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Abstract. Malware analysis is critical for malware detection and pre-
vention. To defeat malware analysis and detection, today malware com-
monly adopts various sophisticated anti-detection techniques, such as
performing debugger, emulator, and virtual machine fingerprinting, and
camouflaging its traffic as normal legitimate traffic. These mechanisms
produce more and more stealthy malware that greatly challenges existing
malware analysis schemes.

In this work, targeting application level stealthy malware, we propose
Malyzer, the key of which is to defeat malware anti-detection mechanisms
at startup and runtime so that malware behavior during execution can be
accurately captured and distinguished. For analysis, Malyzer always starts
a copy, referred to as a shadow process, of any suspicious process on the
same host by defeating all startup anti-detection mechanisms employed
in the process. To defeat internal runtime anti-detection attempts, Ma-
lyzer further makes this shadow process mutually invisible to the original
suspicious process. To defeat external anti-detection attempts, Malyzer
makes as if the shadow process runs on a different machine to the out-
side. Since ultimately malware will conduct local information harvesting
or dispersion, Malyzer constantly monitors the shadow process’s behavior
and adopts a hybrid scheme for its behavior analysis. In our experiments,
Malyzer can accurately detect all malware samples that employ various
anti-detection techniques.

1 Introduction

Internet malware poses an immense threat to computer system security. Fun-
damentally, malware aims to collect local sensitive information, such as bank
account information, password, and CD keys, or leverage infected hosts for vari-
ous attacks, such as spam relay, DDoS, IP laundering (acting as stepping stones),
and phishing. These malicious actions are commonly referred to as information
harvesting and information dispersion [I5], respectively.

A number of schemes have been proposed and used for malware detection and
analysis. Among them, the signature-based approach has been employed for many
years and is the most prevalent scheme in practice. In general, signature-based
schemes [RIT920l28] generate content-based signatures that can uniquely iden-
tify the malware. Signature-based schemes are efficient and effective in detect-
ing and containing known malware, but they are inherently ineffective against
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previously unknown or polymorphic/metamorphic malware [23]. Encryption [10]
and obfuscation [25] are also commonly used to make the signature-based schemes
incompetent.

Research has been conducted on behavior analysis that complements the
content-based signature approach. Behavior analysis aims to identify abnormal
process behavior. In general, the process behavior under supervision is compared
with a pre-defined safe model. Any behavior deviating from the predefined model
would lead to an alarm, which is in line with the anomaly-based approach. For
behavior analysis, various approaches have been studied, such as using dynamic
taint processing [TTUT2124I29/31], checking auto-start extensibility points in reg-
istry [30], and searching for various hooks [9I27].

However, due to underlying economic motivations, various anti-detection mech-
anisms have been constantly and continuously developed and quickly adopted by
malware developers to make more and more stealthy malware. The efforts are
from two perspectives. One is to use protective camouflaging to conceal its ex-
istence. For example, modern bots try to blend their traffic with normal user traf-
fic [T6121]. Some malware [I] may run as browser helper objects (BHO). Advanced
malware [2] is found to perform dynamic code replacement. That is, a benign user
application process is started, and malware code is then written to its memory
sections and executed in the context of this process. When misbehavior is identi-
fied, it will be traced down to a “legitimate” application process. This approach
becomes more and more common since malware can easily go through firewalls
via such an approach.

Besides camouflaging at runtime, malware developers today also commonly
adopt proactive approaches to evade detection at startup. For example, as mal-
ware analysis and detection may use various debugger, emulator, or run suspi-
cious code samples in a virtual machine environment, most of today’s malware
performs virtual machine, emulator, and debugger detection, which we refer to
as running environment tests, before the logic of malware gets executed [3]
These techniques make systems like Panorama [3I] (that relies on an emula-
tor for malware analysis) and SpyProxy [22] (that executes the Web content
in a virtual machine) to stop functioning. Widely adopting these anti-detection
techniques in malware, malware developers successfully enforce malware analysis
and detection to be conducted in a real executing environment, in which various
runtime camouflaging as aforementioned can effectively protect malware.

Targeting application-level stealthy malware, in this paper, we propose Ma-
lyzer, an execution-based approach for malware analysis. The key idea of Malyzer
18 to unveil malware camouflaging at startup and runtime so that malware be-
havior can be accurately captured and distinguished. For this purpose, Malyzer
constantly monitors processes’ startup procedures. If a process is suspicious (i.e.,
analysis object), Malyzer thus can start a copy of this process, which is referred to
as a shadow process, on the same host no matter what anti-detection techniques
have been employed at startup. Malyzer makes the shadow process inaccessible

1 Such tests could be combined into a packer that can perform multi-layer packing for
anti-reverse-engineering [I7] against static malware code analysis.
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to other processes or users in order to eliminate noisy activities that do not
belong to the shadow process. Without interferences caused by other processes
or users on the same host, the behavior of the shadow process could only be
autonomous by its inner logic or caused by some remote control.

Because the shadow process runs in the same environment as the original sus-
picious process, the environment test including virtual machine detection , should
that be performed, will always pass. To defeat internal anti-detection tests, Ma-
lyzer further makes this shadow process mutually invisible to the original process.
Malyzer also controls direct user accesses to this shadow process in order to min-
imize legitimate user activities that malware could leverage for camouflaging. To
defeat external anti-detection attempts, Malyzer makes the shadow process run-
ning as if it is running on a different machine to the outsider. Since ultimately mal-
ware will conduct local information collection or dispersion, Malyzer constantly
monitors the shadow process’s disk, network, and memory accesses and uses a
hybrid scheme combing both anomaly-based and signature-based approaches for
process behavior analysis. We have implemented a prototype system of Malyzer.
Our evaluation results show that it can accurately capture the behavior of all the
malware samples that use various anti-detection techniques in our experiments.

The rest of the paper is organized as follows. We present Malyzer design in
section 2] and prototype implementation in section Bl Malyzer is evaluated in
section @l We further discuss some optimizations and limitations of Malyzer in
section [Bl and make concluding remarks in section

2 Malyzer Design

Figure [I] shows the system architecture of Malyzer design. Malyzer consists of
three components: Startup Tracker, Shadow Process Manager, and Shadow
Process Monitor.

Pl P3
P2 ﬂ (P2)

shadow process manager
startup tracker

Operating System shadow process monitor

Fig. 1. System Architecture. Suppose the process P2 is suspicious. Through Startup
Tracker, information regarding how P2 is started is fetched as well as a memory image
of P2 (if necessary). No matter how P2 is started, a shadow process of P2 could
be started on the same host by Shadow Process Manager, which defeats all kinds of
anti-detections. Then Shadow Process Monitor monitors the disk/memory/network
accesses of the shadow process for malware behavior analysis.
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2.1 Startup Tracker

To start a shadow process of the given suspicious process, Malyzer must ob-
tain the runnable executable of the malware so that a shadow process can be
started on demand. With sophisticated anti-detection mechanisms, such as dy-
namic code replacement, however, obtaining the executable of a given process is
sometimes non-trivial. For example, directly dumping the memory image of the
given process often does not work.

In general, today malware runs in three possible forms and there are three
types of relationships between a malware process and the corresponding exe-
cutable.

— Malware runs directly from the executable (possibly with multi-layer pack-
ing) on the disk. This is the most common and trivial approach. The malware
process starts when the system starts (usually it is achieved by modifying
registry entries). Given a process, it is easy to locate its executable on the disk
by querying the module name, through which the full path of the executable
can be obtained. Many traditional virus and worms use this approach.

— Malware runs as a DLL in the context of a benign application process. In
this approach, the malware is encapsulated into a DLL, and then installed
statically to a benign application or dynamically to a running process. For
example, when a user browses a particular Web site, the user is fooled to
install a helper object to the Web browser. WebBuying [1] uses this approach.

— Malware runs through dynamic code replacement. This is an advanced and
prevailing approach. The common thread of this approach is as follows:

1. The malware first starts a benign process in a suspended mode. The sys-
tem API createProcess is normally used to invoke the benign process.

2. The malware then allocates memory in the domain of the suspended
process and injects its own executable. This is often conducted through
writeProcessMemory.

3. The malware then sets entry point and resumes execution of suspended
process by using resumeThread or createRemoteThread. The logic of
benign process is completely skipped.

Figure[2shows an example of dynamic code replacement of graybird, which is
one of the most prolific piece of Windows malware [2]. With wide usage of this
approach, querying the module name only returns the genuine executable of
a benign process on the disk, if an identified suspicious process is given. This
not only allows the malware to go through firewalls which is a crucial design
target of modern malware, but also misleads malware analysis and detection.

With these three approaches and the commonly adopted other anti-detection
mechanisms, it is difficult 1) to locate the runnable malware executable; 2) even
if a malware code sample is identified, it may not be start-able.

2 A family of APIs can be used for process creation, such as createProcessAsUser
and createProcessWithLogonW. We use createProcess to represent all of these. We
take a similar approach for other APIs for brevity.
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suspend
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services.exe IE.exe
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Fig. 2. Dynamic Code Replacement of graybird. graybird camouflages itself as Inter-
net Explorer (IE). It starts an IE process, and then replaces the memory image of IE
with graybird. After resetting EAX, it resumes the process to execute the real malcode
of graybird, but appears to be an IE process in the system.

Dynamic code replacement/injection is not uncommon in normal program-
ming practice. With the increasing use of encryption technologies and packers,
dynamic code replacement has been used by a lot of benign applications for all
kinds of purposes, such as code protection [I4]. But we noticed that dynamic
code replacement adopted by benign applications is usually confined within the
application processes, and it’s rare that dynamic code replacement requires to
start another process in these benign applications.

Therefore, Startup Tracker is designed to differentiate these situations and
to preserve critical startup information for Shadow Process Manager. In addi-
tion, Startup Tracker can also provide hints for malware detection. For ex-
ample, a benign process would rarely start with a inter-process dynamic code
replacement approach.

Running as a driver to the host operating system, Startup Tracker tracks
the process creation procedure once the machine is started. In Windows systems,
Windows does not provide a convenient mechanism to track process creation
and termination. Malyzer thus keeps listening to all process creation notification
messages. A notification message typically includes information such as a process
ID and a parent process ID. In Unix-like systems, such information can be easily
obtained from the process data structure.

To identify different process startup approaches, Startup Tracker also needs
APT level information to discover possible dynamic code replacement. Startup
Tracker achieves this through identifying a unique API call sequence. That
is, as aforementioned, for dynamic code replacement, the successive system
APT calls of createProcess, writeProcessMemory, and ResumeThread are in-
evitable. Thus, when Startup Tracker monitors the process startup procedure,
if a sequence of the above system API calls with appropriate parameters is iden-
tified, it is highly likely to be dynamic code replacement, which is suspicious.

In addition, Startup Tracker also needs to prepare for starting a shadow
process of any identified suspicious process as we discuss in the next section.
Therefore, if dynamic code replacement is found, Startup Tracker also dumps
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the process initial memory image before the process is resumed as well as record-
ing other information, such as section sizes and the entry point.

If a malware process runs directly from the executable on the disk or runs as
a DLL of a benign application, Startup Tracker can provide the child-parent
information regarding how a process is started. If the malware runs as a DLL to
a benign application, we will discuss, in the next section, how to match up the
DLL(s) in the shadow process at runtime.

2.2 Shadow Process Manager

The role of Shadow Process Manager is mainly to defeat runtime malware anti-
detection mechanisms that come from the internal or external sources. Thus,
Shadow Process Manager needs to make the shadow process to run as a normal
process, which is mutually invisible to the original process to deal with internal
anti-detection mechanisms, while it is accessible to the outside to deal with any
external anti-detections.

2.2.1 Defeating Internal Anti-detections: The Shadow Process Is
Mutually Invisible to the Original Process

With the help of Startup Tracker that has done sufficient preparation, Shadow
Process Manager can start the shadow process with ease. However, Shadow
Process Manager also needs to guarantee a normal status of the shadow pro-
cess at runtime since various techniques may be used by a malware instance to
perform anti-detections during its execution. For example, a simple but com-
monly used detection performed by a malware process is to frequently check if
there are multiple instances of itself running on the same host. If there are, the
process terminates. In our experiments, nearly all malware samples adopt some
mechanisms to prevent multiple instances from running on the same host. To
defeat these anti-detection mechanisms, Shadow Process Manager thus needs
to use an uncommon approach to start the shadow process, and hook up some
interceptors when the shadow process is started.

To detect multiple instances, usually a process could use the following mech-
anisms:

— through shared memory section: Statement like
#pragma comment(linker, “/section : SHARED, RWS") can set up a
shared section between different instances of the same process. A process
can access the section directly and detect if it has been modified by other
process instance. It is also possible to create a shared section with API like
NtCreateSection or CreateFileMapping at run time. Different process in-
stances can only access the shared section through a name or file handle. So
we treat this case as a named object.

— through process list checking: The process can emulate the process list
and check if there is any process with the same module name as itself. This
approach is not used if the malware runs through DLL injection.
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— through named object: Named objects provide a convenient approach for
processes to share object handles. After a process has created a named event,
mutex, semaphore, file-mapping, section or timer object, other processes can
use the name to open the handle to the object. If a process tries to create
an object using a name that is in use by another process, the function fails
and GetLastError returns ERROR INVALID HANDLE. In general, mutex is the
most commonly used named object.

Among these mechanisms, accessing shared memory section cannot be inter-
cepted. If a memory section is shared, the section has the corresponding SHARED
property. When the operating system (OS) loads this section, the OS checks
whether the section exists. If it does, the OS only points the section to the exist-
ing one so that multiple process instances will access the same memory region.

One possible solution to deal with this in the shadow process (in order to
prevent possible multiple copy detection) is to copy the portable executable
(PE) to a file with a different name. The solution is simple and effective but it
also has limitations. In our experiments, all malware samples query the module
name, and proceed according to the query result. Although it is possible to add
additional interceptors to change the module name, it introduces new complexity.

Thus, Shadow Process Manager takes another approach, similar to dynamic
code replacement used by malware, in which the PE content is read, aligned, and
copied to a suspended process. In this procedure, however, the copy does not
honor the SHARED property of memory sections. It simply allocates new memory
space for all sections and then copies everything. Thus, the shared section would
present as a new section in the memory [I8]. The suspended process, which we
refer to as a shell, could be any process with respect to defeating the memory
sharing approach.

Considering the possible usage of shared memory section, Shadow Process
Manager thus always starts the shadow process using a shell. Since the original
suspicious process is running in the system, its shell PE must exist. Malyzer can
always start a shell from this PE with the right module name. Then

— If no dynamic code replacement is found by Startup Tracker, Shadow
Process Manager will launch the shadow process based on the portable
executable (PE) on the disk. That is, Startup Process Manager reads the
PE, aligns, and writes to the memory.

— If dynamic code replacement is found, Shadow Process Manager will start the
shadow process based on the dumped memory image by Startup Tracker.
That is, Shadow Process Manager will create the shell, then copy the memory
image into the process and resume the execution.

— In either of the above two situations, some malcode may be injected as a DLL
into the process dynamically. Shadow Process Manager needs to guarantee
that the shadow process load all DLLs as the original suspicious process.
Therefore, after a shadow process is launched, Malyzer further compares the
DLL list of the shadow process with that in the original suspicious process.
If any DLL is missing in the shadow process, Shadow Process Manager will
insert the corresponding DLL into the shadow process.
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Fig. 3. Shadow Process Manager. A shadow process is started. The corresponding
executable could be the dumped image or PE on the disk.

Figure Bl illustrates how Shadow Process Manager works to start a shadow
process and interfaces with Startup Tracker and Shadow Process Monitor.

By this way, upon the shadow process startup, Shadow Process Manager has
already defeated possible usage of shared memory sections in the malware. To
deal with the malware anti-detection through process list checking and named
objects, Shadow Process Manager further intercepts system API calls from the
shadow process after the shadow process is started, and

— If the process checks the process list, Shadow Process Manager can make
the original process invisible to the shadow process. In general, process
list checking is through CreateToolhelp32Snapshot, which returns a snap-
shot of all processes, and then Process32Next is commonly used to emu-
late all processes. Thus, Shadow Process Manager only needs to intercept
Process32Next. When Process32Next is ready to return the original sus-
picious process, it is skipped and the next process on the list is returned.

— If the process checks named objects, Shadow Process Manager can address
this through system APT interception. In general, a named object is accessed
through a unique name. For example, if a mutex is used, CreateMutex takes
the name of the mutex as a parameter. Shadow Process Manager generates
two independent name domains for the original and shadow processes. The
interceptor thus can replace the name parameter of the shadow process with a
different one to avoid name conflict. The interceptor also returns the original
name if the shadow process queries the name of the named object.

Apparently, the above is regarding how to make the original suspicious process
invisible to the shadow process. In order to make the shadow process invisible
to the original suspicious process, only Process32Next needs to be intercepted
in the original process.

To facilitate the malware behavior analysis in the Shadow Process Monitor,
Malyzer also makes the shadow process inaccessible to direct user accesses in or-
der to reduce the analysis noise. For this purpose, Malyzer intercepts ShowWindow
and ShowWindowAsync, always replaces parameter nCmdShow with SW HIDE. The
shadow process is then inaccessible to direct user input and misbehavior of the
shadow process can be accurately captured.
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2.2.2 Defeating External Anti-detections: The Shadow Process
Behaves Normally to the Outside

Now the shadow process can run in parallel to the original suspicious process.

But it may still not behave “correctly” as a normal malware instance.

It is common that malware instances need to interact with some outsider. For
example, a bot master controls all bots, and bots running on individual hosts
must communicate with the bot master in order to receive commands, send
back collected local information, etc. Thus, the shadow process must have the
networking capability, and can communicate with outside if needed.

However, in setting up the correct networking functionalities of the shadow
process, the outsider, such as a bot master, may have restrictions. For example,
multiple connection requests from the same IP address may not be allowed on
an IRC server. Thus, it is important that the shadow process should present as
another malware instance on a different host to the outsider.

Even without such constraints from the outsider, the malware instance may
always use a pre-determined port to communicate with the outside. Once the
original process is bound to a particular port, the shadow process cannot use
that port, which may cause the malware instance to stop functioning.

Thus, Malyzer must bind the shadow process to a different IP address from
the original suspicious process, but use the same port number so that an outsider
cannot figure out they are from the same host. That is, Malyzer must be able
to support multiple IP addresses.

Usually a process calls connect to connect to a remote IP address and calls
bind to bind to a specific port before it begins to accept connections. The default
IP address for these APIs is the primary IP address. In order to bind the shadow
process to a secondary IP address, Malyzer needs to intercept these API calls
and add an additional TP address in the OS for this purpose.

In Malyzer, when connect is called, the socket is always bound to the primary
IP address (A.B.C.D1) by default. In order to have the shadow process bound
to the secondary IP address, Malyzer actively performs binding to (A.B.C.D2)
before connect is called in the API interceptor. When receiving incoming con-
nections, Malyzer intercepts bind to bind port to (A.B.C.D2) to avoid port
conflict. These networking setups guarantee that the shadow process appear to
the outsider as a new process running on a different machine.

2.3 Shadow Process Monitor

Malware always performs local sensitive information collection, or controls in-
fected nodes to participate some attacks against a third party. This is funda-
mental to differentiate a benign process from a malware process. Thus, after the
shadow process successfully runs, Malyzer keeps monitoring the behavior of the
shadow process in order to determine if it is actually a malware instance.

Considering that ultimately, a malware instance would perform information
harvesting or information dispersion, Malyzer concerns three typical kinds of
behavior observed from the shadow process:
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— network accesses: A lot of malware has network activities for various pur-
poses. For example, a trojan sends out the information it collects; a bot
contacts its botmaster for commands.

— hard disk access: Some malware is designed to collect sensitive information
stored on the hard disk of infected hosts. In general, it is normal that a benign
process accesses certain directories on the hard disk, such as the current
working directory of the process, but it is uncommon to access directories
owned by other processes.

— memory access: Some malware can directly access memory of other pro-
cesses for sensitive information (e.g., password) or for further attacks.

In order to decide whether or not a process with a sequence of accesses is
malware, existing research commonly applies either anomaly-based analysis or
signature-based schemes. But the challenge is that application (including mal-
ware) behavior is difficult to predict, considering the complexity of software and
diversity of user operations. Fortunately, in Malyzer, the situation is different.
The shadow process is a clone of the original suspicious process. Malyzer makes
it inaccessible to other processes or users in the host system. This greatly elimi-
nates noisy activities that do not belong to the shadow process (we discuss how
to deal with interactive malware with emulated user input later). Without in-
terferences caused by other processes or users on the same host, the behavior
of the shadow process could only be autonomous by its inner logic or caused
by some remote control. Even though, simply using an anomaly-based approach
may not be easy since it is arduous to manually define a normal behavior model
for various shadow processes of legitimate application processes.

At this end, Shadow Process Monitor takes a hybrid approach: to combine
both anomaly- and signature-based approaches. Malyzer first defines a set of
heuristic malicious behavior rules and then generates the normal process be-
havior model automatically along with the malware analysis. Malyzer always
starts with the anomaly-based approach (the benign process behavior model,
consisting of individual process profiles, is empty at the beginning). Malyzer
first compares the shadow process behavior with the benign process model. If
the model is empty or it cannot make a decision, it is further compared against
the heuristic rules. Once the process is determined to be benign, its profile is gen-
erated automatically from the captured access sequence and added to the benign
process behavior model. Note that an optional component, the user validation,
can be added when Shadow Process Monitor determines a malware instance.
This could improve the accuracy of the analysis. Without such a component, the
procedure is fully automatic.

Considering three types of accesses, Malyzer defines the heuristic rule set for
malicious behavior detection of the shadow process as follows:

— connection rate (rule I): When connection count to different destinations
in a given time duration is beyond a threshold, an alarm is raised.

— failed connection rate (rule IT): When the number of failed connections
a shadow process makes to different destinations in a given time duration is
beyond a threshold, an alarm is raised.
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— command and control channel (rule IIT): When the shadow process
maintains a certain number of connections beyond a threshold or when it
maintains a connection to a destination for a duration beyond a threshold,
an alarm is raised.

— sensitive file on disk (rule IV): When the shadow process accesses direc-
tories other than system directory and current working directory, an alarm
is raised.

— sensitive data in memory (rule V): When the shadow process reads or
writes the memory of other processes, an alarm is raised.

Combination of these heuristic rules could be applied too. Note that these heuris-
tic rules are effective in Malyzer because a significant amount of noise caused by
users has been eliminated.

On the other hand, for each process, the normal behavior model consists of
the process profile list, a list of relevant API calls and corresponding parameters
when network, disk, and memory accesses are invoked in the shadow process.

3 Malyzer Implementation

To demonstrate the concept and for experiments, we implement a prototype of
Malyzer on Windows XP Professional. As we have shown in Figure 3], the three
major components of Malyzer interact with each other. Among them, Startup
Tracker is implemented as a driver to keep track of process creation. It keeps mon-
itoring and intercepting system daemons, such as services.exe, svchost.exe,
lsass.exe, spoolsv.exe, and system.exe. This is done through directly replac-
ing their import tables entries [20]. In addition, Startup Tracker keeps intercept-
ing process creation related APIs, such as createProcess,writeProcessMemory,
and resumeThread, which is done through Microsoft Detours 2.1 Express [4].
Upon a child process is created by an intercepted process, relevant APIs in child
process are also intercepted in a recursive fashion.

If Startup Tracker detects dynamic code replacement via the unique API
call sequence as we have discussed in section 2] Startup Tracker will dump
the initial memory of the process. Memory dumping is conducted before the
process is actually resumed. In addition, the EAX register containing the entry
point address, obtained from the parameter of resumeThread, is kept. Startup
Tracker stores this information for Shadow Process Manager.

Shadow Process Manager is responsible for starting a shadow process on de-
mand, given a suspicious process to analyze. Shadow Process Manager first
queries the module file name of the suspicious process and creates a process
with suspended mode from the corresponding executable.

By querying Startup Tracker, if the suspicious process is not started via dy-
namic code replacement, Shadow Process Manager reads the executable again,
aligns, and copies that to the suspended process again (in order to defeat direct
memory sharing in malware instances). This procedure is the same as dynamic
code replacement. In addition, Shadow Process Manager also calculates the en-
try point address and sets EAX for the shadow process [18].
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If the suspicious process is started via dynamic code replacement, Shadow
Process Manager reads the memory image dumped by Startup Tracker and
copies to the suspended process. As Startup Tracker also keeps the EAX value
of the suspicious process, Shadow Process Manager can calculate the entry
point from the original EAX value and set accordingly in the shadow process.

Before resuming the shadow process, Shadow Process Manager hooks in-
terceptors to the shadow process in order to detect various anti-detection ap-
proaches that could be used by a malware instance and monitor its behavior.

Some of the intercepted API calls and their parameters from Shadow Process
Manager are also fed into Shadow Process Monitor for further decisions. These
are disk, network, and memory accessing APIs and their parameters. Such a call
is an event to trigger Shadow Process Monitor. In the current implementation,
Shadow Process Monitor maintains a cache, which contains shadow process
profiles. Once an API calling event is fed to Shadow Process Monitor, it com-
pares with its cached profiles. Currently, the API name and the corresponding
parameters are compared. A discrepancy will raise an alarm.

For heuristic rules, we have set up thresholds as follows: the connection rate
and the failed connection rate are set as ten and five per minute. For the com-
mand and control channel, the connection duration threshold for a persistent
channel is 30 seconds [7]. If the shadow process is finally determined to be be-
nign, its API calls are recorded and updated in the cache.

In addition to capture behavior of malware shadow process, Malyzer also al-
ways locates the correct malcode source. The difficulty lies in that if the malware
runs via DLL injection, such as BHO, Malyzer is expected to report which DLL
the API caller is from. In our current implementation, Malyzer queries stack
information [I3] to find the caller upon an APT call triggering an alarm. For this
purpose, Malyzer defines a macro that reads register EBP, which contains the
value of frame pointer of the caller. Subsequently, the return address is stored at
(EBP + 4). With the return address, Malyzer can query the module where the
return address resides.

4 Malyzer Evaluation

With the prototype, we test Malyzer against a number of malware samples that
use different anti-detection mechanisms. Some representative experimental sam-
ples that use different anti-detections are listed in Table[Il We experiment on all
malware samples. Due to page limit, we will only present some interesting ones
with different anti-detection mechanisms.

4.1 Whether Malyzer Can Defeat Malware Anti-detections

We first test whether a shadow process of them can be successfully started on
the same host where there is already one malware instance running.

reptile is the most interesting sample we tested. In this version, reptile per-
forms various environment tests to defeat virtual machines and various
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Table 1. Malware Samples and their Anti-detections

malware anti-detection actions

check process list for processes with the same name

agobot3 perform VMware detection
forBot check process list for processes with the same name
graybird start with dynamic code replacement
Gorgon trojan check process list for debugger process OLLYDBG.EXE
JrBot use mutex to prevent multiple copies from running on a host
perform debugger, VMware, Softlce detection
reptile perform BreakPoint, Single Step detection
use mutex to prevent multiple copies from running on a host
rBot use mutex to prevent multiple copies from running on a host
sdbot05 check process list for processes with the same name
spybot perform VMware detection
storm worm perform VMware detection
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Fig. 4. A shadow process of reptile is started and running on the same host

debuggers and debugging techniques. It also prevents multiple copies from run-
ning on the same host via mutex. When reptile.exe starts, it copies itself
to %windir%\st.exe and launches st.exe before it exits. Subsequently, st .exe
deletes reptile.exe on the disk. After Shadow Process Manager starts a
shadow process of this malware instance, Figure @ shows that two processes are
running successfully within Malyzer. Graybird runs via dynamic code replace-
ment so that it can disguise as an IE process. Startup Tracker detects this
approach and dumps the initial process memory. Accordingly, Shadow Process
Manager starts a shadow process successfully. Figure [5] shows that two graybird
processes are running in the context of two IE processes. agobot3 is a very com-
mon bot that employs the process list checking to prevent multiple copies from
running on the same machine. Figure [ shows that in Malyzer, a shadow process
of agobot3 can be started and run in parallel with the original one successfully.
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Fig.5. A shadow process of graybird is started and running on the same host.
graybird starts itself via dynamic code replacement.
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Fig. 6. A shadow process of agobot3 is started and running on the same host. agobot3
simply checks the process list to prevent duplicated copies from the same IP address.

In these tests, both agobot and reptile are IRC-based malware. They need
to connect to an IRC server to receive commands. By default, the IRC server
only accepts one connection per IP address. Because Malyzer binds the original
process and the shadow process to a different IP address, although they are
running on the same host, the IRC server takes them as two different instances
running on two different machines, as shown in the above figures.

4.2 Whether a Shadow Process Functions Normally and Whether
Its Misbehavior Can Be Detected

The previous tests show that the shadow process of a malware sample can be
successfully started. However, whether the shadow process can still function
“properly” is not clear, which is critical for the further detection and analysis.
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Table 2. Detection of Information Harvesting and Dispersion by rBot

action event trigger detection rule
After the process starts, connect: shadow process rule III: command and
it connects to the bot keeps a consistent connec- control channel
master. tion
After rBot receives a connect: shadow process rule I and rule II: connec-
advscan command, it sends out packets to differ- tion rate and failed con-
starts random port scan. ent destinations, the con- nection rate

nection rate is beyond a

threshold.
After rBot receives a ReadFile: shadow process rule IV: sensitive data
getcdkeys command, it accesses file of other appli- access on disk
retrieves cdkey file. cations.

To verify that a shadow process can work “correctly” as if it is truly running
on a different host, we experiment by instructing the shadow process for various
attacks. Along with these experiments, we can also test whether their misbe-
havior can be accurately captured so that a decision is made through Shadow
Process Monitor. At the beginning, the cache in Shadow Process Monitor is
empty, and the heuristic rules are used. Table [2] shows the results when rBot is
instructed to perform local and remote attacks. For local attacks, a command
of getcdkeys from our IRC server is sent to the bot to search for product CD
keys. For remote attacks, a command of advscan is sent to instruct the bot to
perform random port scan. In the experiments, all malware actions are correctly
captured by Malyzer.

5 Malyzer Optimization and Further Discussion

In this section, we discuss some issues with the current design and implementa-
tion of Malyzer as well as possible improvement.

First, our experiments tested automatic malware. For malware whose misbe-
havior is triggered by certain user activities, such as accessing a specific Web
site, the current Malyzer implementation has not included a component to use
emulated user input to allure malware actions. We are adopting the approach
taken by Panorama [31] to emulate the user input to trigger the malware.

Second, in the design space, Shadow Process Monitor aims to capture mis-
behavior of shadow processes. This approach is similar to existing behavior-based
approaches with the understanding that information harvesting and information
dispersion are the essential behaviors differentiating malware processes from be-
nign ones. Other approaches and systems (e.g., Snort, Bro) could be integrated
with this component. In addition, the current cache implementation of Shadow
Process Monitor is rather simple for the demonstration of concept. We would
like to define a general and portable format so that once a shadow process profile
is created, it can be shared and distributed.
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Third, the current implementation of Malyzer relies on behavior analysis
through API call interceptors. A malware developer could evade Malyzer with-
out calling such APIs by coding its own functions or calling some system native
functions that we are not aware of to evade Malyzer. Although Malyzer can
be implemented at the native system call level to defeat these efforts, funda-
mentally, a malware developer can defeat Malyzer by implementing in assembly
code or using timing correlation to detect the existence of Malyzer by looking
into the time duration of calling various APIs. Although our usage of Detours
causes trivial processing overhead as reflected by our successful experiments
with reptitle, which uses API timing to defeat “Single Step”, more precise
timing could enforce Malyzer to intercept more APIs in order to defeat such
efforts.

On the other hand, as a malware analyzer, Malyzer works under the assump-
tion that the host is not subverted through some rootkits. Whether at the stage
to unveil malware camouflaging or de-activate various malware anti-detection
mechanisms, Malyzer needs a trustworthy underlying operating system. Once
the underlying operating system is completely subverted, the information Ma-
lyzer obtains could be wrong, which would lead to analysis failure.

In addition, for duplicated process checking, a malware instance could mark
the registry or a file so that it can query the mark at the startup. While Malyzer
cannot defeat this, such an anti-detection approach is not reliable because if
exceptions happen (e.g., powering down), the malware cannot restart.

Lastly, today a lot of malware packers are available for malcode polymor-
phism, obfuscation, encryption, and some anti-detection as well. For example,
Themida [5] provides anti-debug, anti-tracing, anti-dumping and VM detection
options. While source polymorphism, obfuscation, and encryption do not affect
Malyzer, since Malyzer uses Detours to intercept API calls, which intercepts
Win32 functions by re-writing target function code in memory, some packers
can use IAT destruction to completely change the PE structure of malcode. In
this case, Detours fails to intercept APT calls. As an alternative, proxy DLL [6]
does not rely on the IAT structure which is a good candidate of the API inter-
ceptor. Malyzer thus can take this approach.

6 Conclusion

Various anti-detection techniques have been practically employed by malware
developers to create more and more stealthy Internet malware. The success of
malware analysis and detection heavily depends on whether malware analysts
can defeat all kinds of malware anti-detection mechanisms. In this paper, we
have made an initial step towards effectively unveiling various malware camou-
flaging at startup and runtime through the design and implementation of Ma-
lyzer. Through various countering anti-detection measures, Malyzer can accu-
rately capture malware behavior. Experiments have been conducted to evaluate
Malyzer with various malware samples. The results demonstrate the effectiveness
of Malyzer.
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