . . , n+m−1. The cluster
k is processed in parallel on at most m processors. The calculations sequence
is shown in Fig. 2 on the background of the grid graph commonly used for the
flow shop problem. Values linked by dashed lines constitute a single cluster.
The value of Cmax criterion is simple Cm,n. To calculate Csum =

∑n
j=1 Cm,j we

need to add n values Cm,j , which can be done sequentially in n iterations or in
parallel by using m processors with the complexity O(n/m+log m). Finally, the
computational complexity of determining the criterion value for F ||Cmax and
F ||Csum problems is O(n + m) by using m processors.
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Fig. 2. Computing Cij order using m threads

Fact 1. Speedup of method from Theorem 1 is O( nm
n+m ), efficiency is O( n

n+m )1.

Theorem 2. For a fixed π the value of criterion function for problems F ||Cmax

and F ||Csum can be found on the CREW PRAM machine in the time O(n+m)
by using O( nm

n+m ) processors.

Proof. Without the loss of generality one can assume that π = (1, 2, . . . , n).
We based on the scheme of calculations shown in Fig. 2. Let p ≤ m be the
number of used processors. The calculation process will be carried out for levels
k = 1, 2, . . . , d, d = n+m−1 in this order. On the level k we perform a calculation
of nk values Ci,j such that i + j − 1 = k,

∑d
k=1 nk = nm.

We cluster nk elements on the level k into
⌈

nk

p

⌉
groups; first

⌊
nk

p

⌋
groups

contain p elements each, whereas the remaining elements (at most p) belong to
the last group. Parallel computations on the level k are performed in the time
O(

⌈
nk

p

⌉
). The total calculation time is equal to the sum over all levels and is of

order
d∑

k=1

⌈
nk

p

⌉
≤

d∑
k=1

(
nk

p
+ 1

)
=

nm

p
+ d =

nm

p
+ n + m − 1. (3)

We are seeking for the number of processors p, 1 ≤ p ≤ m, for which efficiency
of parallel algorithm is O(1), which ensures cost optimality of the method. The

1 Evaluation is true with a certain constant multiplier.
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value p can be found from the following condition

1
p

nm
nm
p + n + m − 1

= c = O(1) (4)

for some constant c < 1. After a few simple transformations of (4) we get

p =
nm

n + m − 1

(
1
c

− 1
)

= O(
nm

n + m
). (5)

Setting p = O( nm
n+m ) we obtain the total calculation time of Cij values equals

O(
nm

p
+ n + m − 1) = O(

nm
nm

n+m

+ n + m) = O(n + m). (6)

Fact 2. Speedup of the method based on Theorem 2 is O( nm
n+m ), cost is O(nm).

The method is cost optimal and allows one to control efficiency as well as speed of
calculations by choosing the number of processors and adjusting the parameters
of calculations to the real number of parallel processors existing in the system.
Besides, Theorem 2 provides the “optimal” number of processors that ensures the
cost optimality of this method. This number can be set by a flexible adaptation
of the number of processors to both sizes of the problem, namely n and m
simultaneously.
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Fig. 3. Efficiency of the method from Theorem 2

4 Experimental Results

The parallel algorithm for the considered problem of calculating makespan in
permutation flow shop problem was coded in C (CUDA) for GPU, ran on the
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Tesla C870 GPU (512 GFLOPS) with 128 streaming processor cores and tested
on the benchmark problems of Taillard. The benchmark set contains 120 partic-
ularly hard instances of 12 different sizes. For each size (group) n × m: 20 × 5,
20 × 10, 20 × 20, 50 × 5, 50 × 10, 50 × 20, 100 × 5, 100 × 10, 100 × 20, 200 × 10,
200 × 20, 500 × 20, a sample of 10 was provided. The considered algorithm
showed as Algorithm 1 uses m GPU processors for calculating makespan. Its se-
quential version is obtained by assigning p = 1 and it is also executed on GPU.
Algorithm 2 presents details of the parallel method coded in CUDA.
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Fig. 4. The one thread algorithm computational times

Algorithm 1. Parallel algorithm of the makespan calculating
parfor i = 1 to p (for each processor)

for j = 1 to n + m − 1 do
x = j − i + 1
if x ≥ 1 and x ≤ n then

Cx,i = max{Cx−1,i, Cx,i−1} + px,i

end if
end for

end of parfor.

Each multiprocessor of the TESLA C870 GPU has on-chip memory of the
four following types:

– one set of local 32-bit registers per processor,
– a parallel data cache or shared memory that is shared by all scalar processors

cores and is where the shared memory space resides,
– a read-only constant cache that is shared by all scalar processor cores and

speeds up reads from the constant memory space, which is a read-only region
of device memory,

– a read-only texture cache that is shared by all scalar processor cores and
speeds up reads from the texture memory space, which is a read-only region
of device memory.
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Algorithm 2. Parallel algorithm for makespan calculating coded in CUDA
__global__ void cmax(int *c, int n, int m, int *cmax) {
int idy;
int idx = blockIdx.x * blockDim.x + threadIdx.x + 1;
if(idx<=m) {

for(int j=1;j<m+n;j++) {
idy = j - idx + 1;
if(idy>=1&&idy<=n) {

c[idx*(n+1)+idy]=max(c[(idx-1)*(n+1)+idy],
c[idx*(n+1)+(idy-1)]) + tex2D(tex,idy ,idx);
if(idx==m&&idy==n) cmax[0]=c[idx*(n+1)+idy];

} } } }

int main() { //Kernel invocation
int blockSize = 16;
int nBlocks = M/blockSize + (M%blockSize == 0?0:1);
cmax<<< nBlocks, blockSize >>> (devC, N, M, devCmax);

}

There is no need to copy table with processing times before each calculating of
makespan so this table was copied once to very fast read-only texture memory.
Therefore timings are measured without this preparing time. Texture memory
is cached. Table C was allocated in global memory. After calculations makespan
on GPU value of Cmax is copied to the CPU. This operation is very fast (only
one-element table is copied).

The sequential algorithm using one GPU processor was coded with the aim
of determining the speedup value which can be obtained by a parallel algorithm.
Table 1 shows computational times for the sequential and the parallel algorithm
as well as speedup. The value of relative speedup s can by found by the following

Table 1. Experimental results for Taillard’s instances

n × m p tp [ms] ts [ms] speedup s

20 × 5 5 0.0271 0.0526 1.94
20 × 10 10 0.0309 0.1022 3.31
20 × 20 20 0.0386 0.2014 5.22
50 × 5 5 0.0480 0.1244 2.59
50 × 10 10 0.0518 0.2469 4.76
50 × 20 20 0.0601 0.4909 8.16
100 × 5 5 0.0835 0.2449 2.93
100 × 10 10 0.0874 0.4885 5.59
100 × 20 20 0.0968 0.9740 10.06
200 × 10 10 0.1582 0.9716 6.14
200 × 20 20 0.1697 1.9403 11.43
500 × 20 20 0.3919 4.8392 12.35
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expression s = ts

tp
, where ts constitutes the computational time of sequential

algorithm and tp - computational time of parallel algorithm. Figure 4 shows
computational times of the sequential algorithm for different sizes of problem.
The algorithm computational time increases with the size of a problem. For the
fixed number of jobs 100% increasing of the number of machines results in 100%
increasing computational time.

Figure 4 shows computational times of the parallel algorithm for different
sizes of the problem. For the fixed number of jobs the increase of the number of
machines results in a small computational time increase. Increase size of problem
results in increasing the speedup of parallel algorithm in comparison with the
sequential algorithm. Figure 6 confirms theoretical effectiveness on the basis of
Theorem 2 shown on Figure 3. Obtained experimental results are fully common
with the theoretical analysis.
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5 Conclusions

We propose taking advantage of modern many-core computing processors GPU
to accelerate local search algorithm’s work. Results, for a classic flow shop
scheduling problem, allow us to obtain a speedup which is proportional to the
number of machines m from the problem definition. Theorems presented in this
paper can be easily extended to the EREW PRAM model, with exclusive read,
which requires an additional O(log n) time, however the architecture of the used
GPU allows us to implement CREW algorithms (with a possibility of concur-
rent read). On the other side the shared memory usage is connected with a huge
time latency (400-600 cycles of the clock) comparing to the local memory of a
processor or the textures (constant) memory. Therefore, a further acceleration
of the algorithm is possible under condition of the methods adaptation to the
GPU memory access specific.
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Callanan, Owen I-974
Camahort, Emilio II-801
Caminiti, Saverio I-611
Campos, Fernanda I-73
Cannataro, Mario I-807, I-810
Carissimi, Alexandre Silva I-213
Cencerrado, Andrés I-227
Cetnarowicz, Krzysztof II-813, II-825
Cevahir, Ali I-893
Chaarawi, Mohamad I-185
Chandok, Suneet I-185
Chandrasekaran, Vasu II-221
Chapiro, Alexandre I-429
Chen, Hui I-259
Chen, Q. Jim I-63
Chen, Weibing II-543
Chen, Zaiben I-303
Cheng, Jing-Ru C. I-785
Chopard, Bastien I-705
Cline, Michael R. II-203
Collange, Caroline I-914
Constantinescu, Emil II-293
Contet, Jean-Michel I-601
Cortés, Ana I-227, II-479, II-489
Cristea, Mihai II-719
Crowell, Sean II-263
Cui, Bin I-303
Curry, James I-984



1026 Author Index

Daescu, Dacian N. II-322
Dai, Yafei I-303
Dalforno, Christianne I-13
Damevski, Kostadin I-259
Danek, Tomasz II-435
Darema, Frederica II-447
David, Romaric I-874
de Back, Walter I-387
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Isern-Deyà, Andreu Pere I-357

Jacobs, Patricia II-15
Jagode, Heike II-686
Jaidann, Mounir II-131
Jensen, Jens II-667
Jessup, Elizabeth I-248
Jha, Kailash II-759
Jha, Shantenu I-641
Jiang, Nanyan II-449
Johnson, C. Ryan II-416
Jones, Dylan II-302
Juan, M.C. II-801
Jurek, Janusz II-815

Kampis, George I-387
Kang, Pilsung I-269
Kang, Shin-Jin II-780
Kapanoglu, Muzaffer I-33
Kaufer, David I-419
Kendall, Wesley II-416
Kenjeres, Sasa I-675
Khasawneh, Khaleel R.A. I-655
Khassehkhan, Hassan I-735
Kim, Dong Kwan I-237
Kim, Hyoungjin I-293
Kim, Joohyun I-641
Kim, Moonkyung II-657
Kim, Sun-Jeong II-780
Kischinhevsky, Mauricio I-560, I-570
Kisiel-Dorohinicki, Marek II-865
Kitowski, Jacek II-709
Kleijn, Chris R. I-675
Klie, Hector I-864
Klug, Tobias I-491
Kolb, Oliver I-337

Konieczny, Micha�l II-855
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Pilla, Laércio Lima I-213
Plata, Oscar I-924
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