

Lecture Notes in Computer Science 5536
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Michel Abdalla David Pointcheval
Pierre-Alain Fouque Damien Vergnaud (Eds.)

Applied Cryptography
and Network Security

7th International Conference, ACNS 2009
Paris-Rocquencourt, France, June 2-5, 2009
Proceedings

13

Volume Editors

Michel Abdalla
David Pointcheval
Pierre-Alain Fouque
Damien Vergnaud
École Normale Supérieure
45, rue d’Ulm, 75230 Paris Cedex 05, France
E-mail: {michel.abdalla, david.pointcheval,
pierre-alain.fouque, damien.vergnaud}@ens.fr

Library of Congress Control Number: Applied for

CR Subject Classification (1998): E.3, C.2, D.4.6, K.6.5, K.4.4

LNCS Sublibrary: SL 4 – Security and Cryptology

ISSN 0302-9743
ISBN-10 3-642-01956-0 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-01956-2 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2009
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12683758 06/3180 5 4 3 2 1 0

Preface

ACNS 2009, the 7th International Conference on Applied Cryptography and Net-
work Security, was held in Paris-Rocquencourt, France, June 2–5, 2009. ACNS
2009 was organized by the École Normale Supérieure (ENS), the French Na-
tional Center for Scientific Research (CNRS), and the French National Institute
for Research in Computer Science and Control (INRIA), in cooperation with the
International Association for Cryptologic Research (IACR). The General Chairs
of the conference were Pierre-Alain Fouque and Damien Vergnaud.

The conference received 150 submissions and each submission was assigned to
at least three committee members. Submissions co-authored by members of the
Program Committee were assigned to at least four committee members. Due to
the large number of high-quality submissions, the review process was challenging
and we are deeply grateful to the committee members and the external reviewers
for their outstanding work. After meticulous deliberation, the Program Com-
mittee, which was chaired by Michel Abdalla and David Pointcheval, selected
32 submissions for presentation in the academic track and these are the articles
that are included in this volume. Additionally, a few other submissions were
selected for presentation in the non-archival industrial track. The best student
paper was awarded to Ayman Jarrous for his paper “Secure Hamming Distance
Based Computation and Its Applications,” co-authored with Benny Pinkas. The
review process was run using the iChair software, written by Thomas Baigneres
and Matthieu Finiasz from EPFL, LASEC, Switzerland and we are indebted to
them for letting us use their software.

The program also included four invited talks in addition to the academic and
industrial tracks. The invited talks were given by Craig Gentry from Stanford
University on “Fully Homomorphic Encryption Using Ideal Lattices,” Antoine
Joux from DGA and the University of Versailles on “Can We Settle Cryptog-
raphy’s Hash?,” Angelos Keromytis from Columbia University on “Voice Over
IP: Risks, Threats and Vulnerabilities,” and Mike Reiter from the University of
North Carolina at Chapel Hill on “Better Architectures and New Applications
for Coarse Network Monitoring.” We would like to genuinely thank them for
accepting our invitation and for contributing to the success of ACNS 2009.

Finally, we would like to thank our sponsors Ingenico, CNRS, and the French
National Research Agency (ANR) for their financial support and all the people
involved in the organization of this conference. In particular, we would like to
thank the Office for Courses and Colloquiums (Bureau des Cours-Colloques)
from INRIA and Gaëlle Dorkeld for their diligent work and for making this
conference possible.

June 2009 Michel Abdalla
David Pointcheval

Pierre-Alain Fouque
Damien Vergnaud

ACNS 2009

7th Annual Conference on
Applied Cryptography and Network Security

Paris-Rocquencourt, France
June 2–5, 2009

Organized by

École Normale Supérieure (ENS)
Centre National de la Recherche Scientifique (CNRS)

Institut National de Recherche en Informatique et en Automatique (INRIA)

In Cooperation with
The International Association for Cryptologic Research (IACR)

General Chairs

Pierre-Alain Fouque École Normale Supérieure, France
Damien Vergnaud École Normale Supérieure, France

Program Chairs

Michel Abdalla École Normale Supérieure, France
David Pointcheval École Normale Supérieure, France

Program Committee

Gildas Avoine Université Catholique de Louvain, Belgium
Feng Bao Institute for Infocomm Research, Singapore
Christophe Bidan Supélec, France
Alex Biryukov University of Luxembourg
Xavier Boyen Stanford University, USA
Dario Catalano University of Catania, Italy
Liqun Chen Hewlett Packard Labs, UK
Jean-Sébastien Coron University of Luxembourg
Jacques Demerjian CS, France
Aline Gouget Gemalto, France
Louis Granboulan EADS, France
Peter Gutmann University of Auckland, New Zealand
Nick Howgrave-Graham NTRU Cryptosystems, USA
Stanislaw Jarecki University of California at Irvine, USA
Marc Joye Thomson R&D, France
Jaeyeon Jung Intel, USA

VIII Organization

Seny Kamara Microsoft Research, USA
Jonathan Katz University of Maryland, USA
Aggelos Kiayias University of Connecticut, USA
Xuejia Lai SJTU, China
Javier Lopez University of Malaga, Spain
Olivier Orcière Thales, France
Kenny Paterson Royal Holloway, University of London, UK
Giuseppe Persiano University of Salerno, Italy
Josef Pieprzyk University of Macquarie, Australia
Matt Robshaw Orange Labs, France
Kazue Sako NEC, Japan
Palash Sarkar Indian Statistical Institute, India
Berry Schoenmakers TUE, The Netherlands
Hovav Shacham University of California at San Diego, USA
Jessica Staddon PARC, USA
Michael Szydlo Akamai, USA
Serge Vaudenay EPFL, Switzerland
Avishai Wool Tel Aviv University, Israel
Duncan Wong City University of Hong Kong
Jianying Zhou Institute for Infocomm Research, Singapore

Steering Committee

Yongfei Han ONETS, China
Moti Yung Google, USA
Jianying Zhou Institute for Infocomm Research, Singapore

External Reviewers

Asmaa Adnane
Toshinori Araki
Joonsang Baek
Aurélie Bauer
Bruno Blanchet
Carlo Blundo
Emmanuel Bresson
Sébastien Canard
Ran Canetti
Richard Chow
Pascal Delaunay
Valeria de Paiva
Mario Di Raimondo
Ming Duan
Renaud Dubois
Dario Fiore

Guillaume Fumaroli
Jun Furukawa
Martin Gagne
Clemente Galdi
David Galindo
Benedikt Gierlichs
Jens Groth
Gilles Guette
Sylvain Guilley
Wei Han
Javier Herranz
Duong Hieu Phan
Tsz Hon Yuen
Qiong Huang
Emeline Hufschmitt
Vincenzo Iovino

Toshiyuki Isshiki
Amandine Jambert
Haimin Jin
Pascal Junod
Mohamed Karroumi
Dmitry Khovratovich
Chung Ki Li
Eike Kiltz
Ilya Kizhvatov
Hugo Krawczyk
Miroslaw Kutylowski
Sylvain Lachartre
Cédric Lauradoux
David Lefranc
Francois Lesueur
Tieyan Li

Organization IX

Wei Li
Joseph K. Liu
Yu Long
Xianhui Lu
Subhamoy Maitra
Krzysztof Majcher
Mark Manulis
Sandra Marcello
Tania Martin
Krystian Matusiewicz
Petros Mol
Jorge Nakahara Jr
Yossi Oren
Khaled Ouafi
Pascal Paillier
Philippe Painchault
Sylvain Pasini
Maura Paterson

Serdar Pehlivanoglu
Kun Peng
Duong Hieu Phan
Gilles Piret
Nicolas Prigent
Sasa Radomirovic
Louis Salvail
Koby Scheuer
Roman Schlegel
Yannick Seurin
Elaine Shi
Igor Shparlinski
Vladimir Shpilrain
Hervé Sibert
François-Xavier

Standaert
Ron Steinfeld
Xiaorui Sun

Christophe Tartary
Isamu Teranishi
Frederic Tronel
Ivan Visconti
Zhongmai Wan
Mi Wen
Jian Weng
Douglas Wikström
Charles Wright
Hongjun Wu
Yongdong Wu
Yaying Xiao
Guomin Yang
Yanjiang Yang
Yang Yanjiang
Bin Zhang
Hong-Sheng Zhou
Huafei Zhu

Sponsoring Institutions

Ingenico, Neuilly-sur-Seine, France
The French National Research Agency (ANR), Paris, France
French National Center for Scientific Research (CNRS), Paris, France

Table of Contents

Key Exchange

Group Key Exchange Enabling On-Demand Derivation of Peer-to-Peer
Keys . 1

Mark Manulis

Session-state Reveal Is Stronger Than Ephemeral Key Reveal: Attacking
the NAXOS Authenticated Key Exchange Protocol 20

Cas J.F. Cremers

Secure Pairing of “Interface-Constrained” Devices Resistant against
Rushing User Behavior . 34

Nitesh Saxena and Md. Borhan Uddin

How to Extract and Expand Randomness: A Summary and Explanation
of Existing Results . 53

Yvonne Cliff, Colin Boyd, and Juan Gonzalez Nieto

Secure Computation

Novel Precomputation Schemes for Elliptic Curve Cryptosystems 71
Patrick Longa and Catherine Gebotys

Practical Secure Evaluation of Semi-private Functions 89
Annika Paus, Ahmad-Reza Sadeghi, and Thomas Schneider

Secure Hamming Distance Based Computation and Its Applications 107
Ayman Jarrous and Benny Pinkas

Efficient Robust Private Set Intersection . 125
Dana Dachman-Soled, Tal Malkin, Mariana Raykova, and Moti Yung

Public-Key Encryption

A New Variant of the Cramer-Shoup KEM Secure against Chosen
Ciphertext Attack . 143

Joonsang Baek, Willy Susilo, Joseph K. Liu, and Jianying Zhou

An Efficient Identity-Based Online/Offline Encryption Scheme 156
Joseph K. Liu and Jianying Zhou

Dual-Policy Attribute Based Encryption . 168
Nuttapong Attrapadung and Hideki Imai

XII Table of Contents

Construction of Threshold Public-Key Encryptions through Tag-Based
Encryptions . 186

Seiko Arita and Koji Tsurudome

Network Security I

Malyzer: Defeating Anti-detection for Application-Level Malware
Analysis . 201

Lei Liu and Songqing Chen

A New Message Recognition Protocol with Self-recoverability for Ad
Hoc Pervasive Networks . 219

Ian Goldberg, Atefeh Mashatan, and Douglas R. Stinson

Traitor Tracing

Breaking Two k-Resilient Traitor Tracing Schemes with Sublinear
Ciphertext Size . 238

MoonShik Lee, Daegun Ma, and MinJae Seo

Tracing and Revoking Pirate Rebroadcasts . 253
Aggelos Kiayias and Serdar Pehlivanoglu

Authentication and Anonymity

Efficient Deniable Authentication for Signatures: Application to
Machine-Readable Travel Document . 272

Jean Monnerat, Sylvain Pasini, and Serge Vaudenay

Homomorphic MACs: MAC-Based Integrity for Network Coding 292
Shweta Agrawal and Dan Boneh

Algorithmic Tamper Proof (ATP) Counter Units for Authentication
Devices Using PIN . 306

Yuichi Komano, Kazuo Ohta, Hideyuki Miyake, and Atsushi Shimbo

Performance Measurements of Tor Hidden Services in Low-Bandwidth
Access Networks . 324

Jörg Lenhard, Karsten Loesing, and Guido Wirtz

Hash Functions

Cryptanalysis of Twister . 342
Florian Mendel, Christian Rechberger, and Martin Schläffer

Cryptanalysis of CubeHash . 354
Eric Brier and Thomas Peyrin

Table of Contents XIII

Collision Attack on Boole . 369
Florian Mendel, Tomislav Nad, and Martin Schläffer

Network Security II

Integrity Protection for Revision Control . 382
Christian Cachin and Martin Geisler

Fragility of the Robust Security Network: 802.11 Denial of Service 400
Martin Eian

Fast Packet Classification Using Condition Factorization 417
Alok Tongaonkar, R. Sekar, and Sreenaath Vasudevan

Lattices

Choosing NTRUEncrypt Parameters in Light of Combined Lattice
Reduction and MITM Approaches . 437

Philip S. Hirschhorn, Jeffrey Hoffstein,
Nick Howgrave-Graham, and William Whyte

Broadcast Attacks against Lattice-Based Cryptosystems 456
Thomas Plantard and Willy Susilo

Partial Key Exposure Attack on CRT-RSA . 473
Santanu Sarkar and Subhamoy Maitra

Side-Channel Attacks

How to Compare Profiled Side-Channel Attacks? . 485
François-Xavier Standaert, François Koeune, and Werner Schindler

Theoretical and Practical Aspects of Mutual Information Based Side
Channel Analysis . 499

Emmanuel Prouff and Matthieu Rivain

Attacking ECDSA-Enabled RFID Devices . 519
Michael Hutter, Marcel Medwed, Daniel Hein, and
Johannes Wolkerstorfer

Author Index . 535

Group Key Exchange Enabling On-Demand
Derivation of Peer-to-Peer Keys

Mark Manulis

Cryptographic Protocols Group
Department of Computer Science

TU Darmstadt & CASED, Germany
mark@manulis.eu

Abstract. We enrich the classical notion of group key exchange (GKE) protocols
by a new property that allows each pair of users to derive an independent peer-
to-peer (p2p) key on-demand and without any subsequent communication; this,
in addition to the classical group key shared amongst all the users. We show that
GKE protocols enriched in this way impose new security challenges concerning
the secrecy and independence of both key types. The special attention should be
paid to possible collusion attacks aiming to break the secrecy of p2p keys possibly
established between any two non-colluding users.

In our constructions we utilize the well-known parallel Diffie-Hellman key
exchange (PDHKE) technique in which each party uses the same exponent for
the computation of p2p keys with its peers. First, we consider PDHKE in GKE
protocols where parties securely transport their secrets for the establishment of
the group key. For this we use an efficient multi-recipient ElGamal encryption
scheme. Further, based on PDHKE we design a generic compiler for GKE proto-
cols that extend the classical Diffie-Hellman method. Finally, we investigate pos-
sible optimizations of these protocols allowing parties to re-use their exponents
to compute both group and p2p keys, and show that not all such GKE protocols
can be optimized.

1 Introduction

Traditional group key exchange (GKE) protocols allow users to agree on a secret group
key and are fundamental for securing applications that require group communication.
However, messages authenticated or encrypted with the group key attest only that the
originator of the message is a valid member of the group. The goal of this paper is
to investigate the enrichment of GKE protocols with the additional derivation of peer-
to-peer (p2p) keys for any pair of users. A single run of a GKE protocol enriched in
this way would suffice to set up a secure group channel providing possibly each pair
of users with an independent secure peer-to-peer channel “for free”, thus implicitly al-
lowing for a secure combination of group and p2p communication. Note that messages
authenticated or encrypted with a p2p key would attest not only the group membership
but also allow for the identification of the sender. For example, in digital conferences or
instant messaging systems each user can participate in a secure group discussion and if
necessary switch for a while to a secure bilateral discussion with some other user; or a

M. Abdalla et al. (Eds.): ACNS 2009, LNCS 5536, pp. 1–19, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

2 M. Manulis

user can encrypt some file for all users using the group key and attach supplementary
files encrypted with p2p keys for the selected subset of its peers.

Obviously, the simultaneous computation of group and p2p keys can be achieved
through the execution of a GKE protocol in parallel with the execution of a two-party
key exchange (2KE) protocol between every pair of users. The drawback of this ap-
proach is that it would require (n2 − n)/2 parallel 2KE executions in order to provide
each pair with the own key (where n is the number of users). The only way to avoid
such parallel 2KE executions is to consider solutions where p2p keys are computed
on-demand; we denote such GKE protocols by GKE+P.

A rather naïve construction of GKE+P protocols can be obtained from the execu-
tion of a GKE protocol followed by a separate execution of a 2KE protocol between
some pair of users. The drawback of this solution is the additional interaction for the
computation of p2p keys (in the worst case requiring up to n − 1 different 2KE proto-
col runs involving the same user) and the deployment of two different protocols (GKE
and 2KE). Therefore, since GKE participants already interact to establish the group
key it appears interesting to investigate whether GKE+P protocols can be constructed
enabling the completely non-interactive derivation of p2p keys?

GKE+P protocols raise new security challenges concerning the independence of
group and p2p keys. Traditional GKE protocols require that a session group key re-
mains secret from any adversary that is an external entity to that session. In GKE+P
protocols this requirement should hold even in case where p2p keys leak. By the same
token GKE+P protocols should provide secrecy of the p2p keys computed in some ses-
sion independent of whether the adversary learns the group key or not. However, the
most significant challenge specific to GKE+P protocols results from the independence
amongst different p2p keys computed in the same session and even by the same user
(for different peers). In particular GKE+P protocols should provide secrecy of some
session p2p key if other participants that are not intended to compute that key collude.
Thus, when defining the secrecy of some session p2p key we should no longer assume
that the adversary remains an external entity to that session but rather that it may act on
behalf of colluding participants and thus deviate from the protocol specification.

Specification of the appropriate security requirements and efficient, provably secure
solutions for GKE+P protocols represents the main focus of our work.

1.1 Related Work

The basic security goal of any key exchange protocol is called (Authenticated) Key
Exchange security ((A)KE-security, for short) and deals with the secrecy or indistin-
guishability of the established session group key with respect to an (active) adversary
which is usually modeled as an external entity from the perspective of the attacked ses-
sion. This requirement became an inherent part of all security models for 2KE protocols,
e.g. [3,5,6,7,17,18,19,34,38], and GKE protocols, e.g. [10,11,13,15,28,29]. A general
signature-based compilation technique proposed by Katz and Yung [29] can turn any
KE-secure (group) key exchange protocol into an AKE-secure one, thus by adding the
authentication and thwarting possible impersonation attacks. Additionally, we remark
that some of the mentioned security models for GKE protocols (e.g. [12, 13, 28]) aim
at defining optional security against insider attacks, and the corresponding compilers

Group Key Exchange Enabling On-Demand Derivation of Peer-to-Peer Keys 3

defined in these papers can turn any AKE-secure GKE protocol into a protocol that
withstands such attacks. These compilers also provide the so-called requirement of mu-
tual authentication (MA) [7, 11, 15], which ensures the bilateral authentication of all
protocol participants and is usually combined with a key confirmation step.

From the variety of the existing GKE protocols (see [9, 35] for surveys) of special
interest in the context of our GKE+P constructions are the (unauthenticated) exten-
sions of the classical 2KE approach by Diffie and Hellman [21] to a group setting,
e.g. [16, 20, 24, 31, 32, 37, 39, 40]. Let us denote all these protocols for simplicity as
Group Diffie-Hellman (GroupDH) protocols since they derive the group key from some
shared secret which in turn depends on the individual exponents chosen by the pro-
tocol participants during the execution. For the design of GKE+P protocols it appears
promising to investigate to what extent the existing GroupDH protocols allow for the
non-interactive, on-demand computation of p2p keys, in particular whether or not secret
exponents used in these GroupDH protocols can be safely re-used for the computation
of p2p keys.

GKE protocols proposed in [1, 36] are partially related since they consider a 2KE
protocol as a building block in order to obtain a secure GKE protocol, yet without
enabling on-demand computation of p2p keys amongst any pair of users. Also, the so-
called group secret handshakes [25, 26] should be noticed since these can be seen as
extensions of GKE protocols with another property called affiliation-hiding. We men-
tion them here since the on-demand computation of p2p keys can be also considered in
that scenarios (in particular our results can be extended to deal with [25] that is based
on the GKE protocol from [16]).

One of the main building blocks across all our GKE+P constructions is the parallel
execution of the 2KE Diffie-Hellman protocol (PDHKE), in which each user broadcasts
a value of the form gx (for the appropriate generator g and private user’s exponent
x) and uses x for the computation of different p2p keys. In this context, Jeong and
Lee [27] recently specified and analyzed a related mechanism where keys are derived
in parallel from ephemeral and long-lived exponents. However, their security model
does not consider collusion attacks against the secrecy of p2p keys computed by non-
colluding users. Note also the recent work by Biswas [8] who revised the 2KE Diffie-
Hellman protocol allowing its participants to choose two different exponents each and
obtain 15 different shared keys.

1.2 Contributions and Organization

We start in Section 2 with the extension of the classical GKE security model from [29]
in order to address the additional challenges of GKE+P protocols and define the cor-
responding requirements of (A)KE-security of group and p2p keys; the latter in the
presence of collusion attacks. Our model is designed in a modular way and can be se-
lectively applied to GKE+P and GKE protocols, and also to the protocols like PDHKE.
In Section 3 we introduce general notations and recall some classical assumptions.

In Section 4 we present and analyze our first GKE+P protocol, denoted PDHKE-
MRE. In this protocol we merge PDHKE with the multi-recipient ElGamal encryption
(MRE) from [4, 33]. PDHKE-MRE optimizes the combination of PDHKE and MRE
in that it utilizes user’s exponent for both — generation of p2p keys and decryption of

4 M. Manulis

ElGamal ciphertexts. This optimization is tricky (compared to the simple “black-box”
combination) since it requires an additional hardness assumption. Our security analysis
of PDHKE-MRE also demonstrates that PDHKE can be used as a stand-alone protocol
to obtain KE-secure p2p keys in the presence of collusion attacks.

In Section 5 we obtain more efficient GKE+P protocols from GroupDH protocols
(see related work for examples). First, we describe a general compilation technique to
obtain GKE+P solutions from any GroupDH protocol based on PDHKE, yet assuming
that the exponents used for the derivation of p2p keys are independent from those used
in the computation of the group key. Additionally, we investigate whether private expo-
nents that are implicit to the GroupDH protocols can be re-used for the on-demand com-
putation of p2p keys. The key observation here is that many GroupDH protocols require
each user Ui to choose some exponent xi and broadcast a public value gxi . The natural
question is whether a value gxixj , if computed from the exponents xi and xj used in the
GroupDH protocol, would be suitable for the derivation of a secure p2p key between Ui

and Uj? In this light we analyze the well-known communication-efficient protocols by
Burmester and Desmedt (BD) [16] and by Kim, Perrig, and Tsudik (KPT) [31] (the lat-
ter as a representative for the family of Tree Diffie-Hellman protocols). We show that in
the BD protocol this technique will not guarantee the KE-security of p2p keys, whereas
in the KPT protocol it will, though at the cost of an additional hardness assumption.
The latter result is of special interest since we do not introduce any new communication
costs to the KPT protocol.

In Section 6, we compare the performance of the introduced GKE+P protocols.
In Section 7 we show that the authentication compiler introduced in [29] for securing

traditional KE-secure GKE protocols is also sufficient for adding the authentication to
KE-secure GKE+P protocols.

2 Security Model for GKE+P Protocols

Our security model for GKE+P protocols extends the meanwhile standard GKE security
model from [29] by capturing the additional requirements concerning the on-demand
computation of p2p keys.

2.1 Participants, Sessions, and Correctness of GKE+P Protocols

By U we denote a set of at most N users (more precisely, their identities which are as-
sumed to be unique) in the universe. Any subset of n users (2 ≤ n ≤ N) can participate
in a single session of a GKE+P protocol P . Each Ui ∈ U holds a (secret) long-lived
key LLi.1 The participation of Ui in distinct, possibly concurrent protocol sessions is
modeled via an unlimited number of instances Πs

i , s ∈ N. Each instance Πs
i can be

invoked for one session with some partner id pids
i ⊆ U encompassing the identities of

the intended participants (including Ui). At the end of the interactive phase Πs
i holds

1 Our GKE+P protocols are first analyzed in the authenticated links model where long-lived
keys are assumed to be empty. The authentication in GKE+P protocols using the compiler
technique from [29] that we discuss in Section 7 will assume that each LLi corresponds to
some digital signature key pair.

Group Key Exchange Enabling On-Demand Derivation of Peer-to-Peer Keys 5

a session id sids
i which uniquely identifies the session. Two instances Πs

i and Πt
j are

considered as partnered if sids
i = sidt

j and pids
i = pidt

j . The success of the inter-
active phase by some instance Πs

i is modeled through its acceptance, in which case
the instance holds a session group key ks

i . Each instance Πs
i that has accepted can later

decide to compute a session p2p key ks
i,j for some user Uj ∈ pids

i . We are now ready
to formally define what a GKE+P protocol is.

Definition 1 (GKE+P Protocol and Correctness). P is a group key exchange proto-
col enabling on-demand derivation of p2p keys (GKE+P) if P consists of the group key
exchange protocol GKE and a p2p key derivation algorithm P2P defined as follows:

P .GKE(U1, . . . , Un): For each input Ui a new instance Πs
i is created and a proba-

bilistic interactive protocol between these instances is executed such that at the end
every instance Πs

i accepts holding the session group key ks
i .

P .P2P(Πs
i , Uj): On input an accepted instance Πs

i and some user identity Uj ∈ pids
i

this deterministic algorithm outputs the session p2p key ks
i,j . (We assume that P2P

is given only for groups of size n ≥ 3 since for n = 2 the group key is sufficient.)

A GKE+P protocol P is correct if (when no adversary is present) all instances partici-
pating in the protocol P .GKE accept with identical group keys and P .P2P(Πs

i , Uj) =
P .P2P(Πt

j , Ui) holds for any pair of partnered instances Πs
i and Πt

j .

2.2 Adversarial Model and Security Goals

Security model for GKE+P protocols must address the following two challenges that are
new compared to the classical GKE setting: The first challenge is to model the secrecy
of a session group key ks

i by taking into account possible leakage of any p2p key that
can be computed in that session (including all ks

i,j). Since for the secrecy of the session
group key the adversary is treated as an external entity and not as a legitimate participant
of that session our model should provide the adversary with the ability to schedule the
on-demand computation of p2p keys and to reveal them. The second, main challenge
is to model the secrecy of a session p2p key ks

i,j by taking into account the leakage of
the group key and also the leakage of other p2p keys computed in that session (with
the obvious exclusion of kt

j,i when Πs
i and Πt

j are partnered). Note that the secrecy of
p2p keys does not require the adversary to be an external entity (unlike the secrecy of
the group key). Hence, we have to face possible collusion attacks aiming to break the
secrecy of ks

i,j and allow for the active participation of the adversary in the attacked
session.

ADVERSARIAL MODEL. The adversary A, modeled as a PPT machine, can schedule
the protocol execution and mount own attacks via the following queries:

– Execute(U1, . . . , Un): This query executes the protocol between new instances of
U1, . . . , Un ∈ U and provides A with the execution transcript.

– Send(Πs
i , m) : With this query A can deliver a message m to Πs

i whereby U
denotes the identity of its sender. A is then given the protocol message generated
by Πs

i in response to m (the output may also be empty if m is unexpected or if Πs
i

6 M. Manulis

accepts). A special invocation query of the form Send(Ui, (′start′, U1, . . . , Un))
creates a new instance Πs

i with pids
i := {U1, . . . , Un} and provides A with the

first protocol message.
– Peer(Πs

i , Uj): This query allows A to schedule the on-demand computation of p2p
keys. In response, Πs

i computes ks
i,j ; the query is processed only if Πs

i has accepted
and Uj ∈ pids

i , and it can be asked only once per input (Πs
i , Uj).

– Reveal(Πs
i): This query models the leakage of group keys and provides A with ks

i .
It is answered only if Πs

i has accepted.
– RevealPeer(Πs

i , Uj): This query models the leakage of p2p keys and provides A
with ks

i,j ; the query is answered only if Peer(Πs
i , Uj) has already been asked and

processed.
– Corrupt(Ui): This query provides A with LLi. Note that in this case A does not

gain control over the user’s behavior, but might be able to communicate on behalf
of the user.

– Test(Πs
i): This query models indistinguishability of session group keys. Depending

on a given (privately flipped) bit b A is given, if b = 0 a random session group key,
and if b = 1 the real ks

i . This query can be asked only once and is answered only if
Πs

i has accepted.
– TestPeer(Πs

i , Uj): This query models indistinguishability of session p2p keys. De-
pending on a given (privately flipped) bit b A is given, if b = 0 a random session
p2p key, and if b = 1 the real ks

i,j . It is answered only if Peer(Πs
i , Uj) has been

previously asked and processed.

TERMINOLOGY. We say that U is honest if no Corrupt(U) has been asked by A; oth-
erwise, U is corrupted (or malicious). This also refers to the instances of U .

TWO NOTIONS OF FRESHNESS. The classical notion of freshness imposes several
conditions in order to prevent any trivial break of the (A)KE-security. Obviously, we
need two definitions of freshness to capture such conditions for the both key types.

First, we define the notion of instance freshness which will be used in the definition
of (A)KE-security of group keys. Our definition is essentially the one given in [29].

Definition 2 (Instance Freshness). An instance Πs
i is fresh if Πs

i has accepted and
none of the following is true, whereby Πt

j denotes an instance partnered with Πs
i : (1)

Reveal(Πs
i) or Reveal(Πt

j) has been asked, or (2) Corrupt(U ′) for some U ′ ∈ pids
i

was asked before any Send(Πs
i , ·).

Note that in the context of GKE+P the above definition restricts A from active partic-
ipation on behalf of any user during the attacked session, but implicitly allows for the
leakage of (all) p2p keys.

Additionally, we define the new notion of instance-user freshness which will be used
to specify the (A)KE-security of p2p keys.

Definition 3 (Instance-User Freshness). An instance-user pair (Πs
i , Uj) is fresh if

Πs
i has accepted and none of the following is true, whereby Πt

j denotes an instance
partnered with Πs

i : (1) RevealPeer(Πs
i , Uj) or RevealPeer(Πt

j , Ui) has been asked, or
(2) Corrupt(Ui) or Corrupt(Uj) was asked before any Send(Πs

i , ·) or Send(Πs
j , ·).

Group Key Exchange Enabling On-Demand Derivation of Peer-to-Peer Keys 7

Here A is explicitly allowed to actively participate in the attacked session on behalf of
any user except for Ui and Uj . Also A may learn the group key ki and all p2p keys
except for ki,j . This models possible collusion of participants during the execution of
the protocol aiming to break the secrecy of the p2p key ks

i,j .

(A)KE-SECURITY OF GROUP AND P2P KEYS. For the (A)KE-security of group keys
we follow the definition from [29]. Note that in case of KE-security A is restricted to
pure eavesdropping attacks via the Execute query without being able to access the Send
queries.

Definition 4 ((A)KE-Security of Group Keys). Let P be a correct GKE+P protocol
and b a uniformly chosen bit. By Game(a)ke-g,b

A,P (κ) we define the following adversarial
game, which involves a PPT adversary A that is given access to all queries (except for
Send when dealing with KE-security):

– A interacts via queries;
– at some point A asks a Test(Πs

i) query for some instance Πs
i which is (and re-

mains) fresh;
– A continues interacting via queries;
– when A terminates, it outputs a bit, which is set as the output of the game.

We define: Adv
(a)ke-g
A,P (κ) :=

∣
∣
∣2 Pr[Game

(a)ke-g,b
A,P (κ) = b] − 1

∣
∣
∣

and denote with Adv
(a)ke-g
P (κ) the maximum advantage over all PPT adversaries A. We

say that P provides (A)KE-security of group keys if this advantage is negligible.

Finally, we define (A)KE-security of p2p keys where we must consider possible collu-
sion attacks. For this it is essential to allow A access to Send queries, even in the case
of KE-security. The difficulty is that given general access to Send queries A can triv-
ially impersonate any protocol participant. Hence, when dealing with KE-security of
p2p keys we must further restrict A to truly forward all messages sent by honest users.
According to our definition of instance-user freshness of (Πs

i , Uj) this restriction will
imply an unbiased communication between the instances of Ui and Uj .

Definition 5 ((A)KE-security of P2P Keys). Let P be a correct GKE+P protocol and
b a uniformly chosen bit. By Game(a)ke-p,b

A,P (κ) we define the following adversarial game,
which involves a PPT adversaryA that is given access to all queries (with the restriction
to truly forward all messages of honest users in case of KE-security):

– A interacts via queries;
– at some point A asks a TestPeer(Πs

i,Uj) query for some instance-user pair (Πs
i,Uj)

which is (and remains) fresh;
– A continues interacting via queries;
– when A terminates, it outputs a bit, which is set as the output of the game.

We define: Adv(a)ke-p
A,P (κ) :=

∣
∣
∣2 Pr[Game(a)ke-p,b

A,P (κ) = b] − 1
∣
∣
∣

and denote with Adv(a)ke-p
P (κ) the maximum advantage over all PPT adversaries A. We

say that P provides (A)KE-security of p2p keys if this advantage is negligible.

8 M. Manulis

3 General Notations and Preliminaries

Throughout the paper, unless otherwise specified, by G := 〈g〉 we denote a cyclic
subgroup in Z

∗
P of prime order Q|P − 1 generated by g, where P is also prime.

By Hg, Hp : {0, 1}∗ → {0, 1}κ we denote two cryptographic hash functions, which
will be used in our constructions for the purpose of derivation of group and p2p keys,
respectively. Additionally, we recall the following three well-known cryptographic
assumptions:

Definition 6 (Hardness Assumptions). Let G := 〈g〉 as above and a, b, c ∈R ZQ. We
say that:
The Discrete Logarithm (DL) problem is hard in G if the following success probability
is negligible:

SuccDLG (κ) := max
A′

(

Pr
a

[A′(g, ga) = a
])

;

The Decisional Diffie-Hellman (DDH) problem is hard in G = 〈g〉 if the following
advantage is negligible:

AdvDDHG (κ) := max
A′

∣
∣ Pr

a,b

[A′(g, ga, gb, gab) = 1
] − Pr

a,b,c

[A′(g, ga, gb, gc) = 1
]∣
∣;

The Square-Exponent Decisional Diffie-Hellman (SEDDH) problem is hard in G
2if the

following advantage is negligible:

AdvSEDDHG (κ) := max
A′

∣
∣ Pr

a

[A′(g, ga, ga2
) = 1

] − Pr
a,b

[A′(g, ga, gb) = 1
]∣
∣.

Note that SuccDLG (κ), AdvDDHG (κ), and AdvSEDDHG (κ) are computed over all PPT adver-
saries A′ running within time κ.

4 Optimized PDHKE-MRE

Here we introduce our first GKE+P protocol, called PDHKE-MRE. The optimization
concerns the utilization of each xi ∈ ZQ as a private decryption key for the multi-
recipient ElGamal encryption [4, 33] and as a secret exponent for the computation of
p2p keys via PDHKE. Note that PDHKE-MRE can be generalized by applying other
multi-recipient public key encryption schemes [4]. However, in this case our optimiza-
tion may no longer hold.

4.1 Parallel Diffie-Hellman Key Exchange (PDHKE)

Assuming that users interact over the authenticated channels we define PDHKE as fol-
lows (we describe all our protocols from the perspective of one session using the iden-
tities of users and not their instances):

Round 1. Each Ui chooses a random xi ∈R ZQ and broadcasts yi := gxi .

2 Wolf [41] showed that SEDDH is reducible to DDH and that the converse does not hold.

Group Key Exchange Enabling On-Demand Derivation of Peer-to-Peer Keys 9

P2P key computation. Each Ui for a given identity Uj computes k′
i,j := gxixj and

derives ki,j := Hp(k′
i,j , Ui|yi, Uj |yj). W.l.o.g. we assume that i < j and that if Uj

computes own p2p key for Ui it uses the same order for the inputs of Hp as Ui does.

A special attention in PDHKE should be paid to the key derivation step based on Hp. Note
that in the random oracle model this construction ensures the independence of different
p2p keys (possibly computed by the same Ui for different Uj). The reason is that if Ui is
honest then the hash input remains unique for each derived p2p key (due to the uniqueness
of Ui|yi across different sessions and the uniqueness of each Uj within the same session).
The uniqueness of hash inputs is of importance. Assume, that ki,j would be derived as
Hp(k′

i,j). In this case A may impose dependency between k′
i,j and k′

i,a for some user Ua

that it may control, e.g. by using ya = yj . With this simple attackA cannot compute k′
i,a

due to the lack of xa = xj but it can easily distinguish ki,j by obtaining ki,a (which would
then be equal to ki,j) via an appropriate RevealPeer query to an instance of honest Ui.

4.2 Multi-Recipient ElGamal Encryption (MRE)

In the classical ElGamal encryption [23] a message m ∈ G is encrypted under the
recipient’s public key y = gx through the computation of the ciphertext (gr, yrm)
using some random r ∈R ZQ. A multi-recipient ElGamal encryption (MRE) [33, 4]
re-uses the random exponent r for the construction of ciphertexts of several messages
m1, . . . , mn under several public keys y1 = gx1 , . . . , yn = gxn , i.e., by computa-
tion of (gr, yr

1m1, . . . , y
r
nmn). However, in PDHKE-MRE we will be encrypting the

same message m = m1 = . . . = mn. For this case [33] defines a computation-efficient
MRE version where the ciphertext has the form (mgr, yr

1 , . . . , y
r
n). Obviously, this tech-

nique results in shorter ciphertexts should a single protocol message contain ciphertexts
for multiple recipients. Informally, the IND-CPA security of MRE means that any en-
crypted plaintext remains indistinguishable, even if the adversary is in possession of
the secret keys {xj}j �=i. This has been proven in [33] (and also in [4] under a stronger
setting) based on the DDH assumption.

4.3 Description of PDHKE-MRE

Our optimization in PDHKE-MRE is based on the idea to re-use the same exponent
xi for both — derivation of p2p keys from k′

i,j = gxixj and decryption of {x̄j}j .
The protocol PDHKE-MRE.GKE amongst a set of n users U1, . . . , Un proceeds in two
rounds:

Round 1. Each Ui chooses a random xi ∈R ZQ and broadcasts yi := gxi .
Round 2. Each Ui chooses random x̄i ∈R G, ri ∈R ZQ, computes zi := x̄ig

ri and
{zi,j := yri

j }j and broadcasts (zi, {zi,j}j).

Group key computation. Each Ui decrypts

{

x̄j := zj

z
(1/xi)
j,i

}

j

and accepts with ki :=

Hg(x̄1, . . . , x̄n, sidi) where sidi := (U1|y1, . . . , Un|yn).

The algorithm PDHKE-MRE.P2P when executed by some user Ui for a peer Uj com-
putes k′

i,j := gxixj and outputs ki,j := Hp(k′
i,j , Ui|yi, Uj |yj) whereby the inputs Ui|yi

10 M. Manulis

and Uj |yj are taken from sidi. W.l.o.g. we assume that i < j and that Uj will use the
same order for the inputs to Hp in the computation of kj,i.

4.4 Security Analysis of PDHKE-MRE

Although the stand-alone security of MRE can be proven under the DDH assumption,
its optimized merge with PDHKE requires the additional use of the SEDDH assumption
for the proof of KE-security of group keys as motivated in the following.

The natural way to prove the IND-CPA security of MRE under the DDH assumption
would be to simulate yj = gaαj , zi = x̄ig

bβi , and each zi,j = gabαjβi , where ga and
gb belong to the DDH tuple and αj , βi ∈R ZQ (observe that the DDH problem is self-
reducible). However, in PDHKE-MRE this simulation would also mean that yi = gaαi

for some αi ∈R ZQ and possibly imply gxixj = ga2αiαj upon the simulation of p2p
keys, which in turn involves ga2

from the SEDDH tuple.

Theorem 1. If both problems DDH and SEDDH are hard in G then PDHKE-MRE
provides KE-security of group keys and

Adv
ke-g
PDHKE-MRE(κ)≤ 2(N(qEx + qSe)2 + qHg)

Q
+

(qHg + qHp)2

2κ−1

+2NAdvSEDDHG (κ)+2N(N−1)AdvDDHG (κ)

with at most (qEx + qSe) sessions being invoked via Execute and Send queries and at
most qHg and qHp random oracle queries being asked.

Since secret contributions x̄i used in the computation of the group key are independent
from the secret exponents xi we can prove that PDHKE-MRE provides KE-security of
p2p keys based on the DDH assumption.

Theorem 2. If the DDH problem is hard in G then PDHKE-MRE provides KE-security
of p2p keys and

Advke-p
PDHKE-MRE(κ) ≤ N(2(qEx + qSe)2 + qSeqHp)

Q
+

(qHg + qHp)2

2κ−1
+ NqSeAdvDDHG (κ)

with at most (qEx + qSe) sessions being invoked via Execute and Send queries and at
most qHg and qHp random oracle queries being asked.

4.5 On Security of PDHKE as a Stand-Alone Protocol

The result of Theorem 2 allows us to derive the following corollary, which is of inde-
pendent interest since it addresses security of PDHKE as a stand-alone protocol.

Corollary 1. If the DDH problem is hard in G then PDHKE as defined in Section 4.1
guarantees the KE-security of p2p keys in the random oracle model in the sense of
Definition 5.3

3 Observe that our security model can be used to deal with PDHKE as a stand-alone protocol
assuming that in the execution of PDHKE instances accept with empty group keys. In this
case all parts of the model that explicitly deal with the computation and security of group keys
become irrelevant.

Group Key Exchange Enabling On-Demand Derivation of Peer-to-Peer Keys 11

4.6 Performance Limitations of PDHKE-MRE

The drawback of PDHKE-MRE despite of our optimizations is the quadratic communi-
cation complexity, i.e. the total number of bits communicated throughout the protocol
and usually measured in the size of group (or public key) elements [29]. This complex-
ity is due to the rather naïve secure transport of each x̄i for the computation of the group
key. Note that the linear communication complexity of PDHKE used to compute p2p
keys is already optimal since each user has to broadcast at least one message in order to
contribute to the on-demand computation of its p2p keys.

Therefore, we will try to replace the computation of the group key via MRE with an
alternative process, while preserving the computation of p2p keys based on PDHKE.
Since PDHKE derives p2p keys from Diffie-Hellman secrets it appears promising to
search for alternative candidates amongst the family of GroupDH protocols, i.e. GKE
protocols that extend the original Diffie-Hellman method.

5 GKE+P Protocols from Group Diffie-Hellman Protocols

We start by describing a generic solution that would convert any secure GroupDH pro-
tocol into a secure GKE+P protocol. Then, we address possible optimization issues.

5.1 GKE+P Compiler Based on PDHKE

Let us first capture the similarities between different GroupDH protocols by providing
a generalized definition of what a GroupDH protocol should mean (we define from the
perspective of one session).

Definition 7 (GroupDH Protocols). A GroupDH protocol is a GKE protocol amongst
n users U1, . . . , Un such that during its execution each user Ui chooses own exponent
xi ∈R ZQ and at the end computes a group element k′

i ∈ G which can be expressed as
the output of f(g, x1, . . . , xn) for some function f : G × Z

n
Q → G which is specific to

the protocol.
We say that a GroupDH protocol is KE-secure if it achieves KE-security of group

keys in the sense of Definition 4 whereby considering k′
i instead of ki and thus requiring

its indistinguishability from some random element in G instead of some random string
in {0, 1}κ.4

The above definition of KE-secure GroupDH protocols already captures many proto-
cols, including those from [16, 20, 24, 31, 32, 37, 39, 40].

The actual generic solution (GKE+P compiler) for obtaining a GKE+P protocol from
such GroupDH protocols is to combine them with PDHKE, while ensuring indepen-
dence between the exponents used in both protocols. More precisely, GKE+P com-
piler requires each user Ui to choose a random exponent x̄i ∈R ZQ and broadcast
ȳi := gx̄i prior to the execution of the given GroupDH protocol. If the GroupDH proto-
col requires each user to broadcast a message in the first round, e.g. [16, 31, 32, 39],
then the compiler can also append ȳi to this first message, without increasing the

4 Note that Definition 4 can be easily adapted by the appropriate modification of the Test query.

12 M. Manulis

number of rounds. After the GroupDH protocol is executed each Ui holds the secret
group element k′

i. The GKE+P compiler computes sidi := (U1|ȳ1, . . . , Un|ȳn) and
derives the group key ki := Hg(k′

i, sidi). On-demand, the compiler computes any
ki,j := Hp(ȳx̄i

j , Ui|ȳi, Uj |ȳj).
The key derivation is essentially the same as in PDHKE-MRE. The only difference

is that sidi is constructed from ȳi instead of yi = gxi for the exponent xi which is
implicit to the original GroupDH protocol. The reason is that yi may not be available to
all users at the end of the protocol. For example, in [24, 40] only two users U1 and U2

compute such y1 and y2, whereas in [37, 20] each Ui computes yi but sends it only to
some designated subset. Of course, for the latter case it is possible to add a modification
to the original protocol by requiring users to broadcast yi; however, this contradicts to
the idea of a compiler, which takes some protocol as a “black-box”.

The KE-security of group keys output by our compiler follows from the KE-security
of the group elements k′ and can be proven similarly to Theorem 1. Note that the re-
placement of yi with ȳi in the computation of sidi has no impact since also ȳi is
uniformly distributed in G for any honest Ui. Since the exponents xi and x̄i are in-
dependent and values ȳi and ȳj exchanged between any two honest users Ui and Uj

are not modified during the transmission (as required by our model) the KE-security
of computed p2p keys would follow directly from Corollary 1. We omit the detailed
analysis of the GKE+P compiler, which seems fairly natural.

Instead, we focus on the next challenge and investigate whether GroupDH protocols
can be merged with PDHKE in order to obtain possibly more efficient GKE+P proto-
cols than those given by our generic compiler. Can we find suitable GroupDH protocols
where the implicitly used exponents x1, . . . , xn can be safely re-used for the com-
putation of p2p keys? Intuitively, this question should be answered separately for each
GroupDH protocol. Due to space limitations, we restrict our analysis to two well-known
protocols from [16] and [31] that implicitly require each Ui to broadcast yi := gxi and
so seem suitable at first sight for the merge with PDHKE.

5.2 PDHKE-BD Is Insecure

The Burmester-Desmedt (BD) protocol from [16] is one of the best known unauthenti-
cated GroupDH protocols. It has been formally proven KE-secure under the DDH as-
sumption in [29]. Its technique has influenced many GKE protocols, including [30, 2].
The BD protocol arranges participants U1, . . . , Un into a cycle, and requires two com-
munication rounds:

Round 1. Each Ui broadcasts yi := gxi for some random xi ∈R ZQ.
Round 2. Each Ui broadcasts zi := (yi+1/yi−1)xi (the indices i form a cycle, i.e.

0 = n and n + 1 = 1).

This allows each Ui to compute the secret group element

k′
i := (yi−1)nxi · zn−1

i · zn−2
i+1 · · · zi+n−2 = gx1x2+x2x3+...+xnx1 .

At first sight, BD suits for the merge with PDHKE, i.e. we would have then k′
i :=

Hg(k′
i, U1|y1, . . . , Un|yn) and any ki,j := Hp(yxi

j , Ui|yi, Uj|yj). Unfortunately, this
merge is insecure. We analyze two distinct cases based on the indices of Ui and Uj .

Group Key Exchange Enabling On-Demand Derivation of Peer-to-Peer Keys 13

CASE Ui AND Ui+1. The attack in this case is trivial since the knowledge of k′ and
the secret exponents of all other colluding users allows to compute gxixi+1 . This would
break the secrecy of the p2p key ki,i+1 when derived using gxixi+1 for any group size
n ≥ 3. Also observe that each Ui sends zi = gxi+1xi−xixi−1 ; thus every Ui−1 can
individually extract gxi+1xi and every Ui+1 is able to compute gxixi−1 , even without
colluding with other users.

CASE Ui AND Uj . In this case we consider ki,j (w.l.o.g. we assume that i < j)
computed for a pair of users that do not have neighbor positions within the cycle, i.e.
j 	= i + 1. We demonstrate that also this key remains insecure if derived using gxixj .
Our attack, which is not as trivial as in the previous case, works because users may col-
lude and misbehave while attacking the secrecy of p2p keys. In particular, we assume
that Ui−2, Ui−1, and Ui+1 collude and their goal is to obtain gxixj upon the successful
execution of the protocol from the perspective of honest Ui and Uj . Due to the collu-
sion of three users the attack works for any group size n > 4. The core of the attack is
to let Ui−1 broadcast yi−1 := yj , which is possible since the communication is asyn-
chronous and A can wait for the protocol message of Uj containing yj ; observe that
xj is chosen by Uj and remains unknown to the colluding users. Other malicious users
Ui−2 and Ui+1 choose their exponents xi−2 and xi+1 truly at random. As a conse-
quence, in the second round honest Ui broadcasts zi = gxi+1xi−xixi−1 = gxi+1xi−xixj .
Then, malicious Ui+1 can extract gxixj := y

xi+1
i /zi. Finally, Ui−1 without knowing

the corresponding exponents xj and xi has to broadcast a value of the form zi−1 =
gxixi−1−xi−1xi−2 = gxixj−xjxi−2 which can be easily done with the assistance of Ui+1

that provides gxixj and of Ui−1 that provides gxjxi−2 = y
xi−2
j . Thus, through their

cooperation malicious users Ui−2, Ui−1, and Ui+1 can extract gxixj for any Uj . The
above attacks works similarly even if Ui−1 re-randomizes yj , i.e. broadcasts yi−1 = yr

j

for some r ∈R ZQ.
This shows that BD cannot be merged with PDHKE in a secure way. Nevertheless,

it can be compiled to a KE-secure GKE+P protocol as discussed in Section 5.1.

5.3 PDHKE-KPT Is Secure

Here we focus on the GKE protocols proposed by Kim, Perrig, and Tsudik [31, 32],
which in turn extend the less efficient construction by Steer et al. [39]. These protocols
belong to a family of the so-called Tree Diffie-Hellman protocols (see also [22,14]). We
analyze whether the protocol from [31], denoted here as KPT, which is more efficient
in communication than [32], can be securely merged with PDHKE.

The KPT protocol requires a special group G = 〈g〉 of prime order Q, which is a
group of quadratic residues modulo a safe prime P = 2Q+1 with the group law defined
as ab := f(ab mod P) for any a, b ∈ G where f : ZP
→ ZQ is such that if z ≤ Q
then f(z) := z, otherwise if Q < z < P then f(z) := P − z (see [31, 32, 14] for more
information about G which equals to ZQ as sets). In KPT each Ui derives the secret
group element k′

i within two communication rounds (it is assumed that the sequence
U1, . . . , Un is ordered):

14 M. Manulis

Round 1. Each Ui broadcasts yi := gxi for some random xi ∈R ZQ.
Round 2. U1 computes and broadcasts (gz2 , . . . , gzn−1) whereby z2 := yx1

2 and each
zi := y

zi−1
i for all i = 3, . . . , n − 1.

This allows each Ui to compute the common secret k′
i := zn as follows.

– U1 computes k′
1 := y

zn−1
n

– each Ui, 2 ≤ i ≤ n − 1 recomputes the subsequence zi, . . . , zn−1 and computes
k′

i := y
zn−1
n ; note that U2 starts with z2 := yx2

1 , whereas Ui, 3 ≤ i ≤ n − 1, starts
with zi := (gzi−1)xi using gzi−1 received from U1.

– Un computes k′
i := (gzn−1)xn using gzn−1 received from U1.

Note that each k′
i has an interesting algebraic structure

k′
i = gxngxn−1g...gx3gx2x1

.

In the following we investigate the possibility of merging KPT with PDHKE, thus using
exponents xi to compute the group key ki := Hg(k′

i, U1|y1, . . . , Un|yn) and any p2p key
ki,j := Hg(k′

i,j , Ui|yi, . . . , Uj|yj) with k′
i,j = gxixj . Our analysis shows that indeed this

construction, which we denote PDHKE-KPT, gives us a KE-secure GKE+P protocol.
Let us first provide some intuition. Note that the only value of the form gxixj which

appears in the computations of KPT is gx1x2 (given by z2). Nevertheless, it will be
computed only by U1 and U2, which is fine since the p2p key should be known only to
these users. Further we observe that the broadcast message of U1 contains gz2 = ggx1x2

and so hides gx1x2 in the exponent (under the hardness of the DL problem). By comput-
ing k1,2 := Hp(gx1x2 , U1|y1, U2|y2) we are able to provide independence between k1,2

and gz2 while working in the random oracle model since the corresponding RevealPeer
query would reveal only k1,2 and not gx1x2 .

We start with the KE-security of group keys. The original KPT protocol has been
proven KE-secure in [31] (see also [14]) under the classical DDH assumption. Briefly,
the proof considers several hybrid games. In the l-th game, 2 ≤ l ≤ n, the simula-
tor embeds a re-randomized DDH tuple (g, ga, gb, gab) to simulate gzl−1 = gaαl−1 ,
yi = gbβl , and zl = gabαl−1βl , such that in the final game the value zn = k′

i is uni-
formly distributed and independent. In general we can apply a similar simulation tech-
nique, however, we should additionally take care of the special dependency z2 = k′

1,2.
The trick is first to obtain a uniform distribution of z2 = k′

1,2 (in G) and its indepen-
dence from y1 and y2 using the above technique and then to compute k1,2 completely
independent from k′

1,2, in which case a reduction to the DL problem becomes possible.

Theorem 3. If both problems DDH and DL are hard in G then PDHKE-KPT provides
KE-security of group keys and

Advke-g
PDHKE-KPT(κ) ≤ 2(N(qEx + qSe)2 + qHg)

Q
+

(qHg + qHp)2

2κ−1

+2(N − 1)AdvDDHG (κ) + 2qHpSuccDLG (κ)

with at most (qEx + qSe) sessions being invoked via Execute and Send queries and at
most qHg and qHp random oracle queries asked.

Group Key Exchange Enabling On-Demand Derivation of Peer-to-Peer Keys 15

Finally, we prove that on-demand p2p keys computed in PDHKE-KPT are also KE-
secure. In general we can follow the proof of Theorem 2 based on the DDH assumption,
however, we have also to take care of the special case (i, j) = (1, 2). Observe that if
k1,2 becomes a subject of the attack then U1 and U2 must be honest, in which case we
can still apply the above trick.

Theorem 4. If both problems DDH and DL are hard in G then PDHKE-KPT provides
KE-security of p2p keys and

Advke-p
PDHKE-KPT(κ) ≤ N(2(qEx + qSe)2 + qSeqHp)

Q
+

(qHg + qHp)2

2κ−1

+NqSe
(

AdvDDHG (κ) + qHpSuccDLG (κ)
)

with at most (qEx + qSe) sessions being invoked via Execute and Send queries and at
most qHg and qHp random oracle queries asked.

6 Performance Comparison and Discussion

In Table 1 we present a brief comparison of the complexity of the mentioned GKE+P so-
lutions. We measure the communication costs as a total number of transmitted elements
in G, and computation costs as a number of modular exponentiations per Ui (in the
case of BD we count only exponentiations with xi assuming that |xi| � n). From the
latter we exclude the costs needed to compute a Diffie-Hellman secret k′

i,j that requires
constantly one exponentiation per each Uj . For the GKE+P compiler from Section 5.1
with the prefix ‘+’ we indicate the increase to the original costs of the given GroupDH
protocol when combined with PDHKE; we also mention the compiled GKE+P version
of the BD protocol as a special case. Note that the PDHKE-KPT protocol has asym-
metric costs, depending on the position of Ui in the ordered sequence U1, . . . , Un; this
may have benefits in groups with heterogeneous devices.

Table 1. Communication and Computation Costs of Introduced GKE+P Protocols

GKE+P Protocols Communication (in log Q bits) Computation (in mod. exp. per Ui)

PDHKE-MRE n2 + n 2n

GKE+P compiler +n +1
BD (as a special case) 3n 3

PDHKE-KPT 2n − 2 n + 2 − i (2n − 2 for U1)

From Table 1 we highlight that PDHKE-KPT has better communication complexity
than the compiled version of the BD protocol, but (in general much) worse computa-
tion complexity. The same holds for the original KPT and BD protocols. Therefore,
we do not claim that GroupDH protocols when merged with PDHKE in an optimized
way (via exponent re-use) would result in more efficient constructions compared to
other protocols obtained via our GKE+P compiler. Nevertheless, with PDHKE-KPT we
could show that there exist GKE protocols that provide the property of non-interactive,

16 M. Manulis

on-demand computation of p2p keys almost “for free” (if one neglects the computation
costs needed for the derivation of keys then the costs of PDHKE-KPT from Table 1 are
identical to those of KPT).

7 Adding Authentication to GKE+P Protocols

Yet, we were assuming that described GKE+P protocols are executed over authenticated
links and focused on the KE-security of their group and p2p keys. On the other hand, it
is well-known that any KE-secure GKE protocol can be converted into an AKE-secure
protocol (preserving its forward secrecy) using the classical and inexpensive compilation
technique from [29] which assumes for each user Ui a long-lived digital signature key
pair (ski, pki) such that in the preliminary protocol round users exchange their nonces
ri and then sign each l-th round message ml concatenated with U1|r1| . . . |Un|rn prior
to the transmission. The EUF-CMA security of the digital signature and the negligible
collision probability for the nonces protects against impersonation and replay attacks.

The following theorem shows that this technique is also sufficient to obtain AKE-
security of group and p2p keys in GKE+P protocols.

Theorem 5. If P is a GKE+P protocol that provides KE-security of group/p2p keys
then P compiled with the technique from [29] results in a GKE+P protocol P ′ that
provides AKE-security of group/p2p keys.

Proof Idea: Theorem 5 can be proven in two steps (one for group keys, another one for
p2p keys) using the same strategy as in the proof of [29, Theorem 2]. Briefly, in each of
the both steps the proof first eliminates signature forgeries and replay attacks and then
constructs an adversary A against the KE-security of group/p2p keys that interacts with
the user instances and also simulates the additional authentication steps while answering
the queries of an adversary A′ against the AKE-security of group/p2p keys. In case of
group keys A will need to guess the session in which the Test(Πs

i) query will be asked
in order to simulate the protocol execution in that session through the authentication of
the transcript, which A obtains initially via own Execute query. In case of p2p keys A
will need to guess the session in which the TestPeer(Πs

i , Uj) query will be asked and
two corresponding identities Ui and Uj of honest users in order to add authentication
to their messages, which A obtains by relaying the Send queries of A′. We omit the
details.

8 Conclusion

We discussed the enrichment of GKE protocols with the property of non-interactive,
on-demand derivation of peer-to-peer keys, which allows for the establishment of a se-
cure group channel and up to n independently secure peer-to-peer channels through
a single run of the protocol. We extended the standard GKE security model captur-
ing independence of group and p2p keys as well as possible collusion attacks against
the secrecy of the latter and proposed several provably secure solutions with varying
efficiency. With PDHKE-KPT we demonstrated the existence of GKE protocols that

Group Key Exchange Enabling On-Demand Derivation of Peer-to-Peer Keys 17

implicitly allow derivation of p2p keys without any increase of their original communi-
cation complexity. Future work may include consideration of the optional insider threats
against the group keys computed in GKE+P protocols in the spirit of [28, 12, 13]. An-
other interesting direction is to investigate to what extent (xi, g

xi) often computed in
GroupDH protocols can be used as key pairs in digital signatures, public-key encryption
schemes, etc.

References

1. Abdalla, M., Bohli, J.-M., Vasco, M.I.G., Steinwandt, R.: (Password) Authenticated Key
Establishment: From 2-Party to Group. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392,
pp. 499–514. Springer, Heidelberg (2007)

2. Abdalla, M., Bresson, E., Chevassut, O., Pointcheval, D.: Password-Based Group Key Ex-
change in a Constant Number of Rounds. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T.G.
(eds.) PKC 2006. LNCS, vol. 3958, pp. 427–442. Springer, Heidelberg (2006)

3. Abdalla, M., Catalano, D., Chevalier, C., Pointcheval, D.: Efficient Two-Party Password-
Based Key Exchange Protocols in the UC Framework. In: Malkin, T.G. (ed.) CT-RSA 2008.
LNCS, vol. 4964, pp. 335–351. Springer, Heidelberg (2008)

4. Bellare, M., Boldyreva, A., Staddon, J.: Randomness Re-use in Multi-recipient Encryption
Schemeas. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 85–99. Springer, Hei-
delberg (2003)

5. Bellare, M., Canetti, R., Krawczyk, H.: A Modular Approach to the Design and Analysis
of Authentication and Key Exchange Protocols. In: ACM STOC 1998, pp. 419–428. ACM
Press, New York (1998)

6. Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated Key Exchange Secure Against Dic-
tionary Attacks. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 139–155.
Springer, Heidelberg (2000)

7. Bellare, M., Rogaway, P.: Entity Authentication and Key Distribution. In: Stinson, D.R. (ed.)
CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg (1994)

8. Biswas, G.P.: Diffie-Hellman Technique: Extended to Multiple Two-Party Keys and One
Multi-Party Key. IET Inf. Sec. 2(1), 12–18 (2008)

9. Boyd, C., Mathuria, A.: Protocols for Authentication and Key Establishment. Springer, Hei-
delberg (2003)

10. Bresson, E., Chevassut, O., Pointcheval, D.: Dynamic Group Diffie-Hellman Key Exchange
under Standard Assumptions. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332,
pp. 321–336. Springer, Heidelberg (2002)

11. Bresson, E., Chevassut, O., Pointcheval, D., Quisquater, J.-J.: Provably Authenticated Group
Diffie-Hellman Key Exchange. In: ACM CCS 2001, pp. 255–264. ACM Press, New York
(2001)

12. Bresson, E., Manulis, M.: Malicious Participants in Group Key Exchange: Key Control and
Contributiveness in the Shadow of Trust. In: Xiao, B., Yang, L.T., Ma, J., Muller-Schloer, C.,
Hua, Y. (eds.) ATC 2007. LNCS, vol. 4610, pp. 395–409. Springer, Heidelberg (2007)

13. Bresson, E., Manulis, M.: Contributory Group Key Exchange in the Presence of Malicious
Participants. IET Inf. Sec. 2(3), 85–93 (2008)

14. Bresson, E., Manulis, M.: Securing Group Key Exchange against Strong Corruptions. In:
ACM ASIACCS 2008, pp. 249–260. ACM Press, New York (2008)

15. Bresson, E., Manulis, M., Schwenk, J.: On Security Models and Compilers for Group Key
Exchange Protocols. In: Miyaji, A., Kikuchi, H., Rannenberg, K. (eds.) IWSEC 2007. LNCS,
vol. 4752, pp. 292–307. Springer, Heidelberg (2007)

18 M. Manulis

16. Burmester, M., Desmedt, Y.: A Secure and Efficient Conference Key Distribution System. In:
De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 275–286. Springer, Heidelberg
(1995)

17. Canetti, R., Krawczyk, H.: Analysis of Key-Exchange Protocols and Their Use for Building
Secure Channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 453–
474. Springer, Heidelberg (2001)

18. Canetti, R., Krawczyk, H.: Universally Composable Notions of Key Exchange and Secure
Channels. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 337–351.
Springer, Heidelberg (2002)

19. Choo, K.-K.R., Boyd, C., Hitchcock, Y.: Examining Indistinguishability-Based Proof Models
for Key Establishment Protocols. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp.
585–604. Springer, Heidelberg (2005)

20. Desmedt, Y., Lange, T.: Revisiting Pairing Based Group Key Exchange. In: Tsudik, G. (ed.)
FC 2008. LNCS, vol. 5143, pp. 53–68. Springer, Heidelberg (2008)

21. Diffie, W., Hellman, M.E.: New Directions in Cryptography. IEEE Tran. on Inf. Th. 22(6),
644–654 (1976)

22. Dutta, R., Barua, R., Sarkar, P.: Provably Secure Authenticated Tree Based Group Key
Agreement. In: López, J., Qing, S., Okamoto, E. (eds.) ICICS 2004. LNCS, vol. 3269, pp.
92–104. Springer, Heidelberg (2004)

23. Gamal, T.E.: A Public Key Cryptosystem and a Signature Scheme Based on Discrete Log-
arithms. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 10–18.
Springer, Heidelberg (1985)

24. Ingemarsson, I., Tang, D.T., Wong, C.K.: A Conference Key Distribution System. IEEE Tran.
on Inf. Th. 28(5), 714–719 (1982)

25. Jarecki, S., Kim, J., Tsudik, G.: Authentication for Paranoids: Multi-party Secret Hand-
shakes. In: Zhou, J., Yung, M., Bao, F. (eds.) ACNS 2006. LNCS, vol. 3989, pp. 325–339.
Springer, Heidelberg (2006)

26. Jarecki, S., Kim, J., Tsudik, G.: Group Secret Handshakes Or Affiliation-Hiding Authenti-
cated Group Key Agreement. In: Abe, M. (ed.) CT-RSA 2007. LNCS, vol. 4377, pp. 287–
308. Springer, Heidelberg (2007)

27. Jeong, I.R., Lee, D.H.: Parallel Key Exchange. J. of Univ. Comp. Sci. 14(3), 377–396 (2008)
28. Katz, J., Shin, J.S.: Modeling Insider Attacks on Group Key-Exchange Protocols. In: ACM

CCS 2005, pp. 180–189. ACM Press, New York (2005)
29. Katz, J., Yung, M.: Scalable Protocols for Authenticated Group Key Exchange. In: Boneh,

D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 110–125. Springer, Heidelberg (2003)
30. Kim, H.-J., Lee, S.-M., Lee, D.H.: Constant-Round Authenticated Group Key Exchange for

Dynamic Groups. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 245–259.
Springer, Heidelberg (2004)

31. Kim, Y., Perrig, A., Tsudik, G.: Group Key Agreement Efficient in Communication. IEEE
Tran. on Comp. 53(7), 905–921 (2004)

32. Kim, Y., Perrig, A., Tsudik, G.: Tree-Based Group Key Agreement. ACM Trans. on Inf. and
Syst. Sec. 7(1), 60–96 (2004)

33. Kurosawa, K.: Multi-Recipient Public-Key Encryption with Shortened Ciphertext. In: Nac-
cache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 48–63. Springer, Heidelberg
(2002)

34. LaMacchia, B., Lauter, K., Mityagin, A.: Stronger Security of Authenticated Key Exchange.
In: Susilo, W., Liu, J.K., Mu, Y. (eds.) ProvSec 2007. LNCS, vol. 4784, pp. 1–16. Springer,
Heidelberg (2007)

35. Manulis, M.: Security-Focused Survey on Group Key Exchange Protocols. Cryptology ePrint
Archive, Report 2006/395 (2006)

Group Key Exchange Enabling On-Demand Derivation of Peer-to-Peer Keys 19

36. Mayer, A., Yung, M.: Secure Protocol Transformation via “Expansion”: From Two-Party to
Groups. In: ACM CCS 1999, pp. 83–92. ACM Press, New York (1999)

37. Nam, J., Paik, J., Kim, U.-M., Won, D.: Constant-Round Authenticated Group Key Exchange
with Logarithmic Computation Complexity. In: Katz, J., Yung, M. (eds.) ACNS 2007. LNCS,
vol. 4521, pp. 158–176. Springer, Heidelberg (2007)

38. Shoup, V.: On Formal Models for Secure Key Exchange (Version 4). TR RZ 3120, IBM
Research (1999)

39. Steer, D.G., Strawczynski, L., Diffie, W., Wiener, M.J.: A Secure Audio Teleconference Sys-
tem. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 520–528. Springer, Hei-
delberg (1990)

40. Steiner, M., Tsudik, G., Waidner, M.: Diffie-Hellman Key Distribution Extended to Group
Communication. In: ACM CCS 1996, pp. 31–37. ACM Press, New York (1996)

41. Wolf, S.: Information-Theoretically and Computationally Secure Key Agreement in Cryp-
tography. PhD thesis, ETH Zürich (1999)

Session-state Reveal Is Stronger Than Ephemeral Key
Reveal: Attacking the NAXOS Authenticated

Key Exchange Protocol

Cas J.F. Cremers�

Department of Computer Science, ETH Zurich
8092 Zurich, Switzerland
cas.cremers@inf.ethz.ch

Abstract. In the paper “Stronger Security of Authenticated Key Ex-
change” [1,2], a new security model for authenticated key exchange pro-
tocols (eCK) is proposed. The new model is suggested to be at least
as strong as previous models for key exchange protocols. The model in-
cludes a new notion of an Ephemeral Key Reveal adversary query, which is
claimed in e. g. [2,3,4] to be at least as strong as the Session-state Reveal
query. We show that Session-state Reveal is stronger than Ephemeral Key
Reveal, implying that the eCK security model is incomparable to the CK
model [5, 6]. In particular we show that the proposed NAXOS protocol
from [1, 2] does not meet its security requirements if the Session-state
Reveal query is allowed in the eCK model. We discuss the implications of
our result for some related protocols proven correct in the eCK model,
and discuss the interaction between Session-state Reveal and protocol
transformations.

Keywords: Provably-secure, Authenticated Key Exchange, Session-
state reveal, Ephemeral Key reveal.

1 Introduction

In the area of secure key agreement protocols many security models [7,8,1,9,5,10]
and protocols have been proposed. Many of the proposed protocols have been
shown to be correct in some particular security model, but have also shown to be
incorrect in others. In order to determine the exact properties that are required
from such protocols, a single unified security model would be desirable. However,
given the recent works such as [8], it seems that a single model is still not agreed
upon.

In this paper we focus on a specific aspect of security models for key agreement
protocols. In particular, we focus on the ability of the adversary to learn the local
state of an agent. For example, when an agent chooses a random value, or com-
putes the hash function of a certain input, the constituents of the computation
reside temporarily in the local memory of the agent. It may be possible for the
� This work was supported by the Hasler Foundation within the ComposeSec project.

M. Abdalla et al. (Eds.): ACNS 2009, LNCS 5536, pp. 20–33, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Session-state Reveal Is Stronger Than Ephemeral Key Reveal 21

adversary to learn such information, even though he cannot learn the long-term
private keys of the agent. This corresponds to the situation in which the long-
term private keys reside in e. g. a tamper-proof module (TPM) or cryptographic
coprocessor, while the remainder of the protocol computations are done in reg-
ular (unprotected) memory. The corresponding adversary ability is captured in
security models for key agreement protocols by the Session-state Reveal query.

A drawback of the Session-state Reveal query in current security models is that
the query is often underspecified. For example, in the Canetti-Krawczyk (CK)
model [5], Session-state Reveal is defined as giving the adversary the internal
state of the Turing machine that executes the protocol. This internal state is
not defined within the security model. Effectively, the definition of the internal
state is postponed to the proof of a particular protocol.

In [2,1] a security model is proposed which is said to be stronger than existing
AKE (Authenticated Key Exchange) security models. The model is based on the
CK model, and is referred to in [1] as the Extended Canetti-Krawczyk (eCK)
model. The eCK model differs in a number of aspects from the CK model, where
the main difference seems to be that the adversary is allowed to reveal part of the
local state of participants even during a normal protocol session. A more subtle
aspect in which the eCK model differs from the CK model is that it replaces the
Session-state Reveal query by a new Ephemeral Key Reveal query. In this paper
we focus on this aspect.

In order to provide a definition of the local state within the security model,
the eCK model (re)defines the notion of ephemeral key and introduces a corre-
sponding Ephemeral Key Reveal query that reveals this key. The ephemeral key
is defined to contain all secret session-specific information. The authors argue
for the new Ephemeral Key Reveal query that “by setting the ephemeral secret
key equal to all session-specific secret information, we seem to cover all defini-
tions of Session-state Reveal queries which exist in literature” [2, p. 2]. Similar
arguments can be found in [4, 3, 11, 12]. Within the resulting eCK model, the
NAXOS protocol is proposed and proven correct in [1].

Contrary to the above, it is argued in [13] that strictly speaking the eCK and CK
models are incomparable. Regarding the difference between Session-state Reveal
and Ephemeral Key Reveal, it is remarked that “The important point to note is that
the ephemeral-key does not include session state that has been computed using the
long-term secret of the party. This is not the case in the CK model where, in prin-
ciple, the adversary is allowed access to all the inputs (including the randomness,
but excluding the long-term secret itself) and the results of all the computations
done by a party as part of a session” [13, Section 3.1].

Contributions In this paper we show that contrary to the claims in [2,4,3,11,12],
the Ephemeral Key Reveal query is weaker than the Session-state Reveal query.
Consequently, it follows that the CK and eCK models are incomparable, as the
CK model does not allow compromise of the ephemeral key of the tested session.
We show that the difference between the queries not only has theoretical but
also practical implications, by providing two attacks on the NAXOS protocol,
which can be performed using Session-state Reveal, but cannot be performed by

22 C.J.F. Cremers

using Ephemeral Key Reveal. The security model we use is nearly identical to the
eCK model: we only replace Ephemeral Key Reveal by Session-state Reveal. Our
attacks are also valid in the CK model, which implies that there is a meaningful
difference between CK and eCK, as NAXOS was proven correct in the eCK
model. We show how our attacks can be extended to the KEA, KEA+, and
KEA+C protocols, and we discuss the interaction between Session-state Reveal
and protocol transformations in e. g. the CK model.

The attacks presented here were found automatically by the Scyther tool [14].
For our attacks we use the NAXOS protocol exactly as specified in [1, 2]. We
assume that the protocol is implemented such that when a participant in the
NAXOS protocol computes H2(x), where H2 is a particular hash function in
the NAXOS protocol, then x is in the local state just before the computation.
As a result, performing a Session-state Reveal query just before the computation
of H2(x) reveals x. This assumption does not require changing to the protocol.
Rather, we make the contents of the session state explicit, as would be required
for a proof in the CK model.

We proceed as follows. In Section 2 we explain some notation, and present
the NAXOS protocol. Then, in Section 3 we show two attacks on this protocol
that use Session-state Reveal. Further issues are discussed in Section 4, and we
conclude in Section 5.

2 The NAXOS Key Exchange Protocol

The NAXOS protocol, as defined in [2, 1], is shown in Figure 1. NAXOS builds
on earlier ideas from the KEA and KEA+ protocols [15,16]. The purpose of the
NAXOS protocol is to establish a shared symmetric key between two parties.
Both parties have a long-term private key, e. g. ska, and initially know the public
key of all other participants, e. g. pkb. In Table 1 we give an overview of the
notation used in the protocol as well as the remainder of this paper. We follow
the notation from [1] where possible.

A B

eskA
$
← {0, 1}λ

X = gH1(eskA,skA)

eskB
$
← {0, 1}λ

Y = gH1(eskB,skB)

KA ←
H2(Y skA , pk

H1(eskA,skA)
B

, Y H1(eskA,skA),A,B)
KB ←

H2(pk
H1(eskB,skB)
A

, XskB , XH1(eskB,skB),A,B)

Fig. 1. The NAXOS protocol. At the end of a normal execution we have that KA = KB
(pkx = gskx).

Session-state Reveal Is Stronger Than Ephemeral Key Reveal 23

Table 1. Notation

A,B The initiator and responder roles of the protocol.
a, b Agents (participants) executing roles of the protocol.
G A mathematical group of known prime order q.
g A generator of the group G.
ska The long-term private key of the agent a, where ska ∈ Zq.

pka The long-term public key of the agent a, where pka = gska .

H1, H2 Hash functions, where H1 : {0, 1}∗ → Zq and H2 : {0, 1}∗ → {0, 1}λ

(for some constant λ).
eska, esk

′
a Two different ephemeral keys of the agent a, generated in different

sessions.
◦ Written in place of a (bigger) term that is not relevant for the expla-

nation at that point.
λ A constant.

x
$← S The variable x is drawn uniformly from the set S.

x ← e The variable x is assigned the result of the expression e.

The protocol is designed to be secure in a very strong sense: the adversary is
assumed to have the capability of learning long-term private keys, and also has
the capability of learning short term data generated during a protocol session
that does not include the private key.

The intuition behind the design of the protocol is that by combining the long-
term private key with the short term ephemeral key inside the hash function, the
adversary would need to have both of these elements to construct an attack. For
example, the protocol should be secure if the adversary either (a) learns the long-
term key of a participant during a session, or (b) learns the short-term data (except
for the long-term key) of a participant during a session. A typical scenario for (b)
is that the participant stores the long-term key on a TPM, and computes other
operations in unprotected memory. For full details we refer the reader to [1, 2].

In a normal execution, we have the following equivalences based on the prop-
erties of the modular exponentiation:

XskB = gH1(eskA,skA)skB = pk
H1(eskA,skA)
B (1)

Y skA = gH1(eskB,skB)skA = pk
H1(eskB ,skB)
A (2)

Y H1(eskA,skA) = gH1(eskB,skB)H1(eskA,skA) = XH1(eskB,skB) (3)

Hence, at the end of a normal protocol execution, the session key is computed
by both parties as

H2(gH1(eskB,skB)skA , gH1(eskA,skA)skB , gH1(eskA,skA)H1(eskB,skB),A,B). (4)

3 Attacking NAXOS Using Session-state Reveal

3.1 Security Model eCK’

We use a slightly modified security model from the one defined in [1]. The only
change is that we replace the Ephemeral Key Reveal query by the Session-state

24 C.J.F. Cremers

Reveal query throughout the security definition. In particular, we require that
whenever H2(x1, . . . , xn) is computed, x1, . . . , xn are part of the local state just
before the computation, and can therefore be revealed by a Session-state Reveal
query. An example of an execution model where this condition holds, is a TPM
setting in which H2(x1, . . . , xn) is computed in local memory, whereas all other
computations (such as H1(x) and gx) are performed inside the TPM.

In contrast, applying the Ephemeral Key Reveal query to a session of the
agent a in the eCK model (and original NAXOS proof) from [1] reveals only
the ephemeral key eska.

Participants can perform roles of the protocol (such as initiator, A, or re-
sponder, B) multiple times, with various other partners. A single role instance
performed by a participant is called a session.

Definition 1 (Session identifier). The session identifier of a session sid is
defined as the tuple (role, ID, ID∗, comm1, . . . , commn), where role is the role
performed by the session (here initiator or responder), ID is the name of the
participant executing sid, ID∗ the name of the intended communication partner,
and comm1, . . . , commn the list of messages that were sent and received.

Definition 2 (Matching sessions for two-party protocols). For a two-
party protocol, sessions sid and sid′ are said to match if and only if there ex-
ist roles role, role′ (role 	= role′), participants ID, ID′, and message list L =
comm1, . . . , commn, such that the session identifier of sid is (role, ID, ID′, L)
and the session identifier of sid′ is (role′, ID′, ID, L).

In the eCK model, the adversary does not have access to a Session-state Reveal
query, but instead has Ephemeral Key Reveal. Below we redefine the notion of
clean and the security experiment from the eCK model [1, p. 8-9], in which we
replace Ephemeral Key Reveal with Session-state Reveal, to define our security
model eCK’.

Definition 3 (clean for eCK’). In an AKE experiment (e. g. as defined in
Definition 4 below), let sid be a completed AKE session performed by a, sup-
posedly with some party b. Then sid is said to be clean if all of the following
conditions hold:

1. a and b are not adversary-controlled (the adversary does not choose or reveal
both the long-term and ephemeral keys of the participant and performs on
behalf of the participant.)

2. The experiment does not include Reveal(sid), i. e. the session key of session
sid is not revealed.

3. The experiment does not include both Long-term Key Reveal(a) and Session-
state Reveal(sid).

4. If no session exists that matches sid, then the experiment does not include
Long-term Key Reveal(b).

5. If a session sid∗ exists1 that matches sid, then
1 There may not be a unique matching session sid∗ for all executions of all protocols,

but in the case of NAXOS, where each sent message contains randomness from the
sending session, the matching session is unique if sid is a completed session.

Session-state Reveal Is Stronger Than Ephemeral Key Reveal 25

(a) the experiment does not include Reveal(sid∗), i. e. the session key of ses-
sion sid∗ is not revealed, and

(b) the experiment does not include both Long-term Key Reveal(b) and
Session-state Reveal(sid∗).

In the eCK’ security model, queries such as Session-state Reveal may not be
performed on clean sessions or their matching sessions as in [1, p. 7-8]. This is
meant to exclude the cases in which an Session-state Reveal query trivially reveals
the session key, such that no protocol could satisfy the security definition.

Definition 4 (AKE security experiment for eCK’). In the eCK’ AKE
security experiment, the following steps are allowed:

1. The adversary may perform Send(a, b, comm), Long-term Key Reveal(a), and
Reveal(sid) queries as in [1].

2. The adversary may perform a Session-state Reveal(sid) query. (This query
replaces Ephemeral Key Reveal(sid) in the definition from [1].)

3. The adversary performs a Test(sid) query on a single clean session sid. A
coin is flipped: b

$← {0, 1}. If b = 0, the test query returns a random bit
string. If b = 1, the query returns the session key of sid. This query can be
performed only once.

4. The adversary outputs a Guess(b′) bit b′, after which the experiment ends.

An adversary M wins the experiment if the Guess(b) bit b is equal to the bit b′

from the Test(b′) query.

Definition 5 (eCK’ security). The advantage of the adversary M in the eCK’
AKE experiment with AKE protocol Π is defined as

AdvAKE
Π (M) = Pr[M wins] − 1

2
.

We say that an AKE protocol is secure in the eCK’ model if matching sessions
compute the same session keys and no efficient adversary M has more than a
negligible advantage in winning the above experiment.

We show two attacks on NAXOS in the eCK’ model: One using test queries on
sessions of the initiator type A and one using the responder type B.

3.2 Attacking the Initiator

In Figure 2, we show an attack for a test query on an initiator session of NAXOS.
The attack requires an active adversary that can reveal the local state of an
agent.

The adversary can compute Ka on the basis of the revealed information (based
on the algebraic properties of the group exponentiation, which are required for
the core of the protocol).

26 C.J.F. Cremers

Session 1
A: a

(talking to b)
test session

Session 2
A: b

(talking to a)
does not match 1

eska
$
← {0, 1}λ eskb

$
← {0, 1}λ

Xa = gH1(eska,ska)

Xb = gH1(eskb,skb)

Session-state Reveal (before H2)
Xskb

a , pk
H1(eskb,skb)
a , X

H1(eskb,skb)
a

Ka ←
H2(Xska

b , pk
H1(eska,ska)
b , X

H1(eska,ska)
b , a, b)

Kb ←
H2(Xskb

a , pk
H1(eskb,skb)
a , X

H1(eskb,skb)
a , b, a)

Fig. 2. Attacking an initiator session. Note that Ka �= Kb. The adversary can compute
Ka after compromising the local state of b.

The attack proceeds as follows.

1. a starts an initiator instance, wanting to communicate with b.
2. a chooses her ephemeral key eska, and sends out Xa = gH1(eska,ska). The

adversary learns this message.
3. b also starts an initiator instance, wanting to communicate with a.
4. b chooses her ephemeral key eskb, and sends out Xb = gH1(eskb,skb). The

adversary learns this message.
5. The adversary sends the message Xb to a.
6. a computes the session key

Ka = H2(Xska

b , pk
H1(eska,ska)
b , X

H1(eska,ska)
b , a, b). (5)

7. The adversary sends the message Xa to b.
8. b computes the session key

Kb = H2(Xskb
a , pkH1(eskb,skb)

a , XH1(eskb,skb)
a , b, a). (6)

During the computation of Kb, the adversary uses Session-state Reveal to
learn the input to H2. In particular, the adversary learns Xskb

a , pk
H1(eskb,skb)
a ,

and X
H1(eskb,skb)
a .

9. The adversary now knows

pkH1(eskb,skb)
a = gskaH1(eskb,skb) = Xska

b , (7)

Xskb
a = gH1(eska,ska)skb = pk

H1(eska,ska)
b , (8)

XH1(eskb,skb)
a = gH1(eska,ska)H1(eskb,skb) = X

H1(eska,ska)
b . (9)

The three terms on the right-hand side are the first three components of the
session key Ka from Formula 5.

Session-state Reveal Is Stronger Than Ephemeral Key Reveal 27

10. The adversary combines the elements with the names a and b, and applies
H2, resulting in Ka.

The above sequence of actions forms an attack on the protocol, because the
adversary can learn the session key of the initiator a by revealing the local
state of the second session. Furthermore, the test session is clean according to
Definition 3 on page 24 because (1) neither a nor b are adversary-controlled, (2)
no Reveal queries are performed, (3) no long-term keys are revealed, and (4)
session 2 is not a partner to the test session 1. Therefore, the attack violates
security in the eCK’ model.

Some further observations regarding this attack:

– The sessions compute different session keys: Ka 	= Kb, because the order of
the participant names a, b is reversed.

– The adversary does not need to learn any ephemeral keys for this attack.
– Even in other existing interpretations of the partner function (or freshness)

from literature (matching conversations, external session identifiers, explicit
session identifiers, etc.) the two sessions are not partners. Consequently, the
NAXOS protocol is therefore also not secure in other models that allow
Session-state Reveal, such as the CK model [5].

3.3 Attacking the Responder

Second, we show an attack for a test query on a responder session in Figure 3.
It seems this attack is more easily exploited than the previous one.

The attack proceeds as follows.

1. The adversary chooses an arbitrary bit string κ.
2. The adversary computes gκ and sends the result to a responder instance of

a, with sender address b.
3. a receives the message and assigns Xb = gκ.
4. a chooses her ephemeral key eska, and sends out Xa = gH1(eska,ska). The

adversary learns this message.
5. a computes the session key

Ka = H2(pk
H1(eska,ska)
b , Xska

b , X
H1(eska,ska)
b , b, a) (10)

which is equal to

H2(pk
H1(eska,ska)
b , gκ ska , gκ H1(eska,ska), b, a). (11)

6. The adversary redirects Xa to a responder instance of b. The adversary can
insert an arbitrary participant name in the sender field of the message, which
b takes to be the origin of the message.

7. b computes his ephemeral secret, combines it with his long term key, and
sends out the corresponding message.

8. b computes his session key Kb (which differs from Ka). Before applying H2,
b computes the second component Xskb

a .

28 C.J.F. Cremers

Session 1
B: a

(responding to b)
test session

Session 2
B: b

(responding to anybody)
does not match 1

Xb = gκ

eska
$
← {0, 1}λ

Xa = gH1(eska,ska)

Ka ←
H2(pk

H1(eska,ska)
b , Xska

b , X
H1(eska,ska)
b , b, a)

eskb
$
← {0, 1}λ

◦

Session-state Reveal (before H2)
Xskb

a

Kb ←
H2(◦, Xskb

a , ◦, ◦, ◦)

Fig. 3. Attack on a responder session. We have Ka �= Kb. The adversary can compute
(and even contribute to) Ka after revealing the local state of b.

9. The adversary uses Session-state Reveal on the session of b directly before
the application of H2 to learn Xskb

a .
10. The adversary knows κ, Xa, and Xskb

a . Furthermore, as the public keys are
public, the adversary also knows pka. Hence the adversary also knows, or
can compute:

Xskb
a = gH1(eska,ska)skb = pk

H1(eska,ska)
b , (12)

(pka)κ = gskaκ = Xska

b , (13)

(Xa)κ = gH1(eska,ska)κ = X
H1(eska,ska)
b . (14)

The three terms on the right-hand side are the first three components of the
session key Ka from Formula 10.

11. The adversary combines the elements and applies H2, resulting in Ka.

This sequence forms an attack on the protocol, because the adversary can use
data revealed from session 2 in order to compute the session key of the test
session 1. The test session is also clean according to Definition 3 on page 24. In
practical terms, this attack even allows the adversary to determine a part of the
session key of a.

Session-state Reveal Is Stronger Than Ephemeral Key Reveal 29

For this attack there are also some observations to be made:

– The responder session of b is not a partner to the session of a in terms
of matching sessions. Also, in other partner existing interpretations from
literature (external session identifiers, explicit session identifiers, etc.) they
would also not match.

– The adversary chooses κ, and can therefore influence the session key.
– In this attack, the adversary does not need to learn any long term private

keys or ephemeral keys.
– The attack is also valid in the CK model: the sessions are not partners for a

number of reasons, for example because their choice of agents differs. Session
1 has {a, b} and session 2 has {b, z} where z is an arbitrary participant. Hence
the adversary can choose z 	= a.

4 Discussion

The structure of our attacks can be used to attack some protocols that were
proven correct in the CK model [5]. We first briefly discuss these other proto-
cols, and afterwards discuss the implications for existing proofs and protocol
transformation theorems in the CK model.

4.1 The KEA, KEA+ and KEA+C Protocols

In [16], the KEA+ protocol is proven correct in the CK model from [5]. KEA+
can be viewed as a predecessor of the NAXOS protocol, and uses a similar
setup. Two other variants of this protocol are KEA+C from [16] and KEA
from [15]. All three protocols compute the session key using a hash function,
which takes as inputs components built by the communication partners. Each
of the crucial inputs is a modular exponentiation that includes in the exponent
both randomness and the long-term private keys of one of the participants. The
proof in [16] of the security of KEA+ in the CK model assumes that Session-state
Reveal is defined such that only the ephemeral keys are revealed.

The attacks presented in this paper on the NAXOS protocol also work within
the CK model for the KEA, KEA+, and KEA+C protocols after minimal modi-
fications. The attacks use the exact same scenarios and exploit the same Session-
state Reveal definition, in which the inputs to the final hash function are part of
the local state.

4.2 Session-state Reveal and Protocol Transformations in the CK
Model

In the CK model [5] the Session-state Reveal query is defined as revealing the
full internal state of the Turing machine executing the protocol to the adversary.
This internal state is not defined within the CK model, and can be viewed as
a parameter of the correctness proof of the protocol. As a result, proving that
a protocol is correct in the CK model requires one to define this internal state.

30 C.J.F. Cremers

Technically this implies that the resulting proof holds only for execution models
corresponding to this definition of the internal state. This puts restrictions on the
implementation details of the protocol code as well as on the platform executing
the code.

In existing protocol proofs in the CK model the internal state is not explicitly
stated as a parameter of the correctness proof. In most cases, the internal state is
simply defined as the ephemeral secret, i. e. the private exponent of a participant
in a Diffie-Hellman style key exchange. As a consequence, any implementation
in which the local state (as revealed to an adversary) contains more information,
falls outside of the scope of the proof.

However, making the definition of the internal state an explicit parameter of
the correctness proofs has implications for the methodology underlying the CK
model. Central to the methodology underlying the model is the notion of security
preserving (or security enhancing) protocol transformations. An example of a cen-
tral result is Theorem 6 from [5, p. 16]. This theorem involves the notion of (MT-
)authenticators, which are protocol transformations that satisfy certain security
preserving/enhancing properties. The theorem aims to establish that a protocol
that is secure in one security model (AM) can be transformed by an authentica-
tor into another protocol that satisfies the same security property in a stronger
adversarial model (UM). In this case the security property is SK-security, which
involves an adversary that has access to the Session-state Reveal query.

Theorem 6 from [5, p. 16] can be rephrased in the following way. Let P be
a protocol and let f be an (MT-) authenticator. If the protocol P satisfies SK-
security in the AM model, then the protocol f(P) satisfies SK-security in the
UM model. The proof of this theorem is generic and applies to any authenticator.

In the precondition of this theorem and the definition of authenticators, there
is no constraint that prevents authenticators from changing the local state, i. e.,
there is no requirement on f that ensures that Session-state Reveal for P is
equal to Session-state Reveal for f(P). Note that from a practical point of view,
including such a requirement may be unrealistic: transforming the protocol in
any non-trivial way implies that the local state of the protocol f(P) is different
from that of the protocol P .

If we assume that that applying the authenticator does change the local state,
i. e. Session-state Reveal for f(P) is not equal to Session-state Reveal for P , then it
is not immediately clear how to prove the correctness of the theorem, as it would
involve proving that the transformation of the local state does not introduce new
attacks, possibly along the lines of the attacks presented here, that exploit Session-
state Reveal for f(P). Recall that the attacks on NAXOS do not require revealing
the ephemeral key (which would already be in the local state of P), nor the long-
term private keys (which would be excluded from Session-state Reveal for f(P)),
but rather some intermediate computations. We expect that a generic proof of this
theorem requires a significant restriction on the class of allowed authenticators.

The existence of these attacks shows the importance of explicitly specifying
the definition of local state as it is used in a proof: e. g. KEA+ is not secure in
the CK model if the inputs to the final hash function are part of the local state.

Session-state Reveal Is Stronger Than Ephemeral Key Reveal 31

It would be more precise to say that in [16] KEA+ is proven secure with respect
to the CK model if the local state only includes the ephemeral keys.

5 Conclusion

In common definitions of AKE security the Session-state Reveal query is under-
specified. The definition of Session-state Reveal is only made explicit in particular
protocol proofs. This approach turns the exact definition of Session-state Reveal
into a parameter of the exact security provided by the protocol. As a result,
stating that two protocols are provably secure in e. g. the CK model does not
mean they meet exactly the same property.

In [1,2] the Session-state Reveal query is replaced by the Ephemeral Key Reveal
query, which is claimed to be at least as strong as Session-state Reveal. Thus,
the notion of Session-state Reveal is reduced to Ephemeral Key Reveal. Reducing
Session-state Reveal to Ephemeral Key Reveal simplifies proofs significantly: one
does not need to define what exactly is part of the ephemeral key, but one only
needs to prove that no information about the ephemeral key is revealed [1,4,3].
However, the validity of this reduction has not been proven.

The validity of the reduction is informally argued in [2], and similar argu-
ments can be found in other works that use the eCK model [4, 3], e. g. in [4, p.
333]: “In general, by specifying that the session specific private information (the
session state) is part of the ephemeral private key, the Session-state Reveal and
Ephemeral Key Reveal queries can be made functionally equivalent”.

In this paper we have shown that the reduction is invalid, that is, a security
model with Ephemeral Key Reveal (eCK) is not as strong as a model with Session-
state Reveal (eCK’). The attacks presented here on the NAXOS protocol, which
was proven correct for Ephemeral Key Reveal in [1], strictly depend on the use of
the Session-state Reveal query.

The attacks presented here fall just outside the eCK security model, and they
therefore do not indicate a problem with the proofs in [1]. Instead, what the
attacks indicate is that the eCK security model, and similarly the property that
is proved correct, is not as strong as suggested in e. g. [1]. Furthermore, the
attacks are also valid in the CK model, which shows that the difference between
CK and eCK is in fact meaningful in practice. In particular, we have shown that
one can prove real protocols secure in eCK which are not secure in CK, and are
vulnerable to attacks where the local state is revealed. Consequently, the CK
and eCK models are not only theoretically, but also practically incomparable.

The structure of our attacks on NAXOS can be translated to attacks on
the KEA, KEA+, and KEA+C protocols from [15, 16]. As a result, also these
protocols are not CK-secure if the session state includes the inputs to the final
hash function. We furthermore observed that it is non-trivial to combine protocol
proofs that consider the Session-state Reveal query, such as those in the CK
model, with protocol transformations.

The idea behind the NAXOS protocol (which is already found in KEA and
KEA+) is appealing: by strongly connecting the long- and short-term infor-
mation, the adversary would be required to know both elements to perform an

32 C.J.F. Cremers

attack. However, in order to use the combination of these elements securely in the
protocol, in particular for transmission, there are further computations needed.
These subsequent computations often influence the local state. This effect is not
captured by the definition of Ephemeral Key Reveal, which is the ultimate prob-
lem with the reduction from Session-state Reveal to Ephemeral Key Reveal, as was
already noted in [13]. The attacks presented in this paper exploit exactly this
difference.

A possible practical interpretation of the difference between the models is the
following. The CK model considers a TPM implementation, where parts of the
protocol are computed in unprotected memory, specified by the contents of
the session-state, but the long-term private keys are protected by the TPM.
The adversary may be able to learn the contents of the unprotected memory
at some point, but not necessarily all the time. In contrast, the eCK model
considers a malicious (i. e. predictable or information-leaking) random number
generator, which implies that the adversary learns all ephemeral keys.

The question remains whether it is possible to adapt NAXOS to satisfy a
security model similar to eCK that allows for Session-state Reveal queries.

References

1. LaMacchia, B., Lauter, K., Mityagin, A.: Stronger security of authenticated key
exchange. In: Susilo, W., Liu, J.K., Mu, Y. (eds.) ProvSec 2007. LNCS, vol. 4784,
pp. 1–16. Springer, Heidelberg (2007)

2. LaMacchia, B., Lauter, K., Mityagin, A.: Stronger security of authenticated key
exchange. Cryptology ePrint Archive, Report 2006/073 (2006),
http://eprint.iacr.org/

3. Okamoto, T.: Authenticated key exchange and key encapsulation in the standard
model. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 474–484.
Springer, Heidelberg (2007)

4. Ustaoglu, B.: Obtaining a secure and efficient key agreement protocol from
(H)MQV and NAXOS. Des. Codes Cryptography 46(3), 329–342 (2008)

5. Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for
building secure channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS,
vol. 2045, pp. 453–474. Springer, Heidelberg (2001)

6. Krawczyk, H.: HMQV: A high-performance secure diffie-hellman protocol. In:
Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 546–566. Springer, Hei-
delberg (2005)

7. Bresson, E., Chevassut, O., Pointcheval, D., Quisquater, J.: Provably authenticated
group Diffie-Hellman key exchange. In: CCS 2001: Proceedings of the 8th ACM
conference on Computer and Communications Security, pp. 255–264. ACM Press,
New York (2001)

8. Menezes, A., Ustaoglu, B.: Comparing the pre- and post-specified peer models
for key agreement. In: Mu, Y., Susilo, W., Seberry, J. (eds.) ACISP 2008. LNCS,
vol. 5107, pp. 53–68. Springer, Heidelberg (2008)

9. Choo, K.K., Boyd, C., Hitchcock, Y.: Examining indistinguishability-based proof
models for key establishment proofs. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS,
vol. 3788, pp. 624–643. Springer, Heidelberg (2005)

http://eprint.iacr.org/

Session-state Reveal Is Stronger Than Ephemeral Key Reveal 33

10. Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated key exchange secure
against dictionary attacks. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, pp. 139–155. Springer, Heidelberg (2000)

11. Xia, J., Wang, J., Fang, L., Ren, Y., Bian, S.: Formal proof of relative strengths
of security between ECK 2007 model and other proof models for key agreement
protocols. Cryptology ePrint Archive, Report 2008/479 (2008)
http://eprint.iacr.org/ (retrieved January 12, 2009)

12. Lee, J., Park, C.: An efficient authenticated key exchange protocol with a tight
security reduction. Cryptology ePrint Archive, Report 2008/345 (2008)
http://eprint.iacr.org/ (retrieved January 12, 2009)

13. Boyd, C., Cliff, Y., Nieto, J., Paterson, K.: Efficient one-round key exchange in
the standard model. In: Mu, Y., Susilo, W., Seberry, J. (eds.) ACISP 2008. LNCS,
vol. 5107, pp. 69–83. Springer, Heidelberg (2008)

14. Cremers, C.: The Scyther Tool: Verification, falsification, and analysis of security
protocols. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 414–418.
Springer, Heidelberg (2008)

15. NIST: SKIPJACK and KEA algorithm specification (1998),
http://csrc.nist.gov/groups/ST/toolkit/documents/skipjack/skipjack.pdf

16. Lauter, K., Mityagin, A.: Security analysis of KEA authenticated key exchange
protocol. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T.G. (eds.) PKC 2006.
LNCS, vol. 3958, pp. 378–394. Springer, Heidelberg (2006)

http://eprint.iacr.org/
http://eprint.iacr.org/
http://csrc.nist.gov/groups/ST/toolkit/documents/skipjack/skipjack.pdf

Secure Pairing of “Interface-Constrained” Devices
Resistant against Rushing User Behavior

Nitesh Saxena and Md. Borhan Uddin

Computer Science and Engineering
Polytechnic Institute of New York University

nsaxena@poly.edu, borhan@cis.poly.edu

Abstract. “Secure Device Pairing” is the process of bootstrapping secure com-
munication between two devices over a short- or medium-range wireless channel
(such as Bluetooth, WiFi). The devices in such a scenario can neither be assumed
to have a prior context with each other nor do they share a common trusted author-
ity. Fortunately, the devices can generally be connected using auxiliary physical
channel(s) (such as audio, visual, tactile) that can be authenticated by the device
user(s), thus forming the basis for pairing. However, lack of good quality output
interfaces (e.g, a speaker, display) and/or receivers (e.g., microphone, camera) on
certain devices makes pairing a very challenging problem in practice.

We consider the problem of “rushing user” behavior in device pairing. A rush-
ing user is defined as a user who in a rush to connect her devices, would skip
through the pairing process, if possible. Most prior pairing methods, in which the
user decides the final outcome of pairing, are vulnerable to rushing user behavior
– the user can simply “accept” the pairing, without having to correctly take part in
the decision process. In this paper, we concentrate on most common pairing sce-
narios (such as pairing of a WiFi laptop and an access point), whereby one device
(access point) is constrained in terms output interfaces, while the other (laptop)
has a decent quality output interface but no receiver. We present the design and
usability analysis of two novel pairing methods, which are resistant to a rushing
user and require only minimal device interfaces on the constrained device. One of
the most appealing applications of our proposal is in defending against common
threat of “Evil Twin” attacks in public places (e.g, cyber-cafes, airport lounges).

Keywords: Device Pairing, Authentication, Usability, Security, Evil Twin At-
tacks, Wireless Communication.

1 Introduction

Short-range wireless communication, based on technologies such as Bluetooth and
WiFi, is becoming increasingly popular and promises to remain so in the future. With
this surge in popularity, come various security risks. Wireless communication channel
is easy to eavesdrop upon and to manipulate, and therefore a fundamental security ob-
jective is to secure this communication channel. In this paper, we will use the term
“pairing” to refer to the operation of bootstrapping secure communication between two
devices connected with a short-range wireless channel. The examples of pairing, from

M. Abdalla et al. (Eds.): ACNS 2009, LNCS 5536, pp. 34–52, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Secure Pairing of “Interface-Constrained” Devices 35

day-to-day life, include pairing of a WiFi laptop and an access point, a Bluetooth key-
board and a desktop. Pairing would be easy to achieve, if there existed a global infras-
tructure enabling devices to share an on- or off-line trusted third party, a certification
authority, a PKI or any pre-configured secrets. However, such a global infrastructure is
close to impossible to come by in practice, thereby making pairing an interesting and
a challenging real-world research problem. The problem has been at the forefront of
various recent standardization activities, see [24].

A promising and well-established research direction to pairing is to use an auxiliary
physically authenticatable channel, i.e., physical channel, also called an out-of-band
(OOB) channel, which is governed by humans, i.e., by the users operating the devices.
Examples of OOB channels include audio, visual, tactile channels. Unlike the wireless
channel, on the OOB channel, an adversary is assumed to be incapable of modifying
messages, however, it can eavesdrop on, delay, drop and replay them. A pairing method
should therefore be secure against such an adversary.

The usability of a pairing method based on OOB channels is clearly of utmost im-
portance. In pairing scenarios (such as pairing of a WiFi laptop and an access point) in-
volving devices that lack good quality output interfaces (e.g, a speaker, display) and/or
receivers (e.g., microphone, camera), establishing OOB channels is quite difficult. Min-
imizing the user burden in pairing such “interface-constrained” devices is thus a very
challenging problem. Since the OOB channels typically have low bandwidth, the shorter
the data that a pairing method needs to transmit over these channels, the better the
method becomes in terms of usability.

Various pairing protocols have been proposed so far. These protocols are generally
based on the bidirectional automated device-to-device (d2d) OOB channels. Such d2d
channels require both devices to have transmitters and the corresponding receivers. In
settings, where d2d channel(s) do not exist (i.e., when at least one device does not have
a receiver) and even otherwise, same protocols can be based upon device-to-human
(d2h) and human-to-device (h2d) channel(s) instead. Depending upon the protocol,
only two d2h channels might be sufficient, such as in case when the user has to per-
form a very simple operation (such as “comparison”) of the data received over these
channels. Clearly, the usability of d2h and h2d channel establishment is even more
critical than that of a d2d channel.

The earlier pairing protocols [4], [14] require at least 80 to 160 bits of data to be
transmitted over the OOB channels. The more recent, so-called SAS- (Short Authenti-
cated Strings) based protocols, [12] and [15], reduce the length of data to be transmitted
over the OOB channels to only 15 bits or so, for a reasonable level of security.1

Based on the above-mentioned protocols, a number of pairing methods with vari-
ous OOB channels have been proposed. All prior pairing methods are reviewed in the
following section of the paper.

In this paper, we consider the problem of “rushing user” behavior in device pairing.
We define a rushing user as a user who in a rush to connect her two devices, tends to
skip through the pairing process, if possible. Such a rushing user behavior does exist
in practice and in fact, is quite common. It has been shown that computer users tend

1 The concept of SAS-based authentication was first introduced by Cagalj et al. [27], followed
by Vaudenay [26]. MANA protocols [7] addressed a similar problem.

36 N. Saxena and Md.B. Uddin

to be “task-focussed” [6]. For example, in the context of phishing attacks [6], when a
user logs on to the website of her bank, her focus is (e.g.,) to pay a bill which is past
due; she would tend to ignore any warning indicating a phishing attempt. Similarly, in
the context of device pairing, when a user wants to connect her Bluetooth laptop with
her cell phone, her primary task is (e.g.,) to transfer her pictures or synchronize her
calendar; when she wants to connect her Bluetooth cell phone with a headset, she is
eager to speak to someone. The pairing process, from user’s perspective, is nothing but
a hindrance in her intended task, and therefore she would quickly tend to skip through
this process, if possible.

All previously proposed pairing methods can be broadly classified into two cate-
gories: (1) device-controlled (DC) method, where the OOB strings are transferred
between two devices with the help of the user and eventually the devices decide the
outcome of pairing, and (2) user-controlled (UC) method, where the user herself com-
pares the OOB strings output by the devices and decides the pairing outcome. We ob-
serve that all UC pairing methods are vulnerable against a rushing user, whereas the DC
methods are not. In the UC methods, the user can simply “accept” the pairing, without
having to take part in the decision process correctly. On the other hand, in the DC
methods, the user is somewhat forced to perform the pairing process correctly, because
otherwise she will not be able to connect her two devices.

Our Contributions. In this paper, we concentrate on most common pairing scenarios,
wherein one device is constrained in terms output interfaces, while the other has a de-
cent quality output interface but no receiver. A common example of such a scenario
is pairing of a WiFi laptop and an access point (the latter is a constrained device with
no display or receiver; the former has a full display and keypad, but no receiver). We
note that some prior work addresses the problem of pairing interface-constrained de-
vices (e.g., [17][18]). However, this paper is the first, to the best of our knowledge, to
address an even more challenging problem of pairing interface-constrained devices in
a rushing user resistant manner. We present the design and usability analysis of two
novel pairing methods, which are resistant to a rushing user and require only minimal
device interfaces on the constrained device. The two proposed pairing methods, called
“color pairing” and “alphanumeric pairing,” are based on two different types of output
interfaces on the constrained device, i.e., a Multi-Color LED and a Sixteen Segment
Display (SSD), respectively. Both of these interfaces are minimal in terms of their cost
and size, are commonly available and thus can be easily added onto constrained devices
(such as access points, printers).2 In the color pairing method, the user is required to
transfer colors displayed through the multi-color LED of the constrained device to the
other device. In the alphanumeric pairing method, the user simply transfers the char-
acters displayed by the SSD of the constrained device onto the other device. Clearly,
both our methods are based on different sensory capabilities of human users and have
different usability implications

Based on a usability study of the proposed pairing methods, we conclude that the
color pairing method based on four distinct colors is quite suitable for most devices and

2 The use of such interfaces is not just limited to the pairing operation. For example, a multi-
color LED can serve the purpose of a general-purpose LED on an access point, and the SSD
can serve as a minimal display on a printer.

Secure Pairing of “Interface-Constrained” Devices 37

pairing scenarios, as it turned out to be very efficient, robust to human errors and user-
friendly. This method is ideal, as our testing indicates, for defending against a common
threat of evil twin access points (e.g., in cyber-cafes, airport lounges), in a rushing user
resistant manner.3

Organization. The rest of the paper is organized as follows. In Section 2, we review
the prior pairing methods. In Section 3, we describe the security model and summarize
relevant protocols. In Sections 4 and 5, we present the design and implementation of
our color pairing and alphanumeric pairing methods. Finally, in Section 6, we discuss
our experimental usability study with respect to the proposed pairing methods and the
underlying results.

2 Related Work

In this section, we discuss prior pairing methods, their applicability to interface con-
strained devices and whether or not they are resistant to rushing user behavior. Recall a
DC method is resistant to rushing user, whereas a UC method is not.

In their seminal work, Stajano, et al. [23] proposed establishing a shared secret be-
tween two devices using a link created through a physical contact (such as an electric
cable). This is a DC method and is resistant to rushing user. However, in many settings,
establishing such a physical contact might not be possible, for example, the devices
might not have common interfaces to do so or it might be too cumbersome to carry the
cables along. Balfanz, et al. [4] extended this approach through the use of infrared as
a d2d channel – the devices exchange their public keys over the wireless channel fol-
lowed by exchanging (at least 80-bit long) hashes of their respective public keys over
infrared. This is also a DC method. The main drawback of this method, however, is
that it is only applicable to devices equipped with infrared transceivers. Moreover, the
infra-red channel is not easily perceptible by human users.

Another approach taken by a few research papers is to perform the key exchange
over the wireless channel and authenticate it by requiring the users to manually and
visually compare the established secret on both devices. Since manually comparing the
established secret or its hash is cumbersome for the users, methods were designed to
make this visualization simpler. These include Snowflake mechanism [9] by Levienet
et al., Random Arts visual hash [16] by Perrig et al., etc. These methods require high-
resolution displays and are thus only applicable to a limited number of devices, such as
laptops. Moreover, these are UC methods and thus are vulnerable to a rushing user.

Based on the pairing protocol of Balfanz et al. [4], McCune et al. proposed the
“Seeing-is-Believing” (SiB) method [13]. SiB involves establishing two unidirectional
visual d2d channels – one device encodes the data into a two-dimensional barcode and
the other device reads it using a photo camera. SiB is a DC method. However, since
the method requires both devices to have cameras, it is only suitable for pairing devices
such as camera phones.

Goodrich, et al. [10], proposed “Loud-and-Clear (L&C)”, a pairing method based on
“MadLib” sentences. The main idea of L&C is to encode the OOB data into MadLib

3 This only involves unidirectional authentication of the access point to the laptop.

38 N. Saxena and Md.B. Uddin

sentences and have the user compare these sentences displayed or spoken out on two
devices. Clearly, this is a UC method and is thus vulnerable to rushing user behavior.
Moreover, the method is not applicable to pairing scenarios where one of the devices
does not have a display or a speaker.

Saxena et al. [19] proposed a pairing method based on visual OOB channel. The
method uses one of the SAS protocols [12], and is aimed at pairing two devices A and
B (such as a cell phone and an access point), only one of which (say, B) has a relevant
receiver (such as a camera). First, a unidirectional d2d channel is established by device
A transmitting the SAS data, e.g., by using a blinking LED and device B receiving it
using a video camera. This is followed by device B comparing the received data with
its own copy of the SAS data, and transmitting the resulting bit of comparison over a
d2h channel (say, displayed on its screen). Finally, the user reads this bit transmitted
and accordingly indicates the result to device A by transmitting a bit over an h2d input
channel. In one direction (i.e., from A to B), this is a DC method and is thus resistant
to rushing user behavior. In the other direction, however, it is a UC method – a rushing
user can simply accept the pairing on A without looking at the pairing outcome on B.
It is important to note, however, that in case of any attack, device B will be “locked
out” and will not allow any connection to and from device A (and it will detect any
connection attempts from an attacking device).4 This way the user will not be able to
establish real communication with device B (e.g., transfer an image file from B to A),
and will thus resort to repeating the pairing process. The pairing methods we propose
in this paper utilize this unidirectional pairing approach of [19].

Uzun et al. [25] carry out a comparative usability study of simple pairing methods.
They consider pairing scenarios where devices are capable of displaying 4-digits of
SAS data. In what they call the “Compare-and-Confirm” approach (a UC method), the
user simply reads and compares the SAS data displayed on both devices. The “Select-
and-Confirm” approach (a DC method), on the other hand, requires the user to select
a 4-digit string (out of a number of strings) on one device that matches with the 4-
digit string on the other device. The third approach, called “Copy-and-Confirm” (a DC
method), requires the user to read the data from one device and input it onto the other.
Both Select-and-Confirm and Copy-and-Confirm are DC methods and therefore offer
protection against a rushing user. However, these methods are only limited to devices
(such as cell phones) which have good quality displays and keypads. Our alphanumeric
pairing method is quite similar in flavor to the Copy-and-Confirm method of [25], how-
ever, it is applicable to interface-constrained devices. Kuo et al. [11] defined a common
baseline for hardware features and a consistent, interoperable user experience across
pairing of different devices. This work did not yield any pairing method as such.

Some recent papers have focused upon pairing devices which possess constrained
interfaces. These include the BEDA method [21] which requires the users to transfer
the SAS strings from one device to the other using “button presses”. BEDA is based
on the protocol of [19]. The constrained device encodes its SAS string into the time
intervals between two consecutive blinkings of the (regular) LED, and as and when this

4 In case of a pairing failure, device B can keep showing a warning to the user indicating that
device A is possibly being connected to an attacker device, and ask the user to “re-pair” the
two devices.

Secure Pairing of “Interface-Constrained” Devices 39

device blinks, the user presses a button on the other device. BEDA is a DC method
and is therefore resistant to rushing user behavior. BEDA is also universally applica-
ble to most pairing scenarios. However, as indicated in the results of [21], it requires
about one minute to complete the pairing process, which might be too slow in practice.
Moreover, the user needs to pay close attention to both devices simultaneously to main-
tain synchronization. This will be particularly hard when one of the devices is distant
(e.g., a wall-mounted access point). The methods that we present in this paper are more
efficient in comparison to BEDA, as we will see in the later sections of the paper.

In [17], Saxena et al. presented a pairing method universally applicable to any pair
of devices. The method can be based on any of the existing SAS protocols and does not
require devices to have good transmitters or any receivers, that is, just a pair of LEDs is
sufficient. The method involves users comparing very simple audiovisual patterns, such
as “beeping” and “blinking”, transmitted as simultaneous streams which form two syn-
chronized d2h channels. Most recently, the approach of [17] was extended by making
use of an auxiliary device, such as a smartphone [20]. Both these methods, however,
are UC methods and thus offer no protection against a rushing user. In an independent
result [18], Roth et al. present a method similar to the “blinking” method presented in
[17]. The method of [18] is aimed at the detection of evil twin access points. The two
methods, however, differ significantly in their implementation and therefore in terms of
user experience (see [17] for details regarding the differences). This method is also a
UC method and thus offers no protection against a rushing user. The pairing methods
we propose in this paper aptly address the problem of evil twin access points, however,
unlike [18], our methods also offer resistance against rushing user behavior.

In [22], Soriente et al. consider the problem of pairing two devices which might
not share any common wireless communication channel at the time of pairing, but do
share only a common audio channel. This is a DC method, however, it is only limited
to devices which possess a speaker at the transmitting end and a microphone at the
receiving end.

3 Security Model and Applicable Protocols

The pairing protocols, on which our methods are built, are based upon the following
communication and adversarial model [26]. The devices being paired are connected via
two types of channels: (1) a short-range, high-bandwidth bidirectional wireless channel
and (2) one or more auxiliary low-bandwidth physical OOB channel(s). Based on the
type of devices being used, the OOB channel(s) can be device-to-device (d2d), device-
to-human (d2h), or human-to-device (h2d). An adversary attacking the pairing protocol
is assumed to have full control of the wireless channel, namely, he or she can eaves-
drop, delay, drop, replay and modify messages. On the OOB channel, the adversary can
eavesdrop, delay, drop, replay and re-order messages; however, it can not modify them.
In other words, the OOB channel is assumed to be an authenticated channel.

The security notion applied to a pairing protocol in this setting is adopted from the
model of authenticated key agreement by Canneti and Krawczyk [5]. In this model, a
multi-party setting is considered wherein a number of parties simultaneously run mul-
tiple/parallel instances of pairing protocols. In practice, however, it is reasonable to as-
sume that there are only two parties running just a few serial or parallel instances of the

40 N. Saxena and Md.B. Uddin

pairing protocol. For example, during the authentication of an ATM transaction there
are only two parties, namely the ATM machine and a user. Further, the user is restricted
to only three authentication attempts. The security model does not consider denial-of-
service (DoS) attacks. Note that with a wireless channel explicit attempts to prevent
protocol-level DoS attacks are not useful because an adversary can simply launch an
attack by jamming the wireless signal.

To date, two three-round pairing protocols based on short authenticated strings (SAS)
have been proposed: [15] and [12]. In a communication setting involving two users re-
stricted to running three instances of the protocol these SAS protocols need to transmit
only k (= 15) bits of data over the OOB channel. As long as the cryptographic primi-
tives used in the protocol are secure, an adversary attacking one of these protocols can
not win with a probability significantly higher than 2−k (= 2−15). This gives us secu-
rity equivalent to that provided by 5-digit PIN-based ATM authentication. The pairing
methods proposed in this paper are based upon the SAS protocols mentioned above,
with a variation presented in [19], as discussed in Section 2.

4 “Color Pairing” Using a Multi-Color LED

In this section, we discuss the design and implementation of a novel color-based pairing
method, called “color pairing”, which is resistant against rushing user. In our method,
one device (denoted as A) is equipped with a “Multi-Color” LED [2] and the other
device (denoted as B) has a display and a keypad. Device A encodes its SAS data into
colors and displays each color one-by-one through the LED, the user reads each color
and accordingly selects the corresponding color (from all possible displayed colors) on
device B, maintaining synchronization (i.e., transition between two consecutive colors)
of transmission and reception. In this manner, the SAS data is transferred from device
A to device B, while maintaining synchronization. Once device B decodes the received
SAS data, it compares it with its own local copy; and accordingly accepts or rejects the
pairing instance. Notice that our method is a DC method and is thus resistant to rushing
user behavior.

Clearly our method is based on the number of “human-distinguishable” colors an
off-the-shelf multi-color LED is capable of displaying – the more the number of such
colors, the more the number of SAS bits can be transmitted everytime. In the following
subsections, we describe the selection of such human-distinguishable colors, the encod-
ing of SAS data into these colors and rushing user resistant transmission and processing
of SAS data.

4.1 Selection of “Human-Distinguishable” Colors

In the 24-bit RGB color model, there are 224 (i.e., about 16-million) distinct colors.
Out of these colors, our goal was to find out the colors which can be generated using
a multi-color LED and which are easily and unambiguously distinguishable by human
users without any prior training. One recent study [8] shows that there are only 11 non-
conflicting colors identified for categorical images. In this set of 11 colors of [8], there
seems to be some pairs of colors which do not appear that distinct, e.g., light green and

Secure Pairing of “Interface-Constrained” Devices 41

dark green, and blue and dark blue. If a user is shown blue (without showing dark blue
beforehand) and asked to identify whether it is dark blue or blue, it is highly likely that
the user will be confused, because the user would not be sure whether a more or less
bright version of the color exists or not. We generated the same set of 11 colors and some
more colors on monitor screen using the simulated annealing method as described in [8].
However, with the help of some preliminary testing on some human users, we concluded
that the number of distinct colors is definitely not more than 11; in fact, it might be less
than 11. This was also because all the 11 colors of [8] were not easily distinguishable by
human users on multi-color LED as light and dark shades of the same color (e.g., light
green and dark green) turned out to be confusing/conflicting with respect to surrounding
light.

Based on our initial experimentation and testing, as described above, we finally de-
cided to stick to a maximum of 8 human-distinguishable colors. With 8 colors, we can
encode 3-bits of SAS data at a time. These eight colors are comprised of 3 primary col-
ors (Red, Green, Blue), 3 secondary colors (Yellow, Magenta, Cyan) and two tertiary
colors (Orange and Violet). With the help of some initial testing, we assured ourselves
that these 8 colors are unambiguous as displayed both on a monitor screen and on a
multi-color LED. We used 24-bit RGB model for the colors; thus above eight colors
have the following RGB values: Red (255,0,0), Green (0,255,0), Blue (0,0,255), Yel-
low (255,255,0), Magenta (255,0,255), Cyan (0,255,255), Orange (255,127,0) and Vio-
let (127,0,255). We used primary, secondary and tertiary colors for color pairing because
these colors are easy to generate on a multi-color LED. The primary colors are directly
generated by LED cathodes and mixing the primary colors in different ratios generated
secondary and tertiary colors.

4.2 Generating “Human-Distinguishable” Colors on a Multi-Color LED

Multi-Color LED [2] is a specialized form of LED which has one common Anode and
3 Cathodes for three primary colors (Red, Green and Blue). Each of the primary col-
ors can be produced by directly turning ON each cathode (keeping others OFF). For
producing secondary colors, we need to turn ON two of the cathodes concurrently. For
example, Yellow is a combination of Green and Red. So, turning ON the green and red
cathodes generated Yellow. Similarly, Magenta is produced by turning ON the red and
blue cathodes concurrently and cyan is produced by turning on the green and blue cath-
odes concurrently. Tertiary colors Orange (Red + Yellow = 2× Red + Green) and Violet
(Blue + Magenta = 2× Blue + Red) are produced by turning ON two cathodes simul-
taneously; but, currents are varied between cathodes to produce the tertiary colors. For
example, to produce Orange which is a combination of Red and Green with ratio 2:1,
current flow in Red cathode is kept twice than that of Green cathode. Similarly, Violet
is produced by passing twice the amount of current in Blue cathode than that of Red
cathode.

For varying the current on different cathodes, we designed a circuit (as shown in Fig-
ure 1(a)), using NPN transistors, different resistors and controlled it through a computer
by sending the data through the parallel port. Each cathode of the multi-color LED is
controlled by 3 pins of parallel port connected with different values of resistors. By
sending 9-bit binary data to parallel port, current flows in cathodes are controlled.

42 N. Saxena and Md.B. Uddin

(a) Without color mixer coop (b) With color mixer coop

Fig. 1. Multi-Color LED Circuit on Breadboard

The multi-color LED was enclosed with a black plastic hollow coop and covered
with thin layer of tissue paper from outside (as shown in Figure 1(b)). This was done
in order to generate the secondary and tertiary colors by properly mixing the primary
colors.

4.3 Implementation: Transmission and Decoding

We developed an application in Visual C# to control the LED controller circuit on bread-
board connected with a computer through the parallel port (as shown in Figure 1). The
SAS data is mapped onto color values and color values are used to activate the corre-
sponding cathodes of the LED in order to generate the human-distinguishable colors.
When the user starts the pairing process, the application starts showing each color on
the LED first and then asks the user to select the corresponding color on the screen
from a list of all possible human-distinguishable colors. After selection of each color
by the user, the application turns OFF the LED and asks the user to verify whether or
not the LED turned OFF and accordingly press “Yes” or “No” button (respectively)
to proceed and display the next color. This is done in order to keep the transmission
resistant against insertion, deletion, delay and/or replay of synchronization signals be-
tween the two devices. A synchronization signal is sent, over the wireless channel, from
device B with color input screen to device A displaying colors, as soon as the user
selects the color on B. This instructs device A to now show the next color. Turning
OFF of the LED indicates to the user that the synchronization signal has been cor-
rectly received by device A; if the LED stays ON, it indicates a synchronization er-
ror/attack.

The above process continues until the whole SAS data is transmitted encoded through
human-distinguishable colors unless there is synchronization error (i.e., the LED is not
turned OFF and the user presses on “NO” button or vice versa). After transmission
(through human distinguishable colors on LED) and reception (from users’ color selec-
tion on screen) of the SAS data , the application shows the result (failure/success) of
pairing. If there are no synchronization errors and if the SAS strings match, the pairing
is deemed successful; otherwise, the pairing fails.

For 15-bit SAS data and N human-distinguishable colors, we require 15
log2N “passes”

for transmission of SAS data. In each pass, one of N colors is shown by the multi-color
LED and user selects the corresponding color from N colors on screen.

Secure Pairing of “Interface-Constrained” Devices 43

5 “Alphanumeric Pairing” Using a Sixteen-Segment Display

Sixteen Segment Display (SSD) [3] is an inexpensive, commercially available minimal
alphanumeric display. It is capable of showing all the (capital) English alphabets and all
digits (0-9). Due to its low cost, small size, availability and good layout, SSD is quite
suitable to be incorporated for pairing operation.

In the “alphanumeric pairing” method, the SAS data is encoded into alphanumeric
characters and displayed on the SSD of device A one-by-one. The user simply reads
each displayed character and types it onto the keypad of device B. Similar to the pairing
method based on the multi-color LED (as described in previous section), after each
character is typed in by the user, the display is turned OFF and the user is asked to verify
whether it is turned OFF or not, before displaying the next character. In this manner, the
SAS data is transferred from device A to device B, while maintaining synchronization.
Once device B decodes the received SAS data, it compares it with its own local copy;
and accordingly accepts or rejects the pairing instance.

5.1 Encoding of SAS Data into Alphanumeric Characters

SSD can show 10 digits and 26 capital letters of English alphabet; i.e., a total of 36
alphanumeric characters. We wanted to keep the set of characters as unambiguous as
possible so that the users with no prior knowledge of the character layout on SSD can
easily identify the characters. To this end, we decided to discard 4 characters, ‘0’, ‘O’,
‘5’, and ‘S’, which appear quite ambiguous (without prior knowledge of the layout,
users might mistake a ‘0’ for a ‘O’ or a ‘5’ for an ‘S’, and vice versa). This left us with
a character space of size 32.

For 15-bit SAS transmission using 32 alphanumeric characters, a total of 15
log2(32) = 3

passes, i.e., 3 characters, need to be transferred between the two devices. After each

Fig. 2. Overall Experimental Setup of the Color and Alphanu-
meric Pairing (the cardboard box with the multi-color LED and
the SSD, simulates, e.g., an access point in a cyber-cafe; the
desktop simulates the laptop.)

Fig. 3. Sixteen Segment Dis-
play (displaying character ‘H’)

44 N. Saxena and Md.B. Uddin

pass, the SSD display is turned OFF and the user is asked to verify whether it is indeed
OFF and accordingly press “Yes” or “No” button to proceed.

To implement our new pairing method using SSD, we extended our C# application
we developed for color-based pairing (as described in previous section). The SSD was
connected with the parallel port of the computer via two “serial-in-parallel-out” shift
registers. Serial data and clocks were sent from the parallel port to the shift registers
and shift registers supplied the data in parallel to the SSD. Figure 3 shows the snapshot
of the setup of the SSD we used.

6 Experiments and Results

6.1 Experimental Setup

To test our color and alphanumeric pairing methods, we used the following set-up. The
application which controls the multi-color LED and alphanumeric display is running on
a DELL Desktop computer (1.8 GHz CPU, 1 GB RAM, WinXP Pro SP2) connected
with multi-color LED on breadboard and sixteen segment display (as shown in Figure 2)
through parallel port (DB25 Connector). This computer works as both transmitter and
receiver of SAS data in both color-based and alphanumeric pairing. In color pairing, the
breadboard with multi-color LED connected with parallel port simulates the transmit-
ting device and application running on computer having interface for selecting colors
simulates the other device. Similarly, the breadboard with sixteen segment display con-
nected with parallel port of computer simulates one device and application running on
the desktop computer having character input interface simulates another device in al-
phanumeric pairing.

For color pairing circuit, we used one multi-color LED (08L5015RGBC) [2], 12 NPN
Transistors (ZTX450), 3 categories (0.5k, 1k, 2k Ohms) resistors - 3 of each value and
nine 10k Ohm resistors. For alphanumeric pairing circuit, we used one sixteen segment
display (AND-8010GCLB) [3], two serial-in-parallel-out shift registers (SN74LS164).
Both the color and alphanumeric pairing circuits are powered from DC power source
of the computer.

As mentioned in prior sections, an application running on desktop computer is devel-
oped in Microsoft Visual C# for controlling both the circuits of color and alphanumeric
pairing. The application also supports all necessary functionality for an automated user
testing. The application accepts the inputs from users in both color and alphanumeric
pairing, shows the result of pairing and finally records the users feedback as part of the
usability testing. The application also keeps track of users inputs and timings and logs
the result of pairing and all necessary information regarding users background and their
feedback. A couple of screen-shots of the execution of our application for both color
and alphanumeric pairing are shown in Figures 4 and 5.

6.2 Usability Testing

In order to test how both of our pairing methods fare with users, and especially to figure
out if the users are easily and correctly able to transfer the colors and alphanumeric
characters as displayed by the multi-color LED and the SSD, respectively, we performed

Secure Pairing of “Interface-Constrained” Devices 45

a thorough and systematic usability study. We focused on a common security application
of detecting Evil Twin access points (as in [18], but in a rushing user resistant manner).
Note that this only requires unidirectional authentication. Thus, we did not incorporate
in our tests the final step of the protocol of [19] whereby the user accepts or rejects the
pairing on device A based on the pairing outcome shown by device B. See Figure 2
depicting our experimental set-up.

6.3 Testing Framework

For creating a user-friendly but realistic testing framework, we extended the circuit con-
troller application (running on the desktop computer) by implementing the usability
testing and user feedback collection functionality on it.

For color pairing, the users are instructed to transfer the colors as displayed by the
multi-color LED to the desktop screen by clicking on the corresponding “color but-
tons”. For testing our color pairing method with respect to pairing time and user errors,
we conducted our usability testing in 3 settings - using 2, 4 and 8 colors. For 15-bit
SAS string, “2-Color” pairing method requires 15

log22 = 15 passes. Similarly, “4-Color”

pairing requires � 15
log24� = 8 passes and “8-Color” pairing requires 5 passes. For all the

settings, each pass is comprised of four steps: (1) Displaying of a SAS-encoded color
on the LED, (2) Selection of the color by the user on desktop screen, (3) Turning off
of the LED (i.e., with no color being displayed on the LED) and (4) Verification by the
user whether the LED is in OFF state.

For the 2-Color pairing method, we selected first two colors (Red and Green) out of
the primary colors (Red, Green and Blue). For the 4-Color pairing method, we selected
primary colors (Red, Green, Blue) and first color (Yellow) out of the of secondary col-
ors (Yellow, Magenta and Cyan). For the 8-Color pairing method, we selected primary
colors (Red, Green, Blue), secondary colors (Yellow, Magenta, Cyan) and two colors
(Orange and Violet) out of tertiary colors (Azure, Violet, Rose, Orange, Chartreuse and
Aquamarine). A few screen-shots of user interfaces for color pairing methods are shown
in Figure 4.

For testing the alphanumeric pairing method with respect to pairing time and user er-
rors, the application is configured to take alphanumeric inputs from the users. Users were
instructed to input the character, displayed on sixteen segment display, onto the desktop
keyboard. For 32 alphanumeric characters and 15-bit SAS data, it requires 15

log232 = 3
passes for the pairing process. Each pass is comprised of the following steps: (1) Dis-
playing of a SAS-encoded character on the sixteen-segment display, (2) Inputting the
corresponding character on desktop keyboard, (3) Turning off of the display (i.e., with
no character being displayed on the SSD) and (4) Verification by the user whether the
SSD is in OFF state. The application converted all characters to uppercase on the input
text-box and displayed the result of pairing after the completion of 3 passes. A couple
of screen-shots of user interfaces for the alphanumeric pairing are shown in Figure 5.

6.4 Test Cases

For each of the three methods of color pairing (i.e., using 2, 4 and 8 colors), two test
cases were created; thus, a total of 6 test cases were executed by each user for color

46 N. Saxena and Md.B. Uddin

(a) Using Two Colors (b) Using Four Colors

(c) Using Eight Colors (d) Turn OFF Verification Screen

Fig. 4. Usability Testing of Color Pairing Using Multi-Color LED

(a) Character Input Interface (b) Turn OFF Display Checking Screen

Fig. 5. Usability Testing of Alphanumeric Pairing

pairing. In each color pairing method, all the colors of that particular method appeared
at least once (in other words, no user missed out a single color) and the colors appeared
in random order on the multi-color LED.

For alphanumeric pairing, 15-bit SAS data requires each test case to show 15
log232

= 3
alphanumeric characters. Thus, it required � 32

3 � = 11 test cases to show all the 32
alphanumeric characters at least once to each user. Alphanumeric characters were shown

Secure Pairing of “Interface-Constrained” Devices 47

randomly on the sixteen segment display and each user executed a total of 11 test cases
of alphanumeric pairing.

6.5 Test Participants

We recruited 20 subjects for the usability testing of both color and alphanumeric pairing.
Subjects were chosen on a first-come first-serve basis from respondents to recruiting
posters and email advertisements. At the end of the tests, the participants were asked to
fill out an on screen questionnaire through which we obtained user demographics and
their feedback on the methods tested.

Recruited subjects were mostly university students, both graduate and undergraduate,
with CS and non-CS backgrounds. This resulted in a fairly young (ages between 18-
35 [mean=24.15, se=0.7549]), well-educated participant group. All participants were
regular computer and cell phone users. 18 out of 20 participants reported they have
previously used a wireless accessory such as access point/modem/router. 12 out of 20
participants reported they have previously used a bluetooth device such as bluetooth-
headset, mouse or keyboard. Eight participants were familiar with the vulnerability of an
un-encrypted wireless channel and five participants chose the statement “Un-encrypted
wireless channel isn’t vulnerable to attack” and 7 participants were not sure about the
statement. None of the study participants reported any physical impairments that could
have interfered with their ability to complete given tasks and none of them had any vi-
sual disability, color vision problem or color blindness. The gender split was: 4 females
and 16 males.

6.6 Testing Process

Our study was conducted in a graduate student laboratory of our university. Each partici-
pant was given a brief overview of our study goals and our experimental set-up. Each par-
ticipating user was then asked to follow on-screen instructions on the desktop computer
for both color and alphanumeric pairing. No training of any sort was given. Basically,
the participants played the role of the user in the color and alphanumeric pairing process
i.e., they transferred colors shown by the multi-color LED and alphanumeric characters
shown by the Sixteen Segment Display to the application running on Desktop Computer.
Each user completed 6 color pairing tests (two test cases for each category using 2, 4
and 8 colors) and 11 alphanumeric pairing test cases. Pairing outputs, user interactions
throughout the tests and timings were logged automatically by the testing framework.

After completing the deputed test cases for both the color and alphanumeric pairing
in the above manner, the participants were asked to give some qualitative feedback on
the tested methods. For color pairing, participants were asked to score on a 1-10 scale
(1-Low, 10-High) how distinct the colors were as shown by the monitor screen and by
the multi-color LED; how easy they found to read and transfer the colors from multi-
color LED to monitor screen. Users were also asked to choose- which color pairing
method they preferred the most: 2-Color, 4-Color or 8-Color pairing.

For alphanumeric pairing, participants were asked to score on a 1-10 scale (1-Low,
10-High) how distinct were the alphanumeric characters as shown by the sixteen

48 N. Saxena and Md.B. Uddin

segment display, how easy they found to read and transfer the characters from sixteen
segment display to the computer.

Participants’ demographic information such as age, gender, educational qualifica-
tion, visual and color vision disability, computer, wireless and bluetooth device usage
experience and knowledge on security of wireless channel were all collected through
this questionnaire. All user data and feedback were logged by the testing framework for
later analysis.

6.7 Test Results

Each of our 20 subjects executed 6 color pairing and 11 alphanumeric test cases, leading
to a total of 120 color pairing (i.e., 40 test cases for each of 2-Color, 4-Color, and 8-
Color pairing methods) and 220 alphanumeric pairing test cases.

Errors. Most of the test cases completed successfully giving expected results. In some
cases, however, we observed a few errors, which we categorize and describe below.

– Color Pairing Errors:
In the 2-Color pairing method, 4 users clicked on wrong colors for a total of 5 times
in 4 test cases. Thus, 4 test cases failed out of 40 test cases. So, pairing failure rate
= 4

40 ×100% = 10%. Users failed to transfer 5 colors out of 40×15 = 600 colors.
So, color transfer failure rate = 5

600 × 100% = 0.83%.
In the 4-Color pairing method, 2 users clicked on wrong colors for a total of 2 times
in 2 test cases. This led to a pairing failure rate = 2

40 × 100% = 5% and a color
transfer failure rat e= 2

320 × 100% = 0.625%.
In the 8-Color pairing method, 12 users clicked on wrong color for a total of 16
times in 12 test cases, leading to a pairing failure rate = 12

40 × 100% = 30%. and a
color transfer failure rate = 16

200 × 100% = 8%.
The graph presented in Figure 6(b) depicts the pairing failure rates and color transfer
failure rates for the three color pairing methods.

– Alphanumeric Pairing Errors:
In the alphanumeric pairing, 9 users made a total of 12 errors in 12 test cases (i.e.,
single character errors in each failed test case) out of 220 test cases as listed in
Figure 8.
Therefore, the pairing failure rate = 12

220 × 100% = 5.45%. 20 users transferred a
total of 20×11×3 = 660 characters and out of them, 12 characters were transferred
as incorrectly So, character transfer failure rate = 12

660 × 100% = 1.818%.

Test Timing. The mean pairing time of color pairing using 2, 4 and 8 colors are shown
in the graph of Figure 6(a). Clearly each of the color pairing methods requires less than
30 seconds of pairing time and the 4-Color pairing method is the fastest of them all
[mean=14.289 seconds, se=0.3138], whereas the 2-Color is the slowest [mean=25.7318
seconds, se=0.7545].

The average time taken by each user (over the 11 test cases) to perform the alphanu-
meric pairing is depicted in Figure 7. Clearly, it shows that most of the users completed
the alphanumeric pairing within 15 seconds [mean=9.393 seconds, se=0.2670].

Secure Pairing of “Interface-Constrained” Devices 49

(a) Pairing Time with Standard Error (b) Pairing and Color Transfer Failure Rates

Fig. 6. Results of Color Pairing - using 2, 4 and 8 Colors

Fig. 7. Result of Alphanumeric Pairing: User Tim-
ing with Standard Error (users are sorted by average
time)

Displayed
on SSD

Transferred
by User

of Occur-
rences (out of
660)

G 6 4
Q 0 4
1 I 3
B D 1

Fig. 8. User Errors in Reading and
Transferring Alphanumeric Characters

These timings are commensurate with the timings of the pairing methods presented
in [17] [18]. Recall that the latter methods are not resistant to a rushing user behavior.

User Feedback. The user feedback was collected on the distinctiveness of all 8 colors
as shown by the multi-color LED and on monitor screen and on the easiness to trans-
fer these colors. It was assumed that distinctiveness and unambiguity of these 8 colors
would automatically imply the distinctiveness and unambiguity of the colors used in the
2-color and 4-color pairing methods. As our results show, most users found the methods
robust and quite easy to work with. The qualitative results we obtained through the user
feedback questionnaire on color pairing are shown in Table 1.

The users were also asked to compare the three methods in terms of the distinctive-
ness of underlying colors, ease of transfer and selection of colors and overall work-load
in the whole process. In this respect, 2 out of 20, i.e., 10% users preferred the 8-color

50 N. Saxena and Md.B. Uddin

Table 1. User Feedback Score [1 (Low) - 10 (High)] with Standard Error (se) on Color Pairing

Basis Score

Distinctness of the colors on Monitor Screen 9.45 (se=0.1352)
Distinctness of the colors on Multi-Color LED 7.4 (se=0.3934)
Easiness of color transfer from Multi-Color LED to Monitor Screen 8.6 (se=0.3276)

Table 2. User Feedback Score [1 (Low) - 10 (High)] with Standard Error (se) on Alphanumeric
Pairing

Basis Score

Distinctness of the characters on 16-Segment Display 8.85 (se=0.2542)
Easiness of character transfer from 16-Segment Display to Computer 9.05 (se=0.3118)

pairing method, 10 out of 20, i.e., 50% users preferred the 4-color pairing method and
8 out of 20; i.e., 40% users preferred the 2-color pairing method.

The results of the user feedback questionnaire on alphanumeric pairing are depicted
in Table 2. Similar to the color pairing methods, most users found the method robust
and quite easy to work with. We did not find any notable correlation of the subjects’ age,
gender and technical expertise with the results obtained for both color and alphanumeric
pairing.

7 Conclusions and Future Work

In this paper, we addressed a challenging problem of pairing interface-constrained de-
vices in a rushing user resistant manner. We can draw the following conclusions from
the results of usability testing of our color and alphanumeric pairing methods.

Among the color pairing methods, the 4-color method turns out to be a clear winner
in terms of pairing speed, errors and usability. This is mainly due to the reason that the
four colors used in the 4-color pairing method are quite distinct and unambiguously
identifiable by human users, as opposed to the eight colors used in the 8-color pairing
method. In comparison to the 2-color method, on the other hand, the 4-color method
requires fewer passes, thus speeding up the pairing process and reducing user burden.

As our results show, the alphanumeric pairing method also turned out to be quite
robust to errors, fast and user-friendly. The errors resulting through this method could
potentially be further reduced by using less confusing non-alphabetic characters.

Both 4-color pairing and alphanumeric pairing methods can also be easily adopted
on devices which have good quality output interfaces (such as a full display on a cell
phone). Notice that on such devices, there will be no need for synchronization between
the two devices, as all of SAS data (e.g., all colors and all digits) can be displayed on
one single screen. In fact, the “Copy-and-Confirm” method of [25] is nothing but our
alphanumeric pairing method for devices with good quality displays.

Between the 4-color pairing and alphanumeric pairing methods, we find the latter
to be slightly faster, but, the former to be slightly more robust to errors. In terms of

Secure Pairing of “Interface-Constrained” Devices 51

usability also, the two methods turned out to be comparable. However, since a multi-
color LED is smaller in size and slightly cheaper than the sixteen segment display, we
believe that 4-color pairing would be a more practical choice. Moreover, LED colors can
also be comprehended from a distance (e.g., in case of a wall-mounted access point).
To support the 4-color pairing method, device manufacturers would only need to use a
multi-color LED in place of regular LED(s) which are quite common on most devices.

In conclusion, our results show that the 4-color pairing method is quite appropriate
for most pairing scenarios: it is fast, robust, user-friendly, resistant against rushing user
behavior, and can be incorporated on most devices with only a little modification. Based
on our testing, 4-color pairing method turns our to be ideal for defending against a com-
mon threat of evil twin access points, in a rushing user resistant manner. Alphanumeric
pairing is suitable for devices that can afford to have a sixteen segment display.

In our current design of the 4-color pairing method, we did not consider “color-
blindness”, a common visual disability. It is found that most color-blind people are
“red-green” color blind (i.e., they can not distinguish between red and green colors)
[1]. To address color-blindness, one could select distinct colors other than red and green
in our 4-Color pairing method. In our future work, we will design and evaluate such a
variation of the 4-color pairing method.

Acknowledgments. The authors would like to thank Vikram Padman and Kurt Rosen-
feld for their help and discussion on the setup involving Multi-Color LED.

References

1. Color blindness. On-line article Published by University of Illinois Eye and Ear Infir-
mary, http://www.uic.edu/com/eye/LearningAboutVision/EyeFacts/
ColorBlindness.shtml

2. Datasheet and Specification for Multi-Color LED. Electronix Express/RSR Electronics,
http://www.elexp.com/a_data/08l5015rgbc.pdf

3. Datasheet and Specification of Sixteen Segment Display,
http://www.purdyelectronics.com/pdf/AND8010-B.pdf

4. Balfanz, D., Smetters, D., Stewart, P., Wong, H.C.: Talking to strangers: Authentication in
ad-hoc wireless networks. In: Network & Distributed System Security (NDSS) (2002)

5. Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for building
secure channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, p. 453.
Springer, Heidelberg (2001)

6. Dhamija, R., Tygar, J.D., Hearst, M.A.: Why phishing works. In: International Conference
for Human-Computer Interaction (CHI) (2006)

7. Gehrmann, C., Mitchell, C.J., Nyberg, K.: Manual authentication for wireless devices. RSA
CryptoBytes 7(1), 29–37 (Spring 2004)

8. Glasbey, C., van der Heijden, G., Toh, V., Gray, A.: Colour displays for categorical images.
Color Research and Application 32, 304–309 (2007)

9. Goldberg, I.: Visual Key Fingerprint Code (1996),
http://www.cs.berkeley.edu/iang/visprint.c

10. Goodrich, M.T., Sirivianos, M., Solis, J., Tsudik, G., Uzun, E.: Loud and Clear: Human-
Verifiable Authentication Based on Audio. In: International Conference on Distributed Com-
puting Systems (ICDCS) (2006)

http://www.uic.edu/com/eye/LearningAboutVision/EyeFacts/ColorBlindness.shtml
http://www.uic.edu/com/eye/LearningAboutVision/EyeFacts/ColorBlindness.shtml
http://www.elexp.com/a_data/08l5015rgbc.pdf
http://www.purdyelectronics.com/pdf/AND8010-B.pdf
http://www.cs.berkeley.edu/iang/visprint.c

52 N. Saxena and Md.B. Uddin

11. Kuo, C., Walker, J., Perrig, A.: Low-cost manufacturing, usability, and security: An analysis
of bluetooth simple pairing and wi-fi protected setup. In: Dietrich, S., Dhamija, R. (eds.)
USEC 2007. LNCS, vol. 4886, pp. 325–340. Springer, Heidelberg (2007)

12. Laur, S., Asokan, N., Nyberg, K.: Efficient mutual data authentication using manually
authenticated strings. In: Pointcheval, D., Mu, Y., Chen, K. (eds.) CANS 2006. LNCS,
vol. 4301, pp. 90–107. Springer, Heidelberg (2006)

13. McCune, J.M., Perrig, A., Reiter, M.K.: Seeing-is-believing: Using camera phones for
human-verifiable authentication. In: IEEE Symposium on Security and Privacy (2005)

14. Pasini, S., Vaudenay, S.: An optimal non-interactive message authentication protocol. In:
The Cryptographers’ Track at the RSA Conference (CT-RSA) (2006)

15. Pasini, S., Vaudenay, S.: SAS-Based Authenticated Key Agreement. In: Yung, M., Dodis,
Y., Kiayias, A., Malkin, T.G. (eds.) PKC 2006. LNCS, vol. 3958, pp. 395–409. Springer,
Heidelberg (2006)

16. Perrig, A., Song, D.: Hash visualization: a new technique to improve real-world security. In:
International Workshop on Cryptographic Techniques and E-Commerce (CrypTEC) (1999)

17. Prasad, R., Saxena, N.: Efficient Device Pairing using Human-Comparable Synchronized
Audio Visual Patterns. In: Bellovin, S.M., Gennaro, R., Keromytis, A.D., Yung, M. (eds.)
ACNS 2008. LNCS, vol. 5037, pp. 328–345. Springer, Heidelberg (2008)

18. Roth, V., Polak, W., Rieffel, E., Turner, T.: Simple and effective defenses against evil twin
access points. In: ACM Conference on Wireless Network Security (WiSec) (2008)

19. Saxena, N., Ekberg, J.-E., Kostiainen, K., Asokan, N.: Secure device pairing based on a
visual channel. In: IEEE Symposium on Security & Privacy, short paper (2006)

20. Saxena, N., Uddin, M.B., Voris, J.: Universal Device Pairing using an Auxiliary Device. In:
Symposium On Usable Privacy and Security (SOUPS) (2008)

21. Soriente, C., Tsudik, G., Uzun, E.: BEDA: Button-Enabled Device Association. In: Inter-
national Workshop on Security for Spontaneous Interaction (IWSSI) (2007)

22. Soriente, C., Tsudik, G., Uzun, E.: HAPADEP: Human Asisted Pure Audio Device Pairing.
In: International Information Security Conference (ISC), Taipei, Taiwan (September 2008)

23. Stajano, F., Anderson, R.J.: The resurrecting duckling: Security issues for ad-hoc wireless
networks. In: Security Protocols Workshop (1999)

24. Suomalainen, J., Valkonen, J., Asokan, N.: Security associations in personal networks: A
comparative analysis. In: Stajano, F., Meadows, C., Capkun, S., Moore, T. (eds.) ESAS 2007.
LNCS, vol. 4572, pp. 43–57. Springer, Heidelberg (2007)

25. Uzun, E., Karvonen, K., Asokan, N.: Usability analysis of secure pairing methods. In: Diet-
rich, S., Dhamija, R. (eds.) USEC 2007. LNCS, vol. 4886, pp. 307–324. Springer, Heidelberg
(2007)

26. Vaudenay, S.: Secure communications over insecure channels based on short authenticated
strings. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 309–326. Springer, Hei-
delberg (2005)

27. Čagalj, M., Čapkun, S., Hubaux, J.-P.: Key agreement in peer-to-peer wireless networks.
Proceedings of the IEEE 94(2), 467–478 (2006)

How to Extract and Expand Randomness:

A Summary and Explanation of Existing
Results�

Yvonne Cliff, Colin Boyd, and Juan Gonzalez Nieto

Information Security Institute, Queensland University of Technology
GPO Box 2434, Brisbane Qld 4001, Australia

y.cliff@isi.qut.edu.au, {c.boyd,j.gonzaleznieto}@qut.edu.au

Abstract. We examine the use of randomness extraction and expansion
in key agreement (KA) protocols to generate uniformly random keys in
the standard model. Although existing works provide the basic theorems
necessary, they lack details or examples of appropriate cryptographic
primitives and/or parameter sizes. This has lead to the large amount of
min-entropy needed in the (non-uniform) shared secret being overlooked
in proposals and efficiency comparisons of KA protocols. We therefore
summarize existing work in the area and examine the security levels
achieved with the use of various extractors and expanders for particular
parameter sizes. The tables presented herein show that the shared secret
needs a min-entropy of at least 292 bits (and even more with more real-
istic assumptions) to achieve an overall security level of 80 bits using the
extractors and expanders we consider. The tables may be used to find
the min-entropy required for various security levels and assumptions.
We also find that when using the short exponent theorems of Gennaro et
al., the short exponents may need to be much longer than they suggested.

Keywords: randomness extraction, randomness expansion, key agree-
ment, key exchange protocols, pseudorandom function (PRF), universal
hash function, leftover hash lemma (LHL).

1 Introduction

In this paper we examine the techniques available for extracting and expanding
randomness in the context of key agreement (KA) protocols. In such protocols,
an agreed secret key is often a random member of a given group, and not a
string of bits distributed uniformly at random. However, when the key is used,
e.g. as the key of a symmetric encryption scheme, it is likely that a key consisting
of bits distributed uniformly at random will be necessary, requiring the use of
randomness extraction, and possibly randomness expansion techniques.

� This is an extended abstract. The full version is available at http://eprint.iacr.

org/2009/136. Research funded by Australian Research Council through Discovery
Project DP0666065.

M. Abdalla et al. (Eds.): ACNS 2009, LNCS 5536, pp. 53–70, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

http://eprint.iacr.org/2009/136
http://eprint.iacr.org/2009/136

54 Y. Cliff, C. Boyd, and J. Gonzalez Nieto

Informally, a randomness extractor is a family of functions keyed by a random
but public value, where the input to each function is a value with high entropy,
and the output is indistinguishable from a uniformly random bit string. Unfor-
tunately, the number of bits of entropy in the input must usually be much larger
than the number of bits in the output for practical security parameters.

A randomness expander, or pseudo-random function family (PRFF), is a fam-
ily of functions keyed by secret, uniformly random strings, with each function
taking as input any publicly known value and outputting a value indistinguish-
able from one distributed uniformly at random.

When only one relatively short uniformly random key is required of a KA
protocol, the output of a randomness extractor may be used as the required key.
However, it is more likely that the output of the extractor will be used to key
a randomness expander, to provide a longer key or multiple keys, e.g. when one
random group member is used to derive a MAC (message authentication code)
key for use in the KA protocol, as well as the final agreed secret key.

This step of converting a randomly chosen group member to a uniformly
random string or strings of bits is often not discussed in papers proposing KA
protocols. However, if the key derivation function is not modelled with the ran-
dom oracle model, this step has a significant impact on how large the security
parameter of the KA protocol needs to be to achieve proven security of a given
level. As noted by Gennaro et al. [1, p.4] and Chevassut et al. [2, p.2], this point
is often overlooked, particularly in protocol efficiency comparisons.

One reason randomness extraction and expansion and their effect on security
parameter sizes is often overlooked may be the plethora of existing works that
must be examined to obtain the necessary background knowledge, and the dearth
numerical examples. Therefore, this paper provides:

– a summary of existing results on randomness extraction and expansion, in-
cluding relevant definitions and theorems, and numerical examples,

– details of the short exponent discrete-log (DLSE) assumption and its use
with randomness extraction and expansion (including numerical examples),

– an analysis of why assumptions made by Dodis et al. [3] in some justifications
of the use of HMAC and cascade chaining (such as SHA) as randomness
extractors are not realistic,

– a valuable resource for protocol designers and implementors to enable them
to use security parameters of an appropriate size in efficiency comparisons
and implementations, without having to examine all of the existing works,

– the observation, through the use of numerical examples for values of practical
interest, that some of the theoretical results available are of limited practical
value, due to the non-existence of underlying functions of an appropriate size
or the availability of better methods,

– results for the standard model only; although use of a random oracle as a
randomness extractor would mean that shorter parameters would be required
in a protocol to achieve the same security level, making it more efficient, our
aim is to describe solutions available for the standard model.

How to Extract and Expand Randomness 55

We will begin by examining the suitability of various candidates as random-
ness expanders, which will tell us how large a key needs to be provided by the
randomness extractor. We will then examine randomness extractors, and the
amount of entropy required for their input in order to extract a long enough key
for the randomness expander.

Prior work includes that of Dodis et al. [3], the first to attempt to justify
the use of CBC-MAC, cascade chaining and HMAC as randomness extractors
in the standard model, and that of Gennaro et al. [1] who examined the use
of universal hash functions as randomness extractors in conjunction with the
DDH (decisional Diffie-Hellman) assumption and short exponents. Chevassut et
al. [2] made some brief but interesting observations on randomness extraction
and expansion in general, before providing methods of randomness extraction
which are more efficient than those studied here, but are only applicable for
groups of points over an elliptic curve (EC), and the group of prime order q
in Z

∗
p where p = 2q + 1 and is prime. Their method for EC groups requires

computations in the KA protocol to be carried out on an EC as well as its
twist, instead of just on the curve, and so increases the number of computations
required. However, the method may be advantageous as these computations on
the EC and its twist will be in smaller groups than those necessary when using
the methods studied in this paper in conjunction with computations on the EC
only. Fouque et al. [4] showed that the lower order bits of a member of a subgroup
of Z

∗
p may be considered random in the right circumstances. Another work of

Fouque et al. [5] examined the use of HMAC as a randomness extractor when
the randomness is extracted from the HMAC key, and included an analysis of
the cascade construction as a randomness extractor.

2 Notation and Basic Definitions

The notation mostly follows Dodis et al. [3] and Gennaro et al. [1]. For a proba-
bility distribution X over a set A, the notation x ∈X A indicates that x is chosen
from A according to the distribution X . The notation x ∈R A indicates that x is
chosen from A according to the uniform distribution. PrX [x] indicates the prob-
ability that distribution X assigns to the value x ∈ A. In some cases, definitions
taken from other works have been modified to make the notation consistent.

This paper uses a concrete security approach, to allow determination of the size
of the parameters needed in a protocol to achieve a given level of security. Follow-
ing Gennaro et al. [1], we speak of circuits of size S having a certain probability, ε
of solving a particular problem. One may also think of a circuit of size S as a pro-
gramme running in time t, where ‘time’ actually includes the length of the descrip-
tion of the programme (to avoid trivializing hard problems through the use of large
precomputed tables), as well as the actual execution time of that programme [6].

We now introduce computational indistinguishability, a refinement of the no-
tion of statistical distance (or variation distance) from probability theory. If two
distributions are statistically close, they are computationally indistinguishable,
although the converse is not true [7, Sect. 3.2.2].

56 Y. Cliff, C. Boyd, and J. Gonzalez Nieto

Definition 1 ((S, ε)-indistinguishability [1, p.19]). Let X ,Y be two proba-
bility distributions over A. Given a circuit D (called the distinguisher) consider
the following quantities:

δD,X = Prx∈X [D(x) = 1] and δD,Y = Pry∈Y [D(y) = 1] (1)

We say that the probability distributions X and Y are (S, ε)-indistinguishable if
for every circuit D of size ≤ S we have that |δD,X − δD,Y | ≤ ε .

Definition 2 (Statistical Distance [8, p.131]). The statistical distance be-
tween two probability distributions X and Y over a set A is defined to be1

Δ[X ;Y] = 1
2

∑

x∈A |PrX [x]− PrY [x]| .

Lemma 1 ([3, p.500]). If two distributions have statistical distance of (at most)
ε, they are ε-close. Distributions that are ε-close cannot be distinguished with prob-
ability better than ε even by a computationally unbounded adversary.

The following lemma has a proof [1] based on the triangle inequality or “hybrid
argument.”

Lemma 2 ([1, p.19]). Let three probability distributions X ,Y,Z over a set A
be such that (i) X is (S1, ε1) indistinguishable from Y and (ii) Y is (S2, ε2)
indistinguishable from Z. Then X is (S, ε) indistinguishable from Z where S =
min(S1, S2) and ε = ε1 + ε2.

We now focus on describing how much randomness is in a probability distribu-
tion, defining min-entropy and its computational analogue.

Definition 3 (Min-entropy [1, p.9]). If X is a probability distribution over
A, the min-entropy of X is min- ent(X) = minx∈A:PrX [x] �=0(−log2(PrX [x])) .
(Note that if X has min-entropy t then for all x ∈ A, PrX [x] ≤ 2−t.)

Definition 4 (Computational entropy t [1, p.10]). A probability distribu-
tion Y has (S, ε) computational entropy t if there exists a probability distribution
X that is (S, ε) indistinguishable from Y and min-ent(X) ≥ t.

Definition 5 (Function Family [6, adapted from full paper p.7]). A
function family f : K × D → R (also denoted {fκ}κ∈K), where K is a non-
empty set of keys, is a collection of functions, fκ(·) def= f(κ, ·) for κ ∈ K, from
a domain, D, to a range, R. We call f a permutation family if D = R, and for
each key κ ∈ K, fκ is a permutation on D.

Definition 6 (Truly Random Function (TRF) [5,6]). Denote the set of all
functions from M to {0, 1}L with RandM→2L

(there are 2L|M| such functions).
A function chosen at random from RandM→2L

is a truly random function (TRF)
with input domain M and output domain {0, 1}L.

1 Gennaro et al.’s definition [1] is twice this value, but seems erroneous when compared
with others [8,3,7] .

How to Extract and Expand Randomness 57

A TRF may be implemented by an oracle that, for each new oracle query, gen-
erates an output selected at random from {0, 1}L, and for oracle queries that
are not new, replies with the same output as previously given for that input.

Definition 7 (Cascade Construction [5]). The cascade construction (also
known as keyed Merkle-Damgard cascade chaining) is the construction used for
iterated hash functions. Let H : {0, 1}c × {0, 1}∗ → {0, 1}c denote an iterated
hash function, and let h : {0, 1}c × {0, 1}b → {0, 1}c (the so-called compression
function) be a family with key space {0, 1}c. The cascade construction of h is the
function h∗ : {0, 1}c ×

(

{0, 1}b
)∗ → {0, 1}c defined by:

y0 = a, yi = h(yi−1, xi) and h∗(a, x) = yn

where x = (x1, . . . , xn) is a n · b bit string and a ∈ {0, 1}c. To construct H,
messages must be padded to an exact multiple of b bits. The padding, denoted
pad(|x|), is a function of the input length, |x|. Let xpad = x ‖ pad(|x|). Then H
is defined by H(a, x) = h∗(a, xpad).

Let 1 ≤ c′ ≤ c be an integer and let msbc′(·) denote the c′ most significant
bits of a bit string. For any function H with range {0, 1}c, we define for every
input x the truncated iterated hash function H̃(x) = msbc′(H(x)); e.g. SHA-384
has c′ = 384 and c = 512.

Definition 8 (NMAC [5]). Nmac : {0, 1}c × {0, 1}c × {0, 1}∗ → {0, 1}c′ is a
hash function family constructed from a (possibly truncated) iterated hash func-
tion Hash : {0, 1}c×{0, 1}∗ → {0, 1}c′. If (k1, k2) ∈ ({0, 1}c)2 is a couple of keys
and x ∈ {0, 1}∗ is the input, the definition of NMAC is NmacHash(k1, k2, x) =
Hash(k2, Hash(k1, x)).

Definition 9 (HMAC [5]). HMAC is a hash function from {0, 1}∗ × {0, 1}∗
to {0, 1}c′. Let ipad and opad be two b-bit strings and IV be a c-bit string.
Let Hash : {0, 1}c × {0, 1}∗ → {0, 1}c′ be the (possibly truncated) iterated hash
function with compression function h : {0, 1}c × {0, 1}b → {0, 1}c. If the key k
is a bit string from {0, 1}b, then

HmacHash
IV (ipad , opad ; k, x) = Hash (IV , [k ⊕ opad] ‖ Hash (IV , [k ⊕ ipad] ‖ x))

= NmacHash(h(IV , k ⊕ ipad), h(IV , k ⊕ opad), x).

If the key k is smaller than b bits, then it is first padded with ‘0’ bits to form a
b-bit string, and this string is used as the key. If the key k is larger than b bits,
it is first hashed using Hash to obtain a c′-bit digest, then padded with b− c′ ‘0’
bits to obtain a b-bit string, which is then used as the key.

3 Randomness Expansion

To ascertain the minimum output length required from the randomness extrac-
tor used, we begin by examining the randomness expander—also known as a
pseudorandom function (PRF) family, or PRFF—to be used, since the output
of the randomness extractor will be used as the key to the PRFF.

58 Y. Cliff, C. Boyd, and J. Gonzalez Nieto

Definition 10 (Pseudorandom Function Family [9,6]). A function family
f = {fκ}κ∈K is a (S, q, ε) pseudorandom function family (PRFF) if a circuit, A,
of size S which is given oracle access to either fκ for κ ∈R K or a TRF with
the same domain and range as the functions in f , and makes at most q queries
to this oracle, has advantage at most ε in distinguishing whether it has access to
a random member of f or a TRF; i.e.:

ε ≥ Advprf
f (q, S) def= max

A

{

Advprf
f (A)

}

(2)

Advprf
f (A) def=

∣
∣
∣Pr[AO(·) = 1|O(·) ∈R f]− Pr[AO(·) = 1|O(·) ∈R Rand]

∣
∣
∣ (3)

The values Advprp
f (q, S) and Advprp

f (A), may be defined similarly for an ad-
versary A against a pseudorandom permutation family, except that A attempts
to tell the difference between the permutation family and a truly random per-
mutation, rather than a TRF.

When one PRFF is used with various different keys (e.g. each party from a
number of parties may use its own key to produce pseudorandom values from the
PRFF), there is a linear decrease in security. Furthermore, the key to a PRFF
may be only computationally indistinguishable from random, in which case the
level of security of the PRFF and the level computational indistinguishability
must be combined. This is formally stated and proven in the full version.

Function families widely believed to be pseudorandom include CBC-MAC
used in conjunction with a block cipher, HMAC or the HMAC variant NMAC,
and cryptographic hash functions such as SHA-1 or SHA-256 based on the cas-
cade construction, but with the fixed IV (initialization vector) replaced with a
random key. The full paper discusses the merits of each of these options in turn.
Here we overview the security levels provided by each option. Some assumptions
(described in the full paper) must be made on the security level of the un-
derlying block ciphers or compression functions to arrive at the below concrete
security levels.

3.1 CBC-MAC

Bellare et al. [6] have proved that CBC-MAC is a secure PRFF if the underlying
block cipher is a secure pseudorandom permutation family and the input length
is constant. The level of security provided depends on the block length, number
of queries, q, and number of blocks of input, l. When ql is small (e.g. 2), the
security level is about k = b − 3 bits. Otherwise, if we have ql ≤ 2k (which we
are assuming when we consider a security level of 2k sufficient), then we will
require k ≤ (b−2)/2. If the block cipher to be used with CBC-MAC is AES-128,
AES-192, or AES-256, then the block length, b, will be 128 bits for each of these
ciphers [10]. Therefore, the level of security provided by CBC-MAC when used
in conjunction with any of these ciphers will be no greater than 125 bits, and
will be less for values of q and l larger than 1. Hence, CBC-MAC is likely to be
an acceptable choice of randomness expander for security levels of 80 bits if the
number of queries to randomness expander with a single key is small and the

How to Extract and Expand Randomness 59

length of each query is also small, but inadequate for security levels of 128 bits
and higher. If an unlimited number of queries or queries with a very large length
are able to be made by the adversary to the randomness expander with a single
key, the security level will only be (b− 2)/2 = 63 bits when b = 128.

3.2 HMAC

Bellare [11] has proven that HMAC is a secure pseudorandom function if the
compression function of the underlying hash function is a pseudorandom func-
tion. The analysis assumes that the key provided to HMAC is the same length
as a block for the underlying hash function (i.e. b bits). To achieve a shorter key
of only 2c bits (where c is the length of the output of the compression function),
NMAC may be used, which is similar to HMAC but differs in its use of keying
material. However, NMAC is generally used for analysis of HMAC only, so avail-
ability of an existing implementation is unlikely. Any implementation of NMAC
will require access to the compression function underlying the hash function to
be used, which may be difficult to acquire.

Hash functions likely to be used with HMAC include MD5 [12], RIPEMD-
160 [13], SHA-1, SHA-256, SHA-384 and SHA-512 [14]. Table 1 shows the block
size (b), compression function key and output length (c), hash function output
length (c′) and HMAC security level for each of these algorithms, where q is the
number of queries using the same key and l is the number of blocks per query. The
traditional security level is c/2 bits, due to the birthday based forgery attacks
against iterated MACs [15] that require 2c/2 oracle queries.

3.3 Cascade Construction

Bellare, Canetti and Krawczyk [9] have provided a proof of pseudorandom func-
tion family security for cryptographic hash functions such as SHA-1 or SHA-256
based on the cascade construction, but with the fixed IV (initialization vector)
replaced with a random key, provided the input is prefix-free and the underly-
ing compression function used by the hash function is a pseudorandom function
family. (It is possible to remove the prefix-free requirement by using extra keying

Table 1. Block and key size, output length, and hash and HMAC security level

Algorithm b c′ c Security level (q, l ≤ 2) Security level (q is large)
for Hash for HMAC max. for conservative HMAC
(c − 2) (c − 4) Hash (c−20

2
) Hash (c−40

3
) (c−2

2
)

MD5 512 128 128 126 124 54 29 63
RIPEMD-160 512 160 160 158 156 70 40 79
SHA-1 512 160 160 158 156 70 40 79
SHA-224 512 256 224 254 252 118 72 127
SHA-256 512 256 256 254 252 118 72 127
SHA-384 1024 512 384 510 508 246 157 255
SHA-512 1024 512 512 510 508 246 157 255

60 Y. Cliff, C. Boyd, and J. Gonzalez Nieto

Table 2. Summary of required key lengths for a given security level when q large

Security Key Length
level CBC- Casc. Casc. NMAC HMAC
(bits) MAC min. consrv.

29 128
40 160
54 128
63 128 256 512
70 160
72 256

Security Key Length
level Casc. Casc. NMAC HMAC
(bits) min. consrv.

79 320 512
118 256
127 512 512
157 512
246 512
255 1024 1024

material, but it is unlikely to be necessary in our setting. Belare et al. provided
another construction to improve security using randomization, but if the extra
randomness is counted as part of the key, more keying material than HMAC is
required for a similar security level.)

Table 1 shows the security level of the cascade construction using the same
notation as for HMAC. Assumptions made to obtain the security levels are de-
scribed in the full paper. The difference between the maximum and conservative
security levels for large q is due to different assumptions concerning the efficiency
of the best attack against the underlying compression function.

3.4 Key Length Summary

In summary, when q ≤ 2, a minimum of 128 bits will be needed to key the ran-
domness expander, e.g. using CBC-MAC or the cascade construction, achieving
a security level around 125 bits. In this case, the cascade construction allows the
use of a key about two bits longer than the required security level, and requires
fewer key bits than using NMAC or HMAC for the same security level.

When there is no restriction on q, the cascade construction provides the lowest
key length for a given security level when we take the security level as being c−20

2 .
However, if the more conservative security level of c−40

3 bits is used, then NMAC
may be better, depending on the level of security required. Table 2 summarizes
the results.

4 Randomness Extraction

Let us consider a KA protocol that allows the participating parties to agree upon
a secret value, called the pre-secret, that an adversary cannot distinguish from
a value drawn uniformly at random from a particular distribution, e.g. from a
group in which the DDH (Decisional Diffie-Hellman) assumption holds. Further-
more, assume a randomness extractor and expander are used to derive a final key
from the pre-secret, such that the final key is indistinguishable from a uniformly
random bit string. As will be seen in this section, when using the techniques of
randomness extraction and expansion considered in this paper, the entropy of
the pre-secret must be much larger than the security level required of the final

How to Extract and Expand Randomness 61

key. Therefore, if the pre-secret is from a suitable group, it may seem desirable
to use the discrete-log short-exponent (DLSE) assumption to enable calculations
required by the KA protocol to be more efficient, by using exponents shorter than
the group order. In addition, if the KA protocol is Diffie-Hellman (DH) based,
it may be desirable to use the t-DDH assumption (a relaxation of the DDH as-
sumption) to allow the use of groups with non-prime order with the protocol.
These assumptions and theorems are therefore provided in the full paper. Note
that two theorems of Gennaro et al. [1] regarding use of the DLSE assumption
are incorrect in their original paper and have been corrected in the full paper
according to details supplied by Gennaro in a personal communication.

The most common existing randomness extractor definition is of a strong
randomness extractor:

Definition 11 (Strong randomness extractor [16]). A family of efficiently
computable hash functions H = {hκ : {0, 1}n → {0, 1}c|κ ∈ {0, 1}d} is called a
(t, ε) strong randomness extractor, if for any random variable X over {0, 1}n that
has min-entropy at least t, if κ is chosen uniformly at random from {0, 1}d and
R is chosen uniformly at random from {0, 1}c, the following two distributions
are within statistical distance ε from each other: (κ, hκ(X)) ∼=ε (κ, R) .

By Lemma 1, the above distributions are also computationally indistinguishable
from each other. Notice that the definition means that the key to the randomness
extractor, κ, may be made public, yet the output of the randomness extractor,
given a secret input with sufficient min-entropy, is indistinguishable from a string
of bits distributed uniformly at random.

Since it is likely that X will only have computational entropy (not min-
entropy) of a certain level, we introduce the following definition (which is similar
to a recent definition of Fouque et al. [5] in an independent work).

Definition 12 (Strong computational randomness extractor). A family
of efficiently computable functions H = {hκ : A → {0, 1}c|κ ∈ {0, 1}d} is a
(t, S, ε, S′, ε′) strong computational randomness extractor if given any probability
distribution X over A such that X has (S, ε) computational entropy at least t,
the following two probability distributions are (S′, ε′)-indistinguishable:

H = {(κ, hκ(x)) for κ ∈R {0, 1}d and x ∈X A} (4)

Rh = {(κ, r) for κ ∈R {0, 1}d and r ∈R {0, 1}c} (5)

It is possible to show that a strong randomness extractor is also a strong com-
putational randomness extractor (see the full paper). However, the converse is
not necessarily true.

The above definitions assume that the key to the randomness extractor, κ, is
generated afresh for each use of the randomness extractor. This may be appro-
priate in some protocols, where parties may have exchanged nonces with each
other and can use these values to generate the key. However, it is imperative that
any such nonces be authenticated (i.e. unable to be influenced by the adversary)

62 Y. Cliff, C. Boyd, and J. Gonzalez Nieto

and not subject to replay by the adversary. Otherwise, a key derived from these
nonces may not be distributed uniformly at random over {0, 1}d as required for
these extractors.

When parties are unable to generate a new key, κ, each time they use a
randomness extractor, the key κ may be fixed as part of the system parameters.
However, this requires multiple uses of the randomness extractor with the one
key. It turns out that the security of the randomness extractor decreases linearly
with the number of queries to it using the same key. Protocols using this approach
may be proven secure in one of two ways. As part of the proof of security of the
protocol, one often focuses on the security of one particular session chosen at
random from all sessions. In the proof, it may be possible to use the above
definitions to prove the security of the protocol. The total number of sessions
will appear as a factor in the security reduction (due to focusing on one session
chosen at random from all sessions), and this will cater for the reduction in
security due to multiple uses of the extractor with only one key. The other way
to justify the use of a single key to the randomness extractor is via the theorems
given in the full paper.

4.1 Combining Extraction and Expansion

To ascertain the security of the overall key derivation function consisting of
randomness extraction and expansion, all of the relevant theorems from the full
paper must be combined (e.g. extractor reuse, Diffie-Hellman assumption, short
exponent theorems, expander reuse etc.). The full paper provides an example
combination of theorems which is summarized here.

Let H = {hκ : {0, 1}n → {0, 1}c|κ ∈ {0, 1}d} be a (t, 2−e) strong randomness
extractor, with a maximum of q1 queries per (publicly known) randomness ex-
tractor key κ, and let f = {fλ}λ∈K be a (S5, q2, ε5) PRFF, with a maximum
of q2 queries per (secret) key λ. Suppose a security level of k bits is desired for
the final key(s) output by f . Let G be a cyclic group of order m generated by
g, such that m is odd, or m/2 is odd. We assume there are q1 publicly known
pairs gai , gbi for 1 ≤ i ≤ q1, and that the gaibi are the inputs to hκ(·).

We consider two cases. For the first, we require q1 − 1 outputs of H to be
indistinguishable from random, use the other output of H to key f , and require
the q2 outputs of f using this key to be indistinguishable from random. The
indistinguishable distributions are labelled EEDH and EER.

In the second case, all q1 outputs of H are used to key f , giving a total of q1q2

outputs of f , and all of these outputs must be indistinguishable from random.
The indistinguishable distributions are labelled EEDH∗ and EER∗. Which of
these cases is appropriate will depend upon the protocol in question and its proof
of security. Table 3 shows the requirements in each case, where the distributions
are to be indistinguishable with a security level of k bits.

As an example putting it all together, suppose that a security level of k = 80
bits is required, we desire that the EEDH and EER distributions are indistin-
guishable, q1 = 1 and q2 = 1. Furthermore, suppose that m is prime. Then we
need:

How to Extract and Expand Randomness 63

Table 3. Requirements for the two cases to be indistinguishable from random

For EEDH and EER indistinguishable:

– S5
ε5

≥ 2k+1

– e ≥ k + 2 + log2(q1)
– t-DDH assumptions:
(

2k+4q1 + q1 + q2,
1
2

)

and
(

q1 + q2 + 1, 1
2k+3q1

)

– s-DLSE assumptions:
(

2i−1s ln (2s) (Y + 2Z) , 1
2

)

and
(

Y is ln (s) (Z + 1) , 1
Y

)

where

Y
def
= (log2(m) − s) 2k+5q1,

Z
def
= S3 + q1 + q2.

For EEDH∗ and EER∗ indistinguishable:

– S5−S8
ε5

≥ 2k+1q1 where S8 ≈ (q1 − 1)q2

– e ≥ k + 2 + 2 log2(q1)
– t-DDH assumptions:
(

2k+4q2
1 + q1q2,

1
2

)

and
(

q1q2 + 1, 1
2k+3q2

1

)

– s-DLSE assumptions:
(

2i−1s ln (2s) (Y + 2Z) , 1
2

)

and
(

Y is ln (s) (Z + 1) , 1
Y

)

where

Y
def
= (log2(m) − s) 2k+5q2

1 ,

Z
def
= S3 + q1q2.

In both cases i = 3 unless log2(m) > 2s − log2(ε1), in which case i = 2 and the
smallest sensible value for ε1 is 1

Y
. S3 is the cost of a multi-exponentiation in G.

– a randomness expander with an 81 bit security level, e.g. CBC-MAC with a
128 bit key for its block cipher or MD5 with a 128 bit key;

– a (t, 2−82) strong randomness extractor for some t that outputs enough bits
to key the randomness expander, e.g. a universal hash function—in that case
t = 292 (see Sect. 4.2);

–
(

284, 1
2

)

and
(

3, 1
283

)

t-DDH assumptions on G, e.g. G could be of order 292
bits on an elliptic curve (292 is the maximum of t = 292 and 2 · 85);

– exponents of the full 292 bits since the short exponent assumption needs the
short exponent to be longer than 292 bits (probably around 600 bits).

Further details of the calculations are provided in the full paper. This example
contradicts the statement by Gennaro et al. [1, Sect. 6] that exponents of length
2k may be used to achieve a security level of k bits, since in our example, we need
the exponent to be of length between 5k and 7.4k. It seems that Gennaro et al.
have not substituted actual values into their theorem stating that short expo-
nents may be used, and have thus come to an incorrect conclusion about how
long the short exponents really need to be.

4.2 Available Extractors

We now compare the available randomness extractors, focusing on output lengths
of 128, 160, 256 and 512 bits, as these are the possible key lengths for the
randomness expanders in Sect. 3.4. The reader may make his own comparisons
for other output lengths with the information provided.

We first discuss the use of the Leftover Hash Lemma (LHL) to show that
a universal (or almost universal) hash function may be used as a randomness
extractor. Following this, we discuss the use of a PRFF as a randomness ex-
tractor, as analysed by Chevassut et al. [2], and then summarize the results of
Fouque et al. [4] on deterministic extraction of lower order bits from subgroups

64 Y. Cliff, C. Boyd, and J. Gonzalez Nieto

of Z
∗
p. Then another work of Fouque et al. [5] is summarized with several results

on using HMAC to extract randomness from the HMAC key, and a result on us-
ing the cascade construction as a randomness extractor. The full paper provides
an overview and detailed comments on the problems with the first work [3] to
consider the suitability of CBC-MAC, the cascade construction, and HMAC for
use as randomness extractors in the standard model.

We aim for the output of the extractor to be (S′, ε′) indistinguishable from uni-
form with S′

ε′ ≥ 281 as a minimum requirement (this will achieve a security level no
greater than k = 80 bits when the randomness extractor and expander are used to-
gether). Table 3 will provide the basis for our numerical analysis of the advantages
of each extractor. We will use the notation of Sect. 4.1 and assume (as was done
there) that S4 ≈ q1, S6 ≈ q2 and S8 ≈ (q1 − 1)q2. Furthermore, we let c be the
key length of the expander, and hence the output length of the extractor; t be the
min-entropy, b be the block size and L be the number of blocks of the pre-secret (ps ,
e.g. the DH value) which is input to the extractor. We will examine the parameters
required of each extractor to achieve various security levels in the following cases
(notation is as in Sect. 4.1). In our examples, we use the cascade construction as
the expander, since it is the best (see Sect. 3.4). The parameters required to achieve
other security levels or in other cases can be derived by the reader.

1. Each extractor key is used only once (q1 = 1; this would be the case if the
key is chosen afresh in each protocol run); the expander is used only once
or twice with each key (q2 ≤ 2); it is desired that EEDH and EER are
indistinguishable (the KA protocol’s security will be lower than k bits, since
the total number of sessions will appear as a factor in its security reduction).

2. The extractor key is a global parameter used up to 230 times (q1 ≤ 230);
other requirements are as for the previous case; e.g. many other applications
use the extractor at a k-bit security level; the KA protocol proof focuses on
one session; that session’s two keys (output by the expander) have k bits of
security (again, the protocol’s overall security will be lower than k bits).

3. Each extractor key is used once (q1 = 1); the expander is used many times
with each key (q2 > 2); other requirements are the same as for the first case.

4. The extractor key is the same in all KA protocol sessions (but not used in
other applications), and there are up to 230 sessions (q1 ≤ 230); the expander is
used many times with each key (q2 > 2); EEDH∗ and EER∗ must be indistin-
guishable (so the number of sessions will not be an extra factor in the protocol
proof). We assume S2

8 ≈ q2
1q2

2 ≤ 2k+1q1 so that a cascade construction security
level of k + 1+log2(q1) bits (less conservative option) gives S5−S8

ε5
≥ 2k+1q1.2

2 We want (S5 − S8) /ε5 ≥ 2k+1q1. When using the cascade construction (less conser-
vative option) we have 1/ε5 ≥ 2c/

(

220S2
5

)

(see the comments in the full paper), so

we need ((S5 − S8) 2c) /
(

220S2
5

) ≥ 2k+1q1 where c is the key length of the random-

ness extractor. When S5 = S8 +1, we have ((S5 − S8) 2c) /
(

220S2
5

) ≥ 2k+1q1 implies

2c ≥ 2k+21q1S
2
8 . However, for a security level of s bits for the randomness expander,

we require 2c ≥ 22s+20, and if s = k + 1 + log2(q1), this will imply the first require-
ment when s ≥ 2 log2(S8). For values of S5 much larger than S8, S5 − S8 ≈ S5 and
so a security level of k + 1 + log2(q1) bits will be sufficient.

How to Extract and Expand Randomness 65

Almost Universal Hash Functions. The Leftover Hash Lemma (LHL) is
well-known and allows the use of a universal (or almost universal) hash function
as an extractor which is probabilistic and optimal in general [2]. There are several
variations of the LHL in the literature; the one provided is mainly from Chevassut
et al. [2], and similar to Dodis et al. [3, p.501].

Definition 13 (δ-AU (almost universal)). Let c and b be integers, and
{hκ}κ∈K be a family of hash functions with domain {0, 1}b, range {0, 1}c and key
space K. We say that the family {hκ}κ∈K is δ-almost universal (δ-AU)3 if for ev-
ery pair of different inputs x, y from {0, 1}b it holds that Pr(hκ(x) = hκ(y)) ≤ δ,
where the probability is taken over κ ∈R K. For a given probability distribution
X on {0, 1}b, we say that {hκ}κ∈K is δ-AU w.r.t. X if Pr(hκ(x) = hκ(y)) ≤ δ
where the probability is taken over κ ∈R K and x, y ∈R X conditioned on x
= y.

An example of a universal hash function is the function that multiplies a Toeplitz
matrix (one with constant diagonals) by the input to create the output [17]. The
full paper gives more details and examples of universal hash functions.

Lemma 3 (LHL with δ-AU [2]). Let X be a probabilistic distribution over
{0, 1}b with min-entropy at least t. Let e be an integer and c ≤ α − 2e where
α = min(t, log2(1/ξ)). Let H = {hκ}κ∈K, with hκ having domain {0, 1}b and
range {0, 1}c for any κ ∈ K, be a δ-AU hash function family with δ = 1

2c + ξ. Let
H be a random variable uniformly distributed on H, X denote a random variable
taking values in {0, 1}b, and H and X be independent. Then, (H, H(X)) is 2−e-
uniform on H× {0, 1}c.

This lemma states that a δ-almost universal hash function is a (t, 2−e) strong
randomness extractor. It was used to generate Table 4, where we must have
ξ ≤ 2−t. It shows that even the most basic requirements mean a computational
entropy of 292 bits in the input to the randomness extractor. More realistic
requirements may mean a much higher level of computational entropy is required.
Because of their significant key size requirements, and because other functions
such as cryptographic hash functions are more readily available, universal hash
functions are often not used for key derivation.

PRFFs as Randomness Extractors. Chevassut et al. [2] have shown that a
PRFF may be used for randomness extraction with a publicly known key.

Theorem 1 ([2]). If a family of functions, F , is a (S, 2, ξ)-PRFF with domain
{0, 1}b and range {0, 1}c, S is the size of a circuit that makes 2 oracle queries
on an instance of F , then it is a (1

2c + ξ)-AU hash function family.

By using Lemma 3, we can conclude that a PRFF can be a strong randomness
extractor, although the output of the PRF will generally need to be truncated to
3 Being δ-AU in Dodis et al. [3] is the same as being ξ-AUH in Chevassut et al. [2]

for δ = 1
2c + ξ where c is the number of bits of output of the function. We use the

notation of Dodis et al. in this paper. When δ = 1
2c , the function is universal.

66 Y. Cliff, C. Boyd, and J. Gonzalez Nieto

Table 4. Universal hash function parameter examples

Case t k e c
1 c + 2e k k + 2 ≥ (k + 2) + 2
1 292 80 82 128
1 380 124 126 128
1 476 156 158 160
1 764 252 254 256
1 1532 508 510 512
2 c + 2e k k + 32 ≥ (k + 32) + 2
2 352 80 112 128
2 476 126 158 160
2 704 192 224 256
2 764 222 254 256
2 1532 478 510 512

Case t k e c
3 c + 2e k k + 2 ≥ 2(k + 2) + 20
3 420 80 82 256
3 492 116 118 256
3 900 192 194 512
3 1004 244 246 512

4 c + 2e k k + 62 ≥ 2(k + 32) + 20
4 540 80 142 256
4 552 86 148 256
4 956 160 222 512
4 1020 192 254 512
4 1064 214 276 512

a length compatible with Lemma 3. Reuse of the extractor can then be covered
by one of the theorems from the full paper. For example, to achieve a security
level of k = 80 bits in Case 1, as shown in Table 4, we will need ξ < 2−292. This
rules out the use of CBC-MAC, since the block size is only likely to be 128 bits,
and so the security level will only be about 125 bits. The use of HMAC or the
cascade construction seems appropriate, provided we do not need ξ smaller than
2−508 or 2−510 respectively. In our example, we could use SHA-384 or better,
and would need to truncate the output to 128 bits.

Deterministic Extraction of Lower Order Bits. The analysis of Fouque et
al. [4] allows one to use the lower or higher-order bits from subgroups of Z

∗
p.

Theorem 2. Let p be a b-bit prime, that is 2b−1 < p < 2b, G a subgroup of Z
∗
p

of order q with q � √
p, l the integer such that 2l−1 ≤ q ≤ 2l and X a random

variable uniformly distributed in G. Let lsbc(X) denote the c least significant
bits of X. Let e be a positive integer and let l > t = b/2 + c + e + log2(b) + 1.
Then the function lsbc(·) is a (t, 2−e)-deterministic extractor for the G-group
distribution. If p1/2 ≤ q ≤ p2/3 then the requirement on l may be refined to
l > t = b/4 + 3l/8 + c + e + log2(b) + 3, and if 256 ≤ q ≤ p1/2, it may be
refined to l > t = b/8 + 5l/8 + c + e + log2(b) + 3. Let msbc(X) denote the c
most significant bits of X and let δ = (2n − p)/2n. If 3δ < 2−e−1 and l > t =
n/2 + k + e + log2(n) + 1, then msbc(·) is a (t, 2−e)-deterministic extractor.

Table 5 shows some parameter examples using Theorem 2 with the four cases
under consideration. Comparing it with Table 4, we can see that more computa-
tional entropy is generally required than when using a universal hash function.
Fouque et al. recommended the use of the DLSE assumption to shorten the ex-
ponents required and thus improve efficiency. However, Sect. 4.1 indicates that
much more than 2e bits will be required, contrary the indication of Fouque et al.
(summarizing Gennaro et al.’s work [1]). However, one advantage of this method
is that it is deterministic, and so does not require a key for the extractor.

How to Extract and Expand Randomness 67

Table 5. Parameter examples for least significant bits extraction

Case b t k e c
1 k k + 2 ≥ k + 4
1 1024 733 80 82 128
1 2048 1178 80 82 128
1 1024 777 124 126 128
1 1024 841 156 158 160
1 2048 1546 252 254 256
1 2048 2058 508 510 512
2 k k + 32 ≥ k + 34
2 1024 763 80 112 128
2 1024 841 126 158 160
2 1024 1003 192 224 256
2 2048 1546 222 254 256
2 2112 2091 478 510 512

Case b t k e c
3 k k + 2 ≥ 2(k + 2) + 20
3 1024 861 80 82 256
3 1024 897 116 118 256
3 2048 1742 192 194 512
3 2048 1794 244 246 512

4 k k + 62 ≥ 2(k + 32) + 20
4 1024 921 80 142 256
4 1024 927 86 148 256
4 2048 1770 160 222 512
4 2048 1802 192 254 512
4 2048 1824 214 276 512

HMAC. Fouque et al. [5] have analysed the security of HMAC as a randomness
extractor when the data from which the randomness is to be extracted (pre-
secret, ps) is used as the key of HMAC. Because the pre-secret is used as the
HMAC key, some other data (denoted label , of at most l blocks), which is possibly
adversarily generated, is used as the input to HMAC. There are two separate
results, depending on whether the pre-secret is longer than one block or not.

Theorem 3 ([5]). Using the notation of this section and Definition 9, let L = 1,
let ipad and opad be chosen uniformly at random and let IV be a fixed string.
Let h′ be the hash function defined by h′

IV (pad , ·) = h(IV , · ⊕ pad) where the
key is pad. Let Sh be the circuit size for one computation of h. Let h′ be a
(S′+2Sh, q = 2, ε1) PRFF, and h be both a (S′, q = 1, ε2) and (O(l·Sh), q = 2, ε3)
PRFF. Then HmacHash

IV (ipad , opad ; ps, label) is a (t,∞, 0, S′, ε′) computational

randomness extractor with ε′ ≤
√

22c(2−t+2ε1)

2 + 1
2c′ + ε2 + 2lε3.

This is only useful if b � 2c, since L = 1 implies t ≤ b and when t = 2c the term
under the square root is at least one. In the case of SHA-1, we have b = 512
and c = c′ = 160. To achieve a security level of e bits for the output of HMAC,
we want S′/ε′ ≥ 2e. If we assume ε1 ≤ (S′ + 2Sh)/(Sh2b), ε2 ≤ S′/(Sh2c),
ε3 ≤ lSh/(Sh2c), and l � 2c, and consider the case where S′ = Sh = 1, we
require e ≤ min

(
t−2c+1

2 , b−2c+1.6
2 , c′, c− 2 log2(l)− 1

)

. These conditions will also
ensure that the conditions placed on e when S′ = 2e−1, Sh = 1 and we want
ε′ ≤ 1

2 , are met. Hence, when t = 512, we achieve the maximum security level of
e = 96 bits; for e = 82 bits, we need t = 483 bits min-entropy.

To overcome the problem of the above theorem only being useful when b � 2c,
the assumptions on the compression function can be modified. That is, it is
assumed that h is a PRFF resistant to related key attacks (RKA) when it is keyed
with a bit string of min-entropy at least t (denoted t-RKA; t = c for classical
RKA). This assumption cannot be reduced to the h PRFF-security against RKA,
since it is possible to have a good PRFF for a uniformly distributed key that is

68 Y. Cliff, C. Boyd, and J. Gonzalez Nieto

not a good PRFF for a high-entropy key. We omit the details of a RKA adversary
used in the following theorems, but note that if the exhaustive search adversary
with circuit size S′ is the best known t-RKA adversary, its advantage is smaller
than (S′/Sh)/2t. Fouque et al. state their revised theorem in terms of HPRF,
which is constructed from several concatenations and iterations of HMAC (they
do not describe HPRF in detail but refer the reader to TLS v1.2 [18]).

Theorem 4 ([5]). Let L = 1, let ipad and opad be two fixed strings and let IV
be chosen uniformly at random. Let h be a function family resistant to a t-RKA
adversary with circuit size S′ that makes at most 2 queries with advantage ε0. Let
Sh be the circuit size for one computation of h. Let HPRF be a concatenation of v
HMAC, and Hash be truncated. Let h be both a (S′, q = 2v, ε1) and (O(l ·Sh), q =
2, ε2) PRFF. Then HprfHash

ipad,opad (IV ; ps, label) is a (t,∞, 0, S′, ε′) computational
randomness extractor with ε′ ≤ ε0 + ε1 + 4v2lε2 + 2v2

2c′ + v2

2c .

Assuming l = v = 1, ε0 ≤ S′/Sh

2t , ε1 ≤ (S′/Sh)
2c , and ε2 ≤ (lSh/Sh)

2c , we have
S′/ε′ ≥ 2e when e ≤ t−3, e ≤ c−5 and e ≤ c′−4. Hence, we can extract almost
all of the pre-secret’s entropy when it has less entropy than the number of bits
output by HPRF, and the pre-secret is only one block long.

When the pre-secret is longer than one block, it is first hashed and padded
with ‘0’ bits to obtain a b-bit string. The following theorem covers this case for
HMAC. We omit the similar theorem for HPRF (when it is constructed from
several concatenations and iterations of HMAC) due to lack of space.

Theorem 5 ([5]). Let L ≥ 2, ipad and opad be fixed strings, and IV be a
variable chosen uniformly at random. Define ĥ : {0, 1}c′ × {0, 1}c → {0, 1}c as
ĥ(x, y) = h(y, x ‖ 0b−c′). Let Sh be the circuit size for one computation of h.
Let Hash be truncated. Let ε2 be the RKA advantage of an adversary against ĥ
making at most 2 related key queries with circuit size S′. Let h be a (S′, q = 2, ε1),
(S′, q = 1, ε3) and (O(l · Sh), q = 2, ε4) PRFF. Then HmacHash

IV (ipad , opad ; ps,
label) is a (t,∞, 0, S′, ε′) computational randomness extractor with ε′ ≤ 1

2c′ +
ε2 + ε3 + 2lε4 +

√

2c′ (3 · 2−t + 2Lε1).

Assuming ε1 ≤ S′/Sh

2c , ε2 ≤ (S′/Sh)

2c′ , ε3 ≤ (S′/Sh)
2c , and ε4 ≤ O(lSh)/Sh

2c , we have

S′/ε′ ≥ 2e when e ≤ t−3.6−c′
2 , e ≤ c−c′−log2(L)−3

2 , e ≤ c′−2 and e ≤ c−2 log2(l)−
3. Hence, when L = 2, l = 1, and SHA-384 is used, only e = 62 bits of security
can be achieved for the output of HMAC, and this requires t ≥ 512. To achieve a
value of e close to a value of c′, we need c′ = e+ 2 = c

3 . To achieve this we could
further truncate the output of SHA-384 to only c′ = 170 bits, and use this new
hash function in the HMAC implementation. Then, provided t ≥ 510, we would
have e = 168. For e > 168, a new compression function h with output larger
than 512 bits is needed. Alternatively, to achieve our minimum requirement for
Case 1 described above, of e = 82 and c′ = 128, we could use SHA-384 but
further truncate the output to only c′ = 128 bits. In that case we would only
need t ≥ 296 bits. This is similar to using a universal hash function, which is
not surprising, since the analysis of Fouque et al. made use of the LHL.

How to Extract and Expand Randomness 69

Cascade Construction. Fouque et al. [5] also analysed the use of the cascade
construction as a randomness extractor when the output is truncated to contain
only c′ bits, instead of c bits. Assume the compression function h of hash function
H (with key IV) is an (S, q = 2, ε) PRFF. Then H is a (t,∞, 0, S′, ε′) computa-
tional randomness extractor for prefix free distributions of at most L blocks with
S = O(S′) and ε′ ≤

√

2c′ · (3 · 2−t + 2Lε). As before, assume ε ≤ S/2c. Hence,
ε′ ≤

√

2c′ · (3 · 2−t + 21−cL ·O(S′)). To achieve a security level of e bits for the
output of H , we want S′/ε′ ≥ 2e. When O(S′) = 1, this equates to requiring
min
(

t−c′−3.6
2 , c−c′−3−log2(L)

2

)

≥ e. When the requirements for O(S′) = 1 are

met, those for when O(S′) = 2e−1 will be met also. These restrictions on e are
almost the same as for HMAC when the pre-secret is more than one block long,
and so similar comments to those made for HMAC apply here.

5 Conclusion

This paper examined the use of randomness extraction and expansion in key
agreement protocols to generate uniformly distributed keys. Although other
works exist that provide the basic theorems necessary, they lack details or ex-
amples of what cryptographic primitives are appropriate and/or how large the
parameters of those primitives must be. We have therefore summarized exist-
ing work in the area and examined the security levels achieved with the use of
various extractors and expanders for particular sizes of parameters.

As noted in some existing works ([1, p.4], [2, p.2]), the large amount of min-
entropy needed in the pre-secret is often overlooked in efficiency comparisons of
KA protocols. In fact, using the tables presented in this paper, one may conclude
that this shared secret will need a min-entropy of at least 292 bits to achieve
an overall security level of 80 bits. More realistic assumptions on the number
of times the randomness extractor and expander are used may require a much
higher min-entropy for this security level. The tables may be used to find the
min-entropy required for various security levels and assumptions on how the
extractor and expander will be used. We also found that when numbers are
substituted into the short exponent theorems of Gennaro et al., the exponents
may need to be much longer than they suggested.

References

1. Gennaro, R., Krawczyk, H., Rabin, T.: Secure hashed Diffie-Hellman over non-
DDH groups. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 361–381. Springer, Heidelberg (2004),
http://eprint.iacr.org/2004/099

2. Chevassut, O., Fouque, P.A., Gaudry, P., Pointcheval, D.: The Twist-AUgmented
technique for key exchange. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T.G.
(eds.) PKC 2006. LNCS, vol. 3958, pp. 410–426. Springer, Heidelberg (2006),
http://eprint.iacr.org/2005/061

http://eprint.iacr.org/2004/099
http://eprint.iacr.org/2005/061

70 Y. Cliff, C. Boyd, and J. Gonzalez Nieto

3. Dodis, Y., Gennaro, R., H̊astad, J., Krawczyk, H., Rabin, T.: Randomness extrac-
tion and key derivation using the CBC, cascade and HMAC modes. In: Franklin, M.
(ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 494–510. Springer, Heidelberg (2004)

4. Fouque, P.A., Pointcheval, D., Stern, J., Zimmer, S.: Hardness of distinguishing the
MSB or LSB of secret keys in Diffie-Hellman schemes. In: Bugliesi, M., Preneel,
B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 240–251.
Springer, Heidelberg (2006)

5. Fouque, P.A., Pointcheval, D., Zimmer, S.: HMAC is a randomness extractor and
applications to TLS. In: ASIACCS 2008: Proceedings of the, ACM symposium on
Information, computer and communications security, pp. 21–32. ACM, New York
(2008)

6. Bellare, M., Kilian, J., Rogaway, P.: The security of the cipher block chaining
message authentication code. Journal of Computer and System Sciences 61(3),
362–399 (2000), http://www-cse.ucsd.edu/∼mihir/papers/cbc.html

7. Goldreich, O.: The Foundations of Cryptography, vol. 1. Cambridge University
Press, Cambridge (2001), http://wisdom.weizmann.ac.il/∼oded/frag.html

8. Shoup, V.: A Computational Introduction to Number Theory and Algebra. Cam-
bridge University Press, Cambridge (2005), http://shoup.net/ntb/

9. Bellare, M., Canetti, R., Krawczyk, H.: Pseudorandom functions revisited: The
cascade construction and its concrete security. In: Proceedings of the 37th Annual
Symposium on the Foundations of Computer Science, pp. 514–523. IEEE, Los
Alamitos (1996)

10. NIST (National Institute for Standards and Technology): Advanced encryption
standard (AES). FIPS PUB 197 (2001)

11. Bellare, M.: New proofs for NMAC and HMAC: Security without collision-
resistance. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 602–619.
Springer, Heidelberg (2006)

12. Rivest, R.: The MD5 message-digest algorithm. Internet RFC 1321, Internet En-
gineering Task Force (1992)

13. Dobbertin, H., Bosselaers, A., Preneel, B.: RIPEMD-160: A strengthened version of
RIPEMD. In: Gollmann, D. (ed.) FSE 1996. LNCS, vol. 1039, pp. 71–82. Springer,
Heidelberg (1996)

14. NIST (National Institute for Standards and Technology): Secure hash standard.
FIPS PUB 180-2 (2000)

15. Preneel, B., van Oorschot, P.: On the security of iterated message authentication
codes. IEEE Transactions on Information Theory 45(1), 188–199 (1999)

16. Dodis, Y.: Exposure-Resilient Cryptography. PhD thesis, Department of Electrical
Engineering and Computer Science, Massachusetts Institute of Technology (2000),
http://theory.lcs.mit.edu/∼yevgen/academic.html

17. Mansour, Y., Nisan, N., Tiwari, P.: The computational complexity of universal
hashing. In: Proceedings of the Twenty Second Annual ACM Symposium on The-
ory of Computing—STOC 1990, pp. 235–243. ACM Press, New York (1990)

18. Dierks, T., Rescorla, E.: The Transport Layer Security (TLS) protocol version 1.2.
Internet RFC 5246, Internet Engineering Task Force (2007)

http://www-cse.ucsd.edu/~mihir/papers/cbc.html
http://wisdom.weizmann.ac.il/~oded/frag.html
http://shoup.net/ntb/
http://theory.lcs.mit.edu/~yevgen/academic.html

Novel Precomputation Schemes for Elliptic

Curve Cryptosystems

Patrick Longa and Catherine Gebotys

Department of Electrical and Computer Engineering,
University of Waterloo, Canada

{plonga,cgebotys}@uwaterloo.ca

Abstract. We present an innovative technique to add elliptic curve
points with the form P ± Q, and discuss its application to the gener-
ation of precomputed tables for the scalar multiplication. Our analysis
shows that the proposed schemes offer, to the best of our knowledge, the
lowest costs for precomputing points on both single and multiple scalar
multiplication and for various elliptic curve forms, including the highly
efficient Jacobi quartics and Edwards curves.

Keywords: Elliptic curve cryptosystem, scalar multiplication, multiple
scalar multiplication, precomputation scheme, conjugate addition.

1 Introduction

In mid 80’s, Miller and Koblitz independently proposed the use of elliptic curves
for cryptographic purposes [8,16]. Since then, Elliptic Curve Cryptography
(ECC) has gained increasing research and commercial interest. Scalar multipli-
cation, denoted by kP , where k is a scalar and P is a point on the elliptic curve,
is the central operation of most elliptic curve cryptosystems. A plethora of meth-
ods exist in the literature to execute this operation efficiently, mainly exploiting
some efficient representation of the scalar. For instance, the Non-Adjacent Form
(NAF) is a standard representation with the fewest nonzero terms using digits
from the set {−1, 0, 1}.

In some settings, however, it is required to compute a multiple scalar multi-
plication with the form kP + lQ, where k and l are scalars and P and Q are
points on the curve. In this scenario, well-known methods are Interleaving [17]
and the Joint Sparse Form (JSF) [20].

A practical strategy that reduces further the number of required additions at
the expense of some extra memory is the use of precomputations. In this case,
a table of points is built and stored in advance (precomputation stage) for later
use during the execution of the scalar multiplication itself (evaluation stage).
Although these window-based methods effectively reduce the number of nonzero
terms in most representations, a potential drawback is the cost of computing
such a table, which grows with the window size.

Thus, it is an important research effort to minimize the cost of the precompu-
tation stage to reduce the total cost of scalar multiplication. Further, although

M. Abdalla et al. (Eds.): ACNS 2009, LNCS 5536, pp. 71–88, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

72 P. Longa and C. Gebotys

improved elliptic curve shapes with faster explicit formulae are currently the
focus of intense research [1,6], there is still a lack of analysis of precomputation
schemes that are efficient for these settings.

In that direction, this work proposes efficient precomputation schemes and an-
alyzes their performance on three relevant elliptic curve settings: standard elliptic
curves using Jacobian coordinates, Jacobi quartics using extended coordinates
[6,7] and Edwards curves using inverted Edwards coordinates [2].

The proposed schemes are based on the following simple idea: if P + Q has
been computed for two distinct points P , Q, the subtraction of those points only
requires a few additional field operations 1. In the remainder, we will refer to this
operation, namely P −Q(= P +(−Q)), as ”conjugate” addition. It will turn out
that this operation will allow computing precomputed tables very efficiently. We
apply the strategy of the conjugate addition to calculate tables of the form diP
and ciP ± diQ, which are commonly found in most single and multiple scalar
multiplication algorithms.

Further, our precomputation schemes are compared and analyzed for three
possible cases, which are determined by the system used to represent points:
projective coordinates, affine coordinates with restriction to one inversion, and
affine coordinates (without restriction in the number of inversions). Our exten-
sive analysis allows determining which case is the most efficient for a particular
scenario and for determined I/M (field inversion/multiplication) ratios.

Our work is organized as follows. In Section 2, we detail some background
about ECC over prime fields. Then, in Section 3 we describe our strategy to
derive low-cost formulas for the conjugate addition in the different settings under
study. In Section 4, we introduce the new schemes for precomputing points for
tables with the forms diP and ciP ± diQ, and discuss their costs. In Section
5, we analyze and compare the performance of the proposed schemes with the
previously most efficient methods. A discussion of some other applications of
the strategy of the conjugate addition follows in Section 6. Some conclusions
summarizing the contributions of this work are presented at the end.

2 Preliminaries

An elliptic curve E over a prime field IFp is defined by the short Weierstrass
equation E: y2 =x3 + ax+ b, where a, b∈ IFp and � = 4a3+27b2
= 0, and which
will be referred in the remainder as the standard elliptic curve form. The points
on the curve E and the identity element O, known as the point at infinity, form
an abelian group whose group law essentially consists of two basic operations:
doubling (2P) and addition (P + Q) of points.

The main operations in most elliptic curve-based cryptosystems have the
forms kP and kP + lQ, known as (single) scalar multiplication and multiple
scalar multiplication.
1 Okeya et al. [18] showed that an inversion can be saved when computing P ± Q in

affine coordinates. We expand the idea to projective coordinates for which further
reductions are possible.

Novel Precomputation Schemes for Elliptic Curve Cryptosystems 73

Affine coordinates (referred to as A in the remainder) uses (x, y) coordinates
to represent points. However, since this system requires field inversions, it is
generally expensive over prime fields. When using efficient forms for the prime p
(as recommended by [4]), it has been observed that the cost of inversion can be
as high as 1I > 30M . For example, benchmarks by [10] and [3] show I/M ratios
between 30-40 and 50-100, respectively.

In efficient implementations, point representations with the form (X : Y : Z),
known as projective coordinates, were introduced to replace inversions. For ex-
ample, an efficient case of this projective representation is given by Jacobian
coordinates (referred to as J), where each projective point (Xi : Yi : Zi) corre-
sponds to the affine point (Xi/Z

2
i , Yi/Z

3
i). In this case, equation E acquires the

form Y 2 =X3 + aXZ4 + bZ6, and the negative of an element P = (Xi, Yi, Zi) is
given by −P = (Xi,−Yi, Zi).

In recent years, other curve forms with faster group operations have appeared
in the literature. In this work, we focus on two of them: Jacobi quartics and Ed-
wards curves, whose explicit formulas have been found to be particularly fast.
We briefly describe both curve shapes in the following. Note that we consider
that constant curve parameters are fixed to small values so that the cost of per-
forming any operation with them is negligible.

Jacobi quartic. It is defined by the curve y2 = x4 +2ax2 +1, where a∈ IFp and
a2
=1. The projective curve is Y 2 =X4 + 2aX2Z2 + Z4, where a given projective
point (Xi :Yi :Zi) corresponds to the affine point (Xi/Zi,Yi/Z2

i). In this case,
the negative of an element P = (Xi, Yi, Zi) is represented by −P = (−Xi, Yi, Zi).
The most efficient formulae for these curves have been developed by Hisil et al.
[6,7] using an extended coordinate system of the form (Xi :Yi :Zi :X2

i :Z2
i) that

will be referred to as JQ.

Edwards curve. It is defined by the curve x2 + y2 = 1+ dx2y2, where d /∈{0, 1}.
In [1], Bernstein and Lange presented explicit formulas for point operations
on this curve using standard projective coordinates. Later in [2], the same au-
thors introduced a more efficient coordinate system, known as inverted Edwards
coordinates (denoted by IE), where each projective point (Xi :Yi :Zi) corre-
sponds to (Zi/Xi, Zi/Yi) in affine. In this case, the curve equation is given
by (X2 +Y 2)Z2 =X2Y 2 + dZ4, where XY Z
= 0, and the negative of a point
P = (Xi, Yi, Zi) is given by −P = (−Xi, Yi, Zi).

In Table 1, we summarize the costs of the most efficient formulas in projective
coordinates for the three curve forms under consideration. For complete details
about formulas using J coordinates the reader is referred to [11,12]. Following
the common practice in the literature, costs are expressed by the number of
field multiplications (M) and squarings (S) that are required to perform certain
operation, neglecting cheaper operations as field addition/subtraction (A) and
multiplication/division by small constants. Table 1 includes efficient operations
using mixed coordinates, which are useful if input point(s) are represented in
affine (A) coordinates but the result is required in some projective system P .
Also, note that we have included efficient formulas exploiting pre-stored values.

74 P. Longa and C. Gebotys

Table 1. Cost of elliptic curve point operations in projective coordinates using Jacobian
(J), inverted Edwards (IE) and extended Jacobi quartic (JQ) coordinates

Point Operation
Cost

Jacobian (J ; a = −3) InvEdw (IE) JQuartic (JQ)

Doubling (D), 2P → P 3M + 5S 3M + 4S 2M + 5S

Mixed doubling (mD), 2A → P 1M + 5S 3M + 3S 7S

Tripling (T), 3P → P 7M + 7S 9M + 4S 8M + 4S

Mixed tripling (mT), 3A → P 5M + 7S 7M + 3S 5M + 6S

Addition (1) (A), P + P → P 10M + 4S / 9M + 3S − 7M + 3S

Addition (A), P + P → P 11M + 5S 9M + 1S 7M + 4S

Mixed addition (mA), P + A → A 7M + 4S 8M + 1S 6M + 3S

Mixed addition (mmA), A + A → A 4M + 2S 7M 4M + 3S

DA with stored values, 2P + P → P 13M + 8S − −
DA, 2P + P → P 14M + 9S − −
Mixed DA (mDA), 2P + A → P 11M + 7S − −
P: projective coordinates (J , IE or JQ coordinates)

(1) Addition with stored values.

If, for instance, values Z2
1 , Z3

1 , Z2
2 and Z3

2 are available when computing a general
addition in J coordinates then we can saved up to 2M + 2S. Similarly, in the
case of Jacobi quartics it is possible to reduce the original cost of 7M + 4S of
the addition formula to 7M +3S by noting that (Xi +Zi)2 can be precomputed
(see [6] for more details).

Finally, Table 1 also includes the highly efficient doubling-addition operation
(DA) developed by Longa and Miri in [13], which involves the recurrent opera-
tion 2P +Q and is more efficient than performing a traditional doubling followed
by an addition using J .

3 Our Strategy: Conjugate Addition

Our strategy to yield efficient precomputation schemes is based on the similari-
ties between adding and subtracting two points. Basically, if the addition P +Q
takes place, then it is expected that, when subtracting the same points (i.e.,
P − Q), most of the intermediate field operations are identical simply because
P − Q = P + (−Q) and the negative of a point only involves the change of at
most one of the coordinate values in the point representation, as described in
the previous section.

Let us illustrate the latter with the point addition formula using J . Let P =
(X1, Y1, Z1) and Q = (X2, Y2, Z2) be two points on an elliptic curve E. If the
addition P + Q = (X3, Y3, Z3) is performed using [12, formula (15)] as follows:

X3 = α2 − (4β3 + 8Z2
2X1β

2), Y3 = α(Z2
2X1β

2 −X3)− Z3
2Y1β

3, Z3 = θβ (1)

where α = 2(Z3
1Y2−Z3

2Y1), β = Z2
1X2−Z2

2X1 and θ = (Z1+Z2)2−Z2
1−Z2

2 , then
P−Q can be computed as P+(−Q) = (X1, Y1, Z1)+(X2,−Y2, Z2) = (X4, Y4, Z4)
reusing the partial values (4β3 + 8Z2

2X1β
2), Z2

2X1β
2, −Z3

2Y1β
3, Z3, Z3

1Y2 and

Novel Precomputation Schemes for Elliptic Curve Cryptosystems 75

Z3
2Y1. The latter can be performed with the following formula for the conjugate

addition:

X4 = γ2 − (4β3 + 8Z2
2X1β

2), Y4 = γ(Z2
2X1β

2 −X4)− Z3
2Y1β

3, Z4 = Z3 (2)

where γ = −2(Z3
1Y2 + Z3

2Y1). Note that the cost of the conjugate addition
(2) using J is only 1M + 1S, which is significantly less than the cost of a
general addition (1) (i.e., 11M +5S). If we also consider other usually neglected
operations, then the cost drops from 11M + 5S + 9A + 2(×2) + 1(×4) to only
1M + 1S + 4A+ 1(×2).

It may seem that performing this conjugate operation would involve several
extra registers to store partial values temporarily. However, memory require-
ments can be minimized by performing P + Q and P − Q concurrently. For
instance, a possible 35-step execution sequence for computing P ±Q using for-
mulas (1) and (2) would be as the one shown in Table 2.

The execution of the addition/conjugate addition pair shown in Table 2 re-
quires 8 registers only (including temporary registers and registers storing input
coordinates). It is easy to verify that the memory requirement is the same as
that of the addition formula alone. Thus, executing the conjugate addition does
not increase the memory requirements in this case.

We have derived the conjugate addition formulas in projective coordinates
(i.e., J , JQ and IE coord.), and also in affine for the three curves of interest. The
costs of these new formulas are summarized in Table 3. We have also included the

Table 2. Pseudocode of an ”interlaced” execution of an addition/conjugate addition
pair in J coordinates

INPUT: T1 ← X1, T2 ← Y1, T3 ← Z1, T4 ← X2, T5 ← Y2, T6 ← Z2

OUTPUT: T1 ← X3, T2 ← Y3, T3 ← Z3, T4 ← X4, T5 ← Y4

1. T7 = T 2
3 {Z2

1} 19. T4 = T4 + T7 {β3 + 2Z2
2X1β

2}
2. T4 = T4 × T7 {Z2

1X2} 20. T4 = 4T4 {4β3 + 8Z2
2X1β

2}
3. T8 = T3 × T7 {Z3

1} 21. T6 = T5 − T2 {Z3
1Y2 − Z3

2Y1}
4. T5 = T5 × T8 {Z3

1Y2} 22. T6 = 2T6 {α}
5. T8 = T 2

6 {Z2
2} 23. T5 = −T5 − T2 {−(Z3

1Y2 + Z3
2Y1)}

6. T7 = T7 + T8 {Z2
1 + Z2

2} 24. T5 = 2T5 {γ}
7. T3 = T3 + T6 {Z1 + Z2} 25. T1 = T 2

6 {α2}
8. T3 = T 2

3 {(Z1 + Z2)
2} 26. T1 = T1 − T4 {X3}

9. T3 = T3 − T7 {θ} 27. T7 = T2 × T7 {Z3
2Y1β

3}
10. T6 = T6 × T8 {Z3

2} 28. T2 = T8 − T1 {Z2
2X1β

2 − X3}
11. T2 = T2 × T6 {Z3

2Y1} 29. T2 = T2 × T6 {α(Z2
2X1β

2 − X3)}
12. T8 = T1 × T8 {Z2

2X1} 30. T2 = T2 − T7 {Y3}
13. T7 = T4 − T8 {β} 31. T6 = T 2

5 {γ2}
14. T3 = T3 × T7 {Z3 = Z4} 32. T4 = T6 − T4 {X4}
15. T3 = T 2

7 {β2} 33. T8 = T8 − T4 {Z2
2X1β

2 − X4}
16. T6 = T6 × T7 {β3} 34. T8 = T5 × T8 {γ(Z2

2X1β
2 − X4)}

17. T8 = T6 × T8 {Z2
2X1β

2} 35. T5 = T8 − T7 {Y4}
18. T4 = 2T8 {2Z2

2X1β
2}

76 P. Longa and C. Gebotys

Table 3. Costs of new conjugate additions for standard, Edwards and Jacobi quartic
curves using projective (J , IE and JQ) and affine coordinates

Point Operation
Cost

Standard curve Edwards curve Jacobi quartic

Conjugate addition (A’), P − P → P 1M + 1S 4M 2M + 1S

Addition (A), P + P → P 11M + 5S 9M + 1S 7M + 3S

Conjug. mixed addition (mA’), P − A → P 1M + 1S 4M 2M + 1S

Mixed addition (mA), P + A → P 7M + 4S 8M + 1S 6M + 3S

Conjug. mixed addition (mmA’), A − A → P 1M + 1S 3M 1M + 1S

Mixed addition (mmA), A + A → P 4M + 2S 8M 5M + 3S

Conjugate addition (A’), A − A → A 2M + 1S 4M 3M

Mixed addition (A), A + A → A 1I + 2M + 1S 1I + 9M + 1S 1I + 7M + 4S

P: projective coordinates (J , IE or JQ coordinates).

costs of the traditional addition operations that accompany the execution of our
formulas. Note that, in some cases, the traditional operations have been modified
slightly so that the cost of the pair addition/conjugate addition is minimized.
Refer to Appendices A-C for complete details.

As it can be seen in Table 3, the new conjugate formulas introduce significant
cost reductions in comparison to traditional operations (see Table 1). In the
following section, we take advantage of the latter to develop low-cost precompu-
tation schemes.

4 New Precomputation Method for Scalar Multiplication

In this Section, we apply the concept of conjugate addition to derive highly
efficient precomputation schemes first for tables of the form diP and then for
tables of the form ciP ± diP . We consider three possible scenarios: precomputed
points are left in projective coordinates (referred to as case 1), precomputed
points are calculated in projective coordinates and then converted to affine using
one inversion (referred to as case 2), and precomputed points are computed and
left in affine (referred to as case 3).

4.1 Precomputation Scheme for Table of the Form diP

Well-known methods to compute scalar multiplication using a precomputed ta-
ble with points diP , where di ∈ {3, 5, . . . ,m}, are Window-w NAF (wNAF) and
Fractional Window-w NAF (Frac-wNAF), in the case of single scalar multiplica-
tion, and the Interleaving method, in the case of multiple scalar multiplication.

We propose a recursive scheme that first tries to reach a ”strategic” point
and then applies efficiently the conjugate addition technique described in Sec-
tion 3. In the following, we define as ”strategic” to those points that can be
efficiently computed and from which it is possible to calculate the maximum
possible number of precomputed points at the lowest cost. The steps of our
scheme are detailed in the following.

Novel Precomputation Schemes for Elliptic Curve Cryptosystems 77

Step 1: Computation of precomputed points. This is the main body of our scheme,
and is presented in Algorithm 4.1. In this step, points can be computed in pro-
jective coordinates using operations from Table 1 (case 1), or directly in A (case
3). If projective points are to be converted to A (case 2), then Step 2 should be
executed right after.

Algorithm 4.1. Computation of precomputed points
Input: a point P in affine (A) coordinates, and an odd value m ≥ 7

to build a table of the form diP , where di ∈ {3, 5, 7, . . . , m}
Output: the table T = {T1 = 3P, . . . , T(m−1)/2 = mP } in projective or A coord.

1: r = 3, l = 1, i = 2, n = v = 0

2: T0 = P, T1 = rP

3: R = T1

4: While n < (m − 3)/2 do

5: If m < 2r

6: While n < (m − 3)/2 do

7: Ts = R + Tl

8: n = n + 1, l = l + 1, s = s + 1

9: Else

10: t = 2v

11: v = v + 1

12: R = 2R

13: r = 2r, j = t − 1, first = 1

14: While j ≥ 0 do

15: Ti = R − Tj , n = n + 1

16: If first=1, then l = j + 1, s = r − i, first = 0

17: i = i + 1

18: If m ≥ r + 2j + 1, then

19: T(r+2j)/2 = R + Tj , n = n + 1

20: If Tj = T0, then i = i + 1

21: j = j − 1

22: Return T = {T1 = 3P, . . . , T(m−1)/2 = mP}

Basically, Algorithm 4.1 first reaches certain ”strategic” point and then com-
putes all the points that are close to it by efficiently performing additions and
conjugate additions. The ”strategic” points proposed in our scheme have the
form Pi+1 = 2Pi, for i ∈ ZZ ≥ 0 and P0 = 3P (i.e., 6P, 12P, 24P , and so on),
which are computed using a combination of one tripling (performed at the be-
ginning, Step 2) and a sequence of doublings (Step 12). Note that there is a
minimum number of close points that makes the computation of a ”strategic”
point worthwhile. If that minimum is not fulfilled (evaluation in Step 5) then
the algorithm calculates the remaining points from the previous ”strategic” point
(loop beginning in Step 6). The value of such a minimum depends on the par-
ticular costs of point operations. For J , JQ and IE , we have determined that

78 P. Longa and C. Gebotys

the lowest cost is achieved if the next ”strategic” point is computed always that
the m value is greater or equal to such a ”strategic” point (condition in Step 5).

Let us illustrate the proposed scheme with the following example.

Example 1. If m = 13, Alg. 4.1 computes the first points as P → 3P → 6P ,
where 6P is the first ”strategic” point. From this, 5P and 7P (close points) are
calculated by adding 6P+(−P) and 6P+P . Note that the latter operation can be
calculated with a conjugate addition, requiring a very low number of operations.
Then, Alg. 4.1 calculates the following ”strategic” point (since m > 12) by
doubling 6P → 12P , and finally computes close points 9P , 11P and 13P by
performing 12P + (−3P), 12P + (−P) and 12P + P , respectively. Note again
that the latter operation is also a low-cost conjugate addition.

In Appendix D, we have sketched the derivation of points for tables with different
values m. Note that the method described does not include cases m = 3, 5.
Computing the table for m = 3 only requires one mixed tripling. For case m = 5,
JQ and J coordinates, it is more efficient to compute points by performing
P → 2P → 4P , and then obtaining 3P and 5P with an addition/conjugate
addition pair (i.e., 4P +(−P) and 4P +P). For case IE , we suggest to compute
the table following the sequence P → 2P → 3P → 5P .

In the following, we describe the procedure to convert points to A for case 2.

Step 2: Conversion to affine (if required). If mixed addition (or mixed DA) is
significantly more efficient than general addition (or general DA) in a given
setting, then it would be convenient to express the precomputed table in A.

It is known that conversion to A can be achieved by calculating (Xi/Z
2
i ,

Yi/Z
3
i), (Xi/Zi, Yi/Z

2
i) and (Zi/Xi, Zi/Yi) for J , JQ and IE , respectively.

For each setting, calculation of denominators (denoted by ui) can be efficiently
carried out by using the well-known Montgomery’ simultaneous inversion method
so that the number of expensive inversions is limited to only one.

First, we compute the inverse U = (u1u2 . . .ut)−1, where ui are all distinct
denominators of the expressions above from all the non-trivial points in the
table {3P, 5P, . . . ,mP}. For J and JQ, the number of such denominators is
reduced to only t = (m − 1)/2 − c, where c is the number of points computed
via conjugate addition, since points computed with addition/conjugate addition
pairs share the same coordinate Z (see Appendices A-B). For IE , t = m− 1 as
each point has two distinct denominators, namely Xi and Yi.

Then, individual denominators ui are recovered from U , and the results mul-
tiplied to their corresponding numerator following the conversion expressions.

As it can be seen the use of conjugate additions reduces the cost of the Mont-
gomery’s method for the cases of J and JQ coordinates. Following our explana-
tion above, it can be easily verified that one saves 3M + 1S per point computed
with a conjugate addition.

Cost Analysis. The cost of the scheme proposed mainly depends on the value
m in the precomputed table and the curve form selected. We list in Table 4 the
costs in terms of number of operations for various values m. As operations in A

Novel Precomputation Schemes for Elliptic Curve Cryptosystems 79

Table 4. Cost of the proposed precomputation scheme: case 1 in projective coordinates
using J and JQ; case 2 using one inversion; and case 3 in A

m Point Operation Count
Case 1 Case 2

J JQ J JQ
7 1mT+1D+1mA+1mA’ 17M + 17S 15M + 17S 1I + 28M + 18S 1I + 24M + 20S

9 1mT+1D+1mA+1mA’+1A 27M + 21S 22M + 20S 1I + 43M + 22S 1I + 36M + 25S

11 1mT+1D+1mA+1mA’+2A 37M + 25S 29M + 23S 1I + 59M + 27S 1I + 48M + 30S

13 1mT+2D+2mA+2mA’+1A 39M + 31S 32M + 30S 1I + 63M + 32S 1I + 53M + 35S

15 1mT+2D+2mA+2mA’+1A+1A’ 40M + 32S 34M + 32S 1I + 67M + 33S 1I + 57M + 37S

m Point Operation Count
Case 3

Standard curve

7 1T+1D+1A+1A’ 3I + 13M + 7S

9 1T+1D+1A+1A’+1A 4I + 15M + 8S

11 1T+1D+1A+1A’+2A 5I + 17M + 9S

13 1T+2D+2A+2A’+1A 6I + 21M + 11S

15 1T+2D+2A+2A’+1A+1A’ 6I + 23M + 12S

coord. are relatively expensive in Jacobi quartic and Edwards curves (see Table
3), we only show the performance of case 3 in the setting of the standard curve.

Depending on the curve form selected, some additional considerations are
necessary. In the case of the standard curve using J , if the evaluation stage uses
the efficient addition with two stored values, then values Z2

i and Z3
i should be

computed during the precomputation stage. Naively, the latter would require
(1M + 1S)(m − 1)/2. However, some additional cost reductions are possible.
First, the initial tripling computes the required values for point 3P (i.e., Z2

3P

and Z3
3P) without requiring extra operations. Also, one squaring can be saved

every time a doubling is performed to get any ”strategic” point since values
Z2

i are cached. Moreover, it is easy to see that addition and conjugate addition
formulas share the same coordinate Z (see Appendix A). Hence, we only require
1M +1S to get Z2

i and Z3
i for two points computed with an addition/conjugate

addition pair. Finally, when performing additions using a ”strategic” point Q,
its values Z2

Q and Z3
Q are calculated in the first mixed addition, say Q + P =

(XQ, YQ, ZQ) + (x1, y1). Thus, following general additions of the form Q + R =
(XQ, YQ, ZQ)+(XR, YR, ZR) can be executed using an addition with four stored
values, taking into account that R is a point from the table and that values Z2

R

and Z3
R are, hence, precalculated.

Similarly, in JQ, if the evaluation stage uses the efficient addition with the
stored value (Xi +Zi)2, then these values should be included in the precomputa-
tion cost. We now describe a few optimizations to minimize this cost. First, one
squaring can be saved every time a doubling is performed to get any ”strategic”
point by noting that (Xi + Zi)2 can be cached from a previous mixed tripling
or mixed addition. Also, when performing additions with a ”strategic” point Q,
the value (XQ + ZQ)2 is calculated in the first mixed addition. Then, following
general additions with the same point Q save one extra squaring.

80 P. Longa and C. Gebotys

The costs including the savings described above are detailed in Table 4, case
1. For the case where points are converted to A (case 2), we have to also consider
the cost of performing the Montgomery’ simultaneous inversion method (Step
2). The cost of the latter in J and JQ is given by CostJ→A = 1I + (6L −
3)M + (L)S and CostJQ→A = 1I + (5L − 3)M + (2L)S, respectively, where
L = (m− 1)/2 and m odd ≥ 5. However, as described in Section 4.1, Step 2, the
proposed scheme allows for some extra savings since points obtained through
an addition/conjugate addition pair share the same coordinate Z. The reduced
costs including these savings are given by

CostproposedJ→A = 1I + (6L− 3c− 3)M + (L− c)S (3)

CostproposedJQ→A = 1I + (5L− 3c− 3)M + (2L− c)S (4)

respectively, where c denotes the number of points obtained using a conjugate
addition. In the case of IE , the cost of the Montgomery’s method is as follows

CostIE→A = 1I + (6L + �(L− 2)/L� − 1)M (5)

The total costs including conversion to A are given in Table 4, case 2. Note
that in this case addition operations with stored values do not apply.

4.2 Precomputation Scheme for Table of the Form ciP ± diQ

This scenario mainly applies to methods for computing multiple scalar multi-
plications such as those based on JSF [20]. In this case, the application of our
strategy of conjugate additions is straightforward since precomputed points have
the form ciP±diQ, where ci, di ∈ {0, 1, 3, 5, . . . ,m}, and each two points cP±dP
having c, d
= 0 can be computed with an addition/conjugate addition pair.

In the following, we analyze the cost involved when precomputing points for
the specific case of the efficient JSF-based algorithm by Kuang et al. [9]. Exten-
sion of the method to similar table forms easily follows.

Cost Analysis. If P and Q are unknown before the scalar multiplication is exe-
cuted, the points 3P ,3Q,P±Q,3P±Q,P±3Q,3P±3Q required by the method by
[9] need to be computed on the fly. The latter costs 2mT+2mmA+4mA+2A for
case 1 (when points are left in projective coord.). With the strategy of conjugate
additions, that cost reduces to 2mT+1mmA+1mmA’+2mA+2mA’+1A+1A’.
Note that the advantage increases for case 2 as our approach allows saving some
operations during conversion to A, as shown in Section 4.1.

In Table 5, we show the cost performance of the proposed scheme for the con-
sidered curve shapes. Note that, in the setting of J and JQ, we use again the
efficient addition formulas with stored values and, following the same procedure
described in Section 4.1, we have minimized the impact of the computation of
those partial values for case 1. For case 2 the conversion to A coordinates is
similar to that of the scheme from Section 4.1 and, hence, it follows the costs
given by (3), (4) and (5) for J , JQ and IE , respectively. Again, as operations
in affine are relatively expensive in Edwards and Jacobi quartic curves, we only
show the performance of case 3 in the setting of standard curves.

Novel Precomputation Schemes for Elliptic Curve Cryptosystems 81

Table 5. Cost of the proposed precomputation scheme for the JSF3 method [9]: case
1 in projective coord. using J and JQ; case 2 using one inversion; and case 3 in A.

Curve form Point operations Case 1 Case 2 Case 3

Jacobi quartic (JQ) 41M + 35S 1I + 76M + 44S −
Edwards (IE) 2mT+1mmA+1mmA’+ 47M + 24S 1I + 107M + 24S −
Standard (J) 2mA+2mA’+1A+1A’ 42M + 32S 1I + 84M + 35S 6I + 30M + 16S

5 Performance Comparison

In this section, we analyze and compare the proposed approach with the most
efficient precomputation schemes available in the literature.

In the case of J , Longa and Miri [13] recently proposed a highly efficient
scheme, which has been shown to achieve the lowest cost among methods using
only one inversion (case 2). The cost of this method (referred to as LM method
in the remainder) is given by (1M = 0.8S)

CostLM, case2 = 1I + (9L)M + (2L + 6)S = 1I + (10.6L+ 4.8)M (6)

We now derive the cost of the LM method for case 1 using the traditional
chain P → 2P → 3P → 5P → . . . → mP and the special addition due to [15],
but avoiding the final conversion to A. This involves one mixed doubling and L
special additions that cost 5M + 2S. Also, the use of additions with pre-stored
values during the evaluation stage requires precalculating values Z2

i and Z3
i with

a cost of L(1M + 1S). Then the total cost is

CostLM, case1 = (6L + 1)M + (3L + 5)S = (8.4L+ 5)M (7)

Regarding IE and JQ, we could not find any literature related to precompu-
tation schemes in these settings. Hence, we analyze in the following the perfor-
mance of the straightforward implementation using the traditional chain given
above.

The cost of precomputation without using inversions (case 1) is given by

CostIE, case1 = (9L + 2)M + (1L + 3)S = (9.8L+ 4.4)M (8)

CostJQ, case1 = (7L− 1)M + (3L + 7)S = (9.4L+ 4.6)M (9)

for IE and JQ coordinates, respectively. These costs are derived by adding the
costs of performing one mixed doubling, one mixed addition and (L− 1) general
additions. For case 2, the costs are given by

CostIE, case2 = 1I + (15.8L+ �(L − 2)/L�+ 3.4)M (10)

CostJQ, case2 = 1I + (12L− 4)M + (5L+ 7)S = 1I + (16L + 1.6)M (11)

which are derived by adding the cost of performing the Montgomery’s method
of simultaneous inversion to equations (8) and (9).

82 P. Longa and C. Gebotys

Table 6. Costs of various schemes in projective (case 1) and affine (case 2); 1M = 0.8S

Case Method Curve form w = 3 w = 4 w = 5 w = 6

case 1

Proposed scheme JQ 10.6M 28.6M 59.6M 116.6M

Method (9) JQ − 32.8M 70.4M 145.6M

Proposed scheme IE 9.4M 28.4M 61.2M 121.6M

Method (8) IE − 33.8M 73.0M 151.4M

Proposed scheme J 10.6M 30.6M 65.6M 130.6M

LM Method (7) J − 30.2M 63.8M 131.0M

case 2

Proposed scheme JQ − 1I + 40.0M 1I + 86.6M 1I + 173.6M

Method (11) JQ − 1I + 49.6M 1I + 113.6M 1I + 241.6M

Proposed scheme IE − 1I + 46.4M 1I + 103.2M 1I + 211.6M

Method (10) IE − 1I + 46.8 1I + 102.0M 1I + 212.4M

Proposed scheme J 1I + 10.2M 1I + 42.4M 1I + 93.4M 1I + 194.0M

LM Method (6), [13] J − 1I + 36.6M 1I + 79.0M 1I + 163.8M

In Table 6, we compare the costs of the described schemes to that of the
proposed scheme from Section 4.1 for different windows w. Costs for the latter
method are derived from Table 4 and Appendix D. As it can be seen, the new
approach outperforms every other method in cases 1 and 2 for both IE and
JQ. Note that the advantage increases with the window size. For instance, if
1I = 30M , the cost reduction can be as high as 25% (w = 6, JQ). Nevertheless,
in case 2 with IE coordinates, both the proposed and traditional methods offer
comparable performance.

In the case of standard curves, the LM scheme still achieves the highest per-
formance. Nevertheless, for case 1, the modified LM scheme (7) and the new
approach achieve similar performance.

In settings where inversions are not so expensive (low I/M ratios), it could
be attractive the implementation of case 3. In this case, Table 7 shows the
performance of the traditional approach and the proposed method on a standard
curve form. Also, the I/M ratios for which the traditional, the proposed and the
LM method achieve the lowest cost are shown at the bottom of the table. As
it can be observed, the LM method offers the highest performance for a wide
range of high I/M ratios on a standard curve, whereas the proposed method is
convenient for low/intermediate values I/M.

Table 7. Costs of different schemes in affine (case 3) and I/M ranges for which each
scheme achieves the lowest cost on a standard curve; 1M = 0.8S

Method w = 4 w = 5 w = 6

Proposed scheme, case 3 3I + 19.4M 6I + 34.2M 11I + 60.2M

Traditional 4I + 12.0M 8I + 23.2M 16I + 45.6M

I/M range (LM Method (6), [13]) I > 8.6M I > 9M I > 10.4M

I/M range (Proposed, case 3) 7.4M < I < 8.6M 5.5M < I < 9M 2.9M < I < 10.4M

I/M range (Traditional) I < 7.4M I < 5.5M I < 2.9M

Novel Precomputation Schemes for Elliptic Curve Cryptosystems 83

Let us now compare the performance of our scheme for cases 1 and 2, to
determine the best scheme for each scenario. For this analysis, we should also
consider the scalar multiplication cost since different point operations apply to
different cases. Note that we only analyze the performance on Edwards and
Jacobi quartic curves, as these are the settings where our method has been
shown to attain the lowest costs (see Table 6).

Let us consider the standard wNAF method. In this case, the cost of a scalar
multiplication is approximately
[

nD +
(

(2w−2−1)(n−1)
2w−2(w+1)

)

A +
(

(n−1)
2w−2(w+1)

)

mA
]

+ CostProposed, case1,

[

nD +
(

n−1
w+1

)

mA
]

+ CostProposed, case2,

for cases 1 and 2, respectively. Table 8 shows the performance of the scalar
multiplication including the costs of the precomputation schemes proposed in
this work, cases 1 and 2. As it can be seen, case 1 achieves the best perfor-
mance for most common I/M ratios if n = 160 bits. For higher security levels
(n = 512 bits), the difference between case 1 and case 2 reduces and, ultimately,
the most effective approach would be determined by the particular I/M ratio
of a given implementation. However, as the window size grows, case 1 would
be again largely preferred. Therefore, for applications where memory is not
scarce, case 1 would achieve the lowest cost. Similar conclusions are observed
for IE coordinates, whose costs are not included in Table 8 because of space
constraints.

Finally, we analyze the performance of the proposed scheme for tables ciP ±
diQ. In this case, a multiple scalar multiplication using the JSF3 method [9] costs
approximately [nD + 0.3083(n− 1)A + 0.0617(n− 1)mA] + CostProposed, case1

and [nD + 0.37 (n− 1)mA] +CostProposed, case2 for cases 1 and 2, respectively.
The latter can be reduced in the case of J coordinates if we consider the efficient
DA operation [13]. The costs in this case are expressed by [(0.63n + 0.37)D +
0.3083(n − 1)DA + 0.0617(n − 1)mDA] + CostProposed, case1 and [(0.63n +
0.37)D + 0.37(n− 1)mDA] + CostProposed, case2.

Table 9 shows the performance of the scalar multiplication including the costs
of our precomputation scheme, cases 1 and 2. Similarly to the case of single
scalar multiplication (see Table 8), case 1 achieves the best performance for most
common I/M ratios for n = 160 bits with JQ and IE coordinates. However,
if n = 512 bits, the range of I/M ratios for which case 2 is more efficient

Table 8. Cost of scalar multiplication using wNAF and the proposed scheme (cases 1
and 2); and I/M range for which case 1 achieves the lowest cost on JQ coord

Method
n = 160 bits n = 512 bits

w = 4 w = 5 w = 4 w = 5 w = 6

Proposed, case 1 1279.6M 1265.4M 4035.7M 3921.5M 3870.2M

Proposed, case 2 1I + 1267.1M 1I + 1269.2M 1I + 3970.5M 1I + 3874.0M 1I + 3858.8M

I/M range (case 1) I > 12.5M I > 0M I > 65.2M I > 47.5M I > 11.4M

84 P. Longa and C. Gebotys

Table 9. Cost of multiple scalar multiplication using JSF3 and the proposed scheme
(cases 1, 2); and I/M range in which case 1 achieves the lowest cost on J , IE and JQ

Method
n = 160 bits n = 512 bits

JQ IE J JQ IE J
Proposed, case 1 1572.2M 1624.9M 1889.6M 4886.7M 5062.0M 5840.2M

Proposed, case 2 1I+1565.4M 1I+1635.9M 1I+1796.8M 1 I+4771.4M 1I+4964.4M 1I+5511.1M

I/M range (case 1) I > 6.8M I > 0M I > 92.8M I > 115.3M I > 97.6M I > 329.1M

increases significantly. Also, note that case 2 appears to be the best choice for
J coordinates for a wide range of I/M ratios.

As reference, the costs for JQ and J using a traditional chain for precompu-
tation are 1598M or 1I+1594M, and 1922M or 1I+1849M, respect. (n = 160).

6 Other Applications

We have discussed the application of the strategy of the conjugate addition to
build efficient precomputation tables with the forms diP and ciP±diQ. However,
this technique can be easily applied to other table forms such as the one required
by the generalized JSF [19], which requires the computation of (3k − 1)/2 − k
non-trivial points. For instance, for k = 3 scalars, the previous algorithm requires
the precomputation of P ± Q, P ± R, Q ± R, P + Q ± R, P − Q ± R, which
costs about 10 general additions. With our strategy, the latter is reduced to only
5 addition/conjugate addition pairs (case 1). Note that the advantage grows
exponentially with the number of scalars.

Other obvious application is the extension of our strategy to other settings
such as binary fields. Let us illustrate the latter with the addition formula due
to [14] and later refined by [5]. The cost of adding two points P + Q with the
latter formula takes 13M + 4S. Then, if we need the value P −Q right after, we
can store most partial results from the original addition and obtain the previous
value with a cost of only 5M by noticing that −Q = (X2, X2Z2 + Y2, Z2) in
Lopez-Dahab coordinates. Note that the partial term Y2Z

2
1 from the original

formula is replaced by −Y2Z
2
1 = (X2Z2 + Y2)Z2

1 = X2Z2Z
2
1 + Y2Z

2
1 , which only

cost one extra multiplication. Straightforward generalizations of this technique
(and also of the proposed precomputation schemes) can be applied to other
coordinate systems and/or elliptic curve forms.

7 Conclusions

We have introduced an innovative technique based on conjugate additions that
can be efficiently exploited to reduce costs in a scalar multiplication. The rele-
vant formulas on three different settings (namely, standard, Jacobi quartic and
Edwards curves) over prime fields have been derived and shown to attain sig-
nificant cost reductions in comparison with traditional formulae. In particular,

Novel Precomputation Schemes for Elliptic Curve Cryptosystems 85

we have proposed novel precomputation schemes based on this technique. Our
analysis shows that the new schemes are especially attractive on the highly effi-
cient Jacobi quartic and Edwards curves, enabling even faster implementations.
Finally, we have also discussed other applications of the introduced strategy to
binary fields and other precomputation tables.

Acknowledgments. We would like to thank the Natural Sciences and Engi-
neering Research Council of Canada (NSERC) and the Ontario Centres of Ex-
cellence (OCE) for partially supporting this work. Also, after finishing this work,
we became aware of a similar idea proposed by M. Scott during a presentation
in ECC2008. He rediscovered the idea of exploiting similarities between P + Q
and P −Q and suggested a slightly different sequence to precompute points.

References

1. Bernstein, D., Lange, T.: Faster Addition and Doubling on Elliptic Curves. In:
Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 29–50. Springer,
Heidelberg (2007)

2. Bernstein, D., Lange, T.: Inverted Edwards Coordinates. In: Boztaş, S., Lu, H.-
F(F.) (eds.) AAECC 2007. LNCS, vol. 4851, pp. 20–27. Springer, Heidelberg (2007)

3. Brown, M., Hankerson, D., Lopez, J., Menezes, A.: Software Implementation of
the NIST Elliptic Curves over Prime Fields. In: Naccache, D. (ed.) CT-RSA 2001.
LNCS, vol. 2020, pp. 250–265. Springer, Heidelberg (2001)

4. FIPS PUB 186-2: Digital Signature Standard (DSS). National Institute of Stan-
dards and Technology (NIST) (2000)

5. Higuchi, A., Takagi, N.: A Fast Addition Algorithm for Elliptic Curve Arithmetic
in GF(2n) using Projective Coordinates. Information Processing Letters 76(3),
101–103 (2000)

6. Hisil, H., Wong, K., Carter, G., Dawson, E.: Faster Group Operations on Elliptic
Curves. Cryptology ePrint Archive, Report 2007/441 (2007)

7. Hisil, H., Wong, K., Carter, G., Dawson, E.: An Intersection Form for Jacobi-
Quartic Curves. Personal communication (2008)

8. Koblitz, N.: Elliptic Curve Cryptosystems. Mathematics of Computation, vol. 48,
pp. 203–209 (1987)

9. Kuang, B., Zhu, Y., Zhang, Y.: An Improved Algorithm for uP+vQ using JSF3.
In: Jakobsson, M., Yung, M., Zhou, J. (eds.) ACNS 2004. LNCS, vol. 3089, pp.
467–478. Springer, Heidelberg (2004)

10. Lim, C.H., Hwang, H.S.: Fast Implementation of Elliptic Curve Arithmetic in
GF(pn). In: Imai, H., Zheng, Y. (eds.) PKC 2000. LNCS, vol. 1751, pp. 405–421.
Springer, Heidelberg (2000)

11. Longa, P.: ECC Point Arithmetic Formulae (EPAF),
http://patricklonga.bravehost.com/jacobian.html

12. Longa, P., Miri, A.: Fast and Flexible Elliptic Curve Point Arithmetic over Prime
Fields. IEEE Trans. Comp. 57(3), 289–302 (2008)

13. Longa, P., Miri, A.: New Composite Operations and Precomputation Scheme for
Elliptic Curve Cryptosystems over Prime Fields. In: Cramer, R. (ed.) PKC 2008.
LNCS, vol. 4939, pp. 229–247. Springer, Heidelberg (2008)

http://patricklonga.bravehost.com/jacobian.html

86 P. Longa and C. Gebotys

14. López, J., Dahab, R.: Improved Algorithms for Elliptic Curve Arithmetic in
GF(2n). Technical Report IC-98-39, Relatorio Técnico (1998)

15. Meloni, N.: New Point Addition Formulae for ECC Applications. In: Carlet, C.,
Sunar, B. (eds.) WAIFI 2007. LNCS, vol. 4547, pp. 189–201. Springer, Heidelberg
(2007)

16. Miller, V.: Use of Elliptic Curves in Cryptography. In: Williams, H.C. (ed.)
CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986)

17. Möller, B.: Algorithms for Multi-exponentiation. In: Vaudenay, S., Youssef, A.M.
(eds.) SAC 2001. LNCS, vol. 2259, pp. 165–180. Springer, Heidelberg (2001)

18. Okeya, K., Takagi, T., Vuillaume, C.: Efficient Representations on Koblitz Curves
with Resistance to Side Channel Attacks. In: Boyd, C., González Nieto, J.M. (eds.)
ACISP 2005. LNCS, vol. 3574, pp. 218–229. Springer, Heidelberg (2005)

19. Proos, J.: Joint Sparse Forms and Generating Zero Columns when Combing. Tech-
nical Report CORR 2003-23, University of Waterloo (2003)

20. Solinas, J.: Low-Weight Binary Representations for Pairs of Integers. Technical
Report CORR 2001-41, University of Waterloo (2001)

A Conjugate (Mixed) Addition in Jacobian Coordinates

In the case of general addition, refer to equations (1) and (2) in Section 3.
In the case of mixed addition, let P = (X1, Y1, Z1) and Q = (x2, y2) be two

points on an elliptic curve E. If the mixed addition is performed using [12, for-
mula (16)] and the partial values (4β3 + 8X1β

2), 4X1β
2, −8Y1β

3, Z3 and Z3
1y2

are temporarily stored, the conjugate mixed addition P − Q = P + (−Q) =
(X1, Y1, Z1) + (x2,−y2) = (X4, Y4, Z4) can be performed as follows:

X4 = γ2 − (4β3 + 8X1β
2), Y4 = γ(4X1β

2 −X4)− 8Y1β
3, Z4 = Z3 (12)

where γ = −2(Z3
1y2 + Y1). This formula only costs 1M + 1S + 4A+ 1(×2).

B Conjugate (Mixed) Addition in JQ Coordinates

Let P = (X1, Y1, Z1, X
2
1 , Z

2
1) and Q = (X2, Y2, Z2, X

2
1 , Z

2
1) be two points on a

Jacobi quartic curve. If the addition P + Q is performed using the following
formula due to [6]:

X3 = (α + 2Y1)(β + 2Y2)− αβ − 4Y1Y2, Z3 = φ− θ,
Y3 = (θ + φ + 2αβ)[4(X2

1 + Z2
1)(X2

2 + Z2
2) + aαβ + 4Y1Y2]− 16(X2

3 + Z2
3),

X2
3 = (X3)2, Z2

3 = (Z3)2,
(13)

where φ = 4Z2
1Z

2
2 , θ = 4X2

1X
2
2 , α = (X1 +Z1)2 − (X2

1 +Z2
1), β = (X2 +Z2)2 −

(X2
2 + Z2

2), and the partial values β, (α + 2Y1), 2Y2, αβ, −4Y1Y2, (4X2
1X

2
2 +

4Z2
1Z

2
2), 2αβ, 4(X2

1 + Z2
1)(X2

2 + Z2
2) + 4Y1Y2, aαβ, Z3 and Z2

3 are temporarily
stored, then the conjugate addition P −Q = P + (−Q) = (X1, Y1, Z1, X

2
1 , Z

2
1)+

(−X2, Y2, Z2, X
2
2 , Z

2
2) = (X4, Y4, Z4) can be performed with only 2M + 1S +

7A+ 1(×16) as follows:

Novel Precomputation Schemes for Elliptic Curve Cryptosystems 87

X4 = (α + 2Y1)(−β + 2Y2) + αβ − 4Y1Y2, Z4 = φ− θ = Z3,
Y4 = (θ + φ− 2αβ)[4(X2

1 + Z2
1)(X2

2 + Z2
2)− aαβ + 4Y1Y2]− 16(X2

4 + Z2
4),

X2
4 = (X4)2, Z2

4 = Z2
3 ,

(14)
In the case of mixed addition, let P = (X1, Y1, Z1, X

2
1 , Z

2
1) andQ = (x2, y2, x

2
2)

be two points on a Jacobi quartic curve. If the mixed addition P+Q is performed
using the following formula due to [6]:

X3 = (α + 2Y1)(x2 + y2)− αx2 − 2Y1y2, Z3 = 2(Z2
1 −X2

1x
2
2),

Y3 =2((X2
1x

2
2 + Z2

1 + αx2)[2(X2
1 + Z2

1)(x2
2 + 1)+aαx2+2Y1y2]−2(X2

3 + Z2
3)),

X2
3 = (X3)2, Z2

3 = (Z3)2,
(15)

where α = (X1 + Z1)2 − (X2
1 + Z2

1), and the partial values (α + 2Y1), αx2,
−2Y1y2, (X2

1x
2
2 + Z2

1), (2(X2
1 + Z2

1)(x2
2 + 1) + 2Y1y2), a αx2, Z3 and Z2

3 are
temporarily stored, then the conjugate mixed addition P − Q = P + (−Q) =
(X1, Y1, Z1, X

2
1 , Z

2
1) + (−x2, y2, x

2
2) = (X4, Y4, Z4) can be performed with 2M +

1S + 7A+ 2(×2) as follows:

X4 = (α + 2Y1)(−x2 + y2) + αx2 − 2Y1y2, Z4 = 2(Z2
1 −X2

1x
2
2) = Z3,

Y4 =2((X2
1x

2
2 + Z2

1−αx2)[2(X2
1 + Z2

1)(x2
2 + 1)−aαx2 + 2Y1y2]−2(X2

4 + Z2
4)),

X2
4 = (X4)2, Z2

4 = Z2
3 .

(16)

C Conjugate (Mixed) Addition in IE Coordinates

Let P = (X1, Y1, Z1) and Q = (X2, Y2, Z2) be two points on Inverted Edwards
coordinates. If the general addition P + Q is performed using the following
formula due to [2] (note that some terms have been rearranged to save a few
field additions):

X3 = [α + d(Z1Z2)2](X1X2 − Y1Y2), Y3 = [α− d(Z1Z2)2](X1Y2 + X2Y1),
Z3 = Z1Z2(X1X2 − Y1Y2)(X1Y2 + X2Y1),

(17)
where α = X1X2Y1Y2, and the partial values [X1X2Y1Y2 + d(Z1Z2)2], X1X2,
Y1Y2, [X1X2Y1Y2 − d(Z1Z2)2], X1Y2, X2Y1 and Z1Z2 are temporarily stored,
then the conjugate addition P −Q = P +(−Q) = (X1, Y1, Z1)+(−X2, Y2, Z2) =
(X4, Y4, Z4) can be performed with the following (with a cost of only 4M +2A):

X4 = [α− d(Z1Z2)2](X1X2 + Y1Y2), Y4 =−[α+ d(Z1Z2)2](X1Y2 −X2Y1),
Z4 = −Z1Z2(X1X2 + Y1Y2)(X1Y2 −X2Y1),

(18)
The formula for mixed addition can be obtained by setting Z2 = 1 in formula

(17) and has a cost of 9M+1S+4A. Then, if the partial values (X1x2Y1y2+dZ2
1),

X1x2, Y1y2, (X1x2Y1y2−dZ2
1), X1y2 and x2Y1 are temporarily cached, then the

conjugate mixed addition P − Q = P + (−Q) = (X1, Y1, Z1) + (−x2, y2) =
(X4, Y4, Z4) can be performed by:

88 P. Longa and C. Gebotys

X4 =[X1x2Y1y2 − dZ2
1](X1x2 + Y1y2), Y4 =−[X1x2Y1y2 + dZ2

1](X1y2 − x2Y1),
Z4 = −Z1(X1x2 + Y1y2)(X1y2 − x2Y1),

(19)
which only costs 4M + 2A. We remark that memory requirements of the new
conjugate formulas can be minimized by performing P + Q and P − Q in an
”interlaced” fashion (see, for instance, Table 2).

D Calculation of Precomputed Points

The table below shows the proposed precomputing sequences for various values
m. For m = 5 the first sequence corresponds to J and JQ, and the second one
to IE . Tied arrows denote addition/conjugate addition pairs (or mixed addi-
tion/conjugate mixed addition pairs if performed with affine point P).

m Precomputation Scheme m Precomputation Scheme

3 15

5 17

7 19

11 29

13 31

Practical Secure Evaluation of Semi-private

Functions

Annika Paus, Ahmad-Reza Sadeghi�, and Thomas Schneider��

Horst Görtz Institute for IT-Security, Ruhr-University Bochum, Germany
{annika.paus,ahmad.sadeghi,thomas.schneider}@trust.rub.de

Abstract. Two-party Secure Function Evaluation (SFE) is a very use-
ful cryptographic tool which allows two parties to evaluate a function
known to both parties on their private (secret) inputs. Some applica-
tions with sophisticated privacy needs require the function to be known
only to one party and kept private (hidden) from the other one. How-
ever, existing solutions for SFE of private functions (PF-SFE) deploy
Universal Circuits (UC) and are still very inefficient in practice.

In this paper we bridge the gap between SFE and PF-SFE with SFE
of what we call semi-private functions (SPF-SFE), i.e., one function out
of a given class of functions is evaluated without revealing which one.

We present a general framework for SPF-SFE allowing a fine-grained
trade-off and tuning between SFE and PF-SFE covering both extremes.
In our framework, semi-private functions can be composed from several
privately programmable blocks (PPB) which can be programmed with
one function out of a class of functions. The framework allows efficient
and secure embedding of constants into the resulting circuit to improve
performance. To show practicability of the framework we have imple-
mented a compiler for SPF-SFE based on the Fairplay SFE framework.

SPF-SFE is sufficient for many practically relevant privacy-preserving
applications, such as privacy-preserving credit checking which can be im-
plemented with our framework and compiler as described in the paper.

Keywords: SFE of semi-private functions, Yao’s protocol, topology,
optimization, compiler, privacy.

1 Introduction

Two-party Secure Function Evaluation (SFE) is an important and wide area of
cryptographic research (see, e.g., [18,10,13,1,11,7,12]). It allows two parties to
securely evaluate a common function on their private inputs without involving
a trusted third party. The function is represented as a boolean circuit and eval-
uated based on a garbled version of the circuit which is created by one party
(constructor Bob) and evaluated by the other party (evaluator Alice). Usually
SFE hides the intermediate results but - as the function is known to both parties
- not the structure (topology) of the function.
� The author was supported by the European Union under FP6 project SPEED.

�� The author was supported by the European Union under FP7 project CACE.

M. Abdalla et al. (Eds.): ACNS 2009, LNCS 5536, pp. 89–106, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

90 A. Paus, A.-R. Sadeghi, and T. Schneider

In practice, however, a variety of business models require privacy properties
beyond the secrecy of parties’ input data to additionally keep the evaluated
function private. The underlying business motivations vary from commercial
incentives (e.g., protection of intellectual property) to pure security requirements
to reduce the probability of credential forgery or to make insider attacks obsolete.
Typical use cases are client-server applications where a user Alice inputs her
private data x (hidden to Bob), the server Bob inputs his private function f
(hidden to Alice), and the protocol outputs f(x) to both parties such that neither
party gain any information about the other party’s input. Prominent examples
are privacy-preserving trust negotiation schemes [3,6,4], credit checking [5], or
data classification using neural networks [16].

To allow SFE of a private function, called PF-SFE [8], a universal circuit (UC)
[17,8,16] is evaluated that simulates the function, and entirely hides the structure
of their circuit representation. UCs require a huge overhead of O(k log k) [17],
O(k log2 k) [8], respectively O(k2) [16] additional gates, where k is the number
of gates of the simulated circuit.

Fairplay [13], a state-of-the art implementation of SFE, can evaluate functions
consisting of millions of gates whereas in FairplayPF [8], a recent implementa-
tion for PF-SFE, functions are restricted to a few thousand gates only due to
the huge overhead for evaluating UC. Hence, a better trade-off between maximal
performance (SFE) and maximal privacy of the evaluated function (PF-SFE) is
desired. For many practically relevant applications (e.g., those mentioned above)
it is sufficient that functions are only partly private, what we call semi-private
functions (SPF). Basically, these applications reflect the following scenario: A
user Alice has private data x, and a service provider Bob has a semi-private func-
tion f ∈ F as input, where F represents a given class of functions. At the end of
the protocol, Alice obtains f(x) but not which specific f was evaluated and Bob
obtains no information on x. This problem, called secure function evaluation
of semi-private functions (SPF-SFE), can be reduced to Yao’s protocol where
circuit’s topology is revealed to the evaluator but the functionality of the gates
is hidden. Evaluator sees the circuit topology but can only guess which function-
ality each part of the circuit might evaluate. We concentrate on relaxed-security
model, i.e., security against malicious evaluator Alice and semi-honest (honest-
but-curious) constructor Bob. This model is widely used in current cryptographic
literature [14,2,9] and well-justified in many practical applications where perfor-
mance is crucial and constructor Bob can be assumed to behave semi-honestly
by means of legal contracts or possible loss of reputation.

While SPF-SFE based on Yao’s protocol has been proposed as building block
in many applications (e.g., [3,5,6,4,16]), we give the first unified theory for SPF-
SFE. Extending and improving previously known techniques we present a general
theoretical framework for SPF-SFE together with a language and tools to specify
and automatically generate SPF-SFE protocols for practical applications.

Related Work. The idea of constructing circuits for a special class of functions
and evaluating them efficiently with Yao’s protocol in the relaxed-security model
have been used in several sub-protocols [3,5,6,4,8,16]. Frikken et al. call the

Practical Secure Evaluation of Semi-private Functions 91

respective building blocks oblivious gates/circuits where evaluator does not know
the function that each gate/circuit computes. However, they only mention the
existence of several useful topologies like binary trees, comparison circuits, or
universal circuits together with their asymptotic size, but do not give explicit
constructions. We extend their basic ideas into a generic framework and provide
a wide class of functional blocks, each with a concrete efficient implementation
(topology, programming, and exact size), that can be arbitrarily combined to
represent semi-private functions in many practical applications.

Existing frameworks for secure computation based on Yao’s protocol are the
Fairplay SFE system [13] with a proposed extension to the malicious model [12]
and another extension to private functions with UCs (PF-SFE), called Fair-
playPF [8]. The Fairplay compiler includes an optimizer that optimizes on the
basis of the high-level Secure Function Description Language (SFDL) using peek-
hole optimization, duplicate code removal, and dead code elimination. In contrast
to this, our proposed optimization algorithm for constant inputs optimizes on
the lower abstraction level of circuits and can also be applied to further optimize
the output of circuits generated with the Fairplay compiler.

Our Contribution and Outline. We propose a general framework together
with a compiler for efficient secure function evaluation of semi-private functions
(SPF-SFE) in the relaxed-security model.

In §2 we describe how common SFE can be extended with building blocks that
we call Privately Programmable Blocks (PPB) to allow practical secure evalua-
tion of semi-private functions (SPF-SFE). A privately programmable block (§4)
consists of a fixed topology of several programmable gates (with a small num-
ber of inputs) and can be programmed to evaluate different functions out of a
class of functions. The evaluator learns how the blocks are connected (topology)
but not with which of the functions of their corresponding class of functions
the blocks are programmed. Hence parts of the function are hidden from the
evaluator while the topology is still revealed. In §5 we show how to design ef-
ficient constructions for PPBs that also allow to securely incorporate private
constants into PPBs and give concrete constructions that are of special interest
for practical applications. In particular we present efficient PPB constructions
to compare two numbers and a number with a private constant. Other efficient
PPB constructions for arithmetic operations (add or subtract two numbers/a
number and a private constant, multiply a number with a private constant) and
boolean operations are given in the full version of this paper [15]. Also switching
functions, e.g., permutation and selection blocks, as well as universal circuits
from [8] fit into this concept. The resulting SPF-SFE protocol is as efficient as
Yao’s SFE protocol while providing function privacy at the same time.

In §8 we present an optimization algorithm that incorporates constant inputs
into the circuit resulting in a circuit with less inputs and smaller size having a
topology which is independent of the values of the constant inputs. Besides the
well known propagation of constant inputs, our algorithm additionally eliminates
resulting gates with one input by incorporating them into surrounding gates
which results in smaller circuit size. The proposed optimization algorithm applies

92 A. Paus, A.-R. Sadeghi, and T. Schneider

no cryptographic modification of circuits and hence is of independent interest.
This optimization can be used in combination with Yao’s SFE protocol in the
relaxed-security scenario where constant inputs might be public values known
to both parties as well as the inputs of circuit constructor Bob.

In order to allow usage of SPF-SFE in many practical applications we present
a general compiler framework for secure evaluation of semi-private functions,
called FairplaySPF, based on the well known Fairplay SFE system [13] as de-
scribed in §6. Our Secure Programmable Block Description Language (SPBDL)
allows to specify the topology of interconnected programmable blocks together
with their corresponding private programming. A compiler automatically com-
piles SPBDL descriptions to circuits described in Fairplay’s Secure Hardware
Description Language (SHDL). After incorporating Bob’s inputs into the cir-
cuit with the optimization algorithm presented in §8, the circuit can securely
be evaluated with the SPF-SFE protocol while hiding the programming. Also
a Universal Circuit (UC) that is evaluated in PF-SFE (cf. [8]) can be seen as
a PPB that is programmed with a private circuit (specified in SHDL). By in-
corporating UCs as programmable blocks into SPBDL, our framework becomes
a general purpose framework capable of expressing SFE, SPF-SFE, and PF-
SFE as well as arbitrary combinations of them where only sensitive parts of
the function’s structure are hidden as shown in the example in §7. This al-
lows a fine-grained trade-off between performance and privacy of the evaluated
function.

Our framework and compiler can be applied (combining SPF-SFE and PF-
SFE) to implement and improve efficiency of several applications such as privacy-
preserving credit checking [5], blinded policy evaluation [3,6,4], or secure data
classification [16]. In §7 of this paper we concentrate on privacy-preserving credit
checking. Usually, before getting a loan from a bank a person has to reveal
a substantial amount of private information. This information has to satisfy
certain criteria that are defined by the bank. We show how SPF-SFE can be
used to securely evaluate the trustworthiness of a borrower while ensuring that
(i) the privacy of his input is preserved and (ii) nothing is revealed about the
criteria of the bank used for credit checking. Instead of using a UC for the whole
function as in PF-SFE we reveal the topology of the trivial part of the function
(e.g., comparing attributes with thresholds) and only hide the sensitive part in
a UC, which is much more efficient. The description of the function in SPBDL
can automatically be compiled into SHDL code with our compiler. This can be
obliviously evaluated in a one-round protocol.

2 Yao’s Protocol and Semi-private Functions

Yao’s Protocol. In the following, we concentrate on Yao’s protocol [18] for
SFE. Yao’s protocol is often called garbled circuit protocol as a garbled version
of the (boolean) circuit representing the function is created by one party (con-
structor Bob) and evaluated by the other party (evaluator Alice) as described
in the following. For each wire of the circuit, Bob uses two random bit strings

Practical Secure Evaluation of Semi-private Functions 93

(garbled values) that are assigned to the corresponding values 0 and 1, respec-
tively. Note, that the garbled values do not reveal to which value they correspond
as they are chosen randomly. Bob sends only the garbled values corresponding
to his inputs (garbled inputs) to Alice. For Alice’s inputs, Bob uses 1-out-of-2
oblivious transfer (OT) to send Alice only the garbled values corresponding to
her inputs without Bob learning which strings she gets. Additionally, for each
gate Gi of the circuit, Bob creates and sends to Alice a garbled table Ti with
the following property: given garbled values for Gi’s inputs, Ti allows to recover
only the garbled value of the corresponding output of Gi and nothing else. Af-
terwards, Alice uses the received garbled values of the input wires and garbled
tables Ti to evaluate the garbled circuit gate by gate. The output wires of the
circuit are not garbled (or the mappings from garbled values to values 0 and 1
are published by Bob), thus Alice learns (only) the output of the circuit, but
no plain values of internal wires (only garbled values). Correctness and security
against semi-honest adversaries of Yao’s protocol are proven in [10]. It is easy
to show that Yao’s protocol is even secure against malicious Alice, i.e. relaxed-
secure, as the only message Alice sends to Bob is within the OT protocol where
Alice is unable to cheat successfully if the OT protocol is secure against malicious
Alice [4, Appendix A]. An efficient OT protocol with relaxed-security is given
in [2].

Yao’s protocol is the kernel of existing implementations of SFE protocols
[13,12] which also extend it to be secure against malicious constructor Bob via
cut-and-choose, e.g., multiple circuits are garbled, correctness of some of them
is verified by revealing all garbled input values (called open), and the remaining
ones are evaluated. As justified in the introduction, we concentrate on the plain
Yao’s protocol (secure against semi-honest Bob and potentially malicious Alice)
where only one circuit is evaluated and no circuits are opened.

Yao’s Protocol for Semi-Private Functions. Observe, in Yao’s protocol the
garbled tables Ti consist of symmetric encryptions of the garbled output value
using the corresponding garbled input values as keys. Alice can use these garbled
input values to decrypt exactly the one garbled output value corresponding to
these keys. All other garbled output values, i.e., entries of the garbled function
table remain hidden from Alice and hence she cannot determine the type of the
gate. The only information Alice learns about the function in Yao’s protocol is
the topology of the circuit, i.e., the way the different gates are connected and
how many inputs each gate has.

When Alice obtains a garbled circuit from Bob, she can guess from its topology
what functionality the circuit evaluates, e.g., chains of 3-input gates might be an
integer comparison circuit. This can be exploited constructively by Bob to keep
parts of the function private, we call this a semi-private function, as follows.
Bob composes his intended functionality from blocks with a fixed topology that
can evaluate different functionalities each, called privately programmable blocks
(PPBs) as explained in §4. The maximum amount of information Alice can gain
from the topology of a PPB is the set of functionalities the PPB might compute
but not the specific functionality chosen privately by Bob.

94 A. Paus, A.-R. Sadeghi, and T. Schneider

From combining these two arguments follows that evaluation of a circuit,
composed out of several PPBs representing the semi-private function, with Yao’s
protocol is a secure protocol for SPF-SFE.

Additionally, (semi-honest) Bob can incorporate his input values into the
circuit before garbling the circuit if they are already known at that time. In
§8 we give an algorithm for efficient optimization of circuits for Bob’s (constant)
inputs together with an example. The optimization only depends on the topology
of the original circuit but not on Bob’s input values and hence the optimized
circuit does not reveal more information on Bob’s input values than the original
circuit. After this optimization, Bob no longer needs to transfer the garbled
values corresponding to his input values to Alice and also the size of the circuit
is reduced (resulting in less communication and computation).

3 Definitions and Preliminaries

Let x ∈ [0, 2�) be an unsigned �-bit integer value and x = (x1, .., x�), xi ∈ {0, 1}
its corresponding representation as bit vector, i.e., x =

∑�
i=1 xi2i−1. The length

of x is |x| = �. We draw a (single) wire with one-bit value as . As usual,

multi wire X with �-bit value x is drawn as and consists of � wires indexed
by X [i], i = 1, .., � with values xi.

A gate G with degree d has d inputs and one output. It is the implementation
of a boolean function g : {0, 1}d → {0, 1}. As special case, a constant gate has
no inputs (d = 0) and outputs a constant value. The size of a gate G, denoted
by |G|, is the number of function table entries needed to implement the gate,
namely |G| = 2d. A gate with e > 0 outputs can easily be combined from e gates
with one output resulting in size e · 2d.

We consider acyclic circuits consisting of connected gates with arbitrary fan-
out, i.e., the output of each gate can be used as input to arbitrary many gates.
The size of a circuit, denoted by |C|, is the sum of the sizes of its gates. Note,
communication and computation complexity of efficient SFE protocols is linear
in the size of the circuit.

A block Bu
v is a sub-circuit with u inputs in1, .., inu and v outputs out1, .., outv.

Bu
v computes function fB : {0, 1}u → {0, 1}v mapping input values to output

values. Blocks consist of connected gates and other sub-blocks. Size of block B,
denoted by |B|, is the sum of the sizes of its sub-elements.

A programmable gate (PG) is a gate with an unspecified function table. Pro-
gramming it is done by providing a specific function table with 2d entries (one
entry for each input combination). The concept of PGs corresponds to a universal
circuit for simulating a single gate in Valiant’s UC construction [17]. As described
in the previous section, in SPF-SFE evaluator Alice is not able to extract the
corresponding function table (program) from PG. Analogously, a programmable
block (PB) is a block consisting of programmable gates or programmable sub-
blocks. It is programmed by programming each of its sub-elements. As described
before, in SPF-SFE evaluator Alice is unable to extract the program from PB.

Practical Secure Evaluation of Semi-private Functions 95

4 Privately Programmable Blocks

In this section we present the concept of Privately Programmable Blocks (PPB)
for constructing semi-private functions. Using our efficient PPB constructions
given in §5 with the SPF-SFE protocol of §2 allows to preserve the privacy of
the function while the protocol remains as efficient as SFE protocol.

Definition 1. A Privately Programmable Block (PPB) is a programmable block
which can be programmed to compute any function f of a given class of functions
F (e.g., F = {ADD,SUB}) with a corresponding program pf (e.g., f = ADD).
We write PPB f for a PPB which is programmed to compute f :

∀f ∈ F , ∀(in1, .., inu) ∈ {0, 1}u : PPB f (in1, .., inu) = f(in1, .., inu).

As explained in §2 before, in SPF-SFE the function to be evaluated is composed
of several PPBs. Evaluator Alice learns how the PPBs are connected (topol-
ogy), but the programming of the PPBs remains to be private information of
constructor Bob (that’s why PPBs are called privately programmable). Alice
can infer from the topology of a PPB at most the class of possible functional-
ities F but not the specific functionality f chosen by Bob. Hence, from Alice’s
point of view the PPB can compute any functionality from F and the amount
of information hidden inside the PPB is log2 |F| bits. For a semi-private func-
tion which is composed from programmable blocks PPB1 , ..,PPBn , the program
of each PPB can be combined with any programming of the other PPBs and
hence the maximum (as some combinations might not make sense depending on
the application) amount of information hidden in the semi-private function is
log2(|F1| · .. · |Fn|) =

∑n
i=1 log2 |Fi| bits. Clearly, if this is not large enough (i.e.,

if the number of PPBs n or number of possible functionalities of PPBs |Fi| is
small), Alice might guess the correct function with high probability or probe the
system via exhaustive search which must be prohibited by other means.

Universal Circuits (UC) indeed are special PPBs that can be programmed
to compute an arbitrary function. UCk is capable of simulating any function
corresponding to a circuit with up to k gates with two inputs each. UCs provide
full privacy of the evaluated function as the topology is hidden entirely. How-
ever, they cause a huge overhead by increasing the size of the evaluated circuit
by O(k log k) [17], O(k log2 k) [8], or O(k2) [16] additional gates which is often
intolerable in practice. Evaluating a UC programmed with a private function
known by constructor Bob with a SFE protocol is called Secure Evaluation of
Private Functions (PF-SFE). By combining the PPBs presented in this paper
with UCs, users can find a fine-grained trade-off between efficient PPB construc-
tions for semi-private functions (SPF-SFE) and less efficient UC constructions
for completely private functions (PF-SFE) as explained in §7.

Simple PPB Construction. A straight-forward implementation of a PPB
for a class of n arbitrary functionalities F = {f1, f2, .., fn} can directly be de-
rived from the definition of PPBs in Definition 1 as shown in Fig. 1(a). Each
functionality fi is computed by a circuit Ci and a n : 1 multiplexer (MUX) is

96 A. Paus, A.-R. Sadeghi, and T. Schneider

(a) Simple PPB construction (b) Efficient PPB construction

Fig. 1. PPB constructions

programmed to select the intended output. The MUX block can be constructed
from v parallel selection blocks Sn

1 (as defined in [8]) for each of the v outputs
that can be programmed to select any of their n inputs as outputs.

If the program pf is known by Bob beforehand it can directly be incorporated
into the circuit as described in §8. After optimization, each of the v selection
blocks consists of a chain of n − 1 programmable 2-input gates which can be
programmed to select either their left or right input as output each [8]. The size
of this simple PPB construction is

∣
∣PPBsimple

∣
∣ = 4v(n− 1) +

∑n
i=1 |Ci|.

Efficient PPB Constructions. Efficient PPB constructions can be obtained
by choosing special classes of functionalities having circuits with the same (or at
least a similar) topology. This allows to re-use (parts of) the same circuit C for
the different functionalities fi as shown in Fig. 1(b). For instance, the topology of
an adder is the same as that of a subtractor and hence for F = {ADD,SUB} the
same topology can be used. Based on the intended functionality f ∈ F , the sub-
elements of C are programmed differently while the topology is the same. This
efficient PPB construction has size

∣
∣PPBefficient

∣
∣ = |C| ≈ |Ci| �

∣
∣PPBsimple

∣
∣.

When a private constant c is incorporated into a PPB, the value of the con-
stant can not be extracted from PPB’s topology and hence is hidden from Alice
in the SPF-SFE protocol, e.g., circuits to add/subtract an input with a s-bit
constant c have the same topology. To simplify notation, we parametrize the
class of possible functionalities with parameter c and write Fc = {f1c, .., fnc}
for F = {f1|c=0, .., f1|c=2s−1, f2|c=0, .., f2|c=2s−1, . . . , fn|c=0, .., fn|c=2s−1}, e.g.,
Fc = {ADDc, SUBc} in the example given above. The amount of information
hidden inside a PPB is

log2 |F| = log2 |Fc|+ |c| = log2(n) + s bits. (1)

5 Practical Efficient PPB Constructions

In this section we show how to construct several efficient PPBs that are useful in
practical applications (cf. §7). All these building blocks are already implemented
in our framework for practical SPF-SFE described in §6. In the following we

Practical Secure Evaluation of Semi-private Functions 97

present two efficient PPB constructions for arithmetic operations: compare two
numbers and a number with a private constant. Other efficient PPB construc-
tions for arithmetic operations (add or subtract two numbers/a number and a
private constant, multiply a number with a private constant) and boolean opera-
tions are given in the full version of this paper [15]. Our SPF-SFE framework also
provides PPBs for Switching Functions (i.e., permutation and selection blocks)
and Universal Circuits for which we refer to the definitions, descriptions, and
constructions in [8]. A list of efficient PPB constructions provided for implemen-
tation in our framework is given in the full version of this paper [15].

For each PPB we give the Interface specifying the functionality of the block, its
number of inputs and outputs, and the different possibilities for programming
Fc. The Implementation describes the topology of the corresponding efficient
PPB construction, how to program it, and its size. The inputs are called x, y
and the potential private constant is called c, where |x| = m, |y| = n, and
|c| = s. To simplify presentation we assume w.l.o.g. m = n, respectively m = s
in the following descriptions. The other cases can easily be derived from these by
padding the shorter input with zeros and optimizing constant inputs afterwards
as described in §8. Recall, evaluator Alice can neither extract the chosen function
fc ∈ Fc, nor the value of the possibly embedded private constant c ∈ {0, 1}s,
from the topology of any PPB. The amount of information hidden inside the
PPB is given by equation (1).

The main idea underlying efficient PPB constructions is to combine func-
tionalities that have structurally equivalent recursive definitions that directly
translate into programmable gates of equivalent topologies. E.g., comparison if
two m-bit numbers x,y of bitlength m are less or equal is defined recursively as

(x ≤ y) ⇔
(

(xm < ym) ∨
(

(xm = ym) ∧ ((xm−1, .., x1) ≤ (ym−1, .., y1))
))

. (2)

Whether two numbers are greater or equal is defined recursively as

(x ≥ y) ⇔
(

(xm > ym) ∨
(

(xm = ym) ∧ ((xm−1, .., x1) ≥ (ym−1, .., y1))
)

(3)

which is structurally equivalent and translates into the same topology (Fig. 2(b)).

5.1 PPB:COMP - Compare Two Numbers

Interface (Fig. 2(a)). PPBCOMP implements z = f(x, y) = x �	 y, where
�	 ∈ {<,>,=,≤,≥,
=} and |z| = 1. The corresponding class of functions is
F = {L,G,E, LE,GE,NE}.

Implementation (Fig. 2(b)). Topology of PPBCOMP consists of a chain of m
programmable gates PGi (full comparers) with input bits xi, yi, and carry-in ti−1

and output carry-out ti. The output of PPBCOMP is z = tm and the first carry
t0 = 1 can be directly incorporated into PG1. The carry ti propagates whether
for the i least significant bits x<i = x mod 2i and y<i = y mod 2i the correspond-
ing relation is fulfilled (ti = 1) or not (ti = 0). In the following we describe the

98 A. Paus, A.-R. Sadeghi, and T. Schneider

(a) Interface (b) Topology

Fig. 2. PPB:COMP

programming for the cases =, ≤, and ≥; the corresponding cases
=, >, and < can
be easily derived from this by negating output tm in PGm. In case f = E, PGi

is programmed to compute ti = (xi = yi) ∧ (x<i = y<i) = (xi = yi) ∧ ti−1.
Analogously, in case f = LE, PGi computes ti = (xi < yi) ∨ [(xi = yi) ∧ ti−1]
and in case f = GE, PGi computes ti = (xi > yi)∨ [(xi = yi)∧ ti−1]. Note, these
function table entries correspond exactly to the recursive definitions in equation
(2) and (3). This block has size |PPBCOMP | = (m− 1) · 23 + 22 = 8m− 4.

5.2 PPB:COMPc - Compare Number with Private Constant

Interface (Fig. 3(a)). PPBCOMPc implements z = fc(x) = x �	 c, where
�	 ∈ {<,>,=,≤,≥,
=}, c is a private constant hidden inside PPB, and |z| = 1.
The corresponding class of functions is Fc = {Lc, Gc, Ec, LEc, GEc, NEc}.

Implementation (Fig. 3(b)). Topology of PPBCOMPc is exactly the same
as that of PPBCOMP described in the previous section, however, each pro-
grammable gate PGi has no input for yi which is replaced by the internal con-
stant ci. The programming is the same as for PPBCOMP with constant ci instead
of input yi. This block has size |PPBCOMPc| = (m− 1) · 22 + 21 = 4m− 2.

(a) Interface (b) Topology

Fig. 3. PPB:COMPc

6 FairplaySPF - A General Framework for SPF-SFE

We have implemented a general framework for Secure Evaluation of Semi-Private
Functions (SPF-SFE) called FairplaySPF 1 by extending the Fairplay SFE
1 FairplaySPF is available for download at http://www.trust.rub.de/FairplaySPF .

http://www.trust.rub.de/FairplaySPF

Practical Secure Evaluation of Semi-private Functions 99

framework [13], both written in JAVA. Fairplay provides two languages: The
high-level Secure Function Description Language (SFDL) allows users to spec-
ify the functionality to be computed with elements known from other high-level
hardware description languages like VHDL or Verilog (e.g., variables, arrays,
procedures, arithmetic- and logic expressions, control structures, etc.). Fairplay
optimizes the function described in SFDL and automatically transforms it into
a boolean circuit described in Fairplay’s low-level Secure Hardware Description
Language (SHDL). This language consists of wires, input wires, gates, and out-
put gates only. Using the SHDL circuit as input for both parties, Alice and Bob
invoke their respective programs of the Fairplay runtime environment to exe-
cute the two-party SFE protocol. These programs evaluate the function on their
respective private inputs over a TCP connection.

FairplaySPF Framework. In FairplaySPF, we extend the Fairplay framework
[13] to secure evaluation of semi-private functions that are known to Bob only. In
the following we describe the workflow of the FairplaySPF framework. Bob com-
poses his semi-private function from several available privately programmable
blocks (as described in §5) in our newly designed Secure Programmable Block
Description Language (SPBDL) explained later in this section. Our FairplaySPF
compiler automatically translates this SPBDL program into an SHDL circuit.
Alternatively, SHDL circuits that are generated by the original Fairplay compiler
from SFDL descriptions can be used. Bob’s private input data is automatically
incorporated into the SHDL circuit and optimized afterwards by the FairplaySPF
circuit optimizer as described in §8 resulting in a smaller SHDL circuit. This
optimized SHDL circuit (containing the combination of Bob’s semi-private func-
tion and his private data) is evaluated by the FairplaySPF runtime environment
(RE) which is only a slight modification of the Fairplay RE for semi-private
functions: In FairplaySPF RE only Bob inputs the SHDL circuit but not Alice.
The topology of the circuit (but without the types of the gates) is sent to Alice
and afterwards the SPF-SFE protocol as described in §2 is executed between
Alice and Bob over a TCP connection.

Secure Programmable Block Description Language (SPBDL). Our
new SPBDL language allows to easily specify semi-private functions by com-
bining different PPBs. SPBDL extends the basic functionality of SHDL to input
wires (input), multi-wires (vector), privately programmable blocks (block),
programmable gates (gate), and output wires (output). The formal specifica-
tion of the syntax of SPBDL in Extended Backus-Naur Form (EBNF) is given
in the full version of this paper [15]. In the following, we briefly describe the
semantics of SPBDL. Please see Fig. 4 for an example SPBDL description of a
semi-private function. As in SHDL, each line of a SPBDL program starts with
a line number beginning with 0. In following lines, this number refers to the
output of the element defined in this line. Line comments start with //.

A SPBDL program starts with the definition of inputs as input Player [w],
where Player defines from which party the input is given (alice or bob). The
optional parameter [w] specifies that the input consists of w bits (default w = 1).

100 A. Paus, A.-R. Sadeghi, and T. Schneider

Afterwards, three kinds of elements can be specified - gate, vector, and block:
A programmable gate is defined as gate in [Wires] p [Bits], where Wires is
its list of inputs and Bits is the programming of its function table. A list of Wires
can be grouped into a vector with vector [Wires]. The single wires of a vector
can be accessed via Vector.Index, e.g., 4.2 denotes the second wire of vector 4.
A PPB is defined as block [Btype] out Num in [Vects] p [Bprog], where
Btype is the type of the PPB (e.g., comp for PPBCOMP described in §5), Num
specifies the number of output bits, and Vects is the list of input vectors. The
programming of the PPB specified in Bprog depends on the type of the PPB
Btype. All types of PPBs Btype and corresponding programming parameters
Bprog available in SPBDL are given in the full version of this paper [15]. Finally,
outputs are defined as output Player Vect, where Player defines which party
obtains the output (alice or bob) and Vect is the vector to be output.

7 Applications

Our general framework and tools for SPF-SFE presented in this paper can be
used to specify and implement many privacy-preserving applications. Examples
are Blinded Policy Evaluation [3,6,4], Privacy-Preserving Credit Checking [5], or
provably secure evaluation of Private Neural Networks [16].

In the following we concentrate on privacy-preserving credit checking [5] which
demonstrates how the evaluated function can be partitioned into semi-private
and private parts which are both supported by our framework.

Privacy-Preserving Credit Checking. Typically, before granting a loan from
a lender (Bob), the credit worthiness of the borrower (Alice) is checked to have
the confidence that she will be able to pay it back later. The borrower is asked for
her credit report that contains a large amount of private information including
for example gender, age, income, salary, or other sensitive information like how
many trade lines she owns, the number of overdrafts, or the number of late
payments. However, revealing this data should be avoided as the lender may not
always be a credible organization or, even worse, dishonest employees (so called
insiders) could sell such private information on customers to third parties.

Additionally, the evaluation criteria of the lender are highly sensitive informa-
tion that must be protected as revelation of these may cause loss of intellectually
property or loss of repudiation for the lender.

As suggested by Frikken et al. [5], this scenario can be reduced to SPF-SFE,
where Alice inputs her private credit report and Bob evaluates his semi-private
function that checks if the credit report fulfills his criteria. To ensure that Alice
inputs correct data into the SPF-SFE protocol, the authors describe how to
replace the oblivious transfer step by a Credit Report Agency, i.e., a trusted
third party, that checks and accredits Alice’s inputs instead.

Bob’s semi-private credit checking function can be expressed in our framework
for SPF-SFE as shown in the tiny example of Fig. 4 which is due to space
limitations not intended to give the complete solution but merely to show the

Practical Secure Evaluation of Semi-private Functions 101

Fig. 4. Example for Privacy-Preserving Credit Checking

main concepts. The upper part of the circuit performs some obvious computation
on Alice’s data, e.g., compare her age with a private constant, or combine this
result with her gender. The sensitive information in this part of the function
are the private constants, e.g., grant credit only to female persons (gender = 1)
that are younger than 65 (age < 65), which are hidden from Alice, whereas the
obvious topology can safely be revealed.

The highly sensitive part of the functionality that combines these results de-
pending on the amount of credit requested (credit req) is hidden entirely from
Alice within the universal circuit UC. This PPB can be programmed to com-
pute any functionality computable by a circuit of up to k = 50 gates with arbi-
trary topology. The specific functionality intended by Bob is the SHDL circuit
described in f.shdl, which can automatically be generated from a high-level
description in SFDL with the Fairplay compiler.

This example shows how our framework for SPF-SFE can be used to imple-
ment an application-specific, reasonable tradeoff between efficiency while reveal-
ing irrelevant information (SPF-SFE with PPBs) and complete function privacy
(PF-SFE with UC).

Comparison of SPF-SFE and PF-SFE. Revealing the topology of obvious
parts of the functionality while hiding the sensitive parts in a UC results in a
smaller circuit as UC overhead can be substantially reduced due to less simulated
gates k and less inputs into UC. This reduced size of the evaluated circuit directly
translates into corresponding speedups in any implementation of the underlying
SPF-SFE protocol as their performance must be at least linear in the size of the
evaluated circuit.

As concrete example, Table 1 shows the number of gates that can be saved in
the privacy-preserving credit checking example of Fig. 4 compared to hiding the
functionality entirely in a UC in PF-SFE. For different maximum size k (row A)
of the part of the functionality which is hidden in UC we give the achieved
performance improvements when extracting the obvious part of the functionality
into the upper part of the circuit (COMPc blocks and BOOL block in Fig. 4).
In our example, these blocks consist of 14 gates, i.e., row B contains the fraction

102 A. Paus, A.-R. Sadeghi, and T. Schneider

Table 1. Improved UC Overhead in the Example of Fig. 4

A) Gates hidden in UC, k 25 50 100

B) Gates extracted, 14/(k + 14) 35.9% 21.9% 12.3%

C) UC overhead in PF-SFE (UC type) 1, 861 (M3) 3, 720 (M3) 8, 264 (M3)

D) UC overhead in SPF-SFE (UC type) 850 (M1) 2, 571 (M3) 6, 797 (M3)

E) Improvement SPF-SFE vs. PF-SFE 1, 011 (54.3%) 1, 149 (30.9%) 1, 467 (17.8%)

of the functionality which is revealed: 14/(k+14). Row C shows how many gates
are needed to hide the whole functionality of 14+k gates in a UC with 24 inputs
(for credit req, age, and gender) using the most efficient UC construction of
[16] which is denoted in parentheses. Row D shows how many gates are needed
to implement the UC in our mixed approach as shown in Fig. 4, where UC has
18 inputs and simulates k gates. The resulting improvements compared to the
PF-SFE solution (row E) supersede the fraction of the gates extracted (row B)
as the number of inputs into UC is also reduced.

8 Optimization of Circuits with Constant Inputs

We describe a general optimization algorithm that incorporates constant inputs
into a block (sub-circuit) B. The topology of the resulting optimized block Bopt

is independent of the values of the constant inputs and its number of inputs and
size are smaller, i.e., the number of gates respectively their degree is reduced as
shown in Fig. 5. Besides the well known propagation of constant inputs (step 1),
our algorithm additionally eliminates resulting gates with one input by incorpo-
rating them into surrounding gates (steps 2 and 3), which results in a smaller
circuit size. The optimization algorithm is a non-cryptographic transformation
of circuits and hence of independent interest. As outlined in §2, one possible

(a) Block with constant inputs in3 and in7 (b) Block after optimization

Fig. 5. Example for circuit optimization with Algorithm 1

Practical Secure Evaluation of Semi-private Functions 103

application is to use this optimization to improve Yao’s protocol. In this appli-
cation, constant inputs might be public constant values known to both parties
as well as the private inputs of (semi-honest) circuit constructor Bob (if known
at the time of construction of the garbled circuit).

Terminology. The following terminology is visualized in Fig. 5(a). Assume the
gates Gi, i = 1, .., n of a block B are numbered in topological order, i.e., gate Gi

has no inputs that are outputs of gates with larger index Gj>i. Otherwise, this
order can be obtained efficiently via topological sorting in O(n).

An output gate is a gate whose output is also an output of B. Similarly, an
input gate is a gate, which has at least one input that is also an input of B. For
gate Gi, pred(Gi) denotes the set of its predecessors, i.e., gates whose output is
an input into Gi. Analogously, succ(Gi) denotes the set of Gi’s successors, i.e.,
gates having the output of Gi as input. The fan-out of a gate Gi is the number
of its successors, i.e., fanout(Gi) = #succ(Gi).

Optimization. We refer to the running example of Fig. 5 that optimizes a block
B with constant inputs in3 and in7 in the following description of Algorithm 1.

Step 1 - Eliminate constant inputs. The first step of Algorithm 1 eliminates
all constant inputs cj , j = 1, .., c of block B with respective constant value
vj ∈ {0, 1}. For all gates Gi with degree di having cj as ki-th input, the function
eliminateConstInput(Gi, ki, vj) is called that eliminates the corresponding
input of Gi. Only the lines of the function table of Gi with value vj in the ki-th
position are used while the other entries are eliminated, i.e., the modified gateGi′

computes gi′(in1, .., inki−1, inki+1, .., indi) = gi(in1, .., inki−1, vj , inki+1, .., indi).

Algorithm 1. Optimize block B with constant inputs
Input: Block B of gates G1, .., Gn in topological order
Output: Optimized block Bopt

begin
Eliminate constant inputs1

forall constant inputs cj with constant value vj that are not outputs of B do
forall gates Gi having cj as ki-th input do

eliminateConstInput(Gi, ki, vj)

Eliminate non-output gates with one input2

forall non-output gates Gi with di = 1 do
integrateInSucc(Gi)

Eliminate output gates with one input3

forall output gates Gi with di = 1 do
let {Gp} = pred(Gi)
if Gi is not input gate and fanout(Gp) = 1 then

integrateInPred(Gi,Gp)

end

104 A. Paus, A.-R. Sadeghi, and T. Schneider

|Gi| shrinks by a factor of two for each of its constant inputs. Let #ci denote the
number of constants of the di inputs of Gi, then |Gi′ | = 2di−#ci after Step 1 of
Algorithm 1 has eliminated all constant inputs. For an efficient implementation
of Algorithm 1 it is crucial that eliminateConstInput() does not copy the
entire function table of a gate Gi for each elimination of a constant input as this
would result in runtime O(#ci · |Gi|) for each gate. Instead, the constant inputs
are marked in runtime O(#ci) and afterwards all constant inputs are eliminated
simultaneously in runtime O(|Gi|) by copying the corresponding elements of
the function table. This results in runtime O(|Gi|) per gate. Constant gates
Gi′ with di′ = 0 are propagated into their successors by recursively calling
eliminateConstInput(Gs, ks, gi(vj)) for all Gs ∈ succ(Gi′) having Gi′ as ks-
th input. If constant gate Gi′ is not an output gate it is eliminated afterwards.

In the example of Fig. 5, constant input in3 is input into gate G1 whose size is
reduced by half when eliminating the second input (k1 = 2). The resulting gate
G′

1 has one non-constant input in2 and hence no further optimization is per-
formed. The other constant input in7 is input into G3 which is optimized into
a constant gate G′

3 by eliminating the constant input. Hence, eliminateCon-
stInput() is called recursively for successor G5 and G′

3 is eliminated. Similarly
to G3, gate G5 is reduced to a constant gate G′

5 and eliminateConstInput()
is called for successor G7 which eliminates its second input. As the output of G′

5

is also output of B it is not eliminated and remains as constant gate Gd.
After termination of Step 1 there might be gates Gi with one input left.

The next two steps of Algorithm 1 try to remove these by incorporating their
functionalities into their successors (Step 2) or predecessors (Step 3).

Step 2 - Eliminate non-output gates with one input. Step 2 of Algorithm 1 elim-
inates non-output gates with d = 1. The functionality of each one-input gate Gi

which is not an output gate is incorporated into its successors Gs ∈ succ(Gi)
by the function integrateInSucc(Gi). This function eliminates Gi by replac-
ing it with a wire and incorporating the functionality of gi into the function
tables of all its successors Gs ∈ succ(Gi): Let the output of Gi be the k-th
input of Gs and d the degree of Gs. Then, the modified gate G′

s computes
g′s(in1, .., ink, .., ind) = gs(in1, .., gi(ink), .., ind). Note that, independent of the
functionality gi, the resulting gate G′

s has the same size as Gs but additionally in-
corporates the functionality of gi while not revealing any additional information
on it. As in Step 1, for runtime O(|Gi|) per gate the modifications of the function
tables are not applied directly but first marked and then done simultaneously.

In the running example of Fig. 5, Step 2 eliminates G1 by replacing it with a
wire and modifying the function table of G6 correspondingly. Analogously, gate
G′

7 which only has one input from G2 left after the optimizations performed in
Step 1 is replaced by a wire. The function tables of its successors G9 → Gb and
G10 → Gc are modified correspondingly.

Step 3 - Eliminate output gates with one input. The third step of Algorithm 1
tries to eliminate output gates with d = 1. The functionality of each output gate
Gi with one input is incorporated into its predecessor Gp. This is only possible

Practical Secure Evaluation of Semi-private Functions 105

if Gi is the only successor of Gp, i.e., fanout(Gp) = 1. In this case, function
integrateInPred(Gi,Gp) is called which eliminates gate Gi by replacing it
with a wire and incorporates its functionality into gate Gp with d inputs. The
modified gate G′

p computes g′p(in1, .., ind) = gi(gp(in1, .., ind)). As in Step 2, this
optimization step is independent of the functionality gi and the resulting gate
G′

p has the same size as Gp but additionally incorporates the functionality of gi

while not revealing any additional information on it.
In the running example of Fig. 5, Step 3 eliminates G8 by replacing it with a

wire and modifying the function table of G6 → Ga correspondingly. In contrast
to this, gate Gc cannot be incorporated into its predecessor G2 as Gc is not its
only successor (fanout(G2) = 2). The optimized block Bopt produced by Algo-
rithm 1 is shown in Fig. 5(b). It has size |Bopt| = 21 which is less than 62% of
the size of the original block |B| = 34.

Correctness, efficiency and security of Algorithm 1 are summarized in the fol-
lowing theorem. Its proof is given in the full version of this paper [15].

Theorem 1. Algorithm 1 efficiently eliminates all c > 0 constant inputs that
are not outputs of block B in runtime O(|B|). The optimized block Bopt has
smaller size and computes the same functionality as B. The topology of Bopt

does not reveal anything about the values of the constant inputs.

Acknowledgements. We would like to thank Vladimir Kolesnikov and anony-
mous reviewers of ACNS’09 for helpful comments on the paper.

References

1. Ahn, L.v., Hopper, N.J., Langford, J.: Covert two-party computation. In: ACM
Symposium on Theory of Computing (STOC 2005), pp. 513–522. ACM Press,
New York (2005)

2. Aiello, W., Ishai, Y., Reingold, O.: Priced oblivious transfer: How to sell digital
goods. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 119–135.
Springer, Heidelberg (2001)

3. Frikken, K.B., Atallah, M.J., Li, J.: Hidden access control policies with hidden
credentials. In: ACM Workshop on Privacy in the Electronic Society (WPES 2004),
p. 27. ACM Press, New York (2004)

4. Frikken, K.B., Atallah, M.J., Li, J.: Attribute-based access control with hidden
policies and hidden credentials. IEEE Trans. Comput. 55(10), 1259–1270 (2006)

5. Frikken, K.B., Atallah, M.J., Zhang, C.: Privacy-preserving credit checking. In:
ACM conference on Electronic Commerce (EC 2005), pp. 147–154. ACM Press,
New York (2005)

6. Frikken, K.B., Li, J., Atallah, M.J.: Trust negotiation with hidden credentials,
hidden policies, and policy cycles. In: Network and Distributed System Security
Symposium (NDSS 2006) (2006)

7. Kolesnikov, V., Schneider, T.: Improved garbled circuit: Free XOR gates and
applications. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M.,
Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126,
pp. 486–498. Springer, Heidelberg (2008)

106 A. Paus, A.-R. Sadeghi, and T. Schneider

8. Kolesnikov, V., Schneider, T.: A practical universal circuit construction and secure
evaluation of private functions. In: Tsudik, G. (ed.) FC 2008. LNCS, vol. 5143, pp.
83–97. Springer, Heidelberg (2008), http://thomaschneider.de/FairplayPF

9. Laur, S., Lipmaa, H.: A new protocol for conditional disclosure of secrets and
its applications. In: Katz, J., Yung, M. (eds.) ACNS 2007. LNCS, vol. 4521, pp.
207–225. Springer, Heidelberg (2007)

10. Lindell, Y., Pinkas, B.: A proof of Yao’s protocol for secure two-party computation.
ECCC Report TR04-063, Electr. Coll. on Comp. Complexity (2004)

11. Lindell, Y., Pinkas, B.: An efficient protocol for secure two-party computation
in the presence of malicious adversaries. In: Naor, M. (ed.) EUROCRYPT 2007.
LNCS, vol. 4515, pp. 52–78. Springer, Heidelberg (2007)

12. Lindell, Y., Pinkas, B., Smart, N.: Implementing two-party computation efficiently
with security against malicious adversaries. In: Ostrovsky, R., De Prisco, R., Vis-
conti, I. (eds.) SCN 2008. LNCS, vol. 5229, pp. 2–20. Springer, Heidelberg (2008)

13. Malkhi, D., Nisan, N., Pinkas, B., Sella, Y.: Fairplay — a secure two-party computa-
tion system. In: USENIX (2004), http://www.cs.huji.ac.il/project/Fairplay/

14. Naor, M., Pinkas, B.: Oblivious transfer and polynomial evaluation. In: ACM Sym-
posium on Theory of Computing (STOC 1999), pp. 245–254. ACM Press, New York
(1999)

15. Paus, A., Sadeghi, A.-R., Schneider, T.: Practical secure evaluation of semi-private
functions. Cryptology ePrint Archive, Report 2009/124 (2009),
http://eprint.iacr.org/

16. Sadeghi, A.-R., Schneider, T.: Generalized universal circuits for secure evaluation
of private functions with application to data classification. In: Lee, P.J., Cheon,
J.H. (eds.) ICISC 2008. LNCS, vol. 5461, pp. 336–353. Springer, Heidelberg (2008)

17. Valiant, L.G.: Universal circuits (preliminary report). In: Proc. 8th ACM Symp.
on Theory of Computing (STOC 1976), pp. 196–203. ACM, New York (1976)

18. Yao, A.C.: How to generate and exchange secrets. In: Proc. 27th IEEE Symp.
on Foundations of Comp. Science (FOCS 1986), Toronto, pp. 162–167. IEEE, Los
Alamitos (1986)

http://thomaschneider.de/FairplayPF
http://www.cs.huji.ac.il/project/Fairplay/
http://eprint.iacr.org/

Secure Hamming Distance Based Computation

and Its Applications

Ayman Jarrous and Benny Pinkas�

University of Haifa

Abstract. This paper examines secure two-party computation of func-
tions which depend only on the Hamming distance of the inputs of the
two parties. We present efficient protocols for computing these functions.
In particular, we present protocols which are secure in the sense of full
simulatability against malicious adversaries.

We show different applications of this family of functions, including a
protocol we call m-point-SPIR, which is an efficient variant of symmet-
ric private information retrieval (SPIR). It can be used if the server’s
database contains N entries, at most N/ log N of which have individual
values, and the rest are set to some default value. This variant of PIR is
unique since it can be based on the existence of OT alone.

1 Introduction

There are many known generic constructions of secure two-party and multi-party
computation. It is preferable, of course, to use constructions which are secure
against malicious adversaries, and where security is proved according to the full
simulatability notion defined in [8]. In that case the composition theorem of [8]
implies that the resulting protocol can be used as a building-block for more
complex protocols, and security can be analyzed assuming that the building-
block protocol is implemented by a trusted oracle [8,15]. There are recent efficient
constructions of generic protocols which are secure according to this definition
(by Lindell and Pinkas [22], and Jarecki and Shmatikov [20]), and there is even an
implementation of the former protocol [23]. Our work investigates only the stand-
alone setting, but there are also efficient generic constructions of secure two-party
protocols in the UC model [19]. The downside of generic constructions is that
they impose additional overheads, such as communicating and checking multiple
copies of a circuit computing the functionality [22], or computing public key
operations for every gate of the circuit [20]. It is therefore important to identify
functionalities that are essential for many applications, and design efficient secure
constructions of these specific functionalities. This paper performs this task for a
functionality denoted as “Hamming distance based oblivious transfer”, for which
we also demonstrate different interesting applications.
� Supported by the the Israel Science Foundation (grant No. 860/06), the European

Union under the FP7-STREP project CACE, and a European Research Council
(ERC) Starting Grant.

M. Abdalla et al. (Eds.): ACNS 2009, LNCS 5536, pp. 107–124, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

108 A. Jarrous and B. Pinkas

The Hamming distance between two strings is defined as the number of charac-
ters in which they differ. We define “Hamming distance based oblivious transfer”
(HDOT, pronounced “h-dot”) as a protocol which allows two parties, a receiver
P1 which has an input w, and a sender P2 which has an input w′, to securely
evaluate a function f(·, ·) whose output is determined only by the Hamming
distance between w and w′ (denoted dH(w,w′)). More precisely, the output is
defined in the following way: Let |w| = |w′| = �, then P2 must provide �+ 1 ad-
ditional inputs Z0, . . . , Z�, and P1’s output is set to be Zd where d = dH(w,w′).
With regards to this functionality, this paper contains the following results:

– HDOT protocols secure against semi-honest adversaries:
• A protocol denoted binHDOT for binary inputs w,w′ ∈ {0, 1}�. This

protocol operates by computing O(�) homomorphic encryptions and only
log � invocations of 1-out-of-2 oblivious transfer.

• A general HDOT protocol, for w,w′ ∈ Σ�, where Σ can be arbitrary.
This protocol uses binHDOT as a building block.

– A binHDOT protocol secure against malicious adversaries (in the stand-
alone setting). The protocol uses two primitives that must also be secure
against malicious adversaries: Committed Oblivious Transfer with Constant
Difference (COTCD), and Oblivious Polynomial Evaluation (OPE). We give
a construction for the first primitive, which is an example of a new class of
OT protocols, constrained OT, which we define. The latter primitive is based
on a construction of Hazay and Lindell [17].

– Applications of HDOT. These include several straightforward applications,
such as computing the Hamming distance between strings, or transferring
one of two words based on whether the two input strings are equal or not (a
functionality we denote as EQ, for equality based transfer). Another applica-
tion is a variant of symmetric PIR (SPIR) which we denote as m-point-SPIR,
and which can be used when the server’s database contains N items, of which
at most m = o(N/ logN) are unique and the other N −m items have some
default value. The receiver does not know whether it learns a unique or a
default value. We show a protocol which is based on HDOT and can be
reduced to oblivious transfer alone, which computes this functionality more
efficiently than known PIR protocols. m-point-SPIR can be used for other
applications, as described in Section 6.

2 Preliminaries

We use the standard definitions of secure two-party computation in the stand-
alone setting (see Goldreich’s book [15, Chapter 7]). Security of protocols is
analyzed by comparing what an adversary can do in a real execution of the
protocol to what it can do in an ideal scenario that is secure by definition. The
ideal scenario involves an incorruptible trusted third party (TTP) which receives
the inputs of the parties, computes the desired functionality, and returns to
each party its respective output. A protocol is secure if any adversary which
participates in the real protocol (where no trusted third party exists) can do

Secure Hamming Distance Based Computation and Its Applications 109

no more harm than if it was involved in the above-described ideal computation.
The exact definition appears in [15].

The hybrid model. Our protocols use other secure protocols, such as oblivious
transfer, as subprotocols. It has been shown in [8] that if the subprotocols are
secure according to the right definition (i.e., full simulatability in the case of
the malicious adversary scenario), it suffices to analyze the security of the main
protocol in a hybrid model. In this model the parties interact with each other
and have access to a trusted party that computes for them the functionalities
that are implemented by the subprotocols. The composition theorem states that
it is not required to analyze the execution in the real model, but rather only
compare the execution in the hybrid model to that in the ideal model.

2.1 Cryptographic Primitives and Tools

Homomorphic Encryption. A homomorphic encryption scheme allows to
perform certain algebraic operations on an encrypted plaintext by applying an
efficient operation to the corresponding ciphertext. In addition, we require in
this paper that the encryption scheme be semantically secure. In particular, we
use an additively homomorphic encryption schemes where the message space is
a ring (or a field). There therefore exists an algorithm +pk whose input is the
public key of the encryption scheme and two ciphertexts, and whose output is
Epk(m1 + m2) = Epk(m1) +pk Epk(m2). (Namely, given the public key alone
this algorithm computes the encryption of the sum of the plaintexts of two
ciphertexts.) The new ciphertext is an encryption which is done with fresh and
independent randomness. There is also an efficient algorithm ·pk, whose input
consists of the public key of the encryption scheme, a ciphertext, and a constant
c in the field, and whose output is Epk(c ·m) = c ·pk Epk(m).

An efficient implementation of an additive homomorphic encryption scheme
with semantic security was given by Paillier [30,31]. In this cryptosystem the
encryption of a plaintext from [0, N − 1], where N is an RSA modulus, requires
two exponentiations modulo N2. Decryption requires a single exponentiation.
Security is based on the decisional composite residuosity (DCR) assumption.

Oblivious Transfer. The paper uses 1-out-of-N oblivious transfer (OTN
1) as a

basic building block. The OTN
1 protocol runs between two parties, a sender that

has an input (X0, X1, . . . , XN−1), where Xi ∈ {0, 1}m, and a receiver that has
an input I ∈ {0, 1, . . . , N−1}. By the end of the protocol, the receiver learns XI

and nothing else and the sender does not learn any information about I. In [29]
it was shown how to implement OTN

1 using logN invocations of OT2
1. There

are many efficient implementations of OT2
1, starting with a protocol of Even,

Goldreich and Lempel [10]. Most of these protocols are designed for the semi-
honest scenario, or for a malicious scenario where the protocol provides only the
privacy property and not full simulatability. We note that while our protocol for
the semi-honest scenario can use any OT protocol, the protocol for the malicious
adversary scenario must use an OT protocol which is secure in the sense of full
simulatability against malicious adversaries. Such protocols were described, e.g.,

110 A. Jarrous and B. Pinkas

in [6,16,32,17]. (We specifically need a committed OT variant where we can also
prove a relation between the inputs of the sender, and therefore we use a protocol
which builds on the work of Jarecki and Shmatikov [20].) We also note that in
the malicious case we use OT2

1 and not OTN
1 .

2.2 Related Work

Generic secure computation. Generic protocols (e.g., of [35]) can be used to
compute any function. They are typically based on representing the computed
function as a binary or an algebraic circuit, and applying the protocol to this
representation. The overhead of these protocols depends on the size of the cir-
cuit representation of the functions. There are many theoretical constructions of
secure generic protocols. Notable examples of implementations of secure compu-
tation are the Fairplay system [24] for secure two-party computation, and the
FairplayMP and SIMAP systems [1,3] for secure multi-party computation. The
system described in [23] implements fully simulatable secure two-party compu-
tation according to the recent construction of [22].

Computing the Hamming distance. Protocols for computing the scalar
product of vectors (which is equal to the Hamming distance if the alphabet
is binary) were suggested in [34,14]. These protocols are based on the use of
homomorphic encryption, and are only secure against semi-honest adversaries.
(Our HDOT protocol for binary alphabets and semi-honest adversaries borrows
its first step from these protocols.)

A protocol for secure efficient approximate computation of the Hamming dis-
tance, with a polylogarithmic communication overhead, was suggested in [18]
(previous protocols for this task useO(

√
�) communication for �-bit words [12,13]).

We wanted to improve upon these protocols for three reasons: (1) These protocols
introduce approximation errors. (2) The protocols are only secure against semi-
honest adversaries. (3) In addition, these protocols have good asymptotic commu-
nication overhead, but use non-trivial components which seem difficult to imple-
ment with a performance that will be competitive for reasonable input sizes1.

3 Hamming Distance Based Oblivious Transfer

A Hamming Distance based Oblivious Transfer protocol (abbrev. HDOT) is run
between two parties, a receiver (P1) and a sender (P2). It is defined as follows:

– Input: P1’s input is a word w ∈ Σ�. P2’s input contains a word w′ ∈ Σ�, and
� + 1 values Z0, . . . , Z�.

– Output: P1’s output is Zd, where d = dH(w,w′) is the Hamming distance
between w and w′ (note that P1 does not learn the Hamming distance itself).
P2 has no output.

1 For example, the protocol in [18] applies the Naor-Nissim [27] protocol to a cir-
cuit which computes vector operations over the Real numbers and samples from a
Bernoulli distribution; in addition it uses symmetric PIR protocols.

Secure Hamming Distance Based Computation and Its Applications 111

The paper describes a special protocol, binHDOT, for the case that the input
words are binary (i.e., Σ = {0, 1}), and a general protocol which works for
alphabets Σ of arbitrary size.

3.1 Straightforward Applications

An HDOT protocol can be immediately used for computing any function which
depends on the Hamming distance. Following are some interesting examples of
such functions:

– The Hamming distance itself can be computed by setting Zi = i for every
0 ≤ i ≤ �.

– The parity of the exclusive-or of the two inputs is computed by setting Zi

to be equal to the least significant bit of i, for 0 ≤ i ≤ �.
– EQ – Equality based transfer, or EQV0,V1(w,w′): This functionality outputs
V0 if w = w′, and V1 otherwise. The functionality is computed by setting
Z0 = V0 and Zi = V1 for 1 ≤ i ≤ �, and executing an HDOT protocol. P1

does not know which of the two cases happens (namely, whether w = w′).
This is crucial for the applications that are described below.
Recall that it is easy to design a protocol in which P1 learns a specific value
V0 if the two inputs are equal, and a random value otherwise. (See [11], or
consider a protocol where P1 sends a homomorphic encryption E(w), and
receives back E(r · (w−w′) +V0), where r is a random value.) Our protocol
is unique in defining a specific value to be learned if the two inputs are
different, and in hiding whether the inputs are equal or not.2

– Threshold HDOT protocol: The equality based transfer protocol can be gen-
eralized to tolerate some errors and have the output be V0 if the Hamming
distance is smaller than a threshold τ , and be V1 otherwise. In other words,
it implements the following functionality:

HDOTτ
V0|V1

(w,w′) =
{
V0, dH(w,w′) < τ
V1, dH(w,w′) ≥ τ

This functionality is implemented by setting Z0 = · · · = Zτ−1 = V0, and
Zτ = · · · = Z� = V1.

The protocol for equality based transfer is the major building blocks of the
m-point-SPIR SPIR application described in Section 6.

4 Protocols Secure against Semi-honest Adversaries

We first describe protocols which are secure against semi-honest behavior of the
potential adversaries. These protocols are relatively simple, yet they are unique
in invoking oblivious transfer a number of times which is only logarithmic in the
input length. The malicious adversary scenario is covered in Section 5.
2 In [2] it was shown how to implement a protocol which transfers one of two strings

if w > w′, and transfers the other string if w < w′ (if w = w′ the output is random).
It is possible to compute the EQ functionality by combining that protocol with a
protocol which outputs a specific value if w = w′ and a random value otherwise.

112 A. Jarrous and B. Pinkas

4.1 A Protocol for Binary Alphabets (binHDOT)

Consider first the case where the alphabet is binary (Σ = {0, 1}). The binHDOT
functionality can be securely implemented by applying Yao’s protocol to a circuit
computing it. That solution would require running � invocations of OT2

1. We
describe here a protocol which accomplishes this task using only log(�+1) OT2

1s
(see below a comparison of the performance of these two protocols).

The protocol works in the following way: In the first step the parties use ho-
momorphic encryption to count the number of bits in which the two words differ.
The result is in the range [0, �]. Next, the two parties use OT�+1

1 (implemented
using log(� + 1) OT2

1s) to map the result to the appropriate output value. The
protocol is described in detail in Figure 1.

Correctness. The value dH is equal to the Hamming distance. In Step 4, P1

computes (in F) the value dH + r, which can have one of � + 1 values (namely
r, r + 1, . . . , r + �). It holds with probability 1 − �/|F| that r < |F| − �. (And

binHDOT〈Z0,...,Z�〉(w, w′) Protocol

Input: P1’s input is a word w = (w0, . . . , w�−1), P2’s input is w′ = (w′
0, . . . , w

′
�−1),

where wi, w
′
i ∈ {0, 1}. P2 has additional inputs (Z0, . . . , Z�).

Output: P1 receives Zi such that dH(w, w′) = i. P2 learns nothing.
The protocol uses Epk(·), a homomorphic encryption function. The plaintexts are in
a ring or a field F . (We emphasize that � and |Σ| are negligible compared to |F|. A
typical size could be |F| = 21024.) pk is a public key that both parties know, but only
P1 knows the corresponding private key and can decrypt messages.

1. P1 sends the homomorphic encryption of each bit of the binary representation of
w = {w0, . . . , w�−1}, where wi ∈ {0, 1}.

2. P2 receives the encrypted representation {Epk(w0), . . . , Epk(w�−1)}. For each bit
location j it calculates Epk(ϑj), where ϑj ∈ {0, 1} and is equal to 1 if, and only
if, wj �= w′

j . The calculation is done in the following way:

Epk(ϑj) = Epk(wj) ·pk (1 − w′
j) +pk (1 −pk Epk(wj)) ·pk w′

j

3. Using the homomorphic properties, P2 sums the results of the previous step and
computes Epk(dH) =

∑�−1
0 Epk(ϑi). The value dH is in the range {0, 1, . . . , �}

and is equal to the Hamming distance between the two input words. In addition,
P2 chooses a random value r ∈ F , computes the value Epk(dH + r), and sends it
to P1. (In other words, it shifts the result by a random value r. Note that with
overwhelming probability, 1 − �/|F|, this addition operation does not involve a
modular reduction.)

4. P1 receives Epk(dH + r) and decrypts the result.
5. Next, the parties map the result to the appropriate Zi value, by invoking a OT�+1

1

protocol where P1 is the receiver and P2 is the sender:
- The input of P1 is (dH + r) mod (� + 1).
- P2 has inputs X0, . . . , X�, where Xi = Z(i−r) mod (�+1) (namely, Zi is mapped

to input (i + r) mod (� + 1) of the OT).
P1’s output in the OT is its output in the binHDOT protocol.

Fig. 1. The binHDOT protocol

Secure Hamming Distance Based Computation and Its Applications 113

since |F| is typically very large compared to �, e.g. |F| ≈ 21024 and � < 1000, we
do not consider here the negligible probability that this event does not happen.)
Therefore, the computation of dH + r in F does not involve a modular reduction
and has the same result as adding them over the integers. Reducing the result
modulo �+ 1 (in Step 5) is therefore equal to (r+ dH) mod (�+ 1). P1 uses this
result as its input to the 1-out-of-(�+1) OT protocol of Step 5. P2, on the other
hand, sets the sender’s inputs in the OT such that each Zi value is the sender’s
input indexed by (r + i) mod (� + 1). As a result, the output of P1 in the OT
protocol is ZdH , as required.

Note that if the parties are only interested in computing the value of the
Hamming distance then the protocol can be greatly simplified: P2 should send
to P1 in Step 3 the encryption Epk(dH). There is no need to run Steps 4 and 5.

Improving the initial step using non-interactive preprocessing. An ad-
ditional improvement can be achieved in the first step of the protocol, where P1

sends an encrypted binary representation of the word. This representation can
be precomputed using non-interactive preprocessing: P1 can prepare in advance
� encrypted zeros and � encrypted ones, instead of encrypting the input bits
online. This preprocessing enables P1 to send the binary representation directly
without spending time online encrypting 0 and 1 values.

Overhead. We compare the overhead of the binHDOT protocol to that of ap-
plying Yao’s protocol to a circuit computing the same functionality. We note
that the runtime of an OT protocol is slower than that of a homomorphic en-
cryption or decryption, and that the runtime of these latter operations is much
slower than that of a homomorphic addition or a homomorphic multiplication
by a constant (which in turn is much slower than symmetric encryption or de-
cryption). This relation between run times can be summarized as follows (where
> denotes “slower”, and � denotes slower by an order of magnitude):

OT > homomorphic enc. � homomorphic addition � symmetric enc.

Without using any preprocessing, the binHDOT protocol requires P1 to com-
pute � encryptions and a single decryption, while P2 computes �+1 homomorphic
additions, and the two parties run log(�+1) OT2

1s and 2(�+1) symmetric encryp-
tions (in order to implement OT�+1

1). In Yao’s protocol, the parties compute a
circuit with � input bits and a total of O(�) gates. This requires � executions of an
OT2

1 protocol and O(�) symmetric encryptions and decryptions. Both protocols
require O(�) communication.

The improvement achieved by the binHDOT protocol is noticeable since it
reduces the number of OTs, which are the most time consuming operation, from �
to log(�+1). In addition, the binHDOT protocol can benefit from the use of non-
interactive preprocessing to precompute all homomorphic encryption operations
even before the parties know of each other. In that case the � encryptions done
by P1 are computed offline, and its online computation is composed of a single
decryption and log(�+1) OTs. (Yao’s protocol cannot precompute the oblivious
transfers without using interaction. We note that if interactive preprocessing is

114 A. Jarrous and B. Pinkas

possible, then the OTs themselves can be precomputed in both protocols, and
this reduces the overhead of both protocols.)

Security. (sketch) We analyze security assuming that the parties are semi-
honest. The proof is simple, and therefore we only give a sketch of the proof:
We assume that the OT protocol is secure, and therefore we can prove security
in a hybrid model where the OT protocol is implemented by an oracle. In the
protocol, P2 receives homomorphic encryptions of a binary representation of a
word, and then it plays the role of the sender in an OT protocol in which it
receives no output. Therefore, if P2 learns anything this information must have
leaked from the encryptions it received. In other words, it is easy to write a
reduction showing that any algorithm that P2 might use to learn information
can be used to break the security of the semantic security of the encryption.
P1 receives from P2 a random value (dH + r). It then participates in the OT
protocol, which we assume to be implemented by an oracle. P2 therefore learns
nothing but the output of the OT, which is its designated output of the protocol.

4.2 A Protocol for Arbitrary Alphabets (HDOT)

We now describe an HDOT protocol which works over arbitrary alphabets Σ.
The protocol is based on applying the binHDOT protocol to every character of
the words. More specifically, the parties have inputs w,w′ ∈ Σ�, respectively.
The protocol begins with the parties representing each of the letters of Σ as
a binary word of length �log |Σ|�, and then running (for each letter location)
the equality based transfer (EQ) protocol, which was defined above and is an
application of binHDOT. In each execution of the EQ protocol P1 learns a value
αi if wi = w′

i, or the value αi + 1 otherwise, where αi is chosen at random by
P2. Then, P1 sums the values that it has received modulo � + 1. The result is
equal, modulo � + 1, to

∑
αi plus the Hamming distance of the original words.

The parties then run an OT�+1
1 protocol to map the result to the desired output.

The protocol is detailed in Figure 2.

Correctness. For every 0 ≤ i ≤ �− 1, P1 and P2 learn in Step 1 values βi, αi,
respectively, such that βi = αi if the letters wi and w′

i are equal, and βi = αi +1
if the letters are different. Let Sα =

∑�−1
i=0 αi, where here the addition is done in

F . Define Sβ similarly. Let d be the Hamming distance between the two input
words. Then it holds with probability 1 − �/|F| that Sβ = Sα + d, where the
addition here is done over the integers. Therefore, the values σα = Sα mod (�+1)
and σβ = Sα mod (� + 1) computed in Step 2 satisfy that σβ − σα mod (� + 1)
is equal to the Hamming distance d (which is in the range [0, �]).

Consider now the OT in Step 3. Assume first that σα = 0. In this case P1’s
input to the OT, σβ , is equal to the Hamming distance, and the inputs of P2

to the OT are the values Z0, . . . , Z� (in that order). The OT protocol therefore
computes the desired output in this case. Now, if σα > 0 then P1’s input to the
OT protocol is cyclically shifted (modulo � + 1) by σα, while the order of P2’s
inputs to the OT is also cyclically shifted (modulo �+ 1) by the same value σα.
The OT protocol therefore computes the correct result.

Secure Hamming Distance Based Computation and Its Applications 115

HDOT〈Z0,...,Z�+1〉(w, w′) Protocol

Input: P1 has an input w = 〈w0, w1, . . . , w�−1〉 ∈ Σ�. P2 has an input w′ =
〈w′

0, w
′
1, . . . , w

′
�−1〉 ∈ Σ�, and additional input values Z0, . . . , Z�. We denote by w̄j

the binary representation of wj , which is 	log(|Σ|)
 bits long.
Output: P1 learns Zi such that dH(w, w′) = i, P2 learns nothing.

1. For every i ∈ [0, �−1], P2 chooses at random a value αi ∈R F . Both parties then
run the protocol EQαi,αi+1(w̄i, w̄i

′). (w̄i, w̄i
′ denote the binary representations

of the letters wi and w′
i, respectively. The output of this protocol is αi if wi = w′

i,
and αi + 1 otherwise.)
At the end of the process, P1 obtains the values {β0, . . . , β�−1}, where

βi =

{

αi, wi = w′
i

αi + 1, wi �= w′
i

2. P1 sums, modulo � + 1, the βi values it received. Namely, it computes
σβ = (

∑�−1
0 βi) mod (� + 1). P2 sums its α values and computes σα =

(
∑�−1

0 αi) mod (� + 1).
3. Both parties run an OT�+1

1 protocol with the following inputs:

- P1 is the receiver and its input is σβ.
- P2 is the sender and its input is {X0, . . . , . . . , X�}, where Xi =

Z(i−σα) mod (�+1).

The value that P1 receives in the OT is defined as its output in the protocol.

Fig. 2. The HDOT protocol for general alphabets

Overhead. The overhead is that of applying the binHDOT protocol � times
over log |Σ| long binary strings, and then running log(�+1) invocations of OT2

1.
The parties run � log log |Σ| + log(� + 1) OT2

1s. (A direct implementation of
this functionality using Yao’s protocol would have required invoking O(� log |Σ|)
OTs.)

Security. (sketch) Analyzing security in the hybrid model, we assume that the
binHDOT and OT protocols are executed by a trusted oracle. Then P2, being
the sender in these protocols, cannot learn any information about the input of
P1. P1 receives the βi values in the first step, but it cannot distinguish whether
βi = αi or βi = αi + 1, since each αi value was chosen randomly by P2. In
the last step, P1 receives the result of mapping the sum of the β values to the
appropriate Zi value, which is also the result it would have received from the
trusted party.

4.3 Weighted Hamming Distance Based OT

The weighted Hamming distance between two �-letter strings w,w′ is defined in
the following way: The function depends on a set of integer weights ω0, . . . , ω�−1.
We define δi, for 0 ≤ i ≤ � − 1, to be 0 if wi = w′

i, and 1 otherwise. The
weighted Hamming distance is

∑�−1
i=0 δiωi (earlier we handled the case where

116 A. Jarrous and B. Pinkas

∀i ωi = 1). This function enables to assign to any letter location a specific
weight corresponding to its importance.

It is possible to slightly change the HDOT protocols to support the computa-
tion of a weighted Hamming distance based OT. In the binary alphabet case, the
revised binHDOT protocol computes in Step 2 the values Epk(ϑjωj) by multiply-
ing Epk(ϑj) by ωi. The value dH is defined to be the sum of these values. Let Ω =
∑�−1

i=0 ωi. The value of dH is in the range [0, Ω]. ThereforeP2 has inputsZ0, . . . , ZΩ,
and the last step of the protocol computes a 1-out-of-(Ω+ 1) OT. In the case of an
arbitrary alphabet, each βi value is set toαi +ωi if the two letters are different, and
to αi is they are equal. Again, the last step computes a 1-out-of-(Ω + 1) OT.

5 A binHDOT Protocol for Malicious Adversaries

We design a new binHDOT protocol to handle the presence of malicious adver-
saries. In this protocol the parties use a new variant of OT2

1 to learn whether cor-
responding bits of the two words are equal, and then use an Oblivious Polynomial
Evaluation (OPE) protocol [28,17] to map the result to an output value. (This is
different than the semi-honest case, where homomorphic encryption was used to
compare bits, and OTN

1 was used to compute the final result.) The new protocol
uses OT and OPE protocols which are efficient and yet are secure in the sense of
full simulatability against malicious adversaries. Security can therefore be ana-
lyzed in the hybrid model. In more detail, the protocol uses the following tools:

Committed 1-out-of-2 Oblivious Transfer with Constant Difference (or
COTCD2

1), secure against malicious adversaries. A committed OT protocol in
an OT protocol where the parties commit to their inputs: the sender commits
to its inputs m0, m1 and the receiver commits to its input σ ∈ {0, 1}. During
the protocol each party can verify that the other party’s input is equal to the
corresponding committed value. We define a committed OT with constant differ-
ence (COTCD, pronounced “cot-cd”) to be a committed OT with an additional
auxiliary input composed of a value Δ known to the sender, and a commitment
to Δ which is known to the receiver. The protocol lets the receiver verify that
the difference of the two inputs of the sender is ±Δ. In other words, it either
holds that m1 −m0 = Δ or that m0 −m1 = Δ.

We use a COTCD primitive which is based on the Jarecki and Shmatikov (JS)
committed OT protocol [20], which is in turn based on the Camenisch-Shoup
(CS) encryption scheme [7]. The details of the COTCD protocol are described in
the full version of our paper.3 We use that protocol since it can be used to transfer

3 The COTCD protocol is identical to the Jarecki and Shmatikov (JS) protocol [20],
with an addition of a preliminary step and a verification step. In the preliminary
step, both parties receive their auxiliary inputs: the sender receives a value Δ, which
is the difference that must hold between its input values, and the receiver receives
the committed value of Δ. In the verification step the sender proves to the receiver
in zero-knowledge that the committed values, m0, m1, have a difference ±Δ. It is
important to note that the receiver knows only Com(Δ) and does not learn Δ.

Secure Hamming Distance Based Computation and Its Applications 117

strings, and since it is easy to add to it an efficient zero-knowledge proof that the
messages of the sender have the required difference (it seems much harder to add
a proof of this type to other OT protocols which are secure against malicious
adversaries, such as the protocols of [17,32]). The JS protocol is UC-secure in
the common reference string model and therefore all invocations of that protocol
can be run in parallel (as a result, the HDOT protocol we construct can execute
in parallel all � invocations of the COTCD protocol). The protocol is proved
to be secure under the decisional composite residuosity (DCR) assumption (i.e.,
the assumption on which the Paillier homomorphic encryption system is based).

Commitment scheme. The Camenisch-Shoup (CS) encryption scheme [7] is
used in our protocol as a commitment scheme, as is suggested in [20].

An Oblivious Polynomial Evaluation (OPE) protocol secure against ma-
licious adversaries. An OPE protocol [28] is a protocol where the sender’s input
is a polynomial P () of a certain degree, and the receiver’s input is a value x.
The receiver’s output is P (x) while the sender learns nothing. We use the OPE
construction of Hazay and Lindel [17], which is secure (in the sense of full sim-
ulatability) against malicious adversaries, and uses very few exponentiations.

The underlying fields. The output of the COTCD protocol is used as an input
of the OPE protocol. The COTCD protocol runs in a group F = Z

∗
n2 , where Z

∗
n2

is defined by a safe RSA modulus n = pq. The encryption scheme of Camenisch
and Shoup, which is used in the protocol as a commitment scheme, works in
the same group. The OPE protocol of [17] runs in ZN , with N being an RSA
modulus. Our protocol must enable the parties to use the result of the COTCD
protocol as an input to the OPE protocol. It must therefore use a group Z

∗
n2 and

a field ZN , which satisfy that |Z∗
n2 | < |ZN |, and therefore we will require that

n2 < N . We define a simple mapping f : Z
∗
n2 → ZN , where the only requirement

is that no two elements of Z
∗
n2 are mapped by f to the same value in ZN . The

protocol then performs the initial computations in Z
∗
n2 and then uses f to map

the result to ZN .
The protocol itself is described in Figure 3. In the protocol, for every bit

location i P1 receives a value t0i if the corresponding bits are equal, and the value
t0i +Δ otherwise. The value Δ, and also all t0i values, are randomly chosen by P2.
(In the semi-honest caseP1 learned one of two values whose difference was 1. Here
the difference is a random number Δ in order to prevent attacks by a malicious
P1.) P1 then sums the values it received, and obtains the result

∑�
i=1 t

0
i + d ·Δ,

where d is the Hamming distance. We use the notation σr =
∑�

i=1 t
0
i . P2 then

prepares an OPE where ∀j ∈ [0, �], P (σr + j ·Δ) = Zj . The parties execute an
OPE and P1 computes P (σr + dΔ) and learns the desired result.

The protocol uses an OPE instead of OT�+1
1 since the values are mapped to

locations in a large range, rather than to indices in the range [0, �], in order to
prevent a malicious P1 from learning any Zi value which does not correspond to
the actual Hamming distance. If P1 evaluates the polynomial at any point other
than intended, it is likely to receive a random answer since it does not know Δ
and is therefore unlikely to choose any point corresponding to a Zi value. As for

118 A. Jarrous and B. Pinkas

Input: P1’s input is a word w = (w0, . . . , w�−1), P2’s input is w′ = (w′
0, . . . , w

′
�−1),

where wi, w
′
i ∈ {0, 1}. P2 has additional inputs (Z0, . . . , Z�).

Output: P1 receives Zi such that dH(w, w′) = i (i.e. the Hamming distance of w
and w′ is i). P2 learns nothing.

1. P2 chooses at random Δ ∈R Z
∗
n2 and sends to P1 a commitment to Δ. In addi-

tion it proves to P1, using a zero-knowledge proof of knowledge, the knowledge
of Δ.

2. For each pair of bits (wi, w
′
i), both parties use COTCD to check whether the

bits are equal:
– P2 chooses a random value t0i ∈R F , and defines t1i = t0i + Δ.
– Both parties run a COTCD protocol:

(a) The auxiliary inputs to the protocol are Δ, known to P2, and a com-
mitment to Δ, known to P1.

(b) P1 is the receiver and its input is wi.
(c) P2 is the sender. If w′

i = 0 then it sets (x0
i , x

1
i) = (t0i , t

1
i); Otherwise,

(x0
i , x

1
i) = (t1i , t

0
i).

In each execution of the protocol, if both bits are equal then P1 learns t0i ,
otherwise, P1 learns t1i . (If |x1

i − x0
i | �= Δ then P1 aborts.)

By the end of this step, P1 learns tb0
0 , . . . , t

b�−1
�−1 , where bi = wi ⊕ w′

i, while P2

does not learn any information.
3. P1 computes σt =

∑
tbi
i and P2 computes σr =

∑
t0i . These summations are

done in Z
∗
n2 .

4. P2 constructs a polynomial P (x) =
∑�

0 aix
i in ZN , such that P (f(σr + i ·Δ)) =

Zi, ∀i ∈ {0, 1, . . . , �} (where f is the simple mapping from Z
∗
n2 to ZN), and P (0)

is random. (This construction succeeds if 0 �∈ {σr, . . . , σr + �Δ}, which happens
with probability 1 − (� + 1)/|ZN |.) The degree of P is � + 1.

5. P1 and P2 run an OPE protocol to evaluate P (f(σt)), such that P1 learns the
result while P2 does not learn any information.

Fig. 3. The binHDOT protocol for the malicious case

a malicious P2, its inputs w′ and Z0, . . . , Z� can be extracted from its interaction
with the OT and OPE protocols, and are used for a simulation based proof.

Theorem 1. The protocol computes the binHDOT functionality.

Proof. Let us follow the steps of the protocol. In each execution of the COTCD
protocol, P1 learns t0i if both bits are equal, otherwise, it learns t1i = t0i + Δ.
In other words, it learns tbi

i , where bi = wi ⊕ w′
i. Then, in Step 3, P1 computes

σt = tb00 + · · ·+ t
b�−1
�−1 , and P2 computes σr = t00 + · · · t0�−1. Therefore it holds that

σt − σr = Δ · dH(w,w′). In Step 4, P2 constructs a polynomial P (x) such that:
P (f(σr)) = Z0; P (f(σr +Δ)) = Z1;. . . ; P (f(σr + � ·Δ)) = Z�. In the last step of
the protocol, the parties use an OPE protocol to compute P (f(σt)) = ZdH(w,w′).

Theorem 2. The protocol securely computes binHDOT in the presence of ma-
licious adversaries.

Proof. (Sketch) The security of the protocol is proved in the hybrid model,
assuming that the COTCD and OPE primitives, as well as the zero-knowledge

Secure Hamming Distance Based Computation and Its Applications 119

proof of knowledge of Δ used in the protocol, are performed by a trusted oracle
(or trusted party). This assumption is justified since, as we detailed above, there
are constructions of these primitives which have fully simulatable security against
malicious adversaries (where the security is based on the Decisional Composite
Residuosity (DCR) assumption).

We compare the execution of the protocol between P1 and P2 to an execution
with a trusted third party (TTP), where the TTP receives the inputs of both
parties and computes the following functionality: If the input of P1 is w and the
input of P2 is 〈w′, Z0, . . . , Z�〉, then the output of P1 is ZdH(w,w′). Otherwise if
the input of P1 is a special symbol ρ then the output of P1 is a random value;
otherwise if the input of either party is a special symbol ⊥ then the protocol
terminates prematurely.

We first prove security in the case that P1 is corrupt and then in the case
that P2 is corrupt.

P1 is corrupt. The full proof appears in the full version of the paper. The idea
behind the proof is that P1’s choices in the COTCD protocols define its input w.
Then, P1 is supposed to add the values it received in the COTCD invocations
and use the result as its input to the OPE. If it uses a different input to the
OPE protocol, then, since it does not know Δ, it happens with overwhelming
probability that P1 queries a value of the polynomial at a point which was not
defined by Z0, . . . , Z� and receives a random answer.

P2 is corrupt. The full proof appears in the full version of the paper. The proof
is based on the following ideas: (1) the simulator extracts the value of Δ from
the zero-knowledge proof of knowledge; (2) the simulator then learns the inputs
that P2 uses in the COTCD invocations, and based on these values the simulator
computes w′ and σr ; (3) it also learns the coefficients of the polynomial P () which
is P2’s input to the OPE, and can therefore compute Z0 = P (σr), . . . , Z� =
P (σr + �Δ); (4) finally, the simulator sends 〈w′, Z0, . . . , Z�〉 to the TTP.

Efficiency. The overhead of the protocol is composed of running � invocations
of the COTCD protocol (which can be run in parallel, since the protocol is
UC-secure), and a single invocation of the OPE protocol of [17]. Both of these
protocol can be run in a constant number of rounds.

5.1 Securing the Applications against Malicious Adversaries

The protocol described above is secure against malicious behavior of either party.
However, it does not enforce any structure of the inputs Z0, . . . , Z� of P2 and
therefore a corrupt P2 can set these inputs to arbitrary values. This “feature”
does not affect plain usage of the protocol, but it means that security against
malicious adversaries cannot be guaranteed if the protocol is used for computing
any functionality that requires specific relations between the Zi values. Unfor-
tunately, this is relevant to the relations required in the applications detailed
in Section 3.1. For example, the EQ application, i.e., equality based transfer,
requires that Z1 = Z2 = · · · = Z�. As a result, the protocol cannot be used “as

120 A. Jarrous and B. Pinkas

is” as a building block for protocols (secure against malicious adversaries) for
the HDOT functionality for arbitrary alphabets, or for the EQ functionality.

In order to adapt the protocol for these tasks, it is required to add zero-
knowledge proofs which assure P1 that the Zi inputs follow the desired structure.
This is of course possible in principle, but in this work we have not examined
how to optimize the efficiently of such proofs. We will only describe here the
steps which are required in order to design and implement an EQ protocol se-
cure against malicious adversaries (protocols for the other applications can be
designed in a similar way): (1) The protocol needs an additional step where P1

obtains a commitment Com(σr) to σr =
∑

t0i . This commitment can be com-
puted given the commitments that P2 generates in the committed OT protocols;
the correctness of the committed value can be proved using P2’s proofs about
the Δ differences of its input pairs. (Namely, P2 must prove that there exist
bits b0, . . . , b�−1 such that

∑
xbi

i = σr, and that ∀i x1
i = x0

i + Δ.) (2) The
parties need to use a “committed OPE” protocol, where P2 commits to the co-
efficients of its polynomial (such a protocol has not been described yet, but it
is not hard to imagine how to implement it using techniques similar to those
used for committed OT). (3) P2 must prove that there are values s, d such that
s is committed to in Com(σr), d is committed to in Com(Δ), and it holds that
P (s+d) = P (s+2d) = · · · = P (s+�d). The main challenge in designing this step
is that P (s+d) is computed to by multiplying the committed coefficients of P by
powers of the value s+ d. Namely, the proof is about the sum of multiplications
of committed values.

6 m-Point SPIR

Another application of the HDOT protocol is a new variant of symmetric private
information retrieval (SPIR – Symmetric PIR) which we denote as m-point-
SPIR. For a definition and discussion of single server PIR and symmetric PIR,
see, e.g. [21,5]. In short, a PIR protocol involves a server with a database of
N items x0, . . . , xN−1 and a client who is interested in learning entry xi of
the database. This must be accomplished with o(N) communication, without
revealing i to the server, and (in the case of symmetric PIR) without revealing
to the client anything but xi.

The m-point-SPIR protocol that we define can be applied if at most m of
the items of the server’s database have specific values, and all other items have
some default value x̄. The client must not know whether the value it learns is
the default value x̄ or one of the unique values. We describe below a couple
of applications of m-point-SPIR. The m-point-SPIR functionality is similar to a
simpler functionality, where the client learns a random value if its input does not
match any of the m indices which have specific values. The latter functionality
is much simpler to implement (using OPE), as we detail below.

We show a protocol which implements m-point-SPIR with O(m logN) com-
munication and O(m logN) computation (the smaller m is, the more efficient the
protocol is). Therefore the communication is o(N) as long as m = o(N/ logN).

Secure Hamming Distance Based Computation and Its Applications 121

Another nice property of the m-point-SPIR protocol if that it can be imple-
mented based on the existence of oblivious transfer alone. This property is not
known for general SPIR protocols. (Furthermore, it is known that there cannot
exist any transparent black-box reduction of PIR to OT [25].)

The m-point-SPIR functionality is defined in the following way. The server
has inputs 0 ≤ p1, . . . , pm ≤ N − 1, which are all distinct, and additional values
x̄, xp1 , . . . , xpm . The client has an input 0 ≤ i ≤ N − 1. The output of the client
is xpj if there is an index 1 ≤ j ≤ m such that i = pj, or x̄ if no such pj exists.

1-point SPIR. The implementation of 1-point-SPIR is straightforward given
our previous protocols. The parties simply execute the protocol EQxp1 ,x̄(i, p1),
whose output is xp1 if i = p1, and x̄ otherwise. (The EQ protocol is defined in
Section 3.1.) The communication overhead is of the order of the length of the
index i, namely O(logN), times the length of the security parameter (i.e., the
length of the homomorphic encryption). (This is under the reasonable assump-
tion that the length of the database values (the x values) is in the order of the
length of the security parameter; otherwise the communication is O(logN · |x|).)
The computation overhead is O(logN), and it is composed of O(logN) homo-
morphic encryptions and O(log logN) OTs.

m-point-SPIR. For the general case of m-point-SPIR, the server first defines
m random values z′1, . . . , z

′
m under the constraint that their exclusive-or is x̄. It

then defines values z1, z2, . . . , zm satisfying the constraints z1⊕z′2⊕· · ·⊕z′m = x1,
z′1 ⊕ z2 ⊕ z′3 ⊕ · · · ⊕ z′m = x2, up to z′1 ⊕ · · · ⊕ z′m−1 ⊕ zm = xm. The parties
execute the protocols EQz1,z′

1
(i, p1), EQz2,z′

2
(i, p2), up to EQzm,z′

m
(i, pm). The

client then computes the exclusive-or of the m values that it learned in these
protocols.

Correctness follows from the fact that if there exists a j coordinate for which
i = pj then the client learns a single zj value. Otherwise i
= p1, . . . , pm and the
client learns only z′j values. Therefore the exclusive-or of all the values that the
client receives is equal to xj in the former case, or to x̄ in the latter case.

It is easy to verify the security of this protocol (assuming that the parties
are semi-honest). Note that the client always performs the same operations and
does not recognize whether it learned the value x̄ or one of the m special values.
The communication overhead is O(m logN) times the length of the security
parameter, and the computation overhead is also O(m logN). This is therefore
a SPIR protocol (with o(N) communication) as long as m = o(N/ logN), and in
that case the computation overhead is also o(N). (A “traditional” PIR protocol
will have O(N) computation overhead, since it must also process the entries with
the default value.)

Basing m-point-SPIR on OT. The EQ protocol (which is essentially the
HDOT protocol) is based on using a homomorphic encryption scheme and an
oblivious transfer. However, it is easy to see that the usage of homomorphic
encryption can be replaced with the usage of oblivious transfer alone (as is done
in the HDOT protocol for the malicious case). As a result, m-point-SPIR can
be based oblivious transfer alone.

122 A. Jarrous and B. Pinkas

Comparison to other protocols. Our m-point-SPIR protocol can be com-
pared to oblivious polynomial evaluation (OPE), in which the server has an
(m− 1)-degree polynomial P , defined over a field of size at least N , and where
the polynomial satisfies P (pj) = xj for all j ∈ [1,m]. The client has input
0 ≤ j ≤ N − 1 and it obliviously computes P (j). The OPE protocol has com-
munication and computation overheads of O(m) field operations, but it has the
drawback that for inputs not in p1, . . . , pm the client receives a random output
rather than a specific value x̄.

The m-point-SPIR protocol can also be compared to PIR protocols of the type
of the protocol of Cachin, Micali and Stadler [5] (that protocol is based on the φ-
hiding assumption rather on general assumptions). These protocols, too, have the
property that the server’s work depends on the number of items in its database
that have non-default values. Namely, it is O(m) if the server has m items in its
database, even if the range of the client’s input is [1, N]. Still, in those protocols
the sender is not able to set a “default” value x̄ to be returned for all other
N −m values of the client’s input. Finally, the m-point-SPIR functionality can
be implemented using Yao’s generic protocol and a circuit of size O(m logN),
and m logN invocations of OT. The observations in Section 3 comparing the
overhead of the HDOT protocol to that of Yao’s construction, are relevant in
this case, too. We also believe that it is simpler to implement the m-point-SPIR
protocol compared to implementing a circuit based solution.

Application I: private matching for cardinality threshold. This is an
example where it is important that P1 receives the default value if no match
is found. The scenario involves two parties with private sets of m items, which
want to find out if the size of the intersection of the sets is greater than some
threshold. The problem was defined in [13] as a variant of the private matching
protocol which was the main subject of that paper. The solution there requires
the parties to run an OPE for each item xi of the first party, in which the first
party either learns a specific value or a random value, depending on whether xi

is in the set of the second party. The parties then use Yao’s protocol to evaluate
a circuit whose input is the values learned by P1, and which computes whether
the size of the intersection is greater than the threshold. We can use the m-point-
SPIR protocol to replace the OPE: Suppose that P1’s inputs are x1, . . . , xn and
P2’s inputs are y1, . . . , yn. Then for each xi the parties run an m-point SPIR
where P1 learns αi if xi ∈ {y1, . . . , yn}, or αi +1 otherwise, where α is a random
number chosen by P2. We can then ask P1 to sum the values it learned, and
replace Yao’s protocol with an OTm

1 , as was done in the binHDOT protocol of
Section 4.1. (This was impossible when an OPE was used, since in that case the
sum was random if there was even a single item of P1 which was not in P2’s set.)

Application II: lottery service As an example of another application of m-
point-SPIR, consider a lottery service where the server has a range of tickets,
only a few of which are winning tickets. The client uses the protocol to “buy”
a ticket, but the client must not know, at least not until some time in the
future, whether this is a winning ticket. The server’s database contains the prize
corresponding to each winning ticket, or the default “no prize” value x̄ (which, of

Secure Hamming Distance Based Computation and Its Applications 123

course, is associated to most of the tickets). It must be ensured that a client that
receives the value x̄ cannot identify that this is the default value. The server must
not learn which ticket was chosen by the buyer. (A lottery service with many
clients must handle many other different issues which we do not describe, but
m-point-SPIR seems like a good approach for handling the purchase of tickets.)

References

1. Ben-David, A., Pinkas, B., Nisan, N.: Fairplaymp – a system for secure multi-party
computation. In: ACM Conference on Computer and Communications Security—
ACM CCS 2008. ACM, New York (2008)

2. Blake, I.F., Kolesnikov, V.: Conditional encrypted mapping and comparing en-
crypted numbers. In: Crescenzo and Rubin [9], pp. 206–220

3. Bogetoft, P., Damg̊ard, I., Jakobsen, T., Nielsen, K., Pagter, J., Toft, T.: A practical
implementation of secure auctions based on multiparty integer computation. In:
Crescenzo and Rubin [9], pp. 142–147

4. Boneh, D. (ed.): CRYPTO 2003. LNCS, vol. 2729. Springer, Heidelberg (2003)
5. Cachin, C., Micali, S., Stadler, M.: Computationally private information retrieval

with polylogarithmic communication. In: Stern, J. (ed.) EUROCRYPT 1999.
LNCS, vol. 1592, pp. 402–414. Springer, Heidelberg (1999)

6. Camenisch, J., Neven, G., Shelat, A.: Simulatable adaptive oblivious transfer. In:
Naor [26], pp. 573–590

7. Camenisch, J., Shoup, V.: Practical verifiable encryption and decryption of discrete
logarithms. In: Boneh [4], pp. 126–144

8. Canetti, R.: Security and composition of multiparty cryptographic protocols. J.
Cryptology 13(1), 143–202 (2000)

9. Di Crescenzo, G., Rubin, A. (eds.): FC 2006. LNCS, vol. 4107. Springer, Heidelberg
(2006)

10. Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing contracts.
In: Advances in Cryptology - Crypto 1982, pp. 205–210 (1982)

11. Fagin, R., Naor, M., Winkler, P.: Comparing information without leaking it. Com-
munications of the ACM 39(5), 77–85 (1996)

12. Feigenbaum, J., Ishai, Y., Malkin, T., Nissim, K., Strauss, M.J., Wright, R.N.:
Secure multiparty computation of approximations. ACM Transactions on Algo-
rithms 2(3), 435–472 (2006)

13. Freedman, M.J., Nissim, K., Pinkas, B.: Efficient private matching and set intersec-
tion. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027,
pp. 1–19. Springer, Heidelberg (2004)

14. Goethals, B., Laur, S., Lipmaa, H., Mielikäinen, T.: On private scalar product
computation for privacy-preserving data mining. In: Park, C.-s., Chee, S. (eds.)
ICISC 2004. LNCS, vol. 3506, pp. 104–120. Springer, Heidelberg (2005)

15. Goldreich, O.: Foundations of Cryptography. Basic Applications, vol. 2. Cambridge
University Press, New York (2004)

16. Green, M., Hohenberger, S.: Blind identity-based encryption and simulatable obliv-
ious transfer. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp.
265–282. Springer, Heidelberg (2007)

17. Hazay, C., Lindell, Y.: Efficient oblivious polynomial evaluation and transfer with
simulation-based security (manuscript) (2008)

124 A. Jarrous and B. Pinkas

18. Indyk, P., Woodruff, D.P.: Polylogarithmic private approximations and efficient
matching. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 245–
264. Springer, Heidelberg (2006)

19. Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious transfer
- efficiently. In: Wagner [33], pp. 572–591

20. Jarecki, S., Shmatikov, V.: Efficient two-party secure computation on committed
inputs. In: Naor [26], pp. 97–114

21. Kushilevitz, E., Ostrovsky, R.: Replication is not needed: single database,
computationally-private information retrieval. In: FOCS 1997, pp. 364–373 (1997)

22. Lindell, Y., Pinkas, B.: An efficient protocol for secure two-party computation in
the presence of malicious adversaries. In: Naor [26], pp. 52–78

23. Lindell, Y., Pinkas, B., Smart, N.P.: Implementing two-party computation effi-
ciently with security against malicious adversaries. In: Ostrovsky, R., De Prisco,
R., Visconti, I. (eds.) SCN 2008. LNCS, vol. 5229, pp. 2–20. Springer, Heidelberg
(2008)

24. Malkhi, D., Nisan, N., Pinkas, B., Sella, Y.: Fairplay - secure two-party computation
system. In: USENIX Security Symposium, pp. 287–302. USENIX (2004)

25. Meier, R., Przydatek, B.: On robust combiners for private information retrieval
and other primitives. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp.
555–569. Springer, Heidelberg (2006)

26. Naor, M. (ed.): EUROCRYPT 2007. LNCS, vol. 4515. Springer, Heidelberg (2007)
27. Naor, M., Nissim, K.: Communication preserving protocols for secure function

evaluation. In: STOC, pp. 590–599 (2001)
28. Naor, M., Pinkas, B.: Oblivious transfer and polynomial evaluation. In: STOC

1999, pp. 245–254. ACM Press, New York (1999)
29. Naor, M., Pinkas, B.: Computationally secure oblivious transfer. J. Cryptol-

ogy 18(1), 1–35 (2005)
30. Paillier, P.: Public-key cryptosystems based on composite degree residuosity

classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999)

31. Paillier, P.: Trapdooring discrete logarithms on elliptic curves over rings. In:
Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 573–584. Springer,
Heidelberg (2000)

32. Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient and com-
posable oblivious transfer. In: Wagner [33], pp. 554–571

33. Wagner, D. (ed.): CRYPTO 2008. LNCS, vol. 5157. Springer, Heidelberg (2008)
34. Wright, R., Yang, Z.: Privacy-preserving bayesian network structure computation

on distributed heterogeneous data. In: Proc. of the 10th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, pp. 713–718. ACM
Press, New York (2004)

35. Yao, A.C.-C.: How to generate and exchange secrets (extended abstract). In: FOCS,
pp. 162–167. IEEE, Los Alamitos (1986)

Efficient Robust Private Set Intersection

Dana Dachman-Soled1, Tal Malkin1, Mariana Raykova1, and Moti Yung2

1 Columbia University
{dglasner,tal,mariana}@cs.columbia.edu

2 Columbia University and Google Inc.
moti@cs.columbia.edu

Abstract. Computing Set Intersection privately and efficiently between
two mutually mistrusting parties is an important basic procedure in the
area of private data mining. Assuring robustness, namely, coping with
potentially arbitrarily misbehaving (i.e., malicious) parties, while retain-
ing protocol efficiency (rather than employing costly generic techniques)
is an open problem. In this work the first solution to this problem is
presented.

Keywords: Set Intersection, Secure Two-party Computation, Crypto-
graphic Protocols, Privacy Preserving Data Mining.

1 Introduction

Constructing an efficient, robust two-party protocol for computing set intersec-
tion that is secure and realizable given current encryption methods is an open
question first introduced in the work of Freedman, Nissim and Pinkas [9]. Here
we solve this problem and present a protocol that allows two mutually distrustful
parties holding private inputs to compute the intersection of their inputs without
revealing any additional information. We prove the security of our protocol in
the standard Ideal/Real Model. The Set Intersection primitive is widely used in
the area of privacy preserving data mining ([19]); the prototypical application
involve secure sharing of information in areas like personal health and finance.

Although generic robust methods (c.f., [20]) based on Yao’s general two-party
computations [25] are sufficient for computing any two-party functionality, here
we are after efficient methods. Since the size of the naive circuit needed to com-
pute Set Intersection is at least Ω(m · n) (where n is the input size of the party
that receives output and m is the input size of the other party) any generic
construction for semi-honest two-party computation will have communication
complexity Ω(m · n), even without robustness. In contrast, our protocol’s com-
munication complexity is O(mk2 log2 n + kn) ciphertexts, where k is a security
parameter (i.e. logarithm of the size of the field, where we allow sets that are
arbitrary but are representable in this field). Additional properties of our solu-
tion are worth mentioning: First, the number of exponentiations needed by our
protocol increases only by a poly-logarithmic (i.e. a k2 log2 n) factor in compari-
son to the number of exponentiations required by the semi-honest protocol of [9]

M. Abdalla et al. (Eds.): ACNS 2009, LNCS 5536, pp. 125–142, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

126 D. Dachman-Soled et al.

over domains as above. Secondly, our construction is fully-black box assuming
the existence of a homomorphic encryption scheme. Finally, the encryption is
only required to possess a few natural properties, which are discussed in the fol-
lowing section (and satisfied by known homomorphic encryption schemes, e.g.,
based on DDH).

Our Methodology and Techniques. Our starting point is the semi-honest
protocol of [9] that computes set intersection via polynomial evaluation. In this
protocol, the Server must evaluate an encrypted polynomial of degree n on each
of his inputs and send the (encrypted) results back to the Client. In the malicious
adversary case, though, to achieve security, the Client must be able to verify that
the Server evaluated the polynomial honestly with respect to its input. To ensure
this, we use techniques that add redundancy to the representation of the inputs
(this is motivated by techniques in Choi et. al [6]). More specifically, we employ
a Server that shares its input via a Shamir secret-sharing [23] threshold scheme
using a degree k polynomial, where k is the security parameter, and then commits
to shares of its input. Note that a Shamir secret-sharing can also be viewed as a
Reed-Solomon encoding of the input. What we would like to do next is have the
server evaluate the encrypted polynomial on each share of its input and send the
resulting shares to the Client. Note that due to the fact that polynomials are
closed under composition, the above yields a valid-secret sharing (and a valid
Reed-Solomon encoding) of the output value. However, the resulting polynomial
is now of degree n · k, and so we need at least n · k + 1 shares to recover the
secret. To improve our efficiency, we apply input-preprocessing technique that
allows us to reduce the degree of the output polynomial to d = k(�logn�+1)+k,
and thus we need only O(k(�log n� + 1)) shares in order to recover the shared
value.

Next, we ensure that the Server acted honestly for a large-fraction of the
shares by executing a cut-and-choose protocol that forces the Server to open
k random shares for each committed input value, thus allowing the Client to
verify that the corresponding output share was computed correctly. Due to the
information-theoretic security of the secret-sharing scheme, no information about
the input is leaked by opening these shares. Additionally, the Client checks that
all the output shares he received indeed lie on the same polynomial of degree
d. Due to the large distance between codewords in a Reed-Solomon code this
ensures that, in fact, all the shares were computed exactly correctly. Finally, the
Client reconstructs the secret, which is now guaranteed to be consistent with
the Server’s inputs. Note that in the two-party case, we only need to either
complete the computations if the other party acts honestly, or detect cheating.
This allows us to use Lagrange interpolation and a consistency check as an
error detection code, rather than error-correction (implied by techniques such as
Berlkamp-Welch). As is noted in the sequel, this is important to the realization
of the encryption schemes, since the interaction of the algebra of secret sharing
methods and the algebra of concrete encryption schemes is a subtle issue (not
treated in earlier work). We ensure that every algebraic operation used in our
protocol is realizable given a concrete encryption scheme.

Efficient Robust Private Set Intersection 127

Related Work. Multiple papers address the problem of secure set intersection
and suggest various solutions [1,9,18,12]. (We remark that, in addition, several
works deal with variants of set intersection such as the private equality test for
input sets of size one [8,21,3,14] or the problem of disjointness that asks whether
the intersection of two sets is empty ([17])). However, none of the protocols for
set intersection that have been suggested thus far are secure in the scenario of ar-
bitrarily malicious adversaries and arbitrary input domains. Freedman et. al([9])
present a protocol claimed (without details or proofs) to be secure in the pres-
ence of a malicious Client in the standard Ideal/Real model, and secure in the
presence of a malicious Server only in the Random Oracle model. Hazay and
Lindell ([12]), in turn, adopt a different approach based on secure pseudoran-
dom function evaluation that does not use random oracles but they only achieve
security against a malicious Client (and semi-honest Server), or security against
two covert parties, where covert is a new non-standard model that is stronger
than semi-honest, but weaker than malicious. Recently (and independently of
our work), Jarecki and Liu ([15]) extend the approach of [12] to provide a proto-
col secure against two malicious parties, when the input sets are chosen from a
polynomial-sized domain and based on the Decisional q-Diffie-Hellman Inversion
Assumption. We also note the work of Kissner and Song ([18]) which presents
multi-party protocols that are secure in the presence of semi-honest adversaries
for several set operations including Set Intersection. Additionally, they briefly
address achieving security in the presence of malicious adversaries, but their
method relies on inefficient generic zero-knowledge proofs. Also independently,
Camenisch and Zaverucha ([4]) extend the protocol of [9] in a different direction
where they assume the presence of a certifying third party that signs the input
sets of the two participants. This provides guarantees that the set intersection
functionality is computed correctly with respect to the signature certified input
sets in the presence of malicious adversaries.

Organization. In section 2 we present definitions and known building blocks,
while in Section 3 we present our protocol steps and protocol. In Section 4 we
present some intuition for the proof of security, and discuss our complexity.

2 Definitions and Building Block Protocols

We use a standard simulation-based definition of security from [5], and follow
the definitions of zero knowledge proofs of knowledge and commitment schemes
from [10]. We denote ComB a perfectly binding commitment scheme and ComH

a perfectly hiding commitment scheme.
We follow the standard definitions of semantically-secure encryption schemes

and homomorphic encryption schemes given in [16]. We assume the plaintexts of
the semantically-secure encryption scheme ENC are elements of a finite group P
with group operation ’+’ and that the ciphertexts are elements of a finite group
C with group operation ’·’. Since ENC is a homomorphism from P to C, the
homomorphic property of an encryption scheme ENC can be stated as follows:

128 D. Dachman-Soled et al.

Property 1 (Homomorphic Encryption).

ENC(X, r1)·ENC(Y, r2) = ENC(X+Y, r) (ENC(X, r3))λ = ENC(λ·X, r′).

We will also require that r can be computed in polynomial-time given r1, r2, X, Y ,
r′ can be computed in polynomial time given r3, X, λ, and that r, r′ are uniformly
distributed when r1, r2, r3 are (so the encryptions after applying a homomorphic
operation are distributed as random encryption). It turns out that known ho-
momorphic encryption schemes typically satisfy the above requirements, and
actually possess the following, stronger, property:

Property 2.

ENC(X, r1)·ENC(Y, r2)=ENC(X+Y, r1+r2); (ENC(X, r3))λ =ENC(λ·X,λ·r3).

This property is satisfied by most known homomorphic encryption schemes, such
as Paillier [22], ElGamal [7], and Goldwasser-Micali [11] encryption schemes.

We also present the Additive El-Gamal Encryption scheme, which we will use
to concretely instantiate our protocol:

Definition 1 (Additive El Gamal Encryption Scheme: AEGenc).

– GEN: on input 1n generate (G, q, g) where q is prime, G is a cyclic group of
order q and g is a generator. Then choose a random x ← Zq and compute
h = gx. The public key is 〈G, q, g, h〉 and the private key is 〈G, q, g, x〉.

– ENC: on input a public key pk = 〈G, q, g, h〉 and a message m ∈ Zq, choose
a random y ← Zq and output the ciphertext

〈gy, hy · gm〉

– DEC: on input a private key sk = 〈G, q, g, x〉and a ciphertext 〈c1, c2〉, output

gm = c2/c
x
1

Unlike regular Additive El Gamal decryption, here we can recover gm and not
necessarily know m. However, this will be sufficient for our application and we
are able to handle plaintexts that come from a large domain.

Now we proceed to define several auxiliary protocols that will be used in our
main protocols.

2.1 Homomorphic Encryption Proof of Knowledge

This protocol will be used by both the Server and Client when a party P0 sends
to a party P1 a public key pk and several values encrypted under ENCpk. In the
malicious case, we require P0 to prove that he knows the corresponding plain
text values and randomness and additionally that the encrypted plaintexts are
”valid” (i.e. belong to a particular language). This protocol is similar to the
polynomial time provers in [13].

Efficient Robust Private Set Intersection 129

If P1 is behaving honestly, its input should be a member of the language L
whose membership can be determined in polynomial time and is closed under
addition and subtraction. The NP-language L′, is defined as follows:

L′ = {C = (pk1, c1, . . . , cα) | ci = ENCpk1(xi; ri), for some xi, ri,1 ≤ i ≤ α,

and (x1, . . . , xα) ∈ L}

Homomorphic Encryption Proof of Knowledge and Plaintext Verifi-
cation (HEPKPV) Protocol: ΠPOK

Input: P0 ← C = (pk1, c1, . . . , cα), (x1, . . .xα) ∈ L, (r1, . . . , rα) where ci =
ENCpk1(xi; ri) for 1 ≤ i ≤ α;

P1 ← C = (pk1, c1, . . . , cα)
Output: P1 outputs Accept if C ∈ L′, and Reject otherwise.

1. P0 chooses k random vectors (e11, . . . e1α), . . . , (ek1, . . . , ekα) such that for
1 ≤ i ≤ k, (ei1, . . . , eiα) ∈ L. and another k vectors (r11, . . . r1α), . . . ,
(rk1, . . . , rkα) of random numbers.

2. P0 computes the encryptions (ci1,· · ·,ciα)=(ENC(ei1, ri1), . . . ,ENC(eiα, riα))
for 1 ≤ i ≤ k and sends them to the Server.

3. P1 chooses a sequence of k bits b′1 . . . b′k and sends to P1 a commitment
to those bits: ComH(b′1 . . . b′k), along with the public parameters for the
commitment scheme.

4. P0 chooses a sequence of k bits b′′1 . . . b′′k and sends to P0 a commitment
to those bits: ComB(b′′1 . . . b′′k), along with the public parameters for the
commitment scheme.

5. P0 and P1 decommit the value b′′1 . . . b′′k and b′1 . . . b′k, respectively.
6. P0, P1 verify that the bits received correspond to the commitments that were

sent. If the check fails, they abort the protocol. Otherwise both P0 and P1

compute b1 . . . bk = b′1 . . . b′k XOR b′′1 . . . b′′k.
7. For each 1 ≤ i ≤ k:

(a) if bi = 0, P0 sends to P1 M = (ei1, · · · eiα) and R = (ri1, · · · riα);
(b) if bi = 1, P0 sends to P1 M = (x1 + ei1, · · · , xn + eiα) and R = (r1 +

ri1, · · · , rα + riα).
8. For each 1 ≤ i ≤ k:

(a) if bi =0, P1 verifies that (ci1,· · ·, ciα)=(ENC(ei1, ri1), · · ·ENC(xiα, riα));
(b) if bi = 1, P1 verifies that (c1ci1, · · · cαciα) = (ENC(x1 +ei1, r1 +ri1), · · · ,

ENC(xα + eiα, rα + riα)).
9. P1 verifies that (M) ∈ L.

10. If any of the verifications steps of P1 fail, abort the protocol. Otherwise,
accept.

Lemma 1. Assume that Homenc = (Gen,Enc,Dec) is a CPA-secure homo-
morphic encryption scheme, ComH is a perfectly hiding commitment scheme,
and ComB is a perfectly binding commitment scheme. Then protocol ΠPOK is
a Zero Knowledge Proof of Knowledge for L′.

See full version for proof.

130 D. Dachman-Soled et al.

Now we define several languages that we will use in the main protocols in the
context of the above HEPKPV protocol:

– Language consisting of points that lie on some polynomial of degree �

Lpoly(t, u, �) = {mi,j | 1 ≤ i ≤ t, 1 ≤ j ≤ u;
for each j the points ((1,m1,j), . . . , (t,mt,j))
lie on a polynomial of degree �}.

– Language consisting of points that lie on some polynomial of degree � that
has zero free coefficient

Lpoly,0(t, u, �) = {mi,j | 1 ≤ i ≤ t, 1 ≤ j ≤ u;
for each j the points ((1,m1,j), . . . , (t,mt,j))
lie on a polynomial Pj of degree � and Pj(0) = 0}.

– Language consisting of points that lie on some polynomial of degree � that
has free coefficient equal to m′

j .

Leq(t, u, �) = {mi,j ,m
′
j | 1 ≤ i ≤ t; 1 ≤ j ≤ u,

for each j the points ((1,m1,j), . . . , (t,mt,j))
lie on a polynomial Pj of degree �, where Pj(0) = m′

j}

– The following language consists of several tuple of pairs of the form (mi,j,m
′
i,j).

For each i the points (1,mi,1), . . . , (t,mi,t) lie on a polynomial Pi of degree �
and the points (1,m′

i,1), . . . , (t,m
′
i,t) lie on a polynomial Ri of degree 2� and

additionally, for each i, Pi+1(0) = Ri(0).

Lsq(t, u, �) = {(mi,j ,m
′
i,j) | 1 ≤ i ≤ u, 1 ≤ j ≤ t; for all i,

the points ((1,mi,1), . . . , (t,mi,t)) lie on Pi of degree �;
the points ((1,m′

i,1), . . . , (t,m
′
i,t)) lie on Ri of degree 2�;

and for 1 ≤ i ≤ u− 1, Pi+1(0) = Ri(0)}

Membership in all of the above languages can be determined in polynomial
time. Also these languages are closed under addition and can be used in the
context of the HEPKPV protocol.

2.2 Coin Tossing

The following protocol is run by the Server S and Client C in order to select a
random number within a given range [0, s − 1] known to both of them. At the
end of the protocol both parties obtain the same random number. The private
input of the two parties is (⊥,⊥) and the output to each party is (rand, rand),
where rand is a uniformly random number chosen from [0, s− 1].

Efficient Robust Private Set Intersection 131

1. S chooses a random value R′ ∈ [0, s − 1] and sends a commitment C1 =
ComH(R′) to P1.

2. C chooses a random value R′′ ∈ [0, s − 1] and sends a commitment C2 =
ComB(R′′) to P0.

3. C opens the commitments C2.
4. S opens the commitment C1.
5. The two parties output R = R′ + R′′ mod s .

We note that both statistically hiding and statistically binding commitments
can be constructed using a homomorphic encryption scheme.

Lemma 2. Assume that ComH is a statistically hiding commitment scheme
and ComB is a perfectly binding commitment scheme. Then protocol ΠCoin is
simulatable for Malicious C and Honest S.

See full version for proof.

3 Set Intersection Protocol

We now describe the setting for the Set Intersection protocol. There are two
participants in the protocol: Client, C and Server, S. The Client has an input
set X, |X | = n of size at most n ≤ maxc and the Server has an input set
Y, |Y | = m of size at most m ≤ maxs. Both parties know a homomorphic
encryption scheme Homenc = (GEN,ENC,DEC). Further the Client and the
Server choose a security parameter k. The goal of the protocol is that the Client
learns the intersection of their sets: X

⋂
Y and nothing else while the Server

learns nothing. Now if the pair (Kc,Ks) represents knowledge of the Client (Kc)
and the Server (Ks), the input and output of the set intersection protocol can
be summarized as follows:

({X,maxc,maxs, Homenc, k},
{Y,maxs,maxc, Homenc, k})

→
{

(X
⋂
Y,⊥), if |X | ≤ maxc, |Y | ≤ maxs

(⊥,⊥) otherwise

Our idea starts with the approach of [9]: the Client constructs a polynomial
P of degree n over a finite field such that P (x) = 0 if and only if x ∈ X . The
Client encrypts the coefficients of P using a homomorphic encryption scheme and
sends them to the Server. Due to the homomorphic properties of the encryption
scheme, the Server is now able to evaluate the polynomial at each of its inputs.
Thus, for 1 ≤ � ≤ m, the Server sends the encryption of the following output
back to the Client: rj · P (yj) + yj , where rj is chosen randomly. Thus, we have
that if yj ∈ X ∩ Y then the Client receives yj . If yj /∈ X ∩ Y then the Client
receives a random value.

Before presenting our main protocol, we define three protocols that are used
as building blocks for the main protocol. They implement the two main ideas
that we use to achieve security against malicious parties.

132 D. Dachman-Soled et al.

3.1 Input Sharing via Enhanced Shamir Scheme

In the set intersection protocol we ”share” function evaluation by secret sharing
the arguments of the function and evaluating the function on corresponding
shares in order to obtain shares of the final value of the function. We use Shamir’s
secret sharing ([23]) but for the purposes of efficiency we apply the following
further transformation on the inputs.

Let f be a polynomial of degreen over a single variable: f = anx
n+an−1x

n−1+
· · ·+ a0. For a given z and r, we would like to obtain shares of the result g(z, r) =
r · f(z) + z by secret-sharing the inputs z and r. For this purpose we choose ran-
dom polynomials Pz, Pr of degree k for such that Pz(0) = z and Pr(0) = r and
evaluate g onm shares of the input to obtain g(Pz(1), Pr(1)), . . . g(Pz(m), Pr(m)).
We now define a new single variable polynomial g′(i) = g(Pz(i), Pr(i)). Note that
the degree of g′ is n · k + k and that g′(0) = g(Pz(0), Pr(0)) = g(z, r) and thus
given g(Pz(1), Pr(1)), . . . , g(Pz(m), Pr(m)) = g′(1), . . . , g′(m) we can reconstruct
g′(0) = g(z, r) when m ≥ n · k+ k. This means that the number of shares needed
is at least n · k + k.

We extend the above idea further in order to decrease the degree of the final
sharing polynomial of the result. For a given z and r, we obtain shares of the
result g(z, r) in the following way. For 0 ≤ � ≤ �logn� we secret share the
value z2�

using a random polynomial Pz2� , of degree k, such that Pz2� (0) = z2�

.
Let s[i] indicate the ith bit of a number s. We now define a new polynomial
g′′(i) = Pz(i) + Pr(i) ·Σn

s=1as ·Π�log n�+1
�=1 (Pz2� (i))s[�]. Note that g′′(0) = g(z, r)

and that g′′ has degree (�logn�+ 1)k + k. We have thus drastically reduced the
number of shares necessary to recover g′′(0) = g(z, r).

The above idea for function transformation guarantees correct evaluation of
shares of the functional value if the party is following the protocol honestly.
In the malicious case a party needs to prove that the sharing functions that it
is using for the new arguments z, z2, . . . , z2�

have been constructed correctly.
The following protocol allows a party to generate shares of an input z using the
preprocessing idea and then prove that these shares were computed correctly
without revealing any information about z.

Efficient Preprocessing of Input:
1. For each yj ∈ Y , 1 ≤ j ≤ m S chooses a random polynomial Pyj of degree

k such that Pyj (0) = yj , and computes shares of the form Pyj (i) for 1 ≤ i ≤
10k(�logn�+ 1) and the corresponding encryptions ENCpk(Pyj (i)).

2. For each yj , 1≤�≤m S and C run the HEPKPV protocol with Lpoly(m,n, k)
= {mi,j = Pyj (i)} in order for S to prove the correctness of his sharing.

3. For each yj , for � = 0 to �logn�, for i = 0 to 10k(�logn� + 1), S computes
the following:
– Local Computation on Shares: a polynomial P 2

y2�
j

of degree 2k such that

P 2

y2�
j

(i) = (P
y2�

j

(i))2

– Degree Reduction Step: a random polynomial P
y2�+1

j

of degree k such

that P
y2�+1

j
(0) = P 2

y2�
j

(0).

Efficient Robust Private Set Intersection 133

4. For each yj , for � = 0 to �logn�, for i = 1 to 10k(�logn� + 1), S computes
the following commitments:
– New input shares: ENCpk(P

y2�+1
j

(i)) and

– Intermediate shares: ENCpk(P 2

y2�
j

(i))
and sends those commitments to C

We now describe how C verifies S’s computation of its new shares.
Let J be the ordered set of all elements of {0, 1}10k(�log n�+1) that contain

exactly k ones. Note that given R, an index of a string in the set J , we can
efficiently reconstruct the Rth string, jR. Let JR = {i|jR[i] = 1}, where jR[i]
denotes the ith position of the string jR.

Preprocessing Verification:
Common Inputs : The commitments: [Cj,�,i]1≤j≤m,0≤�≤�log n�+1,1≤i≤10k(�log n�+1),
[C2

j,�,i]1≤j≤m,0≤�≤�log n�,1≤i≤10k(�log n�+1), and a number R ∈ [|J |] chosen using
the Coin-Tossing protocol after S committed to its inputs.

Private Inputs of S: Decommitments to the above values.

1. For all i ∈ JR, 1 ≤ j ≤ m, 0 ≤ � ≤ �logn� S opens the commitment C2
j,�+1,i

to C′2
j,�+1,i, Cj,�,i to C′

j,�,i.
2. For all i ∈ JR, 1 ≤ j ≤ m, 0 ≤ � ≤ �logn� C checks that C′2

j,�+1,i = (C′
j,�,i)

2.
3. S and C run the HEPKPV protocol with S’s private inputs, the com-

mon commitment inputs and language Lsq(�logn�, 10k(�logn�+ 1),m, k) =
{m�,i,j = P

y2�
j

(i),m′
�,i,j = P 2

y2�
j

(i)}

In the first step of the above protocol S first proves that for all yj ∈ Y, 0 ≤ � ≤
�logn� he has computed correctly P 2

y2�
j

(i) for at least a .9-fraction of the shares

correctly. In the second step of the protocol S proves that for all yj ∈ Y, 0 ≤ � ≤
�logn� he has computed correctly the new sharing polynomials for the values y2�+1

j

and that both P
y2�

j

and P 2

y2�
j

are polynomials. Since any 2 polynomials of degree at

most 2k must disagree on at least a .8-fraction of the shares, the combination of
the above two statements implies that with probability at least 1−m · (�n�+2)2 ·
(1/2k + .9k), all the sharings were, in fact, computed exactly correctly. For detailed
analysis of the above intuition, see the proof sketch in section 4 and the full version.

3.2 Cut-and-Choose on Computations on Input Shares

Common Input : The encryptions: bn+1, . . . , b0, The commitments:
[Mi,j,�]1≤j≤m,0≤�≤�log n�,1≤i≤10k(�log n�+1), [Ri,j]1≤j≤m,1≤i≤10k(�log n�+1),
[0i,j]1≤j≤m,1≤i≤10k(�log n�+1), [Ci,j]1≤�≤m,1≤i≤10k(�log n�+1), and a number R ∈
[|J |] chosen using the Coin-Tossing protocol after S committed to the above.

Private input of S:Decommitments to[Mi,j,�]1≤j≤maxS ,0≤�≤�log n�,1≤i≤10k(�log n�+1),
[Ri,j]1≤j≤m,1≤i≤10k(�log n�+1), [Zi,j]1≤j≤m,1≤i≤10k(�log n�+1), and the values
[ri,j]1≤j≤m,1≤i≤10k(�log n�+1).

134 D. Dachman-Soled et al.

We use the cut-and-choose technique to prove the correctness of evaluation of
a specific function on committed inputs [Mi,j,�], [Ri,j], [Zi,j] that results in the
commited outputs [Ci,j]. The function we use is:

Ci,j = ENC(0; ri,j) ·ENCpk1(Z
′
i,j ; 0) ·ENCpk1(M

′
i,j,0; 0) ·

(

Πn
s=0b

Π
�log n�
�=0 (M′

i,j,�)
s[�]

s

)R′
i,j

where s[�] denotes the �th bit of s.
We will explain why this is the function we need in the next section.
The steps of the protocols are the following:

1. For each i ∈ JR, 1 ≤ j ≤ m, 0 ≤ � ≤ �logn� S opens the commitments
Mi,j,�, Ri,j , Zi,j to M ′

i,j,�, R
′
i,j , Z

′
i,j and produces the random value ri,j .

2. For i ∈ JR, 1 ≤ j ≤ m, C verifies the following: Ci,j =

ENCpk1(0; ri,j) ·ENCpk1(Z
′
i,j ; 0) ·ENCpk1(M

′
i,j,0; 0) ·

(

Πn
s=0b

Π
�log n�
�=0 (M′

i,j,�)
s[�]

s

)R′
i,j

3. If any of these verifications fail, C outputs Reject. Otherwise, C outputs
Accept.

3.3 Reconstruction and Set Membership Test Protocol

We describe here how the Client reconstructs and checks whether Server’s input
yj is in his input set X and consequently in the intersection set using the output
shares [Ci,j]1≤i≤10k(�log n�+1).

1. The Client decrypts the output shares [Ci,j]1≤i≤10k(�log n�+1) to obtain plain-
texts [C′

i,j]1≤i≤10k(�log n�+1).
2. The Client uses the points (1, C′

1,j), . . . , (k + k(�logn�+ 1), C′
k+k(�log n�+1),j

and the Lagrange interpolation polynomial to check that for 1 ≤ i ≤ 10k
(�logn�+ 1)

C′
i,j = Lj(i) = Σ

1+k+k(�log n�+1)
v=1 C′

j,v�v(i)

where �v(x) = Π
1+k+k(�log n�+1)
w=1,w
=v

x−w
v−w . Otherwise, abort.

3. The Client reconstructs the shared value:

C′
0,j = Lj(0) = Σ

1+k+k(�log n�+1)
v=1 C′

j,v�v(0)

and checks whether C′
0,j = x for some x ∈ X . If it does, output x.

In the following, we give a concrete implementation of the Reconstruction Pro-
tocol using additive El Gamal encryption. We note the following subtlety due
to the interaction of the algebraic properties needed to realize the protocol and
the properties of the El Gamal encryption scheme. Due to the algebraic proper-
ties of the encryption scheme, we are able to compute the Lagrange interpolation
polynomial and thus detect errors; however, we cannot run the Berlekamp-Welch
algorithm to correct the errors in the codeword. This is due to the fact that the
Client can only obtain pairs of the form (i, gmi,j) and we are interested in recon-
structing a polynomial such that P (i) = mi,j (for a large fraction of i’s). The
Berlekamp-Welch algorithm requires us to solve a system of linear equations,
which we do not know how to do efficiently when we know only gmi,j and not
mi,j itself (This issue was ignored in earlier work).

Efficient Robust Private Set Intersection 135

Reconstruction and Set Membership Test via Additive El Gamal En-
cryption

1. The Client decrypts the output shares [Ci,j]1≤i≤10k(�log n�+1) to obtain plain-
texts [gmi,j]1≤i≤10k(�log n�+1).

2. The Client uses the points (1, gm1,j), . . . , (1 + k + k(�log n� + 1),
gmk+k(�log n�+1),j and the Lagrange interpolation polynomial to check that
for 1 ≤ i ≤ 10k(�logn�+ 1)

gmi,j = Lj(i) = Π
1+k+k(�log n�+1)
v=1 (gmj,v)�v(i)

where �v(x) = Π
1+k+k(�log n�+1)
w=1,w
=v

x−w
v−w . Otherwise, abort.

3. The Client reconstructs the shared value:

gm0,j = L(0) = Π
1+k+k(�log n�+1)
v=1 (gmj,v)�v(0)

and checks whether gm0,j = gx for some x ∈ X . If it does, output x.

3.4 The Full Protocol

We start with an overview description of the main steps in the protocol, followed
by the detailed specification of our set intersection protocol.

1. The Client runs GEN(1k) to obtain a secret key sk and a public key pk for
Homenc and sends pk to the Server.

2. The Client computes a polynomial P (x) = xn + an−1x
n−1 + · · ·+ a1x + a0

of degree the size of his input n over a finite field such that P (x) = 0 if and
only if x ∈ X .

3. The Client encrypts the coefficients of P , bi = ENC(ai) and sends them to
the Server.

4. For each yj ∈ Y S chooses a random value rj and constructs the function

F (yj) = ENCpk1(rj · (yj) + yj + 0) =

= ENCpk1(0) · ENCpk1(yj) · (
n∏

s=0

(ENCpk1(as))ys
j)rj =

= ENCpk1(0) · ENCpk1(yj) · (
n∏

s=0

(bs)ys
j)rj

The above function has the property that it maps the values in the intersec-
tion set of the two parties to themselves and values not in the intersection
to random numbers.

5. The Server replaces each of its inputs yj with new variables c� = y2�

j for
0 ≤ � ≤ �logn− 1� and transforms the above function to

F (yj) = ENCpk1(0) · ENCpk1(yj) ·
(

n∏

s=0

(bs)Π
�log n�
�=0 (y2�

j)s[�]

)rj

136 D. Dachman-Soled et al.

Note: The exponent of each bs is ys
j , however, in the form where s is written

in binary and s[1], ..., s[�logn�+ 1] are its binary digits and the power of yj

for each digit is substituted with the corresponding new variable from the
efficient preprocessing of Servers inputs.

6. The Server shares each of his input y ∈ Y with polynomial Pyj and each of
the random values rj with a polynomial Prj .

7. Additionally the Server computes m random polynomials P0,j that have
constant coefficient zero. These are used to ”rerandomize” the output shares
so that they give no information about the input.

8. Using all of the above shares and a random ri,j (to ”rerandomize” the en-
cryption) the Server computes shares of the values F (yj):

Outi,j = (F (yj))(i) = ENCpk1(0; ri,j) · ENCpk1(P0,j(i); 0) · ENCpk1(Pyj (i); 0) ·
(

n∏

s=0

(bs)
Π

�log n�
�=0 (P

y2�
j

(i))s[�]
)Prj

(i)

and sends them to the Client.
9. The Client decrypts the values that he received from the Server, verifies

that they are valid, and uses them to reconstruct the shared values. He
concludes that the obtained values that are in his input set are the values in
the intersection set.

The above protocol ensures privacy in the presence of semi-honest parties,
but is not secure in the presence of malicious parties. The following are several
basic additional conditions that must hold in order that the above protocol will
be secure in the presence of malicious parties.

The first condition is that the coefficients that the Client sends to the Server
are values encrypted with Homenc under the key pk. We guarantee this by
making the Client prove that he knows the encrypted values with HEPKPV.

Additionally, the Client must be sure that the Server correctly shared his
inputs using the secret-sharing scheme. This will be guaranteed by HEPKPV
showing that all the shares of one input lie on some polynomial of degree k.

The correctness of the protocol also depends on the Server evaluating F hon-
estly. We apply the cut-and-choose protocol on the shares of the Server’s inputs
to ensure that the computation on a large fraction of final output shares was
done correctly.

The last change that we apply improves the efficiency of the protocol. Since
the number of shares needed to reconstruct Fj(0) will depend on the degree of
F , we reduce its degree by introducing new variables of the form ai = y2i

for
1 ≤ i ≤ �logn − 1� for y ∈ Y . Here we need to prove that the computation of
the new variables and their shares was done correctly with the Preprocessing
Verification Protocol.

We present the full set intersection protocol below.

Efficient Robust Private Set Intersection 137

Set Intersection Protocol Π

Input: C ← {X, maxc, maxs, Homenc, k}, S ← {Y,maxs, maxc, Homenc, k}
Output: C → X ∩ Y, S →⊥
Protocol:

1. The Client runs GEN(1k) to obtain a secret key sk1 and a public key pk1
for Homenc and sends pk1 to the Server.

2. C computes a polynomial P (x) = xn + an−1x
n−1 + · · ·+ a1x + a0 of degree

n = |X| such that P (xi) = 0 if and only if xi ∈ X. Let an = 1.
3. C computes bi = ENCpk1(ai) for all 0 ≤ i ≤ n − 1 and sends to S
{bn−1, · · · , b0},

4. C and S run the HEPKPV Protocol presented in Section 2 as P0 and P1

respectively with common input: B = {bn−1, · · · , b0} and L = {0, 1}q, in
order that the C proves that it knows the decryptions of {bn−1, · · · , b0}.

5. The Server runs GEN(1k) to obtain a secret key sk2 and a public key pk2
for Homenc and sends pk2 to the Client.

6. For each yj ∈ Y S runs the Efficient Preprocessing protocol to obtain the
new variables c� = y2�

j for 0 ≤ � ≤ �log n− 1� and the corresponding sharing
polynomials P

y2�
j

such that P
y2�

j
(0) = y2�

j . During the protocol S commits

to P
y2�

j
(i) for 1 ≤ j ≤ |Y |, 1 ≤ � ≤ �log n�+ 1, 1 ≤ i ≤ 10k(�log n�+ 1).

7. For each yj ∈ Y S chooses a random value rj and selects a random poly-
nomial Prj of degree k with constant coefficient equal to rj , shares rj into
into 10k(�log n�+ 1) shares, and sends the following share commitments to
C: (ENCpk2(Prj

(1)), . . . ,ENCpk2(Prj
(10k(�log n�+ 1)))

8. For each yj ∈ Y S chooses a random polynomial P0,j of de-
gree k + k(�log n� + 1) with constant coefficient equal to 0, computes
10k(�log n� + 1) shares, and sends the following share commitments to C:
(ENCpk2(P0j

(1)), . . . ,ENCpk2(P0j
(10k(�log n�+ 1)))

9. For each yj ∈ Y , for 1 ≤ i ≤ 10k(�log n�+ 1) using the sharing polynomials
obtained in Steps 6, 7, 8, and a random value ri,j S computes:

Outi,j = ENCpk1(0; ri,j) · ENCpk1(P0,j(i); 0) · ENCpk1(Pyj
(i); 0) ·

(
n∏

s=0

(bs)
Π

�log n�
�=0 (P

y2�
j

(i))s[�]
)Prj

(i)

where s[�] denotes the �th bit of s and sends the obtained values to C.
10. C and S run the coin tossing protocol to choose a random number R ∈

[1, |J |].
11. S and C run the Preprocessing Verification protocol with the share com-

mitments that S computed in Step 6 in order for S to prove to C that it
correctly computes the new variables and their shares.

12. S and C run the HEPKPV protocol as P0 and P1 respectively so that S
proves to C knowledge and validity of the commitments Lpoly(10k(�log n�+
1), |Y |, k) = {mi,j = Prj (i)}, Lpoly,0(10k(�log n� + 1), |Y |, k + k(�log n� +
1)) = {mi,j = P0,j(i)}.

13. C and S run the cut-and-choose protocol to prove that S correctly computed
[Outi,j].

14. C runs the Reconstruction Protocol to obtain the final output.

138 D. Dachman-Soled et al.

4 Analysis

Our main theorem is the following:

Theorem 1. If the Decisional Diffie-Hellman problem is hard in G with gen-
erator q and protocol Π is instantiated with the additive El-Gamal encryption
scheme such that Homenc = AEGenc, then Π securely computes the Set Inter-
section functionality in the presence of malicious adversaries.

We note that Π is also secure when instantiated with any homomorphic encryp-
tion scheme satisfying property 2, and allowing to solve the Lagrange interpola-
tion, as discussed in Sections 2 and 3.3. In particular, we can securely instantiate
the protocol with a properly modified version of Paillier encryption (but the de-
tails are left out of this abstract). The complete proof of Theorem 1 is in the full
version of our paper. Here we give some intuition and a proof sketch.

4.1 Client-Side Simulator

We consider the case in which the Client is corrupted and the Server is honest.
LetAC be a non-uniform probabilistic polynomial-time real adversary that con-

trols the Client. We construct a non-uniform probabilistic expected polynomial-
time ideal model adversary simulator SC .

The idea behind how SC works is that it first extracts the Malicious Client’s
inputs using the extractor for the HEPKPV protocol. SC then plays the role
of the Honest Server using dummy inputs that are all set to 0. When proving
knowledge and validity of the Server’s input, SS uses the simulator for the HEP-
KPV protocol. Next, the Simulator chooses a random subset I ′ of size k such
that I ′ ⊂ [10k(�logn�+1)]. When committing to the secret-sharing of its input,
it places random values in the positions indexed by I ′. SC computes correctly
all calculations that will be verified in the cut-and-choose step for elements in
the subset I ′. Then, SC simulates the Coin-Tossing protocol to guarantee that
the outcome of the Coin-Tossing protocol is I = I ′. To ensure that the final
output sent to the Client is correct, the Simulator utilizes the the Trusted Party
to find out the elements in X ∩Y and includes them in the Server’s final output.
Intuitively, because the Simulator is able to choose the set I ahead of time, the
Simulator can run the protocol using the challenge ciphertext from a CPA-IND
experiment as the inputs of the Server in indeces i /∈ I, thereby reducing indis-
tinguishability of the views to the semantic security of the encryption scheme
AEGenc. Therefore, we have that the Malicious Client cannot distinguish its
view in the Ideal Model when interacting with a Simulator that chooses all 0
values as the Server’s input for indeces i /∈ I and its view in the Real model when
the Honest Server uses its actual input. This is due to the information-theoretic
secrecy of the secret-sharing scheme and the semantic security of the encryption
scheme.

We now describe in detail the Simulator for the case of the Malicious Client
and Honest Server

Efficient Robust Private Set Intersection 139

1. SC extracts the Client’s inputs using the extractor for the HEPKPV proto-
col.

2. SC uses the Berlekamp factoring algorithm ([2]) to factor the extracted poly-
nomial and obtain the Malicious Client’s input set X .

3. SC sends X to the Trusted Party and receives back the set Out = X ∩ Y .
4. SC chooses a random subset I ′ ⊂ [10k(�logn�+1)] of size k, I ′ = {j1, . . . , jk}
5. Input Preprocessing:

– SC chooses a random value ri,j,l and sets P
y2i

j
(l) = ri,j,l for 1 ≤ j ≤

maxS , 0 ≤ i ≤ �logn�, l ∈ I.
– SC sets P

y2i
j

(l) = 0 for 1 ≤ j ≤ maxS , 0 ≤ i ≤ �logn�, l ∈ [10k(�logn�+

1)] \ I ′.
– SC sets P 2

y2i
j

(l) = (P
y2i

j
(l))2 for 1 ≤ j ≤ maxS , 0 ≤ i ≤ �logn�− 1, l ∈ I ′

– SC sets P 2

y2i
j

(l) = 0 for 1 ≤ j ≤ maxS , 0 ≤ i ≤ �logn� − 1, l ∈
[10k(�logn�+ 1)] \ I ′

– SC commits to these inputs.
6. Choosing Random Polynomials:

– SC chooses a random value rj,l and sets Prj (l) = rj,l for 1 ≤ j ≤
maxS , l ∈ I ′.

– SC sets Prj (l) = 0 for 1 ≤ j ≤ maxS , l ∈ [10k(�logn�+ 1)] \ I ′.
– SC commits to these inputs

7. Choosing Zero Polynomials:
– SC chooses a random value rj,l and sets P0,j = rj,l for 1 ≤ j ≤ maxS , l ∈
I ′.

– SC sets P0,j = 0 for 1 ≤ j ≤ maxS , l ∈ [10k(�logn�+ 1)] \ I ′.
– SC commits to these inputs

8. For 1 ≤ j ≤ maxS and for i ∈ I ′, SC honestly computes the outputs
Outi,j = ENCpk1(si,j) based on the inputs committed to in the previous
stages.

9. For each yj ∈ Out, SC chooses a random polynomial POutj of degree k +
k(�logn� + 1) such that POutj (i) = si,j for i ∈ I ′ and POutj (0) = yj . Note
that SC can compute si,j since it has extracted the coefficients of the Client’s
polynomial P .

10. For each yj ∈ V , SC chooses a random polynomial POutj such that POutj (i)
= si,j for i ∈ I ′.

11. For Outi,j , i ∈ [10k(�logn�+ 1)] \ I ′, 1 ≤ j ≤ maxS SC computes a random
encryption of POutj (i).

12. SC commits to the shares of its inputs and sends the output computed above
to AC .

13. SC simulates a run of the HEPKPV protocol with the committed inputs
from above using the simulator for the HEPKPV protocol.

14. SC simulates a run of the Coin-Tossing protocol to ensure the outcome is
the set I ′ = JR using the simulator for the Coin-Tossing protocol.

15. SC plays the role of the honest Server in the Preprocessing Verification pro-
tocol to prove the preprocessing was done correctly.

16. SC plays the role of the honest Server in the the Cut-and-Choose protocol
to prove output was calculated correctly.

140 D. Dachman-Soled et al.

4.2 Sender-Side Simulator

We now consider the case in which the Sender is corrupted and the Receiver is
honest.

LetAS be a non-uniform probabilistic polynomial-time real adversary that con-
trols the Server. We construct a non-uniform probabilistic expected polynomial-
time ideal model adversary simulator SS .

The idea behind how SS works is that it plays the role of the Honest Client
using dummy inputs: For the coefficients of the polynomial P , it sends n random
encryptions of 0. Then, instead of playing the role of the prover in the zero
knowledge proof of knowledge for the validity and knowledge of the coefficients
of P , it invokes the Simulator for the HEPKPV protocol. In the second stage,
SS uses the extractability property of the HEPKPV to obtain the inputs of the
Malicious Server from the Share Commitment Protocol. After obtaining all the
input commitments and output from the Server, SS continues to play the role of
the Honest Client in the coin-tossing protocol to choose a random subset for the
cut-and-choose test. If the Malicious Server passes the cut-and-choose test, then
the inputs extracted earlier are submitted to the Trusted Party, otherwise the
Simulator aborts (as the Honest Client does). The cut-and-choose test ensures
that most of the shares of the output generated by the Malicious Server are
consistent with the input extracted previously. Additionally, the honest Client
in the Real Model checks that he has, in fact, received a polynomial. Due to the
properties of the secret-sharing scheme, the above two points ensure that with
all but negligible probability the same (correct) output will be obtained by an
Honest Client in the Real and Ideal model.

We now describe in detail the Simulator for the case of the Malicious Server
and Honest Client

1. SS chooses n random encryptions of 0: c1, . . . cn and sends to Server.
2. SS simulates a run of the HEPKPV protocol with input from above using

the simulator for the HEPKPV protocol.
3. SS extracts the Server’s inputs using the extractor for the HEPKPV proto-

col.
4. AS computes output vi,j for i = 1 to 10k(�logn�+ 1) and j = 1 to |Y | and

sends to Simulator
5. SS plays the part of the Honest Client in the Coin-Tossing protocol.
6. SS and AS run the Cut-and-Choose protocol.
7. SS rewinds AS to the beginning of the Coin-Tossing protocol and re-runs

the protocol with new randomness
8. SS and AS run the Cut-and-Choose protocol.
9. SS repeats the previous two steps until all input indeces from 1 to 10k(�logn�

+ 1) have been opened and the output vi,j has been shown to be computed
correctly.

10. SS submits the previously extracted inputs to the TP.

Efficient Robust Private Set Intersection 141

4.3 Computation and Communication Complexity

The communication complexity of our protocol is O(mk2 log2 n+kn) encryptions
and the computational complexity is O(mnk logn+mk2 log2 n) exponentiations.

The best known protocols for Set Intersection secure against malicious parties
until now were generic protocols based on Yao’s garbled circuit ([24,25]). Clearly,
the communication complexity of these protocols must at least be the size of the
circuit required for the functionality since all generic two-party protocols that
are known require one party to send a (garbled) circuit for the functionality
being evaluated.

The best known circuit for evaluating the Set Intersection functionality has
size O(m · n), where m and n are the size of the Server and Client’s inputs
respectively, since we must have at least O(m · n) comparisons to compute the
functionality. A secure implementation will require a bit-wise circuit of size at
least O(m · n · k), and this does not even take into account the costly zero-
knowledge techniques that must be employed. Our communication complexity
of O(mk2 log2 n + kn) is much smaller.

Additionally, our protocol accesses the underlying field in a black-box manner.
This is in contrast to an implementation based on a Yao circuit (which must be
binary) that is used in the generic protocols for 2-party computation. Therefore,
our complexity scales much better as the size of the field increases.

Acknowledgment. We thank Stas Jarecki for very helpful discussions.

References

1. Agrawal, R., Evfimievski, A., Srikant, R.: Information sharing across private
databases. In: SIGMOD 2003: Proceedings of the 2003 ACM SIGMOD interna-
tional conference on Management of data, pp. 86–97. ACM, New York (2003)

2. Berlekamp, E.: Factoring polynomials over large finite fields. Mathematics of Com-
putation 24, 713–735 (1970)

3. Boudot, F., Schoenmakers, B., Traoré, J.: A fair and efficient solution to the so-
cialist millionaires problem. Discrete Applied Mathematics 111, 2001 (2001)

4. Camenisch, J., Zaverucha, G.: Private intersection of certified sets. In: Proceedings
of Financial Cryptography 2009 (2009)

5. Canetti, R.: Security and composition of multiparty cryptographic protocols. Jour-
nal of Cryptology 13, 2000 (2000)

6. Choi, S., Dachman-Soled, D., Malkin, T., Wee, H.: Black-box construction of a
non-malleable encryption scheme from any semantically secure one. In: Canetti,
R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 427–444. Springer, Heidelberg (2008)

7. El Gamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196,
pp. 10–18. Springer, Heidelberg (1985)

8. Fagin, R., Naor, M., Winkler, P.: Comparing information without leaking it. Com-
munications of the ACM 39, 77–85 (1996)

9. Freedman, M.J., Nissim, K., Pinkas, B.: Efficient private matching and set intersec-
tion. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027,
pp. 1–19. Springer, Heidelberg (2004)

142 D. Dachman-Soled et al.

10. Goldreich, O.: Foundations of cryptography: a primer. Found. Trends Theor. Com-
put. Sci. 1(1), 1–116 (2005)

11. Shafi, G., Silvio, M.: Probabilistic encryption & how to play mental poker keeping
secret all partial information. In: STOC 1982: Proceedings of the fourteenth annual
ACM symposium on Theory of computing, pp. 365–377. ACM, New York (1982)

12. Hazay, C., Lindell, Y.: Efficient protocols for set intersection and pattern matching
with security against malicious and covert adversaries. In: Canetti, R. (ed.) TCC
2008. LNCS, vol. 4948, pp. 155–175. Springer, Heidelberg (2008)

13. Impagliazzo, R., Yung, M.: Direct minimum knowledge computations. In: Pomer-
ance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 40–51. Springer, Heidelberg
(1988)

14. Jakobsson, M., Yung, M.: Proving without knowing: On oblivious, agnostic and
blindfolded provers. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
186–200. Springer, Heidelberg (1996)

15. Jarecki, S., Liu, X.: Efficient oblivious pseudorandom function with applications
to adaptive OT and secure computation of set intersection. In: TCC, pp. 577–594
(2009)

16. Katz, J., Lindell, Y.: Introduction to Modern Cryptography. Chapman & Hall/Crc
Cryptography and Network Security Series. Chapman & Hall/CRC, Boca Raton
(2007)

17. Kiayias, A., Mitrofanova, A.: Testing disjointness of private datasets. In: Patrick,
A.S., Yung, M. (eds.) FC 2005. LNCS, vol. 3570, pp. 109–124. Springer, Heidelberg
(2005)

18. Kissner, L., Song, D.X.: Privacy-preserving set operations. In: Shoup, V. (ed.)
CRYPTO 2005. LNCS, vol. 3621, pp. 241–257. Springer, Heidelberg (2005)

19. Lindell, Y., Pinkas, B.: Privacy preserving data mining. Journal of Cryptology,
36–54 (2000)

20. Lindell, Y., Pinkas, B.: An efficient protocol for secure two-party computation
in the presence of malicious adversaries. In: Naor, M. (ed.) EUROCRYPT 2007.
LNCS, vol. 4515, pp. 52–78. Springer, Heidelberg (2007)

21. Naor, M., Pinkas, B.: Oblivious transfer and polynomial evaluation. In: STOC 1999:
Proceedings of the thirty-first annual ACM symposium on Theory of computing,
pp. 245–254. ACM Press, New York (1999)

22. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999)

23. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
24. Yao, A.C.-C.: Protocols for secure computations. In: FOCS, pp. 160–164 (1982)
25. Yao, A.C.-C.: How to generate and exchange secrets (extended abstract). In: FOCS,

pp. 162–167 (1986)

A New Variant of the Cramer-Shoup KEM

Secure against Chosen Ciphertext Attack

Joonsang Baek1, Willy Susilo2, Joseph K. Liu1, and Jianying Zhou1

1 Cryptography and Security Department
Institute for Infocomm Research, Singapore
{jsbaek,ksliu,jyzhou}@i2r.a-star.edu.sg

2 Centre for Computer and Information Security Research
School of Computer Science and Software Engineering

University of Wollongong, Australia
wsusilo@uow.edu.au

Abstract. We propose a new variant of the Cramer-Shoup KEM (key
encapsulation mechanism). The proposed variant is more efficient than
the original Cramer-Shoup KEM scheme in terms of public key size and
encapsulation cost, but is proven to be (still) secure against chosen ci-
phertext attack in the standard model, relative to the Decisional Diffie-
Hellman problem.

1 Introduction

Motivation. At Crypto ’98, Cramer and Shoup [9] proposed the first practical
public key encryption (PKE) scheme whose security against adaptive chosen ci-
phertext attack (which we simply call “CCA” throughout this paper) can be
proven without depending on the random oracle model [6]. This is a striking re-
sult as the chosen ciphertext security without random oracles could be achieved
by only adding a few more exponentiations to the original ElGamal encryp-
tion scheme, in contrast to the computationally heavy solutions [11,20] based
on zero-knowledge proofs proposed before. Nearly seven years later, a major im-
provement on the performance of the Cramer-Shoup PKE scheme was made by
Kurosawa and Desmedt [17]. They were able to obtain a very efficient hybrid
PKE scheme by simplifying the Cramer-Shoup PKE scheme with the help of
the “ciphertext authenticity checking” mechanism of the underlying symmetric
encryption primitive. Afterwards, Hofheinz and Kiltz [14] came up with a dual
version of the Kurosawa-Desmedt PKE scheme. Note that chosen ciphertext
security of all these schemes are relative to the (standard) Decisional Diffie-
Hellman (DDH) problem.

In the full version of their Crypto ’98 paper, Cramer and Shoup [10] formulated a
framework called “KEM/DEM (Key Encapsulation Mechanism/Data Encapsula-
tion Mechanism)”. A KEM is a public key scheme that outputs a (session) key tak-
ing public key as input. According to the KEM/DEM framework, a (hybrid) PKE
scheme secure against CCA can be constructed in such a way that a key output by

M. Abdalla et al. (Eds.): ACNS 2009, LNCS 5536, pp. 143–155, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

144 J. Baek et al.

a CCA-secure KEM scheme1 is used as a session key for an one-time CCA-secure
DEM (i.e., symmetric encryption) scheme that encrypts a plaintext message.

In the same paper, Cramer and Shoup proposed a KEM scheme based on
their original PKE scheme, which we denote by “CS-KEM”, and showed it is
CCA-secure assuming that the DDH problem is hard. Interestingly, however, it
was shown [13] that the KEM scheme extracted from Kurosawa and Desmedt’s
hybrid PKE scheme, which we denote by “KD-KEM”, does not satisfy full
CCA-security even though the hybrid PKE scheme remains secure against CCA.
Abe et al. [1] showed later that the KD-KEM scheme is actually secure against
“LCCA (predicate-dependent CCA)” which is weaker than usual CCA-security
of KEM. Similarly, the KEM scheme extracted from Hofheinz and Kiltz’s [14] hy-
brid PKE scheme, denoted “HK-KEM”, was shown to be secure against CCCA
(constrained CCA), which is also weaker than the usual CCA-security of KEM.

Hence, the CS-KEM scheme is, though less efficient than the KD-KEM and
HK-KEM schemes, the only KEM scheme that is fully CCA-secure without
random oracles, assuming that the DDH problem is hard. A remaining question
is whether the performance of the CS-KEM scheme can be further improved. In
this paper, we give a positive answer to this question.

Recent Developments. In 2007, Kiltz [16] proposed a KEM scheme whose CCA se-
curity is based on the gap hashed Diffie-Hellman problem. An interesting feature
of this scheme is that different from the CS-KEM scheme, a key can be computed
from one of the public key components used to create one ciphertext component.
More precisely, let pk = (q, g, c, d) be public key, where g is a generator of a group
of prime order q; c = gx and d = gy for some random (x, y) ∈ Z

∗
q . In this scheme,

a ciphertext and its corresponding key is computed as (gr, (cαd)r) and KDF(cr)
respectively, where KDF denotes a key derivation function. As mentioned earlier,
the public c used to create (cαd)r is reused to produce cr. Note here that one can-
not expect a computational gain even if c is reused. However, if d were reused, a
computational cost could be reduced by computing crα and dr separately to gen-
erate (cαd)r and using dr as a key. Indeed, Lu et al. [18] recently showed that this
modified version of Kiltz’s KEM scheme is CCA-secure.

More recently, as one of the applications of their new computational problem
called “Twin Diffie-Hellman”, Cash et al. [8] proposed a new variant ofCramer and
Shoup’sPKE scheme and showed that it isCCA-secure under the hasheddecisional
Diffie-Hellman assumption, which is weaker than the usual DDH assumption2. Al-
though this variant has interesting theoretical implications, it is computationally
more expensive than the original Cramer and Shoup’s one and hence ours.

Our Contributions. We observe that it is also possible to apply the structure
of Kiltz’s KEM scheme to the CS-KEM scheme. As a result, we could con-
struct a KEM scheme which is proven to be fully CCA-secure without random
oracles assuming that the DDH problem is hard, while it is more efficient than

1 The CCA security notion for KEM will be defined in Section 2.
2 Note that although [8] focuses only on a PKE scheme, a corresponding KEM scheme

can easily be derived and analyzed in an obvious way.

A New Variant of the Cramer-Shoup KEM Secure against CCA 145

the CS-KEM scheme. The crux is the efficiency of our scheme in terms of a
shorter public/private key pair and improved encapsulation speed. However, we
honestly state that the improvement on the encapsulation speed would not be
very much dramatic due to the advancement of fast multi-exponentiation al-
gorithms [2,7,19], which makes the cost for computing double exponentiation
very close to the cost of computing a single exponentiation. Nevertheless, the
proposed scheme has a new structure, which reduces one group element of the
public key of the CS-KEM scheme. We believe it is also theoretically interesting
in that it shows yet another way of constructing a more efficient variant of the
CS-KEM without sacrificing full CCA-security.

2 Preliminaries

In this section, we review the formal notion of key encapsulation mechanism
(KEM) and its security against adaptive chosen ciphertext attack (CCA). We
also review building blocks used in our construction of KEM which will be pre-
sented in Section 3.
Key Encapsulation Mechanism (KEM). The KEM scheme, denoted KEM, con-
sists of the following algorithms [10,15,22].

– Key Generation: Taking 1λ for a security parameter λ ∈ Z≥0 as input, this
algorithm generates a public/private key pair (pk, sk).

– Encapsulation: Taking 1λ and a public key pk as input, this algorithm gen-
erates a ciphertext/(symmetric) key pair (ψ,K).

– Decapsulation: Taking 1λ, a private key sk and a ciphertext ψ as input,
this algorithm outputs either a (symmetric) key K or the special symbol ⊥,
meaning “reject”.

The security against CCA of KEM is defined as follows. Consider any at-
tacker A and any value λ > 0 for security parameter in the following game
GameCCAKEM

A (λ) in which A interacts with the challenger.

Phase 1: The challenger runs the key generation algorithm providing 1λ

as input to generate a public/private key pair (pk, sk). The challenger then
computes a challenge ciphertext φ∗ and a key K∗

1 by running the encapsu-
lation algorithm. It also picks K∗

0 ∈ SK at random, where SK denotes the
key space. It then picks β ∈ {0, 1} at random and gives (pk, φ∗,K∗

β) to A.
Phase 2: A submits ciphertexts, each of which is denoted by φ. On receiving
φ, the challenger runs the decapsulation algorithm on input φ and passes the
resulting decapsulation to A. At the end of this phase, A outputs its guess
β′ ∈ {0, 1}.
We define the output of the game to be 1 if β′ = β, and 0 otherwise. A’s
success is defined by the probability

AdvCCA
A,KEM(λ) =

∣
∣
∣Pr[GameCCAKEM

A (λ) = 1]− 1
2

∣
∣
∣.

We say that KEM is CCA-secure if AdvCCA
KEM (λ) = maxA

{

AdvCCA
A,KEM(λ)

}

is
negligible for any attacker A.

146 J. Baek et al.

The Decisional Diffie-Hellman Problem. We now review the definition of the
Decisional Diffie-Hellman (DDH) problem. Let D be an attacker. Let G be a
finite cyclic group generated by g ∈ G. Let q be a prime order of G, whose size
depends on the security parameter λ. We define the DDH problem using the
attacker D’s advantage in distinguishing two distributions:

AdvDDH
D,G (λ) = |Pr[a R← Zq; b

R← Zq : 1 ← D(1λ, ga, gb, gab)]

− Pr[a R← Zq; b
R← Zq; r

R← Zq : 1 ← D(1λ, ga, gb, gr)]|.

Equivalently [9,10,12],

AdvDDH
D,G (λ) = |Pr[w R← Zq; g2 ← gw

1 ; r R← Zq : 1 ← D(1λ, g1, g2, g
r
1, g

r
2)]

− Pr[w R← Zq; g2 ← gw
1 ; r′ R← Zq \ {r} : 1 ← D(1λ, g1, g2, g

r
1 , g

r′
2)]|,

where g1 is the generator of G.
We say that the DDH problem is hard if AdvDDH

G (λ) = maxD
{

AdvCCA
D,G (λ)

}

is negligible for any attacker D.
Target Collision Resistant Hash Function (TCR). The security of the target col-
lision resistant hash function denoted by H is defined as follows. Given a n tuple
of group elements x ∈ G

n, it is hard for an attacker B1 to find y
= x such that
H(x) = H(y). We define the attacker B1’s success probability by AdvCOL

B1,H(λ). We
say that H is target collision-resistant if AdvCOL

H (λ) = maxB1

{

AdvCOL
B1,H(λ)

}

is
negligible for any attacker B1.
Key Derivation Function (KDF). In the proposed variant of the KD-KEM scheme,
we will use the key derivation function denoted by KDF. Specifically, KDF takes
two random elements a and b in the group G as input. Let l be the length of the
output of KDF, which depends on the security parameter λ. We define the security
of KDF with respect to an attacker B2 as follows. (Below, “ROR” stands for “real
or random”.)

AdvROR
B2,KDF(λ) = |Pr[a, b R← G : 1 ← B2(1λ, a,KDF(a, b))]

− Pr[a R← G;μ R← {0, 1}l : 1 ← B2(1λ, a, μ)]|.

We say that KDF is secure if AdvROR
KDF (λ) = maxB2

{

AdvROR
B2,KDF(λ)

}

is negli-
gible for any attacker B2.

Notice that the above security requirement on KDF is the same as that of the
KDF functions used in [10].

3 The Proposed Variant of the Cramer-Shoup KEM

Description. We describe our variant of the CS-KEM scheme, which we denote by
“Π”, as follows. (Readers are referred to the end of Section 1 for the underlying
idea of our scheme.)

A New Variant of the Cramer-Shoup KEM Secure against CCA 147

Key Generation: Pick a group G of prime order q and generators g1 and
g2 of G. Pick a target-collision resistant hash function H : {0, 1}∗ → Z

∗
q and

a key derivation function KDF. Then choose (x1, x2, y1, y2) ∈ Z
4
q at random

and compute

c = gx1
1 gx2

2 , d = gy1
1 gy2

2 .

Return public key pk = (G, q, g1, g2, c, d,H,KDF) and private key sk =
(pk, x1, x2, y1, y2).
Encapsulation: Pick r ∈ Z

∗
q at random and compute

u1 = gr
1, u2 = gr

2 , α = H(u1, u2), v = crdrα, K = KDF(u1, c
r).

Return a ciphertext ψ = (u1, u2, v) and a key K.
Decapsulation: Upon receiving ψ = (u1, u2, v), compute

α = H(u1, u2), v′ = ux1+y1α
1 ux2+y2α

2 , K = KDF(u1, u
x1
1 ux2

2)

If v′ = v then return K; otherwise, return ⊥.

We show that the scheme Π is CCA-secure, relative to the DDH problem.
More precisely, we prove the following theorem.

Theorem 1. The KEM scheme Π is CCA-secure assuming that the DDH prob-
lem is hard and the underlying hash function H s target collision-resistant and
key derivation function KDF is secure. More precisely, we have

AdvCCA
Π (λ) ≤ AdvDDH

G (λ) + AdvCOL
H (λ) + AdvROR

KDF (λ) +
qD

q
.

where λ denotes the security parameter and qD is the number of queries to the
decapsulation oracle.

Outline of Proof. The basic idea of the proof essentially follows the logic of the
proofs of the CS-KEM [10] and CS-PKE [9] schemes. We need to show that
by using a CCA-attacker for the scheme Π as a subroutine, a DDH attacker
can solve the DDH problem: When the DDH attacker is given a right Diffie-
Hellman tuple (g1, g2, g

r
1, g

r
2), it can perfectly simulate the environment of the

CCA-attacker. On the other hand, when it is given (g1, g2, g
r
1, g

r′
2) where r′
= r,

the output of the decapsulation oracle will not be legitimate but we will show
that this one won’t be a problem.

In our proof, there is an important difference from the proofs of the CS-
KEM/CS-PKE schemes. Since the public key component c used to create v =
crdrα is “reused” to produce a key material cr, we need to assume that the
attacker’s view include c, d, v and cr when breaking the confidentiality (i.e.
“key indistinguishability”) of the scheme Π . (Note that this is different from the
CS-KEM/CS-PKE schemes in which an independent public key component is
used to produce a key.) By using an argument from linear algebra, we show that
fortunately, this does not cause a problem. (In particular, readers are referred
to Equation (12)).

148 J. Baek et al.

Proof. Fix an attacker A that breaks CCA-security of the scheme Π . Also, fix
an attacker D that is to solve the DDH problem.

Simulation. The DDH attacker D simulates the environment of A as follows.
Assume that D is given a DDH instance (g1, g2, u1, u2) where g1 and g2 are
generators of a group G of prime-order q. D chooses (x1, x2, y1, y2) ∈ Z

4
q at

random and computes c = gx1
1 gx2

2 and d = gy1
1 gy2

2 . D also chooses a hash function
H and a key derivation function KDF, and gives pk = (G, q, g1, g2, c, d,H,KDF)
as a public key to A.

When A queries ciphertexts to the decapsulation oracle in the find stage, D
decapsulates them using (x1, x2, y1, y2).
D simulates the challenge ciphertext and the key as follows. D first sets u∗

1 =
u1 and u∗

2 = u2, and computes α∗ = H(u∗
1, u

∗
2), v

∗ = (u∗
1)

x1+y1α∗
(u∗

2)
x2+y2α∗

and K∗
1 = KDF(u∗

1, (u
∗
1)

x1(u∗
2)

x2). D also chooses K∗
0 at random from the output

space of KDF and picks β ∈ {0, 1} at random. D finally gives A the challenge
ciphertext-key pair (ψ∗,K∗

β) where ψ∗ = (u∗
1, u

∗
2, v

∗).
When A queries ciphertexts, all of which are different from ψ∗, to the decap-

sulation oracle in the find stage, D decapsulates them using (x1, x2, y1, y2).
Finally, when A outputs its guess β′, D outputs 1 if β′ = β; otherwise,

outputs 0.
Analysis. We first analyze the case when D is given (g1, g2, g

r∗
1 , gr∗

2). First, we
prove the following lemma.

Lemma 1

Pr[D(1λ, g1, g2, g
r∗
1 , gr∗

2) = 1] = Pr[GameCCAΠ
A(λ) = 1]. (1)

Proof. Note that since (x1, x2, y1, y2) is randomly chosen from Z
4
q , the public

key pk is distributed the same as the public key in the real attack.
By the simulation of the challenge ciphertext presented above, we have

ψ∗ = (u∗
1, u

∗
2, v

∗) = (gr∗
1 , gr∗

2 , (gr∗
1)x1+y1α∗

(gr∗
2)x2+y2α∗

) = (gr∗
1 , gr∗

2 , cr∗
dr∗α∗

)

and

K∗
1 = KDF(u∗

1, (g
r∗
1)x1(gr∗

2)x2) = KDF(u∗
1, c

r∗
).

Since K∗
0 is drawn uniformly at random from the output space of KDF,

(ψ∗,K∗
β) has the right distribution.

It remains to show that the output of the decapsulation oracle (both in the
simulation and the real attack) has the right distribution. Now, we call a ci-
phertext ψ = (u1, u2, v) is invalid if logg1

u1
= logg2
u2. We show that invalid

ciphertexts are rejected except for negligible probability.
First, by the public key pk that A sees, we have the following equations:

logg1
c = x1 + x2w (2)

and

logg1
d = y1 + y2w, (3)

A New Variant of the Cramer-Shoup KEM Secure against CCA 149

where w = logg1
g2. Hence, one can view (x1, x2, y1, y2) as a random point on

the plane defined by (2) and (3). From the challenge ciphertext, we have

logg1
v∗ = r∗(x1 + x2w + y1α

∗ + y2wα
∗), (4)

where r∗ = logg1
u∗

1 = logg2
u∗

2 and α∗ = H(u∗
1, u

∗
2). Note that the challenge

ciphertext (whether it is in the simulation or real attack) does not constrain
(x1, x2, y1, y2) as the hyperplane defined by (4) contains the plane formed by the
equations (2) and (3). Now consider the following equation obtained from the
invalid ciphertext ψ:

logg1
v = r1x1 + r2x2w + r1y1α+ r2y2wα, (5)

where r1 = logg1
u1 and r2 = logg1

u2 such that r1
= r2. If the decapsulation
oracle does not reject ψ, the point (x1, x2, y1, y2) should lie on the hyperplane
defined by (5). But observe that the equations (2), (3) and (5) are linearly
independent, so the hyperplane defined by (5) intersects the plane formed by
the equations (2) and (3) at a line. This happens with probability 1/q, which is
negligible.

We now analyze the case when D is given (g1, g2, g
r∗
1

1 , g
r∗
2

2) where r∗1
= r∗2 . More
precisely, we prove the following lemma.

Lemma 2

Pr[D(1λ, g1, g2, g
r∗
1

1 , g
r∗
2

2) = 1] ≤ 1
2

+ AdvROR
KDF (λ) + AdvCOL

H (λ) +
qD

q
. (6)

The above bound (6) can be obtained by proving the following claims (1) and
(2).

Recall that if a ciphertext ψ = (u1, u2, v) is “invalid” then logg1
u1
= logg2

u2.
We first prove the following claim.

Claim (1). Let RejInvC to be an event that the decapsulation oracle rejects all
invalid ciphertexts. Then we have

Pr[β′ = β|RejInvC] ≤ 1
2

+ AdvROR
KDF (λ). (7)

Proof of Claim (1). First, assume that that the decapsulation oracle rejects all
invalid ciphertexts. We consider the distribution of the point (x1, x2, y1, y2) ∈ Z

4
q

conditioned on A’s view. Since the decapsulation oracle decapsulates only valid
ciphertexts by the assumption (the decapsulation oracle rejects all invalid cipher-
texts), for each ciphertext (u1, u2, v), A gets only linearly dependent relations

logg1
v = r(x1 + x2w + y1α + y2wα), (8)

and

logg1
ux1

1 ux2
2 = r(x1 + x2w), (9)

150 J. Baek et al.

where r = logg1
u1 = logg2

u2 and α = H(u1, u2). (In fact, A only gets the key
which is the output of KDF which “wraps” the key material ux1

1 ux2
2 .) Hence, no

information about the point (x1, x2, y1, y2) is leaked from querying valid cipher-
texts to the decapsulation oracle.

Now consider the challenge ciphertext ψ∗ = (u∗
1, u

∗
2, v

∗) and the key K∗
1 =

KDF(u∗
1, (u

∗
1)

x1(u∗
2)

x2), produced by the simulation. Suppose that A gets the
key material (u∗

1)
x1(u∗

2)
x2 at the worst case. Since v∗ and (u∗

1)
x1(u∗

2)
x2 are in

A’s view, (x1, x2, y1, y2) should then satisfy the following equations

logg1
v∗ = r∗1x1 + r∗2x2w + r∗1y1α

∗ + r∗2y2wα
∗, (10)

where r∗1 = logg1
u∗

1, r
∗
2 = logg2

u∗
2 with r∗1
= r∗2 and α∗ = H(u∗

1, u
∗
2), and

logg1
(u∗

1)
x1(u∗

2)
x2 = r∗1x1 + r∗2x2w. (11)

Now observe that

det

⎡

⎢
⎢
⎣

1 w 0 0
0 0 1 w
r∗1 r∗2w r∗1α∗ r∗2α∗w
r∗1 r∗2w 0 0

⎤

⎥
⎥
⎦

= w2α∗(r∗1 − r∗2)2
= 0. (12)

Hence, the equations (2), (3), (10) and (11) are linearly independent. Note that
(u∗

1)
x1(u∗

2)
x2 is distributed uniformly in G since r∗1 and r∗2 are chosen uniformly

at random from Zq and that K∗
0 has been chosen uniformly at random and

independently from anything else. Thus the distribution of β is independent
from A’s view under the assumption that KDF is secure and we get the bound
(7). This is the end of proof of Claim (1).

We now show that the probability that the decapsulation oracle does not
reject all invalid ciphertexts, i.e. Pr[¬RejInvC], is bounded by insecurity of hash
function and some negligible probability. Precisely we prove the following claim.

Claim (2).

Pr[¬RejInvC] ≤ AdvCOL
H (λ) +

qD

q
, (13)

where qD denotes the number of the queries to the decapsulation oracle.

Proof of Claim (2). Suppose that A submits an invalid ciphertext ψ = (u1, u2, v)

= ψ∗ to the decapsulation oracle. First, note that it is not possible that (u1, u2) =
(u∗

1, u
∗
2) since ψ
= ψ∗, we have v
= v∗ and hence the decapsulation oracle will

reject ψ straight away. Note also that it is possible that (u1, u2)
= (u∗
1, u

∗
2) and

α = α∗ but the probability that this happens is bounded by the insecurity of
the hash function H since this event implies the violation of the target collision-
resistance of H.

Thus, for up to qD invalid ciphertexts such that (u1, u2)
= (u∗
1, u

∗
2), we have

α
= α∗. In this case, if the point (x1, x2, y1, y2) lied on the hyperplane defined
by the following equation

logg1
v = r1x1 + r2x2w + r1y1α+ r2y2wα, (14)

A New Variant of the Cramer-Shoup KEM Secure against CCA 151

where r1 = logg1
u1 and r2 = logg1

u2, the decapsulation oracle would accept the
ciphertext ψ. However, observe that

det

⎡

⎢
⎢
⎣

1 w 0 0
0 0 1 w
r∗1 r∗2w r∗1α

∗ r∗2α
∗w

r1 r2w r1α r2αw

⎤

⎥
⎥
⎦

= w2(r1 − r2)(r∗1 − r∗2)(α∗ − α)
= 0.

Hence, (2), (3), (10) and (14) are linearly independent, implying that the hyper-
plane defined by (14) intersects the line formed by intersecting (2), (3) and (10)
at a point, which happens with negligible probability 1/q. Considering that there
are qD decapsulation queries, we get (13). This is the end of proof of Claim (2).

Note that from (7) and (13), we get

Pr[β′ = β] = Pr[β′ = β|RejInvC] Pr[RejInvC] + Pr[β′ = β|¬RejInvC] Pr[¬RejInvC]
≤ Pr[β′ = β|RejInvC] + Pr[¬RejInvC]

≤ 1
2

+ AdvROR
KDF (λ) + AdvCOL

H (λ) +
qD

q
.

(The above inequality shows that regardless of the quantity of Pr[β′=β|¬RejInvC],
i.e. the advantage that the adversarymay get through querying invalid ciphertexts
to the decapsulation oracle, Pr[β′ = β] is not much deviated from 1/2 due to
Pr[β′ = β|¬RejInvC] and Pr[¬RejInvC], which turn out to be negligible.)

Then, from the construction of D, we have

Pr[D(1λ, g1, g2, g
r∗
1

1 , g
r∗
2

2)=1]=Pr[β′=β] ≤ 1
2

+AdvROR
KDF (λ)+AdvCOL

H (λ) +
qD

q
.

Combining the bounds from Lemmas 1 and 2 (i.e., by subtracting (1) from
(6)), we get the bound in the theorem statement.

4 Comparisons

In Table 1, we summarize the basic parameters such as public key, ciphertext
of CS-KEM [10], KD-KEM [17], HK-KEM [14] and ours. We also summarize
whether those schemes provide full CCA-security, assuming the hardness of the
DDH problem. Note that KD-KEM and HK-KEM are proven to be CCCA-
secure [14], which is weaker than full CCA. Note also that it is an open problem
to prove or disprove that HK-KEM provides full CCA-security.

As one can notice from the above table, our scheme is more efficient than
the CS-KEM scheme while it is less efficient than the KD-KEM and HK-KEM
schemes. However, an advantage of our scheme and CS-KEM schemes might
be the simplicity that they provide full CCA-security without introducing ad-
ditional primitive like MAC. – As formally shown in [3], one can generically
convert a CCCA-secure KEM into a CCA-secure KEM by authenticating the
CCCA-secure KEM ciphertext using a MAC. Hence, KD-KEM and HK-KEM

152 J. Baek et al.

Table 1. Comparison of Our KEM Scheme with Other KEM Schemes

Scheme Public key Ciphertext Key Full CCA

CS-KEM [10] g1, g2, c, d, h gr
1 , gr

2 , (cdα)r KDF(gr
1 , hr) Yes

KD-KEM [17] g1, g2, c, d gr
1 , gr

2 (cdα)r No

HK-KEM [14] g1, c, d, h gr
1 , (cdα)r hr Not Known

Ours g1, g2, c, d gr
1 , gr

2 , (cdα)r KDF(gr
1 , cr) Yes

Table 2. Comparison of Computational Costs

Scheme Enc. Cost Dec. Cost

CS-KEM [10] 3E + 1DE (4.39E) 2DE (2.78E)

KD-KEM [17] 2E + 1DE (3.39E) 1DE (1.39E)

HK-KEM [14] 2E + 1DE (3.39E) 1SE (≈1.39E)

Ours 4E 2.78E

can be made to be CCA-secure by introducing the overhead of MAC. In this
case, expansion of the ciphertext is unavoidable and as a result, the length of
the ciphertext is close to the original CS-KEM and ours.

In Table 2, we summarize the computational costs of the above-mentioned
schemes. In the table, “E” stands for “Exponentiation”, “DE” stands for “Double
Exponentiation”, which is a special case of multi-exponentiation for two bases,
e.g. AaBb, and finally “SE” stands for “Sequential Exponentiation” [7], which
is as efficient as multi-exponentiation (in our case, double exponentiation).

Since there are many factors that determine the running time of various multi-
exponentiation algorithms [2,19], it would be difficult to state decisively one
double exponentiation is equivalent to how much of single exponentiation. (Note
that if we use the naive approach that computes two single exponentiations
separately and multiply them together, 1 DE = 2 E.) But if one adopts the
“multi-exponentiation with a sliding window” algorithm assuming the unsigned
binary representation of exponents as described in [2], one can obtain 1 DE
= 1.39E if window size = 2 and the bit-length of q = 256. The figures in the
parentheses in Table 2 are obtained based on this assumption.

Notice from the above table that in terms of computational costs, the dif-
ference between our scheme and both KD-KEM and HK-KEM is less than one
exponentiation.

We also remark that as done for CS-KEM and KD-KEM respectively in [10]
and in [21], one can make the key generation and decapsulation algorithms of
our KEM scheme more efficient, which is described in detail in Appendix A.

5 Conclusion

In this paper, we proposed a new variant of the Cramer-Shoup KEM (CS-KEM)
scheme which is more efficient than the original Cramer-Shoup KEM and fully
CCA-secure in the standard model, relative to the DDH problem. Our result

A New Variant of the Cramer-Shoup KEM Secure against CCA 153

shows that the original CS-KEM can further be optimized without losing full
CCA-security.

It is natural to ask whether the same technique (that is, to “reuse” dr in
(cαd)r) can be applied to the dual version of KD-KEM scheme presented in
[14]. We found that it is difficult to provide a security reduction in this case
since, when an inconsistent ciphertext is queried to the decapsulation oracle,
one cannot always extract a key uniformly distributed in the simulation.

Thus, an interesting open problem is how to construct a PKE scheme that
is more efficient than the PKE schemes based on the KD-KEM or the dual
KD-KEM.

Acknowledgement. The authors are grateful to Eike Kiltz for his suggestions
of improvement on an earlier version of this paper. The authors also thank
the anonymous referees of ACNS ’09 for their valuable comments. The first,
third and fourth authors are partially supported by the European Union project
SMEPP-033563. The second author is partially supported by ARC Discovery
Grant DP0877123.

References

1. Abe, M., Genaro, R., Kurosawa, K.: Tag-KEM/DEM: A New Framework for Hy-
brid Encryption and A New Analysis of Kurosawa-Desmedt KEM, Cryptology
ePrint Archive, Report 2005/027 (2005) (Last update: 11 October 2006)

2. Avanzi, R.M.: The Complexity of Certain Multi-Exponentiation Techniques in
Cryptography. Journal of Cryptology 18(4), 357–373 (2005)

3. Baek, J., Galindo, D., Susilo, W., Zhou, J.: Constructing Strong KEM from Weak
KEM (or How to Revive the KEM/DEM Framework). In: Ostrovsky, R., De Prisco,
R., Visconti, I. (eds.) SCN 2008. LNCS, vol. 5229, pp. 358–374. Springer, Heidelberg
(2008)

4. Bellare, M., Canetti, R., Krawczyk, H.: Keying Hash Functions for Message Au-
thentication. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 1–15.
Springer, Heidelberg (1996)

5. Bellare, M., Desai, A., Pointcheval, D., Rogaway, P.: Relations Among Notions
of Security for Public-Key Encryption Schemes. In: Krawczyk, H. (ed.) CRYPTO
1998. LNCS, vol. 1462, pp. 26–45. Springer, Heidelberg (1998)

6. Bellare, M., Rogaway, P.: Random Oracles are Practical: A Paradigm for Designing
Efficient Protocols. In: ACM-CCS 1993, pp. 62–73. ACM Press, New York (1993)

7. Bernstein, D.J.: Pippenger’s Exponentiation Algorithm (preprint) (2002),
http://cr.yp.to

8. Cash, D., Kiltz, E., Shoup, V.: The Twin Diffie-Hellman Problem and Applications.
In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 127–145. Springer,
Heidelberg (2008); full version available on Cryptology ePrint Archive: Report
2008/067

9. Cramer, R., Shoup, V.: A Practical Public Key Cryptosystem Provably Secure
against Adaptive Chosen Ciphertext Attack. In: Krawczyk, H. (ed.) CRYPTO
1998. LNCS, vol. 1462, pp. 13–25. Springer, Heidelberg (1998)

10. Cramer, R., Shoup, V.: Design and Analysis of Practical Public-key Encryption
Schemes Secure against Adaptive Chosen Ciphertext Attack. SIAM Journal of
Computing 33, 167–226 (2003)

http://cr.yp.to

154 J. Baek et al.

11. Dolev, D., Dwork, C., Naor, M.: Non-malleable Cryptography. In: STOC 1991, pp.
542–552. ACM Press, New York (1991)

12. Gennaro, R., Shoup, V.: A Note on An Encryption Scheme of Kurosawa and
Desmedt, Cryptology ePrint Archive, Report 2004/294 (2004)

13. Herranz, J., Hofheinz, D., Kiltz, E.: The Kurosawa-Desmedt Key Encapsulation is
not Chosen-Ciphertext Secure,Cryptology ePrint Archive, Report 2006/207 (2006)

14. Hofheinz, D., Kiltz, E.: Secure hybrid encryption from weakened key encapsulation.
In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 553–571. Springer,
Heidelberg (2007)

15. ISO 18033-2, An Emerging Standard for Public-Key Encryption (2004)
16. Kiltz, E.: Chosen-Ciphertext Secure Key-Encapsulation Based on Gap Hashed

Diffie-Hellman. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450,
pp. 282–297. Springer, Heidelberg (2007)

17. Kurosawa, K., Desmedt, Y.: A New Paradigm of Hybrid Encryption Scheme. In:
Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 426–442. Springer, Hei-
delberg (2004)

18. Lu, X., Lai, X., He, D.: Improved efficiency of Kiltz07-KEM, Cryptology ePrint
Archive, Report 2008/312 (2008)

19. Möller, B., Rupp, A.: Faster Multi-Exponentiation through Caching: Accelerating
(EC)DSA Signature Verification. In: Ostrovsky, R., De Prisco, R., Visconti, I. (eds.)
SCN 2008. LNCS, vol. 5229, pp. 39–56. Springer, Heidelberg (2008)

20. Naor, M., Yung, M.: Public-key Cryptosystems Provably Secure against Chosen
Ciphertext Attacks. In: STOC 1990, pp. 427–437. ACM Press, New York (1990)

21. Phong, L.T., Ogata, W.: On Some Variations of Kurosawa-Desmedt Public-Key
Encryption Scheme. IEICE Transactions 90-A(1), 226–230 (2007)

22. Shoup, V.: A Proposal for an ISO Standard for Public Key Encryption (version
2.1), ISO/IEC JTC 1/SC 27 (2001)

A An Efficient Variant of Our KEM Scheme

Description. Adopting the techniques in [10,21], one can design an efficient vari-
ant of our KEM scheme, which we denote by “Π̃”, as follows.

Key Generation: Pick a group G of prime order q and generator g1 of G.
Pick a target-collision resistant hash function H : {0, 1}∗ → Z

∗
q and a key

derivation function KDF. Then choose (w, x, y) ∈ Z
3
q at random and compute

g2 = gw
1 , c = gx

1 , d = gy
1 .

Return public key pk = (G, q, g1, g2, c, d,H,KDF) and private key sk =
(pk, x, y, w).
Encapsulation: Pick r ∈ Z

∗
q at random. Compute

u1 = gr
1, u2 = gr

2 , α = H(u1, u2), v = crdrα, K = KDF(u1, c
r).

Return ciphertext ψ = (u1, u2, v) and key K.
Decapsulation: Upon receiving ψ = (u1, u2, v), compute

α = H(u1, u2), u′
2 = uw

1 , v′ = ux+yα
1 , K = KDF(u1, u

x
1).

If u′
2 = u2 and v′ = v then return K; otherwise, return ⊥.

A New Variant of the Cramer-Shoup KEM Secure against CCA 155

The above scheme is also CCA-secure. Regarding this, we prove the following
theorem.

Theorem 2. If the KEM scheme Π (described in Section 3) is CCA-secure then
the above KEM scheme Π̃ is CCA-secure. More precisely, we have

AdvCCA
Π̃

(λ) ≤ AdvCCA
Π (λ) +

qD

q
.

where λ denotes the security parameter and qD is the number of queries to the
decapsulation oracle.

Proof. Fix an attacker A for the scheme Π . Also, fix an attacker Ã for the
scheme Π̃ .

Assume that A is provided with the public key pk = (G, q, g1, g2, c, d) and the
private key sk = (pk, x1, x2, y1, y2), where g1 and g2 are generators of G and c =
gx1
1 gx2

2 and d = gy1
1 gy2

2 . A simply gives Ã pk as the public key of the scheme Π . A
sets g2 = gw

1 for some w ∈ Zq, x = x1+wx2 and y = y1+wy2. (Note that A does
not the value w.) Since c = gx1

1 gx2
2 = gx1+wx2

1 = gx, d = gy1
1 gy2

2 = gy1+wy2
1 = gx

by definition of w and (x, y), the public key pk is distributed identically in both
A and Ã’s view.

When Ã queries a ciphertext ψ = (u1, u2, v) to the decapsulation oracle in the
find stage, A forwards it to its decapsulation oracle, gets a decapsulation result
and sends it back to Ã.

Sometime later, A gets a challenge ciphertext and a key pair (ψ∗=(u∗
1, u

∗
2, v

∗),
Kβ), where β ∈ {0, 1} is chosen at random, and forwards the pair to Ã as a
challenge ciphertext of the scheme Π̃ and a key.

When Ã queries a ciphertext ψ = (u1, u2, v) to the decapsulation oracle in
the guess stage, A forwards it to its decapsulation oracle, gets a decapsulation
result and sends it back to Ã.

When Ã outputs its guess, A outputs it as its guess.
We compute the probability that an invalid ciphertext ψ = (u1, u2, v), which

should have been rejected, is accepted by the simulated decapsulation oracle.
Since we have assumed that ψ = (u1, u2, v) is invalid, the condition [(uw

1
=
u2) ∧ (ux+yα

1 = v)] or [(uw
1 = u2) ∧ (ux+yα

1
= v)] or [(uw
1
= u2) ∧ (ux+yα

1
= v)]
holds. However, if the last two conditions held, the simulated decapsulation
oracle would reject ψ. Hence the first condition [(uw

1
= u2) ∧ (ux+yα
1 = v)] must

hold when invalid ψ is not rejected by the simulated decapsulation oracle. Note
that uw

1
= u2 means r1
= r2 where r1 = logg1
u1 and r2 = logg1

u2. Note also
that since x = x1 + wx2 and y = xy + wy2, u

x+yα
1 = v is equivalent to

[r1{(x1 + wx2) + (y1 + wy2)α}] mod q

= [r1(x1 + y1α) + r2w(x2 + y2α)] mod q

⇐⇒ w(r1 − r2)(x1 + wy2) = 0 mod q.

As r1
= r2 by the assumption and w
= 0 mod q, the above equation holds with
probability 1/q, which is negligible. Hence we get the bound in the theorem
statement.

An Efficient Identity-Based Online/Offline

Encryption Scheme�

Joseph K. Liu and Jianying Zhou

Institute for Infocomm Research
Singapore

{ksliu,jyzhou}@i2r.a-star.edu.sg

Abstract. In this paper, we present an efficient Identity-based Online
/ Offline Encryption (IBOOE) scheme. An IBOOE scheme allows one
to split the encryption into two phases. In the offline phase, most heavy
computations such as exponentiation or pairing, if any, are done in this
phase. Yet it does not require the knowledge of the plaintext or the
receiver’s identity. This nice property allows it can be executed ‘offline’,
or inside some powerful device. The next phase is called the online phase,
where only light computations such as integer addition, multiplication
or hashing are needed, together with the plaintext and the receiver’s
identity. This can be executed inside some embedded device such as smart
card or wireless sensor where the computation power is very limited.
We propose an efficient IBOOE scheme, with great improvement in the
computation requirement of both the offline, online encryption phase and
decryption phase, together with much shorten ciphertext over previous
schemes. Our scheme can be proven secure in the random oracle model.

1 Introduction

The notion of “online / offline” cryptographic algorithm was first introduced by
Even, Goldreich and Micali [5], in the context of digital signature. With this no-
tion, the signing process can be divided into two phases. The first phase is called
offline phase which is executed prior to the arrival of a message and the second
phase is called online phase which is performed after knowing the message. The
online phase should be very fast and require only very light computation, such as
integer multiplication or hashing. Other heavier computation such as exponenti-
ation should be avoided in the online phase. In this way, online / offline schemes
are particularly useful for low-power devices such as smartcard or wireless sensor
applications. Those heavy computations are done in the offline phase which can
be carried out by other powerful devices.

In parallel to online/offline signature [10,8,4,7], the first online/offline encryp-
tion scheme was first proposed by Guo, Mu and Chen [6]. Note that there is a
slight difference in the definition between online/offline signature and encryption
scheme. If we split the encryption process in the same way as the signing process

� The work in this paper is funded by the A*STAR project SEDS-0721330047.

M. Abdalla et al. (Eds.): ACNS 2009, LNCS 5536, pp. 156–167, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

An Efficient Identity-Based Online/Offline Encryption Scheme 157

(that is, put all heavy computation into the offline phase), it is trivial to separate
some standard encryption, such as ElGamal encryption scheme. However, it is only
suitable for the situationwhere the sender knows the recipient of the encryptedmes-
sage in the offline phase, since the offline phase requires the knowledge of the public
key of the recipient. We are not interested in this scenario. Instead, we consider a
notion that allows the knowledge of the recipient is yetunknown in the offlinephase.
[6] uses this definition for their scheme, in the context of identity-based encryption.

There are some scenarios that may require the above online/offline encryption.
Suppose there are some sensitive data stored in a smartcard, which has only very
limited computation power. In order to send the sensitive data to a recipient in
a secure way, it should be encrypted using the recipient’s public key or identity.
To ensure timely and efficient delivery, it would be much better if part of the
encryption process could be done prior to knowing the data to be encrypted and
the recipient’s public key or identity.

Wireless sensor network (WSN) can be another situation where online/offline
encryption is useful. Similar to smartcard, wireless sensor also has only limited
resource. It may take very long time, or even impossible to execute heavy com-
putation. Yet the data they collect may be sensitive which is necessary to be
encrypted before sending back to the base stations. By using online/offline en-
cryption, the offline part (containing all heavy computation) can be done by a
third party at the setup or manufacturing stage. Obviously at this stage nothing
is collected. Sometimes even the base station identity maybe still unknown to
the wireless sensor. Online/offline encryption is a good solution in this scenario.

Identity-Based (ID-Based) Cryptosystem, introduced by Shamir [9], eliminates
the necessity for checking the validity of certificates in traditional public key in-
frastructure (PKI). In an ID-based cryptosystem, public key of each user is easily
computable from an arbitrary string corresponding to this user’s identity (e.g. an
email address, a telephone number, etc.). Using its master key, a private key gen-
erator (PKG) then computes a private key for each user. This property avoids the
requirement of using certificates and associates implicitly a public key (i.e. user
identity) to each user within the system. One only needs to know the recipient’s
identity in order to send an encrypted message to him. It avoids the complicated
and costly certificate (chain) verification for the authentication purpose. In con-
trast, the traditional PKI needs an additional certification verification process,
which is equivalent to the computation of two signature verifications.

Identity-based system is particularly suitable for power constrained device
such as WSN or smartcard. The absence of certificate eliminates the costly cer-
tificate verification process. In addition, when there is a new node added to
the network, other nodes do not need to have its certificate verified in order
to communicate in a secure and authenticated way. This can greatly reduce
communication overhead and computation cost.

1.1 Contribution

In this paper, we propose an efficient identity-based online/offline encryption
(IBOOE) scheme. There are only two IBOOE schemes existed in the literature,

158 J.K. Liu and J. Zhou

both are proposed by Guo, Mu and Chen in [6]. Although they satisfy the defi-
nitions and basic requirements of an IBOOE, they are not actually very efficient.
The first scheme (denoted by GMC-1) requires 7 pairing operations in the de-
cryption stage. While for the second scheme (denoted by GMC-2), the ciphertext
is very large (more than 6400 bits). Our proposed scheme provides a much bet-
ter efficiency: We just require 2 pairing operations in the decryption stage. The
ciphertext is only 1280 bits which is 40% smaller than GMC-1 and 80% smaller
than GMC-2. Besides, our scheme requires lighter computation in both offline and
online stage than both GMC-1 and GMC-2. Our scheme can be proven secure in
the random oracle model.

1.2 Organization

The rest of our paper is organized as follow. Some definitions will be given
in Section 2. We present our scheme in Section 3. It is followed by the detail
comparison between our scheme and other schemes in Section 4. Finally we
conclude the paper in Section 5.

2 Definitions

2.1 Pairings

We briefly review the bilinear pairing. Let G and GT be two multiplicative cyclic
groups of prime order q. Let P be a generator of G, and e be a bilinear map
such that e : G×G → GT with the following properties:

1. Bilinearity: For all U, V ∈ G, and a, b ∈ Z, e(aU, bV) = e(U, V)ab.
2. Non-degeneracy: e(P, P)
= 1.
3. Computability: It is efficient to compute e(U, V) for all U, V ∈ G.

2.2 Intractability Assumption

Definition 1 (�-Bilinear Diffie-Hellman Inversion Assumption
(�-BDHI)). [2] The �- Diffie-Hellman (�-BDHI) problem in G is defined as fol-
low: On input a (�+ 1)-tuple (P, αP, α2P, · · · , α�P) ∈ G

�+1, output e(P, P)
1
α ∈

GT . We say that the (t, ε, �)-BDHI assumption holds in G if no t-time algorithm
has advantage at least ε in solving the �-BDHI problem in G.

2.3 Definition of ID-Based Online/Offline Encryption

An ID-based online/offline encryption scheme consists of the following five prob-
abilistic polynomial time (PPT) algorithms:

– (param,msk) ← Setup(1k) takes a security parameter k ∈ N and generates
param the global public parameters and msk the master secret key of the
PKG.

An Efficient Identity-Based Online/Offline Encryption Scheme 159

– DID ← Extract(1k, param,msk, ID) takes a security parameter k, a global
parameters param, a master secret key msk and an identity ID to generate
a secret key DID corresponding to this identity.

– φ̄ ← Offline-encrypt(1k, param) takes a security parameter k and a global
parameters param to generate an offline ciphertext φ̄.

– φ ← Online-encrypt(1k, param,m, φ̄, ID) takes a security parameter k, a
global parameters param, a message m, an offline ciphertext φ̄, an identity
ID to generate a ciphertext φ.

– m/ ⊥← Decrypt(1k, param, φ,DID) takes a security parameter k, a global
parameters param, a ciphertext φ, a secret key of the receiver DID to gen-
erate a message m or ⊥ which indicates the failure of decryption.

For simplicity, we omit the notation of 1k and param from the input argu-
ments of the above algorithms in the rest of this paper.

2.4 Security of ID-Based Online/Offline Encryption

Definition 2 (Chosen Ciphertext Security). An ID-based online/offline
encryption scheme is semantically secure against chosen ciphertext insider at-
tack (ID-IND-CCA) if no PPT adversary has a non-negligible advantage in the
following game:

1. The challenger runs Setup and gives the resulting param to adversary A. It
keeps msk secret.

2. In the first stage, A makes a number of queries to the following oracles which
are simulated by the challenger:

(a) Extraction oracle: A submits an identity ID to the extraction oracle
for the result of Extract(msk, ID).

(b) Decryption oracle: A submits a ciphertext φ and a receiver identity
ID to the oracle for the result of Decrypt(φ,DID). The result is made
of a message if the decryption is successful. Otherwise, a symbol ⊥ is
returned for rejection.

These queries can be asked adaptively. That is, each query may depend on
the answers of previous ones.

3. A produces two messages m0,m1 and an identities ID∗. The challenger
chooses a random bit b ∈ {0, 1} and computes an encrypted ciphertext φ∗ =
Online-Encrypt(mb, Offline-Encrypt(), ID∗). φ∗ is sent to A.

4. A makes a number of new queries as in the first stage with the restriction
that it cannot query the decryption oracle with (φ∗, ID∗) and the extraction
oracle with ID∗.

5. At the end of the game, A outputs a bit b′ and wins if b′ = b.

A’s advantage is defined as AdvIND−CCA(A) = |Pr[b′ = b]− 1
2 |.

160 J.K. Liu and J. Zhou

3 The Proposed Online/Offline ID-Based Encryption
Scheme

3.1 Construction

Let G and GT be groups of prime-order q, and let e : G×G → GT be the bilinear
pairing. We use a multiplicative notation for the operation in G and GT .

Setup: The PKG selects a generator P ∈ G and randomly chooses s, w ∈R Z
∗
q . It

sets Ppub = sP , P ′
pub = s2P and W = (w + s)−1P . Define M to be the message

space. Let nM = |M|. Also let H1 : {0, 1}∗ → Z
∗
q , H2 : {0, 1}∗ × GT → Z

∗
q

and H3 : {0, 1}∗ → {0, 1}nM be some cryptographic hash functions. The public
parameters param and master secret key msk are given by

param = (G,GT , q, P, Ppub, P
′
pub,W,w,M, H1, H2, H3) msk = s

Extract: To generate a secret key for a user with identity ID ∈ {0, 1}nd, the
PKG computes:

DID = (H1(ID) + s)−1P

Offline-Encrypt: Randomly generates u, x, α, β, γ, δ ∈R Z
∗
q and computes:

U ← W − uP R ← e(wP + Ppub, P)x

T0 ← x
(

wαP +
(

w + γ
)

Ppub + P ′
pub

)

T1 ← xwβP T2 ← xδPpub

Outputs the offline ciphertext φ̄ = (u, x, α, β, γ, δ, U,R, T0, T1, T2). Note that
e(wP +Ppub, P) can be pre-computed by the PKG as part of the param so that
no pairing is needed in this phase.

Online-Encrypt: To encrypt a message m ∈ M to ID, at the online stage, com-
putes:

t′1 ← β−1
(

H1(ID)− α
)

mod q t′2 ← δ−1
(

H1(ID)− γ
)

mod q

t ← H2(m,R)x + u mod q c ← H3(R)⊕m

Outputs the ciphertext φ = (U, T0, T1, T2, t
′
1, t

′
2, t, c).

Decrypt: To decrypt using secret key DID, computes

R ← e(T0 + t′1T1 + t′2T2 , DID) m ← c⊕H3(R)

and checks whether

RH2(m,R) ?= e
(

tP + U , wP + Ppub

)

· e(P, P)−1 (1)

Outputs m if it is equal. Otherwise outputs ⊥.
Same as above, e(P, P) can be pre-computed by the PKG as part of the

param.

An Efficient Identity-Based Online/Offline Encryption Scheme 161

3.2 Security Analysis

Correctness. For the decrypt, we have

e(T0 + t′1T1 + t′2T2, DID)

= e

(

x

(

wH1(ID)P + wPpub + H1(ID)Ppub + P ′
pub

)

,

(

H1(ID) + s
)−1

P

)

= e

(

x

(

w
(

H1(ID) + s
)

P +
(

H1(ID) + s
)

Ppub

)

,

(

H1(ID) + s
)−1

P

)

= e

(

x

((

H1(ID) + s
)(

wP + Ppub

))

,
(

H1(ID) + s
)−1

P

)

= e

(

x

((

H1(ID) + s
)(

w + s
)

P

)

,
(

H1(ID) + s
)−1

P

)

= e

(
(

w + s
)

P, P

)x

= R

On the other side, let h = H2(m,R). We have

e
(

tP + U,wP + Ppub

)

· e(P, P)−1

= e

(

hxP + uP +
(

w + s
)−1

P − uP,
(

w + s
)

P

)

· e(P, P)−1

= e

(

hxP +
(

w + s
)−1

P,
(

w + s
)

P

)

· e(P, P)−1

= e

(

hxP,
(

w + s
)

P

)

· e
((

w + s
)−1

P,
(

w + s
)

P

)

· e(P, P)−1

=
(

e
(

P,wP + Ppub

)x
)h

= Rh

Theorem 1. If there is a ID-IND-CCA adversary A of the proposed scheme
that succeeds with probability ε, then there is a simulator B running in polynomial
time that solves the (� + 1)-BDHI problem with probability at least

ε · 1
q1

(

1− qd

q

)

where q1, qd are the number of queries allowed to the random oracle H1 and
decryption oracle respectively and we assume q1 = �.

162 J.K. Liu and J. Zhou

Proof. Setup: We follow the proof technique from [1]. Suppose B is given a
random instance of the (�+ 1)-BDHI problem (P̂ , αP̂ , α2P̂ , . . . , α�P̂ , α�+1P̂), B
runs A as a subroutine to output e(P̂ , P̂)

1
α . B sets up a simulated environment

for A as follow.
B first randomly selects π ∈R {1, . . . , q1}, Iπ ∈R Z

∗
q and w1, . . . , wπ−1,

wπ+1, . . . , w� ∈R Z
∗
q . For i ∈ {1, . . . , �}\{π}, it computes Ii = Iπ−wi. Construct

a polynomial with degree �− 1 as

f(z) =
�∏

i=1,i
=π

(z + wi)

to obtain c0, . . . , c�−1 ∈ Z
∗
q such that f(z) =

∑�−1
i=0 ciz

i. Then it sets generator
G =

∑�−1
i=0 ci(αiP̂) = f(α)P̂ .

For i ∈ {1, . . . , �} \ {π}, B expands fi(z) = f(z)/(z + wi) =
∑�−2

j=0 di,jz
j to

obtain di,1, . . . , di,�−2 ∈ Z
∗
q and sets

H̃i =
�−2∑

j=0

di,j(αjP̂) = fi(α)P̂ =
f(α)
α + wi

P̂ =
1

α + wi
G

It randomly chooses ŵ ∈ {1, . . . , �} \ {π}, and computes the public key w,W ,
Ppub and P ′

pub as

w = Iŵ W = −H̃ŵ

Ppub = −αG− IπG = (−α− Iπ)G P ′
pub = α2G+2IπαG+ I2

πG = (α+ Iπ)2G

where αG =
∑�−1

i=0 ci(αi+1P̂) and α2G =
∑�−1

i=0 ci(αi+2P̂) so that its unknown
master secret key msk is implicitly set to x = −α − Iπ ∈ Z

∗
q , while public pa-

rameter param are set to (G,Ppub, P
′
pub,W,w) which are given to the adversary.

For all i ∈ {1, . . . , �} \ {π}, we have (Ii,−H̃i) = (Ii,
1

Ii+xG).

Oracle Simulation: B first initializes a counter ν to 1 and starts A. Throughout
the game, we assume that H1-queries are distinct, that the target identity ID∗

is submitted to H1 at some point.

1. Random Oracle: For H1-queries (we denote IDν the input of the νth one of
such queries), B answers Iν and increments ν.
For H2-queries on input (m,R) and H3-queries on input R, B returns the
defined value if it exists and a randomly chosen h2 ∈R Z

∗
q for H2 and

h3 ∈R {0, 1}nm for H3 respectively, otherwise. B stores the information
(m,R, h2, c = m⊕ h3, γ = Rh2 · e(G,G)) in L2 and (R, h3) in L3.

2. Extraction Oracle: On input IDν , if ν = π, B aborts. Otherwise, it knows
that H1(IDν) = Iν and returns −H̃ν = (1/(Iν + x))G.

3. Decryption Oracle: On input a ciphertext φ = (U, T0, T1, T2, t
′
1, t

′
2, t, c) for

identity IDν , we assume that ν = π because otherwise B knows the receiver’s

An Efficient Identity-Based Online/Offline Encryption Scheme 163

private key DIDν = −H̃ν and can normally run the decryption algorithm.
Let x̃ ∈ Zq such that

x̃W = tG+ U −W

x̃(w + x)−1G = tG+ U − (w + x)−1G

x̃G = (w + x)(tG + U)−G (2)

Also let T = T0 + t′1T1 + t′2T2, GIDν = IνG+Ppub, and h = H2(m,R) (which
is yet unknown to B at this moment). As all valid ciphertext satisfies

Rh = e(tG + U, (w + x)G) · e(G,G)−1

e(hT, (Iν + x)−1G) = e((w + x)(tG + U), G) · e(−G,G)
e((Iν + x)−1hT,G) = e((w + x)(tG + U)−G,G)

(Iν + s)−1hT = (w + x)(tG + U)−G (3)

Let x̃′ ∈ Zq such that

x̃′GIDν = hT

x̃′(Iν + x)G = hT

x̃′G = (Iν + x)−1hT

= (w + x)(tG + U)−G (from equation(3))
= x̃G (from equation(2))

⇒ x̃′ = x̃

⇒ logW (tG + U −W) = logGIDν
(hT) (4)

From equation (4), we have

e(hT,W) = e(GIDν , S −W) (5)

where S = tG + U , which yields e(hT,W) = e(GIDν , S) · e(GIDν ,W)−1.

The query is handled by computing γ = e(S,wG+Ppub), and search through
the list L2 for entries of the form (mi, Ri, h2,i, c, γ) indexed by i ∈ {1, . . . , q2}.
If none is found, φ is rejected. Otherwise, each one of them is further exam-
ined: for the corresponding indexes, B checks if

e(T,W)h2,i

e(S,GIDν)
= e(GIDν ,W)−1 (6)

meaning that equation (5) is satisfied. If the unique i ∈ {1, . . . , q2} satis-
fying equation (6) is detected, the matching pair (mi, h2,i, S) is returned.
Otherwise φ is rejected.

Challenge: A outputs messages (m0,m1) and identities ID∗ for which it never
obtained ID∗’s private key. If ID∗
= IDπ, B aborts. Otherwise it randomly

164 J.K. Liu and J. Zhou

selects t, t′1, t′2, t̃0, t̃1, t̃2 ∈R Z
∗
q , c ∈R {0, 1}nm and U ∈R G. Computes T0 =

t̃0G, T1 = t̃1G, T2 = t̃2G to return the challenge ciphertext φ∗ = (U, t, T0, T1,
T2, t

′
1, t

′
2, c). Let ξ = t̃0 + t′1t̃1 + t′2t̃2 and T = −ξG. Since x = −α − Iπ , we let

ρ = ξ
α(w−α−Iπ) = − ξ

(Iπ+x)(w+x) , we can check that

T = −ξG = −α(w − α− Iπ)ρG
= (Iπ + x)(w + x)ρG
= ρ(Iπw + (w + Iπ)x + x2)G

A cannot recognize that φ∗ is not a proper ciphertext unless it queries H2 or
H3 on e(wG + Gpub, G)ρ. Along the guess stage, its view is simulated as before
and its output is ignored. Standard arguments can show that a successful A
is very likely to query H2 or H3 on the input e(GIDμ , G)ρ if the simulation is
indistinguishable from a real attack environment.

Output Calculation: B fetches a random entry (m,R, h2, c, γ) or (R, ·) from the
lists L2 or L3. With probability 1/(2q2 + q3), the chosen entry will contain the
right element

R = e(wG + Ppub, G)ρ = e(G,G)−ξ/(Iπ+x) = e(P̂ , P̂)f(α)2ξ/α

where f(z) =
∑∗ �− 1i=0ciz

i is the polynomial for which G = f(α)P . The
(� + 1)-BDHI solution can be extracted by computing

(

R1/ξ

e
(
∑�−2

i=0 ci+1(αiP̂), c0P̂
)

e
(
∑�−2

j=0 cj+1(αj)P̂ , G
)

)1/c2
0

=

(

e(P̂ , P̂)f(α)2/α

e(P̂ , P̂)c0(c1+c2α+c3α2+...c�−1α�−2)e(P̂ , P̂)f(α)(c1+c2α+c3α2+...c�−1α�−2)

)1/c2
0

=

(

e(P̂ , P̂)f(α)2/α

e(P̂ , P̂)
c0(c1α+c2α2+...c�−1α�−1)+f(α)(c1α+c2α2+...c�−1α�−1)

α

)1/c2
0

= e(P̂ , P̂)
f(α)2−(c1α+c2α2+...c�−1α�−1)(c0+f(α))

c02α

= e(P̂ , P̂)
c0

2

c02α

= e(P̂ , P̂)1/α

Probability Analysis: B only fails in providing a consistent simulation because
one of the following independent events happen:

– E1 : A does not choose to be challenged on IDπ.
– E2 : A key extraction query is made on IDπ.
– E3 : B rejects a valid ciphertext at some point of the game.

An Efficient Identity-Based Online/Offline Encryption Scheme 165

We have Pr[¬E1] = 1/q1 and ¬E1 implies ¬E2. Also observe that Pr[E3] ≤
qd/q. Combining together, the overall successful probability Pr[¬E1 ∧¬E3] is at
least

1
q1

(

1− qd

q

)

��

4 Comparison

There are only 2 existing online/offline IBE schemes, both of them are proposed
by Guo, Mu and Chen in [6]. We use GMC-1 and GMC-2 to denote them. We also
assume that |G| = 160 bits, |q| = 160 bits, |GT | = 1024 bits and |M| = |q| = 160
bits 1 for the following comparison. We denote by E the point multiplication in
G or GT , ME the multi-point multiplication in G or GT (which costs about 1.3
times more than a single point multiplication), M the point addition in G or GT

and mc the modular computation in Zq.

Table 1. Comparison of computation cost and size

GMC-1 GMC-2 Our scheme

Offline computation 5E + 2ME 4E + 2ME 4E + 1ME

Online computation 1M + 2mc 1M + 2mc 3mc

Offline storage (bits) 2624 5056 2624

Ciphertext length (bits) 2144 6464 1280

Number of pairing for decryption 7 2 2

Security model selective ID standard random oracle

We note that as GMC-1 requires an online/offline signature for encryption,
we assume they use the most efficient one [3] which requires 320 bits for offline
storage and 320 bits for signature length. The key generation and offline signing
part require 1 E operation respectively. These costs have been added to the
table.

From the above table, we can see that our scheme achieves the least compu-
tation and the smallest size in both offline and online stage, when compare to
GMC-1 and GMC-2. There are a number of significant improvements:

1. First, we do not require any point addition operation (M operation) in the
online encryption stage. Modular computation (mc operation) is much faster
than M operation. Other computations that required in our scheme such as
hashing or XOR are negligible when compared to M operation. Thus our
online encryption stage is much faster than GMC-1 and GMC-2.

1 In our scheme, the message space can be any arbitrary length but the message space
of GMC-1 and GMC-2 can be only set to the size of q, the order of group GT . In
order to compare three schemes, we also set the message space of our scheme to 160
bits.

166 J.K. Liu and J. Zhou

2. Second, the offline storage is as small as GMC-1 and about 50% smaller than
GMC-2. This result is important in embedded device such as smart card or
wireless sensor, where the storage is very limited.

3. Third, the ciphertext of our scheme is 40% smaller than GMC-1 and 80%
smaller than GMC-2. This improvement is very significant in the environ-
ment where the communication bandwidth is very limited. On the other side,
the number of pairing operations required in the decryption stage, is just 2,
which is the same as GMC-2 while 3 times less than GMC-1. In other words,
we combine and improve the efficiency advantages of both GMC-1 (short
ciphertext) and GMC-2 (small number of pairing operations in decryption).

4. Forth, our scheme allows the message space to be any arbitrary length while
the message space of GMC-1 and GMC-2 should be equal to the size of q,
the order of group GT . Usually q is chosen as a 160-bits prime. That means
the message space of GMC-1 and GMC-2 is 160 bits. If a larger message, say
1024 bits, is encrypted using GMC-1 or GMC-2, it must be divided into 7
parts (� 1024

160 � = 7) and carried out the encryption process 7 times. However
in our scheme we just need to adjust the output length of the hash function
H3 to be 1024 and increase the size of the ciphertext from 1280 to 2144
bits (1280 + (1024− 160) = 2144). Then we only need to execute the whole
encryption process once (instead of 7 times, when compared to GMC-1 and
GMC-2). Our scheme is particularly useful for a large message space.

We also remark that our scheme can be proven secure in the random oracle
model, which is relatively stronger than the standard model or the selective-ID
model. Although it is generally believed that random oracle model is not as
secure as standard model theoretically, it still achieves an acceptable level of
security. There are many applications that put efficiency as the most important
factor. In these scenarios, schemes that are efficient but can be only proven secure
in the random oracle model maybe a better choice.

5 Conclusion

In this paper we have proposed a new efficient identity-based online/offline en-
cryption scheme. When compared to previous schemes, our scheme enjoys a
number of significant improvements in efficiency. These improvements allow our
scheme to be used in many practical scenarios such as smart card and wireless
sensor networks. Our scheme can be proven secure in the random oracle model.

References

1. Barreto, P., Libert, B., McCullagh, N., Quisquater, J.: Efficient and provabley-
secure identity-based signature and signcryption from bilinear maps. In: Roy,
B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 515–532. Springer, Heidelberg
(2005)

An Efficient Identity-Based Online/Offline Encryption Scheme 167

2. Boneh, D., Boyen, X.: Efficient Selective-ID Secure Identity-Based Encryption
Without Random Oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT
2004. LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)

3. Boneh, D., Boyen, X.: Short signatures without random oracles the SDH assump-
tion in bilinear groups. Journal of Cryptology 2, 149–177 (2008)

4. Chen, X., Zhang, F., Susilo, W., Mu, Y.: Efficient generic online/offline signatures
without key exposure. In: Katz, J., Yung, M. (eds.) ACNS 2007. LNCS, vol. 4521,
pp. 18–30. Springer, Heidelberg (2007)

5. Even, S., Goldreich, O., Micali, S.: On-line/offline digital signatures. In: Brassard,
G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 263–277. Springer, Heidelberg (1990)

6. Guo, F., Mu, Y., Chen, Z.: Identity-based online/offline encryption. In: Tsudik, G.
(ed.) FC 2008. LNCS, vol. 5143, pp. 247–261. Springer, Heidelberg (2008)

7. Joye, M.: An efficient on-line/off-line signature scheme without random oracles. In:
Franklin, M.K., Hui, L.C.K., Wong, D.S. (eds.) CANS 2008. LNCS, vol. 5339, pp.
98–107. Springer, Heidelberg (2008)

8. Kurosawa, K., Schmidt-Samoa, K.: New online/offline signature schemes without
random oracles. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T.G. (eds.) PKC
2006. LNCS, vol. 3958, pp. 330–346. Springer, Heidelberg (2006)

9. Shamir, A.: Identity-Based Cryptosystems and Signature Schemes. In: Blakely,
G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer,
Heidelberg (1985)

10. Shamir, A., Tauman, Y.: Improved online/offline signature schemes. In: Kilian, J.
(ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 355–367. Springer, Heidelberg (2001)

Dual-Policy Attribute Based Encryption

Nuttapong Attrapadung and Hideki Imai

Research Center for Information Security (RCIS),
National Institute of Advanced Industrial Science and Technology (AIST)

Akihabara-Daibiru Room 1003, 1-18-13, Sotokanda,
Chiyoda-ku, Tokyo 101-0021 Japan

{n.attrapadung,h-imai}@aist.go.jp

Abstract. We present a new variant of Attribute based encryption
(ABE) called Dual-Policy ABE. Basically, it is a conjunctively combined
scheme between Key-Policy and Ciphertext-Policy ABE, the two pre-
vious available types of ABE. Dual-Policy ABE allows simultaneously
two access control mechanisms over encrypted data: one involves policies
over objective attributes ascribed to data and the other involves poli-
cies over subjective attributes ascribed to user credentials. The previous
two types of ABE can only allow either functionality above one at a time.

Keywords: Attribute-based encryption, Ciphertext policy, Key policy.

1 Introduction

Attribute-based encryption (ABE) enables an access control mechanism over
encrypted data using access policies and ascribed attributes among private keys
and ciphertexts. ABE comes in two flavors called Ciphertext-Policy ABE and
Key-Policy ABE.

In Ciphertext-Policy ABE, an encryptor can express any access policy, stat-
ing what kind of receivers will be able to decrypt the message, directly in
the encryption algorithm (which can be run by anyone knowing the univer-
sal public key issued priorly by an authority). Such a policy is specified in
terms of access structure over attributes. A user is ascribed by an attribute
set, in the sense that each attribute corresponds to one of her credential, and
is priorly given the private key from the authority. Such a user can decrypt a
ciphertext if her attribute satisfies the access policy associated to the cipher-
text. An example application of CP-ABE is secure mailing list system with
access policy. There, a private key will be assigned for an attribute set, such
as {“manager”, “age:30”, “institute:ABC”}, while policies over attributes
such as “manager”∨(“trainee”∧“age:25”) will be associated to ciphertexts.

In Key-Policy ABE, the roles of an attribute set and an access policy are
swapped from what we described for CP-ABE. Attribute sets are used to an-
notate the ciphertexts and access policies over these attributes are associated
to users’ secret keys. An example application of KP-ABE is Pay-TV system
with package policy (called target broadcast system in [6]). There, a ciphertext

M. Abdalla et al. (Eds.): ACNS 2009, LNCS 5536, pp. 168–185, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Dual-Policy Attribute Based Encryption 169

will associate with an attribute set, such as {“title:24”, “genre:suspense”,
“season:2”, “episode:13” }, while policies over attributes such as “soccer”∨
(“title:24”∧“season:5”) will be associated to TV program package keys that
user receives when subscribes.

A drawback of the above two previous types of ABE is that we must choose
whether attributes will be used to annotate either the ciphertexts, which we call
objects (since they are to be decrypted), or the users’ credentials, which we call
subjects (since users are to decrypt); after setup we must also stick with such
condition throughout the entire application. To see why this is inconvenient,
we give an example in the Pay-TV application above. Since we are using KP-
ABE, the encrypted movie can only be ascribed by objective attributes. Thus,
the broadcast station, which is the encryptor, cannot directly specify subjective
access policy, i.e., who can or cannot decrypt. It might want to do so, since it
may want, for example, to directly include or revoke some user credentials. The
same inconvenience happens also for CP-ABE complimentarily.

In this paper, we present a new type of ABE called Dual-Policy ABE, which
resolves the above problem affirmatively. Basically, it is a conjunctively com-
bined scheme between KP and CP ABE. Dual-Policy ABE works as follows.
An encryptor can associate the data simultaneously with both a set objective
attributes that annotate the data itself and a subjective access policy that states
what kind of receivers will be able to decrypt. On the other hand, a user is given
a private key assigned simultaneously for both a set of subjective attributes that
annotate user’s credentials and a subjective access policy that states what kind
of data she can decrypt. The decryption can be done if and only if the objec-
tive attribute set satisfies the objective policy and the subjective attribute set
satisfies the subjective policy.

Previous Works. ABE was introduced by Sahai and Waters [9] in the context
of a generalization of ID-based encryption (IBE) [2] called Fuzzy IBE, which
is an ABE that allows only single threshold access structures. The first (and
still being state-of-the-art) KP-ABE scheme that allows any monotone access
structures was proposed by Goyal et al. [6], while the first such CP-ABE scheme,
albeit with the security proof in the generic bilinear group model, was proposed
by Bethencourt, Sahai, and Waters [1]. Ostrovsky, Sahai, and Waters [8] then
subsequently extended both to handle also any non-monotone structures. Goyal
et al. [5] presented bounded CP-ABE in the standard model. Waters [10] recently
proposed the first fully expressive CP-ABE in the standard model.

Our Approach. Our DP-ABE scheme is based on an algebraic combination of
CP-ABE by Waters [10] and KP-ABE by Goyal et al. [6]. We note that such a
combination is non-trivial at the first place, since, for example, one may think
of obtaining DP-ABE by using AND-double encryption (even in a secure way)
of KP-ABE and CP-ABE. However, one can easily find out that this mislead
method is insecure due to collusion attacks. Our scheme utilizes more sophisti-
cated techniques for secure integration.

170 N. Attrapadung and H. Imai

Our DP-ABE subsumes both KP-ABE and CP-ABE in the sense that when
neglecting objective attributes our scheme becomes CP-ABE of Waters [10] and
when neglecting subjective attributes it becomes KP-ABE of Goyal et al. [6].

Furthermore, our DP-ABE scheme also realizes the delegation of private keys.
An interesting property is that we can also delegate the key of pure KP-ABE
to a key of DP-ABE, where subjective attribute dimension is added, and the
key of pure CP-ABE to a key of DP-ABE, where objective attribute dimension
is added. Therefore our DP-ABE scheme is extended seamlessly from both KP-
ABE of [6] and CP-ABE of [10].

Another feature of our DP-ABE scheme is that even such a scheme has been
already set-up to be used as DP-ABE, it can also be used as if it were KP-ABE
or CP-ABE on-the-fly by using encryption in what we call single-policy modes.
This flexibility provides great convenience since the same instantiated key can
be used for all three variants of ABE.

More Related Works. Recently, Boneh and Hamburg [3] formalized a very general
framework called Generalized IBE (GIBE) which also includes both of ABE
variants as special cases. DP-ABE also falls into their framework: it can be
casted as a product scheme between KP-ABE and CP-ABE. However, their
instantiated construction for KP-ABE seems to have large key size that is linear
to the access structure collection size, which could be super-polynomially large.

Another similar general framework called predicate encryption was proposed
previously by Katz, Sahai, and Waters [7]. Their system achieves also anonymity
property, where the information about access structures or attribute sets associ-
ated with ciphertexts itself is kept hidden. However, their system tends to handle
only less expressive access structures than systems without anonymity.

Organization of the Paper. We first provide preliminary materials such as the
notion of linear secret sharing and bilinear pairing in Section 2. We then present
the definition and the security notion of Dual-Policy ABE in Section 3. In Sec-
tion 4, we present our concrete DP-ABE scheme called DPABE. In Section 5,
we describe the key delegation of our DP-ABE scheme. In Section 6, we present
both generic and specific enhanced schemes for DP-ABE that admit single-policy
modes. We then conclude in Section 7. The security proofs of the schemes with
key delegation and single-policy modes are given in Appendix A.1,A.2.

2 Preliminaries

We first provide the notion of access structure and linear secret sharing scheme
as follows. Such formalization is recapped from [10].

Definition 1 (Access Structure). Let P = {P1, P2, . . . , Pn} be a set of par-
ties. A collection A ⊆ 2P is monotone if for all B,C we have that if B ∈ A

and B ⊆ C then C ∈ A. An access structure (respectively, monotonic access
structure) is a collection (respectively, monotone collection) A ⊆ 2P \ {∅}.

Dual-Policy Attribute Based Encryption 171

Definition 2 (Linear Secret Sharing Schemes (LSSS)). Let P be a set of
parties. Let M be a matrix of size � × k. Let ρ : {1, . . . , �} → P be a function
that maps a row to a party for labeling. A secret sharing scheme Π for access
structure A over a set of parties P is a linear secret-sharing scheme in Zp and
is represented by (M,ρ) if it consists of two polynomial-time algorithms:
Share(M,ρ): The algorithm takes as input s ∈ Zp which is to be shared. It ran-

domly chooses y2, . . . , yk ∈ Zp and let v = (s, y2, . . . , yk). It outputs Mv as
the vector of � shares. The share λρ(i) := Mi · v belongs to party ρ(i), where
we denote Mi as the ith row in M .

Recon(M,ρ): The algorithm takes as input S ∈ A. Let I = {i| ρ(i) ∈ S}. It out-
puts reconstruction constants {(i, μi)}i∈I which has a linear reconstruction
property:

∑

i∈I μi · λρ(i) = s.

Proposition 1. Let (M,ρ) be a LSSS for access structure A over a set of parties
P, where M is a matrix of size �× k. For all S
∈ A, there exists a polynomial
time algorithm that outputs a vector w = (w1, . . . , wk) ∈ Z

k
p such that w1 = −1

and for all x ∈ S it holds that Mi ·w = 0.

Bilinear Maps. We briefly review facts about bilinear maps. Let G,GT be
multiplicative groups of prime order p. Let g be a generator of G. A bilinear
map is a map e : G × G → GT for which the following hold: (1) e is bilinear;
that is, for all u, v ∈ G, a, b ∈ Z, we have e(ua, vb) = e(u, v)ab. (2) The map is
non-degenerate: e(g, g)
= 1. We say that G is a bilinear group if the group action
in G can be computed efficiently and there exists GT for which the bilinear map
e : G×G → GT is efficiently computable.

Decision BDHE Assumption. Let G be a bilinear group of prime order p.
The Decision q-BDHE (Bilinear Diffie-Hellman Exponent) problem [4] in G is
stated as follows: given a vector

(

g, h, gα, g(α2), . . . , g(αq), g(αq+2), . . . , g(α2q), Z
)

∈ G
2q+1 × GT as input, determine if Z = e(g, h)(α

q+1). We denote gi = g(αi) ∈
G for shorthand. Let yg,α,q = (g1, . . . , gq, gq+2, . . . , g2q). An algorithm A that
outputs b ∈ {0, 1} has advantage ε in solving Decision q-BDHE in G if

|Pr
[

A
(

g, h,yg,α,q, e(gq+1, h)
)

= 0
]

− Pr
[

A
(

g, h,yg,α,q, Z
)

= 0
]

| ≥ ε,

where the probability is over the random choice of generators g, h ∈ G, the
random choice of α ∈ Zp, the random choice of Z ∈ GT , and the randomness of
A. We refer to the distribution on the left as PBDHE and on the right asRBDHE .
We say that the Decision q-BDHE assumption holds in G if no polynomial-time
algorithm has a non-negligible advantage in solving the problem.

3 Definitions

A Dual-policy attribute-based encryption scheme consists of four algorithms.

172 N. Attrapadung and H. Imai

Setup: This is a randomized algorithm that takes no input other than the im-
plicit security parameter. It outputs public key pk and master key msk.

Encrypt(pk,M, (S, ω)): This is a randomized algorithm that takes as input the
public key pk, a messageM, a subjective access structure S, a set of objective
attributes ω. It outputs the ciphertext ct.

KeyGen(pk,msk, (ψ,O)): This is a randomized algorithm that takes as input
the public key pk, the master key msk, a set of subjective attributes ψ, an
objective access structure O. It outputs a private decryption key sk.

Decrypt(pk, (ψ,O), sk, (S, ω), ct): This algorithm takes as input the public key
pk, a decryption key sk and its associated pair of set of subjective attributes
ψ and objective access structure O, a ciphertext ct and its associated pair
of subjective access structure S and set of objective attributes ω. It outputs
the message M if it holds that the set ω of objective attributes satisfies
the objective access structure O and that the set ψ of subjective attributes
satisfies the subjective access structure S, i.e., ω ∈ O and ψ ∈ S.

We require the standard correctness of decryption: if Setup → (pk,msk) then
Decrypt

(

pk, (ψ,O),KeyGen(pk,msk, (ψ,O)), (S, ω),Encrypt(pk,M, (S, ω))
)

→M,

for all M in the message space and all ω ∈ O and ψ ∈ S.
The selective security notion for DP-ABE is defined in the following game.

Init. The adversary declares the target subjective access structure S
� and the

target objective attribute set ω�.

Setup. The challenger runs the Setup algorithm of DP-ABE and gives the public
key pk to the adversary.

Phase 1. The adversary is allowed to issue queries for private keys for pairs of
subjective attribute set and objective access structure (ψ,O) such that ω�
∈ O

or ψ
∈ S
�, i.e., the negated condition of that of a legitimate key which can be

used to decrypt a challenge ciphertext.

Challenge. The adversary submits two equal length messages M0 and M1.
The challenger flips a random bit b and computes the challenge ciphertext ct�

on the target pair (S�, ω�) of subjective access structure and objective attribute
set and then gives ct� to the adversary.

Phase 2. Phase 1 is repeated.

Guess. The adversary outputs a guess b′ of b.
The advantage of an adversary in this game is defined as Pr[b = b′]− 1

2 . Note that
this can be extended to handle chosen-ciphertext attacks by allowing decryption
queries in Phase 1,2.

Definition 3. A DP-ABE scheme is secure in the selective-set security notion
if all polynomial time adversaries have at most a negligible advantage in the
above game.

Dual-Policy Attribute Based Encryption 173

4 Dual-Policy ABE Scheme

Our DP-ABE scheme will be based on a combination of CP-ABE by Waters [10]
and KP-ABE by Goyal et al. [6]. Both subjective and objective access structures
are those which there exist linear secret sharing schemes that realize them. We
denote by (M,ρ) a LSSS scheme that represents a subjective access structure S

and by (N, π) a LSSS scheme that represents a objective access structure O. We
will restrict ρ to be an injective function as in Waters [10] scheme, but we can
extend to an unrestricted scheme, also similarly as in [10].

4.1 Main Construction

Let m be the maximum size of subjective attribute set allowed to be assigned to a
key, i.e., we restrict |ψ| ≤ m. Let n be the maximum size of objective attribute
set allowed to be associated with a ciphertext, i.e., we restrict |ω| ≤ n. Let
�s,max be the maximum number of rows allowed in a subjective access structure
matrix. Let m′ = m + �s,max − 1 and n′ = n − 1. Our main scheme DPABE
is described as follows. Let Us,Uo be the universe of subjective and objective
attributes, respectively.

� Setup: The algorithm first picks a random generator g ∈ G and random
exponent γ, a ∈ Zp. It then defines two functions Fs : Zp → G and Fo : Zp → G

by first randomly choosing h0, . . . , hm′ , t0, . . . , tn′ ∈ G and setting

Fs(x) =
m′
∏

j=0

hxj

j , Fo(x) =
n′
∏

j=0

tx
j

j .

It assigns the public key as pk = (g, e(g, g)γ , ga, h0, . . . , hm′ , t0, . . . , tn′). The
master key is msk = (γ, a).

� Encrypt: Inputs to the encryption algorithm are a LSSS access structure
(M,ρ) for subjective policy and a objective attribute set ω ⊂ Uo. Let M be
�s × ks matrix. The algorithm first randomly chooses s, y2, . . . , yks ∈ Zp and
lets u = (s, y2, . . . , yks). For i = 1 to �s, it calculates λi = Mi · u, where
Mi is the vector corresponding to ith row of M . The ciphertext ct is set to
ct = (C, Ĉ, {Ci}i=1,...,�s , {C′

x}x∈ω), where

C = M· (e(g, g)γ)s, Ĉ = gs,

Ci = gaλiFs(ρ(i))−s, C′
x = Fo(x)s.

� KeyGen: Inputs to the encryption algorithm are a LSSS access structure (N, π)
for objective policy and a subjective attribute set ψ ⊂ Us. Let N be �o × ko

matrix. The algorithm first randomly chooses r, z2 . . . , zko ∈ Zp and lets v =
(γ + ar, z2, . . . , zko). For i = 1 to �o, it calculates σi = Ni · v, where Ni is the
vector corresponding to ith row of N . It also randomly chooses r1, . . . , r�o ∈ Zp.

174 N. Attrapadung and H. Imai

It creates the private decryption key as sk = (K, {Kx}x∈ψ, {K̂i,K
′
i}i=1,...,�o),

where

K = gr, Kx = Fs(x)r ,

K̂i = gσiFo(π(i))−ri , K ′
i = gri .

� Decrypt: The decryption algorithm takes as input the ciphertext ct which
contains a subjective access structure (M,ρ) and a set of objective attributes ω,
and a decryption key sk which contains a set of subjective attributes ψ and an
objective access structure (N, π). Suppose that the set ψ for subjective attribute
satisfies (M,ρ) and that the set ω for objective attribute satisfies (N, π) (so that
the decryption is possible). We then let Is = {i| ρ(i) ∈ ψ} and Io = {i| π(i) ∈ ω}.
It then calculates corresponding sets of reconstruction constants {(i, μi)}i∈Is =
Recon(M,ρ)(ψ) and {(i, νi)}i∈Io = Recon(N,π)(ω). The decryption algorithm then
computes

C ·
∏

i∈Is

(

e(Ci,K) · e(Ĉ,Kρ(i))
)μi

∏

j∈Io

(

e(K̂j , Ĉ) · e(K ′
j , C

′
π(j))

)νj
= M. (1)

Correctness. We verify the correctness of the decryption as follows. Let sk and ct
be defined as in the scheme above. We first note that from linear reconstruction
property of the LSSS schemes, we have

∑

i∈Is

μiλi = s,
∑

i∈Io

νiσi = γ + ar. (2)

The correctness can then be verified as

C ·
∏

i∈Is

(

e(Ci,K) · e(Ĉ,Kρ(i))
)μi

∏

j∈Io

(

e(K̂j, Ĉ) · e(K ′
j, C

′
π(j))

)νj

= C ·

∏

i∈Is

(

e(gaλiFs(ρ(i))−s, gr) · e(gs, Fs(ρ(i))r)
)μi

∏

j∈Io

(

e(gσjFo(π(j))−rj , gs) · e(grj , Fo(π(j))s)
)νj

= C ·
∏

i∈Is
e(gaλi , gr)μi

∏

j∈Io
e(gσj , gs)νj

= C · e(gas, gr)
e(gγ+ar, gs)

= C · 1
e(g, g)γs

= M.

Remark 1. The above decryption algorithm of Eq.(1) was written only for ease of
visualizing. A more efficient computation with the less number of applications of
pairing can be done as follows. Note that Eq.(3) requires only |ω|+2 applications
of pairing, while Eq.(1) requires 2(|ω|+ |ψ|) such applications.

C ·
e
((∏

i∈Is
Cμi

i

)

,K
)

∏

j∈Io
e
(

K ′
j, C

′
π(j)

)νj
· e

⎛

⎝Ĉ,

(
∏

i∈Is
Kμi

ρ(i)

)

(
∏

j∈Io
K̂

νj

j

)

⎞

⎠ = M. (3)

Dual-Policy Attribute Based Encryption 175

4.2 Security Proof

Theorem 1. If an adversary can break the DPABE scheme with advantage ε in
the selective-set security model for DP-ABE with a challenge subjective access
structure matrix of size ��s ×k�

s , then a simulator with advantage ε in solving the
Decision q-BDHE problem can be constructed, where m + k�

s ≤ q.

The proof follows mostly from [6,10] with some non-trivial adaptation mostly in
simulating the private keys.

Proof. Suppose there exists an adversary, A, that has advantage ε in attacking
the DPABE scheme. We build a simulator B that solves the Decision q-BDHE
problem in G. B is given as input a random q-BDHE challenge (g, h,yg,α,q, Z),
where yg,α,q = (g1, . . . , gq, gq+2, . . . , g2q) and Z is either e(gq+1, h) or a random
element in G1 (recall that gj = g(αj)). B proceeds as follows.

Init. The selective-set game begins with A first outputting ((M�, ρ�), ω�), where
(M�, ρ�) is a target subjective access structure in the form of LSSS matrix and
ω� is a target objective attribute set. Let M� be of size ��s ×k�

s , where m+k�
s ≤ q.

Wlog, we can assume that ��s = �s,max and |ω�| = n.

Setup. B chooses random γ′ ∈ Zp and implicitly sets γ = γ′ + αq+1 by letting
e(g, g)γ = e(α, αq)e(g, g)γ′

. It also lets ga = gα.
The simulator then programs the function Fs by defining Fs(x) = gp(x), where

p is a polynomial in Zp[x] of degree m + ��s − 1 which is implicitly defined as
follows. It first chooses k�

s + m + 1 polynomial p0, . . . , pk�
s +m in Zp[x] of degree

m + ��s − 1 in such a way that for x such that there exists an i where x = ρ�(i)
(there are exactly ��s values of such x, since ρ� is injective) we set

pj(x) =

{

M�
i,j for j ∈ [1, k�

s],
0 for j ∈ [k�

s + 1, k�
s + m],

and random for x elsewhere (by randomly picking values at some other m points
for each polynomial) and p0 is chosen completely randomly. Write coefficients in
each polynomial as pj(x) =

∑m+��
s −1

i=0 pj,i · xi. It then conceptually defines

p(x) =
k�

s +m
∑

j=0

pj(x) · αj .

by setting hi =
∏k�

s +m
j=0 g

pj,i

j for i ∈ [0,m+ ��s − 1]. From the definition of Fs in
the scheme, one can verify that

Fs(x) =
m+��

s −1
∏

i=0

hxi

i = gp(x).

The simulator then programs the next function Fo as follows. It randomly
picks a polynomial in Zp[x] of degree n− 1, f ′(x) =

∑n−1
j=0 f ′

jx
j . Next it defines

176 N. Attrapadung and H. Imai

f(x) =
∏

k∈ω�(x − k) =
∑n−1

j=0 fjx
j . We note that fj ’s terms can be computed

completely from ω�. From this we can ensure that f(x) = 0 if and only if x ∈ ω�.
It then lets tj = g

fj
q gf ′

j for j = [0, n− 1]. We thus have

Fo(x) =
n−1∏

j=0

t
(xj)
j = gf(x)

q · gf ′(x).

It then gives the public key pk = (g, e(g, g)γ , g1, h0, . . . , hm′ , t0, . . . , tn′) to A.

Phase 1. The adversary makes requests for private keys corresponding to ob-
jective access structure and subjective attribute set pair ((N, π), ψ) subjected to
condition that ψ does not satisfy M� or ω� does not satisfy N . We distinguish
two cases due to the latter condition.

[Case 1: ω� does not satisfy N].
The simulator randomly chooses r ∈ Zp. It then lets K = gr and for all x ∈ ψ

lets Kx = Fs(x)r as in the construction.
Due to the condition in this case and by Proposition 1, there must exist a

vector a = (a1, . . . , ako) ∈ Z
ko
p such that a1 = −1 and that for all i where

π(i) ∈ ω�, it holds that Ni · a = 0.
The simulator randomly chooses z′2, . . . , z′ko

∈ Zp and lets v′ = (0, z′2, . . . , z′ko
).

It implicitly defines a vector v = −(γ′ + αq+1 + αr)a + v′, which will be used
for creating shares of γ + αr as in the construction.

For i where π(i) ∈ ω�, it randomly chooses ri ∈ Zp and computes K ′
i = gri

and

K̂i = gNi·v′
Fo(π(i))−ri = gNi·vFo(π(i))−ri ,

where the right equality is due to Ni · a = 0.
For i where π(i)
∈ ω�, it randomly chooses r′i ∈ Zp. Observe that

Ni · v = (Ni · a)αq+1 + (rNi · a)α + Ni · (v′ − γ′a)

contains the term αq+1, thus we cannot compute gNi·v as usual. We will use
the term Fo(π(i))−ri to cancel out the unknown value. To do this it implicitly
defines ri = r′i + α(Ni·a)

f(π(i)) . This can be done by setting

K̂i = g

(

rNi·a− (Ni·a)f′(π(i))
f(π(i))

)

1 · gNi·(v′−γ′a) · Fo(π(i))−r′
i ,

K ′
i = gr′

ig
(Ni·a)
f(π(i))
1 = gri ,

which can be computed since π(i)
∈ ω� hence f(π(i))
= 0. The correctness of
K̂i can be verified as:

K̂i = (gq+1)NiagrNi·a
1 gNi·(v′−γ′a) ·

(

(gq+1)−Ni·ag
− (Ni·a)f′(π(i))

f(π(i))
1

)

· Fo(π(i))−r′
i

= gNi·v · Fo(π(i))−
α(Ni·a)
f(π(i)) · Fo(π(i))−r′

i = gNi·v · Fo(π(i))−ri .

Dual-Policy Attribute Based Encryption 177

[Case 2: ω� satisfies N].
In this case, we must have that ψ does not satisfy M�. Therefore, by Propo-

sition 1 and our definition of pj above, there must exist a vector (w1, . . . , wk�
s
) ∈

Z
k�

s
p such that w1 = −1 and for all x ∈ ψ such that there exist i where x = ρ�(i),

we have (p1(x), . . . , pk�
s
(x)) · (w1, . . . , wk�

s
) = 0. Next it also computes one possi-

ble solution of variables wk�
s +1, . . . , wk�

s +m from the system of |ψ| equations: for
all x ∈ ψ,

(p1(x), . . . , pk�
s +m(x)) · (w1, . . . , wk�

s +m) = 0,

which is possible since |ψ| ≤ m. Now we define bx = (p1(x), . . . , pk�
s +m(x)) and

w = (w1, . . . , wk�
s +m). Thus, for all x ∈ ψ we have bx ·w = 0.

The simulator then randomly chooses r′ ∈ Zp and implicitly defining

r = r′ + w1 · αq + w2 · αq−1 + · · ·wk�
s +m · αq−(k�

s +m)+1, (4)

by setting K = gr′∏k�
s +m

k=1 (gq+1−k)wk = gr. From our definition of r, we have

γ + αr = γ′ + αr′ + w2α
q + · · ·+ wk�

s +m · αq−(k�
s +m)+2,

where we observe that the important term αq+1 in γ is canceled out. It randomly
chooses z2 . . . , zko ∈ Zp and implicitly lets v = (γ + αr, z2, . . . , zko) as in the
construction. It also randomly chooses r1, . . . , r�o ∈ Zp. It then computes for
i = 1 to �o, K ′

i = gri and

K̂i =
(

gγ′
gr′
1

k�
s +m
∏

k=2

(gq−k+2)wk
)Ni,1 ·

ko∏

j=2

gNi,jzj · Fo(π(i))−ri ,

where one can verify that K̂i = gNi·v · Fo(π(i))−ri . We can compute this since
gq+1 is not contained. The simulator then creates Kx for all x ∈ ψ as:

Kx = Kp0(x) ·
k�

s +m
∏

j=1

(

gr′
j

∏

k∈[1,k�
s +m]

k
=j

(gq+1−k+j)wk

)pj(x)

,

where one can verify that Kx = Fs(x)r by observing that since for all x ∈ ψ, we
have bx ·w = 0; therefore,

Kx = Kx · (gq+1)bx·w = Kx ·
k�

s +m
∏

j=1

(gq+1−j+j)wjpj(x)

= Kp0(x) ·
k�

s +m
∏

j=1

(

gr′
j

k�
s +m
∏

k=1

(gq+1−k+j)wk

)pj(x)

= (gr)p0(x) ·
k�

s +m
∏

j=1

(gr)αjpj(x) = (gr)p(x) = Fs(x)r .

178 N. Attrapadung and H. Imai

Challenge. The adversary gives two message M0,M1 to the simulator. The
simulator flips a coin b and creates C = Mb ·Z ·e(h, gγ′

), Ĉ = h, and for x ∈ ω�,
C′

x = hf ′(x). Write h = gs for some unknown s. The simulator chooses randomly
y′2, . . . , yk�

s
∈ Zp. Let y′ = (0, y′2, . . . , yk�

s
). It will then implicitly share the secret

s using the vector

v = (s, sα + y′2, sα
2 + y′3, . . . , sα

k�
s −1 + y′k�

s
),

by setting for i = 1, . . . , ��s , Ci = (g1)M�
i ·y′ · (gs)−p0(ρ�(i)).

We claim that if when Z = e(gq+1, h), then the above ciphertext is a valid
challenge. The term C, Ĉ is trivial. For all x ∈ ω′, we have f(x) = 0, hence

C′
x = (gs)f ′(x) = (gf(x)

q gf ′(x))s = Fo(x)s.

For i = 1, . . . , ��s , we have

Ci = (gα)M�
i ·y′

k�
s∏

j=1

gM�
i,jsαj · (gs)−p0(ρ�(i))

k�
s∏

j=1

(gs)−M�
i,jαj

= gαM�
i ·v · (gs)−p(ρ�(i)) = gαM�

i ·vFs(ρ�(i))−s,

which concludes our claim.

Phase 2. B performs exactly as it did in Phase 1.

Guess. A outputs b′ ∈ {0, 1} for the guess of b. If b = b′ then B outputs 1
(meaning Z = e(gq+1, h)). Else, it outputs 0 (meaning Z is random in GT).

We see that if (g, h,yg,α,q, Z) is sampled from RBDHE then Pr[B(g, h,yg,α,q,
Z) = 0] = 1

2 . On the other hand, if (g, h,yg,α,q, Z) is sampled from PBDHE then
we have |Pr[B(g, h,yg,α,q, Z) = 0]− 1

2 | ≥ ε. It follows that B has advantage at
least ε in solving q-BDHE problem in G. This concludes the proof.

4.3 Some Extended Constructions

We note that an unrestricted scheme where ρ is not necessarily injective, a
scheme with CCA security, a scheme based only on Decision Bilinear Diffie-
Hellman (DBDH) assumption can be realized similarly to [10]. We can also
model Fs, Fo as random oracles and achieve better efficiency and simpler proof
as in [10]. In Goyal et al. [6] paper, the KP-ABE for LSSS realizable structures
does not have delegation property; while the one for access-tree structures have.
We can also base our DP-ABE scheme on the access-tree based KP-ABE. Finally,
we can extend the access structures to include non-monotone type ones as in [8].

5 Key Delegation in DP-ABE

We now extend the definition and scheme realizations of DP-ABE to obtain the
delegation of keys. We begin with the definition of Delegate algorithm to be
added on.

Dual-Policy Attribute Based Encryption 179

Delegate: It takes as inputs a private key sk(ψ,O) of subjective attribute set and
objective access structure pair (ψ,O), and another new pair (ψ′,O′) intended
to derive its key. It outputs the key sk(ψ′,O′) if and only if ψ′ ⊆ ψ and O

′ ⊆ O.

In other words, key delegation can be realized when the new subjective at-
tribute set is a subset of the original set and the new objective access structure
is more restrictive than the original one (or either one condition holds while the
other remains the same). In defining this algorithm, we require its correctness
that the private key sk(ψ′,O′) output from Delegate has the same distribution as
the one from KeyGen algorithm.

Recall that Us is the universe of subjective attributes and 2Uo is the full objec-
tive access structure. The delegation will start from the master key, which can
be considered equivalently as the private key for (Us, 2Uo). From that, we can
consider two types of intermediate states: (ψ, 2Uo) which can be considered as a
key in pure CP-ABE scheme and (Us,O) which can be considered as a key in
pure KP-ABE scheme.

Such intermediate keys are indeed already defined generically in any DP-ABE
scheme (by instantiating sk(ψ,O) with O = 2Uo for the first type and ψ = Us for the
second type). However, both 2Uo and Us are of super-polynomial size; therefore,
the size of instantiated keys could be very large for any DP-ABE constructions
(including our basic DPABE construction). To resolve this, we thus newly define
KeyGen for only those two specific types of keys below.

We now describe the delegation scheme for our DPABE scheme as follows. The
security proof is postponed to Section A.1.

5.1 Delegating CP-ABE to DP-ABE

(Us, 2Uo) → (ψ, 2Uo) → (ψ,O)

From the master key msk = (γ, a), it randomly chooses r ∈ Zp and creates a
private key for (ψ, 2Uo) as sk(ψ,2Uo) = (K, {Kx}x∈ψ, K̂) where

K = gr, Kx = Fs(x)r, K̂ = gγ+ar. (5)

Note that this is exactly the key in the CP-ABE of Waters [10]. This means that
one can seamlessly extend Waters’ CP-ABE to ours DP-ABE without having to
setup again. The decryption using this key can be done by Eq.(1) but neglecting
all the terms related to objective attribute set, ω. Thus, Eq.(1) is simplified to

C ·
∏

i∈Is

(

e(Ci,K) · e(Ĉ,Kρ(i))
)μi

e(K̂, Ĉ)
= M.

From the above private key for (ψ, 2Uo), we can further delegate to obtain a
private key for (ψ,O). Let O be represented by a LSSS (N, π) as usual. Let N be
�o × ko matrix. The algorithm randomly chooses r′, z2 . . . , zko , r1, . . . , r�o ∈ Zp.

180 N. Attrapadung and H. Imai

It implicitly lets v = (γ+a(r+r′), z2, . . . , zko). It creates the private key sk(ψ,O) =
(Knew, {Knew

x }x∈ψ, {K̂new
i ,K ′new

i }i=1,...,�o) as

Knew = K · gr′
, Knew

x = Kx · Fs(x)r′
,

K̂new
i = (K̂ · (ga)r′

)Ni,1g
∑ko

j=2 Ni,jzjFo(π(i))−ri , K ′new
i = gri,

which distributes exactly the same as in our main scheme; in particular, one can
verify that K̂new

i = gNi·vFo(π(i))−ri .

5.2 Delegating KP-ABE to DP-ABE

(Us, 2Uo) → (Us,O) → (ψ,O)

From the master key msk = (γ, a), the algorithm will create a private key for
(Us,O) as follows. Let O be represented by a LSSS (N, π) as usual. Let N be
�o × ko matrix. The algorithm randomly chooses z2 . . . , zko , r1, . . . , r�o ∈ Zp. It
lets z = (γ, z2, . . . , zko). It then creates sk(Us,O) = ({K̂i,K

′
i}i=1,...,�o) where

K̂i = gNi·zFo(π(i))−ri , K ′
i = gri , (6)

Note that this is exactly the key in the KP-ABE of Goyal et al. [10]. This means
that one can seamlessly extend such KP-ABE schemes to ours DP-ABE without
having to setup again. The decryption using this key can be done by Eq.(1) but
neglecting all the terms related to subjective attribute set, ψ. Thus, Eq.(1) is
simplified to

C · 1
∏

j∈Io

(

e(K̂j , Ĉ) · e(K ′
j , C

′
π(j))

)νj
= M.

From the above private key for (Us,O), we can further delegate to obtain a
private key for (ψ,O).The algorithm randomly chooses r, z′2, . . . , z

′
ko
, r′1, . . . , r

′
�o
∈

Zp. It creates sk(ψ,O) = (Knew, {Knew
x }x∈ψ, {K̂new

i ,K ′new
i }i=1,...,�o) as

Knew = gr, Knew
x = Fs(x)r ,

K̂new
i = K̂i · (ga)Ni,1rg

∑ko
j=2 Ni,jz′

jFo(π(i))−r′
i , K ′new

i = K ′
i · gr′

i ,

which distributes exactly the same as in our main scheme.

5.3 Delegating in DP-ABE

(ψ,O) → (ψ′,O′)

The delegation from (ψ,O) → (ψ′,O), where ψ′ ⊂ ψ, can be done by delet-
ing the elements Kx where x ∈ ψ \ ψ′ and then re-randomizing the other
remaining elements in a similar way as delegations stated previously. More

Dual-Policy Attribute Based Encryption 181

precisely, from sk(ψ,O) = (K, {Kx}x∈ψ, {K̂i,K
′
i}i=1,...,�o), the algorithm creates

sk(ψ′,O) = (Knew, {Knew
x }x∈ψ′ , {K̂new

i ,K ′new
i }i=1,...,�o) as follows. It first randomly

chooses r′, z′2, . . . , z
′
ko
, r′1, . . . , r

′
�o
∈ Zp and then computes

Knew = K · gr′
, Knew

x = Kx · Fs(x)r′
,

K̂new
i = K̂i · (ga)Ni,1r′

g
∑ko

j=2 Ni,jz′
jFo(π(i))−r′

i , K ′new
i = K ′

i · gr′
i ,

which distributes exactly the same as a key for (ψ′,O).
The delegation from (ψ,O) → (ψ,O′), where O

′ is more restrictive than O,
can be done on the access-tree based DP-ABE in a similar way to the KP-ABE
scheme of Goyal et al. [6], with proper re-randomization.

6 Single-Policy Modes of DP-ABE

In this section, we describe a feature of DP-ABE called encryption in single-
policy modes. Suppose that a DP-ABE scheme has been set-up already. The
single-policy encryption mode allows an encryptor to still encrypt his message as
if it were a KP-ABE or CP-ABE on-the-fly. More specifically, when a message is
encrypted in KP-ABE mode with objective attribute set ω, any user with key for
(ψ,O) where ω ∈ O can decrypt it regardless of whatever subjective attribute set
ψ. Analogously, when a message is encrypted in CP-ABE mode with subjective
policy S, any user with key for (ψ,O) where ψ ∈ S can decrypt it regardless of
whatever objective policy O.

We now describe a simple generic construction and then a more efficient direct
construction as follows.

6.1 Generic Construction

As a first attempt, we describe a trivial approach to generically realize encryption
in single-policy modes as follows. To encrypt in KP-ABE mode with objective
attribute set ω, one just encrypt to (2Us , ω). To encrypt in CP-ABE mode with
subjective policy S, one just encrypt to (S,Uo). However, 2Us and Uo are of super-
polynomial size; therefore, the size of instantiated ciphertext could be very large
for any DP-ABE constructions (including our basic DPABE construction).

To resolve this, we propose a simple generic conversion from any DP-ABE
scheme S to a new DP-ABE scheme S′ that admits efficient single-policy modes
as follows. The idea is to use dummy attributes: one for subjective and one for
objective attribute.

S′.Setup is exactly the same as S.Setup except that it additionally chooses a
special subjective attribute Ts ∈ Us and a special objective attribute To ∈ Uo

and adds them into the public key. Both Ts, To will not be used as attributes in
S′. Next we define

S′.KeyGen(pk,msk, (ψ,O)) = S.KeyGen
(

pk,msk, (ψ ∪ {Ts},O ∪ {{To}})
)

.

S′.Encrypt is done as usual except in the single-policy modes where we define

182 N. Attrapadung and H. Imai

S′.Encrypt(pk,M, (2Us , ω)) = S.Encrypt
(

pk,M, ({{Ts}}, ω)
)

,

S′.Encrypt(pk,M, (S,Uo)) = S.Encrypt
(

pk,M, (S, {To})
)

,

which corresponds to KP-ABE and CP-ABE mode respectively. Decryption can
be done exactly in the same way as usual.

6.2 Direct Construction

When applying the above generic conversion to our proposed DPABE, the re-
sulting scheme seems to contain some redundancy, in particular, involving using
the dummy subjective attribute and the LSSS scheme for the augmented objec-
tive access structure O ∪ {{To}}. In this section, we thus also present a direct
construction DPABE2 by tweaking the main DPABE construction as follows.

DPABE2.Setup is exactly the same as that of DPABE except that it also in-
cludes a special objective attribute To ∈ Uo in the public key. DPABE2.KeyGen
is also exactly the same as before except the following. To generate the key
sk(ψ,O), it also includes two new elements (K̂(o),K

′
(o)) which are computed by

first randomly choosing r̃ ∈ Zp and setting

K̂(o) = gγ+arFo(To)−r̃, K ′
(o) = gr̃. (7)

Hence the key will be sk(ψ,O) = (K, {Kx}x∈ψ, {K̂i,K
′
i}i=1,...,�o , K̂(o),K

′
(o)).

For the intermediate states, the key sk(ψ,2Uo) is unchanged from Eq.(5), while
the key sk(Us,O) is exactly the same as defined in Eq.(6) except that it addition-
ally includes the two above new elements of Eq.(7) albeit setting r = 0. The
delegation can be done as usual with proper re-randomization.

The encryption DPABE2.Encrypt is exactly the same as usual DPABE except in
the single-policy modes which we describe below. To encrypt in KP-ABE mode,
i.e., to encrypt to (2Us , ω), one randomly chooses s ∈ Zp and set the ciphertext
to ct = (C, Ĉ, C0, {C′

x}x∈ω), where

C = M· (e(g, g)γ)s, Ĉ = gs,

C0 = gas, C′
x = Fo(x)s.

The decryption in this case is done by simplifying Eq.(1) to

C · e(C0,K)
∏

j∈Io

(

e(K̂j , Ĉ) · e(K ′
j , C

′
π(j))

)νj
= M.

On the other hand, to encrypt in CP-ABE mode, i.e., to encrypt to (S,Uo), one
just compute as in the usual DPABE.Encrypt but set the ciphertext to ct = (C, Ĉ,
{Ci}i=1,...,�s , C

′), where

C = M· (e(g, g)γ)s, Ĉ = gs,

Ci = gaλiFs(ρ(i))−s, C′ = Fo(To)s.

Dual-Policy Attribute Based Encryption 183

The decryption in this case is done by simplifying Eq.(1) to

C ·
∏

i∈Is

(

e(Ci,K) · e(Ĉ,Kρ(i))
)μi

e(K̂(o), Ĉ) · e(K ′
(o), C

′)
= M.

The security proof of DPABE2 is given in Section A.2.

7 Conclusions

We presented a new variant of Attribute based encryption (ABE) called Dual-
Policy ABE. It is a useful primitive that combines two access control functionali-
ties from Ciphertext-policy ABE and Key-policy ABE. We formalized the notion
of Dual-policy ABE and presented an efficient concrete scheme based on an alge-
braic combination between Goyal et al. KP-ABE [6] and Waters’ CP-ABE [10],
which are the state-of-the-art schemes for ABE of respective kinds. We further
proposed two add-on features: key delegation and single-policy modes of encryp-
tion. Key delegation has an interesting property that it also allows the delegation
from KP-ABE key of Goyal et al. scheme or CP-ABE key of Waters’ scheme to
our DP-ABE. Therefore, one can extend those two existing ABE schemes by
delegating to DP-ABE seamlessly. Single-policy mode feature allows users to
use DP-ABE keys as if it were the vanilla KP-ABE or CP-ABE on-the-fly. This
feature allows great flexibility since one DP-ABE key can be used for all three
types of ABE (KP,CP,DP ABE).

References

1. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-Policy Attribute-Based Encryp-
tion. In: IEEE Symposium on Security and Privacy 2007, pp. 321–334 (2007)

2. Boneh, D., Franklin, M.: Identity-Based Encryption from the Weil Pairing. SIAM
Journal of Computing 32(3), 586–615 (2003); In: Kilian, J. (ed.) CRYPTO 2001.
LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)

3. Boneh, D., Hamburg, M.: Generalized Identity Based and Broadcast Encryption
Schemes. In: Pieprzyk, J. (ed.) Asiacrypt 2008. LNCS, vol. 5350, pp. 455–470.
Springer, Heidelberg (2008)

4. Boneh, D., Gentry, C., Waters, B.: Collusion resistant broadcast encryption with
short ciphertexts and private keys. In: Shoup, V. (ed.) CRYPTO 2005. LNCS,
vol. 3621, pp. 258–275. Springer, Heidelberg (2005)

5. Goyal, V., Jain, A., Pandey, O., Sahai, A.: Bounded ciphertext policy attribute-
based encryption. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M.,
Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008 (Track C), Part I. LNCS,
vol. 5125, pp. 579–591. Springer, Heidelberg (2008)

6. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: ACM Conference on Computer and
Communications Security 2006, pp. 89–98 (2006)

7. Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, poly-
nomial equations, and inner products. In: Smart, N.P. (ed.) EUROCRYPT 2008.
LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008)

184 N. Attrapadung and H. Imai

8. Ostrovsky, R., Sahai, A., Waters, B.: Attribute-Based Encryption with Non-
Monotonic Access Structures. In: ACM Conference on Computer and Commu-
nications Security 2007, pp. 195–203 (2007)

9. Sahai, A., Waters, B.: Fuzzy Identity-Based Encryption. In: Cramer, R. (ed.) EU-
ROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)

10. Waters, B.: Ciphertext-Policy Attribute-Based Encryption: An Expressive, Effi-
cient, and Provably Secure Realization. Cryptology ePrint archive: report 2008/290

A Security Proofs of Schemes with Extended Features

A.1 Security Proof of the Scheme with Delegation

In this section, we describe the security proof of the scheme with delegation given
in Section 5. The only difference from our basic construction in Section 4.1 is
that we newly re-define the private key sk(ψ,2Uo), sk(Us,O), for the intermediate
states. According to the security definition, the adversary can also query for the
key sk(Us,O) if ω� does not satisfy O and the key sk(ψ,2Uo) if ψ does not satisfy
S

�. Here we recall that (S�, ω�) is the target subjective access structure and
objective attribute set pair. Therefore, it suffices to show how to simulate these
two types of keys in Phase 1 (and 2), in addition to the proof of the main scheme
(cf. Section 4.2).

For the first type, the simulator B answers the query for sk(Us,O) such that ω�

does not satisfy O by simulating the private key elements in exactly the same way
as in the Case 1 in Phase 1 in the proof of the main scheme, albeit setting r = 0
and neglecting the term K,Kx. The resulting simulated key ({K̂i,K

′
i}i=1,...,�o) is

distributed as the key sk(Us,O) in the real scheme (cf. Eq.(6)). This holds thanks
to the correctness of simulation for sk(ψ,O) in the proof of our main scheme and
the fact that sk(Us,O) as defined in Eq.(6) simplifies sk(ψ,O) as defined in the main
scheme with r being set to r = 0.

For the second type, the simulator B answers the query for sk(ψ,2Uo) such that
ψ does not satisfy S

� as follows. Since the elements (K, {Kx}x∈ψ) in both the key
sk(ψ,2Uo) defined in Eq.(5) and the key sk(ψ,O) of the main scheme are the same,
we just simulate (K, {Kx}x∈ψ) exactly as in the Case 2 in Phase 1 in the proof
of the main scheme. It then computes K̂ as K̂ = gγ′

gr′
1

∏k�
s +m

k=2 (gq−k+2)wk ,which
can be verified that K̂ = gγ+αr as required (recall that in the simulation, r is
implicitly defined in Eq.(4) and a = α).

Remark 2. In the security proof of the main scheme in Section 4.2, we could
have done a simpler simulation if the key delegation were already defined there.
For Case 1, it suffices to compute the key sk(Us,O) and then delegate to sk(ψ,O)

to answer the query. For Case 2, it suffices to compute the key sk(ψ,2Uo) and
then delegate to sk(ψ,O). However, we believe that separating the key delegation
feature from the basic scheme makes its description easier to follow.

A.2 Security Proof of the Scheme with Single-Policy Modes

In this section, we give a sketch of the security proof for this tweaked scheme
DPABE2 given in Section 6.2. Note that the only differences from the main proof

Dual-Policy Attribute Based Encryption 185

are as follows. First we must also consider two new possible target pair types of
(2Us , ω) and (S,Uo) for the challenge ciphertext. Second, we must also simulate
the two new private key elements for each query.

We first consider the normal case where the adversary announces the target
pair of type (S�, ω�) in the Init phase. In this case, the proof follows exactly the
main proof except that the simulator also simulates additional key components.
For Case 1 of Phase 1 in the main proof, it computes the additional keys as

K̂(o) = gγ′
gαrg

−f ′(To)/f(To)
1 Fo(To)−r̃′

, K ′
(o) = gr̃′

g
1/f(To)
1 , (8)

where it randomly chooses r̃′ ∈ Zp. It can be verified that this distributes as in
Eq.(7) with r̃ = r̃′ + 1/f(To). For Case 2, the simulator can compute gγ+αr and
thus can generate the elements of Eq.(7) above.

Next, we consider the case where the adversary announces the target pair
of type (2Us , ω�) in the Init phase, i.e., the challenge ciphertext will be in KP-
ABE mode. In Setup phase, the simulator chooses a ∈ Zp and h0, . . . , hm′ ∈
G randomly (in particular, instead of setting a = α as previously done). The
remaining elements of the public key are simulated as in the main proof. In Phase
1, it suffices to simulate the key for (Us,O) such that ω� does not satisfy O. This
can be done in exactly the same way as before (cf. Section A.1, first type), albeit
it also includes two new elements as in Eq.(8) with r = 0. In Challenge phase,
the term C, Ĉ, C′

x can be simulated as usual. In addition, it just sets C0 = Ĉa.
The rest follows from the main proof.

Finally, we consider the case where the adversary announces the target pair of
type (S�,Uo) in the Init phase, i.e., the challenge ciphertext will be in CP-ABE
mode. In this case, the proof follows exactly the main proof that is instantiated
with the selective target pair (S�, {To}). Note also that it suffices to simulate the
key for sk(ψ,2Uo) such that ψ does not satisfy S

�. Such a key does not include the
two new elements of Eq.(7).

Construction of Threshold Public-Key

Encryptions
through Tag-Based Encryptions

Seiko Arita and Koji Tsurudome

Institute of Information Security,
Yokohama, Kanagawa, Japan

{arita,mgs068101}@iisec.ac.jp

Abstract. In this paper, we propose a notion of threshold tag-based
encryption schemes that simplifies the notion of threshold identity-based
encryption schemes, and we show a conversion from any stag-CCA-
secure threshold tag-based encryption schemes to CCA-secure thresh-
old public-key encryption schemes. Moreover, we give two concrete con-
structions of stag-CCA-secure threshold tag-based encryption schemes,
under the decisional bilinear Diffie-Hellman assumption and the deci-
sional linear assumption, respectively. Thus, we obtain two concrete con-
structions of threshold public-key encryption schemes, both of which are
non-interactive, robust and can be proved secure without random oracle
model. Our threshold public-key encryption schemes are conceptually
more simple and shown to be more efficient than those of Boneh, Boyen
and Halevi.

Keywords: threshold public-key encryption schemes, tag-based en-
cryption schemes, the decisional bilinear Diffie-Hellman assumption, the
decisional linear assumption.

1 Introduction

A threshold public-key encryption scheme is a public-key encryption scheme
where a private key is distributed and shared among several decryption servers
and some number of those decryption servers must cooperate to decrypt any ci-
phertext [2,4,9]. In a model of k-out-of-n threshold public-key encryption scheme,
an entity, called combiner, has a ciphertext C that it wishes to decrypt. The com-
biner sends C to the decryption servers, and receives partial decryption shares
from at least k out of the n decryption servers. It then combines these k partial
decryptions into a complete decryption of C. Ideally, it is desirable that there is
no other interaction in the system, namely the servers need not talk to each other
during decryption. Such threshold systems are called non-interactive. Often one
requires that threshold decryption be robust, namely if threshold decryption of
a valid ciphertext fails, the combiner can identify the decryption servers that
supplied invalid partial decryptions.

M. Abdalla et al. (Eds.): ACNS 2009, LNCS 5536, pp. 186–200, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Construction of Threshold Public-Key Encryptions 187

In 2006, Boneh, Boyen and Halevi [2] gave a construction of CCA-secure
threshold public-key encryption scheme by converting a sID-CPA-secure thresh-
old identity-based encryption scheme into it, which in turn is constructed based
on the decisional bilinear Diffie-Hellman assumption. Their CCA-secure thresh-
old public-key encryption scheme is the first one that is non-interactive, robust
and can be proved secure without random oracle model.

On the other hand, in 2006, Kiltz [6] proposed a notion of tag-based encryp-
tion scheme through simplifying the notion of identity-based encryption schemes
[3,7], and gave a transformation from any stag-CCA-secure tag-based encryption
schemes to CCA-secure public-key encryption schemes.

In this paper, we propose a notion of threshold tag-based encryption schemes
that simplifies the notion of threshold identity-based encryption schemes in a
similar way as [6], and then we show a conversion from any stag-CCA-secure
threshold tag-based encryption schemes to CCA-secure threshold public-key en-
cryption schemes, that is an adaption of the CHK transform [5] to the setting of
threshold encryption. Moreover, we give two concrete constructions of stag-CCA-
secure threshold tag-based encryption schemes, that are non-interactive, robust
and can be proved without random oracle model, under the decisional bilinear
Diffie-Hellman assumption and the decisional linear assumption, respectively.
Thus, we obtain two concrete constructions of threshold public-key encryption
schemes, through applying the conversion to the two threshold tag-based en-
cryption schemes, both of which are non-interactive, robust and can be proved
secure without random oracle model.

In the threshold identity-based encryption scheme of [2], a decryption share
is regarded as a ciphertext of private key share corresponding to decrypter’s ID.
But in our threshold tag-based encryption scheme, a decryption share can be
regarded naturally as a partial decrypted ciphertext. As a result, our threshold
public-key encryption schemes, obtained through the conversion, are conceptu-
ally more simple and shown to be more efficient than those of [2].

2 Threshold Tag-Based Encryptions and Their
Conversion to Threshold Public-Key Encryptions

In this section, after reviewing the definition of threshold public-key encryptions
and their security following [2], we propose a notion of threshold tag-based en-
cryptions and show a conversion from any stag-CCA-secure threshold tag-based
encryption schemes to CCA-secure threshold public-key encryption schemes.

2.1 Threshold Public-Key Encryption

Scheme. A threshold public-key encryption scheme TPKE consists of five algo-
rithms:

TPKE = (Setup,Encrypt, ShareDec, ShareVf,Combine).

Setup takes as input the number of decryption servers n, a threshold k (1 ≤ k ≤
n), and a security parameter Λ. It outputs a triple (PK, V K, SK) where PK

188 S. Arita and K. Tsurudome

is a public key, V K is a verification key and SK = (SK1, · · · , SKn) is a vector
of n private key shares. Encrypt takes as input a public key PK and a message
M , and it outputs a ciphertext C. ShareDec takes as input a public key PK, a
ciphertext C, and the i-th private key share (i, SKi). It outputs a decryption
share μi of the encrypted message, or a special symbol (i,⊥). ShareVf takes as
input a public key PK, verification key V K, ciphertext C and a decryption
share μi. It outputs valid or invalid. When the output is valid, we say that μi is
a valid decryption share of C. Combine takes as input PK, V K, ciphertext C,
and k decryption shares {μ1, · · · , μk}. It outputs a message M or ⊥.

For any output (PK, V K, SK) of Setup(n, k, Λ), we require the two consis-
tency properties:

1. For any valid ciphertext C, if μi ← ShareDec(PK, i, SKi, C), then
ShareVf(PK, V K,C, μi) is valid.

2. If C is the output of Encrypt(PK,M) and S = {μ1, · · · , μk} is a set of
decryption shares μi ← ShareDec(PK, i, SKi, C) for k distinct private key
shares in SK, then Combine(PK, V K,C, S) = M .

Security. Security of threshold public-key encryption scheme TPKE is defined in
terms of chosen ciphertext security and decryption consistency. Chosen cipher-
text security is defined using the following game between a challenger and an
adversary. Both are given n, k, Λ as input.

1. Init. The adversary outputs a set S ⊂ {1, · · · , n} of k− 1 decryption servers
to corrupt.

2. Setup. The challenger runs Setup(n, k, Λ) to obtain a random instance
(PK, V K, SK). It gives the adversary PK, V K, and all (j, SKj) for j ∈ S.

3. Query phase 1. The adversary adaptively issues decryption queries (C, i)
where C ∈ {0, 1}∗ and i ∈ {1, · · · , n}. The challenger responds with
ShareDec(PK, i, SKi, C).

4. Challenge. The adversary outputs two messages M0,M1 of equal length.
The challenger picks a random b ∈ {0, 1} and lets C∗ ← Encrypt(PK,Mb).
It gives C∗ to the adversary.

5. Query phase 2. The adversary issues further decryption queries (C, i), under
the constraint that C
= C∗. The challenger responds as in Query Phase 1.

6. Guess. The adversary outputs its guess b′ ∈ {0, 1} for b and wins the game
if b = b′.

We define an advantage of adversary A for threshold public-key encryption
scheme TPKE with respect to chosen ciphertext security as Advcca

A,TPKE,n,k(Λ) =
|Pr[b = b′]− 1/2|.

Decryption consistency is defined using the following game. The game starts
with the Init, Setup, and Query phase 1 steps as in the game above. The ad-
versary then outputs a ciphertext C and two sets of decryption shares S =
{μ1, · · · , μk} and S′ = {μ′

1, · · · , μ′
k} each of size k. The adversary wins if:

Construction of Threshold Public-Key Encryptions 189

– The shares in S and S′ are valid decryption shares for C under V K.
– S and S′ each contain decryption shares from k distinct servers.
– Combine(PK, V K,C, S)
= Combine(PK, V K,C, S′), with either side not

equal to ⊥.

We let Advdc
A,TPKE,n,k(Λ) denote the probability that the adversary A wins this

game.

Definition 1. We say that a threshold public-key encryption scheme TPKE is
CCA-secure if for any n, k (1 ≤ k ≤ n) and any probabilistic polynomial time
algorithm A, both of the functions Advcca

A,TPKE,n,k(Λ) and Advdc
A,TPKE,n,k(Λ) are

negligible.

2.2 Threshold Tag-Based Encryption

A notion of threshold tag-based encryptions is obtained by simplifying threshold
identity-based encryption schemes in a similar way as [6] in the non-threshold
setting. Threshold tag-based encryptions simply needs a tag as input in addition
to ordinary inputs of threshold encryptions.

Scheme. A threshold tag-based encryption scheme TTBE consists of five algo-
rithms:

TTBE = (Setup,Encrypt, ShareDec, ShareVf,Combine).

Setup takes as input the number of decryption servers n, a threshold k (1 ≤
k ≤ n) and a security parameter Λ. It outputs a triple (PK, V K, SK) where
PK is a public key, VK is a verification key, and SK = (SK1, · · · , SKn) is a
vector of n private key shares. Encrypt takes as input a public key PK, a tag
t and a message M , and it outputs a ciphertext C. ShareDec takes as input a
public key PK, a ciphertext C, a tag t, and a i-th private key share (i, SKi).
It outputs a decryption share μi of the encrypted message, or a special symbol
(i,⊥). ShareVf takes as input PK, V K, a ciphertext C, a tag t and a decryption
share μi. It outputs valid or invalid. When the output is valid, we say that μi is
a valid decryption share of C. Combine takes as input PK, V K, a ciphertext C,
a tag t and k decryption shares {μ1, · · · , μk}. It outputs a message M or ⊥.

As in the threshold public-key encryption scheme, we require the following
two consistency properties. Let (PK, V K, SK) be the output of Setup(n, k, Λ).

1. For any tuple (C, t) of a valid ciphertext and a tag, if μi ← ShareDec
(PK, i, SKi, C, t), then ShareVf(PK, V K,C, t, μi) = valid.

2. If C is the output of Encrypt(PK, t,M) and S = {μ1, · · · , μk} is a set of
decryption shares μi ← ShareDec(PK, i, SKi, C, t) for k distinct private key
shares in SK, then Combine(PK, V K,C, t, S) = M .

Security. Security of threshold tag-based encryption scheme TTBE is defined in
terms of stag-chosen-ciphertext security and stag decryption consistency. Stag
chosen ciphertext security is defined using the following game between a chal-
lenger and an adversary. Both are given n, k, Λ as input.

190 S. Arita and K. Tsurudome

1. Init. The adversary outputs a target tag t∗ that it wants to attack and a set
of k − 1 decryption servers S ⊂ {1, · · · , n} that it wants to corrupt.

2. Setup. The challenger runs Setup(n, k, Λ) to obtain a random instance
(PK, V K, SK). It gives the adversary PK, V K, and all (j, SKj) for j ∈ S.

3. Query phase 1. The adversary adaptively issues decryption share queries
((C, t), i) with i ∈ {1, · · · , n}, under the constraint that t
= t∗. The chal-
lenger responds with ShareDec(PK, i, SKi, C, t).

4. Challenge. The adversary outputs two messages M0,M1 of equal length. The
challenger picks a random b ∈ {0, 1} and lets C∗ ← Encrypt(PK, t∗,Mb). It
gives C∗ to the adversary.

5. Query phase 2. The adversary adaptively issues decryption share queries
((C, t), i) with i ∈ {1, · · · , n}, under the constraint that t
=t∗. The challenger
responds as in phase 1.

6. Guess. The adversary outputs its guess b′ ∈ {0, 1} for b and wins the game
if b = b′.

We define an advantage of adversary A for threshold tag-based encryption
scheme TTBE with respect to stag-chosen-ciphertext security as Advstag−cca

A,TTBE,n,k(Λ)
= |Pr[b = b′]− 1/2|.

Stag decryption consistency is defined using the following game. The game
starts with the Init, Setup and Query phase 1 steps as in the game above. The
adversary then outputs a tag t, a ciphertext C and two sets of decryption shares
S = {μ1, · · · , μk} and S′ = {μ′

1, · · · , μ′
k} each of size k. The adversary wins if:

1. The shares in S and S′ are valid decryption shares for (C, t) under V K.
2. S and S′ each contain decryption shares from k distinct servers.
3. Combine(PK, V K,C, t, S)
= Combine(PK, V K,C, t, S′), with either side not

equal to ⊥.

We let Advstag−dc
A,TTBE,n,k(Λ) denote the probability that the adversary A wins

this game.

Definition 2. We say that a threshold tag-based encryption scheme TTBE is
stag-CCA-secure if for any n, k (1 ≤ k ≤ n) and any probabilistic polynomial
time algorithm A, both of the functions Advstag−cca

A,TTBE,n,k(Λ) and Advstag−dc
A,TTBE,n,k(Λ)

are negligible.

2.3 Conversion from Threshold Tag-Based Encryption Schemes
into Threshold Public-Key Encryption Schemes

In this section we show a conversion from any stag-CCA-secure threshold tag-
based encryption scheme to CCA-secure threshold public-key encryption scheme.
The conversion is a direct adjustment of the conversions of [5,6] into the threshold
setting.

We convert a given threshold tag-based encryption scheme

TTBE = (Setupttbe,Encryptttbe, ShareDecttbe, ShareVfttbe,Combinettbe)

into a threshold public-key encryption scheme

Construction of Threshold Public-Key Encryptions 191

TPKE = TT2TP(TTBE, S) = (Setuptpke, Encrypttpke, ShareDectpke, ShareVftpke, Combinetpke)

using a strong one-time signature S = (KG, SGN,VF) as in Figure 1.

Setuptpke(n, k, Λ) :
(PK, V K, SK) ← Setupttbe(n, k, Λ), output (PK, V K, SK).

Encrypttpke(PK, M) :
(sigk, verk) ← KG(Λ), Cttbe ← Encryptttbe(PK, verk,M), σ ← SGN(sigk, Cttbe);
output Ctpke = (Cttbe, verk, σ).

ShareDectpke(PK, i, SKi, Ctpke = (Cttbe, verk, σ)) :
If VF(verk, Cttbe, σ) = invalid then output μi = (i,⊥),
else output ShareDecttbe(PK, i, SKi, Cttbe, verk).

ShareVftpke(PK, V K, Ctpke = (Cttbe, verk, σ), μi) :
If VF(verk, Cttbe, σ) = invalid then output invalid,
else output ShareVfttbe(PK, V K, Cttbe, verk, μi).

Combinetpke(PK, V K, Ctpke = (Cttbe, verk, σ), {μ1, · · · , μk}) :
If ∃i, μi = (i,⊥) or ShareVftpke(PK, V K, Ctpke, μi) = invalid then output ⊥,
else output Combinettbe(PK, V K, Cttbe, verk, {μ1, · · · , μk}).

Fig. 1. TT2TP: Conversion from threshold tag-based encryption schemes to threshold
public-key encryption schemes

Theorem 1. If a threshold tag-based encryption scheme TTBE is stag-CCA-
secure and S is a strong one-time signature, then the threshold public-key en-
cryption scheme TPKE = TT2TP(TTBE, S) is CCA-secure.

More precisely, for an arbitrary efficient adversary A against chosen cipher-
text security of TPKE, there exists an efficient algorithm B against stag-chosen-
ciphertext security of the underlying TTBE and a forger F of the underlying S
that satisfy

Advcca
A,TPKE,n,k(Λ) ≤ Advstag−cca

B,TTBE,n,k(Λ) + Advot−cma
F ,S (Λ).

(Here, Advot−cma
F ,S denotes the advantage of forger F against one-time signature

S in the usual game of strong chosen-message attack with at most one signing
query.) Similarly, for an arbitrary efficient adversary A′ against decryption con-
sistency of TPKE, there exists an efficient algorithm B′ against stag decryption
consistency of the underlying TTBE and a forger F ′ of the underlying S that
satisfy

Advdc
A′,TPKE,n,k(Λ) ≤ Advstag−dc

B′,TTBE,n,k(Λ) + Advot−cma
F ′,S (Λ).

Proof. First, we consider chosen ciphertext security of TPKE. Let A be an ar-
bitrary efficient adversary against chosen ciphertext security of TPKE. Using
adversary A, we build an algorithm B that attacks stag-chosen-ciphertext secu-
rity of the underlying TTBE.

192 S. Arita and K. Tsurudome

Algorithm B proceeds as follows:

1. Initialization. Given input (n, k, Λ) algorithm B runs A on the same input to
obtain a list S (⊂ {1, · · · , n}) of the k − 1 servers that A wishes to corrupt.
Next, B runs KG on Λ to obtain a signing key sigk∗ and a verification key
verk∗. It outputs the set S and the target tag t∗ = verk∗ to the TTBE
challenger.

2. Setup. The TTBE challenger runs Setupttbe(n, k, Λ) to obtain (PK, V K, SK).
It givesB the valuesPK, V K, and all (j, SKj) for j ∈ S. AlgorithmB forwards
these values to A.

3. Query Phase 1. AdversaryA adaptively issues decryption queries of the form
(Ctpke, i) where Ctpke = (Cttbe, verk, σ) and i ∈ {1, · · · , n}. For each such a
query (Ctpke, i), B proceeds as follows:
(a) If VF(verk, Cttbe, σ) = invalid then B gives μi = (i,⊥) to A.
(b) Else if verk = t∗ then B outputs b $← {0, 1} and aborts.
(c) Else B issues a decryption query ((Cttbe, verk), i) to own TTBE decryp-

tion oracle and obtains a decryption share μi in return. It gives the
decryption share μi to A.

4. Challenge. Adversary A outputs two equal-length messages M0 and M1. B
forwards these M0 and M1 to its own TTBE challenger. The TTBE chal-
lenger responds with the encryption C∗

ttbe of Mb under t∗ for some b ∈ {0, 1}.
B then runs SGN on (sigk∗, C∗

ttbe) to obtain a signature σ∗, and it gives
C∗

tpke = (C∗
ttbe, t

∗, σ∗) to A as challenge ciphertext.
5. Query Phase 2. A continues to issue decryption queries (Ctpke (
= C∗

tpke), i).
B responds as in Query Phase 1.

6. Guess. Eventually, A outputs its guess b′ ∈ {0, 1} for b. B forwards b′ to the
TTBE challenger and wins the game if b = b′.

This completes the description of algorithm B.
Let Abort be the event that B aborts in Query Phase 1 or 2 during the simu-

lation. As easily seen, as long as Abort does not happen, B’s simulation of TPKE
challenger is perfect. Therefore, we have |Advstag−cca

B,TTBE,n,k(Λ)−Advcca
A,TPKE,n,k(Λ)| <

Pr[Abort]. By definition, Abort means A’s forgery of valid signature σ under
verification key verk∗, and it leads to a forger F of S satisfying Pr[Abort] ≤
Advot−cma

F ,S . Thus, Advcca
A,TPKE,n,k(Λ) ≤ Advstag−cca

B,TTBE,n,k(Λ) + Advot−cma
F ,S (Λ).

Second, we see decryption consistency of TPKE. Let A′ be an arbitrary effi-
cient adversary against decryption consistency of TPKE. Using adversary A′, we
build an algorithm B′ that attacks stag decryption consistency of the underlying
TTBE.

Algorithm B′ proceeds exactly as algorithm B, until A′ outputs the challenge
(ˆCtpke = (ˆCttbe, ˆverk, σ̂), S, S′), and then B′ outputs (ˆverk, ˆCttbe, S, S

′) after
verifying validity of σ̂ under ˆverk.

Just as in the case of chosen ciphertext security, let Abort be the event that B′

aborts in Query Phase 1 during the simulation. Then, as above, |Advstag−dc
B′,TPKE,n,k(Λ)

− Advdc
A′,TTBE,n,k(Λ)| < Pr[Abort]. Again, Abort leads to a forger F ′ of S, and we

have Advdc
A′,TPKE,n,k(Λ) ≤ Advstag−dc

B′,TTBE,n,k(Λ) + Advot−cma
F ′,S (Λ). �

Construction of Threshold Public-Key Encryptions 193

3 Construction of Threshold Tag-Based Encryption
Schemes

In this section, we construct two concrete stag-CCA-secure threshold tag-based
encryption schemes based on the decisional bilinear Diffie-Hellman assumption
and on the decisional linear assumption, respectively.

3.1 Preliminaries

We recall necessary primitives around bilinear maps.

Bilinear Maps. Let G be a group of prime order p with generator g. Let G1 be
another group of prime order p. A bilinear map e : G × G → G1 is a map with
the properties:

1. For all u, v ∈ G and a, b ∈ Zp, it holds e(ua, vb) = e(u, v)ab.
2. e(g, g)
= 1.
3. For all u, v, e(u, v) is efficiently computable.

Decisional Bilinear Diffie-Hellman Assumption. If a bilinear Diffie-Hellman tuple
(g, ga, gb, gc, e(g, g)abc) is indistinguishable from a bilinear random tuple
(g, ga, gb, gc, e(g, g)d), we say the decisional bilinear Diffie-Hellman assumption
holds. More formally, as for algorithm GDBDH that takes a security parameter Λ
and outputs order p, generator g, and descriptions of groups G and G1 with bilinear
map e : G×G → G1, the following two experiments are defined. Expbdh-1

GDBDH ,A on
input Λ generates param = (p, g,G,G1, e) by GDBDH(Λ) and chooses three ran-
dom elements a, b, c from Zp. Then it invokesA on (param, g, ga, gb, gc, e(g, g)abc)
and returns its output. On a while, Expbdh-2

GDBDH ,A chooses four random elements
a, b, c, d from Zp and returns A(param, g, ga, gb, gc, e(g, g)d).

We say that the decisional bilinearDiffie-Hellman (DBDH)assumptionholds for

GDBDH if for any probabilistic polynomial time algorithmA, Advdbdh
A,GDBDH

(Λ)
def
=

∣
∣Pr[Expbdh-1

GDBDH ,A(Λ) = 1] − Pr[Expbdh-2
GDBDH ,A(Λ) = 1]

∣
∣ is a negligible function

of Λ.

Decisional Linear Assumption. If a linear tuple (g1, g2, z, g
r1
1 , gr2

2 , zr1+r2) is in-
distinguishable from a random tuple (g1, g2, z, g

r1
1 , gr2

2 , zs), we say the decisional
linear assumption holds. More formally, as for algorithm GDLIN that takes
a security parameter Λ and outputs order p, generator g, and descriptions of
groups G and G1 with bilinear map e : G × G → G1, the following two exper-
iments are defined. Explin-1

GDLIN ,A on input Λ generates param = (p, g,G,G1, e)
by GDLIN (Λ) and chooses four random elements u, v, r1, r2 from Zp. Then it
invokes A on (param, g, gu, gv, gr1, gur2 , gv(r1+r2)) and returns its output. On
a while, Explin-2

GDLIN ,A chooses five random elements u, v, r1, r2, s from Zp and
returns A(param, g, gu, gv, gr1 , gur2 , gvs).

194 S. Arita and K. Tsurudome

We say that the decisional linear (DLIN) assumption holds for GDLIN if for

any probabilistic polynomial time algorithm A, Advdlin
A,GDLIN

(Λ)
def
=

∣
∣Pr[Explin-1

GDLIN ,A(Λ) = 1] − Pr[Explin-2
GDLIN ,A(Λ) = 1]

∣
∣ is a negligible function

of Λ.

3.2 A Construction TTBE1 of Threshold Tag-Based Encryption
Scheme Based on the DBDH Assumption

Our first construction TTBE1 of threshold tag-based encryption scheme is ob-
tained through a simplification and “thresholding” of the identity-based encryp-
tion scheme of Boneh and Boyen [1].

As easily seen, the identity-based encryption scheme of [1] can be simplified into
a following tag-based encryption scheme. A public-key is randomly selected ele-
ments g1(= gx), g2, h1 on a bilinear group G (with generator g). The correspond-
ing secret key is x. A message M is encrypted with respect to tag t as (C,D,E) =
(gr, (gt

1h1)r,M · e(g1, g2)r). Ciphertext (C,D,E) is decrypted with respect to tag
t as M = E/e(C, g2)x if it holds e(C, gt

1h1) = e(D, g), otherwise M = ⊥.
In the threshold identity-based encryption scheme of [2], which is also based on

the identity-based scheme of [1], a decryption share is regarded as a ciphertext
of private key share corresponding to decrypter’s ID. On a while, in order to
convert the above tag-based encryption scheme into a threshold version, thanks
to the simple setting of tag-based encryption scheme, we can naturally distribute
the secret key x into shares {f(i)}i using Shamir’s secret sharing scheme [8] and
make the i-th decryption share to be (Cf(i), E) as the usual threshold version
of ElGamal encryption. More precisely TTBE1 is described in Figure 2.

Setup(n, k, Λ):
(p, g,G, G1, e) ← GDBDH(Λ);

x
$← Zp, f

$← Zp[X] satisfying deg(f) = k − 1 and f(0) = x;

y, z
$← Zp, g1 ← gx, g2 ← gy, h1 ← gz;

PK = (p,G, G1, e, g, g1, g2, h1), SK = (f(1), · · · , f(n)), V K = (gf(1), · · · , gf(n));
return (PK, V K, SK).

Encrypt(PK, t,M):

r
$← Zp, C ← gr, D ← (g1

th1)
r, E ← M · e(g1, g2)

r, return Ctbe = (C, D, E).

ShareDec(PK, i, SKi = f(i), Ctbe = (C, D, ·), t):
If e(C, g1

th1) �= e(D, g) then return μi = (i,⊥) else return μi = (i, Cf(i)).

ShareVf(PK, V K = (gf(i)), Ctbe = (C, ·, ·), t, μi = (i, Ci)):

If e(Ci, g) �= e(C, gf(i)) then return invalid else return valid.

Combine(PK,V K, Ctbe = (·, ·, E), t, {μ1 = (1, C1), · · · , μk = (k, Ck)}):
If ∃i, ShareVf(PK, V Ki, Ctbe, t, μi) = invalid then return ⊥,

else return E/e(
∏k

i=1 Cλi
i , g2) using Lagrange coefficients λ1, · · · , λk

satisfying f(0) =
∑k

i=1 λif(i).

Fig. 2. Threshold Tag-Based Encryption Scheme TTBE1

Construction of Threshold Public-Key Encryptions 195

Theorem 2. Under the DBDH assumption for GDBDH , the threshold tag-based
encryption scheme TTBE1 is stag-CCA-secure.

More precisely, for an arbitrary adversary A against stag-chosen-ciphertext
security of TTBE1 that runs in time at most τ and makes at most Q decryption
queries, there exists an algorithm B for the DBDH problem on GDBDH that runs
in time at most τ plus the time to perform O(Q+ n) exponentiations and O(Q)
pairing computations, and satisfies

Advstag−cca
A,TTBE1,n,k(Λ) = Advdbdh

B,GDBDH
(Λ).

For an arbitrary adversary A′ against stag decryption consistency of TTBE1, it
holds that

Advstag−dc
A′,TTBE1,n,k(Λ) = 0.

Proof. First, we consider stag-chosen-ciphertext security of TTBE1. Let A be an
arbitrary adversary that runs in time at most τ , makes at most Q decryption
queries, and has advantage Advstag−cca

A,TTBE1,n,k(Λ) in attacking TTBE1 in the game
of stag-chosen-ciphertext security. Using the adversary A, we build an algorithm
B that solves the DBDH problem on GDBDH(Λ).

Given (Λ, p,G,G1, e, g, g
a, gb, gc,W) as input, algorithm B proceeds as follows.

(The aim of B is to distinguish two cases between W = e(g, g)abc or random.)

1. Initialization. Algorithm B invokes adversaryA on input (n, k, Λ). Adversary
A outputs a target tag t∗ and a list S = {s1, · · · , sk−1}(⊂ {1, · · · , n}) of the
k − 1 servers that it wishes to corrupt.

2. Setup. Then, B does the following:
(a) B sets g1 = ga, g2 = gb and computes h1 = g−t∗

1 gγ with a random γ

($← Zp). (This defines implicitly as x = a, y = b, z = −t∗x + γ.) B sets
PK = (p,G,G1, e, g, g1, g2, h1).

(b) Next, B picks k − 1 random integers α1, · · · , αk−1
$← Zp. (We let f ∈

Zp[X] be a polynomial of degree k−1 defined by f(0) = x and f(si) = αi

for i = 1, · · · , k− 1. B does not know f .) B sets SK|S = (α1, · · · , αk−1).
(c) For i ∈ S, B lets ui = gαi . For i /∈ S, it computes ui = gλ0

1 (gα1)λ1 · · ·
(gαk−1)λk−1 , where λ0, · · · , λk−1(∈ Zp) are the Lagrange coefficients sat-
isfying f(i) = λ0f(0) +

∑k−1
j=1 λjf(sj). (Note ui satisfies ui = gf(i).) B

sets V K = (u1, · · · , un).
(d) B gives PK, V K and SK|S to A.

3. Phase 1. A issues decryption share queries ((Ctbe, t), i) under the constraint
that t
= t∗ and i
∈ S. First, B validates e(C, gt

1h1)
?= e(D, g) to clarify the

validity of ciphertext Ctbe = (C,D,E). If validity test fails, B gives to A
(i,⊥). Otherwise, B computes the Lagrange coefficients λ1, · · · , λk−1, λi ∈
Zp satisfying f(0) = λif(i) +

∑k−1
j=1 λjf(sj) and sets

Ci =
{

(D
Cγ)

1
t−t∗

C
∑k−1

j=1 λjαj

}
1

λi

196 S. Arita and K. Tsurudome

and then gives to A (i, Ci) as decryption share. (If the ciphertext is valid, it
must be the case that Ctx+z = D. Then, we have D = Ctx+z = Ctx+(−t∗x+γ)

= (Cx)t−t∗Cγ . Since t
= t∗, we get Cx = (D/Cγ)
1

t−t∗ . Then, substituting
f(0) =

∑k−1
j=1 λjf(sj) + λif(i) for x, and noting Ci = Cf(i) we obtain the

above expression of Ci.)
4. Challenge. A outputs two same-length messages M0 and M1. B flips a

fair coin b ∈ {0, 1}, and responds with the challenge ciphertext C∗
tbe =

(gc, (gc)γ ,MbW). (As B sets h1 = g−t∗
1 gγ , it holds that (gc)γ = (h1g

t∗
1)c.

Moreover, if W = e(g, g)abc, then we have Mb ·W = Mb · e(g1, g2)c and C∗
tbe

is a valid ciphertext of Mb under PK with tag t∗.)
5. Phase 2. A issues additional queries as in Phase 1, to which B responds as

before.
6. Guess. Eventually, A outputs a guess b′. B outputs 1 if b = b′, or outputs 0

otherwise.

This completes the description of algorithm B, that runs in time at most τ
plus the time to perform O(Q + n) exponentiations and O(Q) pairing compu-
tations. By the comments in the description, it is immediate that B perfectly
simulates a stag-CCA game for A if W = e(g, g)abc. When W is a random el-
ement, the view of B is independent of the choice of b. So, Advdbdh

B,GDBDH
(Λ) =

|Pr[b = b′]− 1/2| = |(1/2 + Advstag−cca
A,TTBE1,n,k(Λ))− 1/2| = Advstag−cca

A,TTBE1,n,k(Λ).

Second, we consider stag decryption consistency of TTBE1. Let A′ be an ar-
bitrary adversary with advantage Advstag−dc

A′,TTBE1,n,k(Λ) in attacking TTBE1 in the
game of stag decryption consistency. Suppose adversary A′ outputs t, Ctbe, S =
(μ1 = (1, C1), · · · , μk = (1, Ck)), S′ = (μ′

1 = (1, C′
1), · · · , μ′

k = (k, C′
k)). If those

shares μi in S are valid, they must satisfy e(Ci, g) = e(C, gf(i)), so Ci = Cf(i).
Then, it holds that

∏k
i=1 C

λi

i = C
∑k

i=1 λif(i) = Cx. Similarly, if the shares μ′
i in

S′ are valid, we have
∏k

i=1 C
′λi

i = Cx. This means Combine(PK, V K,Ctbe, t, S)
= Combine(PK, V K,Ctbe, t, S

′). Thus, Advstag−dc
A′,TTBE1,n,k(Λ) = 0. �

3.3 A Construction TTBE2 of Threshold Tag-Based Encryption
Scheme Based on the DLIN Assumption

Our second construction TTBE2 of threshold tag-based encryption scheme nat-
urally expands the Kiltz’s tag-based encryption scheme [6] to the threshold set-
ting. A secret key x1, x2 of the Kiltz’s scheme is distributed among n secret
key shares (f1(1), f2(1)), · · · , (f1(n), f2(n)) with polynomials f1, f2 satisfying
x1 = f1(0), x2 = f2(0). Decryption shares are of the form (Cf1(i)

1 , C
f2(i)
2).

More precisely TTBE2 is described in Figure 3.

Theorem 3. Under the DLIN assumption for GDLIN , the threshold tag-based
encryption scheme TTBE2 is stag-CCA-secure.

More precisely, for an arbitrary adversary A against stag-chosen-ciphertext
security of TTBE2 that runs in time at most τ and makes at most Q decryption

Construction of Threshold Public-Key Encryptions 197

Setup(n, k, Λ):

(p, g, G, G1, e) ← GDLIN (Λ); x1, x2
$← Zp;

f1, f2
$← Zp[X] satisfying deg(f1) = deg(f2) = k − 1 and f1(0) = x1, f2(0) = x2;

z ← gx1
1 , g2 ← z

1
x2 , y1, y2

$← Zp, u1 ← gy1
1 , u2 ← gy2

2 ;
PK = (p, G, G1, e, g1, g2, z, u1, u2), SK = ((f1(1), f2(1)), · · · , (f1(n), f2(n)));

V K = ((v11 = g
f1(1)
1 , v12 = g

f2(1)
2), · · · , (vn1 = g

f1(n)
1 , vn2 = g

f2(n)
2));

return (PK, V K, SK).

Encrypt(PK, t, M):

r1, r2
$← Zp, C1 ← gr1

1 , C2 ← gr2
2 , D1 ← (ztu1)

r1 , D2 ← (ztu2)
r2 , E ← Mzr1+r2 ;

return Ctbe = (C1, C2, D1, D2, E).

ShareDec(PK, i, SKi = (f1(i), f2(i)), Ctbe = (C1, C2, D1, D2, ·), t):
If e(C1, z

tu1) �= e(D1, g1) or e(C2, z
tu2) �= e(D2, g2) then return μi = (i,⊥),

else return μi = (i, (C
f1(i)
1 , C

f2(i)
2)).

ShareVf(PK, V K = ((vi1, vi2)), Ctbe = (C1, C2, ·, ·, ·), t, μi = (i, (Ci1, Ci2))) :
If e(Ci1, g1) �= e(C1, vi1) or e(Ci2, g2) �= e(C2, vi2) then return invalid, else return valid.

Combine(PK, V K, Ctbe = (·, ·, ·, ·, E), t, {μ1 = (1, (C11, C12)), · · · , μk = (k, (Ck1, Ck2))}):
If ∃i, ShareVf(PK, V K, Ctbe, t, μi) = invalid then return ⊥,

else return E/
Qk

i=1(Ci1Ci2)
λi using Lagrange coefficients λ1, · · · , λk

satisfying f1(0) =
Pk

i=1 λif1(i).

Fig. 3. Threshold Tag-Based Encryption Scheme TTBE2

queries, there exists an algorithm B for the DLIN problem on GDLIN that runs
in time at most τ plus the time to perform O(Q+ n) exponentiations and O(Q)
pairing computations and satisfies

Advstag−cca
A,TTBE2,n,k(Λ) = Advdbdh

B,GDLIN
(Λ).

For an arbitrary adversary A′ against stag decryption consistency of TTBE2, it
holds that

Advstag−dc
A′,TTBE2,n,k(Λ) = 0.

Proof. First, we consider stag chosen ciphertext security of TTBE2. Let A be an
arbitrary adversary that runs in time at most τ , makes at most Q decryption
queries, and has advantage Advstag−cca

A,TTBE2,n,k(Λ) in attacking TTBE2 in the game
of stag-chosen-ciphertext security. Using the adversary A, we build an algorithm
B that solves the DLIN problem of GDLIN (Λ).

Given (Λ, p,G,G1, e, g1, g2, z, g
r1
1 , gr2

2 ,W) as input, algorithm B proceeds as
follows. (The aim of B is to distinguish two cases between W = zr1+r2 or ran-
dom.)

1. Initialization. Algorithm B invokes adversaryA on input (n, k, Λ). Adversary
A outputs a target tag t∗ and a list S = {s1, · · · , sk−1}(⊂ {1, · · · , n}) of the
k − 1 servers that it wishes to corrupt.

2. Setup. Then, B does the following:
(a) B picks random integers c1, c2

$← Zp and computes u1 = z−t∗gc1
1 , u2 =

z−t∗gc2
2 . (This defines implicitly as y1 = −t∗x1 + c1, y2 = −t∗x2 + c2.)

B sets PK = (p,G,G1, e, g1, g2, z, u1, u2).

198 S. Arita and K. Tsurudome

(b) Next, B picks 2k − 2 random integers α1, · · · , αk−1, β1, · · · , βk−1
$← Zp.

(We let f1, f2 ∈ Zp[X] be two polynomials of degree k − 1 defined by
f1(0) = x1, f1(si) = αi (i = 1, · · · , k − 1) and f2(0) = x2, f2(si) =
βi (i = 1, · · · , k − 1). B does not know f1, f2.) B sets SK|S = (SKs1 =
(α1, β1), · · · , SKsk−1 = (αk−1, βk−1)).

(c) For i ∈ S, B lets VKi = (vi1, vi2) = (gαi
1 , gβi

2). For i /∈ S, it computes
vi1 = zλ0(gα1

1)λ1 · · · (gαk−1
1)λk−1 and vi2 = zλ0(gβ1

2)λ1 · · · (gβk−1
2)λk−1 ,

where λ0, · · · , λk−1(∈ Zp) are the Lagrange coefficients satisfying f(i) =
λ0f(0) +

∑k−1
j=1 λjf(sj) for degree k polynomials f . (As easily seen,

(vi1, vi2) satisfies vi1 = g
f1(i)
1 , vi2 = g

f2(i)
2 .) B sets V K = (V K1 =

(v11, v12), · · · , V Kn = (vn1, vn2)).
(d) B gives PK, V K and SK|S to A.

3. Phase 1. A issues decryption share queries ((Ctbe, t), i) under the constraint
that t
= t∗ and i
∈ S. First,B validates e(C1, z

tu1)
?=e(D1, g1) and e(C2, z

tu2)
?= e(D2, g2) to clarify validity of the ciphertext Ctbe = (C1, C2, D1, D2, E). If
validity test fails, B gives to A (i,⊥). Otherwise, B computes the Lagrange
coefficients λ1, · · · , λk−1, λi ∈ Zp satisfying f(0) = λif(i) +

∑k−1
j=1 λjf(sj)

for degree k polynomials f and sets

Ci1 =
{ (D1

C
c1
1

)
1

t−t∗

C
∑k−1

j=1 λjαj

1

}
1

λi

, Ci2 =
{ (D2

C
c2
2

)
1

t−t∗

C
∑k−1

j=1 λjβj

2

}
1

λi

and then gives to A (i, (Ci1, Ci2)) as decryption share. (If the ciphertext
is valid, it must be the case that D1 = C

(t−t∗)x1+c1
1 = (Cx1

1)t−t∗Cc1
1 . Then,

since t
= t∗, we get Cx1
1 = (D1/C

c1
1)

1
t−t∗ . Substituting f1(0)=

∑k−1
j=1 λjf1(sj)

+ λif1(i) for x1, and noting C1i = C
f1(i)
1 , we obtain the above expression of

Ci1. Similar for Ci2.)
4. Challenge. A outputs two same-length messages M0 and M1. B flips a

fair coin b ∈ {0, 1}, and responds with the challenge ciphertext C∗
tbe =

(gr1
1 , gr2

2 , (gr1
1)c1 , (gr2

2)c2 ,MbW). (As B sets u1 = z−t∗gc1
1 and u2 = z−t∗gc2

2 , it
holds that (gr1

1)c1 = (u1z
t∗)r1 , (gr2

2)c2 = (u2z
t∗)r2 . Moreover, if W = zr1+r2 ,

then we have MbW = Mbz
r1+r2 and C∗

tbe is a valid ciphertext of Mb under
PK with tag t∗.)

5. Phase 2. A issues additional queries as in Phase 1, to which B responds as
before.

6. Guess. Eventually, A outputs a guess b′. B outputs 1 if b = b′, or outputs 0
otherwise.

This completes the description of algorithm B, that runs in time at most τ plus
the time to perform O(Q+ n) exponentiations and O(Q) pairing computations.
By the comments in the description, it is immediate that B perfectly simulates
a stag-CCA game for A if W = zr1+r2 . When W is a random element, the view

Construction of Threshold Public-Key Encryptions 199

of B is independent of the choice b. So, Advdlin
B,GDLIN

(Λ) = |Pr[b = b′] − 1/2| =
|(1/2 + Advstag−cca

A,TTBE2,n,k(Λ))− 1/2| = Advstag−cca
A,TTBE2,n,k(Λ).

Second, we consider stag decryption consistency of TTBE2. Let A′ be an ar-
bitrary adversary with advantage Advstag−dc

A′,TTBE2,n,k(Λ) in attacking TTBE2 in the
game of stag decryption consistency. Suppose adversary A′ outputs t, Ctbe, S =
(μ1 = (1, (C11, C12)), · · · , μk = (k, (Ck1, Ck2))), S′ = (μ′

1 = (1, (C′
11, C

′
12)), · · · ,

μ′
k =(k, (C′

k1, C
′
k2))). If those sharesμi inS are valid, they must satisfy e(Ci1, g1)=

e(C1, g
f1(i)
1), e(Ci2, g2) = e(C2, g

f2(i)
2), so Ci1 = C

f1(i)
1 , Ci2 = C

f2(i)
2 . Then, it

holds that
∏k

i=1 C
λi

i1 = C
∑k

i=1 λif1(i)
1 = Cx1

1 and
∏k

i=1 C
λi

i2 = C
∑k

i=1 λif2(i)
2 =

Cx2
2 . Similarly, if the shares μ′

i in S′ are valid, we have
∏k

i=1 C
′λi

i1 = Cx1
1 and

∏k
i=1 C

′λi

i2 = Cx2
2 . This means Combine(PK, V K,Ctbe, t, S) = Combine

(PK, V K,Ctbe, t, S
′). Thus, Advstag−dc

A′,TTBE2,n,k(Λ) = 0. �

4 Construction of Threshold Public Key Encryption
Schemes

By applying the conversion TT2TP in Section 2 to the two threshold tag-based
encryption schemes TTBE1,TTBE2 in Section 3, we obtain two threshold public
key encryption schemes TPKE1,TPKE2 that are both CCA-secure by Theorem
1, Theorem 2 and Theorem 3:

Theorem 4. Let S be a strong one-time signature.

– Under the DBDH assumption, TPKE1 = TT 2TP (TTBE1, S) is a CCA-
secure threshold public key encryption scheme.

– Under the DLIN assumption, TPKE2 = TT 2TP (TTBE2, S) is a CCA-secure
threshold public key encryption scheme.

Our threshold public key encryption schemes TPKE1 and TPKE2 are more simple
than the construction BBH given by Boneh, Boyen and Halevi [2]. It is because
our constructions are based on the tag-based schemes which is more simple than
the ID-scheme used by BBH.

Instantly, Table 1 shows a comparison of efficiency among TPKE1, TPKE2
and BBH. The table shows the number of pairings, multi-exponentiations and
regular-exponentiations required in operations of those schemes. (The entries of

Table 1. Efficiency Comparison among TPKE1, TPKE2 and BBH

Scheme Assumption Encrypt ShareDec ShareVf Combine reduction
�pairings + [�multi−exp., �reg−exp.]

BBH DBDH 1 + [1, 3] 2 + [1, 2] 2 + [0, 1] 2 + [2, 0] tight
TPKE1 DBDH 1 + [1, 3] 2 + [0, 2] 2 + [0, 0] 1 + [1, 0] tight
TPKE2 DLIN 0 + [2, 3] 4 + [0, 3] 4 + [0, 0] 0 + [1, 0] tight

200 S. Arita and K. Tsurudome

Combine do not include costs for ShareVf.) As shown, TPKE1 is more efficient
than BBH. TPKE1 requires less number of exponentiation both in ShareDec,
ShareVf and Combine than BBH. On the other hand, TPKE2 has an advantage
that it is most efficient both in Encrypt and Combine because it requires no
computation of bilinear map in those operations.

5 Conclusion

In this paper, we proposed a notion of threshold tag-based encryption schemes
and showed a conversion from any stag-CCA-secure threshold tag-based encryp-
tion schemes to CCA-secure threshold public-key encryption schemes. We gave
two constructions of threshold tag-based encryption schemes and obtained two
constructions of threshold public-key encryption schemes, using that conversion.
Those schemes are non-interactive, robust, proved secure without random oracle
model and are more efficient than the construction by Boneh, Boyen and Halevi [2].

References

1. Boneh, D., Boyen, X.: Efficient selective-id secure identity based encryption without
random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 223–238. Springer, Heidelberg (2004)

2. Boneh, D., Boyen, X., Halevi, S.: Chosen ciphertext secure public key threshold
encryption without random oracles. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS,
vol. 3860, pp. 226–243. Springer, Heidelberg (2006)

3. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)

4. Canetti, R., Goldwasser, S.: An efficient threshold public key cryptosystem secure
against adaptive chosen ciphertext attack. In: Stern, J. (ed.) EUROCRYPT 1999.
LNCS, vol. 1592, pp. 90–106. Springer, Heidelberg (1999)

5. Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from identity-based
encryption. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 207–222. Springer, Heidelberg (2004)

6. Kiltz, E.: Chosen-ciphertext security from tag-based encryption. In: Halevi, S., Ra-
bin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 581–600. Springer, Heidelberg (2006)

7. Sakai, R., Ohgishi, K., Kasahara, M.: Cryptosystems based on pairings. In: Pro-
ceedings of the Symposium on Cryptography and Information Security, SCIS 2000,
Japan (2000)

8. Shamir, A.: How to share a secret. Communications of the ACM, 612–613 (1979)
9. Shoup, V., Gennaro, R.: Securing threshold cryptosystems against chosen cipher-

text attack. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 1–16.
Springer, Heidelberg (1998)

Malyzer: Defeating Anti-detection for

Application-Level Malware Analysis

Lei Liu and Songqing Chen

Department of Computer Science
George Mason University

{lliu3,sqchen}@cs.gmu.edu

Abstract. Malware analysis is critical for malware detection and pre-
vention. To defeat malware analysis and detection, today malware com-
monly adopts various sophisticated anti-detection techniques, such as
performing debugger, emulator, and virtual machine fingerprinting, and
camouflaging its traffic as normal legitimate traffic. These mechanisms
produce more and more stealthy malware that greatly challenges existing
malware analysis schemes.

In this work, targeting application level stealthy malware, we propose
Malyzer, the key of which is to defeat malware anti-detection mechanisms
at startup and runtime so that malware behavior during execution can be
accurately captured and distinguished. For analysis, Malyzer always starts
a copy, referred to as a shadow process, of any suspicious process on the
same host by defeating all startup anti-detection mechanisms employed
in the process. To defeat internal runtime anti-detection attempts, Ma-
lyzer further makes this shadow process mutually invisible to the original
suspicious process. To defeat external anti-detection attempts, Malyzer
makes as if the shadow process runs on a different machine to the out-
side. Since ultimately malware will conduct local information harvesting
or dispersion, Malyzer constantly monitors the shadow process’s behavior
and adopts a hybrid scheme for its behavior analysis. In our experiments,
Malyzer can accurately detect all malware samples that employ various
anti-detection techniques.

1 Introduction

Internet malware poses an immense threat to computer system security. Fun-
damentally, malware aims to collect local sensitive information, such as bank
account information, password, and CD keys, or leverage infected hosts for vari-
ous attacks, such as spam relay, DDoS, IP laundering (acting as stepping stones),
and phishing. These malicious actions are commonly referred to as information
harvesting and information dispersion [15], respectively.

A number of schemes have been proposed and used for malware detection and
analysis. Among them, the signature-based approach has been employed for many
years and is the most prevalent scheme in practice. In general, signature-based
schemes [8,19,20,28] generate content-based signatures that can uniquely iden-
tify the malware. Signature-based schemes are efficient and effective in detect-
ing and containing known malware, but they are inherently ineffective against

M. Abdalla et al. (Eds.): ACNS 2009, LNCS 5536, pp. 201–218, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

202 L. Liu and S. Chen

previously unknown or polymorphic/metamorphic malware [23]. Encryption [10]
and obfuscation [25] are also commonly used to make the signature-based schemes
incompetent.

Research has been conducted on behavior analysis that complements the
content-based signature approach. Behavior analysis aims to identify abnormal
process behavior. In general, the process behavior under supervision is compared
with a pre-defined safe model. Any behavior deviating from the predefined model
would lead to an alarm, which is in line with the anomaly-based approach. For
behavior analysis, various approaches have been studied, such as using dynamic
taint processing [11,12,24,29,31], checking auto-start extensibility points in reg-
istry [30], and searching for various hooks [9,27].

However, due to underlying economic motivations, various anti-detection mech-
anisms have been constantly and continuously developed and quickly adopted by
malware developers to make more and more stealthy malware. The efforts are
from two perspectives. One is to use protective camouflaging to conceal its ex-
istence. For example, modern bots try to blend their traffic with normal user traf-
fic [16,21]. Some malware [1] may run as browser helper objects (BHO). Advanced
malware [2] is found to perform dynamic code replacement. That is, a benign user
application process is started, and malware code is then written to its memory
sections and executed in the context of this process. When misbehavior is identi-
fied, it will be traced down to a “legitimate” application process. This approach
becomes more and more common since malware can easily go through firewalls
via such an approach.

Besides camouflaging at runtime, malware developers today also commonly
adopt proactive approaches to evade detection at startup. For example, as mal-
ware analysis and detection may use various debugger, emulator, or run suspi-
cious code samples in a virtual machine environment, most of today’s malware
performs virtual machine, emulator, and debugger detection, which we refer to
as running environment tests, before the logic of malware gets executed [3].1

These techniques make systems like Panorama [31] (that relies on an emula-
tor for malware analysis) and SpyProxy [22] (that executes the Web content
in a virtual machine) to stop functioning. Widely adopting these anti-detection
techniques in malware, malware developers successfully enforce malware analysis
and detection to be conducted in a real executing environment, in which various
runtime camouflaging as aforementioned can effectively protect malware.

Targeting application-level stealthy malware, in this paper, we propose Ma-
lyzer, an execution-based approach for malware analysis. The key idea of Malyzer
is to unveil malware camouflaging at startup and runtime so that malware be-
havior can be accurately captured and distinguished. For this purpose, Malyzer
constantly monitors processes’ startup procedures. If a process is suspicious (i.e.,
analysis object), Malyzer thus can start a copy of this process, which is referred to
as a shadow process, on the same host no matter what anti-detection techniques
have been employed at startup. Malyzer makes the shadow process inaccessible

1 Such tests could be combined into a packer that can perform multi-layer packing for
anti-reverse-engineering [17] against static malware code analysis.

Malyzer: Defeating Anti-detection for Application-Level Malware Analysis 203

to other processes or users in order to eliminate noisy activities that do not
belong to the shadow process. Without interferences caused by other processes
or users on the same host, the behavior of the shadow process could only be
autonomous by its inner logic or caused by some remote control.

Because the shadow process runs in the same environment as the original sus-
picious process, the environment test including virtual machine detection , should
that be performed, will always pass. To defeat internal anti-detection tests, Ma-
lyzer further makes this shadow process mutually invisible to the original process.
Malyzer also controls direct user accesses to this shadow process in order to min-
imize legitimate user activities that malware could leverage for camouflaging. To
defeat external anti-detection attempts, Malyzer makes the shadow process run-
ning as if it is running on a different machine to the outsider. Since ultimately mal-
ware will conduct local information collection or dispersion, Malyzer constantly
monitors the shadow process’s disk, network, and memory accesses and uses a
hybrid scheme combing both anomaly-based and signature-based approaches for
process behavior analysis. We have implemented a prototype system of Malyzer.
Our evaluation results show that it can accurately capture the behavior of all the
malware samples that use various anti-detection techniques in our experiments.

The rest of the paper is organized as follows. We present Malyzer design in
section 2 and prototype implementation in section 3. Malyzer is evaluated in
section 4. We further discuss some optimizations and limitations of Malyzer in
section 5 and make concluding remarks in section 6.

2 Malyzer Design

Figure 1 shows the system architecture of Malyzer design. Malyzer consists of
three components: Startup Tracker, Shadow Process Manager, and Shadow
Process Monitor.

����
����
����
����

Operating System

P1

P2

P3

(P2)

startup tracker

shadow process monitor

shadow process manager

Fig. 1. System Architecture. Suppose the process P2 is suspicious. Through Startup

Tracker, information regarding how P2 is started is fetched as well as a memory image
of P2 (if necessary). No matter how P2 is started, a shadow process of P2 could
be started on the same host by Shadow Process Manager, which defeats all kinds of
anti-detections. Then Shadow Process Monitor monitors the disk/memory/network
accesses of the shadow process for malware behavior analysis.

204 L. Liu and S. Chen

2.1 Startup Tracker

To start a shadow process of the given suspicious process, Malyzer must ob-
tain the runnable executable of the malware so that a shadow process can be
started on demand. With sophisticated anti-detection mechanisms, such as dy-
namic code replacement, however, obtaining the executable of a given process is
sometimes non-trivial. For example, directly dumping the memory image of the
given process often does not work.

In general, today malware runs in three possible forms and there are three
types of relationships between a malware process and the corresponding exe-
cutable.

– Malware runs directly from the executable (possibly with multi-layer pack-
ing) on the disk. This is the most common and trivial approach. The malware
process starts when the system starts (usually it is achieved by modifying
registry entries). Given a process, it is easy to locate its executable on the disk
by querying the module name, through which the full path of the executable
can be obtained. Many traditional virus and worms use this approach.

– Malware runs as a DLL in the context of a benign application process. In
this approach, the malware is encapsulated into a DLL, and then installed
statically to a benign application or dynamically to a running process. For
example, when a user browses a particular Web site, the user is fooled to
install a helper object to the Web browser. WebBuying [1] uses this approach.

– Malware runs through dynamic code replacement. This is an advanced and
prevailing approach. The common thread of this approach is as follows:
1. The malware first starts a benign process in a suspended mode. The sys-

tem API createProcess2 is normally used to invoke the benign process.
2. The malware then allocates memory in the domain of the suspended

process and injects its own executable. This is often conducted through
writeProcessMemory.

3. The malware then sets entry point and resumes execution of suspended
process by using resumeThread or createRemoteThread. The logic of
benign process is completely skipped.

Figure 2 shows an example of dynamic code replacement of graybird, which is
one of the most prolific piece of Windows malware [2]. With wide usage of this
approach, querying the module name only returns the genuine executable of
a benign process on the disk, if an identified suspicious process is given. This
not only allows the malware to go through firewalls which is a crucial design
target of modern malware, but also misleads malware analysis and detection.

With these three approaches and the commonly adopted other anti-detection
mechanisms, it is difficult 1) to locate the runnable malware executable; 2) even
if a malware code sample is identified, it may not be start-able.
2 A family of APIs can be used for process creation, such as createProcessAsUser

and createProcessWithLogonW. We use createProcess to represent all of these. We
take a similar approach for other APIs for brevity.

Malyzer: Defeating Anti-detection for Application-Level Malware Analysis 205

createProcess

suspend

writeProcessMemory

reset EAX

resumeThread

services.exe
createProcess

IE.exe

graybird

com.cn.ini)
(Hacker.

Fig. 2. Dynamic Code Replacement of graybird. graybird camouflages itself as Inter-
net Explorer (IE). It starts an IE process, and then replaces the memory image of IE
with graybird. After resetting EAX, it resumes the process to execute the real malcode
of graybird, but appears to be an IE process in the system.

Dynamic code replacement/injection is not uncommon in normal program-
ming practice. With the increasing use of encryption technologies and packers,
dynamic code replacement has been used by a lot of benign applications for all
kinds of purposes, such as code protection [14]. But we noticed that dynamic
code replacement adopted by benign applications is usually confined within the
application processes, and it’s rare that dynamic code replacement requires to
start another process in these benign applications.

Therefore, Startup Tracker is designed to differentiate these situations and
to preserve critical startup information for Shadow Process Manager. In addi-
tion, Startup Tracker can also provide hints for malware detection. For ex-
ample, a benign process would rarely start with a inter-process dynamic code
replacement approach.

Running as a driver to the host operating system, Startup Tracker tracks
the process creation procedure once the machine is started. In Windows systems,
Windows does not provide a convenient mechanism to track process creation
and termination. Malyzer thus keeps listening to all process creation notification
messages. A notification message typically includes information such as a process
ID and a parent process ID. In Unix-like systems, such information can be easily
obtained from the process data structure.

To identify different process startup approaches, Startup Tracker also needs
API level information to discover possible dynamic code replacement. Startup
Tracker achieves this through identifying a unique API call sequence. That
is, as aforementioned, for dynamic code replacement, the successive system
API calls of createProcess, writeProcessMemory, and ResumeThread are in-
evitable. Thus, when Startup Tracker monitors the process startup procedure,
if a sequence of the above system API calls with appropriate parameters is iden-
tified, it is highly likely to be dynamic code replacement, which is suspicious.

In addition, Startup Tracker also needs to prepare for starting a shadow
process of any identified suspicious process as we discuss in the next section.
Therefore, if dynamic code replacement is found, Startup Tracker also dumps

206 L. Liu and S. Chen

the process initial memory image before the process is resumed as well as record-
ing other information, such as section sizes and the entry point.

If a malware process runs directly from the executable on the disk or runs as
a DLL of a benign application, Startup Tracker can provide the child-parent
information regarding how a process is started. If the malware runs as a DLL to
a benign application, we will discuss, in the next section, how to match up the
DLL(s) in the shadow process at runtime.

2.2 Shadow Process Manager

The role of Shadow Process Manager is mainly to defeat runtime malware anti-
detection mechanisms that come from the internal or external sources. Thus,
Shadow Process Manager needs to make the shadow process to run as a normal
process, which is mutually invisible to the original process to deal with internal
anti-detection mechanisms, while it is accessible to the outside to deal with any
external anti-detections.

2.2.1 Defeating Internal Anti-detections: The Shadow Process Is
Mutually Invisible to the Original Process

With the help of Startup Tracker that has done sufficient preparation, Shadow
Process Manager can start the shadow process with ease. However, Shadow
Process Manager also needs to guarantee a normal status of the shadow pro-
cess at runtime since various techniques may be used by a malware instance to
perform anti-detections during its execution. For example, a simple but com-
monly used detection performed by a malware process is to frequently check if
there are multiple instances of itself running on the same host. If there are, the
process terminates. In our experiments, nearly all malware samples adopt some
mechanisms to prevent multiple instances from running on the same host. To
defeat these anti-detection mechanisms, Shadow Process Manager thus needs
to use an uncommon approach to start the shadow process, and hook up some
interceptors when the shadow process is started.

To detect multiple instances, usually a process could use the following mech-
anisms:

– through shared memory section: Statement like
#pragma comment(linker, “/section : SHARED,RWS′′) can set up a
shared section between different instances of the same process. A process
can access the section directly and detect if it has been modified by other
process instance. It is also possible to create a shared section with API like
NtCreateSection or CreateFileMapping at run time. Different process in-
stances can only access the shared section through a name or file handle. So
we treat this case as a named object.

– through process list checking: The process can emulate the process list
and check if there is any process with the same module name as itself. This
approach is not used if the malware runs through DLL injection.

Malyzer: Defeating Anti-detection for Application-Level Malware Analysis 207

– through named object: Named objects provide a convenient approach for
processes to share object handles. After a process has created a named event,
mutex, semaphore, file-mapping, section or timer object, other processes can
use the name to open the handle to the object. If a process tries to create
an object using a name that is in use by another process, the function fails
and GetLastError returns ERROR INVALID HANDLE. In general, mutex is the
most commonly used named object.

Among these mechanisms, accessing shared memory section cannot be inter-
cepted. If a memory section is shared, the section has the corresponding SHARED
property. When the operating system (OS) loads this section, the OS checks
whether the section exists. If it does, the OS only points the section to the exist-
ing one so that multiple process instances will access the same memory region.

One possible solution to deal with this in the shadow process (in order to
prevent possible multiple copy detection) is to copy the portable executable
(PE) to a file with a different name. The solution is simple and effective but it
also has limitations. In our experiments, all malware samples query the module
name, and proceed according to the query result. Although it is possible to add
additional interceptors to change the module name, it introduces new complexity.

Thus, Shadow Process Manager takes another approach, similar to dynamic
code replacement used by malware, in which the PE content is read, aligned, and
copied to a suspended process. In this procedure, however, the copy does not
honor the SHARED property of memory sections. It simply allocates new memory
space for all sections and then copies everything. Thus, the shared section would
present as a new section in the memory [18]. The suspended process, which we
refer to as a shell, could be any process with respect to defeating the memory
sharing approach.

Considering the possible usage of shared memory section, Shadow Process
Manager thus always starts the shadow process using a shell. Since the original
suspicious process is running in the system, its shell PE must exist. Malyzer can
always start a shell from this PE with the right module name. Then

– If no dynamic code replacement is found by Startup Tracker, Shadow
Process Manager will launch the shadow process based on the portable
executable (PE) on the disk. That is, Startup Process Manager reads the
PE, aligns, and writes to the memory.

– If dynamic code replacement is found, Shadow Process Managerwill start the
shadow process based on the dumped memory image by Startup Tracker.
That is, Shadow Process Managerwill create the shell, then copy the memory
image into the process and resume the execution.

– In either of the above two situations, some malcode may be injected as a DLL
into the process dynamically. Shadow Process Manager needs to guarantee
that the shadow process load all DLLs as the original suspicious process.
Therefore, after a shadow process is launched, Malyzer further compares the
DLL list of the shadow process with that in the original suspicious process.
If any DLL is missing in the shadow process, Shadow Process Manager will
insert the corresponding DLL into the shadow process.

208 L. Liu and S. Chen

startup
tracker

create process with suspend mode

optional: load DLL
process
shadow

monitor

manager

process

shadow

qu
er

y
su

sp
ic

io
us

 p
ro

ce
ss

 in
fo

rm
at

io
n

interceptor

write executable

hook interceptor

resume thread

shadow

process

Fig. 3. Shadow Process Manager. A shadow process is started. The corresponding
executable could be the dumped image or PE on the disk.

Figure 3 illustrates how Shadow Process Manager works to start a shadow
process and interfaces with Startup Tracker and Shadow Process Monitor.

By this way, upon the shadow process startup, Shadow Process Manager has
already defeated possible usage of shared memory sections in the malware. To
deal with the malware anti-detection through process list checking and named
objects, Shadow Process Manager further intercepts system API calls from the
shadow process after the shadow process is started, and

– If the process checks the process list, Shadow Process Manager can make
the original process invisible to the shadow process. In general, process
list checking is through CreateToolhelp32Snapshot, which returns a snap-
shot of all processes, and then Process32Next is commonly used to emu-
late all processes. Thus, Shadow Process Manager only needs to intercept
Process32Next. When Process32Next is ready to return the original sus-
picious process, it is skipped and the next process on the list is returned.

– If the process checks named objects, Shadow Process Manager can address
this through system API interception. In general, a named object is accessed
through a unique name. For example, if a mutex is used, CreateMutex takes
the name of the mutex as a parameter. Shadow Process Manager generates
two independent name domains for the original and shadow processes. The
interceptor thus can replace the name parameter of the shadow process with a
different one to avoid name conflict. The interceptor also returns the original
name if the shadow process queries the name of the named object.

Apparently, the above is regarding how to make the original suspicious process
invisible to the shadow process. In order to make the shadow process invisible
to the original suspicious process, only Process32Next needs to be intercepted
in the original process.

To facilitate the malware behavior analysis in the Shadow Process Monitor,
Malyzer also makes the shadow process inaccessible to direct user accesses in or-
der to reduce the analysis noise. For this purpose, Malyzer intercepts ShowWindow
and ShowWindowAsync, always replaces parameter nCmdShow with SW HIDE. The
shadow process is then inaccessible to direct user input and misbehavior of the
shadow process can be accurately captured.

Malyzer: Defeating Anti-detection for Application-Level Malware Analysis 209

2.2.2 Defeating External Anti-detections: The Shadow Process
Behaves Normally to the Outside

Now the shadow process can run in parallel to the original suspicious process.
But it may still not behave “correctly” as a normal malware instance.

It is common that malware instances need to interact with some outsider. For
example, a bot master controls all bots, and bots running on individual hosts
must communicate with the bot master in order to receive commands, send
back collected local information, etc. Thus, the shadow process must have the
networking capability, and can communicate with outside if needed.

However, in setting up the correct networking functionalities of the shadow
process, the outsider, such as a bot master, may have restrictions. For example,
multiple connection requests from the same IP address may not be allowed on
an IRC server. Thus, it is important that the shadow process should present as
another malware instance on a different host to the outsider.

Even without such constraints from the outsider, the malware instance may
always use a pre-determined port to communicate with the outside. Once the
original process is bound to a particular port, the shadow process cannot use
that port, which may cause the malware instance to stop functioning.

Thus, Malyzer must bind the shadow process to a different IP address from
the original suspicious process, but use the same port number so that an outsider
cannot figure out they are from the same host. That is, Malyzer must be able
to support multiple IP addresses.

Usually a process calls connect to connect to a remote IP address and calls
bind to bind to a specific port before it begins to accept connections. The default
IP address for these APIs is the primary IP address. In order to bind the shadow
process to a secondary IP address, Malyzer needs to intercept these API calls
and add an additional IP address in the OS for this purpose.

In Malyzer, when connect is called, the socket is always bound to the primary
IP address (A.B.C.D1) by default. In order to have the shadow process bound
to the secondary IP address, Malyzer actively performs binding to (A.B.C.D2)
before connect is called in the API interceptor. When receiving incoming con-
nections, Malyzer intercepts bind to bind port to (A.B.C.D2) to avoid port
conflict. These networking setups guarantee that the shadow process appear to
the outsider as a new process running on a different machine.

2.3 Shadow Process Monitor

Malware always performs local sensitive information collection, or controls in-
fected nodes to participate some attacks against a third party. This is funda-
mental to differentiate a benign process from a malware process. Thus, after the
shadow process successfully runs, Malyzer keeps monitoring the behavior of the
shadow process in order to determine if it is actually a malware instance.

Considering that ultimately, a malware instance would perform information
harvesting or information dispersion, Malyzer concerns three typical kinds of
behavior observed from the shadow process:

210 L. Liu and S. Chen

– network accesses: A lot of malware has network activities for various pur-
poses. For example, a trojan sends out the information it collects; a bot
contacts its botmaster for commands.

– hard disk access: Some malware is designed to collect sensitive information
stored on the hard disk of infected hosts. In general, it is normal that a benign
process accesses certain directories on the hard disk, such as the current
working directory of the process, but it is uncommon to access directories
owned by other processes.

– memory access: Some malware can directly access memory of other pro-
cesses for sensitive information (e.g., password) or for further attacks.

In order to decide whether or not a process with a sequence of accesses is
malware, existing research commonly applies either anomaly-based analysis or
signature-based schemes. But the challenge is that application (including mal-
ware) behavior is difficult to predict, considering the complexity of software and
diversity of user operations. Fortunately, in Malyzer, the situation is different.
The shadow process is a clone of the original suspicious process. Malyzer makes
it inaccessible to other processes or users in the host system. This greatly elimi-
nates noisy activities that do not belong to the shadow process (we discuss how
to deal with interactive malware with emulated user input later). Without in-
terferences caused by other processes or users on the same host, the behavior
of the shadow process could only be autonomous by its inner logic or caused
by some remote control. Even though, simply using an anomaly-based approach
may not be easy since it is arduous to manually define a normal behavior model
for various shadow processes of legitimate application processes.

At this end, Shadow Process Monitor takes a hybrid approach: to combine
both anomaly- and signature-based approaches. Malyzer first defines a set of
heuristic malicious behavior rules and then generates the normal process be-
havior model automatically along with the malware analysis. Malyzer always
starts with the anomaly-based approach (the benign process behavior model,
consisting of individual process profiles, is empty at the beginning). Malyzer
first compares the shadow process behavior with the benign process model. If
the model is empty or it cannot make a decision, it is further compared against
the heuristic rules. Once the process is determined to be benign, its profile is gen-
erated automatically from the captured access sequence and added to the benign
process behavior model. Note that an optional component, the user validation,
can be added when Shadow Process Monitor determines a malware instance.
This could improve the accuracy of the analysis. Without such a component, the
procedure is fully automatic.

Considering three types of accesses, Malyzer defines the heuristic rule set for
malicious behavior detection of the shadow process as follows:

– connection rate (rule I): When connection count to different destinations
in a given time duration is beyond a threshold, an alarm is raised.

– failed connection rate (rule II): When the number of failed connections
a shadow process makes to different destinations in a given time duration is
beyond a threshold, an alarm is raised.

Malyzer: Defeating Anti-detection for Application-Level Malware Analysis 211

– command and control channel (rule III): When the shadow process
maintains a certain number of connections beyond a threshold or when it
maintains a connection to a destination for a duration beyond a threshold,
an alarm is raised.

– sensitive file on disk (rule IV): When the shadow process accesses direc-
tories other than system directory and current working directory, an alarm
is raised.

– sensitive data in memory (rule V): When the shadow process reads or
writes the memory of other processes, an alarm is raised.

Combination of these heuristic rules could be applied too. Note that these heuris-
tic rules are effective in Malyzer because a significant amount of noise caused by
users has been eliminated.

On the other hand, for each process, the normal behavior model consists of
the process profile list, a list of relevant API calls and corresponding parameters
when network, disk, and memory accesses are invoked in the shadow process.

3 Malyzer Implementation

To demonstrate the concept and for experiments, we implement a prototype of
Malyzer on Windows XP Professional. As we have shown in Figure 3, the three
major components of Malyzer interact with each other. Among them, Startup
Tracker is implemented as a driver to keep track of process creation. It keeps mon-
itoring and intercepting system daemons, such as services.exe, svchost.exe,
lsass.exe, spoolsv.exe, and system.exe. This is done through directly replac-
ing their import tables entries [26]. In addition, Startup Tracker keeps intercept-
ing process creation related APIs, such as createProcess,writeProcessMemory,
and resumeThread, which is done through Microsoft Detours 2.1 Express [4].
Upon a child process is created by an intercepted process, relevant APIs in child
process are also intercepted in a recursive fashion.

If Startup Tracker detects dynamic code replacement via the unique API
call sequence as we have discussed in section 2, Startup Tracker will dump
the initial memory of the process. Memory dumping is conducted before the
process is actually resumed. In addition, the EAX register containing the entry
point address, obtained from the parameter of resumeThread, is kept. Startup
Tracker stores this information for Shadow Process Manager.

Shadow Process Manager is responsible for starting a shadow process on de-
mand, given a suspicious process to analyze. Shadow Process Manager first
queries the module file name of the suspicious process and creates a process
with suspended mode from the corresponding executable.

By querying Startup Tracker, if the suspicious process is not started via dy-
namic code replacement, Shadow Process Manager reads the executable again,
aligns, and copies that to the suspended process again (in order to defeat direct
memory sharing in malware instances). This procedure is the same as dynamic
code replacement. In addition, Shadow Process Manager also calculates the en-
try point address and sets EAX for the shadow process [18].

212 L. Liu and S. Chen

If the suspicious process is started via dynamic code replacement, Shadow
Process Manager reads the memory image dumped by Startup Tracker and
copies to the suspended process. As Startup Tracker also keeps the EAX value
of the suspicious process, Shadow Process Manager can calculate the entry
point from the original EAX value and set accordingly in the shadow process.

Before resuming the shadow process, Shadow Process Manager hooks in-
terceptors to the shadow process in order to detect various anti-detection ap-
proaches that could be used by a malware instance and monitor its behavior.

Some of the intercepted API calls and their parameters from Shadow Process
Manager are also fed into Shadow Process Monitor for further decisions. These
are disk, network, and memory accessing APIs and their parameters. Such a call
is an event to trigger Shadow Process Monitor. In the current implementation,
Shadow Process Monitor maintains a cache, which contains shadow process
profiles. Once an API calling event is fed to Shadow Process Monitor, it com-
pares with its cached profiles. Currently, the API name and the corresponding
parameters are compared. A discrepancy will raise an alarm.

For heuristic rules, we have set up thresholds as follows: the connection rate
and the failed connection rate are set as ten and five per minute. For the com-
mand and control channel, the connection duration threshold for a persistent
channel is 30 seconds [7]. If the shadow process is finally determined to be be-
nign, its API calls are recorded and updated in the cache.

In addition to capture behavior of malware shadow process, Malyzer also al-
ways locates the correct malcode source. The difficulty lies in that if the malware
runs via DLL injection, such as BHO, Malyzer is expected to report which DLL
the API caller is from. In our current implementation, Malyzer queries stack
information [13] to find the caller upon an API call triggering an alarm. For this
purpose, Malyzer defines a macro that reads register EBP, which contains the
value of frame pointer of the caller. Subsequently, the return address is stored at
(EBP + 4). With the return address, Malyzer can query the module where the
return address resides.

4 Malyzer Evaluation

With the prototype, we test Malyzer against a number of malware samples that
use different anti-detection mechanisms. Some representative experimental sam-
ples that use different anti-detections are listed in Table 1. We experiment on all
malware samples. Due to page limit, we will only present some interesting ones
with different anti-detection mechanisms.

4.1 Whether Malyzer Can Defeat Malware Anti-detections

We first test whether a shadow process of them can be successfully started on
the same host where there is already one malware instance running.

reptile is the most interesting sample we tested. In this version, reptile per-
forms various environment tests to defeat virtual machines and various

Malyzer: Defeating Anti-detection for Application-Level Malware Analysis 213

Table 1. Malware Samples and their Anti-detections

malware anti-detection actions

agobot3
check process list for processes with the same name
perform VMware detection

forBot check process list for processes with the same name

graybird start with dynamic code replacement

Gorgon trojan check process list for debugger process OLLYDBG.EXE

JrBot use mutex to prevent multiple copies from running on a host

reptile
perform debugger, VMware, SoftIce detection
perform BreakPoint, Single Step detection
use mutex to prevent multiple copies from running on a host

rBot use mutex to prevent multiple copies from running on a host

sdbot05 check process list for processes with the same name

spybot perform VMware detection

storm worm perform VMware detection

trojan downloader Search for Wireshark, ZoneAlarm, Olly Debug

Fig. 4. A shadow process of reptile is started and running on the same host

debuggers and debugging techniques. It also prevents multiple copies from run-
ning on the same host via mutex. When reptile.exe starts, it copies itself
to %windir%\st.exe and launches st.exe before it exits. Subsequently, st.exe
deletes reptile.exe on the disk. After Shadow Process Manager starts a
shadow process of this malware instance, Figure 4 shows that two processes are
running successfully within Malyzer. Graybird runs via dynamic code replace-
ment so that it can disguise as an IE process. Startup Tracker detects this
approach and dumps the initial process memory. Accordingly, Shadow Process
Manager starts a shadow process successfully. Figure 5 shows that two graybird
processes are running in the context of two IE processes. agobot3 is a very com-
mon bot that employs the process list checking to prevent multiple copies from
running on the same machine. Figure 6 shows that in Malyzer, a shadow process
of agobot3 can be started and run in parallel with the original one successfully.

214 L. Liu and S. Chen

Fig. 5. A shadow process of graybird is started and running on the same host.
graybird starts itself via dynamic code replacement.

Fig. 6. A shadow process of agobot3 is started and running on the same host. agobot3
simply checks the process list to prevent duplicated copies from the same IP address.

In these tests, both agobot and reptile are IRC-based malware. They need
to connect to an IRC server to receive commands. By default, the IRC server
only accepts one connection per IP address. Because Malyzer binds the original
process and the shadow process to a different IP address, although they are
running on the same host, the IRC server takes them as two different instances
running on two different machines, as shown in the above figures.

4.2 Whether a Shadow Process Functions Normally and Whether
Its Misbehavior Can Be Detected

The previous tests show that the shadow process of a malware sample can be
successfully started. However, whether the shadow process can still function
“properly” is not clear, which is critical for the further detection and analysis.

Malyzer: Defeating Anti-detection for Application-Level Malware Analysis 215

Table 2. Detection of Information Harvesting and Dispersion by rBot

action event trigger detection rule

After the process starts,
it connects to the bot
master.

connect: shadow process
keeps a consistent connec-
tion

rule III: command and
control channel

After rBot receives a
advscan command, it
starts random port scan.

connect: shadow process
sends out packets to differ-
ent destinations, the con-
nection rate is beyond a
threshold.

rule I and rule II: connec-
tion rate and failed con-
nection rate

After rBot receives a
getcdkeys command, it
retrieves cdkey file.

ReadFile: shadow process
accesses file of other appli-
cations.

rule IV: sensitive data
access on disk

To verify that a shadow process can work “correctly” as if it is truly running
on a different host, we experiment by instructing the shadow process for various
attacks. Along with these experiments, we can also test whether their misbe-
havior can be accurately captured so that a decision is made through Shadow
Process Monitor. At the beginning, the cache in Shadow Process Monitor is
empty, and the heuristic rules are used. Table 2 shows the results when rBot is
instructed to perform local and remote attacks. For local attacks, a command
of getcdkeys from our IRC server is sent to the bot to search for product CD
keys. For remote attacks, a command of advscan is sent to instruct the bot to
perform random port scan. In the experiments, all malware actions are correctly
captured by Malyzer.

5 Malyzer Optimization and Further Discussion

In this section, we discuss some issues with the current design and implementa-
tion of Malyzer as well as possible improvement.

First, our experiments tested automatic malware. For malware whose misbe-
havior is triggered by certain user activities, such as accessing a specific Web
site, the current Malyzer implementation has not included a component to use
emulated user input to allure malware actions. We are adopting the approach
taken by Panorama [31] to emulate the user input to trigger the malware.

Second, in the design space, Shadow Process Monitor aims to capture mis-
behavior of shadow processes. This approach is similar to existing behavior-based
approaches with the understanding that information harvesting and information
dispersion are the essential behaviors differentiating malware processes from be-
nign ones. Other approaches and systems (e.g., Snort, Bro) could be integrated
with this component. In addition, the current cache implementation of Shadow
Process Monitor is rather simple for the demonstration of concept. We would
like to define a general and portable format so that once a shadow process profile
is created, it can be shared and distributed.

216 L. Liu and S. Chen

Third, the current implementation of Malyzer relies on behavior analysis
through API call interceptors. A malware developer could evade Malyzer with-
out calling such APIs by coding its own functions or calling some system native
functions that we are not aware of to evade Malyzer. Although Malyzer can
be implemented at the native system call level to defeat these efforts, funda-
mentally, a malware developer can defeat Malyzer by implementing in assembly
code or using timing correlation to detect the existence of Malyzer by looking
into the time duration of calling various APIs. Although our usage of Detours
causes trivial processing overhead as reflected by our successful experiments
with reptitle, which uses API timing to defeat “Single Step”, more precise
timing could enforce Malyzer to intercept more APIs in order to defeat such
efforts.

On the other hand, as a malware analyzer, Malyzer works under the assump-
tion that the host is not subverted through some rootkits. Whether at the stage
to unveil malware camouflaging or de-activate various malware anti-detection
mechanisms, Malyzer needs a trustworthy underlying operating system. Once
the underlying operating system is completely subverted, the information Ma-
lyzer obtains could be wrong, which would lead to analysis failure.

In addition, for duplicated process checking, a malware instance could mark
the registry or a file so that it can query the mark at the startup. While Malyzer
cannot defeat this, such an anti-detection approach is not reliable because if
exceptions happen (e.g., powering down), the malware cannot restart.

Lastly, today a lot of malware packers are available for malcode polymor-
phism, obfuscation, encryption, and some anti-detection as well. For example,
Themida [5] provides anti-debug, anti-tracing, anti-dumping and VM detection
options. While source polymorphism, obfuscation, and encryption do not affect
Malyzer, since Malyzer uses Detours to intercept API calls, which intercepts
Win32 functions by re-writing target function code in memory, some packers
can use IAT destruction to completely change the PE structure of malcode. In
this case, Detours fails to intercept API calls. As an alternative, proxy DLL [6]
does not rely on the IAT structure which is a good candidate of the API inter-
ceptor. Malyzer thus can take this approach.

6 Conclusion

Various anti-detection techniques have been practically employed by malware
developers to create more and more stealthy Internet malware. The success of
malware analysis and detection heavily depends on whether malware analysts
can defeat all kinds of malware anti-detection mechanisms. In this paper, we
have made an initial step towards effectively unveiling various malware camou-
flaging at startup and runtime through the design and implementation of Ma-
lyzer. Through various countering anti-detection measures, Malyzer can accu-
rately capture malware behavior. Experiments have been conducted to evaluate
Malyzer with various malware samples. The results demonstrate the effectiveness
of Malyzer.

Malyzer: Defeating Anti-detection for Application-Level Malware Analysis 217

Acknowledgment

We thank the anonymous referees for providing constructive comments. The
work has been supported in part by U.S. AFOSR under grant FA9550-09-1-
0071, and by U.S. National Science Foundation under grants CNS-0509061, CNS-
0621631, and CNS-0746649.

References

1. http://www.pctools.com/mrc/infections/id/Webbuying/
2. http://news.softpedia.com/newsTag/Graybird

3. http://blogs.windowsecurity.com/parker/2006/07/11/malware-packers/

4. http://research.microsoft.com/sn/detours/

5. http://www.oreans.com/ThemidaWhatsNew.php
6. http://www.codeproject.com/KB/system/hooksys.aspx

7. Taxonomy of botnet threats (November 2006),
http://us.trendmicro.com/imperia/md/content/us/pdf/threats/

securitylibrary/botnettaxonomywhitepapernovember2006.pdf

8. Brumley, D., Newsome, J., Song, D., Wang, H., Jha, S.: Towards automatic gen-
eration of vulnerability-based signatures. In: Proceedings of IEEE Symposium on
Security and Privacy, Berkely/Oakland, CA (May 2006)

9. Butler, J., Hoglund, G.: Vice-catch the hookers! (July 2004)
10. Chiang, K., Lloyd, L.: A case study of the rustock rootkit and spam bot. In: Pro-

ceedings of the First Workshop on Hot Topics in Understanding Botnets, Cam-
bridge, MA (April 2007)

11. Chow, J., Pfaff, B., Garfinkel, T., Christopher, K., Rosenblum, M.: Understanding
data lifetime via whole system simulation. In: Proceedings of the 13th USENIX
Security Symposium (August 2004)

12. Costa, M., Crowcroft, J., Castro, M., Rowstron, A., Zhou, L., Zhang, L., Barham,
P.: Vigilante: End-to-end containment of internet worms. In: Proceedings of SOSP,
Brighton, United Kingdom (October 2005)

13. Dimitrov, C.: Playing with the stack,
http://www.codeproject.com/tips/stackdumper.asp

14. Desclaux Fabrice. Skype uncovered, http://www.ossir.org/windows/supports/
2005/2005-11-07/EADS-CCR_Fabrice_Skype.pdf

15. Grizzard, J., Sharma, V., Nunnery, C., Kang, B., Dagon, D.: Peer-to-peer botnets:
Overview and case study. In: Proceedings of the HotBots, Cambridge, MA (April
2007)

16. Gu, G., Zhang, J., Lee, W.: Botsniffer: Detecting botnet command and control
channels in network traffic. In: Proceedings of the 15th NDSS, San Diego, CA
(February 2008)

17. Kang, M., Poosankam, P., Yin, H.: Renovo: A hidden code extractor for packed
executables. In: Proceedings of WORM, Alexandria, VA (November 2007)

18. Keong, T.: Dynamic forking of win32 exe,
http://www.security.org.sg/code/loadexe.html

19. Kim, H., Karp, B.: Autograph: Toward automated distributed worm signature
detection. In: Proceedings of USENIX Security, San Diego, CA (August 2004)

20. Li, Z., Sanghi, M., Chen, Y., Kao, M., Chavez, B.: Hamsa: Fast signature generation
for zero-day polymorphic worms with provable attack resilience. In: Proceedings
of IEEE Symposium on Security and Privacy, Berkely/Oakland, CA (May 2006)

http://www.pctools.com/mrc/infections/id/Webbuying/
http://news.softpedia.com/newsTag/Graybird
http://blogs.windowsecurity.com/parker/2006/07/11/malware-packers/
http://research.microsoft.com/sn/detours/
http://www.oreans.com/ThemidaWhatsNew.php
http://www.codeproject.com/KB/system/hooksys.aspx
http://us.trendmicro.com/imperia/md/content/us/pdf/threats/securitylibrary/botnettaxonomywhitepapernovember2006.pdf
http://us.trendmicro.com/imperia/md/content/us/pdf/threats/securitylibrary/botnettaxonomywhitepapernovember2006.pdf
http://www.codeproject.com/tips/stackdumper.asp
http://www.ossir.org/windows/supports/2005/2005-11-07/EADS-CCR_Fabrice_Skype.pdf
http://www.ossir.org/windows/supports/2005/2005-11-07/EADS-CCR_Fabrice_Skype.pdf
http://www.security.org.sg/code/loadexe.html

218 L. Liu and S. Chen

21. Liu, L., Chen, S., Yan, G., Zhang, Z.: Bottracer: Execution-based bot-like malware
detection. In: Proceedings of the 11th Information Security Conference, Taipei,
China (September 2008)

22. Moshchuk, A., Bragin, T., Deville, D., Gribble, S., Levy, H.: Spyproxy: Execution-
based detection of malicious web content. In: Proceedings of the 16th USENIX
Security Symposium, Boston, MA (August 2007)

23. Newsome, J., Karp, B., Song, D.: Polygraph: Automatically generating signatures
for polymorphic worms. In: Proceedings of IEEE Symposium on Security and Pri-
vacy, Oakland, CA (May 2005)

24. Newsome, J., Song, D.: Dynamic taint analysis for automatic detection, analysis,
and signature generation of exploits on commodity software. In: Proceedings of the
12th NDSS (February 2005)

25. Provos, N., McNamee, D., Mavrommatis, P., Wang, K., Modadugu, N.: The ghost
in the browser analysis of web-based malware. In: Proceedings of the First Work-
shop on Hot Topics in Understanding Botnets, Cambridge, MA (April 2007)

26. Richter, J.: Programming applications for microsoft windows
27. Rutkowaska, J.: System virginity verifier: Defining the roadmap for malware de-

tection on windows systems (September 2005)
28. Singh, S., Estan, C., Varghese, G., Savage, S.: Automated worm fingerprinting. In:

Proceedings of OSDI, San Francisco, CA (2004)
29. Stinson, E., Mitchell, J.C.: Characterizing the remote control behavior of bots. In:

Hämmerli, B.M., Sommer, R. (eds.) DIMVA 2007. LNCS, vol. 4579, pp. 89–108.
Springer, Heidelberg (2007)

30. Wang, Y., Roussev, R., Verbowski, C., Johnson, A., Wu, M., Huang, Y., Kuo, S.:
Gatekeeper: Monitoring auto-start extensibility points (aseps) for spyware man-
agement. In: Proceedings of LISA (November 2004)

31. Yin, H., Song, D., Egele, M., Kruegel, C., Kirda, E.: Panorama: Capturing system-
wide information flow for malware detection and analysis. In: Proceedings of ACM
CCS, Alexandria, VA (October 2007)

A New Message Recognition Protocol with

Self-recoverability for Ad Hoc Pervasive
Networks

Ian Goldberg1, Atefeh Mashatan2, and Douglas R. Stinson1

1 David R. Cheriton School of Computer Science, University of Waterloo
Waterloo, Ontario Canada N2L 3G1

http://crysp.uwaterloo.ca/
2 The Security and Cryptography Laboratory (LASEC), EPFL

CH-1015 Lausanne, Switzerland
http://lasecwww.epfl.ch/

Abstract. We examine the problem of message recognition by review-
ing the definitions and the security model in the literature. In particular,
we examine the Jane Doe protocol, which was proposed by Lucks et
al., more closely and note its inability to recover in case of a certain
adversarial disruption. Our paper saves this well-studied protocol from
its unrecoverable state when such adversarial disruption occurs. We pro-
pose a new message recognition protocol, which is based on the Jane
Doe protocol, and incorporate the resynchronization technique within
the protocol itself. That is, without having to provide a separate resyn-
chronization procedure, we overcome the recoverability problem of the
Jane Doe protocol. Moreover, we enumerate all possible attacks against
the new protocol and show that none of the attacks can occur. We fur-
ther prove the security of the new protocol and its ability to self-recover
once the disruption has stopped.

Keywords: Cryptographic Protocols, Authentication, Recognition, Self-
Recoverability, Pervasive Networks, Ad Hoc Networks.

1 Introduction

Entity recognition is a weaker security notion than entity authentication; it refers
to the process where two parties meet initially and one party can be assured
in future conversations that it is communicating with the same second party.
There is an analogous correspondence between message recognition and message
authentication.

There have been several recent papers on designing protocols where the source
of trust is a narrow-band authenticated channel; see for example [4], [7], [9], [10],
and [11]. In particular, there has been recent interest in designing recognition
protocols using this communication model. This problem has been considered
in a context where we are dealing with low-computational power devices which
cannot handle public-key computations and where no pre-deployed shared secret

M. Abdalla et al. (Eds.): ACNS 2009, LNCS 5536, pp. 219–237, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

http://crysp.uwaterloo.ca/
http://lasecwww.epfl.ch/

220 I. Goldberg, A. Mashatan, and D.R. Stinson

exists. On the other hand, the devices have access to a narrow-band authenti-
cated channel at the initialization step and are later placed in a constrained,
possibly hostile, insecure environment.

Lucks et al. [4] motivated this model with the following example. Let Alice
and Bob be two strangers who meet in a party for the first time. They leave
the party after making a bet. Some days later, it turns out that Alice wins the
bet. Afterward, Bob receives a message claiming to be sent from Alice. The
message includes a bank account number and asks Bob to deposit Alice’s prize
to that bank account. Bob wants to be assured that this message is indeed
sent from the entity who introduced herself as “Alice” in the party. In other
words, Bob needs to recognize “Alice”, whoever she is, or a message that is sent
from her.

Now consider Alice and Bob to be two small devices who “meet” in a some-
what secure environment that allows them to send authenticated, but not con-
fidential, messages. They are later placed in a hostile environment where Alice
wants Bob to recognize the messages sent from her to Bob. An adversary, Eve,
is present all along. When Alice and Bob first meet, Eve can read the authenti-
cated messages, but cannot change them. Later, when Alice and Bob are placed
in a hostile environment, Eve can not only read, but also modify messages. She
can also insert her own messages claiming to be from either party. Eve’s goal
is to make Bob accept messages from her as sent from Alice, where Alice has
never, or at least not recently, sent those messages.

Since message recognition is weaker than message authentication, every mes-
sage authentication protocol trivially provides message recognition. Moreover,
message recognition can be achieved using public-key, when public-key compu-
tations are feasible, or secret-key cryptography, when pre-deployed authentic
information is available. However, in some scenarios, public-key computations
may be too costly and there may be no secure channel where the secret keys can
be transmitted confidentially.

One can ask what security goals can be achieved in such a constrained model?
There are claims in the literature, see [11] for example, suggesting that achiev-
ing message authentication is not possible in such an environment. Hence, they
pursue the weaker security of message recognition.

We examine the Jane Doe message recognition protocol proposed by Lucks
et al. in more detail and note that in case of a particular adversarial disruption,
this protocol fails to recover. In other words, the adversary can trap one party
in a state that he or she will no longer accept legitimate messages that were sent
by the other party. This inability to recover was noted previously in [8], where
it was fixed by calling upon a separate procedure called a “resynchronization
protocol”. Here, we propose a new message recognition protocol that is able to
recover without having to call a separate resynchronization protocol. That is,
our new protocol has the advantage of self-recoverability. (The fact that self-
recoverability is built into our protocol means that the parties involved do not
have to negotiate when to resynchronize. This makes the whole system simpler

A New Message Recognition Protocol with Self-recoverability 221

and more robust.) We also formally prove that our new protocol is secure and
fully recovers once the disruptions have stopped.

The rest of the paper is organized as follows. Section 2 is devoted to examining
previous recognition protocols and noting their shortcomings. In Section 3, we
describe a new message recognition protocol. Finally, Section 4 is devoted to
proving the security and recoverability of the protocol.

2 Previous Recognition Protocols

In this section, we briefly review the existing message recognition protocols and
discuss their usability in the context of networks with low-computational power
devices that also have low communication bandwidth.

There are two communication channels considered in the setting of recognition
protocols: an insecure broadband channel, denoted by →, and an authenticated
non-confidential narrow-band channel denoted by ⇒. The broadband channel is
available all the time and the narrow-band channel is only accessible once, for
the initial session between two users.

The Guy Fawkes protocol was proposed by Anderson et al. [1]. There are two
variants of this protocol suggested and a one-way hash function is deployed in
both variants. In the first variant, random codewords are chosen in each ses-
sion and are refreshed each time a message is authenticated. Alice commits to
the message and the codewords and then publishes the commitment in a public
directory which provides time-stamping services. Later, she reveals the commit-
ted values to prove that she is the same party who was involved in previous
sessions. However, assuming the existence of a trusted party which provides
time-stamping services is not realistic in most ad hoc network scenarios. The
second variant does not require any interaction with a time-stamping provider
and instead requires interaction of the authenticating party with the verifying
party. The initialization phase of this protocol does not assume any authenti-
cated channel; however, it requires digital signatures for authenticating the first
blocks and codewords. This may not be suitable in ad hoc networks and, in par-
ticular, in low-power environments. Moreover, for a message to be authenticated
in session i, users need to commit to it in the previous session. In the context
of message recognition, this means that users are engaged in two sessions of this
protocol to authenticate a single message, which may not be desirable.

The Remote User Authentication Protocol is an entity recognition protocol
that was introduced by Mitchell [9]. In this protocol, a message authentication
code (MAC) is used to prove that a user is the same entity involved in previous
sessions. The protocol can be adapted to perform message recognition as well;
however, this is not discussed in the paper. The setup phase of this protocol
requires that t MAC values be sent over the authenticated channel. This may
be costly since authenticated channels are usually of low bandwidth. Further,
the “cut-and-choose” procedure in each round involves sending 2t MAC values
and r secret keys. In order for the protocol to be secure, it is suggested that
t ≥ 35 and r ≈ t/2. Hence, the amount of computation and communication

222 I. Goldberg, A. Mashatan, and D.R. Stinson

here is large compared to other protocols that are providing entity or message
recognition and it may not be suitable for settings with low-power devices.

Weimerskirch et al. [11] proposed a protocol called Zero Common-Knowledge
(ZCK). This protocol is the starting point of a series of recent publications; see
for example [3], [4], [5], [8], [6]. The ZCK protocol uses message authentication
codes (MACs) and hash chains of the form ai = H(ai−1) and bi = H(bi−1),
i = 1, . . . , n, as keys for the MACs. The length of the hash chain, n, is fixed at
the beginning and H is a one-way hash function.

Hammell et al. [3] implemented the ZCK protocol and provided measure-
ments and observations as a proof-of-concept. They investigated whether the
ZCK protocol suits devices with low computational power, low code space,
low communication bandwidth, low energy resources. They concluded that it
does exhibit these requirements, however, denial-of-service and memory com-
plexity are areas of concern and needed to be addressed or improved upon in the
future.

Hammell et al. did not investigate the security properties of the ZCK protocol,
but rather relied on the security proof that came along with it. However, Lucks
et al. [4] found a mistake in the security proof of this protocol and presented a
practical attack against it. Moreover, using the same idea of using values in a
hash chain as keys for MACs, they proposed a message recognition protocol that
guards against the found attack. We describe the protocol proposed by Lucks et
al. in more detail; it has been named the Jane Doe protocol [5].

A one-way hash function H : {0, 1}s → {0, 1}s and a message authentication
code MAC : {0, 1}s × {0, 1}∗ → {0, 1}c are considered as building blocks of
this protocol. Typical parameters are suggested to be s ≥ 80 and c ≥ 30. The
maximum number of messages to be authenticated, or the maximum number of
sessions, in the Jane Doe protocol is fixed to be n. Alice randomly chooses a0

and forms a hash chain of the form ai = H(ai−1), i = 1, . . . , n. Similarly, Bob
randomly chooses b0 and forms bi = H(bi−1), i = 1, . . . , n. Alice and Bob will
respectively use ai and bi as keys for MAC values they compute in session i.

The initialization phase is constituted of Alice and Bob exchanging the values
of an and bn. In this phase of the execution, Eve is passive and the communication
is denoted by ⇒.

There will be n sessions of the protocol and we denote them in descending
order by n− 1, . . . , 0; this is because the values of the hash chains are going to
be revealed in this order. In each session i, Alice would like to authenticate a
message mi. She uses ai as the key for the MAC and sends the MAC value of
mi to Bob. Bob then authenticates himself to Alice by revealing bi. Once Alice
has verified bi, she reveals ai. Then ai allows Bob to verify Alice and mi. Once
the session is over, Alice and Bob “move down” in the hash chain and use ai−1

and bi−1 as keys for session i− 1.
Lucks et al. write accept-key(k) when a key k has been accepted, and commit-

message(m, i) when Alice commits herself to authenticate m in session i. Simi-
larly, accept-message(m, i) indicates that Bob has accepted m as sent from Alice
in session i. The formal description of the Jane Doe protocol is given next.

A New Message Recognition Protocol with Self-recoverability 223

Alice’s internal state in the Jane Doe protocol is as follows:

– i, the session counter
– bi+1, the most recently accepted value of Bob’s hash chain (hence accept-

key(bi+1) has occurred already)
– a one-bit flag, to distinguish the program states A0 and A1.

Similarly, Bob’s internal state is:

– i, the session counter
– ai+1, the most recently accepted value of Alice’s hash chain (hence accept-

key(ai+1) has occurred already)
– a one-bit flag, to distinguish the program states B0 and B1.

Session i of the Jane Doe protocol:

A0 (Alice’s initial program state) Obtain mi (possibly from Eve), then
Commit-message(mi, i).
Compute di = MACai(mi).
Send (di,mi); goto A1.

A1 Wait for a message b′ (supposedly from Bob), then
If H(b′) = bi+1 then
Let bi := b′, accept-key(bi) and send ai. Let i := i− 1 and goto A0
else goto A1.

B0 (Bob’s initial program state) Wait for a message (di,mi), then send bi and
goto B1.

B1 Wait for a message a′ (supposedly from Alice), then
If H(a′) = ai+1 then
Let ai := a′ and accept-key(ai).
If MACa′(mi) = di then
Accept mi as authentic in session i
(else do not accept any message for session i).
Let i := i− 1 and goto B0
else goto B1.

Lucks et al. present the Jane Doe protocol in an extended abstract [4], and
prove its security in the full version of the paper [5]. The Jane Doe protocol
is proved to be secure given that the preimage resistance, second preimage re-
sistance, and unforgeability properties, and their hash chain equivalents, hold.
These properties are described in Section 4.

Although the Jane Doe protocol is provably secure, it nonetheless falls short in
case of a certain adversarial disruption. In particular, Eve can easily manipulate
one party to move forward to the next session, while the other party is still in
the previous session. In such a case, a party could get trapped in a state and
never be able to finish execution of a session; as a result, he or she remains stuck
in that state forever.

224 I. Goldberg, A. Mashatan, and D.R. Stinson

Figure 1 illustrates a situation where Bob is trapped by Eve in program state
B1. The condition in program state B1 fails since ai+1
= H(a′i). This will cause
Bob to stay in B1 waiting for a new ai. Now even if Alice sends him a legitimate
message mi, he will ignore it. Although this looks like a denial of service attack,
it is much stronger than that. Eve can go away and yet Alice and Bob are still
unable to communicate because Bob is trapped. The details of the disruption
are as follows.

Eve sends m′
i and d′i to Bob and he will automatically decrement his index

to i while Alice does not. Eve chooses a′i such that ai+1
= H(a′i), which will
make Bob wait for a new ai. While he is waiting for a new ai, he will not
accept a message of the form (mj , dj), for any j. Hence, even if Alice sends
him a legitimate message, he will ignore it. As a result, he is “trapped” in state
B1.

Lucks et al. suggest that Bob sends bi again after he has waited for too long
to receive the correct ai. However, when Alice has not initiated the session and
is not anticipating bi, it is not clear what she is supposed to do. Hence, this will
not help the protocol recover in case of this particular disruption.

Eve Bob

Choose random m′
i and d′

i.
m′

i, d′
i−−−−→ Move to the next time-frame upon reception of

the new message.
bi←−−−−

Choose a′
i such that ai+1
= H(a′

i).
a′

i−−−−→ Since ai+1
= H(a′
i), wait for a new ai.

Fig. 1. Eve “trapping” Bob in state B1

Eve can play the same trick with Alice and trap her in program state A1 for
an indeterminate period of time; Figure 2 illustrates this situation.

Alice Eve

Input (mi, Bob).
commit-message(mi, i).

Compute di = MACai
(mi).

mi, di−−−−→

Since bi+1
= H(b′i), wait for a new bi.
b′i←−−−− Choose b′i such that bi+1
= H(b′i).

Fig. 2. Eve “trapping” Alice in state A1

Once again, we note that this inability to recover is a problem since the adver-
sary does not need to continue her active involvement. She can leave the network
and yet Alice and Bob will no longer be able to have successful communication.
This renders the protocol unusable in practice.

A New Message Recognition Protocol with Self-recoverability 225

In the next section, we propose a message recognition protocol which attains
self-recoverability in case of the noted disruptions. It is in fact a highly nontrivial
task to modify the protocol to achieve self-recoverability. Because the entities
may be in additional “states”, depending on the information they possess and
its authenticity, the protocol is necessarily more complicated. As a consequence,
the security proof is more difficult.

3 A New Message Recognition Protocol

We describe the details of our proposed recognition protocol in this section,
while the security and recoverability analyses are postponed to the next session.
Although this protocol is based on the Jane Doe protocol proposed by Lucks
et al., the logic of the instructions of Alice and Bob has changed considerably.
Moreover, the information exchanged between Alice and Bob has changed as
well.

Note that each pair of users can execute this new protocol. However, as in
the Jane Doe protocol, there must be a different pair of hash chains for each
pair of communicating users. It is implicitly assumed that Alice and Bob are the
communicating parties in the rest of the paper.

The initialization phase and the setup of the hash chains are exactly as in
the Jane Doe protocol. The internal state of Alice includes (along with each
variable’s initial value):

– iA := n− 1: the position of Alice in her chain.
– iacceptA := n: the last index of Bob’s chain that was accepted by Alice.
– bA := bn: the last value of Bob’s chain that was accepted by Alice.
– M := Null: the input message to be authenticated in the current session.
– a one-bit flag, to distinguish the program states A0 and A1.

Similarly, Bob’s internal state is as follows:

– iB := n− 1: the position of Bob in his chain.
– iacceptB := n: the last index of Alice’s chain that was accepted by Bob.
– aB := an: the last value of Alice’s chain that was accepted by Bob.
– e′ := Null: the MAC value received in the current session, supposedly from

Alice.
– M ′ := Null: the message received in the current session, supposedly from

Alice.
– a one-trit flag, to distinguish the program states B0, B1, and B2.

Alice and Bob start in program states A0 and B0. We write commit-message
(M, iA) to indicate that Alice is committing herself to sending the message M
to Bob in session iA. We let T be the maximum amount of time Alice waits to
receive a response from Bob, and vice versa.

226 I. Goldberg, A. Mashatan, and D.R. Stinson

A0 is executed as follows:

If iA ≤ 0 then Abort.
Receive input (M) and commit-message(M, iA).
Compute eiA := MACaiA

(iA‖M).
Send [eiA ,M] to Bob and goto A1.

B0 is executed as follows:

If iB ≤ 0 then Abort.
Wait to receive [e′,M ′], then goto B1.

B1 has the following description:

Send [iB, biB] to Alice and goto B2.

A1 is performed in the following manner:

Wait at most time T to receive [i′B, b
′].

If [i′B, b
′] is received, then

If i′B = iacceptA and bA = b′ (Bob has not received the last flow of the
previous session) then

Let N := Null.
Send [iacceptA, aiacceptA , N] and goto A0.

If i′B = iA and bA = H(b′) then (Alice and Bob seem to be synchronized.)
Let N := M .
Send [iA, aiA , N] to Bob.
Let iacceptA := i′B, bA := b′ and iA := iA − 1. (Alice updates her
state.)
goto A0.

else Resend [eiA ,M] to Bob and goto A1.
If timeout then
Resend [eiA ,M] to Bob and goto A1.

B2 is performed as follows:

Wait at most time T to receive [i′A, a
′, N ′].

If [i′A, a
′, N ′] is received, then

If i′A = iB and aB = H(a′) then (Alice and Bob seem to be synchro-
nized.)

If N ′ = M ′ and e′ = MACa′(i′A‖M ′) then
Accept(M ′, iB).

else Accept(Null).
Let iacceptB := i′A, aB := a′ and iB := iB − 1. (Bob updates his
state.)
goto B0.

else goto B1.
If timeout, then goto B1.

A New Message Recognition Protocol with Self-recoverability 227

Alice Bob
Internal state: iA, iacceptA, bA, M Internal state: iB , iacceptB , aB , e′, M′

A0: B0:
If iA ≤ 0 then Abort. If iB ≤ 0 then Abort.
Receive (M) and commit-message(M, iA).
Compute eiA

:= MACaiA
(iA‖M).

Send [eiA
, M].

eiA
, M

−−−−−−−−→ Receive [e′, M′].

A1: B1:

Receive [i′B, b′].
iB, biB←−−−−−−−− Send [iB, biB

].

If i′B = iacceptA and bA = b′ then
Let N := Null.
Send [iacceptA, aiacceptA

, N] and goto A0.

If i′B = iA and bA = H(b′) then
Let N := M. B2:

Send [iA, aiA
, N].

iA, aiA
, N

−−−−−−−−→ Receive [i′A, a′, N′].

Let iacceptA := i′B , bA := b′, iA := iA − 1. If i′A = iB and aB = H(a′) then
goto A0. If N′ = M′ and e′ = MAC

a′ (i′A‖M′) then
else Resend [eiA

, M] and goto A1. Accept(M′, iB).
else Accept(Null).
Let iacceptB := i′A, aB := a′, iB := iB − 1.
goto B0.

else goto B1.

Fig. 3. Our Proposed Message Recognition Protocol (Common Case)

Figure 3 illustrates the main steps of this protocol. For simplicity, the instruc-
tions on what to do in case one party does not receive any response from the
other party is not included in the figure.

If either Alice or Bob receives a message that they did not expect, they are
going to ignore it. For instance, while Alice is in state A1 and is waiting to
receive a message of the form (iB, b), she is going to ignore messages of the form
(M ′) that request for a new session and correspond to state A0. Analogously,
when Bob is in state B2, he is waiting for a message of type iA, a,N . He is
going to ignore messages of the form e′iA

,M ′ since they correspond to state B0.
In general, each party only acts on received messages that have the expected
structure in accordance to their current program state.

When Alice is waiting in state A1 for Bob to respond, she is set to wait for
time T . If she receives a message i′B, b

′ in time T , then she processed it in state
A1, and otherwise, she resends eiA ,M to Bob. Similarly, Bob waits to receive
a message i′A, a

′, N ′, supposedly from Alice, for time T . If he does not receive
such a message, he resends iB, b to Alice.

Note that Eve can block the last flow of Alice, iA, a,N . In this case, Alice
has decremented her state, while Bob is waiting to receive iA, a,N , and possibly
resending iB, biB to remind Alice to send him iA, a,N . However, since Alice has
moved her state to A0, she will ignore Bob’s messages. This may appear to
be problematic since Bob is waiting for Alice. However, once Alice is ready to
authenticate a new message to Bob, she will be in program state A1 again, and
communication will resume.

228 I. Goldberg, A. Mashatan, and D.R. Stinson

4 Security of Our New Message Recognition Protocol

In this section, we begin by listing the required security properties of the hash
function H and the message authentication code MAC. Then, we consider dif-
ferent types of possible attacks against our protocol. Finally, we conclude with
a theorem which ensures the security of our protocol.

4.1 Security Assumptions

In this section, we list the security assumptions required for this protocol. These
definitions are notions defined by Lucks et al. [4].

Definition 1. Let secret y0, y1, . . . , yi and known yi+1 be chosen such that yi+1

= H(yi), yi = H(yi−1), . . . , y1 = H(y0). A hash function H is referred to as
a depth-i preimage resistant (i-PR) hash function when it is infeasible to
find y′ such that yi+1 = H(y′).

Definition 2. Let secret y0, y1, . . . , yi−1 and known yi, yi+1 be chosen such that
yi+1 = H(yi), yi = H(yi−1), . . . , y1 = H(y0). A hash function H is depth-i
second preimage resistant (i-SPR) when it is infeasible to find y′, y′
= yi,
such that yi+1 = H(y′).

Definition 3. Let secret y0, y1, . . . , yi and known yi+1 be chosen such that yi+1

= H(yi), yi = H(yi−1), . . . , y1 = H(y0). A message authentication code MAC is
depth-i existentially unforgeable if it is infeasible to mount an existential
forgery against MACyi in an adaptive chosen message attack scenario.

4.2 Single-Session Attacks

In this section, we consider attacks that are started and completed in a single
session. We assume that Eve has stayed passive all along and she becomes active
in the current session for the first time. In case of a successful attack, Bob will
accept some message M ′ in the same session, where M ′ is not Null and not the
message sent by Alice in that session. Since Eve has been passive before this
session, we will have iA = iB at the start of the session; we let i := iA = iB
for ease of reference. For the same reason, we have iacceptA = iacceptB = i + 1.
Furthermore, Alice and Bob will have accepted all the intended keys so far. That
is, aB = ai+1 and bA = bi+1.

We now want to exhaustively list all possible single-session attacks. We follow
the notation of [2] in referring to different orderings of the flows. In each attack,
the adversary sends a flow to either Alice or Bob and receives a flow in response.
This notation labels a flow by A if the recipient is Alice, or by B when the
recipient is Bob. For instance, the following attack scenario corresponds to the
attack type of ABAB:

A New Message Recognition Protocol with Self-recoverability 229

– A: Eve sends M to Alice and she responds with eiA ,M .
– B: Eve sends e′,M ′ to Bob and he replies with iB, biB .
– A: Eve sends i′B, b

′ to Alice and receives iA, aiA , N from her.
– B: Eve sends i′A, a

′, N ′ to Bob.

The number of distinct attacks against a three flow protocol is proved to
be
(
4
2

)

= 6 in [2]. These attacks are denoted AABB, ABBA, BABA, ABAB,
BBAA, and BAAB. We will look at these different attacks separately. We stress
that [2] formally proves this list to be an exhaustive list of all possible types of
attacks.

One can show that the BABA attack scenario can be reduced to the ABBA
attack. That is, if an adversary Oscar can mount a successful attack of type
BABA, then Eve can use Oscar and succeed in the ABBA attack scenario.
Similarly, we can show that the BAAB and ABBA attack scenarios are reduced
to the ABAB case. We outline these three reductions in the Appendix. It remains
to analyze the other three attack scenarios, namely AABB, BBAA, and ABAB.
We will reduce a successful adversary in these attacks to a player who can mount
a depth-i existential forgery or can find depth-i preimages or depth-i second
preimages.

Attack of Type AABB
Figure 4 depicts an attack of type AABB.

Alice Eve Bob

M←−−−−−−−−−−− A

eiA
, M

−−−−−−−−−−−→
i′B , b′←−−−−−−−−−−− A

iA, aiA
, N

−−−−−−−−−−−→

B
e′, M ′

−−−−−−−−−−−→
iB , biB←−−−−−−−−−−−

B
i′A, a′, N ′

−−−−−−−−−−−→

Fig. 4. Attack of Type AABB

If i′A
= iB, Bob will not accept any messages. Since iA = iB = i, Eve has to
set i′A := iA in order to succeed. Moreover, Alice reveals iA and aiA only if b′ is
verified; that is, if bA = H(b′) (note that bA = bi+1, as discussed before).

Eve first interacts with Alice and has to find b′ before seeing biB = bi. This
implies that she has found a preimage of bA = bi+1. This exactly translates to
the notion of i-PR defined in Def. 1.

230 I. Goldberg, A. Mashatan, and D.R. Stinson

Attack of Type BBAA
Figure 5 illustrates the attack of type BBAA.

Alice Eve Bob

B
e′, M ′

−−−−−−−−−−−→
iB , biB←−−−−−−−−−−−

B
i′A, a′, N ′

−−−−−−−−−−−→
M←−−−−−−−−−−− A

eiA
, M

−−−−−−−−−−−→
i′B , b′←−−−−−−−−−−− A

iA, aiA
, N

−−−−−−−−−−−→

Fig. 5. Attack of Type BBAA

Alice tries to deceive Bob before she starts interacting with Alice. In order to
succeed, Eve needs to present Bob with an a′ such that aB = H(a′), without
having seen aiA = ai (note that aB = ai+1, as discussed before). In other words,
she is trying to find a preimage of aB = ai+1. If Eve can successfully find such a
preimage, the she translates to a successful player who finds depth-i preimages,
as defined in Def. 1.

Attack of Type ABAB
Depicted in Fig. 6 is the ABAB attack.

Alice Eve Bob

M←−−−−−−−−−−− A

eiA
, M

−−−−−−−−−−−→

B
e′, M ′

−−−−−−−−−−−→
iB , biB←−−−−−−−−−−−

i′B , b′←−−−−−−−−−−− A

iA, aiA
, N

−−−−−−−−−−−→

B
i′A, a′, N ′

−−−−−−−−−−−→

Fig. 6. Attack of Type ABAB

A New Message Recognition Protocol with Self-recoverability 231

In this scenario, Eve receives biB = bi before she has to send b′ to Alice. We
analyze the two cases b′ = bi and b′
= bi separately.

If b′
= bi, then it implies that Eve has found a depth-i second preimage of
bA = bi+1.

Otherwise, b′ = bi. Alice will verify b′ = bi and reveal aiA = ai. Eve now has
two choices. She chooses a′ such that either a′ = aiA or a′
= aiA . If a′
= aiA ,
then she has found a depth-i second preimage of ai+1 = aB. On other hand, if
a′ = aiA , then for Eve to succeed, she must set N ′ := M ′ and she must have set
e′ := MACa′(i′A‖M ′) before learning a′. That is, Eve has successfully forged a
MAC. This reduces to the notion of depth-i existential forgery defined in Def. 3.

4.3 Multi-session Attacks

Having ruled out the possibility of single-session attacks, we now turn our at-
tention to multi-session attacks. Consider attack scenarios which occur over two
or more sessions. In such a case, the adversary becomes active in one session
and concludes her attack in one of the following sessions. In case of a successful
attack, Bob will accept M ′ in the last session of the attack, where M ′ is not
Null and not the message sent by Alice in that session.

Just before Eve becomes active, similar to the single-session attack scenario
discussed above, we must have iA = iB and iacceptA = iacceptB = iA + 1. We
again let i := iA = iB for ease of reference. Moreover, all of the intended keys
will have been accepted to this point, so as a result, aB = ai+1 and bA = bi+1.

We now assume that during session i, Eve becomes active by initiating a flow
with either Alice or Bob, or changing the information sent by them. Since we are
considering multi-session attacks, the attack should not entirely take place in one
session. As a result, Eve is not making Bob accept her message M ′ immediately
after she becomes active. The following three cases can happen once Eve becomes
active:

Case 1. Bob is not engaged right away. That is, Eve first interacts with Alice.
Case 2. Bob is engaged right away and he outputs the message M , sent by

Alice.
Case 3. Bob is engaged right away and he outputs Null.

We discuss each case separately.

Case 1. Let us assume that Eve first interacts with Alice and does not engage
Bob. In order for Alice to conclude her session, she must receive i′B, b

′ such
that i′B = i and bi+1 = H(b′). Otherwise, Alice will detect that something
is going on, hence, she will not reveal i, ai and, instead, will resend ei,M .
If Eve wants to remain undetected and be able to continue with her attack,
she needs to send i′B, b

′ such that i′B = i and bi+1 = H(b′). This means that
Eve has found a depth-i preimage of bi+1.

Case 2. Now assume that Bob is engaged and he outputs the message M , sent
by Alice. That is, on input (M), Alice has sent ei,M to Bob. Since Bob

232 I. Goldberg, A. Mashatan, and D.R. Stinson

accepts M at the end, it means that he, indeed, has received M in the first
flow. Moreover, for Bob to accept M , he must receive i′A, a

′, N ′ such that
i′A = i, ai+1 = H(a′), and N ′ = M . There are three different cases to
consider here.
– Not having received i, ai,M from Alice, Eve finds i′A, a

′, N ′ such that
i′A = i and ai+1 = H(a′). That is, she finds a depth-i preimage of ai+1.

– Having received i, ai,M from Alice, Eve finds i′A, a
′, N ′ such that i′A = i,

ai+1 = H(a′), and ai
= a′. That is, she finds a depth-i second preimage
of ai+1.

– Eve sets i′A, a
′, N ′ = i, ai,M . That is, Eve relays Alice’s last flow. Note

that Alice reveals her last flow only if she receives i′B, b
′ such that i′B = i

and bi+1 = H(b′). There are again three cases to consider here. Either
Eve has found a depth-i preimage of bi+1, she has found a depth-i second
preimage of bi+1, or she has relayed i, b faithfully. In the latter case, Eve
has faithfully relayed all messages, and this does not constitute an attack
by an active adversary. This contradicts our assumption that Eve first
becomes active in session i.

Case 3. Bob is engaged right away and he outputs Null. This means that he
has received and verified i′A and a′. There are again three cases to consider.
Either Eve has found a depth-i preimage of ai+1, or she has found a depth-i
second preimage of ai+1, or i′A and a′ are the correct i, ai as revealed by Alice.
In this last case, Alice and Bob have successfully remained synchronized, but
were unable to authenticate the messages they intended to authenticate.

The above discussion concludes that in the session immediately after Eve be-
comes active, she can only stop Alice and Bob from authenticating the intended
message, but she cannot bring them out of their synchronized states unless she
is able to solve the depth-i PR or depth-i SPR problems defined in Definitions 1
and 2. Moreover, if Alice and Bob are synchronized at the beginning of a session,
then they will end the session in a synchronized state, unless Eve is able to find
depth-i preimages or depth-i second preimages.

At the beginning of a multi-session attack, Alice and Bob are synchronized.
The above discussion implies that they remain synchronized until the very last
session of the attack. We can look at this last session of the attack separately
and think of it as a single-session attack. As a result, any multi-session attack
translates to a single-session attack, which were already ruled out in Section 4.2.

Note that the adversary can only exhaust Alice’s and Bob’s values of the hash
chain one at a time. That is, she can not make them jump more than one step
down the hash chain values.

4.4 Self-recoverability

In this section, we show that once Eve stops interfering with their message flows,
Alice and Bob will be able to resume successful communication of recognized
messages. Because we have already shown that Alice and Bob remain synchro-
nized in their i values throughout an active attack by Eve (under the security

A New Message Recognition Protocol with Self-recoverability 233

assumptions on H and MAC), we need only show that they do not get “trapped”
in a program state, as was the case in the Jane Doe protocol, for example.

We consider the possible combinations of program states which Alice and Bob
are in when Eve becomes passive. We first consider the case where Alice is in
state A1.

– If Alice is in A1 and Bob is in B0, then after time T , Alice will resend
[eiA ,M] to Bob, which will cause him to leave state B0, and the protocol
will continue.

– If Alice is in A1 and Bob is in B1, then Bob will send [iB, biB] to Alice
and advance to B2, which will cause her to send an appropriate message
to Bob, and herself return to A0. Bob will return to B0, though he may
Accept(Null) if Eve forged the M ′ which caused Bob to enter the B1 state.
This can of course only affect the first Accept after Eve’s interference, how-
ever.

– If Alice is in A1 and Bob is in B2, then Alice will be resending useless
messages to Bob, and staying in A1, but after time T , Bob will return to
B1, and we proceed as above.

If Alice is in A0, then no progress will be made until the next time she tries
to send a message to Bob. At that point, Alice will enter state A1, and the
analysis continues as above.

4.5 Main Theorem

The above discussion concludes the discussion of the security and self-
recoverability of the proposed message recognition protocol, and forms the proof
of the following theorem.

Security and Self-recoverability Theorem. A successful adversary against
the protocol of Section 3 who efficiently deceives Bob into accepting (M ′,i), where
M ′ is not Null and Alice did not send M ′ in session i, implies an efficient al-
gorithm that finds depth-i preimages or depth-i second preimages, or creates
depth-i existential forgeries. Moreover, the adversary cannot stop Alice and Bob
from successfully executing the protocol unless she is actively disrupting the com-
munication for the lifetime of Alice and Bob.

5 Comments and Conclusion

We briefly reviewed the definitions and the security model of message recogni-
tion protocols in the literature. We looked at the Jane Doe message recognition
protocol proposed by Lucks et al. [4] in more detail and described its inability
to recover in case of a certain adversarial disruption. In order to overcome the
recoverability problem of the Jane Doe protocol, we proposed a new message
recognition protocol, which is based on the Jane Doe protocol. This new proto-
col incorporates a resynchronization technique within itself and, hence, provides
self-recoverability. Finally, we formally proved the security of our protocol.

234 I. Goldberg, A. Mashatan, and D.R. Stinson

It should be noted that our new protocol is somewhat less efficient than the
Jane Doe protocol in that each message M is transmitted twice (in the first
flow, and again in the third flow of Figure 3). This would not be a problem if the
communication channel is inexpensive. However, it (roughly) doubles the power
consumption as compared to the Jane Doe protocol if messages are large. If this
creates a problem, it would be possible to modify our protocol by sending N =
H(M) in the third flow instead of N = M . Then Bob checks that N ′ = H(M ′)
instead of N ′ = M ′.

Acknowledgements

We would like to thank Natural Sciences and Engineering Research Council of
Canada (NSERC) and Mathematics of Information Technology and Complex
Systems (MITACS) for supporting this research.

References

1. Anderson, R., Bergadano, F., Crispo, B., Lee, J.-H., Manifavas, C., Needham, R.:
A new family of authentication protocols. In: ACMOSR: ACM Operating Systems
Review, vol. 32, pp. 9–20 (1998)

2. Gehrmann, C.: Multiround unconditionally secure authentication. Designs, Codes,
and Cryptography 15(1), 67–86 (1998)

3. Hammell, J., Weimerskirch, A., Girao, J., Westhoff, D.: Recognition in a low-
power environment. In: ICDCSW 2005: Proceedings of the Second International
Workshop on Wireless Ad Hoc Networking (WWAN), Washington, DC, USA, 2005,
pp. 933–938. IEEE Computer Society Press, Los Alamitos (2005)

4. Lucks, S., Zenner, E., Weimerskirch, A., Westhoff, D.: Entity recognition for sensor
network motes. In: GI Jahrestagung (2), pp. 145–149 (2005)

5. Lucks, S., Zenner, E., Weimerskirch, A., Westhoff, D.: Concrete security for entity
recognition: The Jane Doe protocol. In: Chowdhury, D.R., Rijmen, V., Das, A.
(eds.) INDOCRYPT 2008. LNCS, vol. 5365, pp. 158–171. Springer, Heidelberg
(2008)

6. Mashatan, A., Stinson, D.R.: A New Message Recognition Protocol For Ad Hoc
Pervasive Networks. In: Franklin, M.K., Hui, L.C.K., Wong, D.S. (eds.) CANS
2008. LNCS, vol. 5339, pp. 378–394. Springer, Heidelberg (2008)

7. Mashatan, A., Stinson, D.R.: Interactive two-channel message authentication based
on Interactive-Collision Resistant hash functions. Int. J. Inf. Secur. 8(1), 49–60
(2009)

8. Mashatan, A., Stinson, D.R.: Recognition in ad hoc pervasive networks. Technical
Report 2008-12, Centre for Applied Cryptographic Research (CACR), University
of Waterloo, Canada (2008)

9. Mitchell, C.J.: Remote user authentication using public information. In: Paterson,
K.G. (ed.) Cryptography and Coding 2003. LNCS, vol. 2898, pp. 360–369. Springer,
Heidelberg (2003)

10. Pasini, S., Vaudenay, S.: An optimal non-interactive message authentication proto-
col. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 280–294. Springer,
Heidelberg (2006)

A New Message Recognition Protocol with Self-recoverability 235

11. Weimerskirch, A., Westhoff, D.: Zero common-knowledge authentication for perva-
sive networks. In: Matsui, M., Zuccherato, R.J. (eds.) SAC 2003. LNCS, vol. 3006,
pp. 73–87. Springer, Heidelberg (2004)

A Reducing Three Single-Session Attacks

As was described in Section 4, Gehrmann [2] formally proves that there are
only six possible types of single-session attack against the protocol of Figure 3.
We analyzed the AABB, BBAA, and ABAB attacks in that section. Here we
examine the remaining three attacks: BABA, BAAB, and ABBA. The BABA
attack is reduced to the ABBA attack. Then, the ABBA attack is reduced to the
ABAB attack. Finally, the BAAB attack is also reduced to the ABAB attack.
This concludes the analysis of the six different attack scenarios.

A.1 Reducing the BABA Attack to an ABBA Attack

The ABBA attack scenario, depicted in Fig. 7, is as follows:

– A: Oscar sends M to Alice and receives eiA ,M from her.
– B: Oscar sends e′,M ′ to Bob and he sends iB, biB .
– B: Oscar sends i′A, a

′, N ′ to Bob.
– A: Oscar sends i′B, b

′ to Alice and she replies with iA, aiA , N .

Alice Oscar Bob

M←−−−−−−−−−−− A

eiA
, M

−−−−−−−−−−−→

B
e′, M ′

−−−−−−−−−−−→
iB , biB←−−−−−−−−−−−

B
i′A, a′, N ′

−−−−−−−−−−−→
i′B , b′←−−−−−−−−−−− A

iA, aiA
, N

−−−−−−−−−−−→

Fig. 7. Attack of Type ABBA

On the other hand, the BABA attack scenario, illustrated in Fig. 8, is as
follows:

– B: Oscar sends e′,M ′ to Bob and he sends iB, biB .
– A: Oscar sends M to Alice and receives eiA ,M from her.

236 I. Goldberg, A. Mashatan, and D.R. Stinson

Alice Oscar Bob

B
e′, M ′

−−−−−−−−−−−→
iB , biB←−−−−−−−−−−−

M←−−−−−−−−−−− A

eiA
, M

−−−−−−−−−−−→

B
i′A, a′, N ′

−−−−−−−−−−−→
i′B , b′←−−−−−−−−−−− A

iA, aiA
, N

−−−−−−−−−−−→

Fig. 8. Attack of Type BABA

– B: Oscar sends i′A, a
′, N ′ to Bob.

– A: Oscar sends i′B, b
′ to Alice and she replies with iA, aiA , N .

These two attack scenarios differ in the order of the first two steps and are
identical otherwise. In the BABA attack scenario, Oscar commits to e′ and M ′

before receiving eiA . Note that knowing eiA could possibly help him in choosing
e′. On the other hand, Oscar receives iB and biB before sending M . The adversary
knows the value of iB. Moreover, the choice of M is independent of the value of
biB . In other words, knowing biB is not going to help the adversary in choosing
M . Hence, if Oscar can win in the BABA attack scenario by first committing to
e′ and M ′ and then receiving eiA , then he can win the ABBA attack scenario
with the same values M,M ′, and e.

A.2 Reducing the ABBA Attack to an ABAB Attack

Recall the ABAB attack scenario from Section 4:

– A: Oscar sends M to Alice and receives eiA ,M from her.
– B: Oscar sends e′,M ′ to Bob and he sends iB, biB .
– A: Oscar sends i′B, b

′ to Alice and she replies with iA, aiA , N .
– B: Oscar sends i′A, a

′, N ′ to Bob.

The ABBA attack differs from the ABAB attack in the order of the last
two steps. In the ABAB attack, Oscar receives iA, aiA , N from Alice, and then
he has to send i′A, a

′, N ′ to Bob. Knowing iA, aiA , N can help him choose a
winning i′A, a

′, N ′, whereas in the ABBA attack scenario, Oscar sends i′A, a
′, N ′

before seeing iA, aiA , N . If Oscar has a winning strategy in the ABBA attack
scenario, then using the same values of i′A, a

′, N ′, he will win the ABAB attack
scenario.

A New Message Recognition Protocol with Self-recoverability 237

A.3 Reducing the BAAB Attack to an ABAB Attack

The BAAB attack scenario is as follows:

– B: Oscar sends e′,M ′ to Bob and he sends iB, biB .
– A: Oscar sends M to Alice and receives eiA ,M from her.
– A: Oscar sends i′B, b

′ to Alice and she replies with iA, aiA , N .
– B: Oscar sends i′A, a

′, N ′ to Bob.

Figure 9 depicts this attack.

Alice Oscar Bob

B
e′, M ′

−−−−−−−−−−−→
iB , biB←−−−−−−−−−−−

M←−−−−−−−−−−− A

eiA
, M

−−−−−−−−−−−→
i′B , b′←−−−−−−−−−−− A

iA, aiA
, N

−−−−−−−−−−−→

B
i′A, a′, N ′

−−−−−−−−−−−→

Fig. 9. Attack of Type BAAB

The analysis of this case is analogous to that of Section A.1. The BAAB
attack scenario differs from the ABAB attack scenario in the order of the first
two steps. In the BAAB attack scenario, Oscar has to commit to e′ and M ′

before seeing eiA . Although Oscar receives iB and biB before sending M , these
values are independent of the choice of M . That is, seeing biB is not going to help
the adversary in choosing M . Hence, a winning strategy in the BAAB attack
scenario reduces to a winning strategy in the ABAB attack scenario.

Breaking Two k-Resilient Traitor Tracing

Schemes with Sublinear Ciphertext Size�

MoonShik Lee, Daegun Ma, and MinJae Seo

Department of Mathematical Sciences and ISaC-RIM,
Seoul National University, Seoul, 151-747, Korea

{kafa04,madgun7,morion81}@snu.ac.kr

Abstract. In 2004, Matsushita and Imai proposed a k-resilient public-
key traitor tracing scheme which has sublinear ciphertext size 4k +
2 + (n/2k) with efficient black-box tracing against self-defensive pirates,
where n, k are the total number of subscribers and the maximum num-
ber of colluders. After that, in 2006, they presented a hierarchical key
assignment method to reduce the ciphertext size into 4k + 5 + log(n/2k)
by combining a complete binary tree with the former scheme.

In this paper, we show that the proposed schemes are vulnerable to
our attack which makes pirate keys able to avoid the black-box tracing.
Their schemes are based on multiple polynomials and our attack use a
combination between different polynomials. The latter scheme can be
broken by other attacks which use secret values of the key generation
polynomial or use partial keys.

Keywords: cryptanalysis, public-key traitor tracing, black-box tracing,
self-defensive pirates, linear attack.

1 Introduction

In modern times, enormous digital contents are transmitted over the various
media through encryption and they can be decrypted only by the legitimate
subscribers. But some of the subscribers may collude to make pirate decoders
and distribute them. In the traitor tracing schemes, at least one of the traitors
can be traced and this traceability is required in various contents delivery systems
such as satellite broadcast, DMB, pay-TV, DVD, online database and so on.

The first traitor tracing scheme was introduced by Chor et al. [3] in 1994,
which was inefficient and only the system manager could encrypt a message. In
1998, Kurosawa and Desmedt [5] proposed a polynomial based public-key tracing
scheme, where any data supplier could encrypt a message. In 1999, Boneh and
Franklin [1] proposed another public-key traitor tracing scheme with black-box
tracing algorithm, where the tracer could reveal at least one of the traitors
without opening the pirate decoder by using it as a black box.

� This research are partially supported by BK21 project and Korea Research Council
of Fundamental Science & Technology.

M. Abdalla et al. (Eds.): ACNS 2009, LNCS 5536, pp. 238–252, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

{kafa04,madgun7,morion81}@snu.ac.kr

Breaking Two k-Resilient Traitor Tracing Schemes 239

If a pirate decoder is able to detect a tracing, then it may take some reactions
such as erasing the key. In 2001, Kiayias and Yung [4] considered crafty pirates
and categorized them into four types, from type-0 to type-3, according to their
capabilities(resettable vs. history recording, available vs. abrupt). They also pro-
posed a generic tracing technique of hybrid colorings and schemes of type-2 and
type-3 tracing.

In 2004, Matsushita and Imai [6] proposed a k-resilient public-key traitor
tracing scheme with efficient black-box tracing against the type-2(resettable and
abrupt) pirate decoder. In this scheme, subscribers are split into �(= n/2k) sets
and a broadcaster transmits a header H with 4k + � + 2 elements, from which
each subscriber in the i-th subscriber set extracts a corresponding header Hi for
decrypting a session key. Although it has a limit of the collusion size k, they
argued that the scheme achieved the efficient black-box tracing with sublinear
ciphertext size.

In 2006, the same authors suggested another new idea of combining a tree
structure with the scheme of [6] to reduce the ciphertext size [7]. They posi-
tioned each subscriber set in the leaf node of a complete binary tree and assigned
several keys to a subscriber. They considered three methods of constructing the
key generation polynomial, and by the last method which is called a hierarchical
key assignment method, they could reduce the ciphertext size from 4k + � + 2
to 4k+ 5 + log �. Comparing with the fully resilient scheme [2] with 6

√
n header

size, this scheme is more efficient when k is not so large.

Our contribution. In this paper, we break the two k-resilient schemes of [6]
and [7], which have been the most efficient public-key black-box traitor-tracing
schemes. An important characteristic of their schemes is that they use multi-
ple polynomials which are interrelated. We newly introduce a variant of linear
attack of combining two polynomials to construct pirate keys which cannot be
traced. Furthermore, the latter scheme has another problem in adapting a tree
structure, which leads to untraceable piracy through the computation of secret
values or use of partial keys.

Organization. This paper is organized as follows. In Section 2, we briefly de-
scribe the schemes in [6] and [7]. In Section 3, we show our attack on the scheme
of [6]. In section 4, we point out that the three methods of [7] are broken by our
attack. Finally, in section 5, we conclude our paper.

2 Preliminaries

In this Section, we review the categorization of pirate decoders [4] and the
schemes of [6] and [7], which are the targets of our analyses.

2.1 Models of Pirate Decoders

In 2001, Kiayias and Yung [4] categorized pirate decoders by the following two
criterion.

240 M. Lee, D. Ma, and M. Seo

Resettable vs. history recording : Resettable decoders can be reset to their
initial state by the tracer after each test. History recording pirate decoders
remember the previous inputs and may use that information to detect the
tracing.

Available vs. abrupt(self-defensive) : Abrupt or self-defensive pirate de-
coders can take some counter-actions against the tracing if the decoder de-
tects it. Available pirate decoder is a device that does not take such reactions.

From this, they suggested the following 4 types of pirate decoders.

type 0: Available and resettable.
type 1: Available and history recording.
type 2: Abrupt and resettable.
type 3: Abrupt and history recording.

In the schemes of [6] and [7], they considered black-box traceability against
type-2 decoders, which would be simply expressed by type-2 tracing. Although
they didn’t state it explicitly, they also assumed that a tracer knew the reaction
mechanism, saying that the reaction was triggered once when a tracing was
detected.

2.2 Common Parameters of the Schemes

Let n, k denote the total number of subscribers and the maximum number of
colluders in a coalition, respectively. Let p, q be the primes s.t. q | p − 1 and
q ≥ n+2k. Let g be a qth root of unity over Z

∗
p and Gq be the subgroup of Z

∗
p of

order q. Let U be a set of subscribers (U ⊆ Z
∗
q). All of the participants agree on

p, q and g. Split U into � disjoint subsets U0, . . . ,U�−1. For notational simplicity,
we assume that |Ui| = 2k, Ui = {ut|2ki + 1 ≤ t ≤ 2k(i + 1)} for 0 ≤ i ≤ � − 1
and n = 2k�.

2.3 The Scheme of [6]

In 2004, Matsushita and Imai proposed an efficient type-2 black-box tracing
scheme with sublinear ciphertext size[6]. We briefly summarize this scheme in
different form with minor corrections. Let a valid input denote a header for the
normal broadcast and an invalid input denote a header for the black-box tracing.

Key generation. Choose a0, . . . , a2k−1, c0, . . . , c�−1 ∈R Zq and compute the
public key e by

e = (g, ga0 , . . . , ga2k−1 , gc0 , . . . , gc�−1).

The private key for a subscriber u ∈ Ui is generated as (u, i, fi(u)) where

fi(u) =
2k−1∑

j=0

ai,ju
j mod q, ai,j =

{

aj (j
= i mod 2k),
ci (j = i mod 2k). (1)

Breaking Two k-Resilient Traitor Tracing Schemes 241

Encryption. Select a session key s ∈R Gq and random numbers R0, R1 ∈R Zq.
Build a header H = (H0, . . . , H�−1) by repeating the following procedure for
0 ≤ i ≤ � − 1. Set ri ∈R {R0, R1}, and compute Hi = (ĥi, hi,0, . . . , hi,2k−1)
where

ĥi = gri , hi,j =
{
gajri (j
= i mod 2k),
sgciri (j = i mod 2k). (2)

Decryption. Suppose that u ∈ Ui. The subscriber u can compute the session
key s from Hi as follows,

⎛

⎝

∏2k−1
j=0 h uj

i,j

ĥ
fi(u)

i

⎞

⎠

1
ui

=

(

sui

∏2k−1
j=0 gai,jujri

gfi(u)ri

) 1
ui

= s.

Black-box tracing. For 1 ≤ t ≤ n, repeat the following procedure.
Set X := {u1, . . . , ut} as a set of revoked subscribers and ctrt = 0. Find
integers t1, t2 s.t. t = 2kt1 + t2 where 0 ≤ t1 ≤ � − 1 and 1 ≤ t2 ≤ 2k.
Repeat the following test m times. In each test, the session key s and R0, R1

are chosen randomly.
1. Build the header H = (H0, . . . , H�−1) through the following procedure.

A: If t2 = 2k, then choose ri ∈R {R0, R1} for 0 ≤ i ≤ �− 1.
A-a: For each 0 ≤ i ≤ t1, select a random number zi ∈R Zq,

compute Hi = (ĥi, hi,0, . . . , hi,2k−1) where

ĥi = gri , hi,j =
{
gajri (j
= i mod 2k),
gzi (j = i mod 2k). (3)

A-b: For each t1 < i ≤ �− 1, compute Hi in the same way as (2).

B: If t2
= 2k, then choose ri ∈R {R0, R1} for 0 ≤ i < t1 and set
rt1 = R1, ri = R0 for t1 < i ≤ �− 1.
B-a: For each 0 ≤ i < t1, compute Hi in the same way as (3).
B-b: For each t1 < i ≤ �− 1, compute Hi with ri = R0 in the same

way as (2).
B-c: For i = t1, let x1 := ut+1, · · · , x2k−t2 := u2k(t1+1) and choose

distinct random numbers xj ∈ Z
∗
q \ U for 2k − t2 < j ≤ 2k − 1.

Find d0, . . . , d2k−1 s.t.
∑2k−1

j=0 djx
j
α = 0 for all 1 ≤ α ≤ 2k − 1

and compute Hi = (ĥi, hi,0, . . . , hi,2k−1) where

ĥi = gR1 , hi,j =
{
gdj+ajR1 (j
= i mod 2k),
sgdi+ciR1 (j = i mod 2k). (4)

We call this step of B-c the fine revocation.

2. Give H to the pirate decoder and observe its output.
3. If it decrypts correctly, then increment ctrt by one. If a self-defensive

reaction is triggered, then decide that the subscriber ut is a traitor.
Finally, find an integer t s.t. ctrt−1 − ctrt is the maximum and then decide
that the subscriber ut is a traitor, where ctr0 = m.

242 M. Lee, D. Ma, and M. Seo

2.4 The Schemes of [7]

They applied the complete subtree method [8] to reduce the ciphertext size of
[6]. By considering a tree T with � leaves they interpreted the scheme of [6] as a
depth-1 case (Fig. 1(b)) and generalized it (Fig. 1(a)).

i12

i8

i0

U0

i1

U1

i9

i2

U2

i3

U3

i13

i10

i4

U4

i5

U5

i11

i6

U6

i7

U7

(a) A complete binary tree

i0

U0

i1

U1

i2

U2

i3

U3

i4

U4

i5

U5

i6

U6

i7

U7

(b) A tree of depth 1

Fig. 1. Structure of T (� = 8)

Let T be a complete binary tree with � leaves, NT be a set of the all nodes
except the root and LT (⊂ NT) be a set of leaf nodes. For a leaf node v ∈ LT , Uv

is a corresponding subscriber set and for a non-leaf node v ∈ NT \LT , we define
Uv =

⋃
Uw where w’s are the leaves of the subtree rooted at v. For a subscriber

u, let V (u) be a set of nodes corresponding to subscriber sets including u i.e.,
V (u) = {v ∈ NT |u ∈ Uv}. This definition can be naturally extended to the list
of subscribers such a way of V (u, v) = V (u) ∪ V (v). For a node v, we represent
the depth by δ(v) or just δ.

For notational simplicity, we number the nodes from 0 to 2�− 3 and identify
αth node with the index itself, i.e. we use the notation Uα := Uiα where iα ∈ NT .
For example, in Fig. 1(a), T has � = 8 leaves and NT = {0, . . . , 13}, LT =
{0, . . . , 7}, U8 = U0∪U1, for u1 ∈ U0 and u8k ∈ U3, V (u1) = {0, 8, 12}, V (u8k) =
{3, 9, 12} and V (u1, u8k) = {0, 3, 8, 9, 12}.

They considered two simple extension methods and proposed one resulting
method of constructing key generation polynomials. To indicate each method
we use the following notation.

Method 1. The first method of the simple extension,
Method 2. The second method of the simple extension,
Method 3. The third method of their resulting suggestion.

In the following, we summarize their methods. The differences between them
are originated from the way of defining the key generation polynomials. Since
they stated the full scheme only for the resulting method, so do we.

Key generation
Method 1. Polynomials are generated from a single system, i.e. for 0 ≤

v ≤ 2� − 3, fv(x) is defined by the equation (1) in the same way as
[6] as well as the public key e. The private keys of a subscriber u are

Breaking Two k-Resilient Traitor Tracing Schemes 243

represented as Ku = {(u, v, fv(u))|v ∈ V (u)} = {(u, v, fv(u)) | v ∈
NT s.t. u ∈ Uv}. For example, in Fig. 1(a), if u ∈ U0 then Ku =
{(u, 0, f0(u)), (u, 8, f8(u)), (u, 12, f12(u))}.

Method 2. Polynomials are generated from plural systems according to each
level, i.e., a f

(δ)
v (x) is generated from the δth system where v is a node at

depth δ. Let e(δ) be a public key corresponding to f
(δ)
v (x). The private

keys of a subscriber u are represented as Ku = {(u, v, f (δ)
v (u)) | v ∈

V (u)}.
Method 3. Choose ai, bi, cv, λv ∈R Zq for 0 ≤ i ≤ 2k−1 and 0 ≤ v ≤ 2�−3.

Compute a public key e as follows,

e = (g, ga0 , . . . , ga2k−1 , gc0 , . . . , gc2�−3 , gλ0 , . . . , gλ2�−3).

Define key generation polynomials, Av(x), B(x) as follows,

Av(x) =
2k−1∑

i=0

(av,i − λvbi)xi mod q, B(x) =
2k−1∑

i=0

bix
i mod q, (5)

where av,i is the same with the equation (1). The private key Ku of a
subscriber u is represented as Ku = {(u, v, Av(u), B(u)) | v ∈ V (u)}.

Encryption. Using the following Sel procedure, a broadcaster selects log � + 1
nodes and executes Encryption in the previous Subsection for the selected
nodes. For H = (Hv1 , . . . , Hvlog �+1), we denote the selected nodes by V (H).
For Method 2 and Method 3, it is required additional relations.
Sel. Select log �+ 1 nodes v1, . . . , vlog �+1 including two leaves which satisfy

the condition that
⊔log �+1

i=1 Uvi = U , where
⊔

means the disjoint union.
Note that only one node is selected for each level except the leaf nodes
and |V (u) ∪ V (H)| = 1 for any subscriber u and any header H .

Method 2. e(δ) is used as a public key when computing Hv where v is a
node at depth δ.

Method 3. For each v, h̄v = gλvrv is additionally included in Hv.

Decryption. This is described for only Method 3.
For a subscriber u and a header H , suppose that V (u) ∩ V (H) = v. Then
u computes the session key s by using (u, v, Av(u), B(u)) ∈ Ku from Hv as
follows,

⎛

⎝

∏2k−1
j=0 h uj

v,j

ĥ
Av(u)
v h̄

B(u)
v

⎞

⎠

1
uv

=

(

suv

∏2k−1
j=0 gav,jujrv

g(Av(u)+λvB(u))rv

) 1
uv

= s.

Black-box tracing. The procedure is similar to the Black-box tracing in the
previous Subsection except that log �+ 1 nodes are chosen in Sel procedure
and the fine revocation is executed only on a leaf node v ∈ V (H) ∩ LT . We
omit the detailed description.

244 M. Lee, D. Ma, and M. Seo

3 A Flaw on the Scheme of [6]

In [6], authors asserted that the black-box tracing algorithm would work for any
type-2 pirate decoder. In this Section we will show that this is not true by our
attack which is a variant of the linear attack. In particular, in the Theorem 2
they followed the logic:

If the subscriber ut is not a traitor, then a pirate decoder cannot dis-
tinguish an invalid input of X = {u1, . . . , ut−1} from an invalid input
of X = {u1, . . . , ut} and therefore ctrt−1 − ctrt � m/n, where m is the
number of tests for each X .

However, this logic has a flaw. This means that although ut is not a traitor,
ctrt−1 − ctrt > m/n may happen so that the black-box tracing outputs the
innocent subscriber ut as a traitor.

In the following Subsection, we show our attack as a variant of linear attack
on the proposed scheme. The linear attack was considered in [1,9] for k-resilient
schemes based on a polynomial of degree k. Suppose that colluders x1, . . . , xk

have private keys (x1, f(x1)), . . . , (xk, f(xk)) for a polynomial f(x) of degree k.
Then a linearly combined vector

(δ0, . . . , δk, Δ) := (
t∑

j=1

μj ,

t∑

j=1

μjxj , . . . ,

t∑

j=1

μjx
k
j ,

t∑

j=1

μjf(xj))

can be used as a key which is not traced, where μ1, . . . , μt ∈ Zq. To resist against
the linear attack, the schemes based on single polynomial have raised the degree
≥ 2k−1. However in the scheme of [6], there are multiple polynomials to be used
so that the circumstance is somewhat different. As this peculiar structure affects
the black-box tracing, a combination of the keys from different polynomials can
be used as a key which cannot be traced.

3.1 A Variant of Linear Attack

Suppose that 2 colluders x1 ∈ Ui, x2 ∈ Uj (i < j) collude to make a pirate key
Kp. Given two private keys (x1, fi(x1)), (x2, fj(x2)), they compute a pirate key

Kp = {Ki,j} := {(x1, x2, fi(x1) + fj(x2))}.

Note that

fi(x1) + fj(x2) =
2k−1∑

t=0
t
=i,j

at(xt
1 + xt

2) + (cix
i
1 + aix

i
2) + (ajx

j
1 + cjx

j
2).

In fact, each subscriber’s key (u, fi(u)) can be used as a vector (u, u2, . . . ,
u2k−1, fi(u)) in decryption phase, therefore we can also regard the pirate key
Ki,j as a vector

Ki,j = (x1 + x2, x
2
1 + x2

2, . . . , x
2k−1
1 + x2k−1

2 , xi
1, x

j
2, fi(x1) + fj(x2)).

Breaking Two k-Resilient Traitor Tracing Schemes 245

Proposition 1. For a given valid input, the pirate decoder with Kp of the above
form can compute a session key with probability 1

2 .

Proof. For a given valid input of H = (H0, . . . , H�−1), from the Hi, Hj , the
pirate decoder first computes1

γ := h
xi
1

i,i h
xi
2

j,i h
xj
1

i,j h
xj
2

j,j

= (sgciri)xi
1(gairj)xi

2(gajri)xj
1(sgcjrj)xj

2

= sxi
1+xj

2 · gcix
i
1ri+aix

i
2rj+ajxj

1ri+cjxj
2rj .

(6)

If ri = rj , then it can compute the session key by

⎛

⎜
⎝γ

2k−1∏

t=0
t
=i,j

h
xt
1+xt

2
i,t

/

ĥ
fi(x1)+fj(x2)
i

⎞

⎟
⎠

1
xi
1+x

j
2

=

⎛

⎜
⎝γ

2k−1∏

t=0
t
=i,j

(gatri)xt
1+xt

2

/

g(fi(x1)+fj(x2))ri

⎞

⎟
⎠

1
xi
1+x

j
2

= s.

(7)

Since each ri is chosen at random from {R0, R1} for valid inputs, the proba-
bility that ri = rj is 1

2 for any i
= j. ��

However, the pirate decoder with the decryption probability 1
2 may not be used

in many applications. For these cases we can also consider a pirate decoder with
the probability 1 which can be made by 3 colluders. Suppose that 3 colluders x1 ∈
Ui, x2 ∈ Uj , x3 ∈ Uk(i < j < k) with a pirate key Kp = {Ki,j ,Ki,k,Kj,k}. Since
a broadcaster selects ri, rj , rk randomly from {R0, R1} to build a valid input, at
least two values of them coincide, therefore the pirate decoder with this key can
compute a session key with probability 1 according to the Proposition 1.

3.2 Probability of Untraceability

We now consider the probability that the pirate decoder with a pirate key
Ki,j (i < j) can decrypt the invalid inputs for the given revocation set X .
Note that in the black-box tracing algorithm, the tracer uses this probability to
decide whether a traitor is included in the X or not. Since the black-box algo-
rithm requires the gradual increment of the revoked subscriber set X , we assume
that X = {u1, . . . , ut}2, where t = 2kt1 + t2 for 0 ≤ t1 ≤ �− 1 and 1 ≤ t2 ≤ 2k.

Let Prt denote the probability that the pirate decoder computes a session key
correctly from the invalid inputs H for X = {u1, . . . , ut}. We consider a pirate
key Ki,j made by two colluders x1 ∈ Ui, x2 ∈ Uj (i < j) at first. Note that the

1 For easy reading, we drop the ‘mod 2k’ in the second subscript of h.
2 In the black-box tracing phase, a tracer can determine the order of subscriber set to

be revoked as well as the order of subscriber to be revoked in a given subscriber set.

246 M. Lee, D. Ma, and M. Seo

[A-b] and the [B-b] steps are the same as the valid inputs. Then, according
to the case in the tracing algorithm, the probability Prt for each 1 ≤ t ≤ n
becomes:

1. If X ∩ Ui = ∅ and t2
= 2k, then Prt = 1,
since Hi and Hj are computed according to [B-b] and ri = rj = R0.

2. If X ∩ Ui = ∅ and t2 = 2k, then Prt = 1
2 ,

since Hi and Hj are computed according to [A-b] and ri, rj are chosen from
{R0, R1} randomly.

3. If ∅
= X ∩ Ui
= Ui and X ∩ Uj = ∅ then Prt = 0,
since Hi = (gR1 , gd0+a0R1 , . . . , sgdi+ciR1 , . . . , gd2k−1+a2k−1R1) is computed
according to [B-c] and Hj is computed according to [B-b] with rj = R0, it
becomes ri
= rj .

4. If X ⊃ Ui then Prt = 0,
since Hi is computed according to [A-a] or [B-a] and hi,i = gzi, so the
pirate decoder cannot decrypt the session key.

Observe that the Prt does not decrease so that their black-box algorithm
does not work. However, since the probability vanishes from t = 2ki+1, a tracer
can know that the first traitor x1 is positioned in Ui, but cannot know who the
traitor is exactly.

Theorem 1. For the pirate decoder with a pirate key Ki,j by two colluders x1 ∈
Ui and x2 ∈ Uj (i < j), they cannot be traced with the probability 1− 1

2k .

Proof. It is clear from the above argument. Since there are 2k subscribers in Ui,
the probability that x1 can be pointed out as a traitor is 1

2k . ��

We now consider a pirate decoder from 3 colluders, x1 ∈ Ui, x2 ∈ Uj, x3 ∈ Uk

where i < j < k with 3 combined keys Kp = {Ki,j ,Ki,k,Kj,k}. Then since
ri, rj , rk ∈R {R0, R1}, there must be at least one pair that the random numbers
coincide. So, this pirate decoder can always decrypt the valid inputs correctly.
The probability that this pirate decoder can decrypt the invalid inputs correctly
will be:

1. If X ∩ Ui = ∅, then Prt = 1, since
(a) If t2
= 2k then Hi, Hj , Hk are computed according to [B-b] and ri =

rj = rk = R0, so it decrypts all such H correctly.
(b) If t2 = 2k then according to [A-b] there is one pair that the random

numbers coincide, so it decrypts all such H correctly.

2. If X ∩ Ui
= ∅ and X ∩ Uj = ∅, then
(a) If t2
= 2k then Prt = 1, since Hj , Hk are computed according to [B-b]

and rj = rk = R0.

Breaking Two k-Resilient Traitor Tracing Schemes 247

(b) If t2 = 2k then Prt = 1
2 , since hi,i = gzi according to [A-a], and Hj , Hk

are computed according to [A-b] and the probability that rj = rk is 1
2 .

3. If ∅
= X ∩ Uj
= Uj and X ∩ Uk = ∅, then Prt = 0,
since according to [B-a], [B-b] and [B-c], hi,i = gzi in Hi and Hj , Hk are
computed by rj = R1 and rk = R0 respectively.

4. If X ⊃ Uj , then Prt = 0,
since according to [B-a], hi,i = gzi in Hi and hj,j = gzj in Hj .

Observe that a tracer can know in which subscriber set Uj the second traitor
x2 is positioned, but cannot know who the traitor is exactly. From this we can
obtain the similar result that this pirate decoder from 3 colluders cannot be
traced with the probability 1− 1

2k . We skip the explanations on the cases that
more than 3 colluders attend the piracy.

4 Flaws on the Scheme of [7]

In [7], to decrease the ciphertext size, the authors considered a complete binary
tree and bound each subscriber set Ui to a leaf node for 0 ≤ i ≤ � − 1. Then
they considered three methods of defining key generation polynomials for each
node. They argued that the first simple extension method was insecure against
collusion attack through solving linear equations3, the second simple extension
method was just inefficient from the viewpoint of the header size and the last
hierarchical key assignment method was efficient and secure. However, all of their
arguments were flawed.

In this Section, we will show what flaws they have; (1) they are also vulnerable
to our attack as shown in Section 3, (2) there is an easy way of extracting secret
values which can be used for decryption and (3) there is a structural flaw of easy
construction of a non-traceable pirate key.

4.1 A Variant of Linear Attack on the Hierarchical Key Assignment
Methods

The first and third methods are also vulnerable to our attack as shown in Sec-
tion 3. Now consider a case of 2 colluders x1 and x2. Suppose that x1 and x2

are positioned at the left child and right child node of the root, respectively,
or equivalently V (x1) ∩ V (x2) = ∅. For the case of V (x1) ∩ V (x2)
= ∅, we
will introduce different types of attacks in the following Subsections. To avoid
unnecessary repetitions, we describe our attack just on the third method.

3 But this argument is incorrect. They missed the fact that there had to be sufficiently
many linearly independent equations, not just equations. By considering the rank of
the corresponding matrix, this can be shown easily.

248 M. Lee, D. Ma, and M. Seo

Each subscriber has log � keys, which are on the path between a leaf node and
the child node of the root. The colluders x1 and x2 have their keys,

{(x1, i, Ai(x1), B(x1))|i ∈ V (x1)},
{(x2, j, Aj(x2), B(x2))|j ∈ V (x2)}.

To apply our attack, we assume that the pirate decoder computes all the possible
combinations of Ki,j into the pirate key as follows.

Kp = {Ki,j|i ∈ V (x1), j ∈ V (x2)}.

However, only some parts are necessary. For example, in Fig. 1(a), if x1 ∈ U2

and x2 ∈ U5 then they need only 4 keys of {K2,13,K9,13,K12,5,K12,10}, since
the other combinations of i, j cannot be included in V (H) at once.

Proposition 2. For a given valid input, the pirate decoder with Kp of the above
form can compute a session key with probability 1

2 .

Proof. This is similar to the Proposition 1. For a given header H , let V (H) ∩
V (x1) = i and V (H) ∩ V (x2) = j. Since V (x1) ∩ V (x2) = ∅ implies i
= j, the
combined key for this case, Ki,j can be obtained as follows,

Ki,j := (x1+x2, x
2
1+x2

2, . . . , x
2k−1
1 +x2k−1

2 , xi
1, x

j
2, Ai(x1)+Aj(x2), B(x1), B(x2)).

Note that

Ai(x1) + Aj(x2) =
2k−1∑

t=0
t
=i,j

at(x1 + x2)t + (cix
i
1 + aix

i
2) + (ajx

j
1 + cjx

j
2)

− λiB(x1)− λjB(x2).

(8)

The pirate decoder computes

γ = h
xi
1

i,ih
xi
2

j,ih
xj
1

i,jh
xj
2

j,j

= sxi
1+xj

2 · gcix
i
1ri+aix

i
2rj+ajxj

1ri+cjxj
2rj .

If ri = rj , then it can compute the session key by

⎛

⎜
⎝γ

2k−1∏

t=0
t
=i,j

h
xt
1+xt

2
i,t

/

ĥ
Ai(x1)+Aj(x2)
i h̄

B(x1)
i h̄

B(x2)
j

⎞

⎟
⎠

1
xi
1+x

j
2

=

⎛

⎜
⎝γ

2k−1∏

t=0
t
=i,j

(gatri)xt
1+xt

2

/

g(Ai(x1)+Aj(x2)+λiB(x1)+λjB(x2))ri

⎞

⎟
⎠

1
xi
1+x

j
2

= s.

(9)

For valid inputs, since each ri is chosen from {R0, R1} at random, the prob-
ability that ri = rj is 1

2 for any i
= j. ��

Breaking Two k-Resilient Traitor Tracing Schemes 249

Similarly to the Theorem 1, this pirate key cannot be traced with high probabil-
ity. Note that we still consider two colluders x1 and x2 who are in the left and
right child of the root, respectively.

Theorem 2. For the pirate decoder with a pirate key Kp of the above form by
two colluders, they cannot be traced with the probability 1− 1

2k .

Proof. It is similar to the proof of Theorem 1, but since the key which is used
for decryption varies for each header H , the precise description is somewhat
complicated. Let V (x1)∩LT = i and V (x2)∩LT = j, then i < j. The probability
Prt for each 1 ≤ t ≤ n becomes: Let v := V (H)∩V (x1) and w := V (H)∩V (x2).

1. If X ∩ Ui = ∅ and t2
= 2k, then Prt = 1.
Given a header H for each X , since rv = rw = R0, it can decrypt the H
using Kv,w.

2. If X ∩ Ui = ∅ and t2 = 2k, then Prt = 1
2 .

For the nodes v, w, since rv and rw are randomly chosen from {R0, R1}, the
probability of rv = rw is 1

2 , thus Prt = 1
2 .

3. If ∅
= X ∩ Ui
= Ui and X ∩ Uj = ∅ then Prt = 0.
Since Ui where i is the leaf node is being finely revoked, ri = R1 and rw = R0,
thus Prt = 0.

4. If X ⊃ Ui then Prt = 0.
Since hv,v = gzv , Prt = 0.

Note that their black-box tracing algorithm also doesn’t work for this pirate
decoder. But by checking the probability of zero, a tracer can know the Ui which
includes x1, but cannot know who a traitor is exactly. From this we can conclude
that the colluders of the pirate decoder cannot be traced with the probability
1− 1

2k . ��

Similar to the case of [6], we can still raise the probability of decryption on
the valid inputs to 1 by 3 colluders. But this collusion are also related to the
vulnerabilities which are argued in the next Subsections and from them the
decryption probability can be 1 only by 2 colluders, we don’t need to describe
such collusion attacks.

4.2 Extraction of Secret Values

In this Subsection, we consider another attack which is applicable to the first
and third methods by two and three colluders, respectively. The vulnerabilities
also come from the structural problem that a subscriber has several keys from
similar polynomials.

More precisely, a subscriber receives log � keys, but each couple of the key
generation polynomials have the same coefficient except for two or three terms.
By subtracting the polynomials with each other, 2 or 3 colluders can compute
some secret values which should be kept securely. Since the procedure of extract-
ing the secret values is similar in the first and third methods, we describe the
procedure only on the third method.

250 M. Lee, D. Ma, and M. Seo

Consider that three colluders x1, x2 and x3 are in the same subscriber set
corresponding to a leaf node. They are commonly included in the log � sets. For
each Ui and Uj s.t. i, j ∈ V (x1) = V (x2) = V (x3) and i < j, they can set up the
following system of equations.

⎧

⎨

⎩

Ai(x1)−Aj(x1) = (ci − ai)xi
1 + (aj − cj)x

j
1 − (λi − λj)B(x1)

Ai(x2)−Aj(x2) = (ci − ai)xi
2 + (aj − cj)x

j
2 − (λi − λj)B(x2)

Ai(x3)−Aj(x3) = (ci − ai)xi
3 + (aj − cj)x

j
3 − (λi − λj)B(x3)

(10)

By solving this system of equations, they can compute ci−ai for all i in V (x1).
For a valid input H and the node i s.t. i = V (H) ∩ V (x1), if there is another
node t ∈ V (H) s.t. ri = rt, they can obtain the session key by computing

hi,i/ht,i

ĥci−ai

i

=
s · gciri/gairt

(gri)ci−ai
= s, (11)

where hi,i, ĥi are from Hi and ht,i is from Ht.
Note that the probability that there is such an additional node t ∈ V (H) is

1− 2
2log �+1 = 1− 1

� . This is because that a broadcaster selects log �+1 nodes and
each rv for v ∈ V (H) is chosen in {R0, R1} at random. So, the pirate decoder
with the following secret values

Kp = {ci − ai|i ∈ V (x1)}

can compute a session key correctly with high probability.
For example, in Fig. 1(a), let x1, x2, x3 ∈ U0 be colluders, they also belong

to U8,U12, then {0, 8, 12 ∈ V (x1) = V (x2) = V (x3)}, they can solve the above
system of equations and obtain ci − ai for i ∈ {0, 8, 12}.

In this attack, since these values do not contain any information of the traitors,
the tracer cannot find the identities of the traitors.

4.3 Constructing a Non-traceable Key Using Partial Keys

Although a tree-based tracing scheme has many good properties, the approach of
combining the scheme of [6] with a tree structure has a critical vulnerability. This
defect is related to the requirement of the Sel procedure of Encryption phase,
so that it is applicable to all methods.

In the black-box tracing algorithm, in order to identify a traitor, one leaf
node should be selected for the fine revocation. But this requirement has a flaw
that if the colluders make a pirate key only with their keys corresponding to
non-leaf nodes, then they can evade from the tracing algorithm. Furthermore, to
achieve the minimum ciphertext size, the scheme requires a special form of node
selection in the Sel procedure. If we follow the original Sel procedure, a tracer
must take two subscriber sets corresponding to sibling leaf nodes of size 2k, one
set of size of 4k, . . . , one set of size n

2 corresponding to a child of the root node.
Note that the nodes of i2�−4 and i2�−3 are left and right child of the root node.

Consider two colluders x1 ∈ U2�−4 and x2 ∈ U2�−3, i.e. they are in the left and

Breaking Two k-Resilient Traitor Tracing Schemes 251

right side of the tree T , respectively. They construct a pirate key Kp by collecting
their keys corresponding to the nodes of depth 1. Then, for a valid input H , since
there should be one node of depth 1 in the V (H), the pirate decoder can always
decrypt it using one of two keys. Since there are n

2 subscribers in each U2�−4 or
U2�−3, they can be (almost) perfectly untraceable.

This simple but powerful attack is possible since the Sel always select a node
of depth 1. One way of evading from this attack is to increase the number of
selected nodes in the Sel procedure at the cost of efficiency. But this trial also
fails by the following observations.

Since a subscriber should be able to decrypt valid inputs all the time and the
height of the tree T should not be 1, we can find essential requirements of the
Sel procedure as follows.

⋃

v∈V (H)

Uv = U , V (H) \ LT
= ∅. (12)

We consider two colluders x1 and x2 who are not in the sibling leaf nodes.
They construct a pirate key Kp by collecting all their keys corresponding to non-
leaf nodes. For example, in Fig. 1(a), suppose that two colluders x1 ∈ U1, x2 ∈ U2

for the third method, then a pirate key can be

Kp = {(x1, 8, A8(x1), B(x1)), (x1, 12, A12(x1), B(x1)), (x2, 9, A9(x2), B(x2))}.

Proposition 3. For any valid input H through the Sel procedure satisfying the
conditions (12), the pirate decoder with Kp of the above form can always compute
a session key.

Proof. Note that if the decoder has a key corresponding to the node v included
in V (H) then it can decrypt the H . For a subscriber u, the first condition of (12)
can be rewritten as V (H) ∩ V (u)
= ∅. If we denote the nodes corresponding to
the Kp by V (Kp), then it is V (Kp) = (V (x1) ∪ V (x2)) \ LT . Therefore,

V (H) ∩ V (Kp) = ((V (H) ∩ V (x1)) ∪ (V (H) ∩ V (x1))) \ LT

= (V (H) ∩ V (x1) \ LT) ∪ (V (H) ∩ V (x2) \ LT) .

This becomes empty only when V (H) intersects at leaves with V (x1) and V (x2)
at once. But since the two leaf nodes corresponding x1 and x2 are not siblings
and the leaf nodes of V (H) should be siblings, this set cannot be empty. From
this, it is straightforward to decrypt a valid input all the time with the Kp. ��

Since the keys corresponding to leaves are removed from the Kp, the untraceable
probability is at least 1− 1

4k . From the point of view of the pirate decoder, it is
better to construct the pirate key Kp using the keys corresponding to the nodes
of small depths. The above proposition shows that for all the Sel procedures
which satisfy the conditions of (12), it is possible to construct a pirate decoder
which can decrypt valid inputs with probability 1 but cannot be traced with the
probability at least 1− 1

4k .

252 M. Lee, D. Ma, and M. Seo

5 Conclusion

In 2004, Matsushita and Imai proposed an efficient k-resilient public-key black-
box traitor tracing scheme against self-defensive pirates, and in 2006, the same
authors proposed a hierarchical key assignment method to reduce the ciphertext
size by combining a complete binary tree with the former scheme. In this paper,
we showed that the proposed schemes were vulnerable to our attack and it
was possible to make an untraceable pirate decoder. Their schemes were based
on multiple polynomials and our attack used a combination between different
polynomials. The latter scheme also had a structural problem that we could
exploit to deduce different types of attacks.

Although this paper is concentrated on breaking these schemes, we would like
to remark that their contributions are still significant. In their schemes, there
are many features to be discussed more, which were not explained in detail even
in the original papers. In fact, we started this research from studying the work of
[6]. After all, we happened to know that there were many delicate problems and
they resolved some of them by novel ideas. Including modifying their schemes to
resist our attacks, there still remain some problems to be resolved. We believe
that much understanding of their schemes will lead us to some significant advance
in the public-key black-box traitor tracing area.

References

1. Boneh, D., Franklin, M.: An Efficient Public Key Traitor Tracing Scheme. In:
Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 338–353. Springer, Hei-
delberg (1999)

2. Boneh, D., Sahai, A., Waters, B.: Fully Collusion Resistant Traitor Tracing with
Short Ciphertexts and Private Keys. In: Vaudenay, S. (ed.) EUROCRYPT 2006.
LNCS, vol. 4004, pp. 573–592. Springer, Heidelberg (2006)

3. Chor, B., Fiat, A., Naor, M.: Tracing traitors. In: Desmedt, Y.G. (ed.) CRYPTO
1994. LNCS, vol. 839, pp. 257–270. Springer, Heidelberg (1994)

4. Kiayias, A., Yung, M.: On Crafty Pirates and Foxy Tracers. In: Sander, T. (ed.)
DRM 2001. LNCS, vol. 2320, pp. 450–465. Springer, Heidelberg (2002)

5. Kurosawa, K., Desmedt, Y.: Optimum Traitor Tracing and Asymmetric Scheme.
In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 145–157. Springer,
Heidelberg (1998)

6. Matsushita, T., Imai, H.: A Public-Key Black-Box Traitor Tracing Scheme with
Sublinear Ciphertext Size against Self-Defensive Pirates. In: Lee, P.J. (ed.)
ASIACRYPT 2004. LNCS, vol. 3329, pp. 260–275. Springer, Heidelberg (2004)

7. Matsushita, T., Imai, H.: Hierarchical Key Assignment for Black-Box Tracing with
Efficient Ciphertext Size. In: Ning, P., Qing, S., Li, N. (eds.) ICICS 2006. LNCS,
vol. 4307, pp. 92–111. Springer, Heidelberg (2006)

8. Naor, D., Naor, M., Lotspiech, J.: Revocation and Tracing Schemes for Stateless
Receivers. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 41–62. Springer,
Heidelberg (2001)

9. Stinson, D., Wei, R.: Key Preassigned Traceability Schemes for Broadcast Encryp-
tion. In: Tavares, S., Meijer, H. (eds.) SAC 1998. LNCS, vol. 1556, pp. 144–156.
Springer, Heidelberg (1999)

Tracing and Revoking Pirate Rebroadcasts

Aggelos Kiayias� and Serdar Pehlivanoglu�

Computer Science and Engineering, University of Connecticut
Storrs, CT, USA

{aggelos,sep05009}@cse.uconn.edu

Abstract. All content distribution systems are vulnerable to the attack
of rebroadcasting: in a pirate rebroadcast a pirate publishes the content
in violation of the licensing agreement. This attack defeats any tracing
mechanism that requires interaction with the pirate decoder for identify-
ing compromised keys. Merely tracing pirate rebroadcasts is of little use
and one should be also able to revoke the involved traitor keys. The only
currently known scheme addressing this issue is implemented as part of
the Advanced Access Content System (AACS) used in Blu-Ray and HD-
DVD disks. In this paper we perform an analysis of this construction and
we find it has serious limitations: the number of revocations is bound by
the size of the receiver storage (for the actual parameters reported this
is merely 85 keys).

We address the limitations of the state of the art (i) by formally mod-
eling the problem of tracing and revoking pirate rebroadcasts and (ii) by
presenting the first efficient constructions of tracing and revoking pirate
rebroadcasts that are capable of performing tracing for unlimited num-
bers of traitors and revoking unlimited numbers of users. We present three
instantiations of our framework: our first construction achieves a linear
communication overhead in the number of revoked users and traitors
and is capable of eliminating a pirate rebroadcast by any number of
traitors in time that depends logarithmically in the number of users and
polynomially on the number of revocations and traitors. Our second con-
struction assumes a fixed bound on the number of traitors and improves
the elimination time to depend only logarithmically on the number of
revocations. Both of these constructions require merely a binary mark-
ing alphabet. Our third construction utilizes a larger marking alphabet
and achieves even faster pirate rebroadcast elimination; our analysis im-
proves the previously known bound for the same alphabet size due to
Fiat and Tassa from Crypto’99 while offering revocation explicitly.

1 Introduction

In the broadcast encryption setting a center broadcasts content to a number
N of receivers. The center wishes to utilize the broadcast medium in such a
way so that it can revoke at will any subset of size R from the population of
receivers for any transmission. This requirement makes it impossible to hand the
� Research partly supported by NSF Awards 0447808, 0831304, 0831306.

M. Abdalla et al. (Eds.): ACNS 2009, LNCS 5536, pp. 253–271, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

254 A. Kiayias and S. Pehlivanoglu

same key to all receivers. The two trivial solutions to the broadcast encryption
problem exhibit the trade-off between the receiver storage requirement and the
ciphertext length. In the first trivial solution, each receiver obtains a personal
key and subsequently the center can use the broadcast medium to simulate a
unicast by transmitting a (vector) ciphertext of length N−R. While this solution
is optimal from the receiver storage point of view, it wastes a lot of bandwidth.
In the second trivial solution the center assigns a different key for any subset
of receivers and each receiver is handed the keys for all the subsets it belongs
to. In this case the ciphertext has optimal length but each receiver is required
to store 2N−1 keys which is an exponential blow-up. Since the introduction of
the first non-trivial scheme in [13] a number of subsequent works gave solutions
exhibiting improved trade-offs [11,16,17,28]. Notably, [29] introduced the subset-
cover framework that enabled the first schemes with ciphertext length linear in
the number of revoked users R that allow unlimited revocations.

While revocation is an operation of critical importance, it is not sufficient for a
content distribution system. Malicious receivers may obtain access to their keys
(e.g., by reverse engineering their decoders) and then leak their key material to
a “pirate.” The pirate subsequently can construct a decoder that employs all
these keys. The adversarial receivers in this setting are called traitors. A traitor
tracing scheme [7] is a scheme that was suggested to deal with this problem:
in a traitor tracing scheme, the center possesses the capability to interact with
a pirate decoder and recover the identities of the traitors. Presumably after
identification such traitors can be revoked. A number of subsequent works in
[4,9,12,22,23,24,26,27,30,32,34,35,36,38,39,40] designed improved traitor tracing
schemes and related codes dealing with this problem which has also being called
the “clone decoder attack”.

Combining the two functionalities of tracing and revoking in a single system
is not straightforward. This was identified in [31] and Naor, Naor and Lotspiech
[29] introduced trace and revoke schemes that are capable of offering a com-
bined functionality that can deal with the problem of disabling pirate decoders.
Subsequent work in the subset-cover framework of [29] gave better constructions
[2,15,18,19,41] while also limitations were discovered in the form of a type of
attacks called pirate evolution in [25].

Employing Trace and Revoke Schemes in practice. It should be noted that all
trace and revoke schemes rely on multiple encryptions of the same plaintext
under different keys something that suggests that they are not suitable for direct
encryption of large messages. Given that the intended application scenario is
content distribution it is expected that an encryption mechanism would have to
handle large messages. The way this is solved is by employing hybrid encryption:
the trace and revoke scheme is used to encrypt a one-time content key K and
subsequently the content is appended encrypted with the key K.

The Pirate Rebroadcast Attack. The scenario of pirate rebroadcast attacks in the
context of traitor tracing was introduced by Fiat and Tassa, [14]. In this scenario,
the traitors first decrypt the content by using their key material and then once

Tracing and Revoking Pirate Rebroadcasts 255

it is in clear text form, they rebroadcast the content1. In the hybrid encryption
setting described above the attack is even worse: they can simply publish the
content key K thus avoiding bulky uploads to online storage systems or other
distribution mechanisms for content. Clearly a trace and revoke scheme would
be useless against a pirate rebroadcast attack: the center is entirely powerless
in handling such an attacker as the output of the rebroadcast itself provides no
information about the traitor keys.

A solution to this problem would be feasible by employing watermarking tech-
niques (e.g., such as those of [10]) so that the content itself becomes varied over
the user population. As before the trivial solution would be marking the content
individually so that each user has its own copy. As it was the case for broadcast
encryption this solution wastes too much bandwidth. There are essentially two
techniques known in the literature for obtaining non-trivial solutions that relax
the bandwidth requirement: one is dynamic traitor tracing [14] and the other is
sequential traitor tracing [33,21]. The idea in both cases is similar: the center
will induce a marking of content and by observing the feedback from the pirate
rebroadcast it will identify the traitors (refer to figure 1 for an illustration). The
two methods differ in the following way: in the former, after each transmission
the center obtains the feedback and tries to localize the suspect list by reassign-
ing the marks adaptively. The number of traitors is not known beforehand and
the system adjusts itself after each feedback. In the latter setting, the assignment
of marks to the variations is predetermined (hence the transmission mechanism
is not adaptive to the feedback). Note that depending on the parameters used,
it may take a number of transmissions till the system converges and identifies
one traitor.

Fig. 1. The model for tracing a pirate rebroadcast attacker

1 This attack has also being called the “anonymous attack” in [21,20]. We opt for
calling it pirate rebroadcast instead given that we find it more descriptive of the
adversarial action it describes; the same term was also used in the original paper
[14]. Moreover, “anonymity” is a heavily overloaded term in the computer security
literature and adding another connotation to it perhaps should be best if it is avoided.

256 A. Kiayias and S. Pehlivanoglu

Tracing and Revoking Pirate Rebroadcasts. In the above techniques that dealt
with pirate rebroadcast attacks, the tracing mechanism does not provide a revo-
cation capability. This is an important concern as it is not straightforward how to
add revocation on top of either dynamic traitor tracing or sequential traitor trac-
ing. To see why the straightforward approach fails suppose one decides to cascade
a broadcast encryption at the decoder level with, say, a sequential traitor tracing
scheme by composing the two encryption functions. This means that legitimate
decoders will have to possess independent sets of keys from both schemes, i.e.,
one set of keys for the encryption/decryption involved in the sequential traitor
tracing that binds the marked content to a receiver and one set of keys for the
encryption/decryption involved in the broadcast encryption. It is easy to see
that a pirate possessing the key material of as few as two traitor users can evade
revocation at the decoder level by simply employing the keys of one user for
decrypting the sequential traitor tracing layer and the keys of the other user
for decrypting the broadcast encryption layer. In this attack scenario, the se-
quential traitor tracing scheme will successfully recover the identity of one of
the traitors but subsequently revoking the recovered user will have absolutely
no effect in the decryption capability of the pirate decoder (which will continue
to operate due to the fact that it is using the broadcast encryption keys of the
second uninidentified user).

It follows that any realistic solution for the problem of pirate rebroadcasts
would require the design of a scheme that is capable of dealing with both tracing
and revocation at the same time; failure of attaining these defensive properties
simultaneously would make any scheme unusable in practice. The only known
scheme offering both functionalities is implemented as part of the AACS [1] (and
it also appears in [20]). The AACS is the current standard for content distribution
that is employed in Blu-Ray and HD-DVD’s. In this work we observe that the
scheme employed in [1,20] has serious limitations (see below).

Our Results. In the present work we formally model the primitive of tracing and
revoking pirate rebroadcasts and we present the first constructions that are
capable of tracing and revoking an unlimited number of users. We also present a
security and performance analysis of the only previously known scheme [20] and
we find that the maximum number of revocations is bounded the receiver storage
and the maximum traitor collusion that can be traced without false accusations is
similarly bounded. Moreover, we provide a general design framework for tracing
and revocation in the pirate rebroadcasting setting that permits a lot of flexibility
in the choice of the basic parameters. The basic parameters of trace and revoking
scheme for pirate rebroadasts is the communication overhead which is the amount
of replication necessary in order to transmit a key, the rebroadcast bound which
is the maximum number of transmissions a rebroadcasting pirate can “survive”
before it is being entirely revoked in the system, and the marking alphabet which
refers to the number of different variants of the content that the distribution
center should create.

We present a number of instantiations of our design framework. Our first
construction employs merely a binary marking alphabet and can withstand an

Tracing and Revoking Pirate Rebroadcasts 257

unlimited number of traitors and revocations. The communication overhead is
additively linear in the number of revoked users R and the number of traitors
t. It follows that the communication overhead grows linearly in the number of
malicious users; the constant hidden in the asymptotic notation is very small
(it is 2R + 4t in the worst case). The pirate rebroadcast bound on the other
hand is quadratic in the communication overhead and depends only logarithmi-
cally in the total number of users. This construction can thus keep on tracing
and revoking arbitrary number of users with the only penalty of an extended
rebroadcast bound as revocations accumulate. Our second construction also em-
ploys a binary alphabet and imposes a bound w on the size of the maximum
traitor coalition. This enables us to improve the maximum pirate rebroadcast
bound to depend on logarithmically in the number of revoked users (while being
polynomially bounded on w). Finally our third construction improves further on
the rebroadcast bound by employing a larger marking alphabet size of 2t + 1
where t is the number of traitors; the bound is O(t log(N/t)) and thus improves
on the previously known convergence bound of O(t logN) for dynamic traitor
tracing that was given by Fiat and Tassa [14] for the same alphabet size while
offering revocation explicitly (while [14] offered tracing that relied on revocation
without specifying how revocation is actually done).

Comparison with the AACS. The Advanced Access Content System (AACS)
[1] is the current standard for content scrambling of Blu-Ray disks and HD-
DVDs. It offers the functionality of a trace and revoke scheme (in fact it employs
a variation of the subset-difference method of [29]) and it also offers a trace
and revoking mechanism for pirate rebroadcasts (chapter 4 of [1], known as the
“sequence key block”) that was also detailed in [20]. While the subset-difference
tracing and revocation mechanism is better understood much less attention has
been given to the tracing and revocation for pirate rebroadcasts component of
AACS. We perform an analysis based on the parameters suggested in [20] and
we find that a maximum number of 85 revocations can be performed. Moreover,
even if the parameters of [20] are variated to accomodate more revocations the
scheme will suffer by a bound of the number of revocations that is limited by
the number of stored keys in a receiver. Given that key assignment needs to
be performed at system setup time this suggests that the approach taken in
[20] has inherent limitations in terms of the number of revocations it allows.
Moreover, the approach is also limited in terms of the maximum number of
traitors that can be identified: the underlying traceability code suggested in [20]
can identify at most 9 traitors. In fact, this is true even if a brute-force search
is performed to try all possible coalitions (cf. section 4). Potentially this can be
improved by a probabilistic analysis as suggested in [20] but in all cases once
the number of traitors exceeds 9 the system has the potential to accuse innocent
users. In contrast, the set of schemes we present here enjoy unlimited number of
revocations and impose no bound on the number of traitors.

In our system, the device stores another layer of key system to process the
key used to encrypt the watermarked content. In our setting, it is possible to
have two devices with two different device keys, while at the same time, they

258 A. Kiayias and S. Pehlivanoglu

obtain the same variant of the content. This has additional advantages as follows:
In the AACS setting, the devices should update their key materials after 85
revocations. In many settings such update is impossible, e.g. in a DVD player
case where the device is sold as an hardware in the market. In our system there
is no need for such an update since a modified transmission block can account
for all revocations needed.

Finally, it is possible to implement our construction in the AACS context using
only the keys that are already present in the devices due to the implementation
of NNL [29] without using any extra key material as it would be required for
implementing the sequence key block method of [20].

2 Trace and Revoke Schemes for Pirate Rebroadcasts

A trace and revoke scheme T for pirate rebroadcasts consists of four procedures
〈Init,Transmit,Receive,Revoke〉. The parameters of the scheme are N , the number
of users, and q the number of symbols in the transmission alphabet Σ. The
scheme T is stateful and is parameterized by a set of states denoted by States.
We define the four procedures below.

– Init. It is a probabilistic procedure that given 1N it produces a set system
〈N,J , {Iu}u∈N〉, where N = {1, . . . , N}, J ⊆ 2N and Iu ⊆ J for all u ∈ N
as well as an initial state σ0 ∈ States× 2J .

– Transmit. It is a probabilistic procedure that given a state σ ∈ States × 2J

and (optionally) a feedback symbol f ∈ {1, . . . , q} it produces a new state
σ′ ∈ States× 2J and a subset of J ×Σ.

– Receive. It is a procedure that given Iu for some u ∈ N and a subset of
J ×Σ, it returns a symbol in Σ or ⊥.

– Revoke. It is a procedure that given a state σ ∈ States× 2J and a set R ⊆ N
it returns a new state σ′ ∈ States× 2J .

Intuition. The four procedures in a trace and revoke scheme T for pirate rebroad-
casts play the following role in an actual system instantiation. The Init procedure
produces J which corresponds to the set of keys in the system and the sets Iu

which determine the key assignment for each user u, i.e., each user u ∈ N will
receive a set of keys corresponding to the set Iu. It also produces the initial
state σ0 = 〈state0,V0〉. The set V0 is the set of keys that are initially revoked
in the system (typically V0 = ∅). The procedure Transmit possibly receives some
feedback symbol f ∈ Σ (originating from a pirate rebroadcast) and produces a
subset J of J × Σ that determines the way that the content should be trans-
mitted. In particular for each (j, s) ∈ J the system will transmit the encryption
under the key j ∈ J of a version of the content marked with symbol s ∈ Σ. The
Receive procedure will produce an accessible marking symbol given the content
transmission and the keys of the user (note that in an actual implementation this
procedure involves the identification of the watermark produced by a decoder).
Finally Revoke updates the state of the system taking into account the set of
revoked users R.

Tracing and Revoking Pirate Rebroadcasts 259

Next we define the correctness properties that are required from a trace and
revoke scheme for pirate rebroadcasts.

Definition 1. Correctness. For each of the four procedures of a trace and
revoke scheme for pirate rebroadcasts we have a corresponding correctness prop-
erty:
Initialization Correctness. For all R ⊆ N it holds that there exist j1, . . . , jv ∈ J
for some v ∈ N such that Iu ∩ {j1, . . . , jv}
= ∅ for all u ∈ N \ R.
Transmitting Correctness. For any σ = 〈state,V〉 it holds that Transmit(σ, f)
returns a state σ′ = 〈state′,V ′〉 and a set J = {(j�, s�)}v

�=1 ∈ J × Σ, that
satisfies the property Iu
⊆ V ′ if and only if ∃j ∈ Iu \ V ′ such that (j, s) ∈ J for
some s ∈ Σ.
Receiving Correctness. For any J = {(j�, o�)}v

�=1 ∈ J ×Σ, it holds that Receive
(Iu, J) picks any element of the set {s ∈ Σ | ∃(j, s) ∈ J where j ∈ Iu}, or
returns ⊥ if this set is empty.
Revocation Correctness. For any σ = 〈state,V〉 it holds that Revoke(σ,R) returns
a state σ′ = 〈state′,V ′〉 such that Iu ⊆ V ′ for all u ∈ R.

Remarks on correctness. The correctness definition for the initialization property
ensures that for any set of revoked users R it holds that we can find a set of keys
j1, . . . , jv such that a user that is not revoked (i.e., u ∈ N \ R) has at least one
key among j1, . . . , jv. This requirement can be relaxed to hold only with very
high probability over all possible choices for set systems on N users or it may
be required to hold only for sets of revoked users that are bounded by some
parameter r. Such relaxations may impact the system operation as they will
hinder the exclusion of certain sets of users or introduce a failure probability in
user revocation. Moreover, we note that the recovery of j1, . . . , jv given R should
be done efficiently for a system to be useful in an applied setting.

The transmission correctness definition ensures that the subset J that is se-
lected by Trasmit will enable a user that holds at least one unrevoked key to
recover at least one symbol from the transmission alphabet. We note that an un-
revoked user may recover many such symbols. The receiving correctness property
specifies that the Receive function should choose one of the transmission symbols
that the user can recover from a transmission or return ⊥ in case that no symbol
is accessible to the user. This would happen in case when all keys Iu of a certain
user u have been included in the set V that holds the set of revoked keys in the
state of the system. Finally, the revocation correctness given a set of users to be
revoked it includes all their keys into the set of revoked keys V .

Next we proceed to define the security aspects of a trace and revoke scheme
against pirate rebroadcasts. We first define our notion of an adversary which is
a pirate rebroadcast:

Definition 2. Pirate Rebroadcast. A pirate rebroadcast of length n for a
scheme T starting at state σb with respect to a set K ⊆ J is a random vari-
able 〈f1, . . . , fn〉 over Σn that is subject to the constraint for all i = 1, . . . , n,
there exists (j, s) ∈ J such that s = fi and j ∈ K where (σb+i, J) is distributed
according to Transmit(σb+i−1, fi−1) and f0 = ε.

260 A. Kiayias and S. Pehlivanoglu

In the above definition the set K is the set of keys that are available to the
adversary. This may include the set Iu of all keys of a user u. A pirate rebroadcast
consists of those symbols that are accessible to the adversary based on the way
the system is choosing to transmit different symbols to subsets of users. Observe
that any user in the system may produce pirate rebroadcasts of arbitrary length
as long as its keys are not revoked (i.e., become part of the V set inside the
system state).

Now we define the security property that needs to be satisfied by a trace and
revoke scheme for pirate rebroadcasts. It states that any coalition of malicious
users (or traitors) can only produce pirate rebroadcasts of a bounded length with
high probability. This effectively means that the scheme is capable of identifying
the source of a rebroadcast and over a number of transmissions eliminate it. The
security property will be in the form of a bound μ that will specify the maximum
number of transmissions a traitor coalition can withstand. The bound μ will be
a function of the number of users N , the number of traitors t and the number
of already revoked users R.

Definition 3. Traceability of Pirate Rebroadcasts. We say that a scheme T
satisfies (μ,w)-traceability against pirate rebroadcasts with probability ε provided
that the following holds: for any set of t traitors T ⊆ N with t ≤ w and any set
of revoked users R it holds that, if B is the length of any pirate rebroadcast that
starts at state σ with respect to the set of keys K = ∪u∈TKu, then Pro[B ≤ μ] ≥
1− ε. The probability distribution is taken over all states σ distributed according
to Revoke(σ0,R) where σ0 is the initial state of the scheme as produced by Init.
The parameter μ depends on N, t,R, log(1

ε).

We define μ-full-traceability against pirate rebroadcasts when there is no bound
w in the number of traitors. We remark that our tracing and revoking schemes for
pirate rebroadcasts do not mandate the identification of the traitor users. This is
because our aim is to eliminate any pirate rebroadcast that our system is given
as feedback even if this rebroadcast does not uniquely identify a traitor. Observe
that eventually, if the pirate keeps using the traitor key material available to
it, all traitors will be revoked and hence they will be identified (but of course
a pirate may stop rebroadcasting before that). This analysis approach is in line
with the trace & revoke schemes of [29].

Communication Overhead. The communication overhead ψ of a scheme T is
the amount of replication the scheme employs in order to trace the rebroadcasts.
In order to measure the impact of both revocation and tracing on the communi-
cation overhead we will consider the case of a pirate rebroadcast generated by t
users that occurs after the revocation of R users. In particular the communica-
tion overhead ψ of the scheme T will be a function of N, t,R that bounds from
above the size of all sets J that are produced by Transmit following any pirate
rebroadcast with respect to the set of the keys of any t traitors that start at
state σ where σ ← Revoke(σ0,R) and R is any set of R users.

Tracing and Revoking Pirate Rebroadcasts 261

3 Our Construction

Preliminaries. A subset cover scheme SCS = (N,J ,Cover(·), Split(·, ·)) is a
class of combinatorial design introduced in [29] that can be used for constructing
key revocation methods. Note that N = {1, . . . , N}, J ⊆ 2N. Cover(·) is a
function that given a set of users R ⊆ N, it outputs a collection of subsets
{Si1 , . . . , Siv} ⊆ J , that is called a “broadcast pattern” or simply pattern and
denoted by P such that N\R =

⋃v
j=1 Sij . All subsets in Cover(N\R) are disjoint.

Split(·, ·) is a function that given a broadcast pattern P = {Si1 , . . . , Siv} and a
set of disjoint subsets T ⊆ J it splits each subset of P ∩T evenly (based on the
“bifurcation property” of [29]) and returns an updated broadcast pattern that is
derived from P by replacing the subsets P ∩ T with their splittings. If a subset
in P ∩ T cannot be split it will simply be removed by Split(·, ·).

A fingerprinting code is a pair of algorithms (CodeGen,Tracing) that is defined
as follows: CodeGen is a probabilistic algorithm that is given input (n, ν, w, q)
where ν = log(1

ε) and ε is a security parameter, and it outputs a code C of n
codewords overΣ� where |Σ| = q (we refer to such codes as (�, n, q)-codes) as well
as a tracing key tk. Tracing is an algorithm that, informally, if c is constructed by
a traitor coalition of size at most w by combining their codewords, it identifies at
least one of the traitors with high probability. The fingerprinting code is called
“open” if tk is empty.

The construction. We first describe our construction at a high level. In the
initialization stage, we define the keys of all users based on a subset cover sheme.
Upon detecting a pirate rebroadcast we will take advantage of the splitting
property of the subset cover scheme and derive a pattern covering the active users
that includes two or more subsets. Each subset in the pattern will be assigned
potentially different symbols following a fingerprinting code that will be selected
on the fly. After a sufficient number of transmissions (that matches the length of
the code) the sequence of feedback symbols will form a pirate codeword and by
applying the tracing algorithm of the fingerprinting code on it we will identify
a subset that contains some traitors. This process will be repeated recursively
until all the traitors are identified or the rebroadcast ceases. An illustration of
this process is presented in figure 2.

We next describe our construction in more detail. We define the set of states of
our scheme first: a state is a pair (state,V) such that (i) state ∈ States consists of
a pattern P ⊆ J of keys, an instance of a fingerprinting code (CodeGen,Tracing)
and a message transmission index m, and (ii) V ⊆ J such that the following
holds: u is such that Iu
⊆ V if and only if (Iu ∩ P) \ V
= ∅. Intuitively, V
contains the keys of all revoked users and P is a set of disjoint subsets whose
corresponding keys enable the transmission of content to the users who are not
revoked.

– Init. Given 1N , it produces a subset cover scheme SCS = (N,J ,Cover(·),
Split(·, ·)) which defines the set system 〈N,J , {Iu}u∈N〉 by setting Iu to
contain all S ∈ J such that u ∈ S. State σ0 = 〈state0,V0〉 is initialized as
follows: V0 = ∅ and state0 consists of the triple (P , FC, 0) that is selected as

262 A. Kiayias and S. Pehlivanoglu

Fig. 2. Illustration of tracing and revoking a pirate rebroadcast with our construction

follows (i) P = Cover(N), (ii) FC ← CodeGen(|P|, ν, w, q), i.e., FC = (C, tk)
where C is a (�, |P|, q)-code and tk is the corresponding tracing key. Note
that each key index Sj ∈ P is associated to a unique codeword yj ∈ C for
j = 1, . . . , |P|.

– Transmit. Given the current state of the system σp−1 = 〈statep−1,Vp−1〉
and a feedback symbol f ∈ Σ, the system state is first updated to σp =
〈statep,Vp〉. The update of the system is done as follows: the previous mes-
sage transmission index m and the set of keys P are pulled out from σp−1.
If m < � where � is the length of the code C = (�, |P|, q) in statep−1 then
m is increased by one and the feedback symbol f is stored. Otherwise (if
m = �), we need to update the broadcast pattern P . This is done as follows:
the feedback values of all the � recent transmissions are used to define a
codeword a ∈ Σ� and then a set of subsets T ⊆ P is identified as follows: we
compute B = Tracing(a, tk) and define T as Sj ∈ T iff yj ∈ B (here we use
the 1-1 correspondence between the pattern subsets and codewords in C).
Then the broadcast pattern is updated by calling P ′ = Split(P , T). A new
fingerprint code C′ should be sampled now to support as many codewords
as the size of new broadcast pattern P ′ using CodeGen as described in the
initialization step. The message transmission index m is set to 1. Vp is set
to Vp−1 ∪ {Iu | ∃Sj ∈ T where Sj = {u}}. This completes the description of

Tracing and Revoking Pirate Rebroadcasts 263

the state update operation. After the state update the transmission function
proceeds to select the set J ⊆ J ×Σ.
This is done as follows: the triple (P , FC,m) is pulled out from σp. Then the
subset J is defined to include all pairs (Sj , yj[m]) for j = 1, 2, . . . |P| where
yj [m] denotes the m-th symbol of the codeword yj ∈ C.

– Receive. Given Iu for some u ∈ N and J ⊆ J ×Σ, the procedure finds a pair
(j, s) ∈ J such that j ∈ Iu and returns s. If no such pair exists it returns ⊥.

– Revoke. Given the current state σp−1 = 〈statep−1,Vp−1〉 and a set R, a new
pattern P is selected as Cover(N\ (R∪Rp−1) where Rp−1 = {u | Iu ⊆ Vp−1}.
Subsequently, a new state statep is formed by selecting a new fingerprinting
code FC ← CodeGen(|P|, ν, w, q). The procedure returns 〈statep,Vp〉 where
statep = (P , FC, 0) and Vp = Vp−1 ∪ (∪u∈RIu).

Proposition 1. The construction presented above satisfies correctness accord-
ing to definition 1.

Analysis of the construction. We next analyze the efficiency and security
parameters of our construction. We first should examine in more depth the way
the pattern updating algorithm Split(·, ·) operates. Without loss of generality we
will instantiate our construction using for the underlying subset-cover scheme
SCS the Subset-Difference method of [29]. The analysis is similar if another
subset-cover scheme is being used such as those of [2,15,18,19,41]. We prove the
following regarding the efficiency parameters of our construction:

Theorem 1. The communication overhead ψ of our construction starting at
state σ ← Revoke(σ0,R) where σ0 is the initial state of the scheme as produced
by Init satisfies ψ ≤ 2|R|+ 4t where t is the number of traitors.

For an illustration of how our construction works in combination with the subset-
difference method we refer to figure 3 in the appendix. Next we present the
analysis of the pirate rebroadcast bound for our construction.

Picking a Fingerprinting Code. The choice of the underlying fingerprinting
code is flexible. It is possible to pick totally different codes in each stage (after a
subset has been identified as containing a traitor) or keep the same code through-
out. Moreover, this choice will be reflected in the deciphering process within the
content transmission, hence the choice of fingerprinting code is independent from
the keys stored in the device. The code is used to simply restructure the marking-
assignment logically, by reassigning a subset to a new codeword.

A crucial difference regarding the selection of the fingerprinting code in our
setting when compared to previous mechanisms that are employing some trace-
ability or fingerprinting code, is that in our setting we only need codes with a
number of codewords proportional to the number of revoked users and active
traitors as opposed to the whole population. In contrast, previous works strived
to produce codes with a number of codewords equal to the population size given
a fixed small number of revoked users or traitors. Due to this important fact,
we are able to employ fingerprinting codes that allow for arbitrary traitor col-
lusions such as those presented in [6,40] without hurting the efficiency of our

264 A. Kiayias and S. Pehlivanoglu

Fig. 3. Depiction of tracing a traitor following a pirate rebroadcast it produces using
our construction (while employing the Subset-Difference method for key assignment)

construction and thus we can trace and revoke an unlimited number of traitors.
We note that “picking a code” is not a computationally intensive operation as
the codes we need can be sampled very efficiently or can be available in the form
of a codebook and it is an operation that happens at the center and does not
affect the complexity of the honest devices in any way.

Traceability of Pirate Rebroadcasts. The Tracing algorithm over the code
C that is employed in the Transmit function will identify a subset containing a
traitor with high probability. This is because of the fact that the codewords of C
are assigned to subsets of devices, i.e., the detection of a “traitor” from the Tracing
algorithm is now equivalent to finding a subset that contains a traitor. Once such a
subset is found, this subset will be split into 2 subsets taking advantage of the Split
function. The updated set of users, i.e the subsets in the new partition, will be reas-
signed new codewords from possibly a fresh fingerprinting code. Observe that the

Tracing and Revoking Pirate Rebroadcasts 265

Tracing algorithm of the fingerprinting code substitutes the “walking” argument
that was employed in previous traitor tracing schemes (cf. [8,4,23,29]) that pro-
gressively randomized the pattern ciphertext till a position is identified that the
pirate-box fails to decrypt successfully. This mechanism was the the basic proce-
dure which tests a pirate box that is successful in decrypting with a given pattern
by using some special tracing ciphertexts to output a subset containing a traitor.
We note that such walking arguments cannot be used in our setting since they
would require transmitting “garbage” to a subset of legitimate receivers, some-
thing that is unacceptable in the content distribution setting. This problem is not
present in the previous works mentioned since they assume that they can analyze
the pirate decoder in isolation from the transmission system (something impossi-
ble in the stronger adversarial setting we consider here).

We next analyze the convergence of our construction, i.e., the number of
transmissions required to eliminate a pirate rebroadcast. At any system state
σp with a set of revoked users R with R = |R| and a set of t subsets known
to contain traitors, the number of subsets in the broadcast pattern covering
the enabled set of users will be a function of R and t. Assuming that Subset
Difference method of [29] is used, the size of broadcast pattern would be at most
2R + 4t as shown in Theorem 1. The pirate rebroadcast bound would depend
on the tracing algorithm over the code C of size O(R + t). We observe that it
will require O(logN) stages to identify at least one traitor as this is the height
of the Subset-Difference tree. Based on this we show the following:

Theorem 2. Consider a set of traitors T with |T| = t, a set of revoked users
R with |R| = R. If σ is a state distributed according to Revoke(σ0,R) then the
length of any pirate rebroadcast starting at σ is O(� · t · logN) with probability
1− t · logN · ε′ where � is the length of the fingerprinting code used to instantiate
the scheme and ε′ the failure probability of the associated Tracing algorithm.

Note that the dependency of μ in R is through the fingerprinting code length
�. Moreover, if there is a bound w on the number of traitors (i.e., t ≤ w) this
parameter will also appear as a function of �. The proof is straight forward, length
� is required to detect at least one subset that contains a traitor. Identification
of a single traitor requires at most logN new code selections. Identification of
all traitors will then yield the bound given in the theorem. The actual pirate
rebroadcast bound μ will depend on the choice of the code.

(Instantiation 1). In our first instantiation of the framework we use the optimal
codes of [40] in conjunction to the subset-difference subset cover set system of
[29]. This provides for a communication overhead ψ = O(R+t) due to theorem 1
and a rebroadcast bound μ = O(t(R + t)2 logN · log((R + t)t logNε−1)), where
R is the number of revoked users, t the number of traitors, N the number of
users and ε the error probability. The bound follows from theorem 2 and the
fact that the length of Tardos’ codes is O(n2 log(n/ε)) where n is the number
of codewords (that in our setting matches the communication overhead). Note
that this scheme tolerates an unlimited number of traitors and revocations.

266 A. Kiayias and S. Pehlivanoglu

(Instantiation 2). Our second instantiation employs again Tardos’ codes but
assuming an upper bound on the number of traitors w. This provides for code
length of O(w2 logn/ε) and given that in our setting we have that n is the number
of codewords that should be equal to the communication overhead using theo-
rem 2 we obtain a rebroadcast bound of O(tw2(logN) log((R + t)t logNε−1))),
i.e., with only logarithmic dependency on the number of revocations in the
system.

(Instantiation 3). In our third instantiation we will take advantage of an in-
creasing marking alphabet (instead of binary as in the previous two construc-
tions). This will enable a very short rebroadcast bound of O(t log(N/t)). We will
use the complete subtree method of [29] to instantiate the subset cover system
(that is superior for our purpose compared to the subset difference method).
Recall that in the complete subtree method users are aligned as the leaves of a
complete binary tree and the set system defines a key for any complete binary
subtree of the total tree. Instead of relying on a fixed fingerprinting code to
perform tracing as in the previous two constructions we will take advantage of
our larger alphabet of 2t+1 where t is the number of traitors to assign different
versions to all subsets that result from the Split(·, ·) of the underlying subset
cover scheme. We observe that there are at most 2t subsets that are formed after
splitting in any pattern at any step of the tracing process. This means that we
can use a 2t + 1 symbol alphabet. Given that the number of steps required to
trace all t traitors equals the number of nodes in the Steiner tree of the t leaves
that correspond to the traitors we conclude that the maximum pirate rebroad-
cast length is O(t · log(N/t)). This analysis not only improves on the previously
known construction of Fiat and Tassa [14] that achieves O(t · logN), but also it
has an explicit description about how the revocation is performed.

4 Tracing Pirate Rebroadcasts in the AACS

In this section we describe2 the part of AACS specifications [1] that deals with
tracing pirate rebroadcasts (also published in [20]). We recast the description
of that scheme in our terminology to facilitate the comparison with our frame-
work. During the initialization of the system a sequence of partitions of the
user population is formed. The partitions are determined according to the a
fingerprinting code, specifically Reed-Solomon Code in the descriptions. After
a sufficient number of transmissions (that matches the length of the code) the
sequence of feedback symbols will form a pirate codeword and by applying the
tracing algorithm of the fingerprinting code we will identify a traitor and revoke
all of its keys. Note that revocation of some keys will effect the future feed-
backs since the partitions remain unchanged and hence the traceability of the

2 We note that this description may not necessarily reflect entirely all the details of
the actual implementation of the AACS as many details are hidden, obfuscated or
omitted in the references [1,20]. Still, we are confident that all the facts that we
present about their construction are valid.

Tracing and Revoking Pirate Rebroadcasts 267

scheme will be harder in future transmissions which we will take advantage in
our analysis later.

Formally, the construction of [20] is as follows: we define first a partition
space PS,k as a set of k disjoint subsets of S whose union yields the set S, i.e.
{S1, . . . , Sk} ∈ PS,k iff ∪k

i=1Sk = S and Si ∩ Sj = ∅ for i
= j. The state of
the scheme state ∈ States stores the history of feedback values from the pirate
rebroadcast.

– Init. Given the set of devices N = {1, 2, . . . , 2564}, it produces a set system
〈N,J , {Iu}u∈N〉 where J consists of the subsets of 255 different partitions in
PN,256. Denoting the j-th partition by vj , the subsets of J are represented by
Si,j for 0 < i ≤ 256 and 0 < j < 256 where vj = {S1,j , S2,j, . . . , S256,j}. The
selection of partitions is done by using a Reed-Solomon code C with an alpha-
bet Σ = {1, . . .256} and of length 255. According to the the specifications, C
is defined over polynomials of degree 3 in the finite field F256. Each receiver
u ∈ N is assigned a codeword y ∈ C so that Iu={Sy[1],1, Sy[2],2, . . . , Sy[255],255}
where y[j] denotes the j-th symbol of the codeword y. This will set Si,j =
{u ∈ N | u is assigned y ∈ C, y[j] = i}. σ0 = 〈state0,V0〉 is initialized such
that both state0 and V0 being emptyset.

– Transmit. Given the current state of the system σp−1 = 〈statep−1,Vp−1〉 and
a feedback value f ∈ {1, . . . , 256}, the system state is first updated to σp =
〈statep,Vp〉. The update of the state is done as follows: first state is updated
to include feedback value f . If the sequence of feedback values stored in statep

makes it possible to identify a user u ∈ N as a traitor, then its keys are added
to Vp−1 to obtain Vp, i.e. Vp = Vp−1 ∪ Iu. The way the traitor detection is
performed using the history of feedback values is explained in [20]. After state
update, the transmission function proceeds to select the set J ⊆ J ×Σ.

This is done as follows: A set of partitions {vj1 , . . . vjr} ⊆ {1, . . . , 255} is
chosen so that for any enabled device u, (Iu \ Vp) ∩ {Si,jm | 0 < m ≤ r,
0 < i ≤ 256}
= ∅ holds. Note that the way the partitions are selected is not
specified in [20] (presumably a heuristic can be used given that it is easy to
test whether a given set of partitions satisfies the constraint or not3). We also
remark that it is possible that such set of partitions does not exist, in which
case the Transmit procedure will fail (i.e. the encryption phase put on top of
Transmit procedure will exclude some honest devices from the transmission
of actual content). We take advantage of this later in our analysis.
The subset J is defined to include all pairs (Si,j , i) where Si,j ∈ ∪r

m=1vm \Vp

– Receive. Given Iu for some u ∈ N and J ⊆ J ×Σ, the procedure finds a pair
(Si,j , s) ∈ J such that (1) Si,j ∈ Iu and (2) j is minimal among all subsets
intersecting with Iu and the procedure returns s. If no such pair exists it
returns ⊥.

3 Specifically in [20], it is stated(here columns refer to the partitions) “However, after
some number of columns depending on the actual number of compromised keys, the
AACS licensing agency will know that only compromised devices would be getting the
link key; all innocent would have found the output key in this column or in a previous
column.”

268 A. Kiayias and S. Pehlivanoglu

– Revoke. Given the current state σp−1 = 〈statep−1,Vp−1〉 the procedure re-
turns 〈statep,Vp〉 where statep = ∅ and Vp = Vp−1 ∪ (∪u∈RIu).

Plaintext Preprocessing and Marking. As seen above for a certain movie m
the transmission center needs to produce 256 variations {m1, . . . ,m256}. A mark-
ing scheme of only 16 variations is being used though. For this reason a second
(inner) Reed Solomon code C′ is used over an alphabet Q′ = {1, 2, . . .16} that
has length 15 and is defined over linear polynomials in the field F16. Thus, there
are 162 = 256 codewords in C′, and each codeword in C′ is a vector 〈b1, . . . , b15〉.
In order to transmit a movie m, the movie is split into 15 segments and the mark-
ing process is applied to each segment resulting in 16 different variations; let se,l

denote the e-th variation of the l-th segment, l = 1, . . . , 15 and e = 1, . . . , 16.
Subsequently 256 versions of the movie are formed by employing the code C′. In
particular the i-th version of the movie m would be the string sw1,1 . . . sw15,15

where 〈w1, . . . , w15〉 is the i-th codeword of C′. Note that this complicates some-
what the traceability analysis since the inner code is a 3-TA as opposed to a
9-TA that is employed for key assignment. Effectively this violates the marking
assumption since it is possible for a coalition of size 4 to produce a movie for
which the identification algorithm may not be able to identify any of its mem-
bers. Without loss of generality we will ignore this issue for the moment and we
will assume a “best case” behavior of their scheme for the sake of comparison.
We refer to [20] for further discussion on this issue.

Revocation. The scheme of [20] as presented above has the capability to revoke
a given set of users by selecting appropriately the set of columns that are used in
the transmission. Here we observe that the revocation capability of the scheme
is very limited. For the suggested parameters as described above we have the
following:

Fact 1. The scheme of [20] as presented above can support at most 85 revoca-
tions.

To see why the above is true consider that key assignment is based on a Reed-
Solomon code and during revocation a set of columns needs to be selected so that
no innocent user is covered entirely by the set of keys assigned to the revoked
users. It follows that a coalition capable of framing a user in the 9-TA code would
cause the system to produce transmissions that disable some innocent users. It
is easy to see that a coalition of 85 users may frame an innocent user in the
system (this is because 3 · 85 ≥ 255 where the coefficient 3 stems from the fact
that this is the maximum number of locations that two codewords can agree in
this code).

Traceability of Pirate rebroadcasts in AACS. In [20] it is argued based on
a probabilistic analysis that a coalition of 9 traitors can be traced in 56 movie
transmissions. We note that this analysis is performed in a setting without any
revocations. Not only tracing after some number of revocations differs from the
case when there is no revocation, it doesn’t have a trivial solution. Morever, trac-
ing after revocation will severely hurts the efficiency of the transmission over-
head. On top of those limitations we observe the following on coalition bound:

Tracing and Revoking Pirate Rebroadcasts 269

Fact 2. The scheme of [20] as presented may disable innocent users in case of
a traitor coalition of a size larger than 9 occurs.

To see why this is the case, consider that in the 9-TA Reed-Solomon code em-
ployed, it holds that there exist a coalition C1 of size 10 that can produce a
pirate codeword for which there exists an innocent user u /∈ C such that u’s
assigned codeword has maximum overlap with pirate codeword (strictly higher
than any of the users in C1). Note that any correct tracing algorithm would
accuse the users that have very high overlap with the pirate codeword; hence
no matter how the tracing algorithm of [20] operates the user u will be a likely
outcome and hence this suggests that the revocation algorithm will be incapable
of revoking the correct set of users (i.e., in some cases innocent users may be
disabled from the system).

A Comparison of AACS with Our Constructions. Even if the above con-
struction is variated over a different parameter selection and different codes the
net effect would be the following: given the way the revocation algorithm works,
the number of revocations will never exceed the length of the code employed (in
fact they would be much less as illustrated above). Given that the code length
selected in AACS [1] is 255 this suggests that the number of revocations feasi-
ble by this scheme is very limited. Even worse, as it is also pointed out in [20]
as revocations accumulate the traceability of the underlying construction gets
substantially reduced. In contrast our constructions enable an unlimited num-
ber of revocations against an unlimited number of traitors without incurring
any degradation in security as the number of revocations accumulate. Moreover,
given that the key assignment in our construction is based only on the subset-
cover framework our tracing and revoking schemes for pirate rebroadcasts can be
applied readily in the context of AACS (that employs a subset-cover key assign-
ment already but used only for regular trace and revoking in the clone-decoder
attack setting).

References

1. AACS Specifications specifications (2006), http://www.aacsla.com/
2. Attrapadung, N., Imai, H.: Graph-Decomposition-Based Frameworks for Subset-

Cover Broadcast Encryption and Efficient Instantiations. In: Roy, B. (ed.) ASI-
ACRYPT 2005. LNCS, vol. 3788, pp. 100–120. Springer, Heidelberg (2005)

3. Berkman, O., Parnas, M., Sgall, J.: Efficient dynamic traitor tracing. In: SODA
2000, pp. 586–595 (2000)

4. Boneh, D., Franklin, M.: An Efficient Public-Key Traitor Tracing Scheme. In:
Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 338–353. Springer, Hei-
delberg (1999)

5. Boneh, D., Sahai, A., Waters, B.: Fully Collusion Resistant Traitor Tracing with
Short Ciphertexts and Private Keys. In: Vaudenay, S. (ed.) EUROCRYPT 2006.
LNCS, vol. 4004, pp. 573–592. Springer, Heidelberg (2006)

6. Boneh, D., Shaw, J.: Collusion-Secure Fingerprinting for Digital Data. IEEE Trans-
actions on Information Theory 44(5), 1897–1905 (1998)

http://www.aacsla.com/

270 A. Kiayias and S. Pehlivanoglu

7. Chor, B., Fiat, A., Naor, M.: Tracing Traitors. In: Desmedt, Y.G. (ed.) CRYPTO
1994. LNCS, vol. 839, pp. 257–270. Springer, Heidelberg (1994)

8. Chor, B., Fiat, A., Naor, M., Pinkas, B.: Tracing Traitors. IEEE Transactions on
Information Theory 46(3), 893–910 (2000)

9. Chabanne, H., Hieu Phan, D., Pointcheval, D.: Public Traceability in Traitor Trac-
ing Schemes. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 542–
558. Springer, Heidelberg (2005)

10. Cox, I.J., Kilian, J., Leighton, F.T., Shamoon, T.: Secure spread spectrum water-
marking for multimedia. IEEE Transactions on Image Processing 6(12), 1673–1687
(1997)

11. Dodis, Y., Fazio, N.: Public Key Broadcast Encryption for Stateless Receivers. In:
Feigenbaum, J. (ed.) DRM 2002. LNCS, vol. 2696, pp. 61–80. Springer, Heidelberg
(2003)

12. Dodis, Y., Fazio, N., Kiayias, A., Yung, M.: Scalable public-key tracing and re-
voking. In: PODC 2003, Proceedings of the Twenty-Second ACM Symposium on
Principles of Distributed Computing (PODC 2003), Boston, Massachusetts, July
13-16 (2003)

13. Fiat, A., Naor, M.: Broadcast Encryption. In: Stinson, D.R. (ed.) CRYPTO 1993.
LNCS, vol. 773, pp. 480–491. Springer, Heidelberg (1994)

14. Fiat, A., Tassa, T.: Dynamic Traitor Tracing. Journal of Cryptology 4(3), 211–223
(2001)

15. Gentry, C., Ramzan, Z., Woodruff, D.P.: Explicit Exclusive Set Systems with Ap-
plications to Broadcast Encryption. In: FOCS 2006, pp. 27–38 (2006)

16. Gafni, E., Staddon, J., Lisa Yin, Y.: Efficient Methods for Integrating Traceability
and Broadcast Encryption. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666,
pp. 372–387. Springer, Heidelberg (1999)

17. Garay, J.A., Staddon, J., Wool, A.: Long-Lived Broadcast Encryption. In: Bellare,
M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 333–352. Springer, Heidelberg (2000)

18. Goodrich, M.T., Sun, J.Z., Tamassia, R.: Efficient Tree-Based Revocation in
Groups of Low-State Devices. In: Franklin, M. (ed.) CRYPTO 2004. LNCS,
vol. 3152, pp. 511–527. Springer, Heidelberg (2004)

19. Halevy, D., Shamir, A.: The LSD Broadcast Encryption Scheme. In: Yung, M. (ed.)
CRYPTO 2002. LNCS, vol. 2442, pp. 47–60. Springer, Heidelberg (2002)

20. Jin, H., Lotspiech, J.: Renewable Traitor Tracing: A Trace-Revoke-Trace System
For Anonymous Attack. In: Biskup, J., López, J. (eds.) ESORICS 2007. LNCS,
vol. 4734, pp. 563–577. Springer, Heidelberg (2007)

21. Jin, H., Lotspiech, J., Nusser, S.: Traitor tracing for prerecorded and recordable
media. In: Digital Rights Management Workshop, pp. 83–90 (2004)

22. Kiayias, A., Yung, M.: Self Protecting Pirates and Black-Box Traitor Tracing. In:
Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 63–79. Springer, Heidelberg
(2001)

23. Kiayias, A., Yung, M.: On Crafty Pirates and Foxy Tracers. In: Sander, T. (ed.)
DRM 2001. LNCS, vol. 2320, pp. 22–39. Springer, Heidelberg (2002)

24. Kiayias, A., Yung, M.: Traitor tracing with constant transmission rate. In: Knud-
sen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 450–465. Springer, Hei-
delberg (2002)

25. Kiayias, A., Pehlivanoglu, S.: Pirate Evolution: How to Make the Most of Your
Traitor Keys. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 448–465.
Springer, Heidelberg (2007)

Tracing and Revoking Pirate Rebroadcasts 271

26. Kurosawa, K., Desmedt, Y.: Optimum Traitor Tracing and Asymmetric Schemes.
In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 145–157. Springer,
Heidelberg (1998)

27. Le, T.V., Burmester, M., Hu, J.: Short c-Secure Fingerprinting Codes. In: Boyd,
C., Mao, W. (eds.) ISC 2003. LNCS, vol. 2851, pp. 422–427. Springer, Heidelberg
(2003)

28. Micciancio, D., Panjwani, S.: Corrupting One vs. Corrupting Many: The Case of
Broadcast and Multicast Encryption. In: Bugliesi, M., Preneel, B., Sassone, V.,
Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 70–82. Springer, Heidelberg
(2006)

29. Naor, D., Naor, M., Lotspiech, J.B.: Revocation and Tracing Schemes for Stateless
Receivers. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 41–62. Springer,
Heidelberg (2001)

30. Naor, M., Pinkas, B.: Threshold Traitor Tracing. In: Krawczyk, H. (ed.) CRYPTO
1998. LNCS, vol. 1462, pp. 502–517. Springer, Heidelberg (1998)

31. Naor, M., Pinkas, B.: Efficient Trace and Revoke Schemes. In: Frankel, Y. (ed.)
FC 2000. LNCS, vol. 1962, pp. 1–20. Springer, Heidelberg (2001)

32. Hieu Phan, D., Safavi-Naini, R., Tonien, D.: Generic Construction of Hybrid Public
Key Traitor Tracing with Full- Public-Traceability. In: Anderson, R. (ed.) IH 1996.
LNCS, vol. 1174, pp. 49–63. Springer, Heidelberg (1996)

33. Safavi-Naini, R., Wang, Y.: Sequential Traitor Tracing. In: Bellare, M. (ed.)
CRYPTO 2000. LNCS, vol. 1880, pp. 316–332. Springer, Heidelberg (2000)

34. Safavi-Naini, R., Wang, Y.: Collusion secure q-ary fingerprinting for perceptual
content. In: Sander, T. (ed.) DRM 2001. LNCS, vol. 2320, pp. 57–75. Springer,
Heidelberg (2002)

35. Safavi-Naini, R., Wang, Y.: New Results on Frameproof Codes and Traceability
Schemes. IEEE Transactions on Information Theory 47(7), 3029–3033 (2001)

36. Safavi-Naini, R., Wang, Y.: Traitor Tracing for Shortened and Corrupted Finger-
prints. In: Feigenbaum, J. (ed.) DRM 2002. LNCS, vol. 2696, pp. 81–100. Springer,
Heidelberg (2003)

37. Silverberg, A., Staddon, J., Walker, J.L.: Efficient Traitor Tracing Algorithms Us-
ing List Decoding. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp.
175–192. Springer, Heidelberg (2001)

38. Staddon, J.N., Stinson, D.R., Wei, R.: Combinatorial Properties of Frameproof and
Traceability Codes. IEEE Transactions on Information Theory 47(3), 1042–1049
(2001)

39. Stinson, D.R., Wei, R.: Combinatorial Properties and Constructions of Traceability
Schemes and Frameproof Codes. SIAM Journal on Discrete Math. 11(1), 41–53
(1998)

40. Tardos, G.: Optimal probabilistic fingerprint codes. In: ACM 2003, pp. 116–125
(2003)

41. Jho, N., Hwang, J.Y., Hee Cheon, J., Hwan Kim, M., Hoon Lee, D., Sun Yoo,
E.: One-Way Chain Based Broadcast Encryption Schemes. In: Cramer, R. (ed.)
EUROCRYPT 2005. LNCS, vol. 3494, pp. 559–574. Springer, Heidelberg (2005)

Efficient Deniable Authentication for Signatures

Application to Machine-Readable Travel Document

Jean Monnerat1,�, Sylvain Pasini2,��, and Serge Vaudenay2

1 SwissSign AG, Zurich, Switzerland
2 EPFL, Lausanne, Switzerland

Abstract. Releasing a classical digital signature faces to privacy issues.
Indeed, there are cases where the prover needs to authenticate some
data without making it possible for any malicious verifier to transfer the
proof to anyone else. It is for instance the case for e-passports where the
signature from the national authority authenticates personal data. To
solve this problem, we can prove knowledge of a valid signature without
revealing it. This proof should be non-transferable.

We first study deniability for signature verification. Deniability is es-
sentially a weaker form of non-transferability. It holds as soon as the
protocol is finished (it is often called offline non-transferability).

We introduce Offline Non-Transferable Authentication Protocol (ON-
TAP) and we show that it can be built by using a classical signature
scheme and a deniable zero-knowledge proof of knowledge. For that rea-
son, we use a generic transform for Σ-protocols.

Finally, we give examples to upgrade signature standards based on
RSA or ElGamal into an ONTAP. Our examples are well-suited for im-
plementation in e-passports.

1 Introduction

Digital signature schemes are one of the most important primitives in cryptog-
raphy. A digital signature on a document allows to bind this document with a
public key (e.g. an identity). One drawback is the privacy issue. Indeed, assume
Alice signed a message and sent both the message and the signature to Bob.
With a standard digital signature scheme Bob can verify its validity, but in ad-
dition he is able to convince anyone else of its validity. In some situations this
transferability leads to privacy issues.

Monnerat, Vaudenay, and Vuagnoux [34,47,48] studied the e-passport stan-
dards and identified the privacy issue from leaking of signatures on private data.
For instance, data such as official name, true date of birth, citizenship and a
facial image together with a digital signature could easily be released on the
Internet or sold by a malicious verifier, allowing to convince anybody of their

� Most of this work was done when the first author was at UCSD and supported by
the Swiss National Foundation, PBEL2-116915.

�� Supported by the Swiss National Science Foundation, 200021-113329.

M. Abdalla et al. (Eds.): ACNS 2009, LNCS 5536, pp. 272–291, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Efficient Deniable Authentication for Signatures 273

authenticity. None of these data is really confidential. For instance, the true date
of birth of some person can fairly be estimated or propagated by gossiping. The
person can still claim that the gossiped date of birth is incorrect and keep it
private. What is more sensitive is a proof that a date of birth is true because the
person can no longer deny evidence that the proof is correct. For this reason,
the authors suggested to use non-transferable proof of signature knowledge. So,
the passport can convince the border patrol of the authenticity of the data with-
out revealing the signature.

In our scenario, we have a signer (the national authority), a prover (the e-
passport), and a verifier (the border patrol). Clearly, the passport should not
know the signing key which is kept secret by the national authority.

Full non-transferability requires a public-key infrastructure (PKI) for verifiers.
Certificate verification should be secured to avoid transfer attacks using rogue
keys. While a PKI for border patrols is proposed in the EAC standard [36], this
is not enough for the privacy issue we have in mind. Indeed, the key of verifiers
in EAC will only be checked for verifiers in a country with agreements with the
home country. That is, non-transferability would only be enforced in friendly
countries but not in others. This seems pretty weird.

For this reason, we want to avoid PKI for verifiers and we will focus on a
weaker form of non-transferability, which holds after the protocol is complete.
That is, we enforce offline non-transferability which is equivalent to deniability
(sometimes called self-simulatability). Zero-knowledge proofs are inherently deni-
able in the plain model while zero-knowledge protocols in the common reference
string (CRS) model or the random oracle model (ROM) are not necessarily de-
niable. However, protocols in the CRS or ROM are more attractive for efficiency
reasons. So, we have to consider the notion of deniable zero-knowledge [40,41].

The above reasons motivated the study of non-transferable proof of signature
knowledge with a strong focus on the efficiency. The goal is to find a protocol
which can be implemented on e-passports for proving the knowledge of a valid
signature to a border patrol in a setting where there is no PKI for border patrols
and these latters may be dishonest. The international e-passport standard [35]
proposes the use of RSA and ElGamal-based signatures schemes. The EAC [36]
extension suggest that passports could run ECDH protocols. So, there is a little
place for public-key cryptography.

Related work. Non-transitive signatures [16,38] and deniable message authenti-
cation [17] also deal with transferability issues but do not immediately apply for
a three-party settings where an intermediate player (e.g. the e-passport) shows
to another one that some data was authenticated by an authority.

Invisible signatures (aka undeniable signatures) were invented by Chaum and
van Antwerpen [11] and they subsequently were studied in [4,9,15,23,33,37]. They
are not universally verifiable, i.e. they make it impossible to tell valid and invalid
signatures apart while making the signer able to prove validity or invalidity
through an interactive protocol. Undeniable signatures only consider a two-party
setting. One issue for our case is that in order to confirm or deny a signature,
the prover must know the secret key.

274 J. Monnerat, S. Pasini, and S. Vaudenay

With undeniable signatures, the signer cooperation is essential. Indeed, with-
out its cooperation the signature is useless. The latter issue motivated the intro-
duction of designated confirmer signatures [10]. In short, designated confirmer
signatures work as undeniable signatures but the verification may be shifted from
the signer to the confirmer. They were designed mostly to protect the verifier
from signers who would refuse to participate in verification protocols.

Asokan, Shoup, and Waidner [1,2] proposed a solution to cross-exchange sig-
natures between two parties in a fair way (using a trusted third party in a fair
way). For that, they propose a way to transform a signature scheme into a ver-
ifiable escrow scheme. A verifiable escrow scheme is based on a homomorphism
and allows to produce an escrow signature from a signature. Then, given the es-
crow signature, one can verify that it is really a signature without obtaining the
signature. Finally, someone can recover the signature from the escrow signature
by using the secret key. One drawback for our application is that the escrow
signature is verifiable, thus it is some kind of signature and not deniable.

Non-transferability was studied by Jakobsson et al. [31,7] and they introduced
designated-verifier proofs. The idea is to designate the signature to a verifier
(using its public-key) and then only the designated-verifier can be convinced on
the validity of the signature. One drawback is that the verifier must be known at
the signature time. Later, Steinfeld et al. [46] introduced Universal Designated-
Verifier Signature (UDVS). This scheme applies to a three party setting: signer,
designator, and verifier. Universal refers to that any designator who obtained
a universally verifiable signature from the signer is able to designate it to a
verifier. This relies on a PKI for verifiers. The method for having every verifier
attached to a public key is an overkill. This motivated Baek et al. [3] to define a
weaker notion of non-transferability and they published the Universal Designated
Verifier Signature Proof (UDVSP). The primitive is similar to the concept of
UDVS except that no signature is given to the verifier. The designator does not
need to know the verifier, only a signature proof is given to the verifier. This
primitive assumes that verifiers are honest. Clearly, our application scenario does
not meet this assumption and this construction does not remain secure when the
verifiers may be malicious [32,45]. Indeed, considering malicious verifiers leads
to transferable proofs by using the Fiat-Shamir transform [22]. In addition, The
proposed UDVS or UDVSP constructions rely on bilinear mappings which seems
not very easy to implement in the case of e-passports.

Recently, Shahandashti, Safavi-Naini, and Baek [45] worked on Credential
Ownership Proofs (COP). There have some similar features as non-transferable
signature. However, COP allow users to copy/share the credits which is clearly
not desirable is the case of e-passports. They also protect against “double spend-
ing” which is not necessary in our case.

In this paper. To motivate our constructions, we start in Section 2 with a short
overview on e-passports. In Section 3, we introduce some preliminaries and in
particular, we recall the concept of deniable zero-knowledge in the CRS and RO
models. In Section 4, we introduce the definition of an offline non-transferable
authentication protocol (ONTAP). We propose a generic transform of a signature

Efficient Deniable Authentication for Signatures 275

scheme into an ONTAP by using a deniable ZK proof of knowledge. In order
to build secure ONTAP, we study strong construction of proofs of knowledge
in Section 5. In particular, we study a generic transform of Σ-protocols. In
Section 6, we propose ONTAP protocols which can be efficiently executed in
constrained environments such as e-passports. In particular, we give an example
based on the Guillou-Quisquater protocol for RSA-based signatures and another
example based on the Schnorr protocol for ElGamal-based signatures.

Our work compared to others. As the UDVSP of Baek et al. [3] our ONTAP
definition requires no PKI for verifiers. UDVSP and ONTAP are conceptually
equivalent but the security notions differ. The UDVSP security from [3] uses
three definitions, restrict to known message attacks and honest verifiers while
we use two definitions, chosen message attacks and malicious verifiers. In addi-
tion to this, our instantiations of ONTAP can be built efficiently on standard
signature schemes and need no change for the signing algorithm. UDVSP does
not apply directly to RSA and ElGamal-based schemes while our proposed ON-
TAP implementations do. Our proposed implementations just require a modular
exponentiation for the prover while the proposed UDVSP constructions require
the use of bilinear mappings as well as signature transforms.

Recently, Shahandashti and Safavi-Naini [44] presented a construction for
UDVS. As we saw before, UDVS requires PKI for verifiers and thus is not
adapted in our case. However, they present a way for a signature holder to
prove his signature knowledge to a verifier. They define a signature class C for
which signatures can be converted in a public and a private part. The private
part is simulatable and there exists a proof of knowledge for the private part.
The signature holder simply needs to convert its signature, to send the public
part to the verifier, and finally to prove his knowledge of the private part. They
use this definition to designate a signature to a verifier by using a Fiat-Shamir
transform on the interactive proof. Except the transform, we use a similar idea,
i.e. a signature in two part, one simulatable and the other provable. The authors
does not give any security proof (since it is not their main contribution). They
use a classical Σ-protocol and thus their proof of knowledge is HVZK only. As
seen before, HVZK is clearly not enough for the application we have in mind.
Here we strengthen the knowledge proofs, we give formal security proofs and
examples of implementations. Finally the scheme of [44] may loose deniability if
a malicious verifier registers a rogue key.

2 Passive Authentication for MRTD

E-passports, formally called machine-readable travel documents (MRTD), are
now available in many countries [35]. They use an embedded RFID chip to show
evidence of a traveler identity through wireless communication.

The memory of the chip is organized in standard files: several data groups
and one security object document (SOD). There are only two mandatory data
groups: DG1 includes basic information such as the name of the person, its

276 J. Monnerat, S. Pasini, and S. Vaudenay

gender, date of birth, citizenship, as well as the passport number and validity;
and DG2 contains a facial picture of the owner. The SOD includes the digest
of each data group and a digital signature of this list of digests issued by the
national authority. Clearly, the SOD gives evidence of someone’s true name, or
true age, or true gender, or true citizenship, etc. Providing the data groups and
the SOD is called passive authentication.

Since all data is readable, chip cloning is possible. To solve this issue, there is
an optional active authentication (AA) protocol. In that case, the chip possesses
a pair public/private key. The public key is stored in a DG (and thus authen-
ticated) while the private key is in a secure part of the memory (and so not
clonable). Following AA, the reader simply sends a challenge and the chip signs
it and give it back.

Due to the wireless access, data could be captured without the agreement by
the holder. Following the standard, access to the chip can be protected using
basic access control (BAC). In short, it proves to the chip that the reader have
an optical access to the first page. It is not a real access control since anyone can
implement an e-passport reader and read any passport without being authorized
by public authorities.

BAC is by far insufficient since the new generation of e-passport will contain
more private information such as fingerprint, address, etc. For this, the European
Union is now promoting an extended access control (EAC) [36] which is based on
more elaborate cryptographic protocols (semi-static ECDH key agreement with
certificate) and terminal authentication based on a specific PKI. This PKI is also
known to suffer from weaknesses (namely, the unreliable revocation procedure).
In addition to this, EAC is only meant to protect non-mandatory data groups
since mandatory ones should still be accessible to countries with no agreement
to read extra information. This means that the SOD is not protected by EAC
so will still leak evidence that a given protected data group is correct. Clearly,
an adversary can still distinguish a correct EAC-protected data group from an
incorrect one without being authorized to read it.

For this reasons, we propose to have the signature part of the SOD hidden
and passive authentication replaced by some deniable authentication protocol.
Note that the chip is able to carry out some RSA computation in AA. Therefore,
we can assume that chips are able to run one or two RSA computations in the
deniable authentication protocol.

3 Preliminaries

Let S be a finite set. We write s ∈u S to say that s is picked uniformly from S.
Throughout this article the term “algorithm” stands for a probabilistic

polynomial-time (PPT) Turing machine modeled by deterministic functions in
terms of an input and random coins.

We denote by protP(α),V(β)(γ) an instance of the protocol “prot” between P
and V. The element γ denotes the common input of all participants, e.g. public
keys, while α (resp. β) describes the private input of P (resp. V). Note that

Efficient Deniable Authentication for Signatures 277

when the protocol is not known or is implicitly known, the interaction between
the two parties can be noted by 〈P(α),V(β)〉(γ).

In some cases, we need to only describe the view of B and we denote it by
ViewB(protA,B(·)). We call “the view of B” all inputs known by B (including the
random tape and messages received by B). All other messages can be computed
from the view and the B algorithm.

Classical Digital Signature (DS) Schemes. We denote by M and S the mes-
sage space and the signature space respectively. A (classical) digital signature
(DS) scheme is defined by the three following algorithms: The (Kp,Ks) ←
setup(1λ) algorithm generates a key pair from a security parameter λ. The
σ ← sign(Ks,m) algorithm outputs a signature σ ∈ S of a message m ∈M. The
b = verify(Kp,m, σ) tells whether the pair (m,σ) is valid (b = 1) or not(b = 0).

The scheme is complete if for any (Kp,Ks) ← setup(1λ), any message m,
and any σ ← sign(Ks,m), then verify(Kp,m, σ) = 1. The standard security
requirement for a DS is the existential unforgeability against a chosen-message
attack (EF-CMA) put forth by Goldwasser et al. [28]. This property ensures that
nobody except the signer S can output a valid signature σ̂ for any new message
m with a non-negligible probability.

Definition 1 (Security of DS). Consider an adversary A against S. A plays a
game against a challenger C who can sign messages. A is allowed to make queries
to a signing oracle. The goal of A is to yield a valid pair (m̂, σ̂) such that m̂ was
never sent to the signing oracle. The signature scheme is said EF-CMA-secure
if no PPT adversary A can win this game with non-negligible probability.

Proof of Knowledge and Deniable Zero-Knowledge. Let R ⊆ {0, 1}∗ × {0, 1}∗
be a binary relation with a polynomial-size witness, i.e., for any (x,w) ∈ R we
have |w| ≤ poly(|x|). Let LR be a language related to the binary relation R.
LR is the set of all x such that there exists a witness w and (x,w) is in R, i.e.
LR = {x : ∃w s.t. (x,w) ∈ R}.

Let (P,V) be a pair of interactive Turing machines. For a given x ∈ LR, P
wants to prove to V that he knows the corresponding witness w. For this, P and
V will use an interactive proof with common input x noted proofP(w),V(x). At
the end, P should have convinced V that he knows w. V outputs accept or reject.
In order to formalize the notion of proof of knowledge we need to introduce the
concept of knowledge extractor Ext. The Ext algorithm gets input x and access
to the prover, while he attempts to compute w such that (x,w) ∈ R.

Consider any proof of knowledge between a prover P and a verifier V. Zero-
knowledge means that no information leaks to the verifier except the validity of
the statement. This concept was formalized by Goldwasser, Micali, and Rack-
off [26,27]. The main idea behind zero-knowledge is that any verifier should be
able to run the simulator by himself (instead of interacting with a prover). How-
ever in the CRS model, the simulator is able to choose crs while no verifier
is able to do that in reality. For this reason, we use the concept of deniabil-
ity [40,41].

278 J. Monnerat, S. Pasini, and S. Vaudenay

Definition 2 (Deniable Zero-Knowledge Proof of Knowledge). Let crs
be any common reference string (CRS). Let H be a random oracle. Let κ(x) be a
real valued function. proofPH(w),VH(x, crs) is a proof of knowledge for the relation
R with soundness error κ(x) if the following holds :

– Efficiency: P and V are polynomially bounded.
– Completeness: On common input x, crs, if P has a witness w such that

(x,w) ∈ R, then 〈PH(w),VH〉(x, crs) always outputs accept.
– Soundness: Given a Turing machine P∗H, crs and H, let ε(x) be the prob-

ability that 〈P∗H,VH〉(x, crs) accepts. There exists an extractor Ext and a
constant k such that for any crs, any H, any P∗, and any x, if ε(x) > κ(x),
then ExtP

∗
(x) outputs a witness w such that (x,w) ∈ R within expected time

O
(

|x|k
ε(x)−κ(x)

)

where an access to P∗ only counts as one step.

A proof of knowledge proofPH,VH(·) for a relation R is deniable zero-knowledge
if for any PPT V∗, there exists a PPT simulator SimH such that

{crs,H,ViewV∗(proofPH(w),V∗H(z)(x, crs))}z∈{0,1}∗,x∈LR
for arbitrary w ∈ R(x)

and
{crs,H, SimH(x, z, crs)}z∈{0,1}∗,x∈LR

are computationally indistinguishable.

When crs and H are constant and H is polynomially computable, we obtain the
definition in the standard model. When crs is constant, we obtain the random
oracle model. When H is constant and polynomially computable, we obtain the
CRS model. When V∗ is restricted by V, i.e. V∗ = V, we obtain the honest
verifier zero-knowledge (HVZK) definition.

It seems that the need for deniablity makes the CRS model collapse down to
the plain model (see Pass [41]). Indeed, there exists an efficient generic transfor-
mation of deniable zero-knowledge protocols from the CRS model into the plain
model. However this transformation adds some more rounds which increases the
round complexity. So, deniable ZK protocols in the CRS model may still be
attractive in practice.

Commitment Schemes. We define a keyed commitment scheme by the two fol-
lowing algorithms: The (Kp,Ks) ← setup(1λ, R) algorithm generates a pair pub-
lic/private key given random coins R. The c = com(Kp,m, r) algorithm allows
to compute the commit value c for a given message m by using the public key
Kp and random coins r. Knowing both c, m, and r (and Kp), the commitment
is checked by c = com(Kp,m, r). A commitment scheme should be perfectly
hiding, meaning that for any Kp generated by setup, c ← com(Kp,m, r) has
a distribution which is independent from m. We assume that it is uniform. It
should also be computationally binding, meaning that for any PPT algorithm
given a random Kp generated by setup, the probability that it finds r,r′,m,m′

such that m
= m′ and commit(Kp,m, r) = commit(Kp,m
′, r′) is negligible.

Efficient Deniable Authentication for Signatures 279

Trapdoor commitment schemes were introduced by Brassard, Chaum, and
Crépeau [6]. A trapdoor commitment scheme is a keyed commitment scheme
extend by a third algorithm, equiv, which defeats the binding property by using
the secret key Ks. For any Kp,Ks generated by setup, any m, any ĉ, and any
execution r̂ ← equiv(Ks,m, ĉ), we have ĉ = com(Kp,m, r̂).

For instance, a trapdoor commitment based on the discrete logarithm problem
was proposed by Boyar and Kurtz [5]. Another trapdoor commitment scheme was
proposed by Catalano et al. [8] based on the Paillier’s trapdoor permutation [39].

Random Oracle Commitment Scheme. In the RO model, we can use the RO
commitment scheme. Let H be a random oracle. The com algorithm with input
m simply returns c = H(m‖r). To check the validity of the commit value c, given
the message m′ and the used random coins r′, it is enough to check c = H(m′‖r′).

4 Offline Non-transferable Authentication Protocol

Definition 3 (ONTAP). We define an offline non-transferable authentication
protocol (ONTAP) by the two following algorithms and the interactive verifica-
tion protocol:

– The (Kp,Ks) ← setup(1λ) algorithm generates a key pair.
– The σ = (σp, σs) ← sign(Ks,m) algorithm outputs a signature σ ∈ S of a

message m ∈ M. σ is split in a public part σp and a private part σs.
– The iProofP(σs),V(Kp,m, σp) protocol allows a prover P to convince a verifier

V that he knows a σs to complete σp in a valid signature for m. At the end
V accepts or rejects.

The scheme is complete if for any (Kp,Ks) ← setup(1λ), any message m,
and any (σp, σs) ← sign(Ks,m), V always accepts in iProofP(σs),V(Kp,m, σp).

The UDVSP [3] uses a KeyGen algorithm which is equivalent to our setup al-
gorithm. The Sign algorithm outputs a classical signatures universally verifiable
by using the Verify algorithm, there is a Transform algorithm which generates a
modified signature (with a public and secret part) from the universally verifiable
one. Our sign algorithm may be built with the Sign and Transform algorithms
from the UDVSP and conversely. We removed the Verify algorithm since it is
useless with our definition. Finally, there is an interactive proof IVerify as our
iProof. So, the two definitions are conceptually equivalent. The main difference
comes from the security requirements.

The ONTAP is secure if it satisfies the next two definitions.

Definition 4 (Offline Non-Transferability of ONTAP). Consider an ad-
versary A against the ONTAP. A plays a game with a challenger C. The goal
of A is to get evidence that some message m̂ was signed. During the train-
ing phase, A is allowed to query a sign oracle denoted Sign. After the training
phase, A selects some m̂, C signs it and reveals σ̂p. Then, A runs a session of
iProofP(σ̂s),A(Kp, m̂, σ̂p) protocol. At the end of the game, A outputs all input

280 J. Monnerat, S. Pasini, and S. Vaudenay

A (or Sim) C
Kp←−−−−−−−−−−−−−−−−−− (Kp, Ks) ← setup(1λ)

∀i ∈ 1..� : select mi

mi−−−−−−−−−−−−−−−−−−→
σp,i‖σs,i←−−−−−−−−−−−−−−−−−− Sign

skipped by Sim:

select m̂
m̂−−−−−−−−−−−−−−−−−−→ (σ̂p, σ̂s) ← sign(Ks, m̂)
σ̂p←−−−−−−−−−−−−−−−−−−

iProofC(σ̂s),A(Kp,m̂,σ̂p)

←−−−−−−−−−−−−−−−−→
Prover

output m1‖ . . . ‖m�‖λ

Fig. 1. ONTAP Non-Transferable Game

queried to Sign and its state λ. We introduce Sim which plays the same game but
selects no m̂ and runs no iProof protocol.

The ONTAP scheme is said offline non-transferable if for any adversary A
there exists a simulator Sim such that their output in the game of Fig. 1 are
computationally indistinguishable.

Definition 5 (Unforgeability of ONTAP). Consider an adversary A
against the ONTAP. A plays a game with a challenger C. The goal of A is
to convince C by running the iProof protocol that he knows σ̂s to complete σ̂p

in a valid signature for m̂. During a training phase, A is allowed to query a
sign oracle denoted Sign. On input message m, Sign answers the complete valid
signature (σp, σs). After this training phase, A selects a m̂ and a σ̂p with m̂ not
sent to Sign. A simulates a prover to a honest verifier (see Fig. 2).

A C
Kp←−−−−−−−−−−−−−−−−−− (Kp, Ks) ← setup(1λ)

∀i ∈ 1..� : select mi

mi−−−−−−−−−−−−−−−−−−→
σp,i‖σs,i←−−−−−−−−−−−−−−−−−− Sign

select m̂, σ̂p
m̂‖σ̂p−−−−−−−−−−−−−−−−−−→

iProofA(σ̂s),C(Kp,m̂,σ̂p)

←−−−−−−−−−−−−−−−−→ Verifier

return Verifier output
A wins if Verifier accepts and m̂ not queried to Sign.

Fig. 2. ONTAP Unforgeability Game

The ONTAP scheme is said unforgeable if no PPT adversary A can make
the honest verifier accepting the game of Fig. 2 with non-negligible probability.

Clearly, Def. 5 implies unforgeability in the sense of Def. 1 since anyone able to
forge a signature is also able to win the game of Fig. 2.

In Def. 5, we could give access to non-concurrent prover oracles to the adver-
sary A∗. Suppose it is the case and we denote them by Proverj ’s. These oracles
simulate the behaviour of an honest prover P in iProofP(σ∗

s,j),A∗(Kp,m
∗
j , σ

∗
p,j).

Each oracle Proverj is setup with a given message m∗
j and several iProof execu-

tions can be requested for the same m∗
j and some signature (σp, σs). Executions

Efficient Deniable Authentication for Signatures 281

to the same Proverj cannot be performed concurrently. This definition of un-
forgeability can be reduced to Def. 5 which uses no prover oracle. Suppose A∗ is
limited to m Prover oracles. We split A∗ in several adversaries A∗

1 to A∗
m playing

modified games. Each A∗
i play with C where all Proverj for j
= i are replaced

by a query to the sign oracle and a simulation for the iProof protocol. So, only
the Proveri in the game with the adversary Ai uses a Prover oracle. Clearly,
Pr[A∗ succeeds] ≤

∑m
i=1 Pr[A∗

i succeeds]. Now we define adversaries A′
i: each

one plays the same game than A∗
i except than Proveri is simulated by Sim as

defined in Def. 4. By using the offline non-transferability property, the state of
adversary A∗

i is computationally indistinguishable from the one of adversary A′
i,

so Pr[A∗ succeeds] ≤
∑m

i=1 Pr[A′
i succeeds] + negl. This proves that introducing

a Prover oracle in Def. 5 does not strengthen our unforgeability notion when
offline non-transferability is granted.

Theorem 6 (ONTAP construction). Let S be a classical digital signature
scheme in which the sign algorithm outputs a signature splittable in two parts:
a public part σp and a private part σs. We assume there exists an algorithm
simulate such that σp ← simulate(Kp,m) is computationally indistinguishable
from the one generated by sign(Ks,m). Let iProof be a deniable zero-knowledge
proof of knowledge for witness σs in the relation

R(Kp‖m‖σp, σs) ⇐⇒ verify(Kp,m, σp‖σs) .

If S is EF-CMA-secure, then the ONTAP (setup, sign, iProof) is secure.

The required signature scheme S should be in the class C defined in [44] which
includes many signature schemes. Note that there exists a Σ-protocol for any
signature scheme since any NP relation has one [44]. However, such a protocol
is in general not efficient. Thanks to the next section, we transform Σ-protocols
into a denial ZK proof of knowledge.

Proof. We start with the constructed ONTAP scheme and consider the ONTAP
security games. Assuming that S is EF-CMA-secure, the public signature is
simulatable, and iProof is deniable ZK, we want to show that the ONTAP is
unforgeable and offline non-transferable.
Unforgeability: We consider an adversary A playing the ONTAP unforgeabil-
ity game with a challenger C as depicted on Fig. 2. A is bounded by a complexity
T and is limited by � queries to the oracle Sign. We split A in two parts: A1,
which represents the three first moves of A on Fig. 2 and outputs a state λ, and
A2(λ), which represents the last two moves of A. Thanks to the soundness, Ext
fed with A2(λ) produces σ̂s such that verify(Kp, m̂, σ̂p, σ̂s) holds. Hence, running
λ ← ASign

1 , then ExtA2(λ) wins in the EF-CMA game which is not possible.

Offline Non-Transferability: We construct Sim by running A until m̂ is sub-
mitted. Then, Sim runs σ̂′

p ← simulate(Kp, m̂) and continues to simulate A by
feeding it with σ̂′

p. Clearly, A with the simulated σ̂′
p reaches a state which is

indistinguishable from A with a true signature σ̂p. Then, we use the simulator
for iProof to simulate the final state (and output) from A. ��

282 J. Monnerat, S. Pasini, and S. Vaudenay

5 Deniable ZK from Σ-Protocols

The notion of Σ-protocol represents an important tool for the design of zero-
knowledge protocols. Below, we first briefly recall the required material and refer
to Damg̊ard [14] for a detailed treatment. Then, we present a generic transform
from any Σ-protocol into a deniable zero-knowledge proof of knowledge.

A Σ-protocol is a special 3-move honest-verifier zero-knowledge proof of
knowledge for a relation R. We recall that for a pair (x,w) ∈ R, x is a com-
mon input for P and V and w is a private input for P. We usually denote the
transcript (i.e., the three exchanged messages) by (a, e, z) and call the transcript
“accepting” if an honest verifier V would accept the corresponding interactive
proof execution. In Σ-protocols, e is a random bit-string which is (for the honest
verifier) independent from a.

To fully characterize a Σ-protocol, we specify the algorithms which generate
a and z, the domain of e, and the verifying algorithm executed by the verifier at
the end. Let us denote them by PR1, PR2, {0, 1}t, and VER respectively. Finally,
a Σ-protocol can be described formally as depicted on Fig. 3 where the notation
�P (resp. �V) represents the random tape of the prover P (resp. verifier V).

P(w; �P) (x) V(·; �V)

a = PR1(x,w; �P)
a−−−−−−−−−−→
e←−−−−−−−−−− e = trunct(�V)

z = PR2(x,w, e;�P)
z−−−−−−−−−−→ b = VER(x, a, e, z)

Fig. 3. A Generic Σ-protocol

In addition to the above restrictions, a Σ-protocol must achieve efficiency and
completeness following Def. 2, and must satisfy the two following conditions:
Special Soundness. For any x ∈ LR and any two accepting transcripts on
input x, (a, e, z), (a, e′, z′) with e
= e′, there exists a polynomial-time extractor
Ext(x, a, e, e′, z, z′) which outputs a bit-string w such that (x,w) ∈ R.
Special HVZK. There exists a polynomial-time simulator Sim which for any x
and a random e outputs a and z such that (a, e, z) has an identical probability
distribution to the transcript generated by P and V on input x.

The special soundness (resp. special HVZK) guarantees that a Σ-protocol is
sound (resp. HVZK). We define a weaker notion as follows.

Definition 7 (κ(x)-weak Σ-protocol). Let κ be a real function. A κ(x)-weak
Σ-protocol is a Σ-protocol with the special soundness property modified as fol-
lows:

For any x ∈ LR, any a, any e ∈ {0, 1}t, there exists a unique z such that
VER(x, a, e, z) = 1. Denote z = Resp(x, a, e).
There exists a polynomial-time algorithm Ext such that for any x ∈ LR, any
a, and any e ∈ {0, 1}t, we have

Pr
e′∈u{0,1}t

[(x,Ext(x, a, e, e′,Resp(x, a, e),Resp(x, a, e′))) ∈ R] ≥ 1− κ(x)

Efficient Deniable Authentication for Signatures 283

Special soundness is achieved for κ(x) = 2−t. κ(x)-weak Σ-protocols are sound
with soundness error κ(x). This comes from a simplified version of the proof of
Th. 9 below.

Here we give two examples of κ(x)-weak Σ-protocols. The first example is the
Guillou-Quisquater (GQ) protocol [30,29]. Let N = pq, e, and d be respectively
an RSA modulus, the public and private exponents. For simplicity we assume
that e is prime. (In practice, RSA keys use e = 3 or e = 65537). The GQ protocol
allows to prove the knowledge of x such that X = xe mod N , see Fig. 4a. The
second example is from Schnorr [42,43]. Let g be the generator of a group G
of prime order q. The Schnorr protocol allows to prove the knowledge of the
discrete logarithm x in G of the element X = gx, see Fig. 4b.

P(x) (N, e, X) V
pick y ∈u Z

∗
N

Y = ye Y−−−−−−−→
r←−−−−−−− pick r ∈u {0, 1}t

z = yxr z−−−−−−−→ check ze ?
= Y Xr

(a)

P(x) (g, q, X) V
pick y ∈u Zq

Y = gy Y−−−−−−−→
r←−−−−−−− pick r ∈u {0, 1}t

z = y + rx mod q
z−−−−−−−→ check gz ?

= Y Xr

(b)

Fig. 4. The GQ (a) and Schnorr (b) Protocols

Theorem 8. Let t be the bit-length of the second move. The GQ protocol with

prime exponent e is a 2t

e �
2t -weak Σ-protocol. The Schnorr protocol in a group of

prime order is a 2−t-weak Σ-protocol.

Proof. The case of the Schnorr protocol is well known, so we concentrate on the
GQ protocol.

Clearly we can define PR1, PR2, VER. Special HVZK is straightforward. Here
we only need to prove that it is κ(x)-weak. Note that given the two first moves
(Y ,r), there exists a unique third move (z) for which V will accepts. It remains to
prove the soundness and for that we should build an extractor Ext which outputs
the witness given any (I, Y, r1,Resp(I, Y, r1)) and a random (r2,Resp(I, Y, r2))
with I = (N, e,X).

Given (N, e,X), Y , r1, r2, z1, z2 such that ze
1 = Y Xr1 (mod N) and ze

2 =
Y Xr2 (mod N) if gcd(r1 − r2, e) = 1 we can find some integers a and b such
that ae + b(r1 − r2) = 1 by using the Extended Euclid algorithm and then can
compute x = Xazb

1z
−b
2 mod N which satisfies

xe = Xae(ze
1)

b(ze
2)

−b = Xae(Y Xr1)b(Y Xr2)−b = Xae+b(r1−r2) = X (mod N)

so a valid witness is extracted. Clearly, the GQ protocol is κ(x)-weak where

κ(x) = maxr1 Prr2 [gcd(r1 − r2, e)
= 1] and we find that κ(x) ≤ 2t

e �
2t since

κ(x) =
2t−1∑

k=0

1gcd(r1−k,e)
=1 Pr[r2 = k] =
1
2t

#{multiples of e in [r1, r1 + 2t − 1]}.

��

284 J. Monnerat, S. Pasini, and S. Vaudenay

We transform a HVZK protocol into a deniable ZK protocol by adding a com-
mitment step. This idea was proposed by Goldreich-Micali-Wigderson [25] and
then reused by Goldreich-Kahan [24]. They prove that it is possible to achieve
ZK in the standard model with a polynomial round complexity. Here, we want
to prove that it is possible to achieve deniable ZK in the CRS or RO models
with only 4 moves. At the same time, we achieve ZK in the standard model
with one extra move. The extra move is necessary for sending the fresh public-
key which replaces the common reference string. Note that Cramer-Damg̊ard-
MacKenzie [12] proposed a transform to achieve ZK but with a bigger round
complexity while Damg̊ard [13] proposed an efficient construction but without
deniability. Clearly, for our application, deniability is mandatory in the CRS and
RO models.

P(w; �P) (x) V(·; �V)
R ← random(�P)

(Kp, Ks) ← setup(1λ, R)
Kp−−−−−−−−−−→ e ∈u {0, 1}t, r ← random(�V)
c←−−−−−−−−−− c = com(Kp, e, r) (resp. c = H(e, r))

a = PR1(x,w; �P)
a−−−−−−−−−−→

(

resp. c
?
= H(e, r)

)

c
?
= com(Kp, e, r)

e‖r←−−−−−−−−−−
z = PR2(x, w, e; �P)

z‖R−−−−−−−−−−→ (K̂p, K̂s) ← setup(1λ, R)

K̂p
?
= Kp

b = VER(x, a, e, z)

Fig. 5. A Generic Transform of Σ-protocol

The protocol in the standard model is depicted on Fig. 5. Clearly, the prover
should be ensured that nobody knows the trapdoor Ks. Consequently, the prover
generates the key pair himself, he gives the public key on the first (extra) move
and the private key on the last one.

Theorem 9. Let C be a trapdoor commitment scheme, π be a κ(x)-weak Σ-
protocol, and π′ be its generic transform as depicted on Fig. 5.

For any arbitrary large integer k, π′ is a zero-knowledge proof of knowledge
in the standard model with soundness error κ′(x) = max

(

κ(x), 1/|x|k
)

.

Clearly, if the trapdoor Ks is known by the verifier, the protocol remains honest-
verifier zero-knowledge (this is essentially the Σ-protocol) but loses deniability.
Indeed, a malicious verifier could take e = OW(a) and open c to e. The response
z would become a transferable proof following the Fiat-Shamir paradigm [22] to
transform interactive proofs into non-interactive ones. Thus, the Kp key should
be trusted by the prover who believes that the verifier does not know the cor-
responding private key. In practice, a costless pragmatic solution could consist
of using a hash function at the place of the commitment. This is essentially the
instantiated variant with RO commitment scheme.

Theorem 10. Let C be a trapdoor commitment scheme (resp. the RO commit-
ment scheme). Let π be a κ(x)-weak Σ-protocol and let π′ be its generic trans-
form as depicted on Fig. 5 where Kp is the public key as setup in the commitment
scheme (resp. where H is a random oracle).

Efficient Deniable Authentication for Signatures 285

1. Ext′ picks �P and set up P∗ with �P.
2. Ext′ plays the role of the verifier and runs a complete protocol with P∗ who gives the trapdoor at

the end. If this protocol does not fail (event A1), this defines a first transcript c, a, e1‖r1, z1‖Ks

such that VER(x, a1, e1, z1, �p) outputs 1.
3. Ext′ picks e2 and computes r2 ← equivocate(Ks , c, e2). Ext′ runs another complete protocol

with P∗ set up with the same �p and uses messages c and e2‖r2. If this protocol does not fail
(event A2), this defines a second transcript c, a, e2‖r2, z2 such that VER(x, a, e2, z2) outputs 1.

4. If one of the two protocols failed, Ext′ aborts. Otherwise, using Ext with inputs (a, e1, z1) and
(a, e2, z2), Ext′ recovers w such that (x, w) ∈ R.

Fig. 6. The Knowledge Extractor Ext

For any arbitrary large integer k, π′ is a deniable zero-knowledge proof of
knowledge in the CRS model (resp. in the RO model) with soundness error
κ′(x) = max

(

κ(x), 1/|x|k
)

.

Proof (Th. 9 and Th. 10). Efficiency and completeness of the protocols of Fig. 5
are trivial. So, we concentrate in proving the properties of soundness and deniable
zero-knowledge.

Soundness. Let k be an arbitrary positive large integer and let P∗ be any
malicious prover which passes the protocol π′ for x with an honest verifier V
with probability ε(x). Let κ′(x) be the soundness error of the protocol π′. By
Def. 2 it is assumed that ε(x) > κ′(x).

Recall that for any x ∈ LR given two random accepting transcripts (a, e1, z1)
and (a, e2, z2) there exists a polynomial-time extractor Ext which outputs the
witness w such that (x,w) ∈ R with probability 1− κ(x) (over e2).

We construct the extractor Ext′ as described on Fig. 6. Thanks to the property
of equiv, the extractor Ext′ simulates perfectly a honest verifier for the malicious
prover P∗. Given �P and c, both protocols are independent and succeed with
the same probability, let us denote it by Pr[Aj |�P, c] = p�P,c for j = 1, 2. The
expected value of p�P,c over the random choice of �P and c is ε(x). No mat-
ter whether Aj holds, let zj be the unique z such that VER(x, a, ej , zj) = 1.
Let B the event that Ext(a, e1, e2, z1, z2) succeeds, i.e. Pr[¬B] ≤ κ(x). Fur-
thermore, Pr[¬B|A1] ≤ κ(x). We want to compute Pr[A1 ∧ A2 ∧ B] and we
have :

Pr[A1 ∧A2 ∧B|�P, c] = Pr[A1 ∧A2|�P, c]− Pr[A1 ∧A2 ∧ ¬B|�P, c] .

Focusing on the right term, we have Pr[A1∧A2∧¬B|�P, c] ≤ Pr[A1∧¬B|�P, c] ≤
p�P,cκ(x), while the other term is Pr[A1 ∧ A2|�P, c] = p2

�P,c, and we obtain
Pr[A1 ∧A2 ∧B|�P, c] ≥ p�P,c(p�P,c − κ(x)). Finally, we compute the expected
value over the �’s and c’s and using the Jensen’s inequality on the function
x �→ x2, we obtain Pr[A1 ∧ A2 ∧ B] ≥ ε(x)(ε(x) − κ(x)). We conclude that the
average number of running time of Ext′ before it succeeds is 1/ε(x)

ε(x)−κ(x) . Following

Def. 2, it suffices to prove that 1/ε(x)
ε(x)−κ(x) ≤

|x|k
ε(x)−κ′(x) for any ε(x) > κ′(x). It is

the case when κ′(x) = max
(

κ(x), 1/|x|k
)

.
In the case of the CRS model, the extractor Ext′ can be assumed to know

the trapdoor of the commitment. In the standard model (Fig. 5), Ext′ learns the

286 J. Monnerat, S. Pasini, and S. Vaudenay

1. Sim launches V∗ with a fresh random tape �V and receives c from V∗.
2. Sim picks a random a using the same distribution than PR1(·). Thanks to the special HVZK

property, this can be simulated by using Sim′ and obtaining (a, e0, z0). Sim then gives a to V∗.
3. Sim receives e and r from V∗ and checks c = commit(Kp, e, r).

– If c is not valid, Sim stops the simulation and releases the transcript (�V, Kp, x, a).
– Otherwise, i.e., if c is valid,

(a) Sim rewinds V∗ with the same random tape �V and receives the same c from V∗

since �V is unchanged. Sim can thus guess that c will open to e.
(b) Sim gives x and e to the simulator Sim′ described above in order to obtain a “good”

transcript (a′, e, z′). Sim sends a′ to V∗.
(c) Sim receives e′ and r′ from V∗ and checks c = com(Kp, e′, r′).

• If c is not valid, Sim goes back to step 3a.
• Otherwise, i.e., if c is valid

i. If e
= e′ (double opening of c), Sim aborts.
ii. Sim finishes by yielding (�V, Kp, x, a′, z′) of the last interaction with V∗.

Fig. 7. The Simulator Sim

trapdoor when event A1 holds. In the case of the RO commitment, the proof is
essentially the same: Ext′ creates two entries H(e1, r1) = H(e2, r2) = c in the H
table and executes both protocols by using only one entry. If by any chance P∗

queries H with the other, the extraction fails. But this happens with negligible
probability.

Deniable Zero-Knowledge. First, note that in the standard model deniable
zero-knowledge (dZK) and zero-knowledge (ZK) are equivalent. So, in this proof
we will show that all three protocols are dZK. This will imply that the protocol
of Fig. 5 is ZK in the standard model.

We need to build a simulator able to simulate the interactions with any verifier
V∗ as described in Def. 2. Note that in the CRS model, the simulator Sim is not
allowed to generate the common reference string. Let Kp = crs be any uniformly
distributed random string. Kp is given to both, to Sim and to V∗.

Recall that given any x ∈ LR and a random e there exists a polynomial-time
simulator Sim′ which outputs a transcript (a, e, z) which has identical probability
distribution than a transcript generated by P and V on input x.

We construct the simulator Sim as depicted on Fig. 7. Clearly, Sim always
returns a complete protocol view from V∗. It is either of type I (�V,Kp, x, a) or
of type II (�V,Kp, x, a

′, z′). The �V distribution is perfect as well as the view
of type I. Let A�V,Kp,x be the set of all a such that V∗(�V,Kp, x, a) returns a
valid c. The distribution of a′ is the marginal distribution from PR1 conditioned
to set A�V,Kp,x. So, it is perfectly simulated as well. Finally, the unique z′ is well
simulated (the negligible probability of breaking the commitment has a negligi-
ble influence on the distribution) so we have a computationally indistinguishable
simulator.

We still have to show that the average number of rewindings is polynomial.
Let �V be a fix random tape of V∗. Given x ∈ LR, for w s.t. (x,w) ∈ R we
consider V∗

�V
interacting with P(x,w). We denote by p�V(x) the probability that

the commitment is incorrectly opened to P. Since the distribution of a can be
simulated, p�V(x) does not depend on w. The number of executions of P is 1 with
probability 1−p�V(x) and 1+ 1

p�V (x) with probability p�V(x), so it is 2 on average.
This proves that the simulator runs in expected polynomial time. ��

Efficient Deniable Authentication for Signatures 287

6 ONTAP in Practice

6.1 ONTAP with Generic RSA Signature

We propose ONTAP-RSA: an ONTAP scheme which is generic for RSA-based
signatures. It is based on a zero-knowledge variant of the GQ protocol.

Consider h ← Hseed(m) be a formatting function and b = V(h,m) be a 0/1
check function returning 1 iff the formatted h is consistent with m.

Definition 11 (Generic RSA). A generic RSA signature works in a group Z
∗
N

with N ← pq and p, q are two k
2 -bit random prime numbers. Let e, d such that

ed ≡ 1 (mod ϕ(N)) and e is prime (since several variant are commonly used we
do not specify further the generation algorithm). The private key is Ks ← (N, d)
and the corresponding public key is Kp ← (N, e)

The signature of message m consists of the tuple σ = (σs, σp). The algorithm
picks a random seed, computes the formatted message σp ← Hseed(m), the sig-
nature σs = σd

p mod N (using the private key Ks), and outputs σp and σs.
There exists a verification algorithm verify(Kp,m, σp, σs) which outputs 1 if

the signature is valid, i.e. V(σp,m) = 1 and σe
s mod N = σp, and 0 otherwise.

Clearly, the PKCS#1v1.5, ISO/IEC 9796, RSA-PSS standards all fit into this
category.

The iProof protocol works as depicted on Fig. 8a. Note that Kp is the public-
key related to the signature scheme while crs is the one related to the commit-
ment scheme. The way to adapt to the plain model or random oracle model is
straightforward.

Theorem 12. Assume that the RSA-based signature is EF-CMA-secure and
that the com(·) is a trapdoor commitment scheme in the CRS model (resp. RO
commitment scheme). The digital signature scheme added to the signature proof
iProof of Fig. 8a forms a ONTAP scheme as defined in Def. 3 in the CRS model
(resp. RO model). The soundness error is � 2t

e �/2t.

With an extra round we obtain an ONTAP in the standard model (see Fig. 5).

Proof. Clearly, there exists an algorithm simulate(Kp,m) which outputs a σp

computationally indistinguishable from the one generated by sign(Ks,m), i.e.
σp ← Hseed(m). Thanks to Th. 6, we only need to prove that the signature scheme
is unforgeable and the protocol is deniable zero-knowledge. Unforgeability is
already assumed. Efficiency and completeness of iProof are trivial. Soundness
and deniable zero-knowledge properties of iProof are proven by Th. 8 and 9. ��

6.2 ONTAP with Generic ElGamal Signature

Definition 13 (Generic ElGamal). A generic ElGamal signature scheme
works in a group G with a generator g ∈ G with order q. The private key is
Ks = x ∈u Zq and the corresponding public key is Kp = y = gx.

288 J. Monnerat, S. Pasini, and S. Vaudenay

P(σs) (crs, Kp, m) V
σp = σe

s mod N pick r̃
pick r ∈u {0, 1}t

pick y ∈u Z
∗
N

c←−−−−−−− c = com(crs, r, r̃)

Y = ye mod N
Y ‖σp−−−−−−−→ V(σp, m)

?
= 1

c
?
= com(crs, r, r̃)

r‖r̃←−−−−−−−
z ← yσr

s mod N
z−−−−−−−→ ze ?

= Y σr
p (mod N)

(a)

P(σp, σs) (crs, Kp, m) V
pick r̃
pick r ∈u {0, 1}t

pick � ∈u [0, q − 1]
c←−−−−−−− c = com(crs, r, r̃)

a=u� mod p
a‖σp−−−−−−−→ ver(Kp, m, σp)

?
=1

c
?
= com(crs, r, r̃)

r‖r̃←−−−−−−− σp = (u, v, ξ)

z=� + r · s mod q
z−−−−−−−→ uz ?

=avr (mod p)

(b)

Fig. 8. The iProof Protocols for ONTAP-RSA (a) and ONTAP-ElGamal (b)

The signature of amessagem consists of the tupleσ = (u, v, ξ, s) ← sign(Ks,m).
This tuple is split in two parts: a part σp = (u, v, ξ) which can be perfectly simulated
without Ks and a part σs = s.

There exists a verification algorithm verify(Kp,m, σp, σs) which outputs 1 if
us = v ∧ ver(Kp,m, σp) = 1 and 0 otherwise for some function ver.

ElGamal [21] (with a group of prime order), Schnorr [42,43], DSA [19,18], and
ECDSA [20] signatures all meet the generic ElGamal requirements. Clearly, all
of them respect the parameter and key generation. We give briefly four examples:

– The plain ElGamal signature is u = gk mod p for some random k, v =
gh(m)y−u mod p, ξ = ∅, s = h(m)−xσr

k (mod q) and the ver algorithm con-

sists in checking v
?= gh(m)y−u (mod p).

– The Schnorr signature is u = g, v = gs mod p, ξ = h(gk mod p‖m), s = k +
xξ mod q and the ver algorithm consists in checking h(vy−ξ mod p‖m) ?= ξ

– The DSA signature is u = gk for some random k, v = gh(m)yu, ξ = ∅,
s = h(m)+xu

k mod q and the ver algorithm consists in checking v
?= gh(m)yu

(mod p).
– The ECDSA signature works over an elliptic curve with prime order n, with

generator G, and with keys Ks = d ∈u [1, n − 1] and KP = Q = dG.
The ECDSA signature is u = (ux, uy) = kG, v = h(m)G + ūxQ, ξ = ∅, s =
h(m)+dūx

k mod n and the ver algorithm consists in checking v ?= h(m)G+ūxQ
(mod n). (Here we use additive notations and the ux �→ x̄x mapping is
defined in [20]).

In order to build a non-transferable signature, instead of revealing the pri-
vate part of the signature, we will prove that we know it. Clearly, we will use
a zero-knowledge proof as before. The required proof of knowledge should al-
low P to prove to V that he knows s such that us = v. Note that this is
the proof of the knowledge of the discrete logarithm. The identification proto-
col from Schnorr [42,43] is a Σ-protocol when q is prime proving exactly that.
Consequently, we applied our generic transform from Th. 9 and we obtain the
verification protocol of Fig. 8b which is deniable zero-knowledge in the CRS
model. We thus obtain several schemes: ONTAP-ElGamal, ONTAP-Schnorr,
ONTAP-DSA, ONTAP-ECDSA, and so on.

Efficient Deniable Authentication for Signatures 289

Theorem 14. Assume that the ElGamal-based signature is EF-CMA-secure and
that the com(·) is a trapdoor commitment scheme in the CRS model (resp. RO
commitment scheme). The digital signature scheme added to the signature proof
iProof of Fig. 8b forms a ONTAP scheme in the CRS model (resp. RO model).
The soundness error is 2−t.

See proof of Th. 12.

7 Conclusion

We studied the deniability notion in the case of digital signature verification. We
proposed a new primitive called ONTAP as an offline non-transferable proof for
holding a valid signature. As example, we presented an efficient signature proof
for RSA-based and ElGamal-based signatures. Our protocol offers an adequate
solution for private data authentication especially in the context of e-passports.
It is compatible with all standard signature schemes.

References

1. Asokan, N., Shoup, V., Waidner, M.: Optimistic fair exchange of digital signatures
(extended abstract). In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403,
pp. 591–606. Springer, Heidelberg (1998)

2. Asokan, N., Shoup, V., Waidner, M.: Optimistic fair exchange of digital signatures
(extended abstract). IEEE Journal on Selected Areas in Communications 18(4),
593–610 (2000)

3. Baek, J., Safavi-Naini, R., Susilo, W.: Universal Designated Verifier Signature
Proof (or How to Efficiently Prove Knowledge of a Signature). In: Roy, B. (ed.)
ASIACRYPT 2005. LNCS, vol. 3788, pp. 644–661. Springer, Heidelberg (2005)

4. Boyar, J.F., Chaum, D., Damg̊ard, I., Pedersen, T.P.: Convertible Undeniable Sig-
natures. In: Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537,
pp. 189–205. Springer, Heidelberg (1991)

5. Boyar, J.F., Kurtz, S.A., Krentel, M.W.: A discrete logarithm implementation of
perfect zero-knowledge blobs. Journal of Cryptology 2(2), 63–76 (1990)

6. Brassard, G., Chaum, D., Crépeau, C.: Minimum disclosure proofs of knowledge.
Journal of Computer and System Sciences 37(2), 156–189 (1988)

7. Camenisch, J., Michels, M.: Confirmer Signature Schemes Secure against Adaptive
Adversaries. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 243–
258. Springer, Heidelberg (2000)

8. Catalano, D., Gennaro, R., Howgrave-Graham, N., Nguyen, P.Q.: Paillier’s cryp-
tosystem revisited. In: CCS 2001, pp. 206–214. ACM Press, New York (2001)

9. Chaum, D.: Zero-Knowledge Undeniable Signatures. In: Damg̊ard, I.B. (ed.)
EUROCRYPT 1990. LNCS, vol. 473, pp. 458–464. Springer, Heidelberg (1991)

10. Chaum, D.: Designated Confirmer Signatures. In: De Santis, A. (ed.) EURO-
CRYPT 1994. LNCS, vol. 950, pp. 86–91. Springer, Heidelberg (1995)

11. Chaum, D., van Antwerpen, H.: Undeniable Signatures. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 212–217. Springer, Heidelberg (1990)

290 J. Monnerat, S. Pasini, and S. Vaudenay

12. Cramer, R., Damg̊ard, I., MacKenzie, P.D.: Efficient Zero-Knowledge Proofs of
Knowledge Without Intractability Assumptions. In: Imai, H., Zheng, Y. (eds.)
PKC 2000. LNCS, vol. 1751, pp. 354–372. Springer, Heidelberg (2000)

13. Damg̊ard, I.: Efficient Concurrent Zero-Knowledge in the Auxiliary String Model.
In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 418–430. Springer,
Heidelberg (2000)

14. Damg̊ard, I.: On Σ-protocols. Lecture Notes (2005)
15. Damg̊ard, I., Pedersen, T.P.: New Convertible Undeniable Signature Schemes. In:

Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 372–386. Springer,
Heidelberg (1996)

16. Desmedt, Y.: Subliminal-Free Authentication and Signature (Extended Abstract).
In: Günther, C.G. (ed.) EUROCRYPT 1988. LNCS, vol. 330, pp. 23–33. Springer,
Heidelberg (1988)

17. Dolev, D., Dwork, C., Naor, M.: Nonmalleable cryptography. SIAM Review 45(4),
727–784 (2003)

18. Digital signature standard (DSS). Federal Information Processing Standard, Pub-
lication 186-2, U.S. Department of Commerce, National Institute of Standards and
Technology (2000)

19. Digital signature standard (DSS). Federal Information Processing Standard, Pub-
lication 186, U.S. Department of Commerce, National Institute of Standards and
Technology (1994)

20. ANSI X9.62. Public Key Cryptography for the Financial Service Industry: The
Elliptic Curve Digital Signature Algorithm (ECDSA). American National Standard
Institute. American Bankers Associtaion (1998)

21. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Transactions on Information Theory 31(4), 469–472 (1985)

22. Fiat, A., Shamir, A.: How to Prove Yourself: Practical Solutions to Identification
and Signature Problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263,
pp. 186–194. Springer, Heidelberg (1987)

23. Gennaro, R., Krawczyk, H., Rabin, T.: RSA-Based Undeniable Signatures. Journal
of Cryptology 13(4), 397–416 (2000)

24. Goldreich, O., Kahan, A.: How To Construct Constant-Round Zero-Knowledge
Proof Systems for NP. Journal of Cryptology 9(3), 167–189 (1996)

25. Goldreich, O., Micali, S., Wigderson, A.: Proofs that Yield Nothing But Their
Validity or All Languages in NP Have Zero-Knowledge Proof Systems. Journal of
the ACM 38(1), 691–729 (1991)

26. Goldwasser, S., Micali, S., Rackoff, C.: The Knowledge Complexity of Interactive
Proof-Systems. In: STOC 1985, pp. 291–304. ACM Press, New York (1985)

27. Goldwasser, S., Micali, S., Rackoff, C.: The Knowledge Complexity of Interactive
Proof Systems. SIAM Journal on Computing 18(1), 186–208 (1989)

28. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against
adaptive chosen-message attacks. SIAM Journal on Computing 17(2), 281–308
(1988)

29. Guillou, L.C., Quisquater, J.-J.: A Practical Zero-Knowledge Protocol Fitted to
Security Microprocessor Minimizing Both Trasmission and Memory. In: Günther,
C.G. (ed.) EUROCRYPT 1988. LNCS, vol. 330, pp. 123–128. Springer, Heidelberg
(1988)

30. Guillou, L.C., Quisquater, J.-J.: A “Paradoxical” Identity-Based Signature Scheme
Resulting from Zero-Knowledge. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS,
vol. 403, pp. 216–231. Springer, Heidelberg (1990)

Efficient Deniable Authentication for Signatures 291

31. Jakobsson, M., Sako, K., Impagliazzo, R.: Designated Verifier Proofs and Their
Applications. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp.
143–154. Springer, Heidelberg (1996)

32. Li, J., Wang, Y.: Universal Designated Verifier Ring Signature (Proof) Without
Random Oracles. In: Zhou, X., Sokolsky, O., Yan, L., Jung, E.-S., Shao, Z., Mu,
Y., Lee, D.C., Kim, D.Y., Jeong, Y.-S., Xu, C.-Z. (eds.) EUC Workshops 2006.
LNCS, vol. 4097, pp. 332–341. Springer, Heidelberg (2006)

33. Monnerat, J., Vaudenay, S.: Generic Homomorphic Undeniable Signatures. In: Lee,
P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 354–371. Springer, Heidelberg
(2004)

34. Monnerat, J., Vaudenay, S., Vuagnoux, M.: About Machine-Readable Travel Doc-
uments – Privacy Enhancement Using (Weakly) Non-Transferable Data Authenti-
cation. In: RFIDSEC 2007 (2007)

35. Machine Readable Travel Documents. Development of a Logical Data Structure —
LDS For Optional Capacity Expansion Technologies. Version 1.7 (2004),
http://www.icao.int/mrtd/download/technical.cfm

36. Machine Readable Travel Documents. PKI for Machine Readable Travel Docu-
ments offering ICC Read-Only Access. Version 1.1 (2004),
http://www.icao.int/mrtd/download/technical.cfm

37. Ogata, W., Kurosawa, K., Heng, S.-H.: The Security of the FDH Variant of
Chaum’s Undeniable Signature Scheme. In: Vaudenay, S. (ed.) PKC 2005. LNCS,
vol. 3386, pp. 328–345. Springer, Heidelberg (2005)

38. Okamoto, T., Ohta, K.: How to Utilize the Randomness of Zero-Knowledge Proofs.
In: Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 456–
475. Springer, Heidelberg (1991)

39. Paillier, P.: Public-Key Cryptosystems Based on Composite Degree Residuosity
Classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999)

40. Pass, R.: On Deniability in the Common Reference String and Random Oracle
Model. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 316–337. Springer,
Heidelberg (2003)

41. Pass, R.: Alternative Variants of Zero-Knowledge Proofs. Licentiate Thesis (2004)
42. Schnorr, C.-P.: Efficient Identification and Signatures for Smart Cards. In: Bras-

sard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, Heidelberg
(1990)

43. Schnorr, C.-P.: Efficient Signature Generation by Smart Cards. Journal of Cryp-
tology 4(3), 161–174 (1991)

44. Shahandashti, S.F., Safavi-Naini, R.: Construction of Universal Designated-Verifier
Signatures and Identity-Based Signatures from Standard Signatures. In: Cramer,
R. (ed.) PKC 2008. LNCS, vol. 4939, pp. 121–140. Springer, Heidelberg (2008)

45. Shahandashti, S.F., Safavi-Naini, R., Baek, J.: Concurrently-secure credential own-
ership proofs. In: ASIACCS 2007, pp. 161–172. ACM Press, New York (2007)

46. Steinfeld, R., Bull, L., Wang, H., Pieprzyk, J.: Universal Designated-Verifier Sig-
natures. In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 523–542.
Springer, Heidelberg (2003)

47. Vaudenay, S.: E-Passport Threats. IEEE Security and Privacy Magazine 5(6), 61–
64 (2007)

48. Vaudenay, S., Vuagnoux, M.: About Machine-Readable Travel Documents. In: ICS
2007. LNCS. Springer, Heidelberg (2007)

http://www.icao.int/mrtd/download/technical.cfm
http://www.icao.int/mrtd/download/technical.cfm

Homomorphic MACs: MAC-Based Integrity for

Network Coding

Shweta Agrawal1,� and Dan Boneh2,��

1 The University of Texas at Austin
shweta.a@gmail.com
2 Stanford University
dabo@cs.stanford.edu

Abstract. Network coding has been shown to improve the capacity and
robustness in networks. However, since intermediate nodes modify pack-
ets en-route, integrity of data cannot be checked using traditional MACs
and checksums. In addition, network coded systems are vulnerable to
pollution attacks where a single malicious node can flood the network
with bad packets and prevent the receiver from decoding the packets
correctly. Signature schemes have been proposed to thwart such attacks,
but they tend to be too slow for online per-packet integrity.

Here we propose a homomorphic MAC which allows checking the in-
tegrity of network coded data. Our homomorphic MAC is designed as a
drop-in replacement for traditional MACs (such as HMAC) in systems
using network coding.

1 Introduction

Network coding [1,2] proposes to replace the traditional ‘store and forward’
paradigm in networks by more intelligent routing that allows intermediate nodes
to transform the data in transit. Network coding has become popular due to its
robustness and the improved throughput it offers.

When transmitting a message using linear network coding [3] the sender first
breaks the message into a sequence of m vectors v̂1, . . . , v̂m in an n-dimensional
linear space F

n
q , where n,m and q are fixed ahead of time. Often q = 28 so that

the entire transmitted message is n×m bytes. The sender transmits these mes-
sage vectors to its neighboring nodes in the network. As the vectors traverse the
network, moving from one node to the next on their way to the destination, the
nodes randomly combine the vectors with each other. More precisely, each node
in the network creates a random linear combination of the vectors it receives and
transmits the resulting linear combination to its adjacent nodes. Intended recip-
ients thus receive random linear combinations of the original message vectors.
Recipients can recover the original message from any set of m random linear
combinations that form a full rank matrix.
� Supported by DARPA IAMANET.

�� Supported by DARPA IAMANET, NSF, and the Packard Foundation.

M. Abdalla et al. (Eds.): ACNS 2009, LNCS 5536, pp. 292–305, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Homomorphic MACs: MAC-Based Integrity for Network Coding 293

For this approach to work, every vector v̂ in the network must carry with
it the coefficients α1, . . . , αm ∈ Fq that produce v̂ as a linear combination of
the original message vectors. To do so, prior to transmission, the source node
augments every message vector v̂i with m additional components. The resulting
vectors v1, . . . ,vm, called augmented vectors, are given by:

vi = (—v̂i—,

m
︷ ︸︸ ︷

0, . . . , 0, 1
︸ ︷︷ ︸

i

, 0, . . . , 0) ∈ F
n+m
q (1)

i.e., each original vector v̂i is appended with the vector of length m containing a
single ‘1’ in the ith position. These augmented vectors are then sent by the source
as packets in the network. Observe that if y ∈ F

n+m
q is a linear combination of

v1, . . . ,vm ∈ F
n+m
q then the linear combination coefficients are contained in the

last m coordinates of y.

Pollution Attacks. Our brief description of linear network coding assumes all
nodes are honest. However, if some nodes are malicious and forward invalid linear
combinations of received vectors, then recipients obtain multiple packets, only
some of which are proper linear combinations of the original message vectors. In
such a scenario, recipients have no way of telling which of their received vectors
are corrupt and should be ignored during decoding.

Detailed discussion of pollution attacks can be found in [4,5,6]. Here we only
note that pollution attacks cannot be mitigated by standard signatures or MACs.
Clearly, signing the augmented message vectors is of no use since recipients do
not have the original message vectors and therefore cannot verify the signature.
Similarly, signing the entire message prior to transmission does not work. To see
why, observe that recipients can obtain multiple vectors where, say, only half are
proper linear combinations of the original message vectors and the other half are
corrupt. Recipients would need to decode exponentially many m-subsets until
they find a decoded message that is consistent with the signature (decoding pro-
duces the correct transmitted message only when all m vectors being decoded are
a linear combination of the original message vectors). In summary, as explained
in [4,5,6], new integrity mechanisms are needed to mitigate pollution attacks.

Previous Solutions. Recently, several approaches have been proposed to thwart
pollution attacks. Of these, some solutions are information theoretic while others
are cryptographic. We refer to [4] for a survey of defenses. Here we restrict our
attention to cryptographic solutions. Several authors [4,5,7,8] devised digital sig-
nature schemes for signing a linear subspace. Let V be the linear space spanned
by the augmented message vectors v1, . . . ,vm ∈ F

n+m
q that the sender transmits.

These signature schemes produce a signature σ on V such that Verify(PK,v, σ)
holds for every v ∈ V , but it is difficult to construct a vector y
∈ V for which
Verify(PK,y, σ) holds. Recipients use these signatures to reject all received vec-
tors that are not in the subspace V , mitigating the pollution problem.

The digital signature constructions in [4,5,7,8] are very elegant and very
appropriate for offline network coding systems, such as robust distributed file

294 S. Agrawal and D. Boneh

storage [9]. For online traffic, however, these systems are too slow to sign every
packet. A different solution is needed if one is to defend against pollution attacks
at line speeds.

Another difficulty with existing digital signatures is that they require the net-
work coding coefficients to live in a field Fq where q is the order of a group where
discrete-log is difficult, e.g. q ≈ 2160. Therefore transmitting each coefficient re-
quires 20 bytes and hence the augmentation components add 20×m bytes to every
packet. Recall that in typical linear network coding (without integrity) q = 28 so
that the augmentation components add only m bytes to every packet. Again, a
different solution is needed if one wishes to minimize the augmentation overhead.

Faster methods for network coding integrity were studied in [10,11]. In [10],
the authors extend the idea of using homomorphic hashes, first proposed in [8].
They suggest clever batch mechanisms and co-operation of well-behaved users
in order to reduce the cost of online verification. This method, however, requires
a client to separately download hashes of every file that it wishes to download.
The lightweight homomorphic hashing scheme of [11] also entails the overhead of
downloading file hashes separately as in [10]. In addition, it requires new hashes
to be computed for every client that joins the system, and assumes a secure
channel between the server and client for communicating these hashes.

Our Contribution. We design a MAC scheme that can be used to mitigate pol-
lution attacks. We construct the MAC in three steps.

First, we construct a homomorphic MAC. That is, given two (vector,tag) pairs
(v1, t1) and (v2, t2), where v1, v2 ∈ F

n+m
q , anyone can create a valid tag t for

the vector y = α1v1 +α2v2 for any α1, α2 ∈ Fq. Roughly speaking, our security
proof shows that, even under a chosen message attack, creating a valid tag for
a vector outside the linear span of the original message vectors is difficult. We
give the details in Section 2 and 3. Our MAC is related to the classic MAC of
Carter and Wagman [12].

This MAC system can be used to mitigate pollution attacks when the source
and recipient have a shared secret key. The source uses the secret key to compute
a tag for each of the original message vectors. Intermediate nodes then use the
homomorphic property to compute valid tags for random linear combinations
they produce. The recipient verifies the tags of received vectors and drops all
vectors with an invalid tag.

Network coding (for a single source) is most useful in broadcast settings where
there are multiple recipients for every message. Using our basic homomorphic
MAC the sender would need to have a shared secret key with each recipient. In
addition, if we want intermediate nodes to verify tags before forwarding them
on to other nodes, then the sender would need to have a shared secret key with
each network node. Every packet would need to include a tag per network node,
which is unworkable.

Our second step converts the homomorphic MAC into a broadcast homomor-
phic MAC using a technique of Canetti et al. [13]. This enables any network node
to validate vectors it receives. The limitation of this construction is that it is only c-
collusion resistant for some pre-determined c. That is, when more than

Homomorphic MACs: MAC-Based Integrity for Network Coding 295

c recipients and intermediate nodes collude, the MAC becomes insecure. In some
settings, it may be possible to apply TESLA-like methods [14] to convert our ho-
momorphic MAC into a broadcastMAC. We do not explore this here since we want
intermediate network nodes to verify packet integrity before forwarding packets.

Our third step converts the broadcast homomorphic MAC into an integrity
system where there are multiple senders and multiple verifiers. The result is
a network coding MAC in networks where anyone can be either a sender, a
recipient, or an intermediate node.

We experimented with our construction and give running times in Section 7.

Notation: Throughout the paper we let [m] denote the set of integers {1, . . . ,m}.
For vectors u and v in F

n
q we let u ·v ∈ Fq denote the inner product of u and v.

2 Homomorphic MACs: Definitions

We begin by defining homomorphic MACs and their security. A (q, n,m) ho-
momorphic MAC is defined by three probabilistic, polynomial-time algorithms,
(Sign, Verify, Combine). The Sign algorithm computes a tag for a vector space
V = span(v1, . . . ,vm) by computing a tag for one basis vector at a time. Combine
implements the homomorphic property and Verify verifies vector-tag pairs. Each
vector space V is identified by an identifier id which is chosen arbitrarily from a
set I. In more detail, these algorithms provide the following functionality:

– Sign(k, id,v, i): Input: a secret key k, a vector space identifier id, an aug-
mented vector v ∈ F

n+m
q , and i ∈ [m] indicating that v is the ith basis

vector of the vector space identified by id.
Output: tag t for v.

As explained above, the Sign algorithm signs a vector space V ⊆ F
n+m
q

spanned by v1, . . . ,vm by running Sign(k, id,vi, i) for i = 1, . . . ,m. This
produces a tag for each of the basis vectors. The identifier id identifies the
vector space V . When transmitting a vector vi into the network, the sender
transmits (id,vi, ti). Recipients collect all valid vectors with a given id and
decode those as a group to obtain the original basis vectors encoding the
transmitted message. We let I denote the set of identifiers and K denote the
set of keys.

– Combine((v1, t1, α1), . . . , (vm, tm, αm)) : Input: m vectors v1, . . . ,vm∈F
n+m
q

and their tags t1, . . . , tm under key k plus m constants α1, . . . , αm ∈ Fq.
Output: a tag t on the vector y :=

∑m
i=1 αivi ∈ F

n+m
q .

– Verify(k, id,y, t): Input: a secret key k, an identifier id, a vector y ∈ F
n+m
q ,

and a tag t.
Output: 0 (reject) or 1 (accept).

We require that the scheme satisfy the following correctness property. Let V
be an m-dimensional subspace of F

n+m
q with basis v1, . . . ,vm and identifier id.

Let k ∈ K and ti := Sign(k, id,vi, i) for i = 1, . . . ,m. Let α1, . . . , αm ∈ Fq. Then

296 S. Agrawal and D. Boneh

Verify

(

k, id,
m∑

i=1

αivi, Combine
(

(v1, t1, α1), . . . , (vm, tm, αm)
)

)

= 1

Security. Next, we define security for homomorphic MACs. We allow the attacker
to obtain the signature on arbitrary vector spaces of its choice (analogous to
a chosen message attack on MACs). Each vector space Vi submitted by the
attacker has an identifier idi. The attacker should be unable to produce a valid
triple (id,y, t) where either id is new or id = idi but y
∈ Vi. More precisely, we
define security using the following game (a similar game is used to define secure
homomorphic signatures in [4]):

Attack Game 1. Let T = (Sign,Combine,Verify) be a (q, n,m) homomorphic
MAC. We define security of T using the following game between a challenger C
and an adversary A.

Setup. The challenger generates a random key k
R← K.

Queries. A adaptively submits MAC queries where each query is of the form
(Vi, idi) where Vi is a linear subspace (represented by a basis of m vectors) and
idi is a space identifier. We require that all identifiers idi submitted by A are
distinct. To respond to a query for (Vi, idi) the challenger does:

Let v1, . . . ,vm ∈ F
n+m
q be a basis for Vi

// Now compute MAC for all basis vectors:
for j = 1, . . . ,m let tj

R← Sign(k, idi,vj , j)
send (t1, . . . , tm) to A

Output. The adversary A outputs an identifier id∗, a tag t∗, and a vector
y∗ ∈ F

n+m
p .

The adversary wins the security game if Verify(k, id∗,y∗, t∗) = 1, and either
1. id∗
= idi for all i (a type 1 forgery), or

2. id∗ = idi for some i and y∗
∈ Vi (a type 2 forgery)
Moreover, let y∗ = (y∗1 , . . . , y

∗
n+m). Then the augmentation (y∗n+1, . . . , y

∗
n+m)

in y∗ is not the all zero vector (which corresponds to a trivial forgery).

The advantage NC-Adv[A, T] of A with respect to T is defined to be the prob-
ability that A wins the security game.

Definition 1. A (q, n,m) homomorphic MAC scheme T is secure if for all poly-
nomial time adversaries A the quantity NC-Adv[A, T] is negligible.

3 Construction 1: A Homomorphic MAC

In this section we describe a secure homomorphic MAC. Our construction is
derived from a classic MAC system due to Carter and Wagman [12]. Shacham
and Waters [15] recently proposed another homomorphic MAC, also based on
the Carter-Wagman MAC, but the motivation, setup and security game are very
different from ours.

Homomorphic MACs: MAC-Based Integrity for Network Coding 297

The MAC Scheme HomMac: To construct a (q, n,m) homomorphic MAC we use
a Pseudo Random Generator G : KG → F

n+m
q and a Pseudo Random Function

F : KF × (I × [m]) → Fq. Keys for our MAC consist of pairs (k1, k2) where
k1 ∈ KG and k2 ∈ KF. The MAC works as follows:

– Sign(k, id,v, i): To generate a tag for an ith basis vector v ∈ F
n+m
q using

key k = (k1, k2) do:
(1) u ← G(k1) ∈ F

n+m
q

(2) b ← F
(

k2, (id, i)
)

∈ Fq

(3) t ← (u · v) + b ∈ Fq

Output t. Note that the tag is a single element of Fq.

– Combine((v1, t1, α1), . . . , (vm, tm, αm)): output t ←∑m
j=1 αjtj ∈ Fq.

– Verify(k, id,y, t): Let k=(k1, k2) be a secret key and let y=(y1, . . . , yn+m) ∈
F

n+m
q .

Do the following:
u ← G(k1) ∈ F

n+m
q and a ← (u · y) ∈ Fq

b ←∑m
i=1

[

yn+i · F
(

k2, (id, i)
)]

∈ Fq

if a+ b = t output 1; otherwise output 0

This completes the description of HomMac. To verify correctness of the scheme,
suppose y =

∑m
i=1 αivi where v1, . . . ,vm are the original augmented basis vec-

tors and t1, . . . , tm are their tags. The coordinates (yn+1, . . . , yn+m) of y are
equal to the coefficients (α1, . . . , αm). Therefore, a+ b computed in Verify satis-
fies

a+ b = u · y + b =
m∑

i=1

αi ·
(

(u · vi) + F (k2, (id, i))
)

=
m∑

i=1

αi · ti

which is precisely the output of Combine
(

(v1, t1, α1), . . . , (vm, tm, αm)
)

, as re-
quired.

Security. We prove security assuming G is a secure PRG and F is a secure
PRF. For a PRF adversary B1 we let PRF-Adv[B1, F] denote B1’s advantage in
winning the PRF security game with respect to F . Similarly, for a PRG adversary
B2 we let PRG-Adv[B2, G] be B2’s advantage in winning the PRG security game
with respect to G. We refer to [16] for a definition of the PRF and PRG security
games.

Theorem 2. For any fixed q, n,m, the MAC scheme HomMac is a secure (q, n,m)
homomorphic MAC assuming the PRG G is a secure PRG and the PRF F is a
secure PRF.

In particular, for all homomorphic MAC adversaries A there is a PRF ad-
versary B1 and a PRG adversary B2 (whose running times are about the same
as that of A) such that

NC-Adv[A,HomMac] ≤ PRF-Adv[B1, F] + PRG-Adv[B2, G] + (1/q)

298 S. Agrawal and D. Boneh

Proof. We prove the theorem using a sequence of three games denoted Game 0,1,2.
For i = 0, 1, 2 let Wi be the event that A wins the homomorphic MAC security
game in Game i.

Game 0 is identical to Attack Game 1 applied to the scheme HomMac. Therefore

Pr[W0] = NC-Adv[A,HomMac] (2)

In Game 1 we replace the output of the PRG used in HomMac with a truly
random string. That is, Game 1 is identical to Game 0 except that to respond to
MAC queries the challenger computes at initialization time u R← F

n+m
q instead

of u ← G(k1) in step (1) of the Sign algorithm. Everything else remains the
same. Then there is a PRG adversary B2 such that

∣
∣Pr[W0]− Pr[W1]

∣
∣ = PRG-Adv[B2, G] (3)

In Game 2 we replace the PRF by a truly random function. That is, Game 2
is identical to Game 1 except that to respond to MAC queries the challenger
computes b R← Fq instead of b ← F

(

k2, (idi, j)
)

in step (2) of the Sign algorithm.
Everything else remains the same. Then there is a PRF adversary B1 such that

∣
∣Pr[W1]− Pr[W2]

∣
∣ = PRF-Adv[B1, F] (4)

The complete challenger in Game 2 works as follows:

Initialization: u R← F
n+m
q

The adversary submits MAC queries (Vi, idi) where Vi = span(v1, . . . ,vm)
is a subspace of F

n+m
q .

The challenger responds to query number i as follows:
for j = 1, . . . ,m do:

bi,j
R← Fq and ti,j ← (u · vj) + bi,j ∈ Fq

send (ti,1, . . . , ti,m) to A

Eventually the adversary outputs (id∗, t∗,y∗). To determine if the adversary wins
the game we first compute:

if id∗ = idi then
set (b∗1, . . . , b

∗
m) ← (bi,1, . . . , bi,m) // (type 2 forgery)

else for j = 1, . . . ,m set b∗j
R← Fq // (type 1 forgery)

Let y∗ = (y∗1 , . . . , y∗n+m). The adversary wins (i.e. event W2 happens) if

t∗ = (u · y∗) +
m∑

j=1

(y∗n+j · b∗j) (5)

and, for a type 2 forgery y∗
∈ Vi. Moreover the augmentation (y∗n+1, . . . , y
∗
n+m)

in y∗ is not all zero.

Homomorphic MACs: MAC-Based Integrity for Network Coding 299

We now show that Pr[W2] = 1/q in Game 2. This is the crux of the proof.
Let T be the event that the adversary outputs a type 1 forgery.

Type 1 forgery (event T happens): We bound Pr[W2 ∧ T]. In a type 1 forgery
the right hand side of (5) is a random value in Fq independent of the adversary’s
view. Therefore, when event T happens, the probability that (5) holds is exactly
1/q. Hence, Pr[W2 ∧ T] = (1/q) · Pr[T].

Type 2 forgery (event ¬T happens): We bound Pr[W2 ∧¬T]. In a type 2 forgery
A uses an id∗ used in one of the MAC queries. Then id∗ = idi for some i. Event
W2 happens if y∗
∈ Vi and (5) holds.

Let {t′1, . . . , t′m} be the tags for the basis vectors {v1, . . . ,vm} of the linear
space Vi. Define

y′ :=
m∑

j=1

y∗n+j · vj ∈ Vi and t′ :=
m∑

j=1

y∗n+j · t′j ∈ Fq

Then, t′ is a valid tag for y′. Hence, we now know that the following two relations
hold:

(u · y∗) +
m∑

j=1

y∗n+j · bi,j = t (6)

(u · y′) +
m∑

j=1

y′n+j · bi,j = t′ (7)

Recall that v1, . . . ,vm are properly augmented vectors and therefore y′n+j =
y∗n+j for j = 1, . . . ,m. Subtracting (7) from (6) we obtain

(

u · (y∗ − y′)
)

= t− t′ (8)

Hence, by producing a valid forgery, the adversary found a y∗ and t that sat-
isfy (8). Moreover, since y∗
∈ Vi but y′ ∈ Vi we know that y∗
= y′. But since in
the adversary’s view, u is indistinguishable from a random vector in F

n+m
q , the

probability that he can satisfy (8) is exactly 1/q. Hence, when event ¬T happens
one can show that Pr[W2 ∧ ¬T] = (1/q) · Pr[¬T].

Putting together our bounds for Pr[W2 ∧ T] and Pr[W2 ∧ ¬T] we obtain

Pr[W2] = Pr[W2 ∧ T] + Pr[W2 ∧ ¬T] = 1/q(Pr[T] + Pr[¬T]) = 1/q (9)

Putting together equations (2),(3),(4),(9) proves the theorem. ��

Improved Security. Since the tag on a vector v is a single element in Fq, there
is a homomorphic MAC adversary that can break the MAC (i.e. win the MAC
security game) with probability 1/q. When q = 28 the MAC can be broken with
probability 1/256. Security can be improved by computing multiple MACs per
data vector. For example, with 8 tags per vector security becomes 1/q8. For

300 S. Agrawal and D. Boneh

q = 28 the resulting tag is 8 bytes long. The proof of Theorem 2 easily extends
to prove these bounds for HomMac using multiple tags.

We note, however, that a homomorphic MAC with security 1/256 may be
sufficient for the network coding application. The reason is that the homomorphic
MAC is only used by recipients to drop malformed received vectors. The sender
can, in addition, compute a regular MAC (such as HMAC) on the transmitted
message prior to encoding it using network coding. Recipients, after decoding
a matrix of vectors with valid homomorphic MACs, will further validate the
HMAC on the decoded message and drop the message if its HMAC is invalid.
Hence, success in defeating the homomorphic MAC does not mean that a rogue
message is accepted by recipients. It only means that recipients may need to do
a little more work to properly decode the message (by trying various m-subsets
of the received vectors with a valid homomorphic MAC). As mentioned above,
this issue can be avoided by increasing the security of the homomorphic MAC
by computing multiple tags per vector.

4 Broadcast Homomorphic MACs: Definitions

We next convert the homomorphic MAC of the previous section to a broadcast
homomorphic MAC. This will enable all nodes in the network (both recipients
and routers) to verify tags in transmitted packets. We start by defining security
for a broadcast homomorphic tag, which takes into account a set of nodes trying
to fool some other node.

A broadcast homomorphic MAC is 0 by a five tuple (q, n,m, μ, c) where
(q, n,m) are as in the previous section, μ is the number of nodes in the sys-
tem, and c is the collusion bound (the maximum number of nodes that can
collude to fool another node).

A (q, n,m, μ, c) broadcast homomorphic MAC is defined by four probabilis-
tic, polynomial-time algorithms, (Setup, Sign, Verify, Combine) that provide the
following functionality:

– Setup(λ, μ, c): Input: security parameter λ, number of users in the system
μ, and desirable collusion resistance bound c. Output: A set of μ + 1 keys
k, k1, . . . , kμ. Here k is the sender’s key and k1, . . . , kμ are keys given to the
μ verifiers.

– Algorithms Sign,Combine,Verify are as in Section 2, except that the Sign
algorithm is given the key k and the Verify algorithm is given one of the keys
ki for some i ∈ [μ].

The system must satisfy a correctness requirement analogous to the one in
Section 2.

Security: Next, we define security against c-collusions. The adversary A is given
c verifier keys and its goal is to create a message-tag pair that will verify under
some verifier’s key not in the adversary’s possession. More precisely, we define
security using the following game.

Homomorphic MACs: MAC-Based Integrity for Network Coding 301

Attack Game 2. Let T = (Setup, Sign,Combine,Verify) be a (q, n,m, μ, c)
broadcast homomorphic MAC. We define security of T using the following game
between a challenger C and an adversary A (the security parameter λ is given
as input to both the challenger and the adversary).

Setup. The adversary sends the challenger the indices of c users acting as ver-
ifiers {i1, . . . , ic}. The challenger runs Setup(λ, c, μ) to obtain keys k, k1, . . . , kμ

and sends the keys {ki1 , . . . , kic} to the adversary.

Queries. The adversary adaptively submits MAC queries as in Attack Game 1.
The challenger responds as in that game using the sender’s key k.

Output. The adversary A outputs an index j∗ ∈ [μ]\{i1, . . . , ic}, an identifier
id∗, a tag t∗, and a vector y∗ ∈ F

n+m
p .

The adversary wins the security game if Verify(kj∗ , id
∗,y∗, t∗) = 1, and the

additional winning conditions of Attack Game 1 are satisfied.

The advantage BNC-Adv[A, T] of A with respect to T is defined to be the
probability that A wins this security game.

Definition 3. A (q, n,m, μ, c) broadcast homomorphic MAC scheme T is secure
if for all polynomial time adversariesA, the quantity BNC-Adv[A, T] is negligible.

5 Construction 2: A Broadcast Homomorphic MAC

We convert our homomorphic MAC HomMac into a broadcast MAC using a tech-
nique of Canetti et al. [13] based on cover free set systems. Instead of computing
one tag per vector, we compute several tags per vector using independent keys.
We give each verifier a subset of all MAC keys. Thus, each verifier can validate
a subset of the MACs on each packet. More importantly, when key assignment
is done properly, no coalition of c verifiers can fool another verifier. We start by
recalling a few definitions.

Definition 4. A set system is a pair (X,B) where X is a finite set of elements
and B = (A1, . . . , Aμ) is an ordered set of subsets of X.

Definition 5. A set system (X,B) is called a (c, d)–cover free family if for all c
distinct sets A1, . . . , Ac ∈ B and any other set A ∈ B, we have |A \∪c

j=1Aj | > d.

We construct a (q, n,m, μ, c) broadcast homomorphic MAC from HomMac and
any (c, d) cover free family (X,B) where |B| = μ. The parameter d is important
for security; the error term in the security proof is (1/q)d. The system works as
follows:

MAC Scheme BrdctHomMac:

Setup(λ, c, μ): Pick a (c, d) cover free family (X,B), such that |B| = μ and
1
qd < 1

2λ .

302 S. Agrawal and D. Boneh

Let � = |X| and generate � keys {K1, . . . ,K�} for HomMac. We equate X

with this set of keys, i.e. X := {K1, . . . ,K�}.
The sender’s key k consists of all � keys in X. We assign to verifier number

i (where i ∈ [μ]) the key ki := Ai ⊆ X where Ai is subset number i in B.

Sign(X, id,v, i): For j = 1, . . . , � compute tj ← HomMac-Sign(Kj, id,v, i)
and output t := (t1, . . . , t�).

Combine((v1, t1, α1), . . . , (vm, tm, αm)) : Apply HomMac-Combine to all � tags
in the m tuples.

Verify(Ai, id,y, t): Here t is a tuple of � tags. The key Ai is a set of b keys for
HomMac, say {Ki,1, . . . ,Ki,b}.

Do the following:
Select the b tags in the tuple t that correspond to the b keys in Ai.
Call them t1, . . . , tb.
For j = 1, . . . , b,
rj ← HomMac-Verify(Ki,j , id,y, tj)
If rj = 1 for all j ∈ [b], output 1; otherwise output 0

Security. The following simple theorem states the security property of this con-
struction. Recall that HomMac uses a PRF and a PRG.

Theorem 6. For any fixed q, n,m, μ, c, the broadcast homomorphic MAC
BrdctHomMac is a secure (q, n,m, μ, c) Broadcast Homomorphic MAC assuming
the PRG G is a secure PRG and the PRF F is a secure PRF.

In particular, for all broadcast homomorphic MAC adversaries A there is a
PRF adversary B1 and a PRG adversary B2 (whose running times are about the
same as that of A) such that

BNC-Adv[A,BrdctHomMac] ≤ PRF-Adv[B1, F] + PRG-Adv[B2, G] + (1/q)d

(10)

The proof is straight forward from Theorem 2 and is omitted here. Since q is fairly
small (e.g. q = 256) it is very important that the error term in (10) is (1/q)d.
In particular, one needs a (c, d) cover free set system where d makes (1/q)d

negligible (or concretely (1/q)d < (1/2)λ). The (1/q)d error term is obtained
thanks to properties of the HomMac homomorphic MAC.

6 Key Management for Multi-sender Broadcast
Homomorphic MACs

The key dissemination scheme described in the previous section only supports
a single sender in the network. A real network however, may contain several
senders. In particular, a typical node in a network may simultaneously play the
role of sender, recipient and intermediate node. Supporting multiple senders in
a network using the scheme outlined in the previous section requires setting

Homomorphic MACs: MAC-Based Integrity for Network Coding 303

up a cover free family of keys for each sender. In this section, we describe a
single cover free family of keys that simultaneously supports all senders of the
network.

To achieve this, we modify the key dissemination scheme as follows. Every
node in the network is given two sets of keys, the first set corresponding to its
role as a sender and the second set corresponding to its role as a verifier. We
assume that every node in the network is identified by a sender id that is unique.
We denote the sender id of node i by sidi.

As before, the network is associated with a cover free family (X,B), where X

is a set of keys and B is an ordered set of subsets of keys of X. Let |X| = � and
let the members of X be denoted by x1, x2, . . . , xl.

Given a cover free family, keys are distributed to individual nodes as follows.
The node i with sender id sidi is given two sets of keys K1,i and K2,i, where
K1,i is used to sign a message and K2,i is used to verify the authenticity of a
received message. We let K1,i = {F (x1, sidi), F (x2, sidi), . . . , F (xl, sidi)} where
F is a PRF. Note that |K1,i| = � for all i = 1, . . . , μ. The key K2,i is a block in
the cover free family, i.e. K2,i ∈ B. Let K2,i = {xi1 , xi2 , . . . , xib

} where b is the
block size.

We claim that this setup is sufficient for every node in the network to play
its dual roles of sender and verifier. To sign a packet, node i simply uses its
� keys from set K1,i to create � tags for the packet. To verify a packet p,
node i first reads the sender id of p, say sidp (note that each packet carries
with it the id of its sender). Then it uses K2,i to dynamically compute the
b keys it needs to verify p as {F (xi1 , sidp), F (xi2 , sidp), . . . , F (xib

, sidp)}. Using
these b keys, the node proceeds to verify p as before. Thus, using the sender
id of each received packet, a node computes on the fly the keys it needs for
verification.

The proof of security largely remains the same as in Theorem 6. We briefly
outline it here. As before, knowing a single block (or union of c blocks) of keys is
not enough to fool any other node in the system because (X,B) is a (c, d) cover
free family. A node i knows only b “plain” keys from X via its set K2,i. For all
other keys x ∈ X node i only has F (x, sidi) from its key K1,i. But since F is
a secure PRF, the value F (x, sidi) reveals no information about F (x, sidj) for
sidj
= sidi.

7 Experimental Results

We implemented the homomorphic broadcast MAC outlined in Section 5 to mea-
sure its performance. In our implementation, we chose q = 256, i.e. we worked
over the field F28 . For brevity, we will denote this field by F. Our messages were
chosen as vectors of length 1024 over the field F, and the network coding coeffi-
cients were picked randomly from F. For our experiments, we restrict attention
to networks with a single sender. We ran two experiments using the following
two cover free families, which we constructed from polynomials [17].

304 S. Agrawal and D. Boneh

– A (2, 1) cover-free family where |X| = 49 and each block contains 7 keys.
The number of verifiers it can support is μ = 74 = 2401.

– A (2, 5) cover-free family where |X| = 121 and each block contains 11 keys.
The number of verifiers it can support is μ = 114 = 14641.

In our implementation, we chose m = 5, so the sender sends 5 messages, each a
1 kilobyte vector as described above. Each message is signed with 49 (resp. 121)
keys by the sender. An intermediate node (or router) receives 5 messages with 49
(resp. 121) tags each, which it linearly combines to yield an aggregate message
and an aggregate tag. We verify that the resultant aggregate tag is valid for the
aggregate message.

Since our homomorphic MAC requires fast multiplication in F, we created a
multiplication table offline which stores all 216 products of pairs of elements of
F. This table speeds up product computation, which is now just a quick table
lookup. The addition in the field is implemented as a simple XOR operation. We
implemented the pseudorandom function F and the pseudorandom generator G
using AES (from OpenSSL).
We timed the following operations:

1. Signing: Source signs one message.
2. Combine and Verify: Router receives five (message,tag) pairs and computes

a random linear combination of the five vectors and their corresponding tags.
Then it verifies that the combined tag is valid for the combined message.

The results for both cover free families are shown in the following table. Timing
units are in microseconds. The numbers in the table correspond to averages taken
over 10,000 runs of each experiment.

Operation timed Sign Combine & Verify tag size(bytes) Security
p = 7 430.3 88.5 49 (1/2)8

p = 11 1329.3 161.5 121 (1/2)40

These experiments were conducted on a GNU/Linux system with 4 Intel Xeon
3 Ghz processors with symmetric multiprocessing support.

8 Conclusions

We presented a homomorphic MAC suitable for networks using network coding.
The homomorphic MAC can be converted to a broadcast homomorphic MAC
using cover free families. The resulting broadcast MAC is collusion resistant up
to a pre-determined collusion bound c. The tag size grows quadratically with c.

Our experimental results show that the MAC performs well as a point-to-
point MAC. As a broadcast MAC it performs well for small values of c. It is
an interesting question whether a TESLA-type mechanism [14] applied to our
homomorphic MAC can be used to give the same functionality as our broadcast
MAC, where every intermediate network router can verify the tag.

Homomorphic MACs: MAC-Based Integrity for Network Coding 305

References

1. Ahlswede, R., Cai, N., Li, S., Yeung, R.: Network information flow. IEEE Trans-
actions on Information Theory 46(4), 1204–1216 (2000)

2. Koetter, R.: An algebraic approach to network coding. IEEE/ACM Transactions
on Networking 11, 782–795 (2003)

3. Li, S.Y.R., Yeung, R.W., Cai, N.: Linear network coding. IEEE Trans. Inform.
Theory 49(2), 371–381 (2003)

4. Boneh, D., Freeman, D., Katz, J., Waters, B.: Signing a linear subspace: Signature
schemes for network coding. In: Proc. of PKC 2009 (2009)

5. Zhao, F., Kalker, T., Médard, M., Han, K.: Signatures for content distribution
with network coding. In: Proc. of International Symposium on Information Theory
(ISIT) (2007)

6. Han, K., Ho, T., Koetter, R., Medard, M., Zhao, F.: On network coding for security.
In: Military Communications Conference (Milcom) (2007)

7. Charles, D., Jain, K., Lauter, K.: Signatures for network coding. In: CISS 2006
(2006); to appear in International Journal of Information and Coding Theory

8. Krohn, M., Freedman, M., Mazieres, D.: On the-fly verification of rateless erasure
codes for efficient content distribution. In: Proc. of IEEE Symposium on Security
and Privacy, pp. 226–240 (2004)

9. Gkantsidis, C., Rodriguez, P.: Network coding for large scale content distribution.
In: Proc. of IEEE INFOCOM 2005, pp. 2235–2245 (2005)

10. Gkantsidis, C., Rodriguez, P.: Cooperative security for network coding file distri-
bution. In: INFOCOM (2006)

11. Gkantsidis, C., Miller, J., Rodriguez, P.: Comprehensive view of a live network
coding p2p system. In: Internet Measurement Conference, pp. 177–188 (2006)

12. Carter, L., Wegman, M.: Universal classes of hash functions. Journal of Computer
and System Sciences 18(2), 143–154 (1979)

13. Canetti, R., Garay, J., Itkis, G., Micciancio, D., Naor, M., Pinkas, B.: Multicast
security: A taxonomy and some efficient constructions. In: Proc. of INFOCOM
1999, vol. 2, pp. 708–716 (1999)

14. Perrig, A., Canetti, R., Tygar, D., Song, D.: Efficient authentication and signature
of multicast streams over lossy channels. In: Proc. of 2000 IEEE Symposium on
Security and Privacy (2000)

15. Shacham, H., Waters, B.: Compact proofs of retrievability. In: Pieprzyk, J. (ed.)
Asiacrypt 2008. LNCS, vol. 5350, pp. 90–107. Springer, Heidelberg (2008)

16. Katz, J., Lindell, Y.: Introduction to Modern Cryptography: Principles and Pro-
tocols. CRC Press, Boca Raton (2007)

17. Kumar, R., Rajagopalan, S., Sahai, A.: Coding constructions for blacklisting prob-
lems without computational assumptions. In: Wiener, M. (ed.) CRYPTO 1999.
LNCS, vol. 1666, pp. 609–623. Springer, Heidelberg (1999)

Algorithmic Tamper Proof (ATP) Counter Units

for Authentication Devices Using PIN

Yuichi Komano1, Kazuo Ohta2, Hideyuki Miyake1, and Atsushi Shimbo1

1 Toshiba Corporation,
1, Komukai Toshiba-cho, Saiwai-ku, Kawasaki 212-8582, Japan

{yuichi1.komano,hideyuki.miyake,atsushi.shimbo}@toshiba.co.jp
2 The University of Electro-Communications,

Chofugaoka 1-5-1, Chofu-shi, Tokyo 182-8585, Japan
ota@ice.uec.ac.jp

Abstract. Though Gennaro et al. discussed the algorithmic tamper
proof (ATP) devices using the personal identification number (PIN) with
less tamper-proof devices, and proposed counter units which count the
number of wrong attempts in user authentication; however, as for the
counter unit, they only constructed one which counts the total number
of wrong attempts. Although large number for the limit of wrong at-
tempts is required for usability, it allows an attacker to search PIN up to
the limit and degrades the security. The construction of secure counter
units which count the number of consecutive wrong attempts remains
as an open problem. In this paper, we first formalize the ATP security
of counter units, and propose two constructions of counter unit which
count the number of consecutive wrong attempts. The security of each
construction can be proven under the assumptions of secure signature
scheme and random function. The former one is required to store two
states in secure memory area (RP-Mem) with low computation cost; and
the latter one has high computation cost but is required to store only one
state in RP-Mem. This shows the trade-off between the costs of hardware
and algorithm.

Keywords: algorithmic tamper proof (ATP), counter unit, PIN authen-
tication.

1 Introduction

1.1 Background

Physical attacks like the fault attack [2] threaten the security of devices and sev-
eral countermeasures with particular hardware are proposed. Gennaro et al. [3]
discussed the algorithmic tamper proof (ATP) devices in which software algo-
rithm cooperates with hardware to ensure the security against such attacks. It
relaxes the hardware requirements and gives us practical device implementations.

In [3], they constructed the ATP devices, such as decryption and signature
generation ones. Moreover, they insisted that, in order to prohibit unauthorized

M. Abdalla et al. (Eds.): ACNS 2009, LNCS 5536, pp. 306–323, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

ATP Counter Units for Authentication Devices Using PIN 307

users from running the devices, an authentication using the personal identifi-
cation number (PIN) should be performed. In order to secure the device, they
claimed that it should self-destruct if more wrong attempts of authentication are
detected than the limit number which is pre-determined as a system parameter.

In considering ATP devices, the property of memory area must be carefully
discussed. They [3] prepare two kinds of memory area for the device. One is a
read -proof but tamperable area (we call it read proof memory, RP-Mem); and
the other is a tamper -proof but readable one (tamper proof memory, TP-Mem).
Read-proof (resp. tamper-proof) memory is one where attacker is not permitted
to read (write by fault injection etc.) data in (into) it. In order to decrease the
manufacture cost, TP-Mem should be a read only memory where the common
data for devices is hardwired (see [3] or section 3.2). This paper also uses RP-Mem
and TP-Mem to construct ATP counter units as well as [3].

There are two types of counter unit. One counts the total number of wrong
attempts; and the other counts the number of consecutive wrong ones. In [3],
they gave a concrete unit for the former one and claimed its security (without a
formal discussion); however, the former one has a dilemma in choosing the limit
of wrong attempts. Although the limit number should be large enough in case
the legal user misses the authentication during the life time of devices; it allows
an attacker to search the PIN by try and error up to the limit, and degrades the
security. The latter one can solve this dilemma but the ATP secure construction
of such unit remains as an open problem.

Let us review the counter unit proposed in [3] for the total number of wrong
attempts (see appendix for detail). The unit stores a state (Ri) in RP-Mem which
is a node of hash chain and relates to the total number of wrong attempts. The
leaf of hash chain is signed by the trusted party. When an attempt fails, it updates
the state with hashing it (move to next node). If a certain attacker over-writes
the state maliciously, then it can be detected because the signature must not be
valid for a leaf of hash chain from the over-written state; and then the device self-
destructs to prevent the attacker from accessing it. If the state is readable for the
attacker, then it is possible to rewind the counter by copying the state; therefore,
the state should be stored in RP-Mem. See appendix A.1 for detail.

1.2 Our Contribution

In this paper, we first define a security model of counter units by giving the
attack scenario and goal formally. In this model, an attacker can read (write)
data in (into) TP-Mem (RP-Mem); and moreover, she can run functionalities of
counter units at her will. We then propose two constructions of a counter unit
which counts the number of consecutive wrong attempts and prove their security.

Note that the counter unit which counts the number of consecutiv wrong
attempts requires a reset functionality and our security model allows an attacker
to use it. In order to prevent the attacker maliciously running this functionality,
we let reset the counter after PIN is certified in the reset functionality.

The first construction, named ATP-CU1 (algorithmic tamper-proof counter
unit 1), stores two states state1 and state2 (nodes of a hash chain) in RP-Mem.

308 Y. Komano et al.

state1 represents the total number of wrong attempts like [3] and state2 relates
to the latest success of the authentication. The correctness of these states can
be checked whether state2 is mapped to state1 with the hash function (strictly,
we assume a pseudorandom function); and the number of consecutive wrong
attempts is measured by the distance between them (figure 2). The security of
ATP-CU1 can be ensured by the pseudorandomness of hash function and the
unforgeability of underlying signature scheme.

The other one, named ATP-CU2, is based on one state and a chameleon hash
function [6,1]. The state directly correlates to the number of consecutive wrong
attempts and its correctness is checked whether the chameleon hash function
maps the state to the pre-fixed data with respect to the signature stored in
RP-Mem. The state is updated with the open algorithm of the chameleon hash
function. ATP-CU2 is secure if the chameleon hash function is collision resistant
one-way and if the underlying signature scheme is unforgeable. Compared to
ATP-CU1, ATP-CU2 utilizes the chameleon hash function to make data (cor-
responds to state2 in ATP-CU1) fixed and to decrease the variable state by
one; however, the chameleon hash function generally requires high computation
and long output. This shows the trade-off between the costs of hardware and
algorithm.

This paper is organized as follows. Section 2 reviews the definitions of prelimi-
naries. In section 3, we model the ATP devices using PIN with counter units and
formalize ATP security of counter units. We then construct two counter units
for the consecutive wrong attempts and prove their security in sections 4 and 5,
respectively. Section 6 makes the discussion and section 7 concludes this paper.
Moreover, in appendix A, we revisit the counter unit [3] for the total number of
wrong attempts to give a formal discussion.

2 Preliminaries

Let us review the signature scheme, pseudorandom function and chameleon hash
function. We first recall the model of signature scheme and its security [5] this
paper assumes. Since the existential unforgeability against key only attack, not
against chosen message attack, is enough for ensuring the security of our units,
this section review the former one. We assume the trusted device vendor gen-
erates a pair of public and secret keys, makes signatures and stores the pulic
key and signatures in tamper-proof and read-proof memories (see section 3.2),
respectively; and therefore, no one except the vendor gets a pair of message and
signatures and our assumption of key only attack is meaningful.

Definition 1 (Signature Scheme). The signature scheme consists of the fol-
lowing three algorithms.

1) Key Generation Algorithm, Gen: Given a security parameter k as an
input, it outputs a key pair of public and secret keys Gen(1k) = (pk , sk).
This algorithm is probabilistic.

ATP Counter Units for Authentication Devices Using PIN 309

2) Signing Algorithm, Sign: Given a message m and a secret key sk as inputs,
it outputs a signature Signsk (m) = s. This algorithm may be probabilistic.

3) Verification Algorithm, Ver: Given a message mCa signature s, and a
public key pk as inputs, it outputs Verpk (m, s) = 1 (accept) if s is valid for
m and pk ; or Verpk (m,σ) = 0 (reject) otherwise. This algorithm is deter-
ministic.

Definition 2 (Existential Unforgeability against Key Only Attack). We
say that a signature scheme (Gen, Sign,Ver) is existentially unforgeable against
key only attack in (τ, ε) if, for all attacker A whose running time is bounded by
τ , the success probability of A is at most ε. Here, the success probability of A is
defined by Pr[(pk , sk) ← Gen(1k); (m∗, s∗) ← A(pk) : Verpk (m∗, s∗) = 1].

We then recall the definition of pseudorandom function [4].

Definition 3 (Pseudorandom Function). For a security parameter k, the
family of hash functions {fk : {0, 1}k → {0, 1}k} is pseudorandom if it satisfies
the following property: For all polynomial time algorithm M , ε= |Pr[MfUk (1k)=
1] − Pr[MFk(1k) = 1]| < 1

p(k) holds for all positive function p and sufficiently
large k. Here, Fk is an arbitrary function from {0, 1}k to {0, 1}k and Uk is an
element chosen randomly and uniformly from {0, 1}|k|.
Finally, let us recall the definition of chameleon hash function [6,1].

Definition 4 (Chameleon Hash Function). Let R be a recipient and let
k, km, kr be security parameters. The chameleon hash function consists of the
following three algorithms.

1) Key Generation Algorithm, CGen: Given k, it outputs a key pair of
public and private keys CGen(1k) = (CPK ,CSK) for R. This algorithm is
probabilistic.

2) Chameleon Hash Algorithm, CH: Given a message m ∈ {0, 1}km , a
randomness r ∈ {0, 1}kr , and CPK ; it outputs a hash value CHCPK (m, r) ∈
{0, 1}k. This algorithm is deterministic.

3) Open Algorithm CHI: Given messages m,m′ ∈ {0, 1}km, a randomness
r ∈ {0, 1}k, and CSK ; it outputs CHICSK (m, r,CHCPK (m, r)) = r′ such that
CHCPK (m, r) = CHCPK (m′, r′) holds.

Definition 5 (Properties of CH). Let R be a recipient and let CPK and CSK
denote the public and secret keys of R, respectively. We say that the chameleon
hash function CHCPK (and its open algorithm CHICSK) is secure if it satisfies
the following properties.

1) Uniformity: For all m, if r is chosen at random from {0, 1}kr , then
CHCPK (m, r) is uniformly distributed in {0, 1}k.

2) Collision Resistance: We say that the chameleon hash function CHCPK

is collision resistant in (τC , εC) if, for all attacker A whose running time is
bounded by τC , the success probability of A is at most εC . Here, the success
probability of A is defined by Pr[(CPK ,CSK) ← CGen(1k); {(m, r), (m′, r′)}
← A(CPK) : (m
= m′) ∧ (CHCPK (m, r) = CHCPK (m′, r′))].

310 Y. Komano et al.

3 ATP Devices Using PIN

This section formalizes the ATP devices which authorize a user with a PIN.
We assume that no one can guess PIN with success probability more than εP
within time bound τP . Note that εP is polynomial, e.g., 1

104 for four digit PIN;
however, we assume that it has enough entropy (i.e., PIN is chosen randomly)
for disturbing a few guesses allowed by devices with our counter unit.

3.1 Function of Devices

This paper deals with devices which self-destruct if the authentication fails more
than the limit number (e.g., 3 times), in order to prevent malicious users from
using functionalities of such devices. For this purpose, a counter unit which
counts the number of wrong attempts in authentication should be implemented.
See figure 1 for its construction.

There are two types of functionalities of devices. One consists of sensitive
functionalities that should be invoked only after the authentication succeeds
(e.g., signing and decryption functionalities); the other consists of ones which
can be called at any time (e.g., authentication functionality).

The device works in the following way. The counter is initialized with zero.
A user who requests to use a sensitive functionality first runs the authentica-
tion functionality. If the authentication succeeds, then she is allowed to run the
sensitive one. If not, on the other hand, the device increments the counter with
update functionality (subroutine of authentication) and rejects her request.

3.2 Memory Area of Devices

We classify the memory unit of device into four types with respect to readability
and tamperability for an attacker as in Table 1. In this table, NP-Mem stands for
a non-protected memory and an attacker can read and write data in NP-Mem by
probing etc. RP-Mem is a read-proof memory where an attacker can write data
into it by injecting faults etc., but can not read data in it. It can be realized by the

Device

Counter Unit

Memory
Sensitive

Functionalities
(eg. Decryption)

Insensitive
Functionalities

(eg. Autnehtication)

Check
and

Authen.

request, PIN

answer

OK

NG
error

Fig. 1. Devices with Counter Units

ATP Counter Units for Authentication Devices Using PIN 311

Table 1. Types of Memory Unit

Read
Yes No

Write
Yes NP-Mem RP-Mem
No TP-Mem RTP-Mem

special hardware [7] or memory encryption1, for example. TP-Mem is a tamper-
proof memory where an attacker can read data in it but can not write data into
it. From the viewpoint of mass production [3], TP-Mem stores (hardwires) the
common data for devices and is regarded as a read only memory (ROM). Our
aim is, following that of [3], to implement a secure counter unit with RP-Mem
and TP-Mem (and NP-Mem for storing temporary data).

Note that, if the read-proof and tamper-proof area (RTP-Mem in Table 1.) is
available, the secure counter unit can be obviously constructed when RTP-Mem
holds the number of wrong attempts. However, RTP-Mem costs high and seems
not to be implemented in small devices; therefore, we follow [3] to assume
RTP-Mem is not available. Note also that, since memory area of RP-Mem and
TP-Mem tends to highly cost compared to NP-Mem, we should estimate the
allocation for each area and decrease the use of area highly costing.

3.3 Security Requirements for ATP Devices Using PIN

In this subsection, we model the ability (attack scenario) of attacker against the
device and her aim (attack goal).

Ability of Attacker. We assume that an attacker can invoke insensitive func-
tionalities at will. In this scenario, the device can be utilized as a black box to
give her hints. Moreover, she is allowed to change the data stored in tamperable
memory areas (NP-Mem and RP-Mem) and to read the data stored in readable
memory areas (NP-Mem and TP-Mem) on her will.

This scenario is an extension of the fault attack to cryptographic devices
[2]. Note that while the practical fault attacks change the data by chance; our
scenario allows her to specify the position and value of data flipped by her
attack. She is, however, allowed neither to run the sensitive functionality directly
(bypassing the authentication) nor to skip the operation inside the insensitive
functionality2.

1 Devices encrypt the data and store the encrypted one. The devices hold a decryption
key for read the data. In practice, the memory encryption seems a practical but the
decryption key should be managed properly. In order to discuss the provable security,
if the memory encryption is utilized to realize RP-Mem, the key management is also
modeled formally; however, it is an out of scope how RP-Mem is realized for this
paper, we omit it.

2 See Remark 1 in appendix A for the necessity of this assumption.

312 Y. Komano et al.

We give the attack model with following queries.

– data read query: With the query Read(type, var), the attacker receives the
value val of the variable var if it is stored in type ∈ {NP-Mem,TP-Mem};
or ⊥ otherwise. Assume that the output is returned immediately after the
query.

– data write query: With the query Write(type, var, h), the attacker replaces
the value val with h(val) of the variable var if it is stored in type ∈ {NP-Mem,
RP-Mem}; or receives ⊥ otherwise. Assume that the replacement (or the
output of ⊥) is performed immediately after the query.

– functionality run query: With the query Run(func, ope), the attacker runs
the functionality func with the operand ope and receives its output if it exists.
Assume that, while some functionality runs with this query, he is allowed to
request data read and write queries but she is disallowed to request another
functionality run query concurrently3.

Note that functionalities performed by the functionality run query above vary
from units. For instance, ATP-CU1 has three functionalities (Main, Update1, and
Update2) and we allow an attacker to run them with the query.

Goal of Attacker. Although the supreme goal of an attacker is to recover
PIN , we impose her with another goal: to attempt the authentication more
than the limit. For example, assume that the limit number is three. In this
setting, the device should self-destruct if fourth wrong attempt happens (in total
or consecutive). We say that an attacker succeeds in this attack if she performs
fifth attempt with no knowledge about PIN . Note that, if this attack is mounted,
there is a chance to find PIN by try and error.

ATP Security for Devices with Counter Unit. We call the device with
counter unit is ATP secure if there is no polynomial time attacker who achieves
the attack goal under the attack scenarios above with non-negligible success
probability.

4 Algorithmic Tamper-Proof Counter Unit 1: ATP-CU1

This section shows the counter unit ATP-CU1 which counts the number of con-
secutive wrong attempts. This is one of solutions to the open problem of [3].

4.1 Construction of ATP-CU1

ATP-CU1 utilizes two states state1 = R and state2 = S which are the nodes
of a hash chain (strictly, a chain of pseudorandom function). R represents the
total number of wrong attempts as in [3] and S relates to the latest success
attempt. Their correctness can be checked whether S is mapped to R with the
hash function G; R = Gi(σ1, S) for i ≤ m where σ1 and m are the signature
3 See Remark 2 in appendix A for the necessity of this assumption.

ATP Counter Units for Authentication Devices Using PIN 313

Table 2. Memory Allocation for ATP-CU1

TP-Mem m, k, G, Ver, pk

RP-Mem state1 = R, state2 = S, σ1, σ2

and limit number, respectively (see below). If they are correct, the number of
consecutive wrong attempts is measured by the distance between them; i in the
previous equality. If the attempt fails, it updates R by replacing it with G(σ1, R).
On the other hand, if the attempt succeeds, it updates state2 = S by replacing
it with Gi−1(σ1, S). See figure 2 for example.

Notation. We introduce the notations of variables and preliminaries for ATP-
CU1.

– PIN : PIN
– m: limit number of wrong attempts
– k: security parameter
– {G(σ, ·) : {0, 1}k × {0, 1}k → {0, 1}k}: pseudorandom function4

– (Gen, Sign,Ver): signature scheme
– (pk , sk): public and secret keys for signature scheme with respect to the

trusted device vendor5
– state1 = R and state2 = S

The vendor runs Gen(1k) to generate pk and sk that are used for all devices
in advance.

Initialization. The vendor initializes the device as follows.

1. He decides PIN (if necessary, by interacting with a user).
2. He computes σ1 ← Signsk (PIN) and σ2 ← Signsk (σ1).
3. He chooses S ∈ {0, 1}k at random.
4. He computes R ← G(σ1, S).
5. He initializes state1 ← R and state2 ← S.
6. He allocates the data as in Table 2.

Note that at step 2, PIN may be padded with a random nonce (in this case,
it is stored in RP-Mem and used in verification) in order to enlarge the entropy
of the input of signing function.

The authentication (check for the correctness of inputted PIN ′) is performed
by the verification of PIN ′ and σ1. Moreover, σ1, which is a part of input of G,
disable an attacker to predict the output of G. On the other hand, σ2 ensures
that σ1 (stored in tamperable area) is unchanged by Write(RP-Mem, σ1, h) with
signing verification. This verification ensures that σ2 is also unchanged.

We denote, by Gn(σ1, R) for σ1 ∈ {0, 1}k and R ∈ {0, 1}k, the operation where
G is repeatedly applied n times. For instance, G2(σ1, R) = G(σ1,G(σ1, R)).
4 Assume that the first input of G (signature σ1 below) is a key for pseudorandom

function.
5 Hereafter, we assume that the device vendor is trusted.

314 Y. Komano et al.

Authentication Process. In correspondence with a request from a user, the
device authorizes the user and updates the states as follows. Figure 2 shows the
translation of states utilized in ATP-CU1.

—— Main(PIN ′) ——

1. If R
∈ {G(σ1, S), · · · ,Gm+1(σ1, S)} holds, then it self-destructs.
2. If Verpk (σ1, σ2) = 0 holds, then it self-destructs.
3. Otherwise, the following steps are performed.

(a) If Verpk (PIN ′, σ1) = 1 holds, then the following steps are performed.
i. If G(σ1, S) = R holds, then it accepts the request.
ii. If G(σ1, S)
= R holds, then it runs Update2(PIN ′) and accepts the

request.
(b) If Verpk (PIN ′, σ1) = 0 holds, then it runs Update1(φ) and rejects the

request.

—— Update1(φ) ——

1. If Verpk (σ1, σ2) = 0 holds, then it self-destructs.
2. It updates R with G(σ1, R).

—— Update2(PIN ′) ——

1. If Verpk (PIN ′, σ1) = 0 holds, then it self-destructs.
2. If Verpk (σ1, σ2) = 0 holds, then it self-destructs.
3. Otherwise, the folloing steps are performed.

(a) If R = Gn(σ1, S) ∈ {G2(σ1, S), · · · ,Gm+1 (σ1, S)} holds, then it updates
S with Gn−1(σ1, S).

(b) If R
∈ {G2(σ1, S), · · · ,Gm+1(σ1, S)} holds, then it self-destructs.

The first step of Main computes the hash chain for each invocation and checks
the number of consecutive wrong attempts is within the limit.

Note that the number of consecutive wrong attempt is estimated by n − 1
if R = Gn(σ1, S) holds at step 1 in Main. Also note that we assume that an
attacker can run the subroutines of authentication (Update1 and Update2) di-
rectly. Therefore, in order to prevent the attacker from running such subroutines
maliciously, the checks performed in Main are also done in Update1 and Update2.

Count the number of consecutive
wrong attempts with distance

Initial

Initial

eg., success after two consecutive wrong attempts

Fig. 2. Translation of States in ATP-CU1

ATP Counter Units for Authentication Devices Using PIN 315

4.2 Security Consideration of ATP-CU1

As for the security of ATP-CU1, we will prove the following theorem.

Theorem 1. If it is infeasible to find PIN within time bound τP and with the
probability more than εP , if it is infeasible to break the pseudorandomness of G
within time bound τG with the probability more than εG, and if it is infeasible
to break existential unforgeability against key only attack within time bound τB

with the probability εB, then it is infeasible to break the ATP security of ATP-
CU1 within time bound τA with the probability more than εA. The following
inequalities hold.

{
τB ≤ (m + 2)τP + τG + τA + O(1)T,
εB ≥ εA − (m + 2)εP − εG − 1/2k−1

Here, T denotes the running time of authentication device once.

Proof: By using the attacker A against ATP-CU1 as a black box, we construct
an algorithm B which takes the key only attack to existentially forge a signature
of (Gen, Sign,Ver).

The aim of A is to perform the PIN authentication m+2 times. As described
in section 3.3, A outputs the following queries: data read query Read(type, var),
data write query Write(type, var, h), and functionality run query Run(func, ope)
where func ∈ {Main,Update1, Update2}.

B, given a public key pk of (Gen, Sign,Ver) and a pseudorandom function G
as inputs, simulates the answers to queries from A and uses A as a black box
to output a forgery (m∗, s∗) of (Gen, Sign,Ver). B first initializes the input of A
and data for a device as follows.

Initialization:

1. B decides PIN.
2. B chooses σ1, σ2 ∈ {0, 1}k at random.
3. If Verpk (PIN , σ1) = 1 holds, then B outputs (PIN , σ1) as a forgery and

stops.
4. If Verpk (σ1, σ2) = 1 holds, then B outputs (σ1, σ2) as a forgery and stops.
5. B chooses S ∈ {0, 1}k at random.
6. B computes R ← G(σ1, S).
7. B sets state1 = R and state2 = S.

B invokes A with inputs G and pk , and answers to queries from A as follows.

Answers to Read(type, var):

1. If type
∈ {NP-Mem,TP-Mem} holds, then B returns ⊥ to A.
2. B returns the value val of the variable var to A.

Answers to Write(type, var, h):

1. If type
∈ {NP-Mem,RP-Mem} holds, then B returns ⊥ to A.
2. B replaces the value val of the variable var with h(val).

316 Y. Komano et al.

Answers to Run(Update1, φ):

1. If another Run(∗, ∗) is being performed, then B returns ⊥ to A.
2. If A replaces at least one of σ1 and σ2 by different value with Write query,

then the following steps are performed.
(a) Same as step 3 of Initialization.
(b) Same as step 4 of Initialization.
(c) Otherwise, B halts (this case corresponds to the self-destruction).

3. If A does not replace σ1 nor σ2 by different value with Write query, then B
updates R with G(σ1, R).

Answers to Run(Update2,PIN ′):

1. Same as step 1 of answers to Run(Update1, φ).
2. If Verpk (PIN ′, σ1) = 1 holds, then B outputs (PIN ′, σ1) as a forgery and

stops.
3. Same as step 2 of answers to Run(Update1, φ).
4. If A does not replace σ1 nor σ2 by different value with Write query, then B

terminates and fails to output a forgery (B aborts).

Answers to Run(Main,PIN ′):

1. Same as step 1 of answers to Run(Update1, φ).
2. If R
∈ {G(σ1, S), · · · ,Gm+1(σ1, S)} holds, then B halts.
3. Same as step 2 of answers to Run(Update2,PIN ′).
4. Same as step 2 of answers to Run(Update1, φ).
5. If this is the (m + 2)-th run for Run(Main, ∗) and if A does not replace σ1

by different value with Write query, then B aborts.
6. Otherwise (before the (m + 2)-th run and none of σ1 and σ2 is replaced by

different value), the following steps are performed.
(a) If PIN ′ = PIN holds, then B aborts.
(b) If PIN ′
= PIN holds, then B runs Update1(φ) and rejects the request.

In the following three cases, B fails to simulate the answers and to output a
forgery (i.e., B aborts): step 4 of answers to Run(Update2, PIN ′), and steps 5
and 6(a) of answers Run(Main,PIN ′). We should show that these cases occur by
accident.

As for the case in step 4 of answers to Run(Update2,PIN ′), A can distinguish
B from ATP-CU1 only when A inputs PIN ′ = PIN but B aborts. It happens
with probability less than εP .

We then estimate the probability with which B aborts in step 5 of answers
to Run(Main,PIN ′). Note that σ1 (which is unchanged with Write query) is ran-
domly chosen from {0, 1}k and stored in RP-Mem. In this case, unless A success-
fully guesses σ1 with probability 1/2k, σ1 is uniformly distributed in {0, 1}k for A.
In the (m+2)-th run of Main, in order to pass R ∈ {G(σ1, S), · · · ,Gm+1(σ1, S)}
(step 2) for state1 = R and state2 = S, at least one of R and S should be replaced
by different value with Write query. Under the assumption of uniformity of σ1

ATP Counter Units for Authentication Devices Using PIN 317

for A, however, the output of G(σ1, ·) is also uniformly distributed in {0, 1}k,
unless A breaks the pseudorandomness of G with probability εG. Namely, the
probability with which A replaces R and/or S to pass the check of step 2 is
bounded by 1/2k. Therefore, A can distinguish B from ATP-CU1 in this step
with probability less than εG + 1/2k−1.

In step 6(a) of answers to Run(Main,PIN ′), A can distinguish B from ATP-
CU1 with probability less than (m + 1)εP , because A is allowed to attempt the
authentication at most m + 1 times. �

5 Algorithmic Tamper-Proof Counter Unit 2: ATP-CU2

We then give another construction of counter unit ATP-CU2 which also counts
the number of consecutive wrong attempts and discuss its security.

5.1 Construction of ATP-CU2

ATP-CU2 utilizes a chameleon hash function CH [6,1] to update the state state =
(i, Ri) which corresponds to the number of consecutive wrong attempts i. The
correctness of (i, Ri) is checked whether the chameleon hash function maps (i, Ri)
to the pre-fixed data V with respect to the signature σ2 stored in RP-Mem; it
checks whether V = CH(σ1, i, Ri) and σ2 pass the signature verification or not.
The state is updated with the open algorithm CHI of the chameleon hash function
in order for the state to be mapped to the pre-fix data by the chameleon hash
function; it finds Rj such that CH(σ1, i, Ri) = V = CH(σ1, j, Rj) where j = 0 if
the attempt succeeds and j = i + 1 otherwise. See figure 3 for example.

Notation. In addition to PIN , m, k, (Gen, Sign,Ver), and (pk , sk) described in
section 4.1, the following notations are used.

– (CGen,CH,CHI): chameleon hash function6 where CHCPK is {0, 1}kms ×
{0, 1}kmi×{0, 1}kr → {0, 1}k and CHICSK is {0, 1}kms×{0, 1}kmi×{0, 1}kr×
{0, 1}kms × {0, 1}kmi × {0, 1}k → {0, 1}kr , respectively

– (CPK ,CSK): public and secret keys for chameleon hash function with re-
spect to the device vendor

– state = (i, Ri): state (i ≥ 0)

The vendor runs Gen and CGen to generate (pk , sk) and (CPK ,CSK) that are
used for all devices in advance. Note that CHCPK is collision resistant one-way
and has the following open property. With the secret key CSK , CHICSK finds an-
other preimage of V = CHCPK (σ1, i, Ri) with different j(
= i); CHICSK (σ1, i, Ri,
σ1, j, V) returns Rj such that CHCPK (σ1, j, Rj) = V holds.

6 We assume that kms +kmi = km holds and that the first two (and last two moreover)
inputs for CH (CHI) are contatenated into km bit string.

318 Y. Komano et al.

Table 3. Memory Allocation for ATP-CU2

TP-Mem m, k, CH, CHI,CPK , Ver, pk

RP-Mem state = (i, Ri),CSK , σ1, σ2

Fig. 3. Translation of State in ATP-CU2

Initialization. The vendor initializes the device as follows.

1. He decides PIN (if necessary, by interacting with a user).
2. He chooses R0 ∈ {0, 1}k at random.
3. He computes σ1←Signsk (PIN); V ←CHCPK (σ1, 0, R0); and σ2←Signsk (V).
4. He initializes state = (i, Ri) ← (0, R0).
5. He allocates the data as in Table 3.

Authentication Process. In correspondence with a request from a user, the
device authorizes the user and updates the states as follows. Figure 3 shows the
translation of state utilized in ATP-CU2.

—— Main(PIN ′) ——
1. If Verpk (CHCPK (σ1, i, Ri), σ2) = 0 holds, then it self-destructs.
2. Otherwise, the following steps are performed.

(a) If Verpk (PIN ′, σ1) = 1 holds, then the following steps are performed.
i. If i > 0 holds, then it runs Update4(PIN ′) and accepts the request.
ii. If i = 0 holds, then it accepts the request.

(b) If Verpk (PIN ′, σ1) = 0 holds, then it runs Update3(φ) and rejects the
request.

—— Update3(φ) ——
1. If Verpk (CHCPK (σ1, 0, Ri), σ2) = · · · = Verpk (CHCPK (σ1, m,Ri), σ2) = 0

holds, then it self-destructs.
2. Otherwise, it updates (i, Ri) with (i + 1,CHICSK (σ1, i, Ri, σ1, i + 1,CHCPK

(σ1, i, Ri))).

—— Update4(PIN ′) ——
1. If Verpk (PIN ′, σ1) = 0 holds, then it self-destructs.
2. If Verpk (CHCPK (σ1, i, Ri), σ2) = 0 holds, then it self-destructs.
3. It updates (i, Ri) with (0, R0 ← CHICSK (σ1, i, Ri, σ1, 0,CHCPK (σ1, i, Ri))).

If the number of consecutive wrong attempts exceeds m, the device self-
destructs and does not work any more at the first stem of Update3.

ATP Counter Units for Authentication Devices Using PIN 319

5.2 Security Consideration of ATP-CU2

The security of ATP-CU2 can be similarly discussed as in section 4.2; and there-
fore, we omit the detail here. With regard to the security of ATP-CU2, the
following theorem holds.

Theorem 2. If it is infeasible to find PIN within time bound τP with probabil-
ity more than εP , if it is infeasible to break the security (collision resistance) of
CH within time bound τC with probability more than εC , and if it is infeasible to
break the existentially forgeability against key only attack, then it is infeasible
to break the ATP security of ATP-CU2 within time bound τA with probability
more than εA. The following inequalities hold.

{
τB ≤ (m + 2)τP + τG + τA + O(1)T,
εB ≥ εA − (m + 2)εP − εG −m/2k−1

Here, T denotes the running time of authentication device once.

6 Discussion

This section first considers a naive construction of counter unit which counts the
number of consecutive wrong attempts from the counter unit of [3] which counts
the total number of wrong attempts. After that, let us compare the counter
units; that of [3], ATP-CU1 and ATP-CU2.

6.1 Naive Construction and Its Weakness

Let us consider a counter unit which counts the number of consecutive wrong
attempts with states state1 = (i, R) and state2 = (j, S) (initially, we set i = 1
and j = 0) in the same manner as the counter unit of [3]. Its algorithm is
almost same as that of ATP-CU1 except it checks whether i − j ∈ [1,m + 1]
and R = Gi−j(σ1, S) hold instead of step 1 of Main(PIN ′) and step 3(a) of
Update2(PIN ′) for ATP-CU1.

In order to prove the security of above naive construction, we require another
restriction to an attacker as follows: She is disallowed to make a data write query
between the check of i− j ∈ [1,m+ 1] and R = Gi−j(σ1, S) is performed. Note
that since i and j correlate the number of wrong attempts, she can guess them.
If she is allowed to make the query between the check, the following attack can
be done. (1) Before the check of i− j ∈ [1,m], she changes i = 1 and j = 0 with
data write query to pass the check, and (2) after the check of i− j ∈ [1,m], she
rewrite i and j with guessed data with data write query to pass the check of
R = Gi−j(σ1, S).

With the above restriction, the naive construction can be proven to be ATP
secure from the similar discussion of the ATP security of ATP-CU1. On the other
hand, ATP-CU1 removes the restriction by checking, with high computation
cost, whether one of R = G(σ1, S), R = G2(σ1, S), · · · , or R = Gm+1(σ1, S)
holds.

320 Y. Komano et al.

6.2 Comparison

This section compares the constructions of counter units. Note that the unit of
[3] has to use large m in case of mistakes of legal users; however, in order to
prevent attackers from searching PIN by try and error, m cannot be enlarged so
enough. On the other hand, the proposed units can use small m with keeping high
security if we assume that the legal user cannot input wrong PIN consecutively
so many times.

Let us consider the proposed ones. Note that the computation of chameleon
hash function (CH and CHI) requires higher cost than that of ordinal hash func-
tion (G). Therefore, ATP-CU1 can require lower cost than ATP-CU2; however,
ATP-CU1 should store and update two states in RP-Mem in secure way. This
seems a trade-off between the memory use and the computation cost.

7 Conclusion

This paper is first one to model the ATP security of counter unit and to con-
struct two ATP secure counter units counting the number of consecutive wrong
attempts. The security of the first one is proven in the assumption of existen-
tially unforgeable signature scheme against key only attack and of pseudorandom
function. Moreover, the security of the second one is also proven in the assump-
tion of existentially unforgeable signature scheme against key only attack and
of secure chameleon hash function. The first one is required to store two states
into RP-Mem but has less computation (with hash function); on the other hand,
the second one needs high computation (with chameleon hash function) but is
required to store one state into RP-Mem. This paper revisits the counter unit
proposed in [3] counting the total number of wrong attempts in authentication
with PIN in appendix.

References

1. Ateniese, G., de Medeiros, B.: On the key exposure problem in chameleon hashes.
In: Blundo, C., Cimato, S. (eds.) SCN 2004. LNCS, vol. 3352, pp. 165–179. Springer,
Heidelberg (2005)

2. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of checking cryp-
tographic protocols for faults. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS,
vol. 1233, pp. 37–51. Springer, Heidelberg (1997)

3. Gennaro, R., Lysyanskaya, A., Malkin, T., Micali, S., Rabin, T.: Algorithmic
tamper-proof (ATP) security: Theoretical foundations for security against hardware
tampering. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 258–277. Springer,
Heidelberg (2004)

4. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. In:
25th Annual IEEE Symposium on Foundations of Computer Science (FOCS 1984),
pp. 464–479. IEEE, Los Alamitos (1984)

5. Goldwasser, S., Micali, S., Rivest, R.: A digital signature scheme against adaptive
chosen message attack. Journal of Computing (Society for Industrial and Applied
Mathematics) 17(2), 281–308 (1988)

ATP Counter Units for Authentication Devices Using PIN 321

6. Krawczyk, H., Rabin, T.: Chameleon signatures. In: Network and Distributed Sys-
tem Security Symposium, NDSS 2000. The Internet Society (2000)

7. Tuyls, P., Schrijen, G.-J., Škorić, B., van Geloven, J., Verhaegh, N., Wolters, R.:
Read-proof hardware from protective coatings. In: Goubin, L., Matsui, M. (eds.)
CHES 2006. LNCS, vol. 4249, pp. 369–383. Springer, Heidelberg (2006)

A Counter Unit of Gennaro et al. [3]

Gennaro et al. [3] constructed the counter units for the total number of wrong
attempts and for the number of consecutive wrong attempts, respectively. Since
the construction of latter one is not described in detail ([3] only claims that the
unit uses the modulus number), this section discusses the former one only. As
for the former one, however, reference [3] did not specify its algorithm nor the
memory allocation for each data. This section takes form its construction.

A.1 Necessity of RP-Mem

They [3] did not mention the necessity of RP-Mem7. We show here that their
counter unit is vulnerable when RP-Mem is not utilized. Without RP-Mem, data
is stored in readable area, TP-Mem or NP-Mem.

The counter unit of [3] prepares the state R0 (the following subsection gives
notations in detail), hash chain Ri = H(Ri−1) for i = 1, 2, · · · ,m + 1, and
signature σ for Rm+1. The state is initially set with R0 and updated by applying
H when an authentication is failed. The correctness of state Ri is checked by the
verification of Hm+1−i(Ri) and σ.

Assume the device with TP-Mem and NP-Mem, without RP-Mem. In order
to be updated (re-stored), the state should not be stored in TP-Mem but in
NP-Mem. In this setting, the attacker A first read R0 and copy it in local area
(like his computer). When A fails in attempt, R0 in the device is updated to
R1 = H(R0). Since R1 is stored in NP-Mem, A can replace it with R0 (stored in
local area) and try attempt infinitely.

Therefore, the read-proof (but tamperable) area, RP-Mem, should be required
for storing and updating the state.

A.2 Construction of Counter Unit of [3]

A state state is used for counting the total number of wrong attempts. state is
updated and unchanged when an authentication fails and succeeds, respectively.

Notation. In addition to PIN , m, k, (Gen, Sign,Ver), and (pk , sk) described in
section 4.1, the following notations are used.

– H : {0, 1}k → {0, 1}k: collision resistant one-way function
– state = (i, Ri): state (i ≥ 0)

7 TP-Mem should be required for storing the code of hash function H.

322 Y. Komano et al.

Table 4. Memory Allocation for Counter Unit of [3]

TP-Mem m,k, H, Ver, pk
RP-Mem state = (i, Ri), Rm+1, σ

Initialization. The vendor initializes the device as follows.

1. He decides PIN (if necessary, by interacting with a user).
2. He chooses R0 ∈ {0, 1}k at random.
3. He computes Rm+1 ← Hm+1(R0).
4. He computes σ ← Signsk (PIN , Rm+1).
5. He initializes state = (i, Ri) ← (0, R0).
6. He allocates the data as in Table 4.

We denote, by Hn(R) for R ∈ {0, 1}k, the operation where H is repeatedly
applied n times. For instance, Rl+2 = H2(Rl) = H(H(Rl)).

In table 4, Rm+1 and σ is stored in RP-Mem. If Rm+1 and σ (namely, R0) are
identical for all devices, they may be stored in TP-Mem.

Authentication Process. In correspondence with a request from a user, the
device authorizes the user and updates the state as follows.

—— Main(PIN ′) ——
1. If Hm+1−i(Ri)
= Rm+1 holds, then it self-destructs.
2. Otherwise, the following steps are performed.

(a) If Verpk (PIN ′,Hm+1−i(Ri), σ) = 1 holds, then it accepts the request.
(b) Otherwise, it runs Update(φ) and rejects the request.

—— Update(φ) ——
1. It updates (i, Ri) ← (i + 1,H(Ri)).

A.3 Security of Counter Unit of [3]

The reference [3] claims, without a proof, that the unit above is ATP secure
if the signature scheme is existentially unforgeable [5] and if the hash function
is collision resistant one-way. This subsection discusses its security. We have
following three remarks.

Remark 1. If an attacker is allowed to skip the operations inside the insensitive
functionality (see the third paragraph of section 3.3), she can mount an attack
to the counter unit [3] as follows: She makes the unit skip step 2(b) of Main (or
first step of Update) not to update state, she can attempt to authenticate more
than the limit number. Therefore, we assume that the attacker is disallowed to
skip the operations.

ATP Counter Units for Authentication Devices Using PIN 323

Remark 2. If an attacker can run functionalities concurrently with functionality
run queries (see the definition of functionality run query in section 3.3), she can
also mount an attack to the counter unit [3]. For instance, if she makes another
function run query before the unit proceeds the step 2(b) of Main (or first step
of Update), she can attempt to authenticate more than the limit number. Hence,
we restrict the attacker not to make functionality run queries concurrently.

Remark 3. Note that in order to achieve its security, the signature scheme should
be utilized once (i.e., one-time signature scheme) and resulting signature should
be stored in RP-Mem. This is because, if an attacker can obtain or read a signa-
ture corresponding some PIN , she may rewind the counter with the signature
and exhaustively search PIN .

With regard to the security of their unit, the following theorem holds.

Theorem 3. If it is infeasible to find PIN within time bound τP with probabil-
ity more than εP , if it is infeasible to break the pseudorandomness of H within
time bound τH with probability more than εH , and if it is infeasible to break
the existentially forgeability of (Gen, Sign,Ver) against key only attack, then it
is infeasible to break the ATP security of their unit within time bound τA with
probability more than εA. The following inequalities hold.

{
τB ≤ (m + 2)τP + τH + τA + O(1)T,
εB ≥ εA − (m + 2)εP − εH −m/2k

Here, T denotes the running time of authentication device once.

Performance Measurements of Tor Hidden

Services in Low-Bandwidth Access Networks

Jörg Lenhard1, Karsten Loesing2, and Guido Wirtz1

1 University of Bamberg, Germany
joerg.lenhard@stud.uni-bamberg.de,

guido.wirtz@uni-bamberg.de
2 The Tor Project

karsten.loesing@gmx.net

Abstract. Being able to access and provide Internet services anony-
mously is an important mechanism to ensure freedom of speech in vast
parts of the world. Offering location-hidden services on the Internet re-
quires complex redirection protocols to obscure the locations and iden-
tities of communication partners. The anonymity system Tor supports
such a protocol for providing and accessing TCP-based services anony-
mously. The complexity of the hidden service protocol results in signifi-
cantly higher response times which is, however, a crucial barrier to user
acceptance. This communication overhead becomes even more evident
when using limited access networks like cellular phone networks. We pro-
vide comprehensive measurements and statistical analysis of the boot-
strapping of client processes and different sub-steps of the Tor hidden
service protocol under the influence of limited access networks. Thereby,
we are able to identify bottlenecks for low-bandwidth access networks
and to suggest improvements regarding these networks.

1 Introduction

With the Internet paving its way into more and more areas of life and business,
also the need for privacy on the Internet is ever increasing. The greater the num-
ber of users and the wider the area of utilization gets, the greater grows also
the number of loopholes that can be exploited through the lack of privacy. But
privacy is, among other things, the basis for various core values of democratic
societies, like freedom of speech. Hence, providing mechanisms for anonymous
communication can be considered an important goal. Privacy is not only rele-
vant for those requesting information or using services offered by others in an
anonymous manner. It is also important for providers of services. There is no
merit in being able to utter one’s opinion freely and without fear of harassment
if there is no platform on which one could do so.

There are various approaches to address the subject of anonymous communi-
cation. One of them is based on the concept of routing traffic through networks
of relays, called anonymity networks. The Tor network [6] is a widely deployed
anonymity network and consists of approximately 1,300 relays in March 2009. A
user of such a network builds a chain of several relays, a circuit, to prevent others

M. Abdalla et al. (Eds.): ACNS 2009, LNCS 5536, pp. 324–341, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Performance Measurements of Tor in Low-Bandwidth Access Networks 325

from linking her identity or location with her actions. All connections between
relays are secured using cryptographic mechanisms and none of the relays knows
both initiator and responder of a communication session. The user then routes
her traffic over the circuit. So, for an outside observer, it looks as if all requests
are performed by the last relay in the circuit and not by the actual user. The
assumption is that an adversary does not control all relays in a circuit, or more
precisely, at least not the first and last relay in a circuit.

Tor permits requesting information from public servers anonymously, as well
as providing services pseudonymously, without revealing the IP address of the
server. The former functionality is given by attaching application-level streams
to circuits which are built as described above. The latter functionality is called
hidden services and works by connecting circuits of both client and hidden server
on a common rendezvous point, again a relay in the network, to grant location
privacy to both communication parties. It is obvious that this process is in-
evitably more complex than connecting to a non-anonymized service.

The usual assumption nowadays is that clients or service providers use broad-
band access networks of some kind, like cable, DSL, or UMTS. But access net-
works with lower bandwidth, like second-generation cellular wireless or fixed-line
networks are still in wide-spread use. These networks generally provide lower
data rates and higher latencies. In many regions of the world, especially less
industrialized countries, users are dependent on older, and therefore inferior
networks. However, these regions might have an even higher demand for privacy
than well-connected areas, as it happens to be the case that they are also less
politically stable. The question to be answered here is to what extent the access
network of a user influences her capability to use an anonymity network. Studies
on the influence of low-bandwidth access networks on the usage of anonymity
networks are rare. The present study is the first one to consider the access of
location-hidden services using such access networks.

The approach we are taking here is to measure the performance of Tor pro-
cesses over low-bandwidth access networks, in particular mobile phone and fixed-
line telephone networks. We created a measurement setup, involving several Tor
processes using these networks, as well as broadband networks. We focus on the
evaluation of clients bootstrapping in the low-bandwidth environments and the
sub-steps of connecting to hidden services. Both accessing and providing hidden
services over low-bandwidth access networks is considered. By these measure-
ments, we identify specific bottlenecks in the process that need to be improved.

In the next section we give a brief overview over previous work on the perfor-
mance of anonymity networks, especially Tor. Section 3 describes the Tor boot-
strapping phase and the Tor hidden service protocol, being the focus of this paper.
Section 4 contains an analysis of the proportion of low-bandwidth clients in the
Tor network and a description of the environment we created to gather the data. In
Section 5 we present statistical analysis of the data from the bootstrapping phase,
discuss the implications of this data and suggest performance improvements based
on our evaluations. Section 6 contains a similar analysis for hidden services with
special focus on circuit building times. Section 7 concludes the paper.

326 J. Lenhard, K. Loesing, and G. Wirtz

2 Related Work

Work on the performance of anonymity networks is not only motivated by im-
proving usability for its own sake. The level of anonymity provided by the net-
work is dependent on the number of users, forming the underlying anonymity
set. Networks that offer a high performance will attract more users, resulting in
a higher degree of anonymity provided for all participants [5].

Recently, there is a growing interest in measuring performance of anonymous
communication. Köpsell [10] observed the influence of the performance provided
by a network on the number of users. Wendolsky et al. [18] measured the per-
formance of anonymous communication from the client’s point of view. They
observed connection latencies to be on average approximately 4 seconds for the
Tor network. Utilizing the work of Köpsell, they conclude that these 4 seconds
are the overall tolerance level users are willing to take. It is important to note
that these 4 seconds cannot be directly compared to this study. Here, we observe
accessing and providing hidden services which is necessarily more complex than
accessing public services anonymously.

Panchenko et al. [14] focus on the examination of possible reasons for the delay
of the Tor network. Their special interest concerns the building of circuits and
the geographical diversity of the relays in a circuit. With the help of empirical
measurements, they advertise a new path selection algorithm to improve the
performance of anonymous communication via Tor.

Øverlier and Syverson [12] suggested changes to the protocol for establishing
connections to hidden services. Their suggestions include the reduction of the
number of relays involved in the process, which should lead to a decrease in
connection establishment times. In earlier studies [11], we measured the latencies
during connection establishment to hidden services with special focus on the
overall response times. We found that connection establishment, when using
a broadband access network, took on average 24 seconds. It is important to
mention that these numbers are lower than those presented in this paper. Here,
we also consider the time a client needs to build a circuit to a directory server.

However, all studies discussed in this section only consider broadband access
networks, neglecting the influence of low-bandwidth access networks as discussed
here.

3 Tor Background

Before going into the details of the measurements and their results, some back-
ground on the measurement setup is in order. In this section, we describe the
Tor bootstrapping process and the Tor hidden service protocol, being the focus
of our measurements.

When connecting to the Tor network for the first time, a client needs to
download and verify information about the status of the network and single
relays in it. [16] describes document formats and [3] outlines the process in
detail. As the documents reflect the state of the network, their size can vary

Performance Measurements of Tor in Low-Bandwidth Access Networks 327

Fig. 1. Establishment and access of a hidden service

strongly, depending on the size of the network. The initial action of a newly
started Tor process is to choose a directory authority, establish a TCP connection
to it, perform a TLS handshake, and establish a one-hop circuit (bootstrapping
phase 0–15%). Next, the Tor process opens a stream to load a network consensus
document (15–25%). The process retrieves the document which currently (March
2009) has a size of approximately 90 kilobytes, checks its signatures, and starts
loading relay descriptors (25–50%). The process continues loading descriptors
until at least one fourth of the total amount is fetched (50–80%). All server
descriptors of the network currently add up to approximately 1.6 megabytes
of data. Then, the process chooses relays and starts building circuits. For this,
again a TCP connection to a relay is built and a TLS handshake is performed.
The process then keeps on adding relays to the circuit until it has finished the
first circuit consisting of three hops, concluding the bootstrapping process (80–
100%). So, all in all about 500 kilobytes of data need to be downloaded by a
newly started process to successfully connect to the Tor network. The rest of the
data will also have to be downloaded during runtime for ensuring anonymity.

Tor can be used for accessing public services in an anonymous way, but it
can also be used to provide services anonymously. The actions described above
are independent of hidden services and also apply to normal Tor usage. To be
able to communicate with each other anonymously, the provider of the service
as well as the client have to perform various steps of the hidden service protocol.
Figure 1 visualizes the process of establishing and accessing a hidden service and
outlines which steps are measured.

The first step in the hidden service protocol [17] is the establishment of a
hidden service in the network by its provider, Bob. For this, Bob configures a
Tor process to act as a proxy for his service. The Tor process then builds circuits
to three arbitrarily chosen relays in the network and establishes introduction
points on them for his service. Introduction points work as medium-time contact

328 J. Lenhard, K. Loesing, and G. Wirtz

points for clients trying to access the hidden service. Furthermore, Bob generates
a public and a private key for the service and derives a unique identifier from it,
the onion address. This address consists of sixteen characters ending in .onion.
As the onion address is derived from the public key, anyone possessing the key
can verify that they are communicating with the respective service. In the next
step, Bob constructs a rendezvous service descriptor (RSD) with the contact
information of the introduction points and his public key. He signs the descriptor
with his private key and publishes it to a directory server, normally an ordinary
relay that provides additional functionality for storing RSDs. Now the hidden
service is ready to be accessed by a client, Alice.

First, Alice learns about the hidden service and its onion address and decides
to access that service. She needs a Tor process to work as a proxy for her request.
She builds a circuit to a directory server (DirC) and asks for Bob’s RSD. Not all
circuits needed during the connection establishment are newly built. If possible,
the process tries to pick an existing pre-built circuit. This technique is called
cannibalization and means that the purpose of a previously built circuit can be
changed to whatever purpose is required. This operation can be done without
delay. The cannibalized circuit only needs to be extended by a single hop to the
directory node. If the RSD is found, Alice downloads it (RSD Transfer). She
then finds the introduction points’ addresses along with Bob’s public key in it.

As soon as the RSD is loaded, Alice tries to cannibalize two more circuits.
The first one is the circuit to the rendezvous point (RendC) which is a randomly
chosen relay in the network, Alice wants to use for later message exchange with
Bob. This circuit has to be a three-hop circuit that can simply be cannibalized,
without further operations needed. If no circuit is available for cannibalization,
a new three-hop circuit is built from scratch. After completing the circuit to the
rendezvous point, Alice establishes it as such (Rend Est). This establishment
consists of the transmission of two cells. The first cell is sent from Alice to the
rendezvous point and requests the rendezvous. The second cell is sent from the
rendezvous point to Alice and acknowledges the request. When requesting the
rendezvous, Alice also hands over a one-time secret, serving as her identification.
The second circuit built after the reception of the RSD is a circuit to one of the
introduction points of the hidden service (IntroC). As soon as a circuit to an
introduction point is completed and a rendezvous point is established, Alice re-
quests this relay to introduce herself to the service (Intro Req). She does this by
handing over the rendezvous point’s address and her one-time secret, encrypted
with Bob’s public key. The introduction point answers with an acknowledgment
message and forwards Alice’s request and her secret to the hidden service. Bob
decrypts this message using his private key and obtains the address of the ren-
dezvous point and Alice’s one-time secret. Bob can now decide if he wants to
contact Alice, and if so, he builds a circuit to the rendezvous point (HSRend).
When this circuit is completed, Bob asks the rendezvous point to connect his
circuit to Alice’s. The rendezvous point matches their circuits with the help of
the one-time secret and establishes a connection between the two. Then, the
rendezvous point sends Alice a notification about the connection establishment.

Performance Measurements of Tor in Low-Bandwidth Access Networks 329

Now, Alice and Bob can start exchanging messages via the rendezvous point.
We denote the period from request start to reception of the connection estab-
lishment message, sent from the rendezvous point to Alice, as total round-trip
time (Total RTT) and the period from reception of the RSD to reception of the
same connection establishment message as small round-trip time (Small RTT).

4 Measurement Setup

The measurement setup consists of a few Tor processes connected to the public
Tor network over either broadband or low-bandwidth access networks. In this
section, we give some information about the low-bandwidth access networks and
describe the utilized Tor versions and process distribution.

The access networks we observed are analog modulation via the telephone
network, the mobile network Enhanced Data Rates for GSM Evolution (EDGE)
[15], and a broadband network. The modem we used was of standard V92, thus
offering a data rate of 56 kilobits per second downstream and 44 kilobits per
second upstream [9]. EDGE provides a data rate of up to 230 kilobits per second,
depending on radio conditions. The broadband connection was represented by
the university network, consisting of fiber optics and offering a data rate of up
to 100 megabits per second. For the Tor processes a minimal fraction of this rate
would have been sufficient, so the broadband access network can be considered
unlimited for the measurements.

These access networks can be seen as representatives of the prevailing types of
access networks nowadays. Analog modulation formed the most important access
network in the early times of the Internet. Although it is losing its importance
more and more, it is still widely in use, especially in developing countries and
rural areas where the establishment of broadband networks is not yet lucrative
for ISPs. Moreover, many desktop and laptop computers are also equipped with
V92 modems per default. EDGE is an enhancement of the GSM standard for mo-
bile communication which was established in 1982. As of September 2008, GSM
makes up eighty percent of the world’s subscriber connections [7]. In contrast
to broadband mobile access networks, such as UMTS, EDGE and its predeces-
sor enhancement of GSM, GPRS [15], are widely distributed in industrialized
countries and also available in less developed areas. Data transmission via opti-
cal fibers provides the highest possible data rates today. It is not yet forming a
major access network, due to its expense. Instead, it is generally combined with
other fixed line access networks. Fiber optics connects main centers, whereas the
final connections to households are built using, for example, DSL.

When conducting the measurements, we assumed that low-bandwidth access
networks are used by a major share of the networks’ clients. Based on a sug-
gestion from one of the reviewers, we investigated this assumption more closely.
We observed the bandwidth of clients downloading the network consensus docu-
ment from one of the six directory authorities for one week between March 14–21,
2009. We analyzed the size and duration of every consensus document download
to conclude which bandwidth clients have. We excluded relays to observe only

330 J. Lenhard, K. Loesing, and G. Wirtz

Client bandwidth [KB/s]

F
re

qu
en

cy

1 10 100 1000 10000

0
50

0
10

00
15

00
20

00
Modem EDGE

Fig. 2. Download speed of client connections loading the network consensus in log scale

the bandwidth of clients. Results are shown in Figure 2. Roughly 7% of these
connections might have been performed by clients using a V92 modem, and 16%
by clients using EDGE or a modem. So, a total of 16% of the network’s clients
can be considered low-bandwidth in the terms of this study. Our measurements
only include successful downloads, so that the number of low-bandwidth clients
might be even higher. This is a sufficiently large share to demand special inter-
est. Furthermore, if the network had lower bandwidth requirements, the number
of low-bandwidth clients might increase even more.

We observed the log events of the Tor processes indicating the sending and
reception of messages, the opening of circuits and the progress in the bootstrap-
ping phase. Client and hidden service processes used Tor version 0.2.1.5-alpha
as code base. We had to patch this version to resolve two bugs that would other-
wise have had an impact on the measurements.1. The first bug involved failures
when loading router descriptors, and the second bug lead to erroneous behavior
when loading rendezvous service descriptors. Both bugfixes are contained in Tor
version 0.2.1.6-alpha which was not available at the time of performing measure-
ments. So, we patched the Tor versions of clients and hidden services with all
revisions that were necessary to fix these bugs.2

We further implemented a few changes to the Tor source code in order to
perform measurements: The first change forces the Tor process offering a hidden

1 Detailed descriptions can be found in Tor’s bug tracker: http://bugs.noreply.

org/flyspray/index.php?do=details&id=767 and http://bugs.noreply.org/

flyspray/index.php?do=details&id=814
2 These were the revisions r16808, r16810, r16817, and r16915.

http://bugs.noreply.org/flyspray/index.php?do=details&id=767
http://bugs.noreply.org/flyspray/index.php?do=details&id=767
http://bugs.noreply.org/flyspray/index.php?do=details&id=814
http://bugs.noreply.org/flyspray/index.php?do=details&id=814

Performance Measurements of Tor in Low-Bandwidth Access Networks 331

Fig. 3. Process distribution with clients using low-bandwidth access networks

service to select a specific relay as introduction point which can be controlled by
us. The second change is to make clients pre-build a three-hop circuit to a specific
relay which is also controlled by us, so that it can be chosen as rendezvous point
later on. As a third source code change, the client selects the introduction point
that is controlled by us, given that Bob had chosen it in the first place. For
the measurements we set up a Tor relay, acting as introduction and rendezvous
point. This Tor process was running an unpatched Tor 0.2.1.4-alpha version,
as neither introduction nor rendezvous point were affected by the previously
mentioned bugs. The measurements were then divided into two phases. During
all measurements, three hidden services, one for each access network type, and
the relay were running continuously.

The Tor processes for the hidden services as well as the introduction and
rendezvous point were started some time prior to the measurements. Clients ac-
cessing the services were created in regular intervals. We did not use the same
Tor processes for the clients, but created new ones in each interval, to avoid any
influences on the results by caching directory information. The distribution of
the processes on the different physical machines is shown in Figures 3 and 4, re-
spectively. In the first measurement phase, the clients used low-bandwidth access
networks, while the hidden services had broadband access. In the next measure-
ments the configuration was turned around and the clients used the broadband
access network, while the hidden services were offered over low-bandwidth access
networks. Every access network was used by a different physical machine and
the low-bandwidth access networks were only used by one Tor client or hidden
service at a time to not overcharge them. So, all in all, we used three computers,
the main measurement server and two laptops. All other processes were run-
ning on the machine using the broadband access network. However, this was
not a problem, because all processes communicated over circuits in the real Tor
network and never directly.

The interval in which client processes were created, and thus the time they had
to bootstrap and perform the hidden service request, was capped at 6 minutes
for the client-side low-bandwidth measurements and 5 minutes for the server-
side low-bandwidth measurements. During both measurements, as soon as the
client process finished bootstrapping, the hidden service request was initiated.

332 J. Lenhard, K. Loesing, and G. Wirtz

Fig. 4. Process distribution with hidden services using low-bandwidth access networks

We chose different intervals for both measurements due to the bootstrapping
phase. During the server-side low-bandwidth measurements, hidden service pro-
cesses were running over low-bandwidth networks. These processes needed to
bootstrap only once in advance to the measurement period. During the other
measurements, bootstrapping by the client processes needed to take place in
every interval, also consuming more time. Client-side low-bandwidth measure-
ments then lasted for 134 hours between 23–29 September 2008 and server-side
low-bandwidth measurements for 114 hours between 6–11 October 2008.

5 Bootstrapping

As a first step in analysis, we investigate the total bootstrapping time as vi-
sualized in Figure 5. It becomes clear that bootstrapping over limited access
networks is a major problem in comparison to the broadband access network.
For the limited networks, the total bootstrapping time is approximately five
times that of the broadband network, with median values of 232.9 seconds for
EDGE and 249.0 seconds for modem and an interquartile range of 91.9 seconds
for EDGE and 45.6 seconds for modem. The broadband median lies at 22.9 sec-
onds and the interquartile range at 39.3 seconds. It is important to note that
descriptive values are likely to be even higher in the population, especially for
maximum values. In the measurements, test runs were stopped after 6 minutes
which eliminated records that would have exceeded this value.

It has turned out that some sub-steps of the bootstrapping process contribute
more to these differences than others, as can be seen in Figure 6. It is obvious
that the most time-consuming sub-step lies between fifty and eighty percent,
where relay descriptors are loaded. At the time of measurement, at least 325 re-
lay descriptors had to be loaded during this phase to initiate the building of
circuits. These descriptors make up the largest share of the data that needs
to be downloaded during bootstrapping. The median duration of this sub-step
ranges from 127.0 seconds for EDGE to 155.6 seconds for modem which is more
than forty times as long as the broadband network with 3.3 seconds. This is a

Performance Measurements of Tor in Low-Bandwidth Access Networks 333

●●● ●●● ●

●● ● ●●●● ●●●●●● ●● ●●● ●●● ● ●●● ●●●●● ● ●●●● ● ●● ● ● ●● ●●● ●●● ● ● ●

Bootstrapping time [sec]

0 30 60 90 120 150 180 210 240 270 300 330 360

Fig. 5. Durations of total bootstrapping time [sec] in broadband (dark gray), EDGE
(medium gray), and modem (light gray) access networks

considerable barrier for the usage of the anonymity network over limited access
networks.

A reduction of the initial amount of descriptors that need to be downloaded
is not an option, as it would pose a threat to anonymity which is of course more
important than performance. The smaller the initial set of relays a client is able
to choose from, the more the client is prone to intersection attacks [2]. For these
attacks, it is necessary that the users of the network are not continuously active
and some messages might be linkable. If an attacker knows the initial set of
relays a client might use, she could observe messages sent via these relays at a
given point of time and intersect the sets of possible active senders, thus cutting
out the non-active users at this point of time and reducing the sets of possible
senders. The smaller the initial set of relays, the easier this operation gets. By
systematically reducing the sets of possible senders, an attacker could correlate
messages to certain clients.

The problem of slow bootstrapping is also addressed by several Tor proposals.
One approach is to drop the requirement to download server descriptors while
bootstrapping [13] and download them on demand while building circuits. In
this approach, clients would still be able to use all relays for circuit building.
The idea is to add all information that is required for path selection into the
network summary, so that server descriptors are only required for building cir-
cuits. This approach reduces the download size of directory information during
bootstrapping from at least 500 kilobytes to 100 kilobytes. The disadvantage
of the described approach is, however, that all circuit extensions require an ad-
ditional message to download the required server descriptor. Clients must not
cache received server descriptors for future extensions, because this would leak
the information that a client has used a relay before from not having to ask for its
descriptor. As a result, the improvement in bootstrapping leads to deterioration
in circuit establishment. A subsequent proposal [4] introduces microdescriptors
containing only the onion key as the minimum information for building circuits.
Clients would download microdescriptors instead of router descriptors, reduc-
ing the total size of directory information during bootstrapping to around 300
kilobytes. It is yet uncertain which variant will be implemented in future Tor
versions. But the discussion shows that there is a need to find better solutions
to accelerate the bootstrapping process and support clients on low-bandwidth
access networks.

334 J. Lenhard, K. Loesing, and G. Wirtz

● ●●●● ●●●● ●●●●●●● ● ●● ● ●● ●●●●● ●●● ●● ●●●● ●● ● ● ●● ●●● ●●● ●●●●● ● ●● ●●● ●●●●●●●● ●●● ● ●●●● ●●● ●●● ●●●●● ●●● ●●● ●● ●● ●● ●● ●● ●●●●● ●●● ●● ●●● ●●●● ●● ●● ●● ●● ●●

●●●● ●●● ●●● ●●● ●●●●● ●●●●●● ●●● ●●●● ● ●●● ●● ●●●

●● ●● ●●●● ●● ●●●● ●● ●●●●●●● ●● ●●●●●● ●●● ●● ●● ●●●● ●● ●● ●●● ●● ●

● ●●● ●●● ●●●● ●●●●● ● ●● ●● ●●●●●●● ●●●● ●●● ●●● ● ●● ●● ●● ● ●● ●●● ●● ●●●●●●●● ●●● ●●●●●●●● ●● ●●●● ●●● ●●●●● ●●● ●●●● ●●● ● ●●● ●● ● ●●●● ●●●●● ●●● ●● ●●● ●●● ● ●●● ●●● ●● ●●● ●● ●

● ●● ●● ●●● ●●● ● ●●● ● ●● ● ●●● ●●●●●● ●●●●● ●●●●●● ●● ●●●● ●● ●● ●●●● ●● ●●●● ●●● ● ●●● ●●● ●●● ● ●● ●● ●●●●●● ●● ●● ● ●●● ● ●●● ●● ●● ●●● ●● ●●●● ●● ●● ●●● ●● ●●● ● ●● ● ● ●●● ●●●●● ●●●● ● ●●●

Time to complete bootstrapping phase [sec]

0.1 0.2 0.5 1 2 5 10 20 50 100 200 360

0−15%

15−25%

25−50%

50−80%

80−100% ● ●● ●● ●● ●●● ●●●●●●●● ●●● ●● ●● ●●●●●● ●

●●●●

●●●●●●●●●● ●●● ●●● ● ●●●●● ●●●●●● ●● ●● ●●●●●● ●● ● ● ●● ●● ●● ●● ●● ●● ●●●● ●●● ●●● ●● ●●●●●●

●●● ●● ●●●● ●●● ●● ● ●●●● ●●●● ●●● ●●● ●● ●● ●●● ●●● ●● ●●● ●● ●●● ● ●● ● ● ● ●●●● ●●●●● ●●●● ●● ●● ● ●●● ●●● ●●● ●●● ●●●● ●●●● ● ●● ●● ● ●●● ●●●●● ●● ●● ●●●●●● ●●● ● ●● ●●● ● ●● ● ●●●●● ●●●●●●● ● ●●●● ●●● ●●● ●●●● ●●● ●● ●● ●● ●

● ●● ●●● ●●● ●●● ● ●●●●●●●● ● ●● ●● ●●●● ● ●● ● ●● ● ● ● ●●● ●●●● ●● ●●●● ● ● ●● ●● ● ● ●● ● ●●●● ● ● ●●●● ●● ●●● ●● ●● ●● ● ●●● ●●● ●● ●● ● ●●● ●●● ●●●● ●● ●● ●●●●● ● ●●●●●●● ●●●● ●●●●

● ●● ●●● ●●● ●●●●●●● ●●● ●● ●●●●● ●●●●●●●●● ●●●● ●●●●●●

●●●●●● ●●

● ●●● ● ●●● ●●● ●● ●●● ●● ●● ●●●●●● ●●●● ●●● ●● ●● ●● ●●●● ●●●●●● ● ●●●● ● ●●● ●●● ●● ●●●● ●●● ●● ●●●●●● ●●● ●●●●●● ●●●●●●●● ●●●●● ●●● ●●●●●● ●●●● ●● ●●● ●●● ●●●● ●●● ●● ●● ●●●● ●●●● ● ●●● ●●●●●●●●●● ●● ●●●● ●● ● ●●●● ●●●●●●●●●●● ●●● ●●● ●

●● ● ●●●●●● ●● ●● ●● ●●● ● ●●●● ● ●●●●●● ●●● ● ●● ●●●●●● ●●● ● ●● ●●● ●●● ●●● ●● ●● ●●●●● ●● ●●●● ●● ●● ● ●●●●●● ●●● ●●● ●●●●●● ●●●●●●● ● ●● ●●● ●● ●●●● ● ●●● ●● ● ●●●● ●●●● ●● ●● ●●● ●●● ●●● ● ●●●●

●● ● ●●● ●● ● ●● ●● ●●●● ●● ●● ●●●● ●●● ●● ●●●● ●● ●● ● ●●●● ●●● ●●● ● ●●● ●●● ●●●● ●●● ●● ●●●●● ● ● ●●●● ●●●● ●● ●● ●●● ●●● ●●●● ●● ●● ●●●● ●● ●●●●● ●●● ●● ●● ●● ●●● ●● ● ●●● ● ● ●●●●●● ● ●●●● ●● ●●● ●●●● ● ●●●● ● ●●● ●● ●●● ●

Fig. 6. Durations of bootstrapping substeps [sec] in broadband (dark gray), EDGE
(medium gray), and modem (light gray) access networks on a logarithmic scale

6 Hidden Service Access

The second focus of this paper lies on hidden service access times. It has to
be stated that bootstrapping took far longer than we had expected. This had
an effect on the measurements of hidden service connection establishment. If
the bootstrapping phase took up most of the whole measurement interval, there
was no time to perform the actual hidden service request. This lack of time
resulted in a cut-off and missing values at some point during the process. For
the evaluation of the hidden service requests, we limited the data set to those
requests that were not influenced by the bootstrapping phase. That is to say,
only requests are considered that had at least 2 minutes of the measurement
interval left. However, these restrictions only affect the data of the client-side
low-bandwidth measurements, as only here bootstrapping was a major issue.
Instead of 1,350 hidden service requests performed, we limited the data set of
the low-bandwidth access networks to around 500 records. For these records,
independence from the bootstrapping phase is guaranteed.

Performance Measurements of Tor in Low-Bandwidth Access Networks 335

●● ●●●●● ●●●●●● ●●●● ●● ●● ●● ● ●● ●●●●● ●●● ●●●●●● ●● ● ● ●●●●● ● ●●●● ● ●●● ●● ●● ●● ●●●● ● ●

●●● ●● ●●● ●●● ● ● ●● ● ●● ● ●●● ●● ●● ● ● ●● ●● ●●● ●● ● ● ●●●●●● ●● ●●● ●●● ●● ●● ● ●●●● ●●●●● ● ● ●●●●●● ●●

●● ●●●● ●●● ● ●●● ●●●● ●●● ●●● ●●● ● ●

● ●●●●● ●● ●● ●● ●● ●● ●●●●●

Roundtrip time [sec]

0 30 60 90 120 150 180

●● ●●●●● ●●●●●● ●●●● ●● ●● ●● ● ●● ●●●●● ●●● ●●●●●● ●● ● ● ●●●●● ● ●●●● ● ●●● ●● ●● ●● ●●●● ● ●

●●● ●● ●●● ●●● ● ● ●● ● ●● ● ●●● ●● ●● ● ● ●● ●● ●●● ●● ● ● ●●●●●● ●● ●●● ●●● ●● ●● ● ●●●● ●●●●● ● ● ●●●●●● ●●

●● ●●●● ●●● ● ●●● ●●●● ●●● ●●● ●●● ● ●

● ●●●●● ●● ●● ●● ●● ●● ●●●●●

● ●● ●●● ●●●● ●● ● ● ●●

● ●●●● ●

●●●

●●

●● ●●● ●● ●● ● ●●● ●● ●● ●●●

●●●● ● ●●

● ●●●

Total RTT
Low−BW client

Total RTT
Low−BW server

Small RTT
(RSD known)

Low−BW client

Small RTT
(RSD known)

Low−BW server

Fig. 7. Durations of round-trip times [sec] in broadband (dark gray), EDGE (medium
gray), and modem (light gray) access networks

Figure 7 outlines round-trip times for clients and servers on low-bandwidth
access networks. For the client-side measurements, the differences between the
access networks are obvious. When considering the total RTT, median values
range at up to more than twice as high for the limited access networks, with a
total RTT of 61.2 seconds for EDGE and 65.2 seconds for modem in compari-
son to 32.0 seconds for broadband. The interquartile range lies at 43.5 seconds
for EDGE, 56.6 seconds for modem and 38.4 seconds for broadband. For the
small RTT, the differences between broadband and limited networks shrinks to
17.6 seconds for EDGE and 9.6 seconds for modem, when comparing the me-
dian. Absolute median values and interquartile range amount to 36.0 seconds
and 31.7 seconds for EDGE, 28.0 seconds and 34 seconds for modem as well as
18.4 seconds and 22.2 seconds for broadband. For the server-side low-bandwidth
measurements, the difference is less obvious. When looking at the total RTT me-
dian, it shrinks to 8 seconds between EDGE and broadband and only 1 second
between modem and broadband, with absolute values of 44.2 seconds for EDGE,
37.7 seconds for modem and 36.4 seconds for broadband. The small RTT shows
similar results with a difference of 8.6 and 2.5 seconds, respectively, when com-
paring the broadband network to EDGE, respectively modem. Absolute median
values range at 25.8 seconds for EDGE, 19.7 seconds for modem and 17.2 seconds
for broadband.

336 J. Lenhard, K. Loesing, and G. Wirtz

When looking at the round-trip times in the server-side low-bandwidth mea-
surements, we can observe that values for the low-bandwidth access networks do
not differ strongly from those of the broadband network. Especially the values
of the modem network range at a level of only approximately 1 second higher.
An analysis of the different sub-steps of the whole protocol unveils the reasons
for this. For events where the hidden service access network is involved, broad-
band shows a better performance. But these events have a much smaller impact
on the total access time than events dependent on the client access network.
For the client-side events, we observed a slightly better performance of clients
accessing services with a low-bandwidth access network, ranging at a level of
0.1 seconds per event. These discrepancies have to be assumed to be random,
because all respective processes were running on the same physical machine us-
ing the same access network. There is no way in which client processes accessing
low-bandwidth services could have been preferred over other processes. Still,
these random differences equalize the differences produced by the hidden ser-
vice access network. This becomes especially obvious for the modem connection
where, in the end, there is hardly any difference to the broadband connection. We
conclude that the influence of the hidden service access network on the hidden
service protocol is of rather minor importance. Hidden services can in principle
be offered over low-bandwidth access networks, without enlarging the overall
connection establishment time too much. Other factors might be more likely to
produce a bottleneck here. These could, for example, be the usage of the access
network for something besides offering the hidden service, thus limiting the avail-
able bandwidth even further. Also the size of the actual product of the service
or the number of clients accessing the service at the same time are relevant.

We concentrated our further analysis of hidden service access on circuit es-
tablishment. The building of the various circuits consumes the largest share of
time in the whole process, in many cases up to 80% of the total access time.
Once circuits are completed, message transfer times only constitute minor de-
lays. Figure 8 shows establishment times for all circuits involved in the process
of accessing a hidden service. For the completion of each of the circuits there is
a timeout of 60 seconds. If the circuit is not completed within this time, it is
abandoned and a new attempt is started. It is important to mention that the
presented data constitutes absolute times until a circuit to a respective relay is
established. This can involve more than one attempt and thus also more than
60 seconds.

The client-side circuit to the rendezvous point (RendC) is built very quickly
for all access networks, almost immediately after requesting it. The median val-
ues are 0.0 seconds for all access network types. This is the case, because the
rendezvous circuit is simply cannibalized and not extended. In very few cases,
cannibalization was not possible, and a new circuit had to be built which of
course took some more time.

The client-side circuits to the directory server (DirC) and introduction point
(IntroC) show bigger differences between the access network types. Values for
these circuits are very similar for the same network types, as they are built

Performance Measurements of Tor in Low-Bandwidth Access Networks 337

●● ● ●●●● ● ●●● ●●●●● ●●● ●● ●●● ●● ●●● ●●● ●●● ●● ●● ●●● ●● ●●● ●●●● ●●● ●●●●●● ●●● ● ●● ●●● ●● ●

●●● ● ●● ●●●● ● ●● ●● ● ●● ●● ●●●● ●● ●● ● ● ●●● ●●● ● ●● ● ●●●● ● ●● ● ●●● ●● ●●●● ● ●● ●●● ●●● ●● ● ●●●●●●● ●●●● ●● ●● ● ●●● ●● ●●● ● ● ●● ●●● ●● ●● ●●● ●● ● ●● ● ●●● ●●●● ●●● ●●●● ●● ●● ● ● ● ●●● ● ●●

● ●●● ●● ●●●● ● ●● ●● ●●● ●● ●● ●● ●●●●● ●●●● ●● ●● ●● ●● ●● ●● ●● ●●● ●● ●● ● ● ●●● ●● ●● ●●● ● ●●● ●●●● ●●●●● ● ●● ● ●● ●● ●● ● ●●●●●● ●● ●●●●● ● ●●● ●●●● ●● ●●● ● ●●● ●● ●●● ● ●●● ●● ● ● ●● ●● ●● ●● ●● ●●●● ● ●●●●

●●●● ●● ●●●● ● ●● ● ●●● ● ●● ●●● ●●●● ●●● ● ●●●● ●● ● ● ●●● ●●● ●● ● ●●●● ●● ●● ●● ●●●● ●●● ●● ●●● ●● ●●● ●●● ● ●● ●● ●● ●● ● ●● ●● ●● ● ●●●● ●● ● ● ●● ●● ● ●● ● ●●● ●● ● ● ●●● ● ●● ●● ●● ●●●● ● ●●● ●● ●● ● ●●

Circuit establishment time [sec]

0 15 30 45 60 75 90 105 120

●● ● ●●●● ● ●●● ●●●●● ●●● ●● ●●● ●● ●●● ●●● ●●● ●● ●● ●●● ●● ●●● ●●●● ●●● ●●●●●● ●●● ● ●● ●●● ●● ●

●●● ● ●● ●●●● ● ●● ●● ● ●● ●● ●●●● ●● ●● ● ● ●●● ●●● ● ●● ● ●●●● ● ●● ● ●●● ●● ●●●● ● ●● ●●● ●●● ●● ● ●●●●●●● ●●●● ●● ●● ● ●●● ●● ●●● ● ● ●● ●●● ●● ●● ●●● ●● ● ●● ● ●●● ●●●● ●●● ●●●● ●● ●● ● ● ● ●●● ● ●●

● ●●● ●● ●●●● ● ●● ●● ●●● ●● ●● ●● ●●●●● ●●●● ●● ●● ●● ●● ●● ●● ●● ●●● ●● ●● ● ● ●●● ●● ●● ●●● ● ●●● ●●●● ●●●●● ● ●● ● ●● ●● ●● ● ●●●●●● ●● ●●●●● ● ●●● ●●●● ●● ●●● ● ●●● ●● ●●● ● ●●● ●● ● ● ●● ●● ●● ●● ●● ●●●● ● ●●●●

●●●● ●● ●●●● ● ●● ● ●●● ● ●● ●●● ●●●● ●●● ● ●●●● ●● ● ● ●●● ●●● ●● ● ●●●● ●● ●● ●● ●●●● ●●● ●● ●●● ●● ●●● ●●● ● ●● ●● ●● ●● ● ●● ●● ●● ● ●●●● ●● ● ● ●● ●● ● ●● ● ●●● ●● ● ● ●●● ● ●● ●● ●● ●●●● ● ●●● ●● ●● ● ●●

●●● ● ●● ●●● ●● ● ●●●● ● ●●● ●● ●●●●● ●●●● ●●● ●●● ●●●●●● ●●●● ●● ●

● ●●● ●●● ● ●● ●●● ● ● ●● ● ● ●● ●●● ●●● ●●●● ●● ●●● ●

●● ●● ●●●●● ● ●● ●● ●● ●●● ● ●●● ●●● ●● ●● ● ●● ● ● ● ●

●●● ●● ● ●● ●● ●●●● ● ●● ●● ● ●● ●● ●●●● ●● ●● ● ●●● ●●●

● ●● ●● ● ●●● ●●●●● ●● ●● ●● ●●●●● ●● ●●● ● ●●●●● ● ●● ●● ● ●● ● ●●● ●● ●● ●● ●●● ●● ●●● ●● ● ●●● ● ●● ●● ●●●● ● ● ●●● ●●●●●● ●● ●● ●●● ●●●

●● ● ●●● ●●● ● ● ●●● ● ● ●● ●●

● ● ● ●●●● ● ● ●●● ●●●● ● ● ●●●●● ●● ●●● ● ●● ● ● ● ●●● ●● ●● ●●● ●●● ● ● ●●●●● ●

●● ●● ● ●●●●●● ●●●● ●● ●● ●● ●● ●●● ●●

DirC
Low−BW client

RendC
Low−BW client

IntroC
Low−BW client

HSRend
Low−BW server

Fig. 8. Durations of circuit building [sec] in broadband (dark gray), EDGE (medium
gray), and modem (light gray) access networks

in the same manner. Here, if possible, an existing circuit is cannibalized and
extended to the respective relay. This extension has noticeable impact for the
different access networks. This can be seen by the high difference, compared to
the broadband network, in median values. In median, for both circuits, values
range about 8 to 9 seconds higher for the limited access networks. It has to be
mentioned that the data for the circuits to the directory server presented here
is likely to be slightly higher than in the population. In some cases the time of
the completion of this circuit could not be determined unambiguously from the
log files among other circuits. We considered a slight over-estimation to be less
critical and thus always chose the circuit that finished last.

Finally, the hidden-service-side circuit to the rendezvous point (HSRend) is
built rather quickly and the broadband network is only slightly faster with
around 1 second in difference for median in comparison to the low-bandwidth
access networks. This circuit is cannibalized and extended to the rendezvous
point. The hidden services in the measurements had fewer operations to per-
form than the clients. Bootstrapping was done once and fewer circuits had to be
built during an attempt. So, the hidden services were more likely to have an ex-
isting internal circuit ready for cannibalization which explains why the building
time for this circuit is much shorter than the time for building the client circuit
to the introduction point or to the directory server.

338 J. Lenhard, K. Loesing, and G. Wirtz

Table 1. Binomial tests on circuit completion

Phase Type p30 p40 p45

Broadband 4.1e−8 6.9e−17 4.5e−19

DirC EDGE 1 0.04 9.2e−4

Modem 1 0.52 0.06

Broadband 1.1e−4 9.4e−16 2.8e−21

IntroC EDGE 1 0.26 1.2e−3

Modem 1 0.58 0.03

Broadband 2.1e−14 7.2e−25 1.6e−27

HSRend EDGE 2.0e−12 6.4e−24 1.5e−26

Modem 2.1e−14 3.0e−27 1.8e−33

Starting with Tor version 0.2.1.7-alpha, the circuit timeout for the above cir-
cuits has been reduced to 30 seconds and in case of the introduction circuit, after
15 seconds a second attempt is started in parallel. It can now be observed with
the present data if this new timeout is suitable also when limited access networks
are in use. To determine the suitability, we applied binomial tests [8]. This type
of test simply requires a binomial distribution of the data set. So, we split the set
into two groups: on the one hand those attempts where the building of a certain
circuit took less or equal time than for example 30 seconds and on the other hand
those where it took more, up to 60 seconds. As the timeout is only relevant for a
single attempt, we did not consider the absolute times as represented in Figure 8,
but instead analyzed single attempts. We considered all successful attempts, no
matter whether they were the first or second or maybe even third try to build a
circuit to a certain relay. We set the percentage of completed circuits for consid-
ering a timeout as suitable, to 90%. Put in other words, concerning the binomial
tests, we set the probability for a success to 0.9. It was important to find a measure
for the timeout that guaranteed fault recognition, without cutting off too many
attempts that would have finished later. Furthermore, Panchenko et al. showed
that subsequent message transmission times over a circuit correlate to its build-
ing time [14]. So, cutting off circuit building at a reasonable limit should increase
the performance of connection establishment and message transmission. We set
the significance level to 5%. As the tests were three-fold, because of three connec-
tion types, we applied alpha adjustment which reduced the significance level to
1.66%. We did not perform binomial tests for the client circuit to the rendezvous
point. This circuit is built almost immediately in most cases and a timeout reduc-
tion would not advance this. The results of the tests can be found in Table 1. It is
quite obvious that a timeout of 60 seconds is too high in case of the hidden service
circuit to the rendezvous point. Very low and significant p-values are achieved for
all access network types. Thus, a timeout reduction to 30 seconds for this circuit is
reasonable. But for the other circuits, the timeout reduction cannot be supported
with the present data. While the broadband access network shows significant p-
values also for 30 seconds, the low-bandwidth networks do not. Even a timeout of
40 seconds does not fit. The p-value of EDGE for the circuit to the directory server

Performance Measurements of Tor in Low-Bandwidth Access Networks 339

with 0.4 approaches a significant level, but other p-values still rank high. Only with
a timeout of 45 seconds, p-values of EDGE become significant. The p-values of the
modem access network, with 0.06 for the circuit to the directory server and 0.03
for the circuit to the introduction point, are still not significant but close to the
significance level. As the timeout should be as convenient as possible for all access
network types, a compromise needs to be chosen. On the one hand, a timeout of
45 seconds might still be slightly too low for the modem access network. On the
other hand it is provably too high for the broadband access network. Being the
convenient middle way, we propose a timeout of 45 seconds for both circuits.

Improving static timeouts may be a good first step. But as our measurements
show, no timeout can fit all client environments equally well. A better approach
would be to track circuit build times at the client and use these data to adjust a
local timeout variable. By doing so, clients could even adapt to changing network
environments. One such approach is described in a Tor proposal [1] which is not
yet implemented, though.

7 Conclusion

We conducted comprehensive performance measurements of the usage of Tor
in limited access networks. Our focus was the evaluation of the bootstrapping
phase and sub-steps of hidden service access, especially circuit building and
round-trip times. The bootstrapping phase has turned out to take significantly
longer than expected over low-bandwidth access networks. The bottleneck in
this phase is formed by the download of relay descriptors. We discussed advan-
tages and disadvantages of different approaches to accelerate the bootstrapping
process. The analysis of circuit building times showed that building or extend-
ing circuits is a major bottleneck in the process of accessing hidden services,
especially when using low-bandwidth access networks. We conducted binomial
tests to determine adequate timeouts for the circuits involved in hidden service
access. We confirmed the usefulness of the timeout for the hidden service circuit
to the rendezvous point. For the client circuit to the directory server and to
the introduction point, we showed that the timeout is set too small when using
low-bandwidth access networks. Instead we proposed a timeout of 45 seconds
for these two circuits which would also fit the demands of the limited access
networks. Furthermore, we found round-trip times to not differ strongly when
using service-side low-bandwidth access networks. For the usage of client-side
low-bandwidth access networks, the difference was more obvious.

The contribution of this paper is to compare a few selected uses of anonymity
networks in low-bandwidth access networks. Future investigations might focus on
other use cases, e.g., anonymous web surfing or downloading of large files. Also,
other types of anonymity networks could be taken into consideration. Further
future work includes separate measurements of bootstrapping and Tor hidden
services in low-bandwidth environments. The limitation of the measurements to
6 minutes reduced the data that could be collected. With significantly shorter
bootstrapping, the 6 minutes could be used to measure application-level message

340 J. Lenhard, K. Loesing, and G. Wirtz

latency or throughput. For measurements of the bootstrapping, a higher timeout
of 10 to 15 minutes could give more informative results.

Acknowledgements

We thank the reviewers for their helpful comments which gave us the idea to
measure and include data on client bandwidths in the Tor network. Part of this
work has been generously funded by the NLnet foundation.

References

1. Chen, F., Perry, M.: Improving Tor path selection. Tor Proposal 151, The Tor
Project (July 2008), https://svn.torproject.org/svn/tor/trunk/doc/spec/

proposals/151-path-selection-improvements.txt

2. Danezis, G., Serjantov, A.: Statistical disclosure or intersection attacks on
anonymity systems. In: Fridrich, J. (ed.) IH 2004. LNCS, vol. 3200, pp. 293–308.
Springer, Heidelberg (2004)

3. Dingledine, R.: Keep controllers informed as Tor bootstraps. Tor Proposal 137,
The Tor Project (July 2008), https://svn.torproject.org/svn/tor/trunk/doc/
spec/proposals/137-bootstrap-phases.txt

4. Dingledine, R.: Clients download consensus + microdescriptors. Tor Proposal 158,
The Tor Project (January 2009), https://svn.torproject.org/svn/tor/trunk/
doc/spec/proposals/158-microdescriptors.txt

5. Dingledine, R., Mathewson, N.: Anonymity loves company: Usability and the net-
work effect. In: Anderson, R. (ed.) Proceedings of the Fifth Workshop on the
Economics of Information Security (WEIS 2006), Cambridge, UK (June 2006)

6. Dingledine, R., Mathewson, N., Syverson, P.: Tor: The second-generation onion
router. In: Proceedings of the 13th USENIX Security Symposium (August 2004)

7. GSM Assocication. Market Data Summary (2008),
http://www.gsmworld.com/newsroom/market-data/market_data_summary.htm

8. Hays, W.L.: Statistics. In: Holt, Rinehart, Winston (eds.), 3rd edn. (1981) ISBN:
0-03-056706-8

9. International Telecommunications Union. V.92: Enhancements to Recommenda-
tion V.90 (November 2000), http://www.itu.int/rec/T-REC-V.92-200011-I/en

10. Köpsell, S.: Low latency anonymous communication – how long are users willing to
wait? In: Müller, G. (ed.) ETRICS 2006. LNCS, vol. 3995, pp. 221–237. Springer,
Heidelberg (2006)

11. Loesing, K., Sandmann, W., Wilms, C., Wirtz, G.: Performance Measurements
and Statistics of Tor Hidden Services. In: Proceedings of the 2008 International
Symposium on Applications and the Internet (SAINT), Turku, Finland. IEEE CS
Press, Los Alamitos (2008)

12. Øverlier, L., Syverson, P.: Improving efficiency and simplicity of Tor circuit estab-
lishment and hidden services. In: Borisov, N., Golle, P. (eds.) PET 2007. LNCS,
vol. 4776, pp. 134–152. Springer, Heidelberg (2007)

13. Palfrader, P.: Download server descriptors on demand. Tor Proposal 141, The Tor
Project (June 2008), https://svn.torproject.org/svn/tor/trunk/doc/spec/

proposals/141-jit-sd-downloads.txt

https://svn.torproject.org/svn/tor/trunk/doc/spec/proposals/151-path-selection-improvements.txt
https://svn.torproject.org/svn/tor/trunk/doc/spec/proposals/151-path-selection-improvements.txt
https://svn.torproject.org/svn/tor/trunk/doc/spec/proposals/137-bootstrap-phases.txt
https://svn.torproject.org/svn/tor/trunk/doc/spec/proposals/137-bootstrap-phases.txt
https://svn.torproject.org/svn/tor/trunk/doc/spec/proposals/158-microdescriptors.txt
https://svn.torproject.org/svn/tor/trunk/doc/spec/proposals/158-microdescriptors.txt
http://www.gsmworld.com/newsroom/market-data/market_data_summary.htm
http://www.itu.int/rec/T-REC-V.92-200011-I/en
https://svn.torproject.org/svn/tor/trunk/doc/spec/proposals/141-jit-sd-downloads.txt
https://svn.torproject.org/svn/tor/trunk/doc/spec/proposals/141-jit-sd-downloads.txt

Performance Measurements of Tor in Low-Bandwidth Access Networks 341

14. Panchenko, A., Pimenidis, L., Renner, J.: Performance analysis of anonymous com-
munication channels provided by Tor. In: ARES 2008: Proceedings of the 2008
Third International Conference on Availability, Reliability and Security, Washing-
ton, DC, USA, pp. 221–228. IEEE Computer Society Press, Los Alamitos (2008)

15. Sauter, M.: Communication Systems for the Mobile Information Society. Wiley,
Chichester (2006)

16. The Tor Project. Tor directory protocol, version 3 (2008),
https://svn.torproject.org/svn/tor/trunk/doc/spec/dir-spec.txt

17. The Tor Project. Tor Rendezvous Specification (2008),
https://svn.torproject.org/svn/tor/trunk/doc/spec/rend-spec.txt

18. Wendolsky, R., Herrmann, D., Federrath, H.: Performance comparison of low-
latency anonymisation services from a user perspective. In: Borisov, N., Golle,
P. (eds.) PET 2007. LNCS, vol. 4776, pp. 233–253. Springer, Heidelberg (2007)

https://svn.torproject.org/svn/tor/trunk/doc/spec/dir-spec.txt
https://svn.torproject.org/svn/tor/trunk/doc/spec/rend-spec.txt

Cryptanalysis of Twister

Florian Mendel, Christian Rechberger, and Martin Schläffer

Institute for Applied Information Processing and Communications (IAIK)
Graz University of Technology, Inffeldgasse 16a, A-8010 Graz, Austria

martin.schlaeffer@iaik.tugraz.at

Abstract. In this paper, we present a semi-free-start collision attack
on the compression function for all Twister variants with negligible com-
plexity. We show how this compression function attack can be extended
to construct collisions for Twister-512 slightly faster than brute force
search. Furthermore, we present a second-preimage and preimage attack
for Twister-512 with complexity of about 2384 and 2456 compression func-
tion evaluations, respectively.

Keywords: SHA-3, Twister, hash function, collision-, second-preimage-,
preimage attack.

1 Introduction

In the NIST SHA-3 competition, many new hash function designs have been
submitted. NIST published a list of 51 first round candidates, and Twister [4,5]
is one of them. The next step is to reduce the list of 51 candidates to a small set
of finalists within the next few years. As an input to this selection process, we
describe several cryptanalytic results on Twister in this paper. Similar results
on the Whirlpool [1], Grøstl [15] and GOST [14] hash functions, or the Merkle-
Damg̊ard [3,11] constrution have been published in [10], [8,9] and [6]. Our results
on Twister are summarized in Table 1.

Table 1. Summary of cryptanalytic results on Twister

type of attack target hash size complexity memory

semi-free-start collision compression function all 28 -

collision hash function 512 2252 29

second preimage hash function 512 2384+s 210 + 264−s

preimage hash function 512 2456 210

In the remainder of the paper, we first give a description of Twister in Sec-
tion 2, outline a practical collision attack on its compression function in Sec-
tion 3, and give theoretical collision-, second preimage-, and preimage attacks in
Sections 4, 5, and 6, respectively. We summarize and conclude in Section 7.

M. Abdalla et al. (Eds.): ACNS 2009, LNCS 5536, pp. 342–353, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Cryptanalysis of Twister 343

2 Description of Twister

The hash function Twister is an iterated hash function based on the Merkle-
Damg̊ard design principle. It processes message blocks of 512 bits and produces
a hash value of 224, 256, 384, or 512 bits. If the message length is not a multiple
of 512, an unambiguous padding method is applied. For the description of the
padding method we refer to [4] and [5]. Let m = m1‖m2‖ · · · ‖mt be a t-block
message (after padding). The hash value h = H(m) is computed as follows:

H0 = IV

Hi = f(Hi−1,mi) for 0 < i ≤ t

Ht+1 = f(Ht, C)
h = Ω(Ht+1) ,

where IV is a predefined initial value, C is the value of the checksum and Ω is
an output transformation. The checksum C is computed from the intermediate
values of the internal state after each Mini-Round. Note that while for Twister-
224/256 the checksum is optional it is mandatory for Twister-384/512.

The compression function f of Twister basically consists of 3 Maxi-Rounds.
Each Maxi-Rounds consist of 3 or 4 Mini-Rounds (depending on the output size
of Twister) and is followed by a feed-forward XOR-operation.

The Mini-Round of Twister is very similar to one round of the Advanced
Encryption Standard (AES) [13]. It updates an 8 × 8 state S of 64 bytes as
follows:

MessageInjection. A 8-byte message block M is inserted (via XOR) into the last
row of the 8× 8 state S.

AddTwistCounter. A 8-byte block counter is xored to the second column of the
state S.

Fig. 1. The compression function of Twister-224/256

Fig. 2. The compression function of Twister-384/512

344 F. Mendel, C. Rechberger, and M. Schläffer

Fig. 3. The output transformation of Twister

SubBytes. is identical to the SubBytes operation of AES. It applies an S-Box to
each byte of the state independently

ShiftRows. is a cyclic left shift similar to the ShiftRows operation of AES. It
rotates row j by (j − 1) (mod 8) bytes to the left.

MixColumns. is similar to the MixColumns operation of AES. It applies a 8× 8-
MDS matrix A to each column of the state S. The matrix A and its inverse
B are given in Appendix A.

After the last message block and/or the checksum has been processed, the
final hash value is generated from the last chaining value Ht+1 by an output
transformation Ω (see Figure 3).

In the output transformation, two Mini-Rounds are applied to subsequently
output 64 bits of the hash value. The output stream consists of the XOR of the
first column of the state prior and after the two Mini-Rounds. This 64-bit output
stream continues until the full hash size has been received. For a more detailed
description of Twister we refer to [4] and [5].

3 Semi-Free-Start Collision for the Compression Function

In this section, we present a semi-free-start collision attack on the compression
function of Twister for all output sizes. The complexity to find a differential
characteristic is about 28 compression function evaluations. However, for each
differential characteristic, we can construct up to 264 message pairs and the
complexity to find one of these conforming message pairs is one.

In the attack we use the differential characteristic of Figure 4 for the first
Maxi-Round (3 Mini-Rounds) of Twister. The 3 Mini-Rounds are denoted by
r1, r2 and r3 and the state after the Mini-Round ri is denoted by Si and the
state after the corresponding feed-forward SF

i . The initial state or chaining value
is denoted by S0. In the attack we add a difference in message word M1 (8 active
bytes) to the state S0, which results in a full active state S1 after the first Mini-
Round r1. After the MixColumns transformation of the second Mini-Round r2,
the differences result in 8 active bytes of the last row of state S2, which can be
canceled by the message word M3 in the third Mini-Round r3.

The message differences and values for the state are found using a rebound
approach as proposed in [10]. Figure 5 shows the characteristic in detail. We start
with message word differences in M1 and M3 at states S′

1 and S2 (we do not use
differences in M2 to simplify the description of the attack). The differences can

Cryptanalysis of Twister 345

Fig. 4. Characteristic to construct a semi-free-start collision in the first Maxi-Round

Fig. 5. We start with differences in states S′
1 and S2 injected by message words M1

and M3, and propagate backward and forward (Step 1) to find a match for the S-box
of round r2 (Step 2)

be propagated backward and forward through the MixColumns transformation
with a probability of one (Step 1). Then, we simply need to find a match for the
resulting input and output differences of the SubBytes layer of round r2 (Step 2)
and propagate outwards.

Step 1. We start the attack with 8 active bytes in state S′′′
1 and S2 (injected

by message words M1 and M3) and compute backward and forward to two full
active states S′′

2 and S′′′
2 . This happens with a probability of one due to the

properties of the ShiftRows and MixColumns transformations. Note that we can
significantly reduce the complexity of the attack, if we first compute the full
active state S′′′

2 and then compute S′′
2 column by column to find a match for 8

S-boxes at once (Step 2).

Step 2. Next, we show how to find a match for the input/output differences of
the 64 active S-boxes of round r2. Note that for a single S-box, the probability
that a input/output differential exists is about one half, and for each valid in-
put/output differential we can assign at least two possible values to the S-box
(for more details we refer to [10]). Note that we can search for valid S-box dif-
ferentials for each column independently. Hence, we start by choosing a random
difference for the first active byte of S′′′

1 and compute the corresponding row of
S′′

2 . We find a valid differential match for these 8 S-boxes with a probability of
(1/2)8 = 2−8. If we find a match, we continue with the remaining active bytes.
Alltogether, this step has a complexity of less than 28 compression function
evaluations.

Once we have found a differential match for the SubBytes layer, we can choose
from at least 264 possible states for S′′

2 . Each of these states can be com-
puted forward and backward and results in a semi-free-start collision for one

346 F. Mendel, C. Rechberger, and M. Schläffer

Maxi-Round. Further, this determines the state S0 as well as the values and
differences of M1 and M3 (we can freely choose the values of M2). Note that the
first Maxi-Round is the same for Twister-224/256 and Twister-384/512. Hence,
by constructing a semi-free-start collision for the first Maxi-Round we already
get a semi-free-start collision for the compression function of Twister-224/256
and Twister-384/512. Since we can find 28 semi-free-start collisions with a com-
plexity of 28 compression function evaluations, the average complexity to find
one semi-free-start collisions is one with negligible memory requirements. An
example for a semi-free start collision is given in 2.

Table 2. A colliding message pair (M, M∗) for the semi-free-start collision of the
first Maxi-Round (S3, S

∗
3) of Twister. The corresponding semi-free-start collision for

Twister-256 (with output transformation) is given by H(256) and H∗(256).

H0
A63215B04567E389 16D40B5ACFABED9D C0C4104853084862 C38990B8BEBF7BED

E936F9AF6406E35B F5BE6C8455626226 C6C9FA7B806B3BD1 E22C576CDE8ABDB5

H∗
0

A63215B04567E389 16D40B5ACFABED9D C0C4104853084862 C38990B8BEBF7BED

E936F9AF6406E35B F5BE6C8455626226 C6C9FA7B806B3BD1 E22C576CDE8ABDB5

ΔH0
0000000000000000 0000000000000000 0000000000000000 0000000000000000

0000000000000000 0000000000000000 0000000000000000 0000000000000000

M 0000000000000000 0000000000000000 0000000000000000

M∗ 309F4C5E31CAD0EE 0000000000000000 CF7CA0BD904331CB

ΔM 309F4C5E31CAD0EE 0000000000000000 CF7CA0BD904331CB

S3
8B040660A8F0C7BF 09EE0D5A362F769E B62FDC8118D186F2 96E6A8E0049B4BA7

5494AA985B53A83F B91DE273FA61A073 8082BCD3BB503820 56225FFB45DBA4F8

S∗
3
8B040660A8F0C7BF 09EE0D5A362F769E B62FDC8118D186F2 96E6A8E0049B4BA7

5494AA985B53A83F B91DE273FA61A073 8082BCD3BB503820 56225FFB45DBA4F8

ΔS3
0000000000000000 0000000000000000 0000000000000000 0000000000000000

0000000000000000 0000000000000000 0000000000000000 0000000000000000

H(256) DE6D957A627CEBBF 88326DBED4135BB0 2039C5411191AD47 A15703E5EA2E66A2

H∗(256) DE6D957A627CEBBF 88326DBED4135BB0 2039C5411191AD47 A15703E5EA2E66A2

ΔH(256) 0000000000000000 0000000000000000 0000000000000000 0000000000000000

4 A Collision Attack on Twister-512

In this section, we show how the semi-free-start collision attack on Twister-512
can be extended to the hash function. We first show how to construct collisions in
the compression function of Twister-512 with a complexity of 2223 compression
function evaluations. This collision attack on the compression function is then
extended to a collision attack on the hash function. The extension is possible by
combining a multicollision attack and a birthday attack on the checksum. The
attack has a complexity of about 2252 evaluations of the compression function
of Twister-512.

4.1 Collision Attack on the Compression Function

For the collision attack on the compression function of Twister-512 we can use
the characteristic of the previous section in the last Maxi-Round (see Figure 6).

Cryptanalysis of Twister 347

Fig. 6. The characteristic for the last Maxi-Round of Twister-512

Remember that in Twister-512 the 3 message words M6, M7 and M8 are injected
in the last Maxi-Round. Hence, we can use the first 5 message words M1 −M5

for a birthday match on 56 state bytes with a complexity of 28·56/2 = 2224. Since
the 8 bytes of the last row can always be adapted by using the freedom in the
(absolute) values of the message word M6, we only need to match 56 out of 64
bytes. It can be summarized as follows:

1. Compute 2224 semi-free-start collisions for the last Maxi-Round of Twister-
512 and save them in a list L. This has a complexity of about 3 · 2224 Mini-
Round computations. Note that we can choose from 23·64 = 2192 differences
in M6, M7 and M8 in the attack. Furthermore, by varying the values of M7,
we get additional 264 degrees of freedom. Hence, we can construct up to 2256

semi-free-start collisions for the last Maxi-Round.
2. Compute the input of the last Maxi-Round by going forward and check for

a match in the list L. After testing about 2224 candidates for the input of
the last Maxi-Round we expect to find a match in the list L and hence, a
collision for the compression function of Twister-512. Finishing this step of
the attack has a complexity of about 2224 Mini-Round computations.

Hence, we can find a collision for the compression function of Twister-512 for
the predefined initial value with a complexity of about 2223 compression func-
tion evaluations (10 · 2223 Mini-Round computations) and memory requirements
of 2224. Note that memory requirements of this attack can significantly be re-
duced by applying a memory-less variant of the meet-in-the-middle attack in-
troduced by Quisquater and Delescaille [16], and applied by Morita, Ohata and
Miyaguchi [12].

4.2 Collision Attack on the Hash Function

In this section, we show how the collision attack on the compression function
can be extended to the hash function. The attack has a complexity of about
2252 evaluations of the compression function of Twister-512. Note that the hash
function defines, in addition to the common iterative structure, a checksum com-
puted over the outputs of each Mini-Round which is then part of the final hash
computation. Therefore, to construct a collision in the hash function we have to
construct a collision in the iterative structure (i.e. chaining variables) as well as
in the checksum. To do this we use multicollisions.

A multicollision is a set of messages of equal length that all lead to the same
hash value. As shown in [7], constructing a 2t collision, i.e. 2t messages consisting

348 F. Mendel, C. Rechberger, and M. Schläffer

of t message blocks which all lead to the same hash value, can be done with
a complexity of about t · 2x for any iterated hash function, where 2x is the
cost of constructing a collision in the compression function. As shown in the
previous section, collisions for the compression function of Twister-512 can be
constructed with a complexity of 2223. Hence, we can construct a 2256 collision
with a complexity of about 256 · 2223 ≈ 2231 evaluations of the compression
function of Twister-512 and memory requirements of 29 (needed to store the
2256 collision). With this method we get 2256 values for the checksum C that all
lead to the same chaining value H256.

To construct a collision in the checksum of Twister-512 we have to find 2
distinct messages consisting of 257 message blocks (256 message blocks for the
multicollision and 1 message block for the padding) which produce the same value
in the checksum. By applying a birthday attack we can find these 2 messages
with a complexity of about 2256 checksum computations and memory require-
ments of 2256. Due to the high memory requirements of the birthday attack,
one could see this part as the bottleneck of the attack. However, the memory
requirements can be significantly reduced by applying a memory-less variant of
the birthday attack [16]. Hence, we can find a collision for Twister-512 with
a complexity of about 2231 compression function evaluations (10 Mini-Rounds)
and about 2256 checksum computations (8 xor operations and 8 modular addi-
tions of 64-bits). In general the cost for one checksum computation is smaller
than one compression function evaluation. Depending on the implementation 1
checksum computation is 1/x compression function evaluation. Assume x = 16,
then we can find a collision for Twister slightly faster than brute force search
with a complexity of about 2252 compression function evaluations and negligible
memory requirements.

4.3 A Remark on the Length Extension Property

Once, we have found a collision, i.e. collision in the iterative part (chaining vari-
ables) and the checksum, we can construct many more collisions by appending an
arbitrary message block. Note that this is not necessarily the case for a straight-
forward birthday attack. By applying a birthday attack we construct a collision
in the final hash value (after the output transformation Ω) and appending a
message block is not possible. Hence, we need a collision in the iterative part
as well as in the checksum for the extension property. Note that by combining
the generic birthday attack and multicollisions, one can construct collisions in
both parts with a complexity of about 256 · 2256 = 2264 while our attack has a
complexity of 2252.

5 A Second-Preimage Attack on Twister-512

In this section, we present a second-preimage for Twister-512 with complexity
of about 2384 compression function evaluations and memory requirements of
264. Assume we want to construct a second preimage for the message m =
m1‖ · · · ‖m513. Then, the attack can be summarized as follows.

Cryptanalysis of Twister 349

1. Construct a 2512 collision for the first 512 message blocks of Twister-512. This
has a complexity of about 512 ·2256 ≈ 2265 compression function evaluations
(using a birthday attack to construct a collision for each message block) and
needs 210 memory to save the multicollision. Hence, we get 2512 values for
the checksum which all lead to the same chaining value H512.

2. Choose an arbitrary value for the message block m513 with correct padding
and compute H513.

3. In the last iteration of the compression function, H514 = f(H513, C), we
first choose arbitrary values for the five checksum words C1, . . . , C5 with
C = C1‖ · · · ‖C8 and compute the state SF

6 = H513 ⊕ S3 ⊕ S6. This also
determines S10 = H514⊕SF

6 . Note that we knowH514 from the first preimage.
4. For all 264 choices of C8 compute backward from S10 to the injection of C7

and save the 264 candidates for state S′
7 = MessageInjection(S7,C7) in the

list L.
5. For all 264 choices of C6 compute forward from S6 to the injection of C7

and check for match of S′
7 in the list L. Since we can still choose C7, we

only need to match 448 (out of 512) bits. In total, we get 2128 pairs and
this step of the attack will succeed with probability 2−448+128 = 2−320. By
repeating steps 3–5 about 2320 times we can find a match and fulfill this
step of the attack with a complexity of about 2320+64 = 2384 compression
function evaluations.

6. Once we have constructed a second-preimage for the iterative part, we still
have to ensure that the value of the checksum C is correct. Therefore, we
now use the fact that the checksum of Twister is invertible and we have
2512 values for the checksum which all lead to the same chaining value H512

and hence H513 and H514. By using a meet-in-the-middle-attack, we can
construct the needed value in the checksum. This has a complexity of about
2257 checksum computations and memory requirements of 2256. Again the
memory requirements can be significantly reduced by using a memory-less
variant of the meet-in-the-middle attack [16].

Hence, we can construct a second-preimage for Twister-512 with complexity
of about 2384 and memory requirements of 210 + 264. The memory requirements
can be significantly reduced at the cost of an higher attack complexity. Several
time/memory tradeoffs are possible between 2384+s compression function eval-
uations and memory requirements of 210 + 264−s. Note that our attack requires
that the first message consists of at least 513 message blocks. Due to the output
transformation of Twister-512, the attack can not be extended to a preimage
attack on Twister-512 in a straight-forward way.

6 A Preimage Attack on Twister-512

In order to construct a preimage, we have to invert the output transformation of
Twister-512. Once we have inverted the output transformation, we can use the
second preimage attack described in the previous section to construct a preimage

350 F. Mendel, C. Rechberger, and M. Schläffer

⊕

Fig. 7. The inversion of the first part of the output transformation of Twister

for Twister-512. Suppose we seek a preimage of h = out1‖ · · · ‖out8 consisting
of 513 message block. Then we have to find the chaining value H514 such that
Ω(H514) = h.

In the following, we show how to find a H514 such that out1 is correct with
a complexity of about 28 instead of the expected 264. This reduces the com-
plexity of inverting the whole output transformation Ω to about 2456 instead of
the expected complexity of 2512. The inversion of the first step of the output
transformation can be summarized as follows (see also Figure 7):

1. Choose a random value for the first column of H514. Use out1 and the first
column of H514 (8 bytes each) to compute the first column of S2 (8 bytes).

2. Compute the 8 bytes S′′′
1 [i][1 + (9 − i) mod 8] for (1 ≤ i ≤ 8) of state S′′′

1

using the first column of H514.
3. Compute backward through the Mini-Round r2 for the first column of S2 to

get the diagonal 8 bytes of S1 ⊕H514.
4. Choose random values for the 8 diagonal bytes of H514. Note that this de-

termines the first column of S′′′
1 . Next, compute the 8 diagonal bytes of S1

from the diagonal bytes of H514 ⊕ S1 and H514 using the feed-forward.
5. Now, we need to connect the states S′′′

1 and S1 through the MixColumns
operation of Mini-Round r1. Note that the first column of S′′′

1 is already
fixed (due to step 4). If the first byte of S1[1][1] does not match, we need to
go back to step 1 again. After repeating steps 1-4 about 28 times we expect
to find a match for S1[1][1]. Once, we have found a match, we have to modify
column 2-8 of S′′′

1 such that the remaining 7 bytes match as well.
(a) For each column i = 2 . . . 8 choose random values for the bytes S′′′

1 [i][k]
with k
= 10− i. Note that the bytes S′′′

1 [i][k] with k = 10− i are already
fixed due to step 2 of the attack.

(b) Next, we compute the MixColumns operation and check if the byte S1[i][i]
matches. If not, we repeat the previous step. This has a complexity of
about 28.

Since each column can be modified independently in the attack, finishing
this step of the attack has a complexity of about 8 · 28 ≈ 211 Mini-Round
computations.

Cryptanalysis of Twister 351

6. After we have found a match for all columns, we can compute backwards
from S′′′

1 to determine H514. Note that values fixed in step 1 and step 4 do
not change anymore.

Hence, we can find a H514 such that out1 is correct with a total complexity
of about 211 Mini-Round computations, respectively 28 compression function
evaluations. By repeating the attack about 2448 times, we can invert the out-
put transformation of Twister-512 with a complexity of about 2438 · 28 = 2456

compression function evaluations and memory requirement of 210.
Once we have inverted the output transformation, i.e. we have found the

chaining value H514 such that Ω(H514) = h, we can apply the second preimage
attack described in the previous section to construct a preimage for Twister-
512 consisting of 513 message blocks. The attack has a complexity of about
2448 + 2456 ≈ 2456 compression function evaluations and negligible memory re-
quirements.

7 Conclusion

In this paper, we have shown two main results: Although Twister is heavily
based on a Merkle-Damg̊ard style iteration (as many other hash function like
SHA-2), the corresponding reduction proof that reduces the collision resistance
of the hash function to the collision resistance of the compression function is
not applicable anymore. We show practical (in time and memory) attacks and
give an example for a compression function collision. This clearly invalidates the
collision resistance assumption of the compression function.

Secondly, we give a theoretical collision, second preimage and preimage attack
on the hash function Twister-512. Although the practicality of the proposed
attacks might be debatable, it nevertheless exhibits non-random properties that
are not present in SHA-512.

Acknowledgements

The authors wish to thank the designers of Twister for useful comments and
discussions. The work in this paper has been supported in part by the European
Commission under contract ICT-2007-216646 (ECRYPT II) and by the IAP
Programme P6/26 BCRYPT of the Belgian State (Belgian Science Policy).

References

1. Barreto, P.S.L.M., Rijmen, V.: The Whirlpool Hashing Function. Submitted to
NESSIE (September 2000) (Revised May 2003), http://paginas.terra.com.br/
informatica/paulobarreto/WhirlpoolPage.html (2008/07/08)

2. Brassard, G. (ed.): CRYPTO 1989. LNCS, vol. 435. Springer, Heidelberg (1990)
3. Damg̊ard, I.: A Design Principle for Hash Functions. In: Brassard [2], pp. 416–427

http://paginas.terra.com.br/informatica/paulobarreto/WhirlpoolPage.html
http://paginas.terra.com.br/informatica/paulobarreto/WhirlpoolPage.html

352 F. Mendel, C. Rechberger, and M. Schläffer

4. Fleischmann, E., Forler, C., Gorski, M.: The Twister Hash Function Family. Sub-
mission to NIST (2008)

5. Fleischmann, E., Forler, C., Gorski, M., Lucks, S.: Twister - A Framework for
Secure and Fast Hash Functions. In: Li, H., Bao, F. (eds.) ISPEC. Springer, Hei-
delberg (to appear, 2009)

6. Gauravaram, P., Kelsey, J.: Linear-XOR and Additive Checksums Don’t Protect
Damg̊ard-Merkle Hashes from Generic Attacks. In: Malkin, T. (ed.) CT-RSA 2008.
LNCS, vol. 4964, pp. 36–51. Springer, Heidelberg (2008)

7. Joux, A.: Multicollisions in Iterated Hash Functions. Application to Cascaded Con-
structions. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 306–316.
Springer, Heidelberg (2004)

8. Mendel, F., Pramstaller, N., Rechberger, C.: A (Second) Preimage Attack on the
GOST Hash Function. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 224–
234. Springer, Heidelberg (2008)

9. Mendel, F., Pramstaller, N., Rechberger, C., Kontak, M., Szmidt, J.: Cryptanalysis
of the GOST Hash Function. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157,
pp. 162–178. Springer, Heidelberg (2008)

10. Mendel, F., Rechberger, C., Schläffer, M., Thomsen, S.S.: The Rebound Attack:
Cryptanalysis of Reduced Whirlpool and Grøstl. In: Dunkelman, O. (ed.) Fast
Software Encryption. Springer, Heidelberg (to appear, 2009)

11. Ralph, C.M.: One Way Hash Functions and DES. In: Brassard [2], pp. 428–446
12. Morita, H., Ohta, K., Miyaguchi, S.: A Switching Closure Test to Analyze Cryp-

tosystems. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 183–193.
Springer, Heidelberg (1992)

13. National Institute of Standards and Technology. FIPS PUB 197, Advanced En-
cryption Standard (AES). Federal Information Processing Standards Publication
197, U.S. Department of Commerce (November 2001)

14. Government Committee of Russia for Standards. GOST 34.11-94, Gosudarstven-
nyi Standard of Russian Federation, Information Technology Cryptographic Data
Security Hashing Function (in Russian) (1994)

15. Gauravaram, P., Knudsen, L.R., Matusiewicz, K., Mendel, F., Rechberger, C.,
Schläffer, M., Thomsen, S.S.: Grøstl - a SHA-3 candidate (2008), http://www.

groestl.info

16. Quisquater, J.-J., Delescaille, J.-P.: How Easy is Collision Search. New Results and
Applications to DES. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp.
408–413. Springer, Heidelberg (1990)

http://www.groestl.info
http://www.groestl.info

Cryptanalysis of Twister 353

A MixColumns and Inverse MixColumns

The MDS matrix A of the MixColumns operation of Twister and its inverse B
are given as follows:

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

02 01 01 05 07 08 06 01
01 02 01 01 05 07 08 06
06 01 02 01 01 05 07 08
08 06 01 02 01 01 05 07
07 08 06 01 02 01 01 05
05 07 08 06 01 02 01 01
01 05 07 08 06 01 02 01
01 01 05 07 08 06 01 02

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

B = A−1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

3E C5 7A E7 1B A9 8A 23
23 3E C5 7A E7 1B A9 8A
8A 23 3E C5 7A E7 1B A9
A9 8A 23 3E C5 7A E7 1B
1B A9 8A 23 3E C5 7A E7
E7 1B A9 8A 23 3E C5 7A
7A E7 1B A9 8A 23 3E C5
C5 7A E7 1B A9 8A 23 3E

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Cryptanalysis of CubeHash

Eric Brier and Thomas Peyrin

Ingenico, France
eric.brier@ingenico.com,

thomas.peyrin@ingenico.com

Abstract. CubeHash is a family of hash functions submitted by Bern-
stein as a SHA-3 candidate. In this paper, we provide two different crypt-
analysis approaches concerning its collision resistance. Thanks to the first
approach, related to truncated differentials, we computed a collision for
the CubeHash-1/36 hash function, i.e. when for each iteration 36 bytes
of message are incorporated and one call to the permutation is applied.
Then, the second approach, already used by Dai, much more efficient
and based on a linearization of the scheme, allowed us to compute a
collision for the CubeHash-2/4 hash function. Finally, a theoretical col-
lision attack against CubeHash-2/3, CubeHash-4/4 and CubeHash-4/3 is
described. This is currently by far the best known cryptanalysis result
on this SHA-3 candidate.

Keywords: hash functions, CubeHash, collision.

1 Introduction

A cryptographic hash function is a very important tool in cryptography, used in
many applications such as digital signatures, authentication schemes or message
integrity. One of its main and most important security feature is the collision
resistance: finding two messages M and M ′ leading to the same hash value
should require at least 2n/2 operations, where n is the output length of the hash
function. Wang et al. [14,16,15,17] recently showed that most standardized hash
functions (e.g. MD5 [12] or SHA-1 [10]) are not collision resistant. As a response,
the National Institute of Standards and Technology (NIST) opened a public
competition [9] to develop a new cryptographic hash algorithm that will be
called SHA-3. 51 submissions met the minimum submission requirements, and
had been accepted as the first round candidates. Among them, CubeHash is a
new hash function designed by Bernstein [3] and currently under evaluation. One
of its advantages is its simplicity of description which makes the analysis much
easier for a cryptanalyst. This proposal can be considered as a stream-cipher
oriented hash function. It maintains a big 1024-bit internal state, in which b-
byte of message are incorporated at each iteration. After adding such a message
block, a fixed permutation is then applied r time. Generally, the bigger is r (or
the smaller is b) the harder it should be for the attacker to break the collision
resistance of CubeHash-r/b.

M. Abdalla et al. (Eds.): ACNS 2009, LNCS 5536, pp. 354–368, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Cryptanalysis of CubeHash 355

Previous results. The first analysis of CubeHashwas proposed by Aumasson et
al. [1,2] in which the authors showed some non-random properties for several
versions of CubeHash as well as a collision for CubeHash-2/120. Later, thanks
to a linearization approach, Dai [6] computed a collision for CubeHash-1/45 and
CubeHash-2/89. Those results were soon improved to CubeHash-2/12 [7].

Our contributions. In this paper, we provide two different cryptanalysis ap-
proaches concerning the collision resistance. The first approach, related to trun-
cated differences, allowed us to compute a real collision for CubeHash-1/36.
The second approach, i.e. linearizing the scheme, gives us much better results:
we provide a real collision for CubeHash-2/4 and theoretical collision attacks
against CubeHash-2/3, CubeHash-4/4 and CubeHash-4/3. This is currently the
best known cryptanalysis result on CubeHash. To give an insight of the broken
schemes, CubeHash-4/3 speed is about 26 cycles/byte, comparable to the speed
of SHA-2 [10].

2 Description of CubeHash

We refer to the specifications of CubeHash [3] for the complete description of the
scheme. CubeHash-r/b-h is the h-bit output version of CubeHash, for which b bytes
of message are incorporated and r calls to the internal permutation F is applied
at each iteration. The function can hash messages up to 2128 − 1 bits. After an
appropriate padding, the message is therefore divided into block Mi of b bytes
each. A 1024-bit internal state is maintained, divided into 32 words Xi of 32 bits
each and initialized by the following process: set the first three state words X0,
X1, X2 to the integers h/8, b, r respectively and set the remaining state words to
0. Then apply on the state 10× r times the internal permutation F .

After the initialization, the message blocks are treated iteratively: exclusive or
the incoming b-byte message block onto the first b bytes of the internal state and
apply the iteration function, composed of r times the application of the internal
permutation F . When all the message blocks have been treated, exclusive or the
integer 1 to the state word X31 and apply 10× r times the internal permutation
F without incorporating message blocks anymore. Finally, output the h first bits
of the internal state.

The internal permutation F uses very simple operations: rotation, exclusive
or, modular addition and word swapping. It is composed of 10 steps (represented
graphically in Figure 1):

1. Add Xi into Xi⊕16, for 0 ≤ i ≤ 15.
2. Rotate Xi on the left by seven bits, for 0 ≤ i ≤ 15.
3. Swap Xi and Xi⊕8, for i ∈ [0, 1, 2, 3, 4, 5, 6, 7].
4. Xor Xi⊕16 into Xi, for 0 ≤ i ≤ 15.
5. Swap Xi and Xi⊕2, for i ∈ [16, 7, 20, 21, 24, 25, 28, 29].
6. Add Xi into Xi⊕16, for 0 ≤ i ≤ 15.
7. Rotate Xi on the left by eleven bits, for 0 ≤ i ≤ 15.

356 E. Brier and T. Peyrin

Fig. 1. Internal permutation F in CubeHash. Each cell represents a 32-bit word.

8. Swap Xi and Xi⊕4, for i ∈ [0, 1, 2, 3, 8, 9, 10, 11].
9. Xor Xi⊕16 into Xi, for 0 ≤ i ≤ 15.

10. Swap Xi and Xi⊕1, for i ∈ [16, 18, 20, 22, 24, 26, 28, 30].

3 Truncated Differential Paths

In this section, we depict a cryptanalysis approach for CubeHash regarding its
collision resistance, based on two very generic differential paths. The technique is

Cryptanalysis of CubeHash 357

related to truncated differences, originally introduced by Knudsen [8] to cryptan-
alyze block ciphers and later utilized by Peyrin [11] in the hash functions setting.
These one-round differential paths can potentially be used to build more complex
differential characteristics on any number of rounds per iteration. Our results
provide theoretical collision attacks for CubeHash-2/b with r ≤ 2 and b ≥ 36
and as a proof of concept, we computed a collision for the 512-bit version of
CubeHash-1/36.

3.1 The Differential Paths

In the following, we say that a 32-bit word is active when a non-zero difference
exists on this word. We denote a differential path for the internal permutation
by A �−→ B, where A and B are 32-bit words for which each bit represents one
internal word (the LSB will denote X31 and the MSB will denote X0). Said in
other words, we only check if the internal words are active or not, whatever are
the values of the non-zero differences. For example, 0x05000000 �−→ 0x00000800
means that we have X5 and X7 active on the input, and that we expect only
X20 to be active on the output of the permutation.

In this paper, we use two distinct differential paths for the internal permuta-
tion (see also Figure 2):

Δ1 : 0xa0800000 �−→ 0x0a020000

Δ2 : 0x0a020000 �−→ 0xa0800000

One can see that the two-round differential path composed of Δ1 and Δ2 has
the interesting property that the input and output active words patterns are
the same. In the difference mask 0xa0800000, only the nine first 32-bit words of
the internal state are active. Therefore, we can look for an attack on CubeHash-
r/36 by using the differential paths Δ1 and Δ2 successively. In this section, we
consider that the attacker insert 9 32-bit words of message at each iteration, i.e.
he has full control on X0, . . . , X8 at the beginning of each iteration.

We denote by X≪y the rotation of y positions on the left applied to the word
X and by X the complement value of X . Also, X ′ will represent the second
member of the pair when X is an active word. For each differential path Δ1 and
Δ2, a system of four equations on 32-bit words must be satisfied:

System 1 (for Δ1) :

(X24 + X8)⊕X≪7
0 = (X24 + X ′

8)⊕X ′≪7
0

X8 + [(X26 + X10)⊕X≪7
2] = X ′

8 + [(X26 + X10)⊕X ′≪7
2]

X0 + [(X18 + X2)⊕X≪7
10] = X ′

0 + [(X18 + X ′
2)⊕X≪7

10]
X2 + [(X16 + X0)⊕X≪7

8] = X ′
2 + [(X16 + X ′

0)⊕X ′≪7
8]

358 E. Brier and T. Peyrin

Fig. 2. Differential paths Δ1 (left) and Δ2 (right) for the internal permutation of
CubeHash. A cell stands for a 32-bit word of the internal state and the boxes represent
in hexadecimal display the active words during the computation.

System 2 (for Δ2) :

(X30 + X14)⊕X≪7
6 = (X30 + X ′

14)⊕X ′≪7
6

X14 + [(X28 + X12)⊕X≪7
4] = X ′

14 + [(X28 + X12)⊕X ′≪7
4]

X6 + [(X20 + X4)⊕X≪7
12] = X ′

6 + [(X20 + X ′
4)⊕X≪7

12]
X4 + [(X22 + X6)⊕X≪7

14] = X ′
4 + [(X22 + X ′

6)⊕X ′≪7
14]

We describe here a fast method to resolve the first system of equations. Exactly
the same method will also apply for the second system, so we will only focus on the
first one. The internal state words X10, X16, X18, X24 and X26 are given inputs
of the system. The words X0, X ′

0, X2, X ′
2, X8 and X ′

8 are fully controlled by
the attacker. Our method directly finds a solution for the three first equations. We
will repeat this process several times until the last equation is also verified. More
precisely, if we assume the equations to be independent, we will repeat the process
232 times on average in order to get a solution for the complete system.

We now describe how to solve the three first equations of the system. First,
we pick random values for X2 and X ′

2, such that X2
= X ′
2. We can rewrite the

second and third equations respectively, so we directly get

X ′
8 −X8 = A (1)

X ′
0 −X0 = B (2)

Cryptanalysis of CubeHash 359

where A and B are constant terms. We then set Y = X8 + X24 and Y ′ =
X ′

8 + X24, so we can rewrite the first equation as:

Y ⊕X≪7
0 = Y ′ ⊕X ′≪7

0 . (3)

Finally, we combine the three equations together:

Y ⊕ (A + Y) = X≪7
0 ⊕ (B + X0)≪7. (4)

We need a trick to solve this equation quickly: one can check that x⊕(x+k) is
always equal to 0xffffffff when x = k/2 and when the least significant bit of
k is equal to one. Thus, we wait for A and B values so that their least significant
bit is equal to one and we set Y = A/2 and X0 = B

≪25
/2. The two sides of

the equations are therefore equal to 0xffffffff and we can finally deduce a
solution that verifies the three first equations of our system.

3.2 A Collision for CubeHash-1/36

Using the differential paths Δ1 and Δ2 and the solving technique previously
explained, we computed within a few minutes on an average PC (Processor Intel
Core 2 Duo 2.0 GHz, with 2 GB of RAM) a collision for CubeHash-1/36 with
512 bits of output.

The collision attack uses four message inputs. The first message block is used
without any difference in order to randomize the values of the internal state
just after the initialisation (randomization of the equations systems). Then, the
second message pair verifies the differential path Δ1 and the third message pair
the differential path Δ2. Finally, the fourth and last message pair will erase
the remaining differences (0xa0800000) in the internal state, and thus leads to
an internal collision. Obviously, by adding some other message words without
difference, one will maintain colliding pairs of internal states until the end of the
computation of the hash function.

The values of the message words to insert and the final hash value are given
in Table 4 in the Appendix A.

3.3 Extensions to Other Versions

One can easily extend this practical attack against CubeHash-1/36 to theoretical
attacks against stronger versions. First, it is obvious that when b ≥ 36, our
attack remains valid. When r = 2, one has to verify equations from system 1 in
the first internal permutation call, and equations from system 2 in the second
internal permutation call of the iteration function.

We managed to generate input blocks verifying directly five equations among
the eight of the two systems. Thus, one can assume that the three other equations
will be verified with probability 2−32×3. Therefore, one can find a collision for
CubeHash-2/36 with a computation complexity of about 296 function calls.

360 E. Brier and T. Peyrin

4 Linear Differential Paths

In this section, we will try to find interesting differential paths by using a F2-
linear version of the scheme. More precisely, in the internal permutation F , we
replace all the modular additions by bitwise XOR operations on 32-bit words.
Overall, this simplification makes sense since non-linear components are quite
few in CubeHash. This technique is very frequently used in order to study hash
functions, for example in the case of SHA-1 [4]. Dai [6,7] also used this simplifi-
cation to compute a collision for CubeHash-2/12 and CubeHash-1/45.

4.1 The Differential Path

In this section, we are interested in attacking CubeHash-2/4. Said in other words,
after a 2-round iteration, the attacker hash complete control over X0 (and only
X0). The linear differential path we use is very simple, almost the simplest
someone can think of. We first insert a one-bit perturbation in X0 and apply
the first 2-round iteration. We then erase all the differences present in X0 and
we apply the second 2-round iteration. Finally, we get a collision on the internal
state by erasing a very last difference in X0.

More precisely, we first insert a message pair with a one-bit difference located
at bit position y. Then, the next message pair will correct three differences
located at bit position y + 4, y + 14 and y + 22 (the positions are to be taken
modulo 32). Finally, the last message pair will correct the last difference located
at bit position y + 4. The differential path is described in Figure 3.

In the linear model, a collision can be computed directly. However, as any dif-
ferential path, for the real function there is a certain probability of success that
a random message pairs fulfilling the input differential constraints will also fulfill
the output differential constraints. This probability can often be translated to a
set of sufficient conditions to verify. In our case, the conditions directly depict the
expected linear behavior of the scheme. The real CubeHashuses two modular addi-
tions in each call of the internal permutation F , which are non-linear components
because of the carry potentially created.Thus, two interesting situations can occur:

1. a perturbation at a certain bit position is added to another bit containing
no difference (move).

2. a perturbation at a certain bit position is added to another bit containing a
difference (correction).

Each such situation will lead to exactly one sufficient condition because we want
the modular addition carry to be unaffected by the perturbation. Said in other
words, when we add together two word pairs A, B and A′, B′, the number of con-
ditions will be the hamming weight of (A⊕A′)∨ (B⊕B′), where ∨ stands for the
bitwise or operation. When all the conditions from situations 1 and 2 are verified
through the entire differential path, we are assured that the scheme behaved com-
pletely linearly regarding the bit perturbations and we can finally get our collision.

In total, the differential path presented possesses 46 sufficient bit conditions
(24 for the first iteration and 22 for the second). This means that by testing

Cryptanalysis of CubeHash 361

it. round step active bits nb. cond.

1 1 M M0
1

1 1 X0
0

1 1 1 X0
0 , X0

16 1

1 1 2 X7
0 , X0

16

1 1 3 X7
8 , X0

16

1 1 4 X0
0 , X7

8 , X0
16

1 1 5 X0
0 , X7

8 , X0
18

1 1 6 X0
0 , X7

8 , X0
16, X0

18, X7
24 3

1 1 7 X11
0 , X18

8 , X0
16, X0

18, X7
24

1 1 8 X11
4 , X18

12 , X0
16, X0

18, X7
24

1 1 9 X0
0, X0

2 , X11
4 , X7

8 , X18
12 , X0

16, X0
18, X7

24

1 1 10 X0
0, X0

2 , X11
4 , X7

8 , X18
12 , X0

17, X0
19, X7

25

1 2 1 X0
0, X0

2, X11
4 , X7

8 , X18
12 , X0

16, X0
17, X0

18, X0
19, X11

20 , X7
24, X7

25, X18
28 8

1 2 2 X7
0 , X7

2, X18
4 , X14

8 , X25
12 , X0

16, X0
17, X0

18, X0
19, X11

20 , X7
24, X7

25, X18
28

1 2 3 X14
0 , X25

4 , X7
8, X7

10, X18
12 , X0

16, X0
17, X0

18, X0
19, X11

20 , X7
24, X7

25, X18
28

1 2 4 X0
0, X14

0 , X0
1 , X0

2 , X0
3 , X11

4 , X25
4 , X7

9 , X7
10, X0

16, X0
17, X0

18, X0
19, X11

20 , X7
24, X7

25, X18
28

1 2 5 X0
0, X14

0 , X0
1 , X0

2 , X0
3 , X11

4 , X25
4 , X7

9 , X7
10, X0

16, X0
17, X0

18, X0
19, X11

22 , X7
26, X7

27, X18
30

1 2 6 X0
0 , X14

0 , X0
1 , X0

2 , X0
3 , X11

4 , X25
4 , X7

9 , X7
10, X14

16 , X11
20 , X25

20 , X11
22 , X7

25, X7
27, X18

30 12

1 2 7 X11
0 , X25

0 , X11
1 , X11

2 , X11
3 , X22

4 , X4
4, X18

9 , X18
10 , X14

16 , X11
20 , X25

20 , X11
22 , X7

25, X7
27, X18

30

1 2 8 X4
0 , X22

0 , X11
4 , X25

4 , X11
5 , X11

6 , X11
7 , X18

13 , X18
14 , X14

16 , X11
20 , X25

20 , X11
22 , X7

25, X7
27, X18

30

1 2 9 X4
0 , X14

0 , X22
0 , X11

5 , X11
7 , X7

9 , X7
11, X18

13 , X14
16 , X11

20 , X25
20 , X11

22 , X7
25, X7

27, X18
30

1 2 10 X4
0 , X14

0 , X22
0 , X11

5 , X11
7 , X7

9 , X7
11, X18

13 , X14
17 , X11

21 , X25
21 , X11

23 , X7
24, X7

26, X18
31

2 1 M M4
2 , M14

2 , M22
2

2 1 X11
5 , X11

7 , X7
9 , X7

11, X18
13 , X14

17 , X11
21 , X25

21 , X11
23 , X7

24, X7
26, X18

31

2 1 1 X11
5 , X11

7 , X7
9 , X7

11, X18
13 , X14

17 , X25
21 , X7

24, X7
25, X7

26, X7
27, X18

29 , X18
31 10

2 1 2 X18
5 , X18

7 , X14
9 , X14

11 , X25
13 , X14

17 , X25
21 , X7

24, X7
25, X7

26, X7
27, X18

29 , X18
31

2 1 3 X14
1 , X14

3 , X25
5 , X18

13 , X18
15 , X14

17 , X25
21 , X7

24, X7
25, X7

26, X7
27, X18

29 , X18
31

2 1 4 X14
3 , X7

8 , X7
9 , X7

10, X7
11, X14

17 , X25
21 , X7

24, X7
25, X7

26, X7
27, X18

29 , X18
31

2 1 5 X14
3 , X7

8 , X7
9 , X7

10, X7
11, X14

19 , X25
23 , X7

24, X7
25, X7

26, X7
27, X18

29 , X18
31

2 1 6 X14
3 , X7

8 , X7
9 , X7

10, X7
11, X25

23 , X18
29 , X18

31 8

2 1 7 X25
3 , X18

8 , X18
9 , X18

10 , X18
11 , X25

23 , X18
29 , X18

31

2 1 8 X25
7 , X18

12 , X18
13 , X18

14 , X18
15 , X25

23 , X18
29 , X18

31

2 1 9 X18
12 , X18

14 , X25
23 , X18

29 , X18
31

2 1 10 X18
12 , X18

14 , X25
22 , X18

28 , X18
30

2 2 1 X18
12 , X18

14 , X25
22 3

2 2 2 X25
12 , X25

14 , X25
22

2 2 3 X25
4 , X25

6 , X25
22

2 2 4 X25
4 , X25

22

2 2 5 X25
4 , X25

20

2 2 6 X25
4 1

2 2 7 X4
4

2 2 8 X4
0

2 2 9 X4
0

2 2 10 X4
0

3 1 M M4
3

Fig. 3. Linear differential path for CubeHash-2/4 and CubeHash-2/3. The three first
columns give in order the iteration number, the round number and the step number in
the internal permutation. A step denoted M represents the active bits of the message
block inserted. The fourth column provides the active bits, where Xj

i denotes the j-
th bit of the internal word Xi. Finally, the number of conditions is given in the last
column.

362 E. Brier and T. Peyrin

about 246 different messages pairs, one has a rather good chance to find a valid
candidate. However, this can be improved by carefully choosing the bit position
on which the initial difference is inserted. Indeed, some conditions can be placed
on bit position 31 and will therefore be always verified with probability 1. We
give in Table 1 the number of bit conditions of the differential path from Figure 3,
according to the bit position of the initial difference inserted.

Table 1. Number of conditions for the differential path from Figure 3, according to
the bit position of the first difference inserted

bit position 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

nb. conditions 46 46 46 46 46 46 41 46 46 46 46 46 46 38 46 46

bit position 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

nb. conditions 46 43 46 46 41 46 46 46 32 46 46 46 46 46 46 35

Note also that valid candidate search speed-ups are very likely to exist. Indeed,
the complexity cost here only takes in account the probability of the differential
path. However, in hash functions cryptanalysis, the use of the available degrees
of freedom can drastically improve the overall complexity of the attack. For
example, it is easy to force some bits of the first inserted message word in order
to validate with probability 1 the very first condition of the differential path.
Also, one can try to validate some conditions of the first iteration and some
conditions of the second iteration independently, by playing with the message
word inserted just before the second iteration.

4.2 Collision Attack for CubeHash-2/4 and CubeHash-2/3

According to Table 1, using the differential path from Figure 3 on bit position
24 provides a collision attack on CubeHash-2/4 with an overall complexity of 232

operations. An example of such a collision for the 512-bit output version of the
scheme is given here. It required a few minutes of computation on an average PC
(Processor Intel Core 2 Duo 2.0 GHz, with 2 GB of RAM). No specific search
speed-up were used which leaves room for further improvements.

This colliding pair is composed of five message inputs. The two first message
blocks are used without any difference in order to randomize the values of the
internal state just after the initialisation. Then, the third message pair inserts
the initial one-bit difference at position 24, and the fourth message pair permits
to prepare the internal state for the second part of the differential path. Finally,
the fifth and last message pair will erase the remaining difference in the first
word of the internal state, and thus leads to an internal collision.

The values of the message words to insert and the final hash value are given
in Table 5 in the Appendix B.

In the implementation of CubeHash, one can check that if 3 bytes are inserted
at each iteration, they will be xored to the 3 first least significant bytes of X0 (the

Cryptanalysis of CubeHash 363

it. round step active bits nb. cond.

1 1 M M0
1

1 1 X0
0

1 1 1-10 X0
0 , X0

2 , X11
4 , X7

8 , X18
12 , X0

17, X0
19, X7

25 4

1 2 1-10 X4
0 , X14

0 , X22
0 , X11

5 , X11
7 , X7

9 , X7
11, X18

13 , X14
17 , X11

21 , X25
21 , X11

23 , X7
24, X7

26, X18
31 20

X4
0 , X14

0 , X22
0 , X4

2 , X14
2 , X22

2 , X1
4 , X15

4 , X25
4 , X11

8

1 3 1-10 X21
8 , X29

8 , X0
12, X8

12, X18
12 , X22

12 , X18
14 , X4

17, X14
17 , X22

17 30

X4
19, X14

19 , X22
19 , X25

22 , X11
25 , X21

25 , X29
25 , X18

28 , X18
30

X4
0 , X8

0 , X12
0 , X28

0 , X1
5, X15

5 , X25
5 , X1

7 , X15
7 , X25

7 , X11
9 , X21

9 , X29
9

1 4 1-10 X11
11 , X21

11 , X29
11 , X0

13, X8
13, X22

13 , X4
17, X18

17 , X28
17 , X1

21, X7
21, X25

21 , X29
21 60

X1
23, X15

23 , X25
23 , X11

24 , X21
24 , X29

24 , X11
26 , X21

26 , X29
26 , X0

31, X8
31, X22

31

2 1 M M8
2 , M12

2 , M28
2

X4
0 , X1

5 , X15
5 , X25

5 , X1
7, X15

7 , X25
7 , X11

9 , X21
9 , X29

9 , X11
11 , X21

11

2 1 X29
11 , X0

13, X8
13, X22

13 , X4
17, X18

17 , X28
17 , X1

21, X7
21, X25

21 , X29
21 , X1

23

X15
23 , X25

23 , X11
24 , X21

24 , X29
24 , X11

26 , X21
26 , X29

26 , X0
31, X8

31, X22
31

2 1 1-10 X4
0 , X4

2 , X15
4 , X11

8 , X0
12, X8

12, X0
14, X8

14, X22
14 , X4

17, X4
19

X7
22, X15

22 , X29
22 , X11

25 , X0
28, X8

28, X22
28 , X0

30, X8
30, X22

30 56

2 2 1-10 X15
5 , X15

7 , X11
9 , X11

11 , X22
13 , X18

17 , X15
21 , X29

21 , X15
23 , X11

24 , X11
26 , X22

31 29

2 3 1-10 X22
12 , X22

14 , X29
22 , X22

28 , X22
30 18

2 4 1-10 X8
0 4

3 1 M M8
3

Fig. 4. Linear differential path for CubeHash-4/4 and CubeHash-4/3. The three first
columns give in order the iteration number, the round number and the step number in
the internal permutation. A step denoted M represents the active bits of the message
block inserted. The fourth column provides the active bits, where Xj

i denotes the j-
th bit of the internal word Xi. Finally, the number of conditions is given in the last
column. The display of this differential path has been simplified because of the big
number of active bits.

first byte of a word is considered to be the least significant one). Thus, using the
same differential path but by inserting the initial perturbation at bit position 0
gives us a collision attack against CubeHash-2/3 with only 246 operations. Indeed,
if one inserts the perturbation at bit position 0 (in the first byte of X0), the first
message correction after one iteration will occur on bit positions 4, 14 and 22
(all located in the three first bytes of X0). Finally, after another iteration, the
attacker will have to erase the difference located at bit position 4 (in the first
byte of X0) in order to get an internal collision. One can see that all the control
needed by the attacker is located in the three first bytes of X0. Thus, a collision
for CubeHash-2/3 can be found with only 246 operations.

4.3 Collision Attack for CubeHash-4/4 and CubeHash-4/3

One can use the same linearization technique to cryptanalyze CubeHash-4/4 and
CubeHash-4/3. The differential path will be a little bit more complicated than

364 E. Brier and T. Peyrin

Table 2. Number of conditions for the differential path from Figure 4, according to
the bit position of the first difference inserted

bit position 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

nb. conditions 221 221 198 218 221 221 212 221 221 195 207 221 221 207 221 221

bit position 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

nb. conditions 210 207 221 221 189 221 221 213 202 221 221 197 221 221 216 202

Table 3. Best found probability of success for linear differential paths, according to
the parameters of the hash function (r and b) and the maximum number of iterations

r b max nb. it. probability

1

64 3 23

32 5

23216 5

8 5

4 5

2 7 2221

1 15 21225

2

64 3

23232 3

16 3

8 3

4 3

2 4 2221

1 8 21225

r b max nb. it. probability

4

64 3

218932 3

16 3

8 3

4 3

2 4 2964

1 9 22614

8

64 3 2650

32 3
2830

16 3

8 3
21009

4 3

2 5
22614

1 5

the one from Figure 3 and its probability of success will also be much lower.
We give in Figure 4 the new differential path for CubeHash-4/4. The display has
been simplified because of the big number of conditions. However, since we use
the linear model, the entire set of sufficient conditions can be easily retrieved
from the input differences.

As for the previous differential path, the number of conditions depends on
the bit position of the first perturbation inserted (because the conditions on bit
position 31 are automatically verified). We give in Table 2 the number of bit
conditions of the differential path from Figure 4, according to the bit position
of the initial difference inserted.

One can directly conclude that a collision attack requiring 2189 operations
can be mounted on CubeHash-4/4 by selecting the bit position 20 for the first
perturbation inserted. Concerning CubeHash-4/3, only the bit positions 4 to 11
can be selected to insert the first perturbation, so that the control required by
the attacker only involves the three least significant bytes of the internal word

Cryptanalysis of CubeHash 365

X0. Thus, by choosing the bit position 9, one gets a collision attack against
CubeHash-4/3 with only 2195 operations.

4.4 Others Versions of CubeHash

We can apply similar techniques to cryptanalyze other versions of CubeHash. We
give in Table 3 the best possible linear differential path probabilities, according to
the parameters of the hash function considered and the maximum number of iter-
ations. One can check that for some slower versions of CubeHash the probabilities
of success of the linear differential paths are too low. However, it may be possi-
ble to use more iterations and aim to build a more complex attack composed of
the concatenation of several individual linear differential paths. Also, depending
on the amount of degrees of freedom available, one may be able to improve the
overall complexity of the attack.

5 Conclusion

In this paper, we provided two different cryptanalysis approaches that led to the
computation of a real collision for CubeHash-1/36 and CubeHash-2/4. The linear
differential paths also give a theoretical collision attack against CubeHash-2/3 in
246 operations, against CubeHash-4/4 in 2189 operations and against CubeHash-
4/3 in 2195 operations. Those complexities have to be compared to 2128 and 2256

for an ideal hash function of 256 and 512-bit output respectively.

Acknowledgments

The authors would like to thank Jean-Philippe Aumasson, Shahram Khazaei,
Willi Meier and Maŕıa Naya-Plasencia for the very interesting discussions on
CubeHash.

References

1. Aumasson, J.-P.: Collision for CubeHash2/120-512. NIST mailing list, local link
(2008)

2. Aumasson, J.-P., Meier, W., Naya-Plasencia, M., Peyrin, T.: Inside the hypercube.
Cryptology ePrint Archive, Report 2008/486 (2008)

3. Bernstein, D.J.: CubeHash specification (2.b.1). Submission to NIST (2008)
4. Chabaud, F., Joux, A.: Differential collisions in SHA-0. In: Krawczyk, H. (ed.)

CRYPTO 1998. LNCS, vol. 1462, pp. 56–71. Springer, Heidelberg (1998)
5. Cramer, R. (ed.): EUROCRYPT 2005. LNCS, vol. 3494. Springer, Heidelberg

(2005)
6. Dai, W.: Collisions for CubeHash1/45 and CubeHash2/89 (2008)
7. Dai, W.: Collision for CubeHash2/12 (2009)
8. Knudsen, L.R.: Truncated and higher order differentials. In: Preneel, B. (ed.) FSE

1994. LNCS, vol. 1008, pp. 196–211. Springer, Heidelberg (1995)

366 E. Brier and T. Peyrin

9. National Institute of Standards and Technology. Cryptographic Hash Algorithm
Competition

10. National Institute of Standards and Technology. FIPS 180-2: Secure Hash Standard
(August 2002)

11. Peyrin, T.: Cryptanalysis of Grindahl. In: Kurosawa, K. (ed.) ASIACRYPT 2007.
LNCS, vol. 4833, pp. 551–567. Springer, Heidelberg (2007)

12. Rivest, R.L.: RFC 1321: The MD5 Message-Digest Algorithm (April 1992)
13. Shoup, V. (ed.): CRYPTO 2005. LNCS, vol. 3621. Springer, Heidelberg (2005)
14. Wang, X., Lai, X., Feng, D., Chen, H., Yu, X.: Cryptanalysis of the hash functions

MD4 and RIPEMD. In: Cramer [5], pp. 1–18 (2005)
15. Wang, X., Yin, Y.L., Yu, H.: Finding collisions in the full SHA-1. In: Shoup [13],

pp. 17–36
16. Wang, X., Yu, H.: How to break MD5 and other hash functions. In: Cramer [5],

pp. 19–35
17. Wang, X., Yu, H., Yin, Y.L.: Efficient collision search attacks on SHA-0. In: Shoup

[13], pp. 1–16

Cryptanalysis of CubeHash 367

Appendix A: Collision for CubeHash-1/36-512

Both message instances given in Table 4 lead to the following hash output, in
hexadecimal display:

fb5e5578 c020296a 9d66df51 c49031ba

12c1eb92 eb404187 0b02e344 d2c9b335

5b1d6afa 8ac26a39 2fa35d96 c684bc3d

d6ecbd6e f71339e3 ba35bd72 841af694

Table 4. Message words to insert during four iterations in order to get a collision
for the 512-bit output version of CubeHash-1/36. The values are given in hexadecimal
notation.

Iteration 1 Iteration 2

word i Mi M ′
i Mi ⊕ M ′

i

0 9d45c73a 9d45c73a 00000000

1 f6106042 f6106042 00000000

2 7f3be941 7f3be941 00000000

3 2b58d9ed 2b58d9ed 00000000

4 b7923ded b7923ded 00000000

5 fb187e3f fb187e3f 00000000

6 fd5d2414 fd5d2414 00000000

7 e66ffb2c e66ffb2c 00000000

8 367126de 367126de 00000000

word i Mi M ′
i Mi ⊕ M ′

i

0 43f69ab4 bc09654b ffffffff

1 00000000 00000000 00000000

2 e3c37da8 1c6319ad ffa06405

3 00000000 00000000 00000000

4 58fdd79b 58fdd79b 00000000

5 b08456a3 b08456a3 00000000

6 00000000 00000000 00000000

7 765e25fb 765e25fb 00000000

8 edaea852 bddcae41 50720613

Iteration 3 Iteration 4

word i Mi M ′
i Mi ⊕ M ′

i

0 00000000 00000000 00000000

1 00000000 00000000 00000000

2 00000000 00000000 00000000

3 00000000 00000000 00000000

4 1be9de4a 1fa91472 0440ca38

5 00000000 00000000 00000000

6 8912b045 6b0ea65f e21c161a

7 00000000 00000000 00000000

8 00000000 00000000 00000000

word i Mi M ′
i Mi ⊕ M ′

i

0 00000000 7d23e83d 7d23e83d

1 00000000 00000000 00000000

2 00000000 07e4687b 07e4687b

3 00000000 00000000 00000000

4 00000000 00000000 00000000

5 00000000 00000000 00000000

6 00000000 00000000 00000000

7 00000000 00000000 00000000

8 00000000 8e6c1d83 8e6c1d83

368 E. Brier and T. Peyrin

Appendix B: Collision for CubeHash-2/4-512

Both message instances given in Table 5 lead to the following hash output, in
hexadecimal display:

220f6a8a 640870f4 2757873d 8f16bc80

0f5595fa a519aa37 2091d3f0 c1e86527

fe9fa656 de7d1cb7 b9c367b2 a06d6616

27aa321d d3fd2ec6 378d61d1 9a270371

Table 5. Message words to insert during fives iterations in order to get a collision
for the 512-bit output version of CubeHash-2/4. The values are given in hexadecimal
notation.

M M ′ M ⊕ M ′

Iteration 1 72d9dcf5 72d9dcf5 00000000

Iteration 2 b835e32f b835e32f 00000000

Iteration 3 05a4593f 04a4593f 01000000

Iteration 4 b897ebd7 a897ab97 10004040

Iteration 5 00000000 10000000 10000000

Collision Attack on Boole

Florian Mendel, Tomislav Nad, and Martin Schläffer

Institute for Applied Information Processing and Communications (IAIK)
Graz University of Technology, Inffeldgasse 16a, A-8010 Graz, Austria

Tomislav.Nad@iaik.tugraz.at

Abstract. Boole is a hash function designed by Gregory Rose and was
submitted to the NIST Hash competition. It is a stream cipher based
hash function which produces digests up to 512 bits. Different variants
exist, namely Boole16, Boole32 and Boole64 where the number refers
to word size in bits. Boole64 is considered as the official submission.
In this paper we demonstrate a collision attack with complexity 265 for
the 64-bit variant and 233 for the 32-bit variant. The amount of memory
required is negligible. Since the attack on Boole32 is practical, we present
an example for a collision.

1 Introduction

A hash functions maps an input of arbitrary finite length to an output of a fixed
length. The basic security requirements for a cryptographic hash function are:

– collision resistance – it is computationally infeasible to find two different
inputs, which hash to the same output.

– second preimage resistance – for a given input, it is computationally infea-
sible to find a second input with the same hash value.

– preimage resistance – for a given output of a hash function, it is computa-
tionally infeasible to find an input that hashes to that output.

Recently, the NIST hash function competition [1] started. In this public com-
petition to find an alternative hash function to replace the SHA-1 and SHA-2
hash functions, many new designs have been proposed. In November 2008, round
one has started and in total 51 algorithms were have been accepted. One of the
submitted hash functions is Boole designed by Gregory Rose [2]. It is a stream
cipher based design like PANAMA [3]. Boole is an expansion of the stream ci-
pher Shannon [4] but is also influenced by other cryptographic primitives. Boole
is a cryptographic primitive that can be used as a hash function, message au-
thentication code (MAC) and a synchronous stream cipher.

In this paper we will describe a method to construct a collision for the Boole
hash function. A collision occurs if two different messages result in the same hash
value. Boole maps messages of arbitrary length to a hash result of 224, 256, 384
or 512 bits. A generic collision attack for the strongest version producing a 512
bit hash values requires about 2256 hash function computations. We will show
that with our method a collision can be found with a complexity of less than 265

state update transformations and negligible amount of memory.

M. Abdalla et al. (Eds.): ACNS 2009, LNCS 5536, pp. 369–381, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

370 F. Mendel, T. Nad, and M. Schläffer

2 Description of Boole

Boole operates on W -bit words, W ∈ {16, 32, 64}. We refer to Boole16, Boole32
and Boole64 if we need to distinguish between the different word sizes. The Boole
hash function supports output lengths up to 8 ·W bits. The internal memory
consists of a 16-word register R and three word accumulators, namely x, r and l.
The register is a nonlinear feedback shift register and at the end an output filter
function is applied. Boole consist of three phases: input phase, mixing phase and
output phase. In the following we explain these phases in more detail.

2.1 Input Phase

In the input phase, the accumulators and register words are updated with the
message words mt. Each message word is used once in the input phase.

temp = f1(l(t))⊕mt

l(t+1) = temp ≪ 1

x(t+1) = x(t) ⊕mt

r(t+1) = (r(t) ⊕ temp) ≫ 1

R
(t+1)
3 = R

(t)
3 ⊕ l(t+1)

R
(t+1)
13 = R

(t)
13 ⊕ r(t+1)

(1)

Afterwards the whole message has been processed and the register is cycled:

R
(t+1)
i = R

(t)
i+1, for i = 1, · · · , 14

R
(t+1)
15 = f1(R

(t)
12 ⊕R

(t)
13)⊕ (R(t)

0 ≪ 1)

R
(t+1)
0 = R

(t)
1 ⊕ f2(R

(t+1)
2 ⊕R

(t+1)
15)

(2)

In Figure 1 we have drafted the update step of the input phase.

2.2 Mixing Phase

After the input phase, the bit length of the input data, the output length and
accumulators are mixed into the register. By length we denote the length of the
input in bits, represented as a 64-bit integer and split into W -bit words. h is
the length of the resulting hash value. The mixing phase is applied twice and is
accomplished as follows:

R0 = R0 ⊕ length

R4 = R4 ⊕ l ⊕ h

Ri = Ri ⊕ l, ∀i ∈ {7, 10, 13}
Ri = Ri ⊕ x, ∀i ∈ {5, 8, 11, 14}
Ri = Ri ⊕ r, ∀i ∈ {6, 9, 12, 15}

Collision Attack on Boole 371

r lx1 20 3 5 64 7 9 108 11 13 1412 15

1 20 3 5 64 7 9 108 11 13 1412 15

R

x r l

R

temp

≪ 1
f2

≫ 1

≪ 1
f1

f1

Fig. 1. Scheme of the update step

2.3 Output Phase

In the output phase, the content of the register and the output filter function is
used to produce the hash value. First, the register is cycled as in Equation (2)
and then, one word of the hash is computed as follows:

v = R0 ⊕R8 ⊕R12

These steps are repeated until the required output length is reached.

2.4 Boolean Functions

The two nonlinear Boolean functions f1 and f2 depend on the the word size W .
For Boole64 they are defined as follows:

t = w ⊕ 0x6996c53a

t = t⊕ ((t ≪ C) ∨ (t ≪ D))
t = t⊕ ((t ≪ B) ∨ (t ≪ E))
t = t⊕ ((t� A) ∨ (t ≪ F))

For f1(w) = t the constants {A,B,C,D,E, F} are set to {3, 20, 34, 42, 55, 60},
and for f2(w) = t the constants {A,B,C,D,E, F} are to {5, 27, 35, 46, 52, 55}.
In the case of Boole32 the Boolean functions are defined as follows:

t = t⊕ ((w ≪ A) ∨ (w ≪ B))
t = t⊕ ((t ≪ C) ∨ (t ≪ D))

For f1(w) = t the constants {A,B,C,D} are {5, 7, 19, 22} and for f2(w) = t the
constants {A,B,C,D} are {7, 22, 5, 19}. In Boole16, the Boolean functions are
defined as follows:

t = t⊕ ((w ≪ A) ∨ (w ≪ B))
t = t⊕ ((¬t ≪ C) ∨ (t ≪ D))

For f1(w) = t the constants {A,B,C,D} are {9, 13, 10, 15} and for f2(w) = t
the constants {A,B,C,D} are {3, 14, 9, 10}.

372 F. Mendel, T. Nad, and M. Schläffer

3 A Differential Attack on Boole

In this section, we first analyze the differential properties of the components of
Boole. We show that the Boolean functions f1 and f2 are not invertible and
can be used to cancel differences. Then, we show how to find a collision in the
accumulators and the register of Boole. Finally, we present a differential path
which leads to a collision in the input phase. Since there are no message words
used during the mixing and output phase, the collision in the input phase results
in a collision of the full hash function Boole as well.

3.1 Collisions in the Boolean Functions

The Boolean functions f1 and f2 are used in every update step of the accumulator
and the register of Boole. The main observation used in our attack is:

Observation 1. The Boolean functions f1 and f2 are not invertible.

Hence, we can find collisions in these functions and differences cancel out within
the functions f1 and f2. In the following, we analyze which differences can be
canceled and give the required conditions.

For Boole32 and Boole16 we get a zero output value for both f1 and f2 for the
input values 0x0 and 0xF· · ·F. For Boole64 the input of the Boolean functions is
first XORed with the constant 0x6996c53a. Therefore, f1 and f2 collide for the
values 0x6996c53a and its inverted value 0x96693ac5. The XOR difference for
all variants of Boole is 0xF· · ·F. Note that there are more input values for f1 and
f2 which collide. Table 1 shows all colliding input pairs with all-one difference for
Boole32. Note that there are also more colliding input differences for the Boolean
functions. However, in our attack we only use the all-one difference since this
difference is rotation invariant and we can use the same difference in every step
of Boole.

Table 1. Colliding input values for f1 and f2 with all-one difference for Boole32

w fk(w) fk(w ⊕ 0xFFFFFFFF)

0x0 0x0 0x0

0x55555555 0x0 0x0

0xaaaaaaaa 0x0 0x0

0xFFFFFFFF 0x0 0x0

3.2 Difference Propagation in the Accumulator

In this section we show, how differences propagate and can be canceled in the
accumulator. Whenever we injecting a message difference, we will first get a
difference in all three accumulators x, r and l and the register words R2 and

Collision Attack on Boole 373

R12. Remember that we can cancel the difference 0xF· · ·F in the function f1 of
the accumulator. Hence, the shortest differential path which leads to a collision
in the accumulator is by injecting the same message difference 0xF· · ·F in two
subsequent steps.

However, in this case the resulting differential path has a higher attack com-
plexity. Therefore, we cancel the differences in the accumulator by injecting a
second message difference after 3 steps. In this case, five differences are injected
into the register.

The differences in the accumulators x and r are canceled by injecting the
same difference in a subsequent message word. Whenever we inject the all-one
difference using a message word, the resulting difference in the accumulator l is
canceled using the function f1 in the next step. According to Section 3.1, the
difference 0xF· · ·F cancels if the input value of f1 (lt) is 0x0 for Boole32 and
Boole16 or 0x6996c53a for Boole64. If we inject the message difference 0xF· · ·F
in step t, the following equation needs to hold for Boole64:

l(t+1) = f1(l(t))⊕mt = 0x6996c53a (3)

Hence, the difference 0xF· · ·F in mt will cancel in the following function f1 if the
value of mt equals:

mt = f1(l(t))⊕ 0x6996c53a (4)

3.3 The Differential Path

The full differential path, which leads to a collision in Boole is given in Table 2.
Note that we only work with the all-one difference 0xF· · ·F in the whole path.
This has a number of advantages. First, we can and do always cancel the differ-
ence in the functions f1 and f2. Second, whenever two differences are XORed,
the resulting difference is zero. This is especially useful in the XOR prior to the
functions f1 and f2, since we do not need any condition in these cases.

We inject the first message difference in message word m3 since we need the
previous message words to fulfill the conditions on the following functions f1

and f2 (see Section 5). We inject two differences into the register and cancel
the differences in the accumulator using the message word m6. Afterwards we
have five differences in the register. By canceling input differences for the Boolean
functions, the five differences are moving through the register and after 16 cycles
they are again at the same positions. By injecting the same differences in the
message words Δm19 and Δm22, the five differences in the register are canceled.
Hence, we get a collision in the register, accumulators and the full hash function
Boole after 23 update steps.

Figure 3 of Appendix A shows the beginning (step 3-7) and Figure 4 shows
the end of the differential path (FF denotes the all-one difference). From these
figures it is easy to see in which step we need to cancel differences in f1 and f2 by
defining conditions on the input. The last column of Table 2 lists all occurring
non-zero input differences in f1 and f2 of the register.

374 F. Mendel, T. Nad, and M. Schläffer

T
a
b
le

2
.
D

iff
er

en
ce

p
ro

p
a
g
a
ti
o
n
.
I

a
n
d

II
a
re

m
o
d
ifi

ca
ti
o
n
s

to
ca

n
ce

l
a

d
iff

er
en

ce
in

f 1
.
II

I
ca

n
ce

ls
a

d
iff

er
en

ce
in

f 2
.

t
R

(t
)

0
R

(t
)

1
R

(t
)

2
R

(t
)

3
R

(t
)

4
R

(t
)

5
R

(t
)

6
R

(t
)

7
R

(t
)

8
R

(t
)

9
R

(t
)

1
0

R
(t

)
1
1

R
(t

)
1
2

R
(t

)
1
3

R
(t

)
1
4

R
(t

)
1
5

x
(t

)
r(

t)
l(

t)
m

t
m

.m
.
ty

p
e

0 1 2 3
Δ

m
3

I,
II

I
4

F
F

F
F

F
F

F
F

F
F

5
F
F

F
F

F
F

F
F

F
F

6
F
F

F
F

F
F

F
F

F
F

F
F

Δ
m

6
I

7
F
F

F
F

F
F

F
F

F
F

-
-

F
F

8
F
F

F
F

F
F

F
F

F
F

9
F
F

F
F

F
F

F
F

F
F

II
,I
II

1
0

F
F

F
F

F
F

F
F

F
F

II
1
1

F
F

F
F

F
F

F
F

F
F

1
2

F
F

F
F

F
F

F
F

F
F

II
1
3

F
F

F
F

F
F

F
F

F
F

II
,I
II

1
4

F
F

F
F

F
F

F
F

F
F

II
I

1
5

F
F

F
F

F
F

F
F

F
F

II
I

1
6

F
F

F
F

F
F

F
F

F
F

II
I

1
7

F
F

F
F

F
F

F
F

F
F

II
I

1
8

F
F

F
F

F
F

F
F

F
F

II
I

1
9

F
F

F
F

F
F

F
F

F
F

Δ
m

1
9

2
0

-
F
F

-
F
F

F
F

F
F

F
F

F
F

2
1

F
F

-
F
F

F
F

F
F

2
2

F
F

-
F
F

F
F

Δ
m

2
2

2
3

-
-

-
F
F

2
4

Collision Attack on Boole 375

4 Message Modification

In the this section, we explain how to modify the message words to get a zero
output difference in Boole. Message modification was introduced by Wang et
al. in [5]. The basic idea of message modification is to use the degrees of freedom
one has on the choice of the message words to fulfill conditions on the state
variables.

In our attack we distinguish between three different types of message modi-
fication, depending on how the conditions for the inputs f1 and f2 occur. Note
that it is more difficult to fulfill the conditions, if they occur for both Boolean
functions in the same step or if a message difference is introduced in the same
step.

4.1 Type I Message Modification

This type covers the situation where a non-zero input difference for f1 occurs and
a message difference is injected in the same step. In that case, we have to adept
a previous message word to get a zero output difference. Figure 2 shows how
the previous message word influences the input of f1 and we get the following
message modification equations:

x = ((mt−1 ⊕ f1(l(t−1))⊕ r(t−1)) ≫ 1⊕ f1(l(t))⊕mt) ≫ 1⊕R
(t)
13

y = (mt−1 ⊕ f1(l(t−1))⊕ r(t−1)) ≫ 1⊕R
(t−1)
13

(5)

1 20 3 5 64 7 9 108 11 13 1412 15

r lx1 20 3 5 64 7 9 108 11 13 1412 15

R

x r l

R

R

≪ 1
f2

≫ 1

≪ 1
f1

f1

≪ 1
f2

≫ 1

≪ 1
f1

f1

temp

temp
δfδx

δy

mt−1

mt

Fig. 2. Modification path for a collision in f1

376 F. Mendel, T. Nad, and M. Schläffer

Hence, we have to find a message word mt−1 such that following equation
holds:

x⊕ y = c,

where c is one of the values mentioned in Section 3.1. Instead of computing the
message word itself, we compute the difference which is needed to change the
current message word:

mnew
t−1 = δmt−1 ⊕mt−1

Then, equations (5) changes to

δx = δmt−1 ≫ 2
δy = δmt−1 ≫ 1.

Note that we ignore f1(l(t))⊕mt, since it has always the same value, independent
of the previous message words (see Section 3.2). We can then set up the following
equation which expresses the needed difference for the input of f1:

δf = δx⊕ δy = δmt−1 ≫ 2⊕ δmt−1 ≫ 1 (6)

For the value c = 0, δf is given by the following equation:

δf = R
(t+1)
12 ⊕ ((r(t) ≫ 1)⊕R

(t)
13) (7)

Equation (6) defines a linear system of equations and mt−1,j denotes the jth bit
of mt−1:

δmt−1,i+1 = δmt−1,i + δfi (8)

for i = 0, · · ·W − 1. To solve this system, we first choose a random value for
δmt−1,0. Then, we compute the remaining bits. Afterwards we check if the solu-
tion is correct by comparing

δmt−1,0 = δmt−1,W−1 + δfW−1

to the randomly chosen value. A solution exists with probability 2−1. If the
solution is not correct we can choose a new message word mt−1.

4.2 Type II Message Modification

The second case is much simpler and occurs if we have an input difference for f1

in the register but we do not inject a message difference in the same step. Hence,
we can achieve the needed input values for the Boolean function by modifying
the message word in the same step t. The message is then computed as follows:

mt = (R(t)
12 ⊕R

(t)
13) ≪ 1⊕ r(t) ⊕ f1(l(t))

m′
t = mt

By this modification we get a zero output difference for f1 with probability 1.

Collision Attack on Boole 377

4.3 Type III Message Modification

For the case where a non-zero input difference for f2 in step t occurs, we simply
achieve a zero output difference by exhaustive search over all values of mt or
a previous message word, if in the same step also an other type of message
modification has to be done.

5 The Collision Attack on Boole

In this section, all required steps to construct a collision for the Boole hash
function, together with their complexities, are given.

1. The message words m0,m1 and m2 are set to random values.
2. We inject a difference for m3 and get a non-zero input difference for f1 and

f2. We use type I message modification for f1 and type III for f2. Messages
m2 and m0 are modified. The complexity of this step is 2W+1−d update
steps, where 2d denotes the number of colliding input pairs for f2 with all-
one difference (d = 2 for Boole32).

3. Next we inject a difference in m6 and get a condition for f1. We solve this
condition by type I modification of m5. The complexity is about 21.

4. In step 9 we get again a non-zero input difference for f2. A zero output
difference is achieved by exhaustive search over all values of m8. Additionally,
a condition for f1 is given which is solved by modifying m9 according to type
II message modification. The complexity of this step is 2W−d.

5. In step 10 we get a non-zero input difference for f1. We create a collision for
f1 by modifying m10 according to type II.

6. We do the same in step 12.
7. In step 13 we have conditions for f1 and f2. We do message modification

of type II and III. For a zero output difference for f2, m11 is used for the
exhaustive search since m12 and m13 are already fixed. For each new value
of m11, m12 and m13 are recomputed. The complexity is again 2W−d.

8. In step 14 we do an type II message modification of m14 to get a zero output
difference for f2. The same is done for step 15 and m15, step 16 and m16, step
17 and m17 and for step 18 and m18. Each modification has a complexity of
2W−d.

9. Finally, differences in m19 and m22 are injected which cancel all remaining
differences.

The result is a collision in the register R and the accumulators x, r and l after
the 23 step updates. Since all exhaustive searches are independent from each
other, the overall attack complexity is given by 8 ·2W−d = 2W+3−d. For Boole64
this gives 267−d and we assume d to be at least 2. For Boole32 d is equal to two
and therefore, the complexity is 233 update steps.

378 F. Mendel, T. Nad, and M. Schläffer

5.1 Example Collision for Boole32

An example of two colliding message pairs for Boole32 is given in Table 3. The
common hash value for both messages is

3f71dd7bd86ac4731bc1567791d6fc8479c411530e3c8230d97cbca36c19e01f.

Table 3. Two colliding messages for Boole32

m a0bc0dbe a1e5e09e bcb01824 3403415f 0b177f21 7b31b82d f5db2a23 a866bb7c

004ebc0f e11adc45 55b36c86 f59ed7ba d7eb4405 c3265558 556eaf94 980d9839

596fd2d9 d55ecff1 5df3155c 10dc14fa 22672d75 87fbd016 af0c15b8 4719bfdd

m′ a0bc0dbe a1e5e09e bcb01824 cbfcbea0 0b177f21 7b31b82d 0a24d5dc a866bb7c

004ebc0f e11adc45 55b36c86 f59ed7ba d7eb4405 c3265558 556eaf94 980d9839

596fd2d9 d55ecff1 5df3155c ef23eb05 22672d75 87fbd016 50f3ea47 4719bfdd

6 Conclusions

We presented a method to construct a collision for the Boole hash function.
Boole was submitted to the NIST Hash competition, where the goal is to find
a new secure hash algorithm (SHA-3). Boole is a stream cipher based design
similar to PANAMA. However, we have shown in this paper, that Boole is not
collision resistant. We are able to construct a collision in the internal register
during the input phase. Since in the mixing and output phase no message inputs
are used, this results in a collision for the whole hash function. In our attack we
inject four message differences and have to modify a few messages words and
after 23 steps the messages collide.

The main observation used in the attack is that the Boolean functions f1

and f2 are not invertible and we can construct collisions in these functions. The
collision attack has a complexity of about 2W+3−d, where W refers to the word
size and 2d the number of different colliding pairs for the Boolean functions f1

and f2. We provide an example of a colliding message pair for Boole32, since the
attack complexity for this variant is about 233 update steps and thus, feasible
in practice.

Acknowledgements

The authors wish to thank Vincent Rijmen and the anonymous referees for useful
comments and discussions. The work in this paper has been supported in part
by the European Commission under contract ICT-2007-216646 (ECRYPT II)
and by the Austrian Science Fund (FWF), project P19863.

Collision Attack on Boole 379

References

1. National Institute of Standards and Technology: Announcing Request for Candidate
Algorithm Nominations for a New Cryptographic Hash Algorithm (SHA-3) Family.
Federal Register Notice (November 2007), http://csrc.nist.gov

2. Rose, G.G.: Design and primitive specification for boole. Submission to NIST (2008),
http://seer-grog.net/BoolePaper.pdf

3. Daemen, J., Clapp, C.S.K.: Fast hashing and stream encryption with panama. In:
Vaudenay, S. (ed.) FSE 1998. LNCS, vol. 1372, pp. 60–74. Springer, Heidelberg
(1998)

4. Hawkes, P., McDonald, C., Paddon, M., Rose, G., de Vries, M.W.: Design and
primitive specification for shannon. IACR EPrint Archive (2007),
http://eprint.iacr.org/2007/044

5. Wang, X., Yu, H.: How to break md5 and other hash functions. In: Cramer, R. (ed.)
EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg (2005)

A Differential Path for Boole

On the following pages, we show the beginning and the end of the differential
path, which leads to a collision in the hash function Boole.

http://csrc.nist.gov
http://seer-grog.net/BoolePaper.pdf
http://eprint.iacr.org/2007/044

380 F. Mendel, T. Nad, and M. Schläffer

r lx1 20 3 5 64 7 9 108 11 13 1412 15

FFFF FF FF

FFFFFF FFFF

FFFFFFFF

FF

FF

FFFF

FF FF FFFF FF

FF

FF

FF FF FFFF FF

≪ 1≫ 1

≪ 1
f1

f1

temp

m3

f2

≪ 1
f2

≫ 1

≪ 1
f1

f1

temp

≪ 1
f2

≫ 1

≪ 1
f1

f1

temp

m4

m5

R2

R3

R4

R5

≪ 1≫ 1

≪ 1
f1

f1

temp

f2

R7

≪ 1≫ 1

≪ 1
f1

f1

temp

f2

R6

m6

m7

Fig. 3. Differential path for step 3 to 9

Collision Attack on Boole 381

r lx1 20 3 5 64 7 9 108 11 13 1412 15

FF FF

FFFF

FFFF

FF

FF

FF FFFFFFFF

FF

FF

FF FF FF

FFFF

FF

≪ 1≫ 1

≪ 1
f1

f1

temp

m19

≪ 1
f2

≫ 1

≪ 1
f1

f1

temp

≪ 1
f2

≫ 1

≪ 1
f1

f1

temp

m20

R18

R19

R20

R21

≪ 1≫ 1

f1

temp

R23

f2

≪ 1≫ 1

f1

temp

R22

≪ 1

f1

f2

≪ 1

f1

f2

m21

m23

m22

Fig. 4. Differential path for step 19 to 23

Integrity Protection for Revision Control

Christian Cachin1 and Martin Geisler2

1 IBM Research, Zurich Research Laboratory, Switzerland
cca@zurich.ibm.com

2 Department of Computer Science, University of Aarhus, Denmark
mg@cs.au.dk

Abstract. Users of online-collaboration tools and network storage ser-
vices place considerable trust in their providers. This paper presents a
novel approach for protecting data integrity in revision control systems
hosted by an untrusted provider. It guarantees atomic read and write
operations on the shared data when the service is correct and preserves
fork-linearizability when the service is faulty. A prototype has been im-
plemented on top of the Subversion revision control system; benchmarks
show that the approach is practical.

Keywords: Hash trees, memory checking, fork linearizability, storage
security, applied cryptography.

1 Introduction

Nowadays people from all continents and all time zones collaborate together in
global companies and other organizations, formal or not. Prominent examples
are open-source development projects, such as the GNU/Linux operating system.
For exchanging documents and storing the output of their work, they typically
rely on a remote provider that hosts a shared storage service. An important
class of such storage services are revision control systems (RCS) that facilitate
collaboration on a set of documents that belong together and exist in multiple
versions.

Although the collaborators trust the storage provider to preserve their doc-
uments, there are good reasons to verify that the provider indeed behaves cor-
rectly. For example, there are reported cases of break-ins to popular open-source
repositories, where security-critical operating system code may have been altered
undetectedly [7]. In cooperations that span multiple organizations, the storage
provider often is a third party with little interest in the resulting work. Gener-
ally, verification reduces trust in the storage provider. To protect against faulty
or corrupted storage providers, cryptographic protection methods are needed.

In this paper, we address cryptographic integrity protection for revision control
systems. They represent the most important kind of multi-user storage and collab-
oration tools today, together with Wikis. We assume that clients are isolated and
communicate directly with each other only under special circumstances; in fact,
many clients may not even know each other. Our goal is to obtain a strong guar-
antee that a potentially faulty service provider has not altered the shared data.

M. Abdalla et al. (Eds.): ACNS 2009, LNCS 5536, pp. 382–399, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Integrity Protection for Revision Control 383

The clients may use public-key signatures to authenticate their operations;
this ensures that no unauthorized party can forge data in the repository. But
in our model, replay attacks by a malicious storage server cannot be prevented,
i.e., the server may return an outdated value to a reader, omitting a more recent
update by another client. SUNDR [11] was the first storage system to address
this problem by providing every client with a fork-linearizable view of the shared
data. This notion ensures that all operations that a client does see are observed
in the agreed linearization order, and if the server causes the views of two clients
to differ in a single operation, they may never again see each others operations.
This makes even subtle changes to the stored data easily detectable.

In this work, we describe the design and implementation of a consistent re-
vision control system that preserves fork-linearizability. It relies on the fork-
linearizable storage protocol of Cachin et al. [5] that reduces the communication
overhead by an order of magnitude compared to the protocol of SUNDR. Our
implementation extends the popular revision control system Subversion in a
modular way.

The challenge in our work lies in the details of the integration of the fork-
linearizable storage protocol with a revision control system. First, the abstract
storage protocol uses only simple read and write operations on a file, whereas the
revision control system implements transactions that usually read and update
many files at once. Second, our goal is to be transparent to the server side of
the underlying revision control system; therefore, we still rely on it to serialize
concurrent updates. The implementation of our consistent revision control sys-
tem merely extends this serialization order with the cryptographic consistency
guarantees. Finally, the cryptographic operations must not be overly expensive;
our hash-tree implementation exploits caching of the tree nodes and maintains
them in the Subversion repository itself. This adds only little extra storage on
top of the unchecked repository and requires few more operations.

1.1 Related Work

Protecting the integrity of stored data is an important question with a long
history. But good solutions are needed today more than ever before [2], because
personal and institutional data is stored and archived electronically. We describe
here only a selection of the literature that uses the same model as our system, i.e.,
a remote untrusted bulk storage provider that offers read and write operations,
accessed by one or more isolated clients with a small trusted memory.

Blum et al. [3] formalize the problem of memory checking and present the clas-
sical protection scheme based on hash trees [15]. With a memory consisting of n
items and with random-access read and write operations to the memory, hash trees
incur an overhead of O(log n) cryptographic operations. Several storage-system
prototypes protect data integrity using hash trees; TDB [12] and SiRiUS [8] are
two prominent examples. A similar approach has been proposed for protecting
a CPU equipped with a trusted cache against unauthorized modifications to the
main memory [6]. For database systems accessed through a query interface, Myk-
letun et al. [16] analyze the cost of integrity protection with cryptographic

384 C. Cachin and M. Geisler

signatures that can be aggregated to reduce the space overhead. The recent work
of Papamanthou et al. [17] shows how an array of data items can be authenticated
with constant overhead for reading and sub-linear overhead for writing.

All systems mentioned so far consider either only one client or construct
an abstraction of the trusted memory between clients (e.g., with digital signa-
tures). The SUNDR system [11] is the only one protecting integrity for storage
space shared by multiple clients that do not communicate among themselves.
SUNDR guarantees linearizability when the storage service is correct and fork-
linearizability when the service is faulty.

In distributed revision control, the two popular systems Git (http://git.
or.cz/) and Mercurial (http://www.selenic.com/mercurial/) both employ
hashes for identifying revisions. Without digital signatures, a corrupted server
can trivially present modified changesets to a client (a changeset is the unit
of an update between two revisions). The clients will no longer agree on the
hashes identifying the revisions, but the server can keep passing content back and
forth between the clients. Even if every client would sign all its updates, replay
attacks would still be possible despite the use of hashes. Distributed revision
control systems explicitly allow offline commits, and so the server can withhold
changesets and claim that it has not seen them yet.

In practice, many open-source projects also publish digests or even crypto-
graphic signatures on every release of their code. But since the cryptographic
operations for authentication and verification are not transparently integrated
with the storage mechanism, they require some manual intervention; hence, this
method is not suitable for everyday collaboration.

1.2 Overview of the Paper

The remainder of the paper is organized as follows. Section 2 presents our sys-
tem model and the design for our consistent revision control system. Section 3
describes our implementation. We evaluated our prototype system and present
the results in Section 4. Section 5 discusses some limitations of our system and
presents an outlook.

2 Design

This section presents the design of our consistent revision control system. In Sec-
tion 2.1, we first describe the assumptions used by our system and the properties
that it guarantees. We then introduce our abstract consistent storage service in
Section 2.2, which provides a fork-linearizable storage space for small values, and
review those properties of revision control systems that are relevant for our work
in Section 2.3. In Section 2.4, we explain the design of the consistent revision
control system.

2.1 Model

The system consists of an a priori unknown number of clients and a storage server.
The server provides an abstraction of consistent shared storage to the clients, who

http://git.or.cz/
http://git.or.cz/
http://www.selenic.com/mercurial/

Integrity Protection for Revision Control 385

access it using operations to read and write data, and with operations to control
different revisions of the data. We assume that all clients are correct and follow
the protocol. The server may be faulty or corrupted and deviate from the protocol
in arbitrary ways, but not break any cryptographic primitives.

The clients never communicate with each other directly, they communicate
only via the server. This model is convenient and realistic because the clients are
not required to know each other, the network topology may prevent direct com-
munication between them, and they can operate independently of each other.
Revision control systems enable a convenient form of computer-supported co-
operative work, because the collaborators can contribute at different times and
from different locations.

We assume that each client is identified by a public key/private key pair,
signed by a trusted certification authority (CA). Every client trusts one or more
CAs, whose root keys it stores in a local directory in the form of self-signed X.509
certificates. Clients identify each other only by their public key; more precisely,
clients accept every public key as the identity of another client when the key
is accompanied by a certificate from a trusted CA. The system distributes the
keys among clients as needed; a client only needs the trusted CA keys before it
starts to interact with the storage service. Representing client identities by keys
simplifies key distribution considerably [13].

Every client maintains a small trusted memory, whose size is independent
of the size of the shared storage space. In order to prevent a corrupted server
from introducing unauthorized modifications to the shared data, clients sign all
their write operations and verify the integrity of the data they read using digital
signatures. But since the clients do not communicate with each other, we cannot
prevent that the server completes a write operation of one client, and still returns
stale data to another client.

The notion of fork-linearizability provides the next-best notion of consistency
in this model [14,5]. It ensures that all operations in the view of every client are
legal in the sense that data returned by a read operation has been written by
the indicated client, and that when the server causes the views of two clients to
differ, even in a single operation only, then these clients may not see any further
operation of each other afterwards.

Our goal is to implement a storage service that provides read and write oper-
ations, which execute atomically and according to their specification whenever
the server is correct; when the server is faulty, the storage service still provides
fork-linearizability. We refer to the work of Cachin et al. [5] for a formal notion
that captures this requirement under the name of a fork-linearizable emulation
of a storage service on a potentially corrupted server. In the subsequent sec-
tions, we explain how fork-linearizable storage is implemented by our consistent
storage service and by our consistent revision control service.

Naturally, a corrupted server may simply refuse to cooperate, and then the
clients will have to reconstruct the shared data from their own records. But this
attack cannot be prevented. There is no easy solution to this problem, except to
choose a more trustworthy server.

386 C. Cachin and M. Geisler

On the other hand, a fork-linearizable emulation ensures that the server can-
not violate the consistency of the storage service and hide this attack from clients
that are suspicious. Even if the clients communicate out-of-band only occasion-
ally, for example, by sending email to each other directly, or through a discussion
forum on a project website, they are guaranteed to immediately discover any in-
consistencies that were introduced ever by a faulty server.

A more subtle attack occurs when the server conspires with a client and
violates the assumption that clients are correct. The current design does not
prevent such behavior, but our system provides some means that help the correct
clients to recover from such attacks. We discuss these at the end of the paper
(Section 5).

2.2 Consistent Storage Service

The consistent storage service (CSS) provides a simple interface for reading
and writing short byte arrays and ensures fork-linearizability with an untrusted
server. There is no hard limit on the size of the stored byte arrays, but the service
is designed for sizes up to 10 or 100 KiB because all values are transiently kept
in main memory.

CSS provides one storage location for every client, called a register. The client
is the only one who may write to its register, but all clients may read from it,
and there is an operation that reads all registers in a single step. Formally, CSS
combines an array of single-writer/multi-reader registers [10] with an atomic
snapshot object [1].

The service provides the following interface to clients, expressed as method
invocations:

getkeys() returns a list of all client identities that are known to the server so far,
represented by their public keys. The server learns the identity of a client as
soon as the client invokes its first method. A client may use the output of
the operation in subsequent queries.

write(data) stores data in the register of the client at the server, overwriting data
previously stored there. In CSS, a client may only write to its own register.

read(key) reads the register identified by the public key key and returns the
stored data. If no such data exists, the operation returns none.

readall() reads all registers in one step and returns a list of pairs (key, data),
representing all registers stored by the server; every pair contains the corre-
sponding client key and the stored data. This method is equivalent to invok-
ing getkeys(), followed by invoking read(key) for all key values returned, all
in one atomic step. Its purpose is to give a consistent view of all registers.

We use the lock-step protocol of Cachin et al. [5] to implement CSS. The
protocol is noteworthy for using the server only as intermediary storage; in par-
ticular, the server does not perform any cryptographic operations. The protocol
has been modified from using a fixed number of clients to handle an a priori
unbounded number of clients that are identified only by a public key. Instead

Integrity Protection for Revision Control 387

Preliminaries. CSS stores a register value datakey for each client identified by key .
Only the client identified by key may write to datakey, but every client may read
from any register. Every client locally maintains a timestamp that it increments
during every operation. We call an array of timestamps a version; a version is
an associative array V that maps keys to timestamps, denoted by V [key] = t.
We write V [key] = ⊥ if V [key] is not defined. Versions acts as a vector clock for
ordering operations. Two versions V and W are ordered so that V is smaller than
or equal to W whenever V [key] ≤ W [key] for all values key such that V [key] �= ⊥.

Client state. The client maintains a version T representing its last completed
operation. Note that a client identified by key finds its own timestamp in T [key].

For simplicity of the description, we assume the client also keeps a copy of its
own data value datakey and writes it back during every read operation. (In the
implementation, it only stores a collision-resistant hash of the data value and
sends that in a read operation; in a write operation, it sends the data value.)

Server state. The server stores the register values in an associative array X, where
entry X[key] contains (datakey, σkey), representing the register value and a digital
signature issued under key on the string value ‖ datakey ‖ t, where t is a timestamp
equal to T [key] when the client completed the operation that wrote datakey.

The server also keeps information from the last completed operation: the version
V associated to it, the key last identifying the client performing the operation, and
a digital signature ω under key last on commit ‖ V .

Operation. When a client identified by key invokes a write, read, or readall opera-
tion, it sends the request together with key in a submit message to the server. The
server sends a reply message, containing the version V , the key last , and the accom-
panying signature ω from the last operation. In a read operation for register identi-
fied by rkey , the server also sends the register value X[rkey] = (datarkey, σrkey). In
a readall operation, the server adds all register values X. The server then waits for
a commit message from this client and does not process any messages from other
clients.

The client verifies that the reply message contains valid data: the version V must
be at least as large as its own version T , the entry V [key] must be equal to its
own timestamp T [key], and the signature ω on commit ‖ V must be valid under
key last . In a read or readall operation, the client also verifies that σrkey is a valid
signature under rkey on the string value‖datarkey ‖V [rkey], either for only one rkey
in a single-register read or for all values rkey such that X[rkey] �= ⊥ in a readall
operation. When the client detects any inconsistency in the reply, it considers the
server to be faulty, generates an alarm, and aborts.

After the client has successfully verified the reply, it adopts the received version V
as its own version T , increments its timestamp T [key], and signs the new version T ,
resulting in a signature ϕ. It issues another signature σ on value ‖ datakey ‖ T [key],
binding its data value to the timestamp. Then it sends a commit message to the
server, containing T , ϕ, datakey, and σ.

When receiving the commit message, the server stores T , key , and ϕ as its ver-
sion V , client key last , and signature ω that represent the last operation. The
server also updates X[key] with the received value datakey and σ.

Fig. 1. The implementation of CSS using the lock-step protocol (adapted from [5,14])

388 C. Cachin and M. Geisler

of using vectors, versions are represented by an associative array that maps ev-
ery known client key to the corresponding timestamp. The clients maintain some
state in their local memory and save it on persistent storage between operations.
The protocol is shown in Figure 1.

The lock-step protocol has the drawback of not being wait-free [10] because
when the server waits for the commit message from a client, no other client
can proceed with an operation. Mazières and Shasha [14] and Cachin et al. [5]
both present seemingly more efficient protocols that allow some client operations
to proceed in parallel. However, it has been shown that in all fork-linearizable
storage emulation protocols, a reader must wait for a concurrent writer [5]1.

We therefore chose to implement CSS with the lock-step protocol for the
following reasons: First, the addition of the readall operation introduces the above
conflict between readall and every write operation. We know that our consistent
revision control application (described in Section 2.4) will use only write and
readall operations, and we expect that they occur about equally often. Hence,
the potential for exploiting concurrency is reduced to concurrent read operations.
Second, the protocol allowing for concurrent operations is considerably more
involved than the lock-step protocol. The small potential gain did not merit the
added implementation complexity.

2.3 Revision Control

A revision control system (RCS) provides operations for storing and retrieving
multiple versions of the same set of documents. It facilitates collaboration among
multiple users, who may work independently with the information. The RCS
assigns revision numbers to the documents and maintains a history of all versions.
The documents usually consist of a hierarchical set of files and directories in a
file system. Revision control systems are an important collaboration tool, as can
be seen from the large number of existing systems (Wikipedia’s “List of revision
control software” lists 64 systems as of Sept. 2008).

For the purpose of designing our consistent RCS, we describe here the main
features of a generic centralized RCS. A centralized RCS uses a dedicated server
for controlling revisions and storing the history, in contrast to a distributed RCS,
where this task is shared by all users. Our RCS is modeled after two popular RCS
for source code, CVS (http://www.nongnu.org/cvs/) and Subversion (http://
subversion.tigris.org/); they both allow users to update the same document
concurrently.

We expect the client interface of an RCS to provide the following main oper-
ations:

Checkout: A checkout operation transfers all documents from the server repos-
itory to the client. It creates a copy of the files and directories on the client,
called the working copy. All editing takes place there. The RCS also supports
attributes attached to documents and version control for them.

1 Weaker semantics than fork-linearizability can give rise to wait-free storage emula-
tion protocols [4].

http://www.nongnu.org/cvs/
http://subversion.tigris.org/
http://subversion.tigris.org/

Integrity Protection for Revision Control 389

Commit: After adding, modifying, or deleting some files in the working copy,
the client wants to transfer the changes back to the central server, thereby
making the changes visible to other clients. The client does this with a commit
(or checkin) operation. Its effect is to create a new revision with a distinct
identifier, called the revision number. We assume that revision numbers in a
sequence of commits issued by multiple clients increase monotonically over
time.

Update: An update operation transfers the most recent revision of all files from
the server to the client and updates the working copy accordingly. The system
also supports updating to a revision with a particular revision number.
When a client has modified some files locally and wants to commit the
changes, it may have to perform an update, before the RCS allows a commit
operation. This happens when some modifications of the client overlap and
conflict with modifications committed by others. In this case, the commit
operation will fail, the client is told to first update its working copy and
to merge the concurrent changes, before the client may attempt another
commit.

Typical RCS also support operations to populate the server repository with a
set of documents initially, to rename repository contents, to create branches and
merge them again, and to tag revisions with keywords. These operations may be
present, but are not our main focus because they can be expressed as variations
of the above three main operations.

We assume that all operations are transactional so that their changes either
take effect in one atomic step on the server, or leave no trace in the repository
in case of a failure.

2.4 Consistent Revision Control

Our consistent revision control system (CRCS) implements a revision control
system that protects the integrity of the repository against a corrupted server.
CRCS provides the same operations as an ordinary RCS and emulates a fork-
linearizable storage service on the repository. We achieve fork-linearizability in
terms of the checkout and update operations of CRCS, which implement a read
operation on the repository, and in terms of the commit operation, which imple-
ments a write operation on the repository.

Fork-linearizability for a revision control system guarantees the following. Sup-
pose a client A updates its working copy with CRCS to some revision number r.
If A sees even a single file that was committed by another client B in revision r,
then fork-linearizability implies that all files in client A’s working copy have been
cryptographically verified and are equal to those committed by B in revision r.
Conversely, if there exists a more recent revision s > r committed by a third
client C, and the server hides revision s from A, then A can never again update
to any revision committed by C or by anyone who updated to s. Because of this
all-or-nothing implication of fork-linearizability, one can very easily detect even
subtle modifications of a single file by a corrupted server.

390 C. Cachin and M. Geisler

We implement CRCS by combining our CSS with an unmodified RCS. CRCS
computes a hash tree [15] over the set of documents in the repository and basi-
cally stores the root hash of the tree using CSS. This construction extends the
integrity guaranteed by CSS from the root hash to the entire data. Suppose ev-
ery client commits changes to CRCS by first committing its working copy using
RCS, thereby obtaining a revision number r, computing the new root hash h,
and then writing the tuple (r, h) to its register. This stores all information in
CSS that another client needs for updating its working copy to the most recent
revision and for verifying its integrity. But because CRCS also supports cryp-
tographically verified update operations for previous revisions in the repository,
the design is more complex.

Every client maintains a revision log L with information about every revi-
sion that it committed. The revision log is a list of tuples (r, h, c), denoting the
revision number r, the root hash h, and a revision commitment c, sorted chrono-
logically (i.e., according to r). Let H denote a collision-free cryptographic hash
function. The revision commitment binds together all previous commit opera-
tions of the client in a hash chain; when committing revision r with hash h, the
client computes c as H(r ‖h‖ c′), using the revision commitment c′ from the last
tuple in L (or c′ = ⊥ if L is empty). The same chaining scheme has been used
in many other timestamping and data authentication algorithms [9].

For the description of the CRCS algorithm below, assume that every client
stores its complete revision log in L. For increased efficiency, an implementation
may actually maintain only the last tuple of L in CSS and keep the rest of L in
untrusted shared storage; the collision resistance of H guarantees the uniqueness
of every revision log given its last revision commitment.

The client proceeds now as follows to implement the main operations of CRCS.
If one of the checks in the algorithm fails, the client generates an alarm and
aborts.

Checkout: To check out the highest revision, the client invokes the readall()
operation of CSS and determines the largest revision number r from the
returned revision logs and the corresponding root hash h. After invoking
checkout of RCS for revision r, the checkout algorithm recomputes the hash
tree on the working copy and verifies that its root hash is equal to h.

Commit: The client first calls the update operation of CRCS (see below) to
bring its working copy to the most recent revision according to CSS. Then
it commits the working copy with RCS to obtain a new revision number r.
If this fails, the operation aborts and the client is told to update and to try
again. If all goes well, the client computes the root hash h of the hash tree
on its working copy, extends the client’s revision log L with r and h, and
invokes write(L) from CSS.

Update: The update operation is very similar to checkout. The client performs
readall() to obtain all revision logs, determines the largest revision number r
with corresponding root hash h, calls update from RCS to bring its working
copy to revision r, recomputes the changed paths in the hash tree, and verifies
that the root hash matches h.

Integrity Protection for Revision Control 391

For updating to a particular revision r, the algorithm determines the client
that committed r from all revision logs, locates the corresponding tuple
(r, h, ·) in some revision log L, and verifies L by following the hash chain
from the tuple with r to the end of L. Then it proceeds as above, updating
to revision r from RCS and verifying the working copy with respect to h.
When recomputing the hash tree for files that have changed in the repository,
it is important that the client does that on a clean working copy, before
the modifications from its working copy are applied. As the RCS merges
the updates with the client’s own changes, the update operation creates a
working copy that differs from revision r in the repository.

Because the operations of CRCS verify that the working copy is consistent
with the revision numbers and their root hashes maintained by CSS, the fork-
linearizability of CSS implies the same property also for CRCS.

Note that the above algorithm introduces no new race conditions compared
to RCS. As a consequence of synchronizing the client with CSS and RCS, it
would be possible to create such problems. But the atomicity of the operations
on CSS ensures that the more complex operations of CRCS are also atomic.
In particular, whenever a client invokes checkout or update and retrieves some
revision number from CSS, it always finds this revision in the repository of
RCS. This holds because the commit operation of RCS precedes the writing of
the corresponding revision number to CSS. Of course, there may already exist a
more recent revision in the repository of RCS in the mean time, but this may also
happen in the generic RCS, when another commit operation occurs immediately
after an update.

3 Implementation

We have implemented our design in Python on Unix in two parts: first, the con-
sistent storage service and, second, the consistent revision control system. The
Python programming language encourages the kind of rapid prototyping we
wanted and allowed a very natural transcription of the protocols. We chose Sub-
version (SVN) as the lower-level revision control system because it is widely used
and because it fits our model of an RCS from Section 2.3. Hence, we refer to our
implementation as Consistent Subversion (CSVN). Cryptographic operations are
provided by OpenSSL via the M2Crypto Python interface to OpenSSL [18].

3.1 Consistent Storage Service

The implementation of CSS according to Section 2.2 stores arbitrary byte ar-
rays. It is available as a library to clients. We wrote a simple interactive client
application to read and write values entered by the user. The rich syntax of
Python resulted in the server part of the algorithm in Figure 1 consisting of
about 250 lines of code and the client part consisting of about 200 lines of code,
including the operations for key management. Having a succinct implementation

392 C. Cachin and M. Geisler

is important for maintainability, and especially important for security-relevant
software.

CSS uses Python’s object serialization over TCP connections for transport.
The server implementation is single-threaded according to the lock-step protocol;
it uses a time-out in order to tolerate a client that crashes between sending
a submit message and sending the corresponding commit message. We plan
to integrate SSL/TLS support for increasing the security of the client-server
connections in the future; currently, network attacks appear to the clients as
server faults.

3.2 Consistent Revision Control with Subversion

We implemented CSVN in the form of a library that interfaces to SVN and pro-
vides the three main revision control operations. The operations invoke our con-
sistent storage service and the Python SVN Extension (http://pysvn.tigris.
org/). The SVN server remains unchanged. We also created small wrapper
scripts for a user to invoke the client operations. The CSVN library consists
of about 170 lines of code, and the scripts of about 75 lines of code each. Hence,
the code is very compact.

For the description below, let a path denote the unit of information managed
by SVN; a path may be a directory containing other paths, a file, or a symbolic
link.

Hash Trees. The protocol requires to compute a hash tree over the documents
in a revision. Let us define a hash function H on paths maintained by SVN. The
hash value of a path p that represents a file or a symbolic link is defined as

H(p) = H
(

H(p) ‖H(C(p))
)

,

where C(p) is the content of p. The hash value of a path p representing a directory
is

H(p) = H
(

H(p1) ‖ H(p2) ‖ . . . ‖ H(pn) ‖H(p)
)

,

where p1, . . . , pn is a sorted list of all paths in p. We denote the root hash of a
repository by H(“.”).

It would be prohibitively expensive to recompute the hash values of all paths
in a large repository upon every change of a single file. Therefore, the client
stores the hash value of every path as an SVN property of the path. During an
update operation, CSVN recomputes the hash values of all changed files and of
all directories along the path from the changed files to the root. For a repository
with n files, this reduces the cost of updating m modified files from linear in n
to O(m + d), where d is the maximum affected depth in the directory tree.

The hash values are stored on the SVN server because properties are revision-
controlled in SVN. Note that storing them on untrusted storage is unproblematic.
The hash values are not actually needed by a client who checks out the complete
repository because the client recomputes the entire hash tree anyway during
verification. But they are needed for partial checkouts, as explained below.

http://pysvn.tigris.org/
http://pysvn.tigris.org/

Integrity Protection for Revision Control 393

Integration with SVN. During checkout and update operations, CSVN installs
a callback before invoking the SVN library, which collects all relevant events
reported by SVN; such relevant events are the addition, update, and deletion of
a path. Then CSVN invokes CSS to obtain a revision number r and retrieves
revision r from SVN, as described in Section 2.4. To recompute the root hash
of the working copy, CSVN traverses the working copy, but visits only paths for
which a relevant event was collected during the SVN operation.

For a commit operation, CSVN first determines the modified paths which are
going to be written to the repository. It does that with an SVN “info” operation
that outputs a collection of changed paths. Then it traverses the working copy,
visiting and recomputing hash values only for changed paths, and getting hash
values for unchanged paths from their SVN properties. This yields the root
hash h = H(“.”). CSVN further invokes the “commit” operation of SVN to
write the updates to the repository and to obtain the new revision number r.
Finally, it retrieves the revision commitment c from the last tuple in L, appends
(r, h,H(r ‖ h ‖ c)) to L, and writes L using CSS.

This completes the description of the main CSVN operations. Further SVN
operations can be implemented easily using the CSVN library and the three
main CSVN operations.

The description so far assumes that clients always check out and update the
complete file set in the repository at once. But this is not required in SVN, where
a client may check out only a subdirectory from a repository, or commit only
a subset of its working copy. The revision number and the root hash stored in
CSS are always global properties of the repository, though. Operations on the
partial repository are supported by our design and rely on the hash values stored
in the SVN properties. For example, to check out a subtree from a repository,
CSVN also needs to read all files along the path from the subtree’s root to the
repository root before it can verify the root hash.

An important and nice feature of this implementation is that it does not add
any additional SVN server operations; because they usually involve the network
and contain a cryptographic authentication operation during login, they tend to
be rather slow.

4 Evaluation

We report on benchmarks to measure the performance of CSVN client operations
in comparison to an unmodified SVN client. Since every operation of CSVN also
invokes the corresponding operation of SVN, we are primarily interested in the
overhead of CSVN over SVN.

We report on two kinds of performance evaluations: an application benchmark
using real-life file sets of different sizes and a synthetic benchmark with artificially
made-up file sets. Each benchmark consists of a series of tests executed by two
clients, called A and B, where each test uses different data. For each test, we
run the unmodified SVN client and the CSVN client 20 times in succession and
measure the average time taken by each step in the test. Every run starts with

394 C. Cachin and M. Geisler

an empty repository and a freshly initialized CSS. Each test uses a pair of related
file sets; we are interested in the time it takes to update a working copy and the
repository from one file set to the other one.

Each run in a test consists of the following steps:

1. Client A initializes a new empty repository on the server. This step is the
same for both systems, so we do not measure it.

2. Create — client A checks out revision 0, creating a working copy from the
empty repository.

3. Import — client A copies the first file set into its working copy, adds it to the
repository, and commits the changes; we measure the time for the commit
operation only.

4. Checkout (CO) all — client B checks out the content of the repository into
its own working copy; the working copies of A and B are now identical.

5. Client B modifies its working copy to reflect the second file set. This involves
adding the files contained only in the second file set, deleting the files only
present in the first set, and copying the changed files from the second set
into the working copy. This step is identical for both systems and is not
measured.

6. Commit (CI) diff — client B commits the changes in its working copy.
7. Update (UP) diff — client A, whose working copy still contains the first file

set, updates it to the most recent revision in the repository, which contains
the second file set; the working copies of A and B are again identical.

This sequence of steps is designed to capture the overhead of committing
and updating a large file set at once (in the import and checkout all steps) and
of committing and updating smaller number of files in a larger file set (in the
commit diff and update diff steps).

The benchmarks use two separate hosts, one for the server and one for both
clients; they are connected by a gigabit LAN. The machine for the clients is an
IBM x345 system with 2 GiB of RAM and two hyper-threaded Intel Xeon CPUs
(3.06 GHz clock speed). The machine for the server is an IBM x335 system with
2 GiB of RAM and two hyper-threaded Intel Xeon CPUs (2.80 GHz clock speed).
Both machines have a single IBM Ultra320 SCSI disk with 73.4 GB capacity and
run Debian GNU/Linux 4.0 with kernel 2.6.18 and Subversion 1.5.2. The SVN
server is accessed using SSH and all data is stored on the local filesystems. We
use the SHA-1 hash function and 1024-bit RSA for signatures.

4.1 Application Benchmark

The file sets in our application benchmark are different versions of the Linux
kernel source tree, as reported in Table 1. All files can be downloaded from
the Linux kernel archive (http://kernel.org/). We choose them since they
represent a realistic directory structure and because the repository sizes range
over several orders of magnitude, from 632 KiB to 62 MiB. We selected the four
versions that make up the first file set in a test based on their relative size. For
each test, we pick the subsequently released version of the Linux kernel and use
it as the second file set. The results are shown in Table 2.

http://kernel.org/

Integrity Protection for Revision Control 395

Table 1. The four tests of the application benchmark and the used Linux kernel
version pairs. The third and fourth columns list the number of files in the first file set
and the number of changed (added, modified, or deleted) files between the two file sets,
respectively.

Test (version pair) Size Files Changed

0.11 → 0.12 0.63 MiB 100 91
1.0 → 1.0.1 5.9 MiB 561 12
2.0.1 → 2.0.2 27 MiB 2021 28
2.2.0 → 2.2.1 62 MiB 4599 10

Table 2. Results of the application benchmark. The numbers denote average elapsed
time and standard deviation in seconds for SVN and CSVN in 20 runs, and the ratio
of the two average times.

Step SVN CSVN Ratio

Create 1.18 ±0.09 1.53 ±0.33 1.30
Import 0.93 ±0.02 1.94 ±0.00 2.08
CO all 0.99 ±0.00 1.10 ±0.00 1.11
CI diff 1.50 ±0.02 2.30 ±0.29 1.53
UP diff 0.94 ±0.00 1.05 ±0.01 1.11

Test 0.11 → 0.12

Step SVN CSVN Ratio

Create 1.05 ±0.05 1.45 ±0.38 1.38
Import 3.70 ±0.11 6.76 ±0.00 1.83
CO all 1.98 ±0.00 3.17 ±0.48 1.60
CI diff 1.24 ±0.42 2.03 ±0.01 1.63
UP diff 0.94 ±0.01 1.11 ±0.00 1.17

Test 1.0 → 1.0.1

Step SVN CSVN Ratio

Create 1.46 ±0.17 1.34 ±0.25 0.92
Import 14.08 ±0.71 28.84 ±1.02 2.05
CO all 7.49 ±2.38 12.31 ±2.44 1.64
CI diff 3.89 ±1.59 5.15 ±0.47 1.32
UP diff 0.94 ±0.00 2.28 ±0.02 2.42

Test 2.0.1 → 2.0.2

Step SVN CSVN Ratio

Create 0.68 ±0.06 1.18 ±0.29 1.72
Import 36.35 ±1.05 79.26 ±1.29 2.18
CO all 13.38 ±2.04 29.28 ±2.28 2.19
CI diff 10.20 ±3.68 9.64 ±2.53 0.95
UP diff 1.27 ±1.53 1.69 ±0.49 1.33

Test 2.2.0 → 2.2.1

4.2 Synthetic Benchmark

In this benchmark, we wish to measure how the running time changes when we
grow the directory structure in a repository from one directory to a large tree,
but keep the number of files constant. To do this, we create four artificial file
sets, each consisting of 256 files, each file of size 10 KiB, for a total data size
of 2.5 MiB per file set. The files are filled with random pieces of C code taken
from the Linux 2.2.1 kernel; this is to generate files looking like a real source
tree. The files are stored in a directory structure of varying depth. We define a
directory structure of depth d as a full binary tree of depth d and store 256/2d

files in each of the 2d leaf directories.
Our file sets are four directory structures with depths 0 (all files in one direc-

tory), 2, 4, and 8 (every file in a separate directory). In each test, the second file

396 C. Cachin and M. Geisler

Table 3. Results of the synthetic benchmark. The numbers denote average elapsed
time and standard deviation in seconds for SVN and CSVN in 20 runs, and the ratio
of the two average times.

Step SVN CSVN Ratio

Create 1.48 ±0.12 1.35 ±0.40 0.91
Import 2.71 ±0.06 4.19 ±0.50 1.55
CO all 1.99 ±0.00 2.90 ±0.01 1.46
CI diff 1.87 ±0.22 3.02 ±0.01 1.61
UP diff 0.95 ±0.00 1.73 ±0.01 1.83

Depth 0

Step SVN CSVN Ratio

Create 1.25 ±0.06 1.25 ±0.39 1.00
Import 2.01 ±0.33 3.89 ±0.01 1.93
CO all 1.99 ±0.00 2.40 ±0.01 1.21
CI diff 0.93 ±0.05 1.51 ±0.01 1.63
UP diff 0.95 ±0.00 1.01 ±0.01 1.07

Depth 2

Step SVN CSVN Ratio

Create 1.27 ±0.01 1.46 ±0.39 1.15
Import 1.95 ±0.27 3.88 ±0.01 1.99
CO all 1.99 ±0.01 2.30 ±0.02 1.16
CI diff 0.92 ±0.06 1.61 ±0.03 1.75
UP diff 0.95 ±0.00 0.94 ±0.01 1.00

Depth 4

Step SVN CSVN Ratio

Create 0.86 ±0.23 1.33 ±0.14 1.55
Import 4.33 ±0.42 10.59 ±0.89 2.44
CO all 8.75 ±1.52 9.95 ±1.14 1.14
CI diff 0.88 ±0.04 1.31 ±0.24 1.50
UP diff 2.28 ±1.15 1.90 ±0.51 0.84

Depth 8

set is identical to the first one, up to a random modification to one of the files
in a leaf directory. The results are shown in Table 3.

4.3 Results

The results of both benchmarks show that CSVN adds an overhead of a factor
that is generally less than 2 and usually also less than 1.5. In absolute terms,
the import and the checkout all steps are the slowest operations because they
involve all files. The import step generally incurs also the biggest overhead,
usually around 2. But the overhead of the checkout all step is not noticeably
different from the overhead of the remaining steps. Generally, CSVN adds only
a moderate overhead to most operations compared to the normal SVN client.

Observe the bigger variation in the execution times of the tests with larger
file sets. One reason for this effect may be that large data sets create more un-
expected interactions with other programs due to swapping and disk operations
than small data sets that fit in the kernel’s buffer cache. Such variations also
explain the few overhead ratios smaller than 1.

Among the results of the application benchmark in Table 2, the second largest
overhead (after the import step) usually occurs for the commit diff step. The
overhead on the large file sets is not bigger than that on the smaller file sets.
This clearly shows the benefit of using a hash tree when only a small part of a
large file set is updated.

In the results of the synthetic benchmark in Table 3, observe the overhead
of the commit diff and the update diff steps. In both steps, only a single file is

Integrity Protection for Revision Control 397

changed. The CSVN client must then read the hash values of all sibling files to
compute the new hash values for the directory. With the increasing depth of the
directory structure, the number of sibling files drops from 255 to 0, and this is
reflected in the decreasing overhead.

In summary, although a 50%–100% larger execution time for SVN operations
is clearly noticeable by the clients, we believe it is a reasonable price to pay for
the added guarantee of cryptographically verified data integrity. These results
should serve as a lower bound for the efficiency of our design, because they
were carried out with our straight-forward layered prototype implementation
in Python. If the CSVN operations would be integrated with the SVN client
library, the directory tree in the working would have to be traversed only once
instead of twice; moreover, hashing could be integrated with the traversal and
performed concurrently with receiving or sending data to the server. With such
an integrated design, the cryptographic overhead is likely to vanish, as shown in
other benchmarks of cryptographic storage and file systems [19].

5 Conclusions

Protecting data integrity against unauthorized modifications is an important as-
pect of networked storage systems. This paper presented a novel approach to
securing the integrity of data stored in revision control systems, and demon-
strated its feasibility with our Consistent Subversion (CSVN) prototype. Our
evaluation shows that the overhead is reasonable.

The biggest threat to our system are client failures. Protecting the system
from malicious clients is also the area where future work is needed.

Our implementation already tolerates client crashes; one or more malicious
clients alone cannot harm the integrity if the service provider is correct —
measures to prevent such behavior can easily be added [11], but have not been
described in this work. A corrupted client conspiring with a corrupted service
provider, however, may undermine fork-linearizability.

A first barrier against such an attack is the CA that must authorize all clients
before they access the service. It is therefore a good idea to make the CA is a
separate entity from the storage service. If the threat of such a client-server con-
spiracy attack becomes too serious, one might adopt the complex cross-checking
of versions signed by different clients introduced in SUNDR [14]. Unfortunately,
the SUNDR protocol involves a much higher communication overhead in every
operation. One should also develop an additional tool that helps the clients to
recover from a server failure; it should automatically reconcile the state of the
repository from the information held by the clients in their working copies and
their local memories.

Acknowledgments

We are grateful to Idit Keidar, Alexander Shraer, and Marko Vukolić for many
discussions and valuable comments.

398 C. Cachin and M. Geisler

This work was supported in part by the European Commission through the
IST Programme under Contract IST-2002-507932 ECRYPT.

References

[1] Afek, Y., Attiya, H., Dolev, D., Gafni, E., Merritt, M., Shavit, N.: Atomic snap-
shots of shared memory. Journal of the ACM 40(4), 873–890 (1993)

[2] Baker, M., Shah, M., Rosenthal, D.S.H., Roussopoulos, M., Maniatis, P., Giuli, T.,
Bungale, P.: A fresh look at the reliability of long-term digital storage. In: Proc.
1st European Conference on Computer Systems (EuroSys), pp. 221–234 (2006)

[3] Blum, M., Evans, W., Gemmell, P., Kannan, S., Naor, M.: Checking the correct-
ness of memories. Algorithmica 12, 225–244 (1994)

[4] Cachin, C., Keidar, I., Shraer, A.: Fail-aware untrusted storage. In: Proc. Inter-
national Conference on Dependable Systems and Networks (DSN-DCCS) (2009)

[5] Cachin, C., Shelat, A., Shraer, A.: Efficient fork-linearizable access to untrusted
shared memory. In: Proc. 26th ACM Symposium on Principles of Distributed
Computing (PODC), pp. 129–138 (August 2007)

[6] Clarke, D., Suh, G.E., Gassend, B., Sudan, A., van Dijk, M., Devadas, S.: Towards
constant bandwidth overhead integrity checking of untrusted data. In: Proc. 26th
IEEE Symposium on Security & Privacy (2005)

[7] CNET News. Red Hat, Fedora servers compromised (August 2008), http://news.
cnet.com/8301-1009_3-10023565-83.html

[8] Goh, E.-J., Shacham, H., Modadugu, N., Boneh, D.: SiRiUS: Securing remote un-
trusted storage. In: Proc. Network and Distributed Systems Security Symposium
(NDSS) (2003)

[9] Haber, S., Stornetta, W.S.: How to time-stamp a digital document. Journal of
Cryptology 3, 99–111 (1991)

[10] Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming. Morgan Kauf-
mann, San Francisco (2008)

[11] Li, J., Krohn, M., Maziéres, D., Shasha, D.: Secure untrusted data repository
(SUNDR). In: Proc. 6th Symp. Operating Systems Design and Implementation
(OSDI), pp. 121–136 (2004)

[12] Maheshwari, U., Vingralek, R., Shapiro, W.: How to build a trusted database
system on untrusted storage. In: Proc. 4th Symp. Operating Systems Design and
Implementation (OSDI) (2000)

[13] Mazières, D., Kaminsky, M., Kaashoek, F., Witchel, E.: Separating key manage-
ment from file system security. In: Proc. 17th ACM Symposium on Operating
System Principles (SOSP) (1999)

[14] Mazières, D., Shasha, D.: Building secure file systems out of Byzantine storage.
In: Proc. 21st ACM Symposium on Principles of Distributed Computing (PODC)
(2002)

[15] Merkle, R.C.: Protocols for public-key cryptosystems. In: Proc. IEEE Symposium
on Security & Privacy, pp. 122–133 (1980)

[16] Mykletun, E., Narasimha, M., Tsudik, G.: Authentication and integrity in out-
sourced databases. ACM Transactions on Storage 2(2), 107–138 (2006)

http://news.cnet.com/8301-1009_3-10023565-83.html
http://news.cnet.com/8301-1009_3-10023565-83.html

Integrity Protection for Revision Control 399

[17] Papamanthou, C., Tamassia, R., Triandopoulos, N.: Authenticated hash tables.
In: Proc. 15th ACM Conference on Computer and Communications Security
(2008)

[18] Siong, N.P., Toivonen, H.: M2Crypto Python interface to OpenSSL. Version 0.18.2
(2008), http://chandlerproject.org/Projects/MeTooCrypto

[19] Wright, C.P., Dave, J., Zadok, E.: Cryptographic file systems performance: What
you don’t know can hurt you. In: Proc. 2nd International IEEE Security in Storage
Workshop (SISW) (2003)

http://chandlerproject.org/Projects/MeTooCrypto

Fragility of the Robust Security Network: 802.11

Denial of Service

Martin Eian

Department of Telematics
Norwegian University of Science and Technology

martin.eian@item.ntnu.no

Abstract. The upcoming 802.11w amendment to the 802.11 standard
eliminates the 802.11 deauthentication and disassociation Denial of Ser-
vice (DoS) vulnerabilities. This paper presents two other DoS vulnera-
bilities: one vulnerability in draft 802.11w implementations discovered
by IEEE 802.11 TGw, and one new vulnerability in 802.11, which is
still present in the 802.11w amendment. Attacks exploiting the first vul-
nerability are significantly more efficient than any known 802.11 DoS
attacks, while attacks exploiting the second vulnerability have efficiency
and feasability equivalent to a disassociation attack. This paper pro-
vides an experimental verification of these attacks, demonstrating their
feasability using freely available software and off the shelf hardware. Fi-
nally, the root cause of these vulnerabilities is discussed and a backwards
compatible solution proposed.

Keywords: Wireless, Security,Denial ofService, 802.11, 802.11i, 802.11w.

1 Introduction

In the original IEEE 802.11 standard[9], ratified in 1997 and accepted as an
ISO standard in 1999, the only available security mechanism was Wired Equiv-
alent Privacy (WEP). During the years that followed, WEP was analyzed by
the academic community and wireless hackers, and several vulnerabilities were
discovered [8] [15] [5]. This motivated the development of a replacement for
WEP, IEEE 802.11i. In 2004, the 802.11i amendment was ratified, with two new
and improved security mechanisms. The first one, Temporal Key Integrity Pro-
tocol (TKIP), was designed as a transitional solution that would support old
hardware. The second, counter mode with cipher-block chaining message au-
thentication code protocol (CCMP), was the long term solution to the security
vulnerabilities of WEP. The common denominator for WEP, TKIP and CCMP
is that they protect 802.11 data frames. No protection is provided for control
frames and management frames.

One issue with the lack of management frame protection is that any station
on the wireless network can transmit forged management frames. This tactic
can be used by an attacker to make a station (STA) deauthenticate or disas-
sociate from the access point (AP). The following association request from the

M. Abdalla et al. (Eds.): ACNS 2009, LNCS 5536, pp. 400–416, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Fragility of the Robust Security Network: 802.11 Denial of Service 401

station gives the attacker the service set identifier (SSID) of the wireless net-
work, thus bypassing SSID cloaking. Furthermore, dictionary attacks against
TKIP or CCMP using a password derived preshared key (PSK) require that the
attacker observes the initial 4-way handshake, and a successful disassociation
attack will result in this 4-way handshake between the wireless station and the
AP. Last, but not least, transmitting deauthentication or disassociation frames
several times per second is a very efficient Denial of Service attack on the wire-
less network. Aireplay-ng from the aircrack-ng[1] suite is an example of a freely
available tool that implements the deauthentication attack. One countermeasure
to these attacks is to provide integrity and replay protection for management
frames.

Another issue that has surfaced recently is that several of the new amendments
to the 802.11 standard extend the use of management action frames, transmit-
ting potentially sensitive information inside management frames. Examples of
such amendments are 802.11k, 802.11r and 802.11v. To avoid the compromise of
sensitive information, management frame confidentiality must be provided.

As a response to the above mentioned issues, Task Group w (TGw) was es-
tablished in 2005 to develop the 802.11w amendment, Protected Management
Frames. The original target date for ratification of this amendment was Septem-
ber 2007, but this was later postponed to December 2009. The design goal for
802.11w was to extend the security mechanisms in 802.11i to provide protection
for selected 802.11 management frames. 802.11w is currently in draft status. The
newest available draft version is 7.0.

The results presented in this paper are based on IEEE802.11-2007[13], which in-
cludes the 802.11i amendment[10], and 802.11w draft version 3.0[12] from
September 2007. One additional feature from 802.11w draft version 4.0, protec-
tion against SA termination attacks, is also discussed. The analysis of potential
DoS vulnerabilities in 802.11with amendments is based on the observations in [14].

The rest of the paper is divided into eight sections. Section 2 presents the
contribution. In Section 3, a short description of related work on 802.11 DoS
vulnerabilities is presented. Section 4 contains an analysis of relevant topics
from the 802.11 standard with amendments. Section 5 presents theoretical DoS
vulnerabilities in 802.11, 802.11i and 802.11w and some general observations on
network DoS. Section 6 provides a description of the experiments, analysis and
results. The results are discussed in Section 7, and a solution proposed in Section
8. Section 9 contains the conclusion and section 10 contains acknowledgements.

2 Contribution

This paper analyzes medium access control (MAC) layer DoS vulnerabilities in
802.11 with the 802.11i and 802.11w amendments. One apology for MAC layer
DoS vulnerabilities is that an attacker can use physical jamming of the radio
frequencies to perform a DoS attack anyway, which is extremely difficult to pre-
vent. The motivation for preventing DoS attacks against the MAC layer is that
such attacks are far more efficient than jamming, so the attacker has to spend

402 M. Eian

less effort, and thus will be more difficult to detect and locate. Furthermore, cer-
tain attacks against MAC layer vulnerabilities may cause a deadlock such that
a station is not able to recover. A jamming attack, on the other hand, will only
disrupt network access for as long as the attacker is transmitting.

The configuration used for the experimental analysis is an extended service
set (ESS) with a wireless station communicating with an AP. The term station
refers to either a non-AP 802.11 device or an AP.

This paper makes three principal contributions. First, a previously unknown
DoS vulnerability in 802.11, equivalent to the disassociation vulnerability, and
still present in 802.11w, is presented and analyzed. Second, this new vulnerability
is tested experimentally together with the deauthentication attack and another
vulnerability discovered by J. Epstein in 2007[6]. All experiments were carried
out using freely available tools and off the shelf hardware. Third, a robust solu-
tion to the MAC layer DoS vulnerabilities in 802.11 is proposed. It is possible to
introduce this solution incrementally, preserving backwards compatibility until
all APs and stations are upgraded.

3 Related Work

In 2003, Bellardo and Savage demonstrated the feasability and efficiency of the
802.11 deauthentication attack, together with several other DoS attacks against
the 802.11 MAC layer[4]. [4] is a useful general reference on DoS attacks against
802.11 networks. In 2007, J. Epstein presented the theoretical SA termination
attack[6] and a proposed solution[7] to TGw, which was accepted as part of
draft 4.0 of the 802.11w amendment in 2008. The SA termination attack and
the proposed solution are analyzed in this paper. The working documents of
TGw are available at https://mentor.ieee.org/802.11/documents.

4 Analysis of the 802.11 Standard

Only the most relevant parts of the 802.11 standard and the 802.11i and 802.11w
amendments are presented as background material. The reader is referred to the
IEEE standard and draft documents for a comprehensive review.

4.1 802.11 Authentication and Association

The original 802.11 standard specifies two types of authentication: shared key
and open system. The shared key authentication is optional in WEP, and the
open system authentication is a two-message null authentication initiated by the
station. After authentication, the station performs an association with the AP.
Figure 1 shows a successful open system authentication followed by a successful
association.

Associations are used to keep track of the stations served by an AP. The
802.11 standard defines two state variables: authentication state and association

https://mentor.ieee.org/802.11/documents

Fragility of the Robust Security Network: 802.11 Denial of Service 403

Fig. 1. 802.11 open system authentication and association

Table 1. 802.11 States

State 1 Not authenticated Not associated

State 2 Authenticated Not associated

State 3 Authenticated Associated

state. Three of the four possible combinations of these two variables represent
the local 802.11 station states shown in Table 1. Every station maintains a local
state for every other station that it communicates with.

802.11 frames are grouped into classes that correspond to the states mentioned
above. Frames corresponding to the current state or lower are allowed, thus the
allowed frames in State 2 are of Class 1 or 2. If a station receives a Class 2
or 3 frame from a station that is not authenticated, it shall respond with a
deauthentication frame. If it receives a Class 3 frame from a station that is
authenticated, but not associated, it shall respond with a disassociation frame.
Figure 2 shows the valid transitions between the local states in 802.11.

Subsection 11.3.1.2 of the 802.11 standard[13] specifies how the destination
STA should handle 802.11 authentication requests:

Upon receipt of an Authentication frame with authentication transaction
sequence number equal to 1, the destination STA shall authenticate with
the indicated STA using the following procedure:

a) The STA shall execute the authentication mechanism described in
8.2.2.2.

b) If the authentication was successful, the state variable for the indi-
cated STA shall be set to State 2.

c) The STA shall issue an MLME-AUTHENTICATE.indication prim-
itive to inform the SME of the authentication.

Note that an open system authentication will always be successful, so an AP
that receives an open system authentication request will always enter State 2
(authenticated, but not associated).

404 M. Eian

Fig. 2. 802.11 state transitions. The authentication attack triggers a change from State
3 to State 2 in the AP by transmitting a forged open system authentication request.
This transition is not shown in the state diagram, the only transition from State 2 to
State 3 is a disassociation notification, but it must be allowed to avoid deadlocks when
802.11w is enabled.

4.2 802.11i Security Amendments

802.11i introduces a new security framework: The Robust Security Network
(RSN). Authentication and key management in an RSN is carried out after the
successful completion of 802.11 authentication and association, as illustrated in
figure 1. However, some of the messages are modified. The beacon frames broad-
cast by the AP and the probe response contain an RSN information element
with the supported security parameters. Cryptographic parameters are negoti-
ated during the association phase by including an RSN information element in
the association request from the station. If the security parameters are accepted
by the AP, it enters State 3, and authentication is carried out using the Ex-
tensible Authentication Protocol (EAP)[3]. EAP encapsulation over Local Area
Networks (EAPOL), as specified in IEEE 802.1X[11], is used to encapsulate the
authentication messages in 802.11 data frames. Figure 3 shows the authentica-
tion and key management in an RSN.

802.11i uses security associations (SAs) to store security policies and crypto-
graphic keys. There are two parts of the SA specifications that are relevant to
the vulnerabilities discussed in this paper: SA termination and recovery from
lost key state synchronization.

SA termination is triggered when an AP receives or transmits certain man-
agement frames. If an AP receives a valid association or reassociation frame from
a station, it will delete the pairwise transient key SA (PTKSA), which contains

Fragility of the Robust Security Network: 802.11 Denial of Service 405

Fig. 3. 802.11i RSN authentication and key management. Single lines represent man-
agement frames, double lines represent data frames. Note that a deauthentication at-
tack will force the station to do the whole procedure over again, starting with the
authentication request. If pairwise master key security association (PMKSA) caching
is enabled, the 802.1X authentication does not have to be repeated.

the station’s pairwise transient key. The PTKSA is also deleted if the AP sends
or receives a deauthentication or disassociation frame.

Loss of key state synchronization can occur if a station reboots and the tem-
poral keys stored in memory are lost. A station that loses key state synchro-
nization in an ESS shall perform the deauthentication procedure before it sends
an authentication request. If the authentication and key management protocol
(AKMP) fails between a station and an AP that are associated, both the station
and AP shall perform the deauthentication procedure.

4.3 802.11w Protected Management Frames

802.11w uses CCMP from 802.11i to provide integrity, confidentiality and sender
authenticity for unicast management frames, and Broadcast Integrity Protocol
(BIP) to provide integrity for broadcast management frames. In both cases,

406 M. Eian

protection is only provided for management frames of subtype action, deau-
thentication and disassociation. If protection of management frames is enabled
and an unprotected management frame of subtype action, deauthentication or
disassociation is received, the frame is silently discarded.

5 Vulnerability Analysis

5.1 General Observations

Meadows discusses several important principles for protocol design to minimize
the vulnerability to DoS attacks[14]. One of the fundamental principles is the
following:

First of all, such a protocol must provide authentication from the very
beginning.

802.11 with the 802.11i and 802.11w amendments does not provide this,
since the 802.11 authentication and association procedures are carried out, un-
protected, before the 802.11i authentication is initiated. All of the messages
exchanged prior to the 802.11i authentication can thus be forged by an at-
tacker. Of particular interest are the messages that result in state transitions
for the AP: authentication requests, association requests, deauthentication no-
tifications and disassociation notifications. A successful authentication request
will make the AP enter State 2. A successful association request will make the
AP enter State 3 if it is currently in State 2. Deauthentication and disassocia-
tion notifications will make the AP enter State 1 or State 2, respectively. The
802.11w amendment provides integrity protection for deauthentication and dis-
association notifications, and in the latest drafts it also provides a mechanism
to avoid forged association requests. Authentication requests, however, are not
protected. Exploiting unprotected authentication requests to perform a DoS at-
tack against 802.11 with 802.11i and 802.11w is a principal contribution of this
paper.

5.2 The 802.11 Standard

802.11 deauthentication and disassociation DoS attacks are carried out by forg-
ing a deauthentication or disassociation frame. The receiving station will change
to State 1 for a deauthentication or State 2 for a disassociation. The most efficient
of these two is the deauthentication attack. If the station is deauthenticated, it
has to authenticate and associate to be able to send and receive traffic again.
A slightly more efficient approach is to deauthenticate the AP, which resets
the AP to State 1. The next data frame from the station will be dropped, the
AP will respond with a deauthentication notification, and the station will then
authenticate and associate.

Fragility of the Robust Security Network: 802.11 Denial of Service 407

5.3 802.11i Security Amendments

802.11i significantly “improves” the efficiency of the deauthentication DoS at-
tack. Once a station has been deauthenticated, it must first perform 802.11
authentication and association. Then, if enabled, 802.1X authentication must be
carried out. 802.1X authentication is not used with TKIP-PSK and CCMP-PSK,
or when PMK caching is enabled and a valid PMKSA exists between the AP
and station. Finally, an EAPOL 4-way handshake must be completed to derive
the temporal keys. Once the 4-way handshake is completed, the station can send
and receive traffic.

The SA termination procedures in 802.11i make an even more efficient DoS
attack possible. If an attacker sends a forged association or reassociation frame
from the station to the AP, the AP will remain in State 3, but the temporal
keys will be deleted. The AP will start the EAPOL 4-way handshake, which will
eventually time out, then deauthenticate the station, resulting in the procedure
described in the previous paragraph.

5.4 802.11w Protected Management Frames

802.11w prevents the deauthentication and disassociation attacks. However, the
effect of the SA termination attack is amplified. When the EAPOL 4-way hand-
shake times out, the AP will try to deauthenticate the station. Since the pairwise
keys in the AP are deleted, the deauthentication frame will not be protected, and
thus discarded by the station. The station will not be able to send or receive any
traffic, and is not able to recover, since it discards the deauthentication frames
from the AP. An attempt to fix this vulnerability is included in draft version 4.0
and later of 802.11w, where a cryptographically protected SA Query procedure
is used to determine whether or not an association or reassociation frame from
the station is legitimate. Implementations based on draft 3.0 or earlier, however,
are still vulnerable to the SA termination attack.

The SA Query procedure works as follows: if an AP receives an association
request from a station with which it has a valid PTKSA, the AP responds that
the association request was temporarily rejected. This response tells the station
how long it has to wait before it can send another association request. Then,
the AP tries to send one or more query messages to the station to check if
it has a valid PTKSA. The queries are management action frames protected
under the current PTKSA. If a valid response to one of these queries is received,
the association request is ignored. If no response is received before the timeout
value is reached, the AP will delete the PTKSA. A station that loses key state
synchronization will thus have to send an association request, wait until the
query procedure times out, then send a new association request. The number of
queries and timeout value are configurable parameters.

Another issue with 802.11w is that the recovery procedure for lost key state
synchronization in 802.11i is no longer possible, since a station that loses syn-
chronization will not be able to send a protected deauthentication frame to the
AP. To recover, a station has to start 802.11 authentication without first per-
forming a deauthentication, and the AP has to allow this to avoid a deadlock.

408 M. Eian

This can be exploited to enable a new kind of DoS attack against 802.11: The at-
tacker transmits a forged open system authentication frame, which will make the
AP enter State 2. The AP still has a valid PTKSA with the station, so once the
station transmits a data frame, the AP responds with a protected disassociation
frame. The end result is the same as if a disassociation attack had been carried
out. This type of attack will from now on be referred to as an “authentication
attack”.

6 Experiments

The goals of the experiments were to verify the feasability of the authentication
and SA termination DoS attacks, and to verify that 802.11w protects against
the deauthentication attack. To this end, the authentication, SA termination
and deauthentication attacks were performed both with 802.11w enabled and
disabled, for a total of six experiments. Each attack was performed 100 times to
ensure that the results were consistent.

6.1 Infrastructure Set-Up

The infrastructure under attack consisted of a Cisco 4402 wireless controller
(AIR-WLC4402-25-K9) and a Cisco 1030 access point (AIR-AP-1030). Both
the wireless controller and access point were running software version 4.2.61.0
with Cisco Management Frame Protection (MFP) based on an earlier 802.11w
revision than draft 3.0. 802.11i CCMP-PSK was used for all the experiments.
The wireless controller and AP were configured to reject shared key authenti-
cation, and CCMP-PSK was required, which means that association requests
without an RSN information element were rejected. The station was a laptop
computer with a Cisco Aironet 802.11 a/b/g network adapter (AIR-CB21AG-
E-K9), running Windows XP SP2. The station was assigned an IPv4 address
through DHCP from the wireless controller. Both the AP and station used
802.11g for the experiments. The attacker was a laptop with a wireless network
interface card (NIC) with the Atheros AR2413 chipset, running Linux 2.6.22
with the madwifi-ng drivers, and aircrack-ng[1] version 0.9.1 as the attack soft-
ware. In particular, airmon-ng was used to enable RFMON (monitor) mode,
aireplay-ng and airtun-ng were used to inject frames, and airodump-ng to cap-
ture traffic. The same wireless network interface was used for frame injection
and traffic capture, and the experiments were conducted in a typical office en-
vironment, with no shielding from other wireless stations and APs nearby. The
only legitimate traffic on the wireless network was an Internet Control Message
Protocol (ICMP) ECHO request from the station to a server on the wired LAN
every second, and an ICMP ECHO request from the server to the station every
second, along with the ICMP ECHO responses. The ping commands in Win-
dows XP and Linux were used to generate traffic from the station and server,
respectively.

Fragility of the Robust Security Network: 802.11 Denial of Service 409

6.2 Attacks

The attacks were carried out by transmitting a single management frame of sub-
type authentication request, association request or deauthentication. To ensure
that only one frame was transmitted, an attack tool was used to generate the
frame, which was captured using airodump-ng. The single frame was then saved
to a file and replayed using airtun-ng.

First, the aireplay-ng tool was used to generate an authentication request
frame, with the two-byte authentication algorithm field set to “Open System”
(0x0000). Then, an association request frame containing an RSN information
element with CCMP support, which would be accepted by the AP, was obtained
by running an authentication attack and recording the subsequent association
request transmitted by the station. It is also possible for an attacker to con-
struct a valid association frame from the information contained in the beacon
frames broadcast from the AP. The authentication request and association re-
quest frames were constructed with the station MAC address as source and the
AP MAC address as destination. Last, the aireplay-ng tool was used to construct
a deauthentication frame with the AP MAC address as source and the station
MAC address as destination.

Once the attack frames were generated, the experiments were performed by
transmitting an attack frame once, then waiting for the station to regain con-
nectivity. Once the station was back on-line, a new attack was launched, and
this was repeated until a total of 100 attacks of each type had been carried out.
All 802.11 frames to and from the AP were recorded for analysis.

6.3 Observations

Several significant results were observed while conducting the experiments.
First, as expected, the deauthentication attack did not work when MFP was

enabled, but did work as expected when disabled.
Second, the authentication attack worked, both with and without MFP en-

abled. The station lost its network connection and had to reconnect.
Third, the valid association attack resulted in a permanent DoS when MFP

was enabled. After excessive timeouts, the station interface was automatically
assigned a link-local IPv4 address (169.254/16 prefix), and manual intervention
was needed to get it back on-line.

6.4 Results

Once the experiments were completed, Wireshark[2] version 0.99.6 was used to
analyze the results.

Deauthentication Attack. The deauthentication attack worked as expected.
Figure 4 shows the expected and observed results when MFP was disabled. With
MFP enabled, the attack had no effect, since the deauthentication notification
was ignored by the station.

410 M. Eian

Fig. 4. Expected and observed results for the deauthentication attack with MFP dis-
abled. The attack had no effect when MFP was enabled.

Fig. 5. Expected results for the authentication attack. The only difference between
MFP enabled and disabled was that in the former case the disassociation notification
was protected.

Fragility of the Robust Security Network: 802.11 Denial of Service 411

Fig. 6. Observed results for the authentication attack with MFP enabled. The AP
responds with a deauthentication notification when it should have used a disassociation
notification.

Authentication Attack. The results of the authentication attack were slightly
different from the expected results. Figure 5 shows how the attack would work
on an implementation that conforms to the standard.

The only difference between the expected and observed results were that the
AP responded with a deauthentication notification when it should have used a
disassociation notification. Figure 6 shows the observed results with MFP en-
abled. With MFP disabled, the only difference was that the deauthentication
notification was not protected. The reason code in the deauthentication notifi-
cation frame was “Class 3 frame received from nonassociated station (0x0007)”,
which confirms that the AP was in State 1 or 2 immediately after the attack.

SA Termination Attack. The results of the SA termination attacks were
also as expected. Figure 7 shows the expected and observed results with MFP
disabled. One interesting observation is that this attack is more efficient than
any other known MAC layer DoS attack against 802.11 when RSN is enabled. In
the experiment, the AP sent the first message of the EAPOL 4-way handshake,
then waited for one second before retrying. This was repeated three times before
the AKMP failed. The SA termination attach thus added three more seconds of
downtime compared to the deauthentication attack.

Figure 8 shows the expected and observed results with MFP enabled. The
station did not accept unprotected deauthentication notifications from the AP.

412 M. Eian

Fig. 7. Expected and observed results for the SA termination attack with MFP dis-
abled. The failed 4-way handshake adds three seconds of downtime compared to a
deauthentication attack.

Fig. 8. Expected and observed results for the SA termination attack with MFP en-
abled. The result is a deadlock.

Fragility of the Robust Security Network: 802.11 Denial of Service 413

The end result was a deadlock, with manual intervention required to get the
station reconnected.

7 Discussion

The results from the theoretical analysis and the experiments in the previous
sections show that a network using 802.11w is vulnerable to the authentication
attack. This attack has the same efficiency and feasability as a disassociation
attack. 802.11w thus fails to protect against all DoS attacks that are equivalent
to the deauthentication and disassociation attacks.

Introducing protected deauthentication and disassociation frames in 802.11w
leads to a deadlock vulnerability. If the PTKSA in the AP is deleted while the
station still has a valid PTKSA, then the station is not able to recover. This is the
result of the SA termination attack. The proposed solution to this vulnerability
by TGw is the SA Query procedure. This procedure has a weakness: an attacker
who is able to delete messages or perform radio frequency (RF) jamming attacks
will still be able to create a deadlock by sending an association request, then
deleting the SA queries or perform RF jamming until the SA Query procedure
times out. Message deletion in 802.11 networks is possible in the following way:
the attacker listens for messages, then switches on the transmitter while the
message is in transit to create a collision. Immediately after the collision, the
attacker sends a MAC layer acknowledgment (ACK) to the sender. The sender
thus assumes that the message was received, and no retransmission occurs. RF
jamming attacks are even easier to perform. Since the association response from
the AP contains the timeout value, the attacker knows exactly how long the
jamming attack must last to result in a deadlock. The 802.11w drafts suggest a
timeout value of around one second. An attacker can thus spend one second of
RF jamming to permanently disconnect the station.

8 Proposal for a Robust Solution

The root cause of the DoS vulnerabilities in 802.11, both the previously known
ones and the new vulnerability presented in this paper, is that 802.11 with
amendments does not adhere to the first principle from [14]. The proposed solu-
tion adheres to this principle: To provide authentication from the very beginning.
The challenge is how to do it, given the existing 802.11 standard with amend-
ments. The creators of WEP did one thing right, their shared key authentication
was performed as early as possible. This authentication, as well as the 802.11
open system authentication, is carried out using management frames of subtype
authentication. Such frames have an important property, they contain an “Au-
thentication Algorithm Number” field with a length of two bytes. Currently, only
the values “0” (open system) and “1” (shared key) are used. This means that it
is possible to add identifiers for new authentication methods.

Figure 9 shows the proposed authentication and key management procedure.
The new authentication frame specification is the following: Add a new authenti-
cation algorithm number, “2”, for RSN authentication. Add an RSN information

414 M. Eian

Fig. 9. The proposed solution for RSN authentication and key management. The au-
thentication procedure is initiated when the station transmits an authentication frame
with authentication algorithm number equal to 2 and a valid RSN information element.
Management frames of subtype “authentication and key management” are used to en-
capsulate the 802.1X authentication messages, the 4-way handshake and the group key
handshake. Note that the association request and response are protected.

element (security parameters) to the authentication frame. This enables the sta-
tion to specify the authentication method and security parameters to be used in
the authentication request.

The remaining issue is how to encapsulate the EAPOL messages used for
authentication. This is solved by adding a new management frame subtype of
Class 1, “authentication and key management”. To remove all of the DoS vul-
nerabilities described in this paper, the 802.11i EAPOL authentication and key
exchange messages are encapsulated in the authentication and key management
frames, rather than in data frames. 802.11w should then be amended to also

Fragility of the Robust Security Network: 802.11 Denial of Service 415

provide protection for authentication and key management, association request
and association response frames. Note that for backwards compatibility, the use
of data frames to transport EAPOL messages must still be supported as defined
in 802.11i.

Finally, to avoid deadlocks, the PTKSA should not be terminated after a suc-
cessful association, disassociation or deauthentication, but rather be replaced
with a new PTKSA after a successful 4-way handshake. If the protected associ-
ation procedure fails, both the station and AP should perform the deauthenti-
cation procedure.

The construction outlined above can be backwards compatible with 802.11with
amendments, as noted. However, as long as backwards compatibility is preserved,
the network will still be vulnerable to the authentication attack described in sub-
section 5.4. A transitional workaround for this is that the AP maintains a list of
stations that have been successfully authenticated using the new authentication
method, and that authentication requests for open system or shared key authenti-
cation for these stations are ignored. If backwards compatibility is discarded, this
is not an issue, since an attacker will not be able to successfully authenticate.

9 Conclusion

All of the attacks presented in this paper were carried out using off the shelf hard-
ware and freely available software. No software or hardware modification was nec-
essary, so any person with access to a laptop computer and an Internet connection
should be able to replicate these experiments or carry out actual DoS attacks.

Although the SA termination vulnerability from forged association frames
has been addressed in recent draft versions of 802.11w, implementations of early
drafts are still vulnerable. Until these have been updated, a network with 802.11w
enabled is more vulnerable to DoS than a network without. Since the only pur-
pose of 802.11w at the moment is to protect against DoS, a sound recommen-
dation would be to disable it until a solution for this vulnerability is provided.

The SA Query procedure proposed as a solution to the SA termination vul-
nerability does not protect against an attacker who is able to delete messages or
perform RF jamming attacks. Due to the severity of this vulnerability, the au-
thor strongly recommends that a more robust solution, such as the one proposed
in section 8, is adopted.

The 802.11w drafts do not, as far as the author is aware of, address the
authentication attack of subsection 5.4. If protection against all DoS attacks
with efficiency and feasability equivalent to the disassociation attack is a goal of
TGw, the proposed solution from this paper should be included in the 802.11w
amendment.

Acknowledgements

The author would like to thank Stig F. Mjølsnes for valuable help and advice,
Jing Xie for suggesting how to design a robust solution, and the anonymous
reviewers of this paper for their helpful comments.

416 M. Eian

References

1. Aircrack-ng, http://www.aircrack-ng.org
2. Wireshark, http://www.wireshark.org
3. Aboba, B., Blunk, L., Vollbrecht, J., Carlson, J., Levkowetz, H.: Extensible Au-

thentication Protocol (EAP), IETF RFC 3748 (2004)
4. Bellardo, J., Savage, S.: 802.11 Denial-of-Service Attacks: Real Vulnerabilities and

Practical Solutions. In: SSYM 2003: Proceedings of the 12th conference on USENIX
Security Symposium (2003)

5. Bittau, A., Handley, M., Lackey, J.: The Final Nail in WEP’s Coffin. In: SP 2006:
Proceedings of the 2006 IEEE Symposium on Security and Privacy, pp. 386–400
(2006)

6. Epstein, J.: SA Teardown Protection for 802.11w, IEEE TGw DCN 2441, Rev 3
(2007)

7. Epstein, J.: SA Teardown Protection, IEEE TGw DCN 2461, Rev 8 (2007)
8. Fluhrer, S., Mantin, I., Shamir, A.: Weaknesses in the Key Scheduling Algorithm

of RC4. In: Proceedings of the 4th Annual Workshop on Selected Areas of Cryp-
tography, pp. 1–24 (2001)

9. The Institute of Electrical and Electronics Engineers, Inc.: IEEE Std 802.11-1999.
IEEE, New York (1999)

10. The Institute of Electrical and Electronics Engineers, Inc.: IEEE Std 802.11i-2004.
IEEE, New York (2004)

11. The Institute of Electrical and Electronics Engineers, Inc.: IEEE Std 802.11X-2004.
IEEE, New York (2004)

12. The Institute of Electrical and Electronics Engineers, Inc.: IEEE P802.11w/D3.0.
IEEE, New York (2007)

13. The Institute of Electrical and Electronics Engineers, Inc.: IEEE Std 802.11-2007.
IEEE, New York (2007)

14. Meadows, C.: A Formal Framework and Evaluation Method for Network Denial of
Service. In: IEEE Computer Security Foundations Workshop, p. 4 (1999)

15. Tews, E., Weinmann, R.P., Pyshkin, A.: Breaking 104 Bit WEP in Less Than 60
Seconds. In: Cryptology ePrint Archive, Report 2007/120 (2007)

http://www.aircrack-ng.org
http://www.wireshark.org

Fast Packet Classification Using Condition
Factorization

Alok Tongaonkar, R. Sekar, and Sreenaath Vasudevan

Stony Brook University

Abstract. Rule-based packet classification plays a central role in net-
work intrusion detection systems such as Snort. To enhance performance,
these rules are typically compiled into a matching automaton that can
quickly identify the subset of rules that are applicable to a given network
packet. The principal metrics in the design of such an automaton are its
size and the time taken to match packets at runtime. Previous techniques
for this problem either suffered from high space overheads (i.e., automata
could be exponential in the number of rules), or matching time that in-
creased quickly with the number of rules. In contrast, we present a new
technique that constructs polynomial size automata. Moreover, we show
that the matching time of our automata is insensitive to the number of
rules. Our experimental results demonstrate substantial improvements
in space requirements, as well the runtime of Snort.

1 Introduction

Given a network packet p and a set of signatures (which capture a set of con-
ditions on the content of network packets), the problem of packet classification
is that of identifying the subset of signatures that match p. It is the central
computation performed in network intrusion detection systems (NIDS) such as
Snort [14].

A naive technique for packet classification is that of sequentially matching
each signature against an incoming packet. The performance of such a technique
degrades linearly with the number of signatures. Since the number of signatures
used in NIDS applications is typically large (e.g., Snort rule sets consist of sev-
eral thousand rules), this naive technique will not scale to even moderate speed
networks.

A natural way to speed up classification is to build a search-tree-like data
structure that can be used to narrow down the set of signatures that are appli-
cable to a packet, and then match the packet sequentially against each of the
signatures in this subset. A common technique is to base the search tree on a
small set of packet attributes that are present in almost all rules, e.g., Snort
(versions 2.x) uses a search tree that first branches on the protocol (e.g., IP or
ICMP), and then on source and destination ports (for TCP- and UDP-related
rules).

By limiting to a small number of predefined attributes, we can simplify the
search-tree construction algorithm, and also ensure that the tree is small in size.
But the drawback is that the number of signatures that remain applicable at a

M. Abdalla et al. (Eds.): ACNS 2009, LNCS 5536, pp. 417–436, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

418 A. Tongaonkar, R. Sekar, and S. Vasudevan

leaf node can be substantial. As a result, the sequential matching phase can still
take significant time. To further reduce this time, it would be desirable to build
search trees that can make use of all (or most) of the attributes that occur in sig-
natures, instead of limiting to a small number of predefined attributes. However,
building such search trees becomes complex because some of the attributes may
not be present in all signatures. Consider a search tree node that examines such
an attribute. If node has two children, signatures that do not examine this at-
tribute would need to be duplicated across these children. Repeated duplication
leads to search trees whose size, in the worst-case, is exponential in the number
of signatures [16].

In contrast with previous techniques, we develop a new, systematic approach
that ensures a polynomial bound on the size of the search tree. In addition
to space-reductions, our approach improves classification speed using a novel
technique called condition factorization that breaks down tests involving packet
fields in such a manner as to expose commonalities across different types of tests
such as equality tests, inequality tests, tests involving bit-masking operations,
etc. Our experimental results indicate an overall performance gain of 30% for
Snort. Moreover, as compared to previous techniques for constructing packet
classification search trees such as Snort-NG [9], our techniques lead to search
trees that are tens to hundreds of times smaller. Below, we present an overview
of our approach and summarize its key contributions.

1.1 Overview of Approach and Contributions

– In Section 2, we formalize the problem of packet classification as applicable
to intrusion detection systems.

– In Section 3, we develop the concept of condition factorization that provides
the foundation for the optimizations developed in this paper. Condition fac-
torization is based on the notion of a residual of a condition with respect to
another. Intuitively, if we think of logical conjunction as analogous to the
product operation on integers, then residuals are analogous to the division
operation. Just as division provides the basis for finding common factors
among integers, residuals provide the basis for “factorizing” complex con-
ditions originating from different rules so as to “share” the testing of their
common parts.

– In Section 4 we present our automaton1 construction algorithm. Condition
factorization is the core operation behind this algorithm, and it contributes
directly to two key optimizations:
• It can reason about the relationships between the typical operations that

arise in rules (e.g., equalities, inequalities, disequalities, and bit-masking
operations) and leverage them to avoid semantically redundant tests even
if they aren’t syntactically identical. It is more general than the tech-
niques developed in BPF+[3] for eliminating semantic redundancies —
our technique proactively creates opportunities for sharing computation,
whereas BPF+ is limited to checking whether previously performed tests
obviate the need for a new test.

1 Henceforth, we use the term “automaton” instead of the term “search-tree.”

Fast Packet Classification Using Condition Factorization 419

• By working with residuals of rules, our automaton construction algo-
rithm can recognize equivalence between automata states even before
constructing the descendant states. Such direct construction is impor-
tant, since a tree automaton is usually much larger (in theory, expo-
nentially larger) than a DAG automaton. As a result, techniques that
minimize tree automaton into a DAG automaton are bound to signifi-
cantly increase space and time needed for automata construction.

– In Section 5, we present several additional techniques for building space- and
time-efficient automata:
• In Section 5.1, we develop the notion of a discriminating test. If such tests

are selected at every state of the automaton, its size would be polynomial
in the size of input rules. Unfortunately, discriminating tests may not al-
ways exist, which can lead to an explosion in automaton size. We there-
fore present a new technique in Section 5.2 that guarantees polynomial
space bounds (where the degree of the polynomial can be user-specified)
by trading off some determinism. We point out that this theoretical pos-
sibility of nondeterminism wasn’t observed in our experiments. Thus, our
technique was able to guarantee quadratic worst-case space requirement,
without incurring, in practice, the performance penalties associated with
nondeterminism.

• In Section 5.3, we develop the notion of benign nondeterminism, which
enables the introduction of nondeterministic branches in the automa-
ton without any increase in matching times. Our experiments indicate
dramatic reductions in automata size as a result of this technique.

– In Section 6, we describe our implementation, followed by an experimental
evaluation in Section 7. Our technique achieves over a 10-fold reduction in
space requirements as compared to previous packet classification techniques
for NIDS, while improving matching times. Moreover, the experimentally
observed matching time remains virtually constant, regardless of the number
of rules. In contrast, previous techniques experience a significant slowdown
as the number of rules are increased. Our experiments also show that each
of the techniques presented in previous sections contributes to significant
reduction in space requirements.

– Related work is described in Section 8, followed by concluding remarks in
Section 9.

We point out that string-matching and regular-expression matching techniques
are orthogonal to the techniques developed in this paper. In particular, a common
strategy used in NIDS is to build a search-tree based on packet fields. At each leaf
of this search-tree, a string-matching (or finite-state) automaton corresponding
to the signatures S associated with this leaf is built. In the case of Snort, an
Aho-Corasick automaton [1] is used, which identifies a subset of S’ of S whose
longest string matches the current network packet. Our techniques reduce the
size of S by building a search-tree based on most packet fields, and hence the
size of S’ is also correspondingly reduced, which translates into faster times for
the final (sequential) matching phase.

420 A. Tongaonkar, R. Sekar, and S. Vasudevan

2 Preliminaries

In the rest of this paper, we use the term filter to refer to signatures. We associate
a label to identify a filter.

Definition 1 (Tests, Filters and Priorities). A test involves a variable x
and one or two constants (denoted by c) and has one of the following forms.

– Equality tests of the form x = c
– Equality tests with bitmasks of the form x&c1 = c
– Disequality tests of the form x
= c
– Disequality tests with bitmasks of the form x&c1
= c
– Inequality tests of the form x ≤ c or x ≥ c

A filter F is a conjunction of tests.

An example of a filter, as defined above, is

(dport = 22) ∧ (sport ≤ 1024) ∧ (flags&0xb = 0x3)

We exclude more complex conditions that don’t satisfy the definition of a filter,
e.g.,

(sport + dport < 1024) ∧ (sport < ttl),

since they do not seem to arise in practice.
A filter F can be “applied” to a network packet p, denoted F (p), by substitut-

ing variables, which denote the names of packet fields, with the corresponding
values from p. We define the notion of matching based on whether the filter
evaluates to true after this substitution.

Definition 2 (Matching). For a set F of filters, we say that F ∈ F matches
a packet p if F (p) is true. The match set of p, denoted MF(p) consists of all
filters that match p.

To illustrate matching, consider the following filter set F :

– F1 : (icmp type = ECHO)
– F2 : (icmp type = ECHO REPLY) ∧ (ttl = 1)
– F3 : (ttl = 1)

Also consider an icmp echo packet p1 and an icmp echo reply packet p2, both
having a ttl of 1. For these filters and packets, F1 matches p1, F2 matches p2,
and F3 matches both. As a result, MF(p1) = {F1, F3} and MF(p2) = {F2, F3}

Examples of packet-matching automata (also known as matching or classifica-
tion automata) for the above filter set are shown in Figures 1 and 2. Figure 1
shows a deterministic automaton, in which all of the transitions from any au-
tomaton state are mutually exclusive. A non-deterministic automaton is shown
in Figure 2, where the transitions may not be mutually exclusive. We make the
following observations about the structure of matching automata:

– All but one of the transitions from each state are labeled with a test as defined
above; the remaining (optional) transition, called an “other” transition, is
labeled with a more complex condition C as follows:

Fast Packet Classification Using Condition Factorization 421

5 6

7 8

9

4

10

4

3

2

1

icmp type = ECHO

ttl
= 1

{F2, F3} φ

ttl = 1 ttl
= 1

{F3}{F1, F3} {F1}

{F1, F3}

ttl = 1

φ

{F3}

icmp type
= ECHO REPLY ∧
icmp type
= ECHO

{F1, F2, F3}

ttl
= 1ttl = 1

icmp type = ECHO REPLY

{F2, F3}

Fig. 1. A deterministic matching automaton

1

4

3

2

5 6

7 8

icmp type = ECHO

{F2, F3} φ

{F2, F3}

{F3}

ttl = 1

φ

{F3}

icmp type
= ECHO REPLY

{F1, F2, F3}

ttl
= 1ttl = 1

{F1}
icmp type = ECHO REPLY

ttl
= 1

Fig. 2. A non-deterministic matching automaton

• In a non-deterministic automaton, C is the conjunction of negations of a
subset of the tests on the rest of the transitions, e.g., the third transition
from the start state in Figure 2.

• In a deterministic automaton, C is the conjunction of negations of all
the tests on the rest of the transitions, e.g., the third transition from the
start state in Figure 1. In this case, the “other” transition is mutually
exclusive with the rest of the transitions, and hence is also called an
“else” transition.

– The transitions from each automaton state are simultaneously distinguish-
able, i.e.,
• apart from the “other”-transition, the tests on the rest of the transitions

are mutually exclusive
• it is possible to determine, using a single operation with O(1) expected

time complexity, which of the transitions out of a state is applicable to
a given packet.

– Each final state S correctly identifies the match set corresponding to any
packet satisfying all the tests along a path from the start state to S.

422 A. Tongaonkar, R. Sekar, and S. Vasudevan

Note that non-determinism has a runtime cost, as it needs to be simulated using
backtracking. For instance, consider a packet that satisfies the icmp type =
ECHO condition on the first transition from the start state of Figure 2. This
packet is also compatible with the condition icmp type
= ECHO REPLY on
the third transition from the start state. Thus, after exploring down the first
transition, it is necessary to explore down the third transition as well. This need
for backtracking is depicted in Figure 2 using a dotted transition.

3 Condition Factorization

In this section, we introduce the novel concept of condition factorization. It
refers to the process of decomposing filters into combination of more primitive
tests — a process that is intuitively similar to factorization of integers. This
decomposition exposes those primitive tests that are common across different
tests, and thus enables shared computation of these common primitive tests.

The basis for condition factorization is the residue operation defined below.
It is analogous to integer division. Suppose that we want to determine if there is
a match for a filter C1. Also assume that we have so far tested a condition C2.
A residue captures the additional tests that need to be performed at this point
to verify C1.

Definition 3 (Residue). For conditions C1 and C2, the residue C1/C2 is
another condition C3 such that:

(1) C2 ∧ C3 ⇒ C1, and
(2) C1 ∧ C2 ⇒ C3.

For a filter set, F/C = {F/C|F ∈ F ∧ F/C
= false}.

Ideally, C3 would be the weakest condition such that (1) holds. In practice,
however, we may not want the minimal condition since it may be expensive to
compute, or be inefficient to use, e.g., may contain many disjunctions. For this
reason, we do not require C3 be the weakest such condition. But C3 shouldn’t
be too strong, or else we may miss matches for C1. This motivates the condition
(2) above.

The rules in Figure 3 specify how to compute residues on tests. In the figure,
the notation x denotes bit-wise complement of x, while & denotes bit-wise “and”
operation. In addition, inequalities are expressed using interval constraints, e.g.,
x ≤ 7 is represented as x ∈ [−∞, 7], if x is an integer-valued variable. Note that
a single interval constraint can represent a pair of inequalities involving a single
variable, e.g., (x ≤ 7) ∧ (x > 3) can be represented as x ∈ [4, 7].

For any pair of tests T1 and T2, the first row in the table that matches the
structure of T1 and T2 yields the value of T1/T2. We illustrate residue computa-
tion using several examples:

– (x
= a)/(x = a) is false, as given by the second row in the table (which
defines T/¬T).

– (x = 5)/(x&0x3
= 1) is false, as given by the 5th row.

Fast Packet Classification Using Condition Factorization 423

T1 T2 T1/T2 Conditions

T T true
T ¬T false

T x = c T [x ← c]

x = c x & c1 = c2 x& c1 = c & c1 c & c1 = c2

false c & c1 �= c2

x = c x & c1 �= c2 false c & c1 = c2

x = c x ∈ [c1, c2] false c �∈ [c1, c2]

x �= c x & c1 = c2 x& c1 �= c & c1 c & c1 = c2

true c & c1 �= c2

x �= c x & c1 �= c2 true c & c1 = c2

x �= c x ∈ [c1, c2] true (c < c1)
∨ (c > c2)

x ∈ [c1, c2] x ∈ [c3, c4] true c1 ≤ c3

≤ c4 ≤ c2

x ∈ [−∞, c2] c1 ≤ c3

≤ c2 ≤ c4

x ∈ [c1,∞] c3 ≤ c1

≤ c4 ≤ c2

x ∈ [c1, c2] c3 ≤ c1

≤ c2 ≤ c4

false (c2 < c3)
∨(c4 < c1)

x ∈ [c1, c2] x & c3 = c4 false c4 > c2

x & c1 = c2 x & c3 = c4 x&(c1 & c3) c2 & c3

= (c2 & c3) = c1 & c4

false otherwise
x& c1 = c2 x ∈ [c3, c4] false c2 > c4

x & c1 �= c2 x & c3 = c4 x&(c1 & c3) c2 & c3

�= (c2 & c3) = c1 & c4

true otherwise
x& c1 �= c2 x ∈ [c3, c4] true c2 > c4

T T ′ T

Fig. 3. Computation of Residue on Tests

– for (x = 5)/(x&0x3
= 0), 5th row is no longer applicable since the condition
c&c1 = c2 does not hold. (Here, c = 5, c1 = 0x3, and c2 = 0.) Hence the
applicable row is the last row, which yields (x = 5)/(x&0x3
= 0) = (x = 5).
The result is understandable: although the two conditions are compatible
with each other, the test x&0x3
= 0 does not contribute to proving x = 5.

– (x ∈ [1, 10])/(x
= 5) is also given by the last row to be (x ∈ [1, 10]).

Note that the minimal residue in the last example would be (x ∈ [1, 4]) ∨ (x ∈
[6, 10]). In this sense, Figure 3 makes approximations in computing residues.
Intuitively, we make this approximation since there does not seem to be any way
to evaluate (x ∈ [1, 4]) ∨ (x ∈ [6, 10]) more efficiently than (x ∈ [1, 10]).

424 A. Tongaonkar, R. Sekar, and S. Vasudevan

In general, approximations such as those used above have the potential to
lead our matching algorithm to perform multiple tests that have some semantic
overlap. However, the first line in Figure 3 ensures that two syntactically identical
tests would never be performed.

To illustrate residues on filter sets, consider

F = {F1 : (x = 5), F2 : (x = 7), F3 : (x < 10)}.

Then
– F/(x = 5) = {F1 : true, F3 : true}
– F/(x < 7) = {F1 : (x = 5), F3 : true}

Finally, we specify how to compute residues on more complex conditions that
are formed using conjunction and disjunction operations on tests:

– (C1 ⊕ C2)/C3 = (C1/C3)⊕ (C2/C3), for ⊕ ∈ {∧,∨}
– C1/(C2 ∧ C3) = (C1/C2)/C3

We have ignored the case where the second operand to the residue operator
contains a disjunction, since this case does not arise in our automata construction
algorithm. Using this definition, we can see that:

– ((x > 2) ∨ (y > 7))/(x = 5) is true, and
– ((x > 2) ∧ (y > 7))/(x = 5) is (y > 7).

4 Matching Automata Construction

Our algorithm Build for constructing a matching automata is shown in Fig-
ure 4. Build is a recursive procedure that takes an automaton state s as its first
parameter, and builds the subautomaton that is rooted at s. It takes two other
parameters: (i) the match set Ms that consists of all filters for which a match
can be announced at s, and (ii) the candidate set Cs that consists of filters that
haven’t completed a match, but future matches can’t be ruled out either, i.e.,
matches for these filters will be reported at some of the descendants of s. To
illustrate the concepts of match and candidate sets, we have annotated the final
states in Figures 1 and 2 with match sets, and non-final states with the union
of match and candidate sets.

We maintain only the residuals of the original filters in Cs and Ms, after
factoring out the tests performed on the path from the root of the automaton to
the state s. For example, in Figure 1, at state 2, we have completed a match for
F1, and hence its match set is {F1 : true}. Note that the condition component of
F1 has become true since we computed the residue of the original condition (i.e.,
(icmp type = ECHO)) with respect to the condition (icmp type = ECHO) on
the path from the automaton root to state 2. In addition, note that we can rule
out a match for F2 at this state, but a match for F3 is still possible. Thus, the
candidate set for this state is {F3 : (ttl = 1)}.2
2 Ms and Cs can be formally defined as follows. Let Ps denote the conjunction of tests

on the path from the start state of the automaton to the state s. Then Ms = {F ∈
F/Ps|(F = true)}. Similarly, Cs = {F ∈ F/Ps|(F �= true)}

Fast Packet Classification Using Condition Factorization 425

1. procedure Build(s,Ms, Cs)
2. if Cs is empty /* No more filters to match */
3. then match[s] = Ms /* Annotate final state with match set */
4. else
5. (D, T) = select(Cs) /* Ti ∈ T is tested on ith transition */

/* di ∈ D indicates if this transition is deterministic */
6. To = {∧di∈D|di=true ¬Ti}

/* Compute test corresponding to the “other”-transition */
7. for each Ti ∈ (T ∪ {To}) do
8. Ci = Cs/Ti

9. if ((Ti �= To) ∧ ¬di) then Ci = Ci − C/To endif
/* For a non-deterministic transition, do not duplicate */
/* filters from the “other” branch */

10. compute Msi and Csi from Ci and Ms

11. if a state si corresponding to (Csi ,Msi) isn’t present
12. create a new state si

13. Build(si,Msi , Csi)
14. endif
15. create a transition from s to si on Ti

16. end
17. endif

Fig. 4. Algorithm for Constructing Matching Automaton

A final state is characterized by the fact that there are no more filters left in
Cs. This condition is tested at line 2, and s is marked final, and is annotated to
indicate Ms as its match set. If the condition at line 2 isn’t satisfied, then the
construction of automaton is continued in lines 5–16. First, a procedure select
(to be defined later) is used at line 5 to identify a set of tests T1, ..., Tk that would
be performed on the transitions from s. This procedure also indicates whether
Ti is going to be a deterministic transition or not: in the former case di is set to
true, while in the latter case, di = false. Based on which Ti are deterministic,
the condition To associated with the “other”-transition is computed on line 6:
¬Ti is included in To iff Ti is to be a deterministic transition.

The actual transitions are created in the loop at line 7–16. At line 8, we
compute the subset Ci of filters in Cs that are compatible with Ti. However, if this
is going to be a nondeterministic transition, then a match would be tried down
the transition labeled Ti and then subsequently down the “other”-transition. For
this reason, we can eliminate from Ci any filter that will be considered on the
“other”-transition. This elimination is performed on line 9. At line 10, Msi and
Csi for the new state si are computed.

Since the behavior of Build is determined entirely by the parameters Cs and
Ms, two invocations of Build with the same values of these parameters will
yield identical subautomata. Hence a check is made at line 11 to examine if an
automaton state already exists corresponding to Csi and Msi , and if not, a new
state is created at line 12, and Build recursively invoked on this state. Finally,
a transition to this state is created at line 15.

426 A. Tongaonkar, R. Sekar, and S. Vasudevan

5 Improving Automata Size

The algorithm presented in the last section incorporated two main optimizations
to reduce automaton size and matching time, both derived from our definition
of condition factorization: detecting and sharing equivalent states, and avoiding
repetition of (semantically) redundant tests. In this section, we present tech-
niques for realizing the select function that yields significant additional reduction
in automata size.

Although our experimental evaluation considers the number of automaton
states as a measure of its size, for simplifying mathematical analysis, our discus-
sion in this section will use the automaton breadth as the size metric. Since the
automaton is acyclic, and since tests are never repeated, it can be shown that
the total number of automaton states can, in the worst case, be at most S times
its breadth, where S is the number of distinct tests across all the filters3.

5.1 Discriminating Tests

Definition of select amounts to determining the test that should be performed
at a particular state of the automaton. Since the test identifies the packet field
to be examined, select can be viewed as defining an order of examination of
packet fields. Not all orders of examination may be acceptable, since some packet
fields (e.g., the protocol field) may need to be examined before others (e.g., the
port field). We use a type system similar to packet types [4] that captures such
ordering constraints among tests. Our implementation of select ensures that
these constraints are respected.

The simplest approach for defining select is to test the fields in the order of
their occurrence in a network packet, as done in some of the previous works [2,5].
We call such a traversal order as left-to-right traversal and refer to an automaton
using this traversal order as L-R automaton. A better strategy, called adaptive
traversal, was first proposed in the context of term-matching [16], and was then
generalized to deal with binary data in [7]. In the terminology of this paper,
an adaptive traversal would select a set of tests T at an automaton state s as
follows. It identifies a packet field x that occurs in every filter in Cs. (If no such
field can be found, it falls back to another choice, e.g., choosing the left-most
field that hasn’t yet been examined.) Now, T consists of all tests on x that occur
in any of the filters in Cs.

Since adaptive traversal was developed in a context where the tests were all
restricted to be simple equalities with constants, it is easy to see that the set T
described above consists of tests that can be simultaneously distinguished4, and
hence can form the transitions from s. Moreover, it has been shown [16] that, as
compared to other choices, this choice of transitions will simultaneously reduce
the automaton size as well as matching time. Unfortunately, none of these hold in

3 In practice, the factor is closer to average size of filters, which can be significantly
smaller than S.

4 Recall that simultaneous distinguishability refers to the ability to identify the match-
ing transition in O(1) expected time.

Fast Packet Classification Using Condition Factorization 427

the more general setting of packet matching, where disequalities and inequalities
also need to be handled. For instance, consider a candidate set that consists
of two filters (x
= 25) and (x < 1024). These tests are not simultaneously
distinguishable. Moreover, neither of these tests contributes towards verifying a
match with the other. More generally, it can be shown that, in the presence of
disequality and inequality tests, the choices that decrease automaton size do not
necessarily decrease matching time (and vice-versa). We therefore focus first on
a criterion for reducing automaton size.

Definition 4 (Discriminating Set). A set T of conditions is said to be a
discriminating set for a filter set F iff for every F ∈ F there exists at most
one T ∈ T such that F belongs to the candidate set of F/T .

The set T = {x = 5, x = 6, (x
= 5) ∧ (x
= 6)} is discriminating for the filter
set C = {x = 5, x = 6, x > 7}, but not for {x = 6, x > 4}. This means if
we create 3 outgoing transitions corresponding to the three tests in T from
an automata state s with the candidate set C, none of the filters in C will be
duplicated among the children of s. As a result, in an automaton that uses only
discriminating tests, the candidate sets (as well as the match sets) associated
with the leaves will be disjoint. Since there are at most n disjoint subsets of a
set of size n, it immediately follows that any automataon that is based entirely
on discriminating tests will have at most O(n) breadth.

5.2 Ensuring Polynomial-Size Automata

Since discriminating tests may not always exist, it may be necessary to choose
non-discriminating tests. This choice introduces overlaps among the candidate
sets of sibling states in the automaton. These overlaps, in turn, mean that at
any level in the automaton, there may be as many as 2n distinct candidate
sets. Thus, the breadth of the automaton can become exponential in the num-
ber of filters. Exponential lower bounds have previously been established even
in the simple case where all tests are restricted to be equalities [16]. Although
some of the previously developed techniques can avoid such explosion, this has
been accomplished at the cost of introducing significant backtracking at runtime
[11,5,2,3], especially for the kinds of filters that occur in the context of intrusion
detection. Other techniques avoid exponential size by introducing O(n) oper-
ations for each transition at runtime, as they require runtime maintenance of
match sets [13,7]. With large filter sets that are often found in enterprise NIDS,
O(n) time complexity for transitions becomes unacceptable.

We present a new technique that can provide a polynomial size bound, while
limiting nondeterminism in practice. Indeed, any desired polynomial bound P (n)
can be achieved by our technique. However, by using a larger bound, e.g.,
n2 instead of n logn, one can obtain deterministic automata in almost all
cases.

Our technique is based on the observation that the breadth of subautomaton
rooted at s can be captured, in terms of the sizes of candidates sets associated
with s and its children, using the recurrence

428 A. Tongaonkar, R. Sekar, and S. Vasudevan

B(|Cs|) =
k∑

i=1

B(|Csi |),

where B(1) = 1. Let P (n) be the desired polynomial on n that bounds the
automaton size. Based on the above recurrence, we can show, by induction on
the height of s that the bound will be satisfied as long as the following condition
holds at every state s of the automaton.

P (|Cs|) ≥
k∑

i=1

P (|Csi |) (1)

By selecting tests that satisfy this constraint, our implementation of select en-
sures that the automaton size will be O(P (n)). If no such test can be found, our
technique picks a test that comes the closest to satisfying this constraint, and
then makes some of the outgoing transitions nondeterministic so as to ensure
that sizes of candidate sets associated with the descendant automaton states
satisfy the above constraint. Recall from line 9 of Build that making a test Ti

nondeterministic enables us to avoid overlaps between Ci and Co. So, our algo-
rithm makes one or more transitions out of an automaton state nondeterministic
until Inequality 1 is satisfied. In our implementation, we have set P (n) to be n2,
which guarantees a quadratic worst-case automaton size.

To understand the importance of the above technique, note that a purely
deterministic technique ensures good performance at runtime, but risks catas-
trophic failure on large rulesets that cause an exponential blow up — memory
will be exhausted in that case and hence the ruleset can’t be supported. In con-
trast, our approach converts this catastrophic risk into the less serious risk of
performance degradation. Unlike previous techniques for space reduction that
led to increases in runtime in practice, performance degradation remains a the-
oretical possibility with our technique, rather than something observed in our
experiments. (This is because of the fact that with the rulesets we have stud-
ied in our experiments, the quadratic bound was never exceeded, and hence
nondeterminism was not introduced.)

5.3 Benign Nondeterminism

For our final space-reduction technique, we define the concept of benign non-
determinism, which enables us to benefit from the space-savings enabled by
non-determinism without incurring any performance penalties. It is based on
the following notion of independence among filter sets.

Definition 5 (Independent Filters). Two filters F1 and F2 are said to be
independent of each other if F2/T = F2, ∀T ∈ F1, and F1/T = F1, ∀T ∈ F2.
F1 and F2 are said to be independent if ∀F1 ∈ F1, ∀F2 ∈ F2, F1 and F2 are
independent.

Suppose that there is a filter set F that can be partitioned into two independent
subsets F1 and F2. We can then build separate automata for F1 and F2. Packets

Fast Packet Classification Using Condition Factorization 429

can now be matched using the first automaton and then the second one. From
the above definition, it is clear that the tests appearing in the two automata
are completely disjoint, and hence no decrease in runtime can be achieved by
constructing a single automaton for F .

Our experiments show that the above technique leads to dramatic reductions
in space usage. The intuition for this is as follows. If F1 and F2 are independent,
then a packet may match F1, F2, both, or neither. A deterministic automaton
must have a distinct leaf corresponding to each of these possibilities. Extending
this reasoning to independent filter sets, if an automaton for the set F1 has k1

states, and the automaton for F2 has k2 states, then a deterministic automaton
for F1 ∪ F2 will have k1 ∗ k2 states. In contrast, using benign non-determinism,
the size is limited to k1 + k2. If there are m independent filter sets, then the use
of benign nondeterminism can reduce the automaton size from a product of m
numbers to their sum.

The second reason for significant reductions in practice, is as follows. After
examining some of the fields that are common across many rules, as we get closer
to the automaton leaf, independent sets arise frequently. For instance, we may
be left with one set that examines only the destination port, another set that
examines only the source port, yet another set that examines only the destination
network, and so on. Thus, independent rule sets tend to arise frequently, and
lead to massive increases in space usage if they are not recognized and exploited
using our benign non-determinism technique.

There is a simple algorithm for checking if F contains two independent sub-
sets. First, partition F into singleton subsets corresponding to each rule. Now,
these subsets are taken two at a time, and merged if they are not independent.
This process is repeated until no more merges are possible. If there are multiple
subsets left at this point, then these subsets are independent.

To deal with benign non-determinism, the interface between select and Build
needs to be extended so that the former can return a set of independent filter sets
{F1, . . . ,Fk}, instead of a test set. At this point, Build will create a k-way non-
deterministic branch. On the ith branch, it will invoke Build(si,Fi,Fi ∩Ms).

6 Implementation: Putting It All Together

Our implementation first compiles the given filter set into an automaton using
the Build algorithm. Residues were computed as specified in Table 3. Our select
implementation proceeds as follows:

– select first attempts to find a discriminating test set (Section 5.1).
– if no discriminating test sets exist, it examines opportunities for benign non-

determinism (Section 5.3).
– if neither of the above steps succeed, it returns a set of tests that achieves

the polynomial size target specified, as described in Section 5.2.

In order to speed up select, our implementation starts by examining fields that
occur in all filters in a candidate set, giving preference to those fields that contain

430 A. Tongaonkar, R. Sekar, and S. Vasudevan

primarily equality tests. Such fields have a high likelihood of yielding discrim-
inating tests at which point select returns this set. As mentioned earlier, any
constraints regarding the order of examination of fields are enforced by select.

Once the automaton is constructed, our compiler generates C-code corre-
sponding to the automaton, which is then compiled into native code using a
C-compiler. The code generation is straight-forward and not described in detail
here, except to note that the code explicitly uses an if-then-else, a binary search,
or a hash-based branching to implement transitions.

A runtime system is responsible for reading network packets and calling the
generated code to perform matching. For experiments on network intrusion de-
tection, our runtime system was essentially Snort, with modifications that were
needed to integrate with our automata code.

7 Evaluation

The goal of our experimental evaluation is demonstrate performance improve-
ments that can be gained in typical network intrusion detection systems as a
result of using the packet classification techniques presented in the previous sec-
tions. To this end, we undertook two main experiments, both performed on a
Linux system with 1.70Ghz Pentium 4 processor and 520MB memory, running
CentOS-4.2 (Linux kernel 2.6.9).

7.1 End-to-End Performance Improvement of NIDS

In the first experiment, we replaced the simple packet classification used in Snort
2.6, the popular open-source NIDS, with our technique. Snort divides signatures
into groups based on protocol, source port and destination port. For each such
group, it extracts the longest string contained within the content-matching part
of the signature, and builds an Aho-Corasick automaton for these signatures.
At runtime, a simple packet classification technique is used to identify the rule
group against which a packet needs to be matched. Then the content of the
packet is matched using the Aho-Corasick automaton associated with this group.
Since this automaton only considers the longest string from each signature, some

 0

 2000

 4000

 6000

 8000

 10000

 1500 1300 1100 900 700 500 300 100 1

D
et

ec
tio

n
tim

e
in

 n
an

o
se

co
nd

s
pe

r
pa

ck
et

Number of Rules

Condition Factorization
Snort-2.6

Fig. 5. Total Matching Time

 0

 5000

 10000

 15000

 20000

 0 50 100 150 200 250 300

N
o.

 o
f

st
at

es

Number of Filtering Rules

Condition Factorization
Snort-NG

Fig. 6. Automaton Size for Snort Rules

Fast Packet Classification Using Condition Factorization 431

of the signatures returned by this automaton may not really match the packet.
(However, the automaton will always return a superset, not a subset of matching
signatures.) Moreover, the signatures may contain complex conditions, e.g., a
constraint on the distance between two strings within a signature. To handle
these aspects, Snort performs a one-on-one match between a packet and each of
the signatures returned by the automaton.

In our experiment, we replaced the first stage with the matching automaton
constructed by our technique. At each leaf of this automaton, we replicate the
technique used by Snort, i.e., we build an Aho-Corasick automaton to recognize
the longest string contained in each of the signatures in the candidate set of the
leaf5. Finally, a one-on-one match is perfomed between the signatures returned
by this automaton and the network packet. Our implementation reuses almost
all of Snort code, including the code for Aho-Corasick automaton, and the final
one-on-one match. It only replaced the initial packet classification component. As
a result, the performance improvements obtained by our technique are entirely
due to the use of our sophisticated packet classifier.

We measured the total time taken by original Snort, and the version of Snort
we modified to use our matching automaton. These times were computed for a
21-million packet trace collected at a University laboratory consisting of about
30 hosts. Since the firewall is fully open to the Internet (i.e., the traffic is not
pre-screened by another layer of firewalls in the University or elsewhere), the
traffic is a reasonable representative of what one might expect a NIDS to be
exposed to. We used the default signature set that is shipped with Snort.

In this experiment, we observed that the one-on-one matching phase was
invoked about 120M times in the original Snort, whereas it was invoked only
40M times with our packet classifier in place. This reduction in the number of
one-on-one matches translates to about 30% reduction in the overall time taken
by Snort.

Figure 5 shows the overall time taken by Snort with and without our modifi-
cation, as we vary the number of rules. While the performance is nearly identical
for small rule sets, it quickly increases to (and stabilizes at) about 30% at a few
hundred signatures.

7.2 Improvement in Space Usage

In this experiment, we evaluated gains in space usage obtained using our packet
classification technique. We first compared our technique against that of Snort-
NG [9], which was the only other implementation of a sophisticated packet clas-
sifier that we are aware of that is applicable to NIDS like Snort. Snort-NG uses
a different strategy from ours for eliminating redundant tests: they convert all
tests into a canonical form so that semantically identical tests would also be

5 In the presence of non-determinism, we needed to modify the above technique so
as to avoid repetition of string-matching tests after backtracking. Specifically, we
built the Aho-Corasick at the first non-deterministic node encountered on a root-to-
leaf path in the automaton, and performed an intersection of the set of signatures
returned by the Aho-Corasick with the signature sets of each of the matching leaves.

432 A. Tongaonkar, R. Sekar, and S. Vasudevan

syntactically identical. However, tests in canonical form can in general be more
expensive than the original test, e.g., in order to support tests on IP addresses
that may sometimes involve bit-masking operations and at other times involve
equality, they convert both tests into smaller tests that examine one bit of ad-
dress at a time. Secondly, Snort-NG uses an entropy-based algorithm (instead
of the criteria developed in Section 5 of this paper) to decide which packet field
to test at each node. These factors lead to significant differences in the sizes of
the automaton constructed, as illustrated in Figure 6.

We focused this evaluation on packet classification, and ignored the content-
matching components of signatures. (Recall that content-matching was consid-
ered in the experiments in the previous section.) Since many signatures are
identical except for the content-matching part, the default signature set that
came with Snort-NG was reduced from a size of 1635 to 305.

Figure 6 shows the effect of increasing the number of rules on the number
of automaton states. We can see from the graph that as the number of rules
increases, the number of states in Snort NG increases much faster than our tech-
nique. For 300 rules, Snort-NG automaton contains over 45K states whereas the
automaton constructed by our technique has only about 4K states, representing
an order of magnitude improvement in space utilization.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 0 50 100 150 200 250 300

N
o.

 o
f

st
at

es

Number of Filtering Rules

LR Tree
LR DAG

Adaptive Tree
Adaptive DAG

Adaptive DAG w/ benign non-det

Fig. 7. Effect of Optimizations on Au-
tomaton Size for Snort Rules

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 50 100 150 200 250 300

M
at

ch
in

g
T

im
e

(i
n

s)

Number of Filtering Rules

Snort 2
Snort-NG

Condition Factorization

Fig. 8. Matching Time for Packet Classi-
fication

Effect of Optimization Techniques. Figure 7 illustrates the effects of differ-
ent optimizations on the automaton size. We studied different combinations of
techniques: with and without sharing of equivalent states in the automata, and
with different traversal orders.

– Order of testing fields. As compared to left-to-right (L-R) order for examining
packet fields, our technique (which uses the select function as described in
Section 6 produces tree automata that are much smaller: for 120 rules, the
L-R automaton had 150,000 states, whereas the tree automaton had less
than 3000 states.

– DAG Vs tree automata. Our results show that DAG automata were smaller
than tree automata by about 25% for our technique. Larger space reduc-
tions were achieved with DAG optimization for L-R automata, but still,

Fast Packet Classification Using Condition Factorization 433

L-R automata remain significantly larger than the one constructed by our
technique.

– Benign nondeterminism. By exploiting benign non-determinism, we were
able to achieve dramatic reductions in space usage. This is because Snort
contains many rules which test some common fields. Our technique prefers
these common fields for testing, since they are the ones that are likely to be
discriminating. Once these common fields are tested, the residual rule sets
contain many independent subsets.

We point out that a combination of our techniques was necessary to achieve the
size reductions we have reported. In particular, benign nondeterminism leads to
large improvements in size when combined with discriminating tests. It is much
less effective when used with L-R technique, since the factors contributing to
the occurrence of independent filter sets do not arise frequently when the L-R
technique is used.

7.3 Packet Classification Performance

In this section, we describe experiments to study the runtime performance of
packet classification. Unlike Section 7.1, which considered packet classification
as well as content-matching time, this section focuses exclusively on the packet
classification time in order to measure the raw performance benefits provided
by our technique. For these experiments, we used the same 21M packet trace
mentioned earlier.

Figure 8 shows the matching time taken by Snort, Snort-NG and our technique
for classifying these packets as the number of rules change. In the Figure 8, it
can be seen the matching time remains essentially constant with our technique,
even as the number of rules are increased from about 10 to 300. In contrast, the
matching times for Snort and Snort-NG increase significantly with the number
of rules. The base matching time for all the techniques (with no rules enabled)
is basically the same, as it corresponds to the time spent by Snort to read the
packets from a file and do all related processing except matching.

8 Related Work

[19],[10],[20], [17] are techniques targeted at routers where they can restrict the
problem so as to work on a small, predefined set of attributes such as IP address
and port. Our focus is on NIDS, where a much larger number of attributes may
be tested, and moreover, the tests can be complex.

Pattern matching automata have been extensively studied in the context of
term rewriting and theorem proving [15]. Sekar et al [16] presented a technique
for adapting the order of examination of fields in order to reduce space and
matching time complexity of term-matching automata. Gustafsson and Sago-
nas [7] extended this technique to handle binary data such as network packets.
Our technique generalizes their technique further by adding support for inequal-
ities and disequalties. Moreover, our bit-mask operations are more general than

434 A. Tongaonkar, R. Sekar, and S. Vasudevan

their bit-field operations. More importantly, their automata has an exponential
worst-cast space complexity. Although they describe a technique for constructing
linear-size guarded sequential automata, these automata require runtime opera-
tions to manipulate match and candidate sets as a result, their transitions have
an O(N) complexity (where N is the number of patterns), while our transitions
are O(1) expected time.

Techniques such as BPF [11], DPF [5] and Pathfinder [2] can also be viewed
as building matching automata where the packet fields are examined in the order
they occur, i.e., they rely on a left-to-right traversal instead of relying on the
techniques described in Section 5 for selecting the the tests that are performed.
As shown in our evaluation, our techniques result in significant gains in space
usage, as compared to a left-to-right traversal.

BPF+ [3] uses global dataflow techniques to identify opportunities for elim-
inating redundant tests. Our condition factorization technique is more general
than those of BPF+, being able to reason about semantic redundancies in the
presence of bit-masking operations, and comparisons involving different con-
stants. More importantly, condition factorization takes a step beyond the pas-
sive approach of recognizing redundant tests and eliminating them: it proactively
decomposes complex tests into more primitive ones so that their common com-
ponents are exposed and shared.

DPF uses dynamic code generation, which allows dynamic reordering of tests.
Dynamic reordering improves performance by detecting match failures earlier.
Al-Shaer et al [8] and Gupta et al [6] significantly improve on the dynamic
reordering technique used in DPF by using efficient algorithms to maintain
statistics regarding the traffic. Their techniques are analogous to profile-based
optimizations in compilers, whereas ours is analogous to static-analysis based
optimizations. Thus, the two techniques can complement each other.

Vern Paxson [12] developed Bro which is another popular NIDS. Sommer and
Paxson [18] enhanced Bro signature matching to use regular expressions. An
important difference between Bro and Snort is that Bro is primarily stream-
oriented: it assembles packet sequences into streams before applying signatures.
Commercial NIDS such as those from CISCO and IBM employ a combina-
tion of packet-oriented and stream-oriented matching techniques. The packet
classification techniques developed in this paper fit naturally in the context of
packet-oriented NIDS (Snort or commercial systems), and can speed them up.
Integrating them into a stream-oriented NIDS can be a bit more involved, as
these systems may apply certain tests on packet fields against some packets
(e.g., the first packet in a stream) but not against others.

9 Conclusions

In this paper we presented new techniques for packet-matching. Our approach
is based on the concept of condition factorization, and proactively creates op-
portunities for sharing common tests across different signatures. Unlike previous
techniques, our techniques provide a worst-case polynomial bound on the size of
matching automata, while ensuring excellent runtime performance in practice.

Fast Packet Classification Using Condition Factorization 435

Our experimental results demonstrate a 30% gain in end-to-end performance of
the popular Snort NIDS due to the use of our techniques. They also demon-
strate an order of magnitude reduction in space usage as compared to previous
systematic packet classification techniques developed in the context of NIDS, as
well as matching times that remain virtually constant as the number of rules is
increased.

References

1. Aho, A., Corasick, M.: Efficient string matching: An aid to bibliographic search.
Communications of the ACM 18(6), 333–343 (1975)

2. Bailey, M.L., Gopal, B., Pagels, M.A., Peterson, L.L., Sarkar, P.: Pathfinder: A
pattern-based packet classifier. In: Operating Systems Design and Implementation,
pp. 115–123 (1994)

3. Begel, A., McCanne, S., Graham, S.L.: BPF+: Exploiting global data-flow opti-
mization in a generalized packet filter architecture. In: SIGCOMM, pp. 123–134
(1999)

4. Chandra, S., McCann, P.: Packet types. In: Second Workshop on Compiler Support
for Systems Software (WCSSS) (May 1999)

5. Engler, D.R., Kaashoek, M.F.: DPF: Fast, flexible message demultiplexing using
dynamic code generation. In: SIGCOMM, pp. 53–59 (1996)

6. Gupta, P., McKeown, N.: Packet classification on multiple fields. In: ACM SIG-
COMM (1999)

7. Gustafsson, P., Sagonas, K.: Efficient manipulation of binary data using pattern
matching. J. Funct. Program. 16(1), 35–74 (2006)

8. Hazem Hamed, E.A.-S., El-Atawy, A.: On dynamic optimization of packet match-
ing in high-speed firewalls. IEEE Journal on Selected Areas in Communica-
tions 24(10) (October 2006)

9. Krügel, C., Tóth, T.: Using decision trees to improve signature-based intrusion de-
tection. In: Vigna, G., Krügel, C., Jonsson, E. (eds.) RAID 2003. LNCS, vol. 2820,
pp. 173–191. Springer, Heidelberg (2003)

10. Lakshman, T.V., Stiliadis, D.: High-speed policy-based packet forwarding using
efficient multi-dimensional range matching. In: SIGCOMM, pp. 203–214 (1998)

11. McCanne, S., Jacobson, V.: The BSD packet filter: A new architecture for user-level
packet capture. In: USENIX Winter, pp. 259–270 (1993)

12. Paxson, V.: Bro: A system for detecting network intruders in real-time. In: USENIX
Security (1998)

13. Ramesh, R., Ramakrishnan, I., Warren, D.: Automata-driven indexing of prolog
clauses. In: Seventh Annual ACM Symposium on Principles of Programming Lan-
guages, San Francisco, pp. 281–290 (1990); Revised version appears in Journal of
Logic Programming (May 1995)

14. Roesch, M.: Snort - lightweight intrusion detection for networks. In: 13th Systems
Administration Conference, USENIX (1999)

15. Sekar, R., Ramakrishnan, I., Voronkov, A.: Term indexing. In: Robinson, A.,
Voronkov, A. (eds.) Handbook of Automated Reasoning, ch. 26, vol. II, pp. 1853–
1964. Elsevier Science, Amsterdam (2001)

16. Sekar, R.C., Ramesh, R., Ramakrishnan, I.V.: Adaptive pattern matching. In: Au-
tomata, Languages and Programming, pp. 247–260 (1992)

17. Singh, S., Baboescu, F., Varghese, G., Wang, J.: Packet classification using multi-
dimensional cutting. In: SIGCOMM (2003)

436 A. Tongaonkar, R. Sekar, and S. Vasudevan

18. Sommer, R., Paxson, V.: Enhancing byte-level network intrusion detection signa-
tures with context. In: ACM CCS (2003)

19. Srinivasan, V., Varghese, G., Suri, S., Waldvogel, M.: Fast and scalable layer four
switching. In: Proceedings of ACM SIGCOMM 1998, pp. 191–202 (September
1998)

20. Woo, T.Y.C.: A modular approach to packet classification: Algorithms and results.
In: INFOCOM (2000)

Choosing NTRUEncrypt Parameters in Light of

Combined Lattice Reduction and MITM
Approaches

Philip S. Hirschhorn1, Jeffrey Hoffstein2, Nick Howgrave-Graham3,
and William Whyte3

1 Wellesley College
2 Brown University

3 NTRU Cryptosystems, Inc.

Abstract. We present the new NTRUEncrypt parameter generation
algorithm, which is designed to be secure in light of recent attacks that
combine lattice reduction and meet-in-the-middle (MITM) techniques.
The parameters generated from our algorithm have been submitted to
several standard bodies and are presented at the end of the paper.

1 Introduction

Recent research [12] has demonstrated that the NTRUEncrypt parameter sets
described in [11] do not provide the claimed level of security (for example, the
parameter sets proposed in [11] for 80-bit security only provide about 64 bits
of security against the attack of [12])1. This paper proposes new parameter sets
that are secure against the attacks of [12]. In addition, we present the algorithm
used to obtain those parameter sets. Some public key cryptosystems are known
to be vulnerable to maliciously chosen parameters [20]; the publication of a
parameter generation algorithm greatly reduces the risk that parameters have
been “cooked”.

The basic framework of NTRUEncrypt allows for great variation in the types
of parameter sets generated. For example, polynomials used in the system may
be binary, trinary, or “product-form” [8]. This paper focuses on parameter sets
for trinary polynomials, as opposed to the binary polynomials of [11], because
they generally offer a better trade-off between security and efficiency2. We make
1 The security function used in this paper is simply the processor time required to

break an instance of the algorithm. Memory is assumed to be free to the attack,
although in fact the attack of [12] requires substantial amounts of memory. This
approach is consistent with that recommended by the ASC X9 standard committee.

2 Previous papers used binary parameters mainly to keep the parameter q at 256 or
less, as this made the calculations more suitable for an 8-bit microcontroller; we do
not currently believe it is realistic to keep q down to this level, and as such the
advantages of trinary polynomials outweigh the advantages of binary polynomials.
The “product-form” polynomials of [8] promise to be more efficient even than the
trinary polynomials, but the analysis of the security of product-form polynomials
against the attack of [12] is considerably more complicated than the analysis of
trinary or binary and is not yet complete.

M. Abdalla et al. (Eds.): ACNS 2009, LNCS 5536, pp. 437–455, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

438 P.S. Hirschhorn et al.

various other choices to restrict the space that parameters are chosen from. These
choices are explained and motivated in Section 1.1.

The original contributions of this paper include:

– Explain in detail the parameter generation algorithm (because its publication
helps justify that there are no “backdoors” in the chosen NTRU parameters)

– Explicitly state any underlying assumptions we use to find optimal parame-
ters (because it is important to understand which parts of the NTRU param-
eters rely on provable statements and which rely on reasonable assumptions)

– Provide an exact calculation of the probability ps that a correct guess in the
meet-in-the-middle stage of the attack will be recognized as such (this was
only experimentally calculated in [12])

– Provide exact calculations of various other quantities involved in the hybrid
attack when applied to trinary parameters. This includes a mathematically
based formula for the probability of a decryption failure with trinary poly-
nomials

– State the standardized NTRU parameters, and their estimated security.

The algorithm has been fully implemented in an object-oriented fashion in
C++. The resulting parameter sets are given in Section 7, and a discussion of
future issues is given in Section 8.

NTRU parameters are also dependent on the expected running time of lattice
reduction algorithms, which can be modeled by extrapolating data achieved
in practice. We state the NTRU parameter generation algorithm generically,
i.e. the extrapolation line is given as input to the algorithm. When calculating
explicit parameter sets we use specific extrapolation lines, which are justified in
Appendix A. The accuracy of these extrapolation lines is stated as an explicit
assumption, since they have been generated from extensive experimentation with
practical lattice reduction techniques. The extrapolation lines in this paper have
been obtained using a novel lattice reduction method known as isodual lattice
reduction, which appears to give considerably better results in practice than
previous lattice reduction methods. The isodual lattice reduction method will
be the subject of a separate paper.

1.1 NTRU Background

Since we are describing a parameter generation function we must first define what
we mean by NTRUEncrypt parameters. Let R denote the ring Z[X]/(XN −1, q),
for some suitable integers q,N . Let Td1,d2 denote the set of trinary elements of
R with d1 entries equal to one, d2 entries equal to minus one, and the remaining
N − d1 − d2 equal to zero. Let a ∈R A denote the process of picking an element
a from the set A uniformly at random.

The NTRUEncrypt parameters, as described in [6], are integers (q, p, N , df ,
dg, dr) where the private key is F ∈R Tdf ,df

3 and the public key is h = g/f in
3 We take d1 = d2 here because, for a given value of d1 +d2, taking d1 = d2 maximizes

the work for an attacker, and because the efficiency depends only on d1 + d2, not on
the individual values of d1 and d2.

Choosing NTRUEncrypt Parameters 439

the ring R where g ∈R Tdg+1,dg
4 and f = 1 + pF is invertible for most choices

of F . N is necessarily a prime [5], and p is necessarily coprime to q. For any
value of q, we denote the factors of q by {qi} and require each qi to have order
≥ (N − 1)/2 mod N to avoid attacks based on the factorization of h (or other
polynomials) in the ring. This eliminates some values of N from consideration.
We denote by P the set of allowable primes for N .

The encryption primitive forms the ciphertext e = m′ + r ∗ h in R, where
m′ and r ∈R Tdr,dr are derived from the message m with a randomized padding
scheme [9,10,11]. We can write this primitive as a trapdoor one-way function
(OWF), which is made more precise in [10,11].

OWF (m′, r) = m′ + r ∗ h

The NTRUEncrypt cryptosystem can alternatively be seen as a lattice based
cryptosystem [15] in the lattice generated by the row of the following (2N)×(2N)
matrix.

LNTRU =
(
qIN 0N

H IN

)

,

where H denotes a (N) × (N) circulant matrix generated from h, i.e. Hi,j =
hi−j mod N . This lattice is also useful in cryptanalyzing NTRUEncrypt.

For all the parameter sets in this paper we will use the values q = 2048,
p = 3, and dr = df , dg = �N/3�5. Thus the NTRUEncrypt parameter family we
are concerned with can be parametrized by just two parameters: N and df .

1.2 Attacks on NTRUEncrypt

At a high level there are two distinct but related attacks known on NTRUEncrypt:
an attack based on knowledge of valid (plaintext,ciphertext) pairs which cause
decryption failures [10], and an attack based on reversing the one-way function
used for key generation and encryption [12].

The notion of decryption failures is slightly uncommon in cryptography, namely
that there is a small probability pdec that a valid message can fail to decrypt prop-
erly. If an attacker is aware of when this happens in NTRUEncrypt it has been no-
ticed that they can mount an attack on the cryptosystem to recover the private
key [10]. Thus in designing parameters for a security level k we ensure that this
probability is less than 2−k for a randomly chosen preimage (m′, r) of the NTRU-
Encrypt OWF. The encryption scheme used [11] then provides random (m′, r),
allowing a proof of security in the random oracle model.
4 g is unbalanced in this way to increase the chance that g will be invertible in R.
5 q = 2048 is the only value of q for which we have enough lattice reduction experi-

ments to reliably extrapolate lattice reduction times. Further lattice experiments are
underway at the moment. Taking q to be a power of 2 allows for efficient reduction
modq. We take dr = df for convenience, although the result of this is that it is very
slightly easier to recover plaintext from ciphertext than private keys from public
keys. We take dg = �N/3� because the thickness of g does not affect efficiency and
for security reasons it is sensible to take it to be as thick as possible.

440 P.S. Hirschhorn et al.

Remaining at a high level, and recalling that our NTRUEncrypt parameter
family is parametrized only by N and df , the consequence of requiring that
decryption failures occur with small probability is that df cannot get too large
compared to N .

Conversely the attacks based on reversing the one-way function used for key
generation and encryption work better when df is small compared to N . The
challenge facing parameter generation is thus to balance the size of df compared
to N , whilst keeping N relatively small for efficiency.

The best known attack on reversing the NTRUEncrypt OWF is a combination
of the two previously known attacks on NTRUEncrypt, namely Odlykzo’s MITM
attack, and standard lattice reduction. It is shown in [12] that these can be
combined in to one (more efficient) hybrid attack.

The attack consists of two consecutive stages: the first stage is to reduce the ini-
tial rowsof thepublicNTRUlatticebasisLNTRU with thebestknown lattice reduc-
tion scheme, and the second stage is to store partial key guesses in boxes dependent
on the output of the first stage. The attack is successful if two partial key guesses
that collide in the same box can be combined to recover the entire private key.

This paper is written from the perspective of justifying the new parameter
generation algorithm which is secure in light of this hybrid attack6, not from the
perspective of explaining the hybrid attack further (the reader is referred to [12]
for this). However, to help the reader, informative comments about the attack
are embedded in to the paper whenever they are applicable.

2 An Overview of Parameter Generation

2.1 The Criteria for Valid Parameters

As explained in Sections 1.1 and 1.2 the challenge of generating NTRUEncrypt
parameters suitable for a security level k is in choosing (N, df) such that:

1. The probability of decryption failures, PfailDec, is at most 2−k for randomly
chosen preimages of the NTRU OWF, and

2. The expected work to recover the private key f from the public key h, Wkey,
is at least 2k, and

3. The expected work to recover a plaintext m from the ciphertext c, Wmsg, is
at least 2k.

There is an implicit assumption here, namely:

Assumption 1. If decryption failures occur with probability less than 2−k then
there is no attack with expected work less than 2k which exploits the phenomenon
of decryption failures.

One possible line of attack to circumvent Assumption 1 is to find weaknesses
in the hash functions such that one can sample preimages (m′, r) to the NTRU-
Encrypt OWF which have decryption failures with a higher probability than
6 And the decryption failure attacks.

Choosing NTRUEncrypt Parameters 441

randomly chosen preimages. Whilst such an avenue is theoretically possible it
seems a daunting task for an attacker, and would likely require an unfeasibly
large number of calls to the decryption oracle. We also note that since the hash
functions take the public key as input, an attacker will with high probability need
to find a separate set of preimages for each key under attack, preventing them
from leveraging a single decryption-failure-causing preimage to attack multiple
keys.

We also remark that there has been some work done [16] on linking require-
ments 2 and 3 above, i.e. in showing that if one has an oracle that can recover
NTRUEncrypt messages, then it can be used to recover the NTRUEncrypt pri-
vate key [16]. Such reductions are typically highly dependent on the structure
of the key and OWF preimages so typically do not form tight arguments. In the
proposed NTRUEncrypt parameters we have not looked for a provable correspon-
dence between message and key recovery. Instead we independently consider the
problem of message recovery in Section 6.

2.2 The Space of Valid Parameters

The space of valid (N, df) for q = 2048, p = 3, dr = df , dg = �N/3� is depicted
in the Figure 1.

The curved solid lines denote “k-isopleths”; parameters (N, df) for which
Wmsg, the expected work of the hybrid attack is 2k. The security levels shown
corresponds to k = 112, 128, 192 and 256 bits of security. Notice that df is
necessarily at most �N/3� since F is a trinary vector, and this constraint is
shown by the (leftmost) straight dashed line. The other constraint on df is

Wmsg ≤ P−1
decFail .

The (central) curved dashed line corresponds to Wmsg = P−1
decFail. Valid NTRU-

Encrypt parameters (N, df) are below both of these lines.

d f

N

112
128

d = N/3 f

192

256

Fig. 1. k-isopleths for df vs. N

442 P.S. Hirschhorn et al.

The exact location of the isopleths of the expected work of the hybrid attack
depends on how we are measuring this work. In this report we have two ways of
measuring the hybrid cost:

– a conservative estimate (which involves being conservative about both lattice
running times, and conservative about the expected running time of the
MITM component).

– a current estimate (which involves more realistic estimates of how quickly
the attack can be mounted, with our current knowledge).

Once the isopleths of the expected work of the hybrid attack are fixed, one
can apply a “cost” function to each of the (N, df) on a k-isopleth and potentially
find an “optimal” one. In this report we consider three ways of measuring the
cost of a parameter set:

– a space metric (trying to optimize the size of the ciphertexts and public key),
– a speed metric (trying to optimize the time to perform decryption), and
– a trade-off metric (combining the two other metrics).

2.3 The Algorithm

The parameter generation algorithm takes as input a security parameter k and
outputs the parameter set corresponding to that security level. At a high level
it can simply be described as the following: (a) pick a way to measure cost and
a way to measure security, (b) find an initial (N, df) on the dashed line which
corresponds to a security level of k, and (c) traverse the k-isopleth until the cost
metric is optimized. This is made more precise in Algorithm 1.

3 Decryption Failure Probability

The decryption failure probability can be conservatively bounded by the proba-
bility that one or more coefficients of r ∗ g+F ∗m has an absolute value greater
than c = (q − 2)/(2p).

For trinary polynomials chosen subject to the constraints in this paper, this
probability is

pdec = N ∗ erfc(c/(σ
√

2N)), (1)

where σ2 = 4(dr + df)/(3N).
We now justify this statement. In the following calculation we will make the

following explicit assumption:

Assumption 2. The coefficients of r are independent random variables taking
the value 1 with probability dr/N , −1 with probability dr/N and 0 with probability
(N−2dr)/N . We make corresponding assumptions about g, dg, F, df and m′, dm′ .

Choosing NTRUEncrypt Parameters 443

Algorithm 1. NTRUEncrypt Parameter Generation
1: i ← 1 {The variable i is used to index the set of acceptable primes P}
2: i∗ ← 0 {This will become the first index which can achieve the required security}
3: repeat
4: N ← Pi

5: df ← �N/3� {We will try each df from �N/3� down to 1}
6: repeat
7: k1 ← hybridSecurityEstimate(N, df) {This is dependent on the chosen secu-

rity metric}
8: k2 ← log2(decryptionFailureProb(N, df))
9: if (k1 ≥ k and k2 < −k) then

10: (i∗, d∗
f) ← (i, df) {Record the first acceptable index i and the value of df}

11: end if
12: df ← df − 1
13: until (i∗ > 0 or df < 1)
14: i ← i + 1
15: until i∗ > 0
16: c∗ ← cost(Pi∗ , d∗

f) {This is dependent on the chosen cost metric}
17: while an increase in N can potentially lower the cost do
18: N ← Pi

19: df ← d∗
f {Note that when N increases the cost must be worse for all df ≥ d∗

f ,
and that the decryption probability is decreased both by an increase in N and
a decrease in df}

20: repeat
21: k1 ← hybridSecurityEstimate(N, df)
22: c ← cost(N, df)
23: if (k1 ≥ k and c < c∗) then
24: (c∗, i∗, d∗

f) ← (c, i, df) {Record the improvement in cost and the corre-
sponding i, df}

25: end if
26: df ← df − 1
27: until df < 0
28: i ← i + 1
29: end while
30: return (Pi∗ , d∗

f)

– Note that line 17 is not specified precisely because it depends on the cost() function
used (see Section 4 for a discussion of the possible cost metrics and end-conditions).

– Note that the call to decryptionFailureProb() on line 8 simply uses Equation 1,
and the calls to hybridSecurityEstimate() use Algorithm 2.

In order for decryption to succeed, the coefficients of

a = p ∗ (r ∗ g + m′ ∗ F) + m.

must have absolute value less than q/2. In fact, it would suffice to know that these
coefficients lay in an interval of length less than q in order to do first a trans-
lation, then a decryption. Shortly after NTRU was first introduced this second

444 P.S. Hirschhorn et al.

method was viewed as preferential, as it increased the probability of successful
decryption. However, theoretically predicting the likelihood of decryption failure
by this method was a particularly unwieldy problem, due to the fact that the
sizes of the maximum and minimum coefficients were not independent random
variables.

The somewhat weaker question of estimating from above the probability

pdec(c) = Prob (a given coefficient of r ∗ g + m′ ∗ F has absolute value ≥ c)
(2)

can, however, be analyzed quite accurately by a simple application of the central
limit theorem, making the assumption described above.

If Xj denotes a coefficient of r ∗ g+m′ ∗F , then Xj is a sum of N terms, that
is,

Xj =
N∑

i=1

(yi + zi) ,

where each yi = rkgl and zi = msFt for some k, l, s, t. It is then easily checked
that

σ2 = E(X2
j) =

N∑

i=1

(

E(y2
i) + E(z2

i)
)

=
4drdg + 4dfdm′

N
.

Assuming that N is large, we apply the central limit theorem to Xj , (normalized
to have variance equal to 1). Applying the theorem twice, to account for the
negative or positive extremes of Xj, we find that

Prob (|Xj | ≥ Cσ) <
2√
2π

∫ ∞

C

e−x2/2dx.

Writing c = Cσ we have

Prob (|Xj | ≥ c) <
2√
2π

∫ ∞

c/σ

e−x2/2dx.

Translating this into the notation of the complementary error function, we get

Prob (|Xj | ≥ c) < erfc(c/(σ
√

2)),

with σ as above.
The decryption failure probability can be conservatively bounded by the prob-

ability that one or more coefficients of r ∗g+F ∗m has an absolute value greater
than c = (q − 2)/(2p). Thus, repeating the experiment of selecting a coefficient
N times, we finally have the probability of decryption failure bounded above by

pdec(c) = Nerfc(c/(σ
√

2)),

with c = (q−2)/(2p). For trinary polynomials chosen subject to the constraints in
this paper, σ2 = 4(dr +df)/3. Experiments with on the order of 109 polynomials,
with different values for the d’s, have shown that this model gives an accurate,
while conservative, description of reality.

Choosing NTRUEncrypt Parameters 445

4 Cost Functions

As explained in Section 2.2 there are three cost metrics of interest:

The space metric. The space metric corresponds to the bit-size of the public
key and ciphertexts, i.e. costspace = N log2 q. Since, for constant q, this is
independent of df , one does not have to traverse the k-isopleth looking to
minimize it; it is simply minimized for the least N on the k-isopleth.

The speed metric. The speed metric is derived from the convolution times for
a parameter set, i.e. costspeed = Ndf .

When trying to minimize this cost notice that an increase in N is offset
by a decrease in df , thus if N∗, d∗f corresponds to the current minima on
the k-isopleth then one can stop searching the k-isopleth when N increases
beyond N∗d∗f/(d

∗
f − 1) without a drop in df .

The trade-off metric. In particular environments neither the space metric nor
the speed metric may be the natural way to measure cost, but some other
metric. We introduce a trade-off metric: costtrade-off = cost2space× costspeed,
which does not have an obvious intrinsic interest, but allows us to show how
to handle different metrics.

The criteria for knowing when to stop searching the k-isopleth for this
metric can be the same as the speed metric.

5 Hybrid Security

5.1 Overview

The hybrid security function aims to find optimal attack parameters, i.e. pa-
rameters such the maximum of lattice security and MITM security is minimized
over all attack parameters.

As explained in [12], the hybrid security of a parameter set (N, df) is the
minimum security over all attack strategies on that parameter set. An attack
strategy is defined by the following three values:

– an integer y2, N ≤ y2 ≤ 2N which corresponds to the number of initial rows
of the lattice LNTRU which will be reduced

– a real number α, which roughly corresponds to the quality of the reduced
part of the lattice; a larger α corresponds to a better reduced lattice (which
takes more time to achieve).

– an integer c which corresponds to the expected number of ±1’s in the last
2N−y2 entries of F which we will mount the MITM attack on (note that these
entries affect the last 2N − y2 rows of LNTRU). By definition, 0 ≤ c ≤ df .

In performing our analysis we have assumed that the number of +1’s and
−1’s in the last 2N − y2 rows is the same. For clarity we make this assumption
explicit:

446 P.S. Hirschhorn et al.

Assumption 3. An attacker cannot do substantially better by assuming that
the number of 1 coefficients in the last 2N−y2 rows is different from the number
of −1 coefficients.

A simple way to enumerate the space and hence find the optimal attack strat-
egy is given in Algorithm 2.

Algorithm 2. Optimal Attack Strategy and Hybrid Security Estimation
1: for y2 = N to 2N do
2: for c = 0 to df do
3: Find α such that:

latticeRunningTime(y2, α) − MITMRunningTime(y2, c, α) ≈ 0.
4: w ← max(latticeRunningTime(y2, α), MITMRunningTime(y2, c, α))
5: if (w∗ is undefined or w < w∗) then
6: (w∗, y∗

2 , c∗, α∗) ← (w, y2, c, α) {Record the improved attack strategy, and
implied attacker work}

7: end if
8: end for
9: end for

10: return the optimal attack strategy (y∗
2 , c∗, α∗) and the estimated work w∗

– Notice that the call to latticeRunningTime() is independent of c and simply re-
turns Equation 3. The call to MITMRunningTime() returns tN/psplit where these
quantities are defined as in Section 5.3.

– The calculation of α in step 3 can be done by standard root finding techniques.

5.2 Lattice Security

In order to find optimal attack parameters, we need to be able to estimate the
work it takes to reduce the first y2 rows of the lattice LNTRU with “quality” α.

In Appendix A we discuss what it means for lattice to have “quality” α, and
we present the lattice experiments we have conducted to approximate this time.
To extrapolate beyond the end of the experimental data we model running time
as exponentially dependent on the GSA slope as defined in [19], and cubically
dependent on the dimension7. This model gives the estimates of running time
as 2w where

w =
2m(y2 −N)

(1− α)2
+ 3 log

2(y2 −N)
1− α

+ c (3)

for some constant m, c.
Extrapolating lattice reduction times is far from a science, but the data seems

to support, with reasonable assurance, that practical lattice reduction times
exceed the above formula with m = 0.45, c = −110.

7 This cubic dependency is heuristic but does not greatly affect the results.

Choosing NTRUEncrypt Parameters 447

As mentioned in Section 2.2 we allow the parameters sets to be generated with
either current security assurances, or conservative security assurances. For the
conservative security assurance we use the constants m = 0.2, c = −50, which
hopefully give ample room for improvements in lattice reduction, without re-
quiring that the NTRUEncrypt parameter sets change. We make this assumption
explicit below:

Assumption 4. We assume lattice reduction of the first y2 elements of the lat-
tice LNTRU with quality α takes time at least 2w where w is given by Equation 3,
with m = 0.2, c = −50.

5.3 MITM Security

In order to find optimal attack parameters we need to be able to estimate the
expected work it takes to perform the MITM attack, for a given y2, α and c.

The following events need to happen for a successful MITM attack:

– The c value must correctly hold how many 1s and −1s are in the last 2N−y2

entries of F . The probability of this event is called psplit.
– The attacker must enumerate through a large number of guesses of “halves”

of the end of F .
– For each one he must apply a CVP reduction algorithm.
– A pair of half-guesses must collide after the CVP algorithm. This probability

is referred to as ps in [12].

We now go through the expected work for each of these events. If a necessary
event happens only with a probability p then the expected work is divided by p.

Let
(

n
r1,r2

)

denote a “trinomial” quantity, i.e. the number of ways of choosing
r1 positions of one kind, and r2 positions of another kind in a vector of length n.
It is simple to confirm the following relationship between trinomial and binomial
quantities:

(
n

r1,r2

)

=
(

n
r1

)(
n−r1

r2

)

.

The probability psplit. The probability that the number of 1s and −1s in the
last 2N − y2 entries of F is equal to c is given by

psplit =
(

y2 −N

df − c, df − c

)(
2N − y2

c, c

)(
N

df , df

)−1

If the NTRUEncrypt public key was h = g/F then any of the rotations of F
would be suitable for the MITM attack, so this probability should be increased
to

p′split = 1− (1− psplit)N ,

assuming the N rotations behave like independent trials.
In the case when the NTRUEncrypt public key is h = g/f then we do not

see a way to exploit the cyclic symmetry, so when assessing the MITM work in
the current security case we will be using the probability psplit. However, when
assessing the MITM work in the conservative security case we will assume that
the rotations can still somehow be exploited and use the probability p′split.

448 P.S. Hirschhorn et al.

The probability ps. In [12] the probability ps was experimentally calculated,
whereas for parameter generation we must calculate this probability mathemat-
ically. To make this possible we make the following assumption (which very
closely models reality).

Assumption 5. We assume the orthonormal matrix Y defined in [12] (which
is an output of the lattice reduction stage) is suitably random so that the error
vector (g|f1)Y can be modeled by a normal distribution with mean zero, and
variance σ2 = |g|2 + |f1|2 = 2dg + 2(df − c).

As explained in [12] the probability ps denotes the probability that an “error
vector” e is such that BabaiB(v) = BabaiB(v + e) where BabaiB(v) denotes
applying Babai’s nearest plane CVP algorithm to the point v with respect to
the basis B, i.e. the addition of the error vector e does not change the returned
close lattice vector.

In NTRUEncrypt the error vector e results from the multiplication of a trinary
vector (of norm-squared 2dg+2(df−c)) with an orthonormal matrix, Y , resulting
from lattice reduction. Under the assumption that Y is “suitably random”, we
can model the error vector e as (y2−y1) coefficients drawn independently from a
normal distribution with mean 0 and variance σ2 = 2dg + 2(df − c). This model
fits extremely closely with experimental results from 109 separate convolution
calculations.

Let v be a vector of length y2 − y1 with coefficients satisfying 0 ≤ vi ≤
qα+i(1−α)/(y2−y1), i.e. v is weakly reduced with respect to a basis that satisfies
the GSA. In this case ps is the probability that the vector w = v+ e satisfies the
conditions 0 ≤ wi ≤ qα+i(1−α)/(y2−y1) for every i. We now show how to calculate
ps exactly, assuming the above model of the error vector e.

Let D = qβ for some α ≤ β ≤ 1. We assume any given coefficient is uniform
in the range [0, D) and is subject to the addition of an error term drawn from a
normal distribution with variance σ2 and mean 0. For any given x ∈ [0, D) the
probability that this sum is no longer in the range [0, D) – in other words, the
probability that a particular coefficient will be reduced incorrectly – is given by:

fD,σ(x) =
1
2

(

erfc
(

x

σ
√

2

)

+ erfc
(
D − x

σ
√

2

))

= 1− 1
2

(

erf
(

x

σ
√

2

)

+ erf
(
D − x

σ
√

2

))

See Figure 2(a) for an example of this function. Note that, so long as σ2 < D,
we have fD,σ(0) = 0.5 and fD,σ(D) = 0.5 as the values of ei will be positive or
negative with probability 0.5. The expected value of f when x is chosen uniformly
from [0, D) is given by:

fD,σ =
1
D

∫ D

0

fD,σ(x)dx.

This value is also plotted in Figure 2(a).

Choosing NTRUEncrypt Parameters 449

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6

(erfc(x/(s*sqrt(2))) + erfc((D-x)/(s*sqrt(2))))/2
erfc(D/(s*sqrt(2)))-s*sqrt(2)*(exp(-D**2/(2*s**2))-1)/(D*sqrt(pi))

 0

 0.2

 0.4

 0.6

 0.8

 1

-1 -0.5 0 0.5 1

erfc(2048**x/(s*sqrt(2)))-s*sqrt(2)*(exp(-2048**(2*x)/(2*s**2))-1)/(2048**x*sqrt(pi))

Fig. 2. (a) fD,σ(x) and fD,σ when D = 20481/4, σ2 = 2/3, 0 ≤ x ≤ D; (b) fqβ ,σ when
q = 2048, σ2 = 2/3, −1 ≤ β ≤ 1

Now we can analyze the behavior of fD,σ with D. From well known properties
about the error function erf () we know that:

∫ D

0

erf
(

x

σ
√

2

)

dx = σ
√

2
∫ D

σ
√

2

0

erf (y) dy

= σ
√

2

[

y erf (y) +
e−y2

√
π

] D
σ
√

2

0

= D erf
(

D

σ
√

2

)

+
σ
√

2√
π

(

e−
D2

2σ2 − 1
)

and
∫ D

0

erf
(
D − x

σ
√

2

)

dx =
∫ D

0

erf
(

x

σ
√

2

)

dx.

Thus we have

fD,σ = erfc
(

D

σ
√

2

)

− σ
√

2
D
√
π

(

e−
D2

2σ2 − 1
)

.

This function is sketched in Figure 2(b) with D = qβ , −1 ≤ β ≤ 1.
Now we can calculate ps(y2, α, q, σ) which is the probability that none of the

coefficients in the middle y2 − y1 coefficients of γ are reduced incorrectly (note
that y1 is related to y2 and α by (4)):

ps =
(

1− 2
3q

)y1 y2−y1∏

i=0

(

1− f
q

α(y2−y1)+i(1−α)
y2−y1 ,σ

)

=
(

1− 2
3q

) 2N−y2(1+α)
1−α

2(y2−N)
1−α∏

i=0

(

1− f
q

2α(y2−N)+i(1−α)2
2(y2−N) ,σ

)

The time for the CVP algorithm. Each step in the MITM search phase
involves a reduction against a (y2) × (y2) matrix. In this paper we assume the

450 P.S. Hirschhorn et al.

reduction is performed by Babai’s method [1]. Babai’s reduction is experimen-
tally found to take about t = y2

2/2
1.06 operations where bit operations are defined

as in [14].
For conservative estimates, we assume that since the MITM phase involves

multiple reductions against the same reduced matrix, there will be some opti-
mization involving precomputation that reduces the running time by a factor of
y2 to t′ = y2/21.06.

We note that there may be other means of carrying out this weak-CVP reduc-
tion phase. Babai’s reduction is likely to be the most efficient when measured
purely in terms of the time for the reduction. However, it is conceivable that
a slower reduction algorithm exists which results in higher values for ps, and
that this algorithm might give better results for an attacker than the current
approach.

Assumption 6. We assume that Babai’s nearest plane algorithm is the most ef-
fective CVP approach to use in the hybrid attack (in terms of collision probability
divided by time).

We note that contradicting this assumption does not necessarily mean that the
proposed NTRUEncrypt parameters are weak, since conservative security esti-
mates have been made in many other areas. However it is an interesting open
question to know whether or not there is a more efficient CVP approach to be
used in the hybrid attack.

The expected number of half-guesses required. It is explained in [12] that
the hybrid attack works by choosing a linear combination of the last 2N − y2

rows of LNTRU with c/2 1s and c/2 −1s. The number of such combinations is
given by

N0 =
(

2N − y2

c/2, c/2

)(
c

c/2, c/2

)−1

.

However since we require the two halves to collide after the CVP stage the
probability of picking such a “good” combination is only psN−1

0 .
Moreover in [12] it is argued that, by the birthday paradox, one should ex-

pect to try
√

ps

(
c

c/2,c/2

)

samples before finding two halves that actually match.
Thus the number of trials before a collision will occur for the current security is
approximated by

N =
(

2N − y2

c/2, c/2

)((
c

c/2, c/2

)

ps

)−1/2

In estimating the number of trials before collision with occur with conservative
security we assume that generalized birthday methods can be applied so just
one8 “good” combination is sufficient to find a collision, i.e. we use the estimate
N ′ = N0/ps. This conservative assumption may be close to reality as indicated
by the work in [13].
8 Or more realistically a small constant number of good combinations.

Choosing NTRUEncrypt Parameters 451

6 Message Recovery

One can estimate the hardness of message recovery as opposed to key recovery
in a similar way to the above. The ciphertext point (c, 0) is only (m′,−r) away
from a lattice point of LNTRU . In our family of NTRU parameters we know
dr = df , but m′ is a random trinary vector, with an un-fixed number of 0s,
1s and −1s. If m′ is very sparse for example, then message recovery could be
easier than key recovery. We also note that the value of m′(1) is leaked by each
ciphertext since c(1) = m′(1) + r(1)h(1) mod q.

Clearly an encrypter cannot leak the private key in a public-key encryption
scheme (since they know no more information than an attacker), but they might
leak their message m. However we observe that the encrypter does see m′, r, so
she can re-encrypt if she wants. We note that the probability of re-encryption
depends on the parameter set, and parameters may be rejected if this probability
is too high for comfort.

In this report we make the following simplifying assumption:

Assumption 7. An encrypter that re-encrypts whenever the number of 1s or
−1s in m′ falls below df does not make message recovery fall below the required
security level.

When comparing the message recovery problem to the key recovery problem
there are two factors to take in to consideration: one that is good for an attacker,
and one that is bad. Firstly if an attacker knows m′ only has df 1s and −1s, the
message recovery lattice problem is actually slightly easier than the key recovery
problem since ps will be larger in this case (due to the fact that g is thicker
than m′). However the second factor is that m′ is unknown to an attacker, so
the probability of a sparse m′ should be factored in to an attackers strategy. We
note that the probability of a random trinary N -vector having dm ones and dm

minus ones is given by
(

N
dm,dm

)

.
To garner belief in Assumption 7 we compared the expected ps for message

security to the ps for key security (in the case of ciphertexts satisfying m′(1) = 0)
for each of the optimal attack parameters given in Section 7. The expected ps

probability for the message recovery problem was improved by at most 0.1 bits
from the key recovery ps probability, which suggests that message recovery is
very closely tied to key security, and hence Assumption 7 is realistic.

7 Parameter Sets

The results of running the parameter generation algorithm under conservative
assumptions about the strength of lattice attacks and MITM attacks is given in
Table 1. For each security level k we give the optimized parameter sets (N, df)
for each of the three cost metrics.

We also assess the strength, k′, of parameter sets under current assumptions
about the strength of lattice attacks, and MITM attacks, to show the safety
margin “built-in” to the parameters.

452 P.S. Hirschhorn et al.

Table 1. Standardized NTRU Parameters (conservative)

space trade-off speed
k (N, df), k′ (N, df), k′ (N, df), k′

112 (401, 113), 154.88 (541, 49), 141.766 (659, 38), 137.861

128 (449, 134), 179.899 (613, 55), 162.385 (761, 42), 157.191

192 (677, 157), 269.93 (887, 81), 245.126 (1087, 63), 236.586

256 (1087, 120), 334.85 (1171, 106), 327.881 (1499, 79), 312.949

Table 2. Optimal attack parameters

space trade-off speed

k (N, df), (y2, c, α) (N, df), (y2, c, α) (N, df), (y2, c, α)
(y1, ps, psplit, Y, t) (y1, ps, psplit, Y, t) (y1, ps, psplit, Y, t)

112 (401, 113), (693, 27, 0.095) (541, 49), (800, 15, 0.149) (659, 38), (902, 13, 0.175)
(48,−45.4,−0.6, 57.7, 8.4) (192,−26.9,−13.1, 63.6, 8.6) (313,−21.9,−17.7, 63.7, 8.8)

128 (449, 134), (770, 35, 0.100) (613, 55), (905, 17, 0.142) (761, 42), (1026, 15, 0.183)
(57,−49.0,−0.3, 70.2, 8.5) (225,−31.5,−14.9, 72.9, 8.8) (378,−23.1,−20.9, 75.2, 8.9)

192 (677, 157), (1129, 45, 0.096) (887, 81), (1294, 27, 0.143) (1087, 63), (1464, 23, 0.175)
(129,−67.4,−2.0, 113.6, 9.1) (345,−43.9,−21.9, 117.0, 9.3) (550,−34.2,−31.9, 116.7, 9.5)

256 (1087, 120), (1630, 39, 0.127) (1171, 106), (1693, 37, 0.144) (1499, 79), (1984, 29, 0.174)
(386,−64.1,−24.9, 157.9, 9.6) (474,−56.0,−28.7, 161.8, 9.7) (809,−44.4,−47.8, 153.9, 9.9)

For the reader that is interested in knowing the exact attack parameters which
match lattice security and MITM security (and hence give the security level), we
give this information in Table 2. In this table Y denotes the number of iterations
of the MITM attack, and t denotes the bit-security per iteration (i.e. the cost of
Babai’s CVP algorithm).

8 Conclusions

We have introduced a family of NTRU parameters parametrized by (N, df) and
shown how to estimate their strength. We have used this algorithm to generate
parameters sets for the k = 112, 128, 192 and 256-bit security levels under
conservative assumptions about the effectiveness of lattice reduction algorithms
and the MITM attack. To highlight the safety margin we have built in to the
new parameters we have also estimated how hard the parameters are to attack
under more current assumptions.

A future line of work may be in expanding the size of the NTRU family
of parameters to allow for even better optimized parameters. For example the
family we have defined uses a fixed q = 2048, whereas a smaller q could reduce
the bandwidth and public key-size used in the cryptosystem. To propose such
parameters more lattice experiments would have to be run at lower values of
q, and one would need to ensure that the decryption failure probability is still
small enough.

Choosing NTRUEncrypt Parameters 453

References

1. Babai, L.: On Lovasz’ lattice reduction and the nearest lattice point problem.
Combinatorica 6(1), 1–13 (1986)

2. Cavallar, S., Dodson, B., Lenstra, A.K., Lioen, W., Montgomery, P.L., Murphy,
B., te Riele, H.J.J., et al.: Factorization of a 512-bit RSA modulus. In: Preneel, B.
(ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 1–17. Springer, Heidelberg (2000)

3. Coppersmith, D., Shamir, A.: Lattice Attack on NTRU. In: Fumy, W. (ed.)
EUROCRYPT 1997. LNCS, vol. 1233, pp. 52–61. Springer, Heidelberg (1997)

4. Gama, N., Nguyen, P.Q.: Predicting lattice reduction. In: Smart, N.P. (ed.)
EUROCRYPT 2008. LNCS, vol. 4965, pp. 31–51. Springer, Heidelberg (2008)

5. Gentry, C.: Key recovery and message attacks on NTRU-composite. In: Pfitzmann,
B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, p. 182. Springer, Heidelberg (2001)

6. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: A new high speed public key
cryptosystem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288.
Springer, Heidelberg (1998)

7. Hoffstein, J., Silverman, J.H.: Invertibility in truncated polynomial rings. Technical
report, NTRU Cryptosystems, Report #009, version 1 (October 1998), http://
www.ntru.com

8. Hoffstein, J., Silverman, J.H.: Random small hamming weight products with ap-
plications to cryptography. Discrete Applied Mathematics 130(1), 37–49 (2003)

9. Howgrave-Graham, N., Nguyen, P., Pointcheval, D., Proos, J., Silverman, J.H.,
Singer, A., Whyte, W.: The Impact of Decryption Failures on the Security of
NTRU Encryption. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 226–
246. Springer, Heidelberg (2003)

10. Howgrave-Graham, N., Silverman, J.H., Singer, A., Whyte, W.: NAEP: Provable
Security in the Presence of Decryption Failures IACR ePrint Archive, Report 2003-
172, http://eprint.iacr.org/2003/172/

11. Howgrave-Graham, N., Silverman, J.H., Whyte, W.: Choosing Parameter Sets for
NTRUEncrypt with NAEP and SVES-3 CT-RSA, pp. 118–135 (2005)

12. Howgrave-Graham, N.: A hybrid meet-in-the-middle and lattice reduction attack
on NTRU. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 150–169.
Springer, Heidelberg (2007)

13. Joux, A., Howgrave-Graham, N.: Generalized birthday problems applied to subset
sum (manuscript)

14. Lenstra, A., Verheul, E.: Selecting Cryptographic Key Sizes. Journal of Cryptol-
ogy 14(4), 255–293 (2001)

15. Micciancio, D.: Improving Lattice Based Cryptosystems Using the Hermite Normal
Form. In: Silverman, J.H. (ed.) CaLC 2001. LNCS, vol. 2146, pp. 126–145. Springer,
Heidelberg (2001)

16. Mol, P., Yung, M.: Recovering NTRU Secret Key from Inversion Oracles. In:
Cramer, R. (ed.) PKC 2008. LNCS, vol. 4939, pp. 18–36. Springer, Heidelberg
(2008)

17. Rivest, R., Shamir, A., Adleman, L.M.: A method for obtaining digital signatures
and public-key cryptosystems. Communications of the ACM 21, 120–126 (1978)

18. RSA Laboratories, RSAES-OAEP Encryption Scheme, ftp://ftp.rsasecurity.
com/pub/rsalabs/rsa/_algorithm/rsa-oaep_spec.pdf

19. Schnorr, C.P.: Lattice Reduction by Random Sampling and Birthday Methods. In:
Alt, H., Habib, M. (eds.) STACS 2003. LNCS, vol. 2607, pp. 145–156. Springer,
Heidelberg (2003)

http://www.ntru.com
http://www.ntru.com
http://eprint.iacr.org/2003/172/
ftp://ftp.rsasecurity.com/pub/rsalabs/rsa/_algorithm/rsa-oaep_spec.pdf
ftp://ftp.rsasecurity.com/pub/rsalabs/rsa/_algorithm/rsa-oaep_spec.pdf

454 P.S. Hirschhorn et al.

20. Vaudenay, S.: Hidden Collisions on DSS. In: Koblitz, N. (ed.) CRYPTO 1996.
LNCS, vol. 1109, pp. 83–88. Springer, Heidelberg (1996)

A Lattice Experiments

In this section we aim to give plausible estimates for the running time to reduce
the first y2 rows of the NTRU lattice LNTRU with “quality” α.

It would be nice if there were standard ways to do this is the academic lit-
erature, but unfortunately no such work has been done. The paper [4] sounds
promising but, despite the title, it does not allow us to predict lattice reduc-
tion times for a given quality of reduced basis if we, say, had computing power
equivalent to 280 operations.

We note that our notion of the reduction quality α is not strictly a traditional
notion9 of the quality of reduction of a lattice, but it is the most natural measure
for the MITM attack.

We define the profile of an NTRU basis {b1, b2, . . . , b2N} to be a plot of the
logq |b∗i |. As in [12] we assume that the profile after lattice reduction has taken
place looks like Figure 3, that is there is an initial flat portion, followed by
an almost linear reduction in the |b∗i |, as predicted by the Geometric Series
Assumption (GSA) first stated in [19].

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500

’prof502.txt’

Fig. 3. log197 |b∗i | for i = 1, . . . , 502, with y2 = 302

The final 2N − y2 rows are shown in Figure 3 are not touched by lattice
reduction (so the logq |b∗i | remain 0). We define y1 to be the number of the initial
“reduced” vectors satisfying logq |b∗i | = 1. These initial y1 vectors are also not
really touched by lattice reduction, so we look on this as a y2 − y1 dimensional
lattice problem. Indeed, as explained in [12], the reduced basis may be produced
by extracting and reducing a (y2 − y1)× (y2 − y1) submatrix from LNTRU , and
then applying some simple matrix operations.

We define α = |b∗y2
| to be the size of the last b∗i in the reduced portion, and

we note that spending more time on lattice reduction will increase this value.
9 Traditional notions typically involve the ratio of the smallest vector found to the

smallest vector in the lattice, but they are closely related to our notion since such
bounds generally come from bounding the last |b∗i | achieved by lattice reduction.

Choosing NTRUEncrypt Parameters 455

Note that, by the invariance of the determinant, and assuming the GSA, all
such profiles satisfy y1 + (1/2)(y2 − y1)(1 + α) = N , so we have:

y1 =
2N − y2(1 + α)

1− α
, (4)

which implies the dimension of the lattice problem is n = y2 − y1 = 2(y2 −
N)/(1− α).

We define the “GSA-slope” δ to be the average of δi = log |b∗i | − log |b∗i+1| for
y1 < i ≤ y2. Assuming the GSA we have δ = (1− α)2/(2(y2 −N)).

A reasonable way to model10 lattice reduction running times is to expect a
small polynomial dependency on the lattice dimension (i.e. n3), and a singly
exponential11 dependency on δ−1.

As part of research for this paper we have developed a new and very effective
lattice reduction technique, which we refer to as “isodual lattice reduction”. We
will describe this technique more fully in a separate paper. The effectiveness
of this technique is shown by the fact that we have achieved reduced bases in
time about 243 which if one had simply increased the BKZ blocksize would have
needed about 2100 work. The isodual running times are broadly in line with the
model of running times presented in this paper.

We suggest two levels of the asymptotic hardness of lattice reduction on NTRU
lattices with q = 2048. One generated by extrapolating the (end of the) best
known running times in low dimension (Equation 5), and the other (Equation 6)
is proposed as a more aggressive challenge for lattice reduction:

log2 t = 0.2δ−1 + 3 logn− 50 = 0.4
y2 −N

(1− α)2
+ 3 log

2(y2 −N)
1− α

− 50, or (5)

log2 t = 0.45δ−1 + 3 logn− 110 = 0.9
y2 −N

(1− α)2
+ 3 log

2(y2 −N)
1− α

− 110. (6)

Figure 4 shows the number of initial q-vectors which were removed for various
lattice strategies, and the asymptotes with α = 0.

 34

 36

 38

 40

 42

 44

 46

 120 130 140 150 160 170 180

f3(x)
LLL_10
LLL_20
LLL_30
LLL_40
LLL_50
LLL_60
LLL_70
LLL_80
LLL_90

BKZ_210_2
BKZ_210_10
BKZ_210_15
BKZ_210_18

recur_168_4_18
recur_168_4_19
recur_168_4_20
recur_168_4_21
recur_168_4_22
reps_168_4_23
reps_168_4_24
reps_168_4_25
reps_168_4_26

 0

 50

 100

 150

 200

 250

 0 100 200 300 400 500 600

f3(x)
f1(x)

LLL_10
LLL_20
LLL_30
LLL_40
LLL_50
LLL_60
LLL_70
LLL_80
LLL_90

BKZ_210_2
BKZ_210_10
BKZ_210_15
BKZ_210_18

recur_168_4_18
recur_168_4_19
recur_168_4_20
recur_168_4_21
recur_168_4_22
reps_168_4_23
reps_168_4_24
reps_168_4_25
reps_168_4_26

Fig. 4. Best known lattice running times

10 The veracity of this model should be examined further, especially when α > 0, but
it does seem a reasonable model.

11 It can be no “more secure” that this asymptotically since an NTRU-lattice can be
fully searched in time qN .

Broadcast Attacks against Lattice-Based

Cryptosystems�

Thomas Plantard and Willy Susilo

Centre for Computer and Information Security Research
School of Computer Science and Software Engineering

University of Wollongong, Australia
{thomaspl,wsusilo}@uow.edu.au

Abstract. In 1988, H̊astad proposed the classical broadcast attack
against public key cryptosystems. The scenario of a broadcast attack is as
follows. A single message is encrypted by the sender directed for several
recipients who have different public keys. By observing the ciphertexts
only, an attacker can derive the plaintext without requiring any knowl-
edge of any recipient’s secret key. H̊astad’s attack was demonstrated on
the RSA algorithm, where low exponents are used. In this paper, we
consider the broadcast attack in the lattice-based cryptography, which
interestingly has never been studied in the literature. We present a gen-
eral method to rewrite lattice problems that have the same solution in
one unique easier problem. Our method is obtained by intersecting lat-
tices to gather the required knowledge. These problems are used in lattice
based cryptography and to model attack on knapsack cryptosystems. In
this work, we are able to present some attacks against both lattice and
knapsack cryptosystems. Our attacks are heuristics. Nonetheless, these
attacks are practical and extremely efficient. Interestingly, the merit of
our attacks is not achieved by exploring the weakness of the trapdoor
as usually studied in the literature, but we merely concentrate on the
problem itself. As a result, our attacks have many security implications
on most of the lattice-based or knapsack cryptosystems.

Keywords: Broadcast attack, lattice-based cryptosystem, knapsack
cryptosystem, intersecting lattice.

1 Introduction

In 1988, H̊astad [1] proposed the first broadcast attack against public key cryp-
tosystems. The attack enables an attacker to recover the plaintext sent by a
sender to multiple recipients, without requiring any knowledge of the recipient’s
secret key. H̊astad’s attack was originally proposed against the RSA public key
cryptosystem that incorporates low exponents. To prevent this classical attack,
several researchers have studied the necessity to have a strong security notion in
the single user setting in contrast to the multi user setting [2,3]. For instance,

� This work is supported by ARC Discovery Grant DP0663306.

M. Abdalla et al. (Eds.): ACNS 2009, LNCS 5536, pp. 456–472, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Broadcast Attacks against Lattice-Based Cryptosystems 457

it is well known that to avoid such an attack, paddings (in the random oracle
model) will need to be incorporated to achieve the IND-CCA security notion
[2,3]. Nevertheless, this type of attacks has never been discussed in the lattice-
based scenario.

Our Contribution. In this paper, we revisit the classical broadcast attack and
consider it in the lattice-based scenario. Interestingly, this is the first work that
considers this type of attack in lattice-based scenario. Our approach is as follows.
We present a general method to rewrite lattice problems that have the same so-
lution in one unique easier problem. Our method is obtained by intersecting lat-
tices to gather the required knowledge. These problems are used in lattice based
cryptography and to model attack on knapsack cryptosystems. We are able to
present some attacks against both lattice and knapsack cryptosystems. Our at-
tacks are heuristics. Nonetheless, these attacks are practical and extremely effi-
cient, as demonstrated in our experiment. We also discuss some countermeasures
against such attacks in the context of lattice-based cryptography.

1.1 Related Works

Knapsack Cryptosystems

In 1978 [4], Merkle and Hellman proposed the first public key cryptosystem based
on a NP-hard problem, namely the knapsack problem. This is the first practical
public key cryptosystem as a positive answer to the proposed seminal notion of
public key cryptography by Diffie and Hellman [5]. The knapsack problem is as
follows.

Problem 1 (Knapsack). Let a1, . . . , an ∈ N n positive integers and s ∈ N a
positive integer. The Knapsack Problem is to find, if there exists, αi ∈ {0, 1},
i = 1, · · ·n, (n Boolean) such that

n∑

i=1

αiai = s.

The problem to find whether there exists such αi is called the Knapsack Decision
Problem.

Theorem 1 (Karp [6]). The Knapsack Decision Problem is NP-Complete.

The cryptosystem proposed in [4], and most of other knapsack cryptosystems,
can been illustrated as follows.

• Setup: Create n integers a1, . . . , an with a trapdoor function to solve the
Knapsack Problem on ai. Provide a1, . . . , an as public.

• Encrypt: To encrypt a message m ∈ [0, 1]n, compute

s =
n∑

i=1

miai.

Publish s as the encrypted message of m.

458 T. Plantard and W. Susilo

• Decrypt: Use the trapdoor to solve the knapsack problem on a1, . . . , an and
s and extract m.

Merkle-Hellman’s first proposition was attacked severely and broken using
two different methods: the first attack on the trapdoor itself was proposed by
Shamir [7,8] and the second attack on the knapsack problem using lattice the-
ory was proposed by Adleman [9]. In 1985 [10], Lagarias and Odlyzko proposed
a general attack against knapsack cryptosystems. Their attack do not incorpo-
rate the weakness on the trapdoor itself, rather than only using the fact that
the knapsack problems produced are generally weaker that a random one. This
weakness appears in a lower density of the knapsack problem. The density of a
knapsack problem is defined as

d =
n

maxn
i=1 log2 ai

.

Density represents a trade-off between the need to be able to decrypt (and hence,
to have a unique solution) using a low density and an acceptable security level
using a bigger density. A lot of improvements have be made in order to attack
lower density knapsack [11,12,13,14]. For instance, in [12], the authors success-
fully cryptanalyzed knapsack cryptosystems with density less than 0.9408. These
low density attacks use lattice reduction tools. However, some improvements of
knapsack cryptosystems were also proposed (e.g. [15,16]) with a bigger density,
generally close to 1. We refer the reader to [17] for these two faces of knapsack
cryptology. Nonetheless, as mentioned in [18], the knapsack cryptosystem pro-
posed by Okamoto, Tanaka and Uchiyama in 2000 [16] seems to be the only
remaining secure knapsack cryptosystem.

Lattice-based cryptosystems

In 1997, Ajtai and Dwork [19] proposed the first lattice cryptosystem where
its security is based on a variant of the Shortest Vector Problem (SVP). This
cryptosystem received wide attention due to a surprising security proof based on
worst-case assumptions. Nonetheless, this cryptosystem is merely a theoretical
proposition and it cannot be used in practice. Furthermore, Nguyen and Stern
presented a heuristic attack against this cryptosystem [20]. Until then, this initial
proposition has been improved [21,22,23] and inspiring for other cryptosystems
based on SVP [24,25,26]. The main drawback in these cryptosystems is a huge
extension factor between the initial message and its encrypted version.

In 1996, Goldreich, Goldwasser and Halevi (GGH) [27] proposed an efficient
way to use lattice theory to build a cryptosystem inspired by McEliece cryp-
tosystem [28] and based on the Closest Vector Problem (CVP). Their practical
proposition of a cryptosystem was attacked and broken severely by Nguyen in
1999 [29]. However, the general idea is still viable. Until then, the other propo-
sitions were made using the same principle [30,31,32].

In the following, we briefly review the GGH cryptosystem. A GGH cryptosys-
tem comprises of the following algorithms.

Broadcast Attacks against Lattice-Based Cryptosystems 459

• Setup: Compute a “good basis” A and a “bad basis” B of a lattice L,

L(A) = L(B).

Provide B as public and keep A secret.
• Encrypt: To encrypt a vector-message m: use the bad basis to create a

random vector r of L. Publish the encrypted message which is the addition
of the vector message with the random vector:

c = m + r.

• Decrypt: Use the good basis to find the closest vector in the lattice of the
encrypted message c. The closest vector of the encrypted message c is the
random vector r1. Subtract the random vector of the encrypted message to
obtain the vector message m.

Remark 1. In their initial paper [27], Goldreich, Goldwasser and Halevi also
proposed another cryptosystem where the message is transformed into a lattice
point prior to adding to it a random vector noise.

The important points for the security and efficiency of those cryptosystems are
defined as follows.

i) It is easy to compute a “bad basis” from a “good basis”, but it is difficult
to compute a “good basis” from a “bad basis”.

ii) It is easy to create a random vector of a lattice even with a “bad basis”.
iii) It is easy to find the closest vector with a “good basis” but difficult to do

so with a “bad basis”.

After the first Nguyen’s attack [29], utilization of the initial GGH proposition
requires lattice with big dimension (> 500), to ensure its security. Nonetheless,
the computation of the closest vector even with a “good basis” becomes very ex-
pensive. In 2000, Fischlin and Seifert [30] proposed a very intuitive way to build
lattice with good basis which are able to solve the closest vector problem. They
used a tensor product of lattice to obtain a divide and conquer approach to solve
CVP. In 2001, Micciancio [31] proposed some major improvements of the speed
and the security of GGH. In this scheme, the public key uses a Hermite Normal
Form (HNF) for the bad basis. The HNF basis is better to answer the inclusion
question and it also seems to be more difficult to transform to a “good basis”
compared to another basis. In 2003, Paeng, Jung and Ha [32] proposed to use
some lattices build on polynomial ring. However, in 2007, Han, Kim, and Yeom
[33] used lattice reduction to cryptanalysis this scheme. Their attack can suc-
cessfully recover the secret key even in a huge dimension (> 1000) and make the
PJH scheme unusable. However, there exists a secure (and yet ‘unbroken’) cryp-
tosystem using polynomial representation, namely the NTRU cryptosystem, for
N th degree truncated polynomial ring units. NTRU was originally proposed in
1998 by Hoffstein, Pipher and Silverman [34]. Even if this cryptosystem was not
modelled initially as a GGH-type cryptosystem, it can actually be represented
as one. This has been useful specially for analysing its security [35].
1 Under the supposition that the norm of m is sufficiently small.

460 T. Plantard and W. Susilo

Organization of the Paper

The rest of this paper is organized as follows. In the next section, we recall some
basic concepts of lattice theory. Section 3 presents the main theorem which is how
to intersect lattices to simplify lattice problems. Some practical attacks inspired
by this main theorem are proposed in Section 4. Section 5 presents some test
results. We conclude the paper in Section 6 by presenting some solutions against
these new broadcast attacks.

2 Lattice Theory

In this section, we will review some concepts of the lattice theory useful for the
comprehension of this paper. For a more complex account, we refer the readers
to [36].

The lattice theory, also known as the geometry of numbers, has been intro-
duced by Minkowski in 1896 [37]. A complete discussion on the basic of lattice
theory can be found from [38,39,40].

Definition 1 (Lattice). A lattice L is a discrete sub-group of R
n, or equiv-

alently the set of all the integral combinations of d ≤ n linearly independent
vectors over R.

L = Z b1 + · · ·+ Z bd, bi ∈ R
n.

B = (b1, ..., bd) is called a basis of L and d, the dimension of L, noted dim(L).
We will refer L(B) as a lattice of basis B.
We will represent a lattice basis by a matrix B ∈ R

d,n where each rows B[i] of
B correspond to a vector bi of the basis.

Theorem 2 (Determinant). Let L a lattice. There exists a real value, denoted
as detL, such that for any basis B, we have

detL =
√

det (BBT).

detL is called the determinant of L.

For a given lattice L, there exists an infinity of basis. However, the Hermite
Normal Form basis (Definition 2) is unique [41].

Definition 2 (HNF). Let L a integer lattice of dimension d and H ∈ Z
d,n a

basis of L. H is a Hermite Normal Form basis of L if and only if

∀1 ≤ i, j ≤ d Hi,j

⎧

⎨

⎩

= 0 if i > j
≥ 0 if i ≤ j
< Hj,j if i < j

The HNF basis can be computed from a given basis in a polynomial time [42].
For efficient solutions, we refer the readers to [43].

Broadcast Attacks against Lattice-Based Cryptosystems 461

Remark 2. As it was remarked by [31], the HNF basis is a “good basis” for
solving the problem of inclusion of a vector in a lattice [41] or more generally
finding a basis of a lattice from a set of non-independent vectors generating this
lattice [36].

Intersecting lattice is the main tool used in this paper. Lattices intersection can
easily be done using dual lattices (Definition 3).

Definition 3 (Dual). Let L a lattice and B a basis of L. Then, L∗ is noted as
the dual lattice of L and (BBT)−1B is a basis of L∗2.

Property 1 (Intersection). Let L1,L2 two lattices. Then,

L1 ∩ L2 = (L∗
1 ∪ L∗

2)
∗ .

As L1 ⊆ L = L1 ∩ L2, L1 is called a sublattice of L.

Remark 3 (Union). The lattice union of two lattices is generated by the set
of vectors composed by the union of the two sets of vector of each basis. As
remark before (Remark 2), using HNF for example, we can build from this set
of non-independent vector, a basis.

The lattice theory problem is based on distance minimization. The natural norm
used in lattice theory is the euclidean norm.

Definition 4 (Euclidean norm). Let w a vector of R
n. The euclidean norm

is the function ‖.‖ defined by

‖w‖ =
√
< w,w >

=
√
wwT

=
√∑n

i=1 w
2
i

Using a norm, we can define some other invariants crucial in lattice theory.

Definition 5 (Successive Minima). Let L a lattice and i ∈ N an integer. The
ith Successive Minima, noted λi(L) is the smallest real number such there exist
i non-zero linear independent vector v1, . . . , vi ∈ L with

‖v1‖, . . . , ‖vi‖ ≤ λi(L).

The problem to find such a vector v1 is called the Shortest Vector Problem (SVP).

Theorem 3 (Ajtai [44]). SVP is NP-Hard under randomized reductions.

Another important invariant is the Hermite invariant which is defined as follows.

2 This definition of the duality is extremely practical and doesn’t represent the full
interest of this notion. However, we will only focus on notion needed for the under-
standing of this paper.

462 T. Plantard and W. Susilo

Definition 6 (Hermite Invariant). Let L a lattice. The Hermite invariant,
denoted as γ(L), is the real number such that

γ(L) =
(

λ1(L)
det(L)1/dim(L)

)2

.

There exist two extremely useful properties around this invariant.

Theorem 4 (Minkowski [37]). For any lattice L of dimension d,

γ(L) ≤ 1 +
d

4
.

The second theorem provides a general property which concerns random lattices.

Theorem 5 (Ajtai [45]). Let L a random lattice of dimension d. Then,

λi(L)
det(L)1/d

%
√

d

2πe
.

Corollary 1. Let L a random lattice of dimension d. Then,

γ(L) % d

2πe
.

Random lattice is a complex notion [46,47,45]. Goldstein and Mayer’s character-
ization of random lattices [47] allows to create random lattices for experiment for
example [48]. We will use the same method in our practical section (Section 5)
to evaluate our method in the case of random lattices.

Remark 4. Hermite invariant is a way to evaluate the weakness of a lattice. If
the value is smaller than the average d

2πe on a lattice, then it will be “easier” to
solve SVP or other related problem on it.

Another useful invariant is the lattice gap defined in [49] for practical reason.

Definition 7 (Lattice Gap). Let L a lattice. The gap, noted α(L), is the real
number such that

α(L) =
λ2(L)
λ1(L)

.

Remark 5 (Unicity). To assure unicity of the solution and hence, removing the
decryption failure, lattice-based cryptosystems generally use gap of at least
α(L) > 2. Moreover, generally the gap of lattice used in cryptosystems are
polynomial in its dimension.

Remark 6. As Hermite invariant is used to evaluate the resistance of a lattice,
the bigger the gap of a lattice, the easier it will be practically to solve SVP or
other problem on it. For a recent analysis of practical attacks against lattice
with a big gap, please refer to [50].

Broadcast Attacks against Lattice-Based Cryptosystems 463

As SVP is NP-hard, a relaxation factor has been introduced in the initial SVP
to be able to propose and evaluate the quality of the polynomial algorithms.

Problem 2 (γ-SVP). Let L a lattice and γ ≥ 1 a real positive number. Then,
the γ-SVP is to find a vector u ∈ L such that

0 < ‖u‖ ≤ γλ1.

In 1982 [51], Lenstra, Lenstra and Lovasz proposed a powerful algorithm which
have a time complexity polynomial in the dimension d . It is known as the LLL
algorithm and this algorithm returns a solution for γ−SVP for γ = 2

d−1
2 where

d = dim(L)3. This property leads to break cryptosystems using lattice with gap
bigger than 2

d−1
2 . However, in practice, LLL seems to be much more efficient

[48]. In addition, a lot of improvements have been proposed on LLL to obtain
a better approximation factor and/or a better time complexity. For the recent
result on LLL, we refer the readers to [52,53].

A second category of lattice problems are based on different values that the
successive minima.

Definition 8 (Minimum Distance). Let L a lattice and u a vector. The Min-
imum Distance of u to L, denoted as dist(u,L) is the smallest real number such
that there exists a vector v ∈ L with ‖u − v‖ = dist(u,L). The problem to find
such a vector v is known as the Closest Vector Problem (CVP).

Theorem 6 (Emde Boas, [54]). CVP is NP-Hard.

As for SVP, CVP has a relaxed version as defined as follows.

Problem 3 (γ-CVP). Let L a lattice,w a vector and γ ≥ 1 a real positive number.
The γ-CVP is to find a vector u ∈ L, ‖w − u‖ ≤ γdist(u,L).

In 1986, Babai [55] proposed two polynomial methods to solve γ−CVP: the
nearest plane and the round-off methods. Those algorithms solve γ-CVP within
γ = 2

d
2 and γ = 1+2d

(
9
2

) d
2 , respectively. Babai’s algorithms use an LLL-reduced

basis. Consequently all the variants of LLL, including BKZ utilization [56] pro-
posed by Schnorr, are naturally the improvement of Babai’s methods.

Moreover, there exists an heuristic way introduced by Kannan [57] to directly
solve γ-CVP using algorithm made to solve γ-SVP: the embedding method .
Instead of solving γ-CVP, we solve γ-SVP in a different lattice. Finding the
closest vector of v in L(B) can be done by solving the shortest vector of L(B′)

with B′ =
(

B 0
v 1

)

. This method has been successfully used by Nguyen [29] for

constructing his first attack against GGH cryptosystem and it seems practically
the best way to attack a CVP-based cryptosystem.

3 With δ = 0.75 for LLL utilization parameter.

464 T. Plantard and W. Susilo

3 Intersecting Lattices

Each attack proposed in this paper is inspired by a new general simplification
method of lattice problems.

Theorem 7. Let L1,L2 two lattices and v a vector such that v is a shortest
vector of both L1 and L2. Then, v is a shortest vector of the lattice L1 ∩ L2,

γ(L1 ∩ L2) ≤ γ(L1), γ(L2)
and

α(L1 ∩ L2) ≥ α(L1), α(L2).

Proof.

We prove that v is the shortest vector of L1 ∩ L2.
As v ∈ L1,L2, we have v ∈ L1 ∩ L2. Suppose that there exists a non-zero

vector v′ ∈ L1 ∩ L2 such that 0 < ‖v′‖ < ‖v‖. As v′ ∈ L1 ∩ L2, we have v′ ∈ L1

with 0 < ‖v′‖ < ‖v‖, which is impossible as v is the shortest non-zero vector of
L1. We have proved that for any non-zero vector v′ ∈ L1 ∩ L2, ‖v‖ ≤ ‖v′‖: v is
the shortest vector of L1 ∩ L2.

We prove that γ(L1 ∩ L2) ≤ γ(L1).
Let’s compare γ(L1 ∩ L2) with γ(L1). We have proved that λ1(L1 ∩ L2) =

‖v‖ = λ1(L1). As L1 ∩L2 ⊆ L1, we have dim(L1 ∩L2) ≤ dim(L1) and det(L1 ∩
L2) ≥ det(L1). We obtain

γ(L1 ∩ L2) =
(

λ1(L1 ∩ L2)
det(L1 ∩ L2)1/dim(L1∩L2)

)2

≤
(

λ1(L1)
det(L1)1/dim(L1)

)2

= γ(L1).

The same proof can be performed with L2, and consequently, we obtain
γ(L1 ∩ L2) ≤ γ(L1), γ(L2).

We prove that α(L1 ∩ L2) ≥ α(L1).
Let’s compare α(L1 ∩ L2) with α(L1). We have proved that λ1(L1 ∩ L2) =

‖v‖ = λ1(L1). Suppose that we have two independent vectors v1, v2 ∈ L1 ∩ L2

such that max(‖v1‖, ‖v2‖) = λ2(L1 ∩ L2). Then, since v1, v2 are also two inde-
pendent vectors of L1, we obtain λ2(L1) ≤ max(‖v1‖, ‖v2‖). We have λ2(L1) ≤
max(‖v1‖, ‖v2‖) = λ2(L1 ∩ L2). Finally, we obtain

α(L1 ∩ L2) =
(
λ2(L1 ∩ L2)
λ1(L1 ∩ L2)

)

≥
(
λ2(L1)
λ1(L1)

)

= α(L1).

The same proof can be performed with L2, and consequently, we obtain α(L1∩
L2) ≥ α(L1), α(L2). �

Theorem 7 is crucial as it demonstrates that to solve the shortest vector problem
on the intersection of lattices will be at least easier that in the initial lattice. We

Broadcast Attacks against Lattice-Based Cryptosystems 465

will see in Section 5 that practical problems become a lot easier. Nevertheless,
the practical efficiency can not be shown in a general theorem as Theorem 7.
This is simply because if L1 = L2, we obtain L1 ∩ L2 = L1 = L2,

γ(L1 ∩ L2) = γ(L1) = γ(L2)
and

α(L1 ∩ L2) = α(L1) = α(L2).

Remark 7. For cryptosystems based on CVP, we will use the embedding method
to model as a SVP before applying Theorem 7.

4 Practical Broadcast Attacks

In this section, we adapt the general method (Theorem 7) to different lattice
or knapsack cryptosystems. For convenience, we will always firstly recall the
‘challenge’ in the cryptosystem involved followed by our proposed attack. All of
our attacks are heuristic.

4.1 A Broadcast Attack on GGH Type A

Problem 4 (GGHA Challenge). Let B ∈ Z
n,n a basis and c ∈ Z

n a vector such
that there exist two vectors r,m ∈ Z

n with c = rB + m. Then, the GGHA

challenge (B, c) is to find m.

Algorithm 1. Broadcast Attack on GGHA Challenges
Input : (Bi, ci) k GGHA challenges.
Output: m ∈ Z

n.
begin

Compute B′
i =
(
Bi 0
ci 1

)

.

Compute L =
⋂k

i=1 L(B′
i).

Find
(
m 1
)

shortest vector of L.
end

Example 1. The initial proposition in [27] is obviously concerned by this attack.
However, we will refer to Micciancio cryptosystems [31] as a non-broken cryp-
tosystem that will also be susceptible against this attack.

4.2 A Broadcast Attack on GGH Type B

Problem 5 (GGHB Challenge). Let B ∈ Z
n,n a basis and c ∈ Z

n a vector such
that there exist two vectors m, r ∈ Z

n with c = mB + r. Then, the GGHB

challenge (B, c) is to find m.

466 T. Plantard and W. Susilo

The idea here is a bit different. As we have mB1 +r1 = c1 and mB2 +r2 = c2,
we construct a third challenge mB3+r3 = c3 with B3 = B1+B2 and c3 = c1+c2.
Practically, the fact that ‖r‖ grows will be less important than the growth of B.

Algorithm 2. Broadcast Attack on GGHB Challenges
Input : (Bi, ci) k GGHB challenges.
Output: m ∈ Z

n.
begin

Compute B =
∑k

i=1 Bi.

Compute c =
∑k

i=1 ci.
Find the closest vector v of c in L(B).
Compute m = vB−1.

end

Algorithm 2 do not use Theorem 7 and cannot be proved to have a simpler
problem as the λ1(L(B1 +B2)) can be bigger than λ1(L(B1)). However, we will
see than practically λ1(L(B1 + B2)) will be bigger. Practically, we will also use
the embedding method for the third step of Algorithm 2.

Example 2. Cryptosystems concerned with this attack include [30] and the more
recent work of [32].

4.3 A First Broadcast Attack on Knapsack Cryptosystems

Problem 6 (Knapsack Challenge). Let a ∈ N
n a positive integer vector and s ∈ N

an integer such that there exists m ∈ [0, 1]n a boolean vector such maT = s.
Then, the Knapsack challenge (a, s) is to find m.

The attack proposed here is an adaptation of Algorithm 1 to the knapsack
challenge as it has been already modelled by [10] in a lattice problem. Other
modellings can been also adapted with the same technique.

Algorithm 3. Broadcast Attack on Knapsack Challenge
Input : (ai, si) k knapsack challenges.
Output: m ∈ [0, 1]n.
begin

Compute Bi =
(

Id aT
i 0

0 s 1

)

.

Compute L =
⋂k

i=1 L(Bi).
Find

(
m 0 1

)

shortest vector of L.
end

Example 3. The examples of practical schemes that are susceptible against our
attack are as follows. We refer to the survey of Odlysko [17] for knapsack cryp-
tosystems that are susceptible against this attack. However, we also refer to [16]

Broadcast Attacks against Lattice-Based Cryptosystems 467

for one of the ‘rare’ non-broken knapsack cryptosystems that are also susceptible
against this attack. The recent proposition of [58] is also concerned.

Remark 8. We remark that the dimension of L decreases further when k in-
creases. Practically, we have dim(L) = n − k with a high probability4. It is
because each L(Bi) have a dimension smaller than n, dim(L(Bi)) = n−1 . This
decrease will obviously stop at a dimension of 1 with a lattice of a basis only
composed by

(
m 0 1

)

.

4.4 A Second Broadcast Attack on Knapsack Cryptosystems

Inspired by the previous remark (Remark 8), we notice that if we have n equa-
tions maT

i = si, we can concatenate these equations to obtain mA = s with
A ∈ Z

n,n and s ∈ Z
n. Moreover, these equations can be solved with high prob-

ability.

Algorithm 4. Broadcast Attack on Knapsack Challenges without Lattice
Reduction
Input : (ai, si) n knapsack challenges.
Output: m ∈ [0, 1]n.
begin

Compute A =
(
aT
1 . . . aT

n

)

.

Compute s =
(
s1 . . . sn

)

.
Compute m = sA−1.

end

The main advantage of our second attack is to avoid the use of any lattice
reduction. The impact of this gain will enable us to use the attack in a huge
dimension where the use of LLL will be computationally expensive. However,
its drawback is the number of challenge required. The first attack will require
practically less challenges to reveal the plaintext.

This method is also heuristic as A can be singular 5 and A−1 does not exist.
However, probability of such a situation is extremely low and will be less probable
with more knapsack challenges.

5 Practical Result

In this section, we present result of the previously presented techniques to at-
tack different lattice-based cryptosystems. To perform these attacks, we use the
embedding method with a lattice reduction done with LLL6. Cryptosystems and
attacks were implemented under the MAGMA library [59]. Tests were made 20
times, for each 10 dimensions between 10 and 300. For each test, a random
4 Under the probability that ∀1 ≤ i1, i2 ≤ k, 1 ≤ j ≤ n, ai1 [j] �= ai2 [j].
5 det(A) = 0.
6 With δ = 0.9999 for LLL utilization parameter.

468 T. Plantard and W. Susilo

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 50 100 150 200 250 300

N
um

be
r

of
 B

ro
ad

ca
st

 C
ha

lle
ng

es

Lattice Dimension

GGH Type A
GGH Type B

Knapsack Density 1
Knapsack Density 2

Random Lattice

Fig. 1. Number of needed broadcast challenges to extract message from different cryp-
tosystems

message is encrypted with a different random public basis repetitively until the
attack is successful. Cryptosystems are implemented as close as possible to the
initial paper. The list of different cryptosystems analyzed is as follows:

1. The initial GGH cryptosystem (Type A) attacked with Algorithm 1.
2. The second GGH cryptosystem (Type B) attacked with Algorithm 2.
3. A knapsack problem of density 1.0. This problem does not correspond to

a real cryptosystem but to any knapsack cryptosystem which use such a
problem. This attack is more general that the previous ones.

4. A knapsack problem of density 2.0. This problem is an extreme case. As we
do not know if some trapdoor functions can be created for such a problem,
for instance due to the reason of unicity. However, it gives us a security
bound as problems with lower density will be easier to attack.

5. A random lattice CVP problem. This problem is the one which gives us a
reference. For this one, we have created random lattice and a vector with
dist ∼ λ1

2 to assure that at least the existence of a decryption algorithm. To
create a random lattice, we use the same technique proposed in [48,50] using
the results on random lattice from [47]. This problem corresponds to the
general situation to a lattice-based cryptosystem which have the possibility
to decrypt even if some trapdoors may not exist. This problem corresponds
to a security upper bound for CVP based cryptosystems.

The purpose of those tests is not to give some security parameter bounds (as more
powerfull SV P solver can be used than LLL, BKZ for example) but to show how

Broadcast Attacks against Lattice-Based Cryptosystems 469

evolves the difficulty of those problems with more and more challenges. Figure 1
summarizes our results.

6 Conclusion and Countermeasures

In this paper, we proposed an efficient way to simplify lattice problems which
have the same solution. This technique leads to some heuristic and efficient at-
tacks on the existing lattice or knapsack cryptosystems. However, some lattice-
based cryptosystems naturally resist to those attacks. Ajtai-Dwork cryptosys-
tem [19] and its different improvements, such as [21,22,23] or [24,25,26], are not
concerned by our attacks. This is clearly due to the huge extension factor which
allows those cryptosystems to put a strong part of random and hence, there
is no common vector. For the same reason, the proposition of knapsack-based
probabilistic encryption of [60] will be naturally resistant as well. In the same
direction, we remark that after some tests, NTRU lattices should be extremely
weak against intersecting lattices. However, the fact that half of its message is
random leads to a complete protection against broadcast attacks. Those remarks
inspired an obvious countermeasure. Concerned cryptosystems have just to add
to their messages a random part (e.g. a hash of the public key itself) that is suf-
ficiently big to prevent two messages to be equal under a reasonable probability.
This is inline with the direction suggested in the traditional cryptography (e.g.
[2,3]) to ensure the security in the IND-CCA sense. The cost of such counter
measure is an expansion factor which have repercussion in both space and time
complexity. If the solution was known before, the utility of such counter measure
was never shown to be necessary. This is the result of this work. Nonetheless, if
the solution is ‘simple’, some further techniques should be incorporated as for
cryptosystems which resist to LLL attacks with two messages, after intersec-
tion even of only two messages, the new problem will be easier compared to the
original problem.

Intersecting lattice has shown to be interesting to perform cryptanalysis. How-
ever, we believe that those kind of techniques can also lead to constructive uti-
lization as original from other techniques used generally in cryptography.

References

1. H̊astad, J.: Solving simultaneous modular equations of low degree. SIAM J. Com-
put. 17, 336–341 (1988)

2. Bellare, M., Boldyreva, A., Micali, S.: Public-key encryption in a multi-user set-
ting: Security proofs and improvements. In: Preneel, B. (ed.) EUROCRYPT 2000.
LNCS, vol. 1807, pp. 259–274. Springer, Heidelberg (2000)

3. Baudron, O., Pointcheval, D., Stern, J.: Extended notions of security for multicast
public key cryptosystems. In: Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP
2000. LNCS, vol. 1853, pp. 499–511. Springer, Heidelberg (2000)

4. Merkle, R.C., Hellman, M.E.: Hiding information and signatures in trapdoor knap-
sacks. IEEE Transactions on Information Theory IT-24, 525–530 (1978)

470 T. Plantard and W. Susilo

5. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Transactions on
Information Theory IT-22, 644–654 (1976)

6. Karp, K.M.: Reducibility among combinatorial problems. Complexity of Computer
Computations (1972)

7. Shamir, A.: A polynomial time algorithm for breaking the basic merkle-hellman
cryptosystem. In: CRYPTO, pp. 279–288 (1982)

8. Shamir, A.: A polynomial-time algorithm for breaking the basic merkle-hellman
cryptosystem. IEEE Transactions on Information Theory 30, 699–704 (1984)

9. Adleman, L.M.: On breaking generalized knapsack public key cryptosystems (ab-
stract). In: STOC, pp. 402–412 (1983)

10. Lagarias, J.C., Odlyzko, A.M.: Solving low-density subset sum problems. Journal
of the ACM 32, 229–246 (1985)

11. Coster, M.J., LaMacchia, B.A., Odlyzko, A.M.: An improved low-density subset
sum algorithm. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp.
54–67. Springer, Heidelberg (1991)

12. Coster, M.J., Joux, A., LaMacchia, B.A., Odlyzko, A.M., Schnorr, C.P., Stern, J.:
Improved low-density subset sum algorithms. Computational Complexity 2, 111–
128 (1992)

13. Schnorr, C.-P., Hörner, H.H.: Attacking the chor-rivest cryptosystem by improved
lattice reduction. In: Guillou, L.C., Quisquater, J.-J. (eds.) EUROCRYPT 1995.
LNCS, vol. 921, pp. 1–12. Springer, Heidelberg (1995)

14. Omura, K., Tanaka, K.: Density attack to the knapsack cryptosystems with enu-
merative source encoding. IEICE Trans. Fundam. Electron Commun. Comput.
Sci. 87, 1564–1569 (2004)

15. Chor, B., Rivest, R.L.: A knapsack-type public key cryptosystem based on arith-
metic in finite fields. IEEE Transactions on Information Theory 34, 901–909 (1988)

16. Okamoto, T., Tanaka, K., Uchiyama, S.: Quantum public-key cryptosystems. In:
Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 147–165. Springer, Heidel-
berg (2000)

17. Odlyzko, A.M.: The rise and fall of knapsack cryptosystems. Cryptology and Com-
putational Number Theory 42, 75–88 (1990)

18. Nguyen, P.Q., Stern, J.: Adapting density attacks to low-weight knapsacks. In:
Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 41–58. Springer, Heidelberg
(2005)

19. Ajtai, M., Dwork, C.: A public-key cryptosystem with worst-case/average-case
equivalence. In: Twenty-Ninth Annual ACM Symposium on the Theory of Com-
puting (STOC 1997), pp. 284–293 (1997)

20. Nguyen, P.Q., Stern, J.: Cryptanalysis of the ajtai-dwork cryptosystem. In:
Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 223–242. Springer, Hei-
delberg (1998)

21. Goldreich, O., Goldwasser, S., Halevi, S.: Eliminating decryption errors in the ajtai-
dwork cryptosystem. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294,
pp. 105–111. Springer, Heidelberg (1997)

22. Cai, J.-Y., Cusick, T.W.: A lattice-based public-key cryptosystem. In: Tavares, S.,
Meijer, H. (eds.) SAC 1998. LNCS, vol. 1556, pp. 219–233. Springer, Heidelberg
(1999)

23. Kawachi, A., Tanaka, K., Xagawa, K.: Multi-bit cryptosystems based on lattice
problems. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 315–
329. Springer, Heidelberg (2007)

24. Regev, O.: Improved inapproximability of lattice and coding problems with prepro-
cessing. In: IEEE Conference on Computational Complexity, pp. 363–370 (2003)

Broadcast Attacks against Lattice-Based Cryptosystems 471

25. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography.
In: STOC, pp. 84–93 (2005)

26. Ajtai, M.: Representing hard lattices with o(n log n) bits. In: STOC, pp. 94–103
(2005)

27. Goldreich, O., Goldwasser, S., Halevi, S.: Public-key cryptosystems from lattice
reductions problems. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294,
pp. 112–131. Springer, Heidelberg (1997)

28. McEliece, R.J.: A public-key cryptosystem based on algebraic coding theory. Deep
Space Network Progress Report 44, 114–116 (1978)

29. Nguyen, P.Q.: Cryptanalysis of the Goldreich-Goldwasser-Halevi cryptosystem
from crypto 1997. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 288–
304. Springer, Heidelberg (1999)

30. Fischlin, R., Seifert, J.P.: Tensor-based trapdoors for cvp and their application to
public key cryptography. In: IMA Int. Conf., 244–257 (1999)

31. Micciancio, D.: Improving lattice based cryptosystems using the Hermite normal
form. In: Silverman, J.H. (ed.) CaLC 2001. LNCS, vol. 2146, pp. 126–145. Springer,
Heidelberg (2001)

32. Paeng, S.H., Jung, B.E., Ha, K.C.: A lattice based public key cryptosystem using
polynomial representations. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567,
pp. 292–308. Springer, Heidelberg (2003)

33. Han, D., Kim, M.-H., Yeom, Y.: Cryptanalysis of the paeng-jung-ha cryptosystem
from pkc 2003. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp.
107–117. Springer, Heidelberg (2007)

34. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: A ring-based public key cryptosys-
tem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288. Springer,
Heidelberg (1998)

35. Coppersmith, D., Shamir, A.: Lattice attacks on ntru. In: Fumy, W. (ed.) EURO-
CRYPT 1997. LNCS, vol. 1233, pp. 52–61. Springer, Heidelberg (1997)

36. Micciancio, D., Goldwasser, S.: Complexity of Lattice Problems, A Cryptographic
Perspective. Kluwer Academic Publishers, Dordrecht (2002)

37. Minkowski, H.: Geometrie der Zahlen. B. G. Teubner, Leipzig (1896)
38. Cassels, J.W.S.: An Introduction to The Geometry of Numbers. Springer, Heidel-

berg (1959)
39. Lovász, L.: An Algorithmic Theory of Numbers, Graphs and Convexity. In: CBMS-

NSF Regional Conference Series in Applied Mathematics, vol. 50. SIAM Publica-
tions, Philadelphia (1986)

40. Conway, J.H., Sloane, N.J.A.: Sphere Packings, Lattices and Groups. Springer,
Heidelberg (1988)

41. Cohen, H.: A course in computational algebraic number theory. Graduate Texts in
Mathematics, vol. 138. Springer, Heidelberg (1993)

42. Kannan, R., Bachem, A.: Polynomial algorithms for computing the Smith and
Hermite normal forms of an integer matrix. SIAM Journal of Computing 8, 499–
507 (1979)

43. Micciancio, D., Warinschi, B.: A linear space algorithm for computing the Hermite
normal form. In: International Symposium on Symbolic Algebraic Computation
(ISSAC 2001), pp. 231–236 (2001)

44. Ajtai, M.: The shortest vector problem in l2 is NP-hard for randomized reduc-
tions (extended abstract). In: Thirtieth Annual ACM Symposium on the Theory
of Computing (STOC 1998), pp. 10–19 (1998)

45. Ajtai, M.: Generating random lattices according to the invariant distribution (2006)

472 T. Plantard and W. Susilo

46. Ajtai, M.: Random lattices and a conjectured 0 - 1 law about their polynomial
time computable properties. In: FOCS, pp. 733–742 (2002)

47. Goldstein, D., Mayer, A.: On the equidistribution of Hecke points. Forum Mathe-
maticum 15, 165–189 (2003)

48. Nguyen, P.Q., Stehlé, D.: LLL on the average. In: Hess, F., Pauli, S., Pohst, M.
(eds.) ANTS 2006. LNCS, vol. 4076, pp. 238–256. Springer, Heidelberg (2006)

49. Nguyen, P.Q., Stern, J.: The two faces of lattices in cryptology. In: Silverman, J.H.
(ed.) CaLC 2001. LNCS, vol. 2146, pp. 146–180. Springer, Heidelberg (2001)

50. Gama, N., Nguyen, P.Q.: Predicting lattice reduction. In: Smart, N.P. (ed.)
EUROCRYPT 2008. LNCS, vol. 4965, pp. 31–51. Springer, Heidelberg (2008)

51. Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring polynomials with rational co-
efficients. Mathematische Annalen 261, 513–534 (1982)

52. Nguyen, P.Q., Stehlé, D.: Floating-point LLL revisited. In: Cramer, R. (ed.)
EUROCRYPT 2005. LNCS, vol. 3494, pp. 215–233. Springer, Heidelberg (2005)

53. Schnorr, C.P.: Fast LLL-type lattice reduction. Information and Computation 204,
1–25 (2006)

54. Boas, P.V.E.: Another NP-complete problem and the complexity of computing
short vectors in lattices. Technical Report 81-04, Mathematics Department, Uni-
versity of Amsterdam (1981)

55. Babai, L.: On Lovász’ lattice reduction and the nearest lattice point problem.
Combinatorica 6, 1–13 (1986)

56. Schnorr, C.P.: Block reduced lattice bases and successive minima. Combinatorics,
Probability & Computing 3, 507–522 (1994)

57. Kannan, R.: Minkowski’s convex body theorem and integer programming. Math.
Oper. Res. 12, 415–440 (1987)

58. Murakami, Y., Nasako, T.: Knapsack public-key cryptosystem using chinese re-
mainder theorem. IACR ePrint Archive (2007)

59. Bosma, W., Cannon, J., Playoust, C.: The magma algebra system. i. the user
language. J. Symobolic Computation 24, 235–265 (1997)

60. Wang, B., Wu, Q., Hu, Y.: A knapsack-based probabilistic encryption scheme. Inf.
Sci. 177, 3981–3994 (2007)

Partial Key Exposure Attack on CRT-RSA

Santanu Sarkar and Subhamoy Maitra

Indian Statistical Institute, 203 B T Road, Kolkata 700 108, India
{santanu r,subho}@isical.ac.in

Abstract. Consider CRT-RSA with N = pq, q < p < 2q, public en-
cryption exponent e and private decryption exponents dp, dq. Jochemsz
and May (Crypto 2007) presented that CRT-RSA is weak when dp, dq

are smaller than N0.073 . As a follow-up work of that paper, we study the
partial key exposure attack on CRT-RSA when some Most Significant
Bits (MSBs) of dp, dq are exposed. Further, better results are obtained
when a few MSBs of p (or q) are available too. We present theoretical
results as well as experimental evidences to justify our claim. We also
analyze the case when the decryption exponents are of different bit sizes
and it is shown that CRT-RSA is more insecure in this case (than the
case of dp, dq having the same bit size) considering the total bit size of
dp, dq.

Keywords: RSA, CRT-RSA, Cryptanalysis, Factorization, Lattice, LLL
Algorithm, Side Channel Attacks, Weak Keys.

1 Introduction

RSA [20] is one of the most popular cryptosystems in the history of this subject.
Let us first briefly describe the idea of RSA:

– primes p, q, (generally the primes are considered to be of same bit size, i.e.,
q < p < 2q);

– N = pq, φ(N) = (p− 1)(q − 1);
– e, d are such that ed = 1 + kφ(N), k ≥ 1;
– N, e are publicly available and the plaintext M ∈ ZN is encrypted as C ≡
M e mod N ;

– the secret key d is required to decrypt the ciphertext C ∈ ZN as M ≡
Cd mod N .

The study of RSA is one of the most attractive areas in cryptology research as
evident from many excellent works (one may refer [4,14,19] and the references
therein for detailed information).

Speeding up RSA encryption and decryption is of serious interest and for
large N , both e, d cannot be small at the same time. For fast encryption, it is
possible to use smaller e and e as small as 216 + 1 is widely believed to be a
good candidate. For fast decryption, the value of d needs to be small. However,
Wiener [21] showed that when d < 1

3N
1
4 then N can easily be factored. Later,

M. Abdalla et al. (Eds.): ACNS 2009, LNCS 5536, pp. 473–484, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

474 S. Sarkar and S. Maitra

Boneh-Durfee [5] increased this bound up to d < N0.292. Thus the use of smaller
d is in general not recommended. In this direction, an alternative approach has
been proposed by Wiener [21] exploiting the Chinese Remainder Theorem (CRT)
for decryption. The idea is as follows:

– the public exponent e and the private CRT exponents dp and dq are used
satisfying edp ≡ 1 mod (p− 1) and edq ≡ 1 mod (q − 1);

– the encryption of the plaintext M ∈ ZN is same as the standard RSA;
– to decrypt a ciphertext C ∈ ZN one needs to compute M1 ≡ Cdp mod p and
M2 ≡ Cdq mod q;

– using CRT, one can get the plaintext M such that M ≡ M1 mod p and
M ≡M2 mod q.

This variant of RSA is popularly known as CRT-RSA. Without loss of gener-
ality, consider dp is available. One can take any random integer a in [2, N − 1]
and then gcd(aedp − a,N) provides p with a probability almost equal to 1 (but
not exactly 1). Thus, it is clear that CRT-RSA becomes insecure if any of the
decryption exponents is known. An important work in this direction shows that
with the availability of decryption oracle under a fault model, one factorize N in
poly(logN) time [6, Section 2.2] and the idea has been improved by A. Lenstra [6,
Section 2.2, Reference 16].

May [18] described two weaknesses in CRT-RSA that work when the smaller
prime factor is less than N0.382. Bleichenbacher and May [1] improved the idea
of [18] when the smaller prime factor is less than N0.468. In [12], at attack on
CRT-RSA has been presented for small e when the primes are of the same bit
size. Recently, Jochemsz and May [16] presented an attack on CRT-RSA with
primes of same bit size in poly(logN) time. In [16], it is shown that CRT-RSA
can be attacked when the encryption exponents are of the order of N , and dp and
dq are smaller than N0.073. The strategy of [16] is based on the idea presented
in [15] which in turn exploits the techniques from [9]. Further, in [15], it has
been shown that CRT-RSA is weak if dp − dq is known and dp, dq are smaller
than N0.099.

We work with techniques similar to [16], but our analysis considers that cer-
tain amounts of MSBs of dp, dq are exposed. This model is already accepted
in literature for analysis of standard RSA, where it is considered that certain
fraction of bits of the secret decryption exponent d may be exposed [3,2,11] by
side channel attack. We consider a similar model in this paper. In addition, we
also consider that a few MSBs of the secret prime p may be available, that can
be exhaustively searched or may be known from side channel attack (as p, q are
used during the decryption of CRT-RSA).

The main result of [16] was to show that for e of O(N), CRT-RSA is insecure
when dp and dq are smaller than N0.073. Our generalization (see Theorem 2
and also Table 1 in Section 2) shows that if around 0.009 log2 N MSBs of each
of dp, dq are exposed and 0.01 log2 N MSBs of p can be searched, then CRT-
RSA is insecure when dp and dq are smaller than N0.083. Our results are indeed
not surprising, but the analysis we present in this paper give a clear indication
how the results of [16] extend when certain amount of partial information is

Partial Key Exposure Attack on CRT-RSA 475

available regarding the secret parameters. Our theoretical ideas are supported
by experimental evidences and the results are presented in Section 2.1. The
case of unbalanced decryption exponents is considered in Section 3. Section 4
concludes the paper.

1.1 Preliminaries

Let us present some basics on lattice reduction techniques. Consider the lin-
early independent vectors u1, . . . , uω ∈ Z

n, where ω ≤ n. A lattice, spanned by
{u1, . . . , uω}, is the set of all linear combinations of u1, . . . , uω, i.e., ω is the di-
mension of the lattice. A lattice is called full rank when ω = n. Let L be a lattice
spanned by the linearly independent vectors u1, . . . , uω, where u1, . . . , uω ∈ Z

n.
By u∗

1, . . . , u
∗
ω, we denote the vectors obtained by applying the Gram-Schmidt

process [7, Page 81] to the vectors u1, . . . , uω.
The determinant of L is defined as det(L) =

∏ω
i=1 ||u∗

i ||, where ||.|| denotes
the Euclidean norm on vectors. Given a polynomial g(x, y) =

∑
ai,jx

iyj , we

define the Euclidean norm as ‖ g(x, y) ‖=
√
∑

i,j a
2
i,j and infinity norm as

‖ g(x, y) ‖∞= maxi,j |ai,j |.
It is known that given a basis u1, . . . , uω of a lattice L, the LLL algorithm [17]

can find a new basis b1, . . . , bω of L with the following properties.

1. ‖ b∗i ‖2≤ 2 ‖ b∗i+1 ‖2, for 1 ≤ i < ω.
2. For all i, if bi = b∗i +

∑i−1
j=1 μi,jb

∗
j then |μi,j | ≤ 1

2 for all j.

3. ‖ bi ‖≤ 2
ω(ω−1)+(i−1)(i−2)

4(ω−i+1) det(L)
1

ω−i+1 for i = 1, . . . , ω.

By b∗1, . . . , b
∗
ω, we mean the vectors obtained by applying the Gram-Schmidt

process to the vectors b1, . . . , bω.
In [8], techniques have been discussed to find small integer roots of polynomials

in a single variable mod n, and of polynomials in two variables over the integers.
The idea of [8] extends to more than two variables also, but the method becomes
probabilistic. The following theorem is also relevant to the idea of [8].

Theorem 1. [13] Let g(x, y, z, v) be a polynomial which is a sum of ω many
monomials. Suppose g(x0, y0, z0, v0) ≡ 0 mod n, where |x0| < X , |y0| < Y ,
|z0| < Z and |v0| < V . If ‖ g(xX, yY, zZ, vV) ‖< n√

ω
, then g(x0, y0, z0, v0) = 0

holds over integers.

Considering the property 3 mentioned above with i = 4 and Theorem 1, the

condition 2
ω2−ω+6
4(ω−3) det(L)

1
ω−3 < n√

ω
implies that if the polynomials b1, b2, b3, b4

(corresponding to the four shortest reduced basis vectors) have roots over 0 mod
n, then those roots hold over integers too. The solutions corresponding to each
unknown can be achieved by calculating the Gröbner basis of the ideal generated
by {b1, b2, b3, b4}.

Suppose we have a set of polynomials {f1, f2, . . . , fi} on n variables having
the roots of the form (x1,0, x2,0, . . . , xn,0). Then it is known that the Gröbner

476 S. Sarkar and S. Maitra

Basis [10, Page 77] {g1, g2, . . . , gj}, of J = < f1, f2, . . . , fi > (the ideal gener-
ated by {f1, f2, . . . , fi}), preserves the set of common roots of {f1, f2, . . . , fi}.
For our problems, we assume that the roots can be collected efficiently from
{g1, g2, . . . , gj}. Though this is true in practice as noted from the experiments
we perform, theoretically this may not always happen. Thus we formally state
the following assumption that we will consider for the theoretical results.

Assumption 1. Consider a set of polynomials {f1, f2, . . . , fi} on n variables
having the roots of the form (x1,0, x2,0, . . . , xn,0). Let J be the ideal generated
by {f1, f2, . . . , fi}. Then we will be able to collect the roots efficiently from the
Gröbner Basis of J .

2 Weaknesses of CRT-RSA When Some MSBs of dp, dq

and p Are Known

In this section, we extend the idea of [16] towards a partial key exposure attack
on CRT-RSA where the secret primes are of the same bit size. We present a
general result considering that some of the MSBs of dp, dq, p will be exposed.

Since edp ≡ 1 mod (p−1) and edq ≡ 1 mod (q−1), we write edp = 1+k(p−1)
and edq = 1 + l(q − 1). We start with the following technical result.

Lemma 1. Let e = Nα and dp, dq < N δ. Consider that dp0 , dq0 , p0 are exposed
such that |dp − dp0 | < Nγ, |dq − dq0 | < Nγ and |p − p0| < Nβ. Then one
can find the integers k0, l0 such that |k − k0| and |l − l0| are O(Nλ) where λ =
max{α + δ + β − 1, α+ γ − 1

2}.

Proof. We consider p, q are of same bit size, i.e., q < p < 2q. In such a case,√
N < p <

√
2N and

√
N
2 < q <

√
N . Estimate k0 as the closest integer value

of edp0−1

p0−1 . Also we have k = edp−1
p−1 . Now

|k − k0| ≈ |edp − 1
p− 1

− edp0 − 1
p0 − 1

|

≈ |edp

p
− edp0

p0
|

= |edpp0 − edpp + edpp− edp0p

pp0
|

≤ edp|p− p0|+ ep|dp − dp0 |
pp0

<
Nα+δ+β +

√
2Nα+ 1

2+γ

pp0
(as p <

√
2N)

< Nα+δ+β−1 +
√

2Nα+γ− 1
2 (as pp0 > N)

< (1 +
√

2)Nλ,

Partial Key Exposure Attack on CRT-RSA 477

where λ = max{α + δ + β − 1, α + γ − 1
2}. Next we calculate q0 = N

p0
. One can

check |q − q0| < Nβ . Taking l0 as the nearest integer of edq0−1

q0−1 , it can be shown
similarly as before that |l − l0| is O(Nλ). ��

Now we will prove our main result.

Theorem 2. Let e = Nα and dp, dq < N δ. Consider that dp0 , dq0 , p0 are exposed
such that |dp − dp0 | < Nγ, |dq − dq0 | < Nγ and |p − p0| < Nβ. Let λ =
max{α+ δ+ β− 1, α+ γ− 1

2}. Then, under Assumption 1, one can factor N in
poly(logN) time when

γ < max
τ≥0

h(τ), where h(τ) =
(2α− 3λ)τ2 + (2α− 10

3 λ)τ + (α
2 −

5
6λ)

2τ3 + 5
2τ

2 + 4
3τ + 1

3

.

Proof. Suppose dp0 , dq0 , p0 are exposed from dp, dq and p respectively. Following
Lemma 1, we get the approximations k0, l0 of k, l respectively. Let dp1 = dp−dp0 ,
dq1 = dq − dq0 , k1 = k − k0 and l1 = l− l0. Thus, dp1 , dq1 , k1, l1 are unknown to
the attacker.

We have edp = 1 + k(p− 1) and edq = 1 + l(q − 1). This can be re-written as
edp + k − 1 = kp and edq + l − 1 = lq. Multiplying these two equations, we get

e2dpdq + edp(l − 1) + edq(k − 1)− (N − 1)kl − (k + l− 1) = 0.

Now putting dp = dp1+dp0 , dq = dq1 +dq0 , k = k0+k1 and l = l0+l1 in the above
equation we have e2dp1dq1 +(e2dp0 −e+ek0)dq1 +(e2dq0 −e+el0)dp1 +ek1dq1 +
el1dp1 + (edq0 − 1− l0N + l0)k1 + (edp0 − 1− k0N + k0)l1 + (1−N)k1l1 +R = 0,
where R = (e2dp0dq0− edp0 − edq0 +1+ edp0l0 + edq0k0− l0k0N + l0k0− l0− k0)
is a known constant. Now if we substitute dp1 , dq1 , k1, l1 by x, y, z, v respectively
then we have e2xy+(e2dp0 − e+ ek0)y+(e2dq0 − e+ el0)x+ ezy+ evx+(edq0 −
1− l0N+ l0)z+(edp0−1−k0N+k0)v+(1−N)zv+R = 0. Hence we have to find
the solution dp1 , dq1 , k1, l1 of the polynomial f(x, y, z, v) = e2xy + (e2dp0 − e +
ek0)y+(e2dq0 −e+el0)x+ezy+evx+(edq0 −1− l0N + l0)z+(edp0 −1−k0N +
k0)v + (1−N)zv +R. Note that this polynomial has the same monomials as of
f(x1, x2, x3, x4) presented in [16, Section 4], though the coefficients are different.
Also, the upper bounds on the variables are different as mentioned below.

Here dp1 < Nγ , dq1 < Nγ . Also from Lemma 1, k1, l1 are O(Nλ). Let X =
Y = Nγ , and Z = V = Nλ, which are the upper bounds of x, y, z, v respectively
(note that for the upper bounds of z, v, we have neglected the constant terms as
mentioned above).

When e is significantly greater than N0.5, then dp1 , dq1 are significantly smaller
than k1, l1. As we are mostly interested for large e, we apply extra shifts on x, y
as advised in the “Extended Strategy” of [15, Page 274]. In this direction we
define the following as in [16]:

S =
⋃

0≤j≤t

{xi1+jyi2+jzi3wi4 : xi1yi2zi3wi4 is a monomial of fm−1},

M = {monomials of xi1yi2zi3wi4f : xi1yi2zi3wi4 ∈ S}.

478 S. Sarkar and S. Maitra

That is, xi1yi2zi3vi4 ∈ S iff i1 = 0, . . . ,m−1−i3+t, i2 = 0, . . . ,m−1−i4+t, i3 =
0, . . . ,m− 1, i4 = 0, . . . ,m− 1, and

xi1yi2zi3vi4 ∈ M iff i1 = 0, . . . ,m − i3 + t, i2 = 0, . . . ,m − i4 + t, i3 =
0, . . . ,m, i4 = 0, . . . ,m for some non-negative integer t.

We need to find at least three more polynomials f0, f1, f2 that share the
same root (dp1 , dq1 , k1, l1) over the integers. Given W = ||f(xX, yY, zZ, vV)||∞,
from [15], we know that these polynomials can be found by lattice reduction if
Xs1Y s2Zs3V s4 < W s for sr =

∑

xi1yi2zi3vi4∈M\S ir, r = 1, 2, 3, 4 and s = |S|.
For a given integer m and t = τm, from the definition of S and M and

neglecting the lower order terms we have the required condition same as the one
presented in [16, Section 4] due to the same polynomial f used in both the cases.

(XY)
5
12 + 5

3 τ+ 9
4 τ2+τ3

(ZV)
5
12+ 5

3 τ+ 3
2 τ2

< W
1
4 +τ+τ2

. (1)

However, the bounds on X,Y, Z, V,W are different than what presented in [16,
Section 4]. As W ≥ N2α+2γ , substituting the values of X,Y, Z, V in Inequal-
ity (1), it is enough to satisfy the following inequality:

(
5
12

+
5
3
τ +

9
4
τ2 + τ3)2γ + (

5
12

+
5
3
τ +

3
2
τ2)2λ < (

1
4

+ τ + τ2) · (2α+ 2γ). (2)

Thus we get the following:

γ <
(2α− 3λ)τ2 + (2α− 10

3 λ)τ + (α
2 −

5
6λ)

2τ3 + 5
2τ

2 + 4
3 τ + 1

3

.

Fixing α, λ, let h(τ) = (2α−3λ)τ2+(2α− 10
3 λ)τ+(α

2 − 5
6 λ)

2τ3+ 5
2 τ2+ 4

3 τ+ 1
3

. Putting h′(τ) = 0, we
get the equation

(6λ− 4α)τ4 + (
40λ
3

− 8α)τ3 + (
28λ
3

− 16α
3

)τ2 + (
13λ
6

− 7α
6

)τ = 0. (3)

The non-negative real solutions of τ from this equation are considered and let
τm be the value among them for which h(τ) is maximum. Putting this optimal

value of τ we have γ <
(2α−3λ)τm

2+(2α− 10
3 λ)τm+(α

2 − 5
6 λ)

2τm
3+ 5

2 τm
2+ 4

3 τm+ 1
3

.
Under Assumption 1, we get the root using Gröbner Basis as it is done in [16]

and the algorithm works in poly(logN) time. ��

It can be checked that when β = 1
2 and γ = δ, we have the same bound as

in [16].
Below we present some numerical results based on Theorem 2. We start from

α = 0.4 as the results of [16] are better than the results of [12] when α ≥ 0.4 and
we follow the the technique of [16] only. Additionally we like to mention that
in the proof of Theorem 2, we have assumed that e is significantly greater than
N0.5, and that actually motivates the extra shifts on the variables x, y. Thus for
e < N0.5, the results may not be optimal. While studying the numerical results,
we explain two cases:

Partial Key Exposure Attack on CRT-RSA 479

Table 1. Increased bounds of decryption exponents (that are not secure) with knowl-
edge of some MSBs of dp, dq with(out) the knowledge of some MSBs of p

α δ following δ − γ, when τm from Theorem 2

[16, Section 4.1] Theorem 2 β = 1
2

β = 1
2
− 0.01 β = 1

2
β = 1

2
− 0.01

0.4 0.243 0.253 0.036 0.011 0 0

0.5 0.214 0.224 0.034 0.01 0 0

0.577 0.192 0.202 0.034 0.01 0 0

0.7 0.157 0.167 0.035 0.01 0 0

0.8 0.128 0.138 0.033 0.01 0.0708 0

0.9 0.1 0.11 0.032 0.01 0.2814 0.1479

0.925 0.093 0.103 0.031 0.01 0.3411 0.1972

0.95 0.087 0.097 0.032 0.012 0.4212 0.2626

1.0 0.073 0.083 0.027 0.01 0.5563 0.3751

1. when some of the MSBs of dp, dq are known, but none of the bits of p is
known,

2. when some of the MSBs of dp, dq as well as p are known.

Let us now present Table 1 based on the numerical values arising out of
Theorem 2 and compare it with the values presented in [16]. We consider the
asymptotic upper bound of δ presented in the table in [16, Section 7.1] (it follows
the formula of [16, Section 4.1]). As we claim to improve the bound on δ with
knowledge of some MSBs of dp, dq, we take the δ values 0.01 more than the
asymptotic upper bounds presented in [16].

To get the improved bounds on δ, we need to know (δ − γ) log2 N MSBs for
each of the decryption exponents. We present the values of τm (as in the proof of
Theorem 2) given different values of α, where h′(τm) = 0 and h(τm) is maximum.

The exercises are done in both the cases, (i) when none of the MSBs of p is
known, i.e., β = 1

2 and (ii) when certain amount of MSBs (0.01 log2 N bits) of p
is known.

2.1 Experimental Results

We have implemented the programs in SAGE 3.1.1 over Linux Ubuntu 8.04 on
a laptop with Dual CORE Intel(R) Pentium(R) D CPU 1.83 GHz, 2 GB RAM
and 2 MB Cache.

As we work with low lattice dimensions, the theoretical bounds of dp, dq pre-
sented in Theorem 2 may not be reached and the actual requirement of MSBs
to be known will be higher in experimental results than the numerical values
arrived from the theoretical results. However, we show that the values of dp, dq

achieved in our experimental results indeed exceed the experimental evidences
presented in [16]. The implementation in [16, Section 5] used Coppersmith’s orig-
inal method [8] instead of Coron’s reformulation [9]. On the other hand, we have
followed the idea of [15] based on Coron’s strategy [9] itself for our experiments.

480 S. Sarkar and S. Maitra

Example 1. We consider 500 bits p, q, i.e., 1000 bits N = pq. The primes p, q are
as follows:
257982890708293518390079668089547327140094192761354318342177532056
591406252118442411708524558220040883218254274670592143045254411833
7323748167716006673,
219175753591795206167656820069977488073370238295740745766814008472
138727195704836927992992835177976408563857693206444747859754365066
1348649341629849809.

We consider α = 0.8, i.e., e is an 800 bit integer as follows:
381488272445274098681501407517305078463396289118603070856927451668
680476133479793702456098517534653338608646458073266532528791321957
770232953077386115965246285769851351453842444699396326285020512454
7833724025378461669383099996626917921859531.

In [16, Section 7.2], it has been shown that in such a case, decryption expo-
nents up to 79 bits are insecure in practice. The lattice parameters used in this
case are m = 2, t = 0 and the time required to run the LLL algorithm was 2
seconds in the experimental set up of [16].

The experiment is with decryption exponents of 90 bits, where dp, dq are
1187824505872763330365347843, 1197585192151765825516761747 respectively.
We consider that 36 MSBs of each of dp, dq and 10 MSBs of p are known. We
used the lattice parameters m = 2, t = 0. The time required to run the LLL
algorithm is 24 seconds in our experimental set up.

As referred in the proof of Theorem 2, we have f, f0, f1, f2 after the LLL al-
gorithm. Then we apply the strategy exploiting Gröbner Basis and find a poly-
nomial on the single variable v, i.e., l1. Once we get l1, we find l. Consequently
we can find out q since e > N

1
4 (one may refer to the discussion in [16, Section

7.1]). ��

Example 2. We consider 500 bits p, q, i.e., 1000 bits N = pq. The primes p, q are
as follows:
308536652523786752403262271587380862779156002539534598580650377819
837308083923866689819772202260205864471663039568900406887433048818
1354605267758401737,
174884640339050989948134239058179947355258107199237642863944051459
787872529871998850799955677509191511939485741856556131422997911453
4175281806597704419.

We consider α = 1, i.e., e is a 1000 bit integer as follows:
650836990581869614252071497849163666992784539277711863628883327803
447764262103970654043363725365856415076337791404005870468638937810
821150247754816434038612733008679525086364394895223068051664347774
104165881644840283525895285922376024682931696898353489945338018493
5253711023618697785834142726686557409.

In [16, Section 7.2], it has been shown that in such a case, decryption expo-
nents up to 15 bits are insecure in practice. The lattice parameters used in this
case are m = 3, t = 1 and the time required to run the LLL algorithm was 13787
seconds in the experimental set up of [16].

Partial Key Exposure Attack on CRT-RSA 481

We consider the decryption exponents of 18 bits, where dp, dq are 255025,
257539 respectively. We consider that 9 MSBs of each of dp, dq, p are known. We
used the lattice parameters m = 2, t = 1. The time required to run the LLL
algorithm is 3347 seconds in our experimental set up. ��

The values of dp, dq in Example 2 are quite low and any one of them can be easily
searched for a complete attack. Example 2 is presented only for the purpose of
comparison with the result of [16].

3 Unbalanced Decryption Exponents

In this section we present similar analysis as in the earlier section, with the
only difference that now the decryption exponents dp, dq can be of different size.
Instead of considering t amount of extra shifts on both the variables x, y as in
Theorem 2, here we apply two different shifts t1, t2 on x, y respectively. Taking
two different shifts produce better results than considering the same shift in case
of unbalanced decryption exponents.

Theorem 3. Let e = Nα, dp < N δ1 and dq < N δ2 . Consider that dp0 , dq0 , p0

are exposed such that |dp − dp0 | < Nγ1 , |dq − dq0 | < Nγ2 and |p− p0| < Nβ. Let
λ1 = max{α+ δ1 +β− 1, α+ γ1− 1

2} and λ2 = max{α+ δ2 +β− 1, α+ γ2− 1
2}.

Then, under Assumption 1, one can factor N in poly(logN) time when there
exist non-negative real numbers τ1, τ2 ≥ 0 for which h(τ1, τ2, γ1, γ2, λ1, λ2, α) =
τ1

2τ2γ1 + τ1τ2
2γ2 + 3

4τ1
2γ1 + 1

2τ1τ2(γ1 +γ2)+ 3
4τ2

2γ2 + 3
2τ1τ2(λ1 +λ2)−2τ1τ2α+

1
2τ1γ1 + 1

6τ2γ1 + 1
6τ1γ2 + 1

2τ2γ2 + τ1λ1 + 2
3τ2λ1 + 2

3τ1λ2 + τ2λ2 − τ1α − τ2α +
1
6 (γ1 + γ2) + 5

12 (λ1 + λ2)− α
2 < 0.

Proof. This proof is similar to the proof of Theorem 2 till the construction of
the polynomial f(x, y, z, v).

Here dp1 < Nγ1 , dq1 < Nγ2 and we also consider k1 < Nλ1 , l1 < Nλ2 (ignoring
the constants presented in Lemma 1). Let X = Nγ1 , Y = Nγ2 , Z = Nλ1 , V =
Nλ2 .

We have the following definitions of S,M , where t1, t2 are non-negative inte-
gers.

S =
⋃

0≤j1≤t1,0≤j2≤t2

{xi1+j1yi2+j2zi3wi4 : xi1yi2zi3wi4 is a monomial of fm−1},

M = {monomials of xi1yi2zi3wi4f : xi1yi2zi3wi4 ∈ S}.
Similar to the proof of Theorem 2, we need, Xs1Y s2Zs3V s4 < W s for sr =

∑

xi1yi2zi3vi4∈M\S ir, r = 1, 2, 3, 4, s = |S| and W = ||f(xX, yY, zZ, vV)||∞ ≥
N2α+γ1+γ2 .

For a given integer m, let t1 = τ1m and t2 = τ2m. Then from the definitions
of S,M we have the required condition

Xs1Y s2Zs3V s4 < W s, (4)

482 S. Sarkar and S. Maitra

where,
s1 = (5

12m
4 + m3t1 + 3

4m
2t1

2 + 2
3m

3t2 + 3
2m

2t1t2 + mt1
2t2) + o(m4),

s2 = (5
12m

4 + m3t2 + 3
4m

2t2
2 + 2

3m
3t1 + 3

2m
2t1t2 + mt1t2

2) + o(m4),
s3 = 5

12m
4 + m3t1 + 2

3m
3t2 + 3

2m
2t1t2 + o(m4),

s4 = 5
12m

4 + m3t2 + 2
3m

3t1 + 3
2m

2t1t2 + o(m4), and

s = m4

4 + m3(t1+t2)
2 + m2t1t2 + o(m4).

Substituting the values of X,Y, Z, V,W in Inequality (4), and putting t1 =
τ1m, t2 = τ2m, we have (5

12 +τ1+ 3
4τ1

2+ 2
3 τ2+ 3

2τ1τ2+τ1
2τ2)γ1+(5

12 +τ2+ 3
4τ2

2+
2
3τ1 + 3

2τ1τ2 + τ1τ2
2)γ2 +(5

12 + τ1 + 2
3τ2 + 3

2τ1τ2)λ1 +(5
12 + τ2 + 2

3τ1 + 3
2τ1τ2)λ2 <

(1
4 + τ1+τ2

2 + τ1τ2)(2α+ γ1 + γ2). From which we get h(τ1, τ2, γ1, γ2, λ1, λ2, α) =
τ1

2τ2γ1 + τ1τ2
2γ2 + 3

4τ1
2γ1 + 1

2τ1τ2(γ1 +γ2)+ 3
4τ2

2γ2 + 3
2τ1τ2(λ1 +λ2)−2τ1τ2α+

1
2τ1γ1 + 1

6τ2γ1 + 1
6τ1γ2 + 1

2τ2γ2 + τ1λ1 + 2
3τ2λ1 + 2

3τ1λ2 + τ2λ2 − τ1α − τ2α +
1
6 (γ1 + γ2) + 5

12 (λ1 + λ2)− α
2 < 0.

Then the proof follows by finding the root similar to the idea described in
Theorem 2. ��

One may check that putting τ1 = τ2 = τ in Theorem 3, we get the same form
as presented in Theorem 2.

First consider the case, when no information about the bits of dp, dq, p is
known. Thus, we have γ1 = δ1, γ2 = δ2, β = 1

2 . When δ1, δ2 are available, we
will take the partial derivative of h with respect to τ1, τ2 and equate each of them
to 0 to get non-negative solutions of τ1, τ2. Given any pair of such non-negative
solutions, if h is less than zero, then for that δ1, δ2, CRT-RSA will be insecure.

Let us assume that for balanced dp, dq, CRT-RSA is insecure when dp, dq <
N δ. On the other hand, consider that CRT-RSA is insecure for the unbalanced
case when dp < N δ1 , dp < N δ2 . This situation is worth investigating when
2δ < δ1 + δ2. We find that this indeed happens. In [16], it has been shown that
when e is O(N), then CRT-RSA is insecure when δ = 0.073. In Table 2, we find
the cases when δ1 + δ2 is greater than 2δ = 0.146.

Table 2. Values for which CRT-RSA with unbalanced decryption exponents is insecure

δ1 0.06 0.05 0.04 0.03

δ2 0.087 0.099 0.111 0.126

δ1 + δ2 0.147 0.149 0.151 0.156

Thus considering the total amount of bits in the decryption exponents, CRT-
RSA is less secure when the decryption exponents are of different bit size than
the case when they are of same bit size.

In Table 3 we present the numerical results for partial key exposure attack.
We consider dp < dq and no information is available regarding the bits of dp.
Thus, we have γ1 = δ1 and (δ2 − γ2) log2 N MSBs of dq need to be known for
the attack. Moreover, we consider two cases: (i) when no information regarding
p is known and (ii) when 0.01 log2 N MSBs of p are known. As a particular
instance, when dp < N0.06, then one may attack CRT-RSA with dq < N0.097,

Partial Key Exposure Attack on CRT-RSA 483

Table 3. Numerical results following Theorem 3

δ1 δ2 γ2, when β = 1
2

γ2, when β = 1
2
− 0.01

0.03 0.136 0.102 0.122
0.04 0.121 0.091 0.107
0.05 0.109 0.078 0.093
0.06 0.097 0.068 0.082

when (0.097 − 0.082) log2 N = 0.015 log2 N MSBs of dq are exposed and also
0.01 log2 N MSBs of p is available.

For experimental results, one needs to use limited lattice dimensions and it
may not be possible to reach these bounds in practice.

4 Conclusion

Using the idea of [16], we have studied the cryptanalysis of CRT-RSA when
certain amount of the MSBs of the decryption exponents dp, dq are exposed. The
attack becomes sharper with the knowledge of a few MSBs of p. The results work
for any e of O(N) and primes of the same bit size. Our results demonstrate that
the upper bounds of insecure decryption exponents increase with the exposure
of certain amounts of their MSBs. We also study the case when the decryption
exponents are of different bit size. Our results show that CRT-RSA is more
insecure in this case (considering the sum of bits in the decryption exponents)
than when the decryption exponents are of the same bit size.

Acknowledgments. The authors like to thank the anonymous reviewers for
detailed comments that improved the technical as well as editorial quality of
this paper. The first author likes to acknowledge the Council of Scientific and
Industrial Research (CSIR), India for supporting his research fellowship.

References

1. Bleichenbacher, D., May, A.: New Attacks on RSA with Small Secret CRT-
Exponents. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T.G. (eds.) PKC 2006.
LNCS, vol. 3958, pp. 1–13. Springer, Heidelberg (2006)

2. Blömer, J., May, A.: New Partial Key Exposure Attacks on RSA. In: Boneh, D.
(ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 27–43. Springer, Heidelberg (2003)

3. Boneh, D., Durfee, G., Frankel, Y.: Exposing an RSA Private Key Given a Small
Fraction of its Bits. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS,
vol. 1514, pp. 25–34. Springer, Heidelberg (1998)

4. Boneh, D.: Twenty Years of Attacks on the RSA Cryptosystem. Notices of the
AMS 46(2), 203–213 (1999)

5. Boneh, D., Durfee, G.: Cryptanalysis of RSA with Private Key d Less Than N0.292.
IEEE Trans. on Information Theory 46(4), 1339–1349 (2000)

6. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of eliminating errors
in cryptographic computations. Journal of Cryptology 14(2), 101–119 (2001)

484 S. Sarkar and S. Maitra

7. Cohen, H.: A Course in Computational Algebraic Number Theory. Springer, Hei-
delberg (1996)

8. Coppersmith, D.: Small Solutions to Polynomial Equations and Low Exponent
Vulnerabilities. Journal of Cryptology 10(4), 223–260 (1997)

9. Coron, J.-S.: Finding Small Roots of Bivariate Integer Equations Revisited. In:
Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 492–
505. Springer, Heidelberg (2004)

10. Cox, D., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms, 2nd edn. Springer,
Heidelberg (1998)

11. Ernst, M., Jochemsz, E., May, A., de Weger, B.: Partial Key Exposure Attacks on
RSA up to Full Size Exponents. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS,
vol. 3494, pp. 371–386. Springer, Heidelberg (2005)

12. Galbraith, S., Heneghan, C., Mckee, J.: Tunable Balancing of RSA. In: Boyd, C.,
González Nieto, J.M. (eds.) ACISP 2005. LNCS, vol. 3574, pp. 280–292. Springer,
Heidelberg (2005)

13. Howgrave-Graham, N.: Finding Small Roots of Univariate Modular Equations Re-
visited. In: Darnell, M.J. (ed.) Cryptography and Coding 1997. LNCS, vol. 1355,
pp. 131–142. Springer, Heidelberg (1997)

14. Jochemsz, E.: Cryptanalysis of RSA Variants Using Small Roots of Polynomials.
Ph. D. thesis, Technische Universiteit Eindhoven (2007)

15. Jochemsz, E., May, A.: A Strategy for Finding Roots of Multivariate Polynomials
with new Applications in Attacking RSA Variants. In: Lai, X., Chen, K. (eds.)
ASIACRYPT 2006. LNCS, vol. 4284, pp. 267–282. Springer, Heidelberg (2006)

16. Jochemsz, E., May, A.: A Polynomial Time Attack on RSA with Private CRT-
Exponents Smaller Than N0.073 . In: Menezes, A. (ed.) CRYPTO 2007. LNCS,
vol. 4622, pp. 395–411. Springer, Heidelberg (2007)

17. Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring Polynomials with Rational
Coefficients. Mathematische Annalen 261, 513–534 (1982)

18. May, A.: Cryptanalysis of Unbalanced RSA with Small CRT-Exponent. In: Yung,
M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 242–256. Springer, Heidelberg (2002)

19. May, A.: Using LLL-Reduction for Solving RSA and Factorization Problems: A
Survey. LLL+25 Conference in honour of the 25th birthday of the LLL algorithm
(2007), http://www.informatik.tu-darmstadt.de/KP/alex.html (last accessed
23 December, 2008)

20. Rivest, R.L., Shamir, A., Adleman, L.: A Method for Obtaining Digital Signatures
and Public Key Cryptosystems. Communications of ACM 21(2), 158–164 (1978)

21. Wiener, M.: Cryptanalysis of Short RSA Secret Exponents. IEEE Transactions on
Information Theory 36(3), 553–558 (1990)

http://www.informatik.tu-darmstadt.de/KP/alex.html

How to Compare Profiled Side-Channel Attacks?

François-Xavier Standaert1,�, François Koeune1,��, and Werner Schindler2

1 UCL Crypto Group, Université catholique de Louvain, B-1348 Louvain-la-Neuve
{fstandae,francois.koeune}@uclouvain.be

2 Bundesamt für Sicherheit in der Informationstecknik (BSI), 53175 Bonn, Germany
werner.schindler@bsi.bund.de

Abstract. Side-channel attacks are an important class of attacks
against cryptographic devices and profiled side-channel attacks are the
most powerful type of side-channel attacks. In this scenario, an adver-
sary first uses a device under his control in order to build a good leakage
model. Then, he takes advantage of this leakage model to exploit the
actual leakages of a similar target device and perform a key recovery.
Since such attacks are divided in two phases (namely profiling and on-
line attack), the question of how to best evaluate those two phases arises.
In this paper, we take advantage of a recently introduced framework for
the analysis of side-channel attacks to tackle this issue. We show that
the quality of a profiling phase is nicely captured by an information the-
oretic metric. By contrast, the effectiveness of the online key recovery
phase is better measured with a security metric. As an illustration, we
use this methodology to compare the two main techniques for profiled
side-channel attacks, namely template attacks and stochastic models.
Our results confirm the higher profiling efficiency of stochastic models
when reasonable assumptions can be made about the leakages of a device.

1 Introduction

Side-channel attacks are a powerful class of cryptanalysis techniques in which
an adversary not only takes advantage of the mathematical properties of an
algorithm but also of the physical properties of its implementation. Profiled
side-channel attacks are the most powerful type of side-channel attacks and can
be viewed as divided in two phases. First, a profiling phase provides an adversary
with a training device and allows him characterizing its physical leakages. Sec-
ond, an online exploitation phase is mounted against a similar target device in
order to perform a key recovery. Standard profiled side-channel attacks include
template attacks and stochastic models, respectively introduced in [1] and [5].

Because of their division in two phases, a usual question for such attacks
is to determine their effectiveness in profiling and attacking a device. In this
work, we follow the analysis of [2] in which the performances of template at-
tacks and stochastic models were analyzed. In this reference, the efficiency of
� Associate researcher of the Belgian Fund for Scientific Research (FNRS - F.R.S.)

�� Supported in part by the Walloon Region research project SCEPTIC.

M. Abdalla et al. (Eds.): ACNS 2009, LNCS 5536, pp. 485–498, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

486 F.-X. Standaert, F. Koeune, and W. Schindler

the online phase was nicely captured by measuring the success rate of a key
recovery adversary exploiting templates or stochastic models. By contrast, the
criteria used to quantify the quality of the profiling phase had a more ad hoc
flavor. As a consequence, we suggest that the framework of [7] can be used to
improve this analysis. We present experiments to confirm how and why an in-
formation theoretic metric captures the profiling efficiency of an attack while a
security metric rather measures the effectiveness of its online phase. Hence, our
results confirm the previous intuitions with a more rigorous theoretical back-
ground. In practice, we observe that stochastic models built from sound engi-
neering assumptions can give a very precise image of a device’s leakages from
a reduced amount of profiling measurements. More formally, our experiments
can be viewed as the practical counterparts of Theorems 1 and 2 in [7]. They
show that the proposed principles for comparing side-channel attacks are not
only theoretical but can also be practically meaningful and solve actual engi-
neering problems.

The rest of this paper is structured as follows. Section 2 introduces the prelimi-
nary assumptions in profiled side-channel attacks. Section 3 recalls the evaluation
metrics of [7]. Section 4 provides a brief description of the template attacks and
stochastic models with a discussion of their parameters. The core of the paper
is in Sections 5 and 6 in which our experimental comparisons are presented and
their limitations are analyzed. Eventually, conclusions are in Section 7.

2 Preliminary Assumptions for Profiled Attacks

Before starting a careful analysis of particular types of attacks, it is important
to consider the different assumptions that can sometimes be hidden in the de-
scription and implementation of a profiled side-channel attack. In particular, this
section aims to list four decisions that generally have to be taken.

Known or chosen plaintext models. As a matter of fact, any profiled side-
channel attack starts by building a leakage model that will be used in the online
part of an attack to predict the actual leakages of a target device. As a con-
sequence arises the question: “for which inputs will the model be built?”. In
the practice of side-channel attacks, there are essentially two available choices,
namely known or chosen plaintext leakage models. If a chosen plaintext leak-
age model is decided, it suffices if the adversary only builds a model for certain
plaintexts or sequences of plaintexts. Hence, the same chosen plaintexts or se-
quences of plaintexts will have to be used in the online phase of the attack. By
contrast, if a known plaintext leakage model is considered, the leakages corre-
sponding to the encryption of any plaintext can be exploited in the online phase
of the attack1.
1 We mention that chosen plaintext models are not particularly desirable in template

attacks (since they limit the exploitable plaintexts in the online phase of the attack).
But they should not be confused with (possibly adaptive) chosen plaintext attacks
that generally improve the effectiveness of the online phases. Note also that known
or chosen ciphertexts could be considered equivalently.

How to Compare Profiled Side-Channel Attacks? 487

Weight or distance based models. A side-channel adversary always has to
do some minimal assumptions on the architecture of his target device. Typically,
side-channel leakages such as the power consumption are generally dependent on
the transition between two inputs rather than on single inputs. If such transition-
based leakages are actually observed, it implies that the models also have to be
built for different input transitions rather than for different inputs. Such a con-
text typically corresponds to the Hamming distance leakage models described,
e.g. in [4]. By contrast, in certain devices (e.g. smart cards) the meaningful
transitions are not between two inputs but between a variable input and a con-
stant state. In such scenarios, leakage models based on single inputs are again
meaningful, just as when Hamming weight models apply2.

Symmetry properties in the leakages. Depending on the two previous de-
cisions, an adversary will decide to build a model (e.g. templates) for different
inputs of the target device. In the context of a block cipher, it means that models
have to depend on plaintexts and keys. But the lower the number of templates
to build, the better the profiling efficiency. Hence, one will typically try to take
advantage of symmetry properties in the leakages, such as the Equal Images un-
der different Subkeys (EIS) property defined in [5]. For example, if it is known
that (most of) the leakages of a block cipher implementation are not dependent
on both the plaintext and the key but only on the XOR between the plaintext
and the key, then templates can be built only for these XOR values. For further
considerations on symmetries, we refer the interested reader to [6].

Need to program a target device. Eventually, it is worth mentioning that it
is generally assumed that profiled side-channel attacks require a device that one
can program (e.g. control the keys) during profiling. In fact, if an EIS property is
assumed, it can be sufficient to profile the device with only one known key. When
stochastic models are considered, it may even be possible to profile without a
device for which the key is known (see [5], Remark 2 for the details).

2.1 Target Implementation

The goal of this paper is not to investigate one particular device but to pro-
vide a methodological contribution to the comparison of profiled side-channel
attacks. For this reason, we decided to analyze a simple simulated attack sce-
nario in which all the parameters are under control. As will be clear later, it
allows putting forward interesting intuitions on the respective effectiveness of
the template attacks and stochastic models but also on their limitations.

In practice, we investigated the following context. Let k be the first master key
byte of the AES Rijndael and xi be a corresponding input plaintext byte. Let S
be the AES S-box and yi = S(xi⊕k) be the output of this S-box. We consider an
2 In theory, longer history effects could be observed, i.e. the actual leakages may not

only depend on the transition between two inputs but also on previous ones. We
focus on the weight and distance based models because they are very common in
the literature. But extending the choice towards other cases would be possible.

488 F.-X. Standaert, F. Koeune, and W. Schindler

adversary that is provided with leakage traces3 of the form [xi, HW (S(xi⊕k))+
ni] where HW is the Hamming weight function and ni is a realization of normally
distributed noise, described by a random variable Ni with expectation μ = 0
and with variance σ2. In the following sections, we will evaluate this adversary
in function of two parameters: the amount of traces used in the profiling stage of
the attack qp and the amount of traces used in the online phase of the attack q.
With respect to the previous assumptions, we will build known plaintext models
assuming weight based leakages. Eventually, the adversary will take advantage
of an EIS property and assume that the leakage for every pair (x1, k1), (x2, k2)
such that x1 ⊕ k1 = x2 ⊕ k2 is identical. We acknowledge that this scenario
(mainly selected for tutorial purposes) hides the practical problem of selecting
the meaningful time samples in the leakage traces (discussed, e.g. in [2,9]), due
to its univariate nature. However, the proposed evaluation methodology can be
straightforwardly extended to multivariate probability distributions.

3 Evaluation Metrics

Following the framework introduced in [7], we will evaluate our different exper-
iments with a combination of information theoretic and security metrics.

Information theoretic metric. Let K be a discrete random variable repre-
senting the target key byte of our side-channel attacks and k be a realization of
this variable (i.e. the key in one instance of attack). Let Lq be a random vec-
tor describing random side-channel observations generated with q queries to the
target physical computer and lq = [l1, l2, . . . , lq] be a realization of this random
vector, with e.g. li = HW (S(xi ⊕ k)) +ni (and Li = HW (S(xi ⊕ k)) +Ni) as ex-
plained in the previous section. Let finally Pr[k|lq] be the conditional probability
of a key byte k given a leakage lq. We define a conditional entropy matrix as:

Hq
k,k∗ = −

∑

lq

Pr[lq|k] · log2 Pr[k∗|lq], (1)

where k∗ denotes a possible key class candidate in the attack. From this matrix,
we derive Shannon’s conditional entropy as follows:

H[K|Lq] = −
∑

k

Pr[k]
∑

lq

Pr[lq|k] · log2 Pr[k|lq] = E
k

Hq
k,k,

where E denotes the mathematical expectation and Pr[k|lq] is derived from the
Bayes law. We note that this definition is equivalent to the classical one since:

H[K|Lq] = −
∑

lq

Pr[lq]
∑

k

Pr[k|lq] · log2 Pr[k|lq]

= −
∑

k

Pr[k]
∑

lq

Pr[lq|k] · log2 Pr[k|lq]

3 Each trace contains only one leakage sample, i.e. we only consider univariate attacks.

How to Compare Profiled Side-Channel Attacks? 489

Then, we define an entropy reduction matrix: H̃
q

k,k∗ = H[K] − Hq
k,k∗ , where

H[K] is the entropy of the key byte K before any side-channel attack has been
performed: H[K] = −Ek log2 Pr[k]. It directly yields the mutual information:

I(K;Lq) = H[K]−H[K|Lq] = E
k

H̃
q

k,k (2)

Security metric. We consider a side-channel key recovery adversary of which
the aim is to guess a key byte k with non negligible probability. For this purpose
and for each candidate k∗, he compares the actual observation of a leaking device
lq with some key dependent model for these leakages M(k∗, .). The construction
of these models (otherwise said templates or stochastic models) will be detailed in
the next section. Let T(lq,M(k∗, .)) be the statistical test used in the comparison.
We assume that the highest value of the statistic corresponds to the most likely
key candidate. For each observation lq, we store the result of the statistical
test T in a vector gq = T(lq,M(k∗, .)) containing the key candidates sorted
according to their likelihood: gq := [g1, g2, . . . , g|K|] (e.g. in our present context
|K|=256). Then, for any side-channel attack exploiting a leakage vector lq and
giving rise to a result gq, we define the success function of order o against a key
byte k as: So

k(gq)=1 if k ∈ [g1, . . . , go], else So
k(gq)=0. It leads to the oth-order

success rate:

Succo
K = E

k
E
lq

So
k(gq) (3)

Intuitively, a success rate of order 1 (resp. 2) relates to the probability that the
correct key byte is sorted first (resp. among the two first ones) by the adversary.

4 Description of the Attacks

4.1 Classical Template Attacks

Templates construction. Suppose that an adversary is provided with Nx

leakage traces corresponding to the computation of a secret value v. As will
be discussed in Section 4.3, this value can but does not have to be the secret
key k. In theory, one can build templates for any intermediate value computed
by a leaking cryptographic device. In the template attacks of [1], a multivariate
Gaussian noise is considered, which means that the vectors {lv,i

q }Nx

i=1 are assumed
to be drawn from the multivariate distribution:

N (lv,i
q |μv, Σv) =

1

(2π)
N
2 |Σv| 12

exp

{

−1

2
(lv,i

q − μv)	Σ−1
v (lv,i

q − μv)

}

,

where the mean μv and the covariance matrix Σv specify completely the noise
distribution associated to each secret v. Constructing the templates consists
then in estimating the sets of parameters {μv}

|V|
v=1 and {Σv}|V|

v=1. A standard
approach is to use the empirical mean and covariance matrix associated to the
observations {lv,i

q }Nx

i=1: μ̂v = 1
Nx

∑Nx

i=1 lv,i
q , Σ̂v = 1

Nx

∑Nx

i=1(l
v,i
q − μ̂v)(l

v,i
q − μ̂v)

�.

490 F.-X. Standaert, F. Koeune, and W. Schindler

Attack. Assume now that there are |V| possible secret values. In order to de-
termine by which secret signal a new vector lnew was generated, we apply Bayes’
rule. This leads to the following classification rule:

ṽ = argmax
v∗

P̂r[v∗|lnew] = argmax
v∗

P̂r[lnew|v∗] Pr[v∗],

where P̂r[lnew|v∗] = N (lnew|μ̂v∗ , Σ̂v∗) and Pr[v∗] is the a priori probability of
the value candidate v∗. The classification rule assigns lnew to the candidate v∗

with the highest a posteriori probability. In general, we have Pr[v∗] = 1
|V| .

Interestingly, such template attacks require Nx traces to build each of the
|V| possible models (i.e. mean vectors, covariance matrices). Hence, the overall
number of traces for profiling qp equals Nx × |V|. We note again that in our
example, each execution of the S-box only gives rise to a single leakage sample.
Hence we are limited to univariate attacks. But the following analysis would
apply identically if each leakage trace was containing several samples.

Finally, in the (frequent) case where the values v for which the templates are
built are not equal to the target key k, the adversary additionally combines the
leakages corresponding to different key-dependent values in order to perform a
key recovery, i.e. he computes k̃ = argmax

k∗

∏q
i=1 P̂r[lnew,i|xi, k

∗].

4.2 Stochastic Models

The stochastic models introduced in [5] work in a slightly different fashion than
classical template attacks in the sense that they attempt to take advantage of
the adversary’s knowledge of the target device during the profiling phase. Let
lq = [l1, l2, . . . , lq] be the leakage vector defined in the previous sections, li be
a leakage trace and li(t) a leakage sample in this trace. In theory, any of those
samples is the output of a leakage function Lt such that, e.g. in our block cipher
context, li(t) = Lt(xi, k). Stochastic models assume that this leakage function
can be written as the sum of a deterministic part and a random part, namely:
Lt(xi, k) = δt(xi, k) + ρt. From this basic assumption results the fact that the
profiling phase will now be divided in two parts in order to approximate the
leakage function deterministic part and random part separately.

Approximation of the leakage function deterministic part. In this first
phase, it is assumed that the deterministic part of the leakage function can be
approached as a linear combination δ̂t(xi, k) =

∑u−1
j=0 βj,t·gj,t(xi, k), for some well

chosen base functions gj,t of the plaintext and the key4. Hence, the goal of this
first phase is to find the closest approximation of this form. Finding a good base
[g0,t, g1,t, . . . , gu−1,t] is typically where engineering intuition can be exploited
since one has to select the functions of which the output influences the actual
leakages. The better the base vector functions are correlated with the actual
leakages, the better the approximation of δt. Quite naturally, the best situation

4 ... and any other possible input, e.g. the masks in case of protected designs.

How to Compare Profiled Side-Channel Attacks? 491

for an adversary is to have a small basis that perfectly captures all the leakage
dependencies, i.e. to have a fast convergence towards a good approximation.

In practice, the adversary first generates N1 leakage traces corresponding to
plaintexts xi and keys k and builds the following matrix:

A =

⎛

⎜
⎜
⎝

g0,t(x1, k) g1,t(x1, k) ... gu−1,t(x1, k)
g0,t(x2, k) g1,t(x2, k) ... gu−1,t(x2, k)

...
g0,t(xN1 , k) g1,t(xN1 , k) ... gu−1,t(xN1 , k)

⎞

⎟
⎟
⎠

As mentioned in Section 2, depending on the exploitation or not of a symmetry
property in the leakages, it can be necessary or not to actually change the key
during the profiling (note that is generally true for template attacks as well).
Then, the adversary takes the leakage vector lN1(t) = [l1(t), l2(t), . . . , lN1(t)]
corresponding to the encryption of the same plaintexts with the same keys as in
the matrix A. The approximation of δt can eventually be obtained by applying
the least square method and simply computing the coefficients βj,t as follows:

bt = [β0,t, β1,t, . . . , βu−1,t] = (AT · A)−1 ·AT · lN1(t)

Approximation of the leakage function random part. As for the previous
template attacks, stochastic models assume a multivariate gaussian distribution
for the random part of the leakages. In order to approximate this distribution,
the adversary generates N2 new traces and first evaluates a random vector that
corresponds to the approximation error for m different time samples:

rm = [rt1 , rt2 , . . . , rtm], with rtj = Ltj (xi, k)− δ̂tj (xi, k)

From the N2 realizations of the corresponding random variable Rm, he then
computes the m×m empirical covariance matrix C such that cij = Cov(rti , rtj).

Attack. In this third phase, the adversary obtains N3 new traces lnew,i=L(xi, k).
For each of those traces, he first computes a noise vector: zi = [lnew,i(t1) −
δ̂t1(xi, k), lnew,i(t2)− δ̂t2(xi, k), . . . , lnew,i(tm)− δ̂tm(xi, k)]. From this vector, he
can compute the following probabilities:

P̂r[zi|xi, k
∗] =

1
√

(2π)m|C|
exp
{

−1
2
zT

i C
−1zi

}

Finally, he combines these probabilities and applies the maximum likelihood rule:

k̃ = argmax
k∗

N3∏

i=1

P̂r[zi|xi, k
∗]

Hence, the total number of traces for profiling a stochastic model equals qp =
N1 + N2 and the number of traces in the online phase equals q = N3.

492 F.-X. Standaert, F. Koeune, and W. Schindler

4.3 Selection of Templates and Base Vectors

A consequence of the previous descriptions is that both template attacks and
stochastic models need to do some arbitrary choices before starting to profile a
device. In the context of template attacks, one has to define the secret values v
for which templates will be built. When stochastic models are considered, one
has to determine the base functions. Therefore, if our goal is to compare those
techniques on a fair basis, it is important to perform this arbitrary choice with
assumptions as close as possible. For the template attacks, because we assume
an EIS property, we decided to build templates for each of the |V| = 256 possible
values of xi ⊕ k. For the stochastic models, we assumed that the leakages were
dependent of the 8 bits of the S-box output yi = S(xi ⊕ k). Hence the base
functions used in our experiments were [1, yi(1), yi(2), . . . , yi(8)], where yi(j)
denotes the jth bit of yi (here interpreted as a real number). We note that for
both attacks, we could similarly assume that the leakages only depend on the
Hamming weight of the S-box output. It would have resulted in the construction
of only 9 templates corresponding to those Hamming weights and the use of a
2-dimensional basis [1, HW (yi)] for the stochastic models.

5 Experiments

5.1 Empirical Computation of the Metrics

In this section, we present the results of different simulated profiled attacks. For
this purpose, we empirically evaluated our different metrics as follows.

1. We generated large amounts of profiling traces.
2. We split these traces in different sets of qp traces (with N1 = N2 = qp/2)5.
3. For various qp values, we constructed templates and stochastic models.
4. Eventually and for various number of traces q, we evaluated the attacks, i.e.

– We evaluated the probabilities P̂r[k∗|xi, lnew,i],
– From those probabilities, we estimated the first-order success rate in

function of q and the conditional entropy Ĥ[K|L1].

In practice, the traces were generated from uniformly distributed plaintexts.
We mention that since all our experiments are simulated, we were not limited
in the amount of traces generated nor by statistical sampling problems in the
estimation of the metrics. Note also that, following the analysis in [7], the success
rate was estimated in function of the number of queries in the online phase of
the attacks. By contrast, the conditional entropy was only estimated for q = 1.

5 Usually, N2 should increase as the number m of considered time instants t1, . . . , tm

increases, while m is irrelevant for the choice of N1. Also, if the implementation has
no symmetries, N2 is generally of subordinate relevance compared to N1.

How to Compare Profiled Side-Channel Attacks? 493

Fig. 1. Entropy reduction matrix of a sound leakage model

5.2 Sanity Check: The Conditional Entropy Matrix

A first interesting step in the evaluation of a leakage model (i.e. templates-based
or stochastic) is to check if it is at least good enough to perform a successful
key recovery. The conditional entropy matrix is a particularly useful tool with
this respect. As demonstrated in [7], Theorem 1, a matrix Ĥ

1

k,k∗ such that its
diagonal values are minimum for all keys indicates a sound leakage model (i.e.
a leakage model that allows asymptotically successful key recoveries). Hence,
any time we constructed a new leakage model, we checked its soundness. For
example, Figure 1 illustrates the entropy reduction matrix of a sound leakage
model obtained from a template attack in which every template was profiled
with 16 traces. We can clearly see the significantly higher information leakages
of the diagonal values. It is interesting to observe that while a sound leakage
model guarantees a successful key recovery, it is not a necessary condition. One
could easily imagine a leakage model such that only certain templates have been
properly profiled and nevertheless leads to successful attacks.

5.3 Evaluation of the Attacks

Next to the sanity check of the conditional entropy matrix, Figures 2 and 3 re-
spectively represent the estimation of our metrics for the two considered attacks.
Interestingly, the success rate plot is 2-dimensional since it depends on both qp

and q. By contrast, the conditional entropy plot is only computed for q = 1 and
hence only depends on qp. Quite naturally, the success rate tends to one when the
number of traces in the profiling and online phases increases. It is worth noting
that the conditional entropy value is sometimes higher than 8 which clearly indi-
cates an insufficient profiling. From a practical point of view, the figure directly
suggests the increased effectiveness of the profiling phase when using stochastic
models compared to template attacks. This is because only one function in a

494 F.-X. Standaert, F. Koeune, and W. Schindler

Fig. 2. Conditional entropy and success rate of the template attacks

Fig. 3. Conditional entropy and success rate of the stochastic models

9-dimensional subspace has to be approximated compared to the building of 256
templates. From a more theoretical point of view, we can see that an increase
in the amount of traces for profiling improves the effectiveness of the attacks
(or informativeness of the models) up to a certain bound. It is consequently
interesting to use the information theoretic metric to determine this bound. In
our example, we can observe that template attacks and stochastic models have
their conditional entropy that seem to converge towards the same value. It indi-
cates that the base functions used to approximate the leakages properly capture
their dependencies (which is expected since we know that the leakages actually
correspond to the noisy Hamming weights of the AES S-box output).

5.4 Comparison of the Attacks

Given the previous results, a very natural question is to wonder if we can properly
quantify the effectiveness of the profiling and online phases of the investigated
attacks. As a matter of fact, this question can be divided in three parts: (1)
“which profiling is the fastest to build a sound model?”, (2) “which profiling
gives rise to the smallest conditional entropy?” and (3) “which profiling gives
rise to the most efficient online attacks?”. In order to answer these questions,
it is convenient to plot the conditional entropy values in a logarithmic scale

How to Compare Profiled Side-Channel Attacks? 495

Fig. 4. Left figure: comparison of the conditional entropies - plain: template attacks,
dotted: stochastic models, dashed: histograms. Right figure: comparison of the success
rates - plain: template attack with H[S|L1] � 7.94, dotted: stochastic model with
H[S|L1] � 7.92, dashed: stochastic model with H[S|L1] � 7.98.

as in the left part of Figure 4. From this picture, it clearly appears that the
profiling of stochastic models is one order of magnitude faster than the one
of classical template attacks in our example, which answers the first question.
We then see (again) that both methods seem to converge towards the same
conditional entropy value which answers the second question. Eventually and
following [7], Theorem 2, this also implies that stochastic models and template
attacks should be as efficient in the online attacks if a sufficient profiling is used.
This is because a more informative model generally gives rise to a more efficient
online attack. As an illustration, we plotted the success rates corresponding to
three different profiling phases in the right part of the figure and they confirm
this intuition. Hence, the information theoretic and security metrics appear as
good methods for the comparison of the profiling and online attack efficiencies,
respectively. In practice, since the main goal of a profiling step is to build a
precise leakage model, the most important parameter to compare this step is
usually the smallest value of the conditional entropy that can be reached. But
when the limit of this conditional entropy for increasing qp values is identical for
different methods or in contexts where the number of profiling traces is limited,
the rapidity of converging towards a sound leakage model becomes important as
well.

Summarizing, the speed of convergence of a profiling method is measured by
the X axis in the left part of Figure 4; the informativeness of the profiled models
is measured by the Y axis of Figure 4; and this informativeness is generally
related to the success rate of the corresponding online attacks.

We mention that for illustration, we also evaluated a naive profiling in which
the Gaussian templates were replaced by histograms. As observed in the left
part of Figure 4, such histograms are slower to build less informative models. In
theory, one could of course imagine many other types and contexts of profiling
(e.g. profiling that produces sound but not very informative models very fast or
profiling that produces very informative models very slowly).

496 F.-X. Standaert, F. Koeune, and W. Schindler

6 Limitations

The previous sections were dedicated to the description of an exemplary context
in which the proposed methodology to compare profiled side-channel attacks was
meaningful. Before concluding the paper, this section aims to briefly discuss the
extent to which the previous conclusions are generally true.

A first restriction that has to be mentioned relates to the evaluation frame-
work itself. As demonstrated in [7], there is no one-to-one relation between the
conditional entropy and the success rate computed for a general leakage function.
In numerous practical applications, the intuition that more conditional entropy
implies less success rate is verified. But this does not prevent the possible ex-
istence of counterintuitive situations. It remains that the proposed metrics and
relations are at least more meaningful than ad hoc evaluation criteria. But a
certain level of scepticism and the verification of some relations such as in the
right part of Figure 4 are always in place in the analysis of side-channel attacks.

A second restriction relates to the evaluation of the metrics in real measure-
ment environments where statistical sampling can become an issue. As a matter
of fact, reaching a high confidence level in the evaluation of the metrics when
computed from small unprotected devices is generally not an issue. But, e.g.
computing the conditional entropy for a protected hardware design can be more
difficult. With this respect, it is worth remembering that comparing implemen-
tations according to their information leakages is only meaningful in the context
of sound leakage models. Hence, the more challenging the target device, the more
interesting the entropy matrix sanity check of Section 5.2.

Thirdly, it is important to acknowledge that the comparison between two
side-channel attacks such as templates attacks and stochastic models in this
paper is in essence implementation-dependent. What this paper provides is a
methodology that allows comparing these attacks on a sound basis, for one given
implementation (or for a class of similar implementations). But changing the ex-
perimental conditions can affect the practical conclusions that are obtained from
a set of experiments. For example, we conclude from our investigated context
that the profiling efficiency of stochastic models is much higher than the one
of classical template attacks. In fact, this conclusion mainly holds because the
base functions chosen to build our stochastic models perfectly capture the actual
leakage dependencies. But in case the base vectors are not perfectly chosen, the
generic nature of template attacks may allow them to better incorporate the
physical specificities of the measurements. Yet, we point out that the subspace
can always be selected so large that it catches all relevant peculiarities, possibly
at cost of profiling efficiency. Hence, template attacks can be viewed as the lim-
iting case of the stochastic approach, when the subspace equals the full vector
space. In other words, stochastic models generally trade a bit of the generality
of template attacks for a more efficient (i.e. faster) profiling.

Eventually, let us mention that there are situations where templates are more
appropriate than stochastic models. An interesting example is the following. Say
the S-box in a block cipher is unknown and a device only leaks the Hamming
weights of this S-box output. Then, templates can still be built for any value of

How to Compare Profiled Side-Channel Attacks? 497

xi⊕k and result in a sound leakage model. By contrast, the previous (standard)
selection of basis vectors that depend on S(xi⊕ k) is not possible anymore. And
a basis made of the 8 bits of xi ⊕ k will not lead to a good approximation of the
leakage function, because it does not not capture the S-box non-linearity.

7 Conclusions

This paper presents an application of the methodology introduced in [7] to the
analysis of template attacks and stochastic models. We investigated an exem-
plary context of simulated leakages in order to confirm the soundness of some
metrics to compare profiled side-channel attacks. Extending this analysis and
evaluation towards more complex scenarios is a good scope for further research.

In particular, the evaluation of multivariate attacks against masked imple-
mentations or non-CMOS devices would be interesting. Since in general, the
problem of power-based side-channel attacks can be viewed as a probability
density function estimation problem, it is expected that the intuition provided
by an information theoretic analysis as in this work will generally hold. But addi-
tional empirical confirmations would strengthen this expectation. For example,
it is known that the conditional entropy can be used to evaluate masked im-
plementations [8] and that stochastic models are also applicable in this context
[3,6]. A practical question is to determine how much the masking exactly affects
the profiling efficiency of profiled attacks (with known or unknown masks).

Acknowledgements. The authors would like to thank the reviewers of ACNS
2009 for their meaningful comments about this work.

References

1. Chari, S., Rao, J., Rohatgi, P.: Template Attacks. In: Kaliski Jr., B.S., Koç, Ç.K.,
Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg (2003)

2. Gierlichs, B., Lemke, K., Paar, C.: Templates vs. Stochastic Methods. In: Goubin,
L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 15–29. Springer, Heidelberg
(2006)

3. Lemke, K., Paar, C.: Analyzing Side-Channel Leakage of Masked Implementations
with Stochastic Methods. In: Biskup, J., López, J. (eds.) ESORICS 2007. LNCS,
vol. 4734, pp. 454–468. Springer, Heidelberg (2007)

4. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks. Springer, Heidelberg
(2007)

5. Schindler, W., Lemke, K., Paar, C.: A stochastic model for differential side channel
cryptanalysis. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp.
30–46. Springer, Heidelberg (2005)

6. Schindler, W.: Advanced Stochastic Methods in Side-Channel Analysis on Block
Ciphers in the Presence of Masking. J. of Math. Cryptology 2, 291–310 (2008)

7. Standaert, F.-X., Malkin, T.G., Yung, M.: A Unified Framework for the Analy-
sis of Side-Channel Key Recovery Attacks. To appear in the proceedings of Euro-
crypt (2009); Extended version available from: Cryptology ePrint Archive, Report
2006/139

498 F.-X. Standaert, F. Koeune, and W. Schindler

8. Standaert, F.-X., Peeters, E., Archambeau, C., Quisquater, J.-J.: Towards Security
Limits in Side-Channel Attacks. In: Goubin, L., Matsui, M. (eds.) CHES 2006.
LNCS, vol. 4249, pp. 30–45. Springer, Heidelberg (2006),
http://eprint.iacr.org/2007/222

9. Standaert, F.-X., Archambeau, C.: Using Subspace-Based Template Attacks to
Compare and Combine Power and Electromagnetic Information Leakages. In: Os-
wald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 411–425. Springer,
Heidelberg (2008)

http://eprint.iacr.org/2007/222

Theoretical and Practical Aspects of Mutual

Information Based Side Channel Analysis

Emmanuel Prouff2 and Matthieu Rivain1,2

1 University of Luxembourg
2 Oberthur Technologies

{e.prouff,m.rivain}@oberthur.com

Abstract. A large variety of side channel analyses performed on embed-
ded devices involve the linear correlation coefficient as wrong-key distin-
guisher. This coefficient is actually a sound statistical tool to quantify
linear dependencies between univariate variables. However, when those
dependencies are non-linear, the correlation coefficient stops being perti-
nent so that another statistical tool must be investigated. Recent works
showed that the Mutual Information measure is a promising candidate,
since it detects any kind of statistical dependency. Substituting it for the
correlation coefficient may therefore be considered as a natural extension
of the existing attacks. Nevertheless, the first applications published at
CHES 2008 have revealed several limitations of the approach and have
raised several questions. In this paper, an in-depth analysis of side chan-
nel attacks involving the mutual information is conducted. We expose
their theoretical foundations and we assess their limitations and assets.
Also, we generalize them to higher orders where they seem to be an
efficient alternative to the existing attacks. Eventually, we provide simu-
lations and practical experiments that validate our theoretical analyses.

1 Introduction

Side Channel Analysis (SCA) is a cryptanalytic technique that consists in an-
alyzing the physical leakage produced during the execution of a cryptographic
algorithm embedded on a physical device. This side channel leakage is indeed
statistically dependent on the intermediate variables of the computation which
enables key recovery attacks.

Since their introduction in the nineties, several kinds of SCA have been pro-
posed which essentially differ in the involved distinguisher. A first family is com-
posed of SCA based on linear correlation distinguishers. When such an attack
is performed, the adversary implicitly assumes that there is a linear dependence
between its predictions and the leakage measurements. Actually, the attack ef-
fectiveness depends on the accuracy of this assumption. The most well-known
examples of such attacks are the Differential Power Analysis (DPA) [1] that
is based on a Boolean correlation and the Correlation Power Analysis (CPA)
[2] that involves Pearson correlation coefficient. The second important family
of SCA is composed of the so-called Template Attacks (TA) [3]. They involve

M. Abdalla et al. (Eds.): ACNS 2009, LNCS 5536, pp. 499–518, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

500 E. Prouff and M. Rivain

maximum-likelihood distinguishers and can succeed when the DPA or CPA do
not. However, TA can only be performed if the attacker owns a profile of the
leakage according to the values of some intermediate variables, which is a strong
limitation.

Recently a new kind of SCA, called Mutual Information Analysis (MIA), has
been proposed in [4]. It uses the Mutual Information as distinguisher. It is an
interesting alternative to the aforementioned attacks since some assumptions
about the adversary can be relaxed. In particular it does not require a linear
dependency between the leakage and the predicted data (as for CPA) and is
actually able to exploit any kind of dependency. Moreover, this gain in generality
is obtained without needing to profile the leakage as it is the case for TA.

Despite its advantages, the MIA suffers from several limitations and the pre-
liminary work of Gierlichs et al. [4] poses a number of open questions. First of all,
the MIA efficiency has not been clearly established and it is not clear whether
(and in which contexts) it is better than the other attacks that assume the same
adversary capabilities (as e.g. the CPA). The first attack experiments presented
in [4] suggest that MIA’s efficiency is strongly related to the attack context (de-
vice, algorithmic target, noise, etc.). However, at this time an in-depth analysis is
missing to have a clear idea about this relationship. Secondly, the estimation of
the mutual information, which itself requires the estimation of statistical distri-
butions, is a major practical issue that has not been fully investigated in [4]. This
problematic has been dealt with in Statistics and Applied Probabilities Theory
(see for instance [5] for an overview). Among the existing estimation methods, it
is of crucial interest to determine the one that optimizes the MIA. Only such a
study will indeed allow us to form an unbiased opinion about its efficiency versus
the one of attacks involving linear dependence based distinguishers.

2 Preliminaries on Probability and Information Theory

We use the calligraphic letters, like X , to denote sets. The corresponding large
letter X is then used to denote a random variable (r.v. for short) over X , while
the lowercase letter x - a particular element from X . For every positive integer
n, we denote by X a n-dimensional r.v. (X1, · · · , Xn) ∈ Xn, while the low-
ercase letter x - a particular element from Xn. To every discrete r.v. X, one
associates a probability mass function pX defined by pX(x) = p [X = x]. If
X is continuous, one associates to X its probability density function (pdf for
short), denoted by gX: for every x ∈ Xn, we have pX [X1 ≤ x1, · · · , Xn ≤ xn] =
∫ x1

−∞ · · ·
∫ xn

−∞ gX(t1, · · · , tn)dt1 · · ·dtn.
The Gaussian distribution is an important family of probability distributions,

applicable in many fields. A r.v. X having such a distribution is said to be
Gaussian and its pdf gμ,Σ is defined for every x ∈ Xn by:

gμ,Σ(x) =
1

(2π)n/2|Σ|1/2
exp
(

−1
2
(x− μ)�Σ−1(x− μ)

)

, (1)

where μ and Σ respectively denote the mean and the covariance matrix of X.

Theoretical and Practical Aspects of Mutual Information 501

In this paper, we will study r.v. whose pdf is a finite linear combination of
Gaussian pdfs. Such a pdf, which is called a Gaussian mixture (GM for short),
is denoted by gθ and it satisfies for every x ∈ Xn:

gθ(x) =
T∑

t=1

atgμt,Σt (x) , (2)

where θ = ((at, μt, Σt))1≤t≤T is a 3T -dimensional vector containing the so-called
mixing probabilities at’s (that satisfy

∑

t at = 1), as well as the means μt and
the covariance matrices Σt of the T Gaussian pdfs in the mixture.

The entropy H(X) of a discrete n-dimensional r.v. X aims at measuring
the amount of information provided by an observation of X. It is defined by
H(X) = −

∑

x∈Xn pX(x) log2(pX(x)). The differential entropy extends the no-
tion of entropy to continuous n-dimensional r.v. Contrary to the entropy, the
differential entropy can be negative. It is defined by:

H(X) = −
∫

x∈Xn

gX(x) log2(gX(x))dx . (3)

If X is a n-dimensional Gaussian r.v. with pdf gμ,Σ, then its entropy satisfies:

H(X) =
1
2

log((2πe)n|Σ|) . (4)

In the general case when X has a GM pdf mixing more than one Gaussian
pdf, there is no analytical expression for its differential entropy. However, upper
and lower bounds can be derived. We recall hereafter the lower bound.

Proposition 1. [6] Let X ∈ Xn be a Gaussian mixture whose pdf gθ is such
that θ = ((ai, μi, Σi))i=1,··· ,T . Then, its differential entropy satisfies:

1
2

log

(

(2πe)n
T∏

t=1

|Σt|at

)

≤ H(X) . (5)

To quantify the amount of information that a second r.v. Y reveals about X, the
notion of mutual information is usually involved. It is the value I(X,Y) defined
by I(X,Y) = H(X) − H(X|Y), where H(X|Y) is called the conditional entropy
of X knowing Y. If Y is discrete, then it is defined by:

H(X|Y) =
∑

y∈Y
pY(y)H(X|Y = y) , (6)

Thanks to the mutual information (or to the conditional entropy), we have a
way to decide about the dependency of two multi-variate random variables: X
and Y are independent iff I(X,Y) equals 0 or equivalently iff H(X|Y) = H(X).

502 E. Prouff and M. Rivain

3 Brief Overview of Side Channel Attacks

Any intermediate variable which is a function f(X, k�) of a plaintext X and a
guessable secret key k� is sensitive and its manipulation can be targeted by an
SCA. For every key-candidate k ∈ K, we denote by fk the function x �→ f(x, k)
and by L(k�) the leakage variable that models the leakage produced by the
manipulation/computation of fk	(X) by the device. The leakage variable can be
expressed as:

L(k�) = ϕ ◦ fk	(X) + B , (7)

where ϕ denotes a deterministic function and B denotes an independent noise.
In (7), the definition of f only depends on the algorithm that is implemented

and it is known to the attacker (it can for instance be a S-box function). On the
opposite, ϕ only depends on the device and its exact definition is usually un-
known to the attacker who will estimate it according to the device specifications
and/or to a leakage profiling phase. Actually, the SCAs essentially differ in the
degree of knowledge on ϕ and B that is required for the attack to succeed.

In a DPA, the attacker only needs to know that the mean of the r.v. ϕ◦fk	(X)
depends on a given bit of fk	(X). Based on this assumption, each key candi-
date k is involved to split the measurements into two sets and the candidates
are discriminated by computing differences of means between those sets. This
essentially amounts to process a Boolean correlation.

In a CPA, the attacker must know a function ϕ̂ that is a good linear approxi-
mation of ϕ (i.e. such that ϕ̂ and ϕ are linearly correlated). Usually, he chooses
the Hamming weight function for ϕ̂. Based on this assumption, key candidates k
are discriminated by testing the linear correlation between ϕ̂ ◦ fk(xi) and L(k�)
for a sample of plaintexts (xi)i. This attack can be more efficient than the single-
bit DPA. However, its success highly depends on the correctness of the linear
approximation of ϕ by ϕ̂.

In a TA, the attacker must know a good approximation of the pdf of the
leakage L(k) for every possible key k. It amounts for the attacker to have a good
approximation of ϕ and of the standard deviation of the noiseB (or its covariance
matrix in a multivariate model). Wrong key hypotheses are discriminated in a
maximum likelihood attack (see [3]). To pre-compute the pdf’s of all the variables
L(k), the attacker needs to have an open access to a copy of the device under
attack. This is a strong constraint since it is often very difficult to have such an
open copy in practice.

As noticed in [4,5], MIA attacks are an alternative to the approaches above.
They consist in estimating the mutual information I(L(k�), ϕ̂◦fk(X)) instead of
the correlation coefficient or the difference of means. In an MIA, the attacker is
potentially allowed to make weaker assumptions on ϕ than in the CPA. Indeed,
he does not need a good linear approximation of ϕ but only a function ϕ̂ s.t. the
mutual information I(ϕ̂, ϕ) is non-negligible (which may happen even if ϕ and
ϕ̂ are not linearly correlated). It for instance allows the attacker to choose the
identity function for ϕ̂ which is of particular interest since no knowledge about
the leakage parameters is required.

Theoretical and Practical Aspects of Mutual Information 503

The effectiveness of a key-recovery side channel attack is usually characterized
by its success rate, namely the probability that the attack outputs the correct
key as a the most likely key candidate. This notion can be extended to higher
orders [7]: an attack is said to be o-th order successful if it classifies the correct
key among the o most likely key candidates. In the following, we shall investigate
the (o-th order) success rate of MIA.

Let us denote by Z(k) the r.v. ϕ̂ ◦ fk(X). Moreover, for every function F
defined over K, let us denote by argmax-o k∈K F (k) the set composed of the o
key candidates k such that F (k) is among the o highest values in {F (k); k ∈
K}. An MIA succeeds at the o-th order iff the estimations Î(L(k�), Z(k)) of
I(L(k�), Z(k)) satisfy:

k� ∈ argmax-o
k∈K

Î(L(k�), Z(k)) . (8)

We therefore deduce two necessary conditions for an MIA to succeed at the
o-th order:

– Theoretical. The mutual information (I(L(k�), Z(k)))k∈K must satisfy:

k� ∈ argmax-o
k∈K

I(L(k�), Z(k)) . (9)

– Practical. The estimations of (I(L(k�), Z(k)))k∈K must be good enough to
satisfy (8) while (9) is satisfied.

In the next section, we study when Relation (9) is satisfied. This will allow us
to characterize (with regards to f , ϕ, ϕ̂) when an MIA is theoretically possible.
Then, for 3-tuples (f, ϕ, ϕ̂) s.t. (9) is satisfied, we shall study in Sec. 6 the success
probability of the MIA according to the estimation method used to compute Î
and according to the noise variation. This will allow us to characterize when
an MIA is practically feasible (i.e. when (8) is satisfied) and when it is more
efficient than the other SCA attacks.

4 Study of the MIA in the Gaussian Model

In this section we focus on first order MIA and, in a second time, we extend our
analysis to the higher order case i.e. when the target implementation is protected
by masking [8]. Our analyses are done under the three following assumptions
which are realistic in a side channel analysis context and make the formalization
easier.

Assumption 1 (Uniformity). The plaintext X has a uniform distribution
over F

n
2 .

Assumption 2 (Balancedness). For every k ∈ K, the (n,m)-function fk :
x �→ fk(x) is s.t. #{x ∈ F

n
2 ; y = fk(x)} equals 2n−m for every y ∈ F

m
2 .

504 E. Prouff and M. Rivain

Remark 1. This assumption states that the algorithmic functions targeted by
the SCA are balanced which is usually the case in a cryptographic context.

Assumption 3 (Gaussian Noise). The noise B in the leakage (see (7)) has
a Gaussian distribution with zero mean and standard deviation σ.

Remark 2. This assumption is realistic and is therefore often done in the liter-
ature (see for instance [8,9,7]). Practical attacks and pdf estimations presented
in Sec. 6 provide us with an experimental validation of this assumption.

For clarity reasons, in the next sections we shall denote by L (resp. by Z) the
random variable L(k�) (resp. Z(k)) when there is no ambiguity.

4.1 First Order MIA

The mutual information I(L,Z(k)) equals H(L) − H(L,Z(k)). Since H(L) does
not depend on the key prediction, I(L|Z(k)) reaches one of its o highest values
when k ranges over K iff the conditional entropy H(L|Z(k)) reaches one of its o
smallest values. One deduces that an MIA is theoretically possible iff the 3-tuple
(f, ϕ, ϕ̂) is s.t.:

k� ∈ argmin-o
k∈K

H(L(k�)|Z(k)) , (10)

where argmin-o is defined analogously to argmax-o .
The starting point of our analysis is that studying the MIA effectiveness is

equivalent to investigating the minimality of H(L|Z(k)) overK. As a consequence
of (6), we have H(L|Z(k)) =

∑

z∈Im(ϕ̂) pZ(z)H(L|Z(k) = z). From (3), one
deduces:

H(L|Z(k)) = −
∑

z∈Im(ϕ̂)

pZ(z)
∫

�

gL|Z=z(�) log gL|Z=z(�)d� . (11)

To reveal the relationship between H(L|Z(k)) and the key-prediction k, the
expression of the pdf gL|Z=z in (11) needs to be developed. Let us denote by
Ek(z) the set [ϕ̂◦fk]−1(z). Since X has a uniform distribution over F

n
2 , for every

� ∈ L and every z ∈ Im(ϕ̂ ◦ fk) we have:

gL|Z=z(�) =
1

#Ek(z)

∑

x∈Ek(z)

gϕ◦fk	 (x),σ (�) . (12)

The next proposition directly follows.

Proposition 2. If X is a r.v. with uniform distribution, then for every pair
(k�, k) ∈ K2 and every z ∈ Z the pdf of the r.v. (L(k�) | Z(k) = z) is
a GM gθ whose parameter θ satisfies θ =

(

(az,t, t, σ
2)
)

t∈Im(ϕ)
, with az,t =

p [ϕ ◦ fk	(X) = t | ϕ̂ ◦ fk(X) = z].

Theoretical and Practical Aspects of Mutual Information 505

In Proposition 2, the key hypothesis k only plays a part in the definition of the
weights az,t of the GM. In other terms, gL|Z(k)=z is always composed of the same
Gaussian pdfs and the key hypothesis k only impacts the way how the Gaussian
pdfs are mixed. To go further in the study of the relationship between k and
H(L(k�)|Z(k) = z), let us introduce the following diagram where z is an element
of Im(ϕ̂), where F ′, F and T are image sets:

z
ϕ̂−1

−−→ F ′ f−1
k−−→ Ek(z)

fk	−−−→ F
ϕ−−→ T ,

Based on the diagram above, we can make the two following observations:

– If the set T is reduced to a singleton set {t1} (i.e. if ϕ̂ ◦ fk is constant equal
to t1 on Ek(z)), then all the probabilities az,t s.t. t
= t1 are null and az,t1

equals 1. In this case, one deduces from Proposition 2 that the distribution
of (L(k�)|Z(k) = z) is Gaussian and, due to (4), its conditional entropy
satisfies

H(L(k�)|Z(k) = z) =
1
2

log(2πeσ2) .

– If #T > 1 (i.e. if #ϕ◦fk	(Ek(z)) > 1), then there exist at least two probabil-
ities az,t1 and az,t2 which are non-null and the distribution of (L(k�)|Z(k) =
z) is a GM (not Gaussian). Due to (5), its entropy satisfies:

H(L(k�)|Z(k) = z) ≥ 1
2

log(2πeσ2) .

When ϕ is constant on F ′ (e.g. when ϕ̂ = ϕ or ϕ̂ = Id), the two observations
above provide us with a discriminant property. If k� = k, then we have F = F ′

and thus T is a singleton and H(L|Z = z) equals 1
2 log(2πeσ2). Otherwise, if

k
= k�, then fk	 ◦ fk is likely to behave as a random function1. In this case,
F is most of the time different from F ′ and T is therefore likely to have more
than one element2. This implies that #ϕ ◦ fk	(Ek(z)) is strictly greater than 1
and thus that H(L|Z = z) is greater than or equal to 1

2 log(2πeσ2). Eventually,
we get the following proposition in which we exhibit a tight lower bound for the
differential entropy H(L(k�)|Z(k)).

Proposition 3. For every (k�, k) ∈ K2, the conditional entropy of the r.v.
(L(k�)|Z(k)) satisfies:

1
2

log
(

2πeσ2
)

≤ H((L(k�)|Z(k)) . (13)

If ϕ ◦ fk	 is constant on Ek(z) for every z ∈ Z, then the lower bound is tight.

Proof. Relation (13) is a straightforward consequence of (6) and of Propositions
1 and 2. The tightness is a direct consequence of (4) and Proposition 2. '
1 This property, sometimes called wrong key assumption [10], is often assumed to be

true in a cryptographic context, due to the specific properties of the primitive f .
2 As detailed later, this is only true if ϕ̂ ◦ fk is non-injective.

506 E. Prouff and M. Rivain

Remark 3. Intuitively, the entropy H(Y) is a measure of the diversity or random-
ness of Y . It is therefore reasonable to think that the more components in the
GM pdf of (L(k�)|Z(k)), the greater its entropy. Relation (13) provides a first
validation of this intuition. The entropy is minimal when the pdf is a Gaussian
one (i.e. when the GM has only one component). In our experiments (partially
reported in Sec. 6), we noticed that the entropy of a GM whose components
have the same variance, increases with the number of components.

Corollary 1. If ϕ̂ ◦ fk is injective, then H(L(k�)|Z(k)) equals 1
2 log(2πeσ2).

Proof. If ϕ̂◦fk is injective, then Ek(z) is a singleton and ϕ◦fk	 is thus constant
on Ek(z).

If the functions ϕ̂ ◦ fk ’s are all injective, then Corollary 1 implies that the MIA
cannot succeed at any order. Indeed, in this case the entropy H(L(k�)|Z(k))
stays unchanged when k ranges over K and thus, k� does not satisfy (10). As
a consequence, when the fk ’s are injective (which is for instance the case when
fk consists in a key addition followed by the AES S-box), then the attacker
has to choose ϕ̂ to be non-injective (e.g. the Hamming weight function). It
must be noticed that this is a necessary but not sufficient condition since the
function ϕ̂ must also be s.t. I(ϕ̂, ϕ) is non-negligible (otherwise the MIA would
clearly failed). In this case, the attacker must have a certain knowledge about
the leakage function ϕ in order to define an appropriate function ϕ̂ and hence,
the MIA does no longer benefit from one of its main advantages. This drawback
can be overcome by exclusively targeting intermediate variables s.t. the fk ’s are
not injective (in AES, the attacker can for instance target the bitwise addition
between two S-box outputs during the MixColumns operation).

4.2 Generalization to the Higher Order Case

In this section, we extend the analysis of MIA to higher orders and we assume
that the implementation protected by masking. The sensitive variable fk	(X) is
now masked with d − 1 independent random variables M1, ..., Md−1 which are
uniformly distributed over Im(f).

The masked data fk	(X) ⊕M1 ⊕ · · · ⊕Md−1 and the different masks Mj ’s
are processed at different times. The leakage about fk	(X)⊕M1 ⊕ · · · ⊕Md−1

is denoted by L0 and the leakages about the Mj ’s are denoted by L1, ..., Ld−1.
Under Assumption 3, the Lj’s satisfy:

Lj =
{

ϕ[fk	(X)⊕
⊕d−1

t=1 Mt] + B0 if j = 0,
ϕj(Mj) + Bj if j
= 0,

(14)

where the Bj ’s are independent Gaussian noises with mean 0 and standard
deviations σj , and where ϕ, ϕ1, · · · , ϕd−1 are d device dependent functions that
are a priori unknown to the attacker. The vector (L0, · · · , Ld−1) is denoted by L.
The vector of masks (M1, · · · ,Md−1) is denoted by M. We denote by Φk	(X,M)
the vector (ϕ(fk	(X)⊕

⊕d−1
t=1 Mt), ϕ1(M1), · · · , ϕd−1(Md−1)).

Theoretical and Practical Aspects of Mutual Information 507

To simplify our analysis, we assume that the attacker knows the manipula-
tion times exactly and is therefore able to get a sample for the r.v. L. Under this
assumption and for the same reasons as in the univariate case, the higher order
MIA essentially consists in looking for the key candidate k which minimizes an
estimation of the conditional entropy H(L|Z(k)). Due to (6), this entropy equals
∑

z∈Im(ϕ̂) pZ(k)(z)H(L|Z(k) = z). Since Z equals ϕ̂ ◦ fk(X), the probabilities
pZ(k)(z) in this sum can be exactly computed by the attacker. Once this com-
putation has been performed, estimating H(L|Z(k)) amounts to estimate the
entropies H(L|Z(k) = z) for all the hypotheses k. These entropies are estimated
as for the first order case (see (11)), but the pdfs gL|Z(k)=z are multivariate.
More precisely, after denoting by Σ the matrix (Cov [Bi, Bj])i,j , we get:

gL|Z(k)=z(�) =
1

#Ek(z)(#Im(f))d−1

∑

x∈Ek(z)

m∈Im(f)d−1

gΦk	(x,m),Σ(�) . (15)

In a similar way than in Sec. 4, the next proposition directly follows.

Proposition 4. If X is a r.v. with uniform distribution, then for every pair
(k�, k) ∈ K2 and every z ∈ Z the pdf of the r.v. (L(k�) | Z(k) = z) is a GM
gθ whose parameter θ satisfies θ = ((az,t, t, Σ))t, with Σ = (Cov [Bi, Bj])i,j and
az,t = p[Φk	(X,M) = t | ϕ̂ ◦ fk(X) = z].

We deduce from Propositions 1 and 4 the following result.

Proposition 5. If X is a r.v. with uniform distribution over X , then for every
(k�, k) ∈ K2, the entropy of the r.v. (L(k�)|(Z(k),M)) satisfies:

1
2

log
(

(2πe)d|Σ|
)

≤ H(L(k�)|(Z(k),M)) . (16)

If ϕ ◦ fk	 is constant on Ek(z) for every z ∈ Im(Z), then the bound is tight.

We cannot deduce from the proposition above a wrong-key discriminator as we
did in the univariate case. Indeed, to compute the entropy in (16) the attacker
must know the mask values, which is impossible in our context. However, if the
3-tuple (f, ϕ, ϕ̂) satisfies the condition of Proposition 5, then it can be checked
that for every z the number of components in the multi-variate GM pdf of
(L(k�)|Z(k) = z) reaches its minimum for k = k�. As discussed in Remark 3, this
implies that the entropy of L(k�)|Z(k) is likely to be minimum for k = k�. The
simulations and experiments presented in Sec. 6 provides us with an experimental
validation of this fact.

In the next sections, we assume that an MIA is theoretically possible. Namely,
we assume that k� belongs to argmin-o k H(L(k�)|Z(k)) for a given order o. At
first, we study the success probability of an MIA according to the method used
to estimate H(L(k�)|Z(k)) and the noise variation. Secondly, we compare the
efficiency of an MIA with the one of the CPA in different contexts.

508 E. Prouff and M. Rivain

5 Conditional Entropy Estimation

Let L be a d-dimensional r.v. defined over Ld (i.e. L is composed of d different
instantaneous leakage measurements) and let k be a key-candidate. We assume
that the attacker has a sample of N leakage-message pairs (li, xi) ∈ Ld × X
corresponding to a key k�, and that he wants to compute H(L|Z(k)) to dis-
criminate key-candidates k. Due to (6), estimating H(L|Z(k)) from the sample
((li, xi))i essentially amounts to estimate the entropy H(L|Z(k) = z) for every
z ∈ Z. For such a purpose, a first step is to compute estimations ĝL|Z=z of the
gL|Z=z ’s. Then, depending on the estimation method that has been applied, the
H(L|Z(k) = z)’s are either directly computable (Histogram method) or must
still be estimated (Kernel and Parametric methods). In the following we present
three estimation methods and we discuss their pertinency in our context.

5.1 Histogram Method

Description. We choose d bin widths h0, ..., hd−1 (one for each coordinate of
the leakage vectors) and we partition the leakage space Ld into regions (Rα)α

with equal volume υ =
∏

j hj . Let k be a key-candidate and let z be an element
of Z. We denote by Sz the sub-sample

(

li;xi ∈ [ϕ ◦ fk]−1(z)
)

i
⊆ (li)i and by

�i,j the jth coordinate of li. To estimate the pdf gL|Z=z , we first compute the
density vector Dz whose coordinates are defined by:

Dz(α) =
#(Sz ∩Rα)

#Sz
, (17)

where Sz ∩Rα denotes the sample of all the li’s in Sz that belong to Rα.
The estimation ĝL|Z=z is then defined for every l ∈ Ld by ĝL|Z=z(l) = Dz (il)

υ ,
where il is the index of the regionRil that contains l. Integrating the pdf estima-
tion according to formula (3) gives the following estimation for the conditional
entropy: Ĥ(L|Z = z) = −

∑

α Dz(α) log(Dz(α)/υ). We eventually get:

Ĥ(L|Z) = −
∑

z∈Z
pZ(z)

∑

α

Dz(α) log
(

(
Dz(α)

υ

)

. (18)

The optimal choice of the bin widths hj is an issue in Statistical Theory.
Actually, there are several rules that aim at providing ad hoc formulae for com-
puting the hj’s based on the nature of the samples (see for instance [11,12]). In
our simulations, we chose to follow the Scott Rule. Namely, if σ̂j denotes the
estimated standard deviation of the sample (�i,j)i of size Nj , then hj satisfies

hj = 3.49× σ̂j ×N
− 1

3
j (notice that in our context all the Nj’s are equal to N).

Simulations. In order to illustrate the Histogram method in the context of an
MIA attack, we generated 10000 leakage measurements in the Gaussian model
(7) for ϕ being the Hamming weight function, for f being the first DES S-box
parameterized with the key k� = 11 and for σ = 0.1. Since the DES S-box is

Theoretical and Practical Aspects of Mutual Information 509

Fig. 1. Histogram Method in the First Order Case

Fig. 2. Histogram Method in the Second Order Case

non-injective, we chose the identity function for ϕ̂. Fig. 1 plots the estimations
of the pdf gL|Z=1 when k = 11 and when k = 5 (for a number of bins equal
to 285). As expected (Proposition 2 and Corollary 1), a Gaussian pdf seems to
be estimated when k = 11 (good key prediction), whereas a mixture of three
Gaussian distributions seems to be estimated when k = 5 (wrong key predic-
tion). For the experimentation described in the left-hand figure we obtained
Ĥ(L(11)|Z(11) = 1) = −1.31 (due to (4) we have H(L(11)|Z(11) = 1) = −1.27)
and we got Ĥ(L(11)|Z(5) = 1) = −0.0345 for the one in the right-hand side.
Moreover, we validated that the estimated conditional entropy is minimum for
the good key hypothesis.

In order to illustrate the Histogram method in the context of a 2nd order MIA
attack, we generated 10000 pairs of leakage measurements in the higher order
Gaussian model (14) with d = 2, with ϕ and ϕ1 being the Hamming Weight
function, with f being the first DES S-box parametric with the key k� = 11 and
with σ0 = σ1 = 0.1. Fig. 2 plots the estimations of the pdf gL|Z=1 when k = 11
and when k = 5. As expected, the mixture of Gaussian distributions for k = 11
have less components than for k = 5. For the experimentation in the left-hand
figure we obtained Ĥ(L(11)|Z(11) = 1) = 0.22 (and Ĥ(L(11)|Z(11)) = 0.14
), whereas we got 1.12 for Ĥ(L(11)|Z(5) = 1) (and 1.15 for Ĥ(L(11)|Z(5))).
Here again, the estimated conditional entropy was minimum for the good key
hypothesis.

510 E. Prouff and M. Rivain

5.2 Kernel Density Method

Description. Although the Histogram method can be made to be asymptot-
ically consistent, other methods can be used that converge at faster rates. For
instance, rather than grouping observations together in bins, the so-called Ker-
nel density estimator (or Parzen window method) can be thought to place small
“bumps” at each observation, determined by the Kernel function (see for instance
[13]). The estimator consists of a “sum of bumps” and is clearly smoother as a
result than the Histogram method.

The Kernel density estimation ĝL|Z=z based on the sample Sz is defined for
every l = (�0, ..., �d−1) ∈ Ld by:

ĝL|Z=z(l) =
1

#Sz

∑

li=(�i,0,...,�i,d−1)∈Sz

1
υ
×

d−1∏

j=0

K
(
�j − �i,j

hj

)

,

where K is a Kernel function chosen among the classical ones (see for instance
[14]), where the hi’s are Kernel bandwidths and where υ equals

∏

j hj . As recalled
in [15], the following Parzen-windows entropy estimation of H(L|Z = z) is sound
when the sample size is large enough:

Ĥ(L|Z = z) = − 1
#Sz

∑

li∈Sz

log

⎛

⎝
1

#Sz

∑

lr∈Sz

1
υ
×

d−1∏

j=0

K
(
�i,j − �r,j

hj

)
⎞

⎠ ,

In our attack simulations, we chose the Kernel function to be the Epanechnikov
one defined for every u by K(u) = 3

4 (1−u2) if |u| ≤ 1 and by K(u) = 0 otherwise
(another usual choice is the Gaussian Kernel [14]). Our choice was motivated not
only by the fact that this Kernel function has a simple form, but also by the
fact that its efficiency is asymptotically optimal among all the Kernels [16]. Let
σ̂j denotes the estimated standard deviation of the sample (�i,j)i of size Nj . To
select the Kernel bandwidth hj , we followed the normal scale rule [13]. Namely,

we chose the hj’s s.t. hj = 1.06× σ̂j ×N
− 1

5
j .

Simulations. In order to illustrate the effectiveness of the Kernel method, we
applied it for the same simulated traces used for our 1st and 2nd order Histogram
experiments (Fig. 1 and Fig. 2). We present our results in Fig. 3(a–b) for the
first order and in Fig. 3(c–d) for the second order.

As expected, the pdf estimated in Fig. 3(a) when k = 11 seems to be a Gaussian
one, whereas the pdf estimated when k = 5 seem to be a mixture of three Gaussian
distributions. Moreover, the estimations are smoother than in the case of the His-
togram Method and there is no noticeable differences between the estimation with
Gaussian Kernel and the estimation with the Epanechnikov one. For the exper-
imentation described in the left-hand figure we obtained H(L(11)|Z(11) = 1) =
−0.88 and we got 0.54 for H(L(11)|Z(5) = 1) (right-hand side).

As expected, in Fig. 3(c) the mixture of Gaussian distributions for k = 11 have
less components than for k = 5. For the experimentation in the left-hand figure

Theoretical and Practical Aspects of Mutual Information 511

(a) 1st order for k = 11. (b) 1st order for k = 5.

(c) 2nd order for k = 11. (d) 2nd order for k = 5.

Fig. 3. Kernel Method

we obtained H(L(11)|Z(11)) = 0.17, whereas we got 0.52 for H(L(11)|Z(5)).
Moreover, we validated that the conditional entropy H(L(11)|Z(k)) is minimum
for k = k� = 11.

5.3 Parametric Estimation

Description. Under Assumption 3, (12) shows that gL|Z=z is a GM gθ whose
parameter θ satisfies:

θ =
(

1
#Ek(z)

, ϕ ◦ f(x, k�), σ2

)

x∈Ek(z)

. (19)

Based on this relation, an alternative to the methods presented above is to
compute an estimation θ̂ of the parameter θ so that we get ĝL|Z=z = gθ̂ and
thus:

Ĥ(L|Z = z) = −
∫

l∈Ld

gθ̂(l) log2 gθ̂(l)dl .

For every x, the mean value ϕ ◦ f(x, k�) in (19) can be estimated by l̄x =
1

#{i;xi=x}
∑

i;xi=x li and the noise variance σ2 by σ̂2 =
∑

i

(

li − l̄xi

)2. On the

whole, this provides us with the following estimation θ̂ of θ:

θ̂ =
(

1
#Ek(z)

, l̄x, σ̂2

)

x∈Ek(z)

.

512 E. Prouff and M. Rivain

For Higher Order MIA, (15) can be rewritten:

gθ =
1

#Ek(z)

∑

x∈Ek(z)

gθx , (20)

where gθx denotes the GM pdf of the r.v. (L|X = x) whose parameter satisfies:

θx =
(

1
(#Im(f))d−1

, Φk(x,m), Σ
)

m∈Im(f)d−1

.

The mean values Φk(x,m) of the different components cannot be directly esti-
mated as in the first order case since the values taken by the masks m for the
different leakage observations li are not assumed to be known. To deal with this
issue, a solution is to involve GM estimation methods such as the Expectation
Maximization Algorithm. By applying it on the sample (li ; xi = x)i we get an
estimation θ̂x of θx for every x ∈ X . Then, according to (20), we obtain:

Ĥ(L | Z = z) = −
∑

x

∫

l∈Ld

gθ̂x
(l) log gθ̂x

(l)dl .

Remark 4. As an advantage of the Parametric estimation method, the mean
values lx’s (resp. the estimated parameters θ̂x’s) are only computed once for
every x and are then used to compute Ĥ(L|Z(k) = z) for every pair (k, z).

(a) 1st order for k = 11. (b) 1st order for k = 5.

(c) 2nd order for k = 11. (d) 2nd order for k = 5.

Fig. 4. Parametric Estimation

Theoretical and Practical Aspects of Mutual Information 513

Simulations. As for the previous estimation methods, we applied the Para-
metric estimation to the same simulated traces. The resulting estimated pdfs
(ĝL(11)|Z(k)=1)k=11,5 are plotted in Fig. 4(a–b) for the first order and in Fig.
4(c–d) for the second order.

The results are similar to those of the previous estimation methods. For the
first order case, we distinguish a mixture of three Gaussian distributions for the
wrong key hypothesis while a single Gaussian pdf is observed for the correct
one. For the second order case, the GM obtained for the wrong key hypothesis
contains more components than the one for the correct key hypothesis. Once
again, the estimated entropy is lower for the correct key hypothesis than for the
wrong one. For instance, the entropies of the plotted pdfs equal −0.94 (correct
hyp.) and 0.13 (wrong hyp.) for the first order case and 0.24 (correct hyp.) and
0.60 (wrong hyp.) for the second order case.

6 Experimental Results

6.1 First Order Attack Simulations

To compare the efficiency of the MIA with respect to the estimation method,
we simulated leakage measurements in the Gaussian model (7) with ϕ being
the Hamming weight function and f being the first DES S-box (we therefore
have n = 6 and m = 4). For various noise standard deviations σ and for the
estimation methods described in previous sections, we estimated the number
of messages required to have an attack first order success rate greater than or
equal to 90% (this success rate being computed for 1000 attacks). Moreover, we
included the first Order CPA in our tests to determine whether and when an
MIA is more efficient than a CPA3. Each attack was performed with ϕ̂ being
the identity function in order to test the context in which the attacker has no
knowledge about the leakage model. Moreover, each attack was also performed
with ϕ̂ being the Hamming weight function in order to test the context where
the attacker has a good knowledge of the leakage model. The results are given in
Table 1 where MIAH , MIAK and MIAP respectively stand for the Histogram,
the Kernel and the Parametric MIA.

It can be checked in Table 1 that the CPA is always better than the MIA when
ϕ̂ = HW. This is not an astonishing result in our model, since the deterministic
part of the leakage corresponds to the Hamming weight of the target variable.
More surprisingly, this stays true when ϕ̂ is chosen to be the identity function.
This can be explained by the strong linear dependency between the identity
function and the Hamming weight function over F

4
2 = {0, . . . , 15}. Eventually,

both results suggest that the CPA is more suitable than the MIA for attacking
a device leaking first order information in a model close to the Hamming weight
model with Gaussian noise. When looking at the different MIAs, we can notice
that MIAP becomes much more efficient than MIAH and MIAK when the noise
standard deviation increases.
3 Attacks have been performed for measurements numbers ranging over 50 different

values from 30 to 106.

514 E. Prouff and M. Rivain

Table 1. Attack on the first DES S-box – Number of measurements required to achieve
a success rate of 90% according to the noise standard deviation σ

Attack \ σ 0.5 1 2 5 10 15 20 50 100

CPA, ϕ̂ = Id 30 30 100 1000 3000 7000 15000 70000 260000

MIAH (Hist), ϕ̂ = Id 80 160 600 4000 20000 50000 95000 850000 106+

MIAK (Kernel), ϕ̂ = Id 70 140 500 3000 15000 35000 60000 500000 106+

MIAP (Param.), ϕ̂ = Id 60 100 300 2000 5000 15000 20000 150000 500000

CPA, ϕ̂ = HW 30 30 70 400 2000 4000 7000 45000 170000

MIAH (Hist), ϕ̂ = HW 40 70 300 1500 7000 20000 40000 320000 106+

MIAK (Kernel), ϕ̂ = HW 30 60 190 1500 5500 15000 25000 190000 900000

MIAP (Param.), ϕ̂ = HW 70 70 150 1000 3000 7000 15000 65000 300000

6.2 Second Order Attack Simulations

In a CPA, the attacker computes Pearson correlation coefficients which is a
function of two univariate samples. Thus, when the CPA is applied against dth
order masking (see (14)) a multivariate function must be defined to combine the
different leakage signals (corresponding to the masked data and the masks) [9].
This signal processing induces an information loss which strongly impacts the
Higher order CPA efficiency when the noise is increasing. Because an Higher
Order MIA can operate on multivariate samples, it does not suffer from the
aforementioned drawback. We can therefore expect the MIA to become more
efficient than the CPA when it is performed against masking. To check this
intuition, we simulated power consumption measurements such as in (14) with
d = 2, with ϕ = ϕ1 = Id, with σ1 = σ2 = σ and with f being the first DES S-box.
For various noise standard deviations σ and for the estimation methods described
in previous sections, we estimated the number of measurements required to have
an attack success rate greater than or equal to 90% (this success rate being
computed over 100 attacks). In the following table, we compare second order
MIA with Histogram estimation method (2O-MIAH) with second order CPA
(2O-CPA) for two different combining function4.

Table 2. Second Order Attack on DES S-box – Number of measurements required to
achieve a success rate of 90% according to the noise standard deviation σ

Attack σ 0.5 1 2 5 7 10

2O-CPA (ϕ̂ = HW, abs. diff. combining)) 300 800 5000 200000 106+ 106+

2O-CPA (ϕ̂ = HW, norm. product combining) 300 400 3000 70000 300000 106+

2O-MIAH (ϕ̂ = Id) 7000 7000 8000 15000 30000 55000

The results presented in Table 2 corroborate our intuition: when the noise
standard deviation crosses the threshold 4, second order MIA attacks become

4 In our simulations we performed 2O-CPAs involving either the absolute difference
or the normalized product combining [9].

Theoretical and Practical Aspects of Mutual Information 515

(a) Power Consumption traces. (b) CPA(HW) attack with 256 traces.

(c) MIA (Hist) attack with 1024 traces. (d) MIA (param.) attack with 1024 traces.

Fig. 5. Practical Attacks on a Hardware AES Implementation

(a) Power Consumption traces. (b) CPA(HW) attack with 2000 traces.

(c) MIA (Hist) attack with 2000 traces. (d) MIA (Param.) attack with 2000 traces.

Fig. 6. Practical Attacks on a Software AES Implementation

516 E. Prouff and M. Rivain

(a) Pdf Estim. by Hist Met. (k = k�). (b) Pdf Estim. by Hist Met. (k �= k�).

(c) Param. pdf Estim. (k = k�). (d) Param. pdf Estim. (k �= k�).

Fig. 7. Pdf estimations on power measurements

much more efficient than second order CPA even for leakage measurements sim-
ulated in the Gaussian Model with ϕ = HW which is favorable to CPA-like
attacks.

6.3 Practical Attacks

To test the MIA in a real-life context, we performed it against two AES S-box
implementations that use a lookup-table (i.e. fk corresponds to the AES S-box).
The first one is a hardware implementation on the chip SecMat V3/2 (see [17]
for details about the chip and the circuit’s layout). The corresponding power
consumption measurements are plotted in Fig. 5(a) over the time. It can be
noticed that they are not very noisy. The second one is a software implementation
running on a 8-bit architecture smart card. As it can be seen in Fig. 6(a), the
signal is much more noisy in this case.

For both set of traces, we performed the CPA and the MIA attacks with
the Histogram estimation method and the Parametric estimation method (see
Sec. 5). For all of these attacks the prediction function ϕ̂ was chosen to be the
Hamming weight function (since ϕ̂ ◦ fk must be non-injective – see Corollary 1
–). The obtained correlation and mutual information curves are plotted in Fig.
5(b–d) and Fig. 6(b–d) over the time. For each attack the curve corresponding
to the correct (resp. wrong) key hypothesis is drawn in black (resp. gray).

In both cases, the attacks succeed with a few number of traces. It can be no-
ticed that the MIA with a Parametric estimation is more discriminating than the

Theoretical and Practical Aspects of Mutual Information 517

MIA with the Histogram estimation. This confirms the simulations performed in
Sec. 6.1. However, even when the Parametric estimation method is involved, the
CPA is always more discriminating than the MIA. Those results suggest that for
the attacked devices the power consumption has in fact a high linear dependency
with the Hamming weight of the manipulated data. This implies in particular
that the Hamming weight Model is sound in this context and that looking for
non-linear dependencies is not useful.

To corroborate that the leakage measured in Fig. 5 and 6 are close to the one
simulated in Sec. 5, we plotted in Fig. 7 the estimation of the pdf gL(0)|Z(k)=1

when k = 0 = k� and k = 5
= k� for the hardware implementation. We could
verify that actually the conditional pdfs that are estimated look like GM pdfs
(a Gaussian pdf when k� is correctly guessed and a mixture of two pdfs when it
is not).

7 Conclusion

This paper extends the works published in [4] and [5] to expose the theoretical
foundations behind this attack and it generalizes it to higher orders. This analysis
clarifies assets and limitations of the MIA. In particular, it shows that the MIA
is less efficient than the CPA when the deterministic part of the leakage is a
linear function of the prediction made by the attacker. This implies that the
CPA must be preferred to the MIA when the targeted device leaks a linear
function of the Hamming weight of the manipulated data. This paper also argues
that the way to estimate the mutual information has an impact on the attack
efficiency. A parametric estimation method has been introduced which renders
the MIA efficiency close to the one of the CPA when the noise is increasing. When
masking is used to protect the implementation, an extension of the MIA has been
proposed which is, for our simulations, much more efficient than classical higher
order CPA. It actually seems that this is the context in which the MIA offers an
efficient alternative to correlation-based attacks.

References

1. Kocher, P., Jaffe, J., Jun, B.: Differential Power Analysis. In: [18], pp. 388–397
2. Brier, E., Clavier, C., Olivier, F.: Correlation Power Analysis with a Leakage Model.

In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004)

3. Chari, S., Rao, J., Rohatgi, P.: Template Attacks. In: Kaliski Jr., B.S., Koç, Ç.K.,
Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–29. Springer, Heidelberg
(2003)

4. Gierlichs, B., Batina, L., Tuyls, P., Preneel, B.: Mutual information analysis. In:
Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 426–442. Springer,
Heidelberg (2008)

5. Aumonier, S.: Generalized Correlation Power Analysis. In: Proceedings of the
Ecrypt Workshop Tools For Cryptanalysis 2007 (2007)

518 E. Prouff and M. Rivain

6. Carreira-Perpinan, M.: Mode-finding for mixtures of Gaussian distributions
Carreira-Perpinan. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence 22(11), 1318–1323 (2000)

7. Standaert, F.X., Malkin, T.G., Yung, M.: A Formal Practice-Oriented Model
For The Analysis of Side-Channel Attacks. Cryptology ePrint Archive, Report
2006/139 (2006)

8. Chari, S., Jutla, C., Rao, J., Rohatgi, P.: Towards Sound Approaches to Counteract
Power-Analysis Attacks. In: [18], pp. 398–412

9. Prouff, E., Rivain, M., Bévan, R.: Statistical Analysis of Second Order Differential
Power Analysis. IEEE Transactions on Computers (to appear, 2009)

10. Canteaut, A., Trabbia, M.: Improved Fast Correlation Attacks Using Parity-Check
Equations of Weight 4 and 5. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, pp. 573–588. Springer, Heidelberg (2000)

11. Turlach, B.A.: Bandwidth selection in kernel density estimation: A review. In:
CORE and Institut de Statistique, pp. 23–493 (1993)

12. Wand, M.P.: Data-based choice of histogram bin width. The American Statisti-
cian 51, 59–64 (1997)

13. Silverman, B.: Density Estimation for Statistics and Data Analysis. Chapman and
Hall, Boca Raton (1986)

14. Wasserman, L.: All of Statistics: A Concise Course in Statistical Inference. Springer
Texts in Statistics (2005)

15. Beirlant, J., Dudewicz, E.J., Györfi, L., Meulen, E.C.: Nonparametric entropy es-
timation: An overview. International Journal of the Mathematical Statistics Sci-
ences 6, 17–39 (1997)

16. Gray, A.G., Moore, A.W.: Nonparametric density estimation: Toward computa-
tional tractability. In: Proceedings of the Third SIAM International Conference on
Data Mining. SIAM, Philadelphia (2003)

17. Guilley, S., Sauvage, L., Hoogvorst, P., Pacalet, R., Bertoni, G.M., Chaudhuri,
S.: Security evaluation of wddl and seclib countermeasures against power attacks.
IEEE Transactions on Computers 57(11), 1482–1497 (2008)

18. Wiener, M. (ed.): CRYPTO 1999. LNCS, vol. 1666. Springer, Heidelberg (1999)

Attacking ECDSA-Enabled RFID Devices

Michael Hutter, Marcel Medwed, Daniel Hein, and Johannes Wolkerstorfer

Institute for Applied Information Processing and Communications (IAIK),
Graz University of Technology, Inffeldgasse 16a, 8010 Graz, Austria

{mhutter,mmedwed,dhein,jwolkers}@iaik.tugraz.at

Abstract. The elliptic curve digital signature algorithm (ECDSA) is
used in many devices to provide authentication. In the last few years,
more and more ECDSA implementations have been proposed that allow
the integration into resource-constrained devices like RFID tags. Their
resistance against power-analysis attacks has not been scrutinized so far.
In this article, we provide first results of power-analysis attacks on an
RFID device that implements ECDSA. To this end, we designed and
implemented a passive RFID-tag prototype. The core element of the
prototype is a low-power ECDSA implementation realized on 180 nm
CMOS technology. We performed power and electromagnetic attacks
on that platform and describe an attack that successfully reveals the
private-key during signature generation. Our experiments confirm that
ECDSA-enabled RFID tags are susceptible to these attacks. Hence, it
is important that they implement countermeasures which prevent the
forging of digital signatures.

Keywords: Radio-Frequency Identification, RFID, Side-Channel Anal-
ysis, ECDSA, Elliptic Curve Cryptography, Implementation Security.

1 Introduction

Radio Frequency Identification (RFID) is an emerging technology that is be-
coming more and more important in our daily life. There already exist billions
of RFID devices and their integration into existing applications seems almost
inevitable. Due to the widespread use of this wireless technology, security issues
have become a primary concern in the past few years. Especially public-key en-
abled RFID devices have gained importance because they allow an easier and
more secure key management than symmetric solutions. This article focuses on
the security of RFID devices that can generate elliptic curve digital signatures.

RFID devices consist of a tiny microchip that is connected to an antenna.
These so-called tags are typically powered passively by a reader via an electro-
magnetic field. This field is also used for the communication between the tags
and the reader. Typical security applications of RFID are access-control sys-
tems, cashless payment, and the electronic passport. These applications need
the devices to make use of cryptographic algorithms to provide required ser-
vices such as authentication, confidentiality, integrity, and non-repudiation. The
cryptographic algorithms have to be light-weight in terms of power and area to

M. Abdalla et al. (Eds.): ACNS 2009, LNCS 5536, pp. 519–534, 2009.
� Springer-Verlag Berlin Heidelberg 2009

520 M. Hutter et al.

cope with the limited resources in large-scale RFID applications. Due to these
constraints, most tags that are now available typically rely on proprietary algo-
rithms or symmetric primitives that have been proven to be suitable for RFID.
Large effort has been made in this field to enable resource-constrained implemen-
tations of algorithms such as AES [5], DESL [18], PRESENT [3], and HIGHT [9].
Although symmetric algorithms can provide many of the required security as-
surances, the advantages of facilitated key management offered by asymmetric
algorithms would be very desirable for RFID systems. However, they are much
more complex to implement. In respect to these facts, many light-weight solu-
tions have been proposed such as NTRU [8], XTR [19], and elliptic-curve based
schemes. A typical application that uses asymmetric cryptography is the elec-
tronic passport. It comes with an embedded microchip that is used to prove the
origin of the passport and to authenticate the owner. This process is referred
to as active authentication and uses standardized algorithms such as RSA [30],
DSA [24], or ECDSA [2].

Besides the growing demand for RFID devices and their widespread integra-
tion into existing security applications, there have been many articles published
during the last decade that emphasize the vulnerability of such cryptographic
devices against implementation attacks. Amongst the most powerful attacks are
side-channel attacks that were first introduced by Kocher et al. [16] in 1996.
These attacks allow the extraction of the secret key by measuring the power
consumption [17], electromagnetic emanation [1,6,29], or timing information [16].
In the context of RFID, Oren and Shamir [27] have shown the first side-channel
attack which allows to reveal the kill password of ultra-high frequency (UHF)
tags, in 2006. They performed a simple power analysis (SPA) attack by observ-
ing one power trace that is reflected from the tag to the reader. This backscat-
tered power trace changes depending on the processed data. The first differential
power analysis (DPA) attack on RFID devices has been performed by Hutter
et al. [10] in 2007. They analyzed hardware and software AES implementations
of high frequency (HF) tag prototypes by means of power and electromagnetic
analysis. All devices have been successfully attacked using less than 1 000 power
traces. Plos [28] demonstrated the susceptibility of UHF tags against DPA at-
tacks in 2008. He analyzed commercially-available RFID tags and determined
data-dependent emanations at a distance of up to one meter. However, all avail-
able publications describe attacks on either kill-password extraction or symmet-
ric primitives. So far, there exist no article that investigates DPA attacks on
public-key enabled RFID tags.

In this article, we provide the first results of side-channel attacks on a public-
key enabled RFID device. In order to evaluate the effectiveness of such attacks
on RFID tags, we designed a prototype that is able to be powered passively
by the field of a reader. The prototype includes a low-power hardware ECDSA
implementation fabricated in 180nm CMOS technology. The implementation is
able to authenticate itself to a reader by generating digital signatures. Further-
more, we are the first who provide a DPA attack on a hardware implementation
of ECDSA. We show how to reveal the private key during signature generation

Attacking ECDSA-Enabled RFID Devices 521

by measuring the electromagnetic emanation of the tag. In addition, we describe
a useful pre-processing technique for improving side-channel attacks on RFID
by applying a trace-decimation technique. All attacks have been successful and
led us to the conclusion that public-key enabled RFID devices are as vulnerable
as symmetric-based RFID devices. It has been shown that wireless devices are
susceptible to these attacks as much as contact-based powered devices.

The article is structured as follows. Section 2 describes power-analysis attacks
on passive RFID devices in general. Section 3 is dedicated to attacks on ECDSA
implementations. We describe the exploitation of different information leakages
of ECDSA and propose a DPA attack on the private-key operations during
signature generation. Section 4 details our RFID-tag prototype. In Section 5 we
describe the measurement setup and side-channel pre-processing techniques that
are used in our experiments to perform power-analysis attacks. The results of
our experiments are presented in Section 6. Conclusions are drawn in Section 7.

2 Power Analysis of Passive RFID Devices

Side-channel analysis of passive RFID devices is a challenging task due to sev-
eral reasons. In this section, we give an overview on various issues regarding
the acquisition and analysis of side-channel information that are exploited from
passive RFID tags.

Passive tags differ from conventional contact-based devices in several ways.
First, passive tags only possess two antenna connections. Indeed, there are no
dedicated power-supply pins available where a resistor can be placed in series
to measure the consumed power. An alternative way of side-channel extraction
is the sensing of electromagnetic emanation. The current flow within the mi-
crochip of the RFID tag produces an electromagnetic field. This field contains
different signals such as the square-wave clock or signals that are caused by
data-dependent processing. These signals can be sensed by magnetic near-field
probes that are placed directly on the surface of the chip [1]. However, while such
attacks will succeed for many contact-based devices, this may not be the case
for passive RFID tags. Passive tags have been designed for low-power operation
and consume only a few micro Watts of power. Special measurement equipment
is therefore necessary to separate and amplify the weak side-channel signals that
are emitted from the tags.

In RFID environments, we are actually concerned with another source of elec-
tromagnetic emanation. There is not only the weak emanation of the tags but
also the emanation of the reader device. This reader field is typically between
40 dB and 80 dB higher than the signals emitted by the tags. As a result, in-
teresting signal emissions of the tags may be unintentionally overwhelmed by
the occurring interferences of the reader. The data-acquisition resolution of the
measurement equipment is thus inevitably reduced since the weak signals of the
tag are superimposed onto the much higher reader field. In addition to the lower
acquisition resolution, this reader field is not synchronized with the measure-
ment equipment which causes power-trace misalignments in both the time and

522 M. Hutter et al.

the amplitude dimension. The reader is a high noise source and therefore makes
side-channel analysis difficult to perform. The main challenge of electromagnetic
measurements in this context is therefore to minimize the impact of this reader
signal and to overcome the resulting misalignment of measured power traces.

Another issue which is of major concern in RFID environments is the com-
pression of side-channel traces. Passive RFID tags are powered by the electro-
magnetic field of a reader. Most of these tags also extract the clock signal out
of this field. In order to comply with the low-power requirement, they often use
a low clock frequency in the kHz range. The processing of data and especially
the computation of asymmetric functions therefore takes a long time (up to
several milliseconds). Side-channel attacks on public-key enabled RFID devices
require compression techniques to reduce the complexity of storing and subse-
quent processing of millions of sample points that are acquired throughout the
tag computation.

3 Power Analysis Attacks on ECDSA Implementations

ECDSA is the elliptic curve-based variant of the digital signature algorithm
(DSA). The DSA has been proposed in 1991 by the National Institute of Stan-
dards and Technology (NIST). Since then, many organizations have standard-
ized ECDSA such as ANSI [2], IEEE [11], FIPS [24], and ISO/IEC [14]. In the
following, we describe ECDSA in greater detail, discuss various power-analysis
attacks that have been performed on different implementations, and present a
DPA attack that reveals the private key during signature calculation.

In order to generate a digital signature using ECDSA, a message m is given
as an input. By using the domain parameters D = (q, FR, S, a, b, P, n, h), a ran-
dom number k is first chosen in the interval from 1 to n. This random number is
often referred to as ephemeral key. Then, an elliptic-curve point multiplication
is performed using k and the base point P . The result is converted to an integer
x̄1 in order to compute the intermediate value r. After that, the message m is
hashed using the SHA-1 algorithm [26]. The signature generation is then gener-
ated within two steps. First, the private key d is multiplied with the intermediate
value r. The result is then added to the output of the hashed message e = h(m).
Second, the value s is calculated by inverting the ephemeral key k and multi-
plying it with the output of step one. The generated ECDSA signature that is
returned consists of the tuple (r, s). Algorithm1 shows the signature-generation
scheme.

There exist many articles that present power-analysis attacks on elliptic curve-
based algorithms. One of the first publications is due to Coron [4] in the year
1999. He showed that the scalar multiplication is highly susceptible to SPA
attacks. One way to implement the scalar-multiplication is to use the double-and-
add algorithm. By simply inspecting one measured power trace of such imple-
mentations, a difference in the power consumption can be observed depending on
whether doubling or adding was performed. Several countermeasures have been
proposed including scalar blinding techniques [4], unified point operations [15],

Attacking ECDSA-Enabled RFID Devices 523

Algorithm 1. Signature-generation scheme using ECDSA
Require: Domain parameters D = (q, FR,S, a, b, P, n, h), private key d, message m.
Ensure: Signature (r, s)
1: Select k ∈ [1, n − 1]
2: Compute [k]P = (x1, y1) and convert x1 to an integer x̄1

3: Compute r = x̄1 mod n. If r = 0 then go back to step 1.
4: Compute e = H(m).
5: Compute s = k−1(e + dr) (mod n). If s = 0 then go back to step 1.
6: Return (r, s)

or the Montgomery point ladder [22]. Nevertheless, recently Medwed et al. [21]
have shown attacks on implementations by using template-based SPA attacks.
They have been able to successfully reveal the ephemeral key of implementations
including SPA countermeasures. However, up to now there neither exist articles
describing DPA attacks on ECDSA nor are there publications that reveal the
private key directly instead of extracting the ephemeral key to calculate the
private key afterwards.

3.1 Our Contribution and Description of the Attack

In the following, we describe a DPA attack that reveals the private key during
signature generation. The target of the attack is an intermediate value that
depends on the private key on the one hand and that depends on some random
value on the other hand. Regarding the ECDSA scheme described in Algorithm1,
the private key d is multiplied with the output of the scalar multiplication r.
The private key is static and the output of the scalar multiplication is random
since the ephemeral key k is chosen randomly for each signature generation.
Furthermore, r is publicly known because it is part of the signature. In the light
of these facts, we are able to perform a DPA attack on intermediate values that
are processed during the calculation of the multi-precision integer multiplication
d ∗ r.

Common hardware implementations for multi-precision multiplication are the
operand scanning and the product scanning (Comba) algorithm which are de-
picted in Figure 1. Both algorithms multiply the words of two n-word long
operands. In our case, those are ri (the input) and dj (the key). The resulting
partial products are then added to a cumulative sum p. This results in n2 partial
products. Note that one word of the private key is processed n times during the
whole integer multiplication.

What seems obvious at first glance turns out to be more complex in practice.
The integer multiplication is a linear function that multiplies a constant value
with a random input value. That means that shifted bit combinations of a key
word have a linear impact to the multiplication result. When the key is shifted
x times, the result is also shifted x times. Therefore, it is evident that in power-
analysis attacks, one or more correlation peaks occur for only one key word.
This is due to the fact that all bit combinations of the key word will result in

524 M. Hutter et al.

r d*
r0 d0

r0 d1

r1 d0

r1 d1

r0 d2

r2 d0

r2 d1

r1 d2

r2 d2

p5 p4 p3 p2 p1 p0

r d*
r0 d0

r1 d0

r2 d0

r0 d1

r1 d1

r2 d1

r0 d2

r1 d2

r2 d2

p5 p4 p3 p2 p1 p0

Fig. 1. Operand scanning form (left) and product scanning form (right)

the same Hamming-weight1 value of the multiplication output. The number of
possible shifts s of the key word di can be calculated as follows:

s(di, l) = log2(gcd(di, 2l)) + l − �log2(di) + 1�, (1)

where l represents the word size. Note that the maximum number of key shifts
is equal to the word size, i.e. 16 for a device using 16 bit operands (in this case
the key word has a Hamming weight of one and the value of the shifted key
combinations are a multiple of 2x where x = 0..15). Due to these facts, the
decision of which hypothetical key is the correct one and which are incorrect
keys seems therefore infeasible. It is clear that this makes a DPA attack much
more inefficient compared to attacks on intermediate values that occur after
non-linear functions such as the S-box in DES [23] or AES [25].

Our attack can be separated into two steps. In the first step, we target the
output of all partial products and perform a DPA attack on that intermediate
value. For each partial product, we obtain one or more promising key candidates
due to the reasons described above. For a device with a 16 bit word size, for
example, we obtain up to 16 promising key candidates. Hence, we get up to 16
key candidates for each private-key word di. In the second step, we target the
output of the final multiplication product p. Each word of this product depends
on one or more different key words. Thus, we can use the information obtained
from the first step and use all obtained key candidates di to perform an attack
on the final product words pi. After revealing the key candidates for d0 and d1,
for example, we can attack the second product word p1 to obtain the correct
key word d0. Incorrect key hypotheses will show low correlation peaks so that
they can be eliminated from the correct key hypothesis that causes a higher
correlation. By following this way, a DPA attack on each of these product words
pi will yield all private-key words di successively.

1 The Hamming weight power model is often used in practice and is further used in
order to describe the attack.

Attacking ECDSA-Enabled RFID Devices 525

Power supply

D-Type

FF

IC

A

B

Clock extraction

Voltage regulator Demodulator

Rectifier

Modulator

A
nt

en
na

 p
ad

s

Tuning

Fig. 2. Schematic of the analog front-end
of our passively powered RFID-tag proto-
type

Fig. 3. A passively powered RFID-tag pro-
totype that is capable of generating digital
signatures using ECDSA

4 A Passive ECDSA-Enabled RFID-Tag Prototype

In this section, we present the design and implementation of the passively pow-
ered RFID-tag prototype that has been used throughout our experiments. The
prototype consists of an antenna, an analog front-end, and a low-power digi-
tal controller. The antenna has four windings and has been designed according
to ISO 7816 [12]. The antenna is connected to an analog front-end that trans-
forms the received analog signals of the reader to the digital world of the digital
controller. The controller includes a digital RFID front-end and a low-power
hardware implementation of ECDSA. In the following, we describe the analog
front-end and the digital controller in a more detail.

4.1 The Analog Front-End

The analog front-end is composed of the seven parts shown in the schematic
view in Figure 2. In the first stage, the antenna is connected to a matching cir-
cuit which tunes the antenna to the 13.56MHz carrier frequency of the reader.
After that, a bridge rectifier has been assembled using low-voltage drop schot-
tky diodes. The rectified signal is then smoothed and fed into a slow envelope
detector to provide a stable power supply for the digital controller.

In order to comply with many commercial RFID tags, we designed a clock
extraction circuit that is able to regenerate a system clock out of the 13.56MHz
reader signal. For this, a relaxation oscillator has been implemented using an
inverting Schmitt trigger, one resistor, and a capacitor which produce a stable
13.56MHz square-wave clock. The clock is then divided by two using a d-type
flip-flop to provide a 6.78MHz clock frequency that is needed for the controller.

For receiving and sending of data, both a modulation and a demodulation
circuit have been integrated. For data modulation, a resistor is used that can
be connected and disconnected to the antenna by the controller. After switching
the resistor, a significant amount of additional power is drawn out of the reader
field. This so-called load modulation is then detected and demodulated by the
reader.

526 M. Hutter et al.

4.2 The Digital ECDSA-Enabled RFID Controller

The digital controller is an elliptic-curve point multiplication device with an
ISO15693 [13] compatible digital RFID front-end. It is capable of computing the
multiplication of a scalar value with a point on the NIST standardized elliptic
curve B-163 [24]. The B-163 curve is defined on the binary extension field F2163 .
The controller was fabricated by the UMC L180 GII 1P/6M 1.8V/3.3V CMOS
process. The controller has a total area of 15 630 Gate Equivalents (GE) while an
overhead of 654GE is incurred by components for production testing. The digital
RFID front-end requires 1 726GE and the ECC core 13 250GE. This includes
1 346GE for a memory slot to enable the separate setting of the ephemeral
key k.

The controller must be operated at a fixed frequency of 6.78MHz. This is half
of the carrier frequency. Internally, this frequency supplies two different clock
domains. One of them is used for the RFID interface and has a frequency of
106kHz. The other one clocks the ECC core at 847.5 kHz. The whole chip has
an estimated power consumption of about 176µW.

5 The Measurement Setup

The measurement setup is composed of several parts. We used a PC, an RFID
reader, the RFID-tag prototype, a digital sampling oscilloscope (DSO), a differ-
ential probe, and a near-field measurement probe. The PC controls the overall
measurement process. It is connected to the DSO and the RFID reader. An 8-bit
oscilloscope is used that offers an acquisition bandwidth of up to 1 GHz. As a
reference measurement, an active differential probe has been connected in par-
allel to a 1Ω resistor that is placed in series to the VDD core power supply. For
electromagnetic measurements, we used a tiny magnetic near-field probe that
allows the sensing of signals only up to a few millimeters. This already reduces
the noisy reader signal in an early stage of the acquisition process. The sensed
signals are then amplified by a 30 dB pre-amplifier before they are sampled by
the oscilloscope. The sampling rate has been set to 1GS/s for all measurements.
Figure 4 shows the RFID measurement setup involving our tag prototype that
lies on the antenna of a reader.

We have used a standard RFID reader that supports mandatory ISO15693
commands such as Inventory or Select. It is also able to send custom commands
that are needed to start the ECDSA signature generation. We defined three
custom commands. The first command (0xE0) performs a hardware reset and
loads initial data (like the base point) from Read Only Memory (ROM) into
the internal Static Random Access Memory (SRAM) of the tag controller. The
second command (0xE1) starts the scalar multiplication and the third command
(0xE2) evaluates the signing equation given in Algorithm1.

The communication flow between the reader and our tag prototype is shown
in Figure 6. First, a reset command (0xE0) is sent to the tag. The tag responds
with its unique ID (UID) number. Instead of calculating the scalar multiplication
in each power trace acquisition, we pre-calculated the value r and loaded it into

Attacking ECDSA-Enabled RFID Devices 527

Fig. 4. RFID measurement setup involv-
ing our tag prototype lying on the reader
antenna

0 50 100 150
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

Time [µs]

V
ol

ta
ge

 [
V

]

Fig. 5. Power trace (black) and (30-times
magnified) EM trace (gray) during the cal-
culation of the private-key multiplication

the SRAM before starting the power acquisition of the integer multiplication.
This is done by sending the mandatory Write-Single-Block (WSB) command
(0x21) of ISO15693. After that, the reader sends the ECDSASign command
(0xE2) to start the calculation of the digital signature (r, s). As a trigger signal,
the oscilloscope was set to listen on the End-of-Frame (EOF) sequence of the
Write-Single-Block command.

The RFID controller inverts the ephemeral key k in about 11.8ms. The
private-key multiplication needs about 150µs, the hash-value addition and the
final multiplication need around 600µs. In our setup, the power consumption as
well as the electromagnetic emanation of our device were acquired simultane-
ously throughout the private-key multiplication. Figure 5 shows one measured
power trace (drawn in black) and a 30-times magnified electromagnetic trace
(drawn in gray).

Reader Tag

send reset command
0xE0−−−−−−−−−−−−−→ acknowledge with
UID←−−−−−−−−−−−−− the UID number

Write-Single-Block
data (e,k,r)

0x21−−−−−−−−−−−−−−→ store data (e,k,r)
ACK←−−−−−−−−−−−−− into the SRAM

send ECDSASign
command

0xE2−−−−−−−−−−−−−→ starts the

calculation of s
Read-Single-Block

0x20−−−−−−−−−−−−−→
verify signature

(r,s)←−−−−−−−−−−−−− return signature

Fig. 6. RF communication between the reader and the tag

528 M. Hutter et al.

0 50 100 150 200 250
−0.01

0

0.01
V

ol
ta

ge
 [

V
]

0 50 100 150 200 250
−0.01

0

0.01

Time [ns]

V
ol

ta
ge

 [
V

]

Fig. 7. Misaligned traces (upper plot) and
aligned traces (lower plot) of electromag-
netic measurements

0 100 200 300 400 500

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

Frequency [MHz]

C
or

re
la

tio
n

co
ef

fi
ci

en
t

Fig. 8. Correct (black) and incorrect
(gray) correlation traces of the frequency-
based DPA attack using 2 000 power traces

5.1 Pre-processing RFID Power Traces

As we already stated in Section 2, measurements in RFID environments are very
noisy due to the high energy signal of the reader device. We therefore applied
two pre-processing techniques: trace alignment and trace decimation.

First, we aligned all measured traces in both horizontal and vertical orien-
tation. We determined a specific trace pattern which was used to align the re-
maining traces using the least-mean-square (LMS) algorithm. The misaligned
traces are shown in the upper plot of Figure 7. The lower plot demonstrates the
traces after alignment. Our experiments have shown that without alignment or
even poor alignment, successful attacks become largely infeasible due to the high
noise of the measurement setup.

Second, we applied a trace-decimation technique that has been proven to be
very useful throughout our experiments. Decimation is a technique typically used
in signal processing. It performs two actions: filtering and re-sampling. First, the
measured power traces are applied to an appropriate low-pass filter. This filter
attenuates all frequency signals above a certain cut-off frequency. Second, it
re-samples the smoothed traces at a lower rate. Decimation has therefore two
major advantages. On the one hand, misalignment are compensated due to the
averaging of filtering. On the other hand, all measured traces become shorted in
their length. Both properties are a major concern for successful attacks in RFID
environments as stated in Section 2.

In order to apply the decimation technique to our power traces, we determined
a proper cut-off frequency. This frequency has to be chosen in a way so that sig-
nals are eliminated that do not carry data-dependent information. Agrawal et
al. [1] have shown that there exist data-dependent information in the lower fre-
quency spectrum. The higher the frequency, the weaker will be the signals that
carry interesting information. Due to this fact, we have performed a frequency-
based DPA attack that was first introduced by Gebotys [7]. All measured power
traces are transformed into the frequency domain using the Fast Fourier Trans-
formation (FFT). Instead of correlating the sample points in the time domain,
the sample points are correlated in the frequency domain. As a target of the

Attacking ECDSA-Enabled RFID Devices 529

0 50 100 150

0.1

0.2

0.3

0.4

0.5

Time [µs]

SN
R

0 50 100 150

0.1

0.2

0.3

0.4

0.5

Time [µs]
SN

R

0 50 100 150

0.1

0.2

0.3

0.4

0.5

Time [µs]

SN
R

Fig. 9. SNR of the power traces (left), SNR of the EM traces without pre-processing
(middle), and SNR of the pre-processed EM traces (right)

attack, we have chosen the same intermediate value used in the attack described
in Section 3. Figure 8 shows the result of the attack using 2 000 power traces.
The correct key hypothesis is drawn in black and the incorrect key hypotheses
are drawn in gray. It can be clearly seen that there is a high correlation below
50MHz. Above this frequency, no significant correlation can be discerned. On
this account, we applied an 8th-order Chebyshev (Type 1) low-pass filter with a
cutoff frequency at 50MHz and down-sampled the traces accordingly. All traces
have been decimated from 300 000 sampling points to only 32 500 samples.

5.2 Device Characterization and Pre-processing Evaluation

Next, we characterize our tag prototype concerning side-channel information
leakage. First, the noise of the measurement setup is characterized. Second, the
data-dependent signal that is leaked by the device is determined. After that, we
calculate the signal-to-noise (SNR) ratio of the power and the electromagnetic
measurements and compare them. Furthermore, we evaluate the pre-processing
techniques by comparing measurements with and without trace alignment and
trace decimation.

The noise of the measurement setup has been characterized by calculating
the mean of all traces that were captured by processing constant data. This
avoids data-dependent power variations and allows the determination of the
measurement noise. Data-dependent signals, in contrast, have been characterized
within two steps: First, the mean of those traces that process the same input
data is calculated. Second, the variance of these mean traces is calculated. The
SNR can now be calculated by dividing the variance of the obtained mean-signal
trace from the variance of the calculated noise trace [20]. For the SNR calculation,
2 000 traces have been used.

Figure 9 shows the result of the characterization and performance evaluation.
The left plot in the figure shows the SNR of the power traces. A maximum
SNR of 0.45 has been obtained. In the middle plot of the figure, the result of
the EM traces is given which have not been pre-processed. It can be seen that
the signal components are below the noise floor. With this number of traces, an
attack would fail due to the low SNR. The right plot of the figure shows the SNR

530 M. Hutter et al.

1 2 3 4 5 6

x 104

0

0.2

0.4

0.6

0.8

216 key hypotheses

M
ax

im
um

 c
or

re
la

tio
n

Fig. 10. Maximum correlation coefficient
of all 216 key hypotheses for the first
private-key word d0 using 2 000 power
traces

1 2 3 4 5 6

x 104

0

0.2

0.4

0.6

0.8

216 key hypotheses

M
ax

im
um

 c
or

re
la

tio
n

Fig. 11. Maximum correlation coefficient
of all 216 key hypotheses for the first
private-key word d0 using 2 000 EM traces

of the pre-processed EM traces. Due to the pre-processing, the SNR could be
significantly increased to a maximum of 0.22. The signal components are much
weaker as compared to the power traces but an attack will still succeed as shown
in the next section.

6 Results

This section presents results of power and electromagnetic (EM) analysis at-
tacks on our ECDSA-enabled RFID-tag prototype. First, we perform a refer-
ence attack using a contact-based power analysis. The power consumption of
the RFID-tag prototype is measured over a resistor that has been placed in
series to the integrated RFID controller and the analog front-end. Second, we
perform a contact-less attack using EM analysis by using a magnetic near-field
probe. In both scenarios, the tag was powered passively by the field.

The first attack targets the first partial product of the multi-precision multi-
plication unit of our RFID controller. The controller implements a 16-bit Comba-
multiplication unit so that we have to test 216 key hypotheses that are multiplied
with the known intermediate value r. The target has been the 32-bit output of
the multiplication. However, our experiments have shown that our device does
not leak all bits of this 32-bit output with same amount. Hence, we have modeled
the power consumption by weighting the Hamming weight of the higher 16 bits
and the lower 16 bits differently to obtain the highest correlation.

Figure 10 and Figure 11 show the result of the power and EM attack. For
both attacks, 2 000 traces have been used. The x-axis represents all possible key
hypotheses and the y-axis represents the maximum absolute correlation of each
resulting correlation trace. It is clearly discernable that the results obtained
from the EM traces reach only half the correlation value as they have been
obtained from the power traces. The reason for this is the lower SNR of the
EM measurement calculated in the previous section. Furthermore, it can be
observed that the highest peak has been obtained for the key word 1901 and
reached a correlation coefficient of 0.75 for the power traces and 0.33 for the EM

Attacking ECDSA-Enabled RFID Devices 531

0 50 100 150

−0.5

0

0.5

Time [µs]

C
or

re
la

tio
n

co
ef

fi
ci

en
t

Fig. 12. Correlation traces of all partial
products ri ∗ d0 using 2 000 power traces

0 50 100 150

−0.5

0

0.5

Time [µs]

C
or

re
la

tio
n

co
ef

fi
ci

en
t

Fig. 13. Correlation traces of all partial
products ri ∗ d0 using 2 000 EM traces

traces. However, there exist also five other key hypotheses which result in a high
correlation2. These are 3802, 7604, 15208, 30416, and 60832 (marked as black
lines in the figures). Obviously, these values have the same bit representation as
1901 but are gradually shifted to the left. This is due to the fact that integer
multiplication is a linear function where shifted bit combinations of the correct
key have a linear impact to the multiplication result.

Next, we perform the same attacks on all other partial products that involve
the first private-key word d0. Figure 12 and Figure 13 show the result of the
attacks. The correlation results of the correct key-hypothesis d0 of all partial
products are plotted on top of each other. Eleven peaks are observable that
occur at locations in time when the output of the partial products is stored
into the internal registers of the controller. Due to the structure of the Comba
multiplication-unit, the distance between these results becomes larger the more
partial products are calculated. The first partial product is calculated after about
10μs and the last one after about 140μs. The power-analysis attacks lead to a
mean correlation of 0.72. The EM attacks yielded a mean correlation of 0.22.

After revealing the promising key candidates of the first private-key word d0,
we performed attacks on all partial products that involve the second private-
key word d1. The attacks led us to two promising key candidates: 24027 and
48054. Now we perform an attack on the second result of the final multiplication
product p1. This product word involves the calculation of the first and the second
private-key word. Thus, we have to test 12 promising key hypotheses. A high
correlation will occur when both hypotheses are correct. Incorrect hypotheses
will show no peak. In Figure 14, the result of the power-analysis attack is given
using 2 000 power traces. The correct key hypotheses (drawn in black) 1901
for d0 and 48054 for d1 yield a high correlation while all other key hypotheses
(drawn in gray) show no peak in time when the final product is stored into the
internal register of the controller. Figure 15 shows the result of the EM attack
using 10 000 traces. It provides a much smaller correlation as compared to the
result of the power-analysis attack. Nevertheless, the correct key can be easily
discovered from the incorrect ones.

2 The peaks do not have the same correlation value since our power model weighted
the lower and higher bits of the 32-bit multiplication output differently.

532 M. Hutter et al.

0 50 100 150

−0.2

−0.1

0

0.1

0.2

Time [µs]

C
or

re
la

tio
n

co
ef

fi
ci

en
t

Fig. 14. Result of the power-analysis at-
tack on the final multiplication product p1

using 2 000 traces

0 50 100 150

−0.05

0

0.05

Time [µs]

C
or

re
la

tio
n

co
ef

fi
ci

en
t

Fig. 15. Result of the EM attack on the fi-
nal multiplication product p1 using 10 000
traces

All other private-key words have been extracted by following the same strat-
egy. Both power and electromagnetic attacks have been successful. The attacks
revealed the entire private key of the ECDSA implementation which enables us
to forge digital signatures and therefore to impersonate any entity and person
by cloning the extracted key.

7 Conclusions

In this article, we presented the first results of DPA attacks on a hardware
ECDSA implementation in a passively powered RFID device. We have designed
and implemented a low-power RFID-tag prototype which consists of a 180nm
CMOS implementation of ECDSA which allows authentication by generating
digital signatures. In order to evaluate the effectiveness of side-channel attacks
on such devices, we performed power analysis and electromagnetic analysis. Fur-
thermore, we propose the application of a decimation filter to reduce the com-
plexity of the analysis on RFID devices. For both power analysis and electromag-
netic analysis, the private-key could be revealed successfully. Opposed to other
proposed attacks that try to reveal the ephemeral key of ECDSA, we extract the
private key during signature generation. Hence, our attack is unaffected by com-
mon countermeasures that avoid the extraction of the ephemeral key. In addition,
it is independent of the underlying elliptic curve representation. The significant
points of our findings are as follows: First, public-key enabled RFID devices are
as vulnerable to side-channel attacks as conventional contact-based devices. Sec-
ond, it is not sufficient to protect the ephemeral key during scalar multiplication.
It is also imperative to secure the private-key multiplication during the signature
generation. This article is the first to provide results of power-analysis attacks
on passive RFID devices that generate digital signatures using ECDSA. It fur-
ther presents the first results of attacks on a hardware ECDSA implementation
revealing the private-key during signature generation.

Future work will be to evaluate the effectiveness of this attack on existing
RFID devices such as the electronic passport. The International Civil Aviation

Attacking ECDSA-Enabled RFID Devices 533

Organization (ICAO) has published the technical specifications of e-passports
in Europe and defined ECDSA as a standardized algorithm for active authenti-
cation. This feature allows the verification of whether the passport is authentic
or not. We will evaluate the side-channel leakage of such a device to answer the
question of how e-passports are effected by these attacks.

Acknowledgements

The authors would like to thank Thomas Popp and Stefan Tillich for their valu-
able inputs and helpful discussions. The research described in this paper has been
supported by the European Commission funded project Collaboration at Rural
under grant number 034921 (Project C@R) and the Austrian government funded
project CRYPTA established under the Trust in IT-Systems program FIT-IT.

References

1. Agrawal, D., Archambeault, B., Rao, J.R., Rohatgi, P.: The EM Side-channel(s).
In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp.
29–45. Springer, Heidelberg (2003)

2. American National Standards Institute (ANSI). American National Standard
X9.62-2005. Public Key Cryptography for the Financial Services Industry, The
Elliptic Curve Digital Signature Algorithm, ECDSA (2005)

3. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: An Ultra-Lightweight Block Cipher.
In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466.
Springer, Heidelberg (2007)

4. Coron, J.-S.: Resistance against Differential Power Analysis for Elliptic Curve
Cryptosystems. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp.
292–302. Springer, Heidelberg (1999)

5. Feldhofer, M., Dominikus, S., Wolkerstorfer, J.: Strong Authentication for RFID
Systems using the AES Algorithm. In: Joye, M., Quisquater, J.-J. (eds.) CHES
2004. LNCS, vol. 3156, pp. 357–370. Springer, Heidelberg (2004)

6. Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic Analysis: Concrete Results.
In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp.
251–261. Springer, Heidelberg (2001)

7. Gebotys, C.H., Ho, S., Tiu, C.C.: EM Analysis of Rijndael and ECC on a Wireless
Java-Based PDA. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp.
250–264. Springer, Heidelberg (2005)

8. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: A Ring-Based Public Key Cryp-
tosystem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288.
Springer, Heidelberg (1998)

9. Hong, D., Sung, J., Hong, S., Lim, J., Lee, S., Koo, B., Lee, C., Chang, D., Lee,
J., Jeong, K., Kim, H., Kim, J., Chee, S.: HIGHT: A New Block Cipher Suitable
for Low-Resource Device. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS,
vol. 4249, pp. 46–59. Springer, Heidelberg (2006)

10. Hutter, M., Mangard, S., Feldhofer, M.: Power and EM Attacks on Passive 13.56
MHz RFID Devices. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS,
vol. 4727, pp. 320–333. Springer, Heidelberg (2007)

534 M. Hutter et al.

11. IEEE. IEEE Standard 1363a-2004: IEEE Standard Specifications for Public-Key
Cryptography, Amendment 1: Additional Techniques (September 2004),
http://ieeexplore.ieee.org/servlet/opac?punumber=9276

12. International Organisation for Standardization (ISO). ISO/IEC 7816: Identifica-
tion cards - Integrated circuit(s) cards with contacts (1989)

13. International Organisation for Standardization (ISO). ISO/IEC 15693-3: Identi-
fication cards - Contactless integrated circuit(s) cards - Vicinity cards – Part 3:
Anticollision and transmission protocol (2001)

14. International Organisation for Standardization (ISO). ISO/IEC 14888-3: Informa-
tion technology – Security techniques – Digital signatures with appendix – Part 3:
Discrete logarithm based mechanisms (2006)

15. Joye, M.: Defences Against Side-Channel Analysis. In: Advances In Elliptic Curve
Cryptography. London Mathematical Society Lecture Note Series, vol. 317, pp.
87–100. Cambridge University Press, Cambridge (2005)

16. Kocher, P.C.: Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS,
and Other Systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996)

17. Kocher, P.C., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

18. Leander, G., Paar, C., Poschmann, A., Schramm, K.: New Lightweight DES Vari-
ants. In: Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 196–210. Springer,
Heidelberg (2007)

19. Lenstra, A.K., Verheul, E.R.: The XTR Public Key System. In: Bellare, M. (ed.)
CRYPTO 2000. LNCS, vol. 1880, pp. 1–19. Springer, Heidelberg (2000)

20. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks – Revealing the Secrets
of Smart Cards. Springer, Heidelberg (2007)

21. Medwed, M., Oswald, E.: Template Attacks on ECDSA. In: Chung, K.-I., Yung, M.,
Sohn, K. (eds.) 9th International Workshop on Information Security Applications
(WISA 2008), Korea, Jeju Island, September 23-25, 2008, Pre-Proceedings (2008)

22. Montgomery, P.L.: Speeding the Pollard and Elliptic Curve Methods of Factoriza-
tion. Mathematics of Computation 48(177), 243–264 (1987)

23. National Institute of Standards and Technology (NIST). FIPS-46-3: Data Encryp-
tion Standard (October 1999), http://www.itl.nist.gov/fipspubs/

24. National Institute of Standards and Technology (NIST). FIPS-186-2: Digital Sig-
nature Standard (DSS) (January 2000), http://www.itl.nist.gov/fipspubs/

25. National Institute of Standards and Technology (NIST). FIPS-197: Advanced En-
cryption Standard (November 2001), http://www.itl.nist.gov/fipspubs/

26. National Institute of Standards and Technology (NIST). FIPS-180-2: Secure Hash
Standard (August. 2002), http://www.itl.nist.gov/fipspubs/

27. Oren, Y., Shamir, A.: Remote Power Analysis of RFID Tags. Mas-
ter’s thesis, Weizmann Institute of Science, Rehovot, Israel (August 2006),
http://www.wisdom.weizmann.ac.il/~yossio/rfid/

28. Plos, T.: Susceptibility of UHF RFID Tags to Electromagnetic Analysis. In: Malkin,
T.G. (ed.) CT-RSA 2008. LNCS, vol. 4964, pp. 288–300. Springer, Heidelberg
(2008)

29. Quisquater, J.-J., Samyde, D.: ElectroMagnetic Analysis (EMA): Measures and
Counter-Measures for Smart Cards. In: Attali, S., Jensen, T. (eds.) E-smart 2001.
LNCS, vol. 2140, pp. 200–210. Springer, Heidelberg (2001)

30. Rivest, R.L., Shamir, A., Adleman, L.: A Method for Obtaining Digital Signa-
tures and Public-Key Cryptosystems. Communications of the ACM 21(2), 120–126
(1978)

http://ieeexplore.ieee.org/servlet/opac?punumber=9276
http://www.itl.nist.gov/fipspubs/
http://www.itl.nist.gov/fipspubs/
http://www.itl.nist.gov/fipspubs/
http://www.itl.nist.gov/fipspubs/
http://www.wisdom.weizmann.ac.il/~yossio/rfid/

Author Index

Agrawal, Shweta 292
Arita, Seiko 186
Attrapadung, Nuttapong 168

Baek, Joonsang 143
Boneh, Dan 292
Boyd, Colin 53
Brier, Eric 354

Cachin, Christian 382
Chen, Songqing 201
Cliff, Yvonne 53
Cremers, Cas J.F. 20

Dachman-Soled, Dana 125

Eian, Martin 400

Gebotys, Catherine 71
Geisler, Martin 382
Goldberg, Ian 219
Gonzalez Nieto, Juan 53

Hein, Daniel 519
Hirschhorn, Philip S. 437
Hoffstein, Jeffrey 437
Howgrave-Graham, Nick 437
Hutter, Michael 519

Imai, Hideki 168

Jarrous, Ayman 107

Kiayias, Aggelos 253
Koeune, François 485
Komano, Yuichi 306

Lee, MoonShik 238
Lenhard, Jörg 324
Liu, Joseph K. 143, 156
Liu, Lei 201
Loesing, Karsten 324
Longa, Patrick 71

Ma, Daegun 238
Maitra, Subhamoy 473
Malkin, Tal 125
Manulis, Mark 1
Mashatan, Atefeh 219
Medwed, Marcel 519

Mendel, Florian 342, 369
Miyake, Hideyuki 306
Monnerat, Jean 272

Nad, Tomislav 369

Ohta, Kazuo 306

Pasini, Sylvain 272
Paus, Annika 89
Pehlivanoglu, Serdar 253
Peyrin, Thomas 354
Pinkas, Benny 107
Plantard, Thomas 456
Prouff, Emmanuel 499

Raykova, Mariana 125
Rechberger, Christian 342
Rivain, Matthieu 499

Sadeghi, Ahmad-Reza 89
Sarkar, Santanu 473
Saxena, Nitesh 34
Schindler, Werner 485
Schläffer, Martin 342, 369
Schneider, Thomas 89
Sekar, R. 417
Seo, MinJae 238
Shimbo, Atsushi 306
Standaert, François-Xavier 485
Stinson, Douglas R. 219
Susilo, Willy 143, 456

Tongaonkar, Alok 417
Tsurudome, Koji 186

Uddin, Md. Borhan 34

Vasudevan, Sreenaath 417
Vaudenay, Serge 272

Whyte, William 437
Wirtz, Guido 324
Wolkerstorfer, Johannes 519

Yung, Moti 125

Zhou, Jianying 143, 156

	Title Page
	Preface
	Organization
	Table of Contents
	Key Exchange
	Group Key Exchange Enabling On-Demand Derivation of Peer-to-Peer Keys
	Introduction
	Related Work
	Contributions and Organization

	Security Model for GKE+P Protocols
	Participants, Sessions, and Correctness of GKE+P Protocols
	Adversarial Model and Security Goals

	General Notations and Preliminaries
	Optimized PDHKE-MRE
	Parallel Diffie-Hellman Key Exchange (PDHKE)
	Multi-Recipient ElGamal Encryption (MRE)
	Description of PDHKE-MRE
	Security Analysis of PDHKE-MRE
	On Security of PDHKE as a Stand-Alone Protocol
	Performance Limitations of PDHKE-MRE

	GKE+P Protocols from Group Diffie-Hellman Protocols
	GKE+P Compiler Based on PDHKE
	PDHKE-BD Is Insecure
	PDHKE-KPT Is Secure

	Performance Comparison and Discussion
	Adding Authentication to GKE+P Protocols
	Conclusion
	References

	{\sf Session-state Reveal} Is Stronger Than {\sf Ephemeral Key Reveal}: Attacking the NAXOS Authenticated Key Exchange Protocol
	Introduction
	The NAXOS Key Exchange Protocol
	Attacking NAXOS Using {\sf Session-state Reveal}
	Security Model eCK’
	Attacking the Initiator
	Attacking the Responder

	Discussion
	The KEA, KEA+ and KEA+C Protocols
	{\sf Session-state Reveal} and Protocol Transformations in the CK Model

	Conclusion
	References

	Secure Pairing of “Interface-Constrained” Devices Resistant against Rushing User Behavior
	Introduction
	Related Work
	Security Model and Applicable Protocols
	“Color Pairing” Using a Multi-Color LED
	Selection of “Human-Distinguishable” Colors
	Generating “Human-Distinguishable” Colors on a Multi-Color LED
	Implementation: Transmission and Decoding

	“Alphanumeric Pairing” Using a Sixteen-Segment Display
	Encoding of SAS Data into Alphanumeric Characters

	Experiments and Results
	Experimental Setup
	Usability Testing
	Testing Framework
	Test Cases
	Test Participants
	Testing Process
	Test Results

	Conclusions and FutureWork
	References

	How to Extract and Expand Randomness: A Summary and Explanation of Existing Results
	Introduction
	Notation and Basic Definitions
	Randomness Expansion
	CBC-MAC
	HMAC
	Cascade Construction
	Key Length Summary

	Randomness Extraction
	Combining Extraction and Expansion
	Available Extractors

	Conclusion
	References

	Secure Computation
	Novel Precomputation Schemes for Elliptic Curve Cryptosystems
	Introduction
	Preliminaries
	Our Strategy: Conjugate Addition
	New Precomputation Method for Scalar Multiplication
	Precomputation Scheme for Table of the Form $d_{i}P$
	Precomputation Scheme for Table of the Form $c_{i}P \pm d_{i}Q$

	Performance Comparison
	Other Applications
	Conclusions
	References
	A Conjugate (Mixed) Addition in Jacobian Coordinates
	B Conjugate (Mixed) Addition in ${\mathcal JQ}$ Coordinates
	C Conjugate (Mixed) Addition in ${\mathcal IE}$ Coordinates
	D Calculation of Precomputed Points

	Practical Secure Evaluation of Semi-private Functions
	Introduction
	Yao’s Protocol and Semi-private Functions
	Definitions and Preliminaries
	Privately Programmable Blocks
	Practical Efficient PPB Constructions
	PPB:COMP - Compare Two Numbers
	PPB:COMPc - Compare Number with Private Constant

	FairplaySPF - A General Framework for SPF-SFE
	Applications
	Optimization of Circuits with Constant Inputs
	References

	Secure Hamming Distance Based Computation and Its Applications
	Introduction
	Preliminaries
	Cryptographic Primitives and Tools
	Related Work

	Hamming Distance Based Oblivious Transfer
	Straightforward Applications

	Protocols Secure against Semi-honest Adversaries
	A Protocol for Binary Alphabets (binHDOT)
	A Protocol for Arbitrary Alphabets (HDOT)
	Weighted Hamming Distance Based OT

	A binHDOT Protocol for Malicious Adversaries
	Securing the Applications against Malicious Adversaries

	m-Point SPIR
	References

	Efficient Robust Private Set Intersection
	Introduction
	Definitions and Building Block Protocols
	Homomorphic Encryption Proof of Knowledge
	Coin Tossing

	Set Intersection Protocol
	Input Sharing via Enhanced Shamir Scheme
	Cut-and-Choose on Computations on Input Shares
	Reconstruction and Set Membership Test Protocol
	The Full Protocol

	Analysis
	Client-Side Simulator
	Sender-Side Simulator
	Computation and Communication Complexity

	References

	Public-Key Encryption
	A New Variant of the Cramer-Shoup KEM Secure against Chosen Ciphertext Attack
	Introduction
	Preliminaries
	The Proposed Variant of the Cramer-Shoup KEM
	Comparisons
	Conclusion
	References
	A An Efficient Variant of Our KEM Scheme

	An Efficient Identity-Based Online/Offline Encryption Scheme
	Introduction
	Contribution
	Organization

	Definitions
	Pairings
	Intractability Assumption
	Definition of ID-Based Online/Offline Encryption
	Security of ID-Based Online/Offline Encryption

	The Proposed Online/Offline ID-Based Encryption Scheme
	Construction
	Security Analysis

	Comparison
	Conclusion
	References

	Dual-Policy Attribute Based Encryption
	Introduction
	Preliminaries
	Definitions
	Dual-Policy ABE Scheme
	Main Construction
	Security Proof
	Some Extended Constructions

	Key Delegation in DP-ABE
	Delegating CP-ABE to DP-ABE
	Delegating KP-ABE to DP-ABE
	Delegating in DP-ABE

	Single-Policy Modes of DP-ABE
	Generic Construction
	Direct Construction

	Conclusions
	References
	A Security Proofs of Schemes with Extended Features
	A.1 Security Proof of the Scheme with Delegation
	A.2 Security Proof of the Scheme with Single-Policy Modes

	Construction of Threshold Public-Key Encryptions through Tag-Based Encryptions
	Introduction
	Threshold Tag-Based Encryptions and Their Conversion to Threshold Public-Key Encryptions
	Threshold Public-Key Encryption
	Threshold Tag-Based Encryption
	Conversion from Threshold Tag-Based Encryption Schemes into Threshold Public-Key Encryption Schemes

	Construction of Threshold Tag-Based Encryption Schemes
	Preliminaries
	A Construction {\mathsf TTBE1} of Threshold Tag-Based Encryption Scheme Based on the DBDH Assumption
	A Construction {\mathsf TTBE2} of Threshold Tag-Based Encryption Scheme Based on the DLIN Assumption

	Construction of Threshold Public Key Encryption Schemes
	Conclusion
	References

	Network Security I
	Malyzer: Defeating Anti-detection for Application-Level Malware Analysis
	Introduction
	Malyzer Design
	Startup Tracker
	Shadow Process Manager
	Shadow Process Monitor

	Malyzer Implementation
	Malyzer Evaluation
	Whether Malyzer Can Defeat Malware Anti-detections
	Whether a Shadow Process Functions Normally and Whether Its Misbehavior Can Be Detected

	Malyzer Optimization and Further Discussion
	Conclusion
	References

	A New Message Recognition Protocol with Self-recoverability for Ad Hoc Pervasive Networks
	Introduction
	Previous Recognition Protocols
	A New Message Recognition Protocol
	Security of Our New Message Recognition Protocol
	Security Assumptions
	Single-Session Attacks
	Multi-session Attacks
	Self-recoverability
	Main Theorem

	Comments and Conclusion
	References
	A Reducing Three Single-Session Attacks
	A.1 Reducing the BABA Attack to an ABBA Attack
	A.2 Reducing the ABBA Attack to an ABAB Attack
	A.3 Reducing the BAAB Attack to an ABAB Attack

	Traitor Tracing
	Breaking Two k-Resilient Traitor Tracing Schemes with Sublinear Ciphertext Size
	Introduction
	Preliminaries
	Models of Pirate Decoders
	Common Parameters of the Schemes
	The Scheme of [6]
	The Schemes of [7]

	A Flaw on the Scheme of [6]
	A Variant of Linear Attack
	Probability of Untraceability

	Flaws on the Scheme of [7]
	A Variant of Linear Attack on the Hierarchical Key Assignment Methods
	Extraction of Secret Values
	Constructing a Non-traceable Key Using Partial Keys

	Conclusion
	References

	Tracing and Revoking Pirate Rebroadcasts
	Introduction
	Trace and Revoke Schemes for Pirate Rebroadcasts
	Our Construction
	Tracing Pirate Rebroadcasts in the AACS
	References

	Authentication and Anonymity
	Efficient Deniable Authentication for Signatures
	Introduction
	Passive Authentication for MRTD
	Preliminaries
	Offline Non-transferable Authentication Protocol
	Deniable ZK from Σ-Protocols
	ONTAP in Practice
	ONTAP with Generic RSA Signature
	ONTAP with Generic ElGamal Signature

	Conclusion
	References

	Homomorphic MACs: MAC-Based Integrity for Network Coding
	Introduction
	Homomorphic MACs: Definitions
	Construction 1: A Homomorphic MAC
	Broadcast Homomorphic MACs: Definitions
	Construction 2: A Broadcast Homomorphic MAC
	Key Management for Multi-sender Broadcast Homomorphic MACs
	Experimental Results
	Conclusions
	References

	Algorithmic Tamper Proof (ATP) Counter Units for Authentication Devices Using PIN
	Introduction
	Background
	Our Contribution

	Preliminaries
	ATP Devices Using PIN
	Function of Devices
	Memory Area of Devices
	Security Requirements for ATP Devices Using PIN

	Algorithmic Tamper-Proof Counter Unit 1: ATP-CU1
	Construction of ATP-CU1
	Security Consideration of ATP-CU1

	Algorithmic Tamper-Proof Counter Unit 2: ATP-CU2
	Construction of ATP-CU2
	Security Consideration of ATP-CU2

	Discussion
	Naive Construction and Its Weakness
	Comparison

	Conclusion
	References
	A Counter Unit of Gennaro et al. [3]
	A.1 Necessity of {\mathsf RP-Mem}
	A.2 Construction of Counter Unit of [3]
	A.3 Security of Counter Unit of [3]

	Performance Measurements of Tor Hidden Services in Low-Bandwidth Access Networks
	Introduction
	Related Work
	Tor Background
	Measurement Setup
	Bootstrapping
	Hidden Service Access
	Conclusion
	References

	Hash Functions
	Cryptanalysis of Twister
	Introduction
	Description of Twister
	Semi-Free-Start Collision for the Compression Function
	A Collision Attack on Twister-512
	Collision Attack on the Compression Function
	Collision Attack on the Hash Function
	A Remark on the Length Extension Property

	A Second-Preimage Attack on Twister-512
	A Preimage Attack on Twister-512
	Conclusion
	References
	A MixColumns and Inverse MixColumns

	Cryptanalysis of {\sf CubeHash}
	Introduction
	Description of {\sf CubeHash}
	Truncated Differential Paths
	The Differential Paths
	A Collision for {\sf CubeHash}-1/36
	Extensions to Other Versions

	Linear Differential Paths
	The Differential Path
	Collision Attack for {\sf CubeHash}-2/4 and {\sf CubeHash}-2/3
	Collision Attack for {\sf CubeHash}-4/4 and {\sf CubeHash}-4/3
	Others Versions of {\sf CubeHash}

	Conclusion
	References
	Appendix A: Collision for {\sf CubeHash}-1/36-512
	Appendix B: Collision for {\sf CubeHash}-2/4-512

	Collision Attack on Boole
	Introduction
	Description of Boole
	Input Phase
	Mixing Phase
	Output Phase
	Boolean Functions

	A Differential Attack on Boole
	Collisions in the Boolean Functions
	Difference Propagation in the Accumulator
	The Differential Path

	Message Modification
	Type I Message Modification
	Type II Message Modification
	Type III Message Modification

	The Collision Attack on Boole
	Example Collision for Boole32

	Conclusions
	References
	A Differential Path for Boole

	Network Security II
	Integrity Protection for Revision Control
	Introduction
	Related Work
	Overview of the Paper

	Design
	Model
	Consistent Storage Service
	Revision Control
	Consistent Revision Control

	Implementation
	Consistent Storage Service
	Consistent Revision Control with Subversion

	Evaluation
	Application Benchmark
	Synthetic Benchmark
	Results

	Conclusions
	References

	Fragility of the Robust Security Network: 802.11 Denial of Service
	Introduction
	Contribution
	Related Work
	Analysis of the 802.11 Standard
	802.11 Authentication and Association
	802.11i Security Amendments
	802.11w Protected Management Frames

	Vulnerability Analysis
	General Observations
	The 802.11 Standard
	802.11i Security Amendments
	802.11w Protected Management Frames

	Experiments
	Infrastructure Set-Up
	Attacks
	Observations
	Results

	Discussion
	Proposal for a Robust Solution
	Conclusion
	References

	Fast Packet Classification Using Condition Factorization
	Introduction
	Overview of Approach and Contributions

	Preliminaries
	Condition Factorization
	Matching Automata Construction
	Improving Automata Size
	Discriminating Tests
	Ensuring Polynomial-Size Automata
	Benign Nondeterminism

	Implementation: Putting It All Together
	Evaluation
	End-to-End Performance Improvement of NIDS
	Improvement in Space Usage
	Packet Classification Performance

	Related Work
	Conclusions
	References

	Lattices
	Choosing NTRUEncrypt Parameters in Light of Combined Lattice Reduction and MITM Approaches
	Introduction
	NTRU Background
	Attacks on {\sf NTRUEncrypt}

	An Overview of Parameter Generation
	The Criteria for Valid Parameters
	The Space of Valid Parameters
	The Algorithm

	Decryption Failure Probability
	Cost Functions
	Hybrid Security
	Overview
	Lattice Security
	MITM Security

	Message Recovery
	Parameter Sets
	Conclusions
	References
	A Lattice Experiments

	Broadcast Attacks against Lattice-Based Cryptosystems
	Introduction
	Related Works

	Lattice Theory
	Intersecting Lattices
	Practical Broadcast Attacks
	A Broadcast Attack on GGH Type A
	A Broadcast Attack on GGH Type B
	A First Broadcast Attack on Knapsack Cryptosystems
	A Second Broadcast Attack on Knapsack Cryptosystems

	Practical Result
	Conclusion and Countermeasures
	References

	Partial Key Exposure Attack on CRT-RSA
	Introduction
	Preliminaries

	Weaknesses of CRT-RSA When Some MSBs of d_{p}, $d_{q} and p Are Known
	Experimental Results

	Unbalanced Decryption Exponents
	Conclusion
	References

	Side-Channel Attacks
	How to Compare Profiled Side-Channel Attacks?
	Introduction
	Preliminary Assumptions for Profiled Attacks
	Target Implementation

	Evaluation Metrics
	Description of the Attacks
	Classical Template Attacks
	Stochastic Models
	Selection of Templates and Base Vectors

	Experiments
	Empirical Computation of the Metrics
	Sanity Check: The Conditional Entropy Matrix
	Evaluation of the Attacks
	Comparison of the Attacks

	Limitations
	Conclusions
	References

	Theoretical and Practical Aspects of Mutual Information Based Side Channel Analysis
	Introduction
	Preliminaries on Probability and Information Theory
	Brief Overview of Side Channel Attacks
	Study of the MIA in the Gaussian Model
	First Order MIA
	Generalization to the Higher Order Case

	Conditional Entropy Estimation
	Histogram Method
	Kernel Density Method
	Parametric Estimation

	Experimental Results
	First Order Attack Simulations
	Second Order Attack Simulations
	Practical Attacks

	Conclusion
	References

	Attacking ECDSA-Enabled RFID Devices
	Introduction
	Power Analysis of Passive RFID Devices
	Power Analysis Attacks on ECDSA Implementations
	Our Contribution and Description of the Attack

	A Passive ECDSA-Enabled RFID-Tag Prototype
	The Analog Front-End
	The Digital ECDSA-Enabled RFID Controller

	The Measurement Setup
	Pre-processing RFID Power Traces
	Device Characterization and Pre-processing Evaluation

	Results
	Conclusions
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

