Michel Abdalla

David Pointcheval
Pierre-Alain Fouque
Damien Vergnaud (Eds.)

Applied Cryptography
and Network Security

7th International Conference, ACNS 2009
Paris-Rocquencourt, France, June 2009
Proceedings

LNCS 5536

@ Springer

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Alfred Kobsa

University of California, Irvine, CA, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA
Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

5536

Michel Abdalla David Pointcheval
Pierre-Alain Fouque Damien Vergnaud (Eds.)

Applied Cryptography
and Network Security

7th International Conference, ACNS 2009
Paris-Rocquencourt, France, June 2-5, 2009
Proceedings

@ Springer

Volume Editors

Michel Abdalla

David Pointcheval

Pierre-Alain Fouque

Damien Vergnaud

Ecole Normale Supérieure

45, rue d’Ulm, 75230 Paris Cedex 05, France
E-mail: {michel.abdalla, david.pointcheval,
pierre-alain.fouque, damien.vergnaud} @ens.fr

Library of Congress Control Number: Applied for

CR Subject Classification (1998): E.3, C.2, D.4.6, K.6.5, K.4.4
LNCS Sublibrary: SL 4 — Security and Cryptology

ISSN 0302-9743
ISBN-10 3-642-01956-0 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-01956-2 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2009
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12683758 06/3180 543210

Preface

ACNS 2009, the 7th International Conference on Applied Cryptography and Net-
work Security, was held in Paris-Rocquencourt, France, June 2-5, 2009. ACNS
2009 was organized by the Ecole Normale Supérieure (ENS), the French Na-
tional Center for Scientific Research (CNRS), and the French National Institute
for Research in Computer Science and Control (INRIA), in cooperation with the
International Association for Cryptologic Research (TACR). The General Chairs
of the conference were Pierre-Alain Fouque and Damien Vergnaud.

The conference received 150 submissions and each submission was assigned to
at least three committee members. Submissions co-authored by members of the
Program Committee were assigned to at least four committee members. Due to
the large number of high-quality submissions, the review process was challenging
and we are deeply grateful to the committee members and the external reviewers
for their outstanding work. After meticulous deliberation, the Program Com-
mittee, which was chaired by Michel Abdalla and David Pointcheval, selected
32 submissions for presentation in the academic track and these are the articles
that are included in this volume. Additionally, a few other submissions were
selected for presentation in the non-archival industrial track. The best student
paper was awarded to Ayman Jarrous for his paper “Secure Hamming Distance
Based Computation and Its Applications,” co-authored with Benny Pinkas. The
review process was run using the iChair software, written by Thomas Baigneres
and Matthieu Finiasz from EPFL, LASEC, Switzerland and we are indebted to
them for letting us use their software.

The program also included four invited talks in addition to the academic and
industrial tracks. The invited talks were given by Craig Gentry from Stanford
University on “Fully Homomorphic Encryption Using Ideal Lattices,” Antoine
Joux from DGA and the University of Versailles on “Can We Settle Cryptog-
raphy’s Hash?,” Angelos Keromytis from Columbia University on “Voice Over
IP: Risks, Threats and Vulnerabilities,” and Mike Reiter from the University of
North Carolina at Chapel Hill on “Better Architectures and New Applications
for Coarse Network Monitoring.” We would like to genuinely thank them for
accepting our invitation and for contributing to the success of ACNS 2009.

Finally, we would like to thank our sponsors Ingenico, CNRS, and the French
National Research Agency (ANR) for their financial support and all the people
involved in the organization of this conference. In particular, we would like to
thank the Office for Courses and Colloquiums (Bureau des Cours-Collogues)
from INRIA and Gaglle Dorkeld for their diligent work and for making this
conference possible.

June 2009 Michel Abdalla
David Pointcheval

Pierre-Alain Fouque

Damien Vergnaud

ACNS 2009

7th Annual Conference on
Applied Cryptography and Network Security

Paris-Rocquencourt, France

June 2-5, 2009

Organized by

Ecole Normale Supérieure (ENS)
Centre National de la Recherche Scientifique (CNRS)
Institut National de Recherche en Informatique et en Automatique (INRIA)

In Cooperation with

The International Association for Cryptologic Research (IACR)

General Chairs

Pierre-Alain Fouque
Damien Vergnaud

Program Chairs

Michel Abdalla
David Pointcheval

Program Committee

Gildas Avoine

Feng Bao

Christophe Bidan
Alex Biryukov
Xavier Boyen

Dario Catalano
Liqun Chen
Jean-Sébastien Coron
Jacques Demerjian
Aline Gouget

Louis Granboulan
Peter Gutmann

Nick Howgrave-Graham
Stanislaw Jarecki
Marc Joye

Jaeyeon Jung

Ecole Normale Supérieure, France
Ecole Normale Supérieure, France

Ecole Normale Supérieure, France
Ecole Normale Supérieure, France

Université Catholique de Louvain, Belgium
Institute for Infocomm Research, Singapore
Supélec, France

University of Luxembourg

Stanford University, USA

University of Catania, Italy

Hewlett Packard Labs, UK

University of Luxembourg

CS, France

Gemalto, France

EADS, France

University of Auckland, New Zealand
NTRU Cryptosystems, USA

University of California at Irvine, USA
Thomson R&D, France

Intel, USA

VIII Organization

Seny Kamara
Jonathan Katz
Aggelos Kiayias
Xuejia Lai

Javier Lopez
Olivier Orciere
Kenny Paterson
Giuseppe Persiano
Josef Pieprzyk
Matt Robshaw
Kazue Sako
Palash Sarkar
Berry Schoenmakers
Hovav Shacham
Jessica Staddon
Michael Szydlo
Serge Vaudenay
Avishai Wool
Duncan Wong
Jianying Zhou

Microsoft Research, USA
University of Maryland, USA
University of Connecticut, USA

SJTU, China

University of Malaga, Spain

Thales, France

Royal Holloway, University of London, UK
University of Salerno, Italy

University of Macquarie, Australia
Orange Labs, France

NEC, Japan

Indian Statistical Institute, India
TUE, The Netherlands
University of California at San Diego, USA

PARC, USA
Akamai, USA

EPFL, Switzerland

Tel Aviv University, Israel
City University of Hong Kong
Institute for Infocomm Research, Singapore

Steering Committee

Yongfei Han
Moti Yung
Jianying Zhou

External Reviewers

Asmaa Adnane
Toshinori Araki
Joonsang Baek
Aurélie Bauer
Bruno Blanchet
Carlo Blundo
Emmanuel Bresson
Sébastien Canard
Ran Canetti
Richard Chow
Pascal Delaunay
Valeria de Paiva
Mario Di Raimondo
Ming Duan
Renaud Dubois
Dario Fiore

ONETS, China

Google, USA

Institute for Infocomm Research, Singapore

Guillaume Fumaroli
Jun Furukawa
Martin Gagne
Clemente Galdi
David Galindo
Benedikt Gierlichs
Jens Groth

Gilles Guette
Sylvain Guilley

Wei Han

Javier Herranz
Duong Hieu Phan
Tsz Hon Yuen
Qiong Huang
Emeline Hufschmitt
Vincenzo Iovino

Toshiyuki Isshiki
Amandine Jambert
Haimin Jin

Pascal Junod
Mohamed Karroumi
Dmitry Khovratovich
Chung Ki Li

Eike Kiltz

Ilya Kizhvatov

Hugo Krawczyk
Miroslaw Kutylowski
Sylvain Lachartre
Cédric Lauradoux
David Lefranc
Francois Lesueur
Tieyan Li

Wei Li

Joseph K. Liu

Yu Long

Xianhui Lu
Subhamoy Maitra
Krzysztof Majcher
Mark Manulis
Sandra Marcello
Tania Martin
Krystian Matusiewicz
Petros Mol

Jorge Nakahara Jr
Yossi Oren

Khaled Ouafi
Pascal Paillier
Philippe Painchault
Sylvain Pasini
Maura Paterson

Serdar Pehlivanoglu
Kun Peng
Duong Hieu Phan
Gilles Piret
Nicolas Prigent
Sasa Radomirovic
Louis Salvail
Koby Scheuer
Roman Schlegel
Yannick Seurin
Elaine Shi
Igor Shparlinski
Vladimir Shpilrain
Hervé Sibert
Francgois-Xavier
Standaert
Ron Steinfeld
Xiaorui Sun

Sponsoring Institutions

Ingenico, Neuilly-sur-Seine, France
The French National Research Agency (ANR), Paris, France
French National Center for Scientific Research (CNRS), Paris, France

Organization X

Christophe Tartary
Isamu Teranishi
Frederic Tronel
Ivan Visconti
Zhongmai Wan
Mi Wen

Jian Weng
Douglas Wikstrom
Charles Wright
Hongjun Wu
Yongdong Wu
Yaying Xiao
Guomin Yang
Yanjiang Yang
Yang Yanjiang
Bin Zhang
Hong-Sheng Zhou
Huafei Zhu

Table of Contents

Key Exchange

Group Key Exchange Enabling On-Demand Derivation of Peer-to-Peer
Keys . oo 1
Mark Manulis

Session-state Reveal Is Stronger Than Ephemeral Key Reveal: Attacking
the NAXOS Authenticated Key Exchange Protocol................... 20
Cas J.F. Cremers

Secure Pairing of “Interface-Constrained” Devices Resistant against
Rushing User Behavior i 34
Nitesh Sazena and Md. Borhan Uddin

How to Extract and Expand Randomness: A Summary and Explanation
of Existing Results i 53
Yvonne Cliff, Colin Boyd, and Juan Gonzalez Nieto

Secure Computation

Novel Precomputation Schemes for Elliptic Curve Cryptosystems 71
Patrick Longa and Catherine Gebotys

Practical Secure Evaluation of Semi-private Functions 89
Annika Paus, Ahmad-Reza Sadeghi, and Thomas Schneider

Secure Hamming Distance Based Computation and Its Applications 107
Ayman Jarrous and Benny Pinkas

Efficient Robust Private Set Intersection 125
Dana Dachman-Soled, Tal Malkin, Mariana Raykova, and Moti Yung

Public-Key Encryption

A New Variant of the Cramer-Shoup KEM Secure against Chosen
Ciphertext Attack. 143
Joonsang Baek, Willy Susilo, Joseph K. Liu, and Jianying Zhou

An Efficient Identity-Based Online/Offline Encryption Scheme 156
Joseph K. Liu and Jianying Zhou

Dual-Policy Attribute Based Encryption 168
Nuttapong Attrapadung and Hideki Imai

XII Table of Contents

Construction of Threshold Public-Key Encryptions through Tag-Based
Encryptionso e
Seiko Arita and Koji Tsurudome

Network Security I

Malyzer: Defeating Anti-detection for Application-Level Malware
ANalysis ..o
Lei Liu and Songqing Chen

A New Message Recognition Protocol with Self-recoverability for Ad
Hoc Pervasive Networks i
Ian Goldberg, Atefeh Mashatan, and Douglas R. Stinson

Traitor Tracing

Breaking Two k-Resilient Traitor Tracing Schemes with Sublinear
Ciphertext Size
MoonShik Lee, Daegun Ma, and MinJae Seo

Tracing and Revoking Pirate Rebroadcasts
Aggelos Kiayias and Serdar Pehlivanoglu

Authentication and Anonymity

Efficient Deniable Authentication for Signatures: Application to
Machine-Readable Travel Document
Jean Monnerat, Sylvain Pasini, and Serge Vaudenay

Homomorphic MACs: MAC-Based Integrity for Network Coding
Shweta Agrawal and Dan Boneh

Algorithmic Tamper Proof (ATP) Counter Units for Authentication
Devices Using PIN o
Yuichi Komano, Kazuo Ohta, Hideyuki Miyake, and Atsushi Shimbo

Performance Measurements of Tor Hidden Services in Low-Bandwidth
Access Networks .. oo
Jorg Lenhard, Karsten Loesing, and Guido Wirtz

Hash Functions

Cryptanalysis of Twister i
Florian Mendel, Christian Rechberger, and Martin Schldffer

Cryptanalysis of CubeHash
Eric Brier and Thomas Peyrin

Table of Contents

Collision Attack on Boole
Florian Mendel, Tomislav Nad, and Martin Schldffer

Network Security 11

Integrity Protection for Revision Control............................
Christian Cachin and Martin Geisler

Fragility of the Robust Security Network: 802.11 Denial of Service
Martin Fian

Fast Packet Classification Using Condition Factorization
Alok Tongaonkar, R. Sekar, and Sreenaath Vasudevan

Lattices

Choosing NTRUEncrypt Parameters in Light of Combined Lattice
Reduction and MITM Approachesc.oo ...
Philip S. Hirschhorn, Jeffrey Hoffstein,
Nick Howgrave-Graham, and William Whyte

Broadcast Attacks against Lattice-Based Cryptosystems
Thomas Plantard and Willy Susilo

Partial Key Exposure Attack on CRT-RSA

Santanu Sarkar and Subhamoy Maitra

Side-Channel Attacks

Frangois-Xavier Standaert, Francois Koeune, and Werner Schindler

Theoretical and Practical Aspects of Mutual Information Based Side
Channel Analysis i
Emmanuel Prouff and Matthieu Rivain

Attacking ECDSA-Enabled RFID Devices.................ooooo...
Michael Hutter, Marcel Medwed, Daniel Hein, and
Johannes Wolkerstorfer

Author Index

Group Key Exchange Enabling On-Demand
Derivation of Peer-to-Peer Keys

Mark Manulis

Cryptographic Protocols Group
Department of Computer Science
TU Darmstadt & CASED, Germany

mark@manulis.eu

Abstract. We enrich the classical notion of group key exchange (GKE) protocols
by a new property that allows each pair of users to derive an independent peer-
to-peer (p2p) key on-demand and without any subsequent communication; this,
in addition to the classical group key shared amongst all the users. We show that
GKE protocols enriched in this way impose new security challenges concerning
the secrecy and independence of both key types. The special attention should be
paid to possible collusion attacks aiming to break the secrecy of p2p keys possibly
established between any two non-colluding users.

In our constructions we utilize the well-known parallel Diffie-Hellman key
exchange (PDHKE) technique in which each party uses the same exponent for
the computation of p2p keys with its peers. First, we consider PDHKE in GKE
protocols where parties securely transport their secrets for the establishment of
the group key. For this we use an efficient multi-recipient ElIGamal encryption
scheme. Further, based on PDHKE we design a generic compiler for GKE proto-
cols that extend the classical Diffie-Hellman method. Finally, we investigate pos-
sible optimizations of these protocols allowing parties to re-use their exponents
to compute both group and p2p keys, and show that not all such GKE protocols
can be optimized.

1 Introduction

Traditional group key exchange (GKE) protocols allow users to agree on a secret group
key and are fundamental for securing applications that require group communication.
However, messages authenticated or encrypted with the group key attest only that the
originator of the message is a valid member of the group. The goal of this paper is
to investigate the enrichment of GKE protocols with the additional derivation of peer-
to-peer (p2p) keys for any pair of users. A single run of a GKE protocol enriched in
this way would suffice to set up a secure group channel providing possibly each pair
of users with an independent secure peer-to-peer channel “for free”, thus implicitly al-
lowing for a secure combination of group and p2p communication. Note that messages
authenticated or encrypted with a p2p key would attest not only the group membership
but also allow for the identification of the sender. For example, in digital conferences or
instant messaging systems each user can participate in a secure group discussion and if
necessary switch for a while to a secure bilateral discussion with some other user; or a

M. Abdalla et al. (Eds.): ACNS 2009, LNCS 5536, pp. 1 20009.
(© Springer-Verlag Berlin Heidelberg 2009

2 M. Manulis

user can encrypt some file for all users using the group key and attach supplementary
files encrypted with p2p keys for the selected subset of its peers.

Obviously, the simultaneous computation of group and p2p keys can be achieved
through the execution of a GKE protocol in parallel with the execution of a two-party
key exchange (2KE) protocol between every pair of users. The drawback of this ap-
proach is that it would require (n? — n)/2 parallel 2KE executions in order to provide
each pair with the own key (where n is the number of users). The only way to avoid
such parallel 2KE executions is to consider solutions where p2p keys are computed
on-demand; we denote such GKE protocols by GKE+P.

A rather naive construction of GKE+P protocols can be obtained from the execu-
tion of a GKE protocol followed by a separate execution of a 2KE protocol between
some pair of users. The drawback of this solution is the additional interaction for the
computation of p2p keys (in the worst case requiring up to n — 1 different 2KE proto-
col runs involving the same user) and the deployment of two different protocols (GKE
and 2KE). Therefore, since GKE participants already interact to establish the group
key it appears interesting to investigate whether GKE+P protocols can be constructed
enabling the completely non-interactive derivation of p2p keys?

GKE+P protocols raise new security challenges concerning the independence of
group and p2p keys. Traditional GKE protocols require that a session group key re-
mains secret from any adversary that is an external entity to that session. In GKE+P
protocols this requirement should hold even in case where p2p keys leak. By the same
token GKE+P protocols should provide secrecy of the p2p keys computed in some ses-
sion independent of whether the adversary learns the group key or not. However, the
most significant challenge specific to GKE+P protocols results from the independence
amongst different p2p keys computed in the same session and even by the same user
(for different peers). In particular GKE+P protocols should provide secrecy of some
session p2p key if other participants that are not intended to compute that key collude.
Thus, when defining the secrecy of some session p2p key we should no longer assume
that the adversary remains an external entity to that session but rather that it may act on
behalf of colluding participants and thus deviate from the protocol specification.

Specification of the appropriate security requirements and efficient, provably secure
solutions for GKE+P protocols represents the main focus of our work.

1.1 Related Work

The basic security goal of any key exchange protocol is called (Authenticated) Key
Exchange security ((A)KE-security, for short) and deals with the secrecy or indistin-
guishability of the established session group key with respect to an (active) adversary
which is usually modeled as an external entity from the perspective of the attacked ses-
sion. This requirement became an inherent part of all security models for 2KE protocols,
e.g. [3L506.7,17,18L19,34)38], and GKE protocols, e.g. [10J11LI13L[15L2829]. A general
signature-based compilation technique proposed by Katz and Yung [29] can turn any
KE-secure (group) key exchange protocol into an AKE-secure one, thus by adding the
authentication and thwarting possible impersonation attacks. Additionally, we remark
that some of the mentioned security models for GKE protocols (e.g. [12,[13,128]) aim
at defining optional security against insider attacks, and the corresponding compilers

Group Key Exchange Enabling On-Demand Derivation of Peer-to-Peer Keys 3

defined in these papers can turn any AKE-secure GKE protocol into a protocol that
withstands such attacks. These compilers also provide the so-called requirement of mu-
tual authentication (MA) [7,/11L15], which ensures the bilateral authentication of all
protocol participants and is usually combined with a key confirmation step.

From the variety of the existing GKE protocols (see [9,135] for surveys) of special
interest in the context of our GKE+P constructions are the (unauthenticated) exten-
sions of the classical 2KE approach by Diffie and Hellman [21] to a group setting,
e.g. [16,20,24,1311132,137,139,/40]]. Let us denote all these protocols for simplicity as
Group Diffie-Hellman (GroupDH) protocols since they derive the group key from some
shared secret which in turn depends on the individual exponents chosen by the pro-
tocol participants during the execution. For the design of GKE+P protocols it appears
promising to investigate to what extent the existing GroupDH protocols allow for the
non-interactive, on-demand computation of p2p keys, in particular whether or not secret
exponents used in these GroupDH protocols can be safely re-used for the computation
of p2p keys.

GKE protocols proposed in [1,36] are partially related since they consider a 2KE
protocol as a building block in order to obtain a secure GKE protocol, yet without
enabling on-demand computation of p2p keys amongst any pair of users. Also, the so-
called group secret handshakes [25,126] should be noticed since these can be seen as
extensions of GKE protocols with another property called affiliation-hiding. We men-
tion them here since the on-demand computation of p2p keys can be also considered in
that scenarios (in particular our results can be extended to deal with [25] that is based
on the GKE protocol from [16]).

One of the main building blocks across all our GKE+P constructions is the parallel
execution of the 2KE Diffie-Hellman protocol (PDHKE), in which each user broadcasts
a value of the form ¢* (for the appropriate generator g and private user’s exponent
x) and uses z for the computation of different p2p keys. In this context, Jeong and
Lee [27] recently specified and analyzed a related mechanism where keys are derived
in parallel from ephemeral and long-lived exponents. However, their security model
does not consider collusion attacks against the secrecy of p2p keys computed by non-
colluding users. Note also the recent work by Biswas [[8] who revised the 2KE Diffie-
Hellman protocol allowing its participants to choose two different exponents each and
obtain 15 different shared keys.

1.2 Contributions and Organization

We start in Section 2l with the extension of the classical GKE security model from [29]
in order to address the additional challenges of GKE+P protocols and define the cor-
responding requirements of (A)KE-security of group and p2p keys; the latter in the
presence of collusion attacks. Our model is designed in a modular way and can be se-
lectively applied to GKE+P and GKE protocols, and also to the protocols like PDHKE.
In Section 3 we introduce general notations and recall some classical assumptions.

In Section [4] we present and analyze our first GKE+P protocol, denoted PDHKE-
MRE. In this protocol we merge PDHKE with the multi-recipient ElGamal encryption
(MRE) from [4,133]. PDHKE-MRE optimizes the combination of PDHKE and MRE
in that it utilizes user’s exponent for both — generation of p2p keys and decryption of

4 M. Manulis

ElGamal ciphertexts. This optimization is tricky (compared to the simple “black-box”
combination) since it requires an additional hardness assumption. Our security analysis
of PDHKE-MRE also demonstrates that PDHKE can be used as a stand-alone protocol
to obtain KE-secure p2p keys in the presence of collusion attacks.

In Section [5] we obtain more efficient GKE+P protocols from GroupDH protocols
(see related work for examples). First, we describe a general compilation technique to
obtain GKE+P solutions from any GroupDH protocol based on PDHKE, yet assuming
that the exponents used for the derivation of p2p keys are independent from those used
in the computation of the group key. Additionally, we investigate whether private expo-
nents that are implicit to the GroupDH protocols can be re-used for the on-demand com-
putation of p2p keys. The key observation here is that many GroupDH protocols require
each user U; to choose some exponent x; and broadcast a public value ¢g®¢. The natural
question is whether a value g***7, if computed from the exponents x; and x; used in the
GroupDH protocol, would be suitable for the derivation of a secure p2p key between U;
and U;? In this light we analyze the well-known communication-efficient protocols by
Burmester and Desmedt (BD) [[16] and by Kim, Perrig, and Tsudik (KPT) [31] (the lat-
ter as a representative for the family of Tree Diffie-Hellman protocols). We show that in
the BD protocol this technique will not guarantee the KE-security of p2p keys, whereas
in the KPT protocol it will, though at the cost of an additional hardness assumption.
The latter result is of special interest since we do not introduce any new communication
costs to the KPT protocol.

In Section[6] we compare the performance of the introduced GKE+P protocols.

In Section[7lwe show that the authentication compiler introduced in [29] for securing
traditional KE-secure GKE protocols is also sufficient for adding the authentication to
KE-secure GKE+P protocols.

2 Security Model for GKE+P Protocols

Our security model for GKE+P protocols extends the meanwhile standard GKE security
model from [29] by capturing the additional requirements concerning the on-demand
computation of p2p keys.

2.1 Participants, Sessions, and Correctness of GKE+P Protocols

By U we denote a set of at most IV users (more precisely, their identities which are as-
sumed to be unique) in the universe. Any subset of n users (2 < n < N) can participate
in a single session of a GKE+P protocol P. Each U; € U holds a (secret) long-lived
key LL;[1 The participation of U; in distinct, possibly concurrent protocol sessions is
modeled via an unlimited number of instances II;, s € N. Each instance /I can be
invoked for one session with some partner id pid] C U/ encompassing the identities of
the intended participants (including U;). At the end of the interactive phase II; holds

! Our GKE+P protocols are first analyzed in the authenticated links model where long-lived
keys are assumed to be empty. The authentication in GKE+P protocols using the compiler
technique from [29] that we discuss in Section [7] will assume that each LL; corresponds to
some digital signature key pair.

Group Key Exchange Enabling On-Demand Derivation of Peer-to-Peer Keys 5

a session id sid; which uniquely identifies the session. Two instances /I and H]t- are
considered as partnered if sid} = sid} and pid; = pid’. The success of the inter-
active phase by some instance /I is modeled through its acceptance, in which case
the instance holds a session group key k. Each instance II7 that has accepted can later
decide to compute a session p2p key k; ; for some user U; € pidj. We are now ready
to formally define what a GKE+P protocol is.

Definition 1 (GKE+P Protocol and Correctness). P is a group key exchange proto-
col enabling on-demand derivation of p2p keys (GKE+P) if P consists of the group key
exchange protocol GKE and a p2p key derivation algorithm P2P defined as follows:

P.GKE(Uy,...,U,): For each input U; a new instance II} is created and a proba-
bilistic interactive protocol between these instances is executed such that at the end
every instance 117 accepts holding the session group key k.

P.P2P(II7,U;): On input an accepted instance II; and some user identity U; € pid}
this deterministic algorithm outputs the session p2p key k; ;. (We assume that P2P
is given only for groups of size n > 3 since for n = 2 the group key is sufficient.)

A GKE+P protocol P is correct if (when no adversary is present) all instances partici-
pating in the protocol P.GKE accept with identical group keys and P P2P(II7,U;) =
P.PZP(H;, U,) holds for any pair of partnered instances I3 and H;.

2.2 Adversarial Model and Security Goals

Security model for GKE+P protocols must address the following two challenges that are
new compared to the classical GKE setting: The first challenge is to model the secrecy
of a session group key k; by taking into account possible leakage of any p2p key that
can be computed in that session (including all &7 ;). Since for the secrecy of the session
group key the adversary is treated as an external entlty and not as a legitimate participant
of that session our model should provide the adversary with the ability to schedule the
on-demand computation of p2p keys and to reveal them. The second, main challenge
is to model the secrecy of a session p2p key k7 ; by taking into account the leakage of
the group key and also the leakage of other p2p keys computed in that session (with
the obvious exclusion of k;z when IT? and I ; are partnered). Note that the secrecy of
p2p keys does not require the adversary to be an external entity (unlike the secrecy of
the group key). Hence, we have to face possible collusion attacks aiming to break the
secrecy of k; ; and allow for the active participation of the adversary in the attacked
session.

ADVERSARIAL MODEL. The adversary .4, modeled as a PPT machine, can schedule
the protocol execution and mount own attacks via the following queries:

— Execute(Uy, . ..,U,): This query executes the protocol between new instances of
Ui,...,U, € U and provides A with the execution transcript.

- Send(II7,m) : With this query A can deliver a message m to II7 whereby U
denotes the identity of its sender. A is then given the protocol message generated
by II? in response to m (the output may also be empty if m is unexpected or if 11}

6 M. Manulis

accepts). A special invocation query of the form Send(U;, ('start’,Uy,...,Uy,))
creates a new instance 77 with pid{ := {Ui,...,U,} and provides A with the
first protocol message.

— Peer(II?,U;): This query allows A to schedule the on-demand computation of p2p

keys. In response, I computes k; ;; the query is processed only if II7 has accepted
and U; € pid}, and it can be asked only once per input (117, U;).

— Reveal(II?): This query models the leakage of group keys and provides A with k3.
It is answered only if /I has accepted.

— RevealPeer(II7,U;): This query models the leakage of p2p keys and provides A
with k7 ;; the query is answered only if Peer(II7,U;) has already been asked and
processed.

— Corrupt(U;): This query provides A with LL;. Note that in this case A does not
gain control over the user’s behavior, but might be able to communicate on behalf
of the user.

— Test(II?): This query models indistinguishability of session group keys. Depending
on a given (privately flipped) bit b A is given, if b = 0 a random session group key,
and if b = 1 the real k. This query can be asked only once and is answered only if
IT? has accepted.

— TestPeer(II?,U;): This query models indistinguishability of session p2p keys. De-
pending on a given (privately flipped) bit b A is given, if b = 0 a random session
p2p key, and if b = 1 the real k7 ;. It is answered only if Peer(/I],U;) has been
previously asked and processed.

TERMINOLOGY. We say that U is honest if no Corrupt(U) has been asked by .A; oth-
erwise, U is corrupted (or malicious). This also refers to the instances of U.

Two NOTIONS OF FRESHNESS. The classical notion of freshness imposes several
conditions in order to prevent any trivial break of the (A)KE-security. Obviously, we
need two definitions of freshness to capture such conditions for the both key types.

First, we define the notion of instance freshness which will be used in the definition
of (A)KE-security of group keys. Our definition is essentially the one given in [29].

Definition 2 (Instance Freshness). An instance II; is fresh if II7 has accepted and
none of the following is true, whereby H]t- denotes an instance partnered with II7: (1)
Reveal(IT}) or Reveal(IT}) has been asked, or (2) Corrupt(U') for some U’ € pid;
was asked before any Send(I1?, -).

Note that in the context of GKE+P the above definition restricts .4 from active partic-
ipation on behalf of any user during the attacked session, but implicitly allows for the
leakage of (all) p2p keys.

Additionally, we define the new notion of instance-user freshness which will be used
to specify the (A)KE-security of p2p keys.

Definition 3 (Instance-User Freshness). An instance-user pair (II7,U;) is fresh if
II? has accepted and none of the following is true, whereby I1 ; denotes an instance
parmered with I17: (1) RevealPeer(II}, U;) or RevealPeer(I1}, U;) has been asked, or
(2) Corrupt(U;) or Corrupt(U;) was asked before any Send(II7,-) or Send(I1?,).

Group Key Exchange Enabling On-Demand Derivation of Peer-to-Peer Keys 7

Here A is explicitly allowed to actively participate in the attacked session on behalf of
any user except for U; and U;. Also A may learn the group key k; and all p2p keys
except for k; ;. This models possible collusion of participants during the execution of
the protocol aiming to break the secrecy of the p2p key £; ;.

(A)KE-SECURITY OF GROUP AND P2P KEYS. For the (A)KE-security of group keys
we follow the definition from [29]. Note that in case of KE-security A is restricted to
pure eavesdropping attacks via the Execute query without being able to access the Send
queries.

Definition 4 ((A)KE-Security of Group Keys). Let P be a correct GKE+P protocol
and b a uniformly chosen bit. By Gamefi{l;)e'g’b(m) we define the following adversarial
game, which involves a PPT adversary A that is given access to all queries (except for
Send when dealing with KE-security):

— A interacts via queries;

— at some point A asks a Test(II?) query for some instance II7 which is (and re-
mains) fresh;

— A continues interacting via queries;

— when A terminates, it outputs a bit, which is set as the output of the game.

We define: Advfi{lg'g(ﬁ) = 2Pr[Gamefi{l;)e'g’b(n) =b -1
and denote with Advgi;l)ke'g (k) the maximum advantage over all PPT adversaries A. We
say that P provides (A)KE-security of group keys if this advantage is negligible.

Finally, we define (A)KE-security of p2p keys where we must consider possible collu-
sion attacks. For this it is essential to allow A access to Send queries, even in the case
of KE-security. The difficulty is that given general access to Send queries A can triv-
ially impersonate any protocol participant. Hence, when dealing with KE-security of
p2p keys we must further restrict A to truly forward all messages sent by honest users.
According to our definition of instance-user freshness of (II7,U;) this restriction will
imply an unbiased communication between the instances of U; and Uj.

Definition 5 ((A)KE-security of P2P Keys). Let P be a correct GKE+P protocol and
b a uniformly chosen bit. By Ga mefi)f;f'p’b(/{) we define the following adversarial game,
which involves a PPT adversary A that is given access to all queries (with the restriction
to truly forward all messages of honest users in case of KE-security):

— A interacts via queries;

— at some point A asks a TestPeer(II7,U;) query for some instance-user pair (II7,U;)
which is (and remains) fresh;

— A continues interacting via queries;

— when A terminates, it outputs a bit, which is set as the output of the game.

We define: Advﬁ{lﬁ'p(ﬁ) = 2Pr[GameEi>7|;§"p’b(n) =b -1

and denote with Advgil)ke'p (k) the maximum advantage over all PPT adversaries A. We
say that P provides (A)KE-security of p2p keys if this advantage is negligible.

8 M. Manulis

3 General Notations and Preliminaries

Throughout the paper, unless otherwise specified, by G := (g) we denote a cyclic
subgroup in Z% of prime order QQ|P — 1 generated by g, where P is also prime.
By Hg,H, : {0,1}* — {0,1}" we denote two cryptographic hash functions, which
will be used in our constructions for the purpose of derivation of group and p2p keys,
respectively. Additionally, we recall the following three well-known cryptographic
assumptions:

Definition 6 (Hardness Assumptions). Let G := (g) as above and a,b,c €r Zg. We
say that:
The Discrete Logarithm (DL) problem is hard in G if the following success probability
is negligible:

Succr (k) := max (Par [A'(g,9%) = a]);

The Decisional Diffie-Hellman (DDH) problem is hard in G = (g) if the following

advantage is negligible:

Advg" (k) := max | Pr [A'(g,9", ", g*") =1] = Pr [A'(9,9,¢",9°) =1]|;

The Square-Exponent Decisional Diffie-Hellman (SEDDH) problem is hard in Gﬂzf the
following advantage is negligible:

AQVE™ (i) := max | Pr [A'(g,9",¢*) = 1] = Pr[A'(g. 9%, ¢") = 1]|.

)

Note that Succyr (k), Adve ™ (k), and Advg "™ (k) are computed over all PPT adver-
saries A' running within time k.

4 Optimized PDHKE-MRE

Here we introduce our first GKE+P protocol, called PDHKE-MRE. The optimization
concerns the utilization of each x; € Zg as a private decryption key for the multi-
recipient ElGamal encryption [4,133]] and as a secret exponent for the computation of
p2p keys via PDHKE. Note that PDHKE-MRE can be generalized by applying other
multi-recipient public key encryption schemes [4]. However, in this case our optimiza-
tion may no longer hold.

4.1 Parallel Diffie-Hellman Key Exchange (PDHKE)

Assuming that users interact over the authenticated channels we define PDHKE as fol-
lows (we describe all our protocols from the perspective of one session using the iden-
tities of users and not their instances):

Round 1. Each U; chooses a random x; € Zg and broadcasts y; := g*.

2 Wolf [41]] showed that SEDDH is reducible to DDH and that the converse does not hold.

Group Key Exchange Enabling On-Demand Derivation of Peer-to-Peer Keys 9

P2P key computation. Each U; for a given identity U; computes k; j = g"" and
derives k; j := Hy (k] ;, Uilyi, Ujly;). W.l.o.g. we assume that i < j and that if U;
computes own p2p key for U; it uses the same order for the inputs of Hy, as U; does.

A special attention in PDHKE should be paid to the key derivation step based on Hy,. Note
that in the random oracle model this construction ensures the independence of different
p2p keys (possibly computed by the same Uj; for different U;). The reason is that if U; is
honest then the hash input remains unique for each derived p2p key (due to the uniqueness
of U;|y; across different sessions and the uniqueness of each U; within the same session).
The uniqueness of hash inputs is of importance. Assume, that k; ; would be derived as
Hp(k; ;). In this case .A may impose dependency between £; ; and k; , for some user U,

that it may control, e.g. by using y, = y;. With this simple attack A cannot compute & ,

dueto the lack of x, = x; butit can easily distinguish &;_; by obtaining &; ., (which would
then be equal to k; ;) via an appropriate RevealPeer query to an instance of honest U;.

4.2 Multi-Recipient EIGamal Encryption (MRE)

In the classical ElGamal encryption [23] a message m € G is encrypted under the
recipient’s public key y = ¢ through the computation of the ciphertext (¢g",y"m)
using some random r €r Zg. A multi-recipient ElGamal encryption (MRE) [33}4]
re-uses the random exponent r for the construction of ciphertexts of several messages

my, ..., m, under several public keys y; = ¢**,...,y, = ¢°, i.e., by computa-
tion of (¢",yima, ...,y m,). However, in PDHKE-MRE we will be encrypting the
same message m = mj = ... = m,,. For this case [33]] defines a computation-efficient

MRE version where the ciphertext has the form (mg”, y7, . ..,y). Obviously, this tech-
nique results in shorter ciphertexts should a single protocol message contain ciphertexts
for multiple recipients. Informally, the IND-CPA security of MRE means that any en-
crypted plaintext remains indistinguishable, even if the adversary is in possession of
the secret keys {x; } ;2. This has been proven in [33] (and also in [4] under a stronger
setting) based on the DDH assumption.

4.3 Description of PDHKE-MRE

Our optimization in PDHKE-MRE is based on the idea to re-use the same exponent
z; for both — derivation of p2p keys from k; ; = ¢®* and decryption of {Z;};.
The protocol PDHKE-MRE.GKE amongst a set of n users Uy, . . ., U, proceeds in two
rounds:

Round 1. Each U; chooses a random x; €r Zg and broadcasts y; := g*.

Round 2. Each U; chooses random z; €r G, r; €r Zg, computes z; := Z;g"* and
{#i,j == y;'}; and broadcasts (z;, {2, };)-

Group key computation. Each U; decrypts {mj = (1 i) } and accepts with k; =

_] i

Hg(.fl, ‘e 7f7“ Sidi) where sid; := (Ul‘yh ey Un|yn)

The algorithm PDHKE-MRE.P2P when executed by some user U; for a peer U; com-

putes k; ; := g*'* and outputs k; ; := Hy(k; ;, Ui|yi, U;|y;) whereby the inputs U[y;

10 M. Manulis

and Uj|y; are taken from sid;. W.Lo.g. we assume that i < j and that U; will use the
same order for the inputs to Hp in the computation of k; ;.

4.4 Security Analysis of PDHKE-MRE

Although the stand-alone security of MRE can be proven under the DDH assumption,
its optimized merge with PDHKE requires the additional use of the SEDDH assumption
for the proof of KE-security of group keys as motivated in the following.

The natural way to prove the IND-CPA security of MRE under the DDH assumption
would be to simulate y; = g%, z; = 7;¢°7, and each z; ; = g*®iP% where g and
g” belong to the DDH tuple and o, 3; € Z¢ (observe that the DDH problem is self-
reducible). However, in PDHKE-MRE this simulatiogl would also mean that y; = g**
for some o; €g Z¢ and possibly imply g%%/ = g% “¢% upon the simulation of p2p
keys, which in turn involves g“2 from the SEDDH tuple.

Theorem 1. If both problems DDH and SEDDH are hard in G then PDHKE-MRE
provides KE-security of group keys and

- 2(N(qex + ase)® +ar,) (an, +as,)?
ki
AdVPeDEIKE-MRE(R)— Q Yt g2;@—1 '

+2NAdve "™ (k) +2N (N—1)Adv (k)

with at most (qex + qse) Sessions being invoked via Execute and Send queries and at
most qu, and qg, random oracle queries being asked.

Since secret contributions Z; used in the computation of the group key are independent
from the secret exponents x; we can prove that PDHKE-MRE provides KE-security of
p2p keys based on the DDH assumption.

Theorem 2. [fthe DDH problem is hard in G then PDHKE-MRE provides KE-security
of p2p keys and

i N(2(qex + gse)? + dse@n,) . (qu, +au,)?
Adv;‘[a)IE’IKE-MRE(K) < (2(a= ng) sele) + (HgQH—lH) + NqSeAdV%DH("E)

with at most (qex + Qse) sessions being invoked via Execute and Send queries and at
most qu, and qg, random oracle queries being asked.

4.5 On Security of PDHKE as a Stand-Alone Protocol

The result of Theorem 2] allows us to derive the following corollary, which is of inde-
pendent interest since it addresses security of PDHKE as a stand-alone protocol.

Corollary 1. If the DDH problem is hard in G then PDHKE as defined in Section
guarantees the KE-security of p2p keys in the random oracle model in the sense of
Definition[3R

3 Observe that our security model can be used to deal with PDHKE as a stand-alone protocol
assuming that in the execution of PDHKE instances accept with empty group keys. In this
case all parts of the model that explicitly deal with the computation and security of group keys
become irrelevant.

Group Key Exchange Enabling On-Demand Derivation of Peer-to-Peer Keys 11

4.6 Performance Limitations of PDHKE-MRE

The drawback of PDHKE-MRE despite of our optimizations is the quadratic communi-
cation complexity, i.e. the total number of bits communicated throughout the protocol
and usually measured in the size of group (or public key) elements [29]. This complex-
ity is due to the rather naive secure transport of each z; for the computation of the group
key. Note that the linear communication complexity of PDHKE used to compute p2p
keys is already optimal since each user has to broadcast at least one message in order to
contribute to the on-demand computation of its p2p keys.

Therefore, we will try to replace the computation of the group key via MRE with an
alternative process, while preserving the computation of p2p keys based on PDHKE.
Since PDHKE derives p2p keys from Diffie-Hellman secrets it appears promising to
search for alternative candidates amongst the family of GroupDH protocols, i.e. GKE
protocols that extend the original Diffie-Hellman method.

5 GKE+P Protocols from Group Diffie-Hellman Protocols

We start by describing a generic solution that would convert any secure GroupDH pro-
tocol into a secure GKE+P protocol. Then, we address possible optimization issues.

5.1 GKE+P Compiler Based on PDHKE

Let us first capture the similarities between different GroupDH protocols by providing
a generalized definition of what a GroupDH protocol should mean (we define from the
perspective of one session).

Definition 7 (GroupDH Protocols). A GroupDH protocol is a GKE protocol amongst
n users Uy, ..., U, such that during its execution each user U; chooses own exponent
x; €g Lg and at the end computes a group element k., € G which can be expressed as
the output of f(g,x1,...,Zy) for some function f : G X L¢y — G which is specific to
the protocol.

We say that a GroupDH protocol is KE-secure if it achieves KE-security of group
keys in the sense of Definitiondlwhereby considering k. instead of k; and thus requiring

its indistinguishability from some random element in G instead of some random string
in {0, 1}".@7

The above definition of KE-secure GroupDH protocols already captures many proto-
cols, including those from [[16,20,243111321137.(39,140].

The actual generic solution (GKE+P compiler) for obtaining a GKE+P protocol from
such GroupDH protocols is to combine them with PDHKE, while ensuring indepen-
dence between the exponents used in both protocols. More precisely, GKE+P com-
piler requires each user U; to choose a random exponent Z; €r Z¢ and broadcast
y; := g% prior to the execution of the given GroupDH protocol. If the GroupDH proto-
col requires each user to broadcast a message in the first round, e.g. [16,31,132139],
then the compiler can also append ¥; to this first message, without increasing the

* Note that DefinitionE can be easily adapted by the appropriate modification of the Test query.

12 M. Manulis

number of rounds. After the GroupDH protocol is executed each U; holds the secret
group element k;. The GKE+P compiler computes sid; := (U1|@1,- .., Un|¥n) and
derives the group key k; := Hg(kj, sid;). On-demand, the compiler computes any
ki = Hp (55", Uilyi, Usly;).

The key derivation is essentially the same as in PDHKE-MRE. The only difference
is that sid; is constructed from y; instead of y; = ¢** for the exponent x; which is
implicit to the original GroupDH protocol. The reason is that y; may not be available to
all users at the end of the protocol. For example, in [24,40] only two users U; and Us
compute such y; and yo, whereas in [37,20] each U; computes y; but sends it only to
some designated subset. Of course, for the latter case it is possible to add a modification
to the original protocol by requiring users to broadcast y,; however, this contradicts to
the idea of a compiler, which takes some protocol as a “black-box™.

The KE-security of group keys output by our compiler follows from the KE-security
of the group elements k" and can be proven similarly to Theorem[Il Note that the re-
placement of y; with g; in the computation of sid; has no impact since also y; is
uniformly distributed in G for any honest U;. Since the exponents z; and Z; are in-
dependent and values ¥; and ; exchanged between any two honest users U; and U;
are not modified during the transmission (as required by our model) the KE-security
of computed p2p keys would follow directly from Corollary [II We omit the detailed
analysis of the GKE+P compiler, which seems fairly natural.

Instead, we focus on the next challenge and investigate whether GroupDH protocols
can be merged with PDHKE in order to obtain possibly more efficient GKE+P proto-
cols than those given by our generic compiler. Can we find suitable GroupDH protocols
where the implicitly used exponents x1,...,x, can be safely re-used for the com-
putation of p2p keys? Intuitively, this question should be answered separately for each
GroupDH protocol. Due to space limitations, we restrict our analysis to two well-known
protocols from [[16] and [31] that implicitly require each U; to broadcast y; := ¢g*¢ and
so seem suitable at first sight for the merge with PDHKE.

5.2 PDHKE-BD Is Insecure

The Burmester-Desmedt (BD) protocol from [16] is one of the best known unauthenti-
cated GroupDH protocols. It has been formally proven KE-secure under the DDH as-
sumption in [29]. Its technique has influenced many GKE protocols, including [30,2].
The BD protocol arranges participants Uy, .. ., U, into a cycle, and requires two com-
munication rounds:

Round 1. Each U; broadcasts y; := g* for some random z; €g Zg,.
Round 2. Each U; broadcasts z; := (y;+1/yi—1)** (the indices ¢ form a cycle, i.e.
O=nandn+1=1).

This allows each U; to compute the secret group element

k/- — (yi l)mci .anl A ZTL_,’_HQ e Zipn—g = gz1m2+1213+...+znz1

(N - K3 K3 - °
At first sight, BD suits for the merge with PDHKE, i.e. we would have then k; =
He(k7, Uilyr, ..., Unlyn) and any k; ; = Hp(y;", Uily;, Usly;). Unfortunately, this
merge is insecure. We analyze two distinct cases based on the indices of U; and Uj.

Group Key Exchange Enabling On-Demand Derivation of Peer-to-Peer Keys 13

CASE U; AND U;y1. The attack in this case is trivial since the knowledge of &’ and
the secret exponents of all other colluding users allows to compute g*#*#+1. This would
break the secrecy of the p2p key k; ;1 when derived using g*:*i+* for any group size
n > 3. Also observe that each U; sends z; = g¥i+1%~%i%i-1: thus every U;_; can
individually extract g®**+'®* and every U, is able to compute g***—1, even without
colluding with other users.

CASE U; AND U;. In this case we consider k; ; (w.l.o.g. we assume that i < j)
computed for a pair of users that do not have neighbor positions within the cycle, i.e.
j # i + 1. We demonstrate that also this key remains insecure if derived using g%%s.
Our attack, which is not as trivial as in the previous case, works because users may col-
lude and misbehave while attacking the secrecy of p2p keys. In particular, we assume
that U;_o, U;_1, and U, collude and their goal is to obtain g*:* upon the successful
execution of the protocol from the perspective of honest U; and U;. Due to the collu-
sion of three users the attack works for any group size n > 4. The core of the attack is
to let U;_; broadcast y;_1 := y;, which is possible since the communication is asyn-
chronous and A can wait for the protocol message of U; containing y;; observe that
x; is chosen by U; and remains unknown to the colluding users. Other malicious users
U;_o and U,;;; choose their exponents z;_o and x;4; truly at random. As a conse-
quence, in the second round honest U; broadcasts z; = g7it+1%i~%iTi-1 = gTif1Ti =TT,
Then, malicious U;; can extract g% := y;**'/z;. Finally, U;_; without knowing
the corresponding exponents x; and x; has to broadcast a value of the form z;_; =
gritim1 T imTi-2 — i TiTi-2 which can be easily done with the assistance of U,
that provides ¢%i%i and of U;_; that provides g%i%i-2 = yf’”. Thus, through their
cooperation malicious users U;_2, U;_1, and U; 11 can extract g***/ for any U;. The
above attacks works similarly even if U;_; re-randomizes y;, i.e. broadcasts y;_; = yjr
for some r €r Zg.

This shows that BD cannot be merged with PDHKE in a secure way. Nevertheless,
it can be compiled to a KE-secure GKE+P protocol as discussed in Section 5,11

5.3 PDHKE-KPT Is Secure

Here we focus on the GKE protocols proposed by Kim, Perrig, and Tsudik [31}132],
which in turn extend the less efficient construction by Steer et al. [39]. These protocols
belong to a family of the so-called Tree Diffie-Hellman protocols (see also [22.[14]). We
analyze whether the protocol from [31], denoted here as KPT, which is more efficient
in communication than [32], can be securely merged with PDHKE.

The KPT protocol requires a special group G = (g) of prime order (), which is a
group of quadratic residues modulo a safe prime P = 2Q)+ 1 with the group law defined
as ab := f(ab mod P) for any a,b € G where f : Zp — Z¢ is such that if z < Q
then f(z) := z, otherwise if Q < z < P then f(z) := P — z (see [31L32,[14] for more
information about G which equals to Zg as sets). In KPT each U; derives the secret
group element k] within two communication rounds (it is assumed that the sequence
Ui,...,U, is ordered):

14 M. Manulis

Round 1. Each U; broadcasts y; := g** for some random z; € Zg.
Round 2. U; computes and broadcasts (g2, ..., g*"~1) whereby z2 := y5* and each
zii=vy; ‘foralli=3,....,n— 1.

This allows each U; to compute the common secret k. := z, as follows.

Zn—1

— Uy computes &} := yn,

— each U;, 2 < ¢ < n — 1 recomputes the subsequence z;, . .., 2,—1 and computes
k! := y;""; note that Uy starts with 2o := y7?, whereas U;, 3 < i < n — 1, starts
with z; := (¢g%~1)% using g%~ received from Uj.

- U, computes k, := (g*~=*)*~ using g*»—' received from U;.

Note that each &/ has an interesting algebraic structure

In the following we investigate the possibility of merging KPT with PDHKE, thus using
exponents ; to compute the group key k; := Hg(k;, U1|y1, . .., Un|yn) and any p2p key
kij = Hg(k; ;, Uilyi, - .., Ujly;) with k] ; = g%, Our analysis shows that indeed this
construction, which we denote PDHKE-KPT, gives us a KE-secure GKE+P protocol.

Let us first provide some intuition. Note that the only value of the form ¢**# which
appears in the computations of KPT is g*'*2 (given by z2). Nevertheless, it will be
computed only by U; and Us, which is fine since the p2p key should be known only to
these users. Further we observe that the broadcast message of U; contains g% = g9 =~
and so hides g*'*2 in the exponent (under the hardness of the DL problem). By comput-
ing k1,2 == Hp (g™ "2, Ui |y1, U2]y2) we are able to provide independence between £ 2
and g*? while working in the random oracle model since the corresponding RevealPeer
query would reveal only £; > and not g¥*#2.

We start with the KE-security of group keys. The original KPT protocol has been
proven KE-secure in [31]] (see also [14]) under the classical DDH assumption. Briefly,
the proof considers several hybrid games. In the I-th game, 2 < [< n, the simula-
tor embeds a re-randomized DDH tuple (g, g%, g°, g*°) to simulate g*-1 = g®-1,
yi = g°%, and z; = g®®-1Ai such that in the final game the value z, = k! is uni-
formly distributed and independent. In general we can apply a similar simulation tech-
nique, however, we should additionally take care of the special dependency zo = ki,z
The trick is first to obtain a uniform distribution of 2z = £ , (in G) and its indepen-
dence from y; and y» using the above technique and then to compute k; » completely
independent from £} ,, in which case a reduction to the DL problem becomes possible.

Theorem 3. [f both problems DDH and DL are hard in G then PDHKE-KPT provides
KE-security of group keys and

- 2(N(qex + gse)® + an,) (qu, +au,)?
ki
AdVPeDEIKE-KPT(H) < o) o+ 82;«”71 ’

+2(N — 1)Advg™ (k) + 2qg, Succd ()

with at most (qex + Qse) sessions being invoked via Execute and Send queries and at
most qu, and qg, random oracle queries asked.

Group Key Exchange Enabling On-Demand Derivation of Peer-to-Peer Keys 15

Finally, we prove that on-demand p2p keys computed in PDHKE-KPT are also KE-
secure. In general we can follow the proof of Theorem[2lbased on the DDH assumption,
however, we have also to take care of the special case (4,7) = (1,2). Observe that if
k1,2 becomes a subject of the attack then U; and Us must be honest, in which case we
can still apply the above trick.

Theorem 4. If both problems DDH and DL are hard in G then PDHKE-KPT provides
KE-security of p2p keys and

- N (2(qex + gse)® + dseqn,) | (a5, +ds,)”
ki p P
AdVP?)EIKE-KPr(“) < Q g2;-;—1

+Nqgse (Adve " (k) + qu,Succy (k)

with at most (qex + Qse) sessions being invoked via Execute and Send queries and at
most qu, and qg, random oracle queries asked.

6 Performance Comparison and Discussion

In Table[Ilwe present a brief comparison of the complexity of the mentioned GKE+P so-
lutions. We measure the communication costs as a total number of transmitted elements
in G, and computation costs as a number of modular exponentiations per U; (in the
case of BD we count only exponentiations with x; assuming that |z;| > n). From the
latter we exclude the costs needed to compute a Diffie-Hellman secret &; ; that requires
constantly one exponentiation per each U;. For the GKE+P compiler from Section [5.1]
with the prefix ‘4’ we indicate the increase to the original costs of the given GroupDH
protocol when combined with PDHKE; we also mention the compiled GKE+P version
of the BD protocol as a special case. Note that the PDHKE-KPT protocol has asym-
metric costs, depending on the position of U; in the ordered sequence Uy, . .., U,; this
may have benefits in groups with heterogeneous devices.

Table 1. Communication and Computation Costs of Introduced GKE+P Protocols

l GKE+P Protocols HCommunication (in log @ bits)HComputation (in mod. exp. per Ui)‘
PDHKE-MRE n®4n 2n
GKE+P compiler +n +1
BD (as a special case) 3n 3
PDHKE-KPT 2n — 2 n+2—1i@2n—2forU;)

From Table [Tl we highlight that PDHKE-KPT has better communication complexity
than the compiled version of the BD protocol, but (in general much) worse computa-
tion complexity. The same holds for the original KPT and BD protocols. Therefore,
we do not claim that GroupDH protocols when merged with PDHKE in an optimized
way (via exponent re-use) would result in more efficient constructions compared to
other protocols obtained via our GKE+P compiler. Nevertheless, with PDHKE-KPT we
could show that there exist GKE protocols that provide the property of non-interactive,

16 M. Manulis

on-demand computation of p2p keys almost “for free” (if one neglects the computation
costs needed for the derivation of keys then the costs of PDHKE-KPT from Table[I] are
identical to those of KPT).

7 Adding Authentication to GKE+P Protocols

Yet, we were assuming that described GKE+P protocols are executed over authenticated
links and focused on the KE-security of their group and p2p keys. On the other hand, it
is well-known that any KE-secure GKE protocol can be converted into an AKE-secure
protocol (preserving its forward secrecy) using the classical and inexpensive compilation
technique from [29] which assumes for each user U; a long-lived digital signature key
pair (sk;, pk;) such that in the preliminary protocol round users exchange their nonces
r; and then sign each [-th round message m; concatenated with Uy |r1|. .. |Uy|r, prior
to the transmission. The EUF-CMA security of the digital signature and the negligible
collision probability for the nonces protects against impersonation and replay attacks.

The following theorem shows that this technique is also sufficient to obtain AKE-
security of group and p2p keys in GKE+P protocols.

Theorem S. If P is a GKE+P protocol that provides KE-security of group/p2p keys
then P compiled with the technique from [29] results in a GKE+P protocol P’ that
provides AKE-security of group/p2p keys.

Proof Idea: Theorem[3] can be proven in two steps (one for group keys, another one for
p2p keys) using the same strategy as in the proof of [29, Theorem 2]. Briefly, in each of
the both steps the proof first eliminates signature forgeries and replay attacks and then
constructs an adversary A against the KE-security of group/p2p keys that interacts with
the user instances and also simulates the additional authentication steps while answering
the queries of an adversary A’ against the AKE-security of group/p2p keys. In case of
group keys A will need to guess the session in which the Test(II7) query will be asked
in order to simulate the protocol execution in that session through the authentication of
the transcript, which A obtains initially via own Execute query. In case of p2p keys A
will need to guess the session in which the TestPeer(II7, U;) query will be asked and
two corresponding identities U; and U; of honest users in order to add authentication
to their messages, which A obtains by relaying the Send queries of A’. We omit the
details.

8 Conclusion

We discussed the enrichment of GKE protocols with the property of non-interactive,
on-demand derivation of peer-to-peer keys, which allows for the establishment of a se-
cure group channel and up to n independently secure peer-to-peer channels through
a single run of the protocol. We extended the standard GKE security model captur-
ing independence of group and p2p keys as well as possible collusion attacks against
the secrecy of the latter and proposed several provably secure solutions with varying
efficiency. With PDHKE-KPT we demonstrated the existence of GKE protocols that

Group Key Exchange Enabling On-Demand Derivation of Peer-to-Peer Keys 17

implicitly allow derivation of p2p keys without any increase of their original communi-
cation complexity. Future work may include consideration of the optional insider threats
against the group keys computed in GKE+P protocols in the spirit of [28,12,[13]]. An-
other interesting direction is to investigate to what extent (z;, g”¢) often computed in
GroupDH protocols can be used as key pairs in digital signatures, public-key encryption
schemes, etc.

References

10.

11.

12.

13.

14.

15.

Abdalla, M., Bohli, J.-M., Vasco, M.I.G., Steinwandt, R.: (Password) Authenticated Key
Establishment: From 2-Party to Group. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392,
pp- 499-514. Springer, Heidelberg (2007)

Abdalla, M., Bresson, E., Chevassut, O., Pointcheval, D.: Password-Based Group Key Ex-
change in a Constant Number of Rounds. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T.G.
(eds.) PKC 2006. LNCS, vol. 3958, pp. 427-442. Springer, Heidelberg (2006)

Abdalla, M., Catalano, D., Chevalier, C., Pointcheval, D.: Efficient Two-Party Password-
Based Key Exchange Protocols in the UC Framework. In: Malkin, T.G. (ed.) CT-RSA 2008.
LNCS, vol. 4964, pp. 335-351. Springer, Heidelberg (2008)

Bellare, M., Boldyreva, A., Staddon, J.: Randomness Re-use in Multi-recipient Encryption
Schemeas. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 85-99. Springer, Hei-
delberg (2003)

Bellare, M., Canetti, R., Krawczyk, H.: A Modular Approach to the Design and Analysis
of Authentication and Key Exchange Protocols. In: ACM STOC 1998, pp. 419—428. ACM
Press, New York (1998)

Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated Key Exchange Secure Against Dic-
tionary Attacks. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 139-155.
Springer, Heidelberg (2000)

Bellare, M., Rogaway, P.: Entity Authentication and Key Distribution. In: Stinson, D.R. (ed.)
CRYPTO 1993. LNCS, vol. 773, pp. 232-249. Springer, Heidelberg (1994)

Biswas, G.P.: Diffie-Hellman Technique: Extended to Multiple Two-Party Keys and One
Multi-Party Key. IET Inf. Sec. 2(1), 12-18 (2008)

Boyd, C., Mathuria, A.: Protocols for Authentication and Key Establishment. Springer, Hei-
delberg (2003)

Bresson, E., Chevassut, O., Pointcheval, D.: Dynamic Group Diffie-Hellman Key Exchange
under Standard Assumptions. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332,
pp- 321-336. Springer, Heidelberg (2002)

Bresson, E., Chevassut, O., Pointcheval, D., Quisquater, J.-J.: Provably Authenticated Group
Diffie-Hellman Key Exchange. In: ACM CCS 2001, pp. 255-264. ACM Press, New York
(2001)

Bresson, E., Manulis, M.: Malicious Participants in Group Key Exchange: Key Control and
Contributiveness in the Shadow of Trust. In: Xiao, B., Yang, L.T., Ma, J., Muller-Schloer, C.,
Hua, Y. (eds.) ATC 2007. LNCS, vol. 4610, pp. 395-409. Springer, Heidelberg (2007)
Bresson, E., Manulis, M.: Contributory Group Key Exchange in the Presence of Malicious
Participants. IET Inf. Sec. 2(3), 85-93 (2008)

Bresson, E., Manulis, M.: Securing Group Key Exchange against Strong Corruptions. In:
ACM ASIACCS 2008, pp. 249-260. ACM Press, New York (2008)

Bresson, E., Manulis, M., Schwenk, J.: On Security Models and Compilers for Group Key
Exchange Protocols. In: Miyaji, A., Kikuchi, H., Rannenberg, K. (eds.) IWSEC 2007. LNCS,
vol. 4752, pp. 292-307. Springer, Heidelberg (2007)

18

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

M. Manulis

Burmester, M., Desmedt, Y.: A Secure and Efficient Conference Key Distribution System. In:
De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 275-286. Springer, Heidelberg
(1995)

Canetti, R., Krawczyk, H.: Analysis of Key-Exchange Protocols and Their Use for Building
Secure Channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 453—
474. Springer, Heidelberg (2001)

Canetti, R., Krawczyk, H.: Universally Composable Notions of Key Exchange and Secure
Channels. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 337-351.
Springer, Heidelberg (2002)

Choo, K.-K.R., Boyd, C., Hitchcock, Y.: Examining Indistinguishability-Based Proof Models
for Key Establishment Protocols. In: Roy, B. (ed.) ASTACRYPT 2005. LNCS, vol. 3788, pp.
585-604. Springer, Heidelberg (2005)

Desmedt, Y., Lange, T.: Revisiting Pairing Based Group Key Exchange. In: Tsudik, G. (ed.)
FC 2008. LNCS, vol. 5143, pp. 53—-68. Springer, Heidelberg (2008)

Diffie, W., Hellman, M.E.: New Directions in Cryptography. IEEE Tran. on Inf. Th. 22(6),
644-654 (1976)

Dutta, R., Barua, R., Sarkar, P.: Provably Secure Authenticated Tree Based Group Key
Agreement. In: Lopez, J., Qing, S., Okamoto, E. (eds.) ICICS 2004. LNCS, vol. 3269, pp.
92-104. Springer, Heidelberg (2004)

Gamal, T.E.: A Public Key Cryptosystem and a Signature Scheme Based on Discrete Log-
arithms. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 10-18.
Springer, Heidelberg (1985)

Ingemarsson, 1., Tang, D.T., Wong, C.K.: A Conference Key Distribution System. IEEE Tran.
on Inf. Th. 28(5), 714-719 (1982)

Jarecki, S., Kim, J., Tsudik, G.: Authentication for Paranoids: Multi-party Secret Hand-
shakes. In: Zhou, J., Yung, M., Bao, F. (eds.) ACNS 2006. LNCS, vol. 3989, pp. 325-339.
Springer, Heidelberg (2006)

Jarecki, S., Kim, J., Tsudik, G.: Group Secret Handshakes Or Affiliation-Hiding Authenti-
cated Group Key Agreement. In: Abe, M. (ed.) CT-RSA 2007. LNCS, vol. 4377, pp. 287-
308. Springer, Heidelberg (2007)

Jeong, I.R., Lee, D.H.: Parallel Key Exchange. J. of Univ. Comp. Sci. 14(3), 377-396 (2008)
Katz, J., Shin, J.S.: Modeling Insider Attacks on Group Key-Exchange Protocols. In: ACM
CCS 2005, pp. 180-189. ACM Press, New York (2005)

Katz, J., Yung, M.: Scalable Protocols for Authenticated Group Key Exchange. In: Boneh,
D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 110-125. Springer, Heidelberg (2003)

Kim, H.-J., Lee, S.-M., Lee, D.H.: Constant-Round Authenticated Group Key Exchange for
Dynamic Groups. In: Lee, PJ. (ed.) ASTACRYPT 2004. LNCS, vol. 3329, pp. 245-259.
Springer, Heidelberg (2004)

Kim, Y., Perrig, A., Tsudik, G.: Group Key Agreement Efficient in Communication. IEEE
Tran. on Comp. 53(7), 905-921 (2004)

Kim, Y., Perrig, A., Tsudik, G.: Tree-Based Group Key Agreement. ACM Trans. on Inf. and
Syst. Sec. 7(1), 60-96 (2004)

Kurosawa, K.: Multi-Recipient Public-Key Encryption with Shortened Ciphertext. In: Nac-
cache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 48-63. Springer, Heidelberg
(2002)

LaMacchia, B., Lauter, K., Mityagin, A.: Stronger Security of Authenticated Key Exchange.
In: Susilo, W., Liu, J.K., Mu, Y. (eds.) ProvSec 2007. LNCS, vol. 4784, pp. 1-16. Springer,
Heidelberg (2007)

Manulis, M.: Security-Focused Survey on Group Key Exchange Protocols. Cryptology ePrint
Archive, Report 2006/395 (2006)

36.

37.

38.

39.

40.

41.

Group Key Exchange Enabling On-Demand Derivation of Peer-to-Peer Keys 19

Mayer, A., Yung, M.: Secure Protocol Transformation via “Expansion”: From Two-Party to
Groups. In: ACM CCS 1999, pp. 83-92. ACM Press, New York (1999)

Nam, J., Paik, J., Kim, U.-M., Won, D.: Constant-Round Authenticated Group Key Exchange
with Logarithmic Computation Complexity. In: Katz, J., Yung, M. (eds.) ACNS 2007. LNCS,
vol. 4521, pp. 158-176. Springer, Heidelberg (2007)

Shoup, V.: On Formal Models for Secure Key Exchange (Version 4). TR RZ 3120, IBM
Research (1999)

Steer, D.G., Strawczynski, L., Diffie, W., Wiener, M.J.: A Secure Audio Teleconference Sys-
tem. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 520-528. Springer, Hei-
delberg (1990)

Steiner, M., Tsudik, G., Waidner, M.: Diffie-Hellman Key Distribution Extended to Group
Communication. In: ACM CCS 1996, pp. 31-37. ACM Press, New York (1996)

Wolf, S.: Information-Theoretically and Computationally Secure Key Agreement in Cryp-
tography. PhD thesis, ETH Ziirich (1999)

Session-state Reveal Is Stronger Than Ephemeral Key
Reveal: Attacking the NAXOS Authenticated
Key Exchange Protocol

Cas J.F. Cremers*

Department of Computer Science, ETH Zurich
8092 Zurich, Switzerland
cas.cremers@Qinf.ethz.ch

Abstract. In the paper “Stronger Security of Authenticated Key Ex-
change” [1}2], a new security model for authenticated key exchange pro-
tocols (eCK) is proposed. The new model is suggested to be at least
as strong as previous models for key exchange protocols. The model in-
cludes a new notion of an Ephemeral Key Reveal adversary query, which is
claimed in e. g. [2l8l4] to be at least as strong as the Session-state Reveal
query. We show that Session-state Reveal is stronger than Ephemeral Key
Reveal, implying that the eCK security model is incomparable to the CK
model [51[6]. In particular we show that the proposed NAXOS protocol
from [IL[2] does not meet its security requirements if the Session-state
Reveal query is allowed in the eCK model. We discuss the implications of
our result for some related protocols proven correct in the eCK model,
and discuss the interaction between Session-state Reveal and protocol
transformations.

Keywords: Provably-secure, Authenticated Key Exchange, Session-
state reveal, Ephemeral Key reveal.

1 Introduction

In the area of secure key agreement protocols many security models [78|TL95L10]
and protocols have been proposed. Many of the proposed protocols have been
shown to be correct in some particular security model, but have also shown to be
incorrect in others. In order to determine the exact properties that are required
from such protocols, a single unified security model would be desirable. However,
given the recent works such as [§], it seems that a single model is still not agreed
upon.

In this paper we focus on a specific aspect of security models for key agreement
protocols. In particular, we focus on the ability of the adversary to learn the local
state of an agent. For example, when an agent chooses a random value, or com-
putes the hash function of a certain input, the constituents of the computation
reside temporarily in the local memory of the agent. It may be possible for the

* This work was supported by the Hasler Foundation within the ComposeSec project.

M. Abdalla et al. (Eds.): ACNS 2009, LNCS 5536, pp. 20 2009.
© Springer-Verlag Berlin Heidelberg 2009

Session-state Reveal Is Stronger Than Ephemeral Key Reveal 21

adversary to learn such information, even though he cannot learn the long-term
private keys of the agent. This corresponds to the situation in which the long-
term private keys reside in e. g. a tamper-proof module (TPM) or cryptographic
coprocessor, while the remainder of the protocol computations are done in reg-
ular (unprotected) memory. The corresponding adversary ability is captured in
security models for key agreement protocols by the Session-state Reveal query.

A drawback of the Session-state Reveal query in current security models is that
the query is often underspecified. For example, in the Canetti-Krawczyk (CK)
model [5], Session-state Reveal is defined as giving the adversary the internal
state of the Turing machine that executes the protocol. This internal state is
not defined within the security model. Effectively, the definition of the internal
state is postponed to the proof of a particular protocol.

In [2[I] a security model is proposed which is said to be stronger than existing
AKE (Authenticated Key Exchange) security models. The model is based on the
CK model, and is referred to in [I] as the Extended Canetti-Krawczyk (eCK)
model. The eCK model differs in a number of aspects from the CK model, where
the main difference seems to be that the adversary is allowed to reveal part of the
local state of participants even during a normal protocol session. A more subtle
aspect in which the eCK model differs from the CK model is that it replaces the
Session-state Reveal query by a new Ephemeral Key Reveal query. In this paper
we focus on this aspect.

In order to provide a definition of the local state within the security model,
the eCK model (re)defines the notion of ephemeral key and introduces a corre-
sponding Ephemeral Key Reveal query that reveals this key. The ephemeral key
is defined to contain all secret session-specific information. The authors argue
for the new Ephemeral Key Reveal query that “by setting the ephemeral secret
key equal to all session-specific secret information, we seem to cover all defini-
tions of Session-state Reveal queries which exist in literature” [2, p. 2]. Similar
arguments can be found in [4,[BLIIL12]. Within the resulting eCK model, the
NAXOS protocol is proposed and proven correct in [IJ.

Contrary to the above, it is argued in [13] that strictly speaking the eCK and CK
models are incomparable. Regarding the difference between Session-state Reveal
and Ephemeral Key Reveal, it is remarked that “The important point to note is that
the ephemeral-key does not include session state that has been computed using the
long-term secret of the party. This is not the case in the CK model where, in prin-
ciple, the adversary is allowed access to all the inputs (including the randomness,
but excluding the long-term secret itself) and the results of all the computations
done by a party as part of a session” [13], Section 3.1].

Contributions In this paper we show that contrary to the claims in [21413I1TL[T2],
the Ephemeral Key Reveal query is weaker than the Session-state Reveal query.
Consequently, it follows that the CK and eCK models are incomparable, as the
CK model does not allow compromise of the ephemeral key of the tested session.
We show that the difference between the queries not only has theoretical but
also practical implications, by providing two attacks on the NAXOS protocol,
which can be performed using Session-state Reveal, but cannot be performed by

22 C.J.F. Cremers

using Ephemeral Key Reveal. The security model we use is nearly identical to the
eCK model: we only replace Ephemeral Key Reveal by Session-state Reveal. Our
attacks are also valid in the CK model, which implies that there is a meaningful
difference between CK and eCK, as NAXOS was proven correct in the eCK
model. We show how our attacks can be extended to the KEA, KEA+, and
KEA+C protocols, and we discuss the interaction between Session-state Reveal
and protocol transformations in e. g. the CK model.

The attacks presented here were found automatically by the Scyther tool [14].
For our attacks we use the NAXOS protocol exactly as specified in [I},12]. We
assume that the protocol is implemented such that when a participant in the
NAXOS protocol computes Ha(z), where Hs is a particular hash function in
the NAXOS protocol, then x is in the local state just before the computation.
As a result, performing a Session-state Reveal query just before the computation
of Hy(x) reveals x. This assumption does not require changing to the protocol.
Rather, we make the contents of the session state explicit, as would be required
for a proof in the CK model.

We proceed as follows. In Section 2 we explain some notation, and present
the NAXOS protocol. Then, in Section 3 we show two attacks on this protocol
that use Session-state Reveal. Further issues are discussed in Section 4, and we
conclude in Section 5.

2 The NAXOS Key Exchange Protocol

The NAXOS protocol, as defined in [2}[T], is shown in Figure [l NAXOS builds
on earlier ideas from the KEA and KEA+ protocols [I5,[16]. The purpose of the
NAXOS protocol is to establish a shared symmetric key between two parties.
Both parties have a long-term private key, e. g. sk,, and initially know the public
key of all other participants, e.g. pk,. In Table [[l we give an overview of the
notation used in the protocol as well as the remainder of this paper. We follow
the notation from [I] where possible.

| A | B

eska < {0,1}

X = ng(eskA ,ska)

| eskp < {0, 1} |

Y = ng (eskn,skir)

K.A — KB —
H2(YskA7pkgl(€3kA¢3kA)’YHl(e.skA,vskA>7A’ B) H2(pkjl(esk573k5)l’Xsk5’XHl((fSk5,3k5)7A7 B)

* *

Fig. 1. The NAXOS protocol. At the end of a normal execution we have that K4 = Kp
(pks = QSkm)-

Session-state Reveal Is Stronger Than Ephemeral Key Reveal 23

Table 1. Notation

A, B The initiator and responder roles of the protocol.

a,b Agents (participants) executing roles of the protocol.

G A mathematical group of known prime order gq.

g A generator of the group G.

ska The long-term private key of the agent a, where ska € Zg.
pka The long-term public key of the agent a, where pk, = g**.

Hi,H> Hash functions, where H; : {0,1}* — Z, and H» : {0,1}* — {0,1}*
(for some constant A).
eska, esks Two different ephemeral keys of the agent a, generated in different

sessions.

o Written in place of a (bigger) term that is not relevant for the expla-
nation at that point.

A A constant.

z< S The variable z is drawn uniformly from the set S.

T e The variable x is assigned the result of the expression e.

The protocol is designed to be secure in a very strong sense: the adversary is
assumed to have the capability of learning long-term private keys, and also has
the capability of learning short term data generated during a protocol session
that does not include the private key.

The intuition behind the design of the protocol is that by combining the long-
term private key with the short term ephemeral key inside the hash function, the
adversary would need to have both of these elements to construct an attack. For
example, the protocol should be secure if the adversary either (a) learns the long-
term key of a participant during a session, or (b) learns the short-term data (except
for the long-term key) of a participant during a session. A typical scenario for (b)
is that the participant stores the long-term key on a TPM, and computes other
operations in unprotected memory. For full details we refer the reader to [I,2].

In a normal execution, we have the following equivalences based on the prop-
erties of the modular exponentiation:

Xsk5 — ng(eskA,skA)skB :pkgl(ESkA,skA) (1)
yska — ng(eskg,skg)skA _ pkﬁ{l(ESkB’SkB) (2)
YHl(eskA,skA) — ng(eskg,skB)Hl(eskA,skA) — XHl(eskg,skg) (3)

Hence, at the end of a normal protocol execution, the session key is computed
by both parties as

H2<gH1(esk5,sk5)SkA7gH1(€SkA7$kA)3kB’ ng(esl'c,c\,slu)Hl(681%781’%)7 A, B). (4)

3 Attacking NAXOS Using Session-state Reveal

3.1 Security Model eCK’

We use a slightly modified security model from the one defined in [I]. The only
change is that we replace the Ephemeral Key Reveal query by the Session-state

24 C.J.F. Cremers

Reveal query throughout the security definition. In particular, we require that
whenever Hy(z1,...,Ty,) is computed, 1, ..., z, are part of the local state just
before the computation, and can therefore be revealed by a Session-state Reveal
query. An example of an execution model where this condition holds, is a TPM
setting in which Hs(z1,...,x,) is computed in local memory, whereas all other
computations (such as Hy(z) and g*) are performed inside the TPM.

In contrast, applying the Ephemeral Key Reveal query to a session of the
agent a in the eCK model (and original NAXOS proof) from [I] reveals only
the ephemeral key esk,.

Participants can perform roles of the protocol (such as initiator, 4, or re-
sponder, B) multiple times, with various other partners. A single role instance
performed by a participant is called a session.

Definition 1 (Session identifier). The session identifier of a session sid is
defined as the tuple (role, ID,IDx%, commy,...,comm,), where role is the role
performed by the session (here initiator or responder), ID is the name of the
participant executing sid, I Dx the name of the intended communication partner,
and commy, . ..,comm, the list of messages that were sent and received.

Definition 2 (Matching sessions for two-party protocols). For a two-
party protocol, sessions sid and sid' are said to match if and only if there ex-
ist roles role,role’ (role # role’), participants ID,ID’, and message list L =
commy, . ..,commy, such that the session identifier of sid is (role,ID,ID’, L)
and the session identifier of sid is (role’,ID', ID, L).

In the eCK model, the adversary does not have access to a Session-state Reveal
query, but instead has Ephemeral Key Reveal. Below we redefine the notion of
clean and the security experiment from the eCK model [Tl p. 8-9], in which we
replace Ephemeral Key Reveal with Session-state Reveal, to define our security
model eCK’.

Definition 3 (clean for eCK?’). In an AKE experiment (e.g. as defined in
Definition [J] below), let sid be a completed AKE session performed by a, sup-
posedly with some party b. Then sid is said to be clean if all of the following
conditions hold:

1. a and b are not adversary-controlled (the adversary does not choose or reveal
both the long-term and ephemeral keys of the participant and performs on
behalf of the participant.)

2. The experiment does not include Reveal(sid), i. e. the session key of session
std is not revealed.

3. The experiment does not include both Long-term Key Reveal(a) and Session-
state Reveal(sid).

4. If no session exists that matches sid, then the experiment does not include
Long-term Key Reveal(ﬁ).

5. If a session sidx existd] that matches sid, then

! There may not be a unique matching session sidx for all executions of all protocols,
but in the case of NAXOS, where each sent message contains randomness from the
sending session, the matching session is unique if sid is a completed session.

Session-state Reveal Is Stronger Than Ephemeral Key Reveal 25

(a) the experiment does not include Reveal(sidx), i. e. the session key of ses-
sion sidx is not revealed, and

(b) the experiment does not include both Long-term Key Reveal(b) and
Session-state Reveal(sidx).

In the eCK’ security model, queries such as Session-state Reveal may not be
performed on clean sessions or their matching sessions as in [I, p. 7-8]. This is
meant to exclude the cases in which an Session-state Reveal query trivially reveals
the session key, such that no protocol could satisfy the security definition.

Definition 4 (AKE security experiment for eCK?’). In the eCK’ AKE
security experiment, the following steps are allowed:

1. The adversary may perform Send(a, b, comm), Long-term Key Reveal(a), and
Reveal(sid) queries as in [1.

2. The adversary may perform a Session-state Reveal(sid) query. (This query
replaces Ephemeral Key Reveal(sid) in the definition from [1].)

3. The adversary performs a Test(sid) query on a single clean session sid. A
coin is flipped: b & {0,1}. If b = 0, the test query returns a random bit
string. If b =1, the query returns the session key of sid. This query can be
performed only once.

4. The adversary outputs a Guess(b') bit b, after which the experiment ends.

An adversary M wins the experiment if the Guess(b) bit b is equal to the bit b/
from the Test(b') query.

Definition 5 (eCK’ security). The advantage of the adversary M in the eCK’
AKE experiment with AKE protocol II is defined as

AdviEE (M) = PriM wins] — ;

We say that an AKE protocol is secure in the eCK’ model if matching sessions
compute the same session keys and no efficient adversary M has more than a
negligible advantage in winning the above experiment.

We show two attacks on NAXOS in the eCK’ model: One using test queries on
sessions of the initiator type A and one using the responder type B.

3.2 Attacking the Initiator

In Figure 2l we show an attack for a test query on an initiator session of NAXOS.
The attack requires an active adversary that can reveal the local state of an
agent.

The adversary can compute K, on the basis of the revealed information (based
on the algebraic properties of the group exponentiation, which are required for
the core of the protocol).

26

C.J.F. Cremers

Session 1 Session 2
A:a A: b
(talking to b) (talking to a)
test session does not match 1
| esk, < {0,1}* | | esky & {0,1}* |

Xa — ng (eska,ska)

X, = ng (eskp,sky)

Session-state Reveal (before Hs)
Xskb pkaHl(ESkb"Skb) X:II(SSkhSkb)
a) b

T
Ky Ky —
Hz(Xska,pkfl(ESka’Ska), X;-Il(eska,ska)’ a, b) HQ(X:kb,pkfl(ESkb’Skb>7 Xal‘ll(eskb,skb)7 b, a)
— —

Fig. 2. Attacking an initiator session. Note that K, # K. The adversary can compute
K, after compromising the local state of b.

[\

bt

©

The attack proceeds as follows.

a starts an initiator instance, wanting to communicate with b.

. a chooses her ephemeral key esk,, and sends out X, = gH(eskasha) The

adversary learns this message.

b also starts an initiator instance, wanting to communicate with a.

b chooses her ephemeral key esky, and sends out X, = g1(eske.sks) The
adversary learns this message.

The adversary sends the message X}, to a.

a computes the session key

Ka _ HQ(Xska7pkfl(eSka7Ska)7Xfl(eSka7Ska)7a, b) (5)

The adversary sends the message X, to b.
b computes the session key

Kb - HQ(X:kbvpkfl(eSkb’Skb)vX:II(ESkb)Skb)a b7 a)' (6)

During the computation of K}, the adversary uses Session-state Reveal to

learn the input to Hy. In particular, the adversary learns X%, pks’ 1(esks,sky)

H; (esky,sk
and Xa 1(eskp,s b).
The adversary now knows

pk;‘h(eskb,skb) _ gskaHl(eskb,skb) _){'gka7 (7)
Xskb _ ng(eska,ska)skb _ pkfl(e‘Ska’Ska) (8)

a s
X:h(eskb,skb) _ ng(esk:a,sk:a)Hl(esk:b,sk:b) — X;—Il(eSka’Ska). (9)

The three terms on the right-hand side are the first three components of the
session key K, from Formula Gl

Session-state Reveal Is Stronger Than Ephemeral Key Reveal 27

10. The adversary combines the elements with the names a and b, and applies
Hs, resulting in K.

The above sequence of actions forms an attack on the protocol, because the
adversary can learn the session key of the initiator a by revealing the local
state of the second session. Furthermore, the test session is clean according to
Definition [3 on_page 24] because (1) neither a nor b are adversary-controlled, (2)
no Reveal queries are performed, (3) no long-term keys are revealed, and (4)
session 2 is not a partner to the test session 1. Therefore, the attack violates
security in the eCK’ model.
Some further observations regarding this attack:

— The sessions compute different session keys: K, # K}, because the order of
the participant names a, b is reversed.

— The adversary does not need to learn any ephemeral keys for this attack.

— Even in other existing interpretations of the partner function (or freshness)
from literature (matching conversations, external session identifiers, explicit
session identifiers, etc.) the two sessions are not partners. Consequently, the
NAXOS protocol is therefore also not secure in other models that allow
Session-state Reveal, such as the CK model [5].

3.3 Attacking the Responder

Second, we show an attack for a test query on a responder session in Figure [3l
It seems this attack is more easily exploited than the previous one.
The attack proceeds as follows.

1. The adversary chooses an arbitrary bit string «.

2. The adversary computes g* and sends the result to a responder instance of
a, with sender address b.

3. a receives the message and assigns Xy, = g”.

4. a chooses her ephemeral key esk,, and sends out X, = g1(eska:ska) The
adversary learns this message.

5. a computes the session key

K, = Hg(pkfl(eSka’Ska)’X;ka,Xfl(eSka’Ska)7 b,a) (10)
which is equal to
Hg(pkfl (eSkavska)’ gn sk, , gn Hl(eska,ska)7 b7 a)‘ (11)

6. The adversary redirects X, to a responder instance of b. The adversary can
insert an arbitrary participant name in the sender field of the message, which
b takes to be the origin of the message.

7. b computes his ephemeral secret, combines it with his long term key, and
sends out the corresponding message.

8. b computes his session key K}, (which differs from K,). Before applying Ha,
b computes the second component X%

28

C.J.F. Cremers

Session 1 Session 2
B: a B: b
(responding to b) (responding to anybody)
test session does not match 1

Ky —
1-_12(pklj;-11(eska,ska)7 X§k37)(':1:-11(eska,ska)7 b7 a)

| esky < {0,1} |

X, = ng (eska,ska)

| esky < {0, 1} |

o

Session-state Reveal (before Hs)
X 5k

Kb —
H2(o7 Xaskb7 o,0, O)

_*

Fig. 3. Attack on a responder session. We have K, # K},. The adversary can compute
(and even contribute to) K, after revealing the local state of b.

9.

10.

11.

The adversary uses Session-state Reveal on the session of b directly before
the application of Hy to learn X3k

The adversary knows k, X,, and X *. Furthermore, as the public keys are
public, the adversary also knows pk,. Hence the adversary also knows, or
can compute:

S es s s H(eska,sk,
Xékb = ng(ka,ska)sky :pkb 1()7 (12)
(Pka)* = g =Xk, (13)

K esk..ski)k eska,ska
(X,)" = g(eskaskar — x i). (14)

The three terms on the right-hand side are the first three components of the
session key K, from Formula [T0l
The adversary combines the elements and applies Hs, resulting in K.

This sequence forms an attack on the protocol, because the adversary can use
data revealed from session 2 in order to compute the session key of the test
session 1. The test session is also clean according to Definition In
practical terms, this attack even allows the adversary to determine a part of the
session key of a.

Session-state Reveal Is Stronger Than Ephemeral Key Reveal 29

For this attack there are also some observations to be made:

— The responder session of b is not a partner to the session of a in terms
of matching sessions. Also, in other partner existing interpretations from
literature (external session identifiers, explicit session identifiers, etc.) they
would also not match.

— The adversary chooses x, and can therefore influence the session key.

— In this attack, the adversary does not need to learn any long term private
keys or ephemeral keys.

— The attack is also valid in the CK model: the sessions are not partners for a
number of reasons, for example because their choice of agents differs. Session
1 has {a, b} and session 2 has {b, z} where z is an arbitrary participant. Hence
the adversary can choose z # a.

4 Discussion

The structure of our attacks can be used to attack some protocols that were
proven correct in the CK model [5]. We first briefly discuss these other proto-
cols, and afterwards discuss the implications for existing proofs and protocol
transformation theorems in the CK model.

4.1 The KEA, KEA+ and KEA+C Protocols

In [16], the KEA+ protocol is proven correct in the CK model from [5]. KEA+
can be viewed as a predecessor of the NAXOS protocol, and uses a similar
setup. Two other variants of this protocol are KEA+C from [I6] and KEA
from [I5]. All three protocols compute the session key using a hash function,
which takes as inputs components built by the communication partners. Each
of the crucial inputs is a modular exponentiation that includes in the exponent
both randomness and the long-term private keys of one of the participants. The
proof in [I6] of the security of KEA+ in the CK model assumes that Session-state
Reveal is defined such that only the ephemeral keys are revealed.

The attacks presented in this paper on the NAXOS protocol also work within
the CK model for the KEA, KEA+, and KEA+C protocols after minimal modi-
fications. The attacks use the exact same scenarios and exploit the same Session-
state Reveal definition, in which the inputs to the final hash function are part of
the local state.

4.2 Session-state Reveal and Protocol Transformations in the CK
Model

In the CK model [5] the Session-state Reveal query is defined as revealing the
full internal state of the Turing machine executing the protocol to the adversary.
This internal state is not defined within the CK model, and can be viewed as
a parameter of the correctness proof of the protocol. As a result, proving that
a protocol is correct in the CK model requires one to define this internal state.

30 C.J.F. Cremers

Technically this implies that the resulting proof holds only for execution models
corresponding to this definition of the internal state. This puts restrictions on the
implementation details of the protocol code as well as on the platform executing
the code.

In existing protocol proofs in the CK model the internal state is not explicitly
stated as a parameter of the correctness proof. In most cases, the internal state is
simply defined as the ephemeral secret, i. e. the private exponent of a participant
in a Diffie-Hellman style key exchange. As a consequence, any implementation
in which the local state (as revealed to an adversary) contains more information,
falls outside of the scope of the proof.

However, making the definition of the internal state an explicit parameter of
the correctness proofs has implications for the methodology underlying the CK
model. Central to the methodology underlying the model is the notion of security
preserving (or security enhancing) protocol transformations. An example of a cen-
tral result is Theorem 6 from [5], p. 16]. This theorem involves the notion of (MT-
)authenticators, which are protocol transformations that satisfy certain security
preserving/enhancing properties. The theorem aims to establish that a protocol
that is secure in one security model (AM) can be transformed by an authentica-
tor into another protocol that satisfies the same security property in a stronger
adversarial model (UM). In this case the security property is SK-security, which
involves an adversary that has access to the Session-state Reveal query.

Theorem 6 from [5 p. 16] can be rephrased in the following way. Let P be
a protocol and let f be an (MT-) authenticator. If the protocol P satisfies SK-
security in the AM model, then the protocol f(P) satisfies SK-security in the
UM model. The proof of this theorem is generic and applies to any authenticator.

In the precondition of this theorem and the definition of authenticators, there
is no constraint that prevents authenticators from changing the local state, i.e.,
there is no requirement on f that ensures that Session-state Reveal for P is
equal to Session-state Reveal for f(P). Note that from a practical point of view,
including such a requirement may be unrealistic: transforming the protocol in
any non-trivial way implies that the local state of the protocol f(P) is different
from that of the protocol P.

If we assume that that applying the authenticator does change the local state,
i. e. Session-state Reveal for f(P) is not equal to Session-state Reveal for P, then it
is not immediately clear how to prove the correctness of the theorem, as it would
involve proving that the transformation of the local state does not introduce new
attacks, possibly along the lines of the attacks presented here, that exploit Session-
state Reveal for f(P). Recall that the attacks on NAXOS do not require revealing
the ephemeral key (which would already be in the local state of P), nor the long-
term private keys (which would be excluded from Session-state Reveal for f(P)),
but rather some intermediate computations. We expect that a generic proof of this
theorem requires a significant restriction on the class of allowed authenticators.

The existence of these attacks shows the importance of explicitly specifying
the definition of local state as it is used in a proof: e. g. KEA+ is not secure in
the CK model if the inputs to the final hash function are part of the local state.

Session-state Reveal Is Stronger Than Ephemeral Key Reveal 31

It would be more precise to say that in [I6] KEA+ is proven secure with respect
to the CK model if the local state only includes the ephemeral keys.

5 Conclusion

In common definitions of AKE security the Session-state Reveal query is under-
specified. The definition of Session-state Reveal is only made explicit in particular
protocol proofs. This approach turns the exact definition of Session-state Reveal
into a parameter of the exact security provided by the protocol. As a result,
stating that two protocols are provably secure in e.g. the CK model does not
mean they meet exactly the same property.

In [TL2] the Session-state Reveal query is replaced by the Ephemeral Key Reveal
query, which is claimed to be at least as strong as Session-state Reveal. Thus,
the notion of Session-state Reveal is reduced to Ephemeral Key Reveal. Reducing
Session-state Reveal to Ephemeral Key Reveal simplifies proofs significantly: one
does not need to define what exactly is part of the ephemeral key, but one only
needs to prove that no information about the ephemeral key is revealed [TL[4L3].
However, the validity of this reduction has not been proven.

The validity of the reduction is informally argued in [2], and similar argu-
ments can be found in other works that use the eCK model [43], e.g. in [4 p.
333]: “In general, by specifying that the session specific private information (the
session state) is part of the ephemeral private key, the Session-state Reveal and
Ephemeral Key Reveal queries can be made functionally equivalent”.

In this paper we have shown that the reduction is invalid, that is, a security
model with Ephemeral Key Reveal (eCK) is not as strong as a model with Session-
state Reveal (eCK’). The attacks presented here on the NAXOS protocol, which
was proven correct for Ephemeral Key Reveal in [1], strictly depend on the use of
the Session-state Reveal query.

The attacks presented here fall just outside the eCK security model, and they
therefore do not indicate a problem with the proofs in [I]. Instead, what the
attacks indicate is that the eCK security model, and similarly the property that
is proved correct, is not as strong as suggested in e.g. [I]. Furthermore, the
attacks are also valid in the CK model, which shows that the difference between
CK and eCK is in fact meaningful in practice. In particular, we have shown that
one can prove real protocols secure in eCK which are not secure in CK, and are
vulnerable to attacks where the local state is revealed. Consequently, the CK
and eCK models are not only theoretically, but also practically incomparable.

The structure of our attacks on NAXOS can be translated to attacks on
the KEA, KEA+, and KEA+C protocols from [I5,[16]. As a result, also these
protocols are not CK-secure if the session state includes the inputs to the final
hash function. We furthermore observed that it is non-trivial to combine protocol
proofs that consider the Session-state Reveal query, such as those in the CK
model, with protocol transformations.

The idea behind the NAXOS protocol (which is already found in KEA and
KEA+) is appealing: by strongly connecting the long- and short-term infor-
mation, the adversary would be required to know both elements to perform an

32 C.J.F. Cremers

attack. However, in order to use the combination of these elements securely in the
protocol, in particular for transmission, there are further computations needed.
These subsequent computations often influence the local state. This effect is not
captured by the definition of Ephemeral Key Reveal, which is the ultimate prob-
lem with the reduction from Session-state Reveal to Ephemeral Key Reveal, as was
already noted in [I3]. The attacks presented in this paper exploit exactly this
difference.

A possible practical interpretation of the difference between the models is the
following. The CK model considers a TPM implementation, where parts of the
protocol are computed in unprotected memory, specified by the contents of
the session-state, but the long-term private keys are protected by the TPM.
The adversary may be able to learn the contents of the unprotected memory
at some point, but not necessarily all the time. In contrast, the eCK model
considers a malicious (i. e. predictable or information-leaking) random number
generator, which implies that the adversary learns all ephemeral keys.

The question remains whether it is possible to adapt NAXOS to satisfy a
security model similar to eCK that allows for Session-state Reveal queries.

References

1. LaMacchia, B., Lauter, K., Mityagin, A.: Stronger security of authenticated key
exchange. In: Susilo, W., Liu, J.K., Mu, Y. (eds.) ProvSec 2007. LNCS, vol. 4784,
pp. 1-16. Springer, Heidelberg (2007)

2. LaMacchia, B., Lauter, K., Mityagin, A.: Stronger security of authenticated key
exchange. Cryptology ePrint Archive, Report 2006/073 (2006),
http://eprint.iacr.org/

3. Okamoto, T.: Authenticated key exchange and key encapsulation in the standard
model. In: Kurosawa, K. (ed.) ASTACRYPT 2007. LNCS, vol. 4833, pp. 474-484.
Springer, Heidelberg (2007)

4. Ustaoglu, B.: Obtaining a secure and efficient key agreement protocol from
(H)MQV and NAXOS. Des. Codes Cryptography 46(3), 329-342 (2008)

5. Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for
building secure channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS,
vol. 2045, pp. 453-474. Springer, Heidelberg (2001)

6. Krawczyk, H.: HMQV: A high-performance secure diffie-hellman protocol. In:
Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 546-566. Springer, Hei-
delberg (2005)

7. Bresson, E., Chevassut, O., Pointcheval, D., Quisquater, J.: Provably authenticated
group Diffie-Hellman key exchange. In: CCS 2001: Proceedings of the 8th ACM
conference on Computer and Communications Security, pp. 255-264. ACM Press,
New York (2001)

8. Menezes, A., Ustaoglu, B.: Comparing the pre- and post-specified peer models
for key agreement. In: Mu, Y., Susilo, W., Seberry, J. (eds.) ACISP 2008. LNCS,
vol. 5107, pp. 53-68. Springer, Heidelberg (2008)

9. Choo, K.K., Boyd, C., Hitchcock, Y.: Examining indistinguishability-based proof
models for key establishment proofs. In: Roy, B. (ed.) ASTACRYPT 2005. LNCS,
vol. 3788, pp. 624-643. Springer, Heidelberg (2005)

http://eprint.iacr.org/

10.

11.

12.

13.

14.

15.

16.

Session-state Reveal Is Stronger Than Ephemeral Key Reveal 33

Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated key exchange secure
against dictionary attacks. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, pp. 139-155. Springer, Heidelberg (2000)

Xia, J., Wang, J., Fang, L., Ren, Y., Bian, S.: Formal proof of relative strengths
of security between ECK 2007 model and other proof models for key agreement
protocols. Cryptology ePrint Archive, Report 2008/479 (2008)
http://eprint.iacr.org/| (retrieved January 12, 2009)

Lee, J., Park, C.: An efficient authenticated key exchange protocol with a tight
security reduction. Cryptology ePrint Archive, Report 2008/345 (2008)
http://eprint.iacr.org/| (retrieved January 12, 2009)

Boyd, C., CIliff, Y., Nieto, J., Paterson, K.: Efficient one-round key exchange in
the standard model. In: Mu, Y., Susilo, W., Seberry, J. (eds.) ACISP 2008. LNCS,
vol. 5107, pp. 69-83. Springer, Heidelberg (2008)

Cremers, C.: The Scyther Tool: Verification, falsification, and analysis of security
protocols. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 414-418.
Springer, Heidelberg (2008)

NIST: SKIPJACK and KEA algorithm specification (1998),
http://csrc.nist.gov/groups/ST/toolkit/documents/skipjack/skipjack.pdf
Lauter, K., Mityagin, A.: Security analysis of KEA authenticated key exchange
protocol. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T.G. (eds.) PKC 2006.
LNCS, vol. 3958, pp. 378-394. Springer, Heidelberg (2006)

http://eprint.iacr.org/
http://eprint.iacr.org/
http://csrc.nist.gov/groups/ST/toolkit/documents/skipjack/skipjack.pdf

Secure Pairing of “Interface-Constrained” Devices
Resistant against Rushing User Behavior

Nitesh Saxena and Md. Borhan Uddin

Computer Science and Engineering
Polytechnic Institute of New York University
nsaxena@poly.edu, borhan@cis.poly.edu

Abstract. “Secure Device Pairing” is the process of bootstrapping secure com-
munication between two devices over a short- or medium-range wireless channel
(such as Bluetooth, WiFi). The devices in such a scenario can neither be assumed
to have a prior context with each other nor do they share a common trusted author-
ity. Fortunately, the devices can generally be connected using auxiliary physical
channel(s) (such as audio, visual, tactile) that can be authenticated by the device
user(s), thus forming the basis for pairing. However, lack of good quality output
interfaces (e.g, a speaker, display) and/or receivers (e.g., microphone, camera) on
certain devices makes pairing a very challenging problem in practice.

We consider the problem of “rushing user” behavior in device pairing. A rush-
ing user is defined as a user who in a rush to connect her devices, would skip
through the pairing process, if possible. Most prior pairing methods, in which the
user decides the final outcome of pairing, are vulnerable to rushing user behavior
— the user can simply “accept” the pairing, without having to correctly take part in
the decision process. In this paper, we concentrate on most common pairing sce-
narios (such as pairing of a WiFi laptop and an access point), whereby one device
(access point) is constrained in terms output interfaces, while the other (laptop)
has a decent quality output interface but no receiver. We present the design and
usability analysis of two novel pairing methods, which are resistant to a rushing
user and require only minimal device interfaces on the constrained device. One of
the most appealing applications of our proposal is in defending against common
threat of “Evil Twin” attacks in public places (e.g, cyber-cafes, airport lounges).

Keywords: Device Pairing, Authentication, Usability, Security, Evil Twin At-
tacks, Wireless Communication.

1 Introduction

Short-range wireless communication, based on technologies such as Bluetooth and
WiFi, is becoming increasingly popular and promises to remain so in the future. With
this surge in popularity, come various security risks. Wireless communication channel
is easy to eavesdrop upon and to manipulate, and therefore a fundamental security ob-
jective is to secure this communication channel. In this paper, we will use the term
“pairing” to refer to the operation of bootstrapping secure communication between two
devices connected with a short-range wireless channel. The examples of pairing, from

M. Abdalla et al. (Eds.): ACNS 2009, LNCS 5536, pp. 34 20009.
(© Springer-Verlag Berlin Heidelberg 2009

Secure Pairing of “Interface-Constrained” Devices 35

day-to-day life, include pairing of a WiFi laptop and an access point, a Bluetooth key-
board and a desktop. Pairing would be easy to achieve, if there existed a global infras-
tructure enabling devices to share an on- or off-line trusted third party, a certification
authority, a PKI or any pre-configured secrets. However, such a global infrastructure is
close to impossible to come by in practice, thereby making pairing an interesting and
a challenging real-world research problem. The problem has been at the forefront of
various recent standardization activities, see [24]].

A promising and well-established research direction to pairing is to use an auxiliary
physically authenticatable channel, i.e., physical channel, also called an out-of-band
(OOB) channel, which is governed by humans, i.e., by the users operating the devices.
Examples of OOB channels include audio, visual, tactile channels. Unlike the wireless
channel, on the OOB channel, an adversary is assumed to be incapable of modifying
messages, however, it can eavesdrop on, delay, drop and replay them. A pairing method
should therefore be secure against such an adversary.

The usability of a pairing method based on OOB channels is clearly of utmost im-
portance. In pairing scenarios (such as pairing of a WiFi laptop and an access point) in-
volving devices that lack good quality output interfaces (e.g, a speaker, display) and/or
receivers (e.g., microphone, camera), establishing OOB channels is quite difficult. Min-
imizing the user burden in pairing such “interface-constrained” devices is thus a very
challenging problem. Since the OOB channels typically have low bandwidth, the shorter
the data that a pairing method needs to transmit over these channels, the better the
method becomes in terms of usability.

Various pairing protocols have been proposed so far. These protocols are generally
based on the bidirectional automated device-to-device (d2d) OOB channels. Such d2d
channels require both devices to have transmitters and the corresponding receivers. In
settings, where d2d channel(s) do not exist (i.e., when at least one device does not have
a receiver) and even otherwise, same protocols can be based upon device-to-human
(d2h) and human-to-device (h2d) channel(s) instead. Depending upon the protocol,
only two d2h channels might be sufficient, such as in case when the user has to per-
form a very simple operation (such as “comparison”) of the data received over these
channels. Clearly, the usability of d2h and h2d channel establishment is even more
critical than that of a d2d channel.

The earlier pairing protocols [4], [14] require at least 80 to 160 bits of data to be
transmitted over the OOB channels. The more recent, so-called SAS- (Short Authenti-
cated Strings) based protocols, [12] and [15]], reduce the length of data to be transmitted
over the OOB channels to only 15 bits or so, for a reasonable level of security

Based on the above-mentioned protocols, a number of pairing methods with vari-
ous OOB channels have been proposed. All prior pairing methods are reviewed in the
following section of the paper.

In this paper, we consider the problem of “rushing user” behavior in device pairing.
We define a rushing user as a user who in a rush to connect her two devices, tends to
skip through the pairing process, if possible. Such a rushing user behavior does exist
in practice and in fact, is quite common. It has been shown that computer users tend

! The concept of SAS-based authentication was first introduced by Cagalj et al. [27], followed
by Vaudenay [26]]. MANA protocols [7] addressed a similar problem.

36 N. Saxena and Md.B. Uddin

to be “task-focussed” [6]. For example, in the context of phishing attacks [6], when a
user logs on to the website of her bank, her focus is (e.g.,) to pay a bill which is past
due; she would tend to ignore any warning indicating a phishing attempt. Similarly, in
the context of device pairing, when a user wants to connect her Bluetooth laptop with
her cell phone, her primary task is (e.g.,) to transfer her pictures or synchronize her
calendar; when she wants to connect her Bluetooth cell phone with a headset, she is
eager to speak to someone. The pairing process, from user’s perspective, is nothing but
a hindrance in her intended task, and therefore she would quickly tend to skip through
this process, if possible.

All previously proposed pairing methods can be broadly classified into two cate-
gories: (1) device-controlled (DC) method, where the OOB strings are transferred
between two devices with the help of the user and eventually the devices decide the
outcome of pairing, and (2) user-controlled (UC) method, where the user herself com-
pares the OOB strings output by the devices and decides the pairing outcome. We ob-
serve that all UC pairing methods are vulnerable against a rushing user, whereas the DC
methods are not. In the UC methods, the user can simply “accept” the pairing, without
having to take part in the decision process correctly. On the other hand, in the DC
methods, the user is somewhat forced to perform the pairing process correctly, because
otherwise she will not be able to connect her two devices.

Our Contributions. In this paper, we concentrate on most common pairing scenarios,
wherein one device is constrained in terms output interfaces, while the other has a de-
cent quality output interface but no receiver. A common example of such a scenario
is pairing of a WiFi laptop and an access point (the latter is a constrained device with
no display or receiver; the former has a full display and keypad, but no receiver). We
note that some prior work addresses the problem of pairing interface-constrained de-
vices (e.g., [17][18]). However, this paper is the first, to the best of our knowledge, to
address an even more challenging problem of pairing interface-constrained devices in
a rushing user resistant manner. We present the design and usability analysis of two
novel pairing methods, which are resistant to a rushing user and require only minimal
device interfaces on the constrained device. The two proposed pairing methods, called
“color pairing” and “alphanumeric pairing,” are based on two different types of output
interfaces on the constrained device, i.e., a Multi-Color LED and a Sixteen Segment
Display (SSD), respectively. Both of these interfaces are minimal in terms of their cost
and size, are commonly available and thus can be easily added onto constrained devices
(such as access points, printers)@ In the color pairing method, the user is required to
transfer colors displayed through the multi-color LED of the constrained device to the
other device. In the alphanumeric pairing method, the user simply transfers the char-
acters displayed by the SSD of the constrained device onto the other device. Clearly,
both our methods are based on different sensory capabilities of human users and have
different usability implications

Based on a usability study of the proposed pairing methods, we conclude that the
color pairing method based on four distinct colors is quite suitable for most devices and

% The use of such interfaces is not just limited to the pairing operation. For example, a multi-
color LED can serve the purpose of a general-purpose LED on an access point, and the SSD
can serve as a minimal display on a printer.

Secure Pairing of “Interface-Constrained” Devices 37

pairing scenarios, as it turned out to be very efficient, robust to human errors and user-
friendly. This method is ideal, as our testing indicates, for defending against a common
threat of evil twin access points (e.g., in cyber-cafes, airport lounges), in a rushing user
resistant manner.

Organization. The rest of the paper is organized as follows. In Section Pl we review
the prior pairing methods. In Section[3] we describe the security model and summarize
relevant protocols. In Sections [4] and 3] we present the design and implementation of
our color pairing and alphanumeric pairing methods. Finally, in Section [6] we discuss
our experimental usability study with respect to the proposed pairing methods and the
underlying results.

2 Related Work

In this section, we discuss prior pairing methods, their applicability to interface con-
strained devices and whether or not they are resistant to rushing user behavior. Recall a
DC method is resistant to rushing user, whereas a UC method is not.

In their seminal work, Stajano, et al. [23]] proposed establishing a shared secret be-
tween two devices using a link created through a physical contact (such as an electric
cable). This is a DC method and is resistant to rushing user. However, in many settings,
establishing such a physical contact might not be possible, for example, the devices
might not have common interfaces to do so or it might be too cumbersome to carry the
cables along. Balfanz, et al. [4] extended this approach through the use of infrared as
a d2d channel — the devices exchange their public keys over the wireless channel fol-
lowed by exchanging (at least 80-bit long) hashes of their respective public keys over
infrared. This is also a DC method. The main drawback of this method, however, is
that it is only applicable to devices equipped with infrared transceivers. Moreover, the
infra-red channel is not easily perceptible by human users.

Another approach taken by a few research papers is to perform the key exchange
over the wireless channel and authenticate it by requiring the users to manually and
visually compare the established secret on both devices. Since manually comparing the
established secret or its hash is cumbersome for the users, methods were designed to
make this visualization simpler. These include Snowflake mechanism [9] by Levienet
et al., Random Arts visual hash [16] by Perrig et al., etc. These methods require high-
resolution displays and are thus only applicable to a limited number of devices, such as
laptops. Moreover, these are UC methods and thus are vulnerable to a rushing user.

Based on the pairing protocol of Balfanz et al. [4], McCune et al. proposed the
“Seeing-is-Believing” (SiB) method [[13]]. SiB involves establishing two unidirectional
visual d2d channels — one device encodes the data into a two-dimensional barcode and
the other device reads it using a photo camera. SiB is a DC method. However, since
the method requires both devices to have cameras, it is only suitable for pairing devices
such as camera phones.

Goodrich, et al. [10], proposed “Loud-and-Clear (L&C)”, a pairing method based on
“MadLib” sentences. The main idea of L&C is to encode the OOB data into MadLib

3 This only involves unidirectional authentication of the access point to the laptop.

38 N. Saxena and Md.B. Uddin

sentences and have the user compare these sentences displayed or spoken out on two
devices. Clearly, this is a UC method and is thus vulnerable to rushing user behavior.
Moreover, the method is not applicable to pairing scenarios where one of the devices
does not have a display or a speaker.

Saxena et al. [19] proposed a pairing method based on visual OOB channel. The
method uses one of the SAS protocols [[12], and is aimed at pairing two devices A and
B (such as a cell phone and an access point), only one of which (say, B) has a relevant
receiver (such as a camera). First, a unidirectional d2d channel is established by device
A transmitting the SAS data, e.g., by using a blinking LED and device B receiving it
using a video camera. This is followed by device B comparing the received data with
its own copy of the SAS data, and transmitting the resulting bit of comparison over a
d2h channel (say, displayed on its screen). Finally, the user reads this bit transmitted
and accordingly indicates the result to device A by transmitting a bit over an h2d input
channel. In one direction (i.e., from A to B), this is a DC method and is thus resistant
to rushing user behavior. In the other direction, however, it is a UC method — a rushing
user can simply accept the pairing on A without looking at the pairing outcome on B.
It is important to note, however, that in case of any attack, device B will be “locked
out” and will not allow any connection to and from device A (and it will detect any
connection attempts from an attacking device)ﬂ This way the user will not be able to
establish real communication with device B (e.g., transfer an image file from B to A),
and will thus resort to repeating the pairing process. The pairing methods we propose
in this paper utilize this unidirectional pairing approach of [19]].

Uzun et al. [25] carry out a comparative usability study of simple pairing methods.
They consider pairing scenarios where devices are capable of displaying 4-digits of
SAS data. In what they call the “Compare-and-Confirm” approach (a UC method), the
user simply reads and compares the SAS data displayed on both devices. The “Select-
and-Confirm” approach (a DC method), on the other hand, requires the user to select
a 4-digit string (out of a number of strings) on one device that matches with the 4-
digit string on the other device. The third approach, called “Copy-and-Confirm” (a DC
method), requires the user to read the data from one device and input it onto the other.
Both Select-and-Confirm and Copy-and-Confirm are DC methods and therefore offer
protection against a rushing user. However, these methods are only limited to devices
(such as cell phones) which have good quality displays and keypads. Our alphanumeric
pairing method is quite similar in flavor to the Copy-and-Confirm method of [25]], how-
ever, it is applicable to interface-constrained devices. Kuo et al. [11] defined a common
baseline for hardware features and a consistent, interoperable user experience across
pairing of different devices. This work did not yield any pairing method as such.

Some recent papers have focused upon pairing devices which possess constrained
interfaces. These include the BEDA method [21] which requires the users to transfer
the SAS strings from one device to the other using “button presses”. BEDA is based
on the protocol of [19]. The constrained device encodes its SAS string into the time
intervals between two consecutive blinkings of the (regular) LED, and as and when this

* In case of a pairing failure, device B can keep showing a warning to the user indicating that
device A is possibly being connected to an attacker device, and ask the user to “re-pair” the
two devices.

Secure Pairing of “Interface-Constrained” Devices 39

device blinks, the user presses a button on the other device. BEDA is a DC method
and is therefore resistant to rushing user behavior. BEDA is also universally applica-
ble to most pairing scenarios. However, as indicated in the results of [21]], it requires
about one minute to complete the pairing process, which might be too slow in practice.
Moreover, the user needs to pay close attention to both devices simultaneously to main-
tain synchronization. This will be particularly hard when one of the devices is distant
(e.g., a wall-mounted access point). The methods that we present in this paper are more
efficient in comparison to BEDA, as we will see in the later sections of the paper.

In [[L7], Saxena et al. presented a pairing method universally applicable to any pair
of devices. The method can be based on any of the existing SAS protocols and does not
require devices to have good transmitters or any receivers, that is, just a pair of LEDs is
sufficient. The method involves users comparing very simple audiovisual patterns, such
as “beeping” and “blinking”, transmitted as simultaneous streams which form two syn-
chronized d2h channels. Most recently, the approach of [[17] was extended by making
use of an auxiliary device, such as a smartphone [20]. Both these methods, however,
are UC methods and thus offer no protection against a rushing user. In an independent
result [18], Roth et al. present a method similar to the “blinking” method presented in
[17]. The method of [18] is aimed at the detection of evil twin access points. The two
methods, however, differ significantly in their implementation and therefore in terms of
user experience (see [17] for details regarding the differences). This method is also a
UC method and thus offers no protection against a rushing user. The pairing methods
we propose in this paper aptly address the problem of evil twin access points, however,
unlike [18]], our methods also offer resistance against rushing user behavior.

In [22], Soriente et al. consider the problem of pairing two devices which might
not share any common wireless communication channel at the time of pairing, but do
share only a common audio channel. This is a DC method, however, it is only limited
to devices which possess a speaker at the transmitting end and a microphone at the
receiving end.

3 Security Model and Applicable Protocols

The pairing protocols, on which our methods are built, are based upon the following
communication and adversarial model [26]. The devices being paired are connected via
two types of channels: (1) a short-range, high-bandwidth bidirectional wireless channel
and (2) one or more auxiliary low-bandwidth physical OOB channel(s). Based on the
type of devices being used, the OOB channel(s) can be device-to-device (d2d), device-
to-human (d2h), or human-to-device (h2d). An adversary attacking the pairing protocol
is assumed to have full control of the wireless channel, namely, he or she can eaves-
drop, delay, drop, replay and modify messages. On the OOB channel, the adversary can
eavesdrop, delay, drop, replay and re-order messages; however, it can not modify them.
In other words, the OOB channel is assumed to be an authenticated channel.

The security notion applied to a pairing protocol in this setting is adopted from the
model of authenticated key agreement by Canneti and Krawczyk [3]. In this model, a
multi-party setting is considered wherein a number of parties simultaneously run mul-
tiple/parallel instances of pairing protocols. In practice, however, it is reasonable to as-
sume that there are only two parties running just a few serial or parallel instances of the

40 N. Saxena and Md.B. Uddin

pairing protocol. For example, during the authentication of an ATM transaction there
are only two parties, namely the ATM machine and a user. Further, the user is restricted
to only three authentication attempts. The security model does not consider denial-of-
service (DoS) attacks. Note that with a wireless channel explicit attempts to prevent
protocol-level DoS attacks are not useful because an adversary can simply launch an
attack by jamming the wireless signal.

To date, two three-round pairing protocols based on short authenticated strings (SAS)
have been proposed: [15] and [12]. In a communication setting involving two users re-
stricted to running three instances of the protocol these SAS protocols need to transmit
only k (= 15) bits of data over the OOB channel. As long as the cryptographic primi-
tives used in the protocol are secure, an adversary attacking one of these protocols can
not win with a probability significantly higher than 27% (= 271%). This gives us secu-
rity equivalent to that provided by 5-digit PIN-based ATM authentication. The pairing
methods proposed in this paper are based upon the SAS protocols mentioned above,
with a variation presented in [19], as discussed in Section 2l

4 “Color Pairing” Using a Multi-Color LED

In this section, we discuss the design and implementation of a novel color-based pairing
method, called “color pairing”, which is resistant against rushing user. In our method,
one device (denoted as A) is equipped with a “Multi-Color” LED [2]] and the other
device (denoted as B) has a display and a keypad. Device A encodes its SAS data into
colors and displays each color one-by-one through the LED, the user reads each color
and accordingly selects the corresponding color (from all possible displayed colors) on
device B, maintaining synchronization (i.e., transition between two consecutive colors)
of transmission and reception. In this manner, the SAS data is transferred from device
A to device B, while maintaining synchronization. Once device B decodes the received
SAS data, it compares it with its own local copy; and accordingly accepts or rejects the
pairing instance. Notice that our method is a DC method and is thus resistant to rushing
user behavior.

Clearly our method is based on the number of “human-distinguishable” colors an
off-the-shelf multi-color LED is capable of displaying — the more the number of such
colors, the more the number of SAS bits can be transmitted everytime. In the following
subsections, we describe the selection of such human-distinguishable colors, the encod-
ing of SAS data into these colors and rushing user resistant transmission and processing
of SAS data.

4.1 Selection of ‘“Human-Distinguishable” Colors

In the 24-bit RGB color model, there are 224 (i.e., about 16-million) distinct colors.
Out of these colors, our goal was to find out the colors which can be generated using
a multi-color LED and which are easily and unambiguously distinguishable by human
users without any prior training. One recent study [8]] shows that there are only 11 non-
conflicting colors identified for categorical images. In this set of 11 colors of [8]], there
seems to be some pairs of colors which do not appear that distinct, e.g., light green and

Secure Pairing of “Interface-Constrained” Devices 41

dark green, and blue and dark blue. If a user is shown blue (without showing dark blue
beforehand) and asked to identify whether it is dark blue or blue, it is highly likely that
the user will be confused, because the user would not be sure whether a more or less
bright version of the color exists or not. We generated the same set of 11 colors and some
more colors on monitor screen using the simulated annealing method as described in [8]].
However, with the help of some preliminary testing on some human users, we concluded
that the number of distinct colors is definitely not more than 11; in fact, it might be less
than 11. This was also because all the 11 colors of [§] were not easily distinguishable by
human users on multi-color LED as light and dark shades of the same color (e.g., light
green and dark green) turned out to be confusing/conflicting with respect to surrounding
light.

Based on our initial experimentation and testing, as described above, we finally de-
cided to stick to a maximum of 8 human-distinguishable colors. With 8 colors, we can
encode 3-bits of SAS data at a time. These eight colors are comprised of 3 primary col-
ors (Red, Green, Blue), 3 secondary colors (Yellow, Magenta, Cyan) and two tertiary
colors (Orange and Violet). With the help of some initial testing, we assured ourselves
that these 8 colors are unambiguous as displayed both on a monitor screen and on a
multi-color LED. We used 24-bit RGB model for the colors; thus above eight colors
have the following RGB values: Red (255,0,0), Green (0,255,0), Blue (0,0,255), Yel-
low (255,255,0), Magenta (255,0,255), Cyan (0,255,255), Orange (255,127,0) and Vio-
let (127,0,255). We used primary, secondary and tertiary colors for color pairing because
these colors are easy to generate on a multi-color LED. The primary colors are directly
generated by LED cathodes and mixing the primary colors in different ratios generated
secondary and tertiary colors.

4.2 Generating “Human-Distinguishable” Colors on a Multi-Color LED

Multi-Color LED [2] is a specialized form of LED which has one common Anode and
3 Cathodes for three primary colors (Red, Green and Blue). Each of the primary col-
ors can be produced by directly turning ON each cathode (keeping others OFF). For
producing secondary colors, we need to turn ON two of the cathodes concurrently. For
example, Yellow is a combination of Green and Red. So, turning ON the green and red
cathodes generated Yellow. Similarly, Magenta is produced by turning ON the red and
blue cathodes concurrently and cyan is produced by turning on the green and blue cath-
odes concurrently. Tertiary colors Orange (Red + Yellow = 2x Red + Green) and Violet
(Blue + Magenta = 2x Blue + Red) are produced by turning ON two cathodes simul-
taneously; but, currents are varied between cathodes to produce the tertiary colors. For
example, to produce Orange which is a combination of Red and Green with ratio 2:1,
current flow in Red cathode is kept twice than that of Green cathode. Similarly, Violet
is produced by passing twice the amount of current in Blue cathode than that of Red
cathode.

For varying the current on different cathodes, we designed a circuit (as shown in Fig-
ure[l(a)), using NPN transistors, different resistors and controlled it through a computer
by sending the data through the parallel port. Each cathode of the multi-color LED is
controlled by 3 pins of parallel port connected with different values of resistors. By
sending 9-bit binary data to parallel port, current flows in cathodes are controlled.

42 N. Saxena and Md.B. Uddin

(a) Without color mixer coop (b) With color mixer coop

Fig. 1. Multi-Color LED Circuit on Breadboard

The multi-color LED was enclosed with a black plastic hollow coop and covered
with thin layer of tissue paper from outside (as shown in Figure |1(b)). This was done
in order to generate the secondary and tertiary colors by properly mixing the primary
colors.

4.3 Implementation: Transmission and Decoding

We developed an application in Visual C# to control the LED controller circuit on bread-
board connected with a computer through the parallel port (as shown in Figure[I). The
SAS data is mapped onto color values and color values are used to activate the corre-
sponding cathodes of the LED in order to generate the human-distinguishable colors.
When the user starts the pairing process, the application starts showing each color on
the LED first and then asks the user to select the corresponding color on the screen
from a list of all possible human-distinguishable colors. After selection of each color
by the user, the application turns OFF the LED and asks the user to verify whether or
not the LED turned OFF and accordingly press “Yes” or “No” button (respectively)
to proceed and display the next color. This is done in order to keep the transmission
resistant against insertion, deletion, delay and/or replay of synchronization signals be-
tween the two devices. A synchronization signal is sent, over the wireless channel, from
device B with color input screen to device A displaying colors, as soon as the user
selects the color on B. This instructs device A to now show the next color. Turning
OFF of the LED indicates to the user that the synchronization signal has been cor-
rectly received by device A; if the LED stays ON, it indicates a synchronization er-
ror/attack.

The above process continues until the whole SAS data is transmitted encoded through
human-distinguishable colors unless there is synchronization error (i.e., the LED is not
turned OFF and the user presses on “NO” button or vice versa). After transmission
(through human distinguishable colors on LED) and reception (from users’ color selec-
tion on screen) of the SAS data , the application shows the result (failure/success) of
pairing. If there are no synchronization errors and if the SAS strings match, the pairing
is deemed successful; otherwise, the pairing fails.

For 15-bit SAS data and /N human-distinguishable colors, we require lo;i’ N passes”
for transmission of SAS data. In each pass, one of N colors is shown by the multi-color
LED and user selects the corresponding color from N colors on screen.

Secure Pairing of “Interface-Constrained” Devices 43

5 “Alphanumeric Pairing” Using a Sixteen-Segment Display

Sixteen Segment Display (SSD) [3]] is an inexpensive, commercially available minimal
alphanumeric display. It is capable of showing all the (capital) English alphabets and all
digits (0-9). Due to its low cost, small size, availability and good layout, SSD is quite
suitable to be incorporated for pairing operation.

In the “alphanumeric pairing” method, the SAS data is encoded into alphanumeric
characters and displayed on the SSD of device A one-by-one. The user simply reads
each displayed character and types it onto the keypad of device B. Similar to the pairing
method based on the multi-color LED (as described in previous section), after each
character is typed in by the user, the display is turned OFF and the user is asked to verify
whether it is turned OFF or not, before displaying the next character. In this manner, the
SAS data is transferred from device A to device B, while maintaining synchronization.
Once device B decodes the received SAS data, it compares it with its own local copy;
and accordingly accepts or rejects the pairing instance.

5.1 Encoding of SAS Data into Alphanumeric Characters

SSD can show 10 digits and 26 capital letters of English alphabet; i.e., a total of 36
alphanumeric characters. We wanted to keep the set of characters as unambiguous as
possible so that the users with no prior knowledge of the character layout on SSD can
easily identify the characters. To this end, we decided to discard 4 characters, ‘0’, ‘O’,
‘5’, and ‘S’, which appear quite ambiguous (without prior knowledge of the layout,
users might mistake a ‘0’ fora ‘O’ or a *5’ for an ‘S’, and vice versa). This left us with
a character space of size 32.

For 15-bit SAS transmission using 32 alphanumeric characters, a total of logi?32) =3
passes, i.e., 3 characters, need to be transferred between the two devices. After each

Fig. 2. Overall Experimental Setup of the Color and Alphanu- Fig.3. Sixteen Segment Dis-
meric Pairing (the cardboard box with the multi-color LED and play (displaying character ‘H’)
the SSD, simulates, e.g., an access point in a cyber-cafe; the

desktop simulates the laptop.)

44 N. Saxena and Md.B. Uddin

pass, the SSD display is turned OFF and the user is asked to verify whether it is indeed
OFF and accordingly press “Yes” or “No” button to proceed.

To implement our new pairing method using SSD, we extended our C# application
we developed for color-based pairing (as described in previous section). The SSD was
connected with the parallel port of the computer via two “serial-in-parallel-out” shift
registers. Serial data and clocks were sent from the parallel port to the shift registers
and shift registers supplied the data in parallel to the SSD. Figure 3 shows the snapshot
of the setup of the SSD we used.

6 Experiments and Results
6.1 Experimental Setup

To test our color and alphanumeric pairing methods, we used the following set-up. The
application which controls the multi-color LED and alphanumeric display is running on
a DELL Desktop computer (1.8 GHz CPU, 1 GB RAM, WinXP Pro SP2) connected
with multi-color LED on breadboard and sixteen segment display (as shown in Figure[2)
through parallel port (DB25 Connector). This computer works as both transmitter and
receiver of SAS data in both color-based and alphanumeric pairing. In color pairing, the
breadboard with multi-color LED connected with parallel port simulates the transmit-
ting device and application running on computer having interface for selecting colors
simulates the other device. Similarly, the breadboard with sixteen segment display con-
nected with parallel port of computer simulates one device and application running on
the desktop computer having character input interface simulates another device in al-
phanumeric pairing.

For color pairing circuit, we used one multi-color LED (08L5015RGBC) [2], 12 NPN
Transistors (ZTX450), 3 categories (0.5k, 1k, 2k Ohms) resistors - 3 of each value and
nine 10k Ohm resistors. For alphanumeric pairing circuit, we used one sixteen segment
display (AND-8010GCLB) [3], two serial-in-parallel-out shift registers (SN74LS164).
Both the color and alphanumeric pairing circuits are powered from DC power source
of the computer.

As mentioned in prior sections, an application running on desktop computer is devel-
oped in Microsoft Visual C# for controlling both the circuits of color and alphanumeric
pairing. The application also supports all necessary functionality for an automated user
testing. The application accepts the inputs from users in both color and alphanumeric
pairing, shows the result of pairing and finally records the users feedback as part of the
usability testing. The application also keeps track of users inputs and timings and logs
the result of pairing and all necessary information regarding users background and their
feedback. A couple of screen-shots of the execution of our application for both color
and alphanumeric pairing are shown in Figures 4 and

6.2 Usability Testing

In order to test how both of our pairing methods fare with users, and especially to figure
out if the users are easily and correctly able to transfer the colors and alphanumeric
characters as displayed by the multi-color LED and the SSD, respectively, we performed

Secure Pairing of “Interface-Constrained” Devices 45

athorough and systematic usability study. We focused on a common security application
of detecting Evil Twin access points (as in [[L8], but in a rushing user resistant manner).
Note that this only requires unidirectional authentication. Thus, we did not incorporate
in our tests the final step of the protocol of [[19] whereby the user accepts or rejects the
pairing on device A based on the pairing outcome shown by device B. See Figure
depicting our experimental set-up.

6.3 Testing Framework

For creating a user-friendly but realistic testing framework, we extended the circuit con-
troller application (running on the desktop computer) by implementing the usability
testing and user feedback collection functionality on it.

For color pairing, the users are instructed to transfer the colors as displayed by the
multi-color LED to the desktop screen by clicking on the corresponding “color but-
tons”. For testing our color pairing method with respect to pairing time and user errors,
we conducted our usability testing in 3 settings - using 2, 4 and 8 colors. For 15-bit
SAS string, “2-Color” pairing method requires 1019522 = 15 passes. Similarly, “4-Color”
pairing requires | lolgz 4, | = 8 passes and “8-Color” pairing requires 5 passes. For all the
settings, each pass 1s comprised of four steps: (1) Displaying of a SAS-encoded color
on the LED, (2) Selection of the color by the user on desktop screen, (3) Turning off
of the LED (i.e., with no color being displayed on the LED) and (4) Verification by the
user whether the LED is in OFF state.

For the 2-Color pairing method, we selected first two colors (Red and Green) out of
the primary colors (Red, Green and Blue). For the 4-Color pairing method, we selected
primary colors (Red, Green, Blue) and first color (Yellow) out of the of secondary col-
ors (Yellow, Magenta and Cyan). For the 8-Color pairing method, we selected primary
colors (Red, Green, Blue), secondary colors (Yellow, Magenta, Cyan) and two colors
(Orange and Violet) out of tertiary colors (Azure, Violet, Rose, Orange, Chartreuse and
Aquamarine). A few screen-shots of user interfaces for color pairing methods are shown
in Figure

For testing the alphanumeric pairing method with respect to pairing time and user er-
rors, the application is configured to take alphanumeric inputs from the users. Users were
instructed to input the character, displayed on sixteen segment display, onto the desktop
keyboard. For 32 alphanumeric characters and 15-bit SAS data, it requires 10915’32 =3
passes for the pairing process. Each pass is comprised of the following steps: (1) Dis-
playing of a SAS-encoded character on the sixteen-segment display, (2) Inputting the
corresponding character on desktop keyboard, (3) Turning off of the display (i.e., with
no character being displayed on the SSD) and (4) Verification by the user whether the
SSD is in OFF state. The application converted all characters to uppercase on the input
text-box and displayed the result of pairing after the completion of 3 passes. A couple
of screen-shots of user interfaces for the alphanumeric pairing are shown in Figure 3

6.4 Test Cases

For each of the three methods of color pairing (i.e., using 2, 4 and 8 colors), two test
cases were created; thus, a total of 6 test cases were executed by each user for color

46 N. Saxena and Md.B. Uddin

Color and Alphanumeric Pairing E]|£|

Color and Alphanumeric Pairing D!:E

Application Feedback Help fpplication Feedback Help
Fass MNo#: 1 Fass Mo#: 1
Click o the Calor Dispalyed by the LED Click on the Color Dispalyed by the LED
(a) Using Two Colors (b) Using Four Colors
Color and Alphanumeric Pairing [=][T1/%] Color and Alphanumeric Pairing [= |5 (%]
Application Feedback Help Application Feedback Help
Pass MNod#: 1

Click on the Color Dispalved by the LED
Has the Multi-color LED turned OFF?

() () (] [o
() () () (-]
(c) Using Eight Colors (d) Turn OFF Verification Screen

Fig. 4. Usability Testing of Color Pairing Using Multi-Color LED

Color and Alphanumeric Pairing Eii|

Color and Alphanumeric Pairing g el
application Feedback Help Application Feedback Help

Enter the Char Shawn ot 16-Segment Display

| Has the 16-Segment Display turned OFF?

(a) Character Input Interface (b) Turn OFF Display Checking Screen

Fig. 5. Usability Testing of Alphanumeric Pairing

pairing. In each color pairing method, all the colors of that particular method appeared
at least once (in other words, no user missed out a single color) and the colors appeared
in random order on the multi-color LED.

For alphanumeric pairing, 15-bit SAS data requires each test case to show 1032532 =3
alphanumeric characters. Thus, it required [3321 = 11 test cases to show all the 32

alphanumeric characters at least once to each user. Alphanumeric characters were shown

Secure Pairing of “Interface-Constrained” Devices 47

randomly on the sixteen segment display and each user executed a total of 11 test cases
of alphanumeric pairing.

6.5 Test Participants

We recruited 20 subjects for the usability testing of both color and alphanumeric pairing.
Subjects were chosen on a first-come first-serve basis from respondents to recruiting
posters and email advertisements. At the end of the tests, the participants were asked to
fill out an on screen questionnaire through which we obtained user demographics and
their feedback on the methods tested.

Recruited subjects were mostly university students, both graduate and undergraduate,
with CS and non-CS backgrounds. This resulted in a fairly young (ages between 18-
35 [mean=24.15, se=0.7549]), well-educated participant group. All participants were
regular computer and cell phone users. 18 out of 20 participants reported they have
previously used a wireless accessory such as access point/modem/router. 12 out of 20
participants reported they have previously used a bluetooth device such as bluetooth-
headset, mouse or keyboard. Eight participants were familiar with the vulnerability of an
un-encrypted wireless channel and five participants chose the statement ‘“Un-encrypted
wireless channel isn’t vulnerable to attack” and 7 participants were not sure about the
statement. None of the study participants reported any physical impairments that could
have interfered with their ability to complete given tasks and none of them had any vi-
sual disability, color vision problem or color blindness. The gender split was: 4 females
and 16 males.

6.6 Testing Process

Our study was conducted in a graduate student laboratory of our university. Each partici-
pant was given a brief overview of our study goals and our experimental set-up. Each par-
ticipating user was then asked to follow on-screen instructions on the desktop computer
for both color and alphanumeric pairing. No training of any sort was given. Basically,
the participants played the role of the user in the color and alphanumeric pairing process
i.e., they transferred colors shown by the multi-color LED and alphanumeric characters
shown by the Sixteen Segment Display to the application running on Desktop Computer.
Each user completed 6 color pairing tests (two test cases for each category using 2, 4
and 8 colors) and 11 alphanumeric pairing test cases. Pairing outputs, user interactions
throughout the tests and timings were logged automatically by the testing framework.

After completing the deputed test cases for both the color and alphanumeric pairing
in the above manner, the participants were asked to give some qualitative feedback on
the tested methods. For color pairing, participants were asked to score on a 1-10 scale
(1-Low, 10-High) how distinct the colors were as shown by the monitor screen and by
the multi-color LED; how easy they found to read and transfer the colors from multi-
color LED to monitor screen. Users were also asked to choose- which color pairing
method they preferred the most: 2-Color, 4-Color or 8-Color pairing.

For alphanumeric pairing, participants were asked to score on a 1-10 scale (1-Low,
10-High) how distinct were the alphanumeric characters as shown by the sixteen

48 N. Saxena and Md.B. Uddin

segment display, how easy they found to read and transfer the characters from sixteen
segment display to the computer.

Participants’ demographic information such as age, gender, educational qualifica-
tion, visual and color vision disability, computer, wireless and bluetooth device usage
experience and knowledge on security of wireless channel were all collected through
this questionnaire. All user data and feedback were logged by the testing framework for
later analysis.

6.7 Test Results

Each of our 20 subjects executed 6 color pairing and 11 alphanumeric test cases, leading
to a total of 120 color pairing (i.e., 40 test cases for each of 2-Color, 4-Color, and 8-
Color pairing methods) and 220 alphanumeric pairing test cases.

Errors. Most of the test cases completed successfully giving expected results. In some
cases, however, we observed a few errors, which we categorize and describe below.

— Color Pairing Errors:
In the 2-Color pairing method, 4 users clicked on wrong colors for a total of 5 times
in 4 test cases. Thus, 4 test cases failed out of 40 test cases. So, pairing failure rate
= fo x 100% = 10%. Users failed to transfer 5 colors out of 40 x 15 = 600 colors.
So, color transfer failure rate = 680 x 100% = 0.83%.
In the 4-Color pairing method, 2 users clicked on wrong colors for a total of 2 times
in 2 test cases. This led to a pairing failure rate = [x 100% = 5% and a color
transfer failure rat e= ;5 x 100% = 0.625%.
In the 8-Color pairing method, 12 users clicked on wrong color for a total of 16
times in 12 test cases, leading to a pairing failure rate = }1(2) x 100% = 30%. and a
color transfer failure rate = 21060 x 100% = 8%.
The graph presented in Figure[6(b)|depicts the pairing failure rates and color transfer
failure rates for the three color pairing methods.

— Alphanumeric Pairing Errors:
In the alphanumeric pairing, 9 users made a total of 12 errors in 12 test cases (i.e.,
single character errors in each failed test case) out of 220 test cases as listed in
Figure
Therefore, the pairing failure rate = 21220 x 100% = 5.45%. 20 users transferred a
total of 20 x 11 x 3 = 660 characters and out of them, 12 characters were transferred
as incorrectly So, character transfer failure rate = g x 100% = 1.818%.

Test Timing. The mean pairing time of color pairing using 2, 4 and 8 colors are shown
in the graph of Figure[6(a)] Clearly each of the color pairing methods requires less than
30 seconds of pairing time and the 4-Color pairing method is the fastest of them all
[mean=14.289 seconds, se=0.3138], whereas the 2-Color is the slowest [mean=25.7318
seconds, se=0.7545].

The average time taken by each user (over the 11 test cases) to perform the alphanu-
meric pairing is depicted in Figure[Zl Clearly, it shows that most of the users completed
the alphanumeric pairing within 15 seconds [mean=9.393 seconds, se=0.2670].

Secure Pairing of “Interface-Constrained” Devices 49

kil 35

E Paifing Failure

w
S

e
el

B Color Transfer Failure

s

=}
[
3]

o
[
S

=

% of Failure

=
o

Mean Pairing Time (seconds)

w
w

g B |

2 ‘ 4 ‘ 8 2 4 8
Number of Colors Number of Colors
(a) Pairing Time with Standard Error (b) Pairing and Color Transfer Failure Rates

Fig. 6. Results of Color Pairing - using 2, 4 and 8 Colors

1
812 L Fdm i Displayed Transferred # of Occur-
I A on SSD by User rences (out of
E " TR 660)
2 4
% G 6 4
o 613
Q 0 4
2 1 I 3
: B D 1
0

123 456 7 8 9101012111515 17 1 19 20
Users

Fig.7. Result of Alphanumeric Pairing: User Tim-

ing with Standard Error (users are sorted by average

time)

Fig.8. User Errors in Reading and
Transferring Alphanumeric Characters

These timings are commensurate with the timings of the pairing methods presented
in [17] [18]]. Recall that the latter methods are not resistant to a rushing user behavior.

User Feedback. The user feedback was collected on the distinctiveness of all 8 colors
as shown by the multi-color LED and on monitor screen and on the easiness to trans-
fer these colors. It was assumed that distinctiveness and unambiguity of these 8 colors
would automatically imply the distinctiveness and unambiguity of the colors used in the
2-color and 4-color pairing methods. As our results show, most users found the methods
robust and quite easy to work with. The qualitative results we obtained through the user
feedback questionnaire on color pairing are shown in Table [Il

The users were also asked to compare the three methods in terms of the distinctive-
ness of underlying colors, ease of transfer and selection of colors and overall work-load
in the whole process. In this respect, 2 out of 20, i.e., 10% users preferred the 8-color

50 N. Saxena and Md.B. Uddin

Table 1. User Feedback Score [1 (Low) - 10 (High)] with Standard Error (se) on Color Pairing

Basis Score
Distinctness of the colors on Monitor Screen 9.45 (se=0.1352)
Distinctness of the colors on Multi-Color LED 7.4 (se=0.3934)

Easiness of color transfer from Multi-Color LED to Monitor Screen 8.6 (se=0.3276)

Table 2. User Feedback Score [1 (Low) - 10 (High)] with Standard Error (se) on Alphanumeric
Pairing

Basis Score

Distinctness of the characters on 16-Segment Display 8.85 (se=0.2542)
Easiness of character transfer from 16-Segment Display to Computer 9.05 (se=0.3118)

pairing method, 10 out of 20, i.e., 50% users preferred the 4-color pairing method and
8 out of 20; i.e., 40% users preferred the 2-color pairing method.

The results of the user feedback questionnaire on alphanumeric pairing are depicted
in Table 2l Similar to the color pairing methods, most users found the method robust
and quite easy to work with. We did not find any notable correlation of the subjects’ age,
gender and technical expertise with the results obtained for both color and alphanumeric
pairing.

7 Conclusions and Future Work

In this paper, we addressed a challenging problem of pairing interface-constrained de-
vices in a rushing user resistant manner. We can draw the following conclusions from
the results of usability testing of our color and alphanumeric pairing methods.

Among the color pairing methods, the 4-color method turns out to be a clear winner
in terms of pairing speed, errors and usability. This is mainly due to the reason that the
four colors used in the 4-color pairing method are quite distinct and unambiguously
identifiable by human users, as opposed to the eight colors used in the 8-color pairing
method. In comparison to the 2-color method, on the other hand, the 4-color method
requires fewer passes, thus speeding up the pairing process and reducing user burden.

As our results show, the alphanumeric pairing method also turned out to be quite
robust to errors, fast and user-friendly. The errors resulting through this method could
potentially be further reduced by using less confusing non-alphabetic characters.

Both 4-color pairing and alphanumeric pairing methods can also be easily adopted
on devices which have good quality output interfaces (such as a full display on a cell
phone). Notice that on such devices, there will be no need for synchronization between
the two devices, as all of SAS data (e.g., all colors and all digits) can be displayed on
one single screen. In fact, the “Copy-and-Confirm” method of [25] is nothing but our
alphanumeric pairing method for devices with good quality displays.

Between the 4-color pairing and alphanumeric pairing methods, we find the latter
to be slightly faster, but, the former to be slightly more robust to errors. In terms of

Secure Pairing of “Interface-Constrained” Devices 51

usability also, the two methods turned out to be comparable. However, since a multi-
color LED is smaller in size and slightly cheaper than the sixteen segment display, we
believe that 4-color pairing would be a more practical choice. Moreover, LED colors can
also be comprehended from a distance (e.g., in case of a wall-mounted access point).
To support the 4-color pairing method, device manufacturers would only need to use a
multi-color LED in place of regular LED(s) which are quite common on most devices.

In conclusion, our results show that the 4-color pairing method is quite appropriate
for most pairing scenarios: it is fast, robust, user-friendly, resistant against rushing user
behavior, and can be incorporated on most devices with only a little modification. Based
on our testing, 4-color pairing method turns our to be ideal for defending against a com-
mon threat of evil twin access points, in a rushing user resistant manner. Alphanumeric
pairing is suitable for devices that can afford to have a sixteen segment display.

In our current design of the 4-color pairing method, we did not consider “color-
blindness”, a common visual disability. It is found that most color-blind people are
“red-green” color blind (i.e., they can not distinguish between red and green colors)
[[1]]. To address color-blindness, one could select distinct colors other than red and green
in our 4-Color pairing method. In our future work, we will design and evaluate such a
variation of the 4-color pairing method.

Acknowledgments. The authors would like to thank Vikram Padman and Kurt Rosen-
feld for their help and discussion on the setup involving Multi-Color LED.

References

1. Color blindness. On-line article Published by University of Illinois Eye and Ear Infir-
mary, http://www.uic.edu/com/eye/LearningAboutVision/EyeFacts/
ColorBlindness.shtml

2. Datasheet and Specification for Multi-Color LED. Electronix Express/RSR Electronics,
http://www.elexp.com/a_data/0815015rgbc.pdf

3. Datasheet and Specification of Sixteen Segment Display,
http://www.purdyelectronics.com/pdf/AND8010-B.pdf

4. Balfanz, D., Smetters, D., Stewart, P., Wong, H.C.: Talking to strangers: Authentication in
ad-hoc wireless networks. In: Network & Distributed System Security (NDSS) (2002)

5. Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for building
secure channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, p. 453.
Springer, Heidelberg (2001)

6. Dhamija, R., Tygar, J.D., Hearst, M.A.: Why phishing works. In: International Conference
for Human-Computer Interaction (CHI) (2006)

7. Gehrmann, C., Mitchell, C.J., Nyberg, K.: Manual authentication for wireless devices. RSA
CryptoBytes 7(1), 29-37 (Spring 2004)

8. Glasbey, C., van der Heijden, G., Toh, V., Gray, A.: Colour displays for categorical images.
Color Research and Application 32, 304-309 (2007)

9. Goldberg, I.: Visual Key Fingerprint Code (1996),
http://www.cs.berkeley.edu/iang/visprint.c

10. Goodrich, M.T., Sirivianos, M., Solis, J., Tsudik, G., Uzun, E.: Loud and Clear: Human-
Verifiable Authentication Based on Audio. In: International Conference on Distributed Com-
puting Systems (ICDCS) (2006)

http://www.uic.edu/com/eye/LearningAboutVision/EyeFacts/ColorBlindness.shtml
http://www.uic.edu/com/eye/LearningAboutVision/EyeFacts/ColorBlindness.shtml
http://www.elexp.com/a_data/08l5015rgbc.pdf
http://www.purdyelectronics.com/pdf/AND8010-B.pdf
http://www.cs.berkeley.edu/iang/visprint.c

52

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

N. Saxena and Md.B. Uddin

Kuo, C., Walker, J., Perrig, A.: Low-cost manufacturing, usability, and security: An analysis
of bluetooth simple pairing and wi-fi protected setup. In: Dietrich, S., Dhamija, R. (eds.)
USEC 2007. LNCS, vol. 4886, pp. 325-340. Springer, Heidelberg (2007)

Laur, S., Asokan, N., Nyberg, K.: Efficient mutual data authentication using manually
authenticated strings. In: Pointcheval, D., Mu, Y., Chen, K. (eds.) CANS 2006. LNCS,
vol. 4301, pp. 90-107. Springer, Heidelberg (2006)

McCune, J.M., Perrig, A., Reiter, M.K.: Seeing-is-believing: Using camera phones for
human-verifiable authentication. In: IEEE Symposium on Security and Privacy (2005)
Pasini, S., Vaudenay, S.: An optimal non-interactive message authentication protocol. In:
The Cryptographers’ Track at the RSA Conference (CT-RSA) (2006)

Pasini, S., Vaudenay, S.: SAS-Based Authenticated Key Agreement. In: Yung, M., Dodis,
Y., Kiayias, A., Malkin, T.G. (eds.) PKC 2006. LNCS, vol. 3958, pp. 395-409. Springer,
Heidelberg (2006)

Perrig, A., Song, D.: Hash visualization: a new technique to improve real-world security. In:
International Workshop on Cryptographic Techniques and E-Commerce (CrypTEC) (1999)
Prasad, R., Saxena, N.: Efficient Device Pairing using Human-Comparable Synchronized
Audio Visual Patterns. In: Bellovin, S.M., Gennaro, R., Keromytis, A.D., Yung, M. (eds.)
ACNS 2008. LNCS, vol. 5037, pp. 328-345. Springer, Heidelberg (2008)

Roth, V., Polak, W., Rieffel, E., Turner, T.: Simple and effective defenses against evil twin
access points. In: ACM Conference on Wireless Network Security (WiSec) (2008)
Saxena, N., Ekberg, J.-E., Kostiainen, K., Asokan, N.: Secure device pairing based on a
visual channel. In: IEEE Symposium on Security & Privacy, short paper (2006)

Saxena, N., Uddin, M.B., Voris, J.: Universal Device Pairing using an Auxiliary Device. In:
Symposium On Usable Privacy and Security (SOUPS) (2008)

Soriente, C., Tsudik, G., Uzun, E.: BEDA: Button-Enabled Device Association. In: Inter-
national Workshop on Security for Spontaneous Interaction (IWSSI) (2007)

Soriente, C., Tsudik, G., Uzun, E.: HAPADEP: Human Asisted Pure Audio Device Pairing.
In: International Information Security Conference (ISC), Taipei, Taiwan (September 2008)
Stajano, F., Anderson, R.J.: The resurrecting duckling: Security issues for ad-hoc wireless
networks. In: Security Protocols Workshop (1999)

Suomalainen, J., Valkonen, J., Asokan, N.: Security associations in personal networks: A
comparative analysis. In: Stajano, F., Meadows, C., Capkun, S., Moore, T. (eds.) ESAS 2007.
LNCS, vol. 4572, pp. 43-57. Springer, Heidelberg (2007)

Uzun, E., Karvonen, K., Asokan, N.: Usability analysis of secure pairing methods. In: Diet-
rich, S., Dhamija, R. (eds.) USEC 2007. LNCS, vol. 4886, pp. 307-324. Springer, Heidelberg
(2007)

Vaudenay, S.: Secure communications over insecure channels based on short authenticated
strings. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 309-326. Springer, Hei-
delberg (2005)

Cagalj, M., Capkun, S., Hubaux, J.-P.: Key agreement in peer-to-peer wireless networks.
Proceedings of the IEEE 94(2), 467-478 (2006)

How to Extract and Expand Randomness:
A Summary and Explanation of Existing
Results*

Yvonne Cliff, Colin Boyd, and Juan Gonzalez Nieto

Information Security Institute, Queensland University of Technology
GPO Box 2434, Brisbane Qld 4001, Australia
y.cliff@isi.qut.edu.au, {c.boyd,j.gonzaleznieto}@qut.edu.au

Abstract. We examine the use of randomness extraction and expansion
in key agreement (KA) protocols to generate uniformly random keys in
the standard model. Although existing works provide the basic theorems
necessary, they lack details or examples of appropriate cryptographic
primitives and/or parameter sizes. This has lead to the large amount of
min-entropy needed in the (non-uniform) shared secret being overlooked
in proposals and efficiency comparisons of KA protocols. We therefore
summarize existing work in the area and examine the security levels
achieved with the use of various extractors and expanders for particular
parameter sizes. The tables presented herein show that the shared secret
needs a min-entropy of at least 292 bits (and even more with more real-
istic assumptions) to achieve an overall security level of 80 bits using the
extractors and expanders we consider. The tables may be used to find
the min-entropy required for various security levels and assumptions.
We also find that when using the short exponent theorems of Gennaro et
al., the short exponents may need to be much longer than they suggested.

Keywords: randomness extraction, randomness expansion, key agree-
ment, key exchange protocols, pseudorandom function (PRF), universal
hash function, leftover hash lemma (LHL).

1 Introduction

In this paper we examine the techniques available for extracting and expanding
randomness in the context of key agreement (KA) protocols. In such protocols,
an agreed secret key is often a random member of a given group, and not a
string of bits distributed uniformly at random. However, when the key is used,
e.g. as the key of a symmetric encryption scheme, it is likely that a key consisting
of bits distributed uniformly at random will be necessary, requiring the use of
randomness extraction, and possibly randomness expansion techniques.

* This is an extended abstract. The full version is available at http://eprint.iacr.
org/2009/136. Research funded by Australian Research Council through Discovery
Project DP0666065.

M. Abdalla et al. (Eds.): ACNS 2009, LNCS 5536, pp. 53170 2009.
© Springer-Verlag Berlin Heidelberg 2009

http://eprint.iacr.org/2009/136
http://eprint.iacr.org/2009/136

54 Y. Cliff, C. Boyd, and J. Gonzalez Nieto

Informally, a randomness extractor is a family of functions keyed by a random
but public value, where the input to each function is a value with high entropy,
and the output is indistinguishable from a uniformly random bit string. Unfor-
tunately, the number of bits of entropy in the input must usually be much larger
than the number of bits in the output for practical security parameters.

A randomness expander, or pseudo-random function family (PRFF), is a fam-
ily of functions keyed by secret, uniformly random strings, with each function
taking as input any publicly known value and outputting a value indistinguish-
able from one distributed uniformly at random.

When only one relatively short uniformly random key is required of a KA
protocol, the output of a randomness extractor may be used as the required key.
However, it is more likely that the output of the extractor will be used to key
a randomness expander, to provide a longer key or multiple keys, e.g. when one
random group member is used to derive a MAC (message authentication code)
key for use in the KA protocol, as well as the final agreed secret key.

This step of converting a randomly chosen group member to a uniformly
random string or strings of bits is often not discussed in papers proposing KA
protocols. However, if the key derivation function is not modelled with the ran-
dom oracle model, this step has a significant impact on how large the security
parameter of the KA protocol needs to be to achieve proven security of a given
level. As noted by Gennaro et al. [I, p.4] and Chevassut et al. [2 p.2], this point
is often overlooked, particularly in protocol efficiency comparisons.

One reason randomness extraction and expansion and their effect on security
parameter sizes is often overlooked may be the plethora of existing works that
must be examined to obtain the necessary background knowledge, and the dearth
numerical examples. Therefore, this paper provides:

— a summary of existing results on randomness extraction and expansion, in-
cluding relevant definitions and theorems, and numerical examples,

— details of the short exponent discrete-log (DLSE) assumption and its use
with randomness extraction and expansion (including numerical examples),

— an analysis of why assumptions made by Dodis et al. [3] in some justifications
of the use of HMAC and cascade chaining (such as SHA) as randomness
extractors are not realistic,

— a valuable resource for protocol designers and implementors to enable them
to use security parameters of an appropriate size in efficiency comparisons
and implementations, without having to examine all of the existing works,

— the observation, through the use of numerical examples for values of practical
interest, that some of the theoretical results available are of limited practical
value, due to the non-existence of underlying functions of an appropriate size
or the availability of better methods,

— results for the standard model only; although use of a random oracle as a
randomness extractor would mean that shorter parameters would be required
in a protocol to achieve the same security level, making it more efficient, our
aim is to describe solutions available for the standard model.

How to Extract and Expand Randomness 55

We will begin by examining the suitability of various candidates as random-
ness expanders, which will tell us how large a key needs to be provided by the
randomness extractor. We will then examine randomness extractors, and the
amount of entropy required for their input in order to extract a long enough key
for the randomness expander.

Prior work includes that of Dodis et al. [3], the first to attempt to justify
the use of CBC-MAC, cascade chaining and HMAC as randomness extractors
in the standard model, and that of Gennaro et al. [I] who examined the use
of universal hash functions as randomness extractors in conjunction with the
DDH (decisional Diffie-Hellman) assumption and short exponents. Chevassut et
al. [2] made some brief but interesting observations on randomness extraction
and expansion in general, before providing methods of randomness extraction
which are more efficient than those studied here, but are only applicable for
groups of points over an elliptic curve (EC), and the group of prime order ¢
in Z; where p = 2¢ + 1 and is prime. Their method for EC groups requires
computations in the KA protocol to be carried out on an EC as well as its
twist, instead of just on the curve, and so increases the number of computations
required. However, the method may be advantageous as these computations on
the EC and its twist will be in smaller groups than those necessary when using
the methods studied in this paper in conjunction with computations on the EC
only. Fouque et al. [4] showed that the lower order bits of a member of a subgroup
of Z; may be considered random in the right circumstances. Another work of
Fouque et al. [5] examined the use of HMAC as a randomness extractor when
the randomness is extracted from the HMAC key, and included an analysis of
the cascade construction as a randomness extractor.

2 Notation and Basic Definitions

The notation mostly follows Dodis et al. [3] and Gennaro et al. [1]. For a proba-
bility distribution X over a set A, the notation z €y A indicates that x is chosen
from A according to the distribution X'. The notation z €r A indicates that z is
chosen from A according to the uniform distribution. Pry[z] indicates the prob-
ability that distribution X assigns to the value z € A. In some cases, definitions
taken from other works have been modified to make the notation consistent.

This paper uses a concrete security approach, to allow determination of the size
of the parameters needed in a protocol to achieve a given level of security. Follow-
ing Gennaro et al. [1], we speak of circuits of size S having a certain probability,
of solving a particular problem. One may also think of a circuit of size S as a pro-
gramme running in time ¢, where ‘time’ actually includes the length of the descrip-
tion of the programme (to avoid trivializing hard problems through the use of large
precomputed tables), as well as the actual execution time of that programme [6].

We now introduce computational indistinguishability, a refinement of the no-
tion of statistical distance (or variation distance) from probability theory. If two
distributions are statistically close, they are computationally indistinguishable,
although the converse is not true [7, Sect. 3.2.2].

56 Y. Cliff, C. Boyd, and J. Gonzalez Nieto

Definition 1 ((S, ¢)-indistinguishability [1, p.19]). Let X, be two proba-
bility distributions over A. Given a circuit D (called the distinguisher) consider
the following quantities:

ép.x = Preex[D(z) =1] and ¢py = Pryey[D(y) = 1] (1)

We say that the probability distributions X and Y are (S, €)-indistinguishable if
for every circuit D of size < S we have that |6p x — 6p,y| < €.

Definition 2 (Statistical Distance [8, p.131]). The statistical distance be-
tween two probability distributions X and Y over a set A is defined to bdY
AlX; V) = 5 Ypea [Prafe] — Pryls]] .

Lemma 1 ([3, p.500]). If two distributions have statistical distance of (at most)
€, they are e-close. Distributions that are e-close cannot be distinguished with prob-
ability better than € even by a computationally unbounded adversary.

The following lemma has a proof [I] based on the triangle inequality or “hybrid
argument.”

Lemma 2 ([I, p.19]). Let three probability distributions X,Y, Z over a set A
be such that (i) X is (Si,€1) indistinguishable from Y and (i) Y is (S2,€2)
indistinguishable from Z. Then X is (S,) indistinguishable from Z where S =
min(Sy, S2) and € = €1 + €.

We now focus on describing how much randomness is in a probability distribu-
tion, defining min-entropy and its computational analogue.

Definition 3 (Min-entropy [I, p.9]). If X is a probability distribution over
A, the min-entropy of X is min-ent(X) = minges.pry[z)20(—l0g2(Prx(z])).
(Note that if X has min-entropy t then for all x € A, Pry[z] <27%.)

Definition 4 (Computational entropy ¢ [1, p.10]). A probability distribu-
tion Y has (S, €) computational entropy t if there exists a probability distribution
X that is (S, €) indistinguishable from) and min-ent(X) > t.

Definition 5 (Function Family [6, adapted from full paper p.7]). A
function family f : K x D — R (also denoted {f;}rer), where K is a non-
empty set of keys, is a collection of functions, fi(-) ef f(k,") for k € K, from
a domain, D, to a range, R. We call f a permutation family if D = R, and for
each key k € K, f. is a permutation on D.

Definition 6 (Truly Random Function (TRF) [5/6]). Denote the set of all
functions from M to {0,1}F with Rand™ 2" (there are 2 M1 such functions).
A function chosen at random from Rand™~%" s q truly random function (TRF)

with input domain M and output domain {0, 1}F.

! Gennaro et al.’s definition [] is twice this value, but seems erroneous when compared
with others [SI37] .

How to Extract and Expand Randomness 57

A TRF may be implemented by an oracle that, for each new oracle query, gen-
erates an output selected at random from {0,1}%, and for oracle queries that
are not new, replies with the same output as previously given for that input.

Definition 7 (Cascade Construction [5]). The cascade construction (also
known as keyed Merkle-Damgard cascade chaining) is the construction used for
iterated hash functions. Let H : {0,1}¢ x {0,1}* — {0,1}¢ denote an iterated
hash function, and let h : {0,1}¢ x {0,1}* — {0,1}¢ (the so-called compression
function) be a family with key space {0,1}¢. The cascade construction of h is the
function h* : {0,1}¢ x ({0, 1}b)* — {0,1}¢ defined by:

Yo = a,yi = h(yi—1, ;) and h*(a,z) =y,

where x = (x1,...,2y) is a n - b bit string and a € {0,1}¢. To construct H,
messages must be padded to an exact multiple of b bits. The padding, denoted
pad(|z|), is a function of the input length, |x|. Let xpeq = x || pad(|z|). Then H
is defined by H(a,x) = h*(a, Tped)-

Let 1 < ¢ < ¢ be an integer and let msby (-) denote the ¢’ most significant
bits of a bit string. For any function H with range {0,1}¢, we define for every
input x the truncated iterated hash function H(x) = msby (H(z)); e.g. SHA-38
has ¢ = 384 and ¢ = 512.

Definition 8 (NMAC [5]). Nmac : {0,1}¢ x {0,1}¢ x {0,1}* — {0,1}¢ is a
hash function family constructed from a (possibly truncated) iterated hash func-
tion Hash : {0,1}¢x {0,1}* — {0,1}¢". If (k1, k2) € ({0,1})2 is a couple of keys
and z € {0,1}* is the input, the definition of NMAC is Nmac™® (ki ko, z) =
Hash(ko, Hash(kq, z)).

Definition 9 (HMAC [5]). HMAC is a hash function from {0,1}* x {0,1}*
to {0,1}6/. Let ipad and opad be two b-bit strings and IV be a c-bit string.
Let Hash : {0,1}¢ x {0,1}* — {0,1}¢ be the (possibly truncated) iterated hash
function with compression function h : {0,1}¢ x {0,1}* — {0,1}¢. If the key k
is a bit string from {0,1}°, then

Hmac 3" (ipad, opad; k, z) = Hash (IV, [k ® opad] || Hash (IV, [k @ ipad] || z))
= Nmac™™™(h(IV, k @ ipad), h(IV , k & opad), z).

If the key k is smaller than b bits, then it is first padded with ‘0’ bits to form a
b-bit string, and this string is used as the key. If the key k is larger than b bits,
it is first hashed using Hash to obtain a c’-bit digest, then padded with b — ¢ ‘0’
bits to obtain a b-bit string, which is then used as the key.

3 Randomness Expansion

To ascertain the minimum output length required from the randomness extrac-
tor used, we begin by examining the randomness expander—also known as a
pseudorandom function (PRF) family, or PRFF—to be used, since the output
of the randomness extractor will be used as the key to the PRFF.

58 Y. Cliff, C. Boyd, and J. Gonzalez Nieto

Definition 10 (Pseudorandom Function Family [9J6]). A function family
f = {fu}lrex is a (S, q,€) pseudorandom function family (PRFF) if a circuit, A,
of size S which is given oracle access to either f, for Kk €g K or a TRF with
the same domain and range as the functions in f, and makes at most q queries
to this oracle, has advantage at most € in distinguishing whether it has access to
a random member of f or a TRF; i.e.:

€ > Adv?rf(q, S) 4 nax {Adv?rf(A)} (2)

A
Adv(A) E [Pr{A%0 = 1|O() g f] - PrlAY) =1]O() € Rand]| (3)

The values Adv7™(g,S) and Adv}™”(A), may be defined similarly for an ad-
versary A against a pseudorandom permutation family, except that A attempts
to tell the difference between the permutation family and a truly random per-
mutation, rather than a TRF.

When one PRFF is used with various different keys (e.g. each party from a
number of parties may use its own key to produce pseudorandom values from the
PRFF), there is a linear decrease in security. Furthermore, the key to a PRFF
may be only computationally indistinguishable from random, in which case the
level of security of the PRFF and the level computational indistinguishability
must be combined. This is formally stated and proven in the full version.

Function families widely believed to be pseudorandom include CBC-MAC
used in conjunction with a block cipher, HMAC or the HMAC variant NMAC,
and cryptographic hash functions such as SHA-1 or SHA-256 based on the cas-
cade construction, but with the fixed IV (initialization vector) replaced with a
random key. The full paper discusses the merits of each of these options in turn.
Here we overview the security levels provided by each option. Some assumptions
(described in the full paper) must be made on the security level of the un-
derlying block ciphers or compression functions to arrive at the below concrete
security levels.

3.1 CBC-MAC

Bellare et al. [6] have proved that CBC-MAC is a secure PRFF if the underlying
block cipher is a secure pseudorandom permutation family and the input length
is constant. The level of security provided depends on the block length, number
of queries, ¢, and number of blocks of input, I. When ¢l is small (e.g. 2), the
security level is about k = b — 3 bits. Otherwise, if we have ¢l < 2* (which we
are assuming when we consider a security level of 2% sufficient), then we will
require k < (b—2)/2. If the block cipher to be used with CBC-MAC is AES-128,
AES-192, or AES-256, then the block length, b, will be 128 bits for each of these
ciphers [10]. Therefore, the level of security provided by CBC-MAC when used
in conjunction with any of these ciphers will be no greater than 125 bits, and
will be less for values of ¢ and [larger than 1. Hence, CBC-MAC is likely to be
an acceptable choice of randomness expander for security levels of 80 bits if the
number of queries to randomness expander with a single key is small and the

How to Extract and Expand Randomness 59

length of each query is also small, but inadequate for security levels of 128 bits
and higher. If an unlimited number of queries or queries with a very large length
are able to be made by the adversary to the randomness expander with a single
key, the security level will only be (b — 2)/2 = 63 bits when b = 128.

3.2 HMAC

Bellare [II] has proven that HMAC is a secure pseudorandom function if the
compression function of the underlying hash function is a pseudorandom func-
tion. The analysis assumes that the key provided to HMAC is the same length
as a block for the underlying hash function (i.e. b bits). To achieve a shorter key
of only 2¢ bits (where ¢ is the length of the output of the compression function),
NMAC may be used, which is similar to HMAC but differs in its use of keying
material. However, NMAC is generally used for analysis of HMAC only, so avail-
ability of an existing implementation is unlikely. Any implementation of NMAC
will require access to the compression function underlying the hash function to
be used, which may be difficult to acquire.

Hash functions likely to be used with HMAC include MD5 [12], RIPEMD-
160 [13], SHA-1, SHA-256, SHA-384 and SHA-512 [14]. Table [shows the block
size (b), compression function key and output length (c), hash function output
length (¢) and HMAC security level for each of these algorithms, where ¢ is the
number of queries using the same key and [is the number of blocks per query. The
traditional security level is ¢/2 bits, due to the birthday based forgery attacks
against iterated MACs [15] that require 2¢/2 oracle queries.

3.3 Cascade Construction

Bellare, Canetti and Krawczyk [9] have provided a proof of pseudorandom func-
tion family security for cryptographic hash functions such as SHA-1 or SHA-256
based on the cascade construction, but with the fixed IV (initialization vector)
replaced with a random key, provided the input is prefix-free and the underly-
ing compression function used by the hash function is a pseudorandom function
family. (It is possible to remove the prefix-free requirement by using extra keying

Table 1. Block and key size, output length, and hash and HMAC security level

Algorithm b ¢ ¢ Security level (q,1 < 2) Security level (g is large)
for Hash for HMAC max. for conservative HMAC

(c—2) (c—4) Hash (5320) Hash (6340) (552)

MD5 512 128 128 126 124 54 29 63
RIPEMD-160 512 160 160 158 156 70 40 79
SHA-1 512 160 160 158 156 70 40 79
SHA-224 512 256 224 254 252 118 72 127
SHA-256 512 256 256 254 252 118 72 127
SHA-384 1024 512 384 510 508 246 157 255

SHA-512 1024 512 512 510 508 246 157 255

60 Y. Cliff, C. Boyd, and J. Gonzalez Nieto

Table 2. Summary of required key lengths for a given security level when ¢ large

Security Key Length Security Key Length
level CBC- Casc. Casc. NMAC HMAC level Casc. Casc. NMAC HMAC
(bits) MAC min. consrv. (bits) min. consrv.
29 128 79 320 512
40 160 118 256
54 128 127 512 512
63 128 256 512 157 512
70 160 246 512
72 256 255 1024 1024

material, but it is unlikely to be necessary in our setting. Belare et al. provided
another construction to improve security using randomization, but if the extra
randomness is counted as part of the key, more keying material than HMAC is
required for a similar security level.)

Table [shows the security level of the cascade construction using the same
notation as for HMAC. Assumptions made to obtain the security levels are de-
scribed in the full paper. The difference between the maximum and conservative
security levels for large ¢ is due to different assumptions concerning the efficiency
of the best attack against the underlying compression function.

3.4 Key Length Summary

In summary, when ¢ < 2, a minimum of 128 bits will be needed to key the ran-
domness expander, e.g. using CBC-MAC or the cascade construction, achieving
a security level around 125 bits. In this case, the cascade construction allows the
use of a key about two bits longer than the required security level, and requires
fewer key bits than using NMAC or HMAC for the same security level.

When there is no restriction on ¢, the cascade construction provides the lowest
key length for a given security level when we take the security level as being 0320.
However, if the more conservative security level of C_340 bits is used, then NMAC
may be better, depending on the level of security required. Table 2] summarizes

the results.

4 Randomness Extraction

Let us consider a KA protocol that allows the participating parties to agree upon
a secret value, called the pre-secret, that an adversary cannot distinguish from
a value drawn uniformly at random from a particular distribution, e.g. from a
group in which the DDH (Decisional Diffie-Hellman) assumption holds. Further-
more, assume a randomness extractor and expander are used to derive a final key
from the pre-secret, such that the final key is indistinguishable from a uniformly
random bit string. As will be seen in this section, when using the techniques of
randomness extraction and expansion considered in this paper, the entropy of
the pre-secret must be much larger than the security level required of the final

How to Extract and Expand Randomness 61

key. Therefore, if the pre-secret is from a suitable group, it may seem desirable
to use the discrete-log short-exponent (DLSE) assumption to enable calculations
required by the KA protocol to be more efficient, by using exponents shorter than
the group order. In addition, if the KA protocol is Diffie-Hellman (DH) based,
it may be desirable to use the t-DDH assumption (a relaxation of the DDH as-
sumption) to allow the use of groups with non-prime order with the protocol.
These assumptions and theorems are therefore provided in the full paper. Note
that two theorems of Gennaro et al. [I] regarding use of the DLSE assumption
are incorrect in their original paper and have been corrected in the full paper
according to details supplied by Gennaro in a personal communication.

The most common existing randomness extractor definition is of a strong
randomness extractor:

Definition 11 (Strong randomness extractor [16]). A family of efficiently
computable hash functions H = {h,, : {0,1}" — {0,1}¢|x € {0,1}9} is called a
(t,€) strong randomness extractor, if for any random variable X over {0,1}" that
has min-entropy at least t, if k is chosen uniformly at random from {0,1}% and
R is chosen uniformly at random from {0,1}°, the following two distributions
are within statistical distance € from each other: (k,h.(X)) =¢ (k, R) .

By Lemma [I], the above distributions are also computationally indistinguishable
from each other. Notice that the definition means that the key to the randomness
extractor, x, may be made public, yet the output of the randomness extractor,
given a secret input with sufficient min-entropy, is indistinguishable from a string
of bits distributed uniformly at random.

Since it is likely that X will only have computational entropy (not min-
entropy) of a certain level, we introduce the following definition (which is similar
to a recent definition of Fouque et al. [5] in an independent work).

Definition 12 (Strong computational randomness extractor). A family
of efficiently computable functions H = {h, : A — {0,1}|x € {0,1}9} is a
(t,S,€, 8" €) strong computational randomness extractor if given any probability
distribution X over A such that X has (S,€) computational entropy at least t,
the following two probability distributions are (S', €')-indistinguishable:

H = {(k, hu(z)) for k €r {0,1}% and z € A} (4)

Rh = {(k,r) for k €r {0, l}d and r €g {0,1}} (5)

It is possible to show that a strong randomness extractor is also a strong com-
putational randomness extractor (see the full paper). However, the converse is
not necessarily true.

The above definitions assume that the key to the randomness extractor, k, is
generated afresh for each use of the randomness extractor. This may be appro-
priate in some protocols, where parties may have exchanged nonces with each
other and can use these values to generate the key. However, it is imperative that
any such nonces be authenticated (i.e. unable to be influenced by the adversary)

62 Y. Cliff, C. Boyd, and J. Gonzalez Nieto

and not subject to replay by the adversary. Otherwise, a key derived from these
nonces may not be distributed uniformly at random over {0, 1}¢ as required for
these extractors.

When parties are unable to generate a new key, x, each time they use a
randomness extractor, the key k may be fixed as part of the system parameters.
However, this requires multiple uses of the randomness extractor with the one
key. It turns out that the security of the randomness extractor decreases linearly
with the number of queries to it using the same key. Protocols using this approach
may be proven secure in one of two ways. As part of the proof of security of the
protocol, one often focuses on the security of one particular session chosen at
random from all sessions. In the proof, it may be possible to use the above
definitions to prove the security of the protocol. The total number of sessions
will appear as a factor in the security reduction (due to focusing on one session
chosen at random from all sessions), and this will cater for the reduction in
security due to multiple uses of the extractor with only one key. The other way
to justify the use of a single key to the randomness extractor is via the theorems
given in the full paper.

4.1 Combining Extraction and Expansion

To ascertain the security of the overall key derivation function consisting of
randomness extraction and expansion, all of the relevant theorems from the full
paper must be combined (e.g. extractor reuse, Diffie-Hellman assumption, short
exponent theorems, expander reuse etc.). The full paper provides an example
combination of theorems which is summarized here.

Let H = {h, : {0,1}" — {0,1}¢|x € {0,1}?} be a (t,27¢) strong randomness
extractor, with a maximum of ¢; queries per (publicly known) randomness ex-
tractor key k, and let f = {fy}rex be a (S5, q2,€5) PRFF, with a maximum
of go queries per (secret) key . Suppose a security level of k bits is desired for
the final key(s) output by f. Let G be a cyclic group of order m generated by
g, such that m is odd, or m/2 is odd. We assume there are g; publicly known
pairs g%, g% for 1 < i < ¢, and that the g%® are the inputs to h.(-).

We consider two cases. For the first, we require ¢g; — 1 outputs of H to be
indistinguishable from random, use the other output of H to key f, and require
the g2 outputs of f using this key to be indistinguishable from random. The
indistinguishable distributions are labelled EEDH and EER.

In the second case, all ¢; outputs of H are used to key f, giving a total of ¢ g2
outputs of f, and all of these outputs must be indistinguishable from random.
The indistinguishable distributions are labelled EEDH* and EER*. Which of
these cases is appropriate will depend upon the protocol in question and its proof
of security. Table [shows the requirements in each case, where the distributions
are to be indistinguishable with a security level of k bits.

As an example putting it all together, suppose that a security level of & = 80
bits is required, we desire that the EEDH and EER distributions are indistin-
guishable, ¢ = 1 and g3 = 1. Furthermore, suppose that m is prime. Then we
need:

How to Extract and Expand Randomness 63

Table 3. Requirements for the two cases to be indistinguishable from random

For EEDH and EER indistinguishable: For EEDH™ and EER™ indistinguishable:

- Sz ok — 979 > 25¥1g; where Ss & (g1 —)2
e>k+2+logy(q1) e>k+2+2log,(q1)
t-DDH assumptions: t-DDH assumptions:

(2*"g1 + 1 + g2, 3) and (2%qt + q1g2,) and
<Q1 +a+1, Qkfgln) <Q1Q2 +1, 2k+13q%>

— S—DLSE assumptions: — s-DLSE assumptions:
(2lflsln (2s) (Y +2Z),}) and (QZflsln (25) (Y +2Z),)) and
(Y'sIn(s)(Z+1),) where (Yisln(s)(Z+1), ;) where
Y < (log, (m) —)2 g, Y & (logy(m) — 5) 2748,
z¥ S3+q1 + qa. z¥ S3 + q1q2.

In both cases ¢ = 3 unless log,(m) > 2s — log,(e1), in which case ¢+ = 2 and the
smallest sensible value for €; is }1, S3 is the cost of a multi-exponentiation in G.

— a randomness expander with an 81 bit security level, e.g. CBC-MAC with a
128 bit key for its block cipher or MD5 with a 128 bit key;

— a (t,2782) strong randomness extractor for some ¢ that outputs enough bits
to key the randomness expander, e.g. a universal hash function—in that case
t = 292 (see Sect. [€2);

— (2%,) and (3, ,i) t-DDH assumptions on G, e.g. G could be of order 292
bits on an elliptic curve (292 is the maximum of ¢ = 292 and 2 - 85);

— exponents of the full 292 bits since the short exponent assumption needs the
short exponent to be longer than 292 bits (probably around 600 bits).

Further details of the calculations are provided in the full paper. This example
contradicts the statement by Gennaro et al. [T, Sect. 6] that exponents of length
2k may be used to achieve a security level of k bits, since in our example, we need
the exponent to be of length between 5k and 7.4k. It seems that Gennaro et al.
have not substituted actual values into their theorem stating that short expo-
nents may be used, and have thus come to an incorrect conclusion about how
long the short exponents really need to be.

4.2 Available Extractors

We now compare the available randomness extractors, focusing on output lengths
of 128, 160, 256 and 512 bits, as these are the possible key lengths for the
randomness expanders in Sect. 3.4l The reader may make his own comparisons
for other output lengths with the information provided.

We first discuss the use of the Leftover Hash Lemma (LHL) to show that
a universal (or almost universal) hash function may be used as a randomness
extractor. Following this, we discuss the use of a PRFF as a randomness ex-
tractor, as analysed by Chevassut et al. [2], and then summarize the results of
Fouque et al. [4] on deterministic extraction of lower order bits from subgroups

64 Y. Cliff, C. Boyd, and J. Gonzalez Nieto

of Zy. Then another work of Fouque et al. [5] is summarized with several results
on using HMAC to extract randomness from the HMAC key, and a result on us-
ing the cascade construction as a randomness extractor. The full paper provides
an overview and detailed comments on the problems with the first work [3] to
consider the suitability of CBC-MAC, the cascade construction, and HMAC for
use as randomness extractors in the standard model.

We aim for the output of the extractor to be (57, ¢') indistinguishable from uni-
form with f,' > 28! as a minimum requirement (this will achieve a security level no
greater than k£ = 80 bits when the randomness extractor and expander are used to-
gether). TableBlwill provide the basis for our numerical analysis of the advantages
of each extractor. We will use the notation of Sect. 1] and assume (as was done
there) that Sy = q1, S¢ ~ ¢2 and Ss ~ (¢1 — 1)g2. Furthermore, we let ¢ be the
key length of the expander, and hence the output length of the extractor; ¢ be the
min-entropy, b be the block size and L be the number of blocks of the pre-secret (ps,
e.g. the DH value) which is input to the extractor. We will examine the parameters
required of each extractor to achieve various security levels in the following cases
(notation is as in Sect. [1]). In our examples, we use the cascade construction as
the expander, since it is the best (see Sect.[3.4]). The parameters required to achieve
other security levels or in other cases can be derived by the reader.

1. Each extractor key is used only once (g1 = 1; this would be the case if the
key is chosen afresh in each protocol run); the expander is used only once
or twice with each key (g2 < 2); it is desired that EEDH and EER are
indistinguishable (the KA protocol’s security will be lower than & bits, since
the total number of sessions will appear as a factor in its security reduction).

2. The extractor key is a global parameter used up to 230 times (q; < 239);
other requirements are as for the previous case; e.g. many other applications
use the extractor at a k-bit security level; the KA protocol proof focuses on
one session; that session’s two keys (output by the expander) have k bits of
security (again, the protocol’s overall security will be lower than k bits).

3. Each extractor key is used once (g1 = 1); the expander is used many times
with each key (g2 > 2); other requirements are the same as for the first case.

4. The extractor key is the same in all KA protocol sessions (but not used in
other applications), and there are up to 22 sessions (g1 < 23%); the expander is
used many times with each key (g2 > 2); EEDH™ and EER™ must be indistin-
guishable (so the number of sessions will not be an extra factor in the protocol
proof). We assume S2 = ¢?q3 < 28*1q; sothat a cascade construction securit,
level of k + 14 log,(q1) bits (less conservative option) gives 55;58 > 2k+1q1

2 We want (S5 — Ss) Jes > 2k+1q1. When using the cascade construction (less conser-
vative option) we have 1/e5 > 2°/ (2°°S3) (see the comments in the full paper), so
we need ((S5 — Ss) 2°) / (2°°53) > 2514, where c is the key length of the random-
ness extractor. When S5 = Ss + 1, we have ((Ss — Ss) 2°) / (2°°S3) > 2**"¢1 implies
2¢ > 2k+214, 62 However, for a security level of s bits for the randomness expander,
we require 2¢ > 2229 and if s = k + 1 4 log,(g1), this will imply the first require-
ment when s > 2log,(Ss). For values of S5 much larger than Ss, S5 — Ss ~ S5 and
so a security level of k + 1 + log,(q1) bits will be sufficient.

How to Extract and Expand Randomness 65

Almost Universal Hash Functions. The Leftover Hash Lemma (LHL) is
well-known and allows the use of a universal (or almost universal) hash function
as an extractor which is probabilistic and optimal in general [2]. There are several
variations of the LHL in the literature; the one provided is mainly from Chevassut
et al. [2], and similar to Dodis et al. [3, p.501].

Definition 13 (6-AU (almost universal)). Let ¢ and b be integers, and
{h}rex be a family of hash functions with domain {0,1}°, range {0,1}¢ and key
space K. We say that the family {h,}xcic is 6-almost universal (6-AUP if for ev-
ery pair of different inputs x, y from {0, 1}° it holds that Pr(h,.(x) = h.(y)) <6,
where the probability is taken over k €r K. For a given probability distribution
X on {0,1}°, we say that {h.}eex is 6-AU w.r.t. X if Pr(h(x) = he(y)) <6
where the probability is taken over k €r K and x,y €g X conditioned on x # y.

An example of a universal hash function is the function that multiplies a Toeplitz
matrix (one with constant diagonals) by the input to create the output [I7]. The
full paper gives more details and examples of universal hash functions.

Lemma 3 (LHL with 6-AU [2]). Let X be a probabilistic distribution over
{0,1}" with min-entropy at least t. Let e be an integer and ¢ < o — 2e where
a = min(t,logy(1/€)). Let H = {hy}rex, with h, having domain {0,1}* and
range {0,1}¢ for any k € K, be a §-AU hash function family with 6 = . +¢&. Let
H be a random variable uniformly distributed on H, X denote a random variable
taking values in {0,1}°, and H and X be independent. Then, (H, H(X)) is 27¢-
uniform on H x {0,1}¢.

This lemma states that a §-almost universal hash function is a (¢,27¢) strong
randomness extractor. It was used to generate Table] where we must have
& < 27t It shows that even the most basic requirements mean a computational
entropy of 292 bits in the input to the randomness extractor. More realistic
requirements may mean a much higher level of computational entropy is required.
Because of their significant key size requirements, and because other functions
such as cryptographic hash functions are more readily available, universal hash
functions are often not used for key derivation.

PRFFs as Randomness Extractors. Chevassut et al. [2] have shown that a
PRFF may be used for randomness extraction with a publicly known key.

Theorem 1 ([2]). If a family of functions, F, is a (S,2,£)-PRFF with domain
{0,1}% and range {0,1}¢, S is the size of a circuit that makes 2 oracle queries
on an instance of F, then it is a (216 + &)-AU hash function family.

By using Lemma [3] we can conclude that a PRFF can be a strong randomness
extractor, although the output of the PRF will generally need to be truncated to

3 Being 6-AU in Dodis et al. [3] is the same as being £&-AUH in Chevassut et al. [2]
for 6 = 210 + & where c is the number of bits of output of the function. We use the

notation of Dodis et al. in this paper. When 6 = 21C , the function is universal.

66 Y. Cliff, C. Boyd, and J. Gonzalez Nieto

Table 4. Universal hash function parameter examples

Case t k e c Case t k e c

1 ¢c+2 k k+2 >(k+2)+2 3 ¢c+2 k kE+2 >2k+2)+20
1 292 80 82 128 3 420 80 82 256

1 380 124 126 128 3 492 116 118 256

1 476 156 158 160 3 900 192 194 512

1 764 252 254 256 3 1004 244 246 512

1 1532 508 510 512

2 c+2 k k+32 >(k+32)+2 4 c+2 k k+62 >2(k+32)+20
2 352 80 112 128 4 540 80 142 256

2 476 126 158 160 4 552 86 148 256

2 704 192 224 256 4 956 160 222 512

2 764 222 254 256 4 1020 192 254 512

2 1532 478 510 512 4 1064 214 276 512

a length compatible with Lemma [3 Reuse of the extractor can then be covered
by one of the theorems from the full paper. For example, to achieve a security
level of k = 80 bits in Case 1, as shown in Table @, we will need ¢ < 27292, This
rules out the use of CBC-MAC, since the block size is only likely to be 128 bits,
and so the security level will only be about 125 bits. The use of HMAC or the
cascade construction seems appropriate, provided we do not need & smaller than
27508 or 27510 yegpectively. In our example, we could use SHA-384 or better,
and would need to truncate the output to 128 bits.

Deterministic Extraction of Lower Order Bits. The analysis of Fouque et
al. [4] allows one to use the lower or higher-order bits from subgroups of L.

Theorem 2. Let p be a b-bit prime, that is 2°=1 < p < 2°, G a subgroup of Z,
of order q with q > /p, | the integer such that 2-1 < g <28 and X a random
variable uniformly distributed in G. Let 1sb.(X) denote the ¢ least significant
bits of X. Let e be a positive integer and let | >t = b/2+ c+ e + logy(b) + 1.
Then the function lsb.(+) is a (t,27¢)-deterministic extractor for the G-group
distribution. If p*/? < q < p*/3 then the requirement on | may be refined to
I >t =1>0/4+31/8+c+e+logy(b) +3, and if 256 < q < p'/2, it may be
refined to | >t = b/8 +5l/8 + ¢ + e + logy(b) + 3. Let msh.(X) denote the c
most significant bits of X and let § = (2" —p)/2". If36 <2 ¢ L and | > t =
n/2+k+e+logy(n) + 1, then msbe(-) is a (t,27°)-deterministic extractor.

Table B shows some parameter examples using Theorem [2] with the four cases
under consideration. Comparing it with Table[d we can see that more computa-
tional entropy is generally required than when using a universal hash function.
Fouque et al. recommended the use of the DLSE assumption to shorten the ex-
ponents required and thus improve efficiency. However, Sect. [£]] indicates that
much more than 2e bits will be required, contrary the indication of Fouque et al.
(summarizing Gennaro et al.’s work [I]). However, one advantage of this method
is that it is deterministic, and so does not require a key for the extractor.

How to Extract and Expand Randomness 67

Table 5. Parameter examples for least significant bits extraction

Case b t k e c Case b t k e c

1 k k+2 >k+4 3 E k+2 >2(k+2)+20
1 1024 733 80 82 128 3 1024 861 80 82 256

1 2048 1178 80 82 128 3 1024 897 116 118 256

1 1024 777 124 126 128 3 2048 1742 192 194 512

1 1024 841 156 158 160 3 2048 1794 244 246 512

1 2048 1546 252 254 256

1 2048 2058 508 510 512

2 k k+32 >k+34 4 kE k+62>2(k+32)+20
2 1024 763 80 112 128 4 1024 921 80 142 256

2 1024 841 126 158 160 4 1024 927 86 148 256

2 1024 1003 192 224 256 4 2048 1770 160 222 512

2 2048 1546 222 254 256 4 2048 1802 192 254 512

2 2112 2091 478 510 512 4 2048 1824 214 276 512

HMAC. Fouque et al. [5] have analysed the security of HMAC as a randomness
extractor when the data from which the randomness is to be extracted (pre-
secret, ps) is used as the key of HMAC. Because the pre-secret is used as the
HMAC key, some other data (denoted label, of at most ! blocks), which is possibly
adversarily generated, is used as the input to HMAC. There are two separate
results, depending on whether the pre-secret is longer than one block or not.

Theorem 3 ([5]). Using the notation of this section and Definition[d, let L = 1,
let ipad and opad be chosen uniformly at random and let IV be a fized string.
Let 1/ be the hash function defined by h'y, (pad,-) = h(IV,- & pad) where the
key is pad. Let Sy be the circuit size for one computation of h. Let h' be a
(S'+2Sh,q=2,e1) PRFF, and h be both a (S',q = 1,€2) and (O(1-Sk),q = 2, €3)
PRFF. Then HmacII{SSh(ipad, opad; ps,label) is a (t,00,0,5",¢") computational

. 22¢(2—t42
randomness extractor with € < V2 9 +2e1) + 21/ + €9 + 2les.

This is only useful if b > 2¢, since L = 1 implies ¢ < b and when ¢ = 2¢ the term
under the square root is at least one. In the case of SHA-1, we have b = 512
and ¢ = ¢/ = 160. To achieve a security level of e bits for the output of HMAC,
we want S’/e > 2° If we assume ¢ < (S” +254)/(Sh2%), e2 < S'/(Sn2°),
€3 < 1Sh/(Sh2°%), and I < 2¢ and consider the case where S’ = S}, = 1, we
require e < min (72 072¢HL6 o/ ¢ — 2]0g, (1) — 1). These conditions will also
ensure that the conditions placed on e when S’ = 2°7!, S, = 1 and we want
€< %, are met. Hence, when ¢t = 512, we achieve the maximum security level of
e = 96 bits; for e = 82 bits, we need t = 483 bits min-entropy.

To overcome the problem of the above theorem only being useful when b >> 2c,
the assumptions on the compression function can be modified. That is, it is
assumed that h is a PRFF resistant to related key attacks (RKA) when it is keyed
with a bit string of min-entropy at least ¢ (denoted t-RKA; ¢t = ¢ for classical
RKA). This assumption cannot be reduced to the h PRFF-security against RKA,
since it is possible to have a good PRFF for a uniformly distributed key that is

68 Y. Cliff, C. Boyd, and J. Gonzalez Nieto

not a good PRFF for a high-entropy key. We omit the details of a RKA adversary
used in the following theorems, but note that if the exhaustive search adversary
with circuit size S’ is the best known ¢-RKA adversary, its advantage is smaller
than (S’/Sh)/2!. Fouque et al. state their revised theorem in terms of HPRF,
which is constructed from several concatenations and iterations of HMAC (they
do not describe HPRF in detail but refer the reader to TLS v1.2 [I§]).

Theorem 4 ([5]). Let L =1, let ipad and opad be two fized strings and let IV
be chosen uniformly at random. Let h be a function family resistant to a t-RKA
adversary with circuit size S’ that makes at most 2 queries with advantage ey. Let
Sy, be the circuit size for one computation of h. Let HPRF be a concatenation of v
HMAC, and Hash be truncated. Let h be both a (S’,q = 2v,€1) and (O(1-Sy),q =

2,e2) PRFF. Then Hprff-;iﬁfopad(IV;ps, label) is a (t,00,0,5',€") computational

randommness extractor with € < eg + €1 + 4v%leg + 2210’,2 + Sf
Assuming [= v = 1, ¢g < e < (Slz/fh')7 and e < (ls’éés"), we have
S’/ > 2° whene <t—3,e <c—5ande < ¢ —4. Hence, we can extract almost
all of the pre-secret’s entropy when it has less entropy than the number of bits
output by HPRF, and the pre-secret is only one block long.

When the pre-secret is longer than one block, it is first hashed and padded
with ‘0’ bits to obtain a b-bit string. The following theorem covers this case for
HMAC. We omit the similar theorem for HPRF (when it is constructed from
several concatenations and iterations of HMAC) due to lack of space.

S'/Sh
2t)

Theorem 5 ([5]). Let L > 2, ipad and opad be fized strings, and IV be a
variable chosen uniformly at random. Define h : {0,1}¢ x {0,1}¢ — {0,1}* as
h(z,y) = h(y,z || 0°=¢). Let Sj, be the circuit size for one computation of h.
Let Hash be truncated. Let ea be the RKA advantage of an adversary against h
making at most 2 related key queries with circuit size S’. Let h be a (S',q = 2,€1),
(8",q = 1,¢3) and (O(l - Sp),q = 2,¢4) PRFF. Then HmacII{SSh(ipad, opad; ps,
label) is a (t,00,0,8',€) computational randomness extractor with € < !, +

¢
€24 €3+ 2leg + /2 (3-27t + 2Ley).

Assuming ¢; < ngﬂ € < (S,Q/C‘,gh')7 €3 < (S'Q/CS’I), and ¢4 < O(ZS;C)/Sh, we have
S’/€ > 2¢ when e < t_3'26_c/, e< 676/71052@)73, e<cd—2ande < c—2logy(l)—
3. Hence, when L = 2,1 =1, and SHA-384 is used, only e = 62 bits of security
can be achieved for the output of HMAC, and this requires ¢ > 512. To achieve a
value of e close to a value of ¢/, we need ¢ = e+42 = §. To achieve this we could
further truncate the output of SHA-384 to only ¢’ = 170 bits, and use this new
hash function in the HMAC implementation. Then, provided ¢ > 510, we would
have e = 168. For e > 168, a new compression function h with output larger
than 512 bits is needed. Alternatively, to achieve our minimum requirement for
Case 1 described above, of ¢ = 82 and ¢ = 128, we could use SHA-384 but
further truncate the output to only ¢’ = 128 bits. In that case we would only
need t > 296 bits. This is similar to using a universal hash function, which is
not surprising, since the analysis of Fouque et al. made use of the LHL.

How to Extract and Expand Randomness 69

Cascade Construction. Fouque et al. [5] also analysed the use of the cascade
construction as a randomness extractor when the output is truncated to contain
only ¢’ bits, instead of ¢ bits. Assume the compression function A of hash function
H (with key IV) is an (S,q = 2,¢) PRFF. Then H is a (¢, 00,0, 5, ¢') computa-
tional randomness extractor for prefix free distributions of at most L blocks with
S = 0(S") and ¢ < /2¢ - (3-27t + 2Le). As before, assume ¢ < S/2°. Hence,
€ < /2¢ - (3-27t 4 21=¢L - O(S")). To achieve a security level of e bits for the
output of H, we want S’/¢’ > 2°. When O(S’) = 1, this equates to requiring
min (t’cl;?"ﬁ, Cfc/*gglog"’(m) > e. When the requirements for O(S’) = 1 are

met, those for when O(S’) = 27! will be met also. These restrictions on e are
almost the same as for HMAC when the pre-secret is more than one block long,
and so similar comments to those made for HMAC apply here.

5 Conclusion

This paper examined the use of randomness extraction and expansion in key
agreement protocols to generate uniformly distributed keys. Although other
works exist that provide the basic theorems necessary, they lack details or ex-
amples of what cryptographic primitives are appropriate and/or how large the
parameters of those primitives must be. We have therefore summarized exist-
ing work in the area and examined the security levels achieved with the use of
various extractors and expanders for particular sizes of parameters.

As noted in some existing works ([T, p.4], [2} p.2]), the large amount of min-
entropy needed in the pre-secret is often overlooked in efficiency comparisons of
KA protocols. In fact, using the tables presented in this paper, one may conclude
that this shared secret will need a min-entropy of at least 292 bits to achieve
an overall security level of 80 bits. More realistic assumptions on the number
of times the randomness extractor and expander are used may require a much
higher min-entropy for this security level. The tables may be used to find the
min-entropy required for various security levels and assumptions on how the
extractor and expander will be used. We also found that when numbers are
substituted into the short exponent theorems of Gennaro et al., the exponents
may need to be much longer than they suggested.

References

1. Gennaro, R., Krawczyk, H., Rabin, T.: Secure hashed Diffie-Hellman over non-
DDH groups. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 361-381. Springer, Heidelberg (2004),
http://eprint.iacr.org/2004/099

2. Chevassut, O., Fouque, P.A., Gaudry, P., Pointcheval, D.: The Twist-AUgmented
technique for key exchange. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T.G.
(eds.) PKC 2006. LNCS, vol. 3958, pp. 410-426. Springer, Heidelberg (2006),
http://eprint.iacr.org/2005/061

http://eprint.iacr.org/2004/099
http://eprint.iacr.org/2005/061

70

10.

11.

12.

13.

14.

15.

16.

17.

18.

Y. Cliff, C. Boyd, and J. Gonzalez Nieto

Dodis, Y., Gennaro, R., Hastad, J., Krawczyk, H., Rabin, T.: Randomness extrac-
tion and key derivation using the CBC, cascade and HMAC modes. In: Franklin, M.
(ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 494-510. Springer, Heidelberg (2004)
Fouque, P.A., Pointcheval, D., Stern, J., Zimmer, S.: Hardness of distinguishing the
MSB or LSB of secret keys in Diffie-Hellman schemes. In: Bugliesi, M., Preneel,
B., Sassone, V., Wegener, 1. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 240-251.
Springer, Heidelberg (2006)

Fouque, P.A., Pointcheval, D., Zimmer, S.: HMAC is a randomness extractor and
applications to TLS. In: ASTACCS 2008: Proceedings of the, ACM symposium on
Information, computer and communications security, pp. 21-32. ACM, New York
(2008)

Bellare, M., Kilian, J., Rogaway, P.: The security of the cipher block chaining
message authentication code. Journal of Computer and System Sciences 61(3),
362-399 (2000), http://www-cse.ucsd.edu/~mihir/papers/cbc.html

Goldreich, O.: The Foundations of Cryptography, vol. 1. Cambridge University
Press, Cambridge (2001), http://wisdom.weizmann.ac.il/~oded/frag.html
Shoup, V.: A Computational Introduction to Number Theory and Algebra. Cam-
bridge University Press, Cambridge (2005), http://shoup.net/ntb/

Bellare, M., Canetti, R., Krawczyk, H.: Pseudorandom functions revisited: The
cascade construction and its concrete security. In: Proceedings of the 37th Annual
Symposium on the Foundations of Computer Science, pp. 514-523. IEEE, Los
Alamitos (1996)

NIST (National Institute for Standards and Technology): Advanced encryption
standard (AES). FIPS PUB 197 (2001)

Bellare, M.: New proofs for NMAC and HMAC: Security without collision-
resistance. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 602-619.
Springer, Heidelberg (2006)

Rivest, R.: The MD5 message-digest algorithm. Internet RFC 1321, Internet En-
gineering Task Force (1992)

Dobbertin, H., Bosselaers, A., Preneel, B.: RIPEMD-160: A strengthened version of
RIPEMD. In: Gollmann, D. (ed.) FSE 1996. LNCS, vol. 1039, pp. 71-82. Springer,
Heidelberg (1996)

NIST (National Institute for Standards and Technology): Secure hash standard.
FIPS PUB 180-2 (2000)

Preneel, B., van Oorschot, P.: On the security of iterated message authentication
codes. IEEE Transactions on Information Theory 45(1), 188-199 (1999)

Dodis, Y.: Exposure-Resilient Cryptography. PhD thesis, Department of Electrical
Engineering and Computer Science, Massachusetts Institute of Technology (2000),
http://theory.lcs.mit.edu/~yevgen/academic.html

Mansour, Y., Nisan, N., Tiwari, P.: The computational complexity of universal
hashing. In: Proceedings of the Twenty Second Annual ACM Symposium on The-
ory of Computing—STOC 1990, pp. 235-243. ACM Press, New York (1990)
Dierks, T., Rescorla, E.: The Transport Layer Security (TLS) protocol version 1.2.
Internet RFC 5246, Internet Engineering Task Force (2007)

http://www-cse.ucsd.edu/~mihir/papers/cbc.html
http://wisdom.weizmann.ac.il/~oded/frag.html
http://shoup.net/ntb/
http://theory.lcs.mit.edu/~yevgen/academic.html

Novel Precomputation Schemes for Elliptic
Curve Cryptosystems

Patrick Longa and Catherine Gebotys

Department of Electrical and Computer Engineering,
University of Waterloo, Canada
{plonga, cgebotys}@uwaterloo.ca

Abstract. We present an innovative technique to add elliptic curve
points with the form P 4+ @, and discuss its application to the gener-
ation of precomputed tables for the scalar multiplication. Our analysis
shows that the proposed schemes offer, to the best of our knowledge, the
lowest costs for precomputing points on both single and multiple scalar
multiplication and for various elliptic curve forms, including the highly
efficient Jacobi quartics and Edwards curves.

Keywords: Elliptic curve cryptosystem, scalar multiplication, multiple
scalar multiplication, precomputation scheme, conjugate addition.

1 Introduction

In mid 80’s, Miller and Koblitz independently proposed the use of elliptic curves
for cryptographic purposes [8I16]. Since then, Elliptic Curve Cryptography
(ECC) has gained increasing research and commercial interest. Scalar multipli-
cation, denoted by kP, where k is a scalar and P is a point on the elliptic curve,
is the central operation of most elliptic curve cryptosystems. A plethora of meth-
ods exist in the literature to execute this operation efficiently, mainly exploiting
some efficient representation of the scalar. For instance, the Non-Adjacent Form
(NAF) is a standard representation with the fewest nonzero terms using digits
from the set {—1,0,1}.

In some settings, however, it is required to compute a multiple scalar multi-
plication with the form kP + IQ, where k and [are scalars and P and @ are
points on the curve. In this scenario, well-known methods are Interleaving [17]
and the Joint Sparse Form (JSF) [20].

A practical strategy that reduces further the number of required additions at
the expense of some extra memory is the use of precomputations. In this case,
a table of points is built and stored in advance (precomputation stage) for later
use during the execution of the scalar multiplication itself (evaluation stage).
Although these window-based methods effectively reduce the number of nonzero
terms in most representations, a potential drawback is the cost of computing
such a table, which grows with the window size.

Thus, it is an important research effort to minimize the cost of the precompu-
tation stage to reduce the total cost of scalar multiplication. Further, although

M. Abdalla et al. (Eds.): ACNS 2009, LNCS 5536, pp. 71{88| 2009.
© Springer-Verlag Berlin Heidelberg 2009

72 P. Longa and C. Gebotys

improved elliptic curve shapes with faster explicit formulae are currently the
focus of intense research [IJ6], there is still a lack of analysis of precomputation
schemes that are efficient for these settings.

In that direction, this work proposes efficient precomputation schemes and an-
alyzes their performance on three relevant elliptic curve settings: standard elliptic
curves using Jacobian coordinates, Jacobi quartics using extended coordinates
[6I7] and Edwards curves using inverted Edwards coordinates [2].

The proposed schemes are based on the following simple idea: if P 4+ @ has
been computed for two distinct points P, @, the subtraction of those points only
requires a few additional field operations [. In the remainder, we will refer to this
operation, namely P —Q(= P+ (—Q)), as ”conjugate” addition. It will turn out
that this operation will allow computing precomputed tables very efficiently. We
apply the strategy of the conjugate addition to calculate tables of the form d; P
and ¢; P £ d;Q, which are commonly found in most single and multiple scalar
multiplication algorithms.

Further, our precomputation schemes are compared and analyzed for three
possible cases, which are determined by the system used to represent points:
projective coordinates, affine coordinates with restriction to one inversion, and
affine coordinates (without restriction in the number of inversions). Our exten-
sive analysis allows determining which case is the most efficient for a particular
scenario and for determined I/M (field inversion/multiplication) ratios.

Our work is organized as follows. In Section 2, we detail some background
about ECC over prime fields. Then, in Section 3 we describe our strategy to
derive low-cost formulas for the conjugate addition in the different settings under
study. In Section 4, we introduce the new schemes for precomputing points for
tables with the forms d; P and ¢; P + d;Q, and discuss their costs. In Section
5, we analyze and compare the performance of the proposed schemes with the
previously most efficient methods. A discussion of some other applications of
the strategy of the conjugate addition follows in Section 6. Some conclusions
summarizing the contributions of this work are presented at the end.

2 Preliminaries

An elliptic curve E over a prime field IF, is defined by the short Weierstrass
equation E: y? =23 + ax + b, where a,b € IF, and A = 4a3+27b% # 0, and which
will be referred in the remainder as the standard elliptic curve form. The points
on the curve E and the identity element O, known as the point at infinity, form
an abelian group whose group law essentially consists of two basic operations:
doubling (2P) and addition (P 4 Q) of points.

The main operations in most elliptic curve-based cryptosystems have the
forms kP and kP + IQ, known as (single) scalar multiplication and multiple
scalar multiplication.

! Okeya et al. [I8] showed that an inversion can be saved when computing P + Q in
affine coordinates. We expand the idea to projective coordinates for which further
reductions are possible.

Novel Precomputation Schemes for Elliptic Curve Cryptosystems 73

Affine coordinates (referred to as A in the remainder) uses (z,y) coordinates
to represent points. However, since this system requires field inversions, it is
generally expensive over prime fields. When using efficient forms for the prime p
(as recommended by [4]), it has been observed that the cost of inversion can be
as high as 1I > 30M. For example, benchmarks by [10] and [3] show I /M ratios
between 30-40 and 50-100, respectively.

In efficient implementations, point representations with the form (X : Y : Z),
known as projective coordinates, were introduced to replace inversions. For ex-
ample, an efficient case of this projective representation is given by Jacobian
coordinates (referred to as J), where each projective point (X; : Y; : Z;) corre-
sponds to the affine point (X;/Z2,Y;/Z3). In this case, equation E acquires the
form Y2 = X3+ aXZ*+bZ5, and the negative of an element P = (X,;,Y;, Z;) is
given by —P = (XZ, —Y;, Zz)

In recent years, other curve forms with faster group operations have appeared
in the literature. In this work, we focus on two of them: Jacobi quartics and Ed-
wards curves, whose explicit formulas have been found to be particularly fast.
We briefly describe both curve shapes in the following. Note that we consider
that constant curve parameters are fixed to small values so that the cost of per-
forming any operation with them is negligible.

Jacobi quartic. It is defined by the curve y? = 2% +2ax? + 1, where a € IF,, and
a® # 1. The projective curve is Y2 = X4 +2a X272 + Z*, where a given projective
point (X;:Y;:Z;) corresponds to the affine point (X;/Z;,Y;/Z?). In this case,
the negative of an element P = (X;,Y;, Z;) is represented by — P = (—X;,Y;, Z;).
The most efficient formulae for these curves have been developed by Hisil et al.
[6I7] using an extended coordinate system of the form (X;:Y;:Z;: X?: Z?) that
will be referred to as J Q.

Edwards curve. It is defined by the curve 2% + y? =1 + da?y?, where d ¢ {0, 1}.
In [1], Bernstein and Lange presented explicit formulas for point operations
on this curve using standard projective coordinates. Later in [2], the same au-
thors introduced a more efficient coordinate system, known as inverted Edwards
coordinates (denoted by Z&), where each projective point (X;:Y;:Z;) corre-
sponds to (Z;/X;,Z;/Y;) in affine. In this case, the curve equation is given
by (X2+Y?)Z2=X2Y?+dZ*, where XY Z # 0, and the negative of a point
P = (XhY;‘, Zz) is given by —P = (—XZ,}/“ZZ)

In Table[Il we summarize the costs of the most efficient formulas in projective
coordinates for the three curve forms under consideration. For complete details
about formulas using J coordinates the reader is referred to [IT/12]. Following
the common practice in the literature, costs are expressed by the number of
field multiplications (M) and squarings (.S) that are required to perform certain
operation, neglecting cheaper operations as field addition/subtraction (A) and
multiplication/division by small constants. Table [[] includes efficient operations
using mixed coordinates, which are useful if input point(s) are represented in
affine (A) coordinates but the result is required in some projective system P.
Also, note that we have included efficient formulas exploiting pre-stored values.

74 P. Longa and C. Gebotys

Table 1. Cost of elliptic curve point operations in projective coordinates using Jacobian
(J), inverted Edwards (Z€) and extended Jacobi quartic (J Q) coordinates

Point Operation . Cost .
Jacobian (J; a = —3) InvEdw (Z€) JQuartic (J Q)

Doubling (D), 2P — P 3M + 58 3M + 4S8 2M + 58
Mixed doubling (mD), 24 — P 1M + 58 3M + 38 7S
Tripling (T), 3P — P T™ + 7S OM + 4S8 8M + 4S8
Mixed tripling (mT), 3.4 — P 5M + 7S M + 3S 5M +6S
Addition D (A), P+P - P 10M 4 4S / 9M + 38 — 7™M + 38
Addition (A), P +P — P 11M + 58 9M + 15 7M + 45
Mixed addition (mA), P+ 4 — A TM + 4S8 8M + 1S 6M + 3S
Mixed addition (mmA), A+ A — A 4M + 28 ™™ 4M + 38
DA with stored values, 2P +P — P 13M + 8S — —
DA, 2P+ P — P 14M + 95 - -
Mixed DA (mDA), 2P + A — P 11M + 78 — —

P: projective coordinates (J, ZE or J Q coordinates)
(1) Addition with stored values.

If, for instance, values Z%, Z3, Z2 and Z3 are available when computing a general
addition in J coordinates then we can saved up to 2M + 2S. Similarly, in the
case of Jacobi quartics it is possible to reduce the original cost of 7TM + 45 of
the addition formula to 7M + 3S by noting that (X; + Zi)2 can be precomputed
(see [6] for more details).

Finally, Table [l also includes the highly efficient doubling-addition operation
(DA) developed by Longa and Miri in [I3], which involves the recurrent opera-
tion 2P+ @ and is more efficient than performing a traditional doubling followed
by an addition using J.

3 Our Strategy: Conjugate Addition

Our strategy to yield efficient precomputation schemes is based on the similari-
ties between adding and subtracting two points. Basically, if the addition P + @
takes place, then it is expected that, when subtracting the same points (i.e.,
P — @), most of the intermediate field operations are identical simply because
P —@Q = P+ (—Q) and the negative of a point only involves the change of at
most one of the coordinate values in the point representation, as described in
the previous section.

Let us illustrate the latter with the point addition formula using 7. Let P =
(X1,Y1,71) and Q = (X2,Y>,Z3) be two points on an elliptic curve E. If the
addition P 4+ Q = (X3,Y3, Z3) is performed using [12, formula (15)] as follows:

Xy =a® — (40° + 873 X.10°), Vs = (Z3 X1 % — X3) = Z3V1 /3%, Z3 =08 (1)

where o = 2(Z3Yo— Z3Y1), B = Z3 Xo— 72X, and 0 = (Z1+ Z3)*— Z? — Z2, then
P—Q can be computed as P+(—Q) = (X1,Y1, Z1)+ (X, —Y2, Z2) = (X4, Y4, Z4)
reusing the partial values (48° + 822X13°), Z2X13%, —Z3Y13%, Z3, Z3Ys and

Novel Precomputation Schemes for Elliptic Curve Cryptosystems 75

Z3Y1. The latter can be performed with the following formula for the conjugate
addition:

Xy=7—(4B8° + 8235 X15°), Ya = v(Z53X10° — Xa) — Z3Y1°, Zs = Z3 (2)

where v = —2(Z}Ys + Z3Y1). Note that the cost of the conjugate addition
(2) using J is only 1M + 1S, which is significantly less than the cost of a
general addition (1) (i.e., 11M +55). If we also consider other usually neglected
operations, then the cost drops from 11M + 55 4+ 94 + 2(x2) + 1(x4) to only
IM + 1S +4A 4 1(x2).

It may seem that performing this conjugate operation would involve several
extra registers to store partial values temporarily. However, memory require-
ments can be minimized by performing P + @ and P — @} concurrently. For
instance, a possible 35-step execution sequence for computing P + @ using for-
mulas (1) and (@) would be as the one shown in Table

The execution of the addition/conjugate addition pair shown in Table 2 re-
quires 8 registers only (including temporary registers and registers storing input
coordinates). It is easy to verify that the memory requirement is the same as
that of the addition formula alone. Thus, executing the conjugate addition does
not increase the memory requirements in this case.

We have derived the conjugate addition formulas in projective coordinates
(i.e., J, JQ and Z& coord.), and also in affine for the three curves of interest. The
costs of these new formulas are summarized in Table[3l We have also included the

Table 2. Pseudocode of an ”interlaced” execution of an addition/conjugate addition
pair in J coordinates

INPUT: Ty «— X1,Tp «— Y1,T3 «— Z1,Ty «— X2,T5 «— Y2,Ts «— Z2
OUTPUT: Ty « X3,T2 « Y3,T3 «— Z3,Ty «— X4,T5 «— Y,

1. T7:T32 {212} 19. Ty =Ty +T% {B3+2222X1ﬁ2}
2. Ty=Tyx Ty {Z:Xo} 20. Ty = 4Ty {483% + 873 X1 5%}
3. Ts=T3 x Ty {Z}} 21. To=Ts —To {Z}Yo— Z3Y1}
4. T5 = T5 X Tg {ZfY2} 22. Te = ZTG {Oé}
5. Ts =T¢ {Z3} 23. Ts = —Ts —To {—(Z3Y2 + Z5Y1)}
6. Tr =Tr+Ts {27 + Z3} 24. Ty = 2T {7}
7. Ts=Ts+Ts {Z1 + Z2} 25. Ty =1T¢ {a?}
8. T3=T3 {(Z1+Z2)%y 260 v =T — Ty {X3}
9. Tz =Ts;— Ty {6} 27. Tr=To x Ty {Z3Y13%}
10. To = Ts x Ts {Z5} 28. To=Te —T1 {Z3X13* — X3}
11. T =Te x Ts {Z5Y1} 29. Ty =ToxTs {a(Z3X:16%— X3)}
12. Ts=Ti x Ts {Z2X1} 30, To=To—Tr {Y3}
13. T =Ty — Ts {6} 31. Te=T% v}
14. T3 =T3 x Ty {Z3 = Z4} 32. Ta=Te—T1 {Xu}
15. T3 =T7 {8%*} 33. Ts=Ts —Ts {Z3X13* — X4}
16. Ts = To x Tr {8%} 34 Ts=Ts x Tz {v(Z53X13* — X1)}

17. Ts =Ts x Ts {Z3X15°} 35. Ty =Ts—Tr {Ya}
18. Ty = 2T {273 X137}

76 P. Longa and C. Gebotys

Table 3. Costs of new conjugate additions for standard, Edwards and Jacobi quartic
curves using projective (J, ZE and J Q) and affine coordinates

Cost

Point O ti . .
ot Mipetation Standard curve Edwards curve Jacobi quartic

Conjugate addition (A’), P — P — P 1M + 1S aM 2M + 18
Addition (A), P+ P — P 11M + 58 9M + 15 7M + 38
Conjug. mixed addition (mA’), P — A — P 1M+ 1S 4M 2M + 18
Mixed addition (mA), P+ A — P TM + 45 8M + 1S 6M + 3S
Conjug. mixed addition (mmA’), A — A — P 1M+ 18 3M 1M+ 1S
Mixed addition (mmA), A+ A — P 4M + 28 8M 5M + 35
Conjugate addition (A’), A — A — A 2M + 18 4M 3M
Mixed addition (A), A+ A — A 1I+2M+ 1S 1I+9M + 1S 11 4+ 7M + 4S

P: projective coordinates (J, ZE or JQ coordinates).

costs of the traditional addition operations that accompany the execution of our
formulas. Note that, in some cases, the traditional operations have been modified
slightly so that the cost of the pair addition/conjugate addition is minimized.
Refer to Appendices A-C for complete details.

As it can be seen in Table[3] the new conjugate formulas introduce significant
cost reductions in comparison to traditional operations (see Table [I]). In the
following section, we take advantage of the latter to develop low-cost precompu-
tation schemes.

4 New Precomputation Method for Scalar Multiplication

In this Section, we apply the concept of conjugate addition to derive highly
efficient precomputation schemes first for tables of the form d; P and then for
tables of the form ¢; P + d; P. We consider three possible scenarios: precomputed
points are left in projective coordinates (referred to as case 1), precomputed
points are calculated in projective coordinates and then converted to affine using
one inversion (referred to as case 2), and precomputed points are computed and
left in affine (referred to as case 3).

4.1 Precomputation Scheme for Table of the Form d;P

Well-known methods to compute scalar multiplication using a precomputed ta-
ble with points d; P, where d; € {3,5,...,m}, are Window-w NAF (wNAF) and
Fractional Window-w NAF (Frac-wNAF), in the case of single scalar multiplica-
tion, and the Interleaving method, in the case of multiple scalar multiplication.

We propose a recursive scheme that first tries to reach a ”strategic” point
and then applies efficiently the conjugate addition technique described in Sec-
tion 3. In the following, we define as ”strategic” to those points that can be
efficiently computed and from which it is possible to calculate the maximum
possible number of precomputed points at the lowest cost. The steps of our
scheme are detailed in the following.

Novel Precomputation Schemes for Elliptic Curve Cryptosystems 7

Step 1: Computation of precomputed points. This is the main body of our scheme,
and is presented in Algorithm [l In this step, points can be computed in pro-
jective coordinates using operations from Table[I] (case 1), or directly in A (case
3). If projective points are to be converted to A (case 2), then Step 2 should be
executed right after.

Algorithm 4.1. Computation of precomputed points

Input: a point P in affine (A) coordinates, and an odd value m > 7
to build a table of the form d; P, where d; € {3,5,7,...,m}
Output: the table T = {Th = 3P, ..., T(;,—1)/2 = mP } in projective or A coord.

1. r=3,l=11t1=2,n=v=0

2: T():P,le’l“P

3: R=T%

4: While n < (m —3)/2 do

5: Ifm<2r

6: While n < (m — 3)/2 do

7 Ts=R+1T,

8: n=n+11l=0l4+1,s=s5+1
9: Else

10: t=2"

11: v=v+1

12: R =2R

13: r=2r,j=t—1, first =1

14: While j > 0 do

15: Ti:R—Tj,n:n—l-l

16: If first=1, thenl=j+1, s=r —1, first =0
17: i=1+4+1

18: If m>r+2j+1, then

19: T(T+2j>/2 =R+Tj,n=n+1
20: If T; =Tp, theni=1i+1

21: j=7—-1

22: Return T = {T1 =3P,...,Tm_1y/2 = mP}

Basically, Algorithm [Tl first reaches certain ”strategic” point and then com-
putes all the points that are close to it by efficiently performing additions and
conjugate additions. The ”strategic” points proposed in our scheme have the
form P, = 2P;, fori € ZZ > 0 and Py = 3P (i.e., 6P, 12P,24P, and so on),
which are computed using a combination of one tripling (performed at the be-
ginning, Step 2) and a sequence of doublings (Step 12). Note that there is a
minimum number of close points that makes the computation of a ”strategic”
point worthwhile. If that minimum is not fulfilled (evaluation in Step 5) then
the algorithm calculates the remaining points from the previous ”strategic” point
(loop beginning in Step 6). The value of such a minimum depends on the par-
ticular costs of point operations. For 7, JQ and Z&, we have determined that

78 P. Longa and C. Gebotys

the lowest cost is achieved if the next ”strategic” point is computed always that
the m value is greater or equal to such a ”strategic” point (condition in Step 5).
Let us illustrate the proposed scheme with the following example.

Ezample 1. If m = 13, Alg. [£1] computes the first points as P — 3P — 6P,
where 6P is the first ”strategic” point. From this, 5P and 7P (close points) are
calculated by adding 6 P+(—P) and 6 P+ P. Note that the latter operation can be
calculated with a conjugate addition, requiring a very low number of operations.
Then, Alg. 1] calculates the following ”strategic” point (since m > 12) by
doubling 6 P — 12P, and finally computes close points 9P, 11P and 13P by
performing 12P + (—3P), 12P + (—P) and 12P + P, respectively. Note again
that the latter operation is also a low-cost conjugate addition.

In Appendix D, we have sketched the derivation of points for tables with different
values m. Note that the method described does not include cases m = 3,5.
Computing the table for m = 3 only requires one mixed tripling. For case m = 5,
JQ and J coordinates, it is more efficient to compute points by performing
P — 2P — 4P, and then obtaining 3P and 5P with an addition/conjugate
addition pair (i.e., 4P + (—P) and 4P + P). For case Z&, we suggest to compute
the table following the sequence P — 2P — 3P — 5P.

In the following, we describe the procedure to convert points to A for case 2.

Step 2: Conversion to affine (if required). If mixed addition (or mixed DA) is
significantly more efficient than general addition (or general DA) in a given
setting, then it would be convenient to express the precomputed table in A.

It is known that conversion to A can be achieved by calculating (X;/Z2,
Y;/23), (Xi/Zi,Y:)Z2) and (Z;/ X, Z:)Y;) for J, JQ and ZE, respectively.

For each setting, calculation of denominators (denoted by w;) can be efficiently
carried out by using the well-known Montgomery’ simultaneous inversion method
so that the number of expensive inversions is limited to only one.

First, we compute the inverse U = (ujus...u;) !, where u; are all distinct
denominators of the expressions above from all the non-trivial points in the
table {3P,5P,...,mP}. For J and JQ, the number of such denominators is
reduced to only ¢t = (m — 1)/2 — ¢, where ¢ is the number of points computed
via conjugate addition, since points computed with addition/conjugate addition
pairs share the same coordinate Z (see Appendices A-B). For ZE, t =m — 1 as
each point has two distinct denominators, namely X; and Y;.

Then, individual denominators u; are recovered from U, and the results mul-
tiplied to their corresponding numerator following the conversion expressions.

As it can be seen the use of conjugate additions reduces the cost of the Mont-
gomery’s method for the cases of J and JQ coordinates. Following our explana-
tion above, it can be easily verified that one saves 3M + 1.5 per point computed
with a conjugate addition.

Cost Analysis. The cost of the scheme proposed mainly depends on the value
m in the precomputed table and the curve form selected. We list in Table @ the
costs in terms of number of operations for various values m. As operations in A

Novel Precomputation Schemes for Elliptic Curve Cryptosystems

79

Table 4. Cost of the proposed precomputation scheme: case 1 in projective coordinates
using J and J Q; case 2 using one inversion; and case 3 in A

m Point Operation Count Case 1 Case 2

J JQ J Jo
7 1mT+1D+1mA+1mA’ 17TM + 1758 15M 4 178 11 + 28M + 185 11 + 24M + 20S
9 1mT+1D+1mA+1mA +1A 27M + 218 22M 4 20S 11 +43M + 225 11 + 36M + 255
11 1ImT+1D+1mA+1mA’+2A 37M + 255 29M + 23S 11 +59M + 275 11 4 48M + 308
13 ImT+2D+2mA+2mA’+1A 39M + 31S 32M + 30S 11 4+ 63M + 32S 1I +53M + 355
15 ImT+2D+2mA+2mA’+1A+1A° 40M + 32S 34M + 32S 11 +67M + 33S 11 + 57M + 37S

Case 3

Point O tion C t
m Point Operation Count o oo

7 1T4+1D+1A+1A°

9 1T4+1D+1A+1A+1A

11 1T+1D+1A+1A42A

13 1T+2D+2A+2A+1A

15 1T4+2D+2A+2A+1A+1A°

31 +13M + 78
41 4+ 15M + 8S
5I +17M + 95
61 4+ 21M + 118
61 4+ 23M + 128

coord. are relatively expensive in Jacobi quartic and Edwards curves (see Table
[B), we only show the performance of case 3 in the setting of the standard curve.

Depending on the curve form selected, some additional considerations are
necessary. In the case of the standard curve using 7, if the evaluation stage uses
the efficient addition with two stored values, then values Z? and Z3 should be
computed during the precomputation stage. Naively, the latter would require
(IM + 15)(m — 1)/2. However, some additional cost reductions are possible.
First, the initial tripling computes the required values for point 3P (i.e., ng
and ng) without requiring extra operations. Also, one squaring can be saved
every time a doubling is performed to get any ”strategic” point since values
Z? are cached. Moreover, it is easy to see that addition and conjugate addition
formulas share the same coordinate Z (see Appendix A). Hence, we only require
1M +18 to get Z? and Z? for two points computed with an addition/conjugate
addition pair. Finally, when performing additions using a ”strategic” point @,
its values Z% and Z(?’2 are calculated in the first mixed addition, say Q + P =
(Xq,Yo,Zqg) + (z1,y1). Thus, following general additions of the form @ + R =
(Xq,Yq,Zg)+ (Xgr,Yr, Zr) can be executed using an addition with four stored
values, taking into account that R is a point from the table and that values Z%
and Z3, are, hence, precalculated.

Similarly, in JQ, if the evaluation stage uses the efficient addition with the
stored value (X;+ Z;)?, then these values should be included in the precomputa-
tion cost. We now describe a few optimizations to minimize this cost. First, one
squaring can be saved every time a doubling is performed to get any ”strategic”
point by noting that (X; + Z;)? can be cached from a previous mixed tripling
or mixed addition. Also, when performing additions with a ”strategic” point @,
the value (X¢g + Zg)? is calculated in the first mixed addition. Then, following
general additions with the same point @) save one extra squaring.

80 P. Longa and C. Gebotys

The costs including the savings described above are detailed in Table [, case
1. For the case where points are converted to A (case 2), we have to also consider
the cost of performing the Montgomery’ simultaneous inversion method (Step
2). The cost of the latter in J and JQ is given by Costy_4 = 11 + (6L —
3)M + (L) S and Costyoa = 11 + (5L — 3) M + (2L) S, respectively, where
L = (m—1)/2 and m odd > 5. However, as described in Section 4.1, Step 2, the
proposed scheme allows for some extra savings since points obtained through
an addition/conjugate addition pair share the same coordinate Z. The reduced
costs including these savings are given by

Costproposed 7—A = 1T + (6L —3c—3)M + (L—1¢)S (3)
Costproposed 70—A =11+ (BL —3¢—3)M + (2L —¢) S (4)

respectively, where ¢ denotes the number of points obtained using a conjugate
addition. In the case of ZE, the cost of the Montgomery’s method is as follows

Costzg—o =114+ (6L+[(L—2)/L1-1)M (5)

The total costs including conversion to A are given in Table [case 2. Note
that in this case addition operations with stored values do not apply.

4.2 Precomputation Scheme for Table of the Form ¢; P & d;Q

This scenario mainly applies to methods for computing multiple scalar multi-
plications such as those based on JSF [20]. In this case, the application of our
strategy of conjugate additions is straightforward since precomputed points have
the form ¢; P+d;Q, where ¢;,d; € {0,1,3,5,...,m}, and each two points cP+dP
having ¢, d # 0 can be computed with an addition/conjugate addition pair.

In the following, we analyze the cost involved when precomputing points for
the specific case of the efficient JSF-based algorithm by Kuang et al. [9]. Exten-
sion of the method to similar table forms easily follows.

Cost Analysis. If P and @ are unknown before the scalar multiplication is exe-
cuted, the points 3P,3Q,P£+Q,3P+Q,P+3Q,3P+3Q required by the method by
[9] need to be computed on the fly. The latter costs 2mT+2mmA+4mA+2A for
case 1 (when points are left in projective coord.). With the strategy of conjugate
additions, that cost reduces to 2mT+1mmA+1mmA’+2mA+2mA’+1A+1A".
Note that the advantage increases for case 2 as our approach allows saving some
operations during conversion to 4, as shown in Section 4.1.

In Table Bl we show the cost performance of the proposed scheme for the con-
sidered curve shapes. Note that, in the setting of J and JQ, we use again the
efficient addition formulas with stored values and, following the same procedure
described in Section 4.1, we have minimized the impact of the computation of
those partial values for case 1. For case 2 the conversion to A coordinates is
similar to that of the scheme from Section 4.1 and, hence, it follows the costs
given by @), @) and (@) for J, JQ and ZE, respectively. Again, as operations
in affine are relatively expensive in Edwards and Jacobi quartic curves, we only
show the performance of case 3 in the setting of standard curves.

Novel Precomputation Schemes for Elliptic Curve Cryptosystems 81

Table 5. Cost of the proposed precomputation scheme for the JSF3 method [9]: case
1 in projective coord. using J and J Q; case 2 using one inversion; and case 3 in A.

Curve form Point operations Case 1 Case 2 Case 3
Jacobi quartic (J Q) 41M + 35S 11 +T76M + 448 —
Edwards (Z€) 2mT+1ImmA+1mmA’+ 47M + 245 11 + 107M + 248 —
Standard (J) 2mA+2mA’+1A+1A° 42M + 32S 11 4+ 84M + 35S 61 4+ 30M + 16S

5 Performance Comparison

In this section, we analyze and compare the proposed approach with the most
efficient precomputation schemes available in the literature.

In the case of J, Longa and Miri [I3] recently proposed a highly efficient
scheme, which has been shown to achieve the lowest cost among methods using
only one inversion (case 2). The cost of this method (referred to as LM method
in the remainder) is given by (1M = 0.85)

Costrns, casez = 1+ (9L) M + (2L +6) S = 11 + (10.6L +4.8) M (6)

We now derive the cost of the LM method for case 1 using the traditional
chain P — 2P — 3P — 5P — ... — mP and the special addition due to [I5],
but avoiding the final conversion to .A. This involves one mixed doubling and L
special additions that cost 5M + 25. Also, the use of additions with pre-stored
values during the evaluation stage requires precalculating values Z? and Z3 with
a cost of L(1M + 15). Then the total cost is

Costin, caset = (6L +1)M + (3L +5)5 = (8AL+5) M (7)

Regarding Z€ and J Q, we could not find any literature related to precompu-
tation schemes in these settings. Hence, we analyze in the following the perfor-
mance of the straightforward implementation using the traditional chain given
above.

The cost of precomputation without using inversions (case 1) is given by

Costze, caser = (9L +2)M + (1L +3)S = (9.8L 4+ 4.4) M (8)
COSt‘jQ’ casel — (7L — 1) M + (3L + 7) S = (94L + 46) M (9)

for ZE and J Q coordinates, respectively. These costs are derived by adding the
costs of performing one mixed doubling, one mixed addition and (L — 1) general
additions. For case 2, the costs are given by

Costre, casez = 11+ (15.8L + [(L —2)/L] 4 3.4) M (10)

Costso, casez = 11+ (12L —4) M + (5L+7)S = 11 + (16L +1.6) M (11)

which are derived by adding the cost of performing the Montgomery’s method
of simultaneous inversion to equations () and ().

82 P. Longa and C. Gebotys

Table 6. Costs of various schemes in projective (case 1) and affine (case 2); 1M = 0.85

Case Method Curve form w =3 w=4 w =5 w =6
Proposed scheme JQ 10.6 M 28.6 M 59.6 M 116.6 M
Method (@) TR — 32.8M 70.4M 145.6 M

case 1 Proposed scheme €& 9.4M 28.4M 61.2M 121.6 M
Method (&) IE — 33.8M 73.0M 151.4M
Proposed scheme J 10.6 M 30.6 M 65.6 M 130.6 M
LM Method (@) J — 30.2M 63.8M 131.0M
Proposed scheme JQ — 11 +40.0M 11 +86.6M 11+ 173.6M
Method () T - 17 +49.6M 11+ 113.6M 11 + 241.6M

case 2 Proposed scheme 7E - 17 +46.4M 1I +103.2M 11 + 211.6M
Method (ml) &€ — 171 +46.8 11 4+ 102.0M 11 + 212.4M
Proposed scheme J 1I +10.2M 11 +42.4M 11 +93.4M 11 + 194.0M
LM Method @), [I3] J - 1T +36.6M 1I+79.0M 1I+ 163.8M

In Table [6, we compare the costs of the described schemes to that of the
proposed scheme from Section 4.1 for different windows w. Costs for the latter
method are derived from Table [and Appendix D. As it can be seen, the new
approach outperforms every other method in cases 1 and 2 for both Z& and
J Q. Note that the advantage increases with the window size. For instance, if
1I = 30M, the cost reduction can be as high as 25% (w = 6, J Q). Nevertheless,
in case 2 with Z&€ coordinates, both the proposed and traditional methods offer
comparable performance.

In the case of standard curves, the LM scheme still achieves the highest per-
formance. Nevertheless, for case 1, the modified LM scheme (7)) and the new
approach achieve similar performance.

In settings where inversions are not so expensive (low I/M ratios), it could
be attractive the implementation of case 3. In this case, Table [1 shows the
performance of the traditional approach and the proposed method on a standard
curve form. Also, the I/M ratios for which the traditional, the proposed and the
LM method achieve the lowest cost are shown at the bottom of the table. As
it can be observed, the LM method offers the highest performance for a wide
range of high I/M ratios on a standard curve, whereas the proposed method is
convenient for low/intermediate values I/M.

Table 7. Costs of different schemes in affine (case 3) and I/M ranges for which each
scheme achieves the lowest cost on a standard curve; 1M = 0.85

Method w=4 w=>5 w==6
Proposed scheme, case 3 31 +19.4M 61 +34.2M 111 4+ 60.2M
Traditional 4l +12.0M 81 +23.2M 161 + 45.6 M
I/M range (LM Method (@), [13]) I>8.6M I>9M I>104M
I/M range (Proposed, case 3) 7TAM < I <86M 55M <I<9M 2.9M <1 < 10.4M

I/M range (Traditional) I<7.4M I <55M I<29M

Novel Precomputation Schemes for Elliptic Curve Cryptosystems 83

Let us now compare the performance of our scheme for cases 1 and 2, to
determine the best scheme for each scenario. For this analysis, we should also
consider the scalar multiplication cost since different point operations apply to
different cases. Note that we only analyze the performance on Edwards and
Jacobi quartic curves, as these are the settings where our method has been
shown to attain the lowest costs (see Table [G]).

Let us consider the standard wNAF method. In this case, the cost of a scalar
multiplication is approximately

w=2_1)(p— n—
{nD + ((22'11172(111);:-1)1)) A+ (2“}52(111)1-1)> mA] —+ COStProposed, casel)
|:nD + (Z;i) mA] + C(OStPro;oosed, case;

for cases 1 and 2, respectively. Table B shows the performance of the scalar
multiplication including the costs of the precomputation schemes proposed in
this work, cases 1 and 2. As it can be seen, case 1 achieves the best perfor-
mance for most common I/M ratios if n = 160 bits. For higher security levels
(n = 512 bits), the difference between case 1 and case 2 reduces and, ultimately,
the most effective approach would be determined by the particular I/M ratio
of a given implementation. However, as the window size grows, case 1 would
be again largely preferred. Therefore, for applications where memory is not
scarce, case 1 would achieve the lowest cost. Similar conclusions are observed
for ZE coordinates, whose costs are not included in Table [§] because of space
constraints.

Finally, we analyze the performance of the proposed scheme for tables ¢; P +
d;Q. In this case, a multiple scalar multiplication using the JSF5 method [9] costs
approximately [nD + 0.3083 (n — 1)A + 0.0617 (n — 1)mA] + Costproposed, casel
and [nD 4 0.37 (n — 1) mA]| + Cost proposed, case2 for cases 1 and 2, respectively.
The latter can be reduced in the case of J coordinates if we consider the efficient
DA operation [I3]. The costs in this case are expressed by [(0.63n + 0.37)D +
0.3083(n — 1)DA + 0.0617(n — 1)mDA] + Costproposed, caser and [(0.63n +
0.37)D + 0.37(n — 1)mDA] 4+ Costproposed, case2-

Table 9 shows the performance of the scalar multiplication including the costs
of our precomputation scheme, cases 1 and 2. Similarly to the case of single
scalar multiplication (see Table[), case 1 achieves the best performance for most
common [/M ratios for n = 160 bits with JQ and Z& coordinates. However,
if n = 512 bits, the range of I/M ratios for which case 2 is more efficient

Table 8. Cost of scalar multiplication using wNAF and the proposed scheme (cases 1
and 2); and I /M range for which case 1 achieves the lowest cost on JQ coord

n = 160 bits n = 512 bits
Method
w=4 w=2>5 w=4 w=2>5 w =06
Proposed, case 1 1279.6 M 1265.4M 4035.7TM 3921.5M 3870.2M

Proposed, case 2 1I +1267.1M 11 4 1269.2M 11 4 3970.5M 11 + 3874.0M 11 + 3858.8M
I/M range (case 1) I > 12.5M I>0M I > 65.2M I > 47.5M I>11.4M

84 P. Longa and C. Gebotys

Table 9. Cost of multiple scalar multiplication using JSF3 and the proposed scheme
(cases 1, 2); and I /M range in which case 1 achieves the lowest cost on J, ZE and JQ

n = 160 bits n = 512 bits
Method
Jo e J JQ IE J
Proposed, case 1 1572.2M 1624.9M 1889.6 M 4886.7M 5062.0M 5840.2M

Proposed, case 2 114+-1565.4M 114-1635.9M 114+1796.8 M 1 [+4771.4M 114+4964.4M 11+5511.1M
I/M range (case 1) I > 6.8M I>0M I>928M I>115.3M I >97.6M I > 329.1M

increases significantly. Also, note that case 2 appears to be the best choice for
J coordinates for a wide range of I/M ratios.

As reference, the costs for 7 Q and J using a traditional chain for precompu-
tation are 1598 M or 1141594 M, and 1922M or 11+1849M, respect. (n = 160).

6 Other Applications

We have discussed the application of the strategy of the conjugate addition to
build efficient precomputation tables with the forms d; P and ¢; P£d;Q. However,
this technique can be easily applied to other table forms such as the one required
by the generalized JSF [19], which requires the computation of (3* —1)/2 — k
non-trivial points. For instance, for k = 3 scalars, the previous algorithm requires
the precomputation of P+ Q, P+ R, Q+ R, P+ Q + R, P — Q £+ R, which
costs about 10 general additions. With our strategy, the latter is reduced to only
5 addition/conjugate addition pairs (case 1). Note that the advantage grows
exponentially with the number of scalars.

Other obvious application is the extension of our strategy to other settings
such as binary fields. Let us illustrate the latter with the addition formula due
to [T4] and later refined by [5]. The cost of adding two points P + @ with the
latter formula takes 13M + 4.S. Then, if we need the value P — @ right after, we
can store most partial results from the original addition and obtain the previous
value with a cost of only 5M by noticing that —Q = (Xa, X5Z5 + Y2, Z5) in
Lopez-Dahab coordinates. Note that the partial term Y>2Z% from the original
formula is replaced by —Y2Z? = (XoZs + Y2)Z? = XoZ2 7% + Yo Z?%, which only
cost one extra multiplication. Straightforward generalizations of this technique
(and also of the proposed precomputation schemes) can be applied to other
coordinate systems and/or elliptic curve forms.

7 Conclusions

We have introduced an innovative technique based on conjugate additions that
can be efficiently exploited to reduce costs in a scalar multiplication. The rele-
vant formulas on three different settings (namely, standard, Jacobi quartic and
Edwards curves) over prime fields have been derived and shown to attain sig-
nificant cost reductions in comparison with traditional formulae. In particular,

Novel Precomputation Schemes for Elliptic Curve Cryptosystems 85

we have proposed novel precomputation schemes based on this technique. Our
analysis shows that the new schemes are especially attractive on the highly effi-
cient Jacobi quartic and Edwards curves, enabling even faster implementations.
Finally, we have also discussed other applications of the introduced strategy to
binary fields and other precomputation tables.

Acknowledgments. We would like to thank the Natural Sciences and Engi-
neering Research Council of Canada (NSERC) and the Ontario Centres of Ex-
cellence (OCE) for partially supporting this work. Also, after finishing this work,
we became aware of a similar idea proposed by M. Scott during a presentation
in ECC2008. He rediscovered the idea of exploiting similarities between P + Q)
and P — @ and suggested a slightly different sequence to precompute points.

References

1. Bernstein, D., Lange, T.: Faster Addition and Doubling on Elliptic Curves. In:
Kurosawa, K. (ed.) ASTACRYPT 2007. LNCS, vol. 4833, pp. 29-50. Springer,
Heidelberg (2007)

2. Bernstein, D., Lange, T.: Inverted Edwards Coordinates. In: Boztas, S., Lu, H.-
F(F.) (eds.) AAECC 2007. LNCS, vol. 4851, pp. 20-27. Springer, Heidelberg (2007)

3. Brown, M., Hankerson, D., Lopez, J., Menezes, A.: Software Implementation of
the NIST Elliptic Curves over Prime Fields. In: Naccache, D. (ed.) CT-RSA 2001.
LNCS, vol. 2020, pp. 250-265. Springer, Heidelberg (2001)

4. FIPS PUB 186-2: Digital Signature Standard (DSS). National Institute of Stan-
dards and Technology (NIST) (2000)

5. Higuchi, A., Takagi, N.: A Fast Addition Algorithm for Elliptic Curve Arithmetic
in GF(2") using Projective Coordinates. Information Processing Letters 76(3),
101-103 (2000)

6. Hisil, H., Wong, K., Carter, G., Dawson, E.: Faster Group Operations on Elliptic
Curves. Cryptology ePrint Archive, Report 2007/441 (2007)

7. Hisil, H., Wong, K., Carter, G., Dawson, E.: An Intersection Form for Jacobi-
Quartic Curves. Personal communication (2008)

8. Koblitz, N.: Elliptic Curve Cryptosystems. Mathematics of Computation, vol. 48,
pp. 203-209 (1987)

9. Kuang, B., Zhu, Y., Zhang, Y.: An Improved Algorithm for uP+vQ using JSFs.
In: Jakobsson, M., Yung, M., Zhou, J. (eds.) ACNS 2004. LNCS, vol. 3089, pp.
467-478. Springer, Heidelberg (2004)

10. Lim, C.H., Hwang, H.S.: Fast Implementation of Elliptic Curve Arithmetic in
GF(p™). In: Imai, H., Zheng, Y. (eds.) PKC 2000. LNCS, vol. 1751, pp. 405—421.
Springer, Heidelberg (2000)

11. Longa, P.: ECC Point Arithmetic Formulae (EPAF),
http://patricklonga.bravehost.com/jacobian.html

12. Longa, P., Miri, A.: Fast and Flexible Elliptic Curve Point Arithmetic over Prime
Fields. IEEE Trans. Comp. 57(3), 289-302 (2008)

13. Longa, P., Miri, A.: New Composite Operations and Precomputation Scheme for
Elliptic Curve Cryptosystems over Prime Fields. In: Cramer, R. (ed.) PKC 2008.
LNCS, vol. 4939, pp. 229-247. Springer, Heidelberg (2008)

http://patricklonga.bravehost.com/jacobian.html

86 P. Longa and C. Gebotys

14. Loépez, J., Dahab, R.: Improved Algorithms for Elliptic Curve Arithmetic in
GF(2"). Technical Report IC-98-39, Relatorio Técnico (1998)

15. Meloni, N.: New Point Addition Formulae for ECC Applications. In: Carlet, C.,
Sunar, B. (eds.) WAIFT 2007. LNCS, vol. 4547, pp. 189-201. Springer, Heidelberg
(2007)

16. Miller, V.: Use of Elliptic Curves in Cryptography. In: Williams, H.C. (ed.)
CRYPTO 1985. LNCS, vol. 218, pp. 417-426. Springer, Heidelberg (1986)

17. Moller, B.: Algorithms for Multi-exponentiation. In: Vaudenay, S., Youssef, A.M.
(eds.) SAC 2001. LNCS, vol. 2259, pp. 165-180. Springer, Heidelberg (2001)

18. Okeya, K., Takagi, T., Vuillaume, C.: Efficient Representations on Koblitz Curves
with Resistance to Side Channel Attacks. In: Boyd, C., Gonzdlez Nieto, J.M. (eds.)
ACISP 2005. LNCS, vol. 3574, pp. 218-229. Springer, Heidelberg (2005)

19. Proos, J.: Joint Sparse Forms and Generating Zero Columns when Combing. Tech-
nical Report CORR 2003-23, University of Waterloo (2003)

20. Solinas, J.: Low-Weight Binary Representations for Pairs of Integers. Technical
Report CORR 2001-41, University of Waterloo (2001)

A Conjugate (Mixed) Addition in Jacobian Coordinates

In the case of general addition, refer to equations (Il) and (2] in Section 3.

In the case of mixed addition, let P = (X1,Y1,Z1) and @ = (22, y2) be two
points on an elliptic curve E. If the mixed addition is performed using [12, for-
mula (16)] and the partial values (4% + 8X13%), 4X13?, —8Y133, Z3 and Z3}y»
are temporarily stored, the conjugate mixed addition P — Q = P + (-Q) =
(X1,Y1,21) + (w2, —y2) = (X4, Ys, Z4) can be performed as follows:

Xy =7 — (46° +8X18°), Yi =y(4X15° — X4) —8Y13°, Zy = Z3 (12)

where v = —2(Z{y2 + Y1). This formula only costs 1M + 15 + 44 + 1(x2).
B Conjugate (Mixed) Addition in JQ Coordinates

Let P = (X1,Y1,721,X%,7Z%) and Q = (X2,Ya, Z2, X2, Z?) be two points on a
Jacobi quartic curve. If the addition P + @ is performed using the following
formula due to [6]:

X3 = (a + 2Y1)(,6 + 2Y2) — Ckﬁ — 4}/1}/—27 Z3 = ¢ — 9,
Vs = (04 ¢+ 2a8)[4(X] + Z2)(X3 + Z3) + aaf + 4Y1Ys] — 16(X3 + Z3),
X?? = (X3)2’ Z?% = (Z3)27

(13)
where ¢ = 42272, 0 = AX2X2, a = (X1 + Z1)2 — (X2 + 22), B = (Xo + Zo)% —
(X2 + Z32), and the partial values 3, (a + 2Y7), 2Ya, a3, —4Y1Ys, (4X2X2 +
47372), 2a8, 4(X} + Z3) (X3 + Z3) + AY1Ya, aaB, Z3 and Z3 are temporarily
stored, then the conjugate addition P — Q = P+ (—Q) = (X1,Y1, 21, X2, Z3) +
(—Xo,Ya, Z2, X3,73) = (X4,Ys,Zs) can be performed with only 2M + 15 +
TA + 1(x16) as follows:

Novel Precomputation Schemes for Elliptic Curve Cryptosystems 87

Xy = (a+2Y1)(—B+2Y2) + af —AV1Ys, Zy = ¢ — 0 = Zs,
Yi=(0+ ¢ —2aB)[4(XF + Z7)(X5 + Z3) — aaf +4V1Y3] — 16(X] + Z3),
XZ% = (X4)2’ ZZ = Z?%v

(14)

In the case of mixed addition, let P = (X1,Y1, Z1, X2, Z%) and Q = (z2, y2, ¥3)

be two points on a Jacobi quartic curve. If the mixed addition P+ is performed
using the following formula due to [6]:

X3 = (Oé + 2Y1)($2 + yg) — QT — 2Y1y2, Z3 = 2(Z12 - X%JZ‘%),
V3 =2((X{23 + 27 + ax2)[2(X{ + Z7)(23 + 1) +a awa+2Y1y0] - 2(X3 + Z3)),
X% = (X3)27 Z:% = (Z3)27

(15)
where a = (X1 + Z1)? — (X? + Z?), and the partial values (a + 2Y7), axs,
—2Y1ye, (XP23 + Z3), (2(X?+ Z)(23 + 1) + 2Yiy2), aawe, Z3 and Z3 are
temporarily stored, then the conjugate mixed addition P — Q = P + (—Q) =
(X1,Y1, 21, X2, Z3) + (—x2,y2, 23) = (X4, Ys, Z4) can be performed with 2M +
18+ 7A + 2(x2) as follows:

X4 = (Oé + 2Y1)(—$2 + yg) + axo — 2Y1y2, Z4 = 2(Z12 - X%JZ‘%) = Zg,
Ya=2((XPws + 27 —aws) 2(XT + Z7) (25 + 1) —a aws + 2YV1yo] = 2(X] + Z7)),
Xﬁ% = (X4)2a Zﬁ% = Zl%

(16)

C Conjugate (Mixed) Addition in 76 Coordinates

Let P = (X1,Y1,Z1) and Q = (X2,Y2, Z5) be two points on Inverted Edwards
coordinates. If the general addition P 4+ @ is performed using the following

g

formula due to [2] (note that some terms have been rearranged to save a few
field additions):

X3 = [a+d(Z122)*(X1X2 — Y1Y2), Y3 = [a — d(Z122)?](X Y2 + X2Y1),
Zy = Z2125(X1 X2 — V1Yo)(X 1Y + XoY7),

(17)
where a = X;X5Y1Ys, and the partial values [X1X2Y1Ys + d(Z122)?], X1Xo,
Y1Ya, [X1X2Y1Ye — d(Z172)%], X1Ya, XoY7 and Z1Z, are temporarily stored,
then the conjugate addition P—Q = P+ (—Q) = (X1,Y1,Z1)+(—X2,Y2,Z5) =
(X4,Yy, Z4) can be performed with the following (with a cost of only 4M + 2A):

X4 = [a - d(ZlZQ)z}(XlXQ + Y1Y2), Y4 = —[0& + d(21Z2)2}(X1Y2 - X2Y1),
Zy = —Z1Z5(X1Xs + Y1Y2) (X Y2 — XoY1),
(18)
The formula for mixed addition can be obtained by setting Z5 = 1 in formula
([0 and has a cost of 9M +1S+4A. Then, if the partial values (X;22Y1y2+dZ?),
X129, Y192, (X122Y192 — dZ?), X1y2 and 22Y7 are temporarily cached, then the
conjugate mixed addition P — Q = P+ (—Q) = (X1,Y1,21) + (—z2,y2) =
(X4,Y4,Z4) can be performed by:

88 P. Longa and C. Gebotys

Xy=[X122Y1y2 — dZ7) (X122 + V1Y), Ya=—[X122Y1ys + dZ7](X1y2 — 22Y1),
Zy = = Z1 (X122 + Y1y2)(X1y2 — 22Y1),

(19)
which only costs 4M + 2A. We remark that memory requirements of the new
conjugate formulas can be minimized by performing P + @ and P — @ in an
"interlaced” fashion (see, for instance, Table [2]).

D Calculation of Precomputed Points

The table below shows the proposed precomputing sequences for various values
m. For m = 5 the first sequence corresponds to J and JQ, and the second one
to ZE. Tied arrows denote addition/conjugate addition pairs (or mixed addi-
tion/conjugate mixed addition pairs if performed with affine point P).

m Precomputation Scheme m Precomputation Scheme
oP 15P
o7

3 Predp 15 P —3P — & ——12P

TN Yy
sp 7P 1P 13P

P52 4 P 0P T IF
5 31{_\513 31{ \f‘SP 17 p o3P @ ——12P——17P
e Yy
sP P 1P 1P
w15
P3P 6P H/UP
7 e 19 P—>3P— 6P ——12P
5P P N = S op
sP P 1P B3P
19P 2P
or1Ip w15 2P | 2P
N A
P—3P =&

P33P > —>12P —>UP

11 N 29 N ‘N
SpP 5P 7P 1P 13P B 2P
17P
19P 2P
9‘; op 1% 21P | 2P
Ra—1
P—3P—> 6P ——12P P3P — 6P P 24P
13 = Y
5P 7P 1P 13P sP 7P 1P 13P 3P| 2P

17P 31P

Practical Secure Evaluation of Semi-private
Functions

Annika Paus, Ahmad-Reza Sadeghi*, and Thomas Schneider**

Horst Gortz Institute for IT-Security, Ruhr-University Bochum, Germany
{annika.paus,ahmad.sadeghi,thomas.schneider}@trust.rub.de

Abstract. Two-party Secure Function Evaluation (SFE) is a very use-
ful cryptographic tool which allows two parties to evaluate a function
known to both parties on their private (secret) inputs. Some applica-
tions with sophisticated privacy needs require the function to be known
only to one party and kept private (hidden) from the other one. How-
ever, existing solutions for SFE of private functions (PF-SFE) deploy
Universal Circuits (UC) and are still very inefficient in practice.

In this paper we bridge the gap between SFE and PF-SFE with SFE
of what we call semi-private functions (SPF-SFE), i.e., one function out
of a given class of functions is evaluated without revealing which one.

We present a general framework for SPF-SFE allowing a fine-grained
trade-off and tuning between SFE and PF-SFE covering both extremes.
In our framework, semi-private functions can be composed from several
privately programmable blocks (PPB) which can be programmed with
one function out of a class of functions. The framework allows efficient
and secure embedding of constants into the resulting circuit to improve
performance. To show practicability of the framework we have imple-
mented a compiler for SPF-SFE based on the Fairplay SFE framework.

SPF-SFE is sufficient for many practically relevant privacy-preserving
applications, such as privacy-preserving credit checking which can be im-
plemented with our framework and compiler as described in the paper.

Keywords: SFE of semi-private functions, Yao’s protocol, topology,
optimization, compiler, privacy.

1 Introduction

Two-party Secure Function Evaluation (SFE) is an important and wide area of
cryptographic research (see, e.g., [ISITOI3TITTI7I2]). It allows two parties to
securely evaluate a common function on their private inputs without involving
a trusted third party. The function is represented as a boolean circuit and eval-
uated based on a garbled version of the circuit which is created by one party
(constructor Bob) and evaluated by the other party (evaluator Alice). Usually
SFE hides the intermediate results but - as the function is known to both parties
- not the structure (topology) of the function.

* The author was supported by the European Union under FP6 project SPEED.
** The author was supported by the European Union under FP7 project CACE.

M. Abdalla et al. (Eds.): ACNS 2009, LNCS 5536, pp. 891106, 2009.
© Springer-Verlag Berlin Heidelberg 2009

90 A. Paus, A.-R. Sadeghi, and T. Schneider

In practice, however, a variety of business models require privacy properties
beyond the secrecy of parties’ input data to additionally keep the evaluated
function private. The underlying business motivations vary from commercial
incentives (e.g., protection of intellectual property) to pure security requirements
to reduce the probability of credential forgery or to make insider attacks obsolete.
Typical use cases are client-server applications where a user Alice inputs her
private data = (hidden to Bob), the server Bob inputs his private function f
(hidden to Alice), and the protocol outputs f(x) to both parties such that neither
party gain any information about the other party’s input. Prominent examples
are privacy-preserving trust negotiation schemes [3J6l4], credit checking [5], or
data classification using neural networks [16].

To allow SFE of a private function, called PF-SFE [§], a universal circuit (UC)
[I7U8IT6] is evaluated that simulates the function, and entirely hides the structure
of their circuit representation. UCs require a huge overhead of O(klogk) [17],
O(klog® k) [8], respectively O(k?) [16] additional gates, where k is the number
of gates of the simulated circuit.

Fairplay [13], a state-of-the art implementation of SFE, can evaluate functions
consisting of millions of gates whereas in FairplayPF [§], a recent implementa-
tion for PF-SFE, functions are restricted to a few thousand gates only due to
the huge overhead for evaluating UC. Hence, a better trade-off between maximal
performance (SFE) and maximal privacy of the evaluated function (PF-SFE) is
desired. For many practically relevant applications (e.g., those mentioned above)
it is sufficient that functions are only partly private, what we call semi-private
functions (SPF). Basically, these applications reflect the following scenario: A
user Alice has private data x, and a service provider Bob has a semi-private func-
tion f € F as input, where F represents a given class of functions. At the end of
the protocol, Alice obtains f(x) but not which specific f was evaluated and Bob
obtains no information on x. This problem, called secure function evaluation
of semi-private functions (SPF-SFE), can be reduced to Yao’s protocol where
circuit’s topology is revealed to the evaluator but the functionality of the gates
is hidden. Evaluator sees the circuit topology but can only guess which function-
ality each part of the circuit might evaluate. We concentrate on relaxed-security
model, i.e., security against malicious evaluator Alice and semi-honest (honest-
but-curious) constructor Bob. This model is widely used in current cryptographic
literature [I412/9] and well-justified in many practical applications where perfor-
mance is crucial and constructor Bob can be assumed to behave semi-honestly
by means of legal contracts or possible loss of reputation.

While SPF-SFE based on Yao’s protocol has been proposed as building block
in many applications (e.g., [BISI6I4IT6]), we give the first unified theory for SPF-
SFE. Extending and improving previously known techniques we present a general
theoretical framework for SPF-SFE together with a language and tools to specify
and automatically generate SPF-SFE protocols for practical applications.

Related Work. The idea of constructing circuits for a special class of functions
and evaluating them efficiently with Yao’s protocol in the relaxed-security model
have been used in several sub-protocols [BBIGJAISIT6]. Frikken et al. call the

Practical Secure Evaluation of Semi-private Functions 91

respective building blocks oblivious gates/circuits where evaluator does not know
the function that each gate/circuit computes. However, they only mention the
existence of several useful topologies like binary trees, comparison circuits, or
universal circuits together with their asymptotic size, but do not give explicit
constructions. We extend their basic ideas into a generic framework and provide
a wide class of functional blocks, each with a concrete efficient implementation
(topology, programming, and exact size), that can be arbitrarily combined to
represent semi-private functions in many practical applications.

Existing frameworks for secure computation based on Yao’s protocol are the
Fairplay SFE system [13] with a proposed extension to the malicious model [12]
and another extension to private functions with UCs (PF-SFE), called Fair-
playPF [8]. The Fairplay compiler includes an optimizer that optimizes on the
basis of the high-level Secure Function Description Language (SFDL) using peek-
hole optimization, duplicate code removal, and dead code elimination. In contrast
to this, our proposed optimization algorithm for constant inputs optimizes on
the lower abstraction level of circuits and can also be applied to further optimize
the output of circuits generated with the Fairplay compiler.

Our Contribution and Outline. We propose a general framework together
with a compiler for efficient secure function evaluation of semi-private functions
(SPF-SFE) in the relaxed-security model.

In §2we describe how common SFE can be extended with building blocks that
we call Privately Programmable Blocks (PPB) to allow practical secure evalua-
tion of semi-private functions (SPF-SFE). A privately programmable block (§4))
consists of a fixed topology of several programmable gates (with a small num-
ber of inputs) and can be programmed to evaluate different functions out of a
class of functions. The evaluator learns how the blocks are connected (topology)
but mot with which of the functions of their corresponding class of functions
the blocks are programmed. Hence parts of the function are hidden from the
evaluator while the topology is still revealed. In §5] we show how to design ef-
ficient constructions for PPBs that also allow to securely incorporate private
constants into PPBs and give concrete constructions that are of special interest
for practical applications. In particular we present efficient PPB constructions
to compare two numbers and a number with a private constant. Other efficient
PPB constructions for arithmetic operations (add or subtract two numbers/a
number and a private constant, multiply a number with a private constant) and
boolean operations are given in the full version of this paper [15]. Also switching
functions, e.g., permutation and selection blocks, as well as universal circuits
from [§] fit into this concept. The resulting SPF-SFE protocol is as efficient as
Yao’s SFE protocol while providing function privacy at the same time.

In §8 we present an optimization algorithm that incorporates constant inputs
into the circuit resulting in a circuit with less inputs and smaller size having a
topology which is independent of the values of the constant inputs. Besides the
well known propagation of constant inputs, our algorithm additionally eliminates
resulting gates with one input by incorporating them into surrounding gates
which results in smaller circuit size. The proposed optimization algorithm applies

92 A. Paus, A.-R. Sadeghi, and T. Schneider

no cryptographic modification of circuits and hence is of independent interest.
This optimization can be used in combination with Yao’s SFE protocol in the
relaxed-security scenario where constant inputs might be public values known
to both parties as well as the inputs of circuit constructor Bob.

In order to allow usage of SPF-SFE in many practical applications we present
a general compiler framework for secure evaluation of semi-private functions,
called FairplaySPF, based on the well known Fairplay SFE system [I3] as de-
scribed in §6l Our Secure Programmable Block Description Language (SPBDL)
allows to specify the topology of interconnected programmable blocks together
with their corresponding private programming. A compiler automatically com-
piles SPBDL descriptions to circuits described in Fairplay’s Secure Hardware
Description Language (SHDL). After incorporating Bob’s inputs into the cir-
cuit with the optimization algorithm presented in §8 the circuit can securely
be evaluated with the SPF-SFE protocol while hiding the programming. Also
a Universal Circuit (UC) that is evaluated in PF-SFE (cf. [§]) can be seen as
a PPB that is programmed with a private circuit (specified in SHDL). By in-
corporating UCs as programmable blocks into SPBDL, our framework becomes
a general purpose framework capable of expressing SFE, SPF-SFE, and PF-
SFE as well as arbitrary combinations of them where only sensitive parts of
the function’s structure are hidden as shown in the example in §71 This al-
lows a fine-grained trade-off between performance and privacy of the evaluated
function.

Our framework and compiler can be applied (combining SPF-SFE and PF-
SFE) to implement and improve efficiency of several applications such as privacy-
preserving credit checking [5], blinded policy evaluation [36/4], or secure data
classification [I6]. In §7] of this paper we concentrate on privacy-preserving credit
checking. Usually, before getting a loan from a bank a person has to reveal
a substantial amount of private information. This information has to satisfy
certain criteria that are defined by the bank. We show how SPF-SFE can be
used to securely evaluate the trustworthiness of a borrower while ensuring that
(i) the privacy of his input is preserved and (ii) nothing is revealed about the
criteria of the bank used for credit checking. Instead of using a UC for the whole
function as in PF-SFE we reveal the topology of the trivial part of the function
(e.g., comparing attributes with thresholds) and only hide the sensitive part in
a UC, which is much more efficient. The description of the function in SPBDL
can automatically be compiled into SHDL code with our compiler. This can be
obliviously evaluated in a one-round protocol.

2 Yao’s Protocol and Semi-private Functions

Yao’s Protocol. In the following, we concentrate on Yao’s protocol [18] for
SFE. Yao’s protocol is often called garbled circuit protocol as a garbled version
of the (boolean) circuit representing the function is created by one party (con-
structor Bob) and evaluated by the other party (evaluator Alice) as described
in the following. For each wire of the circuit, Bob uses two random bit strings

Practical Secure Evaluation of Semi-private Functions 93

(garbled values) that are assigned to the corresponding values 0 and 1, respec-
tively. Note, that the garbled values do not reveal to which value they correspond
as they are chosen randomly. Bob sends only the garbled values corresponding
to his inputs (garbled inputs) to Alice. For Alice’s inputs, Bob uses 1-out-of-2
oblivious transfer (OT) to send Alice only the garbled values corresponding to
her inputs without Bob learning which strings she gets. Additionally, for each
gate G; of the circuit, Bob creates and sends to Alice a garbled table T; with
the following property: given garbled values for G;’s inputs, T; allows to recover
only the garbled value of the corresponding output of G; and nothing else. Af-
terwards, Alice uses the received garbled values of the input wires and garbled
tables T; to evaluate the garbled circuit gate by gate. The output wires of the
circuit are not garbled (or the mappings from garbled values to values 0 and 1
are published by Bob), thus Alice learns (only) the output of the circuit, but
no plain values of internal wires (only garbled values). Correctness and security
against semi-honest adversaries of Yao’s protocol are proven in [I0]. It is easy
to show that Yao’s protocol is even secure against malicious Alice, i.e. relaxed-
secure, as the only message Alice sends to Bob is within the OT protocol where
Alice is unable to cheat successfully if the OT protocol is secure against malicious
Alice [, Appendix A]. An efficient OT protocol with relaxed-security is given
in [2].

Yao’s protocol is the kernel of existing implementations of SFE protocols
[13/12] which also extend it to be secure against malicious constructor Bob via
cut-and-choose, e.g., multiple circuits are garbled, correctness of some of them
is verified by revealing all garbled input values (called open), and the remaining
ones are evaluated. As justified in the introduction, we concentrate on the plain
Yao’s protocol (secure against semi-honest Bob and potentially malicious Alice)
where only one circuit is evaluated and no circuits are opened.

Yao’s Protocol for Semi-Private Functions. Observe, in Yao’s protocol the
garbled tables T; consist of symmetric encryptions of the garbled output value
using the corresponding garbled input values as keys. Alice can use these garbled
input values to decrypt exactly the one garbled output value corresponding to
these keys. All other garbled output values, i.e., entries of the garbled function
table remain hidden from Alice and hence she cannot determine the type of the
gate. The only information Alice learns about the function in Yao’s protocol is
the topology of the circuit, i.e., the way the different gates are connected and
how many inputs each gate has.

When Alice obtains a garbled circuit from Bob, she can guess from its topology
what functionality the circuit evaluates, e.g., chains of 3-input gates might be an
integer comparison circuit. This can be exploited constructively by Bob to keep
parts of the function private, we call this a semi-private function, as follows.
Bob composes his intended functionality from blocks with a fixed topology that
can evaluate different functionalities each, called privately programmable blocks
(PPBs) as explained in §41 The maximum amount of information Alice can gain
from the topology of a PPB is the set of functionalities the PPB might compute
but not the specific functionality chosen privately by Bob.

94 A. Paus, A.-R. Sadeghi, and T. Schneider

From combining these two arguments follows that evaluation of a circuit,
composed out of several PPBs representing the semi-private function, with Yao’s
protocol is a secure protocol for SPF-SFE.

Additionally, (semi-honest) Bob can incorporate his input values into the
circuit before garbling the circuit if they are already known at that time. In
g8 we give an algorithm for efficient optimization of circuits for Bob’s (constant)
inputs together with an example. The optimization only depends on the topology
of the original circuit but not on Bob’s input values and hence the optimized
circuit does not reveal more information on Bob’s input values than the original
circuit. After this optimization, Bob no longer needs to transfer the garbled
values corresponding to his input values to Alice and also the size of the circuit
is reduced (resulting in less communication and computation).

3 Definitions and Preliminaries

Let x € [0,2°) be an unsigned /-bit integer value and = = (x1, .., x¢), ; € {0,1}
its corresponding representation as bit vector, i.e., z = 25:1 x;2°1. The length
of x is |x| = £. We draw a (single) wire with one-bit value as —. As usual,

multi wire X with ¢-bit value x is drawn as _}lL» and consists of ¢ wires indexed
by X[i], i =1,..,¢ with values z;.

A gate G with degree d has d inputs and one output. It is the implementation
of a boolean function g : {0,1}¢ — {0,1}. As special case, a constant gate has
no inputs (d = 0) and outputs a constant value. The size of a gate G, denoted
by |G|, is the number of function table entries needed to implement the gate,
namely |G| = 2¢. A gate with e > 0 outputs can easily be combined from e gates
with one output resulting in size e - 2.

We consider acyclic circuits consisting of connected gates with arbitrary fan-
out, i.e., the output of each gate can be used as input to arbitrary many gates.
The size of a circuit, denoted by |C], is the sum of the sizes of its gates. Note,
communication and computation complexity of efficient SFE protocols is linear
in the size of the circuit.

A block BY is a sub-circuit with w inputs inq, .., in, and v outputs outy, .., out,.
BY computes function fp : {0,1}* — {0,1}" mapping input values to output
values. Blocks consist of connected gates and other sub-blocks. Size of block B,
denoted by |B|, is the sum of the sizes of its sub-elements.

A programmable gate (PG) is a gate with an unspecified function table. Pro-
gramming it is done by providing a specific function table with 27 entries (one
entry for each input combination). The concept of PGs corresponds to a universal
circuit for simulating a single gate in Valiant’s UC construction [I7]. As described
in the previous section, in SPF-SFE evaluator Alice is not able to extract the
corresponding function table (program) from PG. Analogously, a programmable
block (PB) is a block consisting of programmable gates or programmable sub-
blocks. It is programmed by programming each of its sub-elements. As described
before, in SPF-SFE evaluator Alice is unable to extract the program from PB.

Practical Secure Evaluation of Semi-private Functions 95

4 Privately Programmable Blocks

In this section we present the concept of Privately Programmable Blocks (PPB)
for constructing semi-private functions. Using our efficient PPB constructions
given in 5] with the SPF-SFE protocol of §2 allows to preserve the privacy of
the function while the protocol remains as efficient as SFE protocol.

Definition 1. A Privately Programmable Block (PPB) is a programmable block
which can be programmed to compute any function [of a given class of functions
F (e.g., F ={ADD,SUB}) with a corresponding program py (e.g., f = ADD).
We write PPBY for a PPB which is programmed to compute f:

Vf e F,¥(iny,..,in,) € {0,1}*: PPB (iny, ..,iny) = f(ing, .., in,).

As explained in § before, in SPF-SFE the function to be evaluated is composed
of several PPBs. Evaluator Alice learns how the PPBs are connected (topol-
ogy), but the programming of the PPBs remains to be private information of
constructor Bob (that’s why PPBs are called privately programmable). Alice
can infer from the topology of a PPB at most the class of possible functional-
ities F but not the specific functionality f chosen by Bob. Hence, from Alice’s
point of view the PPB can compute any functionality from F and the amount
of information hidden inside the PPB is log, |F| bits. For a semi-private func-
tion which is composed from programmable blocks PPB, .., PPB,,, the program
of each PPB can be combined with any programming of the other PPBs and
hence the maximum (as some combinations might not make sense depending on
the application) amount of information hidden in the semi-private function is
logy (| F1] - .. | Ful) = o1 log, | F5| bits. Clearly, if this is not large enough (i.e.,
if the number of PPBs n or number of possible functionalities of PPBs |F;| is
small), Alice might guess the correct function with high probability or probe the
system via exhaustive search which must be prohibited by other means.

Universal Circuits (UC) indeed are special PPBs that can be programmed
to compute an arbitrary function. UC} is capable of simulating any function
corresponding to a circuit with up to k gates with two inputs each. UCs provide
full privacy of the evaluated function as the topology is hidden entirely. How-
ever, they cause a huge overhead by increasing the size of the evaluated circuit
by O(klogk) [I7], O(klog® k) [8], or O(k?) [16] additional gates which is often
intolerable in practice. Evaluating a UC programmed with a private function
known by constructor Bob with a SFE protocol is called Secure Evaluation of
Private Functions (PF-SFE). By combining the PPBs presented in this paper
with UCs, users can find a fine-grained trade-off between efficient PPB construc-
tions for semi-private functions (SPF-SFE) and less efficient UC constructions
for completely private functions (PF-SFE) as explained in §7

Simple PPB Construction. A straight-forward implementation of a PPB
for a class of n arbitrary functionalities F = {fi, fa, .., fn} can directly be de-
rived from the definition of PPBs in Definition [I] as shown in Fig. Each
functionality f; is computed by a circuit C; and a n : 1 multiplexer (MUX) is

96 A. Paus, A.-R. Sadeghi, and T. Schneider

in

U

PPBsmlple in
U
C”L PPBefficzent
Pyt MUX | L {c]
Av Lo
out out
(a) Simple PPB construction (b) Efficient PPB construction

Fig. 1. PPB constructions

programmed to select the intended output. The MU X block can be constructed
from v parallel selection blocks ST (as defined in [8]) for each of the v outputs
that can be programmed to select any of their n inputs as outputs.

If the program p; is known by Bob beforehand it can directly be incorporated
into the circuit as described in §81 After optimization, each of the v selection
blocks consists of a chain of n — 1 programmable 2-input gates which can be
programmed to select either their left or right input as output each [8]. The size
of this simple PPB construction is ‘PPBSimple’ =do(n—1)+ 3", |Cil.

Efficient PPB Constructions. Efficient PPB constructions can be obtained
by choosing special classes of functionalities having circuits with the same (or at
least a similar) topology. This allows to re-use (parts of) the same circuit C' for
the different functionalities f; as shown in Fig. For instance, the topology of
an adder is the same as that of a subtractor and hence for F = {ADD, SUB} the
same topology can be used. Based on the intended functionality f € F, the sub-
elements of C' are programmed differently while the topology is the same. This
efficient PPB construction has size |PPBicient| — |C| ~ |Cy| < |[PPB*™!|.

When a private constant ¢ is incorporated into a PPB, the value of the con-
stant can not be extracted from PPB’s topology and hence is hidden from Alice
in the SPF-SFE protocol, e.g., circuits to add/subtract an input with a s-bit
constant ¢ have the same topology. To simplify notation, we parametrize the
class of possible functionalities with parameter ¢ and write F. = {fi,, .., fnc}
for F = {fl‘c:Ov (X3} fl‘c:stlu f2‘c:07 (X3} f2|c:2a‘717 ey fn|c:07 3 fn‘c:stl}u e€.g.,
F. ={ADD,.,SUB.} in the example given above. The amount of information
hidden inside a PPB is

logz | F| = loga | Fe| + |c| = logy(n) + s bits. (1)

5 Practical Efficient PPB Constructions

In this section we show how to construct several efficient PPBs that are useful in
practical applications (cf. §1]). All these building blocks are already implemented
in our framework for practical SPF-SFE described in §6l In the following we

Practical Secure Evaluation of Semi-private Functions 97

present two efficient PPB constructions for arithmetic operations: compare two
numbers and a number with a private constant. Other efficient PPB construc-
tions for arithmetic operations (add or subtract two numbers/a number and a
private constant, multiply a number with a private constant) and boolean opera-
tions are given in the full version of this paper [15]. Our SPF-SFE framework also
provides PPBs for Switching Functions (i.e., permutation and selection blocks)
and Universal Circuits for which we refer to the definitions, descriptions, and
constructions in [§]. A list of efficient PPB constructions provided for implemen-
tation in our framework is given in the full version of this paper [15].

For each PPB we give the Interface specifying the functionality of the block, its
number of inputs and outputs, and the different possibilities for programming
Fe. The Implementation describes the topology of the corresponding efficient
PPB construction, how to program it, and its size. The inputs are called x, y
and the potential private constant is called ¢, where |z| = m, |y| = n, and
|c| = s. To simplify presentation we assume w.l.o.g. m = n, respectively m = s
in the following descriptions. The other cases can easily be derived from these by
padding the shorter input with zeros and optimizing constant inputs afterwards
as described in §8 Recall, evaluator Alice can neither extract the chosen function
fe € Fe, nor the value of the possibly embedded private constant ¢ € {0,1}%,
from the topology of any PPB. The amount of information hidden inside the
PPB is given by equation ().

The main idea underlying efficient PPB constructions is to combine func-
tionalities that have structurally equivalent recursive definitions that directly
translate into programmable gates of equivalent topologies. E.g., comparison if
two m-bit numbers x, y of bitlength m are less or equal is defined recursively as

(‘T S y) < <<‘Tm < ym) \ ((‘Tm = ym) A ((‘Tm,h ~7$1) S (ymfla 7?41)))) (2)

Whether two numbers are greater or equal is defined recursively as

(2 9) & (@n >) V (@0 = y) A(@ntses21) = Gt 9)) - (3)

which is structurally equivalent and translates into the same topology (Fig. [2(b))).

5.1 PPB:COMP - Compare Two Numbers

Interface (Fig. 2(a)]). PPBcomp implements z = f(x,y) = x > y, where
X € {<,>,=,<,>,#} and |z| = 1. The corresponding class of functions is

F={L,G,E,LE,GE,NE}.

Implementation (Fig.[2(b)]). Topology of PPBcomp consists of a chain of m
programmable gates PG; (full comparers) with input bits x;, y;, and carry-in t;_1
and output carry-out ¢;. The output of PPBconmp is 2 = t,, and the first carry
to = 1 can be directly incorporated into PG. The carry t; propagates whether
for the i least significant bits z«; = = mod 2% and y.; = y mod 2° the correspond-
ing relation is fulfilled (¢; = 1) or not (¢; = 0). In the following we describe the

98 A. Paus, A.-R. Sadeghi, and T. Schneider

T
g Jm
Tm Ym To Y2 & n
COMP i 4 o 2y
tm PG, L2 pa, Y pa,
{L,G,E,LE,GE,NE} 17
i z
(a) Interface (b) Topology

Fig. 2. PPB:COMP

programming for the cases =, <, and >; the corresponding cases #, >, and < can
be easily derived from this by negating output ¢,, in PG,,. In case f = E, PG;
is programmed to compute t; = (x; = y;) A (2<; = y<i) = (& = yi) A ti—1.
Analogously, in case f = LE, PG; computes t; = (z; < v;) V [(x; = yi) A ti—1]
and in case f = GE, PG, computes t; = (x; > y;) V [(z; = y;) Ati—1]. Note, these
function table entries correspond exactly to the recursive definitions in equation
@) and (@). This block has size |PPB comp| = (m — 1) - 23 + 22 = 8m — 4.

5.2 PPB:COMPc - Compare Number with Private Constant

Interface (Fig. [3(a)). PPBcomp. implements z = f.(x) = x > ¢, where
X € {<,>,=,<,>,#}, cis a private constant hidden inside PPB, and |z| = 1.
The corresponding class of functions is . = {L.,G., E., LE.,GE., NE_}.

Implementation (Fig. [3(b)]). Topology of PPBcompe is exactly the same
as that of PPBcoyp described in the previous section, however, each pro-
grammable gate PG; has no input for y; which is replaced by the internal con-
stant ¢;. The programming is the same as for PPB ¢opp with constant ¢; instead
of input y;. This block has size |PPB compe| = (m — 1) - 22 + 21 = 4m — 2.

x
A x x x
m 2 1
COMP, ¢) 4 v
bl PGy | - <2 PGy W PG,y
{Lo,GosBo, LB GE,NE.) '
! :
(a) Interface (b) Topology

Fig. 3. PPB:COMPc

6 FairplaySPF - A General Framework for SPF-SFE

We have implemented a general framework for Secure Evaluation of Semi-Private
Functions (SPF-SFE) called FairplaySPF [by extending the Fairplay SFE

! FairplaySPF is available for download at http://www.trust.rub.de/FairplaySPFL

http://www.trust.rub.de/FairplaySPF

Practical Secure Evaluation of Semi-private Functions 99

framework [13], both written in JAVA. Fairplay provides two languages: The
high-level Secure Function Description Language (SFDL) allows users to spec-
ify the functionality to be computed with elements known from other high-level
hardware description languages like VHDL or Verilog (e.g., variables, arrays,
procedures, arithmetic- and logic expressions, control structures, etc.). Fairplay
optimizes the function described in SFDL and automatically transforms it into
a boolean circuit described in Fairplay’s low-level Secure Hardware Description
Language (SHDL). This language consists of wires, input wires, gates, and out-
put gates only. Using the SHDL circuit as input for both parties, Alice and Bob
invoke their respective programs of the Fairplay runtime environment to exe-
cute the two-party SFE protocol. These programs evaluate the function on their
respective private inputs over a TCP connection.

FairplaySPF Framework. In FairplaySPF, we extend the Fairplay framework
[13] to secure evaluation of semi-private functions that are known to Bob only. In
the following we describe the workflow of the FairplaySPF framework. Bob com-
poses his semi-private function from several available privately programmable
blocks (as described in §5]) in our newly designed Secure Programmable Block
Description Language (SPBDL) explained later in this section. Our FairplaySPF
compiler automatically translates this SPBDL program into an SHDL circuit.
Alternatively, SHDL circuits that are generated by the original Fairplay compiler
from SFDL descriptions can be used. Bob’s private input data is automatically
incorporated into the SHDL circuit and optimized afterwards by the FairplaySPF
circuit optimizer as described in §8 resulting in a smaller SHDL circuit. This
optimized SHDL circuit (containing the combination of Bob’s semi-private func-
tion and his private data) is evaluated by the FairplaySPF runtime environment
(RE) which is only a slight modification of the Fairplay RE for semi-private
functions: In FairplaySPF RE only Bob inputs the SHDL circuit but not Alice.
The topology of the circuit (but without the types of the gates) is sent to Alice
and afterwards the SPF-SFE protocol as described in §2] is executed between
Alice and Bob over a TCP connection.

Secure Programmable Block Description Language (SPBDL). Our
new SPBDL language allows to easily specify semi-private functions by com-
bining different PPBs. SPBDL extends the basic functionality of SHDL to input
wires (input), multi-wires (vector), privately programmable blocks (block),
programmable gates (gate), and output wires (output). The formal specifica-
tion of the syntaz of SPBDL in Extended Backus-Naur Form (EBNF) is given
in the full version of this paper [I5]. In the following, we briefly describe the
semantics of SPBDL. Please see Fig. M for an example SPBDL description of a
semi-private function. As in SHDL, each line of a SPBDL program starts with
a line number beginning with 0. In following lines, this number refers to the
output of the element defined in this line. Line comments start with //.

A SPBDL program starts with the definition of inputs as input Player [w],
where Player defines from which party the input is given (alice or bob). The
optional parameter [w] specifies that the input consists of w bits (default w = 1).

100 A. Paus, A.-R. Sadeghi, and T. Schneider

Afterwards, three kinds of elements can be specified - gate, vector, and block:
A programmable gate is defined as gate in [Wires] p [Bits], where Wires is
its list of inputs and Bits is the programming of its function table. A list of Wires
can be grouped into a vector with vector [Wires]. The single wires of a vector
can be accessed via Vector.Index, e.g., 4.2 denotes the second wire of vector 4.
A PPB is defined as block [Btype] out Num in [Vects] p [Bprogl, where
Btype is the type of the PPB (e.g., comp for PPBcoump described in §H), Num
specifies the number of output bits, and Vects is the list of input vectors. The
programming of the PPB specified in Bprog depends on the type of the PPB
Btype. All types of PPBs Btype and corresponding programming parameters
Bprog available in SPBDL are given in the full version of this paper [15]. Finally,
outputs are defined as output Player Vect, where Player defines which party
obtains the output (alice or bob) and Vect is the vector to be output.

7 Applications

Our general framework and tools for SPF-SFE presented in this paper can be
used to specify and implement many privacy-preserving applications. Examples
are Blinded Policy Evaluation [3I6/4], Privacy-Preserving Credit Checking [5], or
provably secure evaluation of Private Neural Networks [16].

In the following we concentrate on privacy-preserving credit checking [5] which
demonstrates how the evaluated function can be partitioned into semi-private
and private parts which are both supported by our framework.

Privacy-Preserving Credit Checking. Typically, before granting a loan from
a lender (Bob), the credit worthiness of the borrower (Alice) is checked to have
the confidence that she will be able to pay it back later. The borrower is asked for
her credit report that contains a large amount of private information including
for example gender, age, income, salary, or other sensitive information like how
many trade lines she owns, the number of overdrafts, or the number of late
payments. However, revealing this data should be avoided as the lender may not
always be a credible organization or, even worse, dishonest employees (so called
insiders) could sell such private information on customers to third parties.

Additionally, the evaluation criteria of the lender are highly sensitive informa-
tion that must be protected as revelation of these may cause loss of intellectually
property or loss of repudiation for the lender.

As suggested by Frikken et al. [5], this scenario can be reduced to SPF-SFE,
where Alice inputs her private credit report and Bob evaluates his semi-private
function that checks if the credit report fulfills his criteria. To ensure that Alice
inputs correct data into the SPF-SFE protocol, the authors describe how to
replace the oblivious transfer step by a Credit Report Agency, i.e., a trusted
third party, that checks and accredits Alice’s inputs instead.

Bob’s semi-private credit checking function can be expressed in our framework
for SPF-SFE as shown in the tiny example of Fig. M which is due to space
limitations not intended to give the complete solution but merely to show the

Practical Secure Evaluation of Semi-private Functions 101

credit_req age gender
416 0 input alice [7] // age
COMEF. ¢=18|[COME. c=65 1 input alice // gender
GE, L. 2 input alice [16] // credit_req
|_l 3 block [compc] out 1 in [0] p [GE 18]
4 block [compc] out 1 in [0] p [L 65]
BOOL)
& 5 block [bool] out 1 in [4 1] p [AND]
I 6 vector [2 3 5]
[ife] k=50 7 block [uc] out 1 in [6] p [50 f.shdl]
[f-shdl 8 output alice 7 // credit_grant
9 output bob 7 // credit_grant

credit_grant

Fig. 4. Example for Privacy-Preserving Credit Checking

main concepts. The upper part of the circuit performs some obvious computation
on Alice’s data, e.g., compare her age with a private constant, or combine this
result with her gender. The sensitive information in this part of the function
are the private constants, e.g., grant credit only to female persons (gender = 1)
that are younger than 65 (age < 65), which are hidden from Alice, whereas the
obvious topology can safely be revealed.

The highly sensitive part of the functionality that combines these results de-
pending on the amount of credit requested (credit req) is hidden entirely from
Alice within the universal circuit UC. This PPB can be programmed to com-
pute any functionality computable by a circuit of up to k = 50 gates with arbi-
trary topology. The specific functionality intended by Bob is the SHDL circuit
described in f.shdl, which can automatically be generated from a high-level
description in SFDL with the Fairplay compiler.

This example shows how our framework for SPF-SFE can be used to imple-
ment an application-specific, reasonable tradeoff between efficiency while reveal-
ing irrelevant information (SPF-SFE with PPBs) and complete function privacy
(PF-SFE with UC).

Comparison of SPF-SFE and PF-SFE. Revealing the topology of obvious
parts of the functionality while hiding the sensitive parts in a UC results in a
smaller circuit as UC overhead can be substantially reduced due to less simulated
gates k and less inputs into UC. This reduced size of the evaluated circuit directly
translates into corresponding speedups in any implementation of the underlying
SPF-SFE protocol as their performance must be at least linear in the size of the
evaluated circuit.

As concrete example, Table[I] shows the number of gates that can be saved in
the privacy-preserving credit checking example of Fig. [d compared to hiding the
functionality entirely in a UC in PF-SFE. For different maximum size k (row A)
of the part of the functionality which is hidden in UC we give the achieved
performance improvements when extracting the obvious part of the functionality
into the upper part of the circuit (COM P, blocks and BOOL block in Fig. [).
In our example, these blocks consist of 14 gates, i.e., row B contains the fraction

102 A. Paus, A.-R. Sadeghi, and T. Schneider
Table 1. Improved UC Overhead in the Example of Fig. @

A) Gates hidden in UC, k 25 50 100

B) Gates extracted, 14/(k + 14) 35.9% 21.9% 12.3%

) UC overhead in PF-SFE (UC type) 1,861 (M3) 3,720 (M3) 8,264 (M3)

D) UC overhead in SPF-SFE (UC type) 850 (M1) 2,571 (M3) 6,797 (M3)
)

E) Improvement SPF-SFE vs. PF-SFE 1,011 (54.3%) 1,149 (30.9%) 1,467 (17.8%)

of the functionality which is revealed: 14/(k+14). Row C shows how many gates
are needed to hide the whole functionality of 14+ k gates in a UC with 24 inputs
(for credit req, age, and gender) using the most efficient UC construction of
[16] which is denoted in parentheses. Row D shows how many gates are needed
to implement the UC in our mixed approach as shown in Fig. 4 where UC has
18 inputs and simulates k gates. The resulting improvements compared to the
PF-SFE solution (row E) supersede the fraction of the gates extracted (row B)
as the number of inputs into UC is also reduced.

8 Optimization of Circuits with Constant Inputs

We describe a general optimization algorithm that incorporates constant inputs
into a block (sub-circuit) B. The topology of the resulting optimized block By,
is independent of the values of the constant inputs and its number of inputs and
size are smaller, i.e., the number of gates respectively their degree is reduced as
shown in Fig.[Bl Besides the well known propagation of constant inputs (step 1),
our algorithm additionally eliminates resulting gates with one input by incorpo-
rating them into surrounding gates (steps 2 and 3), which results in a smaller
circuit size. The optimization algorithm is a non-cryptographic transformation
of circuits and hence of independent interest. As outlined in §2, one possible

m1m|2m4 WILEJ |m6 iny ing iNg 'L'n|5 NG
|

..... pred(Gr) G;I

suce(Gr)
| E

input-gate
output-gate

v v ooy v v v
outy outy outs outy outs outy outy outz outy outs
(a) Block with constant inputs ins and inz (b) Block after optimization

Fig. 5. Example for circuit optimization with Algorithm [I]

Practical Secure Evaluation of Semi-private Functions 103

application is to use this optimization to improve Yao’s protocol. In this appli-
cation, constant inputs might be public constant values known to both parties
as well as the private inputs of (semi-honest) circuit constructor Bob (if known
at the time of construction of the garbled circuit).

Terminology. The following terminology is visualized in Fig. Assume the
gates G;, i = 1,..,n of a block B are numbered in topological order, i.e., gate G;
has no inputs that are outputs of gates with larger index G~;. Otherwise, this
order can be obtained efficiently via topological sorting in O(n).

An output gate is a gate whose output is also an output of B. Similarly, an
input gate is a gate, which has at least one input that is also an input of B. For
gate G;, pred(G;) denotes the set of its predecessors, i.e., gates whose output is
an input into G;. Analogously, succ(G;) denotes the set of G;’s successors, i.e.,
gates having the output of G; as input. The fan-out of a gate G; is the number
of its successors, i.e., fanout(G;) = #succ(G;).

Optimization. We refer to the running example of Fig.[Blthat optimizes a block
B with constant inputs in3 and iny in the following description of Algorithm [l

Step [l - Eliminate constant inputs. The first step of Algorithm [eliminates
all constant inputs c;, 7 = 1,..,c of block B with respective constant value
vj € {0,1}. For all gates G; with degree d; having ¢; as k;-th input, the function
eliminateConstInput(G;, k;, v;) is called that eliminates the corresponding
input of G;. Only the lines of the function table of G; with value v; in the k;-th
position are used while the other entries are eliminated, i.e., the modified gate G
computes g/ (inlu) inki*lv inki+17) anb) = gi(inla) inki*17 Vj, inki+17) anb)

Algorithm 1. Optimize block B with constant inputs

Input: Block B of gates G1,.., Gy in topological order

Output: Optimized block Bopt

begin
1 # Eliminate constant inputs

forall constant inputs c; with constant value v; that are not outputs of B do
forall gates G; having c; as k;-th input do
eliminateConstInput(G;, ki, v;)

2 # Eliminate non-output gates with one input
forall non-output gates G; with d; =1 do
integrateInSucc(G;)
3 # Eliminate output gates with one input

forall output gates G; with d; =1 do
let {Gp} = pred(G»)
if G, is not input gate and fanout(G,) =1 then
integrateInPred(G;,G,)

end

104 A. Paus, A.-R. Sadeghi, and T. Schneider

|G;| shrinks by a factor of two for each of its constant inputs. Let #c¢; denote the
number of constants of the d; inputs of G, then |G| = 2% ~#¢ after Step [l of
Algorithm [I] has eliminated all constant inputs. For an efficient implementation
of Algorithm [it is crucial that eliminateConstInput() does not copy the
entire function table of a gate G; for each elimination of a constant input as this
would result in runtime O(#c; - |G;|) for each gate. Instead, the constant inputs
are marked in runtime O(#c¢;) and afterwards all constant inputs are eliminated
simultaneously in runtime O(]|G;|) by copying the corresponding elements of
the function table. This results in runtime O(|G;|) per gate. Constant gates
Gy with d;y = 0 are propagated into their successors by recursively calling
eliminateConstInput(Gs, ks, gi(v;)) for all G, € succ(Gy) having Gy as k-
th input. If constant gate G is not an output gate it is eliminated afterwards.

In the example of Fig.[Bl constant input ing is input into gate Gy whose size is
reduced by half when eliminating the second input (k1 = 2). The resulting gate
G’ has one non-constant input ins and hence no further optimization is per-
formed. The other constant input iny is input into Gs which is optimized into
a constant gate G5 by eliminating the constant input. Hence, eliminateCon-
stInput() is called recursively for successor G5 and G4 is eliminated. Similarly
to G, gate G5 is reduced to a constant gate G§ and eliminateConstInput()
is called for successor G7 which eliminates its second input. As the output of G
is also output of B it is not eliminated and remains as constant gate G.

After termination of Step [there might be gates G; with one input left.
The next two steps of Algorithm [try to remove these by incorporating their
functionalities into their successors (Step 2]) or predecessors (Step B]).

Step[2 - Eliminate non-output gates with one input. Step 2 of Algorithm [I] elim-
inates non-output gates with d = 1. The functionality of each one-input gate G;
which is not an output gate is incorporated into its successors G5 € succ(G;)
by the function integrateInSucc(G;). This function eliminates G; by replac-
ing it with a wire and incorporating the functionality of g; into the function
tables of all its successors Gs € succ(G;): Let the output of G; be the k-th
input of G5 and d the degree of G;. Then, the modified gate G, computes
gL(ing, .., ing, .., ing) = gs(ing, .., gi(ing), ..,ing). Note that, independent of the
functionality g;, the resulting gate G, has the same size as G but additionally in-
corporates the functionality of g; while not revealing any additional information
on it. As in Step[I] for runtime O(|G;|) per gate the modifications of the function
tables are not applied directly but first marked and then done simultaneously.

In the running example of Fig. [, Step 2l eliminates G1 by replacing it with a
wire and modifying the function table of G¢ correspondingly. Analogously, gate

” which only has one input from Gj left after the optimizations performed in
Step [l is replaced by a wire. The function tables of its successors Gg — G and
G10 — G, are modified correspondingly.

Step [d - Eliminate output gates with one input. The third step of Algorithm [I]
tries to eliminate output gates with d = 1. The functionality of each output gate
G; with one input is incorporated into its predecessor G,,. This is only possible

Practical Secure Evaluation of Semi-private Functions 105

if G; is the only successor of G,, i.e., fanout(G,) = 1. In this case, function
integrateInPred(G;,G,) is called which eliminates gate G; by replacing it
with a wire and incorporates its functionality into gate G, with d inputs. The
modified gate G, computes g, (in1, .., ina) = gi(gp(ini, ..,ing)). As in Step 2] this
optimization step is independent of the functionality g; and the resulting gate
G}, has the same size as G}, but additionally incorporates the functionality of g;
while not revealing any additional information on it.

In the running example of Fig. [0l Step Bl eliminates Gg by replacing it with a
wire and modifying the function table of G¢ — G, correspondingly. In contrast
to this, gate G cannot be incorporated into its predecessor G2 as G, is not its
only successor (fanout(Gz) = 2). The optimized block B,,: produced by Algo-
rithm [is shown in Fig. [f(b)] It has size |Bop:| = 21 which is less than 62% of
the size of the original block |B| = 34.

Correctness, efficiency and security of Algorithm [I] are summarized in the fol-
lowing theorem. Its proof is given in the full version of this paper [15].

Theorem 1. Algorithm [0 efficiently eliminates all ¢ > 0 constant inputs that
are not outputs of block B in runtime O(|B|). The optimized block Byt has
smaller size and computes the same functionality as B. The topology of Bopt
does not reveal anything about the values of the constant inputs.

Acknowledgements. We would like to thank Vladimir Kolesnikov and anony-
mous reviewers of ACNS’09 for helpful comments on the paper.

References

1. Ahn, L.v., Hopper, N.J., Langford, J.: Covert two-party computation. In: ACM
Symposium on Theory of Computing (STOC 2005), pp. 513-522. ACM Press,
New York (2005)

2. Aiello, W., Ishai, Y., Reingold, O.: Priced oblivious transfer: How to sell digital
goods. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 119-135.
Springer, Heidelberg (2001)

3. Frikken, K.B., Atallah, M.J., Li, J.: Hidden access control policies with hidden
credentials. In: ACM Workshop on Privacy in the Electronic Society (WPES 2004),
p. 27. ACM Press, New York (2004)

4. Frikken, K.B., Atallah, M.J., Li, J.: Attribute-based access control with hidden
policies and hidden credentials. IEEE Trans. Comput. 55(10), 1259-1270 (2006)

5. Frikken, K.B., Atallah, M.J., Zhang, C.: Privacy-preserving credit checking. In:
ACM conference on Electronic Commerce (EC 2005), pp. 147-154. ACM Press,
New York (2005)

6. Frikken, K.B., Li, J., Atallah, M.J.: Trust negotiation with hidden credentials,
hidden policies, and policy cycles. In: Network and Distributed System Security
Symposium (NDSS 2006) (2006)

7. Kolesnikov, V., Schneider, T.: Improved garbled circuit: Free XOR gates and
applications. In: Aceto, L., Damgard, 1., Goldberg, L.A., Halldérsson, M.M.,
Ingdlfsdéttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126,
pp. 486-498. Springer, Heidelberg (2008)

106

8.

10.

11.

12.

13.

14.

15.

16.

17.

18.

A. Paus, A.-R. Sadeghi, and T. Schneider

Kolesnikov, V., Schneider, T.: A practical universal circuit construction and secure
evaluation of private functions. In: Tsudik, G. (ed.) FC 2008. LNCS, vol. 5143, pp.
83-97. Springer, Heidelberg (2008), http://thomaschneider.de/FairplayPF

. Laur, S., Lipmaa, H.: A new protocol for conditional disclosure of secrets and

its applications. In: Katz, J., Yung, M. (eds.) ACNS 2007. LNCS, vol. 4521, pp.
207-225. Springer, Heidelberg (2007)

Lindell, Y., Pinkas, B.: A proof of Yao’s protocol for secure two-party computation.
ECCC Report TR04-063, Electr. Coll. on Comp. Complexity (2004)

Lindell, Y., Pinkas, B.: An efficient protocol for secure two-party computation
in the presence of malicious adversaries. In: Naor, M. (ed.) EUROCRYPT 2007.
LNCS, vol. 4515, pp. 52-78. Springer, Heidelberg (2007)

Lindell, Y., Pinkas, B., Smart, N.: Implementing two-party computation efficiently
with security against malicious adversaries. In: Ostrovsky, R., De Prisco, R., Vis-
conti, I. (eds.) SCN 2008. LNCS, vol. 5229, pp. 2-20. Springer, Heidelberg (2008)
Malkhi, D., Nisan, N., Pinkas, B., Sella, Y.: Fairplay — a secure two-party computa-
tion system. In: USENIX (2004), http://www.cs.huji.ac.il/project/Fairplay/
Naor, M., Pinkas, B.: Oblivious transfer and polynomial evaluation. In: ACM Sym-
posium on Theory of Computing (STOC 1999), pp. 245-254. ACM Press, New York
(1999)

Paus, A., Sadeghi, A.-R., Schneider, T.: Practical secure evaluation of semi-private
functions. Cryptology ePrint Archive, Report 2009/124 (2009),
http://eprint.iacr.org/

Sadeghi, A.-R., Schneider, T.: Generalized universal circuits for secure evaluation
of private functions with application to data classification. In: Lee, P.J., Cheon,
J.H. (eds.) ICISC 2008. LNCS, vol. 5461, pp. 336-353. Springer, Heidelberg (2008)
Valiant, L.G.: Universal circuits (preliminary report). In: Proc. 8 h ACM Symp.
on Theory of Computing (STOC 1976), pp. 196-203. ACM, New York (1976)
Yao, A.C.: How to generate and exchange secrets. In: Proc. 27th IEEE Symp.
on Foundations of Comp. Science (FOCS 1986), Toronto, pp. 162-167. IEEE, Los
Alamitos (1986)

http://thomaschneider.de/FairplayPF
http://www.cs.huji.ac.il/project/Fairplay/
http://eprint.iacr.org/

Secure Hamming Distance Based Computation
and Its Applications

Ayman Jarrous and Benny Pinkas*

University of Haifa

Abstract. This paper examines secure two-party computation of func-
tions which depend only on the Hamming distance of the inputs of the
two parties. We present efficient protocols for computing these functions.
In particular, we present protocols which are secure in the sense of full
simulatability against malicious adversaries.

We show different applications of this family of functions, including a
protocol we call m-point-SPIR, which is an efficient variant of symmet-
ric private information retrieval (SPIR). It can be used if the server’s
database contains N entries, at most N/log N of which have individual
values, and the rest are set to some default value. This variant of PIR is
unique since it can be based on the existence of OT alone.

1 Introduction

There are many known generic constructions of secure two-party and multi-party
computation. It is preferable, of course, to use constructions which are secure
against malicious adversaries, and where security is proved according to the full
simulatability notion defined in [§]. In that case the composition theorem of []]
implies that the resulting protocol can be used as a building-block for more
complex protocols, and security can be analyzed assuming that the building-
block protocol is implemented by a trusted oracle [8II5]. There are recent efficient
constructions of generic protocols which are secure according to this definition
(by Lindell and Pinkas [22], and Jarecki and Shmatikov [20]), and there is even an
implementation of the former protocol [23]. Our work investigates only the stand-
alone setting, but there are also efficient generic constructions of secure two-party
protocols in the UC model [I9]. The downside of generic constructions is that
they impose additional overheads, such as communicating and checking multiple
copies of a circuit computing the functionality [22], or computing public key
operations for every gate of the circuit [20]. It is therefore important to identify
functionalities that are essential for many applications, and design efficient secure
constructions of these specific functionalities. This paper performs this task for a
functionality denoted as “Hamming distance based oblivious transfer”, for which
we also demonstrate different interesting applications.

* Supported by the the Israel Science Foundation (grant No. 860/06), the European
Union under the FP7-STREP project CACE, and a European Research Council
(ERC) Starting Grant.

M. Abdalla et al. (Eds.): ACNS 2009, LNCS 5536, pp. 107 2009.
© Springer-Verlag Berlin Heidelberg 2009

108 A. Jarrous and B. Pinkas

The Hamming distance between two strings is defined as the number of charac-
ters in which they differ. We define “Hamming distance based oblivious transfer”
(HDOT, pronounced “h-dot”) as a protocol which allows two parties, a receiver
P1 which has an input w, and a sender Py which has an input w’, to securely
evaluate a function f(-,-) whose output is determined only by the Hamming
distance between w and w’ (denoted dg(w,w’)). More precisely, the output is
defined in the following way: Let |w| = |w’| = ¢, then Py must provide £+ 1 ad-
ditional inputs Zy, ..., Zy, and P;’s output is set to be Zy where d = dy (w, w’).
With regards to this functionality, this paper contains the following results:

— HDOT protocols secure against semi-honest adversaries:

e A protocol denoted binHDOT for binary inputs w,w’ € {0,1}*. This
protocol operates by computing O(¢) homomorphic encryptions and only
log ¢ invocations of 1-out-of-2 oblivious transfer.

e A general HDOT protocol, for w,w’ € X, where X can be arbitrary.
This protocol uses binHDOT as a building block.

— A binHDOT protocol secure against malicious adversaries (in the stand-
alone setting). The protocol uses two primitives that must also be secure
against malicious adversaries: Committed Oblivious Transfer with Constant
Difference (COTCD), and Oblivious Polynomial Evaluation (OPE). We give
a construction for the first primitive, which is an example of a new class of
OT protocols, constrained OT, which we define. The latter primitive is based
on a construction of Hazay and Lindell [17].

— Applications of HDOT. These include several straightforward applications,
such as computing the Hamming distance between strings, or transferring
one of two words based on whether the two input strings are equal or not (a
functionality we denote as EQ, for equality based transfer). Another applica-
tion is a variant of symmetric PIR (SPIR) which we denote as m-point-SPIR,
and which can be used when the server’s database contains IV items, of which
at most m = o(IN/log N) are unique and the other N — m items have some
default value. The receiver does not know whether it learns a unique or a
default value. We show a protocol which is based on HDOT and can be
reduced to oblivious transfer alone, which computes this functionality more
efficiently than known PIR protocols. m-point-SPIR can be used for other
applications, as described in Section

2 Preliminaries

We use the standard definitions of secure two-party computation in the stand-
alone setting (see Goldreich’s book [I5, Chapter 7]). Security of protocols is
analyzed by comparing what an adversary can do in a real execution of the
protocol to what it can do in an ideal scenario that is secure by definition. The
ideal scenario involves an incorruptible trusted third party (TTP) which receives
the inputs of the parties, computes the desired functionality, and returns to
each party its respective output. A protocol is secure if any adversary which
participates in the real protocol (where no trusted third party exists) can do

Secure Hamming Distance Based Computation and Its Applications 109

no more harm than if it was involved in the above-described ideal computation.
The exact definition appears in [15].

The hybrid model. Our protocols use other secure protocols, such as oblivious
transfer, as subprotocols. It has been shown in [§] that if the subprotocols are
secure according to the right definition (i.e., full simulatability in the case of
the malicious adversary scenario), it suffices to analyze the security of the main
protocol in a hybrid model. In this model the parties interact with each other
and have access to a trusted party that computes for them the functionalities
that are implemented by the subprotocols. The composition theorem states that
it is not required to analyze the execution in the real model, but rather only
compare the execution in the hybrid model to that in the ideal model.

2.1 Cryptographic Primitives and Tools

Homomorphic Encryption. A homomorphic encryption scheme allows to
perform certain algebraic operations on an encrypted plaintext by applying an
efficient operation to the corresponding ciphertext. In addition, we require in
this paper that the encryption scheme be semantically secure. In particular, we
use an additively homomorphic encryption schemes where the message space is
a ring (or a field). There therefore exists an algorithm +,; whose input is the
public key of the encryption scheme and two ciphertexts, and whose output is
Ep(m1 + me) = Epi(ma) +pi Epp(me). (Namely, given the public key alone
this algorithm computes the encryption of the sum of the plaintexts of two
ciphertexts.) The new ciphertext is an encryption which is done with fresh and
independent randomness. There is also an efficient algorithm -, whose input
consists of the public key of the encryption scheme, a ciphertext, and a constant
¢ in the field, and whose output is Epx(c-m) = ¢ -pi Epp(m).

An efficient implementation of an additive homomorphic encryption scheme
with semantic security was given by Paillier [B0/3T]. In this cryptosystem the
encryption of a plaintext from [0, N — 1], where N is an RSA modulus, requires
two exponentiations modulo N2. Decryption requires a single exponentiation.
Security is based on the decisional composite residuosity (DCR) assumption.

Oblivious Transfer. The paper uses 1-out-of-N oblivious transfer (OTY) as a
basic building block. The OT¥ protocol runs between two parties, a sender that
has an input (Xo, X1,...,Xn—1), where X; € {0,1}™, and a receiver that has
an input I € {0,1,..., N —1}. By the end of the protocol, the receiver learns X;
and nothing else and the sender does not learn any information about I. In [29]
it was shown how to implement OTY using log N invocations of OT?. There
are many efficient implementations of OT?, starting with a protocol of Even,
Goldreich and Lempel [I0]. Most of these protocols are designed for the semi-
honest scenario, or for a malicious scenario where the protocol provides only the
privacy property and not full simulatability. We note that while our protocol for
the semi-honest scenario can use any OT protocol, the protocol for the malicious
adversary scenario must use an OT protocol which is secure in the sense of full
simulatability against malicious adversaries. Such protocols were described, e.g.,

110 A. Jarrous and B. Pinkas

in [BT6I32I17]. (We specifically need a committed OT variant where we can also
prove a relation between the inputs of the sender, and therefore we use a protocol
which builds on the work of Jarecki and Shmatikov [20].) We also note that in
the malicious case we use OT? and not OTY .

2.2 Related Work

Generic secure computation. Generic protocols (e.g., of [35]) can be used to
compute any function. They are typically based on representing the computed
function as a binary or an algebraic circuit, and applying the protocol to this
representation. The overhead of these protocols depends on the size of the cir-
cuit representation of the functions. There are many theoretical constructions of
secure generic protocols. Notable examples of implementations of secure compu-
tation are the Fairplay system [24] for secure two-party computation, and the
FairplayMP and SIMAP systems [1I3] for secure multi-party computation. The
system described in [23] implements fully simulatable secure two-party compu-
tation according to the recent construction of [22].

Computing the Hamming distance. Protocols for computing the scalar
product of vectors (which is equal to the Hamming distance if the alphabet
is binary) were suggested in [34UT4]. These protocols are based on the use of
homomorphic encryption, and are only secure against semi-honest adversaries.
(Our HDOT protocol for binary alphabets and semi-honest adversaries borrows
its first step from these protocols.)

A protocol for secure efficient approzrimate computation of the Hamming dis-
tance, with a polylogarithmic communication overhead, was suggested in [I§]
(previous protocols for this task use O(v/¢) communication for £-bit words [T2UT3]).
We wanted to improve upon these protocols for three reasons: (1) These protocols
introduce approximation errors. (2) The protocols are only secure against semi-
honest adversaries. (3) In addition, these protocols have good asymptotic commu-
nication overhead, but use non-trivial components which seem difficult to imple-
ment with a performance that will be competitive for reasonable input sized].

3 Hamming Distance Based Oblivious Transfer

A Hamming Distance based Oblivious Transfer protocol (abbrev. HDOT) is run
between two parties, a receiver (P;1) and a sender (Pz). It is defined as follows:

— Input: Py’s input is a word w € X*. Py’s input contains a word w’ € X*, and
{+ 1 values Zy, ..., Z,.

— Output: Py’s output is Z4, where d = dy(w,w’) is the Hamming distance
between w and w’ (note that P; does not learn the Hamming distance itself).
P2 has no output.

! For example, the protocol in [I8] applies the Naor-Nissim [27] protocol to a cir-
cuit which computes vector operations over the Real numbers and samples from a
Bernoulli distribution; in addition it uses symmetric PIR protocols.

Secure Hamming Distance Based Computation and Its Applications 111

The paper describes a special protocol, binHDOT, for the case that the input
words are binary (i.e., ¥ = {0,1}), and a general protocol which works for
alphabets X of arbitrary size.

3.1 Straightforward Applications

An HDOT protocol can be immediately used for computing any function which
depends on the Hamming distance. Following are some interesting examples of
such functions:

— The Hamming distance itself can be computed by setting Z; = i for every
0<i<Ut.

— The parity of the exclusive-or of the two inputs is computed by setting Z;
to be equal to the least significant bit of 4, for 0 < i < £.

— EQ - Equality based transfer, or EQvy, v, (w,w"): This functionality outputs

Vo if w = w’, and V; otherwise. The functionality is computed by setting
Zy =V and Z; = V; for 1 <i < /{, and executing an HDOT protocol. P;
does not know which of the two cases happens (namely, whether w = w’).
This is crucial for the applications that are described below.
Recall that it is easy to design a protocol in which P; learns a specific value
Vp if the two inputs are equal, and a random value otherwise. (See [11], or
consider a protocol where P; sends a homomorphic encryption E(w), and
receives back E(r- (w —w’) + V), where r is a random value.) Our protocol
is unique in defining a specific value to be learned if the two inputs are
different, and in hiding whether the inputs are equal or not 3

— Threshold HDOT protocol: The equality based transfer protocol can be gen-
eralized to tolerate some errors and have the output be 1y if the Hamming
distance is smaller than a threshold 7, and be V; otherwise. In other words,
it implements the following functionality:

V()7 dH(w,w’) <T

HDOTS, y, (w, w') = {vh di(w,w') 2 7

This functionality is implemented by setting Zy = --- = Z,_1 = Vy, and
Zy=-=Zyp=V1.

The protocol for equality based transfer is the major building blocks of the
m-point-SPIR SPIR application described in Section [6l

4 Protocols Secure against Semi-honest Adversaries

We first describe protocols which are secure against semi-honest behavior of the
potential adversaries. These protocols are relatively simple, yet they are unique
in invoking oblivious transfer a number of times which is only logarithmic in the
input length. The malicious adversary scenario is covered in Section Bl

2 1In [2] it was shown how to implement a protocol which transfers one of two strings
if w > w’, and transfers the other string if w < w’ (if w = w’ the output is random).
It is possible to compute the EQ functionality by combining that protocol with a
protocol which outputs a specific value if w = w’ and a random value otherwise.

112 A. Jarrous and B. Pinkas

4.1 A Protocol for Binary Alphabets (binHDOT)

Consider first the case where the alphabet is binary (X = {0,1}). The binHDOT
functionality can be securely implemented by applying Yao’s protocol to a circuit
computing it. That solution would require running ¢ invocations of OT?. We
describe here a protocol which accomplishes this task using only log(¢+ 1) OT%s
(see below a comparison of the performance of these two protocols).

The protocol works in the following way: In the first step the parties use ho-
momorphic encryption to count the number of bits in which the two words differ.
The result is in the range [0, £]. Next, the two parties use OT{*! (implemented
using log(¢ + 1) OT%s) to map the result to the appropriate output value. The
protocol is described in detail in Figure [I1

Correctness. The value dy is equal to the Hamming distance. In Step 4, P,
computes (in F) the value dg + r, which can have one of £ 4 1 values (namely
r,r+1,...,7+ £). It holds with probability 1 — £/|F| that r < |F| — £. (And

binHDOT (..., z,) (w, w") PROTOCOL

INPUT: P7’s input is a word w = (wo, ..., we—1), P2’s input is w’ = (wg, ..., wp_1),
where w;, w; € {0,1}. P2 has additional inputs (Zo, ..., Z).

OUTPUT: P; receives Z; such that dg(w,w’) = i. P2 learns nothing.

The protocol uses Ep(+), a homomorphic encryption function. The plaintexts are in
a ring or a field F. (We emphasize that £ and |X| are negligible compared to |F|. A
typical size could be |F| = 21°24)) pk is a public key that both parties know, but only
P1 knows the corresponding private key and can decrypt messages.

,,,,,

1. P1 sends the homomorphic encryption of each bit of the binary representation of
w = {wo, ..., we_1}, where w; € {0,1}.

2. P2 receives the encrypted representation {Epx(wo), ..., Epk(we—1)}. For each bit
location j it calculates Ep,(¥;), where 9, € {0,1} and is equal to 1 if, and only
if, w; # w}. The calculation is done in the following way:

Epi(95) = Bpi(w;) pic (1 — w5) +pi (1 —pi Bpr(w;)) -pk W]

3. Using the homomorphic properties, P2 sums the results of the previous step and
computes Fpi(du) = éﬂ Epk(9:). The value dg is in the range {0,1,...,¢}
and is equal to the Hamming distance between the two input words. In addition,
P2 chooses a random value r € F, computes the value E,i(dy + r), and sends it
to P1. (In other words, it shifts the result by a random value r. Note that with
overwhelming probability, 1 — ¢/|F]|, this addition operation does not involve a
modular reduction.)

4. Pi receives Epi(dy + r) and decrypts the result.

5. Next, the parties map the result to the appropriate Z; value, by invoking a OT‘{+1
protocol where P; is the receiver and P is the sender:

- The input of Py is (dug +) mod (£ + 1).
- P2 has inputs Xo, ..., X¢, where Xi = Z(;_1) moa (¢+1) (namely, Z; is mapped
to input (i +r) mod (£ + 1) of the OT).
P1’s output in the OT is its output in the binHDOT protocol.

Fig. 1. The binHDOT protocol

Secure Hamming Distance Based Computation and Its Applications 113

since | F| is typically very large compared to /, e.g. | F| ~ 21924 and ¢ < 1000, we
do not consider here the negligible probability that this event does not happen.)
Therefore, the computation of dg + 7 in F does not involve a modular reduction
and has the same result as adding them over the integers. Reducing the result
modulo £+ 1 (in Step 5) is therefore equal to (r +dg) mod (¢ +1). Py uses this
result as its input to the 1-out-of-(£+ 1) OT protocol of Step 5. P2, on the other
hand, sets the sender’s inputs in the OT such that each Z; value is the sender’s
input indexed by (r 4+ 4) mod (¢ + 1). As a result, the output of P; in the OT
protocol is Zg,,, as required.

Note that if the parties are only interested in computing the value of the
Hamming distance then the protocol can be greatly simplified: P should send
to P1 in Step 3 the encryption Epx(dm). There is no need to run Steps 4 and 5.

Improving the initial step using non-interactive preprocessing. An ad-
ditional improvement can be achieved in the first step of the protocol, where P
sends an encrypted binary representation of the word. This representation can
be precomputed using non-interactive preprocessing: P; can prepare in advance
{ encrypted zeros and ¢ encrypted ones, instead of encrypting the input bits
online. This preprocessing enables P; to send the binary representation directly
without spending time online encrypting 0 and 1 values.

Overhead. We compare the overhead of the binHDOT protocol to that of ap-
plying Yao’s protocol to a circuit computing the same functionality. We note
that the runtime of an OT protocol is slower than that of a homomorphic en-
cryption or decryption, and that the runtime of these latter operations is much
slower than that of a homomorphic addition or a homomorphic multiplication
by a constant (which in turn is much slower than symmetric encryption or de-
cryption). This relation between run times can be summarized as follows (where
> denotes “slower”, and > denotes slower by an order of magnitude):

OT > homomorphic enc. > homomorphic addition > symmetric enc.

Without using any preprocessing, the binHDOT protocol requires P; to com-
pute £ encryptions and a single decryption, while Py computes £4+1 homomorphic
additions, and the two parties run log(¢+1) OT%s and 2(£+1) symmetric encryp-
tions (in order to implement OTfﬂ). In Yao’s protocol, the parties compute a
circuit with £ input bits and a total of O(¥) gates. This requires £ executions of an
OT? protocol and O(¢) symmetric encryptions and decryptions. Both protocols
require O(¢) communication.

The improvement achieved by the binHDOT protocol is noticeable since it
reduces the number of OTs, which are the most time consuming operation, from ¢
to log(£+1). In addition, the bin HDOT protocol can benefit from the use of non-
interactive preprocessing to precompute all homomorphic encryption operations
even before the parties know of each other. In that case the ¢ encryptions done
by P; are computed offline, and its online computation is composed of a single
decryption and log(¢+ 1) OTs. (Yao’s protocol cannot precompute the oblivious
transfers without using interaction. We note that if interactive preprocessing is

114 A. Jarrous and B. Pinkas

possible, then the OTs themselves can be precomputed in both protocols, and
this reduces the overhead of both protocols.)

Security. (sketch) We analyze security assuming that the parties are semi-
honest. The proof is simple, and therefore we only give a sketch of the proof:
We assume that the OT protocol is secure, and therefore we can prove security
in a hybrid model where the OT protocol is implemented by an oracle. In the
protocol, Py receives homomorphic encryptions of a binary representation of a
word, and then it plays the role of the sender in an OT protocol in which it
receives no output. Therefore, if Py learns anything this information must have
leaked from the encryptions it received. In other words, it is easy to write a
reduction showing that any algorithm that P, might use to learn information
can be used to break the security of the semantic security of the encryption.
P receives from Py a random value (dy + r). It then participates in the OT
protocol, which we assume to be implemented by an oracle. Py therefore learns
nothing but the output of the OT, which is its designated output of the protocol.

4.2 A Protocol for Arbitrary Alphabets (HDOT)

We now describe an HDOT protocol which works over arbitrary alphabets X.
The protocol is based on applying the binHDOT protocol to every character of
the words. More specifically, the parties have inputs w,w’ € X, respectively.
The protocol begins with the parties representing each of the letters of X as
a binary word of length [log|X|], and then running (for each letter location)
the equality based transfer (EQ) protocol, which was defined above and is an
application of binHDOT. In each execution of the EQ protocol P; learns a value
a; if w; = w}, or the value a; + 1 otherwise, where «; is chosen at random by
Po. Then, P; sums the values that it has received modulo £ + 1. The result is
equal, modulo ¢+ 1, to > a; plus the Hamming distance of the original words.
The parties then run an OT‘;Jrl protocol to map the result to the desired output.
The protocol is detailed in Figure 2

Correctness. For every 0 < < /¢ —1, P; and Ps learn in Step 1 values G;, au,
respectively, such that 3; = «; if the letters w; and w] are equal, and §; = a; +1
if the letters are different. Let S, = Zf;é «;, where here the addition is done in
F. Define Sg similarly. Let d be the Hamming distance between the two input
words. Then it holds with probability 1 — ¢/|F| that Sz = S, + d, where the
addition here is done over the integers. Therefore, the values o, = S, mod (¢/+1)
and g = S, mod (£ + 1) computed in Step 2 satisfy that o3 — 0o mod (£ + 1)
is equal to the Hamming distance d (which is in the range [0, ¢]).

Consider now the OT in Step 3. Assume first that o, = 0. In this case P;’s
input to the OT, og, is equal to the Hamming distance, and the inputs of P»
to the OT are the values Zy, ..., Z; (in that order). The OT protocol therefore
computes the desired output in this case. Now, if o, > 0 then P;’s input to the
OT protocol is cyclically shifted (modulo £ + 1) by o4, while the order of Pa’s
inputs to the OT is also cyclically shifted (modulo £+ 1) by the same value o,.
The OT protocol therefore computes the correct result.

Secure Hamming Distance Based Computation and Its Applications 115

INPUT: P1 has an input w = (wo,w1,...,we—1) € X% P, has an input v’ =
(wh,wh, ..., wp_,) € X* and additional input values Zo, ..., Z,. We denote by w;
the binary representation of w;, which is [log(|X])] bits long.

OUTPUT: P; learns Z; such that dg(w,w’) = i, P2 learns nothing.

1. For every i € [0,£— 1], P2 chooses at random a value «; €r F. Both parties then
run the protocol EQ,,, . (@i, ;). (Wi, w;" denote the binary representations
of the letters w; and w;, respectively. The output of this protocol is «; if w; = w},
and «; + 1 otherwise.)

At the end of the process, P; obtains the values {fo, ..., B¢—1}, where

/

8 = i, W = w;
1 /
a; + 1, w; # w;

2. P1 sums, modulo ¢ + 1, the B; values it received. Namely, it computes
o = (gflﬁi) mod (¢ 4+ 1). P2 sums its « values and computes o, =
(g_l ;) mod (€4 1).
3. Both parties run an OTf"'1 protocol with the following inputs:
- P1 is the receiver and its input is og.
- P2 is the sender and its input is {Xo,...,...,Xe}, where X; =
Z(i—00) mod (£41)-
The value that P; receives in the OT is defined as its output in the protocol.

Fig. 2. The HDOT protocol for general alphabets

Overhead. The overhead is that of applying the binHDOT protocol £ times
over log | Y| long binary strings, and then running log(¢ + 1) invocations of OT?.
The parties run ¢loglog|Y| + log(¢ + 1) OT%s. (A direct implementation of
this functionality using Yao’s protocol would have required invoking O(¢log | X)
OTs.)

Security. (sketch) Analyzing security in the hybrid model, we assume that the
binHDOT and OT protocols are executed by a trusted oracle. Then Ps, being
the sender in these protocols, cannot learn any information about the input of
P;. Py receives the §; values in the first step, but it cannot distinguish whether
B; = «; or B; = «; + 1, since each «; value was chosen randomly by Ps. In
the last step, P; receives the result of mapping the sum of the g values to the
appropriate Z; value, which is also the result it would have received from the
trusted party.

4.3 Weighted Hamming Distance Based OT

The weighted Hamming distance between two f-letter strings w, w’ is defined in
the following way: The function depends on a set of integer weights wg, ..., ws_1.
We define §;, for 0 < i < £ — 1, to be 0 if w; = wj, and 1 otherwise. The

weighted Hamming distance is Zf:é 0;w; (earlier we handled the case where

116 A. Jarrous and B. Pinkas

Vi w; = 1). This function enables to assign to any letter location a specific
weight corresponding to its importance.

It is possible to slightly change the HDOT protocols to support the computa-
tion of a weighted Hamming distance based OT. In the binary alphabet case, the
revised binHDOT protocol computes in Step 2 the values Ep (¥;w;) by multiply-
ing Ep,(¥;) by w;. The value dy is defined to be the sum of these values. Let 2 =
Zf;é w;. The value of d gy is in the range [0, £2]. Therefore Ps hasinputs Zy, . . ., Zp,
and the last step of the protocol computes a 1-out-of-(£2 4 1) OT. In the case of an
arbitrary alphabet, each 3; value is set to a; 4+ w; if the two letters are different, and
to «; is they are equal. Again, the last step computes a 1-out-of-(£2 + 1) OT.

5 A binHDOT Protocol for Malicious Adversaries

We design a new binHDOT protocol to handle the presence of malicious adver-
saries. In this protocol the parties use a new variant of OT? to learn whether cor-
responding bits of the two words are equal, and then use an Oblivious Polynomial
Evaluation (OPE) protocol [28/I7] to map the result to an output value. (This is
different than the semi-honest case, where homomorphic encryption was used to
compare bits, and OTY was used to compute the final result.) The new protocol
uses OT and OPE protocols which are efficient and yet are secure in the sense of
full simulatability against malicious adversaries. Security can therefore be ana-
lyzed in the hybrid model. In more detail, the protocol uses the following tools:

Committed 1-out-of-2 Oblivious Transfer with Constant Difference (or
COTCD?), secure against malicious adversaries. A committed OT protocol in
an OT protocol where the parties commit to their inputs: the sender commits
to its inputs mg, m1 and the receiver commits to its input o € {0,1}. During
the protocol each party can verify that the other party’s input is equal to the
corresponding committed value. We define a committed OT with constant differ-
ence (COTCD, pronounced “cot-cd”) to be a committed OT with an additional
auxiliary input composed of a value A known to the sender, and a commitment
to A which is known to the receiver. The protocol lets the receiver verify that
the difference of the two inputs of the sender is £A. In other words, it either
holds that m; — mg = A or that mg — m; = A.

We use a COTCD primitive which is based on the Jarecki and Shmatikov (JS)
committed OT protocol [20], which is in turn based on the Camenisch-Shoup
(CS) encryption scheme [7]. The details of the COTCD protocol are described in
the full version of our paperE We use that protocol since it can be used to transfer

3 The COTCD protocol is identical to the Jarecki and Shmatikov (JS) protocol [20],
with an addition of a preliminary step and a verification step. In the preliminary
step, both parties receive their auxiliary inputs: the sender receives a value A, which
is the difference that must hold between its input values, and the receiver receives
the committed value of A. In the verification step the sender proves to the receiver
in zero-knowledge that the committed values, mo, m1, have a difference +A. It is
important to note that the receiver knows only Com(A) and does not learn A.

Secure Hamming Distance Based Computation and Its Applications 117

strings, and since it is easy to add to it an efficient zero-knowledge proof that the
messages of the sender have the required difference (it seems much harder to add
a proof of this type to other OT protocols which are secure against malicious
adversaries, such as the protocols of [I7I32]). The JS protocol is UC-secure in
the common reference string model and therefore all invocations of that protocol
can be run in parallel (as a result, the HDOT protocol we construct can execute
in parallel all £ invocations of the COTCD protocol). The protocol is proved
to be secure under the decisional composite residuosity (DCR) assumption (i.e.,
the assumption on which the Paillier homomorphic encryption system is based).

Commitment scheme. The Camenisch-Shoup (CS) encryption scheme [7] is
used in our protocol as a commitment scheme, as is suggested in [20].

An Oblivious Polynomial Evaluation (OPE) protocol secure against ma-
licious adversaries. An OPE protocol [2§] is a protocol where the sender’s input
is a polynomial P() of a certain degree, and the receiver’s input is a value z.
The receiver’s output is P(x) while the sender learns nothing. We use the OPE
construction of Hazay and Lindel [I7], which is secure (in the sense of full sim-
ulatability) against malicious adversaries, and uses very few exponentiations.

The underlying fields. The output of the COTCD protocol is used as an input
of the OPE protocol. The COTCD protocol runs in a group F = Z; ,, where Z ,
is defined by a safe RSA modulus n = pq. The encryption scheme of Camenisch
and Shoup, which is used in the protocol as a commitment scheme, works in
the same group. The OPE protocol of [I7] runs in Zy, with N being an RSA
modulus. Our protocol must enable the parties to use the result of the COTCD
protocol as an input to the OPE protocol. It must therefore use a group Z;, and
a field Zy, which satisfy that |Z*,| < |Zy/|, and therefore we will require that
n? < N. We define a simple mapping f : 4}, — Zn, where the only requirement
is that no two elements of Z, are mapped by f to the same value in Zy. The
protocol then performs the initial computations in Z), and then uses f to map
the result to Zy.

The protocol itself is described in Figure [Bl In the protocol, for every bit
location i Py receives a value ¢! if the corresponding bits are equal, and the value
t? + A otherwise. The value A, and also all t? values, are randomly chosen by Ps.
(In the semi-honest case P; learned one of two values whose difference was 1. Here
the difference is a random number A in order to prevent attacks by a malicious
P1.) P; then sums the values it received, and obtains the result Zle t94+d- A,
where d is the Hamming distance. We use the notation o, = Zle t9. P, then
prepares an OPE where Vj € [0,/], P(o, + j - A) = Z;. The parties execute an
OPE and P; computes P(o, + dA) and learns the desired result.

The protocol uses an OPE instead of OT?Jrl since the values are mapped to
locations in a large range, rather than to indices in the range [0, ¢], in order to
prevent a malicious P; from learning any Z; value which does not correspond to
the actual Hamming distance. If P; evaluates the polynomial at any point other
than intended, it is likely to receive a random answer since it does not know A
and is therefore unlikely to choose any point corresponding to a Z; value. As for

118 A. Jarrous and B. Pinkas

INPUT: P1’s input is a word w = (wo, ..., we—1), P2’s input is w’' = (wg, ..., wy_1),
where w;, w; € {0,1}. P2 has additional inputs (Zo, ..., Z¢).

OuTPUT: P; receives Z; such that dg(w,w’) = i (i.e. the Hamming distance of w
and w’ is 1). P2 learns nothing.

1. P2 chooses at random A €r Z; . and sends to P1 a commitment to A. In addi-
tion it proves to P1, using a zero-knowledge proof of knowledge, the knowledge
of A.

2. For each pair of bits (w;,w;), both parties use COTCD to check whether the
bits are equal:

— Py chooses a random value t €r F, and defines ¢t} =t + A.
— Both parties run a COTCD protocol:
(a) The auxiliary inputs to the protocol are A, known to P2, and a com-
mitment to A, known to P;.
(b) Py is the receiver and its input is wj.
(c) P is the sender. If w] = 0 then it sets (z¥,z1) = (t2,¢}); Otherwise,
(27, 27) = (i, 1))
In each execution of the protocol, if both bits are equal then P; learns t7,
otherwise, P learns t}. (If |z — 7| # A then P; aborts.)
By the end of this step, P; learns t(b)o, e ,t?ﬁ‘__ll, where b; = w; @ w;, while P
does not learn any information.

3. P1 computes o = Ztlf and P2 computes o, = Zt?. These summations are
done in Z,.

4. P> constructs a polynomial P(x) = Zg a;z’ in Zy, such that P(f(o, +i-A)) =
Z;,¥i € {0,1,...,¢} (where f is the simple mapping from Z”» to Zy), and P(0)
is random. (This construction succeeds if 0 € {or,...,0r +¢A}, which happens
with probability 1 — (¢ 4+ 1)/|Zn|.) The degree of P is £+ 1.

5. P1 and P2 run an OPE protocol to evaluate P(f(o¢)), such that P; learns the
result while P2 does not learn any information.

Fig. 3. The binHDOT protocol for the malicious case

a malicious P, its inputs w’ and Z, ..., Z; can be extracted from its interaction
with the OT and OPE protocols, and are used for a simulation based proof.

Theorem 1. The protocol computes the bin HDOT functionality.

Proof. Let us follow the steps of the protocol. In each execution of the COTCD
protocol, Py learns ¥ if both bits are equal, otherwise, it learns t} = t? + A.
In other words, it learns tfi, where b; = w; @ w}. Then, in Step 3, P; computes
o = tgo P +t22:11, and P, computes o, = t)+---t)_,. Therefore it holds that
ot — o, = A-dy(w,w). In Step 4, P constructs a polynomial P(x) such that:
P(f(or)) = Zo; P(f(or+A)) = Z1;...; P(f(or+£-A)) = Z,. In the last step of
the protocol, the parties use an OPE protocol to compute P(f(0¢)) = Za; (w,w')-

Theorem 2. The protocol securely computes binHDOT in the presence of ma-
licious adversaries.

Proof. (Sketch) The security of the protocol is proved in the hybrid model,
assuming that the COTCD and OPE primitives, as well as the zero-knowledge

Secure Hamming Distance Based Computation and Its Applications 119

proof of knowledge of A used in the protocol, are performed by a trusted oracle
(or trusted party). This assumption is justified since, as we detailed above, there
are constructions of these primitives which have fully simulatable security against
malicious adversaries (where the security is based on the Decisional Composite
Residuosity (DCR) assumption).

We compare the execution of the protocol between P; and Ps to an execution
with a trusted third party (TTP), where the TTP receives the inputs of both
parties and computes the following functionality: If the input of P; is w and the
input of Py is (w’, Zo, ..., Zy), then the output of Py is Zy,, (). Otherwise if
the input of P; is a special symbol p then the output of P; is a random value;
otherwise if the input of either party is a special symbol L then the protocol
terminates prematurely.

We first prove security in the case that P; is corrupt and then in the case
that P is corrupt.

P; is corrupt. The full proof appears in the full version of the paper. The idea
behind the proof is that P;’s choices in the COTCD protocols define its input w.
Then, P; is supposed to add the values it received in the COTCD invocations
and use the result as its input to the OPE. If it uses a different input to the
OPE protocol, then, since it does not know A, it happens with overwhelming
probability that P; queries a value of the polynomial at a point which was not
defined by Zy, ..., Z; and receives a random answer.

Ps is corrupt. The full proof appears in the full version of the paper. The proof
is based on the following ideas: (1) the simulator extracts the value of A from
the zero-knowledge proof of knowledge; (2) the simulator then learns the inputs
that Ps uses in the COTCD invocations, and based on these values the simulator
computes w’ and o,; (3) it also learns the coefficients of the polynomial P() which
is Po’s input to the OPE, and can therefore compute Zy = P(o,),...,Z; =
P(o,. +£A); (4) finally, the simulator sends (w’, Zy, ..., Zs) to the TTP.

Efficiency. The overhead of the protocol is composed of running ¢ invocations
of the COTCD protocol (which can be run in parallel, since the protocol is
UC-secure), and a single invocation of the OPE protocol of [I7]. Both of these
protocol can be run in a constant number of rounds.

5.1 Securing the Applications against Malicious Adversaries

The protocol described above is secure against malicious behavior of either party.
However, it does not enforce any structure of the inputs Zy, ..., Z, of Ps and
therefore a corrupt Po can set these inputs to arbitrary values. This “feature”
does not affect plain usage of the protocol, but it means that security against
malicious adversaries cannot be guaranteed if the protocol is used for computing
any functionality that requires specific relations between the Z; values. Unfor-
tunately, this is relevant to the relations required in the applications detailed
in Section Bl For example, the EQ application, i.e., equality based transfer,
requires that Z, = Zo = -+ = Z,. As a result, the protocol cannot be used “as

120 A. Jarrous and B. Pinkas

is” as a building block for protocols (secure against malicious adversaries) for
the HDOT functionality for arbitrary alphabets, or for the EQ functionality.

In order to adapt the protocol for these tasks, it is required to add zero-
knowledge proofs which assure P; that the Z; inputs follow the desired structure.
This is of course possible in principle, but in this work we have not examined
how to optimize the efficiently of such proofs. We will only describe here the
steps which are required in order to design and implement an EQ protocol se-
cure against malicious adversaries (protocols for the other applications can be
designed in a similar way): (1) The protocol needs an additional step where P
obtains a commitment Com(o,) to o, = >_#9. This commitment can be com-
puted given the commitments that P, generates in the committed OT protocols;
the correctness of the committed value can be proved using Ps’s proofs about
the A differences of its input pairs. (Namely, P must prove that there exist
bits bo,...,br_1 such that 3 2% = o,, and that Vi z} = 20 + A.) (2) The
parties need to use a “committed OPE” protocol, where Py commits to the co-
efficients of its polynomial (such a protocol has not been described yet, but it
is not hard to imagine how to implement it using techniques similar to those
used for committed OT). (3) P, must prove that there are values s, d such that
s is committed to in Com(o,.), d is committed to in Com(A), and it holds that
P(s+d) = P(s+2d) = --- = P(s+4d). The main challenge in designing this step
is that P(s+d) is computed to by multiplying the committed coefficients of P by
powers of the value s + d. Namely, the proof is about the sum of multiplications
of committed values.

6 m-Point SPIR

Another application of the HDOT protocol is a new variant of symmetric private
information retrieval (SPIR — Symmetric PIR) which we denote as m-point-
SPIR. For a definition and discussion of single server PIR and symmetric PIR,
see, e.g. [215]. In short, a PIR protocol involves a server with a database of
N items xg,...,xny—1 and a client who is interested in learning entry z; of
the database. This must be accomplished with o(N) communication, without
revealing i to the server, and (in the case of symmetric PIR) without revealing
to the client anything but x;.

The m-point-SPIR protocol that we define can be applied if at most m of
the items of the server’s database have specific values, and all other items have
some default value Z. The client must not know whether the value it learns is
the default value Z or one of the unique values. We describe below a couple
of applications of m-point-SPIR. The m-point-SPIR functionality is similar to a
simpler functionality, where the client learns a random value if its input does not
match any of the m indices which have specific values. The latter functionality
is much simpler to implement (using OPE), as we detail below.

We show a protocol which implements m-point-SPIR with O(mlog N) com-
munication and O(mlog N') computation (the smaller m is, the more efficient the
protocol is). Therefore the communication is o(N) as long as m = o(N/log N).

Secure Hamming Distance Based Computation and Its Applications 121

Another nice property of the m-point-SPIR protocol if that it can be imple-
mented based on the existence of oblivious transfer alone. This property is not
known for general SPIR protocols. (Furthermore, it is known that there cannot
exist any transparent black-box reduction of PIR to OT [25].)

The m-point-SPIR functionality is defined in the following way. The server
has inputs 0 < p1,...,pm < N — 1, which are all distinct, and additional values
Z,Tp,,-..,Tp,, . The client has an input 0 <7 < N — 1. The output of the client
is xp, if there is an index 1 < j < m such that ¢ = p;, or Z if no such p; exists.

1-point SPIR. The implementation of 1-point-SPIR is straightforward given
our previous protocols. The parties simply execute the protocol Eme,i(i, D1),
whose output is x,, if i = p1, and Z otherwise. (The EQ protocol is defined in
Section [B11) The communication overhead is of the order of the length of the
index 4, namely O(log N), times the length of the security parameter (i.e., the
length of the homomorphic encryption). (This is under the reasonable assump-
tion that the length of the database values (the = values) is in the order of the
length of the security parameter; otherwise the communication is O(log N -|z|).)
The computation overhead is O(log N), and it is composed of O(log N') homo-
morphic encryptions and O(loglog N) OTs.

m~-point-SPIR. For the general case of m-point-SPIR, the server first defines
m random values 2/, ...,z under the constraint that their exclusive-or is Z. It
then defines values 21, 2o, . . ., 2, satisfying the constraints zq 24P - B 2] = 21,
Bz ®z D Dz, =x2,up to 2f D B 2,1 D 2y = Ty, The parties
execute the protocols EQ., . (i,p1), EQ., -, (i, p2), up to EQ.,, =/ (i,pm). The
client then computes the exclusive-or of the m values that it learned in these

protocols.
Correctness follows from the fact that if there exists a j coordinate for which
¢ = p; then the client learns a single z; value. Otherwise ¢ # p1,...,pn, and the

client learns only z; values. Therefore the exclusive-or of all the values that the
client receives is equal to x; in the former case, or to Z in the latter case.

It is easy to verify the security of this protocol (assuming that the parties
are semi-honest). Note that the client always performs the same operations and
does not recognize whether it learned the value T or one of the m special values.
The communication overhead is O(mlog N) times the length of the security
parameter, and the computation overhead is also O(mlog N). This is therefore
a SPIR protocol (with o(N) communication) as long as m = o(N/log N), and in
that case the computation overhead is also o(N). (A “traditional” PIR protocol
will have O(N') computation overhead, since it must also process the entries with
the default value.)

Basing m-point-SPIR on OT. The EQ protocol (which is essentially the
HDOT protocol) is based on using a homomorphic encryption scheme and an
oblivious transfer. However, it is easy to see that the usage of homomorphic
encryption can be replaced with the usage of oblivious transfer alone (as is done
in the HDOT protocol for the malicious case). As a result, m-point-SPIR can
be based oblivious transfer alone.

122 A. Jarrous and B. Pinkas

Comparison to other protocols. Our m-point-SPIR protocol can be com-
pared to oblivious polynomial evaluation (OPE), in which the server has an
(m — 1)-degree polynomial P, defined over a field of size at least N, and where
the polynomial satisfies P(p;) = x; for all j € [1,m]. The client has input
0 < j < N —1 and it obliviously computes P(j). The OPE protocol has com-
munication and computation overheads of O(m) field operations, but it has the
drawback that for inputs not in pq, ..., p, the client receives a random output
rather than a specific value .

The m-point-SPIR protocol can also be compared to PIR protocols of the type
of the protocol of Cachin, Micali and Stadler [5] (that protocol is based on the ¢-
hiding assumption rather on general assumptions). These protocols, too, have the
property that the server’s work depends on the number of items in its database
that have non-default values. Namely, it is O(m) if the server has m items in its
database, even if the range of the client’s input is [1, N]. Still, in those protocols
the sender is not able to set a “default” value Z to be returned for all other
N — m values of the client’s input. Finally, the m-point-SPIR functionality can
be implemented using Yao’s generic protocol and a circuit of size O(mlog N),
and mlog N invocations of OT. The observations in Section Bl comparing the
overhead of the HDOT protocol to that of Yao’s construction, are relevant in
this case, too. We also believe that it is simpler to implement the m-point-SPIR
protocol compared to implementing a circuit based solution.

Application I: private matching for cardinality threshold. This is an
example where it is important that P; receives the default value if no match
is found. The scenario involves two parties with private sets of m items, which
want to find out if the size of the intersection of the sets is greater than some
threshold. The problem was defined in [I3] as a variant of the private matching
protocol which was the main subject of that paper. The solution there requires
the parties to run an OPE for each item z; of the first party, in which the first
party either learns a specific value or a random value, depending on whether z;
is in the set of the second party. The parties then use Yao’s protocol to evaluate
a circuit whose input is the values learned by P;, and which computes whether
the size of the intersection is greater than the threshold. We can use the m-point-
SPIR protocol to replace the OPE: Suppose that P;’s inputs are x4, ..., z, and
Py’s inputs are yi,...,Yy,. Then for each x; the parties run an m-point SPIR
where P; learns «; if z; € {y1,...,yn}, or a; + 1 otherwise, where « is a random
number chosen by Ps. We can then ask P; to sum the values it learned, and
replace Yao’s protocol with an OTY" , as was done in the binHDOT protocol of
Section]l (This was impossible when an OPE was used, since in that case the
sum was random if there was even a single item of P; which was not in Po’s set.)

Application II: lottery service As an example of another application of m-
point-SPIR, consider a lottery service where the server has a range of tickets,
only a few of which are winning tickets. The client uses the protocol to “buy”
a ticket, but the client must not know, at least not until some time in the
future, whether this is a winning ticket. The server’s database contains the prize
corresponding to each winning ticket, or the default “no prize” value & (which, of

Secure Hamming Distance Based Computation and Its Applications 123

course, is associated to most of the tickets). It must be ensured that a client that
receives the value T cannot identify that this is the default value. The server must
not learn which ticket was chosen by the buyer. (A lottery service with many
clients must handle many other different issues which we do not describe, but
m-point-SPIR seems like a good approach for handling the purchase of tickets.)

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

Ben-David, A., Pinkas, B., Nisan, N.: Fairplaymp — a system for secure multi-party
computation. In: ACM Conference on Computer and Communications Security—
ACM CCS 2008. ACM, New York (2008)

. Blake, L.LF., Kolesnikov, V.: Conditional encrypted mapping and comparing en-

crypted numbers. In: Crescenzo and Rubin [9], pp. 206-220

. Bogetoft, P., Damgard, I., Jakobsen, T., Nielsen, K., Pagter, J., Toft, T.: A practical

implementation of secure auctions based on multiparty integer computation. In:
Crescenzo and Rubin [9], pp. 142-147

. Boneh, D. (ed.): CRYPTO 2003. LNCS, vol. 2729. Springer, Heidelberg (2003)
. Cachin, C., Micali, S., Stadler, M.: Computationally private information retrieval

with polylogarithmic communication. In: Stern, J. (ed.) EUROCRYPT 1999.
LNCS, vol. 1592, pp. 402-414. Springer, Heidelberg (1999)

. Camenisch, J., Neven, G., Shelat, A.: Simulatable adaptive oblivious transfer. In:

Naor [26], pp. 573-590

. Camenisch, J., Shoup, V.: Practical verifiable encryption and decryption of discrete

logarithms. In: Boneh [4], pp. 126-144

. Canetti, R.: Security and composition of multiparty cryptographic protocols. J.

Cryptology 13(1), 143-202 (2000)

. Di Crescenzo, G., Rubin, A. (eds.): FC 2006. LNCS, vol. 4107. Springer, Heidelberg

(2006)

Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing contracts.
In: Advances in Cryptology - Crypto 1982, pp. 205-210 (1982)

Fagin, R., Naor, M., Winkler, P.: Comparing information without leaking it. Com-
munications of the ACM 39(5), 77-85 (1996)

Feigenbaum, J., Ishai, Y., Malkin, T., Nissim, K., Strauss, M.J., Wright, R.N.:
Secure multiparty computation of approximations. ACM Transactions on Algo-
rithms 2(3), 435-472 (2006)

Freedman, M.J., Nissim, K., Pinkas, B.: Efficient private matching and set intersec-
tion. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027,
pp. 1-19. Springer, Heidelberg (2004)

Goethals, B., Laur, S., Lipmaa, H., Mielikdinen, T.: On private scalar product
computation for privacy-preserving data mining. In: Park, C.-s., Chee, S. (eds.)
ICISC 2004. LNCS, vol. 3506, pp. 104-120. Springer, Heidelberg (2005)
Goldreich, O.: Foundations of Cryptography. Basic Applications, vol. 2. Cambridge
University Press, New York (2004)

Green, M., Hohenberger, S.: Blind identity-based encryption and simulatable obliv-
ious transfer. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp.
265-282. Springer, Heidelberg (2007)

Hazay, C., Lindell, Y.: Efficient oblivious polynomial evaluation and transfer with
simulation-based security (manuscript) (2008)

124

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.
34.

35.

A. Jarrous and B. Pinkas

Indyk, P., Woodruff, D.P.: Polylogarithmic private approximations and efficient
matching. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 245—
264. Springer, Heidelberg (2006)

Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious transfer
- efficiently. In: Wagner [33], pp. 572-591

Jarecki, S., Shmatikov, V.: Efficient two-party secure computation on committed
inputs. In: Naor [26], pp. 97-114

Kushilevitz, E., Ostrovsky, R.: Replication is not needed: single database,
computationally-private information retrieval. In: FOCS 1997, pp. 364-373 (1997)
Lindell, Y., Pinkas, B.: An efficient protocol for secure two-party computation in
the presence of malicious adversaries. In: Naor [26], pp. 52-78

Lindell, Y., Pinkas, B., Smart, N.P.: Implementing two-party computation effi-
ciently with security against malicious adversaries. In: Ostrovsky, R., De Prisco,
R., Visconti, I. (eds.) SCN 2008. LNCS, vol. 5229, pp. 2-20. Springer, Heidelberg
(2008)

Malkhi, D., Nisan, N., Pinkas, B., Sella, Y.: Fairplay - secure two-party computation
system. In: USENIX Security Symposium, pp. 287-302. USENIX (2004)

Meier, R., Przydatek, B.: On robust combiners for private information retrieval
and other primitives. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp.
555-569. Springer, Heidelberg (2006)

Naor, M. (ed.): EUROCRYPT 2007. LNCS, vol. 4515. Springer, Heidelberg (2007)
Naor, M., Nissim, K.: Communication preserving protocols for secure function
evaluation. In: STOC, pp. 590-599 (2001)

Naor, M., Pinkas, B.: Oblivious transfer and polynomial evaluation. In: STOC
1999, pp. 245-254. ACM Press, New York (1999)

Naor, M., Pinkas, B.: Computationally secure oblivious transfer. J. Cryptol-
ogy 18(1), 1-35 (2005)

Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223-238.
Springer, Heidelberg (1999)

Paillier, P.: Trapdooring discrete logarithms on elliptic curves over rings. In:
Okamoto, T. (ed.) ASTACRYPT 2000. LNCS, vol. 1976, pp. 573-584. Springer,
Heidelberg (2000)

Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient and com-
posable oblivious transfer. In: Wagner [33], pp. 554-571

Wagner, D. (ed.): CRYPTO 2008. LNCS, vol. 5157. Springer, Heidelberg (2008)
Wright, R., Yang, Z.: Privacy-preserving bayesian network structure computation
on distributed heterogeneous data. In: Proc. of the 10th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, pp. 713-718. ACM
Press, New York (2004)

Yao, A.C.-C.: How to generate and exchange secrets (extended abstract). In: FOCS,
pp. 162-167. IEEE, Los Alamitos (1986)

Efficient Robust Private Set Intersection

Dana Dachman-Soled!, Tal Malkin®, Mariana Raykova!, and Moti Yung?

! Columbia University
{dglasner,tal,mariana}@cs.columbia.edu
2 Columbia University and Google Inc.
moti@cs.columbia.edu

Abstract. Computing Set Intersection privately and efficiently between
two mutually mistrusting parties is an important basic procedure in the
area of private data mining. Assuring robustness, namely, coping with
potentially arbitrarily misbehaving (i.e., malicious) parties, while retain-
ing protocol efficiency (rather than employing costly generic techniques)
is an open problem. In this work the first solution to this problem is
presented.

Keywords: Set Intersection, Secure Two-party Computation, Crypto-
graphic Protocols, Privacy Preserving Data Mining.

1 Introduction

Constructing an efficient, robust two-party protocol for computing set intersec-
tion that is secure and realizable given current encryption methods is an open
question first introduced in the work of Freedman, Nissim and Pinkas [9]. Here
we solve this problem and present a protocol that allows two mutually distrustful
parties holding private inputs to compute the intersection of their inputs without
revealing any additional information. We prove the security of our protocol in
the standard Ideal/Real Model. The Set Intersection primitive is widely used in
the area of privacy preserving data mining ([I9]); the prototypical application
involve secure sharing of information in areas like personal health and finance.
Although generic robust methods (c.f., [20]) based on Yao’s general two-party
computations [25] are sufficient for computing any two-party functionality, here
we are after efficient methods. Since the size of the naive circuit needed to com-
pute Set Intersection is at least 2(m - n) (where n is the input size of the party
that receives output and m is the input size of the other party) any generic
construction for semi-honest two-party computation will have communication
complexity £2(m - n), even without robustness. In contrast, our protocol’s com-
munication complexity is O(mk?log® n 4 kn) ciphertexts, where k is a security
parameter (i.e. logarithm of the size of the field, where we allow sets that are
arbitrary but are representable in this field). Additional properties of our solu-
tion are worth mentioning: First, the number of exponentiations needed by our
protocol increases only by a poly-logarithmic (i.e. a k? log? n) factor in compari-
son to the number of exponentiations required by the semi-honest protocol of [9]

M. Abdalla et al. (Eds.): ACNS 2009, LNCS 5536, pp. 125 2009.
© Springer-Verlag Berlin Heidelberg 2009

126 D. Dachman-Soled et al.

over domains as above. Secondly, our construction is fully-black box assuming
the existence of a homomorphic encryption scheme. Finally, the encryption is
only required to possess a few natural properties, which are discussed in the fol-
lowing section (and satisfied by known homomorphic encryption schemes, e.g.,
based on DDH).

Our Methodology and Techniques. Our starting point is the semi-honest
protocol of [9] that computes set intersection via polynomial evaluation. In this
protocol, the Server must evaluate an encrypted polynomial of degree n on each
of his inputs and send the (encrypted) results back to the Client. In the malicious
adversary case, though, to achieve security, the Client must be able to verify that
the Server evaluated the polynomial honestly with respect to its input. To ensure
this, we use techniques that add redundancy to the representation of the inputs
(this is motivated by techniques in Choi et. al [6]). More specifically, we employ
a Server that shares its input via a Shamir secret-sharing [23] threshold scheme
using a degree k polynomial, where k is the security parameter, and then commits
to shares of its input. Note that a Shamir secret-sharing can also be viewed as a
Reed-Solomon encoding of the input. What we would like to do next is have the
server evaluate the encrypted polynomial on each share of its input and send the
resulting shares to the Client. Note that due to the fact that polynomials are
closed under composition, the above yields a valid-secret sharing (and a valid
Reed-Solomon encoding) of the output value. However, the resulting polynomial
is now of degree n - k, and so we need at least n - k + 1 shares to recover the
secret. To improve our efficiency, we apply input-preprocessing technique that
allows us to reduce the degree of the output polynomial to d = k(|logn|+1)+k,
and thus we need only O(k(|logn] + 1)) shares in order to recover the shared
value.

Next, we ensure that the Server acted honestly for a large-fraction of the
shares by executing a cut-and-choose protocol that forces the Server to open
k random shares for each committed input value, thus allowing the Client to
verify that the corresponding output share was computed correctly. Due to the
information-theoretic security of the secret-sharing scheme, no information about
the input is leaked by opening these shares. Additionally, the Client checks that
all the output shares he received indeed lie on the same polynomial of degree
d. Due to the large distance between codewords in a Reed-Solomon code this
ensures that, in fact, all the shares were computed exactly correctly. Finally, the
Client reconstructs the secret, which is now guaranteed to be consistent with
the Server’s inputs. Note that in the two-party case, we only need to either
complete the computations if the other party acts honestly, or detect cheating.
This allows us to use Lagrange interpolation and a consistency check as an
error detection code, rather than error-correction (implied by techniques such as
Berlkamp-Welch). As is noted in the sequel, this is important to the realization
of the encryption schemes, since the interaction of the algebra of secret sharing
methods and the algebra of concrete encryption schemes is a subtle issue (not
treated in earlier work). We ensure that every algebraic operation used in our
protocol is realizable given a concrete encryption scheme.

Efficient Robust Private Set Intersection 127

Related Work. Multiple papers address the problem of secure set intersection
and suggest various solutions [I,9L[I8]12]. (We remark that, in addition, several
works deal with variants of set intersection such as the private equality test for
input sets of size one [82T)[3}[I4] or the problem of disjointness that asks whether
the intersection of two sets is empty ([I7])). However, none of the protocols for
set intersection that have been suggested thus far are secure in the scenario of ar-
bitrarily malicious adversaries and arbitrary input domains. Freedman et. al([9])
present a protocol claimed (without details or proofs) to be secure in the pres-
ence of a malicious Client in the standard Ideal/Real model, and secure in the
presence of a malicious Server only in the Random Oracle model. Hazay and
Lindell ([12]), in turn, adopt a different approach based on secure pseudoran-
dom function evaluation that does not use random oracles but they only achieve
security against a malicious Client (and semi-honest Server), or security against
two covert parties, where covert is a new non-standard model that is stronger
than semi-honest, but weaker than malicious. Recently (and independently of
our work), Jarecki and Liu ([15]) extend the approach of [12] to provide a proto-
col secure against two malicious parties, when the input sets are chosen from a
polynomial-sized domain and based on the Decisional g-Diffie-Hellman Inversion
Assumption. We also note the work of Kissner and Song ([18]) which presents
multi-party protocols that are secure in the presence of semi-honest adversaries
for several set operations including Set Intersection. Additionally, they briefly
address achieving security in the presence of malicious adversaries, but their
method relies on inefficient generic zero-knowledge proofs. Also independently,
Camenisch and Zaverucha ([4]) extend the protocol of [9] in a different direction
where they assume the presence of a certifying third party that signs the input
sets of the two participants. This provides guarantees that the set intersection
functionality is computed correctly with respect to the signature certified input
sets in the presence of malicious adversaries.

Organization. In section 2 we present definitions and known building blocks,
while in Section 3 we present our protocol steps and protocol. In Section 4 we
present some intuition for the proof of security, and discuss our complexity.

2 Definitions and Building Block Protocols

We use a standard simulation-based definition of security from [5], and follow
the definitions of zero knowledge proofs of knowledge and commitment schemes
from [10]. We denote Comp a perfectly binding commitment scheme and Com g
a perfectly hiding commitment scheme.

We follow the standard definitions of semantically-secure encryption schemes
and homomorphic encryption schemes given in [I6]. We assume the plaintexts of
the semantically-secure encryption scheme ENC are elements of a finite group P
with group operation '+’ and that the ciphertexts are elements of a finite group
C with group operation ’-’. Since ENC is a homomorphism from P to C, the
homomorphic property of an encryption scheme ENC can be stated as follows:

128 D. Dachman-Soled et al.

Property 1 (Homomorphic Encryption).
ENC(X, 1)-ENC(Y, r5) = ENC(X +Y, r) (ENC(X, r3))* = ENC(\-X, 7).

We will also require that r can be computed in polynomial-time given 1,7, X, Y,
r’ can be computed in polynomial time given r3, X, A, and that r, 7’ are uniformly
distributed when r1, 72,73 are (so the encryptions after applying a homomorphic
operation are distributed as random encryption). It turns out that known ho-
momorphic encryption schemes typically satisfy the above requirements, and
actually possess the following, stronger, property:

Property 2.
ENC(X,r1)-ENC(Y, r2) =ENC(X+Y, r1+73); (ENC(X,73))* =ENC(A-X, A-r3).

This property is satisfied by most known homomorphic encryption schemes, such
as Paillier [22], ElGamal [7], and Goldwasser-Micali [11] encryption schemes.

We also present the Additive El-Gamal Encryption scheme, which we will use
to concretely instantiate our protocol:

Definition 1 (Additive El Gamal Encryption Scheme: AEG.,.).

— GEN: on input 1™ generate (G, q, g) where q is prime, G is a cyclic group of
order g and g is a generator. Then choose a random x < Z,; and compute
h = g*. The public key is (G, q, g, h) and the private key is (G, q, g,).

— ENC: on input a public key pk = (G, q,g,h) and a message m € Z,, choose
a random y «— Z, and output the ciphertext

(9", h" - g™)
— DEC: on input a private key sk = (G, q, g, x)and a ciphertext {ci1,ca), output

g™ =ca/cy
Unlike regular Additive El Gamal decryption, here we can recover ¢g”* and not
necessarily know m. However, this will be sufficient for our application and we
are able to handle plaintexts that come from a large domain.

Now we proceed to define several auxiliary protocols that will be used in our
main protocols.

2.1 Homomorphic Encryption Proof of Knowledge

This protocol will be used by both the Server and Client when a party Py sends
to a party P; a public key pk and several values encrypted under ENC,y. In the
malicious case, we require Py to prove that he knows the corresponding plain
text values and randomness and additionally that the encrypted plaintexts are
"valid” (i.e. belong to a particular language). This protocol is similar to the
polynomial time provers in [I3].

Efficient Robust Private Set Intersection 129

If P, is behaving honestly, its input should be a member of the language L
whose membership can be determined in polynomial time and is closed under
addition and subtraction. The NP-language L', is defined as follows:

L' ={C = (pkl,c1,...,cqa) | ¢i = ENCpii(xi;7;), for some x;, 7,1 <i < a,
and (z1,...,2q) € L}

Homomorphic Encryption Proof of Knowledge and Plaintext Verifi-
cation (HEPKPYV) Protocol: IIpox

Input: Py «— C = (pkl,c1,...,¢qa), (1,...24) € L, (r1,...,74) where ¢; =
ENCpp1(z4;m;) for 1 <i < o

P, — C=(pkl,cr,...,cq)
Output: Py outputs Accept if C € L', and Reject otherwise.

1. Py chooses k random vectors (e11,...€1a),---,(€k1,---,€ka) such that for
1 < <k, (€1,.-.,€ia) € L. and another k vectors (r11,...T14),---,
("1, - .-, Tka) Of random numbers.

2. Py computes the encryptions (¢;1,- - -,¢ia)=(ENC(ei1, 1), - - . , ENC(€0, Ticx))
for 1 <4 < k and sends them to the Server.

3. P; chooses a sequence of k bits b . ..b;C and sends to P; a commitment
to those bits: Compg (b} ...b)), along with the public parameters for the
commitment scheme.

4. Py chooses a sequence of k bits bf . ..b% and sends to Py a commitment
to those bits: Comp(by ...b}), along with the public parameters for the
commitment scheme.

. Py and P, decommit the value b7 ...b} and b ...b}, respectively.

6. Py, P verify that the bits received correspond to the commitments that were
sent. If the check fails, they abort the protocol. Otherwise both Py and P;
compute by ...by = b} ...0) XOR b/ ... b}.

7. Foreach 1 <1 <k:

(a) if b; =0, Py sends to P1 M = (ej1, - €io) and R = (141, - Tia);
(b) if b =1, Py sends to PP M = (1 + €51, ,@n + €in) and R = (r1 +
Tit, s Ta + Tia)-

8. Foreach 1 <1 <k:

(a) if bl ZO, P1 verifies that (Cil,' ey, Cia) = (ENC(eil, Tﬂ), e ENC(Z‘MM Tia));
(b) if bz = 1, P1 verifies that (clcﬂ, s cacm) = (ENC(xl +62'1, T1 +T¢1), ey,
ENC(zq + €iasTa + Tia))-

9. P, verifies that (M) € L.

10. If any of the verifications steps of P; fail, abort the protocol. Otherwise,

accept.

ot

Lemma 1. Assume that Homen. = (Gen, Enc, Dec) is a CPA-secure homo-
morphic encryption scheme, Compyg is a perfectly hiding commitment scheme,
and Comp is a perfectly binding commitment scheme. Then protocol Ilpok is
a Zero Knowledge Proof of Knowledge for L'.

See full version for proof.

130 D. Dachman-Soled et al.

Now we define several languages that we will use in the main protocols in the
context of the above HEPKPYV protocol:

Language consisting of points that lie on some polynomial of degree ¢

Lyory(t,u, 0) ={m; ; |1 <i<t, 1<j<u;
for each j the points ((1,m1,;), ..., (t,mq;))

lie on a polynomial of degree £}.

— Language consisting of points that lie on some polynomial of degree ¢ that
has zero free coeflicient

Lpoly,0<t7u7€) = {mi,j ‘ 1 < 1 < t7 1 SJ < Uu;
for each j the points ((1,m1;),..., (t,ms;))
lie on a polynomial P; of degree ¢ and P;(0) = 0}.

— Language consisting of points that lie on some polynomial of degree ¢ that
has free coefficient equal to m;.

Leg(t,u,) = {m;j,m} |1 <i<t;1<j<u,
for each j the points ((1,ma;),. .., (t,m4;))

lie on a polynomial P; of degree ¢, where P;(0) = m;}

— The following language consists of several tuple of pairs of the form (m; ;, m;, ;)

For each i the points (1,m; 1), ..., (t,m;) lie on a polynomial P; of degree ¢

and the points (1,m;), ..., (t,m;,) lie on a polynomial R; of degree 2¢ and
additionally, for each i, P;11(0) = R;(0).

Lg(t,u,) = {(mij,m; ;) |1 <i<u, 1<j <t foralli,
the points ((1,m,1), ..., (t,m4;)) lie on P; of degree /;
the points ((1,mj,),...,(t,m;,)) lie on R; of degree 2/;
and for 1 <4 <wu—1,P11(0) = R;(0)}

Membership in all of the above languages can be determined in polynomial
time. Also these languages are closed under addition and can be used in the
context of the HEPKPYV protocol.

2.2 Coin Tossing

The following protocol is run by the Server S and Client C in order to select a
random number within a given range [0, s — 1] known to both of them. At the
end of the protocol both parties obtain the same random number. The private
input of the two parties is (L, L) and the output to each party is (rand, rand),
where rand is a uniformly random number chosen from [0, s — 1J.

Efficient Robust Private Set Intersection 131

1. S chooses a random value R’ € [0,s — 1] and sends a commitment C; =
Compg(R') to P.

2. C chooses a random value R’ € [0,s — 1] and sends a commitment Cy =

Compg(R") to Py.

C opens the commitments Cs.

S opens the commitment Cj.

5. The two parties output R = R’ + R"” mod s .

= W

We note that both statistically hiding and statistically binding commitments
can be constructed using a homomorphic encryption scheme.

Lemma 2. Assume that Comp is a statistically hiding commitment scheme
and Comp is a perfectly binding commitment scheme. Then protocol ¢y s
simulatable for Malicious C and Honest S.

See full version for proof.

3 Set Intersection Protocol

We now describe the setting for the Set Intersection protocol. There are two
participants in the protocol: Client, C' and Server, S. The Client has an input
set X,|X| = n of size at most n < max. and the Server has an input set
Y,|Y] = m of size at most m < mazs. Both parties know a homomorphic
encryption scheme Homen,. = (GEN,ENC,DEC). Further the Client and the
Server choose a security parameter k. The goal of the protocol is that the Client
learns the intersection of their sets: X (1Y and nothing else while the Server
learns nothing. Now if the pair (K., K) represents knowledge of the Client (K.)
and the Server (K), the input and output of the set intersection protocol can
be summarized as follows:

({X, maz., mazxs, Homene, k}, _ (XNY, 1), if | X] < maze, |Y| < maxs
{Y, mazs, mazxe, Homene, k}) (L, 1) otherwise

Our idea starts with the approach of [9]: the Client constructs a polynomial
P of degree n over a finite field such that P(z) = 0 if and only if z € X. The
Client encrypts the coefficients of P using a homomorphic encryption scheme and
sends them to the Server. Due to the homomorphic properties of the encryption
scheme, the Server is now able to evaluate the polynomial at each of its inputs.
Thus, for 1 < £ < m, the Server sends the encryption of the following output
back to the Client: 7; - P(y;) + y;, where r; is chosen randomly. Thus, we have
that if y; € X NY then the Client receives y;. If y; ¢ X N'Y then the Client
receives a random value.

Before presenting our main protocol, we define three protocols that are used
as building blocks for the main protocol. They implement the two main ideas
that we use to achieve security against malicious parties.

132 D. Dachman-Soled et al.

3.1 Input Sharing via Enhanced Shamir Scheme

In the set intersection protocol we ”share” function evaluation by secret sharing
the arguments of the function and evaluating the function on corresponding
shares in order to obtain shares of the final value of the function. We use Shamir’s
secret sharing ([23]) but for the purposes of efficiency we apply the following
further transformation on the inputs.

Let f be a polynomial of degree n over a single variable: f = a, 2" 4+a,_12" '+
-+ -+ ag. For a given 2z and r, we would like to obtain shares of the result g(z,7) =
r - f(2) + z by secret-sharing the inputs z and r. For this purpose we choose ran-
dom polynomials P, P, of degree k for such that P,(0) = z and P-(0) = r and
evaluate g on m shares of the input to obtain g(P,(1), P.(1)), ... g(P,(m), P.(m)).
We now define a new single variable polynomial ¢'(i) = g(P, (i), P-(i)). Note that
the degree of ¢’ is n - k + k and that ¢’(0) = g(P.(0), P.(0)) = g(z,r) and thus
given g(P, (1), P.(1)),...,9(P.(m), P-(m)) = ¢'(1), ..., g'(m) we can reconstruct
g'(0) = g(z,7) when m > n - k + k. This means that the number of shares needed
isatleast n-k+ k.

We extend the above idea further in order to decrease the degree of the final
sharing polynomial of the result. For a given z and r, we obtain shares of the
result g(z,7) in the following way. For 0 < ¢ < |logn]| we secret share the
value 22 using a random polynomial P ., of degree k, such that P ,.(0) = 22
Let s[i] indicate the i'h bit of a number s. We now define a new polynomial
g"(i) = P.(i) + Po(i) - Z1yag - ¥ (P e ()10 Note that g”(0) = g(z,7)
and that g” has degree (|logn| + 1)k + k. We have thus drastically reduced the
number of shares necessary to recover g”(0) = g(z,r).

The above idea for function transformation guarantees correct evaluation of
shares of the functional value if the party is following the protocol honestly.
In the malicious case a party needs to prove that the sharing functions that it
is using for the new arguments z, 22, .. .,222 have been constructed correctly.
The following protocol allows a party to generate shares of an input z using the
preprocessing idea and then prove that these shares were computed correctly
without revealing any information about z.

Efficient Preprocessing of Input:

1. For each y; € Y, 1 < j < m S chooses a random polynomial P, of degree
k such that P, (0) = y;, and computes shares of the form P, (i) for 1 <i <
10k([logn| 4 1) and the corresponding encryptions ENC,i (P, (4)).

2. For each y;, 1<¢<m S and C run the HEPKPV protocol with Ly, (m, n, k)
= {mi; = P,,(i)} in order for S to prove the correctness of his sharing.

3. For each y;, for £ = 0 to |logn], for i = 0 to 10k(|logn| + 1), S computes
the following:

— Local Computation on Shares: a polynomial P;Zz of degree 2k such that

P (1) = (P ()"
— Degree Reduction Step: a random polynomial Py2£+1 of degree k such
i
that Py]zz+1 (0) = P;?z (0)

Efficient Robust Private Set Intersection 133

4. For each y;, for £ = 0 to |logn], for i = 1 to 10k(|logn| + 1), S computes
the following commitments:
— New input shares: ENC,; (P 20+ (1)) and
— Intermediate shares: ENCpk(P (1))

and sends those commitments to C’7

We now describe how C' verifies S’s computation of its new shares.

Let J be the ordered set of all elements of {0,1}!0%(llognJ+1) that contain
exactly k ones. Note that given R, an index of a string in the set J, we can
efficiently reconstruct the Rth string, jr. Let Jg = {i|jr[i] = 1}, where jr]i]
denotes the ith position of the string jg.

Preprocessing Verification:

Common Inputs: The commitments: [Cj,e,ihg]‘gm,ogeg [log n]+1,1<i<10k([log n]+1)>
[C?,Z’i]lgjgm,ogﬁg[lognj,lgiglok(uognj_;,_l)7 and a number R € [|J|] chosen using
the Coin-Tossing protocol after S committed to its inputs.

Private Inputs of S: Decommitments to the above values.

1. For alli € Jg,1 <j <m,0<¢< |logn| S opens the commitment C? IRy
to Cl G6+1,i0 Cj’g’i to Cj/‘,é,i‘

2. For all i € Jr,1<j<m,0< (< |logn| C checks that C7%,, ;= (C}, ;).

3. S and C run the HEPKPV protocol with S’s private 1nputs the com-
mon commitment inputs and language Lg,(|logn |, 10k(|logn|+1),m, k) =
{me;; = Py?z (1), mgm = Pyz]zf (1)}

In the first step of the above protocol S first proves that for all y; € ¥,0 < £ <
|logn] he has computed correctly P ¢ (1) for at least a .9-fraction of the shares
correctly. In the second step of the protocol S proves that for all y; € Y,0 < € <
|log n| he has computed correctly the new sharing polynomials for the values y]
and that both P 2 and P L are polynomials. Since any 2 polynomials of degree at

most 2k must dlsagree on at least a .8-fraction of the shares, the combination of
the above two statements implies that with probability at least 1 —m - (|n| +2)?-

(1/2% +.9%), all the sharings were, in fact, computed exactly correctly. For detailed
analysis of the above intuition, see the proof sketch in section 4 and the full version.

3.2 Cut-and-Choose on Computations on Input Shares

Common Input: The encryptions: b, 41, ..., by, The commitments:
[Mi,j,f]lgjgm,ogﬁgUogd,lgiglok([logrj+l)u [R’,j]1<j<m 1<i<10k(|log n|+1)>

[0i 5]1<j<m,1<i<10k(|log n]+1)> [Ci,jli<t<m,1<i<10k(|[logn|+1), and a number R &
[|7]] chosen using the Coin-Tossing protocol after S committed to the above.

Private input of S:Decommitments to[M; j ¢]1 < j<mazs,0<¢< log n],1<i<10k([log n+1)
[Rijli<j<m,1<i<10k(|logn]+1)s [Zi,jl1<j<m,1<i<10k(|logn]+1), and the values
[Ti,j]lgjgm,lgiglok(uog n]+41)-

134 D. Dachman-Soled et al.

We use the cut-and-choose technique to prove the correctness of evaluation of
a specific function on committed inputs [M; ; ¢|, [Ri ;], [Z; ;] that results in the
commited outputs [C; ;]. The function we use is:

, HUognJ(M/ Ps R;
Cuy = ENC(0:3) ENCpua (2530) - ENCopa (M 5.0:0) - (T2t)
where s[¢] denotes the ¢ bit of s.
We will explain why this is the function we need in the next section.
The steps of the protocols are the following:

1. For each i € Jg,1 < j < m,0 < ¢ < [logn] S opens the commitments
M; 0, Rij, Zi 5 to M ; 4, R ;. Z; ; and produces the random value 7; ;.
2. Forie Jg,1<j<m,C verlﬁeb the following: C; ; =

ENCpkl (O7 7”7;7]') . ENCpkl(Z/

i,]:

) ENCPkl(13070) H: Ob

3. If any of these verifications fail, C' outputs Reject. Otherwise, C' outputs
Accept.

HtlognJ(M/)s[é])

3.3 Reconstruction and Set Membership Test Protocol

We describe here how the Client reconstructs and checks whether Server’s input
y; is in his input set X and consequently in the intersection set using the output

shares [C j]1<i<10k(|logn|+1)-

1. The Client decrypts the output shares [C; j]1<i<10k([log n|+1) t0 Obtain plain-
texts [C] ;]1<i<10k(log n|+1)-

2. The Client uses the points (1,C1 ;),..., (k+ k([logn] +1),C k+k(Uog 1),
and the Lagrange interpolation polynomlal to check that for 1 < 7 < 10k
([logn] +1)

C,Z{’j _ LJ(Z) Zl+f+k(£log n]+1) C/ ()

V=

where £, (z) = [T-ETRlea It e —w o erwise, abort.

w=1,w#v v—w "
3. The Client reconstructs the shared value:

Ch; = L;(0) = pititHlesnltDar o (o)
J
and checks whether Co,j =z for some x € X. If it does, output z.

In the following, we give a concrete implementation of the Reconstruction Pro-
tocol using additive E1 Gamal encryption. We note the following subtlety due
to the interaction of the algebraic properties needed to realize the protocol and
the properties of the El Gamal encryption scheme. Due to the algebraic proper-
ties of the encryption scheme, we are able to compute the Lagrange interpolation
polynomial and thus detect errors; however, we cannot run the Berlekamp-Welch
algorithm to correct the errors in the codeword. This is due to the fact that the
Client can only obtain pairs of the form (¢, g™#7) and we are interested in recon-
structing a polynomial such that P(i) = m, ; (for a large fraction of i’s). The
Berlekamp-Welch algorithm requires us to solve a system of linear equations,
which we do not know how to do efficiently when we know only ¢/ and not
m;,; itself (This issue was ignored in earlier work).

Efficient Robust Private Set Intersection 135

Reconstruction and Set Membership Test via Additive El Gamal En-
cryption

1. The Client decrypts the output shares [C; j]1<i<10k([log n]+1) t0 Obtain plain-
texts [9™7]1<i<10k([log n] +1)-

2. The Client uses the points (1,¢™),...,(1 + k + Ek(|logn] + 1),
gMetr(llosn]+1).0 and the Lagrange interpolation polynomial to check that
for 1 <4 < 10k(|logn] +1)

mii o N 1+k+k([logn]+1 mi v\ (i
g™ = Lj(i) = L FHHesn) (gmay ()
where £, (z) = H;iﬁﬁfgog MY z-w Otherwise, abort.
3. The Client reconstructs the shared value:

ng‘_j _ L(O) _ H;if+k(LlOgnJ"l’l)(gm_j,v)ev(O)

and checks whether g™ = ¢* for some z € X. If it does, output z.

3.4 The Full Protocol

We start with an overview description of the main steps in the protocol, followed
by the detailed specification of our set intersection protocol.

1. The Client runs GEN(1¥) to obtain a secret key sk and a public key pk for
Homey,e and sends pk to the Server.

2. The Client computes a polynomial P(z) = 2" + a,_12" ' + -+ +a1x + ag
of degree the size of his input n over a finite field such that P(z) = 0 if and
only if x € X.

3. The Client encrypts the coefficients of P, b; = ENC(a;) and sends them to
the Server.

4. For each y; € Y S chooses a random value 7; and constructs the function

F(y;) = ENCpp, (1 - (y;) +y; +0) =
= ENCyy, (0) - ENCpi, (y;) - (H(ENCpk1 (GS))y;)Tj =
s=0

= ENCy, (0) - ENCyr, (37) - (JT (05)7)"

s=0

The above function has the property that it maps the values in the intersec-
tion set of the two parties to themselves and values not in the intersection
to random numbers.

5. The Server replaces each of its inputs y; with new variables ¢, = yjzg for
0 < ¢ < |logn — 1| and transforms the above function to

n

llogn] , 2¢\s[e] "
F(y;) = ENCpy, (0) - ENCpp, (y;) - (H(bs)nho (i))

s=0

136 D. Dachman-Soled et al.

Note: The exponent of each b is y; , however, in the form where s is written
in binary and s[1], ..., s[[logn]| + 1] are its binary digits and the power of y;
for each digit is substituted with the corresponding new variable from the
efficient preprocessing of Servers inputs.

6. The Server shares each of his input y € Y with polynomial P,; and each of
the random values 7; with a polynomial P, .

7. Additionally the Server computes m random polynomials P ; that have
constant coefficient zero. These are used to "rerandomize” the output shares
so that they give no information about the input.

8. Using all of the above shares and a random r; ; (to "rerandomize” the en-
cryption) the Server computes shares of the values F(y;):

Out; j = (F(y;))(i) = ENCpp, (057) - ENCpy, (FPo,5(7); 0) - ENCypp, (Py; (2); 0) -

(ﬁ(b R (i))ém> Py

s=0

and sends them to the Client.

9. The Client decrypts the values that he received from the Server, verifies
that they are valid, and uses them to reconstruct the shared values. He
concludes that the obtained values that are in his input set are the values in
the intersection set.

The above protocol ensures privacy in the presence of semi-honest parties,
but is not secure in the presence of malicious parties. The following are several
basic additional conditions that must hold in order that the above protocol will
be secure in the presence of malicious parties.

The first condition is that the coefficients that the Client sends to the Server
are values encrypted with Home,. under the key pk. We guarantee this by
making the Client prove that he knows the encrypted values with HEPKPV.

Additionally, the Client must be sure that the Server correctly shared his
inputs using the secret-sharing scheme. This will be guaranteed by HEPKPV
showing that all the shares of one input lie on some polynomial of degree k.

The correctness of the protocol also depends on the Server evaluating F' hon-
estly. We apply the cut-and-choose protocol on the shares of the Server’s inputs
to ensure that the computation on a large fraction of final output shares was
done correctly.

The last change that we apply improves the efficiency of the protocol. Since
the number of shares needed to reconstruct F;(0) will depend on the degree of
F, we reduce its degree by introducing new variables of the form a; = y? for
1 <i<|logn—1]| for y € Y. Here we need to prove that the computation of
the new variables and their shares was done correctly with the Preprocessing
Verification Protocol.

We present the full set intersection protocol below.

Efficient Robust Private Set Intersection 137

Set Intersection Protocol I7

Input: C — {X, max., mazxs, Homene, k}, S — {Y,maxs, maze, Homenc, k}
Output: C —- X NY, S —L
Protocol:

1.

2.

10.

11.

12.

13.

14.

The Client runs GEN(1¥) to obtain a secret key skl and a public key pkl
for Homene and sends pkl to the Server.

C computes a polynomial P(x) = 2" + a,_12" ' 4 --- + a1x + ap of degree
n = | X| such that P(z;) = 0 if and only if z; € X. Let a,, = 1.

C computes b; = ENCpii(a;) for all 0 < ¢ < n — 1 and sends to S

{bnfla e >b0}7

C and S run the HEPKPV Protocol presented in Section 2 as Iy and P
respectively with common input: B = {b,_1, - ,bo} and L = {0,1}9, in
order that the C proves that it knows the decryptions of {b,_1,--- ,bo}.

. The Server runs GEN(1%) to obtain a secret key sk2 and a public key pk2

for Homen and sends pk2 to the Client.

For each y; € Y S runs the Efficient Preprocessing protocol to obtain the
new variables ¢y = y?[for 0 < ¢ < |logn — 1] and the corresponding sharing
polynomials Py?e such that Py?e (0) = y?[During the protocol S commits
to P e (i) for 1<j<|Y,1<¢<|logn]+1,1<i<10k(|logn]+1).

For each y; € Y S chooses a random value r; and selects a random poly-
nomial P,; of degree k with constant coefficient equal to r;, shares r; into
into 10k(|logn| 4+ 1) shares, and sends the following share commitments to
C: (ENCpra(Fr; (1)), ..., ENCpra (P, (10k(|logn] + 1)))

For each y; € Y S chooses a random polynomial Fp; of de-
gree k + k(|logn| + 1) with constant coefficient equal to 0, computes
10k(|logn] + 1) shares, and sends the following share commitments to C:
(ENCpra(Fo, (1)), ..., ENCpra(Po, (10k([logn] + 1)))

For each y; € Y, for 1 <4 < 10k(|logn| + 1) using the sharing polynomials
obtained in Steps 6, 7, 8, and a random value r; ; S computes:

Outm- = ENCpkl (0, T‘,L'J') . ENCpkl (P().’j (Z), 0) . ENCpkl (Py] (’L)7 0) .

, P, (i)
n HLi)g n| (P 0 (i)°18 j
(H(bg e

s=0

where s[f] denotes the £** bit of s and sends the obtained values to C.

C' and S run the coin tossing protocol to choose a random number R €
[1,17]).

S and C run the Preprocessing Verification protocol with the share com-
mitments that S computed in Step 6 in order for S to prove to C that it
correctly computes the new variables and their shares.

S and C run the HEPKPYV protocol as Py and P; respectively so that S
proves to C' knowledge and validity of the commitments Ly, (10k(|logn] +
1)7 ‘Y|’k) = {mi,j = Prj (L)}a Lpoly,O(lok(UognJ + 1)5 |Y|7k + k([lognJ +
1) = {mi; = Po;(i)}.

C' and S run the cut-and-choose protocol to prove that S correctly computed
[O’uti,]‘].

C' runs the Reconstruction Protocol to obtain the final output.

138 D. Dachman-Soled et al.
4 Analysis

Our main theorem is the following:

Theorem 1. If the Decisional Diffie-Hellman problem is hard in G with gen-
erator q and protocol II is instantiated with the additive El-Gamal encryption
scheme such that Homene = AEGenc, then II securely computes the Set Inter-
section functionality in the presence of malicious adversaries.

We note that IT is also secure when instantiated with any homomorphic encryp-
tion scheme satisfying property [, and allowing to solve the Lagrange interpola-
tion, as discussed in Sections2land[3:3 In particular, we can securely instantiate
the protocol with a properly modified version of Paillier encryption (but the de-
tails are left out of this abstract). The complete proof of Theorem [is in the full
version of our paper. Here we give some intuition and a proof sketch.

4.1 Client-Side Simulator

We consider the case in which the Client is corrupted and the Server is honest.

Let A¢ be anon-uniform probabilistic polynomial-time real adversary that con-
trols the Client. We construct a non-uniform probabilistic expected polynomial-
time ideal model adversary simulator S¢.

The idea behind how S works is that it first extracts the Malicious Client’s
inputs using the extractor for the HEPKPV protocol. S¢ then plays the role
of the Honest Server using dummy inputs that are all set to 0. When proving
knowledge and validity of the Server’s input, Sg uses the simulator for the HEP-
KPV protocol. Next, the Simulator chooses a random subset I’ of size k such
that I’ C [10k(|logn| + 1)]. When committing to the secret-sharing of its input,
it places random values in the positions indexed by I’. S¢ computes correctly
all calculations that will be verified in the cut-and-choose step for elements in
the subset I’. Then, S¢ simulates the Coin-Tossing protocol to guarantee that
the outcome of the Coin-Tossing protocol is I = I’. To ensure that the final
output sent to the Client is correct, the Simulator utilizes the the Trusted Party
to find out the elements in X NY and includes them in the Server’s final output.
Intuitively, because the Simulator is able to choose the set I ahead of time, the
Simulator can run the protocol using the challenge ciphertext from a CPA-IND
experiment as the inputs of the Server in indeces i ¢ I, thereby reducing indis-
tinguishability of the views to the semantic security of the encryption scheme
AFEGep.. Therefore, we have that the Malicious Client cannot distinguish its
view in the Ideal Model when interacting with a Simulator that chooses all 0
values as the Server’s input for indeces ¢ ¢ I and its view in the Real model when
the Honest Server uses its actual input. This is due to the information-theoretic
secrecy of the secret-sharing scheme and the semantic security of the encryption
scheme.

We now describe in detail the Simulator for the case of the Malicious Client
and Honest Server

-

10.

11.

12.

13.

14.

15.

16.

Efficient Robust Private Set Intersection 139

. Sc extracts the Client’s inputs using the extractor for the HEPKPV proto-

col.

. Sc uses the Berlekamp factoring algorithm ([2]) to factor the extracted poly-

nomial and obtain the Malicious Client’s input set X.

Sc sends X to the Trusted Party and receives back the set Out = X NY.
Sc chooses a random subset I’ C [10k(|logn]+1)] of size k, I' = {j1,..., ji}
Input Preprocessing:

— Sc chooses a random value 7; j; and sets Pyzi () =mryjgforl <j<
J

mazg,0 <1< |logn],l € 1.
— Sc sets P o (I)=0for 1 <j<mazxg,0<i<|logn],l e [10k(|logn]+

]\ I

— Sc sets szi)= (Pyz_i (1)) for 1 < j < mazs,0<i< |logn|]—1,l€l
i J
— Sc sets P;22(l) =0 for 1 < j < mazs,0 < i < [logn] — 1,1 €

J
[10Kk([logn| + 1)\ I’
— Sc commits to these inputs.
Choosing Random Polynomials:
— Sc chooses a random value r;; and sets P, (I) = rj; for 1 < j <
maxg,l € I'.
— Sc sets P, (1) =0 for 1 < j < maxs,l € [L0k([logn| + 1)]\ I'.
— S¢ commits to these inputs
Choosing Zero Polynomials:
— Sc chooses a random value r;; and sets Py j = 75, for 1 < j < mazg,l €
I.
— Sc sets Py ; =0 for 1 < j <maxg,l € [10k([logn| +1)]\ I'.
— S¢ commits to these inputs

For 1 < j < mazs and for i € I’, Sc honestly computes the outputs
Out; ; = ENCppi(s; ;) based on the inputs committed to in the previous
stages.

For each y; € Out, Sc chooses a random polynomial Po,s; of degree k +
E(|logn] + 1) such that Poys, (i) = si; for i € I" and Pou, (0) = ;. Note
that Sc¢ can compute s; ; since it has extracted the coefficients of the Client’s
polynomial P.

For each y; € V, Sc¢ chooses a random polynomial Po. , such that Poy; (1)
=5, foriel

For Out; j, i € [10k([logn] + 1)\ I’,1 < j < maxzs Sc computes a random
encryption of Pouyt, (7).

Sc commits to the shares of its inputs and sends the output computed above
to Ac.

Sc simulates a run of the HEPKPV protocol with the committed inputs
from above using the simulator for the HEPKPV protocol.

Sc simulates a run of the Coin-Tossing protocol to ensure the outcome is
the set I’ = Jg using the simulator for the Coin-Tossing protocol.

Sc plays the role of the honest Server in the Preprocessing Verification pro-
tocol to prove the preprocessing was done correctly.

Sc plays the role of the honest Server in the the Cut-and-Choose protocol
to prove output was calculated correctly.

140 D. Dachman-Soled et al.

4.2 Sender-Side Simulator

We now consider the case in which the Sender is corrupted and the Receiver is
honest.

Let Ag be a non-uniform probabilistic polynomial-time real adversary that con-
trols the Server. We construct a non-uniform probabilistic expected polynomial-
time ideal model adversary simulator Sg.

The idea behind how Sg works is that it plays the role of the Honest Client
using dummy inputs: For the coefficients of the polynomial P, it sends n random
encryptions of 0. Then, instead of playing the role of the prover in the zero
knowledge proof of knowledge for the validity and knowledge of the coefficients
of P, it invokes the Simulator for the HEPKPYV protocol. In the second stage,
Sgs uses the extractability property of the HEPKPV to obtain the inputs of the
Malicious Server from the Share Commitment Protocol. After obtaining all the
input commitments and output from the Server, Sg continues to play the role of
the Honest Client in the coin-tossing protocol to choose a random subset for the
cut-and-choose test. If the Malicious Server passes the cut-and-choose test, then
the inputs extracted earlier are submitted to the Trusted Party, otherwise the
Simulator aborts (as the Honest Client does). The cut-and-choose test ensures
that most of the shares of the output generated by the Malicious Server are
consistent with the input extracted previously. Additionally, the honest Client
in the Real Model checks that he has, in fact, received a polynomial. Due to the
properties of the secret-sharing scheme, the above two points ensure that with
all but negligible probability the same (correct) output will be obtained by an
Honest Client in the Real and Ideal model.

We now describe in detail the Simulator for the case of the Malicious Server
and Honest Client

1. Sg chooses n random encryptions of 0: ¢1,...¢, and sends to Server.

2. Sg simulates a run of the HEPKPV protocol with input from above using
the simulator for the HEPKPV protocol.

3. Sg extracts the Server’s inputs using the extractor for the HEPKPV proto-
col.

4. Ag computes output v; ; for ¢ = 1 to 10k(|logn|+ 1) and j =1 to |Y| and

sends to Simulator

Ss plays the part of the Honest Client in the Coin-Tossing protocol.

Ss and Ag run the Cut-and-Choose protocol.

7. Sg rewinds Ag to the beginning of the Coin-Tossing protocol and re-runs
the protocol with new randomness

8. Ss and Ag run the Cut-and-Choose protocol.

9. Sg repeats the previous two steps until all input indeces from 1 to 10k(|logn |
+ 1) have been opened and the output v; ; has been shown to be computed
correctly.

10. Sg submits the previously extracted inputs to the TP.

I

Efficient Robust Private Set Intersection 141

4.3 Computation and Communication Complexity

The communication complexity of our protocol is O(mk? log® n+kn) encryptions
and the computational complexity is O(mnk log n+mk? log? n) exponentiations.

The best known protocols for Set Intersection secure against malicious parties
until now were generic protocols based on Yao’s garbled circuit ([24)25]). Clearly,
the communication complexity of these protocols must at least be the size of the
circuit required for the functionality since all generic two-party protocols that
are known require one party to send a (garbled) circuit for the functionality
being evaluated.

The best known circuit for evaluating the Set Intersection functionality has
size O(m - n), where m and n are the size of the Server and Client’s inputs
respectively, since we must have at least O(m - n) comparisons to compute the
functionality. A secure implementation will require a bit-wise circuit of size at
least O(m - n - k), and this does not even take into account the costly zero-
knowledge techniques that must be employed. Our communication complexity
of O(mk?log®n + kn) is much smaller.

Additionally, our protocol accesses the underlying field in a black-box manner.
This is in contrast to an implementation based on a Yao circuit (which must be
binary) that is used in the generic protocols for 2-party computation. Therefore,
our complexity scales much better as the size of the field increases.

Acknowledgment. We thank Stas Jarecki for very helpful discussions.

References

1. Agrawal, R., Evfimievski, A., Srikant, R.: Information sharing across private
databases. In: SIGMOD 2003: Proceedings of the 2003 ACM SIGMOD interna-
tional conference on Management of data, pp. 86-97. ACM, New York (2003)

2. Berlekamp, E.: Factoring polynomials over large finite fields. Mathematics of Com-
putation 24, 713-735 (1970)

3. Boudot, F., Schoenmakers, B., Traoré, J.: A fair and efficient solution to the so-
cialist millionaires problem. Discrete Applied Mathematics 111, 2001 (2001)

4. Camenisch, J., Zaverucha, G.: Private intersection of certified sets. In: Proceedings
of Financial Cryptography 2009 (2009)

5. Canetti, R.: Security and composition of multiparty cryptographic protocols. Jour-
nal of Cryptology 13, 2000 (2000)

6. Choi, S., Dachman-Soled, D., Malkin, T., Wee, H.: Black-box construction of a
non-malleable encryption scheme from any semantically secure one. In: Canetti,
R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 427-444. Springer, Heidelberg (2008)

7. El Gamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196,
pp. 10-18. Springer, Heidelberg (1985)

8. Fagin, R., Naor, M., Winkler, P.: Comparing information without leaking it. Com-
munications of the ACM 39, 77-85 (1996)

9. Freedman, M.J., Nissim, K., Pinkas, B.: Efficient private matching and set intersec-
tion. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027,
pp. 1-19. Springer, Heidelberg (2004)

142

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.
24.
25.

D. Dachman-Soled et al.

Goldreich, O.: Foundations of cryptography: a primer. Found. Trends Theor. Com-
put. Sci. 1(1), 1-116 (2005)

Shafi, G., Silvio, M.: Probabilistic encryption & how to play mental poker keeping
secret all partial information. In: STOC 1982: Proceedings of the fourteenth annual
ACM symposium on Theory of computing, pp. 365-377. ACM, New York (1982)
Hazay, C., Lindell, Y.: Efficient protocols for set intersection and pattern matching
with security against malicious and covert adversaries. In: Canetti, R. (ed.) TCC
2008. LNCS, vol. 4948, pp. 155-175. Springer, Heidelberg (2008)

Impagliazzo, R., Yung, M.: Direct minimum knowledge computations. In: Pomer-
ance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 40-51. Springer, Heidelberg
(1988)

Jakobsson, M., Yung, M.: Proving without knowing: On oblivious, agnostic and
blindfolded provers. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
186-200. Springer, Heidelberg (1996)

Jarecki, S., Liu, X.: Efficient oblivious pseudorandom function with applications
to adaptive OT and secure computation of set intersection. In: TCC, pp. 577-594
(2009)

Katz, J., Lindell, Y.: Introduction to Modern Cryptography. Chapman & Hall/Crc
Cryptography and Network Security Series. Chapman & Hall/CRC, Boca Raton
(2007)

Kiayias, A., Mitrofanova, A.: Testing disjointness of private datasets. In: Patrick,
A.S., Yung, M. (eds.) FC 2005. LNCS, vol. 3570, pp. 109-124. Springer, Heidelberg
(2005)

Kissner, L., Song, D.X.: Privacy-preserving set operations. In: Shoup, V. (ed.)
CRYPTO 2005. LNCS, vol. 3621, pp. 241-257. Springer, Heidelberg (2005)
Lindell, Y., Pinkas, B.: Privacy preserving data mining. Journal of Cryptology,
36-54 (2000)

Lindell, Y., Pinkas, B.: An efficient protocol for secure two-party computation
in the presence of malicious adversaries. In: Naor, M. (ed.) EUROCRYPT 2007.
LNCS, vol. 4515, pp. 52-78. Springer, Heidelberg (2007)

Naor, M., Pinkas, B.: Oblivious transfer and polynomial evaluation. In: STOC 1999:
Proceedings of the thirty-first annual ACM symposium on Theory of computing,
pp. 245-254. ACM Press, New York (1999)

Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223-238.
Springer, Heidelberg (1999)

Shamir, A.: How to share a secret. Commun. ACM 22(11), 612-613 (1979)

Yao, A.C.-C.: Protocols for secure computations. In: FOCS, pp. 160-164 (1982)
Yao, A.C.-C.: How to generate and exchange secrets (extended abstract). In: FOCS,
pp. 162-167 (1986)

A New Variant of the Cramer-Shoup KEM
Secure against Chosen Ciphertext Attack

Joonsang Baek!, Willy Susilo?, Joseph K. Liu!, and Jianying Zhou'
! Cryptography and Security Department

Institute for Infocomm Research, Singapore
{jsbaek,ksliu, jyzhou}@i2r.a-star.edu.sg

2 Centre for Computer and Information Security Research

School of Computer Science and Software Engineering
University of Wollongong, Australia
wsusiloQuow.edu.au

Abstract. We propose a new variant of the Cramer-Shoup KEM (key
encapsulation mechanism). The proposed variant is more efficient than
the original Cramer-Shoup KEM scheme in terms of public key size and
encapsulation cost, but is proven to be (still) secure against chosen ci-
phertext attack in the standard model, relative to the Decisional Diffie-
Hellman problem.

1 Introduction

Motivation. At Crypto '98, Cramer and Shoup [9] proposed the first practical
public key encryption (PKE) scheme whose security against adaptive chosen ci-
phertext attack (which we simply call “CCA” throughout this paper) can be
proven without depending on the random oracle model [6]. This is a striking re-
sult as the chosen ciphertext security without random oracles could be achieved
by only adding a few more exponentiations to the original ElGamal encryp-
tion scheme, in contrast to the computationally heavy solutions [11I20] based
on zero-knowledge proofs proposed before. Nearly seven years later, a major im-
provement on the performance of the Cramer-Shoup PKE scheme was made by
Kurosawa and Desmedt [T7]. They were able to obtain a very efficient hybrid
PKE scheme by simplifying the Cramer-Shoup PKE scheme with the help of
the “ciphertext authenticity checking” mechanism of the underlying symmetric
encryption primitive. Afterwards, Hoftheinz and Kiltz [I4] came up with a dual
version of the Kurosawa-Desmedt PKE scheme. Note that chosen ciphertext
security of all these schemes are relative to the (standard) Decisional Diffie-
Hellman (DDH) problem.

In the full version of their Crypto '98 paper, Cramer and Shoup [10] formulated a
framework called “KEM/DEM (Key Encapsulation Mechanism/Data Encapsula-
tion Mechanism)”. A KEM is a public key scheme that outputs a (session) key tak-
ing public key as input. According to the KEM/DEM framework, a (hybrid) PKE
scheme secure against CCA can be constructed in such a way that a key output by

M. Abdalla et al. (Eds.): ACNS 2009, LNCS 5536, pp. 143[-155| 2009.
© Springer-Verlag Berlin Heidelberg 2009

144 J. Baek et al.

a CCA-secure KEM schemd] is used as a session key for an one-time CCA-secure
DEM (i.e., symmetric encryption) scheme that encrypts a plaintext message.

In the same paper, Cramer and Shoup proposed a KEM scheme based on
their original PKE scheme, which we denote by “CS-KEM”, and showed it is
CCA-secure assuming that the DDH problem is hard. Interestingly, however, it
was shown [I3] that the KEM scheme extracted from Kurosawa and Desmedt’s
hybrid PKE scheme, which we denote by “KD-KEM”, does not satisfy full
CCA-security even though the hybrid PKE scheme remains secure against CCA.
Abe et al. [I] showed later that the KD-KEM scheme is actually secure against
“LCCA (predicate-dependent CCA)” which is weaker than usual CCA-security
of KEM. Similarly, the KEM scheme extracted from Hofheinz and Kiltz’s [14] hy-
brid PKE scheme, denoted “HK-KEM”, was shown to be secure against CCCA
(constrained CCA), which is also weaker than the usual CCA-security of KEM.

Hence, the CS-KEM scheme is, though less efficient than the KD-KEM and
HK-KEM schemes, the only KEM scheme that is fully CCA-secure without
random oracles, assuming that the DDH problem is hard. A remaining question
is whether the performance of the CS-KEM scheme can be further improved. In
this paper, we give a positive answer to this question.

Recent Developments. In 2007, Kiltz [16] proposed a KEM scheme whose CCA se-
curity is based on the gap hashed Diffie-Hellman problem. An interesting feature
of this scheme is that different from the CS-KEM scheme, a key can be computed
from one of the public key components used to create one ciphertext component.
More precisely, let pk = (g, g, ¢, d) be public key, where g is a generator of a group
of prime order ¢; ¢ = ¢g* and d = ¢¥ for some random (z,y) € Zy. In this scheme,
a ciphertext and its corresponding key is computed as (g", (¢*d)") and KDF(c")
respectively, where KDF denotes a key derivation function. As mentioned earlier,
the public ¢ used to create (¢*d)" is reused to produce ¢". Note here that one can-
not expect a computational gain even if ¢ is reused. However, if d were reused, a
computational cost could be reduced by computing ¢"* and d” separately to gen-
erate (¢c®d)" and using d" as a key. Indeed, Lu et al. [I§] recently showed that this
modified version of Kiltz’s KEM scheme is CCA-secure.

More recently, as one of the applications of their new computational problem
called “T'win Diffie-Hellman”, Cash et al. [8] proposed a new variant of Cramer and
Shoup’s PKE scheme and showed that it is CCA-secure under the hashed decisional
Diffie-Hellman assumption, which is weaker than the usual DDH assumptiorE. Al-
though this variant has interesting theoretical implications, it is computationally
more expensive than the original Cramer and Shoup’s one and hence ours.

Our Contributions. We observe that it is also possible to apply the structure
of Kiltz’s KEM scheme to the CS-KEM scheme. As a result, we could con-
struct a KEM scheme which is proven to be fully CCA-secure without random
oracles assuming that the DDH problem is hard, while it is more efficient than

! The CCA security notion for KEM will be defined in Section Pl
2 Note that although [8] focuses only on a PKE scheme, a corresponding KEM scheme
can easily be derived and analyzed in an obvious way.

A New Variant of the Cramer-Shoup KEM Secure against CCA 145

the CS-KEM scheme. The crux is the efficiency of our scheme in terms of a
shorter public/private key pair and improved encapsulation speed. However, we
honestly state that the improvement on the encapsulation speed would not be
very much dramatic due to the advancement of fast multi-exponentiation al-
gorithms [2I7)19], which makes the cost for computing double exponentiation
very close to the cost of computing a single exponentiation. Nevertheless, the
proposed scheme has a new structure, which reduces one group element of the
public key of the CS-KEM scheme. We believe it is also theoretically interesting
in that it shows yet another way of constructing a more efficient variant of the
CS-KEM without sacrificing full CCA-security.

2 Preliminaries

In this section, we review the formal notion of key encapsulation mechanism
(KEM) and its security against adaptive chosen ciphertext attack (CCA). We
also review building blocks used in our construction of KEM which will be pre-
sented in Section Bl

Key Encapsulation Mechanism (KEM). The KEM scheme, denoted KEM, con-
sists of the following algorithms [TOITEI22].

— Key Generation: Taking 1 for a security parameter A € Z> as input, this
algorithm generates a public/private key pair (pk, sk).

— Encapsulation: Taking 1* and a public key pk as input, this algorithm gen-
erates a ciphertext/(symmetric) key pair (¢, K).

— Decapsulation: Taking 1%, a private key sk and a ciphertext v as input,
this algorithm outputs either a (symmetric) key K or the special symbol L,
meaning “reject”.

The security against CCA of KEM is defined as follows. Consider any at-
tacker A and any value A > 0 for security parameter in the following game
GameCCAXEM()\) in which A interacts with the challenger.

Phase 1: The challenger runs the key generation algorithm providing 1*
as input to generate a public/private key pair (pk, sk). The challenger then
computes a challenge ciphertext ¢* and a key K{ by running the encapsu-
lation algorithm. It also picks K € Sk at random, where Sk denotes the
key space. It then picks 3 € {0,1} at random and gives (pk, ¢*, K}3) to A.
Phase 2: A submits ciphertexts, each of which is denoted by ¢. On receiving
¢, the challenger runs the decapsulation algorithm on input ¢ and passes the
resulting decapsulation to 4. At the end of this phase, A outputs its guess
B e {0,1}.

We define the output of the game to be 1 if 3 = 3, and 0 otherwise. A’s
success is defined by the probability

AdvSHy(\) = | Pr(GameCCAKEM()) = 1] — ;‘

We say that KEM is CCA-secure if Adviggm (A) = max 4 {Advi%‘;M()\)} is
negligible for any attacker A.

146 J. Baek et al.

The Decisional Diffie-Hellman Problem. We now review the definition of the
Decisional Diffie-Hellman (DDH) problem. Let D be an attacker. Let G be a
finite cyclic group generated by g € G. Let g be a prime order of G, whose size
depends on the security parameter A. We define the DDH problem using the
attacker D’s advantage in distinguishing two distributions:

AR () = |Prla & 20 £ 2,0 1 — D(1*, g% 6%, g*)]
— Pr[a <5 Zq,b & Zq;T (E Zq i1 D(lAvgaagbagr)H'

Equivalently [9IT0IT2],

R w. . R o
Advp ' (\) = |Prlw & Zg; g2 — gi'sm Zg : 1 — D(1*, g1, 92, 97, 95)]
R w R roor
— Prlw < Zg; g2« g1’ < Zg \ {7} : 1 = D(1*, 91,92, 97, 95)]l

where g7 is the generator of G.

We say that the DDH problem is hard if Advg"" (\) = maxp {AdvE & (V) }
is negligible for any attacker D.
Target Collision Resistant Hash Function (TCR). The security of the target col-
lision resistant hash function denoted by H is defined as follows. Given a n tuple
of group elements x € G", it is hard for an attacker B; to find y # x such that
H(z) = H(y). We define the attacker B;’s success probability by AdeOL(). We
say that H is target collision-resistant if Advg°™(\) = maxg, {AdvcoL)} is
negligible for any attacker Bj.
Key Derivation Function (KDF'). In the proposed variant of the KD-KEM scheme,
we will use the key derivation function denoted by KDF. Specifically, KDF takes
two random elements a and b in the group G as input. Let [be the length of the
output of KDF, which depends on the security parameter \. We define the security
of KDF with respect to an attacker Bs as follows. (Below, “ROR” stands for “real
or random”.)

AdVEOR () = |Prla,b & G : 1 — Bs(1*,a, KDF(a, b))]
— Prla & G; & (0,1} : 1« By(1*, a, p)]|-
We say that KDF is secure if Advipr (A) = maxg, { Advi kpr(\)} is negli-
gible for any attacker B.

Notice that the above security requirement on KDF is the same as that of the
KDF functions used in [10].

3 The Proposed Variant of the Cramer-Shoup KEM

Description. We describe our variant of the CS-KEM scheme, which we denote by
“IT7, as follows. (Readers are referred to the end of Section [I] for the underlying
idea of our scheme.)

A New Variant of the Cramer-Shoup KEM Secure against CCA 147

Key Generation: Pick a group G of prime order ¢ and generators g; and
g2 of G. Pick a target-collision resistant hash function H : {0,1}* — Z; and
a key derivation function KDF. Then choose (1,22, y1,¥2) € Zg at random
and compute

c=91'9y" d=g{" g5
Return public key pk = (G,q, g1, g2, ¢,d,H,KDF) and private key sk =

(pka T1,T2,Y1, y2)
Encapsulation: Pick r € Z; at random and compute

up = gy, u2 =gy, o =H(ui,uz), v=c"d, K =KDF(uy,c").

Return a ciphertext ¢ = (u1,u2,v) and a key K.
Decapsulation: Upon receiving 1 = (u1,uz2,v), compute

a=H(u,ug), v' = Uﬂfﬁym“gﬁyza’ K = KDF(u1, uj"u3?)
If v/ = v then return K; otherwise, return L.

We show that the scheme IT is CCA-secure, relative to the DDH problem.
More precisely, we prove the following theorem.

Theorem 1. The KEM scheme II is CCA-secure assuming that the DDH prob-
lem is hard and the underlying hash function H s target collision-resistant and
key derivation function KDF is secure. More precisely, we have

AdvEoh () < AdvEPH(N) + Adv§Oh(N) + AdvEIE(\) + 1P
q
where X denotes the security parameter and qp is the number of queries to the
decapsulation oracle.

Outline of Proof. The basic idea of the proof essentially follows the logic of the
proofs of the CS-KEM [10] and CS-PKE [9] schemes. We need to show that
by using a CCA-attacker for the scheme IT as a subroutine, a DDH attacker
can solve the DDH problem: When the DDH attacker is given a right Diffie-
Hellman tuple (g1, g2, 97, 95%), it can perfectly simulate the environment of the
CCA-attacker. On the other hand, when it is given (g1, g2, 97, g’;) where 1’ # 7,
the output of the decapsulation oracle will not be legitimate but we will show
that this one won’t be a problem.

In our proof, there is an important difference from the proofs of the CS-
KEM/CS-PKE schemes. Since the public key component ¢ used to create v =
c"d™™ is “reused” to produce a key material ¢”, we need to assume that the
attacker’s view include ¢, d, v and ¢" when breaking the confidentiality (i.e.
“key indistinguishability”) of the scheme IT. (Note that this is different from the
CS-KEM/CS-PKE schemes in which an independent public key component is
used to produce a key.) By using an argument from linear algebra, we show that
fortunately, this does not cause a problem. (In particular, readers are referred

to Equation (I2)).

148 J. Baek et al.

Proof. Fix an attacker A that breaks CCA-security of the scheme IT. Also, fix
an attacker D that is to solve the DDH problem.

Simulation. The DDH attacker D simulates the environment of A4 as follows.
Assume that D is given a DDH instance (g1, 92, u1,us) where g; and go are
generators of a group G of prime-order q. D chooses (z1,z2,y1,y2) € Z4 at
random and computes ¢ = g7 g5* and d = g{* g5*. D also chooses a hash functlon
H and a key derivation functlon KDF, and gives pk = (G, ¢, g1, g2, ¢, d, H, KDF)
as a public key to A.

When A queries ciphertexts to the decapsulation oracle in the find stage, D
decapsulates them using (x1, 22, Y1, Y2)-

D simulates the challenge ciphertext and the key as follows. D first sets uj =
uy and u} = ug, and computes o = H(ui,u3), v* = (uf)®rHv1e’ (yh)retyza”
and K; = KDF(uj, (uf)* (u3)*?). D also chooses K} at random from the output
space of KDF and picks 8 € {0,1} at random. D finally gives A the challenge
ciphertext-key pair (¢*, K;) where " = (u, u3, v™).

When A queries ciphertexts, all of which are different from ¥*, to the decap-
sulation oracle in the find stage, D decapsulates them using (x1,z2,y1,¥y2)-

Finally, when A outputs its guess 8’, D outputs 1 if 3/ = (3; otherwise,
outputs 0.

Analysis. We first analyze the case when D is given (g1, g2, g{* , gg*). First, we
prove the following lemma.

Lemma 1
Pr[D(1*,91,92,9} , 95) = 1] = Pr[GameCCAT () = 1]. (1)

Proof. Note that since (x1,x2,y1,y2) is randomly chosen from Z;‘7 the public
key pk is distributed the same as the public key in the real attack.
By the simulation of the challenge ciphertext presented above, we have

U* = (u,up,v%) = (g7 g5 (g7)" (gh)"t = (g1 g8 L dT)
and
K7 = KDF(uj, (g7)™ (g5)**) = KDF(uj, ™).

Since K is drawn uniformly at random from the output space of KDF,
(¢*, K}) has the right distribution.

It remains to show that the output of the decapsulation oracle (both in the
simulation and the real attack) has the right distribution. Now, we call a ci-
phertext ¢ = (u1,u2,v) is invalid if log,, u; # logy, us. We show that invalid
ciphertexts are rejected except for negligible probability.

First, by the public key pk that A sees, we have the following equations:

log,, ¢ =z1 + 2w (2)
and

log,, d = y1 + yow, (3)

A New Variant of the Cramer-Shoup KEM Secure against CCA 149

where w = log,, g2. Hence, one can view (z1,22,y1,y2) as a random point on
the plane defined by (@) and (@l). From the challenge ciphertext, we have

log,, v* =7r"(z1 + 12w + Y10” + Yawa™), (4)

where r* = log, uj = log,, u3 and a* = H(uj,u3). Note that the challenge
ciphertext (whether it is in the simulation or real attack) does not constrain
(21, x2,91,y2) as the hyperplane defined by (@) contains the plane formed by the
equations (@) and (B]). Now consider the following equation obtained from the
invalid ciphertext :

logg1 UV =1121 + reXow + riy1a + reyowa, (5)

where | = logg1 uyp and ro = logg1 ugo such that r1 # ro. If the decapsulation
oracle does not reject v, the point (z1, 2,1, y2) should lie on the hyperplane
defined by (Bl). But observe that the equations (), [B) and (B) are linearly
independent, so the hyperplane defined by (B) intersects the plane formed by
the equations (2l and (@) at a line. This happens with probability 1/¢, which is
negligible.

We now analyze the case when D is given (g1, g2, g{f,g?) where ri # r5. More
precisely, we prove the following lemma.

Lemma 2

rrory 1
PrDO g1, ga.gfs05) = 1] <) + AVESEN) + Adv) + .)

The above bound () can be obtained by proving the following claims (1) and
(2).

Recall that if a ciphertext 1) = (u1, u2,v) is “invalid” then log,, u1 # log,, us.
We first prove the following claim.

Claim (1). Let RejlnvC to be an event that the decapsulation oracle rejects all
invalid ciphertexts. Then we have

1
Pr[3’ = B|RejinvC] < ot AdvESE(N). (7)

Proof of Claim (1). First, assume that that the decapsulation oracle rejects all
invalid ciphertexts. We consider the distribution of the point (z1, z2, y1,y2) € Z;‘
conditioned on A’s view. Since the decapsulation oracle decapsulates only valid
ciphertexts by the assumption (the decapsulation oracle rejects all invalid cipher-
texts), for each ciphertext (ui,us,v), A gets only linearly dependent relations

log,, v =r(x1 + T2w + Y10 + Yowav), (8)
and

log,, uitug? = r(z1 + zow), 9)

150 J. Baek et al.

where r = log,, u1 = log,, uz and a = H(u1,uz). (In fact, A only gets the key
which is the output of KDF which “wraps” the key material u{'u52.) Hence, no
information about the point (1,22, y1,y2) is leaked from querying valid cipher-
texts to the decapsulation oracle.

Now consider the challenge ciphertext ¢¥* = (uj,u,v*) and the key K7 =
KDF(u3, (u})** (ub)®?), produced by the simulation. Suppose that A gets the
key material (uf)**(u3)*2 at the worst case. Since v* and (uf)**(u})*? are in
A’s view, (z1, x2,y1,y2) should then satisfy the following equations

log,, vt =riz + ryvow + riyia’ + riyawa™, (10)
where ri =log, uj, r3 = log,, u3 with] # r5 and o = H(u¥, u}), and
logg, (u)* (u3)™ = riz1 + ryzow. (11)

Now observe that

1 w O 0
0 0]. w _ 2 k[% *\2

det Pt riw rta* riatw =w’a*(rf —r3)° #0. (12)
ryraw 0 0

Hence, the equations (@), @), (I0) and (1)) are linearly independent. Note that
(ui)® (ud)*2 is distributed uniformly in G since r and r} are chosen uniformly
at random from Z, and that Kj has been chosen uniformly at random and
independently from anything else. Thus the distribution of 3 is independent
from A’s view under the assumption that KDF is secure and we get the bound
([@). This is the end of proof of Claim (1).

We now show that the probability that the decapsulation oracle does not
reject all invalid ciphertexts, i.e. Pr[-RejlnvC], is bounded by insecurity of hash
function and some negligible probability. Precisely we prove the following claim.

Claim (2).

Pr[-RejlnvC] < AdvEOh(\) + 12 (13)

q

where ¢p denotes the number of the queries to the decapsulation oracle.

Proof of Claim (2). Suppose that A submits an invalid ciphertext ¢ = (u1, ug, v)
1)* to the decapsulation oracle. First, note that it is not possible that (uq, u2) =
(u3, u3) since ¥ # ¢*, we have v # v* and hence the decapsulation oracle will
reject ¢ straight away. Note also that it is possible that (u1,u2) # (u},u3) and
a = o but the probability that this happens is bounded by the insecurity of
the hash function H since this event implies the violation of the target collision-
resistance of H.

Thus, for up to ¢gp invalid ciphertexts such that (uq,ue) # (uf,u}), we have
a # oF. In this case, if the point (21,22, y1,y2) lied on the hyperplane defined
by the following equation

log,, v =121 + r2m2w + Y10 + reyawa, (14)

A New Variant of the Cramer-Shoup KEM Secure against CCA 151

where ry = log,, u1 and ry = log,, us, the decapsulation oracle would accept the
ciphertext 1. However, observe that

1 w 0 0
0 0 1 w 2
det _ _ * % *)
€ Ti}« ’I"SU] TikO[* TSOé*'w w (7"1 TQ)(Tl 7’2)(0[O[) 7& 0
T "W T1&x ToOXW

Hence, @), @), (I0) and [@4) are linearly independent, implying that the hyper-

plane defined by (I4) intersects the line formed by intersecting [2)), @]) and (I0)

at a point, which happens with negligible probability 1/q. Considering that there

are gp decapsulation queries, we get (I3]). This is the end of proof of Claim (2).
Note that from (@) and ([I3]), we get

Pr[g’ = 8] = Pr[3 = B|RejinvC] Pr[RejInvC] + Pr[3’ = 3|-RejinvC] Pr[-RejInvC]
< Pr[f’ = B|RejlnvC] + Pr[-RejInvC]

1
<, +AAVESE () + AdvEOh () + q;.

(The above inequality shows that regardless of the quantity of Pr[3’=3|—-RejlnvC],
i.e. the advantage that the adversary may get through querying invalid ciphertexts
to the decapsulation oracle, Pr[’ =] is not much deviated from 1/2 due to
Pr[3 = |—-RejlnvC] and Pr[—RejlnvC], which turn out to be negligible.)

Then, from the construction of D, we have

e 1
PPN, 91,9207 03") = 1| =Prl§ =] < , + AdVGR () + AVl () + 7.

Combining the bounds from Lemmas [Il and [(i.e., by subtracting (II) from
([), we get the bound in the theorem statement.

4 Comparisons

In Table [l we summarize the basic parameters such as public key, ciphertext
of CS-KEM [10], KD-KEM [17], HK-KEM [14] and ours. We also summarize
whether those schemes provide full CCA-security, assuming the hardness of the
DDH problem. Note that KD-KEM and HK-KEM are proven to be CCCA-
secure [I4], which is weaker than full CCA. Note also that it is an open problem
to prove or disprove that HK-KEM provides full CCA-security.

As one can notice from the above table, our scheme is more efficient than
the CS-KEM scheme while it is less efficient than the KD-KEM and HK-KEM
schemes. However, an advantage of our scheme and CS-KEM schemes might
be the simplicity that they provide full CCA-security without introducing ad-
ditional primitive like MAC. — As formally shown in [3], one can generically
convert a CCCA-secure KEM into a CCA-secure KEM by authenticating the
CCCA-secure KEM ciphertext using a MAC. Hence, KD-KEM and HK-KEM

152 J. Baek et al.

Table 1. Comparison of Our KEM Scheme with Other KEM Schemes

Scheme Public key Ciphertext Key Full CCA
CS-KEM [10] ¢1,92,¢,d,h g1, 95, (cd*)” KDF(g1,h") Yes
KD-KEM [I7] g1,92,¢,d ¢7,95 (cd™)" No
HK-KEM [14] g1,¢,d,h g7, (cd™)" h" Not Known
Ours 91,92,¢,d g1,95,(cd*)” KDF(g{,c") Yes

Table 2. Comparison of Computational Costs

Scheme Enc. Cost Dec. Cost
CS-KEM [10] 3E + 1DE (4.39E) 2DE (2.78E)
KD-KEM [17] 2E + 1DE (3.39E) 1DE (1.39E)
HK-KEM [I4] 2E + 1DE (3.39E) 1SE (~1.39E)
Ours 4E 2.78E

can be made to be CCA-secure by introducing the overhead of MAC. In this
case, expansion of the ciphertext is unavoidable and as a result, the length of
the ciphertext is close to the original CS-KEM and ours.

In Table @ we summarize the computational costs of the above-mentioned
schemes. In the table, “E” stands for “Exponentiation”, “DE” stands for “Double
Exponentiation”, which is a special case of multi-exponentiation for two bases,
e.g. A°Bb and finally “SE” stands for “Sequential Exponentiation” [7], which
is as efficient as multi-exponentiation (in our case, double exponentiation).

Since there are many factors that determine the running time of various multi-
exponentiation algorithms [2[T9], it would be difficult to state decisively one
double exponentiation is equivalent to how much of single exponentiation. (Note
that if we use the naive approach that computes two single exponentiations
separately and multiply them together, 1 DE = 2 E.) But if one adopts the
“multi-exponentiation with a sliding window” algorithm assuming the unsigned
binary representation of exponents as described in [2], one can obtain 1 DE
= 1.39E if window size = 2 and the bit-length of ¢ = 256. The figures in the
parentheses in Table [2] are obtained based on this assumption.

Notice from the above table that in terms of computational costs, the dif-
ference between our scheme and both KD-KEM and HK-KEM is less than one
exponentiation.

We also remark that as done for CS-KEM and KD-KEM respectively in [10]
and in [21], one can make the key generation and decapsulation algorithms of
our KEM scheme more efficient, which is described in detail in Appendix [Al

5 Conclusion

In this paper, we proposed a new variant of the Cramer-Shoup KEM (CS-KEM)
scheme which is more efficient than the original Cramer-Shoup KEM and fully
CCA-secure in the standard model, relative to the DDH problem. Our result

A New Variant of the Cramer-Shoup KEM Secure against CCA 153

shows that the original CS-KEM can further be optimized without losing full
CCA-security.

It is natural to ask whether the same technique (that is, to “reuse” d" in
(¢*d)") can be applied to the dual version of KD-KEM scheme presented in
[14]. We found that it is difficult to provide a security reduction in this case
since, when an inconsistent ciphertext is queried to the decapsulation oracle,
one cannot always extract a key uniformly distributed in the simulation.

Thus, an interesting open problem is how to construct a PKE scheme that
is more efficient than the PKE schemes based on the KD-KEM or the dual
KD-KEM.

Acknowledgement. The authors are grateful to Eike Kiltz for his suggestions
of improvement on an earlier version of this paper. The authors also thank
the anonymous referees of ACNS ’09 for their valuable comments. The first,
third and fourth authors are partially supported by the European Union project
SMEPP-033563. The second author is partially supported by ARC Discovery
Grant DP0877123.

References

1. Abe, M., Genaro, R., Kurosawa, K.: Tag-KEM/DEM: A New Framework for Hy-
brid Encryption and A New Analysis of Kurosawa-Desmedt KEM, Cryptology
ePrint Archive, Report 2005/027 (2005) (Last update: 11 October 2006)

2. Avanzi, R.M.: The Complexity of Certain Multi-Exponentiation Techniques in
Cryptography. Journal of Cryptology 18(4), 357-373 (2005)

3. Baek, J., Galindo, D., Susilo, W., Zhou, J.: Constructing Strong KEM from Weak
KEM (or How to Revive the KEM/DEM Framework). In: Ostrovsky, R., De Prisco,
R., Visconti, I. (eds.) SCN 2008. LNCS, vol. 5229, pp. 358-374. Springer, Heidelberg
(2008)

4. Bellare, M., Canetti, R., Krawczyk, H.: Keying Hash Functions for Message Au-
thentication. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 1-15.
Springer, Heidelberg (1996)

5. Bellare, M., Desai, A., Pointcheval, D., Rogaway, P.: Relations Among Notions
of Security for Public-Key Encryption Schemes. In: Krawczyk, H. (ed.) CRYPTO
1998. LNCS, vol. 1462, pp. 26-45. Springer, Heidelberg (1998)

6. Bellare, M., Rogaway, P.: Random Oracles are Practical: A Paradigm for Designing
Efficient Protocols. In: ACM-CCS 1993, pp. 62-73. ACM Press, New York (1993)

7. Bernstein, D.J.: Pippenger’s Exponentiation Algorithm (preprint) (2002),
http://cr.yp.to

8. Cash, D., Kiltz, E., Shoup, V.: The Twin Diffie-Hellman Problem and Applications.
In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 127-145. Springer,
Heidelberg (2008); full version available on Cryptology ePrint Archive: Report
2008/067

9. Cramer, R., Shoup, V.: A Practical Public Key Cryptosystem Provably Secure
against Adaptive Chosen Ciphertext Attack. In: Krawczyk, H. (ed.) CRYPTO
1998. LNCS, vol. 1462, pp. 13-25. Springer, Heidelberg (1998)

10. Cramer, R., Shoup, V.: Design and Analysis of Practical Public-key Encryption
Schemes Secure against Adaptive Chosen Ciphertext Attack. SIAM Journal of
Computing 33, 167-226 (2003)

http://cr.yp.to

154 J. Baek et al.

11. Dolev, D., Dwork, C., Naor, M.: Non-malleable Cryptography. In: STOC 1991, pp.
542-552. ACM Press, New York (1991)

12. Gennaro, R., Shoup, V.: A Note on An Encryption Scheme of Kurosawa and
Desmedt, Cryptology ePrint Archive, Report 2004/294 (2004)

13. Herranz, J., Hoftheinz, D., Kiltz, E.: The Kurosawa-Desmedt Key Encapsulation is
not Chosen-Ciphertext Secure,Cryptology ePrint Archive, Report 2006/207 (2006)

14. Hotheinz, D., Kiltz, E.: Secure hybrid encryption from weakened key encapsulation.
In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 553-571. Springer,
Heidelberg (2007)

15. ISO 18033-2, An Emerging Standard for Public-Key Encryption (2004)

16. Kiltz, E.: Chosen-Ciphertext Secure Key-Encapsulation Based on Gap Hashed
Diffie-Hellman. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450,
pp. 282-297. Springer, Heidelberg (2007)

17. Kurosawa, K., Desmedt, Y.: A New Paradigm of Hybrid Encryption Scheme. In:
Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 426-442. Springer, Hei-
delberg (2004)

18. Lu, X., Lai, X., He, D.: Improved efficiency of Kiltz07-KEM, Cryptology ePrint
Archive, Report 2008/312 (2008)

19. Moller, B., Rupp, A.: Faster Multi-Exponentiation through Caching: Accelerating
(EC)DSA Signature Verification. In: Ostrovsky, R., De Prisco, R., Visconti, I. (eds.)
SCN 2008. LNCS, vol. 5229, pp. 39-56. Springer, Heidelberg (2008)

20. Naor, M., Yung, M.: Public-key Cryptosystems Provably Secure against Chosen
Ciphertext Attacks. In: STOC 1990, pp. 427-437. ACM Press, New York (1990)

21. Phong, L.T., Ogata, W.: On Some Variations of Kurosawa-Desmedt Public-Key
Encryption Scheme. IEICE Transactions 90-A(1), 226-230 (2007)

22. Shoup, V.: A Proposal for an ISO Standard for Public Key Encryption (version
2.1), ISO/IEC JTC 1/SC 27 (2001)

A An Efficient Variant of Our KEM Scheme

Description. Adopting the techniques in [T0J2], one can design an efficient vari-
ant of our KEM scheme, which we denote by “II”, as follows.

Key Generation: Pick a group G of prime order ¢ and generator g; of G.
Pick a target-collision resistant hash function H : {0,1}* — Zy and a key
derivation function KDF. Then choose (w, z,y) € Zg at random and compute

g2=gy, c=g7, d=gi.

Return public key pk = (G,q, g1, 92,¢,d,H,KDF) and private key sk =

(pk,z,y,w).
Encapsulation: Pick r € Z; at random. Compute

up =gy, u2 =gy, o =H(ui,u2), v=c"d* K =KDF(uy,c").

Return ciphertext ¢ = (u1, u2,v) and key K.
Decapsulation: Upon receiving 1 = (u1,uz2,v), compute

a = H(u,uz), UIQ =uy = Ugfﬂaa K= KDF(U17UT)~

If uf = uy and v = v then return K; otherwise, return L.

A New Variant of the Cramer-Shoup KEM Secure against CCA 155

The above scheme is also CCA-secure. Regarding this, we prove the following
theorem.

Theorem 2. If the KEM scheme II (described in Section[3) is CCA-secure then
the above KEM scheme II is CCA-secure. More precisely, we have

AdvEA(N) < AdvETA(N) + q(f.

where X denotes the security parameter and qp is the number of queries to the
decapsulation oracle.

Proof. Fix an attacker A for the scheme II. Also, fix an attacker A for the
scheme 7.

Assume that A is provided with the public key pk = (G, ¢, g1, g2, ¢, d) and the
private key sk = (pk, x1, x2,y1,y2), where g1 and g2 are generators of G and ¢ =
g7 gy and d = ¢V g¥>. A simply gives A pk as the public key of the scheme IT. A
sets go = ¢}’ for some w € Zg, v = x1+wz2 and y = y1 +wyz. (Note that A does
not the value w.) Since ¢ = ¢¥'g3? = g1 tW™2 = g% d = gV g¥?> = gV TV = g*
by definition of w and (x,y), the public key pk is distributed identically in both
A and A’s view.

When A queries a ciphertext 1 = (u1, u2, v) to the decapsulation oracle in the
find stage, A forwards it to its decapsulation oracle, gets a decapsulation result
and sends it back to A.

Sometime later, A gets a challenge ciphertext and a key pair (¢* = (uj, u3, v*),
Kpg), where 3 € {O, 1} is chosen at random, and forwards the pair to A as a
challenge ciphertext of the scheme IT and a key.

When A queries a ciphertext 1) = (u1,u2,v) to the decapsulation oracle in
the guess stage, A forwards it to its decapsulation oracle, gets a decapsulation
result and sends it back to A.

When A outputs its guess, A outputs it as its guess.

We compute the probability that an invalid ciphertext v = (u1, ug,v), which
should have been rejected, is accepted by the simulated decapsulation oracle.

Since we have assumed that ¢ = (u1, ug,v) is invalid, the condition [(u} #
ws) A (U = v)] or [(u¥ = uz) A (P £ v)] or [(uf £ ug) A (ud TV # v)
holds. However, if the last two condltlons held, the simulated decapsulatlon
oracle would reject . Hence the first condition [(ul # ug) A (u] ¥ = v)] must
hold when invalid % is not rejected by the simulated decapsulation oracle. Note
that u}” # up means ry # ro where r = logg1 up and 19 = logg1 us. Note also

'E+ya

that since x = z1 + w2 and y = xy + wy2, u = v is equivalent to

[ri{(z1 + wa2) + (y1 + wy2)ot] mod ¢
= [ri(z1 +y1a) + row(zz + y2)] mod ¢
<= w(ry —rg)(z1 +wy2) = 0 mod q.
As 11 # 19 by the assumption and w # 0 mod ¢, the above equation holds with

probability 1/¢, which is negligible. Hence we get the bound in the theorem
statement.

An Efficient Identity-Based Online/Offline
Encryption Scheme*

Joseph K. Liu and Jianying Zhou

Institute for Infocomm Research
Singapore
{ksliu, jyzhou}@i2r.a-star.edu.sg

Abstract. In this paper, we present an efficient Identity-based Online
/ Offline Encryption (IBOOE) scheme. An IBOOE scheme allows one
to split the encryption into two phases. In the offline phase, most heavy
computations such as exponentiation or pairing, if any, are done in this
phase. Yet it does not require the knowledge of the plaintext or the
receiver’s identity. This nice property allows it can be executed ‘offline’,
or inside some powerful device. The next phase is called the online phase,
where only light computations such as integer addition, multiplication
or hashing are needed, together with the plaintext and the receiver’s
identity. This can be executed inside some embedded device such as smart
card or wireless sensor where the computation power is very limited.
We propose an efficient IBOOE scheme, with great improvement in the
computation requirement of both the offline, online encryption phase and
decryption phase, together with much shorten ciphertext over previous
schemes. Our scheme can be proven secure in the random oracle model.

1 Introduction

The notion of “online / offline” cryptographic algorithm was first introduced by
Even, Goldreich and Micali [5], in the context of digital signature. With this no-
tion, the signing process can be divided into two phases. The first phase is called
offline phase which is executed prior to the arrival of a message and the second
phase is called online phase which is performed after knowing the message. The
online phase should be very fast and require only very light computation, such as
integer multiplication or hashing. Other heavier computation such as exponenti-
ation should be avoided in the online phase. In this way, online / offline schemes
are particularly useful for low-power devices such as smartcard or wireless sensor
applications. Those heavy computations are done in the offline phase which can
be carried out by other powerful devices.

In parallel to online/offline signature [I0/84l[7], the first online/offline encryp-
tion scheme was first proposed by Guo, Mu and Chen [6]. Note that there is a
slight difference in the definition between online/offline signature and encryption
scheme. If we split the encryption process in the same way as the signing process

* The work in this paper is funded by the A*STAR project SEDS-0721330047.

M. Abdalla et al. (Eds.): ACNS 2009, LNCS 5536, pp. 156}-167) 2009.
© Springer-Verlag Berlin Heidelberg 2009

An Efficient Identity-Based Online/Offline Encryption Scheme 157

(that is, put all heavy computation into the offline phase), it is trivial to separate
some standard encryption, such as ElGamal encryption scheme. However, it is only
suitable for the situation where the sender knows the recipient of the encrypted mes-
sage in the offline phase, since the offline phase requires the knowledge of the public
key of the recipient. We are not interested in this scenario. Instead, we consider a
notion that allows the knowledge of the recipient is yet unknown in the offline phase.
[6] uses this definition for their scheme, in the context of identity-based encryption.

There are some scenarios that may require the above online/offline encryption.
Suppose there are some sensitive data stored in a smartcard, which has only very
limited computation power. In order to send the sensitive data to a recipient in
a secure way, it should be encrypted using the recipient’s public key or identity.
To ensure timely and efficient delivery, it would be much better if part of the
encryption process could be done prior to knowing the data to be encrypted and
the recipient’s public key or identity.

Wireless sensor network (WSN) can be another situation where online/offline
encryption is useful. Similar to smartcard, wireless sensor also has only limited
resource. It may take very long time, or even impossible to execute heavy com-
putation. Yet the data they collect may be sensitive which is necessary to be
encrypted before sending back to the base stations. By using online/offline en-
cryption, the offline part (containing all heavy computation) can be done by a
third party at the setup or manufacturing stage. Obviously at this stage nothing
is collected. Sometimes even the base station identity maybe still unknown to
the wireless sensor. Online/offline encryption is a good solution in this scenario.

Identity-Based (ID-Based) Cryptosystem, introduced by Shamir [9], eliminates
the necessity for checking the validity of certificates in traditional public key in-
frastructure (PKI). In an ID-based cryptosystem, public key of each user is easily
computable from an arbitrary string corresponding to this user’s identity (e.g. an
email address, a telephone number, etc.). Using its master key, a private key gen-
erator (PKG) then computes a private key for each user. This property avoids the
requirement of using certificates and associates implicitly a public key (i.e. user
identity) to each user within the system. One only needs to know the recipient’s
identity in order to send an encrypted message to him. It avoids the complicated
and costly certificate (chain) verification for the authentication purpose. In con-
trast, the traditional PKI needs an additional certification verification process,
which is equivalent to the computation of two signature verifications.

Identity-based system is particularly suitable for power constrained device
such as WSN or smartcard. The absence of certificate eliminates the costly cer-
tificate verification process. In addition, when there is a new node added to
the network, other nodes do not need to have its certificate verified in order
to communicate in a secure and authenticated way. This can greatly reduce
communication overhead and computation cost.

1.1 Contribution

In this paper, we propose an efficient identity-based online/offline encryption
(IBOOE) scheme. There are only two IBOOE schemes existed in the literature,

158 J.K. Liu and J. Zhou

both are proposed by Guo, Mu and Chen in [6]. Although they satisfy the defi-
nitions and basic requirements of an IBOOE, they are not actually very efficient.
The first scheme (denoted by GMC-1) requires 7 pairing operations in the de-
cryption stage. While for the second scheme (denoted by GMC-2), the ciphertext
is very large (more than 6400 bits). Our proposed scheme provides a much bet-
ter efficiency: We just require 2 pairing operations in the decryption stage. The
ciphertext is only 1280 bits which is 40% smaller than GMC-1 and 80% smaller
than GMC-2. Besides, our scheme requires lighter computation in both offline and
online stage than both GMC-1 and GMC-2. Our scheme can be proven secure in
the random oracle model.

1.2 Organization

The rest of our paper is organized as follow. Some definitions will be given
in Section [2l We present our scheme in Section Bl It is followed by the detail
comparison between our scheme and other schemes in Section @l Finally we
conclude the paper in Section

2 Definitions

2.1 Pairings

We briefly review the bilinear pairing. Let G and G be two multiplicative cyclic
groups of prime order g. Let P be a generator of G, and e be a bilinear map
such that e : G x G — Gp with the following properties:

1. Bilinearity: For all U,V € G, and a,b € Z, e(aU,bV) = e(U, V).
2. Non-degeneracy: e(P, P) # 1.
3. Computability: Tt is efficient to compute e(U, V) for all U,V € G.

2.2 Intractability Assumption

Definition 1 (¢-Bilinear Diffie-Hellman Inversion Assumption
(¢.-BDHI)). [2] The ¢- Diffie-Hellman (¢-BDHI) problem in G is defined as fol-
low: On input a (0 + 1)-tuple (P, aP,a?P,---, o*P) € G, output e(P, P)c1~ €
Gr. We say that the (t,€,0)-BDHI assumption holds in G if no t-time algorithm
has advantage at least € in solving the £-BDHI problem in G.

2.3 Definition of ID-Based Online/Offline Encryption

An ID-based online/offline encryption scheme consists of the following five prob-
abilistic polynomial time (PPT) algorithms:

— (param,msk) < Setup(1¥) takes a security parameter k¥ € N and generates
param the global public parameters and msk the master secret key of the
PKG.

An Efficient Identity-Based Online/Offline Encryption Scheme 159

— Dip « Extract(1*, param, msk, ID) takes a security parameter k, a global

parameters param, a master secret key msk and an identity I D to generate
a secret key Dyp corresponding to this identity.

¢ « Offline-encrypt(1*, param) takes a security parameter k& and a global
parameters param to generate an offline ciphertext (;3

¢ « Online-encrypt(1*, param,m, , ID) takes a security parameter k, a
global parameters param, a message m, an offline ciphertext ¢, an identity
ID to generate a ciphertext ¢.

m/ L« Decrypt(1*, param, ¢, Dip) takes a security parameter k, a global
parameters param, a ciphertext ¢, a secret key of the receiver D;p to gen-
erate a message m or | which indicates the failure of decryption.

For simplicity, we omit the notation of 1¥ and param from the input argu-

ments of the above algorithms in the rest of this paper.

2.4 Security of ID-Based Online/Offline Encryption

Definition 2 (Chosen Ciphertext Security). An ID-based online/offline
encryption scheme is semantically secure against chosen ciphertext insider at-
tack (ID-IND-CCA) if no PPT adversary has a non-negligible advantage in the
following game:

5.

A’s advantage is defined as Adv'NP~CCA(A) = | Pr[t) =b] - }|.

The challenger runs Setup and gives the resulting param to adversary A. It
keeps msk secret.

In the first stage, A makes a number of queries to the following oracles which
are simulated by the challenger:

(a) Extraction oracle: A submits an identity ID to the extraction oracle
for the result of Extract(msk,1D).

(b) Decryption oracle: A submits a ciphertext ¢ and a receiver identity
ID to the oracle for the result of Decrypt(¢, Dip). The result is made
of a message if the decryption is successful. Otherwise, a symbol L is
returned for rejection.

These queries can be asked adaptively. That is, each query may depend on
the answers of previous ones.

A produces two messages mg, m1 and an identities 1D*. The challenger
chooses a random bit b € {0,1} and computes an encrypted ciphertezt ¢* =
Online-Encrypt(my,, Offline-Encrypt(), ID*). ¢* is sent to A.

A makes a number of new queries as in the first stage with the restriction
that it cannot query the decryption oracle with (¢*, ID*) and the extraction
oracle with I1D*.

At the end of the game, A outputs a bit b’ and wins if b’ = b.

2

160 J.K. Liu and J. Zhou

3 The Proposed Online/Offline ID-Based Encryption
Scheme

3.1 Construction
Let G and Gt be groups of prime-order ¢, and let e : G x G — G be the bilinear

pairing. We use a multiplicative notation for the operation in G and Gr.

Setup: The PKG selects a generator P € G and randomly chooses s, w €g Z;. It
sets Ppup = sP, P, = 2P and W = (w + s) "' P. Define M to be the message
space. Let ny = |[M|. Also let Hy : {0,1}* — Z7, Hy : {0,1}* x Gr — Z;
and Hs : {0,1}* — {0,1}"™ be some cryptographic hash functions. The public
parameters param and master secret key msk are given by

param = (G,Gr, q, P, Pyuy, Py, W, w, M, Hy, Hy, H3) msk = s

Extract: To generate a secret key for a user with identity ID € {0,1}"¢, the
PKG computes:
Dip = (H,(ID) +s)"'P
Offline-Encrypt: Randomly generates u,z, a, 3,7,6 €r Z; and computes:
U—W —uP R — e(wP + Ppyp, P)*

Ty — x(waP + (w + ’Y)Ppub + P;ub>
T «— xwﬂP Ty — x(SPpub

Outputs the offline ciphertext ¢ = (u,z,a, 3,7v,0,U, R, Ty, Ty, T»). Note that
e(wP + Ppyup, P) can be pre-computed by the PKG as part of the param so that
no pairing is needed in this phase.

Online-Encrypt: To encrypt a message m € M to ID, at the online stage, com-
putes:

g1 (Hl(ID) - a) modq th— 61 (Hl(ID) - 7) mod ¢
t — Hy(m, R)z + u mod q ¢« H3(R)®&m
Outputs the ciphertext ¢ = (U, To, T1, T2, t}, t5, ,).
Decrypt: To decrypt using secret key D;p, computes
R—e(To+t)Th +t5T> , Dip) m « c® H3(R)
and checks whether
R0 L o(tP 4 U | wP + Pyyy) - (P, P)~! (1)

Outputs m if it is equal. Otherwise outputs L.
Same as above, e(P, P) can be pre-computed by the PKG as part of the
param.

An Efficient Identity-Based Online/Offline Encryption Scheme 161

3.2 Security Analysis

Correctness. For the decrypt, we have

e(To + 4Ty + thTs, Dyp)

=e (x <wH1(ID)P + wPpyp + Hi1(ID)Ppyp + Pz/;ub)7
(Hl(ID) + 5)1P>
_ e<x <w(H1(ID) +5)P+ (H(ID) + s)Ppub)

(H1 (ID) + s) 1P>

—e (m((Hl(ID) +s) (wP + Ppub)>, (: (D) +) _1P>
e(m((Hl(ID)) (w s)P) (1) + 8>_1P>

= e((w + S)R P>
=R
On the other side, let h = Ha(m, R). We have

e(tP+ U,wP + Ppub> ~e(P,P)”!
= e(hmP+uP+ (w+8)_1P—UP, (w—i—s)P) ~e(P7P)_1

- e(h:rP + (w+ s)_lR (w+ s)P> -e(P,P)!
= e(nar (wrs)P) e (wes) P (wts)P) etrip)
_ (e(P, wP + Ppub)w)h — Rh

Theorem 1. If there is a ID-IND-CCA adversary A of the proposed scheme
that succeeds with probability €, then there is a simulator B running in polynomial
time that solves the (£ + 1)-BDHI problem with probability at least

1
c. (1 . Qd)
0 q
where q1,qq are the number of queries allowed to the random oracle Hy and
decryption oracle respectively and we assume q; = £.

162 J.K. Liu and J. Zhou

Proof. Setup: We follow the proof technique from [I]. Suppose B is given a
random instance of the (¢ 4+ 1)-BDHI problem (P, aP,a2P,...,a'P, o' P), B
runs A as a subroutine to output e(I:’7]5) «. B sets up a simulated environment
for A as follow.

B first randomly selects 7 €r {1l,...,q1}, I €r Z; and wi,..., wr_1,
Wri1,. .., We € ZLy. Fori € {1,...,£}\{r}, it computes I; = I, —w;. Construct
a polynomial with degree £ — 1 as

L

[T G+w)

i=1,i#m

to obtain co, ...y ¢—1 € Zy such that f(z) = Zf éczz Then it sets generator

G = kel P) = f(a)P. |
For i € {1,...,0}\ {n}, B expands fi(z) = f(2)/(z + w;) = Zﬁ;g d; ;27 to
obtain d; 1,...,dis—2 € ZZ and sets

— fl) 1
H;=> d;j(’P) = fi(a)P = pP=
= o+ w; o+ w;

It randomly chooses w € {1,...,¢}\ {n}, and computes the public key w, W,
P, and P’ub as

w = IUA} W = —ﬁw
Ppup = —aG—I;G = (—a—I;)G P, =a’G+2L,aG+1I2G = (a+1;)°G

where aG = Y720 ci(@ 1 P) and oG = Y2} ¢;(a?t2P) so that its unknown
master secret key msk is implicitly set to x = —a — Iz € Z;, while public pa-
rameter param are set to (G, Ppub, Py, W, w) which are given to the adversary.

For alli € {1,...,0}\ {n}, we have (I;, —H;) = (I;, IH_IG).

Oracle Simulation: B first initializes a counter v to 1 and starts A. Throughout
the game, we assume that Hi-queries are distinct, that the target identity I D*
is submitted to H; at some point.

1. Random Oracle: For Hy-queries (we denote 1D, the input of the v*" one of
such queries), B answers [, and increments v.
For Hs-queries on input (m, R) and Hs-queries on input R, B returns the
defined value if it exists and a randomly chosen hy €r Zj; for Hy and
hs €r {0,1}" for Hj respectively, otherwise. B stores the information
(m, R,ha,c =m @ hs,y = R" - ¢(G,q)) in Ly and (R, h3) in Ls.

2. Extraction Oracle: On input ID,, if v = w, B aborts. Otherwise, it knows
that H,(ID,) = I,, and returns —H, = (1/(I, + z))G.

3. Decryption Oracle: On input a ciphertext ¢ = (U, Ty, T1, T, t}, t5,t,¢) for
identity ID,,, we assume that v = 7 because otherwise B knows the receiver’s

An Efficient Identity-Based Online/Offline Encryption Scheme 163

private key D;p, = —H, and can normally run the decryption algorithm.
Let & € Z4 such that

W =tG+U-W
F(w+z) 'G=tG+U — (w+z)"'G
G = (w+2)(tG+U) -G (2)

Alsolet T = To+t\Th + 5T, Gip, = I, G+ Ppup, and h = Ha(m, R) (which
is yet unknown to B at this moment). As all valid ciphertext satisfies

=e(tG+ U, (w+z)G) - e(G,G)™!
e(hT, (I, + z)~*) e((w+z)tG+U),G)-e(—G,G)
e(I, +) *hT,G) = e((w + 2)(tG + U) — G, G)
(I, + 8)'hT = (w+ 2)(tG+ U) — G (3)

Let &’ € Z, such that

#'Gip, =hT
(I, +)G = hT
i'G = (I, +x)"'hT
= (w+2z)(tG+U)— G (from equation(3]))
ZG (from equation())
=i =z
= logy (tG+U — W) =logg,,, (hT) (4)

From equation (), we have
e(hl,W)=e(Grp,,S — W) (5)
where S = tG + U, which yields e(hT, W) = e(Grp,,S) - e(Grp,, W) L.

The query is handled by computing v = e(S, WG+ Ppus), and search through
the list Ly for entries of the form (m;, R;, ho s, ¢,7) indexed by i € {1,...,¢2}.
If none is found, ¢ is rejected. Otherwise, each one of them is further exam-
ined: for the corresponding indexes, B checks if

e(T, W)h2.i

e(S,Gip,) = e(Gp, W)™ ©)

meaning that equation (@) is satisfied. If the unique ¢ € {1,...,q2} satis-
fying equation (@) is detected, the matching pair (m;, ha;, S) is returned.
Otherwise ¢ is rejected.

Challenge: A outputs messages (mg,m1) and identities ID* for which it never
obtained ID*’s private key. If ID* # ID,, B aborts. Otherwise it randomly

164 J.K. Liu and J. Zhou

selects t,t'1,t'a, %0, t1,t2 ER ZF 7 ¢ €r {0,1}" and U €r G. Computes Ty =

10G, Ty = 11G,Th, = t2G to return the challenge ciphertext ¢* = (U, t, T, 11,

T, t),th,¢). Let § = fo +)t + this and T = —£G. Since © = —a — I, we let
3 3

P= a(w—a—Iy) = = (Inta)(wta): WE CAN check that

T=-¢G=—alw—a—I;)pG
= (Ix + z)(w + z)pG
= p(ILyw + (w + I;)x + 2?)G

A cannot recognize that ¢* is not a proper ciphertext unless it queries Hs or
H3 on e(wG + Gpup, G)P. Along the guess stage, its view is simulated as before
and its output is ignored. Standard arguments can show that a successful A
is very likely to query Hs or Hz on the input e(Grp,,G)” if the simulation is
indistinguishable from a real attack environment.

Output Calculation: B fetches a random entry (m, R, ha, c,7y) or (R,-) from the
lists Lo or Ls. With probability 1/(2¢g2 + ¢3), the chosen entry will contain the
right element

R = e(wG + Ppup, G)P = e(G,G)~¢/Ux+2) — ¢(P, D)/ (@)?¢/a

where f(2) = Y"¢—1,0c¢;z" is the polynomial for which G = f(«)P. The
(¢ + 1)-BDHI solution can be extracted by computing

(RY/¢ >1/CO
e(DI e (@iP),coP)e(52 es11(09) P, G)
_ (o(P, Py o

1/c§
e(I:’,]5)00(C1Jr02a+03a2+...02_10/*2)6(1’57 [f))f(oc)(C1+Cza+03a2+...02_10/*2) >

A A l/c2
2 0
(e(P, P)f(® /a
- A A coleratega?4...cp_qal=)ff(a)(ciatega...cp_qal—1)
(P, P)

o

fl@)2—(cratega+...cp_jat 1) (co+f(a)

= e(P, P)

Probability Analysis: B only fails in providing a consistent simulation because
one of the following independent events happen:

— FE7 : A does not choose to be challenged on ID,.
— E5 : A key extraction query is made on ID,.
— FE3: B rejects a valid ciphertext at some point of the game.

An Efficient Identity-Based Online/Offline Encryption Scheme 165

We have Pr[-FE;] = 1/q1 and —E; implies ~E». Also observe that Pr[Es] <
¢4/q. Combining together, the overall successful probability Pr[—FE; A ~FEj3] is at

least 1
(1 CM)
q1 q

4 Comparison

There are only 2 existing online/offline IBE schemes, both of them are proposed
by Guo, Mu and Chen in [6]. We use GMC-1 and GMC-2 to denote them. We also
assume that |G| = 160 bits, |¢| = 160 bits, |Gr| = 1024 bits and | M| = |¢| = 160
bits [for the following comparison. We denote by F the point multiplication in
G or Gy, M E the multi-point multiplication in G or Gy (which costs about 1.3
times more than a single point multiplication), M the point addition in G or G
and m. the modular computation in Zj,.

Table 1. Comparison of computation cost and size

GMC-1 GMC-2 Our scheme
Offline computation 5FE +2MFE 4FE +2ME 4FE + 1ME
Online computation IM + 2m. 1M + 2mc 3Ime
Offline storage (bits) 2624 5056 2624
Ciphertext length (bits) 2144 6464 1280
Number of pairing for decryption 7 2 2
Security model selective ID standard random oracle

We note that as GMC-1 requires an online/offline signature for encryption,
we assume they use the most efficient one [3] which requires 320 bits for offline
storage and 320 bits for signature length. The key generation and offline signing
part require 1 F operation respectively. These costs have been added to the
table.

From the above table, we can see that our scheme achieves the least compu-
tation and the smallest size in both offline and online stage, when compare to
GMC-1 and GMC-2. There are a number of significant improvements:

1. First, we do not require any point addition operation (M operation) in the
online encryption stage. Modular computation (m. operation) is much faster
than M operation. Other computations that required in our scheme such as
hashing or XOR are negligible when compared to M operation. Thus our
online encryption stage is much faster than GMC-1 and GMC-2.

! In our scheme, the message space can be any arbitrary length but the message space
of GMC-1 and GMC-2 can be only set to the size of ¢, the order of group Gr. In
order to compare three schemes, we also set the message space of our scheme to 160
bits.

166 J.K. Liu and J. Zhou

2. Second, the offline storage is as small as GMC-1 and about 50% smaller than
GMC-2. This result is important in embedded device such as smart card or
wireless sensor, where the storage is very limited.

3. Third, the ciphertext of our scheme is 40% smaller than GMC-1 and 80%
smaller than GMC-2. This improvement is very significant in the environ-
ment where the communication bandwidth is very limited. On the other side,
the number of pairing operations required in the decryption stage, is just 2,
which is the same as GMC-2 while 3 times less than GMC-1. In other words,
we combine and improve the efficiency advantages of both GMC-1 (short
ciphertext) and GMC-2 (small number of pairing operations in decryption).

4. Forth, our scheme allows the message space to be any arbitrary length while
the message space of GMC-1 and GMC-2 should be equal to the size of g,
the order of group Gr. Usually ¢ is chosen as a 160-bits prime. That means
the message space of GMC-1 and GMC-2 is 160 bits. If a larger message, say
1024 bits, is encrypted using GMC-1 or GMC-2, it must be divided into 7
parts ([%] = 7) and carried out the encryption process 7 times. However
in our scheme we just need to adjust the output length of the hash function
Hs to be 1024 and increase the size of the ciphertext from 1280 to 2144
bits (1280 + (1024 — 160) = 2144). Then we only need to execute the whole
encryption process once (instead of 7 times, when compared to GMC-1 and
GMC-2). Our scheme is particularly useful for a large message space.

We also remark that our scheme can be proven secure in the random oracle
model, which is relatively stronger than the standard model or the selective-ID
model. Although it is generally believed that random oracle model is not as
secure as standard model theoretically, it still achieves an acceptable level of
security. There are many applications that put efficiency as the most important
factor. In these scenarios, schemes that are efficient but can be only proven secure
in the random oracle model maybe a better choice.

5 Conclusion

In this paper we have proposed a new efficient identity-based online/offline en-
cryption scheme. When compared to previous schemes, our scheme enjoys a
number of significant improvements in efficiency. These improvements allow our
scheme to be used in many practical scenarios such as smart card and wireless
sensor networks. Our scheme can be proven secure in the random oracle model.

References

1. Barreto, P., Libert, B., McCullagh, N., Quisquater, J.: Efficient and provabley-
secure identity-based signature and signcryption from bilinear maps. In: Roy,
B. (ed.) ASTACRYPT 2005. LNCS, vol. 3788, pp. 515-532. Springer, Heidelberg
(2005)

10.

An Efficient Identity-Based Online/Offline Encryption Scheme 167

. Boneh, D., Boyen, X.: Efficient Selective-ID Secure Identity-Based Encryption

Without Random Oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT
2004. LNCS, vol. 3027, pp. 223-238. Springer, Heidelberg (2004)

. Boneh, D., Boyen, X.: Short signatures without random oracles the SDH assump-

tion in bilinear groups. Journal of Cryptology 2, 149-177 (2008)

. Chen, X., Zhang, F., Susilo, W., Mu, Y.: Efficient generic online/offline signatures

without key exposure. In: Katz, J., Yung, M. (eds.) ACNS 2007. LNCS, vol. 4521,
pp. 18-30. Springer, Heidelberg (2007)

. Even, S., Goldreich, O., Micali, S.: On-line/offline digital signatures. In: Brassard,

G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 263-277. Springer, Heidelberg (1990)

. Guo, F., Mu, Y., Chen, Z.: Identity-based online/offline encryption. In: Tsudik, G.

(ed.) FC 2008. LNCS, vol. 5143, pp. 247-261. Springer, Heidelberg (2008)

. Joye, M.: An efficient on-line/off-line signature scheme without random oracles. In:

Franklin, M.K., Hui, L.C.K., Wong, D.S. (eds.) CANS 2008. LNCS, vol. 5339, pp.
98-107. Springer, Heidelberg (2008)

. Kurosawa, K., Schmidt-Samoa, K.: New online/offline signature schemes without

random oracles. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T.G. (eds.) PKC
2006. LNCS, vol. 3958, pp. 330-346. Springer, Heidelberg (2006)

. Shamir, A.: Identity-Based Cryptosystems and Signature Schemes. In: Blakely,

G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47-53. Springer,
Heidelberg (1985)

Shamir, A., Tauman, Y.: Improved online/offline signature schemes. In: Kilian, J.
(ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 355-367. Springer, Heidelberg (2001)

Dual-Policy Attribute Based Encryption

Nuttapong Attrapadung and Hideki Imai

Research Center for Information Security (RCIS),

National Institute of Advanced Industrial Science and Technology (AIST)
Akihabara-Daibiru Room 1003, 1-18-13, Sotokanda,
Chiyoda-ku, Tokyo 101-0021 Japan
{n.attrapadung,h-imai}@aist.go. jp

Abstract. We present a new variant of Attribute based encryption
(ABE) called Dual-Policy ABE. Basically, it is a conjunctively combined
scheme between Key-Policy and Ciphertext-Policy ABE, the two pre-
vious available types of ABE. Dual-Policy ABE allows simultaneously
two access control mechanisms over encrypted data: one involves policies
over objective attributes ascribed to data and the other involves poli-
cies over subjective attributes ascribed to user credentials. The previous
two types of ABE can only allow either functionality above one at a time.

Keywords: Attribute-based encryption, Ciphertext policy, Key policy.

1 Introduction

Attribute-based encryption (ABE) enables an access control mechanism over
encrypted data using access policies and ascribed attributes among private keys
and ciphertexts. ABE comes in two flavors called Ciphertext-Policy ABE and
Key-Policy ABE.

In Ciphertext-Policy ABE, an encryptor can express any access policy, stat-
ing what kind of receivers will be able to decrypt the message, directly in
the encryption algorithm (which can be run by anyone knowing the univer-
sal public key issued priorly by an authority). Such a policy is specified in
terms of access structure over attributes. A user is ascribed by an attribute
set, in the sense that each attribute corresponds to one of her credential, and
is priorly given the private key from the authority. Such a user can decrypt a
ciphertext if her attribute satisfies the access policy associated to the cipher-
text. An example application of CP-ABE is secure mailing list system with
access policy. There, a private key will be assigned for an attribute set, such
as { “MANAGER”, “AGE:30”, “INSTITUTE:ABC”}, while policies over attributes
such as “MANAGER” V (“TRAINEE” A “AGE:25”) will be associated to ciphertexts.

In Key-Policy ABE, the roles of an attribute set and an access policy are
swapped from what we described for CP-ABE. Attribute sets are used to an-
notate the ciphertexts and access policies over these attributes are associated
to users’ secret keys. An example application of KP-ABE is Pay-TV system
with package policy (called target broadcast system in [6]). There, a ciphertext

M. Abdalla et al. (Eds.): ACNS 2009, LNCS 5536, pp. 168}-185) 2009.
© Springer-Verlag Berlin Heidelberg 2009

Dual-Policy Attribute Based Encryption 169

will associate with an attribute set, such as {“TITLE:24”, “GENRE:SUSPENSE”,
“SEASON:2”, “EPISODE:13” }, while policies over attributes such as “SOCCER” V
(“TITLE: 24" A “SEASON:5”) will be associated to TV program package keys that
user receives when subscribes.

A drawback of the above two previous types of ABE is that we must choose
whether attributes will be used to annotate either the ciphertexts, which we call
objects (since they are to be decrypted), or the users’ credentials, which we call
subjects (since users are to decrypt); after setup we must also stick with such
condition throughout the entire application. To see why this is inconvenient,
we give an example in the Pay-TV application above. Since we are using KP-
ABE, the encrypted movie can only be ascribed by objective attributes. Thus,
the broadcast station, which is the encryptor, cannot directly specify subjective
access policy, i.e., who can or cannot decrypt. It might want to do so, since it
may want, for example, to directly include or revoke some user credentials. The
same inconvenience happens also for CP-ABE complimentarily.

In this paper, we present a new type of ABE called Dual-Policy ABE, which
resolves the above problem affirmatively. Basically, it is a conjunctively com-
bined scheme between KP and CP ABE. Dual-Policy ABE works as follows.
An encryptor can associate the data simultaneously with both a set objective
attributes that annotate the data itself and a subjective access policy that states
what kind of receivers will be able to decrypt. On the other hand, a user is given
a private key assigned simultaneously for both a set of subjective attributes that
annotate user’s credentials and a subjective access policy that states what kind
of data she can decrypt. The decryption can be done if and only if the objec-
tive attribute set satisfies the objective policy and the subjective attribute set
satisfies the subjective policy.

Previous Works. ABE was introduced by Sahai and Waters [J] in the context
of a generalization of ID-based encryption (IBE) [2] called Fuzzy IBE, which
is an ABE that allows only single threshold access structures. The first (and
still being state-of-the-art) KP-ABE scheme that allows any monotone access
structures was proposed by Goyal et al. [6], while the first such CP-ABE scheme,
albeit with the security proof in the generic bilinear group model, was proposed
by Bethencourt, Sahai, and Waters [I]. Ostrovsky, Sahai, and Waters [§] then
subsequently extended both to handle also any non-monotone structures. Goyal
et al. [0] presented bounded CP-ABE in the standard model. Waters [10] recently
proposed the first fully expressive CP-ABE in the standard model.

Our Approach. Our DP-ABE scheme is based on an algebraic combination of
CP-ABE by Waters [10] and KP-ABE by Goyal et al. [6]. We note that such a
combination is non-trivial at the first place, since, for example, one may think
of obtaining DP-ABE by using AND-double encryption (even in a secure way)
of KP-ABE and CP-ABE. However, one can easily find out that this mislead
method is insecure due to collusion attacks. Our scheme utilizes more sophisti-
cated techniques for secure integration.

170 N. Attrapadung and H. Imai

Our DP-ABE subsumes both KP-ABE and CP-ABE in the sense that when
neglecting objective attributes our scheme becomes CP-ABE of Waters [10] and
when neglecting subjective attributes it becomes KP-ABE of Goyal et al. [6].

Furthermore, our DP-ABE scheme also realizes the delegation of private keys.
An interesting property is that we can also delegate the key of pure KP-ABE
to a key of DP-ABE, where subjective attribute dimension is added, and the
key of pure CP-ABE to a key of DP-ABE, where objective attribute dimension
is added. Therefore our DP-ABE scheme is extended seamlessly from both KP-
ABE of [6] and CP-ABE of [10].

Another feature of our DP-ABE scheme is that even such a scheme has been
already set-up to be used as DP-ABE, it can also be used as if it were KP-ABE
or CP-ABE on-the-fly by using encryption in what we call single-policy modes.
This flexibility provides great convenience since the same instantiated key can
be used for all three variants of ABE.

More Related Works. Recently, Boneh and Hamburg [3] formalized a very general
framework called Generalized IBE (GIBE) which also includes both of ABE
variants as special cases. DP-ABE also falls into their framework: it can be
casted as a product scheme between KP-ABE and CP-ABE. However, their
instantiated construction for KP-ABE seems to have large key size that is linear
to the access structure collection size, which could be super-polynomially large.

Another similar general framework called predicate encryption was proposed
previously by Katz, Sahai, and Waters [7]. Their system achieves also anonymity
property, where the information about access structures or attribute sets associ-
ated with ciphertexts itself is kept hidden. However, their system tends to handle
only less expressive access structures than systems without anonymity.

Organization of the Paper. We first provide preliminary materials such as the
notion of linear secret sharing and bilinear pairing in Section 2 We then present
the definition and the security notion of Dual-Policy ABE in Section Bl In Sec-
tion [, we present our concrete DP-ABE scheme called DPABE. In Section [5,
we describe the key delegation of our DP-ABE scheme. In Section [6 we present
both generic and specific enhanced schemes for DP-ABE that admit single-policy
modes. We then conclude in Section [l The security proofs of the schemes with
key delegation and single-policy modes are given in Appendix [ATIA2

2 Preliminaries

We first provide the notion of access structure and linear secret sharing scheme
as follows. Such formalization is recapped from [10].

Definition 1 (Access Structure). Let P = {P, P,,..., P,} be a set of par-
ties. A collection A C 2% is monotone if for all B,C we have that if B € A
and B C C then C € A. An access structure (respectively, monotonic access
structure) is a collection (respectively, monotone collection) A C 27\ {(}.

Dual-Policy Attribute Based Encryption 171

Definition 2 (Linear Secret Sharing Schemes (LSSS)). Let P be a set of
parties. Let M be a matriz of size £ x k. Let p : {1,...,¢} — P be a function
that maps a row to a party for labeling. A secret sharing scheme II for access
structure A over a set of parties P is a linear secret-sharing scheme in Z, and
is represented by (M, p) if it consists of two polynomial-time algorithms:

Share(ys 12 The algorithm takes as input s € Z;, which is to be shared. It ran-
domly chooses ya,...,yx € Z, and let v = (s, y2, ..., yx). It outputs Mv as
the vector of £ shares. The share \,;y := Mj - v belongs to party p(i), where
we denote M; as the ith row in M.

Recon(ys,py: The algorithm takes as input S € A. Let I = {i| p(i) € S}. It out-
puts reconstruction constants {(i, p;) tier which has a linear reconstruction

property: Y i op Mi - Apii) = S

Proposition 1. Let (M, p) be a LSSS for access structure A over a set of parties
P, where M is a matriz of size £ X k. For all S & A, there exists a polynomial
time algorithm that outputs a vector w = (w1,...,wg) € Z'; such that wy = —1
and for all x € S it holds that M; - w = 0.

Bilinear Maps. We briefly review facts about bilinear maps. Let G, G be
multiplicative groups of prime order p. Let g be a generator of G. A bilinear
map is a map e : G x G — Gy for which the following hold: (1) e is bilinear;
that is, for all u,v € G, a,b € Z, we have e(u®,v*) = e(u,v)®. (2) The map is
non-degenerate: e(g, g) # 1. We say that G is a bilinear group if the group action
in G can be computed efficiently and there exists G for which the bilinear map
e:G x G — Gr is efficiently computable.

Decision BDHE Assumption. Let G be a bilinear group of prime order p.
The Decision ¢-BDHE (Bilinear Diffie-Hellman Exponent) problem [4] in G is
stated as follows: given a vector

« (XZ (o3 (X+2 (XZ
(g,h7g g0 g0 g gl q)7Z)

€ G2+1 x Gy as input, determine if Z = e(g, b)), We denote g; = ¢(®") €
G for shorthand. Let Yg.a,q = (91, --,9q¢, Gg+2,- - -»g2q)- An algorithm A that
outputs b € {0, 1} has advantage € in solving Decision ¢-BDHE in G if

‘ Pr [A(ga hv Yg,a,q5 e(qurlv h)) = 0] —Pr [A(ga hv Yg,a,q5 Z) = 0] | > €,

where the probability is over the random choice of generators g,h € G, the
random choice of « € Z,,, the random choice of Z € G, and the randomness of
A. We refer to the distribution on the left as Pppy g and on the right as Rpppg.-
We say that the Decision ¢-BDHE assumption holds in G if no polynomial-time
algorithm has a non-negligible advantage in solving the problem.

3 Definitions

A Dual-policy attribute-based encryption scheme consists of four algorithms.

172 N. Attrapadung and H. Imai

Setup: This is a randomized algorithm that takes no input other than the im-
plicit security parameter. It outputs public key pk and master key msk.
Encrypt(pk, M, (S,w)): This is a randomized algorithm that takes as input the
public key pk, a message M, a subjective access structure S, a set of objective

attributes w. It outputs the ciphertext ct.

KeyGen(pk, msk, (¢, @)): This is a randomized algorithm that takes as input
the public key pk, the master key msk, a set of subjective attributes v, an
objective access structure Q. It outputs a private decryption key sk.

Decrypt(pk, (¢, 0), sk, (S,w), ct): This algorithm takes as input the public key
pk, a decryption key sk and its associated pair of set of subjective attributes
1) and objective access structure Q, a ciphertext ct and its associated pair
of subjective access structure S and set of objective attributes w. It outputs
the message M if it holds that the set w of objective attributes satisfies
the objective access structure @ and that the set ¢ of subjective attributes
satisfies the subjective access structure S, i.e., w € Q and @ € S.

We require the standard correctness of decryption: if Setup — (pk, msk) then
Decrypt(pls (1,0), KeyGen(pk, msk, (¢, 0)), (S,w), Encrypt(pk, M, (S, w))) —M,

for all M in the message space and all w € @ and ¥ € S.
The selective security notion for DP-ABE is defined in the following game.

Init. The adversary declares the target subjective access structure S* and the
target objective attribute set w*.

Setup. The challenger runs the Setup algorithm of DP-ABE and gives the public
key pk to the adversary.

Phase 1. The adversary is allowed to issue queries for private keys for pairs of
subjective attribute set and objective access structure (1, Q) such that w* ¢ O
or ¢ & S*, i.e., the negated condition of that of a legitimate key which can be
used to decrypt a challenge ciphertext.

Challenge. The adversary submits two equal length messages My and M;.
The challenger flips a random bit b and computes the challenge ciphertext ct*
on the target pair (S*,w*) of subjective access structure and objective attribute
set and then gives ct* to the adversary.

Phase 2. Phase 1 is repeated.

Guess. The adversary outputs a guess b’ of b.

The advantage of an adversary in this game is defined as Pr[b = b'] — ;. Note that
this can be extended to handle chosen-ciphertext attacks by allowing decryption
queries in Phase 1,2.

Definition 3. A DP-ABFE scheme is secure in the selective-set security notion
if all polynomial time adversaries have at most a negligible advantage in the
above game.

Dual-Policy Attribute Based Encryption 173

4 Dual-Policy ABE Scheme

Our DP-ABE scheme will be based on a combination of CP-ABE by Waters [10]
and KP-ABE by Goyal et al. [6]. Both subjective and objective access structures
are those which there exist linear secret sharing schemes that realize them. We
denote by (M, p) a LSSS scheme that represents a subjective access structure S
and by (N,) a LSSS scheme that represents a objective access structure Q. We
will restrict p to be an injective function as in Waters [10] scheme, but we can
extend to an unrestricted scheme, also similarly as in [I0].

4.1 Main Construction

Let m be the maximum size of subjective attribute set allowed to be assigned to a
key, i.e., we restrict || < m. Let n be the maximum size of objective attribute
set allowed to be associated with a ciphertext, i.e., we restrict |w| < n. Let
ls max be the maximum number of rows allowed in a subjective access structure
matrix. Let m’ = m + lsmax — 1 and n’ = n — 1. Our main scheme DPABE
is described as follows. Let Us,U, be the universe of subjective and objective
attributes, respectively.

» Setup: The algorithm first picks a random generator ¢ € G and random
exponent vy, a € Zjy. It then defines two functions F; : Z, — G and F,, : Z, — G
by first randomly choosing hg, ..., Am, to,...,tn € G and setting

Fx)=]]n, Fola)=]]t
j=0 j=0

It assigns the public key as pk = (g,e(g9,9)7,9% ho,- -, hmsyto, ... tn). The
master key is msk = (v, a).

» Encrypt: Inputs to the encryption algorithm are a LSSS access structure
(M, p) for subjective policy and a objective attribute set w C U,. Let M be
ls x ks matrix. The algorithm first randomly chooses s,ya,...,yx, € Z, and
lets w = (s,y2,...,Yk,). For i = 1 to {, it calculates \; = M; - u, where
M; is the vector corresponding to ith row of M. The ciphertext ct is set to
ct= (Ca C? {Ci}i:L...,fsa {Ca/t}$€w)7 where

C=M-(elg,9)")" C=g,
Ci = g™ F(p(i)) ", Cp = Fo(x)".

» KeyGen: Inputs to the encryption algorithm are a LSSS access structure (N,)
for objective policy and a subjective attribute set ¢ C Us. Let N be £, X k,
matrix. The algorithm first randomly chooses 7,22...,25, € Z, and lets v =
(y+ar, z2,...,2k,). For i =1 to £, it calculates 0; = N; - v, where N; is the
vector corresponding to ith row of N. It also randomly chooses ry,...,7, € Zp.

174 N. Attrapadung and H. Imai

It creates the private decryption key as sk = (K, {K;}azcy, {IAQ,K{}i:L__,go),
where

K:grv K, :Fs('r)ra
Ki = g% Fo(r(i)) ™", Ki=g".

» Decrypt: The decryption algorithm takes as input the ciphertext ct which
contains a subjective access structure (M, p) and a set of objective attributes w,
and a decryption key sk which contains a set of subjective attributes ¢ and an
objective access structure (NN, 7). Suppose that the set ¢ for subjective attribute
satisfies (M, p) and that the set w for objective attribute satisfies (N,) (so that
the decryption is possible). We then let Iy = {i| p(i) € ¥} and I, = {i| 7(i) € w}.
It then calculates corresponding sets of reconstruction constants {(¢, ;) }icr, =
Recon(yy,) (¥) and {(4, ;) }ic1, = Recon(y r)(w). The decryption algorithm then
computes

[Lics, (e(CivK)-e(C’vam))m M)
e, (e(55,) eticy o))

Correctness. We verify the correctness of the decryption as follows. Let sk and ct
be defined as in the scheme above. We first note that from linear reconstruction
property of the LSSS schemes, we have

Zui/\i =s, Z vio; =+ ar. (2)

i€l icl,

C.

The correctness can then be verified as
ey, (¢(Ci K) - o€ Kii))
Mjer, (e(K5,C) - e(i}, o))
Mier, (g™ Flp(i)*,97) - elg*. F(p())"))

e, (elo Eulr(0).0%) - elg, Bl (2))))”

_ o Mienelg™ g™ _ [ele™0) _ o 1 _
[Ler, (g7, g%)" e(grtar, g%) e(g,9)*
Remark 1. The above decryption algorithm of Eq.(]) was written only for ease of
visualizing. A more efficient computation with the less number of applications of
pairing can be done as follows. Note that Eq.(B]) requires only |w|+2 applications
of pairing, while Eq.() requires 2(|w| + |¢|) such applications.

. e((HiEISCzHi)VK)‘ le (Hiestgé))
Wer e(K5.0r) "\ (Ter K77)

C.

Hi

= M. (3)

Dual-Policy Attribute Based Encryption 175

4.2 Security Proof

Theorem 1. If an adversary can break the DPABE scheme with advantage € in
the selective-set security model for DP-ABE with a challenge subjective access
structure matrix of size £F X kZ, then a simulator with advantage € in solving the
Decision q-BDHE problem can be constructed, where m + k} < q.

The proof follows mostly from [6/10] with some non-trivial adaptation mostly in
simulating the private keys.

Proof. Suppose there exists an adversary, A, that has advantage € in attacking
the DPABE scheme. We build a simulator B that solves the Decision ¢-BDHE
problem in G. B is given as input a random ¢-BDHE challenge (g, %, Yg,0.q, Z);
where Yg.a,q = (91, -+ 9q: Gg+2, - - -, §24) and Z is either e(gq41,h) or a random

element in Gy (recall that g; = g(®")). B proceeds as follows.

Init. The selective-set game begins with A first outputting ((M*, p*),w*), where
(M*, p*) is a target subjective access structure in the form of LSSS matrix and
w* is a target objective attribute set. Let M™* be of size £F x k}, where m+kZ < q.
Wlog, we can assume that €7 = ls max and |w*| = n.

Setup. B chooses random +/ € Z, and implicitly sets v = 7/ + 9! by letting
e(g,9) = e(a,a)e(g,g)" . Tt also lets g* = g°.

The simulator then programs the function Fy by defining Fy(z) = g*®) where
p is a polynomial in Z,[z] of degree m + ¢; — 1 which is implicitly defined as
follows. It first chooses kZ 4+ m + 1 polynomial po, ..., Py 1m in Z,[z] of degree
m + £f — 1 in such a way that for x such that there exists an i where x = p*(7)
(there are exactly £7 values of such z, since p* is injective) we set

My, forj e 1)
pj<x) = ’ . * *
0 for j € [k¥ +1,kF +m],

and random for x elsewhere (by randomly picking values at some other m points
for each polynomial) and py is chosen completely randomly. Write coefficients in
each polynomial as p;j(z) = Z:’:&ES _1pj’i -2, Tt then conceptually defines

kg

+m A
pla) = 3 pia) o
§=0

by setting h; = Hjigm gf“ for i € [0,m + £f — 1]. From the definition of Fy in

the scheme, one can verify that

m+4;—1)
F@) = [n =¢".
=0

The simulator then programs the next function Fy as follqws. It randomly
picks a polynomial in Z,[z] of degree n — 1, f'(z) = Z?;Ol fjz?. Next it defines

176 N. Attrapadung and H. Imai

f(@) = [Tpews (@ — k) = Z?;Ol f;x7. We note that f;’s terms can be computed
completely from w*. From this we can ensure that f(z) = 0 if and only if x € w*.
It then lets ¢; = 917 g%i for j = [0,n — 1]. We thus have

n—1

Fy(z) = H t;”) — gl gl @,
j=0

It then gives the public key pk = (g,¢(g9,9)7, 91, ho, - -, hms, to, - - -, tns) t0 A.

Phase 1. The adversary makes requests for private keys corresponding to ob-
jective access structure and subjective attribute set pair ((N,7), 1) subjected to
condition that ¢ does not satisfy M™* or w* does not satisfy N. We distinguish
two cases due to the latter condition.

[Case 1: w* does not satisfy NJ.

The simulator randomly chooses r € Z,. It then lets K = ¢” and for all x € ¢
lets K, = Fy(x)" as in the construction.

Due to the condition in this case and by Proposition [, there must exist a
vector @ = (a1,...,ar,) € Z];" such that a; = —1 and that for all ¢ where
7(i) € w*, it holds that IN; - a = 0.

The simulator randomly chooses 25, ..., 2, € Z, and lets v’ = (0, 25, ..., 2},).
It implicitly defines a vector v = —(y' + a?™' + ar)a + v/, which will be used
for creating shares of v + ar as in the construction.

For ¢ where 7(i) € w*, it randomly chooses r; € Z, and computes K| = ¢"
and

Ki = gNe Fo(m(i) ™™ = gNev Fo(m(i) ™,

where the right equality is due to N; - a = 0.
For i where m(i) ¢ w*, it randomly chooses ; € Z,. Observe that

N;-v=(N;-a)a®™ + (rN; -a)a+ N; - (v/ —+a)

contains the term a9t!, thus we cannot compute ¢™V¢'? as usual. We will use
the term F,(m(i))~"¢ to cancel out the unknown value. To do this it implicitly

defines r; =1} + o}((l:f ZZ;) This can be done by setting

(TNi,a_ (Ny-) £ ())
Ki=g, g By (i),
, (Nji-a)
Kz/ — gngif(ﬂ(i)) — gn’
which can be computed since 7(i) ¢ w* hence f(7(i)) # 0. The correctness of
K; can be verified as:

2 o Ni-(v'— e =W) -
K, = (qu)N’“g’{Nl agN"“ (v'—~'a) | ((qurl) N; ag1 £ (i)) - Fy(m(i))~"

a(N;-a)

= gNev L B ()T fe) - Fo(m(i)) T = gNe L By (m (i)

Dual-Policy Attribute Based Encryption 177

[Case 2: w* satisfies N].
In this case, we must have that ¢ does not satisfy M*. Therefore, by Propo-
sition [l and our definition of p; above, there must exist a vector (w1, ..., wxs) €

ZI;: such that wy = —1 and for all z € ¢ such that there exist ¢ where z = p* (i),
we have (p1(z),...,pr: (2)) - (w1, ..., wgs) = 0. Next it also computes one possi-
ble solution of variables wys 41, ..., Wks 4m from the system of |¢| equations: for
all x € 9,

(pl(x)a e 7pks*+m<m))) (wlv cee 7wks*+m) =0,
which is possible since |¢)| < m. Now we define b, = (p1(),...,prs+m(x)) and
w = (W1, ..., Wk 4m). Thus, for all x € ¢ we have by, - w = 0.

The simulator then randomly chooses ' € Z,, and implicitly defining

; (4)

_ _ *
r=1r"+w ol +wy-al 1+_._wk;+m,aq (kS +m)+1

by setting K = ¢" H:::J;m(gq—i-l—k)wk = ¢". From our definition of r, we have

¥ + ar = '7/ + CW'/ + 'lUQCEq 4.4 wk:+m . Oﬂ*(k?s*Jrﬂ"L)JrQ7
where we observe that the important term a?*! in v is canceled out. It randomly
chooses za...,zk, € Z, and implicitly lets v = (y + ar, 22,...,2k,) as in the
construction. It also randomly chooses 71,...,r¢, € Z,. It then computes for
1=1to ly, K/ = g™ and

%
ki +m
Ki = (97 QI H (gq_k+2 'wk HgNL §Zi . o (.))7”7

k=2

where one can verify that K; = g™Né? . F,(m(i))~". We can compute this since
gq+1 is not contained. The simulator then creates K, for all € 9 as:

k! +m p;j (@)
K, = KPo®) . H (g; H (gq+1_k+j)wk> 7

j=1 ke[L, kS +m)]
K]

where one can verify that K, = F;(z)" by observing that since for all x € 1, we
have b, - w = 0; therefore,

kX +m
K, =Kg- (qurl)bm.w =K, H (qurlfjJrj)wjpj(x)
j=1
kX4m kX +m pj(z)
= Ko@) (H (9g+1-k+5) k>
Jj=1 k=1
kX 4+m »
= (@ T ()P = (¢ = Ry

178 N. Attrapadung and H. Imai

Challenge. The adversary gives two message My, M; to the simulator. The
simulator flips a coin b and creates C = My-Z-e(h,g7'), C = h, and for z € w*,
C! =ht (=) Write h = ¢* for some unknown s. The simulator chooses randomly
Yo,y Ykr € Lp. Let y' = (0,45, ..., yxs). It will then implicitly share the secret
s using the vector

/ 2 / kr—1 /
v = (s, 500+ Yy, 80" + Y5, 80 T+ Yp),

by setting for i = 1,...,0%, C; = (g1)Mi¥' . (g%) o™ (D),
We claim that if when Z = e(gq+1, k), then the above ciphertext is a valid
challenge. The term C, C' is trivial. For all z € o', we have f(x) = 0, hence

Cp = () = (979" D) = Fola)".

Fori=1,...,¢;, we have

ke . ke .
C; = (g*)Mi HgM?,jw] (g®)Pole” (@) H(QS)*M?,J’O‘]
Jj=1 j=1

= gaMi-v . (gsyp(p*(i)) - gaMf-vFS(p*(i))fﬁ
which concludes our claim.
Phase 2. B performs exactly as it did in Phase 1.

Guess. A outputs ' € {0,1} for the guess of b. If b = V' then B outputs 1
(meaning Z = e(gq+1, h)). Else, it outputs 0 (meaning Z is random in Gr).

We see that if (g,h,Yg,a,q, Z) is sampled from Rpprr then Pr(B(g,h, yYga.q,
Z) = 0] = 3. On the other hand, if (g, h, Yg.a.,q, Z) is sampled from Pgpprp then
we have | Pr[B(g, h,Yg,a,q, Z) = 0] — 5| > €. It follows that B has advantage at
least € in solving ¢-BDHE problem in G. This concludes the proof.

4.3 Some Extended Constructions

We note that an unrestricted scheme where p is not necessarily injective, a
scheme with CCA security, a scheme based only on Decision Bilinear Diffie-
Hellman (DBDH) assumption can be realized similarly to [I0]. We can also
model F;, F, as random oracles and achieve better efficiency and simpler proof
as in [10]. In Goyal et al. [6] paper, the KP-ABE for LSSS realizable structures
does not have delegation property; while the one for access-tree structures have.
We can also base our DP-ABE scheme on the access-tree based KP-ABE. Finally,
we can extend the access structures to include non-monotone type ones as in [§].

5 Key Delegation in DP-ABE

We now extend the definition and scheme realizations of DP-ABE to obtain the
delegation of keys. We begin with the definition of Delegate algorithm to be
added on.

Dual-Policy Attribute Based Encryption 179

Delegate: It takes as inputs a private key sk, @) of subjective attribute set and
objective access structure pair (¢, Q), and another new pair (¢', Q) intended
to derive its key. It outputs the key sk, o if and only if " € ¥» and O’ C Q.

In other words, key delegation can be realized when the new subjective at-
tribute set is a subset of the original set and the new objective access structure
is more restrictive than the original one (or either one condition holds while the
other remains the same). In defining this algorithm, we require its correctness
that the private key sk o/) output from Delegate has the same distribution as
the one from KeyGen algorithm.

Recall that U is the universe of subjective attributes and 2% is the full objec-
tive access structure. The delegation will start from the master key, which can
be considered equivalently as the private key for (Us,2%). From that, we can
consider two types of intermediate states: (1, 2%) which can be considered as a
key in pure CP-ABE scheme and (Us, @) which can be considered as a key in
pure KP-ABE scheme.

Such intermediate keys are indeed already defined generically in any DP-ABE
scheme (by instantiating sk o) with @ = 24 for the first type and) = U for the
second type). However, both 2% and U are of super-polynomial size; therefore,
the size of instantiated keys could be very large for any DP-ABE constructions
(including our basic DPABE construction). To resolve this, we thus newly define
KeyGen for only those two specific types of keys below.

We now describe the delegation scheme for our DPABE scheme as follows. The
security proof is postponed to Section [A]l

5.1 Delegating CP-ABE to DP-ABE

(Us, 2%) — (4, 2%) — (¢, 0)

From the master key msk = (7, a), it randomly chooses r € Z, and creates a
private key for (1, 2%) as sk(y ooy = (K, { Ky }zey, K) where

K=y, K,=F(@), K=g"" ®)

Note that this is exactly the key in the CP-ABE of Waters [10]. This means that
one can seamlessly extend Waters’ CP-ABE to ours DP-ABE without having to
setup again. The decryption using this key can be done by Eq.(I) but neglecting
all the terms related to objective attribute set, w. Thus, Eq.() is simplified to

o [Licr, (e(CivKA) ‘ ‘f(éva(i)Dm M
e(K,C)

From the above private key for (1, 2%), we can further delegate to obtain a
private key for (¢, Q). Let O be represented by a LSSS (N, 7) as usual. Let N be
Uy X ko matrix. The algorithm randomly chooses ', 2a. .., 2k, 71, ..., Te, € Zp.

180 N. Attrapadung and H. Imai

It implicitly lets v = (y+a(r+r'), 22, . . ., 21,). It creates the private key sk, 0y =
(Ko (K™} gy, {K7™, K™} im1, . p,) as

KnEW:K'gT/a KEEW:Km'FS(‘r)rlu
Ko = (K - (g"))V g5 N By e ()T KPS = g,

which distributes exactly the same as in our main scheme; in particular, one can
verify that KM = gNiv [((i)) 7.

5.2 Delegating KP-ABE to DP-ABE
(Us, 2%) — (Us, 0) — (¢,0)

From the master key msk = (v, a), the algorithm will create a private key for
(Us,0) as follows. Let @ be represented by a LSSS (N, m) as usual. Let N be
ly X ko matrix. The algorithm randomly chooses 23 ..., zk,,71,...,7¢, € Zp. It
lets z = (7, 22,..., 2x,). It then creates sk, oy = ({IAQ7 Kl}i=1,..4,) where

Ki= N R(() ", Kl =g, (6)

Note that this is exactly the key in the KP-ABE of Goyal et al. [I0]. This means
that one can seamlessly extend such KP-ABE schemes to ours DP-ABE without
having to setup again. The decryption using this key can be done by Eq.(l) but
neglecting all the terms related to subjective attribute set, v. Thus, Eq.([) is
simplified to
1
C- o v, =M.
[jer, (55,6 e(i, 0L)

From the above private key for (Us, @), we can further delegate to obtain a
private key for (¢, ©).The algorithm randomly chooses r, 25, ..., 2}, , 79, ..., 7} €
Zy. It creates sk 0y = (K", {K}*}rey, {IA({‘eW7KZ{”e""}Z-:1)Mgo) as

Knew — gT7 K;ew — };1S(x)7"7

Rzpew _ Kz . (ga)Ni‘lrgZ‘l;():z Ni,jz_;’Fo(ﬂ-(i))_T; K;”ew = Kl/ . gT;’

)

which distributes exactly the same as in our main scheme.

5.3 Delegating in DP-ABE

(¥,0) = (¢/,0)

The delegation from (¢, Q) — (¢, Q), where ¢’ C 1, can be done by delet-
ing the elements K, where z € v \ ¢ and then re-randomizing the other
remaining elements in a similar way as delegations stated previously. More

Dual-Policy Attribute Based Encryption 181

precisely, from sk, 0) = (K, {Ks}zey, {IAQ,K{}Z-:L__,@O), the algorithm creates

skiy,0) = (K", { K3} oeyr, {KMev KWl) as follows. It first randomly
chooses 1,25, ..., 2, ,71,...,7) € Zp and then computes

Knew:K.gr'7 K;eW:Kw'FS(‘T)Tlv
Klnew _ Ki . (ga)Ni’lT,gZ;ci? Ni’jZ;FO(W(Z'))7T;7 Kz{new _ Kz/ .gr;’
which distributes exactly the same as a key for (¢, 0).
The delegation from (¢, Q) — (¢, Q"), where O’ is more restrictive than O,
can be done on the access-tree based DP-ABE in a similar way to the KP-ABE
scheme of Goyal et al. [6], with proper re-randomization.

6 Single-Policy Modes of DP-ABE

In this section, we describe a feature of DP-ABE called encryption in single-
policy modes. Suppose that a DP-ABE scheme has been set-up already. The
single-policy encryption mode allows an encryptor to still encrypt his message as
if it were a KP-ABE or CP-ABE on-the-fly. More specifically, when a message is
encrypted in KP-ABE mode with objective attribute set w, any user with key for
(1, 0) where w € O can decrypt it regardless of whatever subjective attribute set
1. Analogously, when a message is encrypted in CP-ABE mode with subjective
policy S, any user with key for (i), @) where ¢ € S can decrypt it regardless of
whatever objective policy O.

We now describe a simple generic construction and then a more efficient direct
construction as follows.

6.1 Generic Construction

As a first attempt, we describe a trivial approach to generically realize encryption
in single-policy modes as follows. To encrypt in KP-ABE mode with objective
attribute set w, one just encrypt to (2“%,w). To encrypt in CP-ABE mode with
subjective policy S, one just encrypt to (S,Us,). However, 2% and U, are of super-
polynomial size; therefore, the size of instantiated ciphertext could be very large
for any DP-ABE constructions (including our basic DPABE construction).

To resolve this, we propose a simple generic conversion from any DP-ABE
scheme S to a new DP-ABE scheme S’ that admits efficient single-policy modes
as follows. The idea is to use dummy attributes: one for subjective and one for
objective attribute.

S’.Setup is exactly the same as S.Setup except that it additionally chooses a
special subjective attribute Tg € Us and a special objective attribute T, € U,
and adds them into the public key. Both T, T, will not be used as attributes in
S’. Next we define

S’.KeyGen(pk, msk, (1, ©)) = S.KeyGen (pk, msk, (¢ U {Ts}, O U {{Ts}})).

S’.Encrypt is done as usual except in the single-policy modes where we define

182 N. Attrapadung and H. Imai

S'.Encrypt(pk, M, (2%, w)) = S.Encrypt (pk, M, ({{T:}},w)),
S'.Encrypt(pk, M, (S,Us)) = S.Encrypt(pk, M, (S,{T,})),

which corresponds to KP-ABE and CP-ABE mode respectively. Decryption can
be done exactly in the same way as usual.

6.2 Direct Construction

When applying the above generic conversion to our proposed DPABE, the re-
sulting scheme seems to contain some redundancy, in particular, involving using
the dummy subjective attribute and the LSSS scheme for the augmented objec-
tive access structure O U {{T5}}. In this section, we thus also present a direct
construction DPABE2 by tweaking the main DPABE construction as follows.

DPABE2.Setup is exactly the same as that of DPABE except that it also in-
cludes a special objective attribute T, € U, in the public key. DPABE2.KeyGen
is also exactly the same as before except the following. To generate the key
sk(y,0), it also includes two new elements (R’ (o), K éo)) which are computed by
first randomly choosing 7 € Z;, and setting

R(o) = g’H_arFo(To)_ra KEO) = gr. (7)

Hence the key will be sk(y o) = (K, {Ks}oep, {Ki, K[}Yiz1,. 00, K (o), K)

For the intermediate states, the key sk(y ouoy is unchanged from Eq. (&), while
the key sk, o) is exactly the same as defined in Eq.(@]) except that it addition-
ally includes the two above new elements of Eq.(d) albeit setting r = 0. The
delegation can be done as usual with proper re-randomization.

The encryption DPABE2.Encrypt is exactly the same as usual DPABE except in
the single-policy modes which we describe below. To encrypt in KP-ABE mode,
i.e., to encrypt to (2“%,w), one randomly chooses s € Z, and set the ciphertext

to ct = (C,C, Co, {C" }sew), where

C=M:-(eg,9))°, C =g,
Co = g, C), = Fyo(x)*.

The decryption in this case is done by simplifying Eq.() to
Co, K
) €<A 05) Y = M.
[jer, (55, C) - e, 0L)

On the other hand, to encrypt in CP-ABE mode, i.e., to encrypt to (S,U,), one
just compute as in the usual DPABE.Encrypt but set the ciphertext to ct = (C, C,
{Ci}i:L,,,)es,C/% where

C.

C:M.(e(g7g)’y)57 C:gsv
C; = ga)‘iFs(p(i))_s7 C' = Fy(T,)".

Dual-Policy Attribute Based Encryption 183

The decryption in this case is done by simplifying Eq.() to

o [Lics, (e(C“K) . e(épr(i))yi

o o =M.
e(K(o),C) . e(K(O),C)

The security proof of DPABE2 is given in Section

7 Conclusions

We presented a new variant of Attribute based encryption (ABE) called Dual-
Policy ABE. It is a useful primitive that combines two access control functionali-
ties from Ciphertext-policy ABE and Key-policy ABE. We formalized the notion
of Dual-policy ABE and presented an efficient concrete scheme based on an alge-
braic combination between Goyal et al. KP-ABE [6] and Waters’ CP-ABE [10],
which are the state-of-the-art schemes for ABE of respective kinds. We further
proposed two add-on features: key delegation and single-policy modes of encryp-
tion. Key delegation has an interesting property that it also allows the delegation
from KP-ABE key of Goyal et al. scheme or CP-ABE key of Waters’ scheme to
our DP-ABE. Therefore, one can extend those two existing ABE schemes by
delegating to DP-ABE seamlessly. Single-policy mode feature allows users to
use DP-ABE keys as if it were the vanilla KP-ABE or CP-ABE on-the-fly. This
feature allows great flexibility since one DP-ABE key can be used for all three
types of ABE (KP,CP,DP ABE).

References

1. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-Policy Attribute-Based Encryp-
tion. In: IEEE Symposium on Security and Privacy 2007, pp. 321-334 (2007)

2. Boneh, D., Franklin, M.: Identity-Based Encryption from the Weil Pairing. STAM
Journal of Computing 32(3), 586-615 (2003); In: Kilian, J. (ed.) CRYPTO 2001.
LNCS, vol. 2139, pp. 213-229. Springer, Heidelberg (2001)

3. Boneh, D., Hamburg, M.: Generalized Identity Based and Broadcast Encryption
Schemes. In: Pieprzyk, J. (ed.) Asiacrypt 2008. LNCS, vol. 5350, pp. 455-470.
Springer, Heidelberg (2008)

4. Boneh, D., Gentry, C., Waters, B.: Collusion resistant broadcast encryption with
short ciphertexts and private keys. In: Shoup, V. (ed.) CRYPTO 2005. LNCS,
vol. 3621, pp. 258-275. Springer, Heidelberg (2005)

5. Goyal, V., Jain, A., Pandey, O., Sahai, A.: Bounded ciphertext policy attribute-
based encryption. In: Aceto, L., Damgard, I., Goldberg, L.A., Halldérsson, M.M.,
Ingdlfsdéttir, A., Walukiewicz, I. (eds.) ICALP 2008 (Track C), Part I. LNCS,
vol. 5125, pp. 579-591. Springer, Heidelberg (2008)

6. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: ACM Conference on Computer and
Communications Security 2006, pp. 89-98 (2006)

7. Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, poly-
nomial equations, and inner products. In: Smart, N.P. (ed.) EUROCRYPT 2008.
LNCS, vol. 4965, pp. 146-162. Springer, Heidelberg (2008)

184 N. Attrapadung and H. Imai

8. Ostrovsky, R., Sahai, A., Waters, B.: Attribute-Based Encryption with Non-
Monotonic Access Structures. In: ACM Conference on Computer and Commu-
nications Security 2007, pp. 195-203 (2007)

9. Sahai, A., Waters, B.: Fuzzy Identity-Based Encryption. In: Cramer, R. (ed.) EU-
ROCRYPT 2005. LNCS, vol. 3494, pp. 457-473. Springer, Heidelberg (2005)

10. Waters, B.: Ciphertext-Policy Attribute-Based Encryption: An Expressive, Effi-
cient, and Provably Secure Realization. Cryptology ePrint archive: report 2008 /290

A Security Proofs of Schemes with Extended Features

A.1 Security Proof of the Scheme with Delegation

In this section, we describe the security proof of the scheme with delegation given
in Section Bl The only difference from our basic construction in Section F1] is
that we newly re-define the private key sk(y o), Sk, 0), for the intermediate
states. According to the security definition, the adversary can also query for the
key sk, 0) if w* does not satisfy O and the key sky ouo) if ¥ does not satisfy
S*. Here we recall that (S*,w*) is the target subjective access structure and
objective attribute set pair. Therefore, it suffices to show how to simulate these
two types of keys in Phase 1 (and 2), in addition to the proof of the main scheme
(¢f. Section E2).

For the first type, the simulator B answers the query for sk, o) such that w*
does not satisfy O by simulating the private key elements in exactly the same way
as in the Case 1 in Phase 1 in the proof of the main scheme, albeit setting r = 0
and neglecting the term K, K. The resulting simulated key ({KZ, Kl}iz1,..0) 18
distributed as the key sk, o) in the real scheme (cf. Eq.(@)). This holds thanks
to the correctness of simulation for sk, o) in the proof of our main scheme and
the fact that sk, o) as defined in Eq.(@) simplifies sk(y, o) as defined in the main
scheme with 7 being set to » = 0.

For the second type, the simulator B answers the query for sk, suo) such that
¥ does not satisfy S* as follows. Since the elements (K, { K }yey) in both the key
sk(y,2u0) defined in Eq.([@) and the key sk, @) of the main scheme are the same,
we just simulate (K, {K,}zeyp) exactly as in the Case 2 in Phase 1 in the proof

of the main scheme. It then computes K as K = g7 g7’ H:i;m(gq_k_lrQ)wk ,which
can be verified that K = g77" as required (recall that in the simulation, r is
implicitly defined in Eq.[) and a = «).

Remark 2. In the security proof of the main scheme in Section B2, we could
have done a simpler simulation if the key delegation were already defined there.
For Case 1, it suffices to compute the key sk, o) and then delegate to sky o)
to answer the query. For Case 2, it suffices to compute the key sk(y ouo) and
then delegate to sk,). However, we believe that separating the key delegation
feature from the basic scheme makes its description easier to follow.

A.2 Security Proof of the Scheme with Single-Policy Modes

In this section, we give a sketch of the security proof for this tweaked scheme
DPABE?2 given in Section [6.2] Note that the only differences from the main proof

Dual-Policy Attribute Based Encryption 185

are as follows. First we must also consider two new possible target pair types of
(2% w) and (S,U,) for the challenge ciphertext. Second, we must also simulate
the two new private key elements for each query.

We first consider the normal case where the adversary announces the target
pair of type (S*,w*) in the Init phase. In this case, the proof follows exactly the
main proof except that the simulator also simulates additional key components.
For Case 1 of Phase 1 in the main proof, it computes the additional keys as

=~/

2 " ar —f(Ts T —7 7 T
Koy =g" g gy T py(1) ™ K,y = g7 g/ T, ®)

where it randomly chooses 7 € Z,. It can be verified that this distributes as in
Eq.(@) with 7 =7 4+ 1/ f(T,). For Case 2, the simulator can compute g7 ™" and
thus can generate the elements of Eq. () above.

Next, we consider the case where the adversary announces the target pair
of type (2%,w*) in the Init phase, i.c., the challenge ciphertext will be in KP-
ABE mode. In Setup phase, the simulator chooses a € Z, and hg,...,hy €
G randomly (in particular, instead of setting a = « as previously done). The
remaining elements of the public key are simulated as in the main proof. In Phase
1, it suffices to simulate the key for (Us, @) such that w* does not satisfy Q. This
can be done in exactly the same way as before (cf. Section[A] first type), albeit
it also includes two new elements as in Eq.(§) with 7 = 0. In Challenge phase,
the term C,C, C! can be simulated as usual. In addition, it just sets Cp = Ce.
The rest follows from the main proof.

Finally, we consider the case where the adversary announces the target pair of
type (S*,U,) in the Init phase, i.e., the challenge ciphertext will be in CP-ABE
mode. In this case, the proof follows exactly the main proof that is instantiated
with the selective target pair (S*, {To}). Note also that it suffices to simulate the
key for sk, ouoy such that 1) does not satisfy S*. Such a key does not include the
two new elements of Eq. ().

Construction of Threshold Public-Key
Encryptions
through Tag-Based Encryptions

Seiko Arita and Koji Tsurudome

Institute of Information Security,
Yokohama, Kanagawa, Japan
{arita,mgs068101}@iisec.ac.jp

Abstract. In this paper, we propose a notion of threshold tag-based
encryption schemes that simplifies the notion of threshold identity-based
encryption schemes, and we show a conversion from any stag-CCA-
secure threshold tag-based encryption schemes to CCA-secure thresh-
old public-key encryption schemes. Moreover, we give two concrete con-
structions of stag-CCA-secure threshold tag-based encryption schemes,
under the decisional bilinear Diffie-Hellman assumption and the deci-
sional linear assumption, respectively. Thus, we obtain two concrete con-
structions of threshold public-key encryption schemes, both of which are
non-interactive, robust and can be proved secure without random oracle
model. Our threshold public-key encryption schemes are conceptually
more simple and shown to be more efficient than those of Boneh, Boyen
and Halevi.

Keywords: threshold public-key encryption schemes, tag-based en-
cryption schemes, the decisional bilinear Diffie-Hellman assumption, the
decisional linear assumption.

1 Introduction

A threshold public-key encryption scheme is a public-key encryption scheme
where a private key is distributed and shared among several decryption servers
and some number of those decryption servers must cooperate to decrypt any ci-
phertext [2/4[9]. In a model of k-out-of-n threshold public-key encryption scheme,
an entity, called combiner, has a ciphertext C' that it wishes to decrypt. The com-
biner sends C' to the decryption servers, and receives partial decryption shares
from at least k out of the n decryption servers. It then combines these k partial
decryptions into a complete decryption of C. Ideally, it is desirable that there is
no other interaction in the system, namely the servers need not talk to each other
during decryption. Such threshold systems are called non-interactive. Often one
requires that threshold decryption be robust, namely if threshold decryption of
a valid ciphertext fails, the combiner can identify the decryption servers that
supplied invalid partial decryptions.

M. Abdalla et al. (Eds.): ACNS 2009, LNCS 5536, pp. 186/-200,|2009.
© Springer-Verlag Berlin Heidelberg 2009

Construction of Threshold Public-Key Encryptions 187

In 2006, Boneh, Boyen and Halevi [2] gave a construction of CCA-secure
threshold public-key encryption scheme by converting a sID-CPA-secure thresh-
old identity-based encryption scheme into it, which in turn is constructed based
on the decisional bilinear Diffie-Hellman assumption. Their CCA-secure thresh-
old public-key encryption scheme is the first one that is non-interactive, robust
and can be proved secure without random oracle model.

On the other hand, in 2006, Kiltz [6] proposed a notion of tag-based encryp-
tion scheme through simplifying the notion of identity-based encryption schemes
[3I7], and gave a transformation from any stag-CCA-secure tag-based encryption
schemes to CCA-secure public-key encryption schemes.

In this paper, we propose a notion of threshold tag-based encryption schemes
that simplifies the notion of threshold identity-based encryption schemes in a
similar way as [6], and then we show a conversion from any stag-CCA-secure
threshold tag-based encryption schemes to CCA-secure threshold public-key en-
cryption schemes, that is an adaption of the CHK transform [5] to the setting of
threshold encryption. Moreover, we give two concrete constructions of stag-CCA-
secure threshold tag-based encryption schemes, that are non-interactive, robust
and can be proved without random oracle model, under the decisional bilinear
Diffie-Hellman assumption and the decisional linear assumption, respectively.
Thus, we obtain two concrete constructions of threshold public-key encryption
schemes, through applying the conversion to the two threshold tag-based en-
cryption schemes, both of which are non-interactive, robust and can be proved
secure without random oracle model.

In the threshold identity-based encryption scheme of [2], a decryption share
is regarded as a ciphertext of private key share corresponding to decrypter’s ID.
But in our threshold tag-based encryption scheme, a decryption share can be
regarded naturally as a partial decrypted ciphertext. As a result, our threshold
public-key encryption schemes, obtained through the conversion, are conceptu-
ally more simple and shown to be more efficient than those of [2].

2 Threshold Tag-Based Encryptions and Their
Conversion to Threshold Public-Key Encryptions

In this section, after reviewing the definition of threshold public-key encryptions
and their security following [2], we propose a notion of threshold tag-based en-
cryptions and show a conversion from any stag-CCA-secure threshold tag-based
encryption schemes to CCA-secure threshold public-key encryption schemes.

2.1 Threshold Public-Key Encryption

Scheme. A threshold public-key encryption scheme TPKE consists of five algo-
rithms:
TPKE = (Setup, Encrypt, ShareDec, ShareVf, Combine).

Setup takes as input the number of decryption servers n, a threshold k£ (1 <k <
n), and a security parameter A. It outputs a triple (PK,VK,SK) where PK

188 S. Arita and K. Tsurudome

is a public key, VK is a verification key and SK = (SK,--- ,SK,,) is a vector
of n private key shares. Encrypt takes as input a public key PK and a message
M, and it outputs a ciphertext C. ShareDec takes as input a public key PK, a
ciphertext C, and the i-th private key share (i, SK;). It outputs a decryption
share p; of the encrypted message, or a special symbol (i, L). ShareVf takes as
input a public key PK, verification key V K, ciphertext C' and a decryption
share p;. It outputs valid or invalid. When the output is valid, we say that u; is
a valid decryption share of C. Combine takes as input PK,V K, ciphertext C,
and k decryption shares {pu1,- -, ug}. It outputs a message M or L.

For any output (PK,V K, SK) of Setup(n, k, A), we require the two consis-
tency properties:

1. For any valid ciphertext C, if p; <« ShareDec(PK,i,SK;,C), then
ShareVf(PK,VK,C, u;) is valid.

2. If C is the output of Encrypt(PK, M) and S = {p1, - ,pr} is a set of
decryption shares p; < ShareDec(PK,i,SK;,C) for k distinct private key
shares in SK, then Combine(PK,VK,C,S) = M.

Security. Security of threshold public-key encryption scheme TPKE is defined in
terms of chosen ciphertext security and decryption consistency. Chosen cipher-
text security is defined using the following game between a challenger and an
adversary. Both are given n, k, A as input.

1. Init. The adversary outputs a set S C {1,--- ,n} of kK — 1 decryption servers
to corrupt.

2. Setup. The challenger runs Setup(n,k,A) to obtain a random instance
(PK,VK,SK). It gives the adversary PK, VK, and all (j, SK;) for j € S.

3. Query phase 1. The adversary adaptively issues decryption queries (C, 1)
where C' € {0,1}* and ¢ € {1,---,n}. The challenger responds with
ShareDec(PK,i,SK;,C).

4. Challenge. The adversary outputs two messages My, M7 of equal length.
The challenger picks a random b € {0,1} and lets C* «— Encrypt(PK, My).
It gives C* to the adversary.

5. Query phase 2. The adversary issues further decryption queries (C,), under
the constraint that C' # C*. The challenger responds as in Query Phase 1.

6. Guess. The adversary outputs its guess b’ € {0,1} for b and wins the game
ifb=1".

We define an advantage of adversary A for threshold public-key encryption
scheme TPKE with respect to chosen ciphertext security as Advy Tpke , 1 (4) =
|Pr[b =] —1/2]|.

Decryption consistency is defined using the following game. The game starts
with the Init, Setup, and Query phase 1 steps as in the game above. The ad-
versary then outputs a ciphertext C' and two sets of decryption shares S =
{1, ,puitr and 8" = {uf, -+, p).} each of size k. The adversary wins if:

Construction of Threshold Public-Key Encryptions 189

— The shares in S and S’ are valid decryption shares for C' under VK.

— S and S’ each contain decryption shares from k distinct servers.

— Combine(PK,VK,C,S) # Combine(PK,VK,C,S"), with either side not
equal to L.

We let Adv%TPKE’n’k(A) denote the probability that the adversary A wins this
game.

Definition 1. We say that a threshold public-key encryption scheme TPKE is
CCA-secure if for any n, k (1 < k < mn) and any probabilistic polynomial time
algorithm A, both of the functions Adv{pke , 1 (A) and Adv‘iﬁTpKE’n’k(/l) are
negligible.

2.2 Threshold Tag-Based Encryption

A notion of threshold tag-based encryptions is obtained by simplifying threshold
identity-based encryption schemes in a similar way as [6] in the non-threshold
setting. Threshold tag-based encryptions simply needs a tag as input in addition
to ordinary inputs of threshold encryptions.

Scheme. A threshold tag-based encryption scheme TTBE consists of five algo-
rithms:
TTBE = (Setup, Encrypt, ShareDec, ShareVf, Combine).

Setup takes as input the number of decryption servers n, a threshold k (1 <
k < n) and a security parameter A. It outputs a triple (PK,V K, SK) where
PK is a public key, VK is a verification key, and SK = (SK;,---,SK,) is a
vector of n private key shares. Encrypt takes as input a public key PK, a tag
t and a message M, and it outputs a ciphertext C. ShareDec takes as input a
public key PK, a ciphertext C, a tag t, and a i-th private key share (i, SKj;).
It outputs a decryption share u; of the encrypted message, or a special symbol
(i, L). ShareVf takes as input PK, VK, a ciphertext C, a tag t and a decryption
share p;. It outputs valid or invalid. When the output is valid, we say that pu; is
a valid decryption share of C. Combine takes as input PK,V K, a ciphertext C,
a tag t and k decryption shares {u1,-- -, p }. It outputs a message M or L.

As in the threshold public-key encryption scheme, we require the following
two consistency properties. Let (PK,V K, SK) be the output of Setup(n, k, A).

1. For any tuple (C,t) of a valid ciphertext and a tag, if u; < ShareDec
(PK,i,SK;,C,t), then ShareVf(PK,VK,C,t,u;) = valid.

2. If C is the output of Encrypt(PK,t, M) and S = {p1, - ,pur} is a set of
decryption shares u; < ShareDec(PK, i, SK;, C,t) for k distinct private key
shares in SK, then Combine(PK,VK,C,t,S) = M.

Security. Security of threshold tag-based encryption scheme TTBE is defined in
terms of stag-chosen-ciphertext security and stag decryption consistency. Stag
chosen ciphertext security is defined using the following game between a chal-
lenger and an adversary. Both are given n, k, A as input.

190 S. Arita and K. Tsurudome

1. Init. The adversary outputs a target tag t* that it wants to attack and a set
of k — 1 decryption servers S C {1,---,n} that it wants to corrupt.

2. Setup. The challenger runs Setup(n,k,A) to obtain a random instance
(PK,VK,SK). It gives the adversary PK, VK, and all (j, SK;) for j € S.

3. Query phase 1. The adversary adaptively issues decryption share queries
((C,t),4) with i € {1,---,n}, under the constraint that ¢ # ¢*. The chal-
lenger responds with ShareDec(PK, i, SK;, C,t).

4. Challenge. The adversary outputs two messages My, M7 of equal length. The
challenger picks a random b € {0,1} and lets C* « Encrypt(PK,t*, My). It
gives C* to the adversary.

5. Query phase 2. The adversary adaptively issues decryption share queries
((C,t),4) with i € {1, ,n}, under the constraint that ¢#t*. The challenger
responds as in phase 1.

6. Guess. The adversary outputs its guess b’ € {0,1} for b and wins the game
ifo=10.

We define an advantage of adversary A for threshold tag-based encryption
scheme TTBE with respect to stag-chosen-ciphertext security as Advy Fraes, ,(4)
= |Pr[b=0]—-1/2|.

Stag decryption consistency is defined using the following game. The game
starts with the Init, Setup and Query phase 1 steps as in the game above. The
adversary then outputs a tag ¢, a ciphertext C' and two sets of decryption shares
S ={u1, - ,pr} and 8" = {uf, -, p)} each of size k. The adversary wins if:

1. The shares in S and S’ are valid decryption shares for (C,t) under VK.

2. S and S’ each contain decryption shares from k distinct servers.

3. Combine(PK,VK,C,t,S) # Combine(PK,VK,C,t,S’), with either side not
equal to L.

We let Advj)aTgT_BdE)n’k(/l) denote the probability that the adversary A wins
this game.

Definition 2. We say that a threshold tag-based encryption scheme TTBE is
stag-CCA-secure if for any n, k (1 < k < n) and any probabilistic polynomial
time algorithm A, both of the functions Advjf}g{géfnvk(/l) and Advj%]{Bdénvk(/l)
are negligible.

2.3 Conversion from Threshold Tag-Based Encryption Schemes
into Threshold Public-Key Encryption Schemes

In this section we show a conversion from any stag-CCA-secure threshold tag-
based encryption scheme to CCA-secure threshold public-key encryption scheme.
The conversion is a direct adjustment of the conversions of [5l6] into the threshold
setting.

We convert a given threshold tag-based encryption scheme

TTBE = (Setupttbe, Encryptttbe, ShareDeCttbe, Sharerttbm Combinettbe)

into a threshold public-key encryption scheme

Construction of Threshold Public-Key Encryptions 191

TPKE = TT2TP(TTBE,S) = (Setuptpke, Encryptipke, ShareDecipie, ShareVfipie, Combineypye)

using a strong one-time signature S = (KG, SGN, VF) as in Figure [l

Setupipke (1, k, A) :
(PK,VK,SK) < Setupie(n, k, A), output (PK,VK,SK).
Encryptipke (PK, M) :
(sigk,verk) «— KG(A), Cupe < Encryptiwe (PK,verk, M), o < SGN(sigk, Ctpe);
output Cipre = (Chive, verk, o).
ShareDecipke (P K, i, SKi, Cipke = (Cripe, verk, o)) :
If VF(verk, Citpe, o) = invalid then output wu; = (¢, L),
else output ShareDecube (P K, 1, SK;, Ciipe, verk).
ShareVfipwe (PK, VK, Cipke = (Cirpe, verk, o), i) :
If VF(verk, Ciipe, o) = invalid then output invalid,
else output ShareVfupe (PK, VK, Citpe, verk, u;).
Combineye(PK, VK, Cipke = (Crtve, verk, o), {p1, -+, i }) :
If 3i, ps = (¢, L) or ShareVfipke (PK, VK, Cipie, pti) = invalid then output L,
else output Combinegpe (PK, VK, Ciipe,verk, {p1, - , ux})-

Fig. 1. TT2TP: Conversion from threshold tag-based encryption schemes to threshold
public-key encryption schemes

Theorem 1. If a threshold tag-based encryption scheme TTBE is stag-CCA-
secure and S is a strong one-time signature, then the threshold public-key en-
cryption scheme TPKE = TT2TP(TTBE,S) is CCA-secure.

More precisely, for an arbitrary efficient adversary A against chosen cipher-
text security of TPKE, there exists an efficient algorithm B against stag-chosen-
ciphertext security of the underlying TTBE and a forger F of the underlying S
that satisfy

AdVy Tpke np(A) < Adv%t,?rgTE??L,k(A) + Advjft,gcma(A)~

(Here, Adv;fgcm“ denotes the advantage of forger F against one-time signature

S in the usual game of strong chosen-message attack with at most one signing
query.) Similarly, for an arbitrary efficient adversary A’ against decryption con-
sistency of TPKE, there exists an efficient algorithm B’ against stag decryption
consistency of the underlying TTBE and a forger F' of the underlying S that
satisfy

AdvS tokenx(4) < Adv;t,‘)ﬁ;gé)n’k(/l) + AdVE M (A).

Proof. First, we consider chosen ciphertext security of TPKE. Let A be an ar-
bitrary efficient adversary against chosen ciphertext security of TPKE. Using
adversary A4, we build an algorithm B that attacks stag-chosen-ciphertext secu-
rity of the underlying TTBE.

192 S. Arita and K. Tsurudome

Algorithm B proceeds as follows:

1. Initialization. Given input (n, k, A) algorithm B runs 4 on the same input to
obtain a list S (C {1,---,n}) of the k — 1 servers that A wishes to corrupt.
Next, B runs KG on A to obtain a signing key sigk* and a verification key
verk*. It outputs the set S and the target tag t* = wverk™ to the TTBE
challenger.

2. Setup. The TTBE challenger runs Setupgtbe (1, k, A) to obtain (PK, VK, SK).
It gives B the values PK, VK, and all (j, SKj;) for j € S. Algorithm B forwards
these values to A.

3. Query Phase 1. Adversary A adaptively issues decryption queries of the form
(Cipke, i) where Cipre = (Cripe, verk,o) and i € {1,--- ,n}. For each such a
query (Ctpe,), B proceeds as follows:

(a) If VF(verk, Cipe, o) = invalid then B gives p; = (i, L) to A.

(b) Else if verk =t* then B outputs b & {0,1} and aborts.

(¢) Else B issues a decryption query ((Cipe,verk),i) to own TTBE decryp-
tion oracle and obtains a decryption share p; in return. It gives the

decryption share p; to A.
4. Challenge. Adversary A outputs two equal-length messages My and M;. B

forwards these My and M; to its own TTBE challenger. The TTBE chal-
lenger responds with the encryption C};,, of M;, under t* for some b € {0,1}.
B then runs SGN on (sigk*,C},,.) to obtain a signature o*, and it gives
ke = (Clipe, t*,07) to A as challenge ciphertext.

5. Query Phase 2. A continues to issue decryption queries (Cipre (# Cfpe), %)
B responds as in Query Phase 1.

6. Guess. Eventually, A outputs its guess b’ € {0, 1} for b. B forwards &’ to the
TTBE challenger and wins the game if b =1¥'.

This completes the description of algorithm B.

Let Abort be the event that B aborts in Query Phase 1 or 2 during the simu-
lation. As easily seen, as long as Abort does not happen, B’s simulation of TPKE
challenger is perfect. Therefore, we have |Adv?7‘-lrgTECé‘;7k(A) —Adv TpKE nk(4)] <
Pr[Abort]. By definition, Abort means A’s forgery of valid signature o under
verification key verk*, and it leads to a forger F of S satisfying Pr[Abort] <

Adv 7. Thus, Advpye. , 5 (4) < Adviac® | (A) + Advii 5™ (A).

Second, we see decryption consistency of TPKE. Let A’ be an arbitrary effi-
cient adversary against decryption consistency of TPKE. Using adversary A’, we
build an algorithm B’ that attacks stag decryption consistency of the underlying
TTBE.

Algorithm B’ proceeds exactly as algorithm B, until A’ outputs the challenge
(Ct;ke = (C{tbe, veArk, 5),5,5"), and then B’ outputs (veArk, Ciibe, S, S’) after
verifying validity of 6 under verk.

Just as in the case of chosen ciphertext security, let Abort be the event that B’
aborts in Query Phase 1 during the simulation. Then, as above, \Advfgt,a’%lfgnl w(A)

- Adv%’TTBE’n)k(AH < Pr[Abort]. Again, Abort leads to a forger ' of S, and we
have Advitc',TPKE,n,k(A) < AdVSBt’?%;gE,n,k(A) + AdVoft/Tscma(A)' U

Construction of Threshold Public-Key Encryptions 193

3 Construction of Threshold Tag-Based Encryption
Schemes

In this section, we construct two concrete stag-CCA-secure threshold tag-based
encryption schemes based on the decisional bilinear Diffie-Hellman assumption
and on the decisional linear assumption, respectively.

3.1 Preliminaries

We recall necessary primitives around bilinear maps.

Bilinear Maps. Let G be a group of prime order p with generator g. Let G; be
another group of prime order p. A bilinear map e : G x G — G is a map with
the properties:

1. For all u,v € G and a,b € Z,, it holds e(u®,v*) = e(u,v)®.

2. e(g,9) # 1.
3. For all u, v, e(u,v) is efficiently computable.

Decisional Bilinear Diffie-Hellman Assumption. If a bilinear Diffie-Hellman tuple
(g,9% g% g¢,e(g,9)™°) is indistinguishable from a bilinear random tuple
(g,9% g% g¢,e(g,9)?), we say the decisional bilinear Diffie-Hellman assumption
holds. More formally, as for algorithm Gpppg that takes a security parameter A
and outputs order p, generator g, and descriptions of groups G and G with bilinear
map e : G x G — Gy, the following two experiments are defined. Expt(’;dg;lDH)A on
input A generates param = (p, g,G,G1,e) by Gpppu(A) and chooses three ran-
dom elements a, b, ¢ from Z,. Then it invokes A on (param, g, g%, g°, g%, e(g, g)**¢)
and returns its output. On a while, Expgj Dh;zD oA
a,b, ¢, d from Z, and returns A(param, g, g%, °, g%, e(g, 9)?%).

We say that the decisional bilinear Diffie-Hellman (DBDH) assumptionholds for

Gpppg if for any probabilistic polynomial time algorithm A, AdviﬁgLD on (A) def

|Pr[Exp2§th_BlDH’A(A) =1] - Pr[ExpEth;zDH’A(A) = 1]| is a negligible function
of A.

chooses four random elements

Decisional Linear Assumption. If a linear tuple (g1, g2, 2,91, 95°, 2" 772) is in-
distinguishable from a random tuple (g1, g2, 2, 91", g5, 2°), we say the decisional
linear assumption holds. More formally, as for algorithm Gpp;y that takes
a security parameter A and outputs order p, generator g, and descriptions of
groups G and G; with bilinear map e : G x G — Gy, the following two exper-
iments are defined. Exp'c'?;im)A on input A generates param = (p,g,G,Gq,e)
by Gprin(A) and chooses four random elements w,v,71,72 from Z,. Then it
invokes A on (param,g,g*, g%, g, g""2, g*"1*72)) and returns its output. On
a while, Expg‘;iN’A chooses five random elements w,v,r1,72,s from Z, and
returns A(param, g,9%, 9%, 9™, g""*, g"*).

194 S. Arita and K. Tsurudome

We say that the decisional linear (DLIN) assumption holds for Gpy iy if for

any probabilistic polynomial time algorithm A, /—\dv%gmm(/l) def

|f§1[Expl(i;”;im7A(/l) = 1] — Pr[Expg},?,, .a(4) = 1]] is a negligible function
of A.

3.2 A Construction TTBE1 of Threshold Tag-Based Encryption
Scheme Based on the DBDH Assumption

Our first construction TTBEL of threshold tag-based encryption scheme is ob-
tained through a simplification and “thresholding” of the identity-based encryp-
tion scheme of Boneh and Boyen [I].

As easily seen, the identity-based encryption scheme of [I] can be simplified into
a following tag-based encryption scheme. A public-key is randomly selected ele-
ments g1 (= ¢g*), g2, h1 on a bilinear group G (with generator g). The correspond-
ing secret key is . A message M is encrypted with respect to tag t as (C, D, E) =
(", (gth1)", M -e(g1, g2)"). Ciphertext (C, D, F) is decrypted with respect to tag
tas M = E/e(C, g2)® if it holds e(C, gt hy) = e(D, g), otherwise M = L.

In the threshold identity-based encryption scheme of [2], which is also based on
the identity-based scheme of [I], a decryption share is regarded as a ciphertext
of private key share corresponding to decrypter’s ID. On a while, in order to
convert the above tag-based encryption scheme into a threshold version, thanks
to the simple setting of tag-based encryption scheme, we can naturally distribute
the secret key x into shares {f(¢)}; using Shamir’s secret sharing scheme [8] and
make the i-th decryption share to be (Cf (@), E) as the usual threshold version
of ElGamal encryption. More precisely TTBE1 is described in Figure 2

Setup(n, k, A):
(p,9,G,G1,€e) — Gpppu(A);
& Zp, f & Zp[X] satistying deg(f) = k — 1 and f(0) = «;
Yz S Ly, g1 — g%, g2 — g¥, b — g
PK = (p,G,G1,¢,9,01,92,h1), SK = (f(1),---, f(n)), VK = (¢/V),---, g7™);
return (PK, VK, SK).
Encrypt(PK,t, M):
r& Zp, C —g", D« (g1'h1)", E «+ M -e(g1,g2)", return Cyppe = (C, D, E).
ShareDec(PK,i, SK; = f(i),Cwe = (C, D,), 1):
If e(C,g1'h1) # e(D, g) then return p; = (4, L) else return pu; = (i, C7®).
ShareVf(PK, VK = (¢*V), Cppe = (C,-,), t, i = (i, Cs)):
If e(Ci, g) # e(C, g*?) then return invalid else return valid.
Combine(PK, VK, Clbe = (~, N E),t, {,U,l = (1, Cl), U = (k‘, Ck)})
If 3i, ShareVf(PK,V K;, Ctpe, t, us) = invalid then return L,
else return E/e(Hf:1 C;‘i,gz) using Lagrange coefficients A1, -+, Ag
satisfying f(0) = S0 \if(i).

Fig. 2. Threshold Tag-Based Encryption Scheme TTBE1

Construction of Threshold Public-Key Encryptions 195

Theorem 2. Under the DBDH assumption for Gpppm, the threshold tag-based
encryption scheme TTBEL is stag-CCA-secure.

More precisely, for an arbitrary adversary A against stag-chosen-ciphertext
security of TTBEL that runs in time at most T and makes at most QQ decryption
queries, there exists an algorithm B for the DBDH problem on Gppppy that runs
in time at most T plus the time to perform O(Q +n) exponentiations and O(Q)
pairing computations, and satisfies

stag—ce dbdh
Adv;,nllgTB(Ein,k(A) = AdVB;GDBDH (A).

For an arbitrary adversary A’ against stag decryption consistency of TTBEL, it
holds that
stag—dc
Ad"jcva,ngBTﬂ,n,k(A) =0.

Proof. First, we consider stag-chosen-ciphertext security of TTBEL. Let A be an
arbitrary adversary that runs in time at most 7, makes at most) decryption
queries, and has advantage AdvjfngT_EfEin’k(/l) in attacking TTBEL in the game
of stag-chosen-ciphertext security. Using the adversary .4, we build an algorithm
B that solves the DBDH problem on Gpgpr(A).

Given (A, p, G, Gy, e, g,9% g°, g, W) as input, algorithm B proceeds as follows.
(The aim of B is to distinguish two cases between W = e(g, ¢)?*° or random.)

1. Initialization. Algorithm B invokes adversary A on input (n, k, A). Adversary
A outputs a target tag t* and a list S = {s1, -+, sg—1}(C {1, ,n}) of the
k — 1 servers that it wishes to corrupt.

2. Setup. Then, B does the following:

(a) B sets g1 = g% g2 = g and computes hy; = gl_t*gﬂ with a random ~
(i Zyp). (This defines implicitly as « = a,y = b,z = —t*z +.) B sets
PK = (p, G, Gl, €,9,91,92, hl)

(b) Next, B picks k — 1 random integers aq, -+, ax_1 & Zy. (We let f €
Z,[X] be a polynomial of degree k—1 defined by f(0) = z and f(s;) = o
fori=1,--- ,k—1. B does not know f.) B sets SK|s = (a1, ,a-1)-

(c) Fori € S, Blets u; = g*. For i ¢ S, it computes u; = g;° (g)M - -
(g@=1) =1 where Ao, - -+ , \y—1(€ Z,) are the Lagrange coefficients sat-
isfying f(i) = Xof(0) + Y2521 Aj f(s;). (Note u; satisfies u; = g/().) B
sets VK = (ug,- -+, up).

(d) B gives PK, VK and SK|g to A.

3. Phase 1. A issues decryption share queries ((Cipe,t),¢) under the constraint
that ¢ # ¢t* and 7 ¢ S. First, B validates e(C, gthq) < e(D, g) to clarify the
validity of ciphertext Cuye = (C, D, E). If validity test fails, B gives to A
(i, L). Otherwise, B computes the Lagrange coefficients Ay, , Ag—1,\; €
Z, satistying f(0) = A\ f (i) + Zf;ll A f(s;) and sets

1

1 .

C; = (CD”)Ft* B
! 025211 Aje

196 S. Arita and K. Tsurudome

and then gives to A (i, C;) as decryption share. (If the ciphertext is valid, it
must be the case that C**T# = D. Then, we have D = Ot 17 = Ctet(=t"z+7)
= (C*)*=t"C". Since t # t*, we get CF = (D/C’V)tflt*. Then, substituting
£(0) = 521 Ajf(s5) + Xif (i) for @, and noting C; = CY/) we obtain the
above expression of C;.)

4. Challenge. A outputs two same-length messages My and M;. B flips a
fair coin b € {0,1}, and responds with the challenge ciphertext C},, =
(9%, (g°)7, MuyW). (As B sets hy = g7 ¢7, it holds that (¢¢)" = (h1g!)c.
Moreover, if W = e(g, g)®*¢, then we have M, - W = My, - e(g1, g2)¢ and C};_
is a valid ciphertext of M} under PK with tag t*.)

5. Phase 2. A issues additional queries as in Phase 1, to which B responds as
before.

6. Guess. Eventually, A outputs a guess b'. B outputs 1 if b = ¥’, or outputs 0
otherwise.

This completes the description of algorithm B, that runs in time at most 7
plus the time to perform O(Q + n) exponentiations and O(Q) pairing compu-
tations. By the comments in the description, it is immediate that B perfectly
simulates a stag-CCA game for A if W = e(g, 9)?°. When W is a random el-

ement, the view of B is independent of the choice of b. So, AdvdBlfdGhDBDH A4) =
stag—cca stag—cca
[Prb=0]—-1/2|=|(1/2+ AdVA,'IgTBEl,n,k(A)) —-1/2| = AdVA,'IgTBEl,n,k(A)'

Second, we consider stag decryption consistency of TTBEL. Let A’ be an ar-
bitrary adversary with advantage Adng,gr?éca,n,k(/l) in attacking TTBEL in the
game of stag decryption consistency. Suppose adversary A’ outputs ¢, Cipe, S =
(,U’l = (L 01)7 oy UE = (L Ck))7 S = (:U’/I = (L Oi)? e 7“’2 : (kv O]/c)) If those
shares p; in S are valid, they must satisfy e(C;, g) = e(C, g/®), so C; = CT(®),
Then, it holds that Hf:l oM =CX =1}/ () = ¢ Similarly, if the shares i, in
S’ are valid, we have Hle C”?i = (C%. This means Combine(PK, VK, Cye,t,5)
= Combine(PK, VK, Ce,t,S"). Thus, Adv54ae, | (4) = 0. O

3.3 A Construction TTBE2 of Threshold Tag-Based Encryption
Scheme Based on the DLIN Assumption

Our second construction TTBE2 of threshold tag-based encryption scheme nat-
urally expands the Kiltz’s tag-based encryption scheme [6] to the threshold set-
ting. A secret key x1,xo of the Kiltz’s scheme is distributed among n secret
key shares (f1(1), f2(1)),---,(f1(n), f2(n)) with polynomials f1, fo satisfying
x1 = f1(0), 22 = f2(0). Decryption shares are of the form (C{l(l), ng)).

More precisely TTBE2 is described in Figure Bl

Theorem 3. Under the DLIN assumption for Gprin, the threshold tag-based
encryption scheme TTBE2 is stag-CCA-secure.

More precisely, for an arbitrary adversary A against stag-chosen-ciphertext
security of TTBE2 that runs in time at most T and makes at most QQ decryption

Construction of Threshold Public-Key Encryptions 197

Setup(n, k, A):
(p,9,G,G1,e) « Gprin(A); x1,72 & Zp;
fi, fe & Zp[X] satisfying deg(f1) = deg(f2) =k — 1 and f1(0) = z1, f2(0) = x2;
T gl go e 270, yrye S Dy, wr e gV up — gl
PK = (p> G,G1,e, 91,92, Zvuhu?)a SK = ((fl(1)7f2(1))a Tt (fl(n)7 fQ(n)))§
VE = ((on = g{*™ 012 = gf2M), -+, (w1 = '™ vz = g12™));
return (PK, VK, SK).
Encrypt(PK,t, M):
71,72 & Zp, C1 «— g7', Co — gi%, D1 « (2'u1)™, D2« (2'u2)™, E « Mz"17172;
return Ctbe = (Cl, 02, Dl, Dz, E)
ShareDec(PK7 i, SK, = (f1 (’l), f2(Z))7 ctbe = (017 02, .D17 DQ, ')7 t):
If e(C1, z'u1) # e(D1,g1) or e(Ca, z'u2) # e(Da, g2) then return p; = (i, L),
else return y; = (i, (C*@, ¢f2)).
Sharer(PK, VK = ((’U“, 1)1'2))7 Ctbg = (01, CQ, oy '), t, Mi = (i7 (Cil, OZQ))) :
If e(Ci1,91) # e(C1,vi1) or e(Ciz, g2) # e(Ca2,v;2) then return invalid, else return valid.
Combine(PK, VK, Ctbe = (-, RTRS) E), t, {Nl = (1, (6'117 Clz)), Ly UE = (k‘, (Ckh Ckz))})
If 3i, ShareVf(PK,V K, Cipe,t, pt;) = invalid then return L,
else return E/ Hf::l(CilCiQ))\i using Lagrange coefficients A1, -+, Ag
satisfying f1(0) = S0 A f1(4).

Fig. 3. Threshold Tag-Based Encryption Scheme TTBE2

queries, there exists an algorithm B for the DLIN problem on Gprin that runs
in time at most T plus the time to perform O(Q +n) exponentiations and O(Q)
pairing computations and satisfies

stag—cc dbdh
Adv;t?lgTBpEZQ,n,k(A) = AdVB,GDLIN (A)

For an arbitrary adversary A’ against stag decryption consistency of TTBE2, it
holds that
tag—d
Advil’a,%TB?EZn,k(A) =0.

Proof. First, we consider stag chosen ciphertext security of TTBE2. Let A be an
arbitrary adversary that runs in time at most 7, makes at most) decryption
queries, and has advantage Advjf}g{;égmvk(/l) in attacking TTBE2 in the game
of stag-chosen-ciphertext security. Using the adversary .4, we build an algorithm
B that solves the DLIN problem of Gprrn(A).

Given (A, p,G,Gy,e,91,92,2, 91", 952, W) as input, algorithm B proceeds as
follows. (The aim of B is to distinguish two cases between W = 2"7"2 or ran-
dom.)

1. Initialization. Algorithm B invokes adversary A on input (n, k, A). Adversary
A outputs a target tag t* and a list S = {s1, -+ ,s,-1}(C {1, -+ ,n}) of the
k — 1 servers that it wishes to corrupt.
2. Setup. Then, B does the following:
(a) B picks random integers c1, co & Z, and computes u; = z*t*gfl7 Uy =
27t g52. (This defines implicitly as y; = —t*z1 + c1, ya = —t* 22 + ca.)
B sets PK = (p7 Ga Gla €,91,92,%,U1, u2)‘

198 S. Arita and K. Tsurudome

(b) Next, B picks 2k — 2 random integers oy, -+ , k-1, 51, - , Bk—1 & Ly,.
(We let fi, fo € Zp[X] be two polynomials of degree k — 1 defined by
fl(O) = xl,fl(si) = Q4 (Z = 1,"' ,k‘ — 1) and fQ(O) = 332,‘]02(81‘) =
Bi (i=1,---,k—1). B does not know f1, f2.) B sets SK|s = (SK,, =
(1,B1),,SKs,_, = (ak-1,Bk-1))-

(c) Fori € S, Blets VK; = (vi1,vi2) = (¢%',95"). For i ¢ S, it computes
vl = Zko(g?l)h ... (gf‘kfl))\k—l and v = 2o (ggl)Al o (gg’“*l)Ak—1’
where Ao, - -+ , Ag—1(€ Zp) are the Lagrange coefficients satisfying f(i) =
Mo f(0) + z;:ll Ajf(sj) for degree k polynomials f. (As easily seen,
(Uil,viz) satisfies Vi1 = g{l(i),vig = ggZ(i).) B sets VK = (VKl =
(1)11, '1)12)7 e 7Vv.K'n = ('Unla 'Ung)).

(d) Bgives PK, VK and SK|g to A.

3. Phase 1. A issues decryption share queries ((Cype,),) under the constraint

thatt # t* and i & S. First, B validates e(Cy, ztu;) =e(Dy, g1) and e(C, ztus)
z e(D2, g2) to clarify validity of the ciphertext Cype = (C1,Ca, D1, Do, E). If
validity test fails, B gives to A (i, L). Otherwise, B computes the Lagrange
coefficients A1, -+, Ap—1, A € Z, satisfying f(0) = A\ f(i) + Zf;ll A f(s5)
for degree k polynomials f and sets

1 1

i g

1 N 1
(&) (&)
Ciy = 1 Ciy = 2
! C,Z?;ll Ajo » CZ?S ;B
1

2

and then gives to A (4, (Ci1,Ci2)) as decryption share. (If the ciphertext
is valid, it must be the case that D; = C{'=*)™Fe — (0#1)t=t"C¢1 Then,
since t # t*, we get C* = (D /C§*) =+ . Substituting f1(0)=3"""1 \; fi(s;)
+ A f1(3) for z1, and noting Cq; = C’{l(i), we obtain the above expression of
Cy1. Similar for Cjo.)

4. Challenge. A outputs two same-length messages My and M;. B flips a
fair coin b € {0,1}, and responds with the challenge ciphertext C},, =
(91", 5%, (91")%, (95%)°, MyW). (As Bsets ug = 2~ gf* and ug = 27" g52, it
holds that (g7")° = (u12t)"™, (g52)° = (upz'"). Moreover, if W = 271172,
then we have MW = Mpz"t" and e 15 a valid ciphertext of M; under
PK with tag t*.)

5. Phase 2. A issues additional queries as in Phase 1, to which B responds as
before.

6. Guess. Eventually, A outputs a guess b'. B outputs 1 if b = ¥’, or outputs 0
otherwise.

This completes the description of algorithm B, that runs in time at most 7 plus
the time to perform O(Q + n) exponentiations and O(Q) pairing computations.
By the comments in the description, it is immediate that B perfectly simulates
a stag-CCA game for A if W = 2772, When W is a random element, the view

Construction of Threshold Public-Key Encryptions 199

of B is independent of the choice b. So, Adv& (A) = |Prb=V]—-1/2] =

B,GprLIN

|(1/2 + Advy gy 1 (4) — 1/2] = Advy Frges o (4).

Second, we consider stag decryption consistency of TTBE2. Let A’ be an ar-
bitrary adversary with advantage Advjﬁ%}‘é@zm’k(/l) in attacking TTBE2 in the
game of stag decryption consistency. Suppose adversary A’ outputs ¢, Cype, S =
(:Ufl = (17 (Cllv 012))7 o ME = (kv (Cklv Ck?)))7 S = (1“'/1 = (17 (Cilv 012))7 T
w,=(k, (Chy,Chs))). If those shares p; in S are valid, they must satisfy e(C1, g1) =
6(01,9{1(2)), e(Cia, g2) = e(027g§2(”)7 so Cyp = 'Y €y = D Then, it

F L NifiG ; Y Nif2(i
holds that Hle cy = 0121':1’\”61() = O7" and H§:1 cy o= 0227,:1 Aifa(d) _

C3?. Similarly, if the shares p} in S’ are valid, we have Hle C'N = C™ and
Hle C’;‘Q" = (3%. This means Combine(PK,VK,Cy.,t,S) = Combine
(PK,VK,Che,t,S"). Thus, Adv’ySac, o (4) = 0. u|

4 Construction of Threshold Public Key Encryption
Schemes

By applying the conversion TT2TP in Section 2l to the two threshold tag-based
encryption schemes TTBE1, TTBE2 in Section Bl we obtain two threshold public
key encryption schemes TPKE1, TPKE2 that are both CCA-secure by Theorem
[Theorem [21 and Theorem [3

Theorem 4. Let S be a strong one