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Abstract. Providing consistent and fault-tolerant distributed object
services is among the fundamental problems in distributed computing.
To achieve fault-tolerance and to increase throughput, objects are repli-
cated at different networked nodes. However, replication induces signif-
icant communication costs to maintain replica consistency. Eventually-
Serializable Data Service (ESDS) has been proposed to reduce these
costs and enable fast operations on data, while still providing guarantees
that the replicated data will eventually be consistent. This paper revisits
ESDS instances where bandwidth constraints are imposed on segments
of the network interconnect. This class of problems was shown to be ex-
tremely challenging for both Mixed Integer Programming (MIP) and for
Constraint Programming (CP), some instances requiring hours of com-
putation time. The paper presents an improved constraint programming
model, a constraint-based local search model that can obtain high-quality
solutions quickly and a local search/constraint programming hybrid. The
experimental results indicate that the resulting models significantly im-
prove the state of the art.

1 Introduction

Data replication is a fundamental technique in distributed systems: it improves
availability, increases throughput, and eliminates single points of failure. Data
replication however induces a communication cost to maintain consistency among
replicas. Eventually-SerializableData Services (ESDS) [5] is a system that was for-
mulated to help reduce these costs. The algorithm implementing ESDS allows the
users to selectively relax the consistency requirements in exchange for improved
performance. Given a definition of an arbitrary serial data type, ESDS guarantees
that the replicated data will eventually be consistent (i.e., presenting a single-copy
centralized view of the data to the users), and the users are able to require the
results for certain operations to be consistent with the stable total order of all
operations.

The design, analysis, and implementation of systems such as ESDS is not
an easy task, and specification languages have been developed to express these
algorithms formally. For instance, the framework of (timed) I/O automata [9,7]
and their associated tools [10] allows theorem provers (e.g., PVS [13]) and model
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checkers (e.g., UPPAAL [8,3]) to reason about correctness. The ESDS algorithm
is in fact formally specified with I/O automata and proved correct [5]. Once a
specification is deemed correct, it must be implemented and deployed. The imple-
mentation typically consists of communicating software modules whose collective
behaviors cannot deviate from the set of acceptable behaviors of the specifica-
tion; see [4] for a methodic implementation of the algorithm and a study of its
performance. The deployment then focuses on mapping the software modules
onto a distributed computing platform to maximize performance.

This research focuses on the last step: the deployment of the implementation
on a specific architecture. The deployment can be viewed as a resource allocation
problem in which the objective is to minimize the network traffic while satis-
fying the constraints imposed by the distributed algorithms. These constraints
include, in particular, the requirements that replicas cannot be allocated to the
same computer since this would weaken fault tolerance. The basic ESDS De-
ployment Problem (ESDSDP) was considered by [2] and was modeled as a MIP
with disappointing results even on small instances. A highly competitive CP
approach as well as a viable MIP model can be found in [11]. In [12], the basic
ESDSDP model was extended to take into account bandwidth constraints on
various segments of the network interconnect. This richer model proved harder
for both MIP and CP solvers with running times in hours on some instances.

This paper focuses on the bandwidth-limited version of the ESDSDP and stud-
ies a constraint programming (CP), a Constraint-Based Local Search (CBLS),
and an hybrid model. The empirical evaluation demonstrates that the CP model
solves most instances in minutes (significantly outperforming the earlier CP
model) and that the CBLS model can deliver high-quality solutions quickly.
The CP model is a natural encoding of ESDSDP together with a simple search
heuristic focusing on the objective. It improves earlier results [11] by exploiting
a dominance property to rule out bandwidth-limited paths that are provably
inferior to already considered paths. The CBLS model uses the same natural
declarative model and its search procedure uses two neighborhoods that focus
on the objective and the feasibility part of the model. The feasibility neigh-
borhood is a simple constraint-directed search. The hybrid delivers optimality
proofs for the biggest instances from 200 to 2800 times faster than the MIP and
30 to 90 times faster than the earlier CP model while improving the robustness.

The rest of this paper is organized as follows. Section 2 presents an overview of
the bandwidth-limited ESDS and illustrates the deployment problem on a basic
instance. Section 3 introduces the high-level deployment model and Section 4
presents the CP models. Section 5 presents the CBLS model, while Section 6
covers the hybridization. Section 7 reports the experimental results and analyzes
the behavior of the models in detail. Section 8 concludes the paper.

2 Deployment of Eventually-Serializable Data Services

An Eventually-Serializable Data Service (ESDS) consists of three types of com-
ponents: clients, front-ends, and replicas. Clients issue requests for operations
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on shared data and receive responses returning the results of those operations.
Clients do not communicate directly with the replicas; instead they communicate
with front-ends which keep track of pending requests and handle the communica-
tion with the replicas. Each replica maintains a complete copy of the shared data
and “gossips” with other replica to stay informed about operations that have
been received and processed by them. The clients may request operations whose
results are tentative, but can be quickly obtained, or they can request “strict”
operations that are possibly slower, but whose results are guaranteed to be con-
sistent with an eventual total order on the operations. Each replica maintains a
set of the requested operations and a partial ordering on these operations that
tends to the eventual total order on operations. Clients may specify constraints
on how the requested operations are ordered. If no constraints are specified by
the clients, the operations may be reordered after a response has been returned.
A request may include a list of previously requested operations that must be
performed before the currently requested operation. For any sequences of re-
quests issued by the clients, the service guarantees eventual consistency of the
replicated data [5].

ESDS is well-suited for implementing applications such as a distributed direc-
tory service, such as Internet’s Domain Name System [6], which needs redun-
dancy for fault-tolerance and good response time for name lookup but does not
require immediate consistency of naming updates. Indeed, the access patterns
of such applications are dominated by queries, with infrequent update requests.
Optimizing the deployment of an ESDS application can be challenging due to
non-uniform communication costs induced by the actual network interconnect,
as well as the various types of software components and their communication
patterns. In addition, for fault tolerance, no more than one replica should reside
on any given node. There is a tradeoff between the desire to place front-ends near
the clients with whom they communicate the most and the desire to place the
front-ends near replicas. Note also that the client locations may be further con-
strained by exogenous factors. Deployment instances typically involve a handful
of front-ends to mitigate between clients and servers, a few replicas, and a few
clients. Instances may not be particularly large as the (potentially numerous)
actual users are external to the system and simply forward their demands to
the internal clients modeled within the ESDS. A significant additional compli-
cation in deriving deployment mappings is due to bandwidth limitations placed
on connections between the nodes in the target platform, e.g., a subnet based
on a switched ethernet at 100Mbit/s.

Figure 1 depicts a simple ESDP Deployment Problem (ESDSDP). The left
part of the figure shows the hardware architecture, which consists of 10 heavy-
duty servers connected via a switch (full interconnect) and 4 “light” servers
connected via direct links to the first four heavy-duty servers. For simplicity, the
cost of sending a message from one machine to another is the number of network
hops. For instance, a message from PC1 to PC2 requires 3 hops, since a server-
to-server message through the switch requires one hop only. The right part of
Figure 1 depicts the abstract implementation of the ESDS. The ESDS software
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Fig. 1. A Simple ESDS Deployment Problem

modules fall in three categories: (1) client modules that issue queries (c1, · · · , c4);
(2) front-end modules (fe1, fe2) that mediate between clients and servers and
are responsible for tracking the sequence of pending queries; and (3) replicas
(r1, · · · , r6). Each software module communicates with one or several modules,
and the right side of the figure specifies the volume of messages that must flow
between the software components in order to implement the service. The problem
constraints in this problem are as follows: the first 3 client modules must be
hosted on the light servers (PC1, · · · , PC4) while the remaining components
(c4, fe1, fe2, r1, · · · , r6) must run on the heavy-duty servers. Additionally, the
replicas r1 · · · r6 must execute on distinct servers to achieve fault tolerance. The
deployment problem consists of finding an assignment of software components
to servers that satisfies the constraints above and minimizes the overall network
traffic expressed as the volume of messages sent given the host assignments.

3 Modeling Optimal ESDS Deployments

The deployment model for ESDS is based on [1,2]. The input data consists of:

– The set of software modules C;
– The set of hosts N ;
– The subset of hosts to which a component can be assigned is denoted by

booleans sc,n equal to true when component c can be assigned to host n;
– The network cost is directly derived from its topology and expressed with

a matrix h where hi,j is the minimum number of hops required to send a
message from host i to host j. Note that hi,i = 0 (local messages are free);

– The message volumes. In the following, fa,b denotes the average frequency
of messages sent from component a to component b;

– The separation set Sep which specifies that the components in each S ∈ Sep
must be hosted on a different servers;

– The co-location set Col which specifies that the components in each S ∈ Col
must be hosted on the same servers;
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The decision variables xc are associated with each module c ∈ C and xc = n if
component c is deployed on host n. An optimal deployment minimizes

∑

a∈C

∑

b∈C

fa,b · hxa,xb

subject to the following. Components may only be assigned to supporting hosts

∀c ∈ C : xc ∈ {i ∈ N | sc,i = 1}.

For each separation constraint S ∈ Sep, we impose ∀i, j ∈ S : i �= j ⇒ xi �= xj .
Finally, for each co-location constraint S ∈ Col , we impose ∀i, j ∈ S : xi = xj .

Realistic target networks may impose bandwidth limitation on connections
between hosts due to either physical channel limitations, input buffer limita-
tions, or QoS guarantees. To reflect such constraints, the deployment model is
extended to incorporate bandwidth limitations on some connections. Informally,
a connection is a network inter-connect between a set of k machines. For instance,
a connection can be a dedicated point-to-point link or a switched 802.11-wired
Ethernet subnet. A deployment platform then reduces to a set of connections
with some nodes (e.g., routers or machines with several network cards) appearing
in several connections to establish bridges. More formally, a deployment plat-
form is an hypergraph H = (X, E) where X is the set of nodes and E is a set of
hyperedges, i.e., E ⊆ P(X)\{∅} where P(X) is the power-set of X . Each hyper-
edge c carries a bandwidth capacity that is denoted by c.bw and its vertices are
denoted by c.nSet. If a hyperdge c (connection) has no bandwidth limitations,
its bandwidth capacity is c.bw = 0.

Each pair of hosts is connected by one or more paths, where a path is an
ordered collection of hyperedges (connections) from the source to the destination
host. A path is bandwidth-limited if one or more of its hyperedges (connections)
has limited (positive) bandwidth; otherwise a path is not bandwidth-limited.
The network paths are represented by the following calculated parameters:

– Pi,j denotes the set of paths from host i to host j for all i, j ∈ N . If i = j,
Pi,j contains a single path of zero length;

– A 3-D matrix h, where hi,j,p is the length of path p from host i to host j
(replacing the 2-D hops matrix h);

– A boolean matrix hasC, where hasCi,j,p,c is true if path p from host i to
host j uses the hyperedge (connection) c.

The model contains decision variables to choose the paths to be used by commu-
nicating software modules deployed on hosts. Specifically, a new decision variable
patha,b is associated with each communicating pair of components a and b and
represents the path component a uses to send messages to component b. This
variable must satisfy the constraint patha,b ∈ Pxa,xb

. This reflects the current
assumption that each pair of components uses a single directed path for data
transmission. However, patha,b and pathb,a may be different.
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An optimal deployment minimizes
∑

a∈C

∑

b∈C

fa,b · hxa,xb,patha,b

subject to the supporting, separation, and co-location constraints presented ear-
lier and the following bandwidth constraint for each c ∈ E with c.bw > 0:

∑

a∈C

∑

b∈C

fa,b · hasCxa,xb,patha,b,c ≤ c.bw

4 The CP Model

The Comet program for bandwidth-limited connections is shown in Figure 2.
The data declarations are specified in lines 2–11, and the decision variables are
declared in lines 12–13. Variable x[c] specifies the host of component c, with its
domain computed from the support matrix s. The variable path[c1, c2] specifies
the path used to send messages from component c1 to component c2, expressed
as the rank of the selected path in the set P [x[c1], x[c2]].

Lines 14–18 specify the objective function, which minimizes communication
costs. The CP formulation uses a three-dimensional element constraint since the
matrix h is indexed not only by variables for the two hosts but also by the
variable for the particular communication path used between them.

Lines 19–24 contain the co-location and separation constraints. Lines 25–
26 limit the ranges of the individual path variables to the number of paths
between the hosts onto which the components are deployed. Lines 27–29 are the
bandwidth constraints: for each hyperedge c ∈ E, the bandwidth c.bw must be
greater than or equal to the sum of the communication frequencies of all pairs
of components with c in their chosen path. The onDomains annotations indicate
that arc-consistency must be enforced for each constraint.

The search procedure, depicted in lines 31–45, operates in two phases. In the
first phase (lines 31–40) all the components are assigned to hosts, beginning with
the components that communicate most heavily. The search must estimate the
communication cost between components a and b’s potential deployment sites
along any given path. Line 33 picks the first site k for component b, and the
tryall instruction on line 34 considers the sites for component a in increasing
order of path length based on an estimation equal to the shortest path one could
take between the choice n and the selection k. (Symmetry breaking as in [11]
optionally may be included.) The second phase (lines 41-45) labels the path
variables, backtracking as needed over the initial component assignments.
Path Dominance. The initial CP bandwidth model [12] used a weak form of
dominance. After finding a path that is not bandwidth-limited for a given pair
of nodes, it discards all the other paths between those two nodes that are of
the same length or longer. Longer paths need not be considered because the
deployment model minimizes the number of “hops” for transmitted messages,
and a shorter, non-bandwidth limited path always will be a better choice.
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1 Solver<CP> cp();
2 range C = ...; // The components
3 range N = ...; // The host nodes
4 int[,] s = ...; // The supports matrix
5 int[,] f = ...; // The frequency matrix
6 int[,,] h = ...; // The hops matrix
7 set{set{int}} Sep = ...; // The separation sets
8 set{set{int}} Col = ...; // The co−location sets
9 set{connection} Conn = ...; // The connections

10 set{connection}[,] P = ...; // The paths matrix
11 int[,,,] hasC = ...; // The path/connection matrix
12 var<CP>{N} x[c in C](cp, setof(n in N) (s[c,n] == 1));
13 var<CP>{int} path [a in C, b in C](cp,0..max(i in N, j in N) P[i,j].getSize()−1);
14 var<CP>{int} obj(cp, 0..1000);
15 minimize<cp> obj
16 subject to {
17 cp.post(obj == sum(a in C, b in C: f[a,b] != 0) f[a,b] ∗ h[x[a],x[b],path[a,b]],
18 onDomains);
19 forall(S in Col)
20 select(c1 in S)
21 forall (c2 in S: c1 != c2)
22 cp.post(x[c1] == x[c2], onDomains);
23 forall(S in Sep)
24 cp.post(alldifferent(all(c in S) x[c]), onDomains);
25 forall (a in C, b in C : f[a,b] != 0)
26 cp.post (path[a,b] < P[x[a],x[b]].getSize(), onDomains);
27 forall (c in Conn: c.bw > 0)
28 cp.post (c.bw >= sum (a in C, b in C: f[a,b] != 0)
29 hasC[x[a], x[b], path[a,b], c] ∗ f[a,b], onDomains);
30 } using {
31 while (sum(k in C) x[k].bound() < C.getSize()) {
32 selectMax(a in C: !x[a].bound(), b in C)(f[a,b]) {
33 int k = min(k in N: x[b].memberOf(k)) k;
34 tryall<cp>(n in N: x[a].memberOf(n))
35 by (min (i in 0..P[n,k].getSize()−1) h[n,k,i])
36 cp.post(x[a] == n);
37 onFailure
38 cp.post(x[a] != n);
39 }
40 }
41 forall (a in C,b in C: f[a,b] != 0 && !path[a,b].bound())
42 tryall<cp> (i in 0..P[x[a],x[b]].getSize()−1) by (h[x[a], x[b], i])
43 cp.post(path[a,b] == i);
44 onFailure
45 cp.post(path[a,b] != i);
46 }

Fig. 2. The Bandwidth-Limited Model in Comet
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Several other categories of paths need not be considered in determining an
optimal deployment. In particular, let p1 and p2 be any two paths between
nodes n1 and n2, and let p1.bwSet and p2.bwSet be the sets of bandwidth-
limited connections of p1 and p2. Then p1 can be ignored if any of the following
conditions hold:

– The path p1 is strictly longer than p2 and p2.bwSet ⊆ p1.bwSet.
– The path p1 is the same length as p2 and p2.bwSet ⊂ p1.bwSet.
– The path p1 is the same length as p2, p2.bwSet = p1.bwSet, and p1 is ordered

after p2 in the set of paths between n1 and n2. (This is an arbitrary selection
of one of two equivalent paths.)

The extended CP model uses these rules to eliminate all dominated paths during
the initialization of the model. Alternatively, these path dominance properties
can be expressed as constraints on the viable paths between components. How-
ever, this strategy is ineffective. Indeed, the set of paths P is indexed by its source
and destination hosts whereas the path variable is indexed by its source and
destination components. For any two components c1 and c2, the constraint on
the path variables would look like validPath[x[c1],x[c2],path[c1,c2]]==1.
This constraint, though, is unable to fully reduce the domain of the path variable
until the corresponding x’s are fixed. Avoiding the construction of dominated
path altogether alleviates that difficulty as the constraint above can simplify to
an upper-bound on the size of the domain of path.

5 The CBLS Model

The parameters of the CBLS model (components, nodes, frequency, hops, co-
located, separated, and fixed) are identical to the CP model. Likewise, the CBLS
model has two decision variables: an array x[c] that specifies the node on which
component c is deployed, and path[c1, c2] that specifies the path used to connect
components c1 and c2. The search procedure of the CBLS model uses a guided
local search approach which increases the weights of the constraints that are
hard to satisfy. The weight variables are created when the feasibility constraints
are posted. A tabu list is represented by a simple dictionary that records which
variables were changed recently (the initialization per se is not shown for brevity
reasons).

The declarative part of the CBLS model is shown in Figure 3. It starts with
the declaration of a weighted constraint system S for the guided local search.
The feasibility constraints in lines 3–19 are essentially identical to those found in
the CP model. Lines 3–6 declare the co-location constraints as mere equalities,
while lines 7–8 specify the separation constraints with an alldifferent. Lines 10–
13 require each path variable to range over the indices of available paths between
the hosts onto which the components are deployed. Finally, lines 15–19 specify
the bandwidth constraints.

The core objective function O is specified in lines 21–23 as the sum of the
communication frequency between each pair of components multiplied by the
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1 WeightedConstraintSystem<LS> S(m);
2 function var{int} mkWeight(Solver<LS> m) { var{int} x(m) := 1;return x;}
3 forall (t in Col)
4 selectMin(c1 in t.cSet)(c1)
5 forall (c2 in t.cSet : c1 != c2)
6 S.post(istrue(x[c1] == x[c2]), mkWeight(m));
7 forall (s in Sep)
8 S.post(alldifferent(all(c in s.cSet)x[c]), mkWeight(m));
9

10 ConstraintSystem<LS> S2(m);
11 forall (c1 in C, c2 in C : f[c1, c2] != 0)
12 S2.post (path[c1, c2] < numPaths[x[c1], x[c2]]);
13 S.post(S2, mkWeight(m));
14

15 ConstraintSystem<LS> S3(m);
16 forall (c in 0..Conn.getSize()−1 : Conn.atRank(c).bw > 0)
17 S3.post(Conn.atRank(c).bw >= sum(c1 in C, c2 in C : f[c1, c2] != 0)
18 (hasC[x[c1], x[c2], path[c1, c2], c] ∗ f[c1, c2]));
19 S.post(S3, mkWeight(m));
20

21 FunctionSum<LS> O(m);
22 forall (c1 in C, c2 in C : f[c1, c2] != 0)
23 O.post(f[c1, c2] ∗ h[x[c1], x[c2], path[c1, c2]]);
24

25 Function<LS> C = S + O;
26 m.close();
27 weights = all(k in S.getRange()) S.getWeight(k);

Fig. 3. The Constraint Systems for the CBLS Model in Comet

length of the chosen path between these components. Finally the objective func-
tion C declared in line 25 combines the feasibility constraint set S with the core
objective O.

The search, illustrated in Figure 4, explores two different neighborhoods. Dur-
ing each iteration, one of the two neighborhoods is selected by line 2 with a fixed
probability objChance (which defaults to 70%).

The first neighborhood (lines 3–9) focuses on the objective. Line 4 selects a
non-tabu variable appearing in the objective and leading to the largest decrease
to the overall objective function C. The selected variable is then assigned a
value that delivers the largest decrease in the objective O, and tags the variable
as tabu for the next tLen iterations. The second neighborhood (lines 11–17) is
a standard constraint-directed search that attempts to reduce the number of
violations on the constraints in S. It chooses a constraint k that causes the most
violations and picks the worst variable from constraint k. Line 15 then selects
the most promising value for the selected variable, and line 16 reassigns it. The
best feasible solution is recorded in line 22, while line 23 updates the weight
of the unsatisfied constraints in S when the algorithm hasn’t progressed for
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1 while (it < maxit) {
2 if (zo.get() <= objChance) {
3 var{int}[] ox = O.getVariables();
4 selectMax(i in ox.getRange() : tabu{ox[i].getId()} <= it)(C.decrease(ox[i])) {
5 selectMin(v in ox[i].getDomain())(O.getAssignDelta(ox[i], v)) {
6 ox[i] := v;
7 tabu{ox[i].getId()} = it + tLen;
8 }
9 }

10 } else {
11 selectMax(k in S.getRange())(S.getConstraint(k).violations()) {
12 Constraint<LS> cls = S.getConstraint(k);
13 var{int}[] cx = cls.getVariables();
14 selectMax(i in cx.getRange())(cls.violations(cx[i]))
15 selectMin(v in cx[i].getDomain())(C.getAssignDelta(cx[i],v))
16 cx[i] := v;
17 }
18 }
19 it++;
20 stableit++;
21 boolean feasible = S.violations()==0;
22 if (feasible && O.value() < bestValue) saveBest();
23 if (stableit >= 100) glsUpdate();
24 if (rounds >= 200) diversify(C);
25 }

Fig. 4. The Search Strategy for the CBLS Model in Comet

100 consecutive iterations. Finally, line 24 performs a diversification on all the
variables appearing in the objective function C whenever 200 rounds of guided
local search (weights updating) were unable to further improve the objective
function. The diversification simply reassigns a fraction of the variables in C
(chosen based on probability diversifyChance) uniformly at random, resets the
weights of the guided local search, and updates the bounds on the length of the
tabu list.

Co-Location Preprocessing. An alternative representation of the problem re-
places each co-location constraint and its associated component variables with
a single component variable representing the common location of the co-located
components. This avoids a large collection of equality constraints. Simple pre-
processing and postprocessing steps can then recast the solution in term of the
initial formulation. This leaner formulation is beneficial for the CBLS model. In
the original formulation, when a component is moved, all the co-location equal-
ity constraints are violated which induces a bump in the optimization value,
which can make these moves less desirable. The preprocessed formulation does
not suffer from this problem since all the co-located components are moved as
one, allowing for aggregate moves. The experimental results confirm that this
representation is beneficial.
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Path Dominance. Unsurprisingly, the CBLS model also can make use of the
path dominance rule during the initialization of the model to eliminate paths
that are provably inferior. The experimental results consider local search models
with path dominance included.

6 Hybrid CBLS-CP Model

The hybrid model is a sequential composition. The CBLS model runs for 10
seconds and then passes its best solution to the CP model to complete the
optimization. A hybrid model using parallel composition also was considered,
where the CBLS model runs in a separate thread and notifies the CP model
each time it finds a better solution. The benefit of the parallel composition is
only visible on easy instances where the CP model proves the optimality in less
than 10 seconds (and therefore stops the search right away).

7 Experimental Results

The Benchmarks. The benchmarks fall into three categories: variants of the
simple ESDS deployment problem depicted in Figure 1, variants of the HYPER8
ESDS deployment problem shown in Figure 5, and variants of the RING6 de-
ployment problem shown in Figure 6. The HYPER8 and RING6 benchmarks are
studied, not because they reflect actual network configurations, but because
they are simple representations of networks with many equivalent alternative
paths and networks with tightly coupled hosts. To model the capabilities of the
communication infrastructure of a distributed system more realistically, all the
benchmarks include, in addition to the components shown, one extra software
module between each pair of replicas (components r1, . . . , r6). These extra com-
ponents are “drivers” that manage the communication channels and are required
to be co-located with their sending replicas. The benchmarks are as follows:

pc1 pc2

pc3 pc4

pc5

sr1 sr2

sr3 sr4

sr5 sr6

sr7 sr8

sr9

sr10

c1 c2 c3 c4

fe1 fe2r1 r2

r3r4

r5 r6

10 5 5 20

15 155

5

5
5

5 5
5

5
5

555

5

c6

c5

c7c8

fe3fe4

5

5 20 10

2

7101510

25 19

Fig. 5. Instance HYPER8: Deploying ESDS to a network with many equivalent paths
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Fig. 6. Instance RING6: Deploying to a tightly coupled, bandwidth-limited network

– SIM2BW1 is a variant of Figure 1 with a bandwidth limit of 5 on the connection
between PC2 and r2.

– SIM2BW2 is a variant of Figure 1 with a bandwidth limit of 5 on the connection
between PC2 and r2 and a bandwidth limit of 10 on the connection between
PC3 and r3.

– RING4 is a variant of RING6with only four gossiping replicas (and no messages
from c3 to r5).

– RING5 is a variant of RING6 with only five gossiping replicas.
– RING6 is illustrated in Figure 6.
– HYP8BW1 is a variant of HYPER8 with a bandwidth limit of 10 on the connec-

tion between PC1 and r1.
– HYP8BW4 is a variant of HYPER8 with four bandwidth-limited connections.

Experimental Results for the CP Model. Table 1 reports the results for the CP
model with Comet 1.1 (executing on an Intel Core 2 at 2.4Ghz with 2 gigabytes
of RAM). The first three columns give the results for the initial CP bandwidth
model ([12]) which only eliminates paths that are the same length or longer
than the shortest non-bandwidth limited path. The next three columns give the
results when the full path dominance described in Section 4 is exploited. The
final three columns give the results when both path dominance and co-location

Table 1. Experimental Results for the CP Models

Longest Path Full Path Path Dominance &
Dominance Dominance Co-Location

Benchmark MIP Tend #Chpt Topt Tend #Chpt Topt Tend #Chpt Topt

SIM2BW1 12.8 0.27 168 0.02 0.27 168 0.02 0.13 174 0.01
SIM2BW2 17.0 0.38 159 0.03 0.38 160 0.03 0.20 165 0.01
RING4 9.8 0.37 469 0.35 0.34 426 0.32 0.15 187 0.14
RING5 66.4 10.9 24422 10.4 9.6 20609 9.1 1.5 2101 1.3
RING6 327.9 132.8 300526 130.6 107.8 235161 105.6 14.4 27722 13.3
HYP8BW1 142388 4642.2 133047 893.3 123.0 43169 28.6 75.5 39137 11.3
HYP8BW4 71102 12572.9 108069 8346.5 1988.0 162227 1641.0 1175.7 103023 770.9
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preprocessing are performed. Within each group, column Tend gives the time in
seconds to find the optimum and prove optimality, column #Chpt reports the
number of choice points, and column Topt reports the time in seconds to find
the optimum. The results are averages of 50 runs (except for the HYP8BW4
Longest Path results which are averages of 10 runs). The column MIP repeats
the results (CPLEX version 11 running on an AMD Athlon at 2Ghz) for the
MIP model described in [12]. It is useful to review these results in more detail.

1. Full path dominance preprocessing is faster for all benchmarks than longest
path dominance preprocessing as expected. Adding co-location preprocessing
also improves performance for all benchmarks.

2. For SIM2BW1 and SIM2BW2, the performance is almost identical with both
path dominance techniques. There is only one path between each pair of
hosts, so there are no paths to eliminate and thus no benefits.

3. RING4, RING5, and RING6 all have the same network and path charac-
teristics. Although full path dominance only eliminates one more path than
longest path dominance (20 vs. 19 eliminated paths out of 98 total paths),
the impact on performance is non-negligible for all three benchmarks.

4. In HYP8BW1, full path dominance eliminates all but one path between each
pair of hosts, resulting in a dramatic improvement (factor of 37) over longest
path dominance which has up to 18 paths between pairs of nodes.

5. In HYP8BW4, full path dominance retains two paths between 16 pairs of
hosts and one path between all other pairs. Even this relatively small number
of path options make processing HYP8BW4 considerably more complex than
HYP8BW1. The improvement with full path dominance is still substantial
(over a factor of 6), but not as dramatic.

6. The improvement with co-location preprocessing appears to be related to the
fraction of components that can be combined. The largest improvement is for
RING6 where 45 components are reduced to 8, and the smallest improvement
is for HYP8BW1 and HYP8BW4 where 54 components are reduced to 18.

7. With all three preprocessing techniques, the CP model finds the optimum
relatively quickly for SIM2BW1, SIM2BW2, and HYP8BW1. Unfortunately,
the optimum is not found until late in the search for the other benchmarks.

8. The MIP results are also likely improve with path and co-location prepro-
cessing.

Experimental Results for the CBLS Model. Table 2 reports the results for the
CBLS models. The Opt column gives the optimum. The μ(Path) and σ(Path)
columns report the averages and standard deviations for the best solution (Q),
the time to the best solution in seconds (TB) and the total running time (TT )
of the CBLS model with path dominance. The μ(Path&Col) and σ(Path&Col)
columns give the averages and standard deviations with both path dominance
and co-location pre-processing. All the results are reported over 50 runs.

The experimental results indicate that CBLS delivers high-quality solutions
in a few seconds. The elimination of the co-location constraints is beneficial in
several respects. First, it reduces the running time significantly (both to termi-
nation and to the best solution), and it has a positive impact on the average
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Table 2. Experimental Results for the Local Search Models

μ(Path) μ(Path & Col) σ(Path) σ(Path & Col)

Benchmark Opt Q TB TT Q TB TT Q TB TT Q TB TT

RING4 54 54.1 1.79 6.06 54.0 0.17 4.22 0.7 1.23 0.04 0.0 0.12 0.04
RING5 88 90.1 3.74 8.83 88.0 0.61 5.20 2.7 2.61 0.06 0.0 0.48 0.05
RING6 120 131.1 6.87 14.70 120.8 3.76 7.72 21.7 5.08 0.78 1.0 0.00 0.09
HYP8BW1 522 594.0 2.62 5.22 523.1 1.28 3.56 37.4 1.76 0.20 1.8 0.59 0.07
HYP8BW4 526 552.3 7.42 17.58 554.5 5.41 8.92 18.5 5.60 0.50 23.1 2.13 0.34

Table 3. Experimental Results for the Sequential Hybrid Models

μ(Path) μ(Path & Col) σ(Path) σ(Path & Col)

Benchmark Tend #Chpt Tend #Chpt Tend #Chpt Tend #Chpt

RING4 10.09 11 10.03 6 0.00 1 0.01 3
RING5 11.02 88 10.14 26 0.08 15 0.01 2
RING6 23.64 17718 10.51 81 25.26 50147 0.04 7
HYP8BW1 140.70 40799 51.06 29602 9.35 4404 0.74 463
HYP8BW4 1325.02 63343 339.68 32045 294.22 28785 26.54 3675

best solution found. Indeed, as the standard deviation shows, the local search
algorithm could deliver the best solution on all 50 runs on RING4 and RING5 and
the average best solution across the board. Second, all the standard deviations
improved significantly, indicating that the algorithm is more robust.
Experimental Results for the Hybrid Model. Table 3 reports the results for a
sequential hybrid model that runs the best CBLS model for 10 seconds before
initiating a CP search with an upper bound based on the best solution delivered
in the first phase. All the results are averages based on 50 runs. The column
groups are the same as for the CP model. Within each group, Tend denotes the
time in seconds to find the optimum and prove optimality, and #Chpt denotes
the number of choice points.

The first hybrid algorithm composes models relying only on the path dom-
inance. Nonetheless, the benefit is already visible when the pure CP model is
compared to the hybrid. The second hybrid composes models using both path
dominance and co-location pre-processing and clearly dominates the earlier CP
models. On the hardest instance (HYP8BW4) it proves optimality in 340s when
the pure CP model needed 1176s. The good results can be attributed to an excel-
lent phase 1 that delivers a high quality solution to bootstrap the second phase.
On the ring instances the runtime is dominated by the fixed 10s of local search,
while on the HYPER8 it spends most of the computation in the CP phase.

8 Conclusion

This paper revisited the Bandwidth-Limited ESDS Deployment Problem and
considered an improved CP model that leverages dominance properties, a CBLS
model featuring the same declarative model, as well as a CP/CBLS hybrid model.
The CBLS model is particularly compelling given the similarity of its declarative
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part and its ability to deliver high-quality solutions quickly. Its search procedure
composes a standard constraint-directed neighborhood for the feasibility part of
the model with a tabu-based greedy gradient descent for the objective function.
The path dominance and the co-location preprocessing steps proved very effec-
tive for CP and CBLS, both in terms of the solution quality and the time to
solve the model. Constraint Programming now appears to be the ideal method-
ology to solve this class of problem for which hard instances can be solved to
optimality in 5 to 10 minutes.
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