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Abstract. There has been considerable interest in the identification of
structural properties of combinatorial problems that lead, directly or in-
directly, to the development of efficient algorithms for solving them. One
such concept is that of a backdoor set—a set of variables such that once
they are instantiated, the remaining problem simplifies to a tractable
form. While backdoor sets were originally defined to capture structure
in decision problems with discrete variables, here we introduce a notion
of backdoors that captures structure in optimization problems, which of-
ten have both discrete and continuous variables. We show that finding a
feasible solution and proving optimality are characterized by backdoors
of different kinds and size. Surprisingly, in certain mixed integer pro-
gramming problems, proving optimality involves a smaller backdoor set
than finding the optimal solution. We also show extensive results on the
number of backdoors of various sizes in optimization problems. Overall,
this work demonstrates that backdoors, appropriately generalized, are
also effective in capturing problem structure in optimization problems.
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1 Introduction

Research in constraint satisfaction problems, in particular Boolean satisfiability
(SAT), and in combinatorial optimization problems, in particular mixed inte-
ger programming (MIP), has had many historic similarities (see, e.g., |2]). For
example, the earliest solution methods for both started out as processes that
non-deterministically or heuristically chose new inferred information to add re-
peatedly until the problem was fully solved. In SAT, this took the form of adding
“resolvents” of two clauses and formed the original Davis-Putnam procedure. In
MIP, this took the form of repeatedly adding cuts. In both cases, it was soon
observed that the vast array of possibilities for such resolvents and cuts to add
can easily turn into a process without much focus, and thus with limited success.
The remedy seemed to be to apply a different, top-down technique instead of
deriving and adding new information bottom-up. The top-down process took
the form of DPLL search for SAT and of branch-and-bound for MIP. Again,
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it was realized that such branch-and-bound style systematic search has its own
drawbacks, one of them being not learning anything as the search progresses.
The fix—a relatively recent development in the long history of SAT and MIP
methods—was to combine the two approaches. In SAT, this took the form of
“clause learning” during the branch-and bound process, where new derived con-
straints are added to the problem upon backtracking. In MIP, this took the form
of adding “cuts” and “tightening bounds” when exploring various branches dur-
ing the branch-and-bound search.

This similarity between SAT and MIP research suggests that concepts that
have been used successfully in one realm can perhaps also be extended to the
other realm and lead to new insights. We investigate this from the angle of ap-
plying ideas from SAT to MIP. In particular, we consider heavy-tailed behavior
of runtime distribution and the related concept of backdoor sets. It has been ob-
served that (randomized) SAT solvers often exhibit a large variation in runtimes
even when using randomization only for tie-breaking. At the same time, one of-
ten sees a SAT solver solve a hard real-world problem very quickly when in fact
the problem should have been completely out of the reach of the solver by stan-
dard complexity arguments. Backdoor sets provide a way to understand such
extremely short runs often seen on structured real-world instances and rarely
seen on randomly generated instances.

We remark that the study of backdoors in constraint satisfaction problems
was motivated by the observation that the performance of backtrack-style search
methods can vary dramatically depending on the order of variable and value se-
lection during the search. In particular, backtrack search methods exhibit large
variance in runtime for different heuristics, different problem instances, and, for
randomized methods, for different random seeds even on the same instance. The
discovery of the “heavy-tailed” nature of the runtime distributions in the context
of SAT [4, 15, [7, [10] has resulted in the effective introduction of randomization
and restart techniques [6] and has been related to the presence of small back-
doors [12]. A question, then, naturally arises: do the runtime distributions of
combinatorial optimization problems also exhibit a similar behavior? In particu-
lar, are these distributions heavy-tailed?

Formally, heavy-tail distributions exhibit power-law decay near the tail end of
the distribution and are characterized by infinite moments. The distribution tails
are asymptotically of the Pareto-Levy form. Most importantly for us, the log-log
plot of the tail of the survival function (i.e., how many instances are not solved
in a given runtime) of a heavy-tailed distribution exhibits linear behavior. We
considered the runtime distributions of MIP instances from the MIPLIB library
[1], using CPLEX’s [8] branch-and-bound search with a randomized branching
heuristic. While heavy-tailed behavior has been reported mostly in the context
of constraint satisfaction, some of the MIP optimization instances in our exper-
iments did show heavy-tailed behavior.

These observations for MIP optimization problems motivate an in-depth study
of the concept of backdoors for these problems, which is the main focus of this
paper. Informally, backdoors for constraint satisfaction are sets of variables the
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systematic search can, at least in principle, be limited to when finding a solution
or proving infeasibility. We extend the concept of backdoor sets to optimization
problems, which raises interesting new issues not addressed by earlier work on
backdoor sets for constraint satisfaction. We introduce “weak optimality back-
doors” for finding optimal solutions and “optimality-proof backdoors” for prov-
ing optimality. The nature of optimization algorithms, often involving adding
new information such as cuts and tightened bounds as the search progresses,
naturally leads to the concept of “order-sensitive” backdoors, where information
learned from previous search branches is allowed to be used by the sub-solver
underlying the backdoor. This often leads to much smaller backdoors than the
“traditional” ones.

We investigate whether significantly small backdoors also exist for standard
benchmark instances of mixed integer programming optimization problems, and
find that such instances often have backdoors involving under 5% of the dis-
crete variables. Interestingly, sometimes the optimality-proof backdoors can in
fact be smaller than the weak optimality backdoors, and this aligns with the
relative runtime distributions for these problems when finding an optimal solu-
tion vs. when proving optimality. A large part of our experimental work involves
the problem of determining how many backdoors of various kinds and sizes ex-
ist in such optimization problems, and whether information provided by linear
programming relaxations (e.g., the “fractionality” of the variables in the root
LP relaxation) can be used effectively when searching for small backdoors. Our
results provide positive answers to these questions.

2 Background: Backdoors for Constraint Satisfaction

We begin by recalling the concept of weak and strong backdoor sets for constraint
satisfaction problems. For simplicity of exposition, we will work with the Boolean
satisfiability (SAT) problem in this section, although the concepts discussed
apply equally well to any discrete constraint satisfaction problem.

Backdoor sets are defined with respect to efficient sub-algorithms, called sub-
solvers, employed within the systematic search framework of SAT solvers. In
practice, these sub-solvers often take the form of efficient procedures such as
unit propagation, pure literal elimination, and failed-literal probing. In some
theoretical studies, solution methods for structural sub-classes of SAT such as 2-
SAT, Horn-SAT, and RenamableHorn-SAT have also been studied as sub-solvers.
Formally [11], a sub-solver A for SAT is any poly-time algorithm satisfying
certain natural properties on every input formula F: (1) Trichotomy: A either
determines F' correctly (as satisfiable or unsatisfiable) or fails; (2) A determines
F for sure if F' has no constraints or an already violated constraint; and (3) if
A determines F, then A also determines F|,—¢ and F|,—; for any variable x.

In the definitions of backdoor sets that follow, the sub-solver A will be implicit.
For a formula F' and a truth assignment 7 to a subset of the variables of F', we will
use F[7] to denote the simplified formula obtained after applying the (partial)
truth assignment to the affected variables.
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Definition 1 (Weak and Strong Backdoors for SAT [11]). Given a
Boolean formula F' on variables X, a subset of variables B C X is a weak back-
door (w.r.t. a specified sub-solver A) if for some truth assignment T : B — {0, 1},
A returns a satisfying assignment for F[r]. Such a subset B is a strong backdoor
if for every truth assignment 7 : B — {0,1}, A returns a satisfying assignment
for F[1] or concludes that F[r] is unsatisfiable.

Weak backdoor sets capture the fact that a well-designed heuristic can get
“lucky” and find the solution to a hard satisfiable instance if the heuristic guid-
ance is correct even on the small fraction of variables that constitute the back-
door set. Similarly, strong backdoor sets B capture the fact that a systematic
tree search procedure (such as DPLL) restricted to branching only on variables
in B will successfully solve the problem, whether satisfiable or unsatisfiable.
Furthermore, in this case, the tree search procedure restricted to B will succeed
independently of the order in which it explores the search tree.

3 Backdoor Sets for Optimization Problems

This section extends the notion of backdoor sets from constraint satisfaction
problems to combinatorial optimization problems. We begin by formally defining
optimization problems and discussing desirable properties of sub-solvers for such
problems. Without loss of generality, we will assume throughout this text that
the optimization to be performed is minimization. For simplicity of notation, we
will also assume that all variables involved have the same value domain, D.

Definition 2 (Combinatorial Optimization Problem). A combinatorial
optimization problem is a four-tuple (X, D,C,z) where X = {x;} is a set of
variables with domain D, C is a set of constraints defined over subsets of X,
and z : DXI — Q is an objective function to be minimized.

A constraint ¢ € C over variables var(c) is simply a subset of all possible value
assignments to the variables involved in ¢, i.e., ¢ C DI"97(9) A value assignment
v is said to satisfy c if the restriction of v to the variables var(c) belongs to the
set of value tuples constituting c.

Definition 3 (Sub-Solver for Optimization). A sub-solver A for optimiza-
tion is an algorithm that given as input a combinatorial optimization problem
(X, D,C, 2) satisfies the following four conditions:

[(a)]

1. Trichotomy: A either infers a lower bound on the optimal objective value z
or correctly determines (X, D,C, z) (as either unsatisfiable or as optimized
providing a feasible solution that is locally optimal),

2. Efficiency: A runs in polynomial time,

3. Trivial solvability: A can determine whether (X, D, C, z) is trivially satisfied
(has no constraints) or trivially unsatisfiable (has an empty constraint), and
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4. Self-reducibility: If A determines (X, D, C, z), then for any variable x; and
value v € D, A also determines (X, D,C U {z; = v}, z).

For some partial assignments, the sub-solver might learn a new lower bound on
the objective value. For some partial assignments, the solver may find a feasible
solution that is a locally optimal solution. Any feasible solution provides an upper
bound on the optimal objective value. Hence, for some partial assignments, the
sub-solver might learn a new upper bound on the objective value.

In extending the notion of backdoor sets to optimization problems, we need
to take into account that we face two tasks in constrained optimization: first, we
need to find a feasible and optimal solution, and second, we need to prove its
optimality which essentially involves proving infeasibility of the problem when
the objective bound is reduced beyond the optimal value. This naturally leads
to three kinds of backdoors: weak optimality backdoors will capture the task
of finding optimal solutions, optimality-proof backdoors will capture the task
of proving optimality given the optimal objective value, and strong optimality
backdoors will capture the full optimization task, i.e., finding an optimal solution
and proving its optimality.

Weak backdoors for optimization are the most straightforward generalization
from the constraint satisfaction realm. One notable difference, however, is that
since we are trying to decouple the solution-finding task from the optimality-
proof task, we assume that the solution-finding task is, in a sense, somehow aware
of the optimal objective value and can stop when it hits an optimal solution.
In our experiments designed to identify backdoor sets, we achieve this by pre-
computing the optimal objective value and forcing the search to stop when a
feasible solution achieving this objective value is encountered.

We use the word “traditional” in the next few definitions to distinguish them
from the concept of order-sensitive backdoors to be discussed in Section Bl In
the following, C' U 7 denotes adding to C' the constraint {(v1,...,v,) | Va; €
B, v; = 7(x;)} imposing the partial assignment 7 on the variables in B.

Definition 4 ((Traditional) Weak Optimality Backdoor). Given a com-
binatorial optimization problem (X,D,C,z), a subset of the variables B C X
is a (traditional) weak optimality backdoor (w.r.t. a specified sub-solver A) if
there exists an assignment T : B — D such that A returns a feasible solution for
(X, D,CUT,z) which is of optimal quality for (X, D, C,z).

In contrast to decision problems, solving an optimization instance also requires
proving that no better feasible solution exists. Therefore, we define the notion
of backdoor sets for the optimality proof itself. Once we have found an optimal
feasible solution z*, this immediately also provides the optimal upper bound
to the objective, making the new problem of seeking a better objective value
infeasible. Optimality-proof backdoors are sets of variables that help one deduce
this infeasibility efficiently.

Definition 5 ((Traditional) Optimality-Proof Backdoor). Given a com-
binatorial optimization problem (X, D,C,z) and an upper bound z* on the ob-
jective value, a subset of the variables B C X is a (traditional) optimality-proof
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backdoor (w.r.t. a specified sub-solver A) if for every assignment : B — D, A
correctly decides (X, D,C UTU{z < 2*},2) to be infeasible.

The notion of optimality-proof backdoor allows us to decouple the process of
finding feasible solutions from proving the optimality of a bound. An optimality-
proof backdoor is particularly relevant when there is an external procedure that
finds good feasible solutions (e.g., heuristic greedy search). Given the best solu-
tion quality found by the greedy search, we can use an optimality-proof backdoor
to confirm that no better solution exists or perhaps to disprove the bound by
finding a better feasible solution.

Both the definition of weak optimality backdoor and of optimality-proof back-
door implicitly or explicitly rely on the knowledge of an upper bound z* on the
objective value, i.e., they do not capture solving the original optimization prob-
lem for which the optimal value is unknown. Recall that strong backdoors for
constraint satisfaction problems capture the set of variables that are enough to
fully solve the problem—either prove its infeasibility or find a solution. We would
like to define a similar notion for optimization problems as well. To this end, we
define strong backdoors for optimization, which are enough to both find an op-
timal solution and prove its optimality, or to show that the problem is infeasible
altogether. When the problem is feasible, a strong backdoor set is both a weak
optimality backdoor and an optimality-proof backdoor.

Definition 6 ((Traditional) Strong Optimality Backdoor). Given a com-
binatorial optimization problem (X,D,C,z), a subset of the variables B C X
is a (traditional) strong optimality backdoor (w.r.t. a specified sub-solver A)
if it satisfies the following conditions. For every assignment 7 : B — D, A
infers a lower bound lb(T) on the optimal objective value for (X,D,C U T, z);
Ib(T) = +inf if infeasible. If, for T, the sub-solver also finds an optimal solution
&(7) for (X,D,CUT,z), then let 2(1) = z(&(7)), else let 2(T) = + inf. We must
have: min, Ib(7) = min, 2(7).

3.1 Order-Sensitive Backdoors

We now discuss an issue that arises naturally when we work with backdoor
sets for state-of-the-art optimization algorithms, such as CPLEX for mixed in-
teger programming (MIP) problems: order-sensitivity of backdoor sets. Order-
sensitivity plays an increasingly important role as we extend the notion of back-
doors to constraint optimization problems.

The standard requirement implicit in the notion of backdoor sets in con-
straint satisfaction problems is that the underlying systematic search procedure
restricted to backdoor variables should succeed independently of the order in
which it explores various truth valuations of the variables; in fact, for strong
backdoors, the sub-solver must succeed on every single search branch based
solely on the value assignment to the backdoor variables. This condition, how-
ever, ignores an important fact: a crucial feature of most branch-and-bound
algorithms for constrained optimization problems is that they learn information
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about the search space as they explore the search tree. For example, they learn
new bounds on the objective value and the variables, and they might add vari-
ous kind of “cuts” that reduce the search space without removing any optimal
solution. These tightened bounds and cuts potentially allow the sub-solver to
later make stronger inferences from the same partial assignment which would
have normally not lead to any strong conclusions. Indeed, in our experiments
designed to identify weak optimality backdoor sets for MIP problems, it was of-
ten found that variable-value assignments at the time CPLEX finds an optimal
solution during search do not necessarily act as traditional weak backdoors, i.e.,
feeding back the specific variable-value assignment doesn’t necessarily make the
underlying sub-solver find an optimal solution. This leads to a natural distinction
between “traditional” (as defined above) and “order-sensitive” weak optimality
backdoors. In the following definitions, search order refers to the sequence of
branching decisions that a search method uses in exploring the search space and
possibly transferring any available learned information (such as cuts or tigher
bounds) from previously explored branches to subsequent branches.

Definition 7 (Order-Sensitive Weak Optimality Backdoor). Given a
combinatorial optimization problem (X, D, C, z), a subset of the variables B C X
is an order-sensitive weak optimality backdoor (w.r.t. a specified sub-solver A)
if there exists some search order involving only the variables in B that leads to an
assignment T : B — D such that A returns a feasible solution for (X, D,CUT, 2)
which is of optimal quality for (X, D, C,z).

In fact, added cuts and tightened bounds form an integral part of solving a MIP
optimization problem and can critically help even when “only” detecting a feasi-
ble solution of optimal quality. The same distinction also applies to optimality-
proof backdoors and to strong backdoors, simplifying the rather cumbersome
definition in the latter case.

Definition 8 (Order-Sensitive Optimality-Proof Backdoor). Given a
combinatorial optimization problem (X,D,C,z) and an upper bound z* on
the objective wvalue, a subset of the wvariables B C X is an order-sensitive
optimality-proof backdoor (w.r.t. a specified sub-solver A) if there exists some

search order involving only the wvariables in B such that A correctly decides
(X,D,CU{z < 2*},z) to be infeasible.

Definition 9 (Order-Sensitive Strong Optimality Backdoor). Given a
combinatorial optimization problem (X, D, C, z), a subset of the variables B C X
is an order-sensitive strong backdoor (w.r.t. a specified sub-solver A) if there
exists some search order involving only the variables in B such that A either
correctly decides that the problem is infeasible, or finds an optimal solution and
proves its optimality.

4 Experimental Evaluation

To investigate the distribution of backdoor sizes in optimization problems, we
consider the domain of Mixed Integer Programming. In our empirical study, we
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use instances from the MIPLIB library [1], and employ the branch-and-bound
search framework provided by CPLEX [g]. Due to the computationally intensive
analysis performed in this study, we only evaluate MIPLIB instances that could
be solved reasonably fast with CPLEX.

The sub-solver applied by CPLEX at each search node of the branch-and-
bound routine uses a dual simplex LP algorithm in conjunction with a variety
of cuts. In our previous study [3] of backdoors in Satisfiability problems, we
investigated the sub-solver routine used in Satz [9] which applied probing to each
search node. Similarly here, we set CPLEX to use strong branching, adding a
lot of additional inference at each node. In summary, the sub-solver is dual
simplex+ CUTS+pr0bing

We investigate the probability that a randomly selected subset of the variables
of a given cardinality k is a backdoor. To approximate this probability, we sample
many sets (500) of each given size, and for each evaluate whether the chosen
set is a traditional weak optimality backdoor, order-sensitive weak optimality
backdoor, and/or optimality-proof backdoor.

In our experiments we consider order-sensitive optimality-proof backdoors
(and not traditional optimality-proof backdoors). For brevity, we will refer to
them simply as optimality-proof backdoors. To decide whether a given set B of
variables is an optimality-proof backdoor, we initialize CPLEX with the optimal
solution and allow branching only on the set B. As soon as we reach a search
node at which all variables of B are fixed but the infeasibility of the sub-problem
at the node cannot be concluded, we reject B. Note that with a different search
order, CPLEX could have succeeded in proving infeasibility if the alternative
order provided stronger cuts earlier. Hence our results provide a lower bound on
the probability that a set of a certain size is an optimality-proof backdoor.

To decide whether a given set B of variables is an order-sensitive weak opti-
mality backdoor, we allow branching only on the chosen set. As soon as we find
an incumbent which has optimal objective value, (precomputed ahead of time),
we accept the set. That is, we stop the search when an optimal solution is found,
but the optimal value is not given explicitly to the CPLEX search procedure
to avoid that the subsolver can infer information from the lower bound on the
objective. If we reach a search node in which all variables in the set B are fixed
but the sub-solver cannot conclude the infeasibility of the sub-problem or infer
a integer feasible solution, we prune the search node and continue searching. If
we explore the full partial tree on the set B without finding an optimal solution,
we reject B. Again, there could have been an alternative search order in which
succeeded with B. Our results are again lower bounds on the true probability of
order-sensitive weak optimality backdoors.

If a set was rejected as an order-sensitive weak backdoor with this procedure,
then we indeed explored the full partial tree over B. Hence, we know that for

! For practical reasons, we consider the dual-simplex algorithm as an efficient subsolver
despite its exponential worst-case complexity; after all, the problem it solves lies
in the complexity class P and dual-simplex is one of the most efficient practical
procedures for this problem.
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sure that B is not a traditional weak optimality backdoor. In addition, for every
set that was accepted as order-sensitive weak backdoor, we record the values of
the variables in B at the incumbent node with optimal value. We test whether
assigning B to these values without prior search results in inferring an integer
feasible solution of optimal quality. If yes, then the set is accepted as traditional
weak optimality backdoor. If not it is rejected. Again, there can be false negatives
due the fact that some other assignment different than the incumbent found
could have sufficed. Therefore, our results on the probability that a set is a
traditional weak optimality backdoor are lower bounds.

4.1 Smallest Backdoors

The size of the smallest traditional weak optimality and order-sensitive
optimality-proof backdoor that we have found is presented in Table [ repre-
senting an upper bound on the true smallest size. The values for the traditional
weak optimality backdoor sizes are also an upper bound on the smallest order-
sensitive weak optimality backdoor size. Note that the instance 10teams does not
have an optimality-proof backdoor because its objective value is already fixed in
the problem specification. Overall, we find that the vast majority of instances
have small or very small (traditional) weak optimality backdoors of less than
6% of the variables. For air04 and air05 we even find that setting less than one
thousandth of the variables is already enough to enable the sub-solver to com-
pute an overall optimal integer feasible solution! However, as the exceptions pk1,
pp08a and pp08aCUTS show, some real-world MIPs might not exhibit small
backdoors, even for very strong sub-solvers.

Table 1. Upper bounds on the smallest size of (traditional) weak optimality backdoors
and of optimality-proof backdoors in absolute value and as percentage of the number
of discrete variables in the problem instance

discrete  weak backdoors orderOpt backdoors

instance variables variables size % size %

10teams 2025 1800 10 0.56% NA NA
aflow30a 842 421 11 2.61% 85 20.19%
air04 8904 8904 3 0.03% 14 0.16%
air05 7195 7195 3 0.04% 29 0.40%
fiber 1298 1254 7 0.56% 5 0.40%
fixnet6 878 378 6 1.59% 5 1.32%
rout 556 315 8 2.54% 172 54.60%
setlch 712 240 14 5.83% 28 11.67%
vmp2 378 168 11 6.55% 19 11.31%
pkl 86 55 20  36.36% 55 100.00%
pp08a 240 64 11 17.19% 47 73.44%

pp08aCUTS 240 64 11 17.19% 32 50.00%
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4.2 Probability of Finding Small Backdoors

In addition to the smallest size of a backdoor, one is interested in knowing how
hard it is to find small backdoor sets. One way to assess this difficulty is to
estimate how many backdoor sets of a particular size exist for a given problem.

We want to approximate the probability that a set of variables of a given
cardinality k is a backdoor. For each given backdoor size k, we sampled, uni-
formly at random, subsets of cardinality k£ from the discrete variables of the
problem. For each set we evaluated whether it is a backdoor or not with the
setup described in the beginning of this section.

We conducted this experiment many thousands of times for various cardinal-
ities k. Figure [Il presents results for the instances fiber and vpm2. The curves
labeled orderOpt refer to order-sensitive optimality-proof backdoors. The curves
labeled trad Weak refer to weak optimality backdoors that are not order-sensitive.
The curves labeled order Weak refer to weak optimality backdoors that are order-
sensitive. The curves labeled trad Weak+orderOpt refer to sets that are both (tra-
ditional) weak optimality backdoors and optimality-proof backdoors. Finally, the
curves labeled orderStrong refer to sets that are both order-sensitive weak opti-
mality backdoors and order-sensitive optimality-proof backdoors.

For the instance fiber, we observe that the probability that a set of a given size
is an optimality-proof backdoor is much higher than the probability that a set
of this size is a weak optimality backdoor. This evidence suggests that there are
many more small optimality-proof backdoors than weak optimality backdoors.
In addition, the probability that a set is both an optimality-proof backdoor and
a weak backdoor is almost equal to the probability that it is a weak optimality
backdoor. Our data shows that almost every set that was a weak optimality
backdoor was also an optimality-proof backdoor. This suggests that for fiber the
difficulty of the problem might lie in finding the optimal solution as opposed to
proving its optimality.

Our study suggests that solving problems with a hardness profile similar to
fiber can be significantly boosted by the availability of good initial solutions
found by some heuristic search. This aligns well with the recent development of
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Fig. 1. Probability that a subset of variables of a given size is a backdoor when sampling
uniformly
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state-of-the-art MIP solvers for which it has been found that primal heuristics,
so-called “feasibility pumps”, can significantly boost performance.

For the instance vpm2, we have avoided displaying the order-sensitive weak
backdoors because they fully overlap with the curve for the traditional weak
backdoors. Contrary to fiber, for vpm2 the probability that a set of a given
size is a weak optimality backdoor is considerably higher than the probability
that it is an optimality-proof backdoor. In addition, every set that was found
to be an order-sensitive optimality-proof backdoor was also weak optimality
backdoor. In other words, the curve for optimality-proof backdoors perfectly
overlaps with the curve for sets that are both weak optimality and optimality-
proof backdoors, including the curve for order-sensitive strong backdoors. We
label the curve orderOpt(+tradWeak). The results for vpm2 give the intuition
that the difficulty of the problem lies in proving optimality as opposed to finding
an optimal solution.

To confirm the intuitions about the hardness profiles for solving fiber and
vpm?2, in Figure [2] we present the runtime distributions for fiber and vpm?2 in
terms of the probability that a run is completed in a given number of search
nodes. Three curves are presented for each instance. The curves labeled ‘full
run’ represent the number of search nodes that it took to solve the problem fully
- both find an optimal solution and prove its optimality. The curves ‘opt soln run’
represent the number of search nodes that were explored before the incumbent
solution had the known optimal value. The curves ‘proof run’ capture the number
of search nodes that were explored to prove that a solution of a better quality
does not exist, i.e., proving infeasibility once an optimal solution is provided.
This comparison allows us to estimate the relative effort spent on each task and
the effort overall. We see that the intuition from the distribution of backdoor
sizes was indeed correct. For fiber, the effort spent of finding the optimal solution
explains almost all of the full runtime, while the effort that is needed when only
proving infeasibility is considerably less. On the other hand, for vpm2 the gap
between the effort on finding an optimal solution and the full effort is substantial,
especially in the beginning. The full runs are clearly taking much longer than the

fiber RTDs vpm2 RTDs
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Fig. 2. Runtime distributions for finding an optimal solution, for proving optimality,
and for fully solving the problem
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fastest solution-finding runs, but about the same as the slowest solution-finding
runs. Here, proving optimality takes longer than the fastest solution-finding runs
but shorter than the slowest solution-finding runs.

4.3 LP Relaxations as Primal Heuristics

We saw that MIPs, even when they have small backdoors, may only have very few
weak backdoor sets of a particular (small) size. The question arises of how a MIP
solver could exploit its sub-solver to find small backdoors. To see whether LP
relaxations can provide guidance about which variables may belong to a small
backdoor set, we slightly modified the experiment from the previous section.
Rather than sampling sets of desired cardinality by selecting variables uniformly
at random, we biased the selection based on the “fractionality” of variables in
the root relaxation. The fractionality of a variable measures how far it is from
the nearest integer value. E.g., the fractionality of a variable X with domain 0,1
is simply f(X) = min{|z|, |1 —z|}. More formally, if the root LP value of variable
X, is ;, then its fractional part is f; = ; — |&;|. We assign to each variable
a weight f(X;) < 0.5 —|0.5 — f;|. Note that the quantity f(X;) captures the
“infeasibility” of a variable which is a well-known measure for picking branching
variables in mixed integer programming. Some discrete variables could be inte-
gral in the root LP. For such variables X;, we assign a small non-zero weight
f(X;) = e. After we normalize the variable weights, we choose a subset of size
k where each variable is selected with probability proportional to its normalized
weight.

For each desired size k, we sampled many sets of variables again and tested
which ones were backdoors. The result of these experiments is summarized in
FigureBlfor fiber and in Figure[ for vpm2. The effect of sampling sets in a biased
fashion is clearly visible (curves resulting from biased selection are marked with a
“b-"). For the instance fiber, choosing sets biased by the root LP clearly increases
the probability of selection a set which is an optimality-proof backdoor or a set
which is a weak optimality backdoor. Surprisingly, selecting 6% of the variables
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Fig. 3. FIBER: Comparing the probability that a subset of variables of a given size is
a backdoor when sampling uniformly versus when sampling based on the fractionality
of variables at the root
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Fig. 4. VPM2: Comparing the probability that a subset of variables of a given size is
a backdoor when sampling uniformly versus when sampling based on the fractionality
of variables at the root

in this fashion is enough to guarantee that the set is an optimality-proof backdoor
(100%), and give a 95% chance that the selected set is a weak backdoor.

The improvement effect is even more dramatic for the instance vpm2. Here,
with 20% of the variables selected in the biased way we are guaranteed to select
a weak backdoor, compared to a less than 2% chance when selected uniformly.
Also, while with 30% of the variables selected in the biased way we have a 93%
chance of selecting an optimality-proof backdoor set, we have less than 0.02%
chance of such event when selecting uniformly. This shows clearly that an LP
sub-solver can be exploited effectively to find small backdoors.

One thing to note is that before solving the root LP, CPLEX applies a pre-
processing procedure which simplifies the problem and removes some variables
whose values can be trivially inferred or can be expressed as an aggregation of
other variablesd. This procedure can sometimes result in dramatic reduction in
the effective problem size. In fiber, the discrete variables removed by preprocess-
ing are less than 17%. However, for vpm2 the preprocessing removes 50% of the
discrete variables.

One advantage of biasing the set selection by the root LP is that the vari-
ables trivially inferred by the preprocessing will have integral values, and will
be selected only with some very small probability. To evaluate whether the bi-
ased selection draws its advantage over the uniform selection solely on avoiding
pre-processed variables, we evaluated the probability of selecting a backdoor set
when sampling uniformly among only the discrete variables remaining after pre-
processing for vpm2. The results for this experiment are presented in the curves
presolve-orderOpt and presolve-trad Weak in Figure @l These curves show that
choosing uniformly among the remaining variables is more effective for finding
backdoors than choosing uniformly among all discrete variables, but it is not as
good as the biased selection based on the root LP relaxation. Hence biasing the
selection by the fractionality of the variables of the root LP has additional merit
for discovering small backdoor sets.

2 However, the user-defined branching procedure of CPLEX still works on the original
set of variables.
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Fig.5. Probability that a subset of variables of a given size is a traditional weak
optimality backdoor backdoor when sampling uniformly (crosses) versus when sampling
based on the fractionality of variables at the root (biased)

Other MIPLIB instances for which we have found that the biased selection
has a substantial effect are 10teams, aflow30a, air04, and setich. We present the
results in Figure Bl For these instances, we only performed a quick evaluation,
where we tested whether a set of variables B is a traditional weak optimality
backdoor by setting their values to the values in the optimal solution found
by default by CPLEX. Hence, the results are loose lower bounds on the actual
probabilities.

5 Conclusion

In this work, we extended the concept of backdoor sets from constraint satisfac-
tion problems to combinatorial optimization problems. This extension also in-
volved incorporating learning into the notion of backdoors by introducing order-
sensitive backdoors. While it has been previously shown that real-world SAT
instances have very small backdoors, here we showed that small backdoors also
exists to standard benchmark instances in mixed integer programming. In par-
ticular, optimization instances can have very small weak optimality backdoors
and often also small optimality-proof backdoors. Surprisingly, sometimes the
optimization-proof backdoors can in fact be smaller than the weak optimality
backdoors.

We also considered the question of how hard it is to find small backdoor sets
and provided extensive numerical results. We studied the probability that a set
of a given size is an order-sensitive optimality-proof backdoor and the proba-
bility that it is an order-sensitive or traditional weak optimality backdoor. In
general, we have shown that the difference in the distributions of weak optimal-
ity backdoors and of optimality-proof backdoors for a particular instance is well
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aligned with the difference in the runtime distributions for the tasks of finding
an optimal solution and proving optimality, respectively. Finally, we have also
demonstrated that the fractionality of variables in the root LP relaxation is a
very good heuristic for uncovering small backdoors for both solution finding and
for proof of optimality.
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