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Preface

The 6th International Conference on the Integration of AI and OR Techniques in
Constraint Programming for Combinatorial Optimization Problems (CPAIOR
2009) was held in Pittsburgh, USA, May 29–31, 2009. More information about
the CPAIOR conference series can be found at www.cpaior.org. This volume
contains the papers and extended abstracts that were presented during the con-
ference.

In total there were 65 high-quality submissions, including 41 full paper and
24 extended abstract submissions. The full papers reflect original unpublished
work, whereas the extended abstracts can be either original unpublished work
or a summary of work published elsewhere. Each full paper was reviewed by at
least three Program Committee members, and most extended abstracts by two.
After general discussion, the Program Committee accepted 20 full papers and 10
extended abstracts for presentation during the conference and publication in this
volume. The submissions, reviews, discussion, and the proceedings preparation
were all handled by the EasyChair system. We thank the Program Committee,
as well as the external reviewers, for their hard work.

In addition to the full paper and extended abstract presentation, the program
contained two invited talks, by Eva K. Lee (Georgia Institute of Technology)
and Mark Wallace (Monash University). A summary of each invited talk is also
included in this volume.

A two-day tutorial on constraint programming was held before the conference,
during May 27–28, 2009. There were four parts to the tutorial: “Introduction
to CP Concepts” presented by Peter van Beek, “Modeling in CP” presented by
Helmut Simonis, “Combining CP and Operations Research” presented by John
Hooker, and “CP Languages, Systems, and Examples” presented by Laurent
Michel, Pascal Van Hentenryck, and Paul Shaw. We thank all tutorial speakers
for their efforts. We also thank the tutorial chair Gilles Pesant for his help in
organizing this event.

Two satellite workshops took place on May 28, 2009. The workshop “Bound
Reduction Techniques for Constraint Programming and Mixed-Integer Nonlinear
Programming” was organized by Pietro Belotti. The workshop “Optimization in
Health and Medicine” was organized by Sebastian Brand, Eva K. Lee, and Barry
O’Sullivan.

Finally, we want to thank all the sponsors who made this event possible:
National Science Foundation, Tepper School of Business, Air Force Office of
Scientific Research, Association for Constraint Programming, IBM T.J. Watson
Research Center, Jeppesen Technology Services, NICTA, and ILOG.

March 2009 Willem-Jan van Hoeve
John Hooker
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Machine Learning Framework for Classification
in Medicine and Biology

Eva K. Lee

Center for Operations Research in Medicine and HealthCare,
School of Industrial and Systems Engineering,

NSF I/UCRC Center for Health Organization Transformation,
Center for Bioinformatics and Computational Genomics,

Georgia Institute of Technology, Atlanta, Georgia 30332-0205

Abstract. Systems modeling and quantitative analysis of large amounts
of complex clinical and biological data may help to identify discrimina-
tory patterns that can uncover health risks, detect early disease forma-
tion, monitor treatment and prognosis, and predict treatment outcome.
In this talk, we describe a machine-learning framework for classification in
medicine and biology. It consists of a pattern recognition module, a feature
selection module, and a classification modeler and solver. The
pattern recognition module involves automatic image analysis, genomic
pattern recognition, and spectrum pattern extractions. The feature selec-
tion module consists of a combinatorial selection algorithm where
discriminatory patterns are extracted from among a large set of pattern
attributes. These modules are wrapped around the classification modeler
and solver into a machine learning framework. The classification mod-
eler and solver consist of novel optimization-based predictive models that
maximize the correct classification while constraining the inter-group mis-
classifications. The classification/predictive models 1) have the ability to
classify any number of distinct groups; 2) allow incorporation of hetero-
geneous, and continuous/time-dependent types of attributes as input; 3)
utilize a high-dimensional data transformation that minimizes noise and
errors in biological and clinical data; 4) incorporate a reserved-judgement
region that provides a safeguard against over-training; and 5) have suc-
cessive multi-stage classification capability. Successful applications of our
model to developing rules for gene silencing in cancer cells, predicting the
immunity of vaccines, identifying the cognitive status of individuals, and
predicting metabolite concentrations in humans will be discussed. We ac-
knowledge our clinical/biological collaborators: Dr. Vertino (Winship
Cancer Institute, Emory), Drs. Pulendran and Ahmed (Emory Vaccine
Center), Dr. Levey (Neurodegenerative Disease and Alzheimer’s Disease),
and Dr. Jones (Clinical Biomarkers, Emory).

1 Introduction

Discriminant analysis involves the classification of an entity into one of several a
priori, mutually exclusive groups based upon specific measurable characteristics

W.-J. van Hoeve and J.N. Hooker (Eds.): CPAIOR 2009, LNCS 5547, pp. 1–7, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



2 E.K. Lee

of the entity. A discriminant (predictive) rule is formed from data collected on
a sample of entities for which the group classifications are known. New entities,
whose classifications are unknown, will be classified based on this rule. Often
there is a trade-off between the discriminating ability of the selected attributes
and the expense of obtaining measurements on these attributes. Indeed, the mea-
surement of a relatively definitive discriminating feature may be prohibitively
expensive to obtain on a routine basis, or perhaps impossible to obtain at the
time that classification is needed. Thus, a discriminant rule based on a selected
set of feature attributes will typically be an imperfect discriminator, sometimes
misclassifying entities. Depending on the application, the consequences of mis-
classifying an entity may be substantial. In such a case, it may be desirable to
form a discrimination rule that allows less specific classification decisions, or even
non-classification of some entities to reduce the probability of misclassification.

Many methods have been used to develop classification models, in-
cluding pattern recognition, artificial intelligence, optimization/mathematical
programming-based methods, support vector machines, neural networks, data
mining, and statistical analysis. In our computational center, since 1997 (Gal-
lagher et al 1996, 1997, Lee et al 2003), we have been developing a general-
purpose discriminant analysis modeling framework and computational engine
that is applicable to a wide variety of applications, including biological, biomed-
ical and logistics problems.

2 The Mixed Integer Programming-Based Classification
Model

Our work was motivated by the 1969 probability model introduced by Anderson
which maximizes the probability of correct allocation subject to misclassifica-
tion probability constraints. For two groups the optimal solution can be mod-
eled rather straightforward. However, finding an optimal solution (rule) for the
general case is a difficult problem, with the difficulty increasing as the number
of groups increases. We offer an avenue for modeling and finding the optimal
solution in the general case. (Gallagher et al 1996, 1997).

Assume that we have G = {1, . . . , G} groups with a training sample of N
entities whose group classifications are known; say ng entities are in group g,
Ng = {1, . . . , ng}, where

∑G
g=1 ng = N . Let the k dimensional vectors xgj , g =

1, . . . , G, j = 1, . . . , ng, contain the measurements on k available characteristics
of the entities. Let f̂h, h = 1, . . . , G, be the estimated group conditional density
functions, let π̂h denote an estimator for the prior probability that a randomly
selected entity is from group g, g = 1, ..., G, and define p̂i(x) = f̂i(x)/

∑G
t=1 f̂t(x).

Our objective is to determine a partition {R0, . . . , RG} of �k that maximizes
the correct classification, while ensuring that the number of group g training
entities in region Rh is less than or equal to a pre-specified percentage, αhg

(0 < αhg < 1), of the total number, ng, of group g entities, h, g ∈ {1, . . . , G},
h �= g. Here R0 is the reserved-judgement region. Mathematically, let uhgj be
a binary variable indicating whether or not xgj lies in region Rh; i.e., whether
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or not the jth entity from group g is allocated to group h. The MIP-based
classification model can be written as

(DAMIP-Classifier) Maximize
∑
g∈G

∑
j∈Ng

uggj

Subject to

Lhgj = π̂hp̂h(xgj) −
∑

i∈G\h

λihp̂i(xgj) h, g ∈ G, j ∈ Ng (1)

ygj = max{0, Lhgj : h = 1, . . . , G} g ∈ G, j ∈ Ng (2)

ygj − Lggj ≤ M(1 − uggj) g ∈ G, j ∈ Ng (3)

ygj − Lhgj ≥ ε(1 − uhgj) h, g ∈ G, j ∈ Ng , h �= g (4)∑
j∈Ng

uhgj ≤ �αhgng� h, g ∈ G, h �= g (5)

−∞ < Lhgj < ∞, ygj ≥ 0, λih ≥ 0, uhgj ∈ {0, 1}

Constraint (1) defines the variable Lhgj as the value of the function Lh

evaluated at xgj . Therefore, the continuous variable ygj , defined in constraint
(2), represents max{Lh(xgj) : h = 0, . . . , G}; and consequently, xgj lies in region
Rh if, and only if, ygj = Lhgj. The binary variable uhgj is used to indicate
whether or not xgj lies in region Rh; i.e., whether or not the jth entity from
group g is allocated to group h. In particular, constraint (3), together with
the objective, force uggj to be 1 if, and only if, the jth entity from group g
is correctly allocated to group g; and constraints (4) and (5) ensure that at
most �αhgng� (i.e., the greatest integer less than or equal to αhgng) group g
entities are allocated to group h, h �= g. One caveat regarding the indicator
variables uhgj is that although the condition uhgj = 0, h �= g, implies (by
constraint (4)) that xgj /∈ Rh, the converse need not hold. As a consequence,
the number of misclassifications may be overcounted. However, in our numerical
study we found that the actual amount of overcounting is minimal. One could
force the converse (thus, uhgj = 1 if and only if xgj ∈ Rh) by adding constraints
ygj −Lhgj ≤ M(1− uhgj), for example. Finally, we note that the parameters M
and ε are extraneous to the discriminant analysis problem itself, but are needed
in the model to control the indicator variables uhgj . The intention is for M and
ε to be, respectively, large and small positive constants.

3 Complexity and Characteristics of DAMIP-Classifier

Performance of DAMIP classifier and comparison with other methods were re-
ported in Gallagher et al 97, and in Lee et al 2003. We have proved that DAMIP-
Classifier is NP-complete for G > 2 (Brooks, Lee 2008), further the classification
rule resulting from DAMIP-Classifier is universally strongly consistent (Brooks,
Lee 2008). Since 1996, Lee and her medical colleagues have explored and demon-
strated the capability of DAMIP-Classifier in classifying various types of data
arising from real biological and medical problems. In these applications, DAMIP-
Classifier has been able to consistently maximize the correct classification rate
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(80% - 100% correct rates were obtained) while satisfying pre-set limits on inter-
group misclassifications (Gallager et al 1996, 1997, Feltus, Lee et al 2003, Feltus
et al 2006, Lee et al 2002, 2003, 2004, Lee 2007, Lee, Wu 2007, Querec et al
2008, McCabe, et al 2009). In each of these studies, beyond reporting the ten-
fold cross-validation results, the resulting classification rule was also blind tested
against new data of unknown group identity and resulted in remarkable rates of
correct prediction. The real applications provide an empirical basis for making
some general statements on the characteristics of the DAMIP rules: (1) The pre-
dictive power of a DAMIP rule is independent of sample size, the proportions of
training observations from each group, and the probability distribution functions
of the groups. (2) A DAMIP rule is insensitive to the choice of prior probabilities.
(3) A DAMIP rule is capable of maintaining low misclassification rates when the
number of training observations from each group varies significantly.

Computationally, the resulting MIP instances are large scale, and ill-condi-
tioned, with the LP relaxation rather dense and difficult to solve. These charac-
teristics are also observed in optimization-based support vector machines. To
improve tractability, we developed applicable polyhedral theory and cutting
plane algorithms for solving these instances.

4 Classification Results on Real-World Applications

We performed ten-fold cross validation, and designed simulation and comparison
studies on our models. The results, reported in Gallagher, et al 1997, Lee, et al
2003, Brooks and Lee, 2008, show the methods are promising, based on appli-
cations to both simulated data and real-application datasets from the machine
learning database repository. Furthermore, our methods compare well to existing
methods, often producing better results than other approaches such as artificial
neural networks, quadratic discriminant analysis, tree classification, and other
support vector machines.

To illustrate the power and flexibility of the classification model and solution
engine, and its multi-group prediction capability, application of the predictive
model to a broad class of biological and medical problems is described. Ap-
plications include: the differential diagnosis of the type of erythemato-squamous
diseases; predicting presence/absence of heart disease; genomic analysis and pre-
diction of aberrant CpG island meythlation in human cancer; discriminant anal-
ysis of motility and morphology data in human lung carcinoma; prediction of
ultrasonic cell disruption for drug delivery; identification of tumor shape and
volume in treatment of sarcoma; multistage discriminant analysis of biomark-
ers for prediction of early atherosclerois; fingerprinting of native and angiogenic
microvascular networks for early diagnosis of diabetes, aging, macular degener-
acy and tumor metastasis; prediction of protein localization sites; and pattern
recognition of satellite images in classification of soil types. In all these applica-
tions, the predictive model yields correct classification rates ranging from 80%
to 100%. This provides motivation for pursuing its use as a medical diagnostic,
monitoring and decision-making tool.
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Strategy For Predicting Immunity Of Vaccines. (Querec et al 2008) The
purpose of this study involves the development of methodologies to predict the
immunity of a vaccine without exposing individuals to infection. This addresses
a long-standing challenge in the development of vaccines—that of only being
able to determine immunity or effectiveness long after vaccination and, often,
only after being exposed to infection. The study employs the yellow fever vaccine
(YF-17D) as a model. Yellow fever vaccine has been administered to nearly half
a billion people over the last70 years. A single shot of the vaccine induces immu-
nity in many people for nearly 30 years. Despite the great success of the yellow
fever vaccine, little has been known about the immunological mechanisms that
make it effective. The team vaccinateda set of healthy individuals with YF-17D
and studied the T cell and antibody responses in their blood. Gene expression
patterns in white blood cells were collected for a period of time. About 50,000
gene signatures per individual were among the attributes collected. Applying
DAMIP-classifier, we were able to identify distinct gene signatures that corre-
lated with the T cell response and the antibody response induced by the vaccine.
To determine whether these gene signatures could predict immune response, we
vaccinated a second group of individuals and were able to predict with up to 90
percent accuracy which of the vaccinated individuals would develop a strong T
or B cell immunity to yellow fever. The ability to successfully predict the immu-
nity and effectiveness of vaccines would facilitate the rapid evaluation/design of
new and emerging vaccines, identify individuals who are unlikely to be protected
by a vaccine, and answer the fundamental questions that can lead to better vac-
cinations and prevention of disease.

Identifying Rules for Gene Silencing in Cancer Cells. (Feltus et al 2003,
2006, McCabe et al 2009) CpG islands are the discreet regions of DNA sequence
with high concentration of CpG dinucleotides. On their way to becoming tumors,
cells have to somehow inactivate several ”tumor suppressor” genes that usually
prevent cancer formation. Aberrant methylation of normally unmethylated CpG
islands occurs frequently in human cancers. Methylation is a subtle punctuation-
like modification of the DNA that marks genes for silencing, meaning that they
are inactive and do not make RNA or proteins. Using breast cancer cell lines that
artificially overproduce an enzyme which adds methylation markers to DNA, we
applied a sequence pattern recognition algorithm (Lee, Easton, Kapil, 2006) to
identify attributes for each CpG island. Applying the DAMIP-classifier described
herein to the patterns found, we were able to derive a classification function based
on the frequency of seven novel sequence patterns (PatMAn) that was capable of
discriminating methylation-prone from methylation-resistant CpG islands with
90% correctness upon cross-validation, and 85% accuracy when tested against
blind CpG islands unknown to us on the methylation status. This predictive rule
offers a set of guidelines that allow biologistis to predict which genes have an
increased risk of silencing by DNA methylation. That vulnerability could make
those genes good markers for diagnosis and risk assessment in patients. In partic-
ular, PatMAn, which is based on seven “key words”, 8-10 nucleotides long, can
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predict which genes become methylated in breast and lung cancers in addition
to the artificial cell lines.

If the key words are in the DNA sequence near the promoter of the gene, it is
more likely to be methylated. The promoter of a gene is the place where enzymes
start making DNA into RNA. Further analysis shows that PatMAn overlaps with
the pattern of DNA bound by a set of proteins known as the Polycomb complex
in embryonic stem cells. Polycomb appears to keep genes that regulate early
development turned off in embryonic stem cells. Combining PatMAn with the
Polycomb binding pattern to produce the “super-pattern” SUPER-PatMAn al-
lows one to blind predict methylation-prone genes in cancers with more than
80 percent accuracy. The methylation pattern in cancer cells appears to echo
Polycomb’s binding in embryonic stem cells. Many of the genes affected play
important roles in embryonic development. Many of the genes predicted to be
methylation-prone are developmental regulators. The findings could support the
idea that methylation-mediated silencing helps to lock the developmental state
of tumor cells into being more stem cell-like. Among cancer biologists, hyper-
methylation is now the most well characterized epigenetic change to occur in
tumors. The pattern recognition and classification tools offer the opportunity to
classify the more than 29,000 known (but as yet unclassified) CpG islands in hu-
man chromosomes. This will provide an important resource for the identification
of novel gene targets for further study as potential molecular markers that could
have an impact on both cancer prevention and treatment. For aggressive cancers
such as pancreatic cancer or some forms of incurable brain tumor, the ability
to identify such sites offers potential new therapeutic interventions, leading to
improved treatment.
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Abstract. This paper presents the G12 large scale optimisation soft-
ware platform, and discusses aspects of its architecture.
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G12 is a software platform for solving combinatorial optimisation problems
[SGM+05]. It was originally called a “constraint programming” platform, but
we rather see it as an agnostic system which equally supports linear and mixed
integer programming, constraint propagation and inference and a variety of other
search and inference-based approaches for solving complex problems.

Problem modelling is separated in G12 as much as possible from problem solv-
ing. It is not (of course) our goal to automatically compile user-oriented problem
models to highly efficient algorithms. Our target is to provide a software environ-
ment in which a user can initially write down a precise problem specification of
his or her problem, without considering issues of computational efficiency. G12
supports the powerful ’Zinc’ specification language [MNR+08], and the freely
available ’MiniZinc’ subset [NSB+07]. Subsequently a possibly different user can
then add control information so as to guide the G12 system to exploit particular
problem decompositions, inference techniques and search methods [BBB+08].

In recent years three different kinds of language have emerged for specify-
ing and solving combinatorial optimisation problems. The first, most generic,
languages are high-level modelling languages whose implementations include a
number of solving techniques. These languages include mathematical program-
ming languages, such as AMPL, constraint programming languages, such as
CHIP and hybrid languages such as OPL. Such languages can be thought of
as “80/20” languages which are designed to be able to handle many problems
efficiently, but do not seek to cover all classes of problem.

Many problems require specialised solving techniques, which are not sup-
ported by the previous high-level languages. For these problems it is necessary to
express specialised constraints and constraint behaviours, as well as specialised
problem decompositions, and solver hybrids. Languages for expressing constraint
behaviour have been particularly researched in the CP community. In particular
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we think of languages for writing propagators in Oz; attributed variables, sus-
pensions, delayed goals, demons and action rules in languages such as SICStus
Prolog, ECLiPSe and B-Prolog; and novel languages for encoding new global
constraints by Beldiceanu, Pesant and others.

The third class of languages for solving complex problems are search languages
supporting sophisticated combinations of branching, iteration, and improvement.
These languages include Salsa, ToOLS and Comet.

A few years ago it when I was in the ECLiPSE team, we planned that the
ECLiPSE language be broken down into three language subsets along these
lines: a language for problem specification, a language for specifying constraint
behaviour and a language for controlling search.

The G12 approach has deliberately taken quite a different path. Firstly G12
offers no language for specifying constraint behaviour. It supports a range of
libraries for constraint propagation and solving, and interfaces which make it
relatively straightforward to introduce new libraries at will [BGM+06]. New
“global” constraints can also be easily interfaced to the system. However the G12
user cannot easily build new constraints with specialised constraint behaviours.

The G12 view is that efficiency is most effectively and easily achieved by
mapping a problem down to an appropriate combination of solvers and search
[PSWB08], rather than by adding new constraint implementations. Instead of a
language for specifying constraint behaviours, therefore, G12 has a language for
mapping problems to a form which can be evaluated efficiently [DDS08]. The
problem modelling language is Zinc, and the language for mapping Zinc to a
more efficient form is Cadmium. (The language used to run the resulting efficient
algorithm is Mercury. The name G12 comes from the group in the periodic table
which contains Mercury, Cadmium and Zinc.)

There is no additional language for expressing search in G12. Instead it sup-
ports two quite different ways of specifying the search method. The first way is
as an extension to the Zinc search language [RMG+08]. A few generic search
functions are available in Zinc, parameterised by Zinc functions. The philosophy
behind this is that a Zinc problem model has a default behaviour, and the search
function naturally belongs to Zinc both syntactically and semantically as a way
of overruling its default behaviour. The second way that G12 supports search is
that it can be built into certain solvers. G12 solvers have different capabilities:
some can simply check for consistency of the current set of constraints, some
can infer (“propagate”) new constraints, some can optimise and some can even
return candidate solutions. Search may be used in support of this last capability.

The G12 experiment is now gradually coming to fruition. G12 suports finite
domain constraints, interval constraints over float variables, linear and mixed
integer constraint solvers, propositional satisfiability solvers and search methods,
BDD, set solvers and more. The Zinc and MiniZinc modelling languages are
supported. The Cadmium mapping language is implemented - now in a fully
general form so it can be applied to Zinc or any other modelling language for
which a syntax and semantics are defined.
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The first public release of G12 is due in early 2010, but already there are a num-
ber of major application projects in Australia for which G12 is the chosen software
platform. We are excited to see G12 emerging at last from the laboratory.
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Abstract. This paper introduces six ways for handling a chain of lexico-
graphic ordering (lex-chain) constraint between the origins of identical ortho-
topes (e.g., rectangles, boxes, hyper-rectangles) subject to the fact that they
should not pairwise overlap. While the first two ways deal with the integration of
a lex-chain constraint within a generic geometric constraint kernel, the four latter
ways deal with the conjunction of a lex-chain constraint and a non-overlapping
or a cumulative constraint. Experiments on academic two and three dimensional
placement problems as well as on industrial problems show the benefit of such a
strong integration of symmetry breaking constraints and non-overlapping ones.

1 Introduction

Symmetry constraints among identical objects are ubiquitous in industrial placement
problems that involve packing a restricted number of types of orthotopes (generalized
rectangles) subject to non-overlapping constraints.

In this context, an orthotope corresponds to the generalization of a rectangle in the
k-dimensional case. An orthotope is defined by the coordinates of its smallest corner
and by its potential orientations. An orientation is defined by k integers that give the
size of the orthotope in the different dimensions. Two orthotopes are said to be identical
if and only if their respective orientation sizes form identical multisets. In the rest of this
paper, we assume that we pack each orthotope in such a way that its borders are parallel
to the boundaries of the placement space.

In the context of Operations Research, breaking symmetries has been handled by
characterizing and taking advantage of equivalence and dominance relations between
patterns of fixed objects [1]. In the context of Constraint Programming, a natural way
to break symmetries is to enforce a lexicographic ordering on the origin coordinates of
identical orthotopes. This can be directly done by using a lex-chain constraint such as
the one introduced in [2]. Even if this drastically reduces the number of solutions, it does
not allow much pruning and/or speedup when we are looking for one single solution.
This stems from the fact that symmetry is handled independently from non-overlapping.
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The question addressed by this paper is how to directly integrate a lex-chain constraint
within a non-overlapping constraint and how it pays off in practice.

Section 2 recalls the context of this work, namely the generic geometric constraint
kernel and its core algorithm, a multi-dimensional sweep algorithm, which performs fil-
tering introduced in [3]. Since this algorithm will be used in the rest of the paper, Section 2
also recalls the principle of the filtering algorithm behind a lex-chain constraint. Section 3
describes two ways of directly handling symmetries in the multi-dimensional sweep al-
gorithm, while Section 4 shows how to derive bounds on the coordinates of an orthotope
from the interaction of symmetries and non-overlapping constraints. Since the cumula-
tive constraint is a necessary condition for the non-overlapping constraint [4], Section 5
shows how to directly integrate symmetries within two well known filtering algorithms
attached to the cumulative constraint. Section 6 evaluates the different proposed methods
both on academic and industrial benchmarks and Section 7 concludes the paper.

2 Context

This work is in the context of the global constraint geost(k,O,S, C) introduced in [3],
which handles the location in space of k-dimensional orthotopes O (k ∈ N+), each
of which taking an orientation among a set of possible orientations S, subject to ge-
ometrical constraints C.1 Each possible orientation from S is defined as a box in a
k-dimensional space with the given sizes. More precisely, a possible orientation s ∈ S
is an entity defined by its orientation id s.sid , and sizes s.l[d] (where s.l[d] > 0 and
0 ≤ d < k). All attributes of a possible orientation are integer values. Each object
o ∈ O is an entity defined by its unique object id o.oid (an integer), possible orienta-
tion id o.sid (an integer for monomorphic objects, which have a fixed orientation, or
a domain variable2 for polymorphic objects, which have alternative orientations), and
origin o.x[d], 0 ≤ d < k (integers, or domain variables).

Since the most common geometrical constraint is the non-overlapping constraint be-
tween orthotopes, this paper focuses on breaking symmetries in this context (i.e., each
shape is defined by one single box). For this purpose, we impose a lex-chain con-
straint on the origins of identical orthotopes. Given two vectors, x and y of k variables,
〈x0, x1, . . . , xk−1〉 ≤lex 〈y0, y1, . . . , yk−1〉 if and only if k = 0 ∨ (x0 < y0) ∨ (x0 =
y0 ∧ 〈x1, . . . , xk−1〉 ≤lex 〈y1, . . . , yk−1〉). Unless stated otherwise, the constraint is
imposed wrt. the k dimensions 0, 1, . . . , k − 1. The original filtering algorithm of the
lex-chain constraint described in [2] is a two phase algorithm. In a first phase, it com-
putes for each vector of the chain feasible lexicographic lower and upper bounds. In a
second phase, a specific algorithm [5] filters the components of each vector of the chain
according to the fact that it has to be located between two fixed vectors.

3 Integrating Symmetries within the Sweep Kernel

This section first recalls the principle of the sweep point algorithm attached to geost .
It then indicates how to modify it in order to take advantage of the fact that we have

1 In the context of this paper we have simplified the presentation of geost .
2 A domain variable v is a variable ranging over finite set of integers denoted by dom(v); v and
v denote respectively the minimum and maximum possible values of v.
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a restricted number of types of orthotopes. Without loss of generality, it assumes that
we have one non-overlapping constraint over all orthotopes of geost and one lex-chain
constraint for each set of identical orthotopes.

3.1 Description of the Original Sweep Algorithm

The use of sweep algorithms in constraint filtering algorithms was introduced in [6] and
applied to the non-overlapping 2D rectangles constraints. Let a forbidden region f be
an orthotope of values for o.x that would falsify the geost constraint, represented as a
fixed lower bound vector f. min and a fixed upper bound vector f. max. Algorithm 1,
PruneMin(o, d, k), searches for the first point c, by lexicographic order wrt. dimensions
d, (d + 1) mod k, . . . , (d− 1) mod k, that is inside the domain of o.x but not inside
any forbidden region. If such a c exists, the algorithm sets o.x[d] to c[d], otherwise it
fails. Two state vectors are maintained: the sweep point c, which holds a candidate value
for o.x, and the jump vector n, which records knowledge about encountered forbidden
regions.

The algorithm starts its recursive traversal of the placement space at point c = o.x
with n = o.x+1 and could in principle explore all points of the domains of o.x, one by
one, in increasing lexicographic order wrt. dimensions d, (d + 1) mod k, . . . , (d − 1)
mod k, until the first desired point is found. To make the search efficient, it skips points
that are known to be inside some forbidden region. This knowledge is encoded in n,
which is updated for every new f (see line 5) recording the fact that new candidate
points can be found beyond that value. Whenever we skip to the next candidate point,
we reset the elements of n that were used to their original values (see lines 6–15).

3.2 Enhancing the Original Sweep Kernel wrt. Identical Shapes

In the context of multiple occurrences of identical orthotopes, we can enhance the sweep
algorithm attached to geost by trying to reuse the information computed so far from one
orthotope to another orthotope. For this purpose we introduce the notion of domination
of an orthotope by another orthotope.

Given a geost(k,O,S, C) constraint where C consists of one non-overlapping con-
straint between all orthotopes of O and a lex-chain constraint between each set of iden-
tical orthotopes, an orthotope oj ∈ O is dominated by another orthotope oi ∈ O if and
only if the following conditions hold:

1. dom(oj .x[p]) ⊆ dom(oi.x[p]), ∀p ∈ [0, k − 1],
2. dom(oj .sid) ⊆ dom(oi.sid),
3. the origin of oj should be lexicographically greater than or equal to the origin of oi.

Now, for one invocation of the sweep algorithm, which performs a recursive traversal
of the placement space, we can make the following observation. If an orthotope oj is
dominated by another orthotope oi and if we have already called the sweep algorithm
for updating the minimum value of oi.x[p] (p ∈ [0, k − 1]), we can take advantage
of the information obtained while computing the minimum of oi.x[p]. Let cip and nip

respectively denote the final values of vectors c and n after running PruneMin(oi, p, k).
Note that while computing the minimum of oj .x[p], instead of starting the recursive
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PROCEDURE PruneMin(o, d, k) : bool
1: c ← o.x // initial position of the point
2: n ← o.x + 1 // upper limits+1 in the different dimensions
3: f ← GetFR(o, c, k) // check if c is infeasible
4: while f �= ⊥ do
5: n ← min(n, f. max +1) // maintain n as min of u.b. of forbidden regions
6: for j ← k − 1 downto 0 do
7: j′ ← (j + d) mod k // least significant dimension first
8: c[j′] ← n[j′] // use n[j′] to jump
9: n[j′] ← o.x[j′] + 1 // reset n[j′] to max

10: if c[j′] ≤ o.x[j′] then
11: goto next // candidate point found
12: else
13: c[j′] ← o.x[j′] // exhausted a dimension, reset c[j′]
14: end if
15: end for
16: return false // no next candidate point
17: next: f ← GetFR(o, c, k) // check again if c is infeasible
18: end while
19: o.x[d] ← c[d] // adjust earliest start in dim. d

20: return true

Algorithm 1. Adjusting the lower bound o.x[d]. GetFR(o, c, k) scans a list of forbidden regions,
starting at the latest encountered one, returns ⊥ if c is in the domain of o.x and not inside any
forbidden region f , and f �= ⊥ otherwise.

traversal of the placement space from c = oj .x with n = oj .x + 1, we can start from
the position cip and with the jump vector nip. By using this observation, we decrease
the number of jumps needed for filtering the bounds of the coordinates of n identical
orthotopes from k·n2 to k·n. Finally note that for one invocation of the sweep algorithm,
forbidden regions for the origins of identical orthotopes need only be computed once.
This observation is valid even if we don’t have any lexicographic ordering constraints
and is crucial for scalability in the context of identical orthotopes.

3.3 Integrating a Chain of Lexicographic Ordering Constraint within the Sweep
Kernel

The main interest of the sweep algorithm attached to geost is to aggregate the set of
forbidden points coming from different geometric constraints. In our context, these are
the non-overlapping and lex-chain constraints. As a concrete example, consider the
following problem:

Example 1. We have to place within a placement space of size 6 × 5 three squares
s1, s2, s3 of size 2 × 2 so that their respective origin coordinates (x1, y1), (x2, y2),
(x3, y3) are lexicographically ordered in increasing order. Moreover, assume that the
first and third squares are fixed so that (x1, y1) = (2, 3) and (x3, y3) = (5, 2), and
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that (x2, y2) ∈ ([1, 5], [1, 4]). If we don’t consider together the non-overlapping and
the lex-chain constraint we can only restrict the domain of x2 to interval [2, 5]. But, as
shown in Figure 1, if we aggregate the forbidden points coming from the lex-chain and
non-overlapping constraints, we can further restrict the domain of x2 to interval [3, 4].

So the question is how to generate forbidden regions for a lex-chain constraint of the
form 〈l0, l1, . . . , lk−1〉 ≤lex 〈x0, x1, . . . , xk−1〉 ≤lex 〈u0, u1, . . . , uk−1〉 where li, xi

and ui respectively correspond to integers, domain variables and integers.3 Let us first
illustrate what forbidden regions we want to obtain in the context of Example 1.

Continuation of Example 1. Consider the constraint 〈2, 4〉 ≤lex 〈x2, y2〉 ≤lex 〈5, 1〉.
We can associate to this lex-chain constraint the following forbidden regions; see the
crosses in Part (B) of Figure 1:

– Since x2 < 2 is not possible, we have f. min = [1, 1], f. max = [1, 5] (column 1);
– Since x2 = 2 ∧ y2 < 4 is not possible, we have f. min = [2, 1], f. max = [2, 3]

(column 2);
– Since x2 > 5 is not possible, we have f. min = [6, 1], f. max = [6, 5] (column 6);
– Since x2 = 5 ∧ y2 > 1 is not possible, we have f. min = [5, 2], f. max = [5, 5]

(column 5).
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Fig. 1. (A) The two fixed squares s1 and s3 (gray squares are not possible for the origin of s2 since
it has to be included within the placement space depicted by a thick line); (B) Forbidden points
(a cross) wrt. the lex-chain constraint; (C) Forbidden points (a cross) wrt. the non-overlapping
constraint; (D) Aggregating all forbidden points: (3, 1) and (4, 4) are the only feasible points for
the origin of s2, which leads to restricting x2 to interval [3, 4].

We show in Algorithm 2 how to generate such forbidden regions in a systematic way.
As in Example 1, lines 1–6 generate for the lower bound constraint a forbidden region
according to the fact that the most significant components x0, x1, . . . , xi−1 of vector x
are respectively fixed to l0, l1, . . . , li−1 (i ∈ [0, k − 1]). Similarly, lines 7–12 generate
k forbidden regions wrt. the upper bound u.

3 As mentioned in Section 2, propagating a lex-chain constraint leads to generating such sub-
problems.
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PROCEDURE LexBetweenGenForbiddenReg(k, x, l, u) : f [0..2 · k − 1]
1: // GENERATE FORBIDDEN REGIONS WITH RESPECT TO LOWER BOUND l

2: for i ← 0 to k − 1 do
3: ∀j ∈ [0, i) : f [i]. min[j] ← lj ; f [i]. max[j] ← lj
4: f [i]. min[i] ← xi; f [i]. max[i] ← li − 1
5: ∀j ∈ [i + 1, k) : f [i]. min[j] ← xj ; f [i]. max[j] ← xj

6: end for
7: // GENERATE FORBIDDEN REGIONS WITH RESPECT TO UPPER BOUND u

8: for i ← 0 to k − 1 do
9: ∀j ∈ [0, i) : f [k + i]. min[j] ← uj ; f [k + i]. max[j] ← uj

10: f [k + i]. min[i] ← ui + 1; f [k + i]. max[i] ← xi

11: ∀j ∈ [i + 1, k) : f [k + i]. min[j] ← xj ; f [k + i]. max[j] ← xj

12: end for
13: return f

Algorithm 2. Generates the 2 · k forbidden regions wrt. variables x0, x1, . . . , xk−1 associated
with the constraint 〈l0, l1, . . . , lk−1〉 ≤lex 〈x0, x1, . . . , xk−1〉 ≤lex 〈u0, u1, . . . , uk−1〉.

4 Integrating Symmetries within the Non-overlapping Constraint

We just saw how to aggregate forbidden regions coming from a lex-chain and a set of
non-overlapping constraints. This section shows how to combine these two types of
constraints more intimately in order to perform more deduction.

4.1 Deriving Bounds from the Interaction of the Chain of Lexicographic
Ordering and Non-overlapping Constraints: The Monomorphic Case

We first consider the case of n orthotopes {oj | 0 ≤ j < n} corresponding to a
given fixed orientation s subject to non-overlapping as well as lex-chain.4 In this con-
text, we provide a lower bound low j and an upper bound upj for the origin of each
orthotope, wrt. both constraints. Let S[i] denote the size of the placement space in di-
mension i (0 ≤ i < k). Furthermore, let us denote by O[0..k − 1] and P [0..k − 1]
the points respectively defined by O[i] = min(o0.x[i], o1.x[i], . . . , on−1.x[i]) and by

P [i] = max(o0.x[i], o1.x[i], . . . , on−1.x[i]) + s.l[i]. We have low j ≤lex oj .x ≤lex
upj , 0 ≤ j < n, where:

low j [i] = O[i] +

⎢⎢⎢⎣ j mod (
∏p=k−1

p=i � S[p]
s.l[p]�)∏p=k−1

p=i+1 �
S[p]
s.l[p]�

⎥⎥⎥⎦ · s.l[i] (0 ≤ i < k) (1)

upj [i] = P [i] −

⎢⎢⎢⎣ (n − 1 − j) mod (
∏p=k−1

p=i � S[p]
s.l[p]�)∏p=k−1

p=i+1 �
S[p]
s.l[p]�

⎥⎥⎥⎦ · s.l[i]− s.l[i] (0 ≤ i < k)

(2)

4 In practice, this occurs in placement problems involving several occurrences of a given ortho-
tope with the same fixed orientation.
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The intuition behind formula (1)5 in order to find the lower bound of the jth object
in dimension i is:

– First, fill complete slices wrt. dimensions i, i + 1, . . . , k − 1 (such a complete slice
involves

∏p=k−1
p=i � S[p]

s.l[p]� objects),

– Then, with the remaining objects to place (i.e., j mod (
∏p=k−1

p=i � S[p]
s.l[p]�) objects),

compute the number of complete slices wrt. dimensions i + 1, i + 2, . . . , k − 1

(i.e.,

⌊
j mod (

∏p=k−1
p=i � S[p]

s.l[p] �)∏p=k−1
p=i+1 � S[p]

s.l[p] �

⌋
slices) and multiply this number by the length of a

slice (i.e., s.l[i]).

4.2 Deriving Bounds from the Interaction of the Chain of Lexicographic
Ordering and Non-overlapping Constraints: The Polymorphic Case

We now consider the case of n identical orthotopes {oj | 0 ≤ j < n}, again subject
to non-overlapping as well as lex-chain. In this context, we provide three incompara-
ble lower and upper bounds for the origin of each object. The first bound is based on
the bound previously introduced. It simply consists in reducing the box sizes to their
smallest values. For the second and third bounds, instead of reducing the sizes of a box
to its smallest size, we decompose a box into n� smaller identical boxes that all have
the same size � in the different dimensions.6 Assume that we want to find the lower
bound for box oj . The idea is to saturate the placement space with n� · (j + 1) boxes by
considering the least significant dimension first and by starting at the lower left corner
of the placement space. Then we subtract from the last end corner the different sizes of
oj in decreasing order (i.e., for the most significant dimension we subtract the largest
size).7 In the context of an upper bound, the idea is to saturate the placement space with
n� · (n − j) − 1 small boxes by considering the least significant dimension first and by
starting at the upper right corner of the placement space. Then we subtract � from the
last end corner of the (n� · (n− j))th smallest box. Based on the preceding formulas we
obtain the following bounds. Without loss of generality, we assume that s.l are sorted
in decreasing order. A box can be decomposed into n� =

∏k−1
d=0�

s.l[d]
� � cubes of size �

with possibly some loss. We have8

low j [i] = O[i] +

⌊
((j + 1) · n� − 1) mod (

∏p=k−1
p=i �S[p]

� �)∏p=k−1
p=i+1 �

S[p]
� �

⌋
· � + � − s.l[i] (3)

upj [i] = P [i] −
⌊

((n − j) · n� − 1) mod (
∏p=k−1

p=i �S[p]
� �)∏p=k−1

p=i+1 �
S[p]

� �

⌋
· � − � (4)

5 Formula (2) is obtained in a similar way. The proof is available in [7].
6 � takes its value between 1 and the smallest size of the box we consider (i.e., 1 ≤ � ≤
min{s.l[i] | 0 ≤ i < k}).

7 In Figures 2 and 3, diagonal lines depict this subtraction.
8 The proof is available in [7].
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Fig. 2. Computing the lower (A) and upper (B) bounds of a set of rectangles for the second bound
with � = min(4, 3) for the polymorphic case
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Fig. 3. Computing the lower (A) and upper (B) bounds of a set of rectangles for the second bound
with � = gcd(4, 3) for the polymorphic case

In practice it is not clear which value of � provides the best bound. Therefore, we cur-
rently restrict ourselves to the values s.minl and gcd(s.l[0], s.l[1], . . . , s.l[k − 1]). The
bounds obtained with these two values are incomparable. Figures 2 and 3 respectively
illustrate this second bound for placing a set of 5 rectangles for which the orientation
sizes form the multiset {{3, 4}}within a big rectangle of size 10×9 with � = min(4, 3)
and � = gcd(4, 3).

5 Integrating Symmetries within the Cumulative Constraint

We have already shown how to combine a lex-chain and a non-overlapping constraint.
But, in the context of a non-overlapping constraint, the cumulative constraint is a well
known necessary condition [4]. This section shows how to directly integrate the fact
that we have a lex-chain constraint within two well known filtering algorithms of the
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cumulative constraint: filtering wrt. the compulsory part profile [8] and filtering wrt.
task intervals [9].

5.1 Handling Symmetries in the Context of the Compulsory Part Profile

Let us first recall the notion of compulsory part profile, which will be used throughout
this section. In the context of the cumulative constraint, the compulsory part of a task
t corresponds to the intersection of all feasible schedules of t. As the domain of the
start of task t gets more and more restricted the compulsory part of t will increase until
becoming a schedule of task t. The compulsory part of a task t can be directly computed
by making the intersection between the earliest start and the latest end of task t. The
compulsory part profile associated with the tasks T of a cumulative constraint is the
cumulated profile of all compulsory parts of tasks of T .

In the context of non-overlapping constraints, many search strategies [10] try to first
fix the coordinates of all objects in a given dimension d before fixing all the coordinates
in the other dimensions.9 But now, if we don’t take care of the interaction between the
cumulative and lex-chain constraints, we can have a huge compulsory part profile which
will be totally ignored by the lex-chain constraint. The following illustrative example
will make things clear.

Example 2. Assume that we have to place 8 squares of size 2 × 2 within the bounding
box [0, 9]× [0, 3] (i.e., in the context of cumulative, 0 and 9+1 respectively correspond
to the earliest start and the latest end, while 4 is the resource limit). In addition, assume
that the compulsory part profile in the most significant (wrt. ≤lex) dimension of the
placement space corresponds to the following 3 consecutive intervals [0, 3], [4, 5] and
[6, 9] of respective heights 0, 2 and 0.10 If there is no interaction between this cumula-
tive constraint and the lexicographic ordering constraint that states that the eight 2 × 2
squares should be lexicographically ordered, then we get the following domain reduc-
tions: The earliest start of the first two squares of the lexicographic ordering is 0, the
earliest start of the third and fourth squares is 2, the earliest start of the fifth and sixth
squares is 4, and the earliest start of the last two squares is 6. This is obviously an under-
estimation since, because of the compulsory part profile of the cumulative constraint,
we can start at most one single square at instant 4.

In the context of a cumulative constraint, we now show how to estimate the earliest
start in the most significant dimension (msd) of each orthotope of a lex-chain constraint
according to an existing compulsory part profile.11 To each orthotope o corresponds a
task t for which the origin, the duration and the height are respectively the coordinate of
o in the msd, the size of o in the msd, and the product of the sizes of o in the dimensions
different from the msd. Now, the idea is to simply consider the orthotopes in increasing
lexicographic order and to find out for each corresponding task its earliest possible start

9 In the benchmarks presented in Section 6, this is the case e.g. for the heuristic used for the
monomorphic Partridge problem.

10 The compulsory part corresponding to interval [4, 5] does not correspond to the 8 squares to
place, for it comes from another fixed object.

11 The same idea can be used for estimating the latest end in the msd.
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on the msd. The following condition is checked for testing whether a start is feasible or
not: When added to the cumulative profile, the maximum height should not exceed the
resource limit.12

4

9876543210

1 6 8

4 7

3

52

By reconsidering Example 2, this idea is illustrated
on the right hand side, estimating the minimum value
of the coordinates in the msd of eight squares of size
2. The squares are successively placed at their earliest
possible start according to the compulsory part pro-
file. Consequently, the minimum values of the coor-
dinates in the most significant dimension of squares
1, 2, . . . , 8 equal respectively 0, 0, 2, 2, 4, 6, 6 and 8 (and not to 0, 0, 2, 2, 4, 4, 6 and 6
as before).

5.2 Handling Symmetries in the Context of Task Intervals

In the context of the cumulative constraint, task interval methods prevent the overuse as
well as the underuse of intervals derived from the earliest start and the latest end of the
tasks to schedule. This section focuses on the problem of pruning the origin of the tasks
of the cumulative constraint so that we don’t lose too much space within a given fixed
interval according to the fact that we have an ordering on the origin of identical tasks.13

For this purpose, consider the set of all identical tasks T of duration d and height h, an
interval [inf, sup) and the height gap of free space on top of the interval, and the slack
σ of the interval (i.e., the maximum allowed unused space of the interval). For a given
set of tasks S, let overlap(S) denote the sum of the maximum overlap of the tasks in
S. To find out whether or not t ∈ T must intersect [inf, sup), the task intervals pruning
rule makes the test:

(sup− inf) · gap − (overlap(T ) − overlap({t})) > σ (5)

If this test succeeds, we know that t must overlap the free space of [inf, sup) to some
extent. Specifically, t must then overlap the free space of [inf, sup) at least by

(sup− inf) · gap − (overlap(T ) − overlap({t})) − σ

which means that t must intersect in time [inf, sup) at least by:⌈
(sup− inf) · gap − (overlap(T ) − overlap({t})) − σ

d

⌉
This can be strengthened in the presence of symmetries. Assume a partial order �

over the start times of the tasks T implied by a lex-chain constraint. Assume moreover
that ti �= tj ∈ T are tasks such that ti � tj . Then the positionings of ti and tj wrt.
interval [inf, sup) are in fact not independent:

12 The resource limit equals the product of the sizes of the placement space in the dimensions
different from the msd.

13 Such an ordering exists for the cumulative constraint associated with the msd of the lexico-
graphic ordering constraint.
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– if tj is assumed to end strictly before the interval [inf, sup), then ti must also be
assumed to end strictly before [inf, sup); and

– if ti is assumed to start strictly after the interval [inf, sup), then tj must also be
assumed to start strictly after [inf, sup).

Considering now the chain t1 � · · · � tn and assuming that t is the ith task ti of
this chain, we split the pruning rule above into two cases: the first case corresponding to
the tasks t1, . . . , ti−1 not succeeding ti; and the second case corresponding to the tasks
ti+1, . . . , tn not preceding ti.

For the first case, since each of the tasks t1, . . . , ti−1 must not succeed ti, assuming
that ti ends before [inf, sup) implies that the tasks t1, . . . , ti−1 must also end before
[inf, sup). Hence, the test (5) can be strengthened to:

(sup− inf) · gap − (overlap(T ) − overlap({t1, . . . , ti})) > σ (6)

If this test succeeds, we know that all the tasks t1, . . . , ti must overlap the free space of
[inf, sup) at least by:

(sup− inf) · gap − (overlap(T ) − overlap({t1, . . . , ti})) − σ (7)

Now, since we wish to prune ti, this must be translated into how far into [inf, sup)
we must force ti so that the remaining tasks may overlap the free space of [inf, sup)
enough. This can be calculated in two steps as follows:

– STEP 1: Calculate the largest number dfill of columns of maximum height and
width d, covering part of but not more than the free space of [inf, sup).

– STEP 2: Calculate the smallest number unitfill of columns of maximum height and
width 1, covering the remaining free space of [inf, sup).

We use tofill to denote the value (7). STEP 1 can be calculated by:

α ← min
(⌊

gap
h

⌋
, i
)

[largest number of stacked tasks]

β ←
⌊

tofill
α·h
⌋

[largest number of unit-size columns]

dfill ←
⌊

β
d

⌋
[largest number of d-size columns]

Given this, the remaining free space of [inf, sup) is:

restfill = tofill − dfill · α · d · h
When restfill > 0, STEP 2 can then be calculated by:

γ ← min(i − dfill · α, α) [largest number of stacked tasks still available]

unitfill ←
⌈

restfill
h·γ

⌉
[smallest number of unit-size columns]

Now, given the values dfill and unitfill , to overlap the free space of [inf, sup) by at
least the value (7), the start time of ti must be at least inf +(dfill − 1) · ti.d + unitfill .
An example of this method can be found in [7].
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6 Performance Evaluation

All the new filtering methods described in this paper were integrated into our geost ker-
nel [3] in order to strengthen the sweep-based filtering for non-overlapping constraints.
The experiments were run in SICStus Prolog 4 compiled with gcc version 4.1.0 on a
3GHz Pentium IV with 1MB of cache.

We ran two benchmarks, Scale and KLS, seeking to evaluate the performance gain
of domination in greedy execution mode, where the constraint tries to assign all vari-
ables in a single run, and simply fails if it cannot. Note that this greedy mode fits well
inside a tree search based procedure: at every node of the search tree, a greedy step
can be attempted in order to solve the problem in one shot, and if it fails, a normal
propagation and branching step can be done. Three benchmarks, Conway, Partridge
and Pallet were run in normal propagation mode, under tree search. The symmetry that
stems from multiple pieces of the same shape is broken by imposing a lexicographic or-
der on their origins. The purpose here was to compare the performance of treating these
lexicographic ordering constraints inside non-overlapping and cumulative as opposed
to posting them separately. Since this is not a paper on heuristics, the exact models and
search procedures are probably of little interest, and are only given in the corresponding
code of the benchmarks in Appendix B of [7]. We now describe the five benchmarks
and the results, which are shown in Table 1.

Scale. As in [3], we constructed a set of loosely constrained placement problems
(i.e., 20% spare space), generating one set of random problem instances of m ∈
{210, 211, . . . , 222} 2D items involving t ∈ {1, 16, 256, 1024} distinct shapes. The re-
sults indicate that domination brings the time complexity down from roughly O(m2)
to virtually O(m). The results also show that the speedup gained by domination goes
down as the number of distinct shapes goes up. In the larger instances, the total number
of items vastly outnumbers the number of distinct shapes. With domination, we could
now pack 222 2D items of 1024 distinct shapes (over 8 million domain variables) in
four CPU minutes, an improvement by more than two orders of magnitude over [3].

KLS. To evaluate the greedy mode in a setting involving side-constraints in addition
to non-overlapping, we studied the problem of packing a given number of 3D items
into containers, with the objective to minimize the number of containers required. The
containers all have the same size and weight capacity, whereas the items come in 59
different shapes and weights. The items cannot overlap and must be fully inside some
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container. The total weight of the items inside a
given container must not exceed the weight capac-
ity. Also, some items must be placed on the con-
tainer floor, whereas other items cannot be placed
underneath any other item. The whole problem
can be modeled as a single 6D geost constraint.
We ran 25 instances of different size; see the fig-
ure on the right hand side. The largest instance,
with 16486 items, was solved in 35 seconds with
domination and 1284 seconds without.
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Table 1. Top: Scale for 2D items, with domination on and off. Center: Results for Conway and
Partridge. Bottom left: An instance pallet(x, y, a, b, n, h) denotes the task of packing h pieces
of shape a × b and n − h pieces of shape b × a into a placement space of shape x × y. Bottom
right: Polymorphic variants of the same instances, where the parameter h has been left free.
lex-chain constraints are treated inside geost in columns marked lex in and posted separately in
columns marked lex out. All runtimes (ms) and backtrack counts are for finding the first solution.

m t = 1 t = 16 t = 256 t = 1024
dom on dom off dom on dom off dom on dom off dom on dom off

1024 20 100 30 120 50 120 120 150
2048 60 310 50 410 90 370 210 400
4096 90 1160 100 1480 170 1270 380 1320
8192 220 4640 230 5780 360 5030 780 5170

16384 400 18060 450 19010 710 19990 1550 20270
32768 890 71210 910 73230 1410 77340 3050 77200
65536 1650 279480 1880 300540 2920 296650 6100 299510

131072 3590 1118410 3760 1177900 5910 1188740 10280 1186030
262144 7020 4488510 7980 4812300 12020 4758390 25280 4746410
524288 17100 22671540 18000 23210070 29210 23553550 58910 23512450
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m for t=1024

dom on
dom off

backtracks runtime
lex in lex out lex in lex out

conway(5,5,5) 6658 10192 11890 12850
partridge(8,1) 565 853 6400 3460
partridge(9,1) 27714 63429 347100 367050
partridge(10,1) 683643 1265284 15160080 9154320
partridge(11,1) 80832 189797 2009150 1964130
partridge(12,1) 790109 1676827 37850240 24203920
partridge(6,3) 7122 20459 13680 29610

monomorphic polymorphic
backtracks runtime backtracks runtime

lex in lex out lex in lex out lex in lex out lex in lex out
pallet(26,19,5,2,49,30) 0 0 130 110 8 8 180 90
pallet(28,17,5,2,47,25) 184 325 570 320 398 433 660 360
pallet(29,20,4,3,48,28) 664 1419 1890 1300 9767 14457 22500 14870
pallet(30,17,4,3,42,18) 778 1580 2380 1290 19807 28015 28190 20130
pallet(30,19,7,2,40,24) 74 115 190 140 19 81 150 90
pallet(31,19,7,2,41,24) 20544 73695 34190 57840 728743 932846 666010 506730
pallet(32,17,7,2,38,20) 491 850 630 660 159 172 310 140
pallet(33,17,7,2,39,20) 8129 26644 13300 26030 390539 567304 366320 286930
pallet(33,19,7,2,44,30) 3556 34778 9690 23450 789894 1460451 689080 743530
pallet(33,22,5,3,48,24) 41 54 220 160 65 73 290 140
pallet(34,17,5,3,38,24) 0 268 90 170 425 900 390 380
pallet(36,34,7,4,43,25) 14030 28855 25830 16800 33874 41648 66520 42220
pallet(37,19,7,2,49,33) 96 136 240 160 113 215 260 170
pallet(38,26,5,4,49,29) 6141 12830 14880 10910 39486 52787 75450 46530
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Conway. The problem consists in placing 6 pieces of shape 4×2×1, 6 pieces of shape
3 × 2 × 2 and 5 unit cubes within a 5 × 5 × 5 cube. All pieces can be rotated freely.

Partridge. The problem consists in tiling a square of size n·(n+1)
2 by 1 square of size 1,

2 squares of size 2, . . . , n squares of size n. It was initially proposed by R. Wainwright.14

We tried the instances n = 8, . . . , n = 12. Note that, to our best knowledge, this is the
first reported solution for n = 12. We also tried a polymorphic variant of the problem:
tile a rectangle of size 21 × 63 by 1 rectangle of size 1 × 3, 2 rectangles of size 2 × 6,
. . . , 6 rectangles of size 6 × 18, where all rectangles can be rotated.

Pallet. The problem consists in placing a given number of identical, non-overlapping,
rectangular pieces of a given size onto a rectangular pallet, also of a given size. We
selected several instances from D. Lobato’s data sets15 and ran two variants of each in-
stance: (i) a polymorphic variant, with 90 degrees rotation allowed, and (ii) a monomor-
phic variant with the number of horizontal vs. vertical pieces fixed.

Evaluation of methods. We ran the last three benchmarks in versions where only one
given method at a time was switched on. For reasons of space we cannot present the
full results; instead, we summarize the findings. First, we found that for monomor-
phic benchmarks, integration of symmetries into cumulative was more effective than
integration into non-overlapping, but for polymorphic benchmarks, it was the other
way around. Finally, integration into non-overlapping had the highest runtime over-
head among the methods. Integration into task intervals was the least effective among
the methods, but had a very low overhead.

7 Conclusion

For the first time, symmetry breaking has been fully integrated into the filtering algo-
rithms of global constraints. This was done in two contexts:

(a) Real-life placement problems tend to involve many more objects to place than dis-
tinct shapes. They can be too large to solve solely with constructive search. The
ability to perform a greedy assignment, possibly with a limited amount of search,
staying inside a constraint programming framework, can be crucial to solving such
problems. By using the fact that many objects are of the same shape, we showed
that the complexity of such a greedy assignment in the context of a sweep algorithm
can go down from O(n2) to virtually O(n) for n objects.

(b) We identified and exploited four ways of handling symmetry breaking lex-chain
constraints inside a non-overlapping or cumulative constraint. Our results show that
the tight integration saves search effort but not necessarily CPU time: slowdown up
to 2 times, but also sometimes speedup up to 2.5 times, was observed.

Finally, we found the first reported solution to partridge(12,1).

14 See http://mathpuzzle.com/partridge.html
15 See http://lagrange.ime.usp.br/˜lobato/packing/

http://mathpuzzle.com/partridge.html
http://lagrange.ime.usp.br/~lobato/packing/
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7. Ågren, M., Beldiceanu, N., Carlsson, M., Sbihi, M., Truchet, C., Zampelli, S.: Six ways of in-
tegrating symmetries within non-overlapping constraints. SICS Technical Report T2009:01,
Swedish Institute of Computer Science (2009)

8. Lahrichi, A.: Scheduling: the notions of hump, compulsory parts and their use in cumulative
problems. C.R. Acad. Sci., Paris 294, 209–211 (1982)

9. Caseau, Y., Laburthe, F.: Cumulative scheduling with task intervals. In: Joint International
Conference and Symposium on Logic Programming (JICSLP 1996). MIT Press, Cambridge
(1996)

10. Simonis, H., O’Sullivan, B.: Search strategies for rectangle packing. In: Stuckey, P.J. (ed.)
CP 2008. LNCS, vol. 5202, pp. 52–66. Springer, Heidelberg (2008)

http://www.klsoptim.com/
http://www.emn.fr/x-info/sdemasse/gccat/Clex_between.html


Throughput Constraint for Synchronous Data
Flow Graphs

Alessio Bonfietti, Michele Lombardi, Michela Milano, and Luca Benini

DEIS, University of Bologna
V.le Risorgimento 2, 40136, Bologna, Italy

Abstract. Stream (data-flow) computing is considered an effective para-
digm for parallel programming of high-endmulti-core architectures for em-
bedded applications (networking, multimedia, wireless communication).
Our work addresses a key step in stream programming for embedded mul-
ticores, namely, the efficient mapping of a synchronous data-flow graph
(SDFG) onto a multi-core platform subject to a minimum throughput re-
quirement. This problem has been extensively studied in the past, and its
complexity has lead researches to develop incomplete algorithms which
cannot exclude false negatives. We developed a CP-based complete algo-
rithm based on a new throughput-bounding constraint. The algorithm has
been tested on a number of non-trivial SDFG mapping problems with
promising results.

1 Introduction

The transition in high-performance embedded computing from single CPU plat-
forms with custom application-specific accelerators to programmable multi pro-
cessor systems-on-chip (MPSoCs) is now a widely acknowledged fact [3,4]. All
leading hardware platform providers in high-volume applications areas such as
networking, multimedia, high-definition digital TV and wireless base stations are
now marketing MPSoC platforms with ten or more cores and are rapidly mov-
ing towards the hundred-cores landmark [5,6,7]. Large-scale parallel program-
ming has therefore become a pivotal challenge well beyond the small-volume
market of high-performance scientific computing. Virtually all key markets in
data-intensive embedded computing are in desperate need of expressive program-
ming abstractions and tools enabling programmers to take advantage of MPSoC
architectures, while at the same time boosting productivity.

Stream computing based on a data-flow model of computation [8,9] is viewed
by many as one of the most promising programming paradigms for embedded
multi-core computing. It matches well the data-processing dominated nature of
many algorithms in the embedded computing domains of interest. It also offers
convenient abstractions (synchronous data-flow graphs) that are at the same
time understandable and manageable by programmers and amenable to auto-
matic translation into efficient parallel executions on MPSoC target platforms.
Our work addresses one of the key challenges in the development of programming
tool-flow for stream computing, namely, the efficient mapping of synchronous
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data-flow graphs (SDFG) onto multi-core platforms. More in detail, our objec-
tive is to find allocations and schedules of SDFG nodes (also called actors or
tasks) onto processors that meet throughput constraints or maximize through-
put, which can be informally defined as the number of executions of a SDFG in
a time unit. In particular, an allocation is an unique association between actors
and processors and a schedule is a static order between actors running on the
same processor. Meeting a throughput constraint is often the key requirement
in many embedded application domains, such as digital television, multimedia
streaming, etc.

The problem of SDFG mapping onto multiple processors has been studied
extensively in the past. However, the complex execution semantic of SDFGs on
multiple processors has lead researchers to focus only on incomplete mapping al-
gorithms based on decomposition [12] [14]. Allocation of actors onto processors is
first obtained, using approximate cost functions such as workload balancing [12],
and incomplete search algorithms. Then the throughput-feasible or throughput-
maximal scheduling of actors on single processors is computed, using incomplete
search techniques such as list scheduling [8]. The reason for the use of incom-
plete approaches is that both computing an optimal allocation and an optimal
schedule is NP-hard.

Our approach is based on Constraint Programming and tackles the overall
problem of allocating actors to processors and schedule their order such that a
throughput constraint is satisfied; hence we avoid the intrinsic loss of optimality
due to the decomposition of the problem into two separated stages. In fact,
our method is complete, meaning that it is guaranteed to find a feasible or an
optimal solution in case it exists. The core of the approach is a novel throughput
constraint, based on the computation of the maximum cycle mean over a graph
that is modified during search according to allocation and scheduling decisions.
To our knowledge this is the first time a throughput constraint is implemented
into a CP language. We have evaluated the scalability of our code on three sets
of realistic instances: cyclic, acyclic and strongly connected graphs. The second
set of instances is quite difficult and scales poorly, while the first and third sets
scale well. We can solve instances up to 20-30 nodes in the order of seconds for
finding a feasible solution and in the order of few minutes for proving throughput
optimality.

2 Preliminaries on SDFG and HSDFG

Synchronous Dataflow Graphs (SDFGs) [1] are used to model multimedia appli-
cations with timing constraints that must be bound to a Multi Processor System
on Chip. They allow modeling of both pipelined streaming and cyclic dependen-
cies between tasks. To test the performances of an application on a platform,
one important parameter is the throughput. In the following we provide some
preliminary notions on synchronous data flow graphs used in this paper.

Definition 1. An SDFG is a tuple (A,D) consisting of a finite set A of actors
and a finite set D of dependency edges. A dependency edge d = (a,b, p,q,tok)
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Fig. 1. (A) An example of SDFG; (B) the corresponding equivalent HSDFG

denotes a dependency of actor b on a. When a executes it produces p tokens on d
and when b executes it removes q tokens from d. Edge d may also contain initial
tokens. This number is notated by tok.

Actor execution is defined in terms of firings. An essential property of SDFGs
is that every time an actor fires it consumes a given and fixed amount of tokens
from its input edges and produces a known and fixed amount of tokens on its
output edges. These amounts are called rates. The SDFG illustrated in figure
1A presents initial token on edges (A,A) and (C,B) with tok values respectively
1 and 3. The rates on the edges determine how often actors have to fire w.r.t.
each other such that the distribution of tokens over all edges is not changed.
This property is captured in the repetition vector.

Definition 2. A repetition vector of an SDFG=(A,D) is a function γ : A→ N
such that for every edge (a, b, p, q, tok) ∈ D from a ∈ A to b ∈ A, pγ(a) = qγ(b).
A repetition vector q is called non-trivial if ∀a ∈ A, γ(a) > 0.

The SDFG reported in figure 1A has three actors. Actor A has a dependency
edge to itself with one token on it. It means that the two firings of A cannot be
executed in parallel because the token on the edge (A,A) forces the sequential
execution of the actor A. Also, each time A executes it produces one token that
can be consumed by B. Each time B executes it produces 3 tokens while C
consumes 2 tokens. Also when C executes it produces 2 tokens while C requires
3 tokens to fire. Thus, every 2 executions of B correspond to 3 executions of C.
This is captured in the repetition vector reported in figure 1A. Concerning initial
tokens, they both define the order of actor firings and the number of instances
of a single actor simultaneously running. For example, at the beginning of the
application, A only can start (as there are tokens enough on each ingoing arc).
A will be then followed by B and then C.

An SDFG is called consistent if it has a non-trivial repetition vector. The
smallest non-trivial repetition vector of a consistent SDFG is called the repeti-
tion vector. Consistency and absence of deadlock are two important properties
for SDFGs which can be verified efficiently [2], [11]. Any SDFG which is not
consistent requires unbounded memory to execute or deadlocks, meaning that
no actor is able to fire. Such SDFGs are not useful in practice. Therefore, we
focus on consistent and deadlock free SDFGs.
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Throughput is an important design constraint for embedded multimedia sys-
tems. The throughput of an SDFG refers to how often an actor produces an
output token. To compute throughput, a notion of time must be associated with
the firing of each actor (i.e., each actor has a duration also called response time)
and an execution scheme must be defined. We consider as execution scheme the
self timed execution of actors: each actor fires as soon as all of its input data
are available (see [11] for details). In a real platform self timed execution is
implemented by assigning to each processor a sequence of actors to be fired in
fixed order: the exact firing times are determined by synchronizing with other
processors at run time.

SDFGs in which all rates associated to ports equal 1 are called Homogeneous
Synchronous Data Flow Graphs (HSDFGs, [1]). As all rates are 1, the repetition
vector for an HSDFG associates 1 to all actors. Every SDFG G = (A,D) can
be converted to an equivalent HSDFG GH = (AH,DH), by using the conversion
algorithm in [2], sec. 3.8. In figure 1B we report the HSDFG corresponding to the
SDFG in figure 1A. For each node in the SDFG we have a number of nodes in the
HSDFG equal to the corresponding number in the repetition vector. Equivalence
means that there exists a one-to-one mapping between the SDFG and HSDFG
actor firings, therefore the two graphs have the same throughput. The fastest
method to compute the throughput of an HSDFG is the use of the maximum
cycle mean (MCM) algorithm [2], as the throughput is 1/MCM . In the context
of SDFGs, the cycle mean of a cycle C is the total computation time of actors in
C divided by the number of tokens on the edges in C; the maximum cycle mean
for an SDFG is also known as iteration period. Clearly longer cycles influence
the throughput more than shorter ones.

The problem we face in this paper is the following: given a multiprocessor
platform with homogeneous processors we have to allocate each actor to a pro-
cessor and to order actors on each processors such as all precedence constraints
and the throughput constraints are met. Both the allocation and the schedule are
static, meaning that they remain the same over all the iterations. In this paper
we assume negligible delay associated to inter-processor communication and a
uniform memory model for the processors. This models fits well the behavior of
a cache-coherent, shared memory single-chip multiprocessor, such as the ARM
MPCore [18].

3 Related Work

The body of work on SDFG mapping is extensive and covers more than two
decades, starting from the seminal work by Lee and Messerschmitt [10]. Hence,
a complete account of all related contributions is not possible in this paper.
The interested reader is referred to [2] for an excellent, in-depth survey of the
topic. Here we focus on categorizing the two main classes of approaches taken
in the past, summarizing state-of-the-art and putting them in perspective with
our work.

The first class of approaches, pioneered by the group lead by E. Lee [11]
and extensively explored by many other researchers [2], can be summarized
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as follows. A SDFG specification is first checked for consistency, and its non-
null repetition vector is computed. The SDFG is then transformed, using the
algorithm described in [2] into a HSDFG. The HSDFG is then mapped onto
the target platform in two phases. First, an allocation of HSDFG nodes onto
processors is computed, then a static-order schedule is found for each proces-
sor. The overall goal is to maximize throughput, given platform constraints.
Unfortunately, throughput depends on both allocation and scheduling, but in
this approach scheduling decisions are postponed to a second phase. Hence, an
approximate cost function is used to drive allocation decisions: for instance, a
bin-packing heuristic aiming at balancing processor workload is proposed in [12].
After allocation, scheduling is reduced to a set of single-processor actor ordering
decisions. Scheduler implementation issues mandate for static orders, which are
decided off-line. This is however not an easy problem to solve either, as through-
put depends on the order of execution of actors and we have an exponential
blowup of the solution space. Incomplete search strategies are used, such as list
scheduling, driven by a priority function related to throughput. For instance,
high priority can be given to actors which belong to long cycles in the HSDFG
and therefore have most probably more impact on the throughput [2].

The second class of approaches computes mapping and scheduling directly
on the SDFG, without a preliminary HSDFG transformation [13]. This has the
main advantage to avoid potential blow-up in the number of actors, which can
happen for SDFGs with highly un-balanced rates with a large minimum common
multiple. Unfortunately, there is no known way to analytically compute through-
put for a generic SDFG with scheduling and allocation, hence these approaches
resort to heuristic cost functions to generate promising solutions, and then com-
pute the actual throughput by performing state-space exploration on the SDFG
with allocation end scheduling information until a fixed point is reached [14].
This process is quite time consuming. Furthermore, even though the throughput
computation via state-space exploration is accurate, there is no guarantee that
the solutions generated by the heuristic search are optimal.

The incomplete approaches summarized above obviously cannot give any
proof of optimality. Our work aims at addressing this limitation, and it pro-
poses a complete search strategy which can compute max-throughput mappings
for realistic-size instances. Our starting point is a HSDFG, which can be ob-
tained from a SDFG by a pseudo-polynomial transformation. The analysis of
complete search strategies starting directly from a generic SDFG, without HS-
DFG transformation, will be subject of future work.

4 Scheduling and Allocation as a Constraint Problem

Due to the cyclic nature of the problem, a scheduling approach deciding the
starting time of optional activities running on alternative unary resources has
to cope with the transition phase which always appears at execution time be-
fore the application becomes periodic (enabling throughput computation). A
classical solution is to schedule over time several iterations of the HSDFG until
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Fig. 2. The HSDFG corresponding to the SDFG of figure

the periodic phase is reached, with a possibly drastical increase of the num-
ber of actors. We therefore opted for an alternative approach, somehow similar
to Precedence Constraint Posting techniques [20], and devised an order-based,
rather than time-based model. Our approach relates to [13] in that the basic idea
is to model the effects of design choices by means of modifications to the graph.
Consider for example the HSDFG in figure 2A, where all rates are assumed to
be one and actors A,D are mapped on one processor, while actors B, C and E on
another. From the fact that no more than one task can execute on a processor
at the same time, it also follows that two instances of the same task cannot run
simultaneously: this can be modeled by adding an auto-cycle to each actor, as
depicted in figure 2B where the added arcs are dotted.

Moreover, actors mapped on the same processor must be mutually exclusive:
this is captured by adding arcs to create a cycle between each pair of non depen-
dent tasks with the same mapping; note this requires adding one arc for the (A,
D) and (B, E) pairs in figure 2B and two arcs for the (B, C) and(C, E) pairs.
In order to avoid deadlocks a token must be placed for each of these cycles:
while the choice is forced for the (A, D) and (B, E) pair, both arcs are suitable
for (B, C), (C, E), as hinted by the empty circles in figure 2B. Choosing the
placement of those tokens amounts to take scheduling decisions: for example in
figure 2C the order B, C, E was chosen. Note the presence of the edge (B,E) is
not necessary, since the path from B to E (B,D,E ) implies that the execution
of actor E depends on the execution of B.

The main advantage with this approach is that a standard throughput com-
putation algorithm can be used (almost) off the shelf to evaluate the effect of
each design decision. We therefore devised a two layer CP model; on one level
the model features two sets of decision variables, respectively representing the
processor each actor is mapped to and the scheduling/ordering decisions, and on
another level a set of graph description variables. Let n be the number of actors
in the input HSDFG and let p be the number of processor in the platform, then
the decision variables are:

∀i = 0 . . . n− 1 : PROCi ∈ [0..p− 1] ∀i = 0 . . . n− 1 : NEXTi ∈ [−1..n− 1]

whereas the (dynamically changing) graph structure is described via a matrix
of binary variables Yij ∈ [0, 1] such that Yij = 1 iff an arc from ai to aj ex-
ists. Note that the token positioning is implicitly defined by the NEXTi variables
and is built on-line only at throughput computation time. The value of NEXTi
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defines the successor of the actor i; the negative value means the lack of a succes-
sor. These variables are connected to allocation decisions and to dependencies
between actors.

Existing arcs in the input HSDFG result in some pre-filling of the Y matrix,
such that Yij = 1 for each arc (ai, aj , 1, 1, tok) in the original graph. Channeling
constraints link decision and graph description variables; in particular, as for the
PROCi variables, the relation depends on whether a path with no tokens exists
in the original graph between two nodes ai, aj . Let us write ai ≺ aj if such path
exists; then, if i �= j and neither ai ≺ aj nor aj ≺ ai:

PROCi = PROCj ⇒ Yij + Yji = 2 (1)

Constraint (1) forces two arcs to be added, if two independent nodes are mapped
to the same processor (e.g. nodes B and C in figure 2B). If instead there is a
path from ai to aj (ai ≺ aj), then the following constraint is posted:⎡⎣(PROCi = PROCj) ∧

⎛⎝ ∑
ak≺ai

(PROCk = PROCi) = 0

⎞⎠ ∧
⎛⎝ ∑

aj≺ak

(PROCk = PROCj) = 0

⎞⎠⎤⎦ ⇒ Yji = 1

The above constraint completes dependency cycles: considering only tasks on
the same processor (first element in the constraint condition), if there is no task
before ai in the original graph (second element) and there is no task after aj in
the original graph (third element), then close the loop, by adding an arc from
aj to ai. Finally, auto-cycles can be added to each node in a pre-processing step
and are not considered here.

The NEXT variables do not affect the graph description matrix; a number
of constraints, however, are used to ensure their semantic consistence. In first
place, dependencies in the input SDFG cannot be violated: thus ai ≺ aj ⇒
NEXTj �= i. Less intuitively, the presence of an arc (ai, aj, 1, 1, tok) with tok = 1
in an HSDFG implies ai to fire always after aj (e.g. A2 and A1 in fig. 2) , and
therefore, NEXTi �= j.

No two nodes can have the same NEXT on the same processor: PROCi =
PROCj ⇒ NEXTi �= NEXTj. Then, a node aj can be next of ai only if they are
on the same processor: PROCi �= PROCj ⇒ NEXTi �= j. The -1 value is given to the
last node of each (non empty) processor:

∀proc :
n−1∑
i=0

(PROCi = proc) > 0 ⇒
n−1∑
i=0

[(PROCi = proc) × (NEXTi = −1)] = 1

Finally, transitive closure on the actors running on a single processor is kept
by posting a nocycle constraint [19] on the related NEXT variables. Standard
tree search is used with minimum size domain as variable selection heuristics.
Symmetry due to homogeneous processors are broken at search time.

4.1 Throughput Constraint

The relation between decision variables and the throughput value is captured in
the proposed model by means of a novel throughput constraint, with signature:

th cst(TPUT, [PROCi], [NEXTi], [Yij],W , T )
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where TPUT is a real valued variable representing the throughput, [PROCi], [NEXTi]
and [Yij] are defined as above, W is a vector of real values such that Wi is the
computation time of actor ai and T is a matrix such that Tij is the number
of initial tokens tok on the arc from ai to aj . Clearly Tij > 0 implies Yij = 1;
note that in this paper we assume Tij = [0, 1]: this is usually true for HSDFG
resulting from conversion of an original SDFG.

We devised a filtering algorithm consistently updating an upper bound on
TPUT (this is sufficient for a throughput maximization problem) and performing
what-if propagation on the NEXT and PROC variables. The filtering algorithm
relies on throughput computation inspired from the algorithms described in [15]
and [16], which in turn are based on Karp’s algorithm (1978). The description
is organized in three steps: steps 1 and 2 describe how to build a HSDFG based
on current search state to obtain a throughput bound, while step 3 focuses on
the computation algorithm.

Step 1 - building the input graph: The input for the throughput computa-
tion is a “minimal” graph built by adding arcs to the original HSDFG based on
current state of the model. More precisely, an arc is assumed to exist between
actors ai and aj iff Yij = 1; unbound Y variables are therefore treated as if they
were set to 0. Note that the computation of a lower bound for the throughput
would require arcs for unbound Y variables as well, thus providing a “maximal”
graph.

Step 2 - Token positioning: Next we construct a dependency graph DG with
the same nodes as the original HSDF graph G, and such that an arc (ai, aj)
exists in DG iff either an arc (ai, aj , 1, 1, 0) exists in G (detected since Yij = 1
and Tij = 0) or NEXTi = j. A token matrix TK is then built, according to the
following rules:

Yij = 0 ⇒ TKij = 0 Yij = 1 ⇒
{

TKij = 0 if ai ≺DG aj

TKij = 1 otherwise

where we write ai ≺DG aj if there is path from ai to aj in DG. This matrix
describes the position of the tokens on the new graph G used for the bound com-
putation. The above rules ensure the number of tokens is over-estimated, until
all NEXT and PROC are fixed. In the actual implementation, the dependency check
is performed without building any graph, while the token matrix TK is actually

Fig. 3. HSDF graph structure and token positioning for throughput computation dur-
ing the search; note the number of tokens between actors C and E is overestimated
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stored in the constraint. Note that considering a suitable under-estimation of the
number of token would be required to compute a throughput lower bound. Fig-
ure 3A shows some assignments of decision variables for the HSDFG in figure 2A
(remaining variables are considered unbound); figure 3B shows the corresponding
arc structure (without autocycles), figure 3C the extracted dependency graph
DG and figure 3D the derived token positioning.

Step 2: Throughput computation: For a HSDFG, the throughput equals
the inverse of a quantity known as the iteration period of the graph and denoted
as λ(HSDFG); formally:

1
th

= λ(HSDFG) = max
C∈HSDF G

W (C)
T (C)

where C is a cycle in the HSDFG, W (C) =
∑

ai∈C Wi is the sum of the execution
time of all actors in C and T (C) =

∑
(ai,aj)∈C TKij is the total number of

tokens on the arcs of C. Intuitively, T (C) can be thought of as the amount of
concurrency which can be exploited on the cycle. In [15] it is shown how to
compute the iteration period as the maximum cycle mean of an opportunely
derived delay graph; Karp’s algorithm is used for the computation. With some
tricks, we show that a maximum cycle mean algorithm can be used to compute
the iteration period directly on a HSDFG.

The basic idea is that, according to Karp’s theorem, the critical loop con-
straining the iteration period can be found by analyzing cycles on the worst case
k-arcs paths (e.g. the longest ones) starting from an arbitrary source. Since no
cycle can involve more than n nodes, considering k-arcs paths with k up to n
is sufficient. Our algorithm shares most of its structure with that proposed in
[16]. Worst case paths are stored in a (n + 1)× n table D; the element on level
(row) k and related to node ai is referred to as Dk(ai) and contains the length
of the k-arcs path P from the source to ai maximizing the quantity W (P )/T (P )
(if any such path exists). Other than D, the algorithm also employs two equally

Algorithm 1. Throughput computation - build D table
1: set all Dk(ai) = −∞, πk(ai) = NIL, τk(ai) = 0
2: Vc = {a0}
3: Vn = ∅
4: D0(a0) = 0
5: for k = 1 to n do
6: for ai ∈ V do
7: for aj ∈ A+(ai) do
8: Vn = Vn ∪ {aj}
9: define TP = max(1, τk(ai) + TKij)
10: define WP = Dk(ai) + Wj

11: if W (P )
T (P ) >

Dk(aj)
τk(aj) then

12: Dk(aj) = WP, τk(aj) = TP, πk(aj) = i
13: end if
14: end for
15: end for
16: find loops on level k
17: Vc = Vn, Vn = ∅
18: end for
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sized tables π and τ , respectively storing the predecessor πk(ai) of node ai and
the number of tokens τk(ai) on the paths.

Pseudo code for the throughput computation is reported in Algorithm 1,
where A+(ai) denotes the set of direct successors of ai. Once the table is initial-
ized (line 1), an arbitrary source node is chosen; in the current implementation
this is the node with minimum index (a0). Note that the choice has no influence
on the method correctness, but a strong impact on its performance, hence the
introduction of a suitable heuristic will be thoroughly considered in the future.

Next, the procedure is primed by setting D0(a0) to 0 (line 4) and adding a0
to the list of nodes to visit V (line 3); then we start to fill levels 1 to n one by
one (lines 6 to 18). For each node in V each successor aj is considered (lines
6, 7), and, if necessary, the corresponding cells in D, π, τ are updated to store
the k-arcs path from a0 to aj (lines 9 to 12); in case of an equality at line 11
the number of tokens is considered. Once a level is filled, loops are detected as
described in Algorithm 2 and then we move to the next k value (line 17). A single

Algorithm 2. Throughput computation - finding loops
1: let k be the starting level on the D table
2: let V be the set of nodes to visit on level k
3: for ai ∈ V do
4: define k′ = k, a′ = ai

5: define WC = Wi, TC = 0
6: repeat
7: define h = index of a′

8: TC = max(1, TC + TKπ
k′ (a′),h)

9: WC = WC + Wπ
k′ (a′)

10: if WC
T C > WC∗

T C∗ then
11: WC = WC∗, TC = TC∗

12: TPUT ≤ W C∗
TC∗

13: end if
14: a′ = aπ

k′ (a′), k = k − 1

15: until a′ = ai ∨ a′ = NIL
16: end for

Fig. 4. Example of table filling (Algorithm 1)
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iteration of the algorithm is sufficient to compute the throughput of a strictly
connected graph; otherwise, the process is repeated starting from the first never
touched node, until no such node exists.

Figure 4 shows the value of all tables at each step when Algorithm 1 is ex-
ecuted on the graph of figure 3; all execution times are assumed to be 1. As
an example, consider the transition between step 1 and 2 in the figure: at level
1 the set Vc of the nodes to be visited contains actors C and D. When C is
visited all its direct successors are processed: when moving from C to B we tra-
verse one more node (WP = D1(C) +WB = 1 + 1) and collect one more token
(TP = τ1(C) + 1 = 0 + 1), hence we set D2(B) = WP = 2, τ2(B) = TP = 1
and the predecessor π2(B) becomes C; similarly, when processing the arc from
C to E, we set D2(E) = 2, τ2(E) = 1, π2(E) = C. Next, actor D is visited;
when processing the arc from D to A we set D2(A) = 2, τ2(A) = 1, π2(A) = D;
the second outgoing arc of D ends in the already visited node E: for this path
WP = 2 and TP = max(1, τ1(D) + 0) = 1, but no token is collected; for this
reason, even if the ratio WP/TP has the same value as D2(E)/τ2(E), we set D
as the predecessor of E and D2(E) = 2, τ2(E) = 0.

The loop finding procedure (Algorithm 2) is started at a specific level (let this
be k). From each actor ai on level k to be visited, the algorithm moves backward
along the predecessor chain (πk′(a′) is the predecessor of current node) collecting
execution time of every node met along the path (lines 8, 9). When a second
occurrence of the starting node ai is detected (a′ = ai in line 14) a cycle is found.
If this loop constrains the iteration period more the last one found so far (line
10), this is set as critical cycle (WC∗, TC∗ — initially WC∗ = 0, TC∗ = 1) and
pruning is performed (line 12). The algorithm also stops when the start of D is
reached (a′ = NIL in line 14).

Algorithm 2 is executed for each value of k during the throughput compu-
tation. For instance, with regard to figure 4, at step 5 the procedure finds the
loops (stated backward): “A ← D ← B ← E ← D/2 tokens”, “B ← C/1
token”, “D ← A/1 token”, “E ← D ← B/1 token”. No loop is found at this
level starting from C. Loop E ← D ← B is critical and sets the iteration bound
to 3; the computed throughput is therefore 1/3, which is a valid upper bound
for the throughput of the original HSDFG. Note that by finding new loops the
upper bound always decreases; hence, if at any step a cycle is found such that
the resulting throughput is lower the than the minimum value of the TPUT vari-
able, then the constraint fails. Moreover, it could be proven that no more than
1 token can be collected by traversing a sequence of nodes on a single processor:
the filtering algorithm exploits this property to improve the computed bound at
early stages of the search, where the number of tokens is strongly overestimated.

5 Experimental Results

The system described so far was implemented on top of ILOG Solver 6.3 and
tested on graphs belonging to three distinct classes of HSDFGs, built by means
of the generator provided in the SDF3 framework [17]. Graph classes include
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in first place cyclic, connected graphs, which commonly arise when modeling
streaming applications. Those are probably the most interesting instances, as
they also reflect the typical structure of homogeneous graphs resulting from the
conversion of a SDFG. Note the throughput for a cyclic graph is intrinsically
bounded by the heaviest cycle, no matter how many processor it is mapped to.

Furthermore, acyclic and strictly connected HSDFGs were considered. Acyclic
graphs expose the highest parallelism: this makes them the most challenging
instances, but also lets the solver achieve the best throughput values, as no
intrinsic bound is present (beside the computation time of the heaviest actor).
The class of strictly connected graphs is interesting as this is the type of graph
the Maximum Cycle Mean computation algorithms (such as the one we use)
were originally designed for; for this reason, the solver is expected to have the
best run time on this class of instances.

For each class, groups of 6 graphs with 10, 15, 20, 25 nodes were generated and
tested on platforms with different number of processors (2, 4, 8). An iterative
testing process was adopted: first the mapper and scheduler is run with a very
loose throughput requirement; whenever a solution is returned, this is stored
and the throughput value is used as a lower bound for the next iteration. When
the problem becomes infeasible, the last solution found is the optimal one. A
time limit of 20 minutes is set for each of the iterations; all tests were run on a
Core2Duo machine with 1GB of RAM.

Table 1 reports results for the first class of graphs on all types of platform; the
number of processors is reported as the first column (‘proc’). For each group of
6 instances with the same number of nodes the table shows in column ‘T > TL’
the number of timed out instances (those for which no solution at all could be
found within the time limit), and statistics about the solution time. In detail, the
average running time and number of fails for an iteration are reported (‘T(all)’
and ‘F(all)’), together with the average time to solve the iteration when the
throughput constraint is the tightest one (‘T(opt)’), to show how the method
performs in a very constrained condition, when a heuristic approach is likely
to fail; the number of instances not considered in the averages is always shown
between round brackets. Finally, the average time for the fastest (‘T(best)’)
and the slowest (‘T(worst)’) iteration give an intuition of the variability on the
running time, which is indeed considerably high. A triple dash “---” is shown

Table 1. Results for cyclic, connected graphs - times are in seconds

proc nodes T(opt) T(all) F(all) T(best) T(worst) T > TL

2

10 0.03 0.04 53 0.02 0.05 0
15 0.30(1) 5.27 3658 0.17 27.97 1
20 2.52(2) 28.37(2) 4374(2) 0.63(2) 86.44(2) 2
25 --- --- --- 8.33 78.65 3

4

10 0.03 0.05 46 0.03 0.07 0
15 1.13(1) 4.45(1) 3303 0.21 25.03 1
20 1.94(2) 21.60(2) 1808(2) 0.64(2) 32.17(2) 2
25 --- --- --- 8.62 228.86 3

8

10 0.04 0.06 47 0.03 0.09 0
15 0.25(1) 4.91(1) 3195 0.20 29.38 1
20 6.65(2) 26.13(2) 2222(2) 0.72(2) 42.12(2) 2
25 --- --- --- 9.83 264.98 3
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Table 2. Results for acyclic graphs - times are in seconds

proc nodes T(opt) T(all) F(all) T(best) T(worst) T > TL

2

10 0.05 0.13 234 0.06 0.58 0
15 0.11 6.75 9263 0.09 22.52 3
20 --- --- --- --- --- 6
25 --- --- --- --- --- 6

4

10 0.03 0.11 187 0.02 0.58 0
15 0.09 4.94 6450 0.07 24.17 3
20 --- --- --- --- --- 6
25 --- --- --- --- --- 6

8

10 0.09 0.11 161 0.03 0.64 0
15 0.11 4.63 5712 0.09 24.60 3
20 --- --- --- --- --- 6
25 --- --- --- --- --- 6

Table 3. Results for strictly connected graphs - times are in seconds

proc nodes T(opt) T(all) F(all) T(best) T(worst) T > TL

2

10 0.03 0.04 12 0.03 0.05 0
15 1.38 0.82 430 0.10 1.58 0
20 1.49(4) 35.17(4) 4474(4) 0.48(1) 112.47(1) 0
25 --- --- 348(4) 1.17(4) --- 1

4

10 0.03 0.04 29 0.03 0.04 0
15 0.11 0.14 40 0.10 0.23 0
20 0.89(4) 30.25(4) 3578(4) 0.43(1) 122.88(1) 0
25 --- --- 349(4) 1.27(1) --- 1

8

10 0.14 0.16 177 0.03 0.30 0
15 0.13 0.17 42 0.12 0.28 0
20 --- --- --- 0.50(1) 303.87(1) 0
25 --- --- 352(4) 1.22(1) --- 1

when the available data are not sufficient for the average to be meaningful. All
time values are in seconds.

As expected, the time to solve the most constrained iteration and the average
running time grows exponentially with the size of the instances. However, the
solution time is reasonable for realistic size graphs, counting 10 to 20 nodes.
Propagation for the throughput constraint often takes around 50% of the overall
process time, pushing for the introduction of caching and incremental compu-
tation in the filtering algorithm. The best case and worst case behavior is quite
erratic, as it is quite common for CP/pure tree search based approaches. Finally,
it is worth to point how, unlike in usual allocation and scheduling problems, the
number of processors appears to have no strong impact on the problem hardness.

Tables 2 and 3 show the same data respectively for acyclic ad strictly con-
nected graphs. Acyclic graphs are indeed very hard to cope with, yielding time-
outs for all the 20 and 25 nodes instances (regardless of the number of pro-
cessors): this will require further investigation. Conversely, strictly connected
graphs are the most easily tackled; despite the average run time is often a little
higher than table 1, the number of timed out instances is the lowest among the
three classes. As previously pointed out, this was somehow expected.

Finally, figure 5 shows the run time (in logarithmic scale) of all iterations
of the testing process for a sample instance; as the iteration number grows,
the throughput constraint becomes tighter and tighter. The observed trend is
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Fig. 5. Log. runtime/iteration number of the testing process for a sample instance

common to many of the instances used for the tests and features a sharp com-
plexity peak in the transition phase between a loosely and a tightly constrained
problem. This is an appealing peculiarity, since the complexity peak is located
where a heuristic approach would likely perform quite well and could be used
instead of the complete method, which on the other hand becomes more effective
right in the (very constrained) region where it is also more useful.

6 Conclusions

We presented a CP based method for allocating and scheduling HSDFGs on
multiprocessor platforms; to the best of our knowledge this is the first complete
approach for the target problem. The core of the system is a novel throughput
constraint embedding a maximum cycle mean computation procedure, which
proved to be crucial for the performance, but very time consuming as well.
This sets the need for strong optimization of the filtering algorithm and for
the introduction of caching and incremental computation. Also, a revision of
the throughput constraint aimed to improve its usability is planned, in order to
make it more easily applicable to other problems as well.

The approach has interesting run time for classes of realistic size instances.
Sometimes however the conversion of a SDFG into a HSDFG leads to a blow
up of the number of nodes; if the graph becomes too large the approach is not
likely to work out. A method to partly overcome the problem is to avoid the
conversion and compute throughput directly on the SDFG; for example in [13]
this is done by simulation. Integration of such a technique in the throughput
constraint is another interesting topic for future research.
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Abstract. The multileaf collimator sequencing problem is an important compo-
nent in effective cancer treatment delivery. The problem can be formulated as
finding a decomposition of an integer matrix into a weighted sequence of binary
matrices whose rows satisfy a consecutive ones property. Minimising the cardi-
nality of the decomposition is an important objective and has been shown to be
strongly NP-Hard, even for a matrix restricted to a single row. We show that in
this latter case it can be solved efficiently as a shortest path problem, giving a sim-
ple proof that the one line problem is fixed-parameter tractable in the maximum
intensity. This result was obtained recently by [9] with a complex construction.
We develop new linear and constraint programming models exploiting this idea.
Our approaches significantly improve the best known for the problem, bringing
real-world sized problem instances within reach of complete methods.

1 Introduction

Radiation therapy is a treatment modality that uses ionising radiation in the treatment
of patients diagnosed with cancer (and occasionally benign disease). Radiation therapy
represents one of the main treatments against cancer, with an estimated 60% of cancer
patients requiring radiation therapy as a component of their treatment. The aim of radia-
tion therapy is to deliver a precisely measured dose of radiation to a well-defined tumour
volume whilst sparing the surrounding normal tissue, achieving an optimum therapeu-
tic ratio. Recent progress in technology and computing science have allowed significant
improvement in the planning and delivery of all radiation therapy techniques.

Our primary objective is to apply recent advances in constraint programming to mul-
tileaf collimator sequencing in intensity-modulated radiotherapy (IMRT). At the core of
advanced radiotherapy treatments are hard combinatorial optimisation problems, which
are typically computationally intractable (Section 2 and 3). The contributions of this
paper rely on the insight that the multileaf collimator sequencing problem restricted to
a single row can be solved as a shortest path problem. A similar but more general result
was obtained recently by [9]. We give a simple proof that the single row problem is
fixed-parameter tractable in the maximum intensity of the row (Section 4) and exploit
this insight to develop novel linear and constraint programming models (Section 5).
These approaches significantly out-perform the best known for the problem, and bring
real-world sized instances within reach of complete methods (Section 6).
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Fig. 1. An example IMRT treatment plan (Courtesy of the Advanced Oncology Center, Inc.)

2 Intensity-Modulated Radiotherapy

IMRT is an advanced mode of high-precision radiotherapy that utilises computer con-
trolled x-ray accelerators to deliver precise radiation doses to a malignant tumour, or
specific areas within the tumour. A treatment plan is devised for an individual patient
based on the three-dimensional (3D) shape of the patient’s tumour. Figure 1 presents an
example IMRT treatment plan, clearly showing the location of the tumour in the centre
of the image, the positions from which the tumour will be irradiated, and the dosage
to be delivered from each position. The treatment plan is carefully developed based on
3D computed tomography images of the patient, in conjunction with computerised dose
calculations to determine the dose intensity pattern that will best conform to the tumour
shape. There are three optimisation problems relevant to this treatment. Firstly, the ge-
ometry problem considers the best positions for the beam head from which to irradiate.
Secondly, the intensity problem is concerned with computing the exact levels of radia-
tion to use in each area of the tumour. Thirdly, the realisation problem, tackled in this
paper, deals with the delivery of the intensities computed in the intensity problem.

Combinatorial optimisation methods in cancer treatment planning have been re-
ported as early as the 1960s [3]. There is a large literature on the optimisation of IMRT,
which has tended to focus on the realisation problem [8]. Most researchers consider the
sequencing of multileaf collimators (Figure 2(a)). The typical formulation of this prob-
lem considers the dosage plan from a particular position as an integer matrix, in which
each integer corresponds to the amount of radiation that must be delivered to a partic-
ular region of the tumour. The requisite dosage is built up by focusing the radiation
beam using a multileaf collimator, which comprises a double set of metal leaves that
close from the outside inwards. Therefore, the collimator constrains the possible set of
shapes that can be treated at a particular time. To achieve a desired dosage, a sequence
of settings of the multileaf collimator must be used. One such sequence is presented in
Figure 2(b). The desired dosage is presented on the left, and it is delivered through a
sequence of three settings of the multileaf collimator, which are represented by three
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(a) A multileaf collimator. (b) A multileaf sequencing problem.

Fig. 2. A simplified view of the optimisation problem associated with sequencing multileaf colli-
mators in IMRT, Figure 2(b) has been adapted from [1]

matrices. Each matrix is exposed for a specific amount of time, corresponding to the
weight associated with the matrix, thus delivering the requisite dosage.

Formally, this problem can be formulated as the decomposition of an integer matrix
into a weighted sum of 0/1 matrices, in which each row has the “consecutive ones
property” [2,6]. The state-of-the-art approach is based on constraint programming [1].

3 Formulation of the Multileaf Collimator Sequencing Problem

We present a direct formulation of the multileaf collimator sequencing problem. Let
I represent the dosage intensity matrix to be delivered. We represent this as an m ×
n (rows × columns) matrix of non-negative integers. We assume that the maximum
dosage that is delivered to any region of the tumour is M units of radiation. Therefore,
we set Iij ≤ M, 1 ≤ i ≤ m, 1 ≤ j ≤ n.

To ensure that each step in the treatment sequence corresponds to a valid setting
of the multileaf collimator, we represent each step using a 0/1 matrix over which we
specify a row-wise consecutive ones property (C1). Informally, the property requires
that if any ones appear in a row, they appear together in a single block. A C1 matrix is
a binary matrix in which every row satisfies the consecutive ones property. Formally, x
is an m× n C1 matrix if and only if for any line i, 1 ≤ a < b < c ≤ n,

xia = 1 ∧ xic = 1 → xib = 1. (1)

A solution to the problem is a sequence of C1 matrices, Ω, in which each xk is asso-
ciated with a positive integer bk such that: I =

∑
k∈Ω(bk · xk). Let B and K be the

sum of coefficients bk and the number of matrices xk used in the decomposition of I ,
respectively. Then B =

∑
k∈Ω bk and K = |Ω|. B is referred to as the total beam-on

time of the plan and K is its cardinality. The typical problem is to minimise B or K
independently (known as the decomposition time and decomposition cardinality prob-
lem, respectively) or a combination of both. The minimisation of B alone is known to
be linear [2,6], while minimizing K alone is strongly NP-Hard [2]. We will tackle the
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formulation preferred by practitioners, and mostly used in the literature so far, which is
to minimise B first and then K (see Figure 2(b)). The problem is the following: given
the optimal value B∗ of B, find a treatment plan that minimises K , i.e.

Minimise(K) such that∑
k∈Ω bk = B∗

I =
∑

k∈Ω bkxk

∀k ∈ Ω, xk is a C1 matrix.

We now briefly explain how B∗ can be found. The minimum sum of weights needed
to have a C1 decomposition of a (single) row matrix [I1, . . . , In] can be computed as:

n−1∑
i=0

max(Ii+1 − Ii, 0) (2)

assuming I0 = 0 [2,6]. The expression Ii+1 − Ii represents the supplementary sum of
weights needed for Ii+1, the remainder being reused without breaking the consecutive
ones property. We provide a small example to help understand Equation 2.

Example 1 (Computing the Minimum Sum of Weights). Consider a dosage plan I =
[3, 2, 0, 3]. The minimum sum of weights computed according to the previous formula
would be 3 + 0 + 0 + 3 = 6. The weights used to achieve the first value 3 could be
reused for the following 2, but all weights already used before the 0 cannot be re-used
for the last 3, since all the corresponding row matrices must have a 0 in this position to
satisfy the C1 property. Then, three more unit of weights are needed to make the last 3,
giving a decomposition I = (1, 0, 0, 0) + 2 · (1, 1, 0, 0) + 3 · (0, 0, 0, 1). �

The B∗ corresponding to the whole matrix is the maximum of the B∗ values amongst
the m rows of the matrix. A number of CP models for the multileaf collimator sequenc-
ing problem have been proposed in the literature. We briefly present these below.

3.1 The Direct Model

For a fixed K , the problem specification given above can be almost directly encoded
with a variable per coefficient of the decomposition and a variable per cell of the matri-
ces in the decomposition, as follows:

V ariables : ∀k ≤ K bk ∈ {1, . . . , M}
∀k ≤ K, i ≤ m, j ≤ n, xk

ij ∈ {0, 1}

DM1 :
∑

k≤K bk = B∗

DM2 : b1 ≥ b2, . . . ≥ bk

DM3 : ∀k ≤ K, i ≤ m, CONSECUTIVEONES({xk
i1, . . . , x

k
in})

DM4 : ∀i ≤ m, j ≤ n
∑

k≤K bk × xk
ij = Iij

The CONSECUTIVEONES constraint (DM3) can be implemented using a contiguity
constraint [10] or the REGULAR global constraint [12] with a straightforward deter-
ministic finite automaton. Constraint DM2 eliminates symmetries amongst the weights.
A number of symmetries amongst the xk variables remain. We quote here the example
given in [1] to highlight this important drawback of the Direct Model.
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Example 2 (Symmetries of the Direct Model). Consider part of a decomposition with
two identical weights of value 2. The two following decompositions are symmetrical.

2
(

1 1 1
1 1 1

)
+ 2

(
0 1 0
0 1 0

)
= 2

(
1 1 1
1 1 0

)
+ 2

(
0 1 0
0 1 1

)
The values in the right bottom corners of the matrices can be swapped without changing
the solution since the weights are identical. �
Symmetries due to identical weights can be partially avoided by dynamically adding
lexicographic constraints on the rows and columns (once the weights are known in
the search) but that would not be enough. Rows and columns remain lexicographically
ordered in this example. The next model was proposed in [1] to address this issue.

3.2 The Counter Model

The Counter Model is based on Nb variables representing the number occurrences of
weight b in the decomposition. Qb

ij variables refine this information by counting the
number of times a weight b contributes to the sum of Iij . The model is stated as follows:

Objective : Minimise(K) such that:
V ariables : ∀b ≤ M Nb ∈ {0, . . . , B∗}

∀i ≤ m, j ≤ n, b ≤ M Qb
ij ∈ {0, . . . , M}

CM1 : ∀i ≤ m, j ≤ n
∑M

b=1 b × Qb
ij = Iij

CM2 :
∑M

b=1 b × Nb = B∗

CM3 :
∑M

b=1 Nb = K

CM4 : ∀b ≤ M, i ≤ m, SUMOFINCREMENTS({Qb
i1, . . . , Q

b
in}, Nb)

Constraint CM1 ensures that each element of I is properly decomposed. CM2 and
CM3 relate the Nb variables to B∗ and K . The model makes use of an ad-hoc global
constraint to enforce the C1 property of this decomposition expressed in term of occur-
rences of each weight. It is the SUMOFINCREMENTS [4], defined by:

SUMOFINCREMENTS({V1, . . . , Vn}, U ) ≡
n−1∑
i=0

max(Vi+1 − Vi, 0) ≤ U with V0 = 0 (3)

A C1 decomposition of I can be derived from a C1 decomposition of Qb for each b.
The key intuition behind this model is that it is sufficient to find an unweighted decom-
position (only with weights of 1) of each Qb instead of looking for a decomposition of
I (see [1]). Keep in mind that Qb is the matrix defining the number of times a weight
equal to b is used to decompose each element of I , thus a weighted decomposition of
Qb would result in identical matrices. The cardinality would, therefore, be reduced by
merging the corresponding matrices and increasing the weight. Thus all matrices have
to be different and the decomposition of Qb is necessarily unweighted in an optimal
solution.

As explained earlier in Section 3, the expression
∑n

i=1 max(Vi+1 − Vi, 0) is a con-
venient way to compute the minimum sum of weights needed for a C1 decomposition
of a row. Obviously, if we seek an unweighted decomposition, the formula returns the
minimum number of weights needed. Therefore, this formula can be used as a lower
bound for Nb to ensure the C1 property (constraint CM4).
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4 The Single Row Problem as a Shortest Path

As mentioned previously, finding the minimum total beam-on time, B, for a given in-
tensity matrix can be solved in linear time. However, minimising the cardinality of the
multileaf collimator sequence is NP-hard [5]. More recently, it has been shown that
even when restricting the problem to a single row of the intensity matrix, minimising
the cardinality is strongly NP-Hard [2]. This result was refined by [9] who showed that
not only is the single row problem polynomial when the maximum intensity is bounded,
but also the complete problem. In this section we show a simple construction represent-
ing the single row problem as a shortest path. This gives a simple proof that the single
row problem is fixed-parameter tractable (FPT) in the maximum element in the row I .
Although [9] achieves a better complexity, we will develop very efficient algorithms
based on our construction outperforming the results of [9] in practice. In general, a
problem is FPT with respect to a parameter k if there exists an algorithm for it that
has running time O(f(k) · nO(1)), where n is the size of the problem and f(k) is an
arbitrary function depending only on k. This result will be the keystone to designing
very efficient linear and CP models in the remainder of this paper.

C1 DECOMPOSITION CARDINALITY PROBLEM (DC)
Instance: A row matrix of n integers, I = 〈I1, . . . , In〉, a positive integer K .
Question: Find a decomposition of I into at most K C1 row matrices.

In any solution of the DC problem, there must be a subset of the weights of the de-
composition that sum to every element Ii of the row. In other words, the decompo-
sition must contain an integer partition of every intensity. To represent these integer
partitions the following notation will be used: P (a) is the set of partitions of integer
a, p ∈ P (a) is a particular partition of a, and |p| its number of integer summands
in p. We denote by occ(p, v), the number of occurrences of value v in p. For ex-
ample, P (5) = {〈5〉, 〈4, 1〉, 〈3, 2〉, 〈3, 1, 1〉, 〈2, 2, 1〉, 〈2, 1, 1, 1〉, 〈1, 1, 1, 1, 1〉}, and if
p = 〈3, 1, 1〉 then |p| = 3 and occ(p, 1) = 2.

Observe that the DC problem can be formulated as a shortest path problem in a
weighted directed acyclic graph, G, which we refer to a partition graph. A partition
graph G of a row matrix I = 〈I1, . . . , In〉 is a layered graph with n + 2 layers, the
nodes of each layer i corresponding to the set of integer partitions of the row matrix
element Ii. A source and sink nodes, denoted p0 and pn+1 respectively, are associated
with the empty partition ∅ for sake of simplicity. Two adjacent layers form a complete
bipartite graph and the cost added to an edge, pi → pj , between two partitions, pi and pj

represents the number of additional weights that need to be added to the decomposition
to satisfy the C1 property when decomposing the two consecutive elements with the
corresponding partitions. The cost of each edge pi → pj in the partition graph is:

c(pi, pj) =
∑M

b=1 c(b, pi, pj) (4)

where c(b, pi, pj) = max(occ(b, pj) − occ(b, pi), 0). A shortest path in the partition
graph answers DC.

Example 3 (A Partition Graph). Consider a single row intensity matrix I = [3, 2, 3, 1].
The partition graph for this row problem is presented in Figure 3. Excluding the source
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Fig. 3. A partition graph, showing transition weights, for the single row intensity matrix
I = [3, 2, 3, 1]. A shortest path is indicated in bold.

and sink, there are four levels, one corresponding to each element of I . The costs asso-
ciated with the edges are computing using Equation 4. For example, the cost associated
with the edge between the partition 〈1, 1, 1〉 of element 3 of layer 1 and partition 〈2〉
of element 2 represents the extra weight that must be added to decompose element 2 if
〈1, 1, 1〉 is used for element 3. In other words, as one moves along a path in this graph
the partition chosen to decompose the element at layer i contains the only weights that
can be reused to decompose the element at layer i + 1 because of the C1 property. �
This formulation is only a refinement over the Counter Model which gives an easy
way to show that this algorithm is correct. Consider a row I of n elements and its
partition graph G. A path Π = 〈p0, . . . , pn+1〉 in G defines a decomposition of I
whose cardinality is the length of the path: K =

∑n
i=0 c(pi, pi+1). From this path

Π , we can build a solution to the Counter Model (without the beam-on time con-
straint CM2) by setting Nb =

∑n
i=0 c(b, pi, pi+1) and Qb

i = occ(b, pi). Constraint
CM1 is satisfied as pi is an integer partition of Ii. Constraint CM2 is ignored as we
are in the case of the unconstrained cardinality. Constraint CM4 is satisfied because
Nb =

∑n
i=0 c(b, pi, pi+1) =

∑n
i=1 max(Qb

i+1 − Qb
i , 0) which is the SUMOFINCRE-

MENTS constraint. Finally, one can check the cardinality of the path (constraint CM3)
by computing the sum of the Nb variables:

∑M
b=1 Nb =

∑M
b=1
∑n

i=0 c(b, pi, pi+1) =∑n
i=0
∑M

b=1 c(b, pi, pi+1) =
∑n

i=1 c(pi, pi+1) = K . As a path encodes a solution to
the Counter Model, and the length of the path is exactly the cardinality, the shortest
path gives the optimal K and an answer to DC. We now consider the single row prob-
lem when constraining the beam-on time.

C1 DECOMPOSITION-CARDINALITY WITH TIME CONSTRAINT (DCT)
Instance: A row matrix of n integers, I = [I1, . . . , In], positive integers K
and B.
Question: Find a decomposition of I into at most K C1 row matrices such that
the sum of its weights is at most B.

To deal with this problem we extend the previous graph with a resource for every edge:

r(pi, pj) =
∑M

b=1 b× c(b, pi, pj). (5)

Finding a shortest path Π = 〈p0, . . . , pn+1〉 in the partition graph whose sum of
weights,

∑n
i=0 r(pi, pi+1), is at most B is a shortest path problem with resource
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constraints (SPPRC). The two-resource SPPRC is better known as the shortest path
problem with time windows (SPPTW), which was studied initially by [11]. A single
time window [0, B] can be added to the sink node, capturing constraint CM2 of the
Counter Model. The problem is NP-Hard, but pseudo-polynomial algorithms do exist
based on dynamic programming. An algorithm of complexity O(n2B) is given in [11],
where n is the number of nodes of the graph.

Example 4 (Encoding DCT as a SPPTW). The new partition graph of I = [3, 2, 3, 1],
with a cost and resource consumption per edge is given Figure 4. �
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Fig. 4. Encoding an example DCT problem

This formulation of the single row problem corresponds to a simple FPT result.

Theorem 1 (Fixed-Parameter Tractibility of the Single Row Problem). Finding an
optimal solution to the DC and DCT problems is fixed-parameter tractable in the size
of the maximum element of the single-row intensity matrix, I .

Proof. Let k be the maximum element of the row matrix I . The number of edges in the
partition graph is bounded by |P (k)|2 × n because the number of nodes of a layer i is
the number of integer partitions of the corresponding integer value Ii. In this acyclic
graph, solving a simple shortest path problem can be done in O(|P (k)|2 × n). The
time complexity can be written as O(nf(k)), where f(k) = |P (k)|2, showing that
DC is fixed-parameter tractable in k. Similarly for DCT, using the pseudo-polynomial
algorithm of [11] we get a complexity of O(n2|P (k)|2B). B can be bounded by nk
giving a time complexity of O(n3f(k)), with f(k) = k|P (k)|2. �

In [9] a more sophisticated construction for the shortest path is presented giving an
O(n) complexity for DCT whereas our representation as a SPPTW gives a complexity
in O(n3). In [4] a global constraint, called the SUMOFINCREMENTS was proposed for
maintaining the C1 property and a bounds consistency algorithm in O(n) was given.
An O(nd) arc-consistency algorithm can be obtained based on finding shortest paths.

Corollary 1. Generalised Arc Consistency on the SUMOFINCREMENTS constraint
can be done in O(nd) where n is the number of variables and d the maximum domain
size.
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Proof. We recall that SUMOFINCREMENTS({V1, . . . , Vn}, U ) is equivalent to the ex-
pression

∑n−1
i=0 max(Vi+1 − Vi, 0) ≤ U with V0 = 0. Consider a layered graph in

which each layer corresponds to a variable Vi and each node of layer i corresponds to
the values of D(Vi). The cost associated with two values a ∈ D(Vi) and b ∈ D(Vi+1)
is simply max(b − a, 0). Consider an instantiation of all the Vi variables. The value of
the expression

∑n−1
i=0 max(Vi+1 − Vi, 0) is obviously given by the cost of the corre-

sponding path. Ensuring that the SUMOFINCREMENTS is GAC can be easily done by
checking that the value of the shortest path in the layered graph is less than the upper
bound of U . The shortest path from the source to all nodes and from all nodes to the
sink can be obtained inO(e) where e is the number of edges of the layered graph. Thus,
the filtering process can be done in O(nd) where d is the maximum domain size. �

5 Shortest Path-Based Models

5.1 A Shortest Path Constraint Programming Model

We index, in lexicographic order, the integer partitions of each element Iij of the in-
tensity matrix, and use an integer variable Pij to denote which partition is used to
decompose element Iij . For example, P (5) = {〈5〉, 〈4, 1〉, 〈3, 2〉, 〈3, 1, 1〉, 〈2, 2, 1〉,
〈2, 1, 1, 1〉, 〈1, 1, 1, 1, 1〉}, so Pij = 4 means that the weights 3, 1 and 1 are used to
sum to this element in the decomposition. The domain of Pij , denoted D(Pij) thus
ranges from 1 to |P (Iij)|. We also have a variable Nb giving the number of occurrences
of weight b in the decomposition, similar to the Counter Model presented earlier.

Our CP model makes use of the SHORTESTPATH(G, {P1, . . . , Pn}, U ) constraint,
which enforces U to be greater than the shortest path in a graph G. Our CP model
posts the SHORTESTPATH constraint over three different graphs G1(i), G2(i, b), G3(i),
which although topologically identical, are weighted using three different costs:

c1(pi, pj) =
∑M

b=1 c2(b, pi, pj)
c2(b, pi, pj) = max(occ(b, pj)− occ(b, pi), 0)
c3(pi, pj) =

∑M
b=1 b× c2(b, pi, pj)

(6)

Example 5 (Example of the Costs G1, G2, G3). Consider I = [3, 2, 3, 1]. The three
partition graphs are identical in structure, only the costs vary. G1, G2 for value b = 1
and G3 are shown in Figure 5, giving the three costs c1, c2, c3, respectively. �
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Fig. 5. Example of the three graph costs used in our CP model
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Therefore, our CP model is summarised as follows:

The C1 property of the decomposition is enforced by constraints CP4. The number
of weights of each kind, b, needed so that a C1 decomposition exists for each line i is
maintained as a shortest path in G2(b, i). As those shortest paths are computed indepen-
dently, maintaining a shortest path in G1(i) provides a lower bound on the cardinality
needed for the decomposition of each line i. This is the purpose of CP3, which acts as
a redundant constraint. Finally CP5 is a useful redundant shortest path constraint that
maintains the minimum value of B associated with each line, which can provide valu-
able pruning by strengthening CP1. CP6 breaks some symmetries by stating that the
same partition can be used for two consecutive identical elements in the same row. If
the two partitions were different, a solution could be obtained by using any of the two
partitions for the two elements. This could not violate the C1 property as the elements
are consecutive and any of those two partitions was also satisfying the C1 property.

Filtering the SHORTESTPATH Constraint. The shortest path constraint has already
been studied in Constraint Programming [7]. Here, the SHORTESTPATH constraint is
simple as the graph is layered and contains only non-negative costs. The constraint
SHORTESTPATH(G, {P1, . . . , Pn}, U ) states that U is greater than the shortest path in
the partition graph defined by the domains of {P1, . . . , Pn} and the cost information
G. A layer i of the graph corresponds to variable Pi and the nodes of each layer to the
domain values of Pi. Our implementation of the constraint maintains for every node α
of layer i, the value of the current shortest path from the source, Sα←, and to the sink,
Sα
→. These two integers are restorable upon backtracking.

If a value is pruned from a layer we proceed with forward (resp. backward) phases
to update the S← (resp. S→) values maintaining the simple following equations :

Sα
← = minβ∈D(Pi−1)(S

β
← + c(β, α))

Sα
→ = minβ∈D(Pi+1)(S

β
→ + c(α, β)) (7)

The constraint is partially incremental, so if none of the S← (resp. S→) values of the
nodes on layer i have been updated, the process stops and does not examine layer i + 1
(resp. i − 1). At each update of a S← or S→, we prune the corresponding value if
S← + S→ is greater than the upper bound of U . The time complexity of the forward
and backward step including the pruning is O(e) where e is the number of edges in the
graph. Ssink← (or Ssource→ ) is used to update the lower bound of U . As the upper bound of
U is not updated, there is no need to reach a fixed point and arc-consistency is achieved
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in O(e). Notice that this constraint could also be decomposed by introducing S← and
S→ as variables, stating Equations 7 as constraints as well as Sα

← + Sα
→ > U =⇒

Pi �= α.

Example 6 (SHORTESTPATH using G1). Consider I = [3, 2, 3, 1] and U = 3. The
graph underlying SHORTESTPATH(G1, {P1, . . . , P4}, U ) is shown in Figure 6. The two
restorable integers S← and S→ are given for each node in brackets. A node filled in
grey has been pruned because the sum of its two shortest paths is greater than 3. Values
{1, 1, 1}, {1, 1} and {1, 1, 1} are pruned respectively from P1, P2 and P3. �
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Fig. 6. The SHORTESTPATH using Cost G1

Note that our CP model is exponential in space as the implementation of the SHORT-
ESTPATH constraint maintains information for each integer partition of the elements of
the matrix. Therefore, the model strongly relies on the fact that the maximum intensity
in the matrix is bounded in practice and instances with small intensities remain open.

Search. The branching strategy first assign the K variable in a bottom-up fashion (from
its lower bound to its upper bound) until a feasible solution is found (the first feasible
solution found is thus an optimal one). The branching then considers the Nb variables
and proceeds with ‘minimum domain first’ variable ordering and lexicographic value
ordering (from the lower bound to the upper bound of each Nb). Once the Nb vari-
ables are known, the problem is split into m independent sub-problems (one per row).
Those problems are solved independently by branching on the P variables, again us-
ing minimum domain variable ordering and lexicographic value ordering. The rows are
examined in decreasing value of their beam on-time, similar to [1]. Branching on P is
mandatory, since the shortest paths on G2(i, b) are maintained independently for each
b. At this stage we are facing a multi-resource constrained shortest path problem as we
have a limit Nb of each resource b as well as a limit K on the shortest path in G1.

5.2 A Shortest Path Linear Programming Model

A simple shortest path formulation in Linear Programming (LP) is unimodular, guar-
anteeing that the continuous relaxation provides an integral solution. We investigated if
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encoding the previous model based on shortest path in LP could lead to a strong lower
bound for the whole problem. The linear model simply introduces a boolean variable
for each possible integer partition of each element Iij of the intensity matrix.

∀b ≤ M Nb ∈ {0, . . . , B∗}
∀i ≤ m, j ≤ n, p ≤ |P (Iij)| xijp ∈ {0, 1}

Again, Nb denotes the number of occurrences of value b in the decomposition of B∗,
whereas xijp indicates whether partition p is used or not to sum to Iij . The consecutive
ones property is enforced as a shortest path problem on each line in the partition graphs
G1, G2 and G3. The nodes of those graphs are mapped to the xijp variables and the costs
are computed using Equations 6. xi,0,0 and xi,n+1,0 are two nodes acting as the source
and sink of the graph of line i, respectively. A linear model called SP (i) encoding the
shortest path problem for each line i uses one variable per edge:

∀j ≤ n, pα ≤ |P (Iij)|, pβ ≤ |P (Ii,j+1)| yi,j,pα,pβ
∈ {0, 1}.

The variables yi,j,pα,pβ
indicate whether or not the edge between partition pα of layer

j and partition pβ of layer j + 1 is used in the solution of line i. The three shortest path
constraints introduced in the CP model can be encoded using a simple linear model for
shortest path by stating the flow conservation at each node. The following constraints
encode the flow conservation, the three costs of the paths and channels the edge vari-
ables to the nodes variables, respectively.

∀j ≤ n, pα ≤ |P (Iij)|, ∑pβ≤|P (Ii,j−1)| yi,j−1,pβ ,pα =
∑

pβ≤|P (Ii,j+1)| yi,j,pα,pβ∑
pα≤|P (Ii1)| yi,0,0,pα = 1∑
pα≤|P (Iin)| yi,n,n+1,pα = 1∑
b≤M Nb ≥∑j,pα,pβ

c1(pα, pβ) × yi,j,pα,pβ

∀b ∈ [1, . . . , M ] Nb ≥∑j,pα,pβ
c2(b, pα, pβ) × yi,j,pα,pβ

B∗ ≥∑j,pα,pβ
c3(pα, pβ) × yi,j,pα,pβ

∀j ≤ n, pα ≤ |P (Iij)|, xijpα =
∑

pβ≤|P (ci,j+1)| yi,j,pα,pβ

∀j ≤ n, pα ≤ |P (Iij)|, xijpα =
∑

pβ≤|P (ci,j−1)| yi,j−1,pβ ,pα

The overall model is written in the following way:

minimise
∑

b≤M Nb

∀i ≤ m SP (i)∑
b≤M b×Nb = B∗

The number of variables for this model is exponential as it depends on the number of
integer partitions of the maximum element of the matrix, but this is bounded in practice.

6 Experimental Results

We performed a direct comparison between our CP model and the current state-of-
the-art [4,1] which showed our approach to be the fastest by more than two orders-of-
magnitude, as well as the most scalable. It solves all 340 instances in the benchmark
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Table 1. Comparing the Shortest Path Model CPSP with the Counter Model

Inst
CPSP Counter model

Time (seconds) Time (seconds)
NS min med avg max NS min med avg max

12-12-10 20 0.11 0.18 0.25 0.66 20 0.32 0.83 1.00 3.62
12-12-11 20 0.14 0.22 0.71 3.32 20 0.67 2.27 2.63 6.23
12-12-12 20 0.23 0.50 0.94 6.94 20 1.04 3.91 4.76 12.30
12-12-13 20 0.28 1.63 1.93 4.77 20 2.26 7.13 8.57 30.50
12-12-14 20 0.35 1.59 3.28 26.36 20 1.19 9.63 11.58 49.76
12-12-15 20 0.61 5.76 12.70 74.59 20 4.37 23.00 40.68 156.23
15-15-10 20 0.13 0.31 0.73 5.67 20 2.51 13.16 14.18 46.14
15-15-12 20 0.41 1.29 3.86 18.20 20 9.02 53.41 105.22 475.95
15-15-15 20 1.55 15.45 28.98 102.92 16 111.01 587.73 790.11 3409.69
18-18-10 20 0.24 0.46 1.01 5.88 20 26.22 135.03 183.91 851.34
18-18-12 20 0.47 3.07 6.00 19.36 18 121.84 1131.85 1371.88 4534.41
18-18-15 20 2.35 20.47 64.85 571.19 6 2553.80 3927.24 3830.12 4776.23
20-20-10 20 0.23 0.52 3.99 43.11 19 81.63 660.03 1190.01 3318.89
20-20-12 20 0.72 5.10 15.34 83.03 10 666.42 2533.41 3105.34 6139.53
20-20-15 20 3.15 61.73 180.70 697.51 0 - - - -
30-30-10 20 0.88 2.97 76.77 474.26 0 - - - -
40-40-10 20 1.42 11.33 468.19 3533.22 0 - - - -

suite whereas the best known approach can solve only 259 of them1 Secondly, we eval-
uated the quality of the continuous relaxation of our LP model, showing they typically
were extremely close to optimal, and demonstrated that it could sometimes be useful
for giving lower bounds to the CP model, providing significant speed-up over the CP
model alone on large instances.

Evaluation of the CP Model. We compared our CP Shortest Path model (CPSP), from
Section 5.1, against the Counter model of [4,1], which is the best known approach to
this problem. The same 340 problem instances and an executable binary from [1] were
kindly provided by the authors, facilitating a direct and fair comparison. The bench-
marks comprised 17 categories of 20 instances ranging in size from 12× 12 to 40× 40
with maximum elements between 10 and 15, denoted m-n-M in our results tables. Ta-
ble 1 reports the number of instances solved in each category (column NS), along with
the minimum, median, average and maximum time for each category using a time limit
of 2 hours on an iMac2. Our CPSP approach clearly outperforms the Counter Model
as the size grows. On 20-20-10 instances where the Counter Model fails to solve one
instance within two hours, the speed-up is almost two orders-of-magnitude. Our CP
model is implemented in Choco3 and Java, whereas the Counter Model is implemented
in Mercury4 and compiled to C. Results in [9] use 15 × 15 intensity matrices with a
maximum element of 10, requiring up to 10 hours to solve using a 2GHz workstation.

Evaluation of the LP Model. Although the IP shortest-path model is not able to com-
pete with CPSP, the continuous relaxation (LP) is very tight and leads to excellent lower
bounds, which are often optimal for large instances. Table 2 reports, for each category,
the percentage of instances for which the optimal value of the relaxation matches the

1 Benchmark suite available from http://www.4c.ucc.ie/datasets/imrt
2 Mac OS X 10.4.11, 2.33 GHz Intel Core 2 Duo, 3 GB 667MHz DDR2 SDRAM.
3 http://choco.sourceforge.net
4 http://nicta.com.au/research/projects/
constraint programming platform

http://www.4c.ucc.ie/datasets/imrt
http://choco.sourceforge.net
http://nicta.com.au/research/projects/constraint_programming_platform
http://nicta.com.au/research/projects/constraint_programming_platform
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Table 2. The quality and time taken to compute the linear programming relaxation

Inst %Opt Avg time Inst %Opt Avg time
12-12-10 95 1.76 18-18-10 100 3.96
12-12-11 85 2.52 18-18-12 95 16.91
12-12-12 95 5.00 18-18-15 100 93.97
12-12-13 95 7.91 20-20-10 100 4.69
12-12-14 95 13.79 20-20-12 90 18.41
12-12-15 60 26.91 20-20-15 95 136.97
15-15-10 95 2.61 30-30-10 95 13.40
15-15-12 85 9.86 40-40-10 100 24.86
15-15-15 85 50.04

Table 3. Comparing the CP model with and without initial lower bounds from the LP relaxation

Inst
CPSP Hybrid = LP + CPSP

Time (seconds) Nodes Time (seconds) Nodes
NS min med avg max avg NS min med avg max avg

12-12-10 20 0.05 0.10 0.14 0.60 125.55 20 1.25 1.79 1.86 2.78 108.10
12-12-11 20 0.07 0.12 0.43 2.25 259.25 20 1.82 2.56 2.80 5.26 201.20
12-12-12 20 0.14 0.32 0.66 5.47 194.65 20 3.24 5.11 5.38 8.94 156.35
12-12-13 20 0.18 1.24 1.46 3.70 250.00 20 4.16 8.02 8.64 15.95 171.80
12-12-14 20 0.23 1.17 2.61 21.16 373.25 20 5.39 14.63 15.40 26.07 298.00
12-12-15 20 0.40 4.64 10.65 63.98 611.85 20 16.39 30.36 35.27 85.61 518.05
15-15-10 20 0.07 0.20 0.51 4.07 301.15 20 1.70 2.54 2.76 5.04 177.45
15-15-12 20 0.25 1.05 3.24 15.75 389.15 20 7.61 10.22 11.66 25.50 289.50
15-15-15 20 1.13 13.08 25.37 89.55 938.35 20 31.13 56.63 62.75 138.34 613.65
18-18-10 20 0.16 0.34 0.82 5.30 367.05 20 2.50 3.87 4.24 6.31 296.30
18-18-12 20 0.25 2.66 5.31 18.10 598.95 20 11.73 18.75 18.83 31.84 409.50
18-18-15 20 1.81 17.28 56.03 494.07 1366.20 20 70.40 96.85 105.86 169.47 622.35
20-20-10 20 0.14 0.41 3.56 39.83 1313.40 20 2.52 5.31 5.20 9.84 564.15
20-20-12 20 0.45 4.59 13.98 73.91 1329.30 20 12.51 19.25 24.01 81.89 836.75
20-20-15 20 2.44 58.04 159.50 612.43 4435.65 20 92.43 155.19 207.95 635.92 2295.70
30-30-10 20 0.52 2.60 75.52 472.25 15771.05 20 10.73 14.87 26.55 161.09 7144.85
40-40-10 20 0.91 6.89 466.68 3631.50 130308.80 20 24.27 28.98 49.07 209.02 23769.35

real optimal value, as well as the average time of LP. Table 3 compares the CP model
(CPSP) against a hybrid approach in which lower bounds are first computed based on
the LP to start the bottom-up approach of CPSP5. The LP was solved using the barrier
algorithm with CPLEX (version 10.0.0). Although the hybrid model is often slowed
down by the continuous relaxation (the minimum times of CPSP are far better than the
minimum times of the hybrid), it scales better on the 40-40-10 instances. On 40-40-10,
the hybrid approach is on average 9 times faster than CPSP.

7 Conclusion

We have provided a new approach to solving the Multileaf Collimator Sequencing Prob-
lem. Although the complexity of the resulting algorithm depends on the number of in-
teger partitions of the maximum intensity, which is exponential, it can be used to design
very efficient approaches in practice. We proposed a new CP and Linear models encod-
ing each line as a set of shortest path problems and obtained two orders-of-magnitude
improvements compared to the best known method for this problem. The linear model
is a very tight formulation giving excellent lower bounds for the cardinality. A simple

5 These experiments ran as a single thread on a Dual Quad Core Xeon CPU, 2.66GHz with
12MB of L2 cache per processor and 16GB of RAM overall, running Linux 2.6.25 x64.
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hybrid approach, using the continuous relaxation at the root node before starting the
search with CP, outperforms the CP model alone on large instances.

The resulting approaches strongly rely on the fact that the maximum radiation in-
tensity is often small compared to the size of the matrix. It is, therefore, interesting to
determine the complexity of the algorithm by the maximum intensity. [1] explains that
in the instances available to them, the maximum intensity does not exceed 20 whereas
the collimators can reach 40 rows. This limitation might, thus, not be critical in prac-
tice. However many possibilities remain to be investigated to allow better scaling in
terms of the maximum element of the intensity matrix. The LP model typically has an
exponential number of variables and could certainly be solved more efficiently using
column generation techniques. Reasoning on the CP models could be strengthened by
solving resource constrained shortest path for each row using dynamic programming
and avoiding any branching on the partition variables. Finally, there are other objective
functions to consider in this problem, which we will study in the future.
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Abstract. There has been considerable interest in the identification of
structural properties of combinatorial problems that lead, directly or in-
directly, to the development of efficient algorithms for solving them. One
such concept is that of a backdoor set—a set of variables such that once
they are instantiated, the remaining problem simplifies to a tractable
form. While backdoor sets were originally defined to capture structure
in decision problems with discrete variables, here we introduce a notion
of backdoors that captures structure in optimization problems, which of-
ten have both discrete and continuous variables. We show that finding a
feasible solution and proving optimality are characterized by backdoors
of different kinds and size. Surprisingly, in certain mixed integer pro-
gramming problems, proving optimality involves a smaller backdoor set
than finding the optimal solution. We also show extensive results on the
number of backdoors of various sizes in optimization problems. Overall,
this work demonstrates that backdoors, appropriately generalized, are
also effective in capturing problem structure in optimization problems.

Keywords: search, variable selection, backdoor sets.

1 Introduction

Research in constraint satisfaction problems, in particular Boolean satisfiability
(SAT), and in combinatorial optimization problems, in particular mixed inte-
ger programming (MIP), has had many historic similarities (see, e.g., [2]). For
example, the earliest solution methods for both started out as processes that
non-deterministically or heuristically chose new inferred information to add re-
peatedly until the problem was fully solved. In SAT, this took the form of adding
“resolvents” of two clauses and formed the original Davis-Putnam procedure. In
MIP, this took the form of repeatedly adding cuts. In both cases, it was soon
observed that the vast array of possibilities for such resolvents and cuts to add
can easily turn into a process without much focus, and thus with limited success.
The remedy seemed to be to apply a different, top-down technique instead of
deriving and adding new information bottom-up. The top-down process took
the form of DPLL search for SAT and of branch-and-bound for MIP. Again,
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it was realized that such branch-and-bound style systematic search has its own
drawbacks, one of them being not learning anything as the search progresses.
The fix—a relatively recent development in the long history of SAT and MIP
methods—was to combine the two approaches. In SAT, this took the form of
“clause learning” during the branch-and bound process, where new derived con-
straints are added to the problem upon backtracking. In MIP, this took the form
of adding “cuts” and “tightening bounds” when exploring various branches dur-
ing the branch-and-bound search.

This similarity between SAT and MIP research suggests that concepts that
have been used successfully in one realm can perhaps also be extended to the
other realm and lead to new insights. We investigate this from the angle of ap-
plying ideas from SAT to MIP. In particular, we consider heavy-tailed behavior
of runtime distribution and the related concept of backdoor sets. It has been ob-
served that (randomized) SAT solvers often exhibit a large variation in runtimes
even when using randomization only for tie-breaking. At the same time, one of-
ten sees a SAT solver solve a hard real-world problem very quickly when in fact
the problem should have been completely out of the reach of the solver by stan-
dard complexity arguments. Backdoor sets provide a way to understand such
extremely short runs often seen on structured real-world instances and rarely
seen on randomly generated instances.

We remark that the study of backdoors in constraint satisfaction problems
was motivated by the observation that the performance of backtrack-style search
methods can vary dramatically depending on the order of variable and value se-
lection during the search. In particular, backtrack search methods exhibit large
variance in runtime for different heuristics, different problem instances, and, for
randomized methods, for different random seeds even on the same instance. The
discovery of the “heavy-tailed” nature of the runtime distributions in the context
of SAT [4, 5, 7, 10] has resulted in the effective introduction of randomization
and restart techniques [6] and has been related to the presence of small back-
doors [12]. A question, then, naturally arises: do the runtime distributions of
combinatorial optimization problems also exhibit a similar behavior? In particu-
lar, are these distributions heavy-tailed?

Formally, heavy-tail distributions exhibit power-law decay near the tail end of
the distribution and are characterized by infinite moments. The distribution tails
are asymptotically of the Pareto-Levy form. Most importantly for us, the log-log
plot of the tail of the survival function (i.e., how many instances are not solved
in a given runtime) of a heavy-tailed distribution exhibits linear behavior. We
considered the runtime distributions of MIP instances from the MIPLIB library
[1], using CPLEX’s [8] branch-and-bound search with a randomized branching
heuristic. While heavy-tailed behavior has been reported mostly in the context
of constraint satisfaction, some of the MIP optimization instances in our exper-
iments did show heavy-tailed behavior.

These observations for MIP optimization problems motivate an in-depth study
of the concept of backdoors for these problems, which is the main focus of this
paper. Informally, backdoors for constraint satisfaction are sets of variables the
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systematic search can, at least in principle, be limited to when finding a solution
or proving infeasibility. We extend the concept of backdoor sets to optimization
problems, which raises interesting new issues not addressed by earlier work on
backdoor sets for constraint satisfaction. We introduce “weak optimality back-
doors” for finding optimal solutions and “optimality-proof backdoors” for prov-
ing optimality. The nature of optimization algorithms, often involving adding
new information such as cuts and tightened bounds as the search progresses,
naturally leads to the concept of “order-sensitive” backdoors, where information
learned from previous search branches is allowed to be used by the sub-solver
underlying the backdoor. This often leads to much smaller backdoors than the
“traditional” ones.

We investigate whether significantly small backdoors also exist for standard
benchmark instances of mixed integer programming optimization problems, and
find that such instances often have backdoors involving under 5% of the dis-
crete variables. Interestingly, sometimes the optimality-proof backdoors can in
fact be smaller than the weak optimality backdoors, and this aligns with the
relative runtime distributions for these problems when finding an optimal solu-
tion vs. when proving optimality. A large part of our experimental work involves
the problem of determining how many backdoors of various kinds and sizes ex-
ist in such optimization problems, and whether information provided by linear
programming relaxations (e.g., the “fractionality” of the variables in the root
LP relaxation) can be used effectively when searching for small backdoors. Our
results provide positive answers to these questions.

2 Background: Backdoors for Constraint Satisfaction

We begin by recalling the concept of weak and strong backdoor sets for constraint
satisfaction problems. For simplicity of exposition, we will work with the Boolean
satisfiability (SAT) problem in this section, although the concepts discussed
apply equally well to any discrete constraint satisfaction problem.

Backdoor sets are defined with respect to efficient sub-algorithms, called sub-
solvers, employed within the systematic search framework of SAT solvers. In
practice, these sub-solvers often take the form of efficient procedures such as
unit propagation, pure literal elimination, and failed-literal probing. In some
theoretical studies, solution methods for structural sub-classes of SAT such as 2-
SAT, Horn-SAT, and RenamableHorn-SAT have also been studied as sub-solvers.
Formally [11], a sub-solver A for SAT is any poly-time algorithm satisfying
certain natural properties on every input formula F : (1) Trichotomy: A either
determines F correctly (as satisfiable or unsatisfiable) or fails; (2) A determines
F for sure if F has no constraints or an already violated constraint; and (3) if
A determines F , then A also determines F |x=0 and F |x=1 for any variable x.

In the definitions of backdoor sets that follow, the sub-solverA will be implicit.
For a formula F and a truth assignment τ to a subset of the variables of F , we will
use F [τ ] to denote the simplified formula obtained after applying the (partial)
truth assignment to the affected variables.
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Definition 1 (Weak and Strong Backdoors for SAT [11]). Given a
Boolean formula F on variables X, a subset of variables B ⊆ X is a weak back-
door (w.r.t. a specified sub-solver A) if for some truth assignment τ : B → {0, 1},
A returns a satisfying assignment for F [τ ]. Such a subset B is a strong backdoor
if for every truth assignment τ : B → {0, 1}, A returns a satisfying assignment
for F [τ ] or concludes that F [τ ] is unsatisfiable.

Weak backdoor sets capture the fact that a well-designed heuristic can get
“lucky” and find the solution to a hard satisfiable instance if the heuristic guid-
ance is correct even on the small fraction of variables that constitute the back-
door set. Similarly, strong backdoor sets B capture the fact that a systematic
tree search procedure (such as DPLL) restricted to branching only on variables
in B will successfully solve the problem, whether satisfiable or unsatisfiable.
Furthermore, in this case, the tree search procedure restricted to B will succeed
independently of the order in which it explores the search tree.

3 Backdoor Sets for Optimization Problems

This section extends the notion of backdoor sets from constraint satisfaction
problems to combinatorial optimization problems. We begin by formally defining
optimization problems and discussing desirable properties of sub-solvers for such
problems. Without loss of generality, we will assume throughout this text that
the optimization to be performed is minimization. For simplicity of notation, we
will also assume that all variables involved have the same value domain, D.

Definition 2 (Combinatorial Optimization Problem). A combinatorial
optimization problem is a four-tuple (X, D, C, z) where X = {xi} is a set of
variables with domain D, C is a set of constraints defined over subsets of X,
and z : D|X| → Q is an objective function to be minimized.

A constraint c ∈ C over variables var (c) is simply a subset of all possible value
assignments to the variables involved in c, i.e., c ⊆ D|var(c)|. A value assignment
v is said to satisfy c if the restriction of v to the variables var (c) belongs to the
set of value tuples constituting c.

Definition 3 (Sub-Solver for Optimization). A sub-solver A for optimiza-
tion is an algorithm that given as input a combinatorial optimization problem
(X, D, C, z) satisfies the following four conditions:

[(a)]

1. Trichotomy: A either infers a lower bound on the optimal objective value z
or correctly determines (X, D, C, z) (as either unsatisfiable or as optimized
providing a feasible solution that is locally optimal),

2. Efficiency: A runs in polynomial time,

3. Trivial solvability: A can determine whether (X, D, C, z) is trivially satisfied
(has no constraints) or trivially unsatisfiable (has an empty constraint), and
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4. Self-reducibility: If A determines (X, D, C, z), then for any variable xi and
value v ∈ D, A also determines (X, D, C ∪ {xi = v}, z).

For some partial assignments, the sub-solver might learn a new lower bound on
the objective value. For some partial assignments, the solver may find a feasible
solution that is a locally optimal solution. Any feasible solution provides an upper
bound on the optimal objective value. Hence, for some partial assignments, the
sub-solver might learn a new upper bound on the objective value.

In extending the notion of backdoor sets to optimization problems, we need
to take into account that we face two tasks in constrained optimization: first, we
need to find a feasible and optimal solution, and second, we need to prove its
optimality which essentially involves proving infeasibility of the problem when
the objective bound is reduced beyond the optimal value. This naturally leads
to three kinds of backdoors: weak optimality backdoors will capture the task
of finding optimal solutions, optimality-proof backdoors will capture the task
of proving optimality given the optimal objective value, and strong optimality
backdoors will capture the full optimization task, i.e., finding an optimal solution
and proving its optimality.

Weak backdoors for optimization are the most straightforward generalization
from the constraint satisfaction realm. One notable difference, however, is that
since we are trying to decouple the solution-finding task from the optimality-
proof task, we assume that the solution-finding task is, in a sense, somehow aware
of the optimal objective value and can stop when it hits an optimal solution.
In our experiments designed to identify backdoor sets, we achieve this by pre-
computing the optimal objective value and forcing the search to stop when a
feasible solution achieving this objective value is encountered.

We use the word “traditional” in the next few definitions to distinguish them
from the concept of order-sensitive backdoors to be discussed in Section 3.1. In
the following, C ∪ τ denotes adding to C the constraint {(v1, . . . , vn) | ∀xi ∈
B, vi = τ(xi)} imposing the partial assignment τ on the variables in B.

Definition 4 ((Traditional) Weak Optimality Backdoor). Given a com-
binatorial optimization problem (X, D, C, z), a subset of the variables B ⊆ X
is a (traditional) weak optimality backdoor (w.r.t. a specified sub-solver A) if
there exists an assignment τ : B → D such that A returns a feasible solution for
(X, D, C ∪ τ, z) which is of optimal quality for (X, D, C, z).

In contrast to decision problems, solving an optimization instance also requires
proving that no better feasible solution exists. Therefore, we define the notion
of backdoor sets for the optimality proof itself. Once we have found an optimal
feasible solution x∗, this immediately also provides the optimal upper bound
to the objective, making the new problem of seeking a better objective value
infeasible. Optimality-proof backdoors are sets of variables that help one deduce
this infeasibility efficiently.

Definition 5 ((Traditional) Optimality-Proof Backdoor). Given a com-
binatorial optimization problem (X, D, C, z) and an upper bound z∗ on the ob-
jective value, a subset of the variables B ⊆ X is a (traditional) optimality-proof
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backdoor (w.r.t. a specified sub-solver A) if for every assignment τ : B → D, A
correctly decides (X, D, C ∪ τ ∪ {z < z∗}, z) to be infeasible.

The notion of optimality-proof backdoor allows us to decouple the process of
finding feasible solutions from proving the optimality of a bound. An optimality-
proof backdoor is particularly relevant when there is an external procedure that
finds good feasible solutions (e.g., heuristic greedy search). Given the best solu-
tion quality found by the greedy search, we can use an optimality-proof backdoor
to confirm that no better solution exists or perhaps to disprove the bound by
finding a better feasible solution.

Both the definition of weak optimality backdoor and of optimality-proof back-
door implicitly or explicitly rely on the knowledge of an upper bound z∗ on the
objective value, i.e., they do not capture solving the original optimization prob-
lem for which the optimal value is unknown. Recall that strong backdoors for
constraint satisfaction problems capture the set of variables that are enough to
fully solve the problem—either prove its infeasibility or find a solution. We would
like to define a similar notion for optimization problems as well. To this end, we
define strong backdoors for optimization, which are enough to both find an op-
timal solution and prove its optimality, or to show that the problem is infeasible
altogether. When the problem is feasible, a strong backdoor set is both a weak
optimality backdoor and an optimality-proof backdoor.

Definition 6 ((Traditional) Strong Optimality Backdoor). Given a com-
binatorial optimization problem (X, D, C, z), a subset of the variables B ⊆ X
is a (traditional) strong optimality backdoor (w.r.t. a specified sub-solver A)
if it satisfies the following conditions. For every assignment τ : B → D, A
infers a lower bound lb(τ) on the optimal objective value for (X, D, C ∪ τ, z);
lb(τ) = + inf if infeasible. If, for τ , the sub-solver also finds an optimal solution
x̂(τ) for (X, D, C ∪ τ, z), then let ẑ(τ) = z(x̂(τ)), else let ẑ(τ) = + inf. We must
have: minτ lb(τ) = minτ ẑ(τ).

3.1 Order-Sensitive Backdoors

We now discuss an issue that arises naturally when we work with backdoor
sets for state-of-the-art optimization algorithms, such as CPLEX for mixed in-
teger programming (MIP) problems: order-sensitivity of backdoor sets. Order-
sensitivity plays an increasingly important role as we extend the notion of back-
doors to constraint optimization problems.

The standard requirement implicit in the notion of backdoor sets in con-
straint satisfaction problems is that the underlying systematic search procedure
restricted to backdoor variables should succeed independently of the order in
which it explores various truth valuations of the variables; in fact, for strong
backdoors, the sub-solver must succeed on every single search branch based
solely on the value assignment to the backdoor variables. This condition, how-
ever, ignores an important fact: a crucial feature of most branch-and-bound
algorithms for constrained optimization problems is that they learn information
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about the search space as they explore the search tree. For example, they learn
new bounds on the objective value and the variables, and they might add vari-
ous kind of “cuts” that reduce the search space without removing any optimal
solution. These tightened bounds and cuts potentially allow the sub-solver to
later make stronger inferences from the same partial assignment which would
have normally not lead to any strong conclusions. Indeed, in our experiments
designed to identify weak optimality backdoor sets for MIP problems, it was of-
ten found that variable-value assignments at the time CPLEX finds an optimal
solution during search do not necessarily act as traditional weak backdoors, i.e.,
feeding back the specific variable-value assignment doesn’t necessarily make the
underlying sub-solver find an optimal solution. This leads to a natural distinction
between “traditional” (as defined above) and “order-sensitive” weak optimality
backdoors. In the following definitions, search order refers to the sequence of
branching decisions that a search method uses in exploring the search space and
possibly transferring any available learned information (such as cuts or tigher
bounds) from previously explored branches to subsequent branches.

Definition 7 (Order-Sensitive Weak Optimality Backdoor). Given a
combinatorial optimization problem (X, D, C, z), a subset of the variables B ⊆ X
is an order-sensitive weak optimality backdoor (w.r.t. a specified sub-solver A)
if there exists some search order involving only the variables in B that leads to an
assignment τ : B → D such that A returns a feasible solution for (X, D, C∪τ, z)
which is of optimal quality for (X, D, C, z).

In fact, added cuts and tightened bounds form an integral part of solving a MIP
optimization problem and can critically help even when “only” detecting a feasi-
ble solution of optimal quality. The same distinction also applies to optimality-
proof backdoors and to strong backdoors, simplifying the rather cumbersome
definition in the latter case.

Definition 8 (Order-Sensitive Optimality-Proof Backdoor). Given a
combinatorial optimization problem (X, D, C, z) and an upper bound z∗ on
the objective value, a subset of the variables B ⊆ X is an order-sensitive
optimality-proof backdoor (w.r.t. a specified sub-solver A) if there exists some
search order involving only the variables in B such that A correctly decides
(X, D, C ∪ {z < z∗}, z) to be infeasible.

Definition 9 (Order-Sensitive Strong Optimality Backdoor). Given a
combinatorial optimization problem (X, D, C, z), a subset of the variables B ⊆ X
is an order-sensitive strong backdoor (w.r.t. a specified sub-solver A) if there
exists some search order involving only the variables in B such that A either
correctly decides that the problem is infeasible, or finds an optimal solution and
proves its optimality.

4 Experimental Evaluation

To investigate the distribution of backdoor sizes in optimization problems, we
consider the domain of Mixed Integer Programming. In our empirical study, we
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use instances from the MIPLIB library [1], and employ the branch-and-bound
search framework provided by CPLEX [8]. Due to the computationally intensive
analysis performed in this study, we only evaluate MIPLIB instances that could
be solved reasonably fast with CPLEX.

The sub-solver applied by CPLEX at each search node of the branch-and-
bound routine uses a dual simplex LP algorithm in conjunction with a variety
of cuts. In our previous study [3] of backdoors in Satisfiability problems, we
investigated the sub-solver routine used in Satz [9] which applied probing to each
search node. Similarly here, we set CPLEX to use strong branching, adding a
lot of additional inference at each node. In summary, the sub-solver is dual
simplex+CUTS+probing.1

We investigate the probability that a randomly selected subset of the variables
of a given cardinality k is a backdoor. To approximate this probability, we sample
many sets (500) of each given size, and for each evaluate whether the chosen
set is a traditional weak optimality backdoor, order-sensitive weak optimality
backdoor, and/or optimality-proof backdoor.

In our experiments we consider order-sensitive optimality-proof backdoors
(and not traditional optimality-proof backdoors). For brevity, we will refer to
them simply as optimality-proof backdoors. To decide whether a given set B of
variables is an optimality-proof backdoor, we initialize CPLEX with the optimal
solution and allow branching only on the set B. As soon as we reach a search
node at which all variables of B are fixed but the infeasibility of the sub-problem
at the node cannot be concluded, we reject B. Note that with a different search
order, CPLEX could have succeeded in proving infeasibility if the alternative
order provided stronger cuts earlier. Hence our results provide a lower bound on
the probability that a set of a certain size is an optimality-proof backdoor.

To decide whether a given set B of variables is an order-sensitive weak opti-
mality backdoor, we allow branching only on the chosen set. As soon as we find
an incumbent which has optimal objective value, (precomputed ahead of time),
we accept the set. That is, we stop the search when an optimal solution is found,
but the optimal value is not given explicitly to the CPLEX search procedure
to avoid that the subsolver can infer information from the lower bound on the
objective. If we reach a search node in which all variables in the set B are fixed
but the sub-solver cannot conclude the infeasibility of the sub-problem or infer
a integer feasible solution, we prune the search node and continue searching. If
we explore the full partial tree on the set B without finding an optimal solution,
we reject B. Again, there could have been an alternative search order in which
succeeded with B. Our results are again lower bounds on the true probability of
order-sensitive weak optimality backdoors.

If a set was rejected as an order-sensitive weak backdoor with this procedure,
then we indeed explored the full partial tree over B. Hence, we know that for

1 For practical reasons, we consider the dual-simplex algorithm as an efficient subsolver
despite its exponential worst-case complexity; after all, the problem it solves lies
in the complexity class P and dual-simplex is one of the most efficient practical
procedures for this problem.
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sure that B is not a traditional weak optimality backdoor. In addition, for every
set that was accepted as order-sensitive weak backdoor, we record the values of
the variables in B at the incumbent node with optimal value. We test whether
assigning B to these values without prior search results in inferring an integer
feasible solution of optimal quality. If yes, then the set is accepted as traditional
weak optimality backdoor. If not it is rejected. Again, there can be false negatives
due the fact that some other assignment different than the incumbent found
could have sufficed. Therefore, our results on the probability that a set is a
traditional weak optimality backdoor are lower bounds.

4.1 Smallest Backdoors

The size of the smallest traditional weak optimality and order-sensitive
optimality-proof backdoor that we have found is presented in Table 1, repre-
senting an upper bound on the true smallest size. The values for the traditional
weak optimality backdoor sizes are also an upper bound on the smallest order-
sensitive weak optimality backdoor size. Note that the instance 10teams does not
have an optimality-proof backdoor because its objective value is already fixed in
the problem specification. Overall, we find that the vast majority of instances
have small or very small (traditional) weak optimality backdoors of less than
6% of the variables. For air04 and air05 we even find that setting less than one
thousandth of the variables is already enough to enable the sub-solver to com-
pute an overall optimal integer feasible solution! However, as the exceptions pk1,
pp08a and pp08aCUTS show, some real-world MIPs might not exhibit small
backdoors, even for very strong sub-solvers.

Table 1. Upper bounds on the smallest size of (traditional) weak optimality backdoors
and of optimality-proof backdoors in absolute value and as percentage of the number
of discrete variables in the problem instance

instance variables discrete weak backdoors orderOpt backdoors
variables size % size %

10teams 2025 1800 10 0.56% NA NA
aflow30a 842 421 11 2.61% 85 20.19%
air04 8904 8904 3 0.03% 14 0.16%
air05 7195 7195 3 0.04% 29 0.40%
fiber 1298 1254 7 0.56% 5 0.40%
fixnet6 878 378 6 1.59% 5 1.32%
rout 556 315 8 2.54% 172 54.60%
set1ch 712 240 14 5.83% 28 11.67%
vmp2 378 168 11 6.55% 19 11.31%
pk1 86 55 20 36.36% 55 100.00%
pp08a 240 64 11 17.19% 47 73.44%
pp08aCUTS 240 64 11 17.19% 32 50.00%
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4.2 Probability of Finding Small Backdoors

In addition to the smallest size of a backdoor, one is interested in knowing how
hard it is to find small backdoor sets. One way to assess this difficulty is to
estimate how many backdoor sets of a particular size exist for a given problem.

We want to approximate the probability that a set of variables of a given
cardinality k is a backdoor. For each given backdoor size k, we sampled, uni-
formly at random, subsets of cardinality k from the discrete variables of the
problem. For each set we evaluated whether it is a backdoor or not with the
setup described in the beginning of this section.

We conducted this experiment many thousands of times for various cardinal-
ities k. Figure 1 presents results for the instances fiber and vpm2. The curves
labeled orderOpt refer to order-sensitive optimality-proof backdoors. The curves
labeled tradWeak refer to weak optimality backdoors that are not order-sensitive.
The curves labeled orderWeak refer to weak optimality backdoors that are order-
sensitive. The curves labeled tradWeak+orderOpt refer to sets that are both (tra-
ditional) weak optimality backdoors and optimality-proof backdoors. Finally, the
curves labeled orderStrong refer to sets that are both order-sensitive weak opti-
mality backdoors and order-sensitive optimality-proof backdoors.

For the instance fiber, we observe that the probability that a set of a given size
is an optimality-proof backdoor is much higher than the probability that a set
of this size is a weak optimality backdoor. This evidence suggests that there are
many more small optimality-proof backdoors than weak optimality backdoors.
In addition, the probability that a set is both an optimality-proof backdoor and
a weak backdoor is almost equal to the probability that it is a weak optimality
backdoor. Our data shows that almost every set that was a weak optimality
backdoor was also an optimality-proof backdoor. This suggests that for fiber the
difficulty of the problem might lie in finding the optimal solution as opposed to
proving its optimality.

Our study suggests that solving problems with a hardness profile similar to
fiber can be significantly boosted by the availability of good initial solutions
found by some heuristic search. This aligns well with the recent development of
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state-of-the-art MIP solvers for which it has been found that primal heuristics,
so-called “feasibility pumps”, can significantly boost performance.

For the instance vpm2, we have avoided displaying the order-sensitive weak
backdoors because they fully overlap with the curve for the traditional weak
backdoors. Contrary to fiber, for vpm2 the probability that a set of a given
size is a weak optimality backdoor is considerably higher than the probability
that it is an optimality-proof backdoor. In addition, every set that was found
to be an order-sensitive optimality-proof backdoor was also weak optimality
backdoor. In other words, the curve for optimality-proof backdoors perfectly
overlaps with the curve for sets that are both weak optimality and optimality-
proof backdoors, including the curve for order-sensitive strong backdoors. We
label the curve orderOpt(+tradWeak). The results for vpm2 give the intuition
that the difficulty of the problem lies in proving optimality as opposed to finding
an optimal solution.

To confirm the intuitions about the hardness profiles for solving fiber and
vpm2, in Figure 2 we present the runtime distributions for fiber and vpm2 in
terms of the probability that a run is completed in a given number of search
nodes. Three curves are presented for each instance. The curves labeled ‘full
run’ represent the number of search nodes that it took to solve the problem fully
- both find an optimal solution and prove its optimality. The curves ‘opt soln run’
represent the number of search nodes that were explored before the incumbent
solution had the known optimal value. The curves ‘proof run’ capture the number
of search nodes that were explored to prove that a solution of a better quality
does not exist, i.e., proving infeasibility once an optimal solution is provided.
This comparison allows us to estimate the relative effort spent on each task and
the effort overall. We see that the intuition from the distribution of backdoor
sizes was indeed correct. For fiber, the effort spent of finding the optimal solution
explains almost all of the full runtime, while the effort that is needed when only
proving infeasibility is considerably less. On the other hand, for vpm2 the gap
between the effort on finding an optimal solution and the full effort is substantial,
especially in the beginning. The full runs are clearly taking much longer than the
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fastest solution-finding runs, but about the same as the slowest solution-finding
runs. Here, proving optimality takes longer than the fastest solution-finding runs
but shorter than the slowest solution-finding runs.

4.3 LP Relaxations as Primal Heuristics

We saw that MIPs, even when they have small backdoors, may only have very few
weak backdoor sets of a particular (small) size. The question arises of how a MIP
solver could exploit its sub-solver to find small backdoors. To see whether LP
relaxations can provide guidance about which variables may belong to a small
backdoor set, we slightly modified the experiment from the previous section.
Rather than sampling sets of desired cardinality by selecting variables uniformly
at random, we biased the selection based on the “fractionality” of variables in
the root relaxation. The fractionality of a variable measures how far it is from
the nearest integer value. E.g., the fractionality of a variable X with domain 0,1
is simply f(X) = min{|x|, |1−x|}. More formally, if the root LP value of variable
Xi is x̄i, then its fractional part is fi = x̄i − �x̄i�. We assign to each variable
a weight f(Xi) ← 0.5 − |0.5 − fi|. Note that the quantity f(Xi) captures the
“infeasibility” of a variable which is a well-known measure for picking branching
variables in mixed integer programming. Some discrete variables could be inte-
gral in the root LP. For such variables Xi, we assign a small non-zero weight
f(Xi) = ε. After we normalize the variable weights, we choose a subset of size
k where each variable is selected with probability proportional to its normalized
weight.

For each desired size k, we sampled many sets of variables again and tested
which ones were backdoors. The result of these experiments is summarized in
Figure 3 for fiber and in Figure 4 for vpm2. The effect of sampling sets in a biased
fashion is clearly visible (curves resulting from biased selection are marked with a
“b-”). For the instance fiber, choosing sets biased by the root LP clearly increases
the probability of selection a set which is an optimality-proof backdoor or a set
which is a weak optimality backdoor. Surprisingly, selecting 6% of the variables
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Fig. 4. VPM2: Comparing the probability that a subset of variables of a given size is
a backdoor when sampling uniformly versus when sampling based on the fractionality
of variables at the root

in this fashion is enough to guarantee that the set is an optimality-proof backdoor
(100%), and give a 95% chance that the selected set is a weak backdoor.

The improvement effect is even more dramatic for the instance vpm2. Here,
with 20% of the variables selected in the biased way we are guaranteed to select
a weak backdoor, compared to a less than 2% chance when selected uniformly.
Also, while with 30% of the variables selected in the biased way we have a 93%
chance of selecting an optimality-proof backdoor set, we have less than 0.02%
chance of such event when selecting uniformly. This shows clearly that an LP
sub-solver can be exploited effectively to find small backdoors.

One thing to note is that before solving the root LP, CPLEX applies a pre-
processing procedure which simplifies the problem and removes some variables
whose values can be trivially inferred or can be expressed as an aggregation of
other variables2. This procedure can sometimes result in dramatic reduction in
the effective problem size. In fiber, the discrete variables removed by preprocess-
ing are less than 17%. However, for vpm2 the preprocessing removes 50% of the
discrete variables.

One advantage of biasing the set selection by the root LP is that the vari-
ables trivially inferred by the preprocessing will have integral values, and will
be selected only with some very small probability. To evaluate whether the bi-
ased selection draws its advantage over the uniform selection solely on avoiding
pre-processed variables, we evaluated the probability of selecting a backdoor set
when sampling uniformly among only the discrete variables remaining after pre-
processing for vpm2. The results for this experiment are presented in the curves
presolve-orderOpt and presolve-tradWeak in Figure 4. These curves show that
choosing uniformly among the remaining variables is more effective for finding
backdoors than choosing uniformly among all discrete variables, but it is not as
good as the biased selection based on the root LP relaxation. Hence biasing the
selection by the fractionality of the variables of the root LP has additional merit
for discovering small backdoor sets.
2 However, the user-defined branching procedure of CPLEX still works on the original

set of variables.
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Fig. 5. Probability that a subset of variables of a given size is a traditional weak
optimality backdoor backdoor when sampling uniformly (crosses) versus when sampling
based on the fractionality of variables at the root (biased)

Other MIPLIB instances for which we have found that the biased selection
has a substantial effect are 10teams, aflow30a, air04, and set1ch. We present the
results in Figure 5. For these instances, we only performed a quick evaluation,
where we tested whether a set of variables B is a traditional weak optimality
backdoor by setting their values to the values in the optimal solution found
by default by CPLEX. Hence, the results are loose lower bounds on the actual
probabilities.

5 Conclusion

In this work, we extended the concept of backdoor sets from constraint satisfac-
tion problems to combinatorial optimization problems. This extension also in-
volved incorporating learning into the notion of backdoors by introducing order-
sensitive backdoors. While it has been previously shown that real-world SAT
instances have very small backdoors, here we showed that small backdoors also
exists to standard benchmark instances in mixed integer programming. In par-
ticular, optimization instances can have very small weak optimality backdoors
and often also small optimality-proof backdoors. Surprisingly, sometimes the
optimization-proof backdoors can in fact be smaller than the weak optimality
backdoors.

We also considered the question of how hard it is to find small backdoor sets
and provided extensive numerical results. We studied the probability that a set
of a given size is an order-sensitive optimality-proof backdoor and the proba-
bility that it is an order-sensitive or traditional weak optimality backdoor. In
general, we have shown that the difference in the distributions of weak optimal-
ity backdoors and of optimality-proof backdoors for a particular instance is well
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aligned with the difference in the runtime distributions for the tasks of finding
an optimal solution and proving optimality, respectively. Finally, we have also
demonstrated that the fractionality of variables in the root LP relaxation is a
very good heuristic for uncovering small backdoors for both solution finding and
for proof of optimality.
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Abstract. Many real-world problems require the enumeration of all solutions of
combinatorial search problems, even though this is often infeasible in practice.
However, not always all parts of a solution are needed. We are thus interested
in projecting solutions to a restricted vocabulary. Yet, the adaption of Boolean
constraint solving algorithms turns out to be non-obvious provided one wants a
repetition-free enumeration in polynomial space. We address this problem and
propose a new algorithm computing projective solutions. Although we have im-
plemented our approach in the context of Answer Set Programming, it is readily
applicable to any solver based on modern Boolean constraint technology.

1 Introduction

Modern Boolean constraint technology has led to a tremendous boost in solver perfor-
mance in various areas dealing with combinatorial search problems. Pioneered in the
area of Satisfiability checking (SAT; [1,2,3]) where it has demonstrated its maturity for
real-world applications, its usage is meanwhile also advancing in neighboring areas,
like Answer Set Programming (ASP; [4]) and even classical Constraint Processing. Al-
though traditionally problems are expressed in terms of satisfiability or unsatisfiability,
many real-world applications require surveying all solutions of a problem. For instance,
inference in Bayes Nets can be reduced to #SAT (cf. [5]) by counting the number of
models. However, the exhaustive enumeration of all solutions is often infeasible. Yet
not always all parts of a solution are needed. Restrictions may lead to a significant de-
crease of computational efforts; in particular, whenever the discarded variables have
their proper combinatorics and thus induce a multitude of redundant solutions.

We are thus interested in projecting solutions to a restricted vocabulary. However, the
adaption of Boolean constraint solving algorithms turns out to be non-obvious, if one
wants a repetition-free enumeration in polynomial space. We address this by proposing
a new algorithm for solution projection. Given a problem Δ having solutions S(Δ) and
a set P of variables to project on, we are interested in computing the set {S ∩ P | S ∈
S(Δ)}. We refer to its elements as the projective solutions for Δ wrt P . To compute
all such projections, we first provide a direct extension of a conflict-driven learning
algorithm by means of solution recording. Although this approach is satisfactory when
the number of projective solutions is limited, it does not scale since it is exponential
in space. After analyzing the particularities of the search problem, we propose a new
conflict-driven learning algorithm that uses an elaborated backtracking scheme and only
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a linear number of solution-excluding constraints. Although we have implemented our
approach in the context of ASP, it is readily applicable to any solving approach based
on modern Boolean constraint technology. Lastly, we provide an empirical analysis
demonstrating the computational impact of our approach.

2 Background

The idea of ASP is to encode a problem as a logic program such that its answer sets
represent solutions to the original problem. More formally, a logic program Π is a finite
set of rules of the form a ← b1, . . . , bm,∼cm+1, . . . ,∼cn, where a, bi, cj are atoms for
0 <i≤m, m <j≤n and ∼ is (default) negation. The answer sets of Π are particular
models of Π satisfying an additional stability criterion. For brevity, we refer the reader
to [6] for a formal introduction to ASP.

As a running example, consider the program composed of the following rules:

x← q, r (1)

x← ∼y,∼z (2)

p ← x (3)

p ← ∼x (4)

y ← x,∼q (5)

y ← ∼x,∼z (6)

q ← x (7)

q ← ∼r (8)

z ← x,∼r (9)

z ← ∼x,∼y (10)

r ← x (11)

r ← ∼q (12) ·
Among the ten (classical) models of this program, we find five answer sets: {p, q, y},
{p, q, z}, {p, q, r, x}, {p, r, y}, and {p, r, z}. Projecting them onto the atoms {p, q, r}
results in only three distinct solutions: {p, q}, {p, q, r}, and {p, r}.

An assignment A is a sequence (σ1, . . . , σn) of literals σi of the form Tvi or Fvi

where vi is a (Boolean) variable for 1 ≤ i≤ n; Tvi expresses that vi is true and Fvi

that it is false. We denote the complement of a literal σ by σ, that is, Tv = Fv and
Fv = Tv. Also, we let var(Tv) = var(Fv) = v. We sometimes abuse notation and
identify an assignment with the set of its contained literals. Given this, we access the
true and false variables in A via AT = {v | Tv ∈ A} and AF = {v | Fv ∈ A}.
For a canonical representation of (Boolean) constraints, we make use of nogoods [7].
In our setting, a nogood is a finite set {σ1, . . . , σm} of literals, expressing a constraint
violated by any assignment A containing σ1, . . . , σm. For a set Δ of nogoods, define
var(Δ) =

⋃
δ∈Δ{var(σ) | σ ∈ δ}. An assignment A such that AT ∩ AF = ∅ and

{δ ∈ Δ | ∃σ ∈ δ : σ ∈ A} = Δ is a solution for Δ. For a given set P of variables,
we call a set P of literals such that PT ∪PF = P a projective solution for Δ wrt P , if
there is some solution A for Δ such that P ⊆ A.

A translation of logic programs in ASP into nogoods is developed in [4]. For brevity,
we illustrate it by two examples. First, consider the nogoods induced by atom y in
the above program. Atom y depends on two bodies: {x,∼q} and {∼x,∼z} in (5)
and (6). We get the nogoods {Ty,F{x,∼q},F{∼x,∼z}}, {Fy,T{x,∼q}}, and
{Fy,T{∼x,∼z}} by taking for convenience the actual bodies rather than introduc-
ing new variables. For instance, the first nogood eliminates solutions where y is true
although neither the rule in (5) nor (6) are applicable. In turn, body {x,∼q} induces
nogoods {F{x,∼q},Tx,Fq}, {T{x,∼q},Fx}, and {T{x,∼q},Tq}. The last two
nogoods deny solutions where the body is true although one of its conjuncts is false.
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3 Algorithms for Solution Projection

When enumerating solutions, standard backtracking algorithms like that of Davis, Put-
nam, Logemann, and Loveland (DPLL; [8,9]) usually encounter multiple solutions be-
ing identical on a projected vocabulary. Such redundancy could easily be avoided by
branching on projected before any other variables. However, the limitation of branch-
ing can cause an exponential degradation of performance (see below).

Also our enumeration algorithms for projective solutions make use of a decision
heuristic: SELECT(Δ,∇,A, P ) takes a set Δ of (input) nogoods, a set ∇ of (recorded)
nogoods, an assignment A, and a set P of variables as arguments. Dynamic heuristics
devised for DPLL typically consider Δ and A for their decisions. In contrast, heuristics
devised for Conflict-Driven Clause Learning (CDCL; [1,2,3]) are far more interested
in∇, containing nogoods derived from conflicts. Finally, as speculated above, a heuris-
tic tailored for the enumeration of projective solutions could pay particular attention to
the set P of variables to project on. For instance, OPTSAT [10] makes use of a decision
heuristic preferring minimal literals in a partially ordered set. Although OPTSAT does
not aim at enumeration, a similar intervention could be used in our setting for canceling
redundancies. However, we argue below that constraining the heuristic in such a way
can have a drastic negative impact. Hence, we refrain from devising any ad hoc heuris-
tic and leave the internals of SELECT(Δ,∇,A, P ) unspecified. As a matter of fact, the
formal properties of our algorithms are largely independent of heuristics.

Projective Solution Recording. Our goal is the repetition-free enumeration of all pro-
jective solutions for a given set Δ of nogoods wrt a set P of variables. To illustrate
the peculiarities, we start with a straightforward approach recording all projective solu-
tions in order to avoid recomputation. Our enumeration algorithm is based on CDCL,
but presented in terms of nogoods and thus called Conflict-Driven Nogood Learning
(CDNL). It deviates from the corresponding decision algorithm, which halts at the first
solution found, merely by recording computed projective solutions as nogoods and then
searching for alternative solutions.

Algorithm 1 shows our first main procedure for enumerating projective solutions.
Its input consists of a set Δ of nogoods, a set P of variables to project on, and a
number s of projective solutions for Δ wrt P to compute. Projective solutions are
obtained from assignments A (initialized in Line 1) that are solutions for Δ. The
dynamic nogoods in∇ (initialized in Line 2) are derived from conflicts (cf. Line 9–10).
In general, nogoods in ∇ are consequences of those in Δ and may thus be deleted at
any time in order to achieve polynomial space complexity. Only such nogoods that are
asserting (explained below) must not be deleted from ∇, but their number is bound
by the cardinality of var(Δ). Finally, the decision level dl (initialized in Line 3)
counts the number of heuristically selected decision literals in A. The global structure
of Algorithm 1 is similar to the one of the decision version of CDNL (or CDCL)
by iterating propagation (Line 5) and distinguishing three resulting cases: a conflict
(Line 6–11), a solution (Line 12–20), or a heuristic decision (Line 22–24). Function
BOOLEANCONSTRAINTPROPAGATION(Δ ∪ ∇,A) first augments A with implied
literals, that is, literals necessarily contained in any solution for Δ ∪∇ that extends A.
A well-known technique to identify such literals is unit propagation (cf. [2,3]); it
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Algorithm 1. CDNL-RECORDING

Input : A set Δ of nogoods, a set P of variables, and a number s of requested solutions.

A ← ∅ // assignment1

∇ ← ∅ // set of (dynamic) nogoods2

dl ← 0 // decision level3

loop4

A ← BOOLEANCONSTRAINTPROPAGATION(Δ ∪∇,A)5

if ε ⊆ A for some ε ∈ Δ ∪∇ then // conflict6

if dl = 0 then exit7

else8

(δ, dl) ← CONFLICTRESOLUTION(ε, Δ ∪∇,A)9

∇ ← ∇∪ {δ}10

A ← A \ {σ ∈ A | dlevel(σ) > dl}11

else if {δ ∈ Δ | ∃σ ∈ δ : σ ∈ A} = Δ then // solution12

S ← {σp ∈ A | var(σp) ∈ P}13

print S14

s ← s − 2|P |−|S|15

if s ≤ 0 or max{dlevel(σp) | σp ∈ S} = 0 then exit16

else17

Δ ← Δ ∪ {S} // record solution (persistently)18

dl ← max{dlevel(σp) | σp ∈ S} − 119

A ← A \ {σ ∈ A | dlevel(σ) > dl}20

else21

σd ← SELECT(Δ,∇,A, P ) // decision22

dlevel(σd) ← dl ← (dl + 1)23

A ← A ◦ σd24

iteratively adds complements σ to A, if δ\A = {σ} for some δ ∈ Δ∪∇, until reaching
a conflict or a fixpoint. In the context of ASP, propagation also includes unfounded set
checks (cf. [4,11]). In principle, other techniques, such as failed literal detection, could
be applied in addition, but they are less common in CDNL (or CDCL). We next de-
tail the cases encountered after propagation, starting with the simplest one of a decision.

Decision. As mentioned above, we do not assume any particular heuristic but
stipulate for any literal σd returned by SELECT(Δ,∇,A, P ) that {σd, σd} ∩ A = ∅
and var(σd) ∈ var (Δ ∪ ∇). That is, σd must be undecided and occur in the input.
For every literal σ ∈ A, dlevel (σ) provides its decision level. Based on this, operation
A ◦ σ′ inserts σ′ as the last literal of dlevel (σ′) into A, before any σ ∈ A such that
dlevel (σ)>dlevel (σ′). A decision literal σd is always appended to A (in Line 24).

Conflict. A conflict is encountered whenever some nogood ε is violated by A (cf.
Line 6). If no decision has been made, there is no (further) solution for Δ, and
enumeration terminates (Line 7). Otherwise, a reason δ for the conflict is calculated
(Line 9) and recorded as a dynamic nogood (Line 10). We assume that the nogood δ
returned by CONFLICTRESOLUTION(ε, Δ ∪ ∇,A) is violated by A and contains a
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Unique Implication Point (UIP; [1,12]), viz., there is some literal σ ∈ δ such that
dlevel (σ) > max{dlevel (σ′) | σ′ ∈ δ \ {σ}}. We assume conflict resolution to work
according to the First-UIP scheme [3,12], resolving ε against nogoods used to derive
implied literals in ε (this is why A is a sequence; cf. [4,11]) until reaching the first UIP,
which is not necessarily a decision literal. Backjumping (Line 11) then returns to deci-
sion level dl = max{dlevel (σ′) | σ′ ∈ δ\{σ}}, where δ implies σ by unit propagation.
Note that δ is the single nogood in Δ ∪∇ justifying the inclusion of σ in A at decision
level dl ; such a dynamic nogood is called asserting. Even though Algorithm 1 does not
mention deletion, dynamic nogoods that are not asserting may be deleted at any time.
Since there cannot be more asserting nogoods than literals in A, this permits running
the decision version of CDNL in polynomial space. Finally, by altering conflict resolu-
tion to simply return all decision literals in A, we can mimic DPLL with Algorithm 1
(rather than explicitly flipping a decision literal, its complement is asserted). Thus, the
considerations below apply also to DPLL variants for enumerating projective solutions.

Solution. The last case is that of a solution, viz., an assignment A containing the com-
plement of at least one literal from each nogood (cf. Line 12). The corresponding pro-
jective solutions for Δ wrt P are represented by S, the set of literals in A over variables
in P (cf. Line 13). After printing S (Line 14), we calculate the number of projective
solutions still requested (Line 15). Note that, for P \ (AT ∪AF) = {p1, . . . , pk}, each
of the 2k sets S∪ {Xipi | 1≤ i≤k} such that Xi ∈ {T,F} for 1≤ i≤k is a projective
solution for Δ wrt P , so that A represents 2|P |−|S| of them. If the number of requested
projective solutions have been enumerated or if all literals in S are implied at decision
level 0 (independent of decisions), we are done with enumeration (Line 16). Otherwise,
our first procedure records S persistently in Δ (Line 18). In fact, unlike dynamic no-
goods in∇, S is not a consequence of Δ because its literals belong to a solution for Δ.
Hence, we must exclude the deletion of S, and so cannot store it as a dynamic nogood
in ∇. Finally, at least one literal of S has to be unassigned in order to enumerate any
further projective solutions. This is accomplished by retracting the maximum decision
level of literals in S as well as all greater decision levels (Line 19–20). In principle, it
is also possible to backtrack further or even to restart search from scratch by retract-
ing all decision levels except for 0. The strategy of leaving as many decision levels as
possible assigned is guided by the goal of facilitating the discovery of projective solu-
tions nearby S. However, as with nogood deletion, restarts can optionally be included,
permitting the customization of backtracking from a solution.

We proceed by stating formal properties of Algorithm 1. The first one, termination,
follows from the termination of CDNL on unsatisfiable sets of nogoods (cf. [13] for a
proof) and the fact that solutions are excluded by strengthening the original problem.

Theorem 1. Let Δ be a finite set of nogoods, P a set of variables, and s a number.
Then, we have that CDNL-RECORDING(Δ, P, s) terminates.

The second property, soundness, is due to the condition in Line 12 of Algorithm 1.

Theorem 2. Let Δ be a finite set of nogoods, P a set of variables, and s a number.
For every S printed by CDNL-RECORDING(Δ, P, s) and every Q ⊆ P , we have that
S∪{Tq | q ∈ Q\SF}∪{Fr | r ∈ P \ (Q∪ST)} is a projective solution for Δ wrt P .
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The third property, completeness, follows from the prerequisite that any nogood in∇ is
a consequence of those in Δ. Hence, no projective solution for Δ wrt P is ever excluded
by Δ ∪∇ before it was enumerated.1

Theorem 3. Let Δ be a finite set of nogoods, P a set of variables, and PΔ =
var(Δ) ∩ P . For every projective solution P for Δ wrt P , we have that CDNL-
RECORDING(Δ, PΔ, 2|PΔ|) prints some S ⊆ P.

Finally, redundancy-freeness is obtained from the fact that each already enumerated
projective solution is represented by a nogood δ ∈ Δ, so that all further solutions for Δ
must contain the complement σp of at least one literal σp ∈ δ.

Theorem 4. Let Δ be a finite set of nogoods, P a set of variables, and s a number. For
every projective solution P for Δ wrt P , we have that CDNL-RECORDING(Δ, P, s)
prints some S ⊆ P at most once.

In the worst case, there are exponentially many (representative literal sets of) projective
solutions for Δ wrt P , each of which must be recorded in some way by Algorithm 1.
Thus, our next goal is revising Algorithm 1 to work in polynomial space under main-
taining its properties, in particular, redundancy-freeness. The peculiarities of this task
are listed next. For brevity, we refrain from giving exemplary inputs Δ and P exhibiting
the listed possibilities, but it is not difficult to come up with them.

First, for a solution A for Δ, there can be another solution B for Δ differing from A
only on variables outside P (requiring a different decision on some variable outside P ).

Fact 1. Let A be a solution for a set Δ of nogoods containing decision literals
{σ1, . . . , σj}. It is possible that there is some solution B for Δ such that {σp ∈ A |
var(σp) ∈ P} ⊆ B, but {σ1, . . . , σj} ∩B �= ∅. Then, if σi ∈ B for 1≤ i≤ j, we have
var(σi) /∈ P . We conclude that flipping some literal(s) in {σi | 1≤ i≤j, var(σi) /∈ P}
may not exclude repetitions of projective solutions for Δ wrt P .

Second, for a solution A for Δ, there can be another solution B for Δ differing
from A on some variable in P , but not on any decision literal in A over P .

Fact 2. Let A be a solution for a set Δ of nogoods containing decision literals
{σ1, . . . , σj}. It is possible that there is some solution B for Δ such that {σp ∈ A |
var(σp) ∈ P} �⊆ B, but {σi | 1≤ i≤ j, var(σi) ∈ P} ⊆ B. Then, B includes the de-
cision literals over P from A, still covering different projective solutions for Δ wrt P .
We conclude that flipping some literal(s) in {σi | 1≤ i≤j, var(σi) ∈ P}may eliminate
non-redundant projective solutions for Δ wrt P .

Combining Fact 1 and 2, we observe that flipping decision literals over variables out-
side P does not guarantee redundancy-freeness, while flipping decision literals over P
might sacrifice completeness. Hence, with a heuristic free to return an arbitrary deci-
sion literal, we do not know which literal of a solution A for Δ should be flipped. This
obscurity could be avoided by deciding variables in P before those outside P . How-
ever, such an approach suffers from a negative proof complexity result on unsatisfiable
inputs, and for hard satisfiable problems, similar declines are not unlikely.

Fact 3. Any restricted decision heuristic that returns a literal σd such that
var(σd) /∈ P only wrt assignments A such that var (Δ \ {δ ∈ Δ | ∃σ ∈ δ : σ ∈ A})∩

1 It is sufficient to consider the set PΔ of variables occurring in both Δ and P , along with the
size 2|PΔ| of the power set of PΔ.
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P ⊆ AT∪AF (that is, var(σ) /∈ P holds for all undecided literals σ in not yet satisfied
nogoods of Δ) incurs super-polynomially longer optimal computations than can be ob-
tained with an unrestricted decision heuristic on certain inputs. This handicap follows
from Lemma 3 in [14], showing that CDCL with decisions restricted to variables P act-
ing as input gates of Boolean circuits has super-polynomially longer minimum-length
proofs of unsatisfiability than DPLL on infinite family {EPHPn+1

n } of Boolean circuits.
The circuits in this family can be translated into a set Δ of nogoods [14] such that every
assignment A satisfying var (Δ \ {δ ∈ Δ | ∃σ ∈ δ : σ ∈ A}) ∩ P ⊆ AT ∪AF yields
an immediate conflict. We conclude that any restricted decision heuristic is doomed to
return only literals σd such that var(σd) ∈ P ; hence, it handicaps CDNL computations
in the sense of Lemma 3 in [14].

The last fact tells us that any heuristic guaranteeing redundancy-freeness (and com-
pleteness) right away must fail on certain inputs. To avoid this, we need to devise a
procedure that adaptively excludes redundancies.

Projective Solution Enumeration. Our second procedure for the enumeration of pro-
jective solutions for Δ wrt P is shown in Algorithm 2. Its overall structure, iterating
propagation before distinguishing the cases of conflict (Line 6–18), solution (Line 19–
38), and decision (Line 40–42), is similar to our first algorithm. We thus focus on the
differences between both procedures. In this regard, the progress information of Algo-
rithm 2 involves an additional systematic backtracking level bl (initialized in Line 3).
The basic idea is to gather decision literals over P at decision levels 1 to bl that are to
be backtracked systematically for the sake of enumerating further non-redundant pro-
jective solutions. In this way, Algorithm 2 establishes an enumeration scheme that can
be maintained in polynomial space, abolishing the need of persistent solution record-
ing. But as mentioned above, an important objective is to avoid interference with the
actual search. In particular, before any projective solutions have been found, there is no
cause for enforcing systematic backtracking. Hence, systematic backtracking levels are
introduced only after finding some projective solutions, but not a priori. The case of a
solution is explained next.

Solution. Projective solutions for Δ wrt P are extracted from a solution A for Δ and
counted like in the first algorithm (cf. Line 19–22). As before, enumeration terminates
if enough projective solutions have been computed or if the search space has been ex-
hausted (Line 23). If neither is the case, the treatment of the discovered projective so-
lutions in S distinguishes Algorithm 2 from its predecessor that simply records S. Let
us assume that S has been constructed from at least one heuristically selected literal
(Line 31–38), so that alternative decisions may lead to distinct projective solutions. In
order to enumerate them, we must certainly flip some decision literal(s) in A, but Fact 1
and 2 tell us that we cannot be sure about which one(s). This obscurity is now dealt with
via systematic backtracking, and thus we increment bl (Line 31) in order to introduce
a new systematic backtracking level. The introduction involves storing S in Δ, but now
as a nogood δ(bl) associated with bl (Line 32–33). The other cases of Algorithm 2 are
such that δ(bl) is removed from Δ as soon as bl is retracted, which establishes polyno-
mial space complexity. Until then, δ(bl) guarantees redundancy-freeness. The next step
consists of retracting all literals of decision levels not smaller than bl from A (Line 34)
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Algorithm 2. CDNL-PROJECTION

Input : A set Δ of nogoods, a set P of variables, and a number s of requested solutions.

A ← ∅ // assignment1

∇ ← ∅ // set of (dynamic) nogoods2

dl ← bl ← 0 // decision and (systematic) backtracking level3

loop4

A ← BOOLEANCONSTRAINTPROPAGATION(Δ ∪∇,A)5

if ε ⊆ A for some ε ∈ Δ ∪∇ then // conflict6

if dl = 0 then exit7

else if dl = bl then8

Δ ← Δ \ {δ(bl)} // remove for polynomial space complexity9

σd ← dliteral(bl)10

A ← A \ {σ ∈ A | dlevel(σ) = bl}11

dlevel(σd) ← dl ← bl ← (bl − 1)12

A ← A ◦ σd13

else14

(δ, k) ← CONFLICTRESOLUTION(ε, Δ ∪∇,A)15

∇ ← ∇∪ {δ}16

dl ← max{k, bl}17

A ← A \ {σ ∈ A | dlevel(σ) > dl}18

else if {δ ∈ Δ | ∃σ ∈ δ : σ ∈ A} = Δ then // solution19

S ← {σp ∈ A | var(σp) ∈ P}20

print S21

s ← s − 2|P |−|S|22

if s ≤ 0 or max{dlevel(σp) | σp ∈ S} = 0 then exit23

else if max{dlevel(σp) | σp ∈ S} = bl then24

Δ ← Δ \ {δ(bl)} // remove for polynomial space complexity25

σd ← dliteral(bl)26

A ← A \ {σ ∈ A | dlevel(σ) ≥ bl}27

dlevel(σd) ← dl ← bl ← (bl − 1)28

A ← A ◦ σd29

else30

bl ← bl + 131

δ(bl) ← S32

Δ ← Δ ∪ {δ(bl)} // record solution (temporarily)33

A ← A \ {σ ∈ A | dlevel(σ) ≥ bl}34

let σd ∈ δ(bl) \A in35

dliteral(bl) ← σd36

dlevel(σd) ← dl ← bl37

A ← A ◦ σd38

else39

σd ← SELECT(Δ,∇,A, P ) // decision40

dlevel(σd) ← dl ← (dl + 1)41

A ← A ◦ σd42
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to make a clean cut on some unassigned literal σd (selected in Line 35) from δ(bl ).
Recall Fact 2 telling us that flipping σd may eliminate non-redundant projective
solutions, hence, it is taken unflipped as decision literal of bl (Line 36–38). In sum-
mary, the reassignment of a literal σd from S makes sure that not yet enumerated
projective solutions are not excluded by A (for completeness), while the temporary
inclusion of δ(bl) in Δ prohibits a recomputation of S (for redundancy-freeness and
termination). In the subsequent iterations, Algorithm 2 first exhausts the search space
for further projective solutions including σd, and afterwards flips σd to σd along with
removing the then satisfied nogood δ(bl) from Δ (for polynomial space complexity). In
fact, such a systematic backtracking step is performed (in Line 25–29) if the maximum
decision level of literals in S is bl (tested in Line 24), which means that the decision
literal σd of bl (marked before in Line 36 and recalled in Line 26) must now be flipped
for enumerating any further projective solutions. Finally, note that complement σd is
assigned (in Line 29) at decision level (bl − 1) or the new systematic backtracking
level (cf. Line 28), respectively. As a matter of fact, there is no nogood in Δ ∪ ∇ that
implies σd, so that conflict resolution (as in Line 15) cannot be applied at the new sys-
tematic backtracking level.

Conflict. As before, a conflict at decision level 0 means that there are no (further)
projective solutions (Line 7). Otherwise, we now distinguish two cases: a conflict at
systematic backtracking level bl (Line 9–13) or beyond bl (Line 15–18). As men-
tioned above, a conflict at bl cannot be analyzed because of literals in A lacking a
reason in Δ ∪ ∇. In fact, any conflict at bl is caused by δ(bl ) or flipped decision lit-
eral(s) σd such that σd belongs to previously computed projective solutions. Unlike in
Algorithm 1, such projective solutions are no longer available in Δ, and the mere reason
for the presence of σd in A is that the search space of σd has been exhausted. Thus, a
conflict at bl is not analyzed, and systematic backtracking proceeds as with projective
solutions located at bl (compare Line 9–13 with Line 25–29). On a conflict beyond bl ,
conflict resolution (Line 15) returns a dynamic nogood δ (recorded in Line 16), as with
Algorithm 1. The modification consists of restricting backjumping (in Line 18) to nei-
ther retracting bl nor any smaller decision level (Line 17), even if δ is asserting at a
decision level k < bl . Note that such an assertion reassigns some literal of previously
computed solutions. If this leads to a conflict, δ(bl) or some flipped literal σd at bl is in-
volved. Then, both are retracted by a systematic backtracking step in the next iteration.

dl l A1

0

1 42 Ty

2 42 Tp

3 42 Tx
Tq

(Fq)
({Tx,Ty}, 1)

dl l A2

0

1 42 Ty

Fx
Fz
Tp

2 42 Tq
Fr

{Tp,Tq,Fr}

dl l A3

0
1 38 Tq

2 42 Fp
Fx

(Tx)
({Fp}, 0)

dl l A4

0 Tp

1 38 Tq

Tr
Tx
Fy
Fz

������{Tp,Tq,Fr}

dl l A5

0 Tp
29 Fq

Tr
Fx

1 42 Ty
Fz

Fig. 1. Trace of Algorithm 2
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For illustration, consider Figure 1 giving a trace of Algorithm 2 on (nogoods resulting
from) the rules in (1)–(12) and P = {p, q, r}. We give all five assignments Ai yielding
either a conflict or a solution; a resulting nogood is shown below. Column dl provides
the decision levels of literals in Ai, where the systematic backtracking level bl is given
in bold. For (flipped) decision literals, column l provides the line of Algorithm 2 in
which the literal has been assigned; all other literals are inferred by propagation (in
Line 5). For simplicity, we do not include variables for bodies of the rules in (1)–(12)
in Ai, but note that such variables are functionally dependent. Tracing Algorithm 2,
successive decisions on Ty, Tp, and Tx give rise to the conflicting assignment A1
by propagation. While Tq is needed for deriving x from the rule in (1), complemen-
tary literal Fq is mandatory for deriving y from the rule in (5). This makes us en-
ter conflict resolution (in Line 15), yielding nogood {Tx,Ty} and decision level 1
to jump back to. Hence, assignment (Ty) constitutes the basis of A2. Propagating
with {Tx,Ty} gives Fx; further propagation and decision literal Tq lead to solution
A2 = (Ty,Fx,Fz,Tp,Tq,Fr), whose projective solution, {Tp,Tq,Fr}, is printed
(in Line 21). At this point, our proceeding starts to deviate from standard CDNL.
Given that the maximum decision level 2 of literals Tp, Tq, and Fr lies above 0,
we store {Tp,Tq,Fr} (in Line 33) to avoid computing answer sets comprising the
same projective solution. Afterwards, selecting Tq at the new systematic backtracking
level 1 makes us first explore further projective solutions containing Tq. Assignment
(Tq) is then extended to conflicting assignment A3, and conflict resolution results in
the addition of nogood {Fp}, effective at decision level 0. Nonetheless, the systematic
backtracking and decision level remain at 1, and further propagation yields solution A4,
comprising projective solution {Tp,Tq,Tr}. The fact that all its literals are established
at 1 indicates the exhaustion of the search space for Tq. Hence, the projective solution
at hand is not recorded, while {Tp,Tq,Fr}, associated with systematic backtracking
level 1, is removed to stay in polynomial space. All literals assigned at 1 are then re-
tracted from A4 (in Line 27). Finally, the systematic backtracking level is decremented
and the search directed to projective solutions with Fq. The construction of solution A5
thus starts with Tp and Fq at the new systematic backtracking level 0 and ends after
printing the corresponding projective solution {Tp,Fq,Tr}. Notably, A5 still contains
a decision literal, Ty, but flipping it cannot lead to any further projective solutions.

We conclude this section by providing formal properties of Algorithm 2. As with
Algorithm 1, soundness is clear due to verifying solutions (in Line 19) before printing
anything. Termination and redundancy-freeness are obtained from the fact that enumer-
ated projective solutions are excluded either by temporarily storing them (in Line 33)
or by flipping some of their literals (in Line 13 or 29) upon systematic backtracking. Fi-
nally, completeness is guaranteed because temporarily stored projective solutions do not
exclude not yet enumerated ones, while a systematic backtracking step is applied only if
no further projective solutions are left beyond bl . Notably, any dynamic nogood derived
by resolving with temporarily stored projective solutions S (in Line 15) is universally
valid: since the literals of S are not to be reestablished in the future, S is indeed a no-
good. Given the above considerations, we conclude that Theorem 1, 2, 3, and 4 remain
valid if replacing CDNL-RECORDING in their statements with CDNL-PROJECTION.
Beyond this, Algorithm 2 runs in polynomial space, in view of the fact that there cannot
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be more temporarily stored projective solutions and asserting dynamic nogoods than
literals in A, while all other dynamic nogoods can be deleted at any time. However,
it would be unfair to claim that the exponential savings in space complexity come
without a cost: an introduced systematic backtracking level can only be retracted by a
systematic backtracking step (in either Line 11 or 27), while backjumping (cf. Line 17–
18) and optional restarts must leave all decision levels up to bl intact for not losing
progress information.2 However, systematic backtracking levels are introduced only af-
ter finding projective solutions, so that negative proof complexity results for procedures
restricting decisions a priori [14] do not apply to Algorithm 2.

4 Experiments

We implemented our approach to solution projection within the ASP solver clasp (1.2.0-
RC3; [4]). Our experiments consider clasp using four different types of enumeration: (a)
its standard solution enumeration mode [11]; (b) enumeration by appeal to standard so-
lution recording; (c) projective solution recording; (d) projective solution enumeration.
Moreover, we implemented and evaluated two refinements of Algorithm 2 differing in
the way selections are made in Line 35 and 40, respectively. Variant (d[h]) uses clasp’s
BerkMin-like decision heuristic to select σd in Line 35 (without sign selection); other-
wise, simply the first unassigned literal in δ(bl) is selected. Variant (d[p]) makes use
of clasp’s progress saving option to direct the choice of σd in Line 40. Progress saving
enforces sign selection according to the previously assigned truth value and thus directs
search into similar search spaces as visited before (cf. [15]). Variant (d[hp]) combines
both features, while (d[]) uses none of them. We refrained from testing further solvers
because, to the best of our knowledge, no ASP nor SAT solver features the redundancy-
free computation of projective solutions. Furthermore, ASP solvers enumerate standard
solutions either via systematic backtracking, e.g., smodels, or like SAT solvers via solu-
tion recording, e.g., cmodels. The latter strategy is subsumed by clasp variant (b), while
the former has in [11] been shown to have no edge over variant (a). Also note that we did
not implement any decision heuristic specialized to preferring projected variables, as it
had required another customization of clasp. All experiments were run on a 3.4GHz PC
under Linux, each individual run restricted to 1000s time and 1GB RAM.3

In Table 1 and 2, we investigate the relative performance of the different enumeration
approaches in terms of the proportion of projected variables. To this end, we consider
two highly combinatorial benchmarks, the 11/11-Pigeons “problem” and the 15-Queens
puzzle. For both of them, we gradually increase the number of projected variables (in
columns #var), viz., the number of monitored pigeons or queens, respectively. The num-
ber of obtained projective solutions is given in columns #sol; the two last ones give the
number of standard solutions. Columns (a)–(d[hp]) provide the runtimes of the different
clasp variants in seconds; “>1000” stands for timeout. Note that #var and #sol do not
affect (a) and (b), which always (attempt to) enumerate all standard solutions. At the
bottom of Table 1 and 2, row ∅ provides the average runtime of each clasp variant.

2 This is similar to the enumeration algorithm for non-projected solutions in [11].
3 The benchmarks are available at: http://www.cs.uni-potsdam.de/clasp/
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Table 1. Benchmark Results: 11/11-Pigeons

#var #sol (a) (b) (c) (d[]) (d[h]) (d[p]) (d[hp])
1 11 100.38 >1000 0.01 0.01 0.01 0.01 0.01
2 110 100.38 >1000 0.01 0.01 0.01 0.01 0.01
3 990 100.38 >1000 0.05 0.07 0.06 0.07 0.07
4 7920 100.38 >1000 0.60 0.35 0.34 0.35 0.35
5 55440 100.38 >1000 9.08 1.67 1.68 1.61 1.67
6 332640 100.38 >1000 281.05 6.34 6.32 6.50 6.34
7 1663200 100.38 >1000 >1000 20.63 20.17 21.04 20.39
8 6652800 100.38 >1000 >1000 49.97 51.20 50.10 49.18
9 19958400 100.38 >1000 >1000 88.77 88.73 89.63 91.18

10 39916800 100.38 >1000 >1000 114.17 119.36 119.12 114.82
11 39916800 100.38 >1000 >1000 114.30 113.92 116.80 118.83

∅ 100.38 >1000 480.98 36.03 36.53 36.84 36.62

Table 2. Benchmark Results: 15-Queens

#var #sol (a) (b) (c) (d[]) (d[h]) (d[p]) (d[hp])
1 15 243.14 773.57 0.01 0.02 0.01 0.02 0.01
2 182 243.14 773.57 0.08 0.08 0.08 0.14 0.12
3 1764 243.14 773.57 0.79 0.63 0.66 1.47 1.37
4 13958 243.14 773.57 11.69 5.79 6.08 10.91 11.51
5 86360 243.14 773.57 158.40 40.71 43.71 63.76 69.88
6 369280 243.14 773.57 454.33 153.49 168.46 219.87 226.75
7 916096 243.14 773.57 >1000 331.42 357.31 444.69 437.23
8 1444304 243.14 773.57 >1000 463.46 461.78 584.59 542.46
9 1795094 243.14 773.57 >1000 512.19 523.86 652.37 577.66

10 2006186 243.14 773.57 >1000 528.36 436.70 647.49 478.34
11 2133060 243.14 773.57 >1000 525.23 407.40 616.43 450.80
12 2210862 243.14 773.57 >1000 516.56 357.22 552.67 384.30
13 2254854 243.14 773.57 >1000 462.83 322.50 496.17 356.18
14 2279184 243.14 773.57 >1000 413.72 283.82 432.62 327.35
15 2279184 243.14 773.57 >1000 250.13 250.06 245.97 249.11

∅ 243.14 773.57 641.69 280.31 241.31 331.28 274.20

Looking into Table 1, it is apparent that variant (b) and (c), persistently recording
either standard or projective solutions, do not scale. For the last problem solved by (c),
projecting to 6 out of 11 pigeons, the ratio of standard to projective solutions is 120.
Furthermore, all variants of (d) are faster than standard solution enumeration (a) up
to 9 out of 11 pigeons, at which point there are twice as many standard as projective
solutions. For 10 and 11 pigeons, variant (a) is a bit faster than (d). In fact, (a) saves
some overhead by not distinguishing projected variables within solutions. Finally, there
are no significant differences between the variants of (d), given that the underlying
problem is fully symmetric.

With the 15-Queens puzzle in Table 2, search becomes more important than with
11/11-Pigeons. Due to the reduced number of solutions, standard solution recording (b)
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now completes in less than 1000s, even though it is still slower than all enumeration
schemes without persistent recording. We also see that projective solution recording (c)
is the worst approach. In fact, its recorded projective solutions consist of #var literals
each, while (b) stores decision literals whose number decreases the more solutions have
been enumerated. For the variants of (d), we see that the number of projective solutions
does not matter that much beyond 7 queens. Rather, heuristic aspects of the search start
to gain importance, and variant (d[h]), which aims at placing the most critical queen
first, has an edge. In contrast, progress saving alone here tends to misdirect search,
as witnessed by (d[p]). Finally, (a) enumerating standard solutions becomes more effi-
cient than (d) from 7 queens on, where the ratio of standard to projective solutions is
about 2.5. As with 11/11-Pigeons, the reason is less overhead; in particular, (a) does not
even temporarily store any nogoods for excluding enumerated solutions. The reconver-
gence between (a) and variants of (d) at 15 queens is by virtue of an implementation
trick: if the decision literal at level (bl + 1) in a solution (cf. Line 31–38 in Algo-
rithm 2) is over a variable in P , then clasp simply increments bl and backtracks like in
Algorithm 1 (Line 19). This shortcut permits unassigning fewer variables.

The benchmarks in Table 3 belong to three different classes. The first one deals
with finding Hamiltonian cycles in clumpy graphs containing n clumps of n vertices
each. For each value of n, we average over 11 randomly generated instances. Note that,
due to high connectivity within clumps, clumpy graphs typically allow for a vast num-
ber of Hamiltonian cycles, but finding one is still difficult for systematic backtracking
methods. In our experiments, we project Hamiltonian cycles to the edges connecting
different clumps, thus, reducing the number of distinct solutions by several orders of
magnitude. Second, we study benchmarks stemming from consistency checks of bio-
logical networks [16]. The five categories, each containing 30 randomly generated yet
biologically meaningful instances, are distinguished by the number n of vertices in a
network. The task is to reestablish consistency by flipping observed variations (increase
or decrease) of vertices. Solutions are then projected to the vertices whose variations
have been flipped, while discarding witnesses for the consistency of the repaired net-
work. After a repair, there are typically plenty of witnesses, so that the number of pro-
jective solutions is several orders of magnitude smaller than that of standard ones. The
third class considers a variation of Ravensburger’s Labyrinth game on quadratic boards
with n rows and n columns, each size comprising 20 randomly generated configura-
tions. The idea is that an avatar is guided from a starting to a goal position by moving
the rows and columns of the board as well as the avatar itself, and projection consists of
disregarding the moves of the avatar. It turns out that Labyrinth instances are pretty dif-
ficult to solve, and usually there are not many more standard than projective solutions.

Table 3 shows average runtimes and numbers of timeouts per benchmark category;
timeouts are taken as maximum time, viz., 1000s. The rows with ∅/Σ provide the aver-
age runtime and sum of timeouts for each clasp variant over all instances of a benchmark
class and in total, respectively. For the clumpy graphs and biological networks, denoted
by Clumpy and Repair in Table 3, there are far too many standard solutions to enumer-
ate them all with either (a) or (b). Even on the smallest category of Clumpy, (a) and (b)
already produce timeouts, while enumerating projective solutions with (c) or (d) is un-
problematic. On the larger Clumpy categories, there is no clear winner among (c) and
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Table 3. Benchmark Results: Clumpy,Repair, and Labyrinth

Benchmark n (a) (b) (c) (d[]) (d[h]) (d[p]) (d[hp])
Clumpy 08 204.50/02 468.48/05 0.02/0 0.02/0 0.02/0 0.02/0 0.02/0

18 >1000/11 >1000/11 99.65/1 104.43/1 105.18/1 81.31/0 79.72/0
20 >1000/11 >1000/11 255.04/2 254.80/2 313.22/1 219.05/1 118.95/0
21 >1000/11 >1000/11 603.74/6 612.33/6 619.37/6 396.47/4 318.04/3
22 >1000/11 >1000/11 144.64/1 266.72/2 275.54/2 410.98/4 321.07/3

∅/Σ 840.90/46 893.70/49 220.62/10 247.66/11 262.67/10 221.57/9 167.56/6
Repair 2000 >1000/30 >1000/30 126.81/0 118.43/0 118.69/0 113.04/0 112.79/0

2500 >1000/30 >1000/30 232.57/2 223.07/2 223.37/2 217.17/2 216.22/2
3000 >1000/30 >1000/30 404.75/6 386.70/5 387.39/5 377.74/5 378.18/5
3500 >1000/30 >1000/30 322.10/6 312.76/6 312.72/6 306.93/6 306.67/6
4000 >1000/30 >1000/30 424.23/7 409.50/7 409.84/7 400.44/7 399.78/7

∅/Σ >1000/150 >1000/150 302.09/21 290.09/20 290.40/20 283.06/20 282.73/20
Labyrinth 16 52.49/0 58.46/1 59.69/1 61.72/1 59.03/1 61.54/1 59.11/1

17 165.15/2 162.60/2 198.32/2 220.13/2 196.83/3 220.26/3 198.25/3
18 212.59/2 218.90/2 289.84/4 298.56/3 253.06/3 286.05/3 257.38/3
19 238.24/4 241.26/4 260.63/4 266.96/5 245.83/4 264.68/5 250.90/4
20 319.67/5 324.43/5 355.48/6 359.51/7 343.47/6 360.33/7 346.13/6

∅/Σ 197.63/13 201.13/14 232.79/17 241.38/18 219.64/17 238.57/19 222.35/17
Total ∅/Σ 708.24/209 718.91/213 264.68/48 266.47/49 262.20/47 257.39/48 242.17/43

the variants of (d), taking also into account that difficulty and number of projective so-
lutions vary significantly over instances. However, it appears that progress saving (d[p])
and its combination with heuristic (d[hp]) tend to help. In the Repair categories, there are
hardly any differences between the variants of (d), and projective solution recording (c)
is competitive too. Finally, on Labyrinth, non-projecting enumeration approaches (a)
and (b) have an edge on projecting ones. This is not a surprise because there not many
more standard than projective solutions here. The disadvantages of projective solution
enumeration are still not as drastic as their advantages are on other benchmarks. Among
the different (d) variants, the use of a heuristic slightly promotes (d[h]), while progress
saving alone (d[p]) is not very helpful. Finally, the last row in Table 3 shows that, over
all instances, projective solution enumeration variants are not far away from each other,
even though (d[hp]) has a slight advance. In fact, enumeration can benefit from the incor-
poration of search techniques, such as a heuristic or progress saving. Their usefulness,
however, depends on the particular benchmark class, so that fine-tuning is needed. Im-
portantly, the enumeration of all projective solutions may still be possible when there are
far too many standard solutions, which can be crucial for the feasibility of applications.

5 Discussion

Answer set projection is already supported by almost all ASP systems, given that
hide and show directives are available in the input language. However, up to now, no
ASP system was able to enumerate projective solutions without duplicates. Rather, the
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existing solvers exhaustively enumerate the entire set of solutions and merely restrict
the output to visible atoms. This is accomplished either via systematic backtracking or
via solution recording; the latter is also done by SAT solvers. To the best of our knowl-
edge, the first dedicated solution enumeration algorithm that integrates with CDNL in
polynomial space was proposed in [11] in the context of ASP; cf. variant (a) in Sec-
tion 4. This algorithm turned out to be competitive for exhaustive solution enumeration,
but it cannot be used for redundancy-free solution projection in view of the arguments
given in Section 3. Although our new technique has also been implemented for ASP, it
is readily applicable in neighboring areas dealing with Boolean or (with the necessary
adaptions) even general constraints.

From a user’s perspective, the sometimes intolerable redundancy of exhaustive so-
lution enumeration necessitates the development of wrappers feeding projections of
computed solutions as constraints back into a solver. For instance, such a workaround
was originally used for the diagnosis task in [16] where certificates are required for solu-
tions. These certificates, however, do neither belong to a projective solution nor can the
resulting symmetries be broken by hand. The sketched approach boils down to projec-
tive solution recording, which does not scale because of exponential space complexity.
If there are too many (projective) solutions to store them all, it is of course also impos-
sible for a user to inspect each of them individually. However, if one is interested in
counting occurrences of (combinations of) literals within solutions, enumerating more
solutions than can be stored explicitly is tolerable. To enable it, the duplicate-free enu-
meration of solutions projected to relevant parts is crucial. Finally, abolishing the need
of developing wrappers to cut redundancies is already something that should help users
to concentrate on the interesting aspects of their applications.

Acknowledgements. This work was funded by DFG under grant SCHA 550/8-1.
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Abstract. This paper presents a hybrid Constraint Programming (CP)
and Semidefinite Programming (SDP) approach to the k-clustering min-
imum biclique completion problem on bipartite graphs. The problem
consists in partitioning a bipartite undirected graph into k clusters such
that the sum of the edges that complete each cluster into a biclique,
i.e., a complete bipartite subgraph, is minimum. The problem arises
in telecommunications, in particular in bundling channels in multicast
transmissions. In literature, the problem has been tackled with an Integer
Bilinear Programming approach. We introduce two quasi-biclique con-
straints and we propose a SDP relaxation of the problem that provides
much stronger lower bounds than the Bilinear Programming relaxation.
The quasi-biclique constraints and the SDP relaxation are integrated
into a hybrid CP and SDP approach. Computational results on a set
of random instances provide further evidence about the potential of CP
and SDP hybridizations.

1 Introduction

The k-Clustering minimum Biclique Completion (k-CmBC) problem consists in
partitioning an undirected bipartite graph into k clusters such that the sum
of the edges that complete each cluster into a biclique, i.e., a complete bipar-
tite subgraph, is minimum. While the problem of covering undirected graphs
by bicliques has been widely studied in the literature for its connections to fac-
torization problems of 0/1 matrices (e.g, for a survey see [1]), the k-CmBC
problem has received little attention. This combinatorial optimization problem
is NP-hard even for k = 2, as proven in [2]. In literature, it has been tackled
only by an Integer Bilinear Programming approach.

Constraint Programming has proved to be a successful programming para-
digm to solve pure combinatorial optimization problems, such as, for instance,
the maximum clique problem [3],[4], and the minimum graph coloring prob-
lem [5]. The success of applying Constraint Programming to pure combinatorial
optimization problems relies on the design of cost-based filtering algorithms, in-
troduced in [6]. The integration of Constraint Programming and Semidefinite
Programming is pioneered in [7], where a Semidefinite Programming relaxation
is exploited within a Constraint Programming solver for solving the maximum
clique problem. The Semidefinite Programming relaxation is used to derive a
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tight lower bound at the root node of the CP search tree, and to design an
effective labeling heuristic by interpreting the solution of the Semidefinite Pro-
gramming relaxation as the likelihood that a variable get assigned a given value
in the optimal solution. Semidefinite Programming relaxations for the MAX-
SAT problem are compared to Integer Linear Programming relaxations in [8],
where the computational results show that the Semidefinite Programming relax-
ation provides stronger bounds and is very effective when used as guidance in
the labeling heuristic.

The main contributions of this paper are to introduce two optimization con-
straints, the quasi-biclique and the one-shore-induced quasi-biclique constraints,
and to present a new Semidefinite Programming relaxation of the k-CmBC prob-
lem. The quasi-biclique constraint forces the subgraph induced by a subset of ver-
tices to be a bipartite graph completed into a biclique by a number of additional
edges. The one-shore-induced quasi-biclique has the additional requirement that
the second shore is equal to the union of the neighborhoods of the vertices of
the first shore. These constraints are closely related to the maximum clique con-
straint introduced in [3] and improved in [4]. The proposed SDP relaxation is
based on an interpretation of the problem as a Max-Cut problem on the comple-
mentary bipartite graph, and is closely related to the relaxations of the Max-Cut
problem proposed in [9] and of the Max-k-Cut problem proposed in [10]. The
motivation for developing the SDP relaxation is that it provides much stronger
lower bounds than the bilinear programming relaxation.

The new optimization constraints and the SDP relaxation are integrated into
a hybrid CP and SDP approach that extends to clustering problems the hybrid
method introduced in [7]. The values of the SDP relaxation are interpreted as
the likelihood that two vertices belong to the same cluster, yielding a labeling
heuristic that selects a pair of values and tries to assign the two values to the
same set variable. In addition, we propose a method to solve the SDP relaxation
at every node of the CP search tree that produces solution having a small gap
with the optimum. Computational results on a set of random instances gener-
ated as in [2] show that our hybrid approach is competitive with the existing
Integer Bilinear Programming approach, and provide further evidence about the
potential of CP and SDP hybridizations.

The outline of this paper is as follows. Section 2 defines the problem, and
presents an Integer Bilinear Programming formulation. Section 3 and Section
4 introduce respectively the CP formulation and the SDP relaxation of the
k-CmBC problem. Section 5 presents the integration of the CP model and the
SDP relaxation. Section 6 discusses the computational results, and Section 7
concludes the paper presenting future works.

1.1 Notation

Let G = (S, T, E) be an undirected bipartite graph. The complementary
graph of a bipartite graph is Ḡ = (S, T, Ē), with Ē = {(i, j) | i ∈ S, j ∈
T, (i, j) /∈ E}. The bipartite subgraph induced by two subsets S′ ⊆ S and



k-Clustering Min Biclique Completion via a CP-SDP Approach 89

T ′ ⊆ T is denoted by G[S′, T ′] = (S′, T ′, E′), where E′ = {(i, j) | i ∈ S′, j ∈
T ′, (i, j) ∈ E}. The neighborhood of a vertex i is denoted by N(i), and the
degree by δ(i) = |N(i)|. The one-shore-induced bipartite subgraph induced by
a subset S′′ ⊆ S is denoted by G[S′′] = (S′′, T ′′, E′′), where T ′′ =

⋃
i∈S′′ N(i),

and E′′ = {(i, j) | i ∈ S′′, j ∈ T ′′, (i, j) ∈ E}. The degree of vertex i in the
complementary graph Ḡ is denoted by δḠ(i).

A biclique is a complete bipartite graph, that is E = S × T . A c-quasi-
biclique, or a quasi-biclique of cost c, is a bipartite graph that is completed into
a biclique by c additional edges. The cost of the c-quasi-biclique G = (S, T, E)
is equal to c = |S| · |T | − |E| = |Ē| =

∑
i∈S δḠ(i).

2 Problem Description

Let G = (S, T, E) be a bipartite undirected graph, and k be the number of desired
clusters. A cluster is defined as a bipartite subgraph of G, or equivalently as a
c-quasi-biclique of G. The k-CmBC problem consists of partitioning the set of
vertices S into k subsets Si, with i = 1, . . . , k, such that the sum of the cost ci

of each quasi-bicliques G[Si] is minimum.

Example 1. Figure 1.a shows a bipartite graph G with S = {1, . . . , 4} and T =
{5, . . . , 9}. Figure 1.b represents a possible 2-clustering induced by S1 = {1, 2}
and S2 = {3, 4}. The dashed edges belong to the one-shore-induced subgraph
G[S1] and those in bold to G[S2]. Note that vertex 9 belongs to both quasi-
bicliques. The complementary graph Ḡ is shown in Fig. 1.c. The cost of this
2-clustering is equal to four, given by three edges of Ḡ[S1] and one of Ḡ[S2], that
are respectively (1, 9),(2, 5), and (2, 7) for the first biclique, and (3, 9) for the
second biclique.

The k-CmBC problem has a significant application in telecommunications, as
shown in [2], for bundling channels in multicast transmissions. Given a set of

Fig. 1. An example of the k-CmBC problem for k = 2
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demands of services from clients, the application consists of finding k multicast
sessions that partition the set of demands. Each service has to belong to a single
multicast session, while each client can appear in more sessions. This problem
is represented on a bipartite graph G = (S, T, E) as follows: every service i is
represented by a vertex in S, and every client j by a vertex in T . The demand of a
service i from a client j is represented by the edge (i, j) ∈ E. A c-quasi-biclique of
G represents a multicast session that transmits c times an unrequested service.
The cost c gives a measure of the waste of bandwidth of the corresponding
multicast session. Solving the k-CmBC problem on this bipartite subgraph, is
equivalent to finding k multicast sessions that minimizes the overall waste of
bandwidth.

Integer Bilinear Programming formulation. Let xip and yjp be 0/1 vari-
ables indicating whether the vertex i ∈ S or the vertex j ∈ T are in the cluster p.
Let K = {1, . . . , k} be the set of the clusters. The Integer Bilinear Programming
formulation of the k-CmBC problem is as follows:

w∗ = min
∑
p∈K

∑
(i,j)∈Ē

xip yjp (1)

s.t.
∑
p∈K

xip = 1, ∀i ∈ S, (2)

∑
p∈K

xip yjp = 1, ∀(i, j) ∈ E, (3)

xip, yjp ∈ {0, 1}, ∀i ∈ S, ∀j ∈ T, ∀p ∈ K. (4)

The objective function (1) minimizes the number of edges that completes each
induced bipartite subgraph into a biclique. Constraints (2) assign each vertex of
the shore S to a single cluster. Constraints (3) force each neighbor j of a vertex
i to be (also) in the same cluster of i.

The model (1)–(4) is linearized by introducing 0/1 variables zijp equal to 1
if the edge (i, j) ∈ Ē completes the p-th cluster into a biclique. The resulting
Integer Linear Programming model is as follows:

w∗ = min
∑
p∈K

∑
(i,j)∈Ē

zijp (5)

s.t.
∑
p∈K

xip = 1, ∀i ∈ V, (6)

xip + yjp ≤ 1 + zijp, ∀(i, j) ∈ Ē, ∀p ∈ K, (7)
xip − yjp ≤ 0, ∀(i, j) ∈ E, ∀p ∈ K, (8)
xip, yjp ∈ {0, 1}, ∀i ∈ V, ∀j ∈ W, ∀p ∈ K, (9)
zijp ∈ {0, 1}, ∀(i, j) ∈ Ē, ∀p ∈ K. (10)
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The new variable zijp and the constraints (7) are used to linearize the bilinear
term xipyjp appearing in the objective function (1). Constraints (8) linearize the
constraints (3).

The main limit of the formulation (5)–(10) is that any permutation of the in-
dices p gives the same optimal solution. This issue is tackled in [2] by introducing
symmetry-breaking constraints.

3 Constraint Programming Formulation

The CP formulation of the k-CmBC problem is based on two new optimization
constraints: the quasi-biclique constraint and the one-shore-induced quasi-
biclique constraint. The definitions of these two constraints are based on the no-
tation used in the book [11]. A constraint C on the ordered set of variablesX (C) is
a subset T (C) of the Cartesian product between the domain of each variable that
specifies the allowed combinations of values for the variables in X (C).

Definition 1. A quasi-biclique constraint is a constraint C defined on a
bipartite graph G = (S, T, E), on two set variables X ⊆ S and Y ⊆ T and a
finite domain integer variable c, with 0 ≤ c ≤ |E|, and

T (C) = {τ s.t. τ is a tuple of X (C) = [X, Y, c],
and G[X, Y ] = (X, Y, F ),
and F = {(i, j) | i ∈ X, j ∈ Y, (i, j) ∈ E},
and c = |X | · |Y | − |F |}.

It is denoted by qbiclique(X, Y, c, G).

Definition 2. A one-shore induced quasi-biclique constraint is a con-
straint C defined on a bipartite graph G = (S, T, E), on two set variables X ⊆ S
and Y ⊆ T and a finite domain integer variable c, with 0 ≤ c ≤ |E|, and

T (C) = {τ s.t. τ is a tuple of X (C) = [X, Y, c],

and Y =
⋃
i∈X

N(i),

and qbiclique(X, Y, c, G)}.

It is denoted by osi-qbiclique(X, Y, c, G).

3.1 The CP Model

Let (Xp,Yp) be a pair of finite domain integer set variables that represents the
vertices of the p-th quasi-biclique. Let cp be an integer variable representing the
cost of the p-th quasi-biclique, i.e., the number of added edges, and let d be an
integer variable for the sum of the cost of each cluster. The CP formulation of
the k-CmBC problem is as follows:
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variables/domains: Xp ⊆ S, ∀p ∈ K, (11)
Yp ⊆ T, ∀p ∈ K, (12)
0 ≤ cp ≤ |Ē|, ∀p ∈ K, (13)
0 ≤ d ≤ |Ē|, (14)

constraints: partition([X1, . . . , Xp], S), (15)
osi-qbiclique(Xp, Yp, cp, G), ∀p ∈ K, (16)

d =
∑
p∈K

cp. (17)

Constraints (15) force each vertex of the shore S to appear in a single cluster.
Constraints (16) constrain each subgraph induced by a pair (Xp, Yp) to be a
quasi-biclique of cost equal to cp. Constraint (17) sums up the cost of every
cluster. The CP model (11)–(17) relies on the filtering algorithm used for the
osi-qbiclique constraint, which is described next.

3.2 A Filtering Algorithm for the osi-qbiclique Constraint

Similarly to the maximum clique constraint introduced in [3], the qbiclique
and osi-qbiclique constraints use a pair of current sets (C1, C2), with C1 ⊆ S
and C2 ⊆ T , for the vertices that belong to the current quasi-biclique G[C1, C2],
and a pair of candidate sets (P1, P2), with P1 ⊆ S \C1 and P2 ⊆ T \C2, for the
vertices that could extend the current quasi-biclique. The filtering algorithms
of these constraints remove from the pair of candidate sets (P1, P2) the vertices
that cannot extend the pair (C1, C2) to a quasi-biclique of cost equal to c.

Lemma 1. Let G = (S, T, E) be a bipartite graph and let G[C1, C2] be a quasi-
biclique of G induced by C1 ⊆ S and C2 ⊆ T , with cost c̄. Let P1 ⊆ S and
P2 ⊆ T be the candidate sets for C1 and C2. Let c be the required cost for the
quasi-biclique. Then,

1. ∀i ∈ P1 such that c̄ + |C2 \N(i)| > c, the vertex i cannot extend C1 to
obtain a c-quasi-biclique;

2. ∀j ∈ P2 such that c̄ + |C1 \N(j)| > c, the vertex j cannot extend C2 to
obtain a c-quasi-biclique.

Proof. (sketch for point 1.) If we added a vertex i ∈ P1 to C1, the lower bound
of the cost of the biclique would increase of a factor |C2 \ N(i)|, equal to the
number of vertices of C2 that are not adjacent to vertex i. ��

Lemma 2. Let G = (S, T, E) be a bipartite graph and let G[C1] be the one-
shore-induced quasi-biclique of G induced by C1 ⊆ S, with cost c̄. Let P1 ⊆ S be
the candidate set for C1, and let c be the required cost for the one-shore-induced
quasi-biclique. Then, ∀i ∈ P1 such that:

c̄ + (|C1|+ 1) · |N(i) \ C2|+ |C2| − δ(i) > c, (18)

the vertex i cannot extend C1 to a one-shore-induced quasi-biclique of cost c.
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Algorithm 1. Sketch of the osi-biclique filtering algorithm.
Var (C1, C2) : pair of current sets
Var (P1, P2) : pair of candidate sets
Var c̄ : cost of the one-shore-induced quasi-biclique G[C1]
Var c : desired cost
In G : bipartite graph

1: c̄ ← |C1| · |C2| −∑i∈C1
δ(i)

2: P2 ← ⋃
i∈C1

N(i)
3: for all i ∈ P1 do
4: if c̄ + (|C1| + 1) · |N(i) \ C2| + |C2| − δ(i) > c then � Apply Lemma 2
5: P1 ← P1 \ {i}
6: P2 ← P2 \ {N(i) \ P2}
7: end if
8: end for

Proof. If the vertex i is added to C1, then N(i) is added to C2, and the new
quasi-biclique constraint is Ĝ = (C1 ∪ {i}, C2 ∪ N(i), Ê). Note that |Ê| =∑

j∈C1∪{i} δ(j). By definition, the cost ĉ of the extended biclique is equal to:

ĉ = |C1 ∪ {i}| · |C2 ∪N(i)| − |Ê| = |C1 ∪ {i}| · |C2 ∪N(i)| −
∑

j∈C1∪{i}
δ(j) =

= (|C1|+ 1) · (|C2|+ |N(i) \ C2|)−

⎛⎝δ(i) +
∑
j∈C1

δ(j)

⎞⎠ =

= |C1| · |C2| −
∑
j∈C1

δ(j)

︸ ︷︷ ︸
this is equal to c̄

+ (|C1|+ 1) · |N(i) \ C2|+ |C2| − δ(i),

that is equal to the first term of (18). ��

Algorithm 1 sketches the filtering algorithm of the osi-qbiclique constraint.
For the sake of clarity, the filtering algorithm is described using the pairs of
current sets (C1, C2) and of candidate sets (P1, P2), while the osi-qbiclique
constraint is defined using two finite set variables X and Y . However, they are
strictly related, since the greatest lower bound of the set variable X is equal to
C1, and the lowest upper bound is equal to C1 ∪ P1, i.e., C1 ⊆ X ⊆ C1 ∪ P1,
and similarly, C2 ⊆ Y ⊆ C2 ∪ P2. The worst-case complexity of the filtering
algorithm is O(|S| · |T |).

4 Semidefinite Programming Formulations

This section formulates the SDP relaxation of the k-CmBC problem. The pro-
posed formulation is related to the SDP relaxations of the Max-Cut problem
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Fig. 2. (a) The k-CmBC problem with k = 2. (b) The complementary graph of an op-
timal solution. (c) The extended Max-Cut interpretation of the complementary graph:
the edges in bold belong to the cut edges set. Vertex 9 is considered as it were in both
subsets, since it belongs to two clusters.

proposed in [9] and of the Max-k-Cut problem proposed in [10]. Let us consider
first the case k = 2, and then to extend the formulation to the case k > 2.

The k-CmBC problem minimizes the number of edges of the complementary
graph that appear within the same cluster. This corresponds to maximize the
number of edges of the complementary graph that are in the cut given by the
two clusters G[S1] and G[S2]. Therefore, for k = 2, the idea is to formulate a
relaxation of the k-CmBC problem as an extended Max-Cut problem. Figure 2.b
shows the optimal solution of the Example 1 and Fig. 2.c an extended Max-Cut
interpretation. The two sets of vertices that belong to a single cluster represent
the two shores of a solution of the Max-Cut problem. The vertices appearing
in both clusters behave as they were in both shores, and their incident edges
do not belong to the cut edge set. In Fig. 2.c the two shores of the cut are
the sets {1, 2, 5, 6, 7} and {3, 4, 8}, while vertex 9 behaves as it were in both
shores.

4.1 Extended Max-Cut

Let xi be a {−1, 1} variable that indicates whether the vertex i ∈ S is in the
cluster S1 if xi = 1, or in the cluster S2 if xi = −1. If two vertices i and j are
in the same shore, the product xixj of the corresponding variables is equal to
1, otherwise is equal to -1. Similarly to the Max-Cut model presented in [9], let
zij be a {−1, 1} variable equal to 1 if the complementary edge (i, j) ∈ Ē is not
in the cut. An edge (i, j) ∈ Ē does not belong to the cut if another vertex l
exists such that l ∈ N(j) and l is in the same cluster of i, that is xixl = 1. This
is equivalent to set zij = maxl∈N(j){xixl}, which is linearized by the following
inequalities: zij ≥ xixl, ∀l ∈ N(j).
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Using the variables xi and zij , the 2-CmBC problem is formulated as the
following integer quadratic problem:

wmc = max
1
2

∑
(i,j)∈Ē

(1− zij) (19)

s.t. zij ≥ xixl, ∀(i, j) ∈ Ē, l ∈ N(j), (20)
xi ∈ {−1, 1}, ∀i ∈ S, (21)
zij ∈ {−1, 1}, ∀(i, j) ∈ Ē. (22)

Property 1. The following relation holds: w∗ = |Ē| − wmc.

We used the labeling technique proposed in [9] to derive an SDP relaxation of
the problem (19)–(22). Every vertex i of S ∪ T is labeled with a unit vector
vi ∈ R|S|+|T |. The geometric interpretation is that two vertices i and j are in
the same cluster if the angle between them is small enough, that is, if vt

ivj = 1.
Let V be a matrix such that column i is given by vector vi, and let Z = V tV .
Let e be the vector of all ones. The SDP relaxation of the 2-CmBC problem is
as follows:

max
1
2

∑
(i,j)∈Ē

(1− Zij) (23)

Zij ≥ Zil, ∀(i, j) ∈ Ē, l ∈ N(j), (24)
diag(Z) = e, (25)
Z � 0. (26)

Constraints (24) are equivalent to constraints (20), where each entry (i, j) ∈ Ē of
Zij is used for variable zij , and each entry (i, l) ∈ S × S is used for the product
xixl. Together constraints (25)–(26) correspond to relax constraints (21) and
(22) in −1 ≤ Zij ≤ 1.

4.2 Extended Max-k-Cut

We extend the model (23)–(26) to the case k > 2 by using a formulation sim-
ilar to the Max-k-Cut formulation given in [10]. Let us consider k unit vectors
a1, . . . ,ak ∈ Rk−1 satisfying at

iaj = − 1
k−1 , for 1 ≤ i �= j ≤ k. Let xi be a

real vector variable for each vertex i ∈ S, such that xi ∈ {a1, . . . ,ak}, i.e., the
variable xi is equal to one of the ai vectors. Note that in the case k = 2, we get
a1 = −1, a2 = 1, and xi ∈ {−1, 1}, as in 2-CmBC . Let two vertices i and j in S
be in the same cluster if xt

ixj = 1, and be in different clusters if xt
ixj = − 1

k−1 .
As for the case k = 2, the variable zij can take only two values: if the comple-
mentary edge (i, j) is not in the k-cut then zij = 1, otherwise zij = − k

k−1 . The
formulation of the k-CmBC problem is as follows:
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wmkc = max
k − 1

k

∑
(i,j)∈Ē

(1− zij) (27)

s.t. zij ≥ xt
ixl, ∀(i, j) ∈ Ē, l ∈ N(j), (28)

xi ∈ {a1, . . . ,ak}, ∀i ∈ S, (29)

zij ∈ {−
k

k − 1
, 1}, ∀(i, j) ∈ Ē. (30)

Constraints (28) are equivalent to constraints (20), and force to consider two
no-adjacent vertices i ∈ S and j ∈ T as they were in the same cluster, if at least
one neighbor l ∈ N(j) of vertex j is in the same cluster as vertex i. The objective
function has the correction factor k−1

k that compensates the case in which the
edge (i, j) is in the k-cut, since in this case zij = −1

k−1 and (1− −1
k−1 ) = k

k−1 .
The SDP relaxation of the k-CmBC problem for k > 2 is obtained using the

same labeling technique as for k = 2, and it is as follows:

wsdp = max
k − 1

k

∑
(i,j)∈Ē

(1− Zij) (31)

Zij ≥ Zil, ∀(i, j) ∈ Ē, l ∈ N(j), (32)
diag(Z) = e, (33)

Zij ≥ −
1

k − 1
, ∀i, j ∈ S ∪ T, i �= j, (34)

Z � 0. (35)

Together constraints (33)–(35) relax constraints (29),(30) into − 1
k−1 ≤ Zij ≤ 1.

This formulation is used to compute a lower bound of k-CmBC problem.

Property 2. Since wsdp ≥ wmkc, the following relation holds: w∗ ≥ |Ē| − �wsdp�.

5 CP and SDP Integration

The integration of SDP relaxations within CP solvers was pioneered in [7] for tack-
ling the maximum clique problem. The idea for exploiting the SDP relaxation was
to solve the SDP relaxation once, and then to use the optimal solution in the CP
solver for deriving a labeling heuristic and for bounding the cost-variable.

We extend the idea by proposing a different labeling heuristic, and by pro-
viding two graph transformations that allow to recompute the SDP relaxation
within the CP search tree.

5.1 SDP-Based Labeling Heuristic

The SDP-based labeling heuristic given in [7] assumes implicitly that given an
integer variable i, for each value v of its domain there is an entry in the solution
matrix Z∗

iv of the SDP relaxation representing the likelihood that the variable i
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Algorithm 2. SDP-based labeling heuristic for clustering problems.
In Z∗ : optimal solution of an SDP relaxation
In [X1, . . . , Xk] : vector of set variables; each variable is a pair Xp = (Cp, Pp)
Out : a labeling basic constraint

1: P ← ⋃
i∈K Pi

2: (v, w) ← argmaxi∈P ∨ j∈P {|Z∗
ij | − k

2(k−1)
}

3: i ← selectVariable(X, v, w) � v and/or w are in the candidate set Pi

4: if Z∗
vw ≥ k

2(k−1)
then

5: * try to assign v and w to Xi *
6: else
7: * try to assign either v or w to Xi *
8: end if

is equal to v in an optimal solution. The higher is the value of Z∗
iv, the sooner

the variable i gets labeled with value v in the CP search tree.
The main idea for extending the SDP-based labeling heuristic is to interpret

the entries of Z∗ as the likelihood that two vertices belong to the same cluster.
The entries Z∗

vw range in the real interval [− 1
k−1 , 1], which has the midpoint at

k
2(k−1) . Given a set variable Xi and a pair of values v and w in its domain, the
higher is the value of Z∗

vw, the higher is the likelihood that {v, w} ∈ Xi. The
smaller is the value of Z∗

vw, the higher is the probability either v ∈ Xi or w ∈ Xi.
The closer the value of Z∗

vw is to k
2(k−1) , the more the membership of v and w

is uncertain.
Algorithm 2 shows the labeling heuristic based on this interpretation of the

SDP relaxation. First, the heuristic takes every value in the candidate sets.
Second, it selects a pair of values (v, w) such that at least one of the two values
is in P , and the distance of Z∗

vw to k
2(k−1) is maximum. Third, it selects a set

variable Xi having v and/or w in its domain. Finally, if Z∗
vw − k

2(k−1) were
positive, it tries to put v and w in the same set, otherwise in different sets.

5.2 SDP-Based Cost Pruning

In our approach, the SDP relaxation computes bounds at each node of the CP
search tree. Two graph transformations map a partial solution to a weighted
version of the k-CmBC problem. The first graph transformation is used when
in the partial solution two vertices i and j are in the same cluster, while the
second transformation is used when the two vertices are in different clusters.
Let G = (S, T, E) be a bipartite graph, and let X̂ be a partial solution of
the k-CmBC problem. Recall that each element of X̂ has a current set and a
candidate set, i.e., X̂i = (Ci, Pi). Let f(G, X̂) denote the cost of the k-CmBC

problem given the graph G and the partial assignment in X̂.
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Proposition 1. Given a candidate set Ci in X̂, the graph G is augmented with
the edges of the induced complementary subgraph Ḡ[Ci], obtaining the new graph
GM(Ci). The graph GM(Ci) is used to compute a lower bound of X̂ as follows:

f(G, X̂) ≥ wsdp

(
GM(Ci)

)
+
∑
j∈Ci

δḠ(i). (36)

Proposition 2. Given a pair of candidate sets Ci and Cj in X̂, the complemen-
tary graph Ḡ is transformed into a weighted graph ḠD(Ci,Cj) by giving a weight
equal to M = |Ē|+1 to the edge set ĒD(Ci,Cj) = Ci×{

⋃
l∈Cj

N(l)\
⋃

l∈Ci
N(l)}

of the complementary graph. The graph ḠD(Ci,Cj) is used to compute a lower
bound of X̂ as follows:

f(G, X̂) ≥ wsdp

(
GD(Ci,Cj)

)
+ (1 −M)

∑
i,j∈K:j>i

∣∣∣ĒD(Ci,Cj)
∣∣∣ . (37)

The lower bound of f(G, X̂) is computed by performing two series of transforma-
tions: first the graph G is modified into GM by applying Proposition 1 to every
candidate set Ci, then GM is transformed into GM,D by applying Proposition 2
to every pair Ci and Cj , with i, j = 1, . . . , k and i < j. If we combine the two
equations (36) and (37), we get the following lower bound:

f(G, X) ≥ wsdp(GM,D) +
∑
i∈K

∑
j∈Ci

δḠ(j) + (1 −M)
∑

i,j∈K:j>i

∣∣∣ĒM,D(Ci,Cj)
∣∣∣ .

Example 2. Let us consider the problem of Example 1. Figure 3.a shows in bold
the edges added to G for considering the vertices i and j in the same cluster.
Figure 3.b shows in bold the edges of the complementary graph Ḡ that have
been weighted since the vertices 1 and 2 are in different clusters.

Fig. 3. The graph of Example 1 modified by considering: (a) the vertices (1,2) in the
same cluster; (b) in different cluster; (c) the vertices (1,2) in the same cluster, but
(1,4), (2,4) in different clusters
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Example 3. Let X̂ be such that C1 = {1, 2} and C2 = {4} are the candidate sets
of X1 and X2. This is equivalent to merge the vertices (1, 2) in the same cluster,
and to force (1, 4) and (2, 4) to be in different clusters. Figure 3.c shows the com-
plementary graph of GM,D resulting after the corresponding transformations.

6 Preliminary Results

The osi-qbiclique constraint has been implemented in C++ using the Gecode
constraint development environment [12]. The SDP relaxation is solved using the
DSDP solver [13] that implements a dual scaling interior point algorithm. The
ILP (5)–(10) is solved using CPLEX 11.0 with the default settings. As bench-
marks, we used a set of random instances corresponding to the most difficult
instances reported in [2], and available at [14].

We performed a first set of experiments for assessing the quality of the SDP-
based labeling heuristic proposed in Sect. 5. The idea is to compare the gap from
the optimum w∗ given by the cost w̄ of the first solution found by a CP solver that
implements a given labeling heuristics. A perfect labeling heuristic would yield
a gap equal to one, i.e., w̄ = w∗. The first labeling heuristic considered, called
MaxDegree, selects an unassigned set variable and the value of its domain cor-
responding to the vertex having maximum degree. The other heuristic are based
on the SDP relaxation: the SDP-once heuristic solves the relaxation at the root
node of the CP search tree, and then it follows Algorithm 2. The SDP-all heuris-
tic recomputes the relaxation at every node of the CP search tree using both graph
transformations given in Sect. 5.2. The SDP-pos heuristic recomputes the relax-
ation only when two nodes are merged in the same cluster, corresponding to use
the graph transformation given in Proposition 1.

Table 1 reports the results of the first set of experiments, giving in each row
the averages over 10 instances of bipartite graphs with |S| = |T | = 12. The first
two columns of the table give the density of the graph d and the number of clus-
ters k. Then, for each labeling heuristic, the table reports the averages and the
standard deviations (between brackets) of the gap w̄

w∗ , and the average compu-
tation time in seconds. The MaxDegree heuristic is very fast, but it produces
solutions with loose gaps. Solving the SDP relaxation within the search tree helps
in decreasing the gap, but at the cost of higher computational times. The SDP-
pos heuristics produces very good solutions, but is too expensive to be embedded
in a branch-and-bound search. However, the SDP-once heuristic offers a good
trade-off between the quality of the gap and the computational time.

A second set of experiments aimed at comparing a pure CP approach with the
MaxDegree labeling, a hybrid CP-SDP approach with the SDP-once labeling,
and the Integer Bilinear Programming approach, for solving to optimality the
k-CmBC problem. Table 2 reports for each approach the averages of branch-
and-bound nodes and CPU times, using the same set of instances of Table 1.
For the two CP approaches, the table reports also the time tw∗ at which the
optimal solution was found. The pure CP approach is very fast for k = 2, even if
it enumerates more search nodes. For k = 4, the hybrid SDP-once approach is
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Table 1. Comparing the quality of the first solution found with different labeling
heuristics. The gap with the optimum w∗ is measured as w̄

w∗ . The time is in seconds.
Each row gives the averages over 10 instances of bipartite graphs with |S| = |T | = 12.
The standard deviations of the gaps are given between brackets.

MaxDegree SDP-once SDP-all SDP-pos

d k gap time gap time gap time gap time
0.3 2 1.24 (0.14) 0.00 1.23 (0.14) 0.29 1.28 (0.10) 38.1 1.13 (0.10) 14.4

4 1.91 (0.24) 0.00 1.59 (0.22) 0.43 1.59 (0.21) 37.1 1.21 (0.11) 15.0
6 2.59 (0.43) 0.00 1.48 (0.38) 0.69 1.20 (0.14) 41.8 1.07 (0.05) 16.7

0.5 2 1.04 (0.05) 0.43 1.16 (0.08) 0.24 1.18 (0.10) 39.3 1.18 (0.09) 13.4
4 1.41 (0.13) 0.81 1.30 (0.15) 0.30 1.32 (0.14) 33.3 1.15 (0.06) 16.7
6 1.60 (0.23) 1.02 1.28 (0.23) 0.40 1.25 (0.18) 38.1 1.08 (0.06) 17.9

0.7 2 1.19 (0.06) 0.00 1.18 (0.11) 0.24 1.15 (0.08) 14.7 1.22 (0.08) 7.2
4 1.26 (0.10) 0.00 1.30 (0.17) 0.30 1.20 (0.15) 13.7 1.25 (0.09) 8.5
6 1.39 (0.17) 0.00 1.29 (0.21) 0.40 1.20 (0.13) 14.2 1.17 (0.11) 8.2

Mean: 1.51 (0.17) 1.31 (0.19) 1.26 (0.14) 1.16 (0.08)

Table 2. Comparison between the number of branch&bound nodes and the time (in
seconds) for proving optimality; tw∗ denotes the time the optimal solution was found.
Each row gives the averages over 10 instances of bipartite graphs with |S| = |T | = 12.

Max-degree SDP-once ILP (5)–(10)
k d nodes tw∗ time nodes tw∗ time nodes time
2 0.3 502 0.10 0.17 360 0.35 0.44 24 2.33

0.5 601 0.06 0.29 459 0.33 0.47 24 1.11
0.7 507 0.04 0.22 376 0.48 0.61 92 2.01

4 0.3 186,004 24 70 30,133 3.9 17 2,939 19
0.5 218,674 35 69 44,456 4.3 21 2,987 21

0.7 207,658 14 88 29,314 2.5 17 2,987 10

6 0.3 3,939,535 640 1152 330,434 1.4 151 154,200 341
0.5 6,582,521 933 2273 513,511 1.2 276 670,865 1104
0.7 3,670,015 269 1223 420,450 5.9 238 154,200 356

competitive with the Integer Bilinear Approach, while for k = 6 is slightly faster.
However, the hybrid approach is very fast in finding the optimum solution, i.e.,
tw∗ is short, but it needs to explore many search nodes to prove optimality.

7 Conclusions

We have presented a hybrid CP and SDP approach to the k-CmBC problem.
The CP model is based on two new optimization constraints, the quasi-biclique
and the one-shore-induced quasi-biclique constraints. A SDP relaxation was de-
veloped, since the Bilinear Programming relaxation provides weak lower bounds.
The proposed SDP relaxation differs from SDP relaxations used in the literature,
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because it provides the likelihood that two values belong to the same set vari-
able. Computational results provide further evidence that hybrid CP and SDP
approaches are a promising approach to tackle combinatorial optimization prob-
lems. In particular, the proposed SDP labeling heuristics produces very good
initial solutions, when at every node of the CP search tree partial solutions are
mapped to new SDP relaxations. However, the limit of this approach is that cur-
rent SDP solvers provide little support for re-optimization. Any improvement in
the development of SDP solvers with this respect will enhance hybrid CP and
SDP approaches as well.
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Abstract. The interdiction problem arises in a variety of areas including military
logistics, infectious disease control, and counter-terrorism. In the typical formu-
lation of network interdiction, the task of the interdictor is to find a set of edges
in a weighted network such that the removal of those edges would maximally
increase the cost to an evader of traveling on a path through the network.

Our work is motivated by cases in which the evader has incomplete informa-
tion about the network or lacks planning time or computational power, e.g. when
authorities set up roadblocks to catch bank robbers, the criminals do not know all
the roadblock locations or the best path to use for their escape.

We introduce a model of network interdiction in which the motion of one or
more evaders is described by Markov processes and the evaders are assumed not
to react to interdiction decisions. The interdiction objective is to find an edge set
of size B, that maximizes the probability of capturing the evaders.

We prove that similar to the standard least-cost formulation for deterministic
motion this interdiction problem is also NP-hard. But unlike that problem our in-
terdiction problem is submodular and the optimal solution can be approximated
within 1−1/e using a greedy algorithm. Additionally, we exploit submodularity
through a priority evaluation strategy that eliminates the linear complexity scaling
in the number of network edges and speeds up the solution by orders of magni-
tude. Taken together the results bring closer the goal of finding realistic solutions
to the interdiction problem on global-scale networks.

1 Introduction

Network interdiction problems have two opposing actors: an “evader” (e.g. smuggler)
and an “interdictor” (e.g. border agent.) The evader attempts to minimize some objec-
tive function in the network, e.g. the probability of capture while traveling from network
location s to location t, while the interdictor attempts to limit the evader’s success by
removing network nodes or edges. Most often the interdictor has limited resources and
can thus only remove a very small fraction of the nodes or edges. The standard formu-
lation is the max-min problem where the interdictor plays first and chooses at most B
edges to remove, while the evader finds the least-cost path on the remaining network.
This is known as the B most vital arcs problem [1].

W.-J. van Hoeve and J.N. Hooker (Eds.): CPAIOR 2009, LNCS 5547, pp. 102–116, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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This least-cost-path formulation is not suitable for some interesting interdiction sce-
narios. Specifically in many practical problems there is a fog of uncertainty about the
underlying properties of the network such as the cost to the evader in traversing an edge
(arc, or link) in terms of either resource consumption or detection probability. In ad-
dition there are mismatches in the cost and risk computations between the interdictor
and the evaders (as well as between different evaders), and all agents have an interest
in hiding their actions. For evaders, most least-cost-path interdiction models make op-
timal assumptions about the evader’s knowledge of the interdictor’s strategy, namely,
the choice of interdiction set. In many real-world situations evaders likely fall far short
of the optimum. This paper, therefore, considers the other limit case, which for many
problems is more applicable, when the evaders do not respond to interdictor’s deci-
sions. This case is particularly useful for problems where the evader is a process on the
network rather than a rational agent.

Various formulations of the network interdiction problem have existed for many
decades now. The problem likely originated in the study of military supply chains and
interdiction of transportation networks [2,3]. But in general, the network interdiction
problem applies to wide variety of areas including control of infectious disease [4], and
disruption of terrorist networks [5]. Recent interest in the problem has been revived due
to the threat of smuggling of nuclear materials [6]. In this context interdiction of edges
might consist of the placement of special radiation-sensitive detectors across transporta-
tion links. For the most-studied formulation, that of max-min interdiction described
above [1], it is known that the problem is NP-hard [7,8] and hard to approximate [9].

2 Unreactive Markovian Evader

The formulation of a stochastic model where the evader has limited or no information
about interdiction can be motivated by the following interdiction situation. Suppose
bank robbers (evaders) want to escape from the bank at node s to their safe haven at
node t1 or node t2. The authorities (interdictors) are able to position roadblocks at a few
of the roads on the network between s, t1 and t2. The robbers might not be aware of
the interdiction efforts, or believe that they will be able to move faster than the author-
ities can set up roadblocks. They certainly do not have the time or the computational
resources to identify the global minimum of the least-cost-path problem.

Similar examples are found in cases where the interdictor is able to clandestinely re-
move edges or nodes (e.g. place hidden electronic detectors), or the evader has bounded
rationality or is constrained in strategic choices. An evader may even have no intelli-
gence of any kind and represent a process such as Internet packet traffic that the inter-
dictor wants to monitor. Therefore, our fundamental assumption is that the evader does
not respond to interdiction decisions. This transforms the interdiction problem from the
problem of increasing the evader’s cost or distance of travel, as in the standard for-
mulation, into a problem of directly capturing the evader as explicitly defined below.
Additionally, the objective function acquires certain useful computational properties
discussed later.
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2.1 Evaders

In examples discussed above, much of the challenge in interdiction stems from the
unpredictability of evader motion. Our approach is to use a stochastic evader model to
capture this unpredictability [6,10]. We assume that an evader is traveling from a source
node s to a target node t on a graph G(N,E) according to a guided random walk defined
by the Markovian transition matrix M; from node i the evader travels on edge (i, j) with
probability Mi j. The transition probabilities can be derived, for example, from the cost
and risk of traversing an edge [10].

Uncertainty in the evader’s source location s is captured through a probability vector
a. For the simplest case of an evader starting known location s, as = 1 and the rest of the
ai’s are 0. In general the probabilities can be distributed arbitrarily to all of the nodes as
long as ∑i∈N ai = 1. Given a, the probability that the evader is at location i after n steps
is the i’th entry in the vector π(n) = aMn.

When the target is reached the evader exits the network and therefore, Mt j = 0 for
all outgoing edges from t and also Mtt = 0. The matrix M is assumed to satisfy the
following condition: for every node i in the network either there is a positive probability
of reaching the target after a sufficiently large number of transitions, or the node is
a dead end, namely Mi j = 0 for all j. With these assumptions the Markov chain is
absorbing and the probability that the evader will eventually reach the target is≤ 1. For
equality to hold it is sufficient to have the extra conditions that the network is connected
and that for all nodes i �= t, ∑ j Mi j = 1 (see [11].)

A more general formulation allows multiple evaders to traverse the network, where
each evader represents a threat scenario or a particular adversarial group. Each evader
k is realized with probability w(k) (∑k w(k) = 1) and is described by a possibly dis-
tinct source distribution a(k), transition matrix M(k), and target node t(k). This gen-
eralization makes it possible to represent any joint probability distribution f (s,t) of
source-target pairs, where each evader is a slice of f at a specific value of t: a(k)|s =
f (s,t(k))/∑s f (s, t(k)) and w(k) = ∑s f (s, t(k)). In this high-level view, the evaders col-
lectively represent a stochastic process connecting pairs of nodes on the network. This
generalization has practical applications to problems of monitoring traffic between any
set of nodes when there is a limit on the number of “sensors”. The underlying network
could be e.g. a transportation system, the Internet, or water distribution pipelines.

2.2 Interdictor

The interdictor, similar to the typical formulation, possesses complete knowledge about
the network and evader parameters a and M. Interdiction of an edge at index i, j is
represented by setting ri j = 1 and ri j = 0 if the edge is not interdicted. In general some
edges are more suitable for interdiction than others. To represent this, we let di j be
the interdiction efficiency, which is the probability that interdiction of the edge would
remove an evader who traverses it.

So far we have focused on the interdiction of edges, but interdiction of nodes can be
treated similarly as a special case of edge interdiction in which all the edges leading to
an interdicted node are interdicted simultaneously. For brevity, we will not discuss node
interdiction further except in the proofs of Sec. 3 where we consider both cases.
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2.3 Objective Function

Interdiction of an unreactive evader is the problem of maximizing the probability of
stopping the evader before it reaches the target. Note that the fundamental matrix for
M, using I to denote the identity matrix is

N = I+ M+ M2 + · · ·= (I−M)−1 , (1)

and N gives all of the possible transition sequences between pairs of nodes before the
target is reached. Therefore given the starting probability a, the expected number of
times the evader reaches each node is (using (1) and linearity of expectation)

aN = a(I−M)−1 . (2)

If edge (i, j) has been interdicted (ri j = 1) and the evader traverses it then the evader
will not reach j with probability di j. The probability of the evader reaching j from i
becomes

M̂i j = Mi j−Mi jri jdi j . (3)

This defines an interdicted version of the M matrix, the matrix M̂.
The probability that a single evader does not reach the target is found by considering

the t’th entry in the vector E after substituting M̂ for M in Eq. (2),

J(a,M,r,d) = 1−
(

a [I− (M−M� r�d)]−1
)

t
, (4)

where the symbol � means element-wise (Hadamard) multiplication. In the case of
multiple evaders, the objective J is a weighted sum,

J = ∑
k

w(k)J(k) , (5)

where, for evader k,

J(k)(a(k),M(k),r,d) = 1−
(

a(k)
[
I−
(

M(k)−M(k)� r�d
)]−1

)
t(k)

. (6)

Equations (4) and (5) define the interdiction probability. Hence the Unreactive
Markovian Evader interdiction problem (UME) is

argmax
r∈F

J(a,M,r,d) , (7)

where ri j represents an interdicted edge chosen from a set F ⊆ 2E of feasible interdic-
tion strategies. The simplest formulation is the case when interdicting an edge has a unit
cost with a fixed budget B and F are all subsets of the edge set E of size at most B. This
problem can also be written as a mixed integer program as shown in the Appendix.

Computation of the objective function can be achieved with ∼ 2
3 |N|

3 operations for
each evader, where |N| is the number of nodes, because it is dominated by the cost
of Gaussian elimination solve in Eq. (4). If the matrix M has special structure then it
could be reduced to O(|N|2) [10] or even faster. We will use this evader model in the
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simulations, but in general the methods of Secs. 3 and 4 would work for any model
that satisfies the hypotheses on M and even for non-Markovian evaders as long as it is
possible to compute the equivalent of the objective function in Eq. (4).

Thus far interdiction was described as the removal of the evader from the network,
and the creation of a sub-stochastic process M̂. However, the mathematical formalism
is open to several alternative interpretations. For example interdiction could be viewed
as redirection of the evader into a special absorbing state - a “jail node”. In this larger
state space the evader even remains Markovian. Since M̂ is just a mathematical device it
is not even necessary for “interdiction” to change the physical traffic on the network. In
particular, in monitoring problems “interdiction” corresponds to labeling of intercepted
traffic as “inspected” - a process that involves no removal or redirection.

3 Complexity

This section proves technical results about the interdiction problem (7) including the
equivalence in complexity of node and edge interdiction and the NP-hardness of node
interdiction (and therefore of edge interdiction). Practical algorithms are found in the
next section.

We first state the decision problem for (7).

Definition 1. UME-Decision
Instance: A graph G(N,E), interdiction efficiencies 0 ≤ di ≤ 1 for each i ∈ N, budget
B ≥ 0, and real ρ ≥ 0; a set K of evaders, such that for each k ∈ K there is a matrix
M(k) on G, a sources-target pair (a(k),t(k)) and a weight w(k).

Question: Is there a set of (interdicted) nodes Y of size B such that

∑
k∈K

w(k)
(

a(k)
(

I− M̂(k)
)−1
)

t(k)
≤ ρ? (8)

The matrix M̂(k) is constructed from M(k) by replacing element M(k)
i j by M(k)

i j (1− di)
for i ∈Y and each (i, j) corresponding to edges ∈ E leaving i. This sum is the weighted
probability of the evaders reaching their targets. ��
The decision problem is stated for node interdiction but the complexity is the same for
edge interdiction, as proved next.

Lemma 1. Edge interdiction is polynomially equivalent to node interdiction.

Proof. To reduce edge interdiction to node interdiction, take the graph G(N,E) and
construct G′ by splitting the edges. On each edge (i, j) ∈ E insert a node v to create the
edges (i,v),(v, j) and set the node interdiction efficiency dv = di j,di = d j = 0, where
di j is the interdiction efficiency of (i, j) in E .

Conversely, to reduce node interdiction to edge interdiction, construct from G(N,E)
a graph G′ by representing each node v with interdiction efficiency dv by nodes i, j,
joining them with an edge (i, j), and setting di j = dv. Next, change the transition matrix
M of each evader such that all transitions into v now move into i while all departures
from v now occur from j, and Mi j = 1. In particular, if v was an evader’s target node in
G, then j is its target node in G′. ��
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Consider now the complexity of node interdiction. One source of hardness in the UME
problem stems from the difficulty of avoiding the case where multiple edges or nodes
are interdicted on the same evader path - a source of inefficiency. This resembles the Set
Cover problem [12], where including an element in two sets is redundant in a similar
way, and this insight motivates the proof.

First we give the definition of the set cover decision problem.

Definition 2. Set Cover. For a collection C of subsets of a finite set X, and a positive
integer β , does C contain a cover of size ≤ β for X? ��

Since Set Cover is NP-complete, the idea of the proof is to construct a network G(N,E)
where each subset c ∈ C is represented by a node of G, and each element xi ∈ X is
represented by an evader. The evader xi is then made to traverse all nodes {c ∈C|xi ∈ c}.
The set cover problem is exactly problem of finding B nodes that would interdict all of
the evaders (see Fig. 1.)

Theorem 2. The UME problem is NP-hard even if di = h (constant) ∀ nodes i ∈ N.

Proof. First we note that for a given a subset Y ⊆ N with |Y | ≤ B, we can update M(k)

and compute (8) to verify UME-Decision as a yes-instance. The number of steps is
bounded by O(|K||N|3). Therefore, UME-Decision is in NP.

To show UME-Decision is NP-complete, reduce Set Cover with X ,C to UME
-Decision on a suitable graph G(N,E). It is sufficient to consider just the special case
where all interdiction efficiencies are equal, di = 1. For each c ∈C, create a node c in N.

Fig. 1. Illustration of the reduction of Set Cover to UME-Decision. (a) A set cover prob-
lem on elements x1 . . .x6 ∈ X with subsets K = {x1,x2},R = {x1,x3},B = {x3,x4,x5},G =
{x2,x4,x5,x6},Y = {x2,x6} contained in X . (b) The induced interdiction problem with each sub-
set represented by a node and each element by an evader. Each arrow indicates the path of a single
evader.
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We consider three cases for elements x ∈ X ; elements that have no covering sets, ele-
ments that have one covering set, and elements that have at least two covering sets.

Consider first all x ∈ X which have at least two covering sets. For each such x create
an evader as follows. Let O be any ordering of the collection of subsets covering x.
Create in E a Hamiltonian path of |O|−1 edges to join sequentially all the elements of
O, assigning the start, a and end t nodes in agreement with the ordering of O. Construct
an evader transition matrix of size |C|× |C| and give the evader transitions probability
Mi j = 1 iff i, j ∈C and i < j, and = 0 otherwise.

For the case of zero covering sets, that is, where ∃x ∈ X such that x /∈ S for all S ∈C,
represent x by an evader whose source and target are identical: no edges are added
to E and the transition matrix is M = 0. Thus, J in Eq. (4) is non-zero regardless of
interdiction strategy.

For the case when x has just one covering set, that is, when ∃x ∈ X such that there is
a unique c∈C with x∈ c, represent c as two nodes i and j connected by an edge exactly
as in the case of more than one cover above. After introducing j, add it to the middle
of the path of each evader x if i is in the path of x, that is, if c ∈ C. It is equivalent
to supposing that C contains another subset exactly like c. This supposition does not
change the answer or the polynomial complexity of the given instance of Set Cover. To
complete the reduction, set B = β , ρ = 0, X = K, w(k) = 1/|X | and di = 1, ∀i ∈ N.

Now assume Set Cover is a yes-instance with a cover Ĉ ⊆C. We set the interdicted

transition matrix M̂(k)
i j = 0 for all (i, j) ∈ E corresponding to c ∈ Ĉ, and all k ∈ K. Since

Ĉ is a cover for X , all the created paths are disconnected, ∑k∈K (a(k)(I− M̂(k))−1)t(k) = 0
and UME-Decision is an yes-instance.

Conversely, assume that UME-Decision is a yes-instance. Let Y be the set of inter-
dicted nodes. For y ∈ Y , there is element y of C. Since all the evaders are disconnected
from their target and each evader represents a element in X , Y ⊆C covers X and |Y | ≤ β .
Hence, Set Cover is a yes-instance. Therefore, UME-Decision is NP-complete. ��

This proof relies on multiple evaders and it remains an open problem to show that UME
is NP-hard with just a single evader. We conjecture that the answer is positive because
the more general problem of interdicting a single unreactive evader having an arbitrary
(non-Markovian) path is NP-hard. This could be proved by creating from a single such
evader several Markovian evaders such that the evader has an equal probability of fol-
lowing the path of each of the Markovian evaders in the proof above.

Thus far no consideration was given to the problem where the cost ci j of interdicting
an edge (i, j) is not fixed but rather is a function of the edge. This could be termed
the “budgeted” case as opposed to the “unit cost” case discussed so far. However, the
budgeted case is NP-hard as could be proved through reduction from the knapsack
problem to a star network with “spokes” corresponding to items.

4 An Efficient Interdiction Algorithm

The solution to the UME problem can be efficiently approximated using a greedy algo-
rithm by exploiting submodularity. In this section we prove that the UME problem is
submodular, construct a greedy algorithm, and examine the algorithm’s performance.
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We then show how to improve the algorithm’s speed by further exploiting the submod-
ular structure using a “priority” evaluation scheme and “fast initialization”.

4.1 Submodularity of the Interdiction Problem

In general, a function is called submodular if the rate of increase decreases monotoni-
cally, which is akin to concavity.

Definition 3. A real-valued function on a space S, f : S→R is submodular [13, Prop.
2.1iii] if for any subsets S1 ⊆ S2 ⊂ S and any x ∈ S � S2 it satisfies

f (S1∪{x})− f (S1)≥ f (S2∪{x})− f (S2) . (9)

Lemma 3. J(r) is submodular on the set of interdicted edges.

Proof. First, note that it is sufficient to consider a single evader because in Eq. (5), J(r)
is a convex combination of k evaders [13, Prop. 2.7]. For simplicity of notation, we drop
the superscript k in the rest of the proof.

Let S = {(i, j) ∈ E|ri j = 1} be the interdiction set and let J(S) be the probability
of interdicting the evader using S, and let Q(p) be the probability of the evader taking
a path p to the target. On path p, the probability of interdicting the evader with an
interdiction set S is

P(p|S) = Q(p)

(
1− ∏

(i, j)∈p∩S

(1−di j)

)
. (10)

Moreover,
J(S) = ∑

p
P(p|S) . (11)

If an edge (u,v) /∈ S is added to the interdiction set S (assuming (u,v) ∈ p), the proba-
bility of interdicting the evader in path p increases by

P(p|S∪{(u,v)})−P(p|S)= Q(p)duv ∏
(i, j)∈p∩S

(1−di j) ,

which can be viewed as the probability of taking the path p times the probability of
being interdicted at (u,v) but not being interdicted elsewhere along p. If (u,v) ∈ S or
(u,v) /∈ p then adding (u,v) has, of course, no effect: P(p|S∪{(u,v)})−P(p|S)= 0.

Consider now two interdiction sets S1 and S2 such that S1 ⊂ S2. In the case where
(u,v) /∈ S1 and (u,v) ∈ p, we have

P(p|S1∪{(u,v)})−P(p|S1) = Q(p)duv ∏
(i, j)∈p∩S1

(1−di j) , (12)

≥ Q(p)duv ∏
(i, j)∈p∩S2

(1−di j) , (13)

≥ P(p|S2∪{(u,v)})−P(p|S2) . (14)

In the above (13) holds because an edge (u′,v′)∈ (S2 � S1)∩ p would contribute a factor
of (1−du′v′)≤ 1. The inequality (14) becomes an equality iff (u,v) /∈ S2. Overall (14)
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holds true for any path and becomes an equality when (u,v) ∈ S1. Applying the sum of
Eq. (11) gives

J(p|S1∪{(u,v)})− J(p|S1)≥ J(p|S2∪{(u,v)})− J(p|S2) , (15)

and therefore J(S) is submodular. ��
Note that the proof relies on the fact that the evader does not react to interdiction. If the
evader did react then it would no longer be true in general that P(p|S) =
Q(p)

(
1−∏(i, j)∈p∩S (1−di j)

)
above. Instead, the product may show explicit depen-

dence on paths other than p, or interdicted edges that are not on p. Also, when the
evaders are not Markovian the proof is still valid because specifics of evader motion are
contained in the function Q(p).

4.2 Greedy Algorithm

Submodularity has a number of important theoretical and algorithmic consequences.
Suppose (as is likely in practice) that the edges are interdicted incrementally such that
the interdiction set Sl ⊇ Sl−1 at every step l. Moreover, suppose at each step, the inter-
diction set Sl is grown by adding the one edge that gives the greatest increase in J. This
defines a greedy algorithm, Alg. 1.

Algorithm 1. Greedy construction of the interdiction set S with budget B for a graph
G(N,E).

S←∅

while B > 0 do
x∗ ←∅

δ ∗ ←−1
for all x ∈ E �S do

Δ (S,x) := J (S∪{x})−J (S)
if Δ (S,x) > δ ∗ then

x∗ ← {x}
δ ∗ ← Δ (S,x)

S← S∪ x∗

B← B−1
Output(S)

The computational time is O(B|N|3|E|) for each evader, which is strongly polyno-
mial since |B| ≤ |E|. The linear growth in this bound as a function of the number of
evaders could sometimes be significantly reduced. Suppose one is interested in inter-
dicting flow f (s, t) that has a small number of sources but a larger number of targets.
In the current formulation the cost grows linearly in the number of targets (evaders) but
is independent of the number of sources. Therefore for this f (s, t) it is advantageous to
reformulate UME by inverting the source-target relationship by deriving a Markov pro-
cess which describes how an evader moves from a given source s to each of the targets.
In this formulation the cost would be independent of the number of targets and grow
linearly in the number of sources.
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4.3 Solution Quality

The quality of the approximation can be bounded as a fraction of the optimal solution
by exploiting the submodularity property [13]. In submodular set functions such as J(S)
there is an interference between the elements of S in the sense that sum of the individual
contributions is greater than the contribution when part of S. Let S∗B be the optimal
interdiction set with a budget B and let Sg

B be the solution with a greedy algorithm.
Consider just the first edge x1 found by the greedy algorithm. By the design of the
greedy algorithm the gain from x1 is greater than the gain for all other edges y, including
any of the edges in the optimal set S∗. It follows that

Δ(∅,x1)B≥ ∑
y∈S∗B

Δ(∅,y)≥ J(S∗B) . (16)

Thus x1 provides a gain greater than the average gain for all the edges in S∗B,

Δ(∅,x1)≥
J(S∗B)

B
. (17)

A similar argument for the rest of the edges in Sg
B gives the bound,

J(Sg
B)≥

(
1− 1

e

)
J(S∗B) , (18)

where e is Euler’s constant [13, p.268]. Hence, the greedy algorithm achieves at least
63% of the optimal solution.

This performance bound depends on the assumption that the cost of an edge is a con-
stant. Fortunately, good discrete optimization algorithms for submodular functions are
known even for the case where the cost of an element (here, an edge) is variable. These
algorithms are generalizations of the simple greedy algorithm and provide a constant-
factor approximation to the optimum [14,15]. Moreover, for any particular instance of
the problem one can bound the approximation ratio, and such an “online” bound is often
better than the “offline” a priori bound [16].

4.4 Exploiting Submodularity with Priority Evaluation

In addition to its theoretical utility, submodularity can be exploited to compute the same
solution much faster using a priority evaluation scheme. The basic greedy algorithm
recomputes the objective function change Δ(Sl,x) for each edge x ∈ E � Sl at each step
l. Submodularity, however, implies that the gain Δ(Sl,x) from adding any edge x would
be less than or equal to the gain Δ(Sk,x) computed at any earlier step k < l. Therefore,
if at step l for some edge x′, we find that Δ(Sl,x′)≥ Δ(Sk,x) for all x and any past step
k ≤ l, then x′ is the optimal edge at step l; there is no need for further computation (as
was suggested in a different context [16].) In other words, one can use stale values of
Δ(Sk,x) to prove that x′ is optimal at step l.

As a result, it may not be necessary to compute Δ(Sl,x) for all edges x ∈ E � S at
every iteration. Rather, the computation should prioritize the edges in descending order
of Δ(Sl ,x). This “lazy” evaluation algorithm is easily implemented with a priority queue
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which stores the gain Δ(Sk,x) and k for each edge where k is the step at which it was
last calculated. (The step information k determines whether the value is stale.)

The priority algorithm (Alg. 2) combines lazy evaluation with the following fast
initialization step. Unlike in other submodular problems, in UME one can compute
Δ(∅,x) simultaneously for all edges x ∈ E because in this initial step, Δ(∅,x) is just
the probability of transition through edge x multiplied by the interdiction efficiency
dx, and the former could be found for all edges in just one operation. For the “non-
retreating” model of Ref. [10] the probability of transition through x = (i, j) is just the
expected number of transitions though x because in that model an evader moves through
x at most once. This expectation is given by the i, j element in a(I−M)−1�M (derived
from Eq. (2)). The probability is multiplied by the weight of the evader and then by dx:

Δ(∅,x) = ∑k

(
a(k)(I−M(k))−1

)
i
M(k)

i j w(k)dx. In addition to these increments, for dis-

connected graphs the objective J(S) also contains the constant term ∑k w(k) (∑i∈Z(k) ai
)
,

where Z(k) ⊂ N are nodes from which evader k cannot reach his target t(k).
In subsequent steps this formula is no longer valid because interdiction of x may

reduce the probability of motion through other interdicted edges. Fortunately, in many
instances of the problem the initialization is the most expensive step since it involves
computing the cost for all edges in the graph. As a result of the two speedups the number
of cost evaluations could theoretically be linear in the budget and the number of evaders
and independent of the size of the solution space (the number of edges).

The performance gain from priority evaluation can be very significant. In many com-
putational experiments, the second best edge from the previous step was the best in
the current step, and frequently only a small fraction of the edges had to be recom-
puted at each iteration. In order to systematically gauge the improvement in perfor-
mance, the algorithm was tested on 50 synthetic interdiction problems. In each case, the

Algorithm 2. Priority greedy construction of the interdiction set S with budget B
S←∅

PQ←∅ {Priority Queue: (value,data,data)}
for all x = (i, j) ∈ E do

Δ (x)←{The cost found using fast initialization}
PUSH (PQ,(Δ (x),x,0))

s← 0
while B > 0 do

s← s+1
loop

(Δ (x),x,n)← POP(PQ)
if n = s then

S← S∪{x}
break

else
Δ (x)← J (S∪{x})−J (S)
PUSH (PQ,(Δ (x),x,s))

B← B−1
Output(S)
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underlying graph was a 100-node Geographical Threshold Graph (GTG), a possible
model of sensor or transportation networks [17], with approximately 1600 directed
edges (the threshold parameter was set at θ = 30). Most of the networks were con-
nected. We set the cost of traversing an edge to 1, the interdiction efficiency dx to 0.5,
∀x ∈ E , and the budget to 10. We used two evaders with uniformly distributed source
nodes based on the model of [10] with an equal mixture of λ = 0.1 and λ = 1000. For
this instance of the problem the priority algorithm required an average of 29.9 evalua-
tions of the objective as compared to 31885.2 in the basic greedy algorithm - a factor
of 1067.1 speedup.

The two algorithms find the same solution, but the basic greedy algorithm needs to
recompute the gain for all edges uninterdicted edges at every iteration, while the priority
algorithm can exploit fast initialization and stale computational values. Consequently,
the former algorithm uses approximately B|E| cost computations, while the latter typi-
cally uses much fewer (Fig. 2a).

Simulations show that for the priority algorithm the number of edges did not seem to
affect the number of cost computations (Fig. 2b), in agreement with the theoretical limit.
Indeed, the only lower bound for the number of cost computations is B and this bound
is tight (consider a graph with B evaders each of which has a distinct target separated
from each evader’s source by exactly one edge of sufficiently small cost). The priority
algorithm performance gains were also observed in other example networks.1
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Fig. 2. Comparison between the basic greedy (blue circles) and the priority greedy algorithms (red
diamonds) for the number of cost evaluations as a function of (a) budget, and (b) number of edges.
In (a) each point is the average of 50 network interdiction problems. The average coefficient of
variation (the ratio of the standard deviation to the mean) is 0.10 for basic greedy and 0.15 for
the priority greedy. Notice the almost perfectly linear trends as a function of budget (shown here
on a log-log scale, the power ≈ 1.0 in both.) In (b), the budget was fixed at 10 and the number of
edges was increased by decreasing the connectivity threshold parameter from θ = 50 to θ = 20
to represent, e.g., increasingly dense transportation networks.

1 Specifically, the simulations were a two evader problem on a grid-like networks consisting of
a lattice (whose dimensions were grown from 8-by-8 to 16-by-16) with random edges added
at every node. The number of edges in the networks grew from approximately 380 to 1530 but
there was no increasing trend in the number of cost evaluations.
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The priority algorithm surpasses a benchmark solution of the corresponding mixed
integer program (See Appendix) using a MIP solver running CPLEX (version 10.1) in
consistency, time, and space. For example, in runs on 100-node GTG networks with
4 evaders and a budget of 10, the priority algorithm terminates in 1 to 20 seconds,
while CPLEX terminated in times ranging from under 1 second to 9.75 hours (the high
variance in CPLEX run times, even on small problems, made systematic comparison
difficult.) The difference in solution optimality was zero in the majority of runs. In the
hardest problem we found (in terms of its CPLEX computational time - 9.75 hours), the
priority algorithm found a solution at 75% of the optimum in less than 10 seconds.

For our implementation, memory usage in the priority algorithm never exceeded
300MiB. Further improvement could be made by re-implementing the priority algo-
rithm so that it would require only order O(|E|) to store both the priority queue and
the vectors of Eq. (4). In contrast, the implementation in CPLEX repeatedly used over
1GiB for the search tree. As was suggested from the complexity proof, in runs where
the number of evaders was increased from 2 to 4 the computational time for an exact
solution grew rapidly.

5 Outlook

The submodularity property of the UME problem provides a rich source for algorithmic
improvement. In particular, there is room for more efficient approximation schemes and
practical value in their invention. Simultaneously, it would be interesting to classify
the UME problem into a known approximability class. It would also be valuable to
investigate various trade-offs in the interdiction problem, such as the trade-off between
quality and quantity of interdiction devices.

As well, to our knowledge little is known about the accuracy of the assumptions of
the unreactive Markovian model or of the standard max-min model in various applica-
tions. The detailed nature of any real instance of network interdiction would determine
which of the two formulations is more appropriate.
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Appendix: Mixed Integer Program for UME

In the unreactive Markovian evader interdiction (UME) problem an evader k ∈ K is
sampled from a source distribution a(k), and moves to a sink t(k) with a path specified
by the matrix M(k). This matrix is the Markov transition matrix with zeros in the row
of the absorbing state (sink). The probability that the evader arrives at t(k) is (a(k)(I−
M(k))−1)t(k) and is 1 without any interdiction (removal of edges).

Notation summary

G(N,E): simple graph with node and edge sets N and E , respectively.
K: the set of evaders.
w(k): probability that the evader k occurs.
a(k)

i : probability that node i is the source node of evader k.
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t(k): the sink of evader k.
M(k): the modified transition matrix for the evader k.
di j: the conditional probability that interdiction of edge (i, j) would remove an evader

who traverses it.
B: the interdiction budget.

π (k)
i : decision variable on conditional probability of node evader k traversing node i.

ri j: interdiction decision variable, 1 if edge (i, j) is interdicted and 0 otherwise.

Definition 4. Unreactive Markovian Evader interdiction (UME) problem

min
r

H(r) = ∑
k∈K

w(k)h(k)(r) ,

s.t. ∑
(i, j)∈E

ri j = B ,

ri j ∈ {0,1}, ∀(i, j) ∈ E,

where

h(k)(r) = min
π

πt(k) ,

s.t. π (k)
i − ∑

( j,i)∈E

(M(k)
ji −M(k)

ji d jir ji)π
(k)
j = a(k)

i , ∀i ∈ N , (19)

π (k)
i ≥ 0, ∀i ∈ N. (20)

The constraint (19) is nonlinear. We can replace this with a set of linear constraints, and
the evader problem becomes

h(k)(r) = min
π ,θ

πt(k) ,

s.t. π (k)
i − ∑

( j,i)∈E

θ (k)
ji = a(k)

i , ∀i ∈ N ,

θ (k)
ji ≥M(k)

ji π (k)
j −M(k)

ji d jir ji, ∀( j, i) ∈ E , (21a)

θ (k)
ji ≥M(k)

ji (1−d ji)π
(k)
j , ∀( j, i) ∈ E , (21b)

θ (k)
i j ≥ 0, ∀(i, j) ∈ E ,

π (k)
i ≥ 0, ∀i ∈ N .

If we set ri j = 0, the constraint (21a) is dominating (21b), and θi j will take value

M(k)
i j π (k)

i at optimal because of the minimization. If we set ri j = 1, the constraint (21b)

is dominating since π (k)
j ≤ 1. Although formulation (21) has an additional variable θ , at

the optimum the two formulations are equivalent because π and r have the same values.
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Abstract. Testing is the process of stimulating a system with inputs
in order to reveal hidden parts of the system state. In the case of non-
deterministic systems, the difficulty arises that an input pattern can
generate several possible outcomes. Some of these outcomes allow to
distinguish between different hypotheses about the system state, while
others do not.

In this paper, we present a novel approach to find, for non-deterministic
systems, modeled as constraints over variables, tests that allow to distin-
guish among the hypotheses as good as possible. The idea is to assess the
quality of a test by determining the ratio of distinguishing (good) and not
distinguishing (bad) outcomes. This measure refines previous notions pro-
posed in the literature on model-based testing and can be computed using
model counting techniques. We propose and analyze a greedy-type algo-
rithm to solve this test optimization problem, using existing model coun-
ters as a building block. We give preliminary experimental results of our
method, and discuss possible improvements.

1 Introduction

In natural sciences, it often occurs that one has several different hypotheses
(models) for a system or parts of its state. Testing asks whether one can reduce
their number by stimulating the system with appropriate inputs, called test pat-
terns, in order to validate or falsify hypotheses from observing the generated
outputs. Applications include, for example, model-based fault analysis (check-
ing technical systems for the absence or presence of faults [9,17]), autonomous
systems (acquiring sensory inputs to discriminate among competing state esti-
mates [4]), and bioinformatics (designing experiments that help to distinguish
between different possible explanations of biological phenomena [18]).

For deterministic systems where each input generates a unique output, such as
digital circuits, it has been shown how generating test inputs can be formulated
and solved as a satisfiability problem [6,11]. The non-deterministic case, however,
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where the output is not uniquely determined by the inputs, is more frequent in
practice. One reason is that in order to reduce the size of a model, for example, to
fit it into an embedded controller [14,20], it is common to aggregate the domains
of system variables into small sets of values such as ‘low’, ‘med’, and ‘high’;
a side-effect of this abstraction is that the resulting models can no longer be
assumed to be deterministic functions, even if the underlying system behavior
was deterministic [19]. Another reason is the test situation itself: even in a rigid
environment such as an automotive test-bed, there are inevitably variables or
parameters that cannot be completely controlled while testing the device.

The difficulty of test generation with non-deterministic models is that each
input pattern can generate a set of possible outcomes instead of a single outcome.
For two hypotheses and a fixed test input, let A and B be the sets of possible
outputs. These sets can either overlap or be disjoint as illustrated in Figure 1.
Assuming that at least one hypothesis captures the actual behavior of the system,
there are two possible cases: (i) the actual observed output of the system could
either fall into the intersection of A and B or (ii) outside the intersection. In the
first case no information is gained, as none of the hypotheses can be refuted. In
the latter case, however, one of the hypotheses can be refuted. Thus, if the sets
overlap as depicted in Figure 1(a), the test input might distinguish between the
two hypotheses, whereas if the sets are disjunct as shown in Figure 1(b), the test
input will certainly distinguish among them. Note that, if the assumption that
at least one hypothesis captures the actual behavior of the system fails, there is
a third possible outcome, where the observed output lies outside of both sets. In
this case, both hypotheses can be refuted since they do not describe the actual
behavior of the system.

This qualitative distinction of tests for non-deterministic models was noted in
several research areas. In the field of model-based diagnosis with first-order logi-
cal models, Struss [17] introduced so-called possibly and definitely discriminating
tests, for short PDT and DDT, respectively. The first type of test (PDT) might
distinguish between fault hypotheses and corresponds to Figure 1(a), whereas
the second type (DDT) will necessarily do so, which corresponds to Figure 1(b).
Struss [17] further provided a characterization of PDTs and DDTs in terms of
relational (logical) models, together with an ad-hoc algorithm to compute them.
In the field of automata theory, Alur et al. [3] have studied the analogous prob-
lem of generating so-called weak and strong distinguishing sequences. These are

BA

(a) overlapping

BA

(b) non-overlapping

Fig. 1. Given two non-deterministic models, a test input can either lead to overlap-
ping (a) or non-overlapping (b) output sets A and B
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input sequences for a non-deterministic finite state machine, such that based on
the generated outputs, one can determine the internal state either for some or all
feasible runs of the machine. Finding weak and strong sequences with a length
less than or equal to a bound k ∈ N can be reduced to the problem of finding
PDTs and DDTs, by unrolling automata into a constraint network using k copies
of the transition relation and the observation relation [9].

In previous work [13], we have shown how PDTs and DDTs can be formalized
and computed using quantified constraint satisfaction problems, a game-theoretic
extension of constraint satisfaction problems. In the next section, we summarize
this constraint-based framework for testing. In section 3, we then propose a
novel, quantitative distinction of tests that refines and generalizes the previous
notions of weak versus strong and possibly versus definitely discriminating tests.
The key idea is to measure the quality of a test by determining the actual ratio
of distinguishing and not distinguishing outcomes, corresponding to the ratio
of non-intersecting and intersecting areas in Figure 1. Because test inputs that
maximize this measure distinguish among given hypotheses as good as possible,
we call them optimal distinguishing tests (ODTs). We show how in a constraint-
based framework, ODTs can be defined and computed using model counting
techniques. In Section 4, we propose a greedy algorithm that can quickly find
distinguishing tests, using existing model counters as a building block (in our
experiments, we used a model counting extension of a constraint integer pro-
gramming solver SCIP [1,2]). We give preliminary experimental results of our
method using a small real-world problem from automotive industry. Finally, in
the last section we discuss possible improvements and directions for future work.

2 Distinguishing Tests

We briefly introduce the theory of constraint-based testing similar to [13,17]. We
first define the notion of a constraint satisfaction problem (CSP).

Definition 1 (Constraint Satisfaction Problem). A constraint satisfaction
problem M is a triple M = (V ,D, C), where D = D(v1)×. . .×D(vn) are the finite
domains of finitely many variables vj ∈ V, j = 1, . . . , n, and C = {C1, . . . , Cm}
is a finite set of constraints with Ci ⊆ D, i = 1, . . . , m. The task is to find an
assignment x ∈ D to the variables such that all constraints are satisfied, that is,
x ∈ Ci for i = 1, . . . , m.

We denote by X the set of all solutions of a given constraint satisfaction problem.
That is,

X = {x | x ∈ D, C(x)}, with C(x) :⇔ x ∈ Ci ∀i = 1, . . . , m.

Testing attempts to discriminate between hypotheses about a system – for ex-
ample, about different kinds of faults – by stimulating it in such a way that the
hypotheses become observationally distinguishable. Thereby, the system under
investigation defines a set of controllable (input) variables I and a set of ob-
servable (output) variables O. Formally, a hypothesis M for a system is a CSP
where the variable set V contains the input and output variables of the system.
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Definition 2 (Hypothesis). A hypothesis for a system is a CSP whose vari-
ables are partitioned into V = I ∪ O ∪ S, such that I and O are the input and
output variables of the system, and for all assignments to I, the CSP is solvable.
The remaining variables S = V \ (I ∪ O) are called internal state variables.

Note that the internal state variable sets S can differ for two different hypotheses.
We denote by D(I) and D(O) the cross product of the domains of the input and
output variables, respectively:

D(I) =×
v∈I

D(v) and D(O) =×
v∈O

D(v).

The goal of testing is then to find assignments of the input variables I that will
cause different assignments of output variables O for different hypotheses. For a
given hypothesis M we define the output function X as follows:

X : D(I) → 2D(O) with t "→ {y | y ∈ D(O), ∃x ∈ X : x[I] = t ∧ x[O] = y},

where 2D(O) denotes the power set of D(O), and x[I], x[O] denote the restriction
of the assignment vector x to the input variables I and the output variables O,
respectively. Note that since M will always yield an output, X (t) is non-empty
for all t ∈ D(I).

Definition 3 (Distinguishing Tests). Consider k ∈ N hypotheses M1, . . . , Mk

with input variables I and output variables O. Let Xi be the output function of
hypothesis Mi with i ∈ {1, . . . , k}. An assignment t ∈ D(I) to the input variables I
is a possibly distinguishing test (PDT), if there exists an i ∈ {1, . . . , k} such that

Xi(t) \
⋃
j �=i

Xj(t) �= ∅.

An assignment t ∈ D(I) is a definitely distinguishing test (DDT), if for all
i ∈ {1, . . . , k} it holds that

Xi(t) \
⋃
j �=i

Xj(t) = Xi(t).

Verbally, a test input is a PDT if there exists a hypothesis for which this test
input can lead to an output which is not reachable for any other hypothesis.
On the other hand, an assignment to the input variables is a DDT if for all
hypotheses the possible outputs are pairwise disjoint. This means, there exists
no overlapping of the possible outcomes at all.

In the following, we restrict ourselves to the case where there are only two
possible hypotheses, for example corresponding to normal and faulty behavior
of the system.

To illustrate the above definitions, consider the system in Figure 2. It consists
of five variables x, y, z, u, and v, where x, y, and z are input variables and v is an
output variable. Furthermore, the system has two components, one comparing
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xor

a

x
y u

z v

xor: x y u a: u z v a′: u z v

L L L L L L L L L
L H H L H L L H L
H L H L H H H L L
H H L H L L H H L

H L H
H H H

Fig. 2. Circuit with a possibly faulty adder

signals x and y with result u and the other adding signals u and z. The signals
have been abstracted into qualitative values ‘low’ (L) and ‘high’ (H). This means,
each variable of the system has the same domain set {L, H}; thus, for instance,
values L and H can add up to the value L or H , and so on. Assume we have two
hypotheses M1 and M2 about the system that we want to distinguish from each
other: the first hypothesis is that the system is functioning normally, which is
modeled by the constraint set {xor,a} (see Figure 2). The second hypothesis is
that the adder is stuck-at-L, which is modeled by the constraints {xor,a′}. Note
that only the second constraint of both hypotheses contains a non-deterministic
behavior. The assignment (x, y, z) = (L, H, L), for example, is a PDT, since it
leads to the observation v = L or v = H for M1, and v = L for M2. One the other
hand, the assignment (x, y, z) = (L, H, H) is a DDT for the two hypotheses, since
this assignment leads to the observation v = H and v = L for the hypotheses M1
and M2, respectively.

Testing can be extended from the above case of logical, state-less models to
the more general case of automata models that have internal states. This means
that we are no longer searching for a single assignment to input variables, but
rather for a sequence of inputs over different time steps. The following definitions
are adapted from [5] and [7]:

Definition 4 (Plant Hypothesis). A (partially observable) plant is a tuple
P = 〈x0, S, I, δ, O, λ〉, where S, I, O are finite sets, called the state space, input
space, and output space, respectively, x0 ∈ S is the start state, δ ⊆ S × I × S
is the transition relation, and λ ⊆ S ×O is the observation relation.

Such plant models are for instance used in NASA’s Livingstone [21] or MIT’s
Titan model-based system [20]. Note that a plant need not be deterministic,
that is, the state after a transition may not be uniquely determined by the state
before the transition and the input. Likewise, a plant state may be associated
with several possible observations.

For technical convenience, it is assumed that the relations δ and λ are com-
plete, that is for every x ∈ S and i ∈ I there exists at least one x′ ∈ S such that
(x, i, x′) ∈ δ and at least one o ∈ O such that (x, o) ∈ λ. We write δ(x, i, x′) for
(x, i, x′) ∈ δ, and λ(s, o) for (x, o) ∈ λ. A feasible trace of a plant P is a pair (σ, ρ),
where σ = i1, i2, . . . , ik ∈ I∗ is a sequence of k inputs and ρ = o0, o1, . . . , ok ∈ O∗
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x0 x1

0 1

L,H

L L,H

x0 x1x0

x2

0 1

0

L

H

L L,H

L

L,H

Fig. 3. Two plants P1 (left) and P2 (right)

is a sequence of k + 1 outputs, such that there exists a sequence x0, x1, . . . , xk

of states with δ(xj−1, ij , xj) for all 1 ≤ j ≤ k and λ(xj , oj) for all 0 ≤ j ≤ k.

Definition 5 (Distinguishing Test Sequences). Given two plants P1 =
〈x0, S, I, δ, O, λ〉 and P2 = 〈y0, Y, I, η, O, μ〉, a sequence of inputs σ ∈ I∗ is a
weak test, if there exists a sequence of outputs ρ ∈ O∗ such that (σ, ρ) is a fea-
sible trace of P1 but not of P2. The sequence σ is a strong test for P1 and P2, if
and only if for all sequences of outputs ρ, it holds that if (σ, ρ) is a feasible trace
P1 then it is not a feasible trace of P2.

Notice that due to the assumptions about completeness, for every input sequence
σ ∈ I∗ there exist output sequences ρ, τ ∈ O∗ such that (σ, ρ) is a feasible trace
of P1 and (σ, τ) is a feasible trace of P2.

Analogous to PDTs and DDTs, a weak test is a sequence that may reveal
a difference between two hypotheses, whereas a strong test is a sequence that
will necessarily do so. For example, Figure 3 shows two plants P1 and P2 with
I = {L, H} and O = {0, 1}. The input sequence σ = L, L is a weak test for the
two plants, because, for example, 0, 1, 0 is a possible output sequence of P2 but
not of P1. The sequence σ′ = H, H is a strong test for P2 and P1, because the
only possible output sequence 0, 0, 0 of P2 cannot be produced by P1.

From a practical point of view, it is often sufficient to consider bounded test
sequences that do not exceed a certain length k ∈ N. In this case, the problem
of finding weak and strong tests for automata models can be reduced to finding
PDTs and DDTs:

Remark 1. Finding weak and strong tests with a length less than or equal to
a bound k ∈ N can be reduced to the problem of finding PDTs and DDTs, by
unrolling automata into a constraint network using k copies of the transition
relation and the observation relation [9].

In the following, we consider only tests with such a bounded length. Therefore,
we assume the hypotheses are given as CSPs over finite-domain variables (Defi-
nition 2). This covers both the case of logical models and (bounded) automata
models.
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3 Optimal Distinguishing Tests

In [13], we have shown how PDTs and DDTs can be formalized and computed
using quantified constraints satisfaction problems (QCSP), a game-theoretic ex-
tension of CSPs. However, for larger hypotheses, the computational cost of solv-
ing such QCSPs can be prohibitive. Moreover, due to limited observability or
a high degree of non-determinism in the system under investigation, it is not
uncommon that a DDT for the hypotheses does not exist, and one can instead
only find PDTs.

In the following, we therefore propose a novel, quantitative measure for tests
that refines and generalizes the previous, qualitative notions of PDTs and DDTs.
The key idea is to determine the ratio of distinguishing and not distinguishing
outcomes of a test input, corresponding to the degree of overlap between the
output sets shown in Figure 1. This measure provides a way to further distinguish
between different PDTs. In addition, even if computing this measure is by itself
not easier than finding PDTs and DDTs, approximations of it can be used as a
guiding heuristic in the search for tests, providing a basis for greedy methods to
quickly find good tests.

The main assumption underlying our approach is that for a test input and
a non-deterministic hypothesis, the possible outcomes (feasible assignments to
the output variables) are all (roughly) equally likely. Then, a PDT will be more
likely to distinguish among two given hypotheses compared to another PDT, if
the ratio of possible outcomes that are unique to a hypothesis versus the total
number of possible outcomes is higher.

This intuition is captured in the following definitions.

Definition 6 (Distinguishing Ratio). Given a test input t ∈ D(I) for two
hypotheses M1, M2 with input variables I and output variables O, we define Γ (t)
to be the ratio of feasible outputs that distinguish among the hypotheses versus
all feasible outputs:

Γ (t) :=
|X1(t) ∪ X2(t)| − |X1(t) ∩ X2(t)|

|X1(t) ∪ X2(t)|
= 1− |X1(t) ∩ X2(t)|

|X1(t) ∪ X2(t)|
.

Γ is a measure for test quality that can take on values in the interval [0, 1]. It
refines the notion of PDTs and DDTs in the following precise sense: if Γ is 0,
then the test does not distinguish at all, as both hypotheses lead to the same
observations (output patterns). If the value is 1, then the test is a DDT, since
both hypotheses always lead to different observations. If the value is between 0
and 1, then the test is a PDT (there is some non-overlap in the possible observa-
tions). Note that Γ is well-defined since for any chosen t ∈ D(I), the sets X1(t)
and X2(t) are non-empty (see Definition 2).
Remark 2. For computing the distinguishing ratio for a fixed test input t it is
only necessary to compute (model count) the value |X1(t) ∩ X2(t)|, |X1(t)|, and
|X2(t)|, since

Γ (t) = 1− |X1(t) ∩ X2(t)|
|X1(t) ∪ X2(t)|

= 1− |X1(t) ∩ X2(t)|
|X1(t)|+ |X2(t)| − |X1(t) ∩ X2(t)|

.
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Based on this measure, we can formalize our goal of finding tests that discrimi-
nate among two hypotheses as good as possible:

Definition 7 (Optimal Distinguishing Test). An assignment t ∈ D(I) is
an optimal distinguishing test (ODT) for two hypotheses M1, M2 with input
variables I and output variables O if its distinguishing ratio is maximal, that is,
Γ (t) = maxx∈D(I) Γ (x).

Note that each DDT is also an ODT. To illustrate the previous definition, consider
again the example in Figure 3. The input sequence t = (L, L) is a weak test
or equivalently, a PDT if the automata are expanded into suitable constraint
networks. The possible outcomes (output patterns) for P1 and P2 are

X1(t)={(0, 0, 0), (0, 0, 1), (0, 1, 1)} X2(t)={(0, 0, 0), (0, 0, 1), (0, 1, 1), (0, 1, 0)}.

Thus, for this test there is only one possible outcome (0, 1, 0) that is unique to
a hypothesis, out of a total of four possible outcomes. Hence, Γ (t) = 1

4 . There
exists another weak test (PDT), namely the input sequence t′ = (L, H), with
possible outcomes

X1(t′) = {(0, 0, 1), (0, 1, 1)} X2(t′) = {(0, 0, 0), (0, 1, 1)}.

This test has two possible outcomes {(0, 0, 0), (0, 0, 1)} that are unique to a
hypothesis, out of three possible outcomes {(0, 0, 0), (0, 0, 1), (0, 1, 1)}. This leads
to Γ (t′) = 2

3 . Note that for this example, there exists a test t′′ = (H, H) with
Γ (t′′) = 1, which is a DDT and therefore an ODT.

Now we present a general lower bound on the optimal distinguishing ratio.

Theorem 1. Consider a system with input variable set I and output variable
set O. Furthermore, let M1 and M2 be two hypotheses for this system. Let

Xi[I,O] = {(x, y) | x ∈ D(I), y ∈ D(O), ∃ t ∈ Xi : t[I] = x ∧ t[O] = y},

where Xi is the set of all feasible solutions of the hypothesis Mi, i ∈ {1, 2}. Then,

1− |X1[I,O] ∩X2[I,O]|
|X1[I,O] ∪X2[I,O]|

is a lower bound on the optimal distinguishing ratio.

Proof. Let I and O be the input and output variable sets of an arbitrary system
and M1 and M2 two hypotheses. Furthermore, let X1[I,O] and X2[I,O] be the
sets to the hypotheses as defined in the theorem.

Given an input variable v ∈ I, we denote by Td the subset of D(I) which is
restricted to the elements where the input variable v is fixed to d ∈ D(v). That
is, Td = {x | x ∈ D(I) ∧ x[{v}] = d}. These subsets form a partition of D(I).
This means, D(I) =

⋃
d∈D(v) Td and Td ∩ Tk = ∅ for all d, k ∈ D(v) with d �= k.

Hence, these subsets can be used to partition Xi[I,O] as follows:

Xi[I,O] =
⋃

d∈D(v)

{(x, y) | x ∈ Td, y ∈ D(O), ∃ t ∈ Xi : t[I] = x ∧ t[O] = y}.
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Therefore,

|Xi[I,O]| =
∑

d∈D(v)

|{(x, y) | x ∈ Td, y ∈ D(O), ∃ t ∈ Xi : t[I] = x ∧ t[O] = y}|.

We claim that

|X1[I,O] ∩X2[I,O]|
|X1[I,O] ∪X2[I,O]| ≥ min

d∈D(v)

|X1[I,O] ∩X2[I,O] ∩ (Td ×D(O))|
|(X1[I,O] ∪X2[I,O]) ∩ (Td ×D(O))| .

To this end, let d∗ ∈ D(v) be a domain value of v, which attains the minimum
on the right hand side. In a first step, we decompose the left hand side using
that the subsets Td are a partition of D(I):

|X1[I,O] ∩X2[I,O]|
|X1[I,O] ∪X2[I,O]| =

∑
d∈D(v)|X1[I,O] ∩X2[I,O] ∩ (Td ×D(O))|∑

d∈D(v)|(X1[I,O] ∪X2[I,O]) ∩ (Td ×D(O))|

Now we substitute

ad := |X1[I,O] ∩X2[I,O] ∩ (Td ×D(O))|
ãd := |(X1[I,O] ∪X2[I,O]) ∩ (Td ×D(O))|.

To prove the claim, it is left to show that∑
d∈D(v) ad∑
d∈D(v) ãd

≥ ad∗

ãd∗
with

ad

ãd
≥ ad∗

ãd∗
∀ d ∈ D(v).

This follows since∑
d∈D(v) ad∑
d∈D(v) ãd

≥ ad∗

ãd∗
⇔

∑
d∈D(v)

ad ≥
∑

d∈D(v)

ãd ·
ad∗

ãd∗

and ∑
d∈D(v)

ad =
∑

d∈D(v)

ad · ãd

ãd
≥

∑
d∈D(v)

ad∗ · ãd

ãd∗
=

∑
d∈D(v)

ãd ·
ad∗

ãd∗
.

Therefore, we have proven, that it is possible to fix any input variable such that
the claimed lower bound holds. Doing this sequentially for all input variables
leads to an assignment which has as distinguishing ratio which is at least as
good as the claimed lower bound. ��

4 Greedy Algorithm for Distinguishing Test Generation

In the previous section we stated the optimization problem of computing an opti-
mal distinguishing test (ODT). In this section, we propose and analyze a greedy-
type algorithm to solve this problem, which can use existing model counting
methods (exact or approximate) as a building block.
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The idea of the greedy algorithm is to select at each step an input variable
which is not fixed yet. For each possible value of this variable, the algorithm
computes a local form of the distinguishing ratio (comparison of model counts,
as defined in Section 3) for assigning this value. The variable is then fixed to a
value that attains the maximal (local) distinguishing ratio.

To formalize this idea, we canonically extend the function Γ from single as-
signments t ∈ D(I) to sets of assignments T ⊆ D(I) by defining

X (T ) =
⋃
t∈T

X (t).

Algorithm 1 shows the algorithm Greedy. It takes as input the controllable and
observable variable sets I and O defined by the system under investigation and
two hypotheses M1 and M2 to distinguish. As output it returns an assignment
for the input variables.

For example, consider the system shown in Figure 4. It has two input variables
I = {v1, v2} and one output variable O = {v3}. Let D(v1) = D(v2) = {0, 1}
and D(v3) = {0, 1, 2}. Consider two hypotheses M1 and M2 for this system,
where both hypotheses have no internal state variables. Each hypothesis has one
constraint

C1 = D(v1)×D(v2)×D(v3)
C2 = D(v1)×D(v2)×D(v3) \ {(0, 0, 1), (0, 0, 2), (0, 1, 2), (1, 0, 2)},

where C1 and C2 belong to hypothesis M1 and M2, respectively. Assume the
algorithm selects the variables in the order v1, v2. Then for the two values of

Input: Hypotheses M1 and M2 with set of input and output variables I and O
Output: Test t ∈ D(I)

T ← D(I);
foreach v ∈ I do

bestratio ← −1;
bestfixing ← ∞;
foreach d ∈ D(v) do

T ′ ← {x | x ∈ T ∧ x[{v}] = d};
ratio ← Γ (T ′);
if ratio > bestratio then

bestratio ← ratio;
bestfixing ← d;

end
end
T ← T ∩ {x | x ∈ D(I) ∧ x[{v}] = bestfixing};

end
return t ∈ T

Algorithm 1. Greedy algorithm for distinguishing test input generation



Using Model Counting to Find Optimal Distinguishing Tests 127

?v1
v2

v3

Fig. 4. Example system schema

v1, it computes the two ratios v1 = 0 → Γ (T ′) = 1
3 and v1 = 1 → Γ (T ′) = 0.

It chooses value 0 for v1, since it has the highest ratio. Continuing with v2, its
ratios are determined as v2 = 0 → Γ (T ′) = 2

3 and v2 = 1 → Γ (T ′) = 1
3 . Thus

value 0 for v2 is chosen. The computed input (0, 0) is an ODT for this example.

4.1 Properties of the Algorithm

Note that if the system consists only of one input variable, Greedy computes an
ODT, since the algorithm just enumerates all possible variable assignments for
the input variable and selects the assignment that maximizes the distinguishing
ratio. In general, however, the Greedy algorithm has no constant approximation
factor.

Theorem 2. The Greedy algorithm has no constant approximation factor.
That is, there exists no constant c such that for all instances

max
t∈D(I)

Γ (t) ≤ c · Γ (x∗),

where x∗ is the solution computed by Greedy.

Proof. Consider again the system stated in Figure 4, and let the domain of the
input variables be D(v1) = D(v2) = {0, 1} and of the output variable v3 be
D(v3) = {0, . . . , n}, n ∈ N, and n > 2. W.l.o.g. let the domains be ordered as:

D = D(v1)×D(v2)×D(v3).

Let M1 and M2 be defined by the following sets of feasible solutions:

X1 = {(0, 0, 0), (1, 0, 0)} ∪ {(x, 1, z) | x ∈ D(v1) ∧ z ∈ {2, . . . , n}} ⊂ D
X2 = {(0, 1, 0), (1, 0, 0), (1, 1, 1)}∪ {(x, x, z) | x ∈ {0, 1} ∧ z ∈ {2, . . . , n}} ⊂ D,

where X1 and X2 belong to hypothesis M1 and M2, respectively. Both hypothe-
ses have no internal state variables. It is assumed that the Greedy algorithm
selects v1 first. The best possible assignment for this variable is v1 = 1, since
v1 = 0 → Γ (T ′) = 0 and v1 = 1 → Γ (T ′) > 0. In the final step Greedy has to
fix variable v2 with respect to the previous fixing of v1 = 1. The best possible
decision is, to fix v2 also to 1, since fixing v2 to 0 leads to an distinguishing ratio
of zero and for v2 = 1 we have Γ ((1, 1)) = 1

n . Note that the computed test input
(v1, v2) = (1, 1) is independent of the chosen n.

An ODT for this problem, however, is (v1, v2) = (0, 0), which is also a DDT.
This test input has, therefore, a distinguishing ratio of 1. For n tending to in-
finity, the distinguishing ratio of the test input computed by Greedy tends to
zero. This proves that the Greedy algorithm has in general no constant approx-
imation factor. ��
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Note that if Greedy would choose variable v2 first, it would compute an ODT for
this example. This rises the question, whether there exist always a permutation
of the input variables such that the Greedy algorithm computes an ODT. The
following theorem answers this question.

Theorem 3. In general, the Greedy algorithm does not compute an ODT even
if it is allowed to try all possible input variable permutations.

Proof. Again, consider the abstract system depicted in Figure 4 with the input
variable set I = {v1, v2}, D(v1) = D(v2) = {0, 1}, the output variable set O =
{v3}, and D(v3) = {1, 2, 3, 4}. Let M1 and M2 be two hypotheses given through
the constraints:

C1 = {(0, 0, 1), (1, 0, 2), (0, 1, 2), (1, 1, 2), (1, 1, 3), (1, 1, 4)} ⊂ D
C2 = {(x, y, 2) | x, y ∈ {0, 1}} ⊂ D,

where C1 belongs to hypothesis M1, C2 to hypothesis M2, and D = D(v1) ×
D(v2)×D(v3).

The test input (v1, v2) = (0, 0) is the unique DDT and, therefore, the unique
ODT. If we show that the Greedy algorithm fixes in the first iteration, inde-
pendently of the chosen input variable, this variable to 1, then we have proven
the theorem.

Independently from the chosen input variable, Greedy fixes this variable to 1
since for i ∈ {1, 2} it follows vi = 0 → Γ (T ′) = 1

2 and vi = 1→ Γ (T ′) = 2
3 . ��

In the example at the beginning of Section 4, the sequence of distinguishing
ratios Γ (T ′) computed by Greedy increases monotonically. This observation
can also be made later in the computational results for the automotive example
(see Table 2). However, this needs not be the case in general.

Theorem 4. In general, the sequence of distinguishing ratios computed by
Greedy is not monotonically increasing.

Proof. Consider the system stated in Figure 4, and let the domain of the input
variables be D(v1) = {0}, D(v2) = {0, 1}, and of the output variable v3 be
D(v3) = {0, 1, 2}. W.l.o.g. let the domains be ordered as:

D = D(v1)×D(v2)×D(v3).

Let M1 and M2 be defined by the following sets of feasible solutions:

X1 = {(0, 0, 0), (0, 1, 0), (0, 1, 1)} ⊂ D
X2 = {(0, 0, 0), (0, 1, 0), (0, 0, 2)} ⊂ D

where X1 and X2 belong to hypothesis M1 and M2, respectively. Both hypothe-
ses have no internal state variables. It is assumed that the Greedy algorithm
selects v1 first. Since v1 has only one possible value in its domain, Greedy fixes
v1 to this value 0. The (local) distinguishing ratio yields:

Γ (T ) = 1− |{0, 1} ∩ {0, 2}|
|{0, 1} ∪ {0, 2}| = 2

3 with T = D
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In the final step Greedy has to fix variable v2 with respect to the previous
fixing of v1 = 0:

Γ (T ′) = 1− |{0} ∩ {0, 2}|
|{0} ∪ {0, 2}| = 1

2 with T ′ = {x | x ∈ D ∧ x[{v2}] = 0}

Γ (T ′′) = 1− |{0, 1} ∩ {0}|
|{0, 1} ∪ {0}| = 1

2 with T ′′ = {x | x ∈ D ∧ x[{v2}] = 1}.

Independently of the chosen fixing for the variable v2, the (local) distinguishing
ratio decreases. ��

4.2 Computational Results

We have implemented Algorithm 1 using the constraint integer programming
solver SCIP [1,2] as (exact) model counter.

We ran our prototype implementation on a small real-world automotive exam-
ple. The example is based on a mixed discrete-continuous model of an engine air
intake test-bed [12]. It has been turned into a coarse CSP model by abstracting
continuous system variables into suitable finite domains with up to 12 values,
corresponding to different operating regions. The system consists of the three
major components engine, pipe, and throttle; for each component, a fault
model is defined that simply omits the respective constraint from the model.
Thus, there are four diagnostic hypotheses (correct, no-engine, no-pipe,
and no-throttle), corresponding to all components functioning normally and
one of them failing. The goal is to find an assignment to two controllable vari-
ables (throttle angle v1, valve timing v2), such that one can discriminate among
hypotheses based on two observable variables (engine speed and air flow) in

Table 1. Model counts for the four hypotheses in the automotive example

correct no-engine no-pipe no-throttle

|X| 329 6552 25356 8560
|X[I,O]| 43 552 168 127
|X (D(I))| 13 72 41 22

Table 2. Distinguishing ratios computed by Greedy for the automotive example

sequence of distinguishing ratio Γ (T ′)
permutation lower bound 0 iteration 1 iteration 2 iterations

correct vs. no-engine
(v1, v2) 1 − 43

552 = 0.922 1 − 13
72 = 0.819 1 − 3

24 = 0.875 1 − 1
24 = 0.958

(v2, v1) 1 − 43
552 = 0.922 1 − 13

72 = 0.819 1 − 4
72 = 0.944 1 − 1

24 = 0.958
correct vs. no-pipe

(v1, v2) 1 − 43
168 = 0.744 1 − 13

41 = 0.683 1 − 3
27 = 0.889 1 − 1

15 = 0.933
(v2, v1) 1 − 43

168 = 0.744 1 − 13
41 = 0.683 1 − 4

23 = 0.826 1 − 1
15 = 0.933

correct vs. no-throttle
(v1, v2) 1 − 43

127 = 0.661 1 − 13
22 = 0.409 1 − 3

22 = 0.864 1 − 1
9 = 0.889

(v2, v1) 1 − 43
127 = 0.661 1 − 13

22 = 0.409 1 − 5
10 = 0.5 1 − 5

10 = 0.5
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the system. Table 1 shows the model counts (total number of solutions |X | and
the total number of projected solutions |X [I,O]| and |X (D(I))|) for the four
hypotheses. Table 2 shows the computational results of the Greedy algorithm
for finding tests to distinguish the normal system behavior from the faults. The
first column states the used permutation, the second column gives the general
lower bound on the optimal distinguishing ratio, as stated in Theorem 1, and the
last three columns the sequence of the distinguishing ratios as Greedy iterates
through the input variables. In all cases except the last (finding a test input to
identify a no-pipe fault given the variable order v2, v1), the test input generated
by the algorithm is an ODT. The last test shows that in general, the Greedy
algorithm does not compute a test input whose distinguishing ratio is at least as
good as the general lower bound. The run-time of the algorithm on this example
is in the order of a few seconds.

5 Conclusion and Future Work

We presented a method for generating tests to distinguish system hypotheses
modeled as constraints over variables. It is based on maximizing the number of
non-overlapping versus overlapping observable outcomes and extends previous
notions of testing for non-deterministic systems. We showed how this proposed
test quality measure can be computed as a ratio of model counts. Challenges
arise from the computational cost of generating optimal distinguishing tests,
since computing the optimal distinguishing ratios can be very expensive.

We proposed an algorithm that greedily assigns input variables and thus re-
quires only a limited number of model counts, but sometimes misses the optimal
solution. An alternative approach that we would like to investigate in the future
is to use a complete (branch-and-bound like) algorithm, but to combine it with
approximate counting methods that compute confidence intervals for solution
counts [10]. Also, in practice, testing problems often have additional structure:
for instance, in the automotive example in Section 4.2, pairs of hypotheses share
significant identical portions. There exist decomposition techniques in test gen-
eration that can exploit this fact [5]; therefore, an interesting question is whether
these can be adapted to model counting approaches. In [16], we have recently
developed an approach that exploits model structure by pre-compiling the ODT
problem into decomposable negation normal form (DNNF) [8].

Another extension concerns relaxing the simplifying assumption that the pos-
sible outcomes of a non-deterministic hypothesis all have similar likelihood. In
this context, methods for weighted model counting [15] could be used to capture,
for instance, probability distributions in the hypotheses.
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Abstract. An attractive mechanism to specify global constraints in rostering
and other domains is via formal languages. For instance, the REGULAR and
GRAMMAR constraints specify constraints in terms of the languages accepted
by an automaton and a context-free grammar respectively. Taking advantage of
the fixed length of the constraint, we give an algorithm to transform a context-free
grammar into an automaton. We then study the use of minimization techniques
to reduce the size of such automata and speed up propagation. We show that
minimizing such automata after they have been unfolded and domains initially
reduced can give automata that are more compact than minimizing before un-
folding and reducing. Experimental results show that such transformations can
improve the size of rostering problems that we can “model and run”.

1 Introduction

Constraint programming provides a wide range of tools for modelling and efficiently
solving real world problems. However, modelling remains a challenge even for experts.
Some recent attempts to simplify the modelling process have focused on specifying con-
straints using formal language theory. For example the REGULAR [1] and GRAMMAR

constraints [2,3] permit constraints to be expressed in terms of automata and gram-
mars. In this paper, we make two contributions. First, we investigate the relationship
between REGULAR and GRAMMAR. In particular, we show that it is often beneficial to
reformulate a GRAMMAR constraint as a REGULAR constraint. Second, we explore the
effect of minimizing the automaton specifying a REGULAR constraint. We prove that
by minimizing this automaton after unfolding and initial constraint propagation, we can
get an exponentially smaller and thus more efficient representation. We show that these
transformations can improve runtimes by over an order of magnitude.

2 Background

A constraint satisfaction problem consists of a set of variables, each with a domain of
values, and a set of constraints specifying allowed combinations of values for given
subsets of variables. A solution is an assignment to the variables satisfying the con-
straints. A constraint is domain consistent iff for each variable, every value in its do-
main can be extended to an assignment that satisfies the constraint. We will consider
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constraints specified by automata and grammars. An automaton A = 〈Σ, Q, q0, F, δ〉
consists of an alphabet Σ, a set of states Q, an initial state q0, a set of accepting states
F , and a transition relation δ defining the possible next states given a starting state
and symbol. The automaton is deterministic (DFA) is there is only one possible next
state, non-deterministic (NFA) otherwise. A string s is recognized by A iff starting
from the state q0 we can reach one of the accepting states using the transition rela-
tion δ. Both DFAs and NFAs recognize precisely regular languages. The constraint
REGULAR(A, [X1, . . . , Xn]) is satisfied iff X1 to Xn is a string accepted by A [1].
Pesant has given a domain consistency propagator for REGULAR based on unfolding
the DFA to give a n-layer automaton which only accepts strings of length n [1].

Given an automaton A, we write unfoldn(A) for the unfolded and layered form of
A that just accepts words of length n which are in the regular language, min(A) for
the canonical form of A with minimal number of states, simplify(A) for the simplified
form of A constructed by deleting transitions and states that are no longer reachable
after domains have been reduced. We write fA(n) # gA(n) iff fA(n) ≤ gA(n) for all
n, and there exist A such that log gA(n)

fA(n) = Ω(n). That is, gA(n) is never smaller than
fA(n) and there are cases where it is exponentially larger.

A context-free grammar is a tuple G = 〈T, H, P, S〉, where T is a set of terminal
symbols called the alphabet of G, H is a set of non-terminal symbols, P is a set of
productions and S is a unique starting symbol. A production is a rule A → α where
A is a non-terminal and α is a sequence of terminals and non-terminals. A string in
Σ∗ is generated by G if we start with the sequence α = 〈S〉 and non deterministically
generate α′ by replacing any non-terminal A in α by the right hand side of any pro-
duction A → α until α′ contains only terminals. A context free language L(G) is the
language of strings generated by the context free grammar G. A context free grammar
is in Chomsky normal form if all productions are of the form A → BC where B and
C are non terminals or A → a where a is a terminal. Any context free grammar can
be converted to one that is in Chomsky normal form with at most a linear increase in
its size. A grammar Ga is acyclic iff there exists a partial order≺ of the non-terminals,
such that for every production A1 → A2A3, A1 ≺ A2 and A1 ≺ A3. The constraint
GRAMMAR([X1, . . . , Xn], G) is satisfied iff X1 to Xn is a string accepted by G [2,3].

Example 1. As the running example we use the GRAMMAR([X1, X2, X3], G) con-
straint with domains D(X1) = {a}, D(X2) = {a, b}, D(X3) = {b} and the grammar
G in Chomsky normal form [3] {S → AB, A → AA | a, B → BB | b}.

Since we only accept strings of a fixed length, we can convert any context free grammar
to a regular grammar. However, this may increase the size of the grammar exponentially.
Similarly, any NFA can be converted to a DFA, but this may increase the size of the
automaton exponentially.

3 GRAMMAR Constraint

We briefly describe the domain consistency propagator for the GRAMMAR constraint
proposed in [2,3]. This propagator is based on the CYK parser for context-free gram-
mars. It constructs a dynamic programing table V where an element A of V [i, j] is a
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non-terminal that generates a substring from the domains of variables Xi, . . . , Xi+j−1
that can be extended to a solution of the constraint using the domains of the other vari-
ables. The table V produced by the propagator for Example 1 is given in Figure 1.

A B

S
1,3

1,2 2,2

1,1

B B

2,1

A A

3,1

a a b b

D(X
1
)={a} D(X

2
)={a,b} D(X

3
)={b}

Fig. 1. Dynamic programming table produced by the propagator of the GRAMMAR constraint.
Pointers correspond to possible derivations.

An alternative view of the dynamic programming table produced by this propagator
is as an AND/OR graph [4]. This is a layered DAG, with layers alternating between
AND-NODES or OR-NODES. Each OR-NODE in the AND/OR graph corresponds to
an entry A ∈ V [i, j]. An OR-NODE has a child AND-NODE for each production A →
BC so that A ∈ V [i, j], B ∈ V [i, k] and C ∈ V [i + k, j − k]. The children of
this AND-NODE are the OR-NODES that correspond to the entries B ∈ V [i, k] and
C ∈ V [i + k, j − k]. Note that the AND/OR graph constructed in this manner is
equivalent to the table V [4], so we use them interchangeably in this paper.

Every derivation of a string s ∈ L(G) can be represented as a tree that is a subgraph
of the AND/OR graph and therefore can be represented as a trace in V . Since every
possible derivation can be represented this way, both the table V and the corresponding
AND/OR graph are a compilation of all solutions of the GRAMMAR constraint.

4 Reformulation into an Automaton

The time complexity of propagating a GRAMMAR constraint is O(n3|G|), as opposed
to O(n|δ|) for a REGULAR constraint. Therefore, reformulating a GRAMMAR con-
straint as a REGULAR constraint may improve propagation speed if it does not require a

V

V

V

V

V

V

V V

V

V

V

V V V V
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A B

A A B B

bVVVV
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Fig. 2. AND/OR graph
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large transition relation. In addition, we can perform optimizations such as minimizing
the automaton. In this section, we argue that reformulation is practical in many cases
(sections 4.1-4.3), and there is a polynomial test to determine the size of the resulting
NFA (section 4.4). In the worst case, the resulting NFA is exponentially larger then the
original GRAMMAR constraint as the following example shows. Therefore, performing
the transformation itself is not a suitable test of the feasibility of the approach.

Example 2. Consider GRAMMAR([X1, . . . , Xn], G) where G generates L = {wwR|w
∈ {0, 1}n/2}. Solutions of GRAMMAR can be compiled into the dynamic programming
table of size O(n3), while an equivalent NFA that accepts the same language has ex-
ponential size. Note that an exponential separation does not immediately follow from
that between regular and context-free grammars, because solutions of the GRAMMAR

constraint are the strict subset of L(G) which have length n.

In the rest of this section we describe the reformulation in three steps. First, we convert
into an acyclic grammar (section 4.1), then into a pushdown automaton (section 4.2),
and finally we encode this as a NFA (section 4.3). The first two steps are well known in
formal language theory but we briefly describe them for clarity.

4.1 Transformation into an Acyclic Grammar

We first construct an acyclic grammar, Ga such that the languageL(Ga) coincides with
solutions of the GRAMMAR constraint. Given the table V produced by the GRAMMAR

propagator (section 3), we construct an acyclic grammar in the following way. For
each possible derivation of a nonterminal A, A → BC, such that A ∈ V [i, j], B ∈
V [i, k] and C ∈ V [i + k, j − k] we introduce a production Ai,j → Bi,kCi+k,j−k

in Ga (lines 11- 17 of algorithm 1). The start symbol of Ga is S1,n. By construction,
the obtained grammar Ga is acyclic. Every production in Ga is of the form Ai,j →
Bi,kCi+k,j−k and nonterminals Bi,k, Ci+k,j−k occur in rows below jth row in V . Ex-
ample 3 shows the grammar Ga obtained by Algorithm 1 on our running example.

Example 3. The acyclic grammar Ga constructed from our running example.

S1,3 → A1,2B3,1 | A1,1B2,2 A1,2 → A1,1A2,1 B2,2 → B2,1B3,1

Ai,1 → ai Bi,1 → bi ∀i ∈ {1, 2, 3}

To prove equivalence, we recall that traces of the table V represent all possible deriva-
tions of GRAMMAR solutions. Therefore, every derivation of a solution can be simu-
lated by productions from GA. For instance, consider the solution (a, a, b) of
GRAMMAR from Example 1. A possible derivation of this string is S|S∈V [1,3] →
AB|A∈V [1,2],B∈V [3,1] → AAB|A∈V [1,1],A∈V [2,1],B∈V [3,1] → aAB|... → aaB|... →
aab|.... We can simulate this derivation using productions in Ga: S1,3 → A1,2B3,1 →
A1,1A2,1B3,1 → a1A2,1B3,1 → a1a2B3,1 → a1a2b3.

Observe that, the acyclic grammar Ga is essentially a labelling of the AND/OR
graph, with non-terminals corresponding to OR-NODES and productions corresponding
to AND-NODES. Thus, we use the notation Ga to refer to both the AND/OR graph and
the corresponding acyclic grammar.
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Algorithm 1. Transformation to an Acyclic Grammar
1: procedure CONSTRUCTACYCLICGRAMMAR(in : X, G, V ; out : Ga)
2: T = ∅  T is the set of terminals in Ga

3: H = ∅  H is the set of nonterminals in Ga

4: P = ∅  P is the set of productions in Ga

5: for i = 1 to n do
6: V [i, 1] = {A|A → a ∈ G, a ∈ D(Xi)}
7: for A ∈ V [i, 1] s.t A → a ∈ G, a ∈ D(Xi) do
8: T = T ∪ {ai}
9: H = H ∪ {Ai,1}
10: P = P ∪ {Ai,1 → ai}
11: for j = 2 to n do
12: for i = 1 to n − j + 1 do
13: for each A ∈ V [i, j] do
14: for k = 1 to j − 1 do
15: for each A → BC ∈ G s.t. B ∈ V [i, k], C ∈ V [i + k, j − k] do
16: H = H ∪ {Ai,j , Bi,k, Ci+k,j−k}
17: P = P ∪ {Ai,j → Bi,kCi+k,j−k}

4.2 Transformation into a Pushdown Automaton

Given an acyclic grammar Ga = (T, H, P, S1,n) from the previous section, we now
construct a pushdown automaton Pa(〈S1,n〉 , T, T ∪H, δ, QP , FP ), where 〈S1,n〉 is the
initial stack of Pa, T is the alphabet, T ∪H is the set of stack symbols, δ is the transition
function, QP = FP = {qP } is the single initial and accepting state. We use an algo-
rithm that encodes a context free grammar into a pushdown automaton (PDA) that com-
putes the leftmost derivation of a string[5]. The stack maintains the sequence of symbols
that are expanded in this derivation. At every step, the PDA non-deterministically uses
a production to expand the top symbol of the stack if it is a non-terminal, or consumes
a symbol of the input string if it matches the terminal at the top of the stack.

We now describe this reformulation in detail. There exists a single state qP which is
both the starting and an accepting state. For each non-terminal Ai,j in Ga we introduce
the set of transitions δ(qP , ε, Ai,j) = {(qP , β)|∀Ai,j → β ∈ Ga}. For each terminal
ai ∈ Ga, we introduce a transition δ(qP , ai, ai) = {(qP , ε)}. The automaton Pa accepts
on the empty stack. This constructs a pushdown automaton accepting L(Ga).

Example 4. The pushdown automaton Pa constructed for the running example.

δ(qP , ε, S1,3) = δ(qP , A1,2B3,1) δ(qP , ε, S1,3) = δ(qP , A1,1B2,2)
δ(qP , ε, A1,2) = δ(qP , A1,1A2,1) δ(qP , ε, B2,2) = δ(qP , B2,1B3,1)

δ(qP , ε, Ai,1) = δ(qP , ai) δ(qP , ε, Bi,1) = δ(qP , bi)∀i ∈ {1, 2, 3}
δ(qP , ai, ai) = δ(qP , ε) δ(qP , bi, bi) = δ(qP , ε)∀i ∈ {1, 2, 3}

4.3 Transformation into a NFA

Finally, we construct an NFA(Σ, Q, Q0, F0, σ), denoted Na, using the PDA from the
last section. States of this NFA encode all possible configurations of the stack of the
PDA that can appear in parsing a string from Ga. To reflect that a state of the NFA
represents a stack, we write states as sequences of symbols 〈α〉, where α is a possibly
empty sequence of symbols and α[0] is the top of the stack. For example, the initial
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Algorithm 2. Transformation to NFA
1: procedure PDA TO NFA(in : Pa, out : Na)
2: Qu = {〈S1,n〉}  Qu is the set of unprocessed states
3: Q = ∅  Q is the set of states in Na

4: σ = ∅  σ is the set of transitions in Na

5: Q0 = {〈S1,n〉}  Q0 is the initial state in Na

6: F0 = {〈〉}  F0 is the set of final states in Na

7: while Qu is not empty do
8: if q ≡ 〈Ai,j , α〉 then
9: for each transition δ(qP , ε, Ai,j) = (qP , β) ∈ δ do
10: σ = σ ∪ {σ(〈Ai,j , α〉 , ε) = 〈β, α〉}
11: if 〈β, α〉 /∈ Q then
12: Qu = Qu ∪ {〈β, α〉}
13: Q = Q ∪ {〈Ai,j , α〉}
14: else if q ≡ 〈ai, α〉 then
15: for each transition δ(qP , ai, ai) = (qP , ε) ∈ δ do
16: σ = σ ∪ {σ(〈ai, α〉 , ai) = 〈α〉}
17: if 〈α〉 /∈ Q then
18: Qu = Qu ∪ {〈α〉}
19: Q = Q ∪ {〈ai, α〉}
20: Qu = Qu \ {q}
21: Na(Σ, Q, Q0, F0, σ) = ε − Closure(Na(Σ, Q, Q0, F0σ)).

state is 〈S1,n〉 corresponding to the initial stack 〈S1,n〉 of Pa. Algorithm 2 unfolds the
PDA in a similar way to unfolding the DFA. Note that the NFA accepts only strings of
length n and has the initial state Q0 = 〈S1,n〉 and the single final state F0 = 〈〉.

We start from the initial stack 〈S1,n〉 and find all distinct stack configurations that are
reachable from this stack using transitions from Pa. For each reachable stack configura-
tion we create a state in the NFA and add the corresponding transitions. If the new stack
configurations are the result of expansion of a production in the original grammar, these
transitions are ε−transitions, otherwise they consume a symbol from the input string.
Note that if a non-terminal appears on top of the stack and gets replaced, then it cannot
appear in any future stack configuration due to the acyclicity of Ga. Therefore |α| is
bounded by O(n) and Algorithm 2 terminates. The size of Na is O(|Ga|n) in the worst
case. The automaton Na that we obtain before line 21 is an acyclic NFA with ε transi-
tions. It accepts the same language as the PDA Pa since every path between the starting
and the final state of NA is a trace of the stack configurations of Pa. Figure 3(a) shows
the automaton Na with ε-transitions constructed from the running example. After ap-
plying the ε-closure operation, we obtain a layered NFA that does not have ε transitions
(line 21) (Figure 3(b)).

4.4 Computing the Size of the NFA

As the NFA may be exponential in size, we provide a polynomial method of computing
its size in advance. We can use this to decide if it is practical to transform it in this way.
Observe first that the transformation of a PDA to an NFA maintains a queue of states
that correspond to stack configurations. Each state corresponds to an OR-NODE in the
AND/OR graph and each state of an OR-NODE v is generated from the states of the
parent OR-NODES of v. This suggests a relationship between paths in the AND/OR
graph of the CYK algorithm and states in Na. We use this relationship to compute
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Fig. 3. Na produced by Algorithm 2

a loose upper bound for the number of states in Na in time linear in the size of the
AND/OR graph by counting the number of paths in that graph. Alternatively, we com-
pute the exact number of states in Na in time quadratic in the size of the AND/OR
graph.

Theorem 1. There exists a surjection between paths in Ga from the root to OR-NODES

and stack configurations in the PDA Pa.

Proof. Consider a path p from the root of the AND/OR graph to an OR-NODE la-
belled with Ai,j . We construct a stack configuration Γ (p) that corresponds to p. We
start with the empty stack Γ = 〈〉. We traverse the path from the root to Ai,j . For every
AND-NODE v1 ∈ p, with left child vl and right child vr, if the successor of v1 in p is
vl, then we push vr on Γ , otherwise do nothing. When we reach Ai,j , we push it on Γ .
The final configuration Γ is unique for p and corresponds to the stack of the PDA after
having parsed the substring 1 . . . i−1 and having non-deterministically chosen to parse
the substring i . . . i + j − 1 using a production with Ai,j on the LHS.

We now show that all stack configurations can be generated by the procedure
above. Every stack configuration corresponds to at least one partial left most deriva-
tion of a string. We say a stack configuration 〈α〉 corresponds to a derivation dv =
〈a1, . . . , ak−1, Ak,j , α〉 if α is the context of the stack after parsing the prefix of the
string of length k + j. Therefore, it is enough to show that all partial left most deriva-
tion (we omit the prefix of terminals) can be generated by the procedure above. We
prove by a contradiction. Suppose that 〈a1, . . . , ai−1, Bi,j , β〉 is the partial left most
derivation such that Γ (p(root, Bi,j)) �= β, where p(root, Bi,j) is the path from the root
to the OR-NODE Bi,j and for any partial derivation 〈a1, . . . , ak−1, Ak,j , α〉, such that
k < i Ak,j ∈ Ga Γ (p(root, Ak,j)) = α. Consider the production rule that introduces
the nonterminal Bi,j to the partial derivation. If the production rule is D → C, Bi,j ,
then the partial derivation is 〈a1, . . . , af , D, β〉 ⇒|D→C,Bi,j 〈a1, . . . , af , C, Bi,j , β〉.
The path from the root to the node Bi,j is a concatenation of the paths from D to Bi,j

and from the root to D. Therefore, Γ (p(root, Bi,j)) is constructed as a concatenation
of Γ (p(D, Bi,j)) and Γ (p(root, D)). Γ (p(D, Bi,j)) is empty because the node Bi,j

is the right child of AND-NODE that corresponds to the production D → C, Bi,j and
Γ (p(root, D)) = β because f < i. Therefore, Γ (p(root, Bi,j)) = β. If the production
rule is D → Bi,j , C, then the partial derivation is 〈a1, . . . , ai−1, D, γ〉 ⇒|D→Bi,j ,C

〈a1, . . . , ai−1, Bi,j , C, γ〉 = 〈a1, . . . , ai−1, Bi,j , β〉. Then, Γ (p(root, D)) = γ, be-
cause i − 1 < i and Γ (p(D, Bi,j)) = 〈C〉, because the node Bi,j is the left
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child of AND-NODE that corresponds to the production D → C, Bi,j . Therefore,
Γ (p(root, Bi,j)) = 〈C, γ〉 = β. This leads to a contradiction. ��

Example 5. An example of the mapping described in the last proof is in Figure 4(a) for
the grammar of our running example. Consider the OR-NODE A1,1. There are 2 paths
from S1,3 to A1,1. One is direct and uses only OR-NODES 〈S1,3, A1,1〉 and the other uses
OR-NODES 〈S1,3, A1,2, A1,1〉. The 2 paths are mapped to 2 different stack configura-
tions 〈A1,1, B2,2〉 and 〈A1,1, A2,1, B3,1〉 respectively. We highlight edges that are inci-
dent to AND-NODES on each path and lead to the right children of these AND-NODES.
There is exactly one such edge for each element of a stack configuration. ��

Note that theorem 1 only specifies a surjection from paths to stack configurations, not a
bijection. Indeed, different paths may produce the same configuration Γ .

Example 6. Consider the grammar G={S → AA, A → a|AA|BC, B → b|BB, C →
c|CC} and the AND/OR graph of this grammar for a string of length 5. The path
〈S1,5, A2,4, B2,2〉 uses the productions S1,5 → A1,1A2,4 and A2,4 → B2,2C4,2, while
the path 〈S1,5, A3,3, B3,1〉 uses the productionsS1,5 → A1,2A3,3 and A3,3 → B3,1C4,2.
Both paths map to the same stack configuration 〈C4,2〉. ��

By construction, the resulting NFA has one state for each stack configuration of the PDA
in parsing a string. Since each path corresponds to a stack configuration, the number of
states of the NFA before applying ε-closure is bounded by the number of paths from
the root to any OR-NODE in the AND/OR graph. This is cheap to compute using the
following recursive algorithm [6]:

PD(v) =
{

1 If v has no incoming edges∑
p PD(p) where p is a parent of v

(1)

Therefore, the number of states of the NFA Na is at most
∑

v PD(v), where v is an
OR-NODE of Ga (Figure 4).

We can compute the exact number of paths in Na before ε-closure without construct-
ing the NFA by counting paths in the stack graph Gv for each OR-NODE v. The stack
graph captures the observation that each element of a stack configuration generated
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Fig. 4. Computing the size of Na. (a) AND/OR graph Ga. (b) Stack graph GA1,1 .
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from a path p is associated with exactly one edge e that is incident on p and leads to the
right child of an AND-NODE. Gv contains one path for each sequence of such edges,
so that if two paths p and p′ in Ga are mapped to the same stack configuration, they
are also mapped to the same path in Gv . Formally, the stack graph of an OR-NODE

v ∈ V (Ga) is a DAG Gv , such that for every stack configuration Γ of Pa with k ele-
ments, there is exactly one path p in Gv of length k and v′ is the ith vertex of p if and
only if v′ is the ith element from the top of Γ .

Example 7. Consider the grammar of the running example and the OR-NODE A1,1 in
the AND/OR graph. The stack graph GA1,1 for this OR-NODE is shown in figure 4(b).
Along the path 〈S1,3A1,1〉, only the edge that leads to B2,2 generates a stack element.
This edge is mapped to the edge (A1,1, B2,2) in GA1,1 . Similarly, the edges that lead to
A2,1 and B3,1 are mapped to the edges (A1,1, A2,1) and (A2,1, B3,1) respectively. ��

Since Gv is a DAG, we can efficiently count the number of paths in it. We construct Gv

using algorithm 3. The graph Gv computed in algorithm 3 for an OR-NODE v has as
many paths as there are unique stack configurations in Pa with v at the top.

Algorithm 3. Computing the stack DAG Gv of an OR-NODE v

1: procedure STACKGRAPH((in : Ga, v, out : Gv))
2: V (Gv) = {v}
3: label(v) = {v}
4: Q = {(v, vp)|vp ∈ parents(v)}  queue of edges
5: while Q not empty do
6: (vc, vp) = pop(Q)
7: if vp is an AND-NODE vc is left child of vp then
8: vr = childrenr (vp)
9: V (Gv) = V (Gv) ∪ {vr}
10: E(Gv) = E(Gv) ∪ {(vl, vr)|vl ∈ label(vc)}
11: label(vp) = label(vp) ∪ {vr}
12: else
13: label(vp) = label(vp) ∪ label(vc)

14: Q = Q ∪
{

(vp, v′
p)|v′

p ∈ parents(vp)
}



Theorem 2. There exists a bijection between paths in Gv and states in the NFA Na

which correspond to stacks with v at the top.

Proof. Let p be a path from the root to v in Ga. First, we show that every path p′ in
Gv corresponds to a stack configuration, by mapping p to p′. Therefore p′ corresponds
to Γ (p). We then show that p′ is unique for Γ (p). This establishes a bijection between
paths in Gv and stack configurations.

We traverse the inverse of p, denoted inv(p) and construct p′ incrementally. Note that
every vertex in inv(p) is examined by algorithm 3 in the construction of Gv. If inv(p)
visits the left child of an AND-NODE, we append the right child of that AND-NODE to
p′. This vertex is in Gv by line 7. By the construction of Γ (p) in the proof of theorem 1,
a symbol is placed on the stack if and only if it is the right child of an AND-NODE,
hence if and only if it appears in p′. Moreover, if a vertex is the ith vertex in a path,
it corresponds to the ith element from the top of Γ (p). We now see that p′ is unique
for Γ (p). Two distinct paths of length k cannot map to the same stack configuration,
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because they must differ in at least one position i, therefore they correspond to stacks
with different symbols at position i. Therefore, there exists a bijection between paths
in Gv and stack configurations with v at the top. ��
Hence |Q(Ng)| =

∑
v #paths(Gv), where v is an OR-NODE of Ga. Computing the

stack graph Gv of every OR-NODE v takes O(|Ga|) time, as does counting paths in
Gv . Therefore, computing the number of states in Na takes O(|Ga|2) time. We can also
compute the number of states in the ε-closure of Na by observing that if none of the
OR-NODES that are reachable by paths of length 2 from an OR-NODE v correspond
to terminals, then any state that corresponds to a stack configuration with v at the top
will only have outgoing ε−transitions and will be removed by the ε−closure. Thus, to
compute the number of states in Na after ε−closure, we sum the number of paths in Gv

for all OR-NODES v such that a terminal OR-NODE can be reached from v by a path of
length 2.

4.5 Transformation into a DFA

Finally, we convert the NFA into a DFA using the standard subset construction. This is
optional as Pesant’s propagator for the REGULAR constraints works just as well with
NFAs as DFAs. Indeed, removing non-determinism may increase the size of the au-
tomaton and slow down propagation. However, converting into a DFA opens up the
possibility of further optimizations. In particular, as we describe in the next section,
there are efficient methods to minimize the size of a DFA. By comparison, minimiza-
tion of a NFA is PSPACE-hard in general [7]. Even when we consider just the acyclic
NFA constructed by unfolding a NFA, minimization remains NP-hard [8].

5 Automaton Minimization

The DFA constructed by this or other methods may contain redundant states and transi-
tions. We can speed up propagation of the REGULAR constraint by minimizing the size
of this automaton. Minimization can be either offline (i.e. before we have the problem
data and have unfolded the automaton) or online (i.e. once we have the problem data
and have unfolded the automaton). There are several reasons why we might prefer an
online approach where we unfold before minimizing. First, although minimizing after
unfolding may be more expensive than minimizing before unfolding, both are cheap
to perform. Minimizing a DFA takes O(Q log Q) time using Hopcroft’s algorithm and
O(nQ) time for the unfolded DFA where Q is the number of states [9]. Second, thanks
to Myhill-Nerode’s theorem, minimization does not change the layered nature of the
unfolded DFA. Third, and perhaps most importantly, minimizing a DFA after unfold-
ing can give an exponentially smaller automaton than minimizing the DFA and then
unfolding. To put it another way, unfolding may destroy the minimality of the DFA.

Theorem 3. Given any DFA A, |min(unfoldn(A))| # |unfoldn(min(A))|.
Proof: To show |min(unfoldn(A))| ≤ |unfoldn(min(A))|, we observe that both
min(unfoldn(A)) and unfoldn(min(A)) are automata that recognize the same lan-
guage. By definition, minimization returns the smallest DFA accepting this language.
Hence min(unfoldn(A)) cannot be larger than unfoldn(min(A)).
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To show unfolding then minimizing can give an exponentially smaller sized DFA,
consider the following language L. A string of length k belongs to L iff it contains the
symbol j, j = k mod n, where n is a given constant. The alphabet of the language L
is {0, . . . , n− 1}. The minimal DFA for this language has Ω(n2n) states as each state
needs to record which symbols from 0 to n − 1 have been seen so far, as well as the
current length of the string mod n. Unfolding this minimal DFA and restricting it to
strings of length n gives an acyclic DFA with Ω(n2n) states. Note that all strings are
of length n and the equation j = n mod n has the single solution j = 0. Therefore, the
language L consists of the strings of length n that contain the symbol 0. On the other
hand, if we unfold and then minimize, we get an acyclic DFA with just 2n states. Each
layer of the DFA has two states which record whether 0 has been seen. ��

Further, if we make our initial problem domain consistent, domains might be pruned
which give rise to possible simplifications of the DFA. We show here that we should
also perform such simplification before minimizing.

Theorem 4. Given any DFA A, |min(simplify(unfoldn(A)))| # |simplify(min
(unfoldn(A)))|.

Proof: Both min(simplify(unfoldn(A))) and simplify(min(unfoldn(A))) are
DFAs that recognize the same language of strings of length n. By defini-
tion, minimization must return the smallest DFA accepting this language. Hence
min(simplify(unfoldn(A))) is no larger than simplify(min(unfoldn(A))).

To show that minimization after simplification may give an exponentially smaller
sized automaton, consider the language which contains sequences of integers from 1
to n in which at least one integer is repeated and in which the last two integers are
different. The alphabet of the language L is {1, . . . , n}. The minimal unfolded DFA for
strings of length n from this language has Ω(2n) states as each state needs to record
which integers have been seen.Suppose the integer n is removed from the domain of
each variable. The simplified DFA still has Ω(2n) states to record which integers 1 to
n− 1 have been seen.On the other hand, suppose we simplify before we minimize. By
a pigeonhole argument, we can ignore the constraint that an integer is repeated. Hence
we just need to ensure that the string is of length n and that the last two integers are
different. The minimal DFA accepting this language requires just O(n) states. ��

6 Empirical Results

We empirically evaluated the results of our method on a set of shift-scheduling bench-
marks [11,14] 1. Experiments were run with the Minisat+ solver for pseudo-Boolean
instances and Gecode 2.2.0 for constraint problems, on an Intel Xeon 4 CPU, 2.0 Ghz,
4G RAM. We use a timeout of 3600 sec in all experiments. The problem is to schedule
employees to activities subject to various rules, e.g. a full-time employee has one hour
for lunch. This rules are specified by a context-free grammar augmented with restric-
tions on productions [4]. A schedule for an employee has n = 96 slots of 15 minutes

1 We would like to thank Louis-Martin Rousseau and Claude-Guy Quimper for providing us
with the benchmark data.
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represented by n variables. In each slot, an employee can work on an activity (ai), take
a break (b), lunch (l) or rest (r). These rules are specified by the following grammar:

S → RPR, fP (i, j) ≡ 13 ≤ j ≤ 24, P →WbW, L → lL|l, fL(i, j) ≡ j = 4
S → RFR, fF (i, j) ≡ 30 ≤ j ≤ 38, R → rR|r, W → Ai, fW (i, j) ≡ j ≥ 4
Ai → aiAi|ai, fA(i, j) ≡ open(i), F → PLP

where functions f(i, j) are predicates that restrict the start and length of any string
matched by a specific production, and open(i) is a function that returns 1 if the business
is open at ith slot and 0 otherwise. In addition, the business requires a certain number
of employees working in each activity at given times during the day. We minimize the
number of slots in which employees work such that the demand is satisfied.

As shown in [4], this problem can be converted into a pseudo-Boolean (PB) model.
The GRAMMAR constraint is converted into a SAT formula in conjunctive normal form
using the AND/OR graph. To model labour demand for a slot we introduce Boolean
variables b(i, j, ak), equal to 1 if jth employee performs activity ak at ith time slot. For
each time slot i and activity ak we post a pseudo-Boolean constraint

∑m
j=1 b(i, j, ak) >

d(i, ak), where m is the number of employees. The objective is modelled using the
function

∑n
i=1
∑m

j=1
∑a

k=1 bi,j,ak
. Additionally, the problem can be formulated as an

optimization problem in a constraint solver, using a matrix model with one row for
each employee. We post a GRAMMAR constraint on each row, AMONG constraints on
each column for labour demand and LEX constraints between adjacent rows to break
symmetry. We use the static variable and value ordering used in [4].

We compare this with reformulating the GRAMMAR constraint as a REGULAR con-
straint. Using algorithm 3, we computed the size of an equivalent NFA. Surprisingly,
this is not too big, so we converted the GRAMMAR constraint to a DFA then mini-
mized. In order to reduce the blow-up that may occur converting a NFA to a DFA, we
heuristically minimized the NFA using the following simple observation: two states
are equivalent if they have identical outgoing transitions. We traverse the NFA from the
last to the first layer and merge equivalent states and then apply the same procedure to
the reversed NFA. We repeat until we cannot find a pair of equivalent states. We also
simplified the original CYK table, taking into account whether the business is open or
closed at each slot. Theorem 4 suggests such simplification can significantly reduce the
size both of the CYK table and of the resulting automata. In practice we also observe a
significant reduction in size. The resulting minimized automaton obtained before sim-
plification is about ten times larger compared to the minimised DFA obtained after
simplification. Table 1 gives the sizes of representations at each step. We see from this
that the minimized DFA is always smaller than the original CYK table. Interestingly,
the subset construction generates the minimum DFA from the NFA, even in the case of
two activities, and heuristic minimization of the NFA achieves a notable reduction.

For each instance, we used the resulting DFA in place of the GRAMMAR con-
straint in both the CP model and the PB model using the encoding of the REGULAR

constraint (DFA or NFA) into CNF [10]. We compare the model that uses the PB encod-
ing of the GRAMMAR constraint (GR1) with two models that use the PB encoding of the
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Table 1. Shift Scheduling Problems. Ga is the acyclic grammar, Nε
a is NFA with ε-transitions, Na

is NFA without ε-transitions, min(Na) is minimized NFA, A is DFA obtained from min(Na),
min(A) is minimized A, a is the number of activities, # is the benchmark number.

#act # Ga NFAε
a NFAa min(NFAa) DFA min(DFA)

terms prods states trans states trans states trans states trans states trans
1 2/3/8 4678 / 9302 69050 / 80975 29003 / 42274 3556 / 4505 3683 / 4617 3681 / 4615
1 4/7/10 3140 / 5541 26737 / 30855 11526 / 16078 1773 / 2296 1883 / 2399 1881 / 2397
1 5/6 2598 / 4209 13742 / 15753 5975 / 8104 1129 / 1470 1215 / 1553 1213 / 1551
2 1/2/4 3777 / 6550 42993 / 52137 19654 / 29722 3157 / 4532 3306 / 4683 3303 / 4679
2 3/5/6 5407 / 10547 111302 / 137441 50129 / 79112 5975 / 8499 6321 / 8846 6318 / 8842
2 8/10 6087 / 12425 145698 / 180513 65445 / 104064 7659 / 10865 8127 / 11334 8124 / 11330
2 9 4473 / 8405 76234 / 93697 34477 / 53824 4451 / 6373 4691 / 6614 4688 / 6610

REGULAR constraint (REGULAR1, REGULAR2), a CP model that uses the GRAMMAR

constraint (GRCP
1 ) and a CP model that uses a REGULAR constraint (REGULARCP

1 ).
REGULAR1 and REGULARCP

1 use the DFA, whilst REGULAR2 uses the NFA con-
structed after simplification by when the business is closed.

The performance of a SAT solver can be sensitive to the ordering of the clauses in the
formula. To test robustness of the models, we randomly shuffled each of PB instances
to generate 10 equivalent problems and averaged the results over 11 instances. Also, the
GRAMMAR and REGULAR constraints were encoded into a PB formula in two differ-
ent ways. The first encoding ensures that unit propagation enforces domain consistency
on the constraint. The second encoding ensures that UP detects disentailment of the
constraint, but does not always enforce domain consistency. For the GRAMMAR con-
straint we omit the same set of clauses as in [4] to obtain the weaker PB encoding. For
the REGULAR constraint we omit the set of clauses that performs the backward prop-
agation of the REGULAR constraint. Note that Table 2 shows the median time and the
number of backtracks to prove optimality over 11 instances. For each model we show
the median time and the corresponding number of backtracks for the best PB encoding
between the one that achieves domain consistency and the weaker one.

Table 2 shows the results of our experiments using these 5 models. The model
REGULAR2 outperforms GR1 in all benchmarks, whilst model REGULAR1 outper-
forms GR1 in most of the benchmarks. The model REGULAR2 also proves optimality
in several instances of hard benchmarks. It should be noted that performing simpli-
fication before minimization is essential. It significantly reduces the size of the en-
coding and speeds up MiniSat+ by factor of 52. Finally, we note that the PB models
consistently outperformed the CP models, in agreement with the observations of [4].
Between the two CP models, REGULARCP

1 is significantly better than GRCP
1 , finding

a better solution in many instances and proving optimality in two instances. In addi-
tion, although we do not show it in the table, Gecode is approximately three orders of
magnitude faster per branch with the REGULARCP

1 model. For instance, in benchmark
number 2 with 1 activity and 4 workers, it explores approximately 80 million branches
with the REGULARCP

1 and 24000 branches with the GRCP
1 model within the 1 hour

timeout.

2 Due to lack of space we do not show these results.
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Table 2. Shift Scheduling Problems. GR1 is the PB model with GRAMMAR, REGULAR1 is the
PB model with min(simplify(DFA)), REGULAR2 is the PB model with min(simplify(NFA)),
GRCP

1 is the CSP model with GRAMMAR, REGULARCP
1 is the CSP model with

min(simplify(DFA)). We show time and number of backtracks to prove optimality (the median
time and the median number of backtracks for the PB encoding over solved shuffled instances),
number of activities, the number of workers and the benchmark number #.

PB/Minisat+ CSP/Gecode
a # w GR1 REGULAR1 REGULAR2 GRCP

1 REGULAR CP
1

cost s t / b cost s t / b cost s t / b cost t / b cost t / b

1 2 4 26.00 11 27 / 8070 26.00 11 9 / 11053 26.00 11 4 / 7433 26.75 - / - 26.00 - / -
1 3 6 36.75 11 530 / 101560 36.75 11 94 / 71405 36.75 11 39 / 58914 37.00 - / - 37.00 - / -
1 4 6 38.00 11 31 / 16251 38.00 11 12 / 10265 38.00 11 6 / 7842 38.00 - / - 38.00 - / -
1 5 5 24.00 11 5 / 3871 24.00 11 2 / 4052 24.00 11 2 / 2598 24.00 - / - 24.00 - / -
1 6 6 33.00 11 9 / 5044 33.00 11 4 / 4817 33.00 11 3 / 4045 - - / - 33.00 - / -
1 7 8 49.00 11 22 / 7536 49.00 11 9 / 7450 49.00 11 7 / 8000 49.00 - / - 49.00 - / -
1 8 3 20.50 11 13 / 4075 20.50 11 4 / 5532 20.50 11 2 / 1901 21.00 - / - 20.50 92 / 2205751
1 10 9 54.00 11 242 / 106167 54.00 11 111 / 91804 54.00 11 110 / 109123 - - / - - - / -
2 1 5 25.00 11 92 / 35120 25.00 11 96 / 55354 25.00 11 32 / 28520 25.00 - / - 25.00 90 / 1289554
2 2 10 58.00 1 3161 / 555249 58.00 0 - / - 58.00 4 2249 / 701490 - - / - 58.00 - / -
2 3 6 37.75 0 - / - 37.75 1 3489 / 590649 37.75 9 2342 / 570863 42.00 - / - 40.00 - / -
2 4 11 70.75 0 - / - 71.25 0 - / - 71.25 0 - / - - - / - - - / -
2 5 4 22.75 11 739 / 113159 22.75 11 823 / 146068 22.75 11 308 / 69168 23.00 - / - 23.00 - / -
2 6 5 26.75 11 86 / 25249 26.75 11 153 / 52952 26.75 11 28 / 21463 26.75 - / - 26.75 - / -
2 8 5 31.25 11 1167 / 135983 31.25 11 383 / 123612 31.25 11 74 / 47627 32.00 - / - 31.50 - / -
2 9 3 19.00 11 1873 / 333299 19.00 11 629 / 166908 19.00 11 160 / 131069 19.25 - / - 19.00 - / -
2 10 8 55.00 0 - / - 55.00 0 - / - 55.00 0 - / - - - / - - - / -

7 Other Related Work

Beldiceanu et al [12] and Pesant [1] proposed specifying constraints using automata and
provided filtering algorithms for such specifications. Quimper and Walsh [3] and Sell-
mann [2] then independently proposed the GRAMMAR constraint. Both gave a mono-
lithic propagator based on the CYK parser. Quimper and Walsh [4] proposed a CNF
decomposition of the GRAMMAR constraint, while Bacchus [10] proposed a CNF de-
composition of the REGULAR constraint. Kadioglu and Sellmann [13] improved the
space efficiency of the propagator for the GRAMMAR constraint by a factor of n. Their
propagator was evaluated on the same shift scheduling benchmarks as here. However,
as they only found feasible solutions and did not prove optimality, their results are not
directly comparable. Côté, Gendron, Quimper and Rousseau proposed a mixed-integer
programming (MIP) encoding of the GRAMMAR constraint [14], Experiments on the
same shift scheduling problem used here show that such encodings are competitive.

There is a body of work on other methods to reduce the size of constraint represen-
tations. Closest to this work is Lagerkvist who observed that a REGULAR constraint
represented as a multi-value decision diagram (MDD) is no larger than that represented
by a DFA that is minimized and then unfolded [15]. A MDD is similar to an unfolded
and then minimized DFA except a MDD can have long edges which skip over layers. We
extend this observation by proving an exponential separation in size between such rep-
resentations. As a second example, Katsirelos and Walsh compressed table constraints
representing allowed or disallowed tuples using decision tree methods [16]. They also
used a compressed representation for tuples that can provide exponentially savings
in space. As a third example, Carlsson proposed the CASE constraint which can be
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represented by a DAG where each node represents a range of values for a variable, and
a path from the root to a leaf represents a set of satisfying assignments [17].

8 Conclusions

We have shown how to transform a GRAMMAR constraint into a REGULAR constraint
specified. In the worst case, the transformation may increase the space required to repre-
sent the constraint. However, in practice, we observed that such transformation reduces
the space required to represent the constraint and speeds up propagation. We argued
that transformation also permits us to compress the representation using standard tech-
niques for automaton minimization. We proved that minimizing such automata after
they have been unfolded and domains initially reduced can give automata that are ex-
ponentially more compact than those obtained by minimizing before unfolding and
reducing. Experimental results demonstrated that such transformations can improve the
size of rostering problems that can be solved.
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Abstract. Since version 2.0, IBM ILOG CP Optimizer provides a new
scheduling language supported by a robust and efficient automatic search.
This paper illustrates both the expressivity of the modelling language and
the robustness of the automatic search on three problems recently studied
in the scheduling literature. We show that all three problems can easily be
modelled with CP Optimizer in only a few dozen lines (the complete mod-
els are provided) and that on average the automatic search outperforms
existing problem specific approaches.
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1 Introduction

Since version 2.0, IBM ILOG CP Optimizer provides a new scheduling lan-
guage supported by a robust and efficient automatic search. This new-generation
scheduling model is based on ILOG’s experience in applying Constraint-Based
Scheduling to industrial applications. It was designed with the following require-
ments in mind [1,2]:

– It should be accessible to software engineers and to people used to mathe-
matical programming;

– It should be simple, non-redundant and use a minimal number of concepts
so as to reduce the learning curve for new users;

– It should fit naturally into a CP paradigm with clearly identified variables,
expressions and constraints;

– It should be expressive enough to handle complex industrial scheduling ap-
plications, which often are over-constrained, involve optional activities, al-
ternative recipes, non-regular objective functions, etc.

– It should support a robust and efficient automatic search algorithm so that
the user can focus on the declarative model without necessity to write any
complex search algorithm (model-and-run development process).

The scheduling language is available in C++, Java, C# as well as in the OPL
Optimization Programming Language1. The automatic search is based on a
1 A trial version of OPL supporting this language can be downloaded on

W.-J. van Hoeve and J.N. Hooker (Eds.): CPAIOR 2009, LNCS 5547, pp. 148–162, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

http://www.ilog.com/products/oplstudio/trial.cfm

ilog.com/products/oplstudio/trial.cfm
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Self-Adapting Large Neighbourhood Search that iteratively unfreezes and re-
optimizes a selected fragment of the current solution. The search algorithm is
out of the scope of this paper, the principles of the approach have been described
in [3] whereas more details about constraint propagation are available in [1].

The present paper illustrates the new modelling language and the efficiency
and robustness of the automatic search on three problems recently studied in
the scheduling literature. These problems were selected for several reasons:

– They are quite different in nature, covering cumulative and disjunctive
scheduling, non-preemptive and preemptive scheduling, alternative modes,
structured and unstructured temporal networks, etc.;

– All three problems are optimization problems with realistic non-regular
objective functions (earliness/tardiness costs, number of executed tasks,
complex temporal preference functions);

– They cover a range of different application domains (manufacturing,
aerospace, project scheduling);

– Benchmarks and recent results are available to evaluate the efficiency of CP
Optimizer’s automatic search.

Section 2 recaps the modelling concepts of CP Optimizer used in the paper.
Sections 3 to 5 are dedicated to the three scheduling problems: a flow-shop
problem with earliness and tardiness costs [4], the oversubscribed scheduling
problem studied in [5] and the personal task scheduling problem introduced in
SelfPlanner [6]. Each of these sections starts with a description of the problem
followed by a problem formulation in OPL. We show that all problems are easily
modelled with CP Optimizer and that the resulting models are very concise
(ranging from 15 to 42 lines of code). These models are then solved using the
automatic search of CP Optimizer 2.1.1 with default parameter values on a 3GHz
Linux desktop. We show that, in spite of its generality, the default search of CP
Optimizer outperforms state-of-the-art approaches on all three problems.

2 CP Optimizer Model for Detailed Scheduling

This section recaps the conditional interval formalism introduced in [1,2]. It
extends classical constraint programming by introducing with parsimony addi-
tional mathematical concepts (such as intervals, sequences or functions) as new
variables or expressions to capture the temporal aspects of scheduling2. In this
section we focus on the modelling concepts that are sufficient to understand the
three models detailed in sections 3-5. A more formal and exhaustive description
of the CP Optimizer concepts for detailed scheduling as well as several examples
are provided in [7].

2 In the present paper, a few concepts have been renamed so as to be consistent
with their implementation in IBM ILOG CP Optimizer. In particular, we speak of
present/absent rather than executed/non-executed interval variable and the notion of
interval duration is replaced by the notion of interval length.
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2.1 Interval Variables

An interval variable a is a decision variable whose domain dom(a) is a subset
of {⊥} ∪ {[s, e)|s, e ∈ Z, s ≤ e}. An interval variable is said to be fixed if its
domain is reduced to a singleton, i.e., if a denotes a fixed interval variable then:

– either interval is absent: a = ⊥;
– or interval is present: a = [s, e). In this case, s and e are respectively the

start and end of the interval and l = e− s its length.

Absent interval variables have special meaning. Informally speaking, an absent
interval variable is not considered by any constraint or expression on interval
variables it is involved in. For example, if an absent interval variable a is used in
a precedence constraint between interval variables a and b then, this constraint
does not influence interval variable b. Each constraint and expression specifies
how it handles absent interval variables.

By default interval variables are supposed to be present but they can be spec-
ified as being optional meaning that ⊥ is part of the domain of the variable
and thus, it is a decision of the problem to have the interval present or absent
in the solution. Optional interval variables provide a powerful concept for effi-
ciently reasoning with optional or alternative activities. The following constraints
on interval variables are introduced to model the basic structure of scheduling
problems. Let a, ai and b denote interval variables and z an integer variable:

– A presence constraint presenceOf(a) states that interval a is present, that
is a �= ⊥. This constraint can be composed, for instance presenceOf(a) ⇒
presenceOf(b) means that the presence of a implies the presence of b.

– A precedence constraint (e.g. endBeforeStart(a, b, z)) specifies a prece-
dence between interval end-points with an integer or variable minimal dis-
tance z provided both intervals a and b are present.

– A span constraint span (a, {a1, ..., an}) states that if a is present, it starts
together with the first present interval in {a1, ..., an} and ends together with
the last one. Interval a is absent if and only if all the ai are absent.

– An alternative constraint alternative (a, {a1, ..., an}) models an exclusive
alternative between {a1, ..., an}: if interval a is present then exactly one of
intervals {a1, ..., an} is present and a starts and ends together with this
chosen one. Interval a is absent if and only if all the ai are absent.

These constraints make it easy to capture the structure of complex scheduling
problems (hierarchical description of the work-breakdown structure of a project,
representation of optional activities, alternative modes/recipes/processes, etc.)
in a well-defined CP paradigm.

Sometimes the intensity of “work” is not the same during the whole interval.
For example let’s consider a worker who does not work during weekends (his
work intensity during weekends is 0%) and on Friday he works only for half a
day (his intensity during Friday is 50%). For this worker, 7 man-days work will
last for longer than just 7 days. In this example 7 man-days represent what we
call the size of the interval: that is, the length of the interval would be if the
intensity function was always at 100%. In CP Optimizer, this notion is captured
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by an integer step function that describes the instantaneous intensity - ex-
pressed as a percentage - of a work over time. An interval variable is associated
with an intensity function and a size. The intensity function F specifies the
instantaneous ratio between size and length. If an interval variable a is present,
the intensity function enforces the following relation:

100× size(a) ≤
∫ end(a)

start(a)
F (t).dt < 100× (size(a) + 1)

By default, the intensity function of an interval variable is a flat function equal
to 100%. In this case, the concepts of size and length are identical.

It may also be necessary to state that an interval cannot start, cannot end
at or cannot overlap a set of fixed dates. CP Optimizer provides the following
constraints for modelling it. Let a denote an interval variable and F an integer
stepwise function.

– Forbidden start constraint. Constraint forbidStart(a, F ) states that
whenever interval a is present, it cannot start at a value t where F (t) = 0.

– Forbidden end constraint. Constraint forbidEnd(a, F ) states that when-
ever interval a is present, it cannot end at a value t where F (t− 1) = 0.

– Forbidden extent constraint. Constraint forbidExtent(a, F ) states that
whenever interval a is present, it cannot overlap a point t where F (t) = 0.

Integer expressions are provided to constrain the different components of an in-
terval variable (start, end, length, size). For instance the expression
startOf(a, dv) returns the start of interval variable a when a is present and
returns integer value dv if a is absent (by default if argument dv is omitted it
assumes dv = 0). Those expressions make it possible to mix interval variables
with more traditional integer constraints and expressions.

2.2 Sequence Variables

Many problems involve scheduling a set of activities on a disjunctive resource
that can only perform one activity at a time (typical examples are workers,
machines or vehicles). From the point of view of the resource, a solution is a
sequence of activities to be processed. Besides the fact that activities in the
sequence do not overlap in time, additional constraints such as resource setup
times or constraints on the relative position of activities in the sequence are
common. To capture this idea we introduce the notion of sequence variable, a
new type of decision variable whose value is a permutation of a set of interval
variables. Constraints on sequence variables are provided for ruling out illegal
permutations (sequencing constraints) or for stating a particular relation be-
tween the order of intervals in the permutation and the relative position of their
start and end values (no-overlap constraint).

A sequence variable p is defined on a set of interval variables A. A value of p
is a permutation of all present intervals of A. For instance, if A = {a, b} is a set of
two interval variables with a being necessarily present and b optional, the domain
of the sequence p defined on A consists of 3 permutations: {(a), (a, b), (b, a)}.
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If p denotes a sequence variable and a, b two interval variables in the sequence,
the sequencing constraints first(p, a) and last(p, a) respectively mean that if
interval a is present, it is the first or last in sequence p. Sequencing constraints
before(p, a, b) and prev(p, a, b) respectively mean that if both intervals a and b
are present, then a is before or immediately before b in sequence p.

It is to be noted that the sequencing constraints above do not have any im-
pact on the start and end values of intervals, they only constrain the possible
values (permutations) of the sequence variable. The no-overlap constraint
noOverlap(p) on a sequence variable p states that permutation p defines a chain
of non-overlapping intervals, any interval in the chain being constrained to end
before the start of the next interval in the permutation.

For modelling sequence dependent setup times, each interval variable a in a
sequence p can be associated with a non-negative integer type T (p, a) and the
no-overlap constraint can be associated with a transition distance. A transition
distance M is a function M : [0, n)× [0, n)→ Z+. If a and b are two successive
non-overlapping present intervals, the no-overlap constraint noOverlap(p, M)
will express a minimal distance M(T (p, a), T (p, b)) between the end of a and
the start of b.

2.3 Cumul Function Expressions

For cumulative resources, the cumulated usage of the resource by the activities
is a function of time. An activity usually increases the cumulated resource usage
function at its start time and decreases it when it releases the resource at its
end time. For resources that can be produced and consumed by activities (for
instance the content of an inventory or a tank), the resource level can also be
described as a function of time: production activities will increase the resource
level whereas consuming activities will decrease it. In these problem classes,
constraints are imposed on the evolution of these functions of time, for instance
a maximal capacity or a minimum safety level.

CP Optimizer introduces the notion of a cumul function expression which is
a constrained expression that represents the sum of individual contributions of
intervals. A set of elementary cumul functions is available to describe the indi-
vidual contribution of an interval variable (or a fixed interval of time or a fixed
date). These elementary functions cover the use-cases mentioned above: pulse for
usage of a cumulative resource, and step for resource production/consumption
(see Figure 1). It is important to note that the elementary cumul functions

u

pulse(u,v,h)

0
v

h

u

step(u,h)
h

pulse(a,h)

0

h

a

stepAtStart(a,h)

0

h

a

stepAtEnd(a,h)

0

h

a

Fig. 1. Elementary cumul function expressions
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defined on an interval variable are equal to the zero function when the interval
variable is absent.

A cumul function expression f is defined as the sum of a set of elementary
functions fi or their negations: f =

∑
i εi · fi where εi ∈ {−1, +1}. When the

elementary cumul functions fi that define a cumul function f are fixed (and
thus, so are their related intervals), the cumul function itself is fixed and its
value is a stepwise integer function. Several constraints are provided over cumul
functions. These constraints allow restricting the possible values of the function
over the complete horizon or over some fixed or variable interval. Let u, v ∈ Z,
h, hmin, hmax ∈ Z+ and a denote an interval variable. The following constraints
are available on a cumul function f to restrict its possible values:

– alwaysIn(f, u, v, hmin, hmax) means that the values of function f must re-
main in the range [hmin, hmax] everywhere on the fixed interval [u, v).

– alwaysIn(f, a, hmin, hmax) means that if interval a is present, the values of
function f must remain in the range [hmin, hmax] between the start and the
end of interval variable a.

– f ≤ h: function f cannot take values greater than h.
– f ≥ h: function f cannot take values lower than h.

3 Flow-Shop with Earliness and Tardiness Costs

3.1 Problem Description

The first problem studied in the paper is a flow-shop scheduling problem with
earliness and tardiness costs on a set of instances provided by Morton and Pen-
tico [8] that have been used in a number of studies including GAs [9] and Large
Neighbourhood Search [4]. In this problem, a set of n jobs is to be executed
on a set of m machines. Each job i is a chain of exactly m operations, one per
machine. All jobs require the machines in the same order that is, the position
of an operation in the job determines the machine it will be executed on. Each
operation j of a job i is specified by an integer processing time pti,j . Opera-
tions cannot be interrupted and each machine can process only one operation at
a time. The objective function is to minimize the total earliness/tardiness cost.
Typically, this objective might arise in just-in-time inventory management: a late
job has negative consequence on customer satisfaction and time to market, while
an early job increases storage costs. Each job i is characterized by its release date
rdi, its due date ddi and its weight wi. The first operation of job i cannot start
before the release date rdi. Let Ci be the completion date of the last operation
of job i. The earliness/tardiness cost incurred by job i is wi ·abs(Ci−ddi). In the
instances of Morton and Pentico, the total earliness/tardiness cost is normalized
by the sum of operation processing times so the global cost to minimize is:∑

i∈[1,n]

(
wi · abs(Ci − ddi)

)
W

where W =
∑

i∈[1,n]

(
wi ·

∑
j∈[1,m]

pti,j
)
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Model 1 - OPL Model for Flow-shop with Earliness and Tardiness Costs
1: using CP;
2: int n = ...;
3: int m = ...;
4: int rd[1..n] = ...;
5: int dd[1..n] = ...;
6: float w[1..n] = ...;
7: int pt[1..n][1..m] = ...;
8: float W = sum(i in 1..n) (w[i] * sum(j in 1..m) pt[i][j]);
9: dvar interval op[i in 1..n][j in 1..m] size pt[i][j];

10: dexpr int C[i in 1..n] = endOf(op[i][m]);
11: minimize sum(i in 1..n) w[i]*abs(C[i]-dd[i])/W;
12: subject to {
13: forall(i in 1..n) {
14: rd[i] <= startOf(op[i][1]);
15: forall(j in 1..m-1)
16: endBeforeStart(op[i][j],op[i][j+1]);
17: }
18: forall(j in 1..m)
19: noOverlap(all(i in 1..n) op[i][j]);
20: }

3.2 Model

A complete OPL model for this problem is shown in Model 1. The instruction at
line 1 tells the model is a CP model to be solved by CP Optimizer. The section
between line 2 and line 8 is data reading and data manipulation. The number
of jobs n is read from the data file at line 2 and the number of machines m
at line 3. A number of arrays are defined to store, for each on the n jobs, the
release date (line 4), due date (line 5), earliness/tardiness cost weight (line 6)
and, for each machine, the processing time of each operation on the machine
(line 7). The normalization factor W is computed at line line 8. The model
itself is declared between line 9 and line 20. Line 9 creates a 2-dimensional
array of interval variables indexed by the job i and the machine j. Each interval
variable represents an operation and is specified with a size corresponding to the
operation’s processing time. Line 10 creates one integer expression C[i] for each
job i equal to the end of the mth (last) operation of the job. These expressions
are used in line 11 to state the objective function. The constraints are defined
between line 13 and line 19. For each job, line 14 specifies that the first operation
of job i cannot start before the job release date whereas precedence constraints
between operations of job i are defined at lines 15-16. Lines 18-19 state that for
each machine j, the set of operations requiring machine j do not overlap.

3.3 Experimental Results

Table 1 compares the results obtained by the default automatic search of CP
Optimizer using the above model (col. CPO) with the best results obtained by
various genetic algorithms as reported in [9] (col. GA-best) and the results of the
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Table 1. Results for Flow-shop Scheduling with Earliness and Tardiness Costs

Problem GA-best S-LNS-best CPO Problem GA-best S-LNS-best CPO
jb1 0.474 0.191 0.191 ljb1 0.279 0.215 0.215
jb2 0.499 0.137 0.137 ljb2 0.598 0.508 0.509
jb4 0.619 0.568 0.568 ljb7 0.246 0.110 0.137
jb9 0.369 0.333 0.334 ljb9 0.739 1.015 0.744
jb11 0.262 0.213 0.213 ljb10 0.512 0.525 0.549
jb12 0.246 0.190 0.190 ljb12 0.399 0.605 0.518

best Large Neighbourhood Search (S-LNS) studied in [4] (col. S-LNS-best). A
time limit of one hour was used on a 3GHz processor for CP Optimizer similar to
the two hours limit used in [4] on a 1.5GHz processor. The average improvement
(using the geometric mean over the ratio valueCPO/valueOther) over the best
GA is about 25% whereas the average improvement over the best LNS is more
modest (1.7%).

4 Satellite Scheduling

4.1 Problem Description

The second illustrative model is an oversubscribed scheduling problem described
in [5]. This model is a generalization of two real-world oversubscribed scheduling
domains, the USAF Satellite Control Network (AFSCN) scheduling problem and
the USAF Air Mobility Command (AMC) airlift scheduling problem. These two
domains share a common core problem structure:

– A problem instance consists of n tasks. In AFSCN, the tasks are communi-
cation requests; in AMC they are mission requests.

– A set Res of resources are available for assignment to tasks. Each resource
r ∈ Res has a finite capacity capr ≥ 1. The resources are air wings for
AMC and ground stations for AFSCN. The capacity in AMC corresponds
to the number of aircraft for a wing; in AFSCN it represents the number of
antennas available at the ground station.

– Each task Ti has an associated set Resi of feasible resources, any of which can
be assigned to carry out Ti. Any given task Ti requires 1 unit of capacity (i.e.,
one aircraft in AMC or one antenna in AFSCN) of the resource rj ∈ Resi

that is assigned to perform it. The duration Duri,j of task Ti depends on
the allocated resource rj .

– Each of the feasible alternative resources rj ∈ Resi specified for a task Ti

defines a time window within which the duration of the task needs to be
allocated. This time window corresponds to satellite visibility in AFSCN
and mission requirements for AMC.

– All tasks are optional; the objective is to minimize the number of unassigned
tasks3.

3 A second type of model with task priorities is also described in [5]. In the present
paper, we focus on the version without task priorities.



156 P. Laborie

4.2 Model

A complete OPL model for this problem is shown in Model 2 using the AFSCN
semantics. The section between line 2 and line 6 is data reading and data ma-
nipulation. A tuple defining ground stations data (with a name, a unique integer
identifier and a capacity) is defined at line 2 and read from the data file at line
4. A tuple defining a possible resource assignment for a task (specifying a task,
a station, a task minimal start time, a task duration and a task maximal end
time) is defined at line 3 and read from the data file at line 5. The set of all
tasks Tasks is computed at line 6 as the set of tasks used in at least one possible
assignments.

Model 2 - OPL Model for Satellite Scheduling
1: using CP;
2: tuple Station { string name; key int id; int cap; }
3: tuple Alternative { string task; int station; int smin; int dur; int emax; }
4: {Station} Stations = ...;
5: {Alternative} Alternatives = ...;
6: {string} Tasks = { a.task | a in Alternatives };
7: dvar interval task[t in Tasks] optional;
8: dvar interval alt[a in Alternatives] optional in a.smin..a.emax size a.dur;
9: maximize sum(t in Tasks) presenceOf(task[t]);

10: subject to {
11: forall(t in Tasks)
12: alternative(task[t], all(a in Alternatives: a.task==t) alt[a]);
13: forall(s in Stations)
14: sum(a in Alternatives: a.station==s.id) pulse(alt[a],1) <= s.cap;
15: }

Variables and constraints are defined between line 7 and line 15. Line 7 de-
fines an array of interval variables indexed by the set of tasks Tasks. As tasks
are optional and may be left unassigned, each of these interval variable is de-
clared optional so that it can be ignored in the solution schedule. Each of the
possible task assignments is defined as an optional interval variable in line 8.
When present, these interval variables will be of size dur and belong to the time
window [smin, emax] of the assignment. This is expressed by the size and in
OPL keywords in the interval variable declaration. The objective function is to
maximize the number of assigned tasks, that is, the number of present tasks in
the schedule; this is specified by a sum of presence constraints at line 9.

The constraints lines 11-12 state that each task, if present, is the alterna-
tive among the set of possible assignments for this task, this is modelled by
an alternative constraint: if interval task[t] is present, then one and only one
of the intervals alt[a] representing a ground station assignment for task[t] will
be present and task[t] will start and end together with this selected interval. As
specified by the semantics of the alternative constraint, if the task is absent, then
all the possible assignments related with this task are absent too. The limited
capacity (number of antennas) of ground stations is modelled by lines 13-14.
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For each ground station s, a cumul function is created that represents the time
evolution of the number of antennas used by the present assignments on this
station s. This is a sum of unit pulse functions pulse(alt[a], 1). Note that when
the assignment alt[a] is absent, the resulting pulse function is the zero function
so it does not impact the sum. The resulting sum is constrained to be lower than
the maximal capacity cap of the station. An interesting feature of the CP Op-
timizer model is that it handles optional tasks in a very transparent way: here,
the fact that tasks are optional only impacts the declaration of task intervals
at line 7. The notion of optional interval variable and the handling of absent
intervals by the constraints and expressions of the model (here the alternative
constraint and the cumul function expressions) allows an elegant modelling of
scheduling problems involving optional activities and, more generally, optional
and/or alternative tasks, recipes or modes.

4.3 Experimental Results

Table 2 compares the results obtained by the default automatic search of CP Op-
timizer using the above model (col. CPO) with the TaskSwap (TS) and Squeaky
Wheel Optimization (SWO) approaches studied in [5] (col. TS and SWO). Fig-
ures represent the average number of unscheduled tasks for each problem set of
the benchmark. The time limit for each instance was fixed to 120s for problem
sets x.1, 180s for problem sets x.2 and 360s for problem sets x.3. In average,
compared to the best approach described in [5] (SWO), the default automatic
search of CP Optimizer assigns 5.3% more tasks.

Table 2. Results for Satellite Scheduling

Problem set TS SWO CPO Problem set TS SWO CPO
1.1 30.44 26.60 27.50 4.1 3.20 2.00 1.96
1.2 114.02 104.72 98.10 4.2 13.34 7.90 7.48
1.3 87.92 84.52 86.04 4.3 16.60 12.46 9.68
2.1 11.46 7.80 7.84 5.1 3.90 3.80 3.76
2.2 45.54 34.26 30.64 5.2 32.98 31.98 31.72
2.3 33.96 31.18 32.14 5.3 46.18 45.22 44.34
3.1 2.64 2.32 2.28 6.1 1.56 1.28 1.24
3.2 15.50 12.82 11.82 6.2 11.62 9.56 8.92
3.3 32.10 28.58 24.00 6.3 25.28 22.60 19.48

5 Personal Task Scheduling

5.1 Problem Description

The third problem treated in this paper is the personal task scheduling problem
introduced in [6] and available as an add-on to Google Calendar
(selfplanner.uom.gr/). It consists of a set of n tasks {T1, ..., Tn}. Each task
Ti has a duration denoted duri. All tasks are considered preemptive, i.e. they

selfplanner.uom.gr/
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can be split into parts that can be scheduled separately. The decision variable pi

denotes the number of parts in which the ith task has been split, where pi ≥ 1.
Tij denotes the jth part of task Ti, 1 ≤ j ≤ pi. The sum of the durations of
all parts of a task Ti must equal its total duration duri. For each task Ti, a
minimum and maximum allowed duration for its parts, smini and smaxi, as
well as a minimum allowed temporal distance between every pair of its parts,
dmini are given. Depending on the values of smaxi and smini and the overall
duration of the task duri, implicit constraints are imposed on pi. For example,
if duri < 2 ∗ smini, then necessarily pi = 1 and task Ti is non-preemptive. Each
task Ti is associated with a domain Di = [si1, ei1] ∪ [si2, ei2] ∪ · · · ∪ [siFi , eiFi ],
consisting of a set of Fi time windows within which all of its parts have to be
scheduled. We denote respectively Li = si1 and Ri = eiFi the leftmost and right-
most values of domain Di. A set of m locations is given, Loc = {l1, l2, · · · , lm} as
well as a 2-dimensional matrix Dist with their temporal distances represented
as non-negative integers. Each task Ti has its own spatial reference, loci ∈ Loc,
denoting the location where the user should be in order to execute each part of
the task. A set of ordering constraints, denoted ≺ (Ti, Tj) between some pairs
of tasks is also defined, meaning that no part of task Tj can start its execution
until all parts of task Ti have finished their execution. Time preferences are ex-
pressed for each task Ti. Five types of preference functions are available; they
are depicted on Figure 2:

Task

Part1 Part2 Part3 …

f-2

f-1

f0

f1

f2
L R

Fig. 2. Preference functions

f−2 Execute as much as possible of task Ti after a date d.
f−1 Execute as much as possible of task Ti as late as possible.
f0 No preference.
f1 Execute as much as possible of task Ti as early as possible.
f2 Execute as much as possible of task Ti before a date d.

For a given preference function fi associated with a task Ti that is split into
pi parts Pi,1, ..., Pi,pi , the satisfaction related with the execution of task Ti is
computed as:

satisfaction(Ti) =
pi∑

j=1

∑
t∈Pi,j

fi(t)
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It is to be noted that functions fi are normalized in the interval [0,1] in such a
way that an upper bound for the satisfaction for a task Ti is 1.

5.2 Model

A complete OPL model for the personal task scheduling problem is shown in
Model 3. The section between line 2 and line 16 is data reading and data manip-
ulation. A tuple representing a task description is declared at line 2, it specifies
a unique integer task identifier, the location of the task, the task duration, the
minimal and maximal duration of task parts, the minimal delay between two
consecutive task parts, an identifier of the type of preference function for the
task in {−2,−1, 0, 1, 2}, the threshold date in case preference function is of type
f−2 or f2 and two sets of integers ds and de respectively representing the start
and end dates of the intervals [si, ei] of the task domain. The set of tasks is read
from the data file at line 3. A triplet representing the temporal distance between
two locations is declared at line 4 and the transition distance matrix represented
as a set of such triplets is read from the data file at line 5. A tuple storing an
ordering constraint is defined on line 6 and a set of such tuples is read from
the data at line 7. Lines 8-10 respectively compute, for each task t the leftmost
value, rightmost value and diameter of the task domain. A tuple representing
the ith part of a task is defined at line 11 and the total set of possible parts is
computed at line 12 considering that for each task of duration dur and minimal
part duration smin, the maximal number of parts is �dur/smin�. Lines 13-16
define a step function holes[t] for each task t that is equal to 1 in the domain of
t and to 0 everywhere else.

Variables and constraints are defined between lines 17 and 42. An array of
interval variables, one interval task[t] for each task t, is declared at line 17; each
task is constrained to end before the schedule horizon (500 in the benchmark).
Line 18 defines an optional interval variable for each possible task part with
a minimal and a maximal size given by smin and smax. A sequence variable
is created at line 19 on the set of all parts p, each part being associated with
an integer type in the sequence corresponding to the location of the part. The
satisfaction expression for each task t is modelled on lines 20-25 depending on
the preference function type; it uses the OPL conditional expression c?e1:e2
where c is a boolean condition and e1 is the returned expression if c is true and
e2 the returned expression if c is false. The normalization factors are the ones
used in [6]4. The objective function, as defined on line 26 is to maximize the
sum of all tasks satisfaction.

The constraints on line 29 forbid any part of a task t to overlap a point where
the step function holes[t] is zero; this will constrain each task part to be executed
in its domain. Constraints on lines 31-32 state that the set of parts of a given
task t forms a chain of optional intervals with minimum separation time dmin
among which only the first ones will be executed, that is, each part a[p] if present
is constrained to be executed before its successor part a[s] and the presence of

4 The objective expression being quite complex, we used the solution checker provided
with the instances to check that the constraints and objective function of our model
are equivalent to the ones used in [6].
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part a[s] implies the presence of part a[p]. Constraints on line 36 state that the
total duration of the part of a task must equal the specified task duration dur.
Note that when part a[p] is absent, by default the value of sizeOf(a[p]) is 0. Line
37 constrains each task t to span its parts, that is to start at the start of first

Model 3 - OPL Model for Personal Task Scheduling
1: using CP;
2: tuple Task { key int id; int loc; int dur; int smin; int smax; int dmin; int f; int

date; {int} ds; {int} de; }
3: {Task} Tasks = ...;
4: tuple Distance { int loc1; int loc2; int dist; };
5: {Distance} Dist = ...;
6: tuple Ordering { int pred; int succ; };
7: {Ordering} Orderings = ...;
8: int L[t in Tasks] = min(x in t.ds) x;
9: int R[t in Tasks] = max(x in t.de) x;

10: int S[t in Tasks] = R[t]-L[t];
11: tuple Part { Task task; int id; }
12: {Part} Parts = { <t,i> | t in Tasks, i in 1 .. t.dur div t.smin };
13: tuple Step { int x; int y; }
14: sorted {Step} Steps[t in Tasks] =
15: {<x,0> | x in t.ds} union {<x,1> | x in t.de};
16: stepFunction holes[t in Tasks] = stepwise(s in Steps[t]) {s.y -> s.x; 0};
17: dvar interval tasks[t in Tasks] in 0..500;
18: dvar interval a[p in Parts] optional size p.task.smin..p.task.smax;
19: dvar sequence seq in all(p in Parts) a[p] types all(p in Parts) p.task.loc;
20: dexpr float satisfaction[t in Tasks] = (t.f==0)? 1 :
21: (1/t.dur)* sum(p in Parts: p.task==t)
22: (t.f==-2)? maxl(endOf(a[p]),t.date)-maxl(startOf(a[p]),t.date) :
23: (t.f==-1)? lengthOf(a[p])*(R[t]-(startOf(a[p])+endOf(a[p])-1)/2)/S[t] :
24: (t.f== 1)? lengthOf(a[p])*((startOf(a[p])+endOf(a[p])-1)/2-L[t])/S[t] :
25: (t.f== 2)? minl(endOf(a[p]),t.date)-minl(startOf(a[p]),t.date) : 0;
26: maximize sum(t in Tasks) satisfaction[t];
27: subject to {
28: forall(p in Parts) {
29: forbidExtent(a[p], holes[p.task]);
30: forall(s in Parts: s.task==p.task && s.id==p.id+1) {
31: endBeforeStart(a[p], a[s], p.task.dmin);
32: presenceOf(a[s]) => presenceOf(a[p]);
33: }
34: }
35: forall(t in Tasks) {
36: t.dur == sum(p in Parts: p.task==t) sizeOf(a[p]);
37: span(tasks[t], all(p in Parts: p.task==t) a[p]);
38: }
39: forall(o in Orderings)
40: endBeforeStart(tasks[<o.pred>], tasks[<o.succ>]);
41: noOverlap(seq, Dist);
42: }
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part and to end with the end of the last executed part. Ordering constraints are
declared on line 40 whereas line 41 states that task parts cannot overlap and
that they must satisfy the minimal transition distance between task locations
defined by the set of triplets Dist.

5.3 Experimental Results

Table 3 compares the results obtained by the default automatic search of CP
Optimizer using the above model (col. CPO) and a time limit of 60s for each
problem with the Squeaky Wheel Optimization (SWO) approach implemented
in SelfPlanner [6] (col. SWO). CP Optimizer finds a solution to more problems
than the approach described in [6]: the SWO could not find any solution for the
problems with 55 tasks whereas the automatic search of CP Optimizer solves
70% of them. Furthermore, SWO could not find any solution to 4 of the smaller
problems with 50 tasks whereas CP Optimizer solves them all but for problem
50-2. On problems where SWO finds a solution, the average task satisfaction
(average of the ratio between the total satisfaction and the number of tasks) is
78% whereas it is 87.8% with CP Optimizer. It represents an improvement of
about 12.5% in solution quality.

Table 3. Results for Personal Task Scheduling

# SWO CPO # SWO CPO # SWO CPO # SWO CPO
15-1 12.95 14.66 30-6 28.09 29.28 40-1 24.72 28.95 45-6 32.70 37.35
15-2 12.25 13.16 30-7 23.80 24.20 40-2 23.48 32.07 45-7 32.40 35.77
15-3 13.71 13.90 30-8 24.06 26.89 40-3 33.57 37.74 45-8 31.79 35.23
15-4 11.57 12.55 30-9 23.42 24.86 40-4 31.46 35.45 45-9 35.79 38.86
15-5 12.64 14.67 30-10 22.04 27.18 40-5 28.05 34.21 45-10 32.78 40.68
15-6 14.30 14.63 35-1 28.80 31.56 40-6 29.46 34.01 50-1 42.04 43.53
15-7 13.08 14.46 35-2 29.17 32.33 40-7 33.13 37.51 50-2 × ×
15-8 11.46 12.37 35-3 27.84 28.58 40-8 29.72 34.90 50-3 × 37.17
15-9 11.44 11.61 35-4 26.64 29.67 40-9 33.03 36.89 50-4 × 36.52
15-10 12.07 13.51 35-5 25.15 32.13 40-10 30.28 34.19 50-5 34.25 43.55
30-1 24.17 29.13 35-6 26.12 29.49 45-1 37.42 42.90 50-6 38.32 41.87
30-2 24.69 27.55 35-7 29.28 31.69 45-2 33.97 39.71 50-7 32.59 42.48
30-3 25.61 26.53 35-8 25.71 30.07 45-3 35.44 39.40 50-8 34.70 43.67
30-4 27.13 28.49 35-9 23.74 29.60 45-4 33.02 37.41 50-9 × 42.75
30-5 23.89 26.46 35-10 30.70 33.41 45-5 30.83 36.65 50-10 37.46 41.84

55-1 × 36.84 55-4 × 40.36 55-7 × × 55-10 × ×
55-2 × 38.56 55-5 × 42.70 55-8 × 45.27
55-3 × × 55-6 × 35.92 55-9 × 42.14

6 Conclusion

This paper illustrates the new scheduling support in IBM ILOG CP Optimizer.
We selected three problems recently studied in the scheduling literature and pro-
vide a simple and concise CP Optimizer model for each of them. The size of the
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OPL models range from 15 to 42 lines of code. These models are then solved
using the automatic search of CP Optimizer with default parameter values. We
show that on average, CP Optimizer outperforms state-of-the-art problem spe-
cific approaches on all the problems which is quite a remarkable result given the
generality of the search and the large spectrum of problem characteristics. These
results are consistent with our experience of using CP Optimizer on industrial
detailed scheduling applications. In spite of the relative simplicity of the new
scheduling language based on optional interval variables, it was shown to be
expressive and versatile enough to model a large range of complex problems for
which the automatic search proved to be efficient and robust. The major part of
the future development of CP Optimizer will be the continued improvement of
the automatic search process.
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Abstract. Open forms of global constraints allow the addition of new
variables to an argument during the execution of a constraint program.
Such forms are needed for difficult constraint programming problems
where problem construction and problem solving are interleaved. We
introduce a new model of open global constraint where the length of
the sequence of variables can be constrained but there is no a priori
restriction on the variables that might be added. In general, propagation
that is sound for a global constraint can be unsound when the constraint
is open. We identify properties of constraints that simplify the design of
algorithms for propagation by identifying when no propagation can be
done, and use them to design propagation algorithms for several open
global constraints.

1 Introduction

The classic CSP model of constraint satisfaction [5,14] has a fixed static col-
lection of variables over which a solution must be found. However, in many
problems it is natural for the presence of some variables to be contingent on the
value of other variables. This is true of configuration problems and scheduling
problems that involve process-dependent activities [1]. More generally, for dif-
ficult problems the intertwining of problem construction and problem solving
provides a way to manage the complexity of a problem, and thus new variables
and constraints may arise after solving has begun. Programming languages sup-
porting constraint programming generally have the flexibility to add variables
and constraints during the execution of a model.

However, global constraints do not have this flexibility: all variables must be
available at the time the constraint is imposed, so variables cannot simply be
added when they become available. The collection of variables they constrain is
closed, rather than open. This can leave the filtering effect of the global constraint
until too late in the execution, resulting in a large search space.

Recent work has focused on supporting open versions of global constraints.
Barták [1] first formulated this issue and described a generic dynamisation tech-
nique to make open versions for the class of monotonic global constraints. But
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this technique is inefficient, and he also provided a specific implementation of
the open AllDifferent constraint by modifying Régin’s algorithm [12] for
the closed AllDifferent. He outlined a proposal for implementing open non-
monotonic global constraints.

A notion of Open CSP was investigated in [6]. In that work the set of variables
is closed but the domains are open, that is, extra values can be added to variable
domains.

Later work [8] addressed the problem when the variables that might be added
to a constraint are specified in advance and a set variable describes the set of
variables that will participate in the constraint. In this formulation, it becomes
possible to filter the set variable in addition to the individual variables. [8] also
gives an implementation of the global cardinality constraint GCC and of multiple
open GCC constraints over disjoint variables.

In this paper we propose a new model for open constraints, intermediate be-
tween the models of [1] and [8]. We define properties of constraints – called
contractibility and extensibility – and show that constraints with these proper-
ties have simplified propagation. In particular, using contractibility we define,
for three constraints, open domain consistent propagators under Barták’s model
of open constraints as simple adaptations of the corresponding closed propa-
gators. However, these propagators are not sufficient to achieve open domain
consistency under our model, and we describe stronger propagators to achieve
this consistency. The ideas underlying these propagators also come from their
closed counterparts, but the adaptation is more complex.

After some preliminaries in Section 2 we define and discuss the model of
open constraints we propose in comparison to the models of [1,8]. We introduce
the properties contractibility and extensibility in Section 4, and show how they
affect propagation. We investigate, in particular, the GCC, Regular and CFG
constraints. In Section 5 we establish tight approximations for these constraints,
which can be the basis of propagators under Barták’s model. Following sections
describe open domain consistent propagators for these three constraints under
our model.

2 Background

The reader is assumed to have a basic knowledge of constraint programming,
CSPs, global constraints, and filtering, as might be found in [5,14,2]. In this
section we discuss only conventional (closed) constraints.

To begin with, we view a global constraint as a relation over a sequence of
variables. Other arguments of a constraint are considered parameters and are
assumed to be fixed before execution. While some global constraints (such as
AllDifferent and GCC) are more naturally represented as relations over
an unordered collection of variables, we will find it convenient to ignore this
abstraction: for some constraints (such as Sequence) a sequence of variables
is necessary, and uniformity over all constraints will simplify our treatment of
the issues. A sequence of variables will be denoted by X or [X1, . . . , Xn]. |X|
denotes the length of X.
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We make no a priori restriction on the variables that may participate in
the sequence except that, in common with most work on global constraints, we
assume that no variable appears more than once in a single constraint.

There are some specific global constraints that we define for completeness.
These and other global constraints are discussed more completely in [2] and the
references therein. The constraint AllDifferent([X1, . . . , Xn]) [12] states that
the variables X1, . . . , Xn take distinct values. The global cardinality constraint
GCC([X1, . . . , Xn], v, l, u) [13] states that, for every i, the value vi occurs be-
tween li and ui times in the list of variables (ui may be infinite). The constraint
Regular(A, [X1, . . . , Xn]) [10] states that value of the list of variables, when
considered as a word, is accepted by the automaton A. Similarly, the constraint
CFG(G, [X1, . . . , Xn]) [11,15] states that value of the list of variables, when con-
sidered as a word, is generated by the context-free grammar G.

Each variable X has a static type which defines a (possibly infinite) set of
values T (X) which it may take. In addition, generally, each variable has an
associated set S ⊆ T (X) of values, called its domain. We will view this simulta-
neously as: a function D : V ars → 2V alues where D(X) = S, a unary relation
D(X) which is satisfied only when the value of X is some s ∈ S, and the point-
wise extension of D to sequences of variables. With each use of a constraint
C(X) is an associated type T such that every variable Xi that appears in X
satisfies T (Xi) ⊆ T . (In general, we will need a more sophisticated typing of X,
but this simple typing is sufficient for this paper.)

The reduction of a domain D to D′ is sound wrt a constraint C(X) iff D(X)∧
C(X)↔ D′(X)∧C(X). We define consistency with respect to a set of variables
that may be different from X. Given a set of variables Y , a domain D and a
constraint C(X) we say that D(Y ) is domain consistent with C if for every
Yi ∈ Y and every d ∈ D(Yi) there is a solution of C(X) in which Yi = d.

3 A Model of Open Constraints

Open constraints pre-suppose the existence of a meta-program that can impose
constraints, close an open constraint, add variables to a constraint, (possibly)
create new variables, and interact with the execution of the constraint system,
possibly controlling it. In this paper we will abstract away the details of the
meta-program so that we can focus on the open constraints.

There are two models of open constraint that have been investigated. Barták’s
model of open global constraints [1] is straightforward: the constraint involves a
sequence of variables to which variables may be added. Thus the arity and type
of the constraint are unchanged, whether the constraint is open or closed. In this
model there is no restriction on the variables to be added and there is no way
within the constraint system to communicate information about the variables
that have been added to other constraints or to constrain the possible additions
to the constraint; that communication must be done by the meta-program.

The model of van Hoeve and Régin [8] uses a set variable S describing a set of
object variables, rather than a sequence, to represent the collection of variables in
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the constraint1. The lower bound of S is the set of variables that are committed
to appear in the constraint; the upper bound is the set of variables that are
permitted to appear in the constraint. Thus there is a finite set of variables that
might appear in the constraint, and these are fixed in advance. The authors refer
to the constraint as open “in a closed world” since the set of variables that might
be added to the constraint is closed.

This model has the advantage that the effect of adding a variable to the
constraint can be communicated to other global constraints via constraints on
set variables. In this way, the constraint program can make explicit restrictions
that would need to be embedded in the meta-program under Barták’s model.
For example, constraints that ensure that the collections of variables in different
constraints are disjoint are discussed in [8]. The model makes elegant use of
existing implementations of set variables and their associated bounds.

On the other hand, use of a constraint in this model requires knowing all the
variables that might appear before imposing the constraint. As a result, it cannot
deal well with contingent variables. They create a similar problem to the one
faced by closed constraints: the constraint may be imposed late in the execution,
creating a larger search space. An alternative might be to create all variables
that might possibly be needed at the beginning of an execution, but that has
several costs. It creates a large initialization cost, requires ensuring meaningless
variable do not interfere with satisfiability or with search heuristics, and leaves
set variables with very large upper bounds that might limit the opportunities
for propagation both within a constraint and between constraints.

Furthermore, there is no easy and natural way to represent open constraints
where the order of variables is significant. Among the constraints that are affected
are Change, Contiguity, lexicographical ordering, Regular, Sequence, and
Sort.

Finally, open constraint programming, by its nature, involves meta-
programming explicitly instead of the declarative form of CSPs. However, intro-
ducing variables as objects to be reasoned on by constraints seems to be injecting
too much of the meta-program into the constraints. It opens up many complica-
tions, including the question: Can the set variable S be an object variable in a
global constraint and, in particular, can S be a member of itself? Nevertheless,
this point is mostly a matter of taste.

The model of open constraints proposed here, is intermediate between that of
Barták [1] and van Hoeve and Régin [8]. Under this model, a constraint C(X , N)
acts on both a sequence of variables X and an integer variable N representing the
length of the sequence once it is closed. Variables can only be added at one end
of the sequence. This allows a natural representation of sequential constraints,
such as Change, etc., and supports the use of constraints on the cardinality
of the sequence of variables. In one sense, this model is an abstraction of the
model of [8]: if N is subject only to lower and upper bounds, then the bounds
on N correspond to the cardinalities of the bounds of S. However, it is able

1 A set variable S ranges over sets and is constrained by two fixed finite sets L and U
which are a lower and upper bound on the value of the variable: L ⊆ S ⊆ U . See [7].
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to represent sequential constraints, and it is also able to treat N as a domain
variable. The two models might be merged in a constraint C(X , S, N) but this
possibility will not be addressed here.

In comparison to the model of [1], the variable N in this model gives more
information to the propagator, which might be used to propagate further on X,
and can extract extra information from the propagator. For example, consider
the constraint Regular(a + a2 + b2b∗, X, N). If we know N ≥ 3 then we can
infer X1 = b. If we know X1 = a then we can infer N ≤ 2.

In general, we will consider N to have a domain D(N), but we will also want
to refer to the bounds on N . We define lN and uN to be the minimum and
maximum of D(N). In consistent states we must have |X | ≤ lN . On occasion,
the argument N is irrelevant and we write C(X) to denote ∃N C(X , N).

It is conventional to define the semantics of a constraint as a relation, that is,
a set of tuples. However, the tuples defining the semantics of an open constraint
are not of equal length, and hence do not form a relation. Instead, we propose
to view the semantics of an open constraint C as a formal language.

Definition 1. The semantics of an open constraint C with associated type T is
a set of words d1 . . . dn where di ∈ T and n is not fixed. We denote this language
by LC.

A solution of an occurrence of an open constraint C(X , N) with |X| = k is
a valuation mapping each Xi to some di and N to n such that k ≤ n and there
is a word d1 . . . dn in LC.

For example, the semantics of Regular(a∗ + bc, X, N) is {ε, a, aa, bc, aaa, . . . ,
ai, . . .}. The solutions of Regular(a∗ + bc, [X1], N) are X1 = b, N = 2 and
X1 = a, N = n for each n ≥ 1. The semantics of AllDifferent(X , N) over
the type T = {a, b} is {ε, a, b, ab, ba}.

We define some properties of formal languages, for later use. Let P (L) =
{w | ∃u wu ∈ L} denote the set of prefixes of a language L, called the prefix-
closure of L. We say L is prefix-closed if P (L) = L. We say L is continual at
threshold m for type T , w ∈ L and |w| > m ⇒ ∃a ∈ T s.t. wa ∈ L.

Because some of the variables in an open constraint will be unspecified during
part of the execution, we need to adapt the definitions of consistency.

Definition 2. Given a domain D, an occurrence of a constraint C(X, N) is
open domain consistent if

– for every Xi ∈X and every d ∈ D(Xi) there is a word d1 . . . dn in LC such
that di = d, |X| ≤ n, n ∈ D(N), and dj ∈ D(Xj) for j = 1, . . . , |X|; and

– for every n ∈ D(N) there is a word d1 . . . dn in LC such that dj ∈ D(Xj)
for j = 1, . . . , |X|.

In some cases we may wish to discuss weaker notions of consistency, in partic-
ular when D(N) is approximated by a bound or bounds. We define open DL-
consistency, DU -consistency, and DB-consistency as weakenings of open domain
consistency where, respectively, the domain of N is abstracted to a lower bound,
an upper bound, and a pair of bounds. If we abstract away from N altogether,
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we obtain constraints C(X), for which we need another notion of consistency.
We use open D-consistency to refer to the first part of the above definition, ig-
noring the restriction imposed by D(N). When C is closed, D(N) = {|X|} and
open D-consistency is exactly domain consistency.

4 Contractibility and Extensibility

The properties of contractibility and extensibility are essentially converses of
each other. Contractibility of a constraint C guarantees that any variable/value
pair that is not part of any solution of C remains not part of any solution after
the sequence of variables is extended. Extensibility of C guarantees that any
variable/value pair that has support in C continues to have support after the
sequence is extended.

The properties of contractibility and extensibility are independent of the ar-
gument N of the open constraints. For this section we will express a constraint
C as C(X).

We view the appending of a variable Y to a sequence of variables X as a two
part process: the extension of the sequence, and then the communication of the
domain of Y to the constraint. Some of the results of this section distinguish
propagation induced by the extension of the sequence from propagation that is
a consequence of the domain of Y , and focus only on the former.

Proposition 1. The following three conditions are equivalent, where all vari-
ables range over T :

1. for all n ≥ 0 we have

C([X1, . . . , Xn, Y ]) → C([X1, . . . , Xn])

2. LC ∩ T ∗ is prefix-closed
3. for all n ≥ 0, any domain D and domain reduction to D′ that is sound wrt

C([X1, . . . , Xn])

D(X) ∧ C([X1, . . . , Xn, Y ])↔ D′(X) ∧ C([X1, . . . , Xn, Y ])

Definition 3. We say a constraint C([X1, . . . , Xn]) is contractible if it satisfies
any of the three conditions in Proposition 1.

Contractibility is a variation of Barták’s monotonicity [1] where we do not ex-
plicitly discuss variable domains. A constraint is contractible iff it is monotonic
wrt every domain.

For a contractible constraint C, any sound form of filtering (such as domain
consistency or bounds consistency) on C([X1, . . . , Xn]) is safe in the sense that
any values deleted from domains in that process could also be deleted while fil-
tering on C([X1, . . . , Xn, Y ]). Consequently, for contractible constraints, filtering
does not need to be undone if the sequence of variables is extended. That is, prop-
agators for a closed contractible constraint are valid also for the corresponding
open constraint.
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Conversely, for any constraint that is not contractible, there is a domain and
a domain reduction that would need to be undone if the sequence were extended.
For example, a constraint

∑
i Xi = 5 would propagate X1 = 5 if the sequence X

contained just one variable, thus eliminating solutions such as X1 = 2, X2 = 3.
When the second variable is added, all propagation that is a consequence of the
inference X1 = 5 must be undone.

It is exactly the contractible constraints for which we can interleave closed
filtering and addition of new variables. There are many contractible global con-
straints, including AllDifferent, BinPacking, Contiguity, Cumulative,
Diffn, Disjoint, InterDistance, Precedence, Sequence, SlidingSum
and lexicographical ordering ≤lex. Regular and CFG are contractible when
the language of the automaton/grammar is prefix-closed. More details about
contractibility and contractible constraints can be found in [9].

We might also consider a converse property to contractibility:

Proposition 2. The following three conditions are equivalent, where all vari-
ables range over T :

1. for all n > m we have

C([X1, . . . , Xn]) → ∃Y C([X1, . . . , Xn, Y ])

2. LC is continual at threshold m for T
3. for all n > m for any domain D and domain reduction to D′ that is sound

wrt C([X1, . . . , Xn, Y ])

D(X) ∧ C([X1, . . . , Xn])↔ D′(X) ∧ C([X1, . . . , Xn])

Definition 4. We say a constraint C([X1, . . . , Xn]) is extensible if, there is a
number m such that any of the three above conditions holds. The least such m
is called the extensibility threshold.

Extensibility guarantees that filtering would not delete more values from do-
mains if the list were known to be longer. An extensible language must be in-
finite if it contains a word longer than its threshold. Sequence, SlidingSum,
Precedence and Contiguity are extensible. GCC is extensible when there is
a value in the associated type that does not have a finite upper bound. Regular
and CFG are extensible when the language of the automaton/grammar is con-
tinual.

The first part of the following result implies that, for extensible constraints,
the addition of a variable Y does not induce propagation, so that propagation
can only come from the domain of Y .

Proposition 3. Let C be a constraint and D a domain.
If C is extensible with threshold m, |X| > m and D(X) is domain consistent

with C(X) then D(X) is domain consistent with C(XY ).
If C is contractible and D(XY ) is domain consistent with C(XY ) then D(X)

is domain consistent with C(X).
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In general, a change of bounds on N can induce filtering on X and domain
reduction on X can induce a change of bounds on N . The following result shows
that in some circumstances an update to the domain of X will not engender any
further propagation on a bound of N and, similarly, an update to the bounds of
N will not engender any further propagation on X.

Proposition 4. Consider a constraint C(X , N) and domain D, and let lN and
uN be the lower and upper bounds of D(N). Suppose D is DB-consistent with
C and consider the problem of maintaining this consistency. If C is contractible
then

– reduction in uN does not constrain X
– reduction in D(X) does not increase lN

If C is extensible then

– increase in lN does not constrain X
– reduction in D(X) does not diminish uN

Hence, for constraints that are both contractible and extensible the variables
X and N are essentially disconnected: no filtering of one can affect the other.
Among constraints that have this pair of properties are Sequence, SlidingSum,
Precedence and Contiguity. For these constraints an open version of the
constraint can be implemented essentially by adding to the implementation
of the closed version the ability to dynamically add variables. For these con-
straints there is no difference between the model of open constraints used here
and Barták’s model.

5 Approximating Constraints

Following a proposal of Barták [1], we can implement an uncontractible open
constraint C(X) by executing a safe contractible approximation Capp of C until
X is closed, and then replacing Capp by C for the remainder of the execution.
To employ this approach we need to identify a contractible language containing
the language of C, and a propagator Capp that implements it. By Proposition 1,
the tightest contractible approximation of a constraint is its prefix-closure.

The prefix-closure P (L) of a language L often appears to be simpler than
L. For example, if L1 is {an2 | n ∈ N} then P (L1) is a∗. But in general the
prefix-closure is no simpler than the original language. For example, if L2 is
{an2

b | n ∈ N} then P (L2) is a∗ ∪L2. In some cases it is easy to represent P (L)
when given a representation of L. In particular, when L is defined by a finite
automaton the automaton accepting P (L) is easily computed.

Proposition 5. Let A be a (possibly nondeterministic) finite state automaton,
and let A′ be the finite state automaton obtained from A by making final all
states on a path from the start state to a final state. Then L(A′) = P (L(A)). A′

can be computed in linear time.
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Similarly, we can use the structure of a context-free grammar to construct a
grammar for its prefix-closure.

Proposition 6. Given a context-free grammar G defining a language L, a
context-free grammar G′ for P (L) can be generated in quadratic time, linear
time if G is in Chomsky normal form.

As a corollary to Proposition 5, we can check in linear time whether a language
defined by a deterministic finite automaton is prefix-closed: we simply check
whether the construction of A′ in Proposition 5 made any new final states. This
improves on a result of [3]. Unfortunately, recognising when a language defined
by a nondeterministic finite automaton A is prefix-closed is not so simple; A
need not have the property that all states on a path from start to final state
are final. It is shown in [3] that this problem is PSPACE-complete. The problem
is undecidable for languages defined by context-free grammars [3]. However,
the decision problem is much less important than the ability to construct (the
representation of) the prefix-closure, so these negative results are not significant.

Thus, the tightest contractible approximation of Regular(A, X , N) is im-
plemented by Regular(A′, X, N), and the tightest contractible approximation
of CFG(G, X , N) is implemented by CFG(G′, X, N). The constraint GCC is
also easily approximated.

Proposition 7. The tightest contractible approximation of the constraint
GCC(v, l, u, X, N) is implemented by GCC(v,0, u, X, N), obtained by ignor-
ing the lower bounds l.

With these approximations, we can provide propagators for these open con-
straints within Barták’s model. Furthermore, the change from approximation
to original propagator when the constraint is closed is particularly simple, with
only small changes to the run-time structure.

These propagators all achieve open D-consistency. This is a consequence of
Barták’s proposal, the tight approximations, and the power of the closed propa-
gators to maintain domain consistency. Under Barták’s proposal, a closed prop-
agator for Capp is dynamised to handle extensions of the sequence of variables
(possibly through his generic dynamisation). This propagator is then executed
until the sequence of variables is closed, at which point the propagator is replaced
by a closed propagator for C.

Proposition 8. Let Capp be the tightest contractible approximation to C, and
suppose we have closed propagators for Capp and C that maintain domain con-
sistency wrt X. Then Barták’s proposal maintains open D-consistency for C.

6 Propagators for Open Constraints

While Barták’s proposal successfully provides propagators under his model of
open constraints, it is insufficient to achieve open domain consistency in the
model discussed here. The prefix-closure approximation encodes the fact that,
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under Barták’s model, the ultimate length of the sequence is totally unknown,
and remains so until the constraint is closed. But when we have dynamically
changing knowledge about the length of the sequence, as in the model proposed
here, we can obtain stronger propagation.

Example 1. Consider a constraint C with language L described by abc + (cab)∗.
In the prefix-closure, Capp, X2 = a is always a possibility, independent of the
length of the sequence. On the other hand, if we know N < 5 then we can infer
X2 = b.

Essentially, we can dynamically update the approximation as the length N is
constrained. In the following sections we will describe adaptations of closed prop-
agators that obtain open domain consistency.

When adapting a propagator for maintaining consistency for a closed con-
straint C(X) to the corresponding open constraint C(X , N), we have the fol-
lowing extra events to consider

– a variable is appended to X
– the domain (or the bounds) of N is reduced
– a reduction in D(X) that necessitates a reduction of D(N)
– the constraint (or the sequence X) is closed

7 The Global Cardinality Constraint

The GCC constraint is defined as follows

GCCT (X , v, l, u, N) = {d1 . . . dn | di ∈ T, for i = 1, . . . , n, n ≥ 0
∀d ∈ Dom ld ≤ |{i | di = d}| ≤ ud, }

where v is a list of values, l and u are corresponding lists of lower and upper
bounds on the number of occurrences of each value, Dom is the set of values in
v, and T is the type of a use of the constraint. When the type is not significant
we will leave it implicit.

As discussed in Section 2, we assume that there is a type T associated with
each use of GCC and all variables appearing in this use are restricted to values
of T . The importance of this assumption is that we know whether there may
be values, other than those with bounded number of occurrences, that appear
in the sequence (i.e. whether Dom ⊂ T ). Usually [13,8] it is assumed that the
domains of all variables that might appear in the sequence are known. Hence
this information, which otherwise is not available in an open world, is already
available in a closed world.

The GCC constraint will behave differently, depending on whether Dom = T
or not. If Dom ⊂ T then variables may take values that are not in v, that is,
values whose number of occurrences is not directly constrained by the constraint.
In this case, the constraint does not imply an upper bound on N and X may
grow arbitrarily large. If Dom = T then N is bounded above by

∑
d∈Dom ud.

In both cases, N is bounded below by
∑

d∈Dom ld. In the former case GCC
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is extensible, but in the latter case the constraint is effectively extensible until
N =

∑
d∈Dom ud.

The implementation of GCC is by network flow techniques, following [13,8].
Given a domain D(Xi) for each variable Xi added to the sequence so far (i =
1, . . . , k) and bounds L and U on the variable N , there is an associated network
flow graph G defined as follows. There is a source node s, a sink node t, a node
for each d ∈ Dom, a node for each variable Xi in X, a node RT representing
the values of T \Dom, and a node RV representing all the variables that might
be added to X. It contains:

– arcs (s, X) with lower and upper bound 1, for each X ∈ X
– arcs (X, d) with lower bound 0 and upper bound 1 for each X ∈ X and

d ∈ Dom ∩D(X)
– arcs (d, t) with lower bound ld and upper bound ud for each d ∈ Dom
– an arc (s, RV ) with lower bound max{0, L− k} and upper bound U − k
– arcs (RV , d) with lower bound 0 and no upper bound for each d ∈ Dom
– an arc (X, RT ) with lower bound 0 and upper bound 1 for each X ∈ X

where D(X)\Dom �= ∅
– an arc (RV , RT ) with no bounds
– an arc (RT , t) with no bounds if Dom ⊂ T , and upper bound 0 if Dom = T

The first three kinds of arcs are essentially the same as the closed implementation
of GCC [13]. The node RV corresponds to the amalgamation of the variables X
in [8] whose arcs (s, X) have lower bound 0.

If Dom = T then the node RT is superfluous and could be deleted, along with
all related arcs. We choose instead to simply put an upper bound of 0 on the
arc from RT to t, which has the same effect since this is the only outbound arc
from RT .

Feasible integer flows in G and valuations of the GCC constraint correspond
in the following sense. For each flow f in G there are corresponding valua-
tions which map Xi to d iff f(Xi, d) = 1 and map N to k + f(s, RV ). If
f(Xi, RT ) = 1 then Xi is mapped to an element of T \Dom. For each solu-
tion σ of GCC(XY , v, l, u, N)∧D(X)∧L ≤ N ≤ U , we define an integer flow
f in G as follows: f(s, Xi) = 1 for each Xi ∈ X; f(Xi, d) = 1 iff σ(Xi) = d;
f(Xi, RT ) = 1 iff σ(Xi) ∈ T \Dom; f(s, RV ) = σ(N)−k; f(RV , d) = c iff exactly
c of the variables Y are mapped to d by σ, for each d ∈ Dom; and f(d, t) = c iff
exactly c of the variables XY are mapped to d by σ, for each d ∈ Dom.

By design there is the following close relationship between feasible integer
flows of G and solutions of GCC(X , v, l, u, N) ∧D(X) ∧ L ≤ N ≤ U .

Proposition 9. Consider the constraint GCC(X, v, l, u, N) with domain D for
X and bounds L and U on N .

For each feasible integer flow in G there is an extension Y to X such
that the valuation corresponding to the flow can be extended to a solution of
GCC(XY , v, l, u, N) ∧D(X) ∧ L ≤ N ≤ U .

For each extension Y to X and solution to GCC(XY , v, l, u, N) ∧D(X) ∧
L ≤ N ≤ U there is a corresponding integer feasible flow in G.
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Using this relationship we can characterize the open domain consistency of GCC,
in preparation for describing a domain consistent propagator for GCC.

Proposition 10. Consider the constraint GCC(X , v, l, u, N) with domain D
for X and N . Let [lN , uN ] be the tightest bounding interval for D(N). Consider
the flow network G based on D and [lN , uN ].

D is open domain consistent with the constraint if and only if

– for every X ∈ X and d ∈ D(X) some feasible integer flow in G has flow
along the arc (X, d),

– some feasible integer flow in G has a total flow of lN , and
– uN ≤ uT +

∑
d∈Dom ud, where uT is the upper bound on (RT , t), which is

either 0 or ∞

This result follows from Proposition 9 and a couple of extra points. By construc-
tion of G, any feasible flow has total flow between lN and uN . Given a minimal
feasible integer flow, any greater flow – up to min(uN , uT +

∑
d∈Dom ud) – can

be obtained by adding flows along (s, RV ), (RV , d) and (d, t) to the extent per-
mitted by each ud, and (RV , RT ) and (RT , t) if that is possible. Thus, if there
is support for N = lN then there is support for all greater values up to uN ,
assuming uN ≤ uT +

∑
d∈Dom ud.

Domains of variables are maintained by the standard techniques [13]. If a
variable Y is added, we add a node for Y with arcs (s, Y ) with bounds [1, 1],
(Y, d) with bounds [0, 1] for each d ∈ D(Y ), and decrement both bounds on the
arc (s, RV ). If the bounds on N are changed, we change the bounds on (s, RV );
deletions of values from within the interior of D(N) require no adjustment. Since
GCC is effectively extensible, propagation does not affect uN . After propagation
on X we must check the minimum feasible integer flow and if it has increased,
increase lN to the same value (and update the lower bound on (s, RV )). Finally,
when the constraint is closed we assign lN = uN = |X|.

8 The Regular Constraint

The Regular constraint is defined as follows

Regular(A, X , N) = {d1 . . . dn | d1 . . . dn is accepted by A, n ≥ 0}

For a language constraint C we can use the domain of N , which we assume
to be fnite, to define the sublanguage that the constraint is restricted to by N .
Let LenN denote the set of words with length in D(N). Then, given the domain
of N , the language defined by C is LC ∩ LenN .

For the Regular constraint, where the language is defined by an automa-
ton A, we can construct an automaton AN accepting LC ∩ LenN by standard
techniques. This would allow implementation techniques for closed Regular to
be easily adapted for open Regular. In particular, the approach of [10] which
essentially unfolds the automaton is easily adapted. That approach produces a
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layered automaton where each layer is essentially a copy of the original automa-
ton, except that transitions lead to the next layer. Thus, for each state q of A
and layer i, there is a state qi in AN , and for each transition δ(q, a) = p we have
δ(qi, a) = pi+1, for each i. qi is a final state in AN iff q is a final state in A and
i = |X|. The filtering algorithm of [10] deletes values from the domains of vari-
ables, deletes transitions and/or deletes states to ensure the following invariants:
d ∈ D(Xi) iff there is a transition to layer i by the value d, and every transition
and state is on a path from the start state to a final state.

The implementation of open Regular(A, X , N) is essentially the same as
that of closed Regular(AN , X), with some extra filtering steps. The unfolded
automaton is a variation of the unfolding of A. Let k be the length of X. Rather
than unfolding k times we must unfold uN times. We must have k ≤ lN . The
final states of the resulting automaton are the states in layers i ∈ dom(N) that
correspond to a final state of A.

It remains to describe the extra filtering steps required. When there are no
more final states in layer i, we eliminate i from the domain of N . If i is deleted
from the domain of N by some other constraint then the states in layer i are
updated to no longer be final. When a variable Y is added to X, we eliminate
k from D(N) and delete transitions to layer k + 1 that are not compatible with
D(Y ). The closing of X can be expressed by setting N to the current length
of X. In each of these cases, further filtering might be needed, to restore the
invariant.

Proposition 11. The propagator of Regular(A, X, N) described above main-
tains open domain consistency.

However, the size of the automaton used in the above implementation may be
O(|A|uN ). In many cases the initial value of uN may be extremely large, so this
might present an unacceptable up-front cost. An alternative is to unfold only lN
times, and then to unfold further when lN is increased. In this case we will not
be able to achieve domain consistency for N , so we limit our attention to lower
bound consistency.

Using a breadth-first search on A we find the shortest distance from each state
q to a final state, denoted by d(q, F ). A state qi in the unfolded automaton is
final iff i = lN and lN +d(q, F ) ≤ uN . These are the states qlN that participate in
an accepting run with a length between lN and uN . Now, when the lower bound
on N is increased further unfolding must be performed, the old final states are
made non-final and new final states are computed for the (new) layer lN . When
the upper bound on N is decreased, the final states must be updated. When a
variable Y is appended to X, if k = lN then lN is incremented, the automaton
unfolded, and new final states computed; in either case, the transitions to layer
k + 1 incompatible with D(Y ) are deleted. When the constraint is closed, it is
unsatisfiable if k < lN ; otherwise we assign N = k.

We also keep track of the set of states qlN such that q is final in A. If
this set becomes empty then no string of length lN can be accepted. Let
m = min{d(q, F ) | qlN exists and is a final state in the modified AN}. Then lN
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is increased by m and m layers are added to the automaton. The old final states
are made non-final and new final states are computed for the (new) layer lN .

Proposition 12. The propagator of Regular(A, X, N) described above main-
tains open DL-consistency.

When the Regular constraint is contractible (that is, A defines a prefix-closed
language) then we can simplify the propagator above. Using the transformation
described in Proposition 5, we can ensure that all states that lie on a path
between start and final state are final. Other states can be ignored. Consequently,
d(q, F ) = 0 for every state q. If uN is changed then no propagation is needed,
by Proposition 4.

When the Regular constraint is also extensible (that is, A defines a continual
language) then the propagator is as good as we can hope for. By Proposition 4,
changes in lN and D(X) do not affect uN . As remarked earlier, X and N are
decoupled, and hence the above propagator maintains open domain consistency.

Proposition 13. If the language of A is prefix-closed and continual at threshold
m then the simplified propagator for Regular(A, X , N) described above main-
tains open domain consistency when |X| > m.

9 The CFG Constraint

The CFG constraint is defined as follows

CFG(G, X, N) = {d1 . . . dn | d1 . . . dn is generated by G, n ≥ 0}

A propagator for the closed form of this constraint, based on the CYK parser
for grammars in Chomsky normal form, has been proposed [11,15]2. That propa-
gator creates a table that holds, for each substring of X, the non-terminals that
can generate the substring under the restrictions imposed by D(X). Then, in
another pass over the table, those non-terminals for substrings that are compati-
ble with a parse of X are selected, starting with selecting S for the entire string.
The set of terminal symbols a of productions A→ a from selected non-terminals
A for substrings of length 1 starting at i, form the new domain of Xi.

This propagator is easily adapted to an open version of the constraint. The
table must consider strings of length up to uN . If, after the table is created, a
substring from position 1 to n where n ∈ D(N), cannot be generated from the
starting non-terminal S then n is deleted from D(N). The second pass over the
table is essentially the same as for the closed constraint: the only difference is
that the starting point is the selection of S for every substring from 1 to n where
n ∈ D(N).

Proposition 14. The propagator of CFG(G, X , N) described above maintains
open domain consistency.
2 [11] also proposes a propagator based on Earley’s parser. We will not address that

here.
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10 Conclusions

We have introduced a model of open constraints that incorporates the length of
the sequence of variables. With three case studies we have seen that propagators
for closed constraints can be adapted to open constraints in this model. We have
also explored the consequences of two properties of constraints that are likely to
be important to open constraint programming, no matter which model is used.
Along the way, we have obtained results on Barták’s model of open constraints.

Acknowledgements. Thanks to the referees for their comments and to An-
dreas Bauer, Christian Dax, Boi Faltings, Rob van Glabeek, Sebastien Maneth
and Toby Walsh for discussions related to this paper.
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Abstract. This paper introduces a global constraint encapsulating a
regular constraint together with several cumulative costs. It is moti-
vated in the context of personnel scheduling problems, where a schedule
meets patterns and occurrence requirements which are intricately bound.
The optimization problem underlying the multicost-regular constraint
is NP-hard but it admits an efficient Lagrangian relaxation. Hence, we
propose a filtering based on this relaxation. The expressiveness and the
efficiency of this new constraint is experimented on personnel scheduling
benchmark instances with standard work regulations. The comparative
empirical results show how multicost-regular can significantly out-
perform a decomposed model with regular and global-cardinality

constraints.

1 Introduction

Many combinatorial decision problems involve the simultaneous action of se-
quencing and counting objects, especially in the large class of routing and
scheduling problems. In routing, a vehicle visits a sequence of locations follow-
ing a path in the road network according to some numerical requirements on the
whole travelling distance, the time spent, or the vehicle capacity. If only one nu-
merical attribute is specified, finding a route is to solve a shortest/longest path
problem. For several attributes, the problem – a Resource Constrained Short-
est/Longest Path Problem (RCSPP) – becomes NP-hard. All these numerical
requirements may drastically restrict the set of paths in the network which cor-
respond to the actual valid routes. Hence, it is much more efficient to take these
requirements into account throughout the search of a path, rather than each sep-
arately. Personnel scheduling problems can be treated analogously. Planning a
worker schedule is to sequence activities (or shifts) over a time horizon according
to many various work regulations, as for example: “a working night is followed
by a free morning”, “a night shift costs twice as musch as a day shift”, “at least
10 days off a month”, etc. Hence, a schedule meets both structural requirements
– defined as allowed patterns of activities – and numerical requirements – de-
fined as assignment costs or counters – which are intricately bounds. Modelling
these requirements individually is itself a hard task, for which the expressiveness
and the flexibility of Constraint Programming (CP) is recognized. Modelling
these requirements efficiently is still a harder task as it means to aggregate all

W.-J. van Hoeve and J.N. Hooker (Eds.): CPAIOR 2009, LNCS 5547, pp. 178–192, 2009.
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of them in order to process this set of tied requirements as a whole. By intro-
ducing the regular global constraint, Pesant [1] has proposed an elegant and
efficient way to model and to enforce all the pattern requirements together. The
allowed patterns are gathered in an acyclic digraph whose paths coincide with
the valid sequences of activities. This approach was later extended to optimiza-
tion constraints soft-regular [2] and cost-regular [3] for enforcing bounds
on the global cost – a violation cost or any financial cost – of the sequence of
assignments. The underlying problem is now to compute shortest and longest
paths in the acyclic graph of patterns. The cost-regular constraint was success-
fully applied to solve real-world personnel scheduling problems under a CP-based
column-generation approach [3]. Nevertheless, the authors complained about the
weak interaction in their CP model between the cost-regular constraint and
an external global-cardinality used for modelling occurrence requirements.
Actually, with such a decomposition, the support graph of cost-regular main-
tains many paths which do not satisfy the cardinality constraints. In this pa-
per, we still generalize this approach for handling several cost attributes within
one global constraint multicost-regular. Such a constraint allows to reason
simultaneously on the sequencing and counting requirements occurring in per-
sonnel scheduling problems. As mentioned above, the underlying optimization
problem is a RCSPP and it remains NP-hard even when the graph is acyclic.
Hence, the filtering algorithm we present achieves a relaxed level of consistency.
It is based on the Lagrangian relaxation of the RCSPP following the principle
by Sellmann [4] for Lagrangian relaxation-based filtering. Our implementation
of multicost-regular is available in the distribution of the open-source CP
solver CHOCO 1.

The paper is organized as follows. In Section 2, we present the class of regular
constraints and provide a theoretical comparison between the path-finding ap-
proach of Pesant [1] and the decomposition-based approach of Beldiceanu et
al. [5]. We introduce then the new constraint multicost-regular. In Section 3,
we introduce the Lagrangian relaxation-based filtering algorithm. In Section 4,
we describe a variety of standard work regulations and investigate a systematic
way of building one instance of multicost-regular from a set of requirements.
In Section 5, comparative empirical results on benchmark instances of personnel
scheduling problems are given. They show how multicost-regular can signifi-
cantly outperform a decomposed model with regular and globalcardinality
constraints.

2 Regular Language Membership Constraints

In this section, we recall the definition of the regular constraint and report
on related work, before introducing multicost-regular. First, we recall basic
notions of automata theory and introduce notations used throughout this paper:

We consider a non empty set Σ called the alphabet. Elements of Σ are called
symbols, sequences of symbols are called words, and sets of words are called
1 http://choco.emn.fr/
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languages over Σ. An automaton Π is a directed multigraph (Q, Δ) whose arcs
are labelled by the symbols of an alphabet Σ, and where two non-empty subsets
of vertices I and A are distinguished. The set Q of vertices is called the set of
states of Π , I is the set of initial states, and A is the set of accepting states.
The non-empty set Δ ⊆ Q×Σ×Q of arcs is called the set of transitions of Π .
A word in Σ is said to be accepted by Π if it is the sequence of the arc labels
of a path from an initial state to an accepting state in Π . Automaton Π is a
deterministic finite automaton (DFA) if Δ is finite and if it has only one initial
state (I = {s}) and no two transitions sharing the same initial extremity and
the same label. The language accepted by a FA is a regular language.

2.1 Path-Finding and Decomposition: Two Approaches for regular

The regular language membership constraint was introduced by Pesant in [1].
Given a sequence X = (x1, x2, ..., xn) of finite domain variables and a deter-
ministic finite automaton Π = (Q, Σ, Δ, {s}, A), the constraint regular(X, Π)
holds iff X is a word of length n over Σ accepted by DFA Π . By definition, the
solutions of regular(X, Π) are in one-to-one correspondance with the paths of
exactly n arcs connecting s to a vertex in A in the directed multigraph Π . Let
δi ∈ Δ denote the set of transitions that appears as the i-th arc of such a path,
then a value for xi is consistent iff δi contains a transition labelled by this value.

Coincidently, Pesant [1] and Beldiceanu et al [5] introduce two orthogonal
approaches to achieve GAC on regular (see Figure 1). The approach proposed
by Pesant [1] is to unfold Π as an acyclic DFA Πn which accepts only the words
of length n. By construction, Πn is a layered multigraph with state s in layer 0
(the source), the accepting states A in layer n (the sinks), and where the set of
arcs in any layer i coincides with δi. A breadth-first search allows to maintain the
coherence between Πn and the variable domains by pruning the arcs in δi whose
labels are not in the domain of xi, then by pruning the vertices and arcs which
are not connected to a source and to a sink. In Beldiceanu et al [5], a regular
is decomposed as n tuple constraints for modelling the sets δ1, δ2, . . . , δn. The
decomposition introduces state variables q0 ∈ {s}, q1, . . . , qn−1 ∈ Q, qn ∈ A and

a

1s

b

b

a

unfolded automaton:

a

s a

a

b

b
s s

111 1

s
b

b
b

as a
decomposed model:
(q0, x1, q1) ∈ {(s, a, s), (s, b, 1)},
(q1, x2, q2) ∈ {(s, a, s), (1, a, 1)},
(q2, x3, q3) ∈ {(s, a, s), (1, b, s),//////////////////////(s, b, 1), (1, a, 1)},
(q3, x4, q4) ∈ {(s, b, 1),//////////(1, b, s)}.

Fig. 1. Consider the DFA depicted above applied to X ∈ {a, b}×{a}×{a, b}×{b}. The
unfolded automaton of regular is depicted on the left and the decomposed model on
the right. The dashed transitions are discarded in both models.
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uses triplet relations defined in extension to enforce GAC on the transition con-
straints (qi−1, xi, qi) ∈ δi. Such a constraint network being Berge-acyclic, enforc-
ing AC on the decomposition achieves GAC on regular.

In the first approach, a specialized algorithm is defined to maintain all the
support paths, while in the second approach, the transitions are modeled with
tuple constraints which are directly propagated by the CP solver. The two ap-
proaches are orthogonal. Actually, the second model may mimic the specialized
algorithm depending on the chosen propagation.

If we assume w.l.o.g. that Σ is the union of the variable domains, then the
initial run of Pesant’s algorithm for the construction of Πn is performed in
O(n|Δ|) time and space (with Δ ≤ |Q||Σ| if Π is a DFA). Incremental filtering
is performed with the same worst-case complexity with a forward/backward
traversal of Πn. Actually, the complexity of the algorithm relies more on the size
|Δn| of the unfolded automaton Πn rather than on the size |Δ| of the specified
automaton Π . Note for instance that when the specified automaton Π accepts
only words of length n then it is already unfolded (Π = Πn) and the first run of
the algorithm is in O(|Δ|). In practice, as in our experiments (Section 5), Πn can
even be much smaller than Π , meaning that many accepting states in Π cannot
be reached in exactly n transitions. The incremental filtering is performed in
O(|Δn|) time with, in such a case, |Δn| # n|Δ|.

regular is a very expressive constraint. It is useful to model pattern con-
straints arising in many planning problems, but also to reformulate other global
constraints [5] or to model tuples defined in extension. An other application of
regular is to model a sliding constraint: recently, Bessière et al. [6] have in-
troduced the slide meta constraint. In its more general form, slide takes as
arguments a matrix of variables Y of size n × p and a constraint C of arity pk
with k ≤ n. slide(Y, C) holds if and only of C(y1

i+1, . . . , y
p
i+1, . . . , y

1
i+k, . . . , yp

i+k)
holds for 0 ≤ i ≤ n−k. Using the decomposition proposed in [5], regular(X, Π)
can be reformulated as slide([Q, X ], CΔ), where Q is the sequence of state vari-
ables and CΔ is the transition constraint CΔ(q, x, q′, x′) ≡ (q, x, q′) ∈ Δ. Con-
versely [6], a slide constraint can be reformulated as a regular but it may
require to enumerate all valid tuples for C. This reformulation can however be
useful in the context of planning (especially for car sequencing) to model a sliding
cardinality constraint also known as sequence. Even if powerful specialized al-
gorithms exist for this constraint (see e.g. [7]), the automaton resulting from the
reformulation can be integrated with other pattern requirements as we will show
in Section 4. Finally, one should notice the work (see e.g. [8]) related to context-
free grammar constraints. Though, most of the rules encountered in personnel
scheduling can be described using regular languages.

2.2 Maintaining Patterns with Cumulative Costs and Cardinalities

Personnel scheduling problems are usually defined as optimization problems.
Most often, the criterion to optimize is a cumulative cost, i.e. the sum of costs
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associated to each assignment of a worker to a given activity at a given time.
Such a cost has several meanings: it can model a financial cost, a preference, or
a value occurrence. Now, designing a valid schedule for one worker is to enforce
the sequence of assignments to comply with a given pattern while ensuring that
the total cost of the assignments is bounded. This can be specified by means of a
cost-regular constraint [3]. Given c = (cia)i∈[1..n]×a∈Σ a matrix of real assign-
ment costs and z ∈ [z, z] a bounded variable (z, z ∈ R), cost-regular(X, z, Π, c)
holds iff regular(X, Π) holds and

∑n
i=1 cixi = z. Note that it has the knapsack

constraint [9] as a special case and that, unless P = NP , one can enforce GAC
on a knapsack constraint at best in pseudo-polynomial time, i.e. the run time is
polynomial in the values of the bounds of z. As a consequence, enforcing GAC
on cost-regular is NP-hard.

The definition of cost-regular reveals a natural decomposition as a regular
constraint channeled to a knapsack constraint. Actually, it is equivalent to the
decomposition proposed by Beldiceanu et al. [5] when dealing with one cumu-
lative2 cost: cost variables ki are now associated to the previous state variables
qi, with k0 = 0 and kn = z, and several arithmetic and element constraints
model the knapsack and channeling constraints. In short, this formulation
can be rewritten as slide([Q, X, K], Cc

Δ), with Cc
Δ(qi−1, xi−1, ki−1, qi, xi, ki) ≡

(qi−1, xi−1, qi) ∈ Δ∧ki = ki−1+cixi. Depending on the size of the domains of the
cost variables, GAC can be enforced on knapsack in reasonable time. However,
even in this case, since the constraint hypergraph of the decomposed model is
no longer Berge-acyclic but α-acyclic, one has to enforce pairwise-consistency on
the shared variables – a pair (qi, ki) of state and cost variables – of the transition
constraints in order to achieve GAC. A similar option proposed for slide [6] is
to enforce AC on the dual encoding of the hypergraph of the Cc

Δ constraints,
but again it requires to explicit all the support tuples and then, it may be of no
practical use.

The filtering algorithm presented in [3] for cost-regular is a slight adap-
tation3 of Pesant’s algorithm for regular. It is based on the computation of
shortest and longest paths in the unfolded graph Πn valued by the transition
costs. To each vertex (i, q) in any layer i of Πn are associated two bounded
cost variables k−

iq and k+
iq modelling the lengths of the paths respectively from

layer 0 to (i, q) and from (i, q) to layer n. The cost variables can trivially be
initialized during the construction of Πn: k−

iq in the forward phase and k+
iq in

the backward phase. The bounds of variable z are then pruned according to the
condition z ⊆ k+

0s. Conversely, an arc ((i − 1, q), a, (i, q′)) ∈ δi can be removed
whenever:

k−
(i−1)q + cia + k+

iq′ > z or k−
(i−1)q + cia + k+

iq′ > z.

2 The model in [5] can deal not only with sum but also with various arithmetic func-
tions on costs, but no example of use is provided.

3 Previously, the algorithm was partially – for minimization only – applied to the
special case soft-regular[hamming] in [5] and in [2].
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As graph Πn is acyclic, maintaining the cost variables, i.e. shortest and longest
paths, can be performed by breadth-first traversal with the same time complexity
O(|Δn|) than for maintaining the connexity of the graph in regular.

As said before, this algorithm achieves a hybrid level of consistency on
cost-regular. As a matter of fact, it enforces a sort of pairwise-consistency on
the decomposed model between each state variable and the bounds of the asso-
ciated cost variable, according to the relation qi = (i, q) ⇐⇒ ki = k−

iq. Hence, it
dominates the decomposed model knapsack∧regular when only Bound Consis-
tency is enforced on the cost variables. Otherwise, if AC is enforced on knapsack
then the two approaches are incomparable as show the two examples depicted
in Figures 2 and 3.

3s

1

2

a [1]

b [0]

a [1]

[0,1]
b [0]

x1 ∈ {//a, b}, x2 ∈ {//a, b}, z ∈ [0, 1].

(q0, x1, q1, j1) ∈ {(s, a, 1, 1), (s, b, 2, 2)},
element(k1, j1, (k0 + 1, k0)),
(q1, x2, q2, j2) ∈ {(1, a, 3, 1), (2, b, 3, 2)},
element(z, j2, (k1 + 1, k1)),
q0 ∈ {s}, q1 ∈ {1, 2}, q2 ∈ {3},
k0 ∈ {0}, k1 ∈ {0, 1},
x1 ∈ {a, b}, x2 ∈ {a, b}, z ∈ {0, 1}.

Fig. 2. Consider the depicted DFA with costs in brackets applied to X = (x1, x2) ∈
{a, b} × {a, b} and z ∈ [0, 1]. The cost-regular algorithm (on the left) discards the
dashed transitions and hence achieves GAC. The decomposed model (on the right) is
arc-consistent but not globally consistent.

s [2,2]

a [0]

b [2]b [2]

c [1]

a [0]

21

x1 ∈ {a, b, c}, x2 ∈ {a, b}, z ∈ [2, 2].

(x1, j1) ∈ {(a, 1),///////(c, 2), (b, 3)},
element(k1, j1, (k0,/////////k0 + 1, k0 + 2)),
(x2, j2) ∈ {(a, 1), (b, 2)},
element(z, j2, (k1, k1 + 2)),
k0 ∈ {0}, k1 ∈ {0,//1, 2},
x1 ∈ {a, b,/c}, x2 ∈ {a, b}, z ∈ {2}.

Fig. 3. Consider now the depicted DFA applied to X = (x1, x2) ∈ {a, b, c} × {a, b}
and z ∈ [2, 2]. Enforcing AC on the decomposed model (on the right) achieves GAC.
The cost-regular algorithm (on the left) does not achieve GAC since the minimum and
maximum paths traversing arc x1 = c are consistent with the bounds on z.

2.3 The multicost-regular Constraint

A natural generalization of cost-regular is to handle several cumulative costs:
given a vector Z = (z0, ..., zR) of bounded variables and c = (cr

ia)r∈[0..R]
i∈[1..n],a∈Σ

a matrix of assignment costs, multicost-regular(X, Z, Π, c) holds if and only
if regular(X, Π) holds and

∑n
i=1 cr

ixi
= zr for all 0 ≤ r ≤ R. Such a gener-

alization has an important motivation in the context of personnel scheduling.
Actually, apart a financial cost and pattern restrictions, an individual schedule
is usually subject to a global-cardinality constraint bounding the number of
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occurrences of each value in the sequence. These bounds can drastically restrict
the language on which the schedule is defined. Hence, it could be convenient
to tackle them within the regular constraint in order to reduce the support
graph. As a generalization of cost-regular or of the global-sequencing con-
straint [10], we cannot hope to achieve GAC in polynomial time here. Note that
the model by Beldiceanu et al [5] – and similarly the slide constraint – was also
proposed for dealing with several costs but again, it amounts to decompose as a
regular constraint channeled with one knapsack constraint for each cost.

Hence, we ought to exploit the structure of the support graph of Πn to get a
good relaxed propagation for multicost-regular. The optimization problems
underlying cost-regular were shortest and longest path problems in Πn. The
optimization problems underlying multicost-regular are now the Resource
Constrained Shortest and Longest Path Problems (RCSPP and RCLPP) in Πn.
The RCSPP (resp. RCLPP) is to find the shortest (resp. longest) path between
a source and a sink in a valued directed graph, such that the quantities of
resources accumulated on the arcs do not exceed some limits. Even with one
resource on acyclic digraphs, this problem is known to be NP-hard[11]. Two
approaches are most often used to solve RCSPP [11]: dynamic programming
and Lagrangian relaxation. Dynamic programming-based methods extend the
usual short path algorithms by recording the costs over every dimension at each
node of the graph. As in cost-regular, this could easily be adapted for filtering
by converting these cost labels as cost variables but it would make the algorithm
memory expensive. Instead, we investigate a Lagrangian relaxation approach,
which can also easily be adapted for filtering from the cost-regular algorithm
without memory overhead.

3 A Lagrangian Relaxation-Based Filtering Algorithm

Sellmann [4] laid the foundation for using the Lagrangian relaxation of a lin-
ear program to provide a cost-based filtering for a minimization or maximiza-
tion constraint. We apply this principle to the RCSPP/RCLPP for filtering
multicost-regular. The resulting algorithm is a simple iterative scheme where
filtering is performed by cost-regular on Πn for different aggregated cost func-
tions. In this section, we present the usual Lagrangian relaxation model for the
RCSPP and explain how to solve it using a subgradient algorithm. Then, we
show how to adapt it for filtering multicost-regular.

Lagrangian Relaxation for the RCSPP. Consider a directed graph G =
(V, E, c) with source s and sink t, and resources (R1, ...,RR). For each resource
1 ≤ r ≤ R, let zr (resp. zr) denote the maximum (resp. minimum4) capacity
of a path over the resource r, and cr

ij denote the consumption of resource r on
arc (i, j) ∈ E. A binary linear programming formulation for the RCSPP is as
follows:

4 In the original definition of RCSPP, there is no lower bound on the capacity: zr
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min
∑

(i,j)∈E

cijxij (1)

s.t. zr ≤
∑

(i,j)∈E

cr
ijxij ≤ zr ∀r ∈ [1..R] (2)

∑
j∈V

xij −
∑
j∈V

xji =

⎧⎨⎩
1 if i = s,
−1 if i = t,

0 otherwise.
∀i ∈ V (3)

xij ∈ {0, 1} ∀(i, j) ∈ E. (4)

In this model, a binary decision variable xij defines whether arc (i, j) belongs to
a solution path. Constraints (2) are the resource constraints and Constraints (3)
are the usual path constraints.

Lagrangian relaxation consists in dropping “complicating constraints” and
adding them to the objective function with a violation penalty cost u ≥ 0,
called the Lagrangian multipliers. The resulting program is called the Lagrangian
subproblem with parameter u and it is a relaxation of the original problem.
Solving the Lagrangian dual is to find the multipliers u ≥ 0 which gives the best
relaxation, i.e. the maximal lower bound.

The complicating constraints of the RCSPP are the 2R resource constraints (2).
Indeed, relaxing these constraints leads to a shortest path problem, that can be
solved in polynomial time. Let P denote the set of solutions x ∈ {0, 1}E satisfy-
ing Constraints (3). P defines the set of paths from s to t in G. The Lagrangian
subproblem with given multipliers u = (u−, u+) ∈ R2R

+ is:

SP (u) : f(u) = min
x∈P

cx +
R∑

r=1

ur
+(crx− zr)−

R∑
r=1

ur
−(crx− zr) (5)

An optimal solution xu for SP (u) is then a shortest path in graph G(u) =
(V, E, c(u)) where:

c(u) = c+
R∑

r=1

(ur
+−ur

−)cr, κu =
n∑

r=1

(ur
−zr−ur

+zr) and f(u) = c(u)xu +κu. (6)

Solving the Lagrangian Dual. The Lagrangian dual problem is to find the
best lower bound f(u), i.e. to maximize the piecewise linear concave function f :

LD : fLD = max
u∈R2R

+

f(u) (7)

Several algorithms exist to solve the Lagrangian dual. In our approach, we con-
sider the subgradient algorithm [12] as it is rather easy to implement and it does
not require the use of a linear solver. The subgradient algorithm iteratively solves
one subproblem SP (u) for different values of u. Starting from an arbitrary value,
the position u is updated at each iteration by moving in the direction of a super-
gradient Γ of f with a given step length μ: up+1 = max{up +μpΓ (up), 0}. There
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exist many ways to choose the step lengths for guaranteeing the convergence
of the subgradient algorithm towards fLD (see e.g. [13]). In our implementa-
tion, we use a standard step length μp = μ0ε

p with μ0 and ε < 1 “sufficiently”
large (we have empirically fixed μ0 = 10 and ε = 0.8). For the supergradient,
solving SP (u) returns an optimum solution xu ∈ P and Γ (u) is computed as:
Γ (u) = ((crxu − zr)r∈[1..R], (zr − crxu)r∈[1..R]).

From Lagrangian Relaxation to Filtering. The key idea of Lagrangian
relaxation-based filtering, as stated in [4], is that if a value is proved to be
inconsistent in at least one Lagrangian subproblem then it is inconsistent in the
original problem:

Theorem 1. (i) Let P be a minimization linear program with optimum value
f∗ ≤ +∞, z ≤ +∞ be an upper bound for P , and SP (u) be any Lagrangian
subproblem of P , with optimum value f(u)∗ ≤ +∞. If f(u) > z then f∗ > z.

(ii) Let x be a variable of P and v a value in its domain. Consider Px=v

(resp. SP (u)x=v) the restriction of P (resp. SP (u)) to the set of solutions sat-
isfying x = v and let f∗

x=v ≤ +∞ (resp. f(u)x=v ≤ +∞) its optimum value. If
f(u)x=v > z then f∗

x=v > z.

Proof. Statement (i) of Theorem 1 is straightforward, since SP (u) is a relax-
ation for P , then f(u) ≤ f∗. Statement (ii) arises from (i) and from the fact
that, adding a constraint x = v within P and applying Lagrangian relaxation,
or applying Lagrangian relaxation and then adding constraint x = v to each
subproblem, result in the same formulation.

The mapping between multicost-regular(X, Z, Π, c), with |Z| = R + 1 and
an instance of the RCSPP (resp. RCLPP) is as follows: We single out one cost
variable, for instance z0, and create R resources, one for each other cost variable.
The graph G = (Πn, c0) is considered. A feasible solution of the RCSPP (resp.
RCLPP) is a path in Πn from the source (in layer 0) to a sink (in layer n) that
consumes on each resource 1 ≤ r ≤ R is at least zr and at most zr. Furthermore,
we want to enforce an upper bound z0 on the minimal value for the RCSPP (resp.
a lower bound z0 on the maximal value for the RCLPP). The arcs of Πn are in
one-to-one correspondance with the binary variables in the linear model of these
two instances.

Consider a Lagrangian subproblem SP (u) of the RCSPP instance (the ap-
proach is symmetric for the maximization instance of RCLPP) . We show that
a slight modification of the cost-regular algorithm allows to solve SP (u) but
also to prune arcs of Πn according to Theorem 1 and to shrink the lower bound
z0. The algorithm starts by updating the costs on the graph Πn with c0(u), as
defined in (6) and then by computing, at each node (i, q), the shortest path k−

iq

from layer 0 and the shortest path k+
iq to layer n. We get the optimum value

f(u) = k+
0s + κu. As it is a lower bound for z0, one can eventually update this

lower bound as z0 = max{f(u), z0}. Then, by a traversal of Πn, we remove each
arc ((i− 1, q), a, (i, q′)) ∈ δi such that k−

(i−1)q + c0(u)ia + k+
iq′ > z0 − κu.
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The global filtering algorithm we developed for multicost-regular is as fol-
lows: starting from u = 0, a subgradient algorithm guides the choice of the
Lagrangian subproblems to which the above cost-filtering algorithm is applied.
The number of iterations for the subgradient algorithm is limited to 20 (it usu-
ally terminates far before). The subgradient algorithm is first applied to the
minimization problem (RCSPP) then to the maximization problem (RCLPP).
As a final step, we run the original cost-regular algorithm on each of the
cost variables to shrink their bounds (by the way, it could deduce new arcs to
filter, but it did not happen in our experiments). Note that due to the parame-
ter dependancy of the subgradient algorithm, the propagation algorithm is not
monotonic.

4 Modelling Personnel Scheduling Problems

In this section we show how to model standard work regulations arising in Per-
sonnel Scheduling Problems (PSP) as one instance of the multicost-regular
constraint. The purpose is to emphasize the ease of modelling with such a con-
straint and also to derive a systematic way of modelling PSP.

4.1 Standard Work Regulations

In PSP, many kinds of work regulations can be encountered, however, we can
categorize most of them as rules enforcing either regular patterns, fixed cardi-
nalities or sliding cardinalities.

To illustrate those categories, we consider a 7 days schedule and 3 activities:
night shift (N), day shift (D) or rest shift (R). For example: R R D D N R D

Regular Patterns can be modelled directly as a DFA. For instance the rule
“a night shift is followed by a rest” is depicted in Figure 4 (A). The rules can
either be given as forbidden patterns or allowed patterns. In the first case, one
just need to build the complement automaton.

Fixed Cardinality Rules bound the number of occurrences of an activity
or a set of activities over a fixed subsequence of time slots. Such a rule can
be modelled within an automaton or using counters. For example, the rule “at
least 1 and at most 3 day shifts each week” can easily be modelled as the DFA
depicted in Figure 4 (B). Taking a look at this automaton, we can see the
initial state has been split into 3 different states that represent the maximum

s

R, D

R

N
1

(A) a regular pattern example.

3

R, N

s
D

R, N R, N

D D

R, N

1 2

(B) cardinality rule example.

Fig. 4. Examples of automata representing work regulations
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number of D transitions that can be taken. Such a formulation can be an issue
when the maximum occurrence number increases. In this case, using a counter
is more suitable, as we only need to create a new cost variable zr ∈ [1, 3] with
cr
ij = 1 ⇐⇒ 1 ≤ i ≤ 7 and j = D. More generally, one can also encounter

cardinality rules over patterns. This also can be managed by means of a cost.
One has to isolate the pattern within the automaton describing all the feasible
schedules, then to price transitions entering it to 1.

Sliding Constraints can be modelled as a DFA using the reformulation stated
in [6]. However, the width of the sliding sequence should not be too large as the
reformulation requires to explicit all the feasible tuples of the constraint to slide.
This is often the case in PSP or also in car sequencing problems.

4.2 Systematic multicost-regular Generation

A formalism to describe Personnel Scheduling Problems has been proposed in [14].
The set of predefined XML markups allows to specify a large scope of PSP. In order
to automatically generate a CP model based on multicost-regular from such
specifications, we developed a framework capable of interpreting those XML files.
In a first step, we bounded each markup associated to a work regulation to one of
the 3 categories described above. Hence, for each rule of a given PSP instance, we
automatically generate either an automaton or a counter depending on the rule
category. For instance, the forbidden pattern “no day shift just after a night shift”
is defined in the xml file as

<Pattern weight="1350"><Shift>N</Shift><Shift>D</Shift></Pattern>

and is automatically turned into its equivalent regular expression (D|N |R) ∗
ND(D|N |R)∗. We use a java library for automata5 in order to create a DFA
from a regular expression and to operate on the set of generated DFA. We
use the opposite, the intersection and the minimization operations to build an
unique DFA. Once the DFA is built, we treat the rules that engender counters,
and generate a multicost-regular instance for each employee. Last, we treat
the transversal constraints and include them in the CP model. For example,
cover requirements are turned into global-cardinality constraints. Note that
we were not able to deal with two kinds of specifications: some rule violation
penalties that the multicost-regular cannot model and the pattern cardinality
rules that we do not yet know how to automatize the reformulation.

4.3 Two Personnel Scheduling Cases

We first tackled the GPost [14] problem. This PSP consists in building a valid
schedule of 28 days for eight employees. Each day, an employee has to be assigned
to a Day, Night, or Rest Shift. Each employee is bound to a (Fulltime or Part-
time) contract defining regular pattern and cardinality rules. Regular pattern

5 http://www.brics.dk/automaton/
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rules are: “free days period should last at least two days”, “consecutive working
week-ends are limited” and “given shift sequences are not allowed”. Using the
automatic modelling method we presented earlier, we build a DFA for each kind
of contract. Cardinality rules are: “a maximum number of worked days in the
28 days period is to be worked”, “the amount of certain shifts in a schedule is
limited” and “the number of working days per week is bounded”. Cover require-
ments and employee availabilities are also modelled. The softness specification
on rules has been ignored as well as the first pattern rule to avoid infeasibility.

The second case study is based on the generated benchmark set brought
by Demassey et al. [3]. The work regulations arise from a real-world personnel
scheduling problem. The goal is to build only one schedule for a day consisting
of 96 fifteen minutes time slots. Each slot is assigned either a working activity,
a break, a lunch or a rest. Each possible assignment carries a given cost. The
purpose is to find a schedule of minimum cost meeting all the work regulations.
As for the previous PSP, we can identify regular pattern work regulations: “A
working activity lasts at least 1 hour”, “Different work activities are separated
by a break or a lunch”, “Break, lunch and rest shifts cannot be consecutives”,
“Rest shifts are at the beginning or at the end of the day”, and “A break lasts 15
minutes”. And also fixed cardinality regulations with: “At least 1 and at most 2
breaks a day”, “At most one lunch a day” and “Between 3 and 8 hours of work
activities a day”. In addition to those work regulations, some activities are not
allowed to be performed during some period. These rules are trivial to model
with unary constraints.

5 Experiments

Experimentations were run on an Intel Core 2 Duo 2Ghz processor with 2048MB
of RAM running OS X. The two PSP problems were solved using the Java
constraint library CHOCO with default value selection heuristics – min value.

5.1 On the Size of the Automaton

As explained in Section 2.1, the filtering algorithm complexity of the regular
constraints depends on the size of the specified automaton. Thus it would seem
natural that processing a big automaton is not a good idea. However, practical
results points out two important facts. First of all, the operations we run for
automatically building a DFA from several rules tends to generate partially
unfolded DFA (by intersection) and to reduce the number of redundant states
which lie in the same layers (by minimization). Hence, the unfolded automaton
generated during the forward phase at the initialization of the constraint can
even be smaller than the specified automaton Π . Secondly, pruning during the
backward phase may produce an even smaller automaton Πn as many accepting
states cannot be reached in a given number n of transitions. Table 1 shows the
number of nodes and arcs of the different automata during the construction
of the multicost-regular constraints for the GPost problem: the sum of the
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Table 1. Illustration of graph reduction during presolving

Contract Count sum of DFAs Π Forward Backward (Πn)

Fulltime
# Nodes 5782 682 411 230
# Arcs 40402 4768 1191 400

Parttime
# Nodes 4401 385 791 421
# Arcs 30729 2689 2280 681

DFAs generated for each rule, the DFA Π after intersection and minimization,
the unfolded DFA after the forward and backward phases.

5.2 Comparative Experiments

The previous section showed the ease of modelling with multicost-regular.
However, there would be no point in defining such a constraint if the solving was
badly impacted. We then conduct experiments for comparing our algorithm with
a decomposed model consisting of a regular (or cost-regular for optimization)
channeled to a global-cardinality constraint (gcc).

Table 2. GPost problem results

multicost-regular regular ∧ gcc

WE regulation Time (s) # Fails Time (s) # Fails
no 1.94 24 12.6 68035
yes 16.0 1576 449.2 2867381

Table 2 presents the computational results on the GPost instance. The mod-
els include 8 multicost-regular or 8 regular and gcc (for each employee)
bound together by 28 transversal gcc (for each day). In the Table, the first row
corresponds to the problem without the sliding rule over the maximum num-
ber of consecutive working week-ends. In the second row, this constraint was
included. We tried various variable selection heuristics but found out assigning
variables along the days gave the best results as it allows the constraint solver
to deal with the transversal gcc more efficiently. Both models lead to the same
solutions. Actually, the average time spent on each node is much bigger using
multicost-regular. However, due to better filtering capabilities, the size of the
search tree and the runtime to find a feasible solution are significantly decreased.

Our second experiment tested the scalability of multicost-regular (MCR)
against cost-regular∧gcc (CR) on the optimization problem defined in Sec-
tion 4.3. The models do not contain any other constraint. However the decom-
posed model CR requires additional channeling variables. Table 3 presents the
results on a benchmark set made of 110 instances. The number n of working
activities varies between 1 and 50. The assignment costs were randomly gener-
ated. We tested different variable selection heuristics and kept the best one for
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Table 3. Shift generation results

MCR model CR model
Solved Solved Time out

n # t bt # t bt # Δ # opt
1 10 0.6 49 10 1.1 292 0 - -
2 10 0.8 54 10 2.4 539 0 - -
4 10 1.5 65 10 13.5 1638 0 - -
6 10 1.6 44 10 53.6 4283 0 - -
8 10 2.1 51 9 209.2 5132 1 3.5% 0

10 10 2.4 58 7 283.5 6965 3 4.6% 0
15 10 3.8 59 6 283.9 4026 4 4.7% 1
20 10 4.9 49 6 311.8 4135 4 4.2% 1
30 10 6.9 51 1 313.0 4303 9 3.1% 1
40 10 13.4 68 0 - - 10 6.1% 0
50 10 14.4 51 1 486.0 1406 9 5.0% 1

each model. Note that the results of the CR model are more impacted by the
heuristic.

The first columns in the table show that with the MCR model, we were able
to solve all instances (Column #) in less than 15 seconds for the biggest ones
(Column t). The average number of backtracks (Column bt) remains stable and
low as n increases. On the contrary the CR model is impacted a lot as shown
in the next columns. Indeed, as the initial underlying graph becomes bigger it
contains more and more paths violating the cardinality constraints. Those paths
are not discarded by cost-regular. Some instances with more than 8 activities
could not be solved within the given 30 minutes (Column #). Considering only
solved instances, the running time (t) and the number of backtracks (bt) are
always much higher than the MCR model based results. Regarding unsolved
instances, the best found solution within 30 minutes is rarely optimal (Column
# opt), and the average gap (Column Δ) is up to 6% for 40 activities.

6 Conclusion

In this paper, we introduce the multicost-regular global constraint and pro-
vide a simple implementation of Lagrangian relaxation-based filtering for it. Ex-
perimentations on benchmark instances of personnel scheduling problems show
the efficiency and the scalability of this constraint compared to a decomposed
model dealing with pattern requirements and cardinality requirements sepa-
rately. Furthermore, we investigate a systematic way to build an instance of
multicost-regular from a given set of standard work regulations. In future
works, we ought to get a fully systematic system linked to the CHOCO solver
for modelling and solving a larger variety of personnel scheduling and rostering
problems.
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Abstract. Providing consistent and fault-tolerant distributed object
services is among the fundamental problems in distributed computing.
To achieve fault-tolerance and to increase throughput, objects are repli-
cated at different networked nodes. However, replication induces signif-
icant communication costs to maintain replica consistency. Eventually-
Serializable Data Service (ESDS) has been proposed to reduce these
costs and enable fast operations on data, while still providing guarantees
that the replicated data will eventually be consistent. This paper revisits
ESDS instances where bandwidth constraints are imposed on segments
of the network interconnect. This class of problems was shown to be ex-
tremely challenging for both Mixed Integer Programming (MIP) and for
Constraint Programming (CP), some instances requiring hours of com-
putation time. The paper presents an improved constraint programming
model, a constraint-based local search model that can obtain high-quality
solutions quickly and a local search/constraint programming hybrid. The
experimental results indicate that the resulting models significantly im-
prove the state of the art.

1 Introduction

Data replication is a fundamental technique in distributed systems: it improves
availability, increases throughput, and eliminates single points of failure. Data
replication however induces a communication cost to maintain consistency among
replicas. Eventually-SerializableData Services (ESDS) [5] is a system that was for-
mulated to help reduce these costs. The algorithm implementing ESDS allows the
users to selectively relax the consistency requirements in exchange for improved
performance. Given a definition of an arbitrary serial data type, ESDS guarantees
that the replicated data will eventually be consistent (i.e., presenting a single-copy
centralized view of the data to the users), and the users are able to require the
results for certain operations to be consistent with the stable total order of all
operations.

The design, analysis, and implementation of systems such as ESDS is not
an easy task, and specification languages have been developed to express these
algorithms formally. For instance, the framework of (timed) I/O automata [9,7]
and their associated tools [10] allows theorem provers (e.g., PVS [13]) and model
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checkers (e.g., UPPAAL [8,3]) to reason about correctness. The ESDS algorithm
is in fact formally specified with I/O automata and proved correct [5]. Once a
specification is deemed correct, it must be implemented and deployed. The imple-
mentation typically consists of communicating software modules whose collective
behaviors cannot deviate from the set of acceptable behaviors of the specifica-
tion; see [4] for a methodic implementation of the algorithm and a study of its
performance. The deployment then focuses on mapping the software modules
onto a distributed computing platform to maximize performance.

This research focuses on the last step: the deployment of the implementation
on a specific architecture. The deployment can be viewed as a resource allocation
problem in which the objective is to minimize the network traffic while satis-
fying the constraints imposed by the distributed algorithms. These constraints
include, in particular, the requirements that replicas cannot be allocated to the
same computer since this would weaken fault tolerance. The basic ESDS De-
ployment Problem (ESDSDP) was considered by [2] and was modeled as a MIP
with disappointing results even on small instances. A highly competitive CP
approach as well as a viable MIP model can be found in [11]. In [12], the basic
ESDSDP model was extended to take into account bandwidth constraints on
various segments of the network interconnect. This richer model proved harder
for both MIP and CP solvers with running times in hours on some instances.

This paper focuses on the bandwidth-limited version of the ESDSDP and stud-
ies a constraint programming (CP), a Constraint-Based Local Search (CBLS),
and an hybrid model. The empirical evaluation demonstrates that the CP model
solves most instances in minutes (significantly outperforming the earlier CP
model) and that the CBLS model can deliver high-quality solutions quickly.
The CP model is a natural encoding of ESDSDP together with a simple search
heuristic focusing on the objective. It improves earlier results [11] by exploiting
a dominance property to rule out bandwidth-limited paths that are provably
inferior to already considered paths. The CBLS model uses the same natural
declarative model and its search procedure uses two neighborhoods that focus
on the objective and the feasibility part of the model. The feasibility neigh-
borhood is a simple constraint-directed search. The hybrid delivers optimality
proofs for the biggest instances from 200 to 2800 times faster than the MIP and
30 to 90 times faster than the earlier CP model while improving the robustness.

The rest of this paper is organized as follows. Section 2 presents an overview of
the bandwidth-limited ESDS and illustrates the deployment problem on a basic
instance. Section 3 introduces the high-level deployment model and Section 4
presents the CP models. Section 5 presents the CBLS model, while Section 6
covers the hybridization. Section 7 reports the experimental results and analyzes
the behavior of the models in detail. Section 8 concludes the paper.

2 Deployment of Eventually-Serializable Data Services

An Eventually-Serializable Data Service (ESDS) consists of three types of com-
ponents: clients, front-ends, and replicas. Clients issue requests for operations
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on shared data and receive responses returning the results of those operations.
Clients do not communicate directly with the replicas; instead they communicate
with front-ends which keep track of pending requests and handle the communica-
tion with the replicas. Each replica maintains a complete copy of the shared data
and “gossips” with other replica to stay informed about operations that have
been received and processed by them. The clients may request operations whose
results are tentative, but can be quickly obtained, or they can request “strict”
operations that are possibly slower, but whose results are guaranteed to be con-
sistent with an eventual total order on the operations. Each replica maintains a
set of the requested operations and a partial ordering on these operations that
tends to the eventual total order on operations. Clients may specify constraints
on how the requested operations are ordered. If no constraints are specified by
the clients, the operations may be reordered after a response has been returned.
A request may include a list of previously requested operations that must be
performed before the currently requested operation. For any sequences of re-
quests issued by the clients, the service guarantees eventual consistency of the
replicated data [5].

ESDS is well-suited for implementing applications such as a distributed direc-
tory service, such as Internet’s Domain Name System [6], which needs redun-
dancy for fault-tolerance and good response time for name lookup but does not
require immediate consistency of naming updates. Indeed, the access patterns
of such applications are dominated by queries, with infrequent update requests.
Optimizing the deployment of an ESDS application can be challenging due to
non-uniform communication costs induced by the actual network interconnect,
as well as the various types of software components and their communication
patterns. In addition, for fault tolerance, no more than one replica should reside
on any given node. There is a tradeoff between the desire to place front-ends near
the clients with whom they communicate the most and the desire to place the
front-ends near replicas. Note also that the client locations may be further con-
strained by exogenous factors. Deployment instances typically involve a handful
of front-ends to mitigate between clients and servers, a few replicas, and a few
clients. Instances may not be particularly large as the (potentially numerous)
actual users are external to the system and simply forward their demands to
the internal clients modeled within the ESDS. A significant additional compli-
cation in deriving deployment mappings is due to bandwidth limitations placed
on connections between the nodes in the target platform, e.g., a subnet based
on a switched ethernet at 100Mbit/s.

Figure 1 depicts a simple ESDP Deployment Problem (ESDSDP). The left
part of the figure shows the hardware architecture, which consists of 10 heavy-
duty servers connected via a switch (full interconnect) and 4 “light” servers
connected via direct links to the first four heavy-duty servers. For simplicity, the
cost of sending a message from one machine to another is the number of network
hops. For instance, a message from PC1 to PC2 requires 3 hops, since a server-
to-server message through the switch requires one hop only. The right part of
Figure 1 depicts the abstract implementation of the ESDS. The ESDS software
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Fig. 1. A Simple ESDS Deployment Problem

modules fall in three categories: (1) client modules that issue queries (c1, · · · , c4);
(2) front-end modules (fe1, fe2) that mediate between clients and servers and
are responsible for tracking the sequence of pending queries; and (3) replicas
(r1, · · · , r6). Each software module communicates with one or several modules,
and the right side of the figure specifies the volume of messages that must flow
between the software components in order to implement the service. The problem
constraints in this problem are as follows: the first 3 client modules must be
hosted on the light servers (PC1, · · · , PC4) while the remaining components
(c4, fe1, fe2, r1, · · · , r6) must run on the heavy-duty servers. Additionally, the
replicas r1 · · · r6 must execute on distinct servers to achieve fault tolerance. The
deployment problem consists of finding an assignment of software components
to servers that satisfies the constraints above and minimizes the overall network
traffic expressed as the volume of messages sent given the host assignments.

3 Modeling Optimal ESDS Deployments

The deployment model for ESDS is based on [1,2]. The input data consists of:

– The set of software modules C;
– The set of hosts N ;
– The subset of hosts to which a component can be assigned is denoted by

booleans sc,n equal to true when component c can be assigned to host n;
– The network cost is directly derived from its topology and expressed with

a matrix h where hi,j is the minimum number of hops required to send a
message from host i to host j. Note that hi,i = 0 (local messages are free);

– The message volumes. In the following, fa,b denotes the average frequency
of messages sent from component a to component b;

– The separation set Sep which specifies that the components in each S ∈ Sep
must be hosted on a different servers;

– The co-location set Col which specifies that the components in each S ∈ Col
must be hosted on the same servers;
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The decision variables xc are associated with each module c ∈ C and xc = n if
component c is deployed on host n. An optimal deployment minimizes∑

a∈C

∑
b∈C

fa,b · hxa,xb

subject to the following. Components may only be assigned to supporting hosts

∀c ∈ C : xc ∈ {i ∈ N | sc,i = 1}.

For each separation constraint S ∈ Sep, we impose ∀i, j ∈ S : i �= j ⇒ xi �= xj .
Finally, for each co-location constraint S ∈ Col , we impose ∀i, j ∈ S : xi = xj .

Realistic target networks may impose bandwidth limitation on connections
between hosts due to either physical channel limitations, input buffer limita-
tions, or QoS guarantees. To reflect such constraints, the deployment model is
extended to incorporate bandwidth limitations on some connections. Informally,
a connection is a network inter-connect between a set of k machines. For instance,
a connection can be a dedicated point-to-point link or a switched 802.11-wired
Ethernet subnet. A deployment platform then reduces to a set of connections
with some nodes (e.g., routers or machines with several network cards) appearing
in several connections to establish bridges. More formally, a deployment plat-
form is an hypergraph H = (X, E) where X is the set of nodes and E is a set of
hyperedges, i.e., E ⊆ P(X)\{∅} where P(X) is the power-set of X . Each hyper-
edge c carries a bandwidth capacity that is denoted by c.bw and its vertices are
denoted by c.nSet. If a hyperdge c (connection) has no bandwidth limitations,
its bandwidth capacity is c.bw = 0.

Each pair of hosts is connected by one or more paths, where a path is an
ordered collection of hyperedges (connections) from the source to the destination
host. A path is bandwidth-limited if one or more of its hyperedges (connections)
has limited (positive) bandwidth; otherwise a path is not bandwidth-limited.
The network paths are represented by the following calculated parameters:

– Pi,j denotes the set of paths from host i to host j for all i, j ∈ N . If i = j,
Pi,j contains a single path of zero length;

– A 3-D matrix h, where hi,j,p is the length of path p from host i to host j
(replacing the 2-D hops matrix h);

– A boolean matrix hasC, where hasCi,j,p,c is true if path p from host i to
host j uses the hyperedge (connection) c.

The model contains decision variables to choose the paths to be used by commu-
nicating software modules deployed on hosts. Specifically, a new decision variable
patha,b is associated with each communicating pair of components a and b and
represents the path component a uses to send messages to component b. This
variable must satisfy the constraint patha,b ∈ Pxa,xb

. This reflects the current
assumption that each pair of components uses a single directed path for data
transmission. However, patha,b and pathb,a may be different.
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An optimal deployment minimizes∑
a∈C

∑
b∈C

fa,b · hxa,xb,patha,b

subject to the supporting, separation, and co-location constraints presented ear-
lier and the following bandwidth constraint for each c ∈ E with c.bw > 0:∑

a∈C

∑
b∈C

fa,b · hasCxa,xb,patha,b,c ≤ c.bw

4 The CP Model

The Comet program for bandwidth-limited connections is shown in Figure 2.
The data declarations are specified in lines 2–11, and the decision variables are
declared in lines 12–13. Variable x[c] specifies the host of component c, with its
domain computed from the support matrix s. The variable path[c1, c2] specifies
the path used to send messages from component c1 to component c2, expressed
as the rank of the selected path in the set P [x[c1], x[c2]].

Lines 14–18 specify the objective function, which minimizes communication
costs. The CP formulation uses a three-dimensional element constraint since the
matrix h is indexed not only by variables for the two hosts but also by the
variable for the particular communication path used between them.

Lines 19–24 contain the co-location and separation constraints. Lines 25–
26 limit the ranges of the individual path variables to the number of paths
between the hosts onto which the components are deployed. Lines 27–29 are the
bandwidth constraints: for each hyperedge c ∈ E, the bandwidth c.bw must be
greater than or equal to the sum of the communication frequencies of all pairs
of components with c in their chosen path. The onDomains annotations indicate
that arc-consistency must be enforced for each constraint.

The search procedure, depicted in lines 31–45, operates in two phases. In the
first phase (lines 31–40) all the components are assigned to hosts, beginning with
the components that communicate most heavily. The search must estimate the
communication cost between components a and b’s potential deployment sites
along any given path. Line 33 picks the first site k for component b, and the
tryall instruction on line 34 considers the sites for component a in increasing
order of path length based on an estimation equal to the shortest path one could
take between the choice n and the selection k. (Symmetry breaking as in [11]
optionally may be included.) The second phase (lines 41-45) labels the path
variables, backtracking as needed over the initial component assignments.
Path Dominance. The initial CP bandwidth model [12] used a weak form of
dominance. After finding a path that is not bandwidth-limited for a given pair
of nodes, it discards all the other paths between those two nodes that are of
the same length or longer. Longer paths need not be considered because the
deployment model minimizes the number of “hops” for transmitted messages,
and a shorter, non-bandwidth limited path always will be a better choice.
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1 Solver<CP> cp();
2 range C = ...; // The components
3 range N = ...; // The host nodes
4 int[,] s = ...; // The supports matrix
5 int[,] f = ...; // The frequency matrix
6 int[,,] h = ...; // The hops matrix
7 set{set{int}} Sep = ...; // The separation sets
8 set{set{int}} Col = ...; // The co−location sets
9 set{connection} Conn = ...; // The connections

10 set{connection}[,] P = ...; // The paths matrix
11 int[,,,] hasC = ...; // The path/connection matrix
12 var<CP>{N} x[c in C](cp, setof(n in N) (s[c,n] == 1));
13 var<CP>{int} path [a in C, b in C](cp,0..max(i in N, j in N) P[i,j].getSize()−1);
14 var<CP>{int} obj(cp, 0..1000);
15 minimize<cp> obj
16 subject to {
17 cp.post(obj == sum(a in C, b in C: f[a,b] != 0) f[a,b] ∗ h[x[a],x[b],path[a,b]],
18 onDomains);
19 forall(S in Col)
20 select(c1 in S)
21 forall (c2 in S: c1 != c2)
22 cp.post(x[c1] == x[c2], onDomains);
23 forall(S in Sep)
24 cp.post(alldifferent(all(c in S) x[c]), onDomains);
25 forall (a in C, b in C : f[a,b] != 0)
26 cp.post (path[a,b] < P[x[a],x[b]].getSize(), onDomains);
27 forall (c in Conn: c.bw > 0)
28 cp.post (c.bw >= sum (a in C, b in C: f[a,b] != 0)
29 hasC[x[a], x[b], path[a,b], c] ∗ f[a,b], onDomains);
30 } using {
31 while (sum(k in C) x[k].bound() < C.getSize()) {
32 selectMax(a in C: !x[a].bound(), b in C)(f[a,b]) {
33 int k = min(k in N: x[b].memberOf(k)) k;
34 tryall<cp>(n in N: x[a].memberOf(n))
35 by (min (i in 0..P[n,k].getSize()−1) h[n,k,i])
36 cp.post(x[a] == n);
37 onFailure
38 cp.post(x[a] != n);
39 }
40 }
41 forall (a in C,b in C: f[a,b] != 0 && !path[a,b].bound())
42 tryall<cp> (i in 0..P[x[a],x[b]].getSize()−1) by (h[x[a], x[b], i])
43 cp.post(path[a,b] == i);
44 onFailure
45 cp.post(path[a,b] != i);
46 }

Fig. 2. The Bandwidth-Limited Model in Comet
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Several other categories of paths need not be considered in determining an
optimal deployment. In particular, let p1 and p2 be any two paths between
nodes n1 and n2, and let p1.bwSet and p2.bwSet be the sets of bandwidth-
limited connections of p1 and p2. Then p1 can be ignored if any of the following
conditions hold:

– The path p1 is strictly longer than p2 and p2.bwSet ⊆ p1.bwSet.
– The path p1 is the same length as p2 and p2.bwSet ⊂ p1.bwSet.
– The path p1 is the same length as p2, p2.bwSet = p1.bwSet, and p1 is ordered

after p2 in the set of paths between n1 and n2. (This is an arbitrary selection
of one of two equivalent paths.)

The extended CP model uses these rules to eliminate all dominated paths during
the initialization of the model. Alternatively, these path dominance properties
can be expressed as constraints on the viable paths between components. How-
ever, this strategy is ineffective. Indeed, the set of paths P is indexed by its source
and destination hosts whereas the path variable is indexed by its source and
destination components. For any two components c1 and c2, the constraint on
the path variables would look like validPath[x[c1],x[c2],path[c1,c2]]==1.
This constraint, though, is unable to fully reduce the domain of the path variable
until the corresponding x’s are fixed. Avoiding the construction of dominated
path altogether alleviates that difficulty as the constraint above can simplify to
an upper-bound on the size of the domain of path.

5 The CBLS Model

The parameters of the CBLS model (components, nodes, frequency, hops, co-
located, separated, and fixed) are identical to the CP model. Likewise, the CBLS
model has two decision variables: an array x[c] that specifies the node on which
component c is deployed, and path[c1, c2] that specifies the path used to connect
components c1 and c2. The search procedure of the CBLS model uses a guided
local search approach which increases the weights of the constraints that are
hard to satisfy. The weight variables are created when the feasibility constraints
are posted. A tabu list is represented by a simple dictionary that records which
variables were changed recently (the initialization per se is not shown for brevity
reasons).

The declarative part of the CBLS model is shown in Figure 3. It starts with
the declaration of a weighted constraint system S for the guided local search.
The feasibility constraints in lines 3–19 are essentially identical to those found in
the CP model. Lines 3–6 declare the co-location constraints as mere equalities,
while lines 7–8 specify the separation constraints with an alldifferent. Lines 10–
13 require each path variable to range over the indices of available paths between
the hosts onto which the components are deployed. Finally, lines 15–19 specify
the bandwidth constraints.

The core objective function O is specified in lines 21–23 as the sum of the
communication frequency between each pair of components multiplied by the
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1 WeightedConstraintSystem<LS> S(m);
2 function var{int} mkWeight(Solver<LS> m) { var{int} x(m) := 1;return x;}
3 forall (t in Col)
4 selectMin(c1 in t.cSet)(c1)
5 forall (c2 in t.cSet : c1 != c2)
6 S.post(istrue(x[c1] == x[c2]), mkWeight(m));
7 forall (s in Sep)
8 S.post(alldifferent(all(c in s.cSet)x[c]), mkWeight(m));
9

10 ConstraintSystem<LS> S2(m);
11 forall (c1 in C, c2 in C : f[c1, c2] != 0)
12 S2.post (path[c1, c2] < numPaths[x[c1], x[c2]]);
13 S.post(S2, mkWeight(m));
14

15 ConstraintSystem<LS> S3(m);
16 forall (c in 0..Conn.getSize()−1 : Conn.atRank(c).bw > 0)
17 S3.post(Conn.atRank(c).bw >= sum(c1 in C, c2 in C : f[c1, c2] != 0)
18 (hasC[x[c1], x[c2], path[c1, c2], c] ∗ f[c1, c2]));
19 S.post(S3, mkWeight(m));
20

21 FunctionSum<LS> O(m);
22 forall (c1 in C, c2 in C : f[c1, c2] != 0)
23 O.post(f[c1, c2] ∗ h[x[c1], x[c2], path[c1, c2]]);
24

25 Function<LS> C = S + O;
26 m.close();
27 weights = all(k in S.getRange()) S.getWeight(k);

Fig. 3. The Constraint Systems for the CBLS Model in Comet

length of the chosen path between these components. Finally the objective func-
tion C declared in line 25 combines the feasibility constraint set S with the core
objective O.

The search, illustrated in Figure 4, explores two different neighborhoods. Dur-
ing each iteration, one of the two neighborhoods is selected by line 2 with a fixed
probability objChance (which defaults to 70%).

The first neighborhood (lines 3–9) focuses on the objective. Line 4 selects a
non-tabu variable appearing in the objective and leading to the largest decrease
to the overall objective function C. The selected variable is then assigned a
value that delivers the largest decrease in the objective O, and tags the variable
as tabu for the next tLen iterations. The second neighborhood (lines 11–17) is
a standard constraint-directed search that attempts to reduce the number of
violations on the constraints in S. It chooses a constraint k that causes the most
violations and picks the worst variable from constraint k. Line 15 then selects
the most promising value for the selected variable, and line 16 reassigns it. The
best feasible solution is recorded in line 22, while line 23 updates the weight
of the unsatisfied constraints in S when the algorithm hasn’t progressed for



202 L. Michel et al.

1 while (it < maxit) {
2 if (zo.get() <= objChance) {
3 var{int}[] ox = O.getVariables();
4 selectMax(i in ox.getRange() : tabu{ox[i].getId()} <= it)(C.decrease(ox[i])) {
5 selectMin(v in ox[i].getDomain())(O.getAssignDelta(ox[i], v)) {
6 ox[i] := v;
7 tabu{ox[i].getId()} = it + tLen;
8 }
9 }

10 } else {
11 selectMax(k in S.getRange())(S.getConstraint(k).violations()) {
12 Constraint<LS> cls = S.getConstraint(k);
13 var{int}[] cx = cls.getVariables();
14 selectMax(i in cx.getRange())(cls.violations(cx[i]))
15 selectMin(v in cx[i].getDomain())(C.getAssignDelta(cx[i],v))
16 cx[i] := v;
17 }
18 }
19 it++;
20 stableit++;
21 boolean feasible = S.violations()==0;
22 if (feasible && O.value() < bestValue) saveBest();
23 if (stableit >= 100) glsUpdate();
24 if (rounds >= 200) diversify(C);
25 }

Fig. 4. The Search Strategy for the CBLS Model in Comet

100 consecutive iterations. Finally, line 24 performs a diversification on all the
variables appearing in the objective function C whenever 200 rounds of guided
local search (weights updating) were unable to further improve the objective
function. The diversification simply reassigns a fraction of the variables in C
(chosen based on probability diversifyChance) uniformly at random, resets the
weights of the guided local search, and updates the bounds on the length of the
tabu list.

Co-Location Preprocessing. An alternative representation of the problem re-
places each co-location constraint and its associated component variables with
a single component variable representing the common location of the co-located
components. This avoids a large collection of equality constraints. Simple pre-
processing and postprocessing steps can then recast the solution in term of the
initial formulation. This leaner formulation is beneficial for the CBLS model. In
the original formulation, when a component is moved, all the co-location equal-
ity constraints are violated which induces a bump in the optimization value,
which can make these moves less desirable. The preprocessed formulation does
not suffer from this problem since all the co-located components are moved as
one, allowing for aggregate moves. The experimental results confirm that this
representation is beneficial.
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Path Dominance. Unsurprisingly, the CBLS model also can make use of the
path dominance rule during the initialization of the model to eliminate paths
that are provably inferior. The experimental results consider local search models
with path dominance included.

6 Hybrid CBLS-CP Model

The hybrid model is a sequential composition. The CBLS model runs for 10
seconds and then passes its best solution to the CP model to complete the
optimization. A hybrid model using parallel composition also was considered,
where the CBLS model runs in a separate thread and notifies the CP model
each time it finds a better solution. The benefit of the parallel composition is
only visible on easy instances where the CP model proves the optimality in less
than 10 seconds (and therefore stops the search right away).

7 Experimental Results

The Benchmarks. The benchmarks fall into three categories: variants of the
simple ESDS deployment problem depicted in Figure 1, variants of the HYPER8
ESDS deployment problem shown in Figure 5, and variants of the RING6 de-
ployment problem shown in Figure 6. The HYPER8 and RING6 benchmarks are
studied, not because they reflect actual network configurations, but because
they are simple representations of networks with many equivalent alternative
paths and networks with tightly coupled hosts. To model the capabilities of the
communication infrastructure of a distributed system more realistically, all the
benchmarks include, in addition to the components shown, one extra software
module between each pair of replicas (components r1, . . . , r6). These extra com-
ponents are “drivers” that manage the communication channels and are required
to be co-located with their sending replicas. The benchmarks are as follows:
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Fig. 5. Instance HYPER8: Deploying ESDS to a network with many equivalent paths
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Fig. 6. Instance RING6: Deploying to a tightly coupled, bandwidth-limited network

– SIM2BW1 is a variant of Figure 1 with a bandwidth limit of 5 on the connection
between PC2 and r2.

– SIM2BW2 is a variant of Figure 1 with a bandwidth limit of 5 on the connection
between PC2 and r2 and a bandwidth limit of 10 on the connection between
PC3 and r3.

– RING4 is a variant of RING6with only four gossiping replicas (and no messages
from c3 to r5).

– RING5 is a variant of RING6 with only five gossiping replicas.
– RING6 is illustrated in Figure 6.
– HYP8BW1 is a variant of HYPER8 with a bandwidth limit of 10 on the connec-

tion between PC1 and r1.
– HYP8BW4 is a variant of HYPER8 with four bandwidth-limited connections.

Experimental Results for the CP Model. Table 1 reports the results for the CP
model with Comet 1.1 (executing on an Intel Core 2 at 2.4Ghz with 2 gigabytes
of RAM). The first three columns give the results for the initial CP bandwidth
model ([12]) which only eliminates paths that are the same length or longer
than the shortest non-bandwidth limited path. The next three columns give the
results when the full path dominance described in Section 4 is exploited. The
final three columns give the results when both path dominance and co-location

Table 1. Experimental Results for the CP Models

Longest Path Full Path Path Dominance &
Dominance Dominance Co-Location

Benchmark MIP Tend #Chpt Topt Tend #Chpt Topt Tend #Chpt Topt

SIM2BW1 12.8 0.27 168 0.02 0.27 168 0.02 0.13 174 0.01
SIM2BW2 17.0 0.38 159 0.03 0.38 160 0.03 0.20 165 0.01
RING4 9.8 0.37 469 0.35 0.34 426 0.32 0.15 187 0.14
RING5 66.4 10.9 24422 10.4 9.6 20609 9.1 1.5 2101 1.3
RING6 327.9 132.8 300526 130.6 107.8 235161 105.6 14.4 27722 13.3
HYP8BW1 142388 4642.2 133047 893.3 123.0 43169 28.6 75.5 39137 11.3
HYP8BW4 71102 12572.9 108069 8346.5 1988.0 162227 1641.0 1175.7 103023 770.9
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preprocessing are performed. Within each group, column Tend gives the time in
seconds to find the optimum and prove optimality, column #Chpt reports the
number of choice points, and column Topt reports the time in seconds to find
the optimum. The results are averages of 50 runs (except for the HYP8BW4
Longest Path results which are averages of 10 runs). The column MIP repeats
the results (CPLEX version 11 running on an AMD Athlon at 2Ghz) for the
MIP model described in [12]. It is useful to review these results in more detail.

1. Full path dominance preprocessing is faster for all benchmarks than longest
path dominance preprocessing as expected. Adding co-location preprocessing
also improves performance for all benchmarks.

2. For SIM2BW1 and SIM2BW2, the performance is almost identical with both
path dominance techniques. There is only one path between each pair of
hosts, so there are no paths to eliminate and thus no benefits.

3. RING4, RING5, and RING6 all have the same network and path charac-
teristics. Although full path dominance only eliminates one more path than
longest path dominance (20 vs. 19 eliminated paths out of 98 total paths),
the impact on performance is non-negligible for all three benchmarks.

4. In HYP8BW1, full path dominance eliminates all but one path between each
pair of hosts, resulting in a dramatic improvement (factor of 37) over longest
path dominance which has up to 18 paths between pairs of nodes.

5. In HYP8BW4, full path dominance retains two paths between 16 pairs of
hosts and one path between all other pairs. Even this relatively small number
of path options make processing HYP8BW4 considerably more complex than
HYP8BW1. The improvement with full path dominance is still substantial
(over a factor of 6), but not as dramatic.

6. The improvement with co-location preprocessing appears to be related to the
fraction of components that can be combined. The largest improvement is for
RING6 where 45 components are reduced to 8, and the smallest improvement
is for HYP8BW1 and HYP8BW4 where 54 components are reduced to 18.

7. With all three preprocessing techniques, the CP model finds the optimum
relatively quickly for SIM2BW1, SIM2BW2, and HYP8BW1. Unfortunately,
the optimum is not found until late in the search for the other benchmarks.

8. The MIP results are also likely improve with path and co-location prepro-
cessing.

Experimental Results for the CBLS Model. Table 2 reports the results for the
CBLS models. The Opt column gives the optimum. The μ(Path) and σ(Path)
columns report the averages and standard deviations for the best solution (Q),
the time to the best solution in seconds (TB) and the total running time (TT )
of the CBLS model with path dominance. The μ(Path&Col) and σ(Path&Col)
columns give the averages and standard deviations with both path dominance
and co-location pre-processing. All the results are reported over 50 runs.

The experimental results indicate that CBLS delivers high-quality solutions
in a few seconds. The elimination of the co-location constraints is beneficial in
several respects. First, it reduces the running time significantly (both to termi-
nation and to the best solution), and it has a positive impact on the average
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Table 2. Experimental Results for the Local Search Models

μ(Path) μ(Path & Col) σ(Path) σ(Path & Col)
Benchmark Opt Q TB TT Q TB TT Q TB TT Q TB TT

RING4 54 54.1 1.79 6.06 54.0 0.17 4.22 0.7 1.23 0.04 0.0 0.12 0.04
RING5 88 90.1 3.74 8.83 88.0 0.61 5.20 2.7 2.61 0.06 0.0 0.48 0.05
RING6 120 131.1 6.87 14.70 120.8 3.76 7.72 21.7 5.08 0.78 1.0 0.00 0.09
HYP8BW1 522 594.0 2.62 5.22 523.1 1.28 3.56 37.4 1.76 0.20 1.8 0.59 0.07
HYP8BW4 526 552.3 7.42 17.58 554.5 5.41 8.92 18.5 5.60 0.50 23.1 2.13 0.34

Table 3. Experimental Results for the Sequential Hybrid Models

μ(Path) μ(Path & Col) σ(Path) σ(Path & Col)
Benchmark Tend #Chpt Tend #Chpt Tend #Chpt Tend #Chpt

RING4 10.09 11 10.03 6 0.00 1 0.01 3
RING5 11.02 88 10.14 26 0.08 15 0.01 2
RING6 23.64 17718 10.51 81 25.26 50147 0.04 7
HYP8BW1 140.70 40799 51.06 29602 9.35 4404 0.74 463
HYP8BW4 1325.02 63343 339.68 32045 294.22 28785 26.54 3675

best solution found. Indeed, as the standard deviation shows, the local search
algorithm could deliver the best solution on all 50 runs on RING4 and RING5 and
the average best solution across the board. Second, all the standard deviations
improved significantly, indicating that the algorithm is more robust.
Experimental Results for the Hybrid Model. Table 3 reports the results for a
sequential hybrid model that runs the best CBLS model for 10 seconds before
initiating a CP search with an upper bound based on the best solution delivered
in the first phase. All the results are averages based on 50 runs. The column
groups are the same as for the CP model. Within each group, Tend denotes the
time in seconds to find the optimum and prove optimality, and #Chpt denotes
the number of choice points.

The first hybrid algorithm composes models relying only on the path dom-
inance. Nonetheless, the benefit is already visible when the pure CP model is
compared to the hybrid. The second hybrid composes models using both path
dominance and co-location pre-processing and clearly dominates the earlier CP
models. On the hardest instance (HYP8BW4) it proves optimality in 340s when
the pure CP model needed 1176s. The good results can be attributed to an excel-
lent phase 1 that delivers a high quality solution to bootstrap the second phase.
On the ring instances the runtime is dominated by the fixed 10s of local search,
while on the HYPER8 it spends most of the computation in the CP phase.

8 Conclusion

This paper revisited the Bandwidth-Limited ESDS Deployment Problem and
considered an improved CP model that leverages dominance properties, a CBLS
model featuring the same declarative model, as well as a CP/CBLS hybrid model.
The CBLS model is particularly compelling given the similarity of its declarative
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part and its ability to deliver high-quality solutions quickly. Its search procedure
composes a standard constraint-directed neighborhood for the feasibility part of
the model with a tabu-based greedy gradient descent for the objective function.
The path dominance and the co-location preprocessing steps proved very effec-
tive for CP and CBLS, both in terms of the solution quality and the time to
solve the model. Constraint Programming now appears to be the ideal method-
ology to solve this class of problem for which hard instances can be solved to
optimality in 5 to 10 minutes.

Acknowledgements. This work was partially supported through the following NSF
awards: DMI-0600384, IIS-0642906 and CCF-0702670 as well as an ONR award
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Abstract. This paper aims at solving a nonconvex mixed integer non-
linear programming (MINLP) model used to solve a refinery crude-oil
operations scheduling problem. The model is mostly linear but contains
bilinear products of continuous variables in the objective function. It
is possible to define a linear relaxation of the model leading to a weak
bound on the objective value of the optimal solution. A typical method
to circumvent this issue is to discretize the continuous space and to use
linear relaxation constraints based on variables lower and upper bounds
(e.g. McCormick convex envelopes) on each subdivision of the contin-
uous space. This work explores another approach involving constraint
programming (CP). The idea is to use an additional CP model which is
used to tighten the bounds of the continuous variables involved in bilin-
ear terms and then generate cuts based on McCormick convex envelopes.
These cuts are then added to the mixed integer linear program (MILP)
during the search leading to a tighter linear relaxation of the MINLP.
Results show large reductions of the optimality gap of a two step MILP-
NLP solution method due to the tighter linear relaxation obtained.

1 Introduction

Many optimization problems arising in the chemical industry involve nonconvex
nonlinear functions which makes them difficult to solve to global optimality. In
this paper, the crude-oil scheduling problems introduced in [1] are solved with
the original objective of minimizing the logistics cost. The problem is formulated
as a nonconvex mixed integer nonlinear programming (MINLP) model developed
in [2] which is based on a continuous-time scheduling representation. The solu-
tion procedure returns a solution with an estimate of the gap with the optimal
solution. In earlier work, an operation specific event point continuous-time for-
mulation has been developed (see [3]) and applied to the problems from [1] using
a linear approximation of storage costs. However, no proof of optimality or esti-
mate of optimality gap is given with this approximation. The global optimization
of this model was later addressed by [4] using an outer-approximation algorithm.

W.-J. van Hoeve and J.N. Hooker (Eds.): CPAIOR 2009, LNCS 5547, pp. 208–222, 2009.
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where the MILP master problem is solved by a Lagrangean decomposition. While
rigorous, this method is still computationally expensive.

The main contribution of this work is to reduce the optimality gap by tight-
ening the linear relaxation of the MINLP using McCormick convex envelopes
for bilinear products of continuous variables (see [5]). This can be done by using
discretization techniques and applying McCormick convex and concave estima-
tors on each discrete element of the continuous space (see [6], [7], [8]). On the
other hand, it has been shown how Constraint Programming (CP) techniques
can be efficiently integrated with Branch & Bound procedures for the global
optimization of MINLPs (see [9]). In this paper, CP is used during the search
to tighten variable bounds and generate new McCormick cuts, thus efficiently
tightening the mixed integer linear program (MILP) relaxation. When applied
to the sequential MILP-NLP approach in [2], this extension of the Branch &
Cut algorithm leads to reduced optimality gaps and allows finding good subop-
timal solutions with lower logistics cost. The concepts developed in this work
can be applied to a generic solver as in the global MINLP solver BARON or can
be used to efficiently solve other optimization problems to global optimality by
exploiting their specific structure.

This paper is organized as follows. Section 2 gives some details about the
crude-oil scheduling problems to be solved. Section 3 presents the MINLP math-
ematical formulation with a nonlinear objective function. Section 4 explains how
this model is intended to be solved. Section 5 shows how the model can be re-
formulated in order to get a linear objective function and gives a simple MILP
relaxation using McCormick convex envelopes. Section 6 presents how to improve
this MILP relaxation by adding tighter McCormick cuts for some subproblems
explored during the Branch & Cut procedure. Finally, Section 7 gives compu-
tational results showing the impact of this approach in terms of relaxation and
CPU time.

2 Problem Statement

A crude-oil operations scheduling problem has as an objective to prepare various
types of crude-oil blends throughout the horizon in order to continuously feed
each crude distillation unit (CDU), while satisfying the demand for each crude
blend. The problem is composed of four types of resources: crude marine vessels,
storage tanks, charging tanks and CDUs. Three types of operations, all transfers
between resources, can be executed: unloading from crude-oil marine vessels
to storage tanks, transfer between tanks, and transfers from charging tanks to
CDUs. The following parameters are given: (a) a time horizon, (b) arrival time
of marine vessels, (c) capacity limits of tanks, (d) transfer flowrate limitations,
(e) initial composition of vessels and tanks, (f) crude property specifications for
distillations, (g) and demands for each crude blend. The logistics constraints
involved in the problem are defined as follows.
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(i) Only one berth is available at the docking station for vessel unloadings,
(ii) simultaneous inlet and outlet transfers on tanks are forbidden,
(iii) a tank may charge only one CDU at a time,
(iv) a CDU can be charged by only one tank at a time,
(v) and CDUs must be operated without interruption.

The goal is to determine which operation will be executed, how many times and
when it will be performed, and the amount of crude to be transferred. In [2],
the authors considers a linear objective function based on the maximization of
production gross margins. In this work, the objective is to minimize the logistics
costs which include sea waiting costs and unloading costs for marine vessels,
storage costs in tanks, and CDU switching costs. A CDU switch is a transition
from a crude blend to another. Figure 1 depicts the refinery configuration for
problem 1 given in [1].

Crude Vessels Storage Tanks Charging Tanks CDU

1

2

3
4

5
6

7

8

Fig. 1. Crude-oil operations system for problem 1

3 MINLP Model

This section presents the Single-Operation Sequencing (SOS) model introduced
in [2]. It is based on the representation of a schedule as a sequence of operations.
The optimal schedule is obtained by postulating a sequence of priority-slots and
assigning exactly one operation to each priority-slot, thus forming a sequence
of operations. The number of priority-slots, postulated a priori by the user,
corresponds to the length of the sequence of operations, which is the total number
of operations that will be executed during the scheduling horizon.

A common logistics constraint appearing in the chemical industry is the non-
overlapping constraint between two operations v and w, noted v][w. The logistics
constraints (i), (ii), (iii), and (iv) from the previous section can all be expressed
as non-overlapping constraints. Indeed, for the problem 1 (see Fig. 1), (i) is
equivalent to 1][2, (ii) to 1][3, 1][4, 2][5, 2][6, 3][7, 4][8, 5][7, 6][8, and (iv) to 7][8.

Assuming that two non-overlapping operations v and w are assigned to priority-
slots i and j such that i < j (i has a higher scheduling priority than j), we define
Siv and Sjw as their respective start times, and Div and Djw as their respective
durations. As the operation v has the highest priority, operation w must start after
the end of operation v:

Siv + Div ≤ Sjw
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The model involves the following set of constraints (see [2] for details):

(a) Assignment constraints for each priority-slot,
(b) variable constraints given from the variable definitions,
(c) sequencing constraints such as cardinality constraints,
(d) scheduling constraints such as non-overlapping constraints,
(e) operation constraints such as flowrate limitations,
(f) and resource constraints such as reservoir capacity limitations.

The objective function Z can be expressed as follows:

Z = SWITCHINGCOST
∑

r∈CDU

⎛⎝ ∑
i,v∈Ir

Ziv − 1

⎞⎠
+ UNLOADINGCOST

∑
i,v∈UNLOAD

Div

+ SEAWAITINGCOST
∑

i,v∈UNLOAD

Wiv

+ FIXEDSTORAGECOST

+
∑

i,r1,r2,v∈Or1∩Ir2

(
Ċr2 − Ċr1

)(
H − Siv −

Div

2

)
Viv

where:

– Ziv = 1 if operation v is assigned to slot i, Ziv = 0 otherwise
– Siv is the start time of operation v if it is assigned to slot i, Siv = 0 otherwise
– Div is the duration of operation v if it is assigned to slot i, Div = 0 otherwise
– Viv is the volume of crude transferred during operation v if it is assigned to

slot i, Viv = 0 otherwise
– Wiv is the waiting time before unloading v if it is assigned to slot i, Wiv = 0

otherwise
– CDU is the set of CDUs
– Ir is the set of inlet operations for resource r

– Or is the set of outlet operations for resource r

– UNLOAD is the set of unloading operations
– SWITCHINGCOST is the cost associated with each CDU switch
– UNLOADINGCOST is the unloading cost rate
– SEAWAITINGCOST is the sea waiting cost rate
– FIXEDSTORAGECOST is the total cost for storing the initial refinery

inventory during the horizon H if no crude transfer is performed



212 S. Mouret, I.E. Grossmann, and P. Pestiaux

The last term, which involves bilinearities making the model nonconvex, evaluates
the variation of the total storage cost. For each transfer operation v between re-
sources r1 (storage cost rate Ċ1) and r2 (storage cost rate Ċ2) assigned to
priority-slot i, the corresponding variation of storage cost is calculated as follows:

ΔCOSTiv =
(
Ċr2 − Ċr1

)(∫ t=Siv+Div

t=Siv

Viv

Div
(t− Siv)dt +

∫ t=H

t=Siv+Div

Vivdt

)

=
(
Ċr2 − Ċr1

)(1
2
DivViv + (H − Siv −Div)Viv

)
=
(
Ċr2 − Ċr1

)(
H − Siv −

Div

2

)
Viv

Appendix A contains the complete mathematical formulation for the MINLP.

4 Solution Method

The non-convex MINLP model given in the previous section can be solved us-
ing a generic MINLP solver such as DICOPT (outer-approximation method)
or BARON (global solver using a branch-and-reduce procedure). The former
code,which is only rigorous for convex MINLP problems, may converge to a
poor suboptimal solution. The latter can be prohibitively expensive to use be-
cause many nodes in the Branch & Bound tree are required to close the gap
within a specified tolerance.

Therefore, a simple two-step procedure consisting of one MILP and one NLP
subproblem has been implemented. It leads to good suboptimal solutions with an
estimate of the optimality gap. In the first step, an MILP relaxation, described
in the following section, is solved. The solution returned during this step may
not satisfy all nonlinear constraints. In this case, the binary variables Ziv are
fixed, which means that the sequence of operations is fixed, and the resulting
nonlinear programming (NLP) model is solved. This NLP model contains all
constraints from the MINLP, including nonlinear constraints, with all discrete
variables fixed. The solution obtained during this step might not be the optimum
of the full model, but the optimality gap can be estimated from the lower bound
given by the MILP solution and the upper bound given by the NLP solution.

The quality of the final solution obtained with this procedure, estimated by
the optimality gap, strongly depends on the tightness of the MILP relaxation. It
should also be noted that the NLP subproblem is nonconvex and thus may lead
to different local optimal solutions depending on the starting point. It could also
be locally infeasible although this did not occur in our experiments. For such a
case, one could add integer cuts (see [10]) to the MILP model and restart the
procedure until a solution is found. However, there is no proof that the solution
obtained with this algorithm is globally optimal. Also, it cannot be ensured that
a solution will be found, even if the MINLP has feasible solutions.
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NLP with bounded discrete variables

MILP relaxation

Fix discrete solution of MILP

Fig. 2. Two-stage MILP-NLP solution method

5 Reformulation and Linear Relaxation

It is common to reformulate MINLP problems by introducing new variables to
represent nonlinear terms. The MINLP model can then be rewritten as follows:

min Z = SWITCHINGCOST
∑

r∈CDU

⎛⎝ ∑
i,v∈Ir

Ziv − 1

⎞⎠
+ UNLOADINGCOST

∑
i,v∈UNLOAD

Div

+ SEAWAITINGCOST
∑

i,v∈UNLOAD

Wiv

+ FIXEDSTORAGECOST

+
∑

i,r1,r2,v∈Or1∩Ir2

(
Ċr2 − Ċr1

)
Xiv

s.t.

⎧⎨⎩
Xiv = AivViv

Aiv = H − Siv − Div

2
constraints (1)-(26)

where the variables Xiv represent the bilinear terms AivViv. Using McCormick
convex envelopes introduced in [5], this MINLP can be linearly relaxed by re-
placing the constraint Xiv = AivViv by:

Xiv ≥ AL
ivViv + AivV L

iv −AL
ivV L

iv

Xiv ≥ AU
ivViv + AivV U

iv −AU
ivV U

iv

Xiv ≤ AL
ivViv + AivV U

iv −AL
ivV U

iv

Xiv ≤ AU
ivViv + AivV L

iv −AU
ivV L

iv

The terms AL
iv, AU

iv , V L
iv , and V U

iv represent the lower and upper bounds of
variables Aiv and Viv . It is important to note that the tightness of this linear
relaxation strongly depends on the bounds of the variables Aiv and Viv .
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6 McCormick Cuts

Once the linear relaxation of the MINLP has been defined, the corresponding
MILP can be solved by a Branch & Cut algorithm as implemented in the com-
mercial tool Ilog Cplex. This approach consists in successively solving many
subproblems (nodes) of the original MILP by solving its continuous relaxation
and generating new subproblems when needed. User-defined constraints can also
be added to each subproblem during the search using callbacks (see [11]).

A subproblem of the MILP is obtained by fixing some of the discrete variables
Ziv to either 0 or 1. Each of these subproblems correspond to a linear relaxation
of the MINLP subproblem obtained by fixing the same discrete variables to the
same values. If the LP relaxation of an MILP subproblem is integer feasible
(i.e. all discrete variables take an integer value, whether it is fixed or not), it
might still not satisfy all MINLP constraints. In such cases, it is possible to infer
stronger McCormick constraints by contracting variables bounds for the current
discrete solution.

We denote p a discrete solution defined by the discrete values taken by the
variables Ziv.The discrete solution p corresponds to a unique sequence of oper-
ations (vp

1 , . . . , vp
n). We denote (CP )p the following CP model:

(CP )p

⎧⎪⎨⎪⎩
constraints (1)-(26)

Ziv = 1 ∀(i, v), v = vp
i

Ziv = 0 ∀(i, v), v �= vp
i

When a discrete solution p is obtained at a given node of the search tree,
Ilog Solver is used to perform constraint propagation on the model (CP )p leading
to variable bounds

(
AL

iv

)p, (AU
iv

)p, (V L
iv

)p, and
(
V U

iv

)p that are possibly tighter
than the bounds defined at the root node (modeling stage). The McCormick
constraints derived from these bounds are valid for the discrete solution p but
are not valid for the current node as some variables Ziv might not have been
fixed yet. The MINLP subproblem corresponding to the discrete solution p is in
fact a restriction of the MINLP subproblem corresponding to the current node.
Therefore, the following modified big-M McCormick constraints are defined to
be added to the current node subproblem:

Xiv ≥
(
AL

iv

)p
Viv + Aiv

(
V L

iv

)p − (AL
iv

)p (
V L

iv

)p −M1 · (n−
∑

i

Zivp
i
)

Xiv ≥
(
AU

iv

)p
Viv + Aiv

(
V U

iv

)p − (AU
iv

)p (
V U

iv

)p −M2 · (n−
∑

i

Zivp
i
)

Xiv ≤
(
AL

iv

)p
Viv + Aiv

(
V U

iv

)p − (AL
iv

)p (
V U

iv

)p
+ M3 · (n−

∑
i

Zivp
i
)

Xiv ≤
(
AU

iv

)p
Viv + Aiv

(
V L

iv

)p − (AU
iv

)p (
V L

iv

)p
+ M4 · (n−

∑
i

Zivp
i
)
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where:

M1 =
(
AL

iv

)p
V U

iv + AU
iv

(
V L

iv

)p − (AL
iv

)p (
V L

iv

)p
M2 =

(
AU

iv

)p
V U

iv + AU
iv

(
V U

iv

)p − (AU
iv

)p (
V U

iv

)p
M3 = AU

ivV U
iv −

{(
AL

iv

)p
V L

iv + AL
iv

(
V U

iv

)p − (AL
iv

)p (
V U

iv

)p}
M4 = AU

ivV U
iv −

{(
AU

iv

)p
V L

iv + AL
iv

(
V L

iv

)p − (AU
iv

)p (
V L

iv

)p}
A lazy constraint callback (see [11]) has been implemented in order to generate
these local McCormick cuts at each node where an integer feasible solution is
found. If at least one McCormick cut is violated by the current discrete solution,
it is added to the node subproblem and the LP relaxation is resolved as depicted
in Fig. 3. This cut generation procedure can also be executed at nodes where no
integer feasible solution is found. However, in order to reduce the computational
expense corresponding to the generation of variable bounds and cuts, only integer
feasible nodes are processed.

Solve LP relaxation

Generate new 
nodes (branch)

Select next node

Prune node

Generate
McCormick cuts

Infeasible ?
Suboptimal ? YES

NO

Integer
feasible ? YES

NO

Cuts added ?
YES

NO: accept current 
solution

Fig. 3. Branch & Cut algorithm with McCormick cuts
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7 Computational Results

The four problems introduced in [1] have been solved using two algorithms. The
BasicRelaxation algorithm consists of initially adding McCormick constraints to
the MILP model without generating new cuts during the search. The Extende-
dRelaxation algorithm consists of adding McCormick constraints to the MILP
and new cuts during the search, as explained in the previous section. Both ap-
proaches have been developed in C++ using Ilog Cplex 11.0 (MILP) and Ilog
Solver 6.5 (CP). The NLPs have been solved using CONOPT 3. Experiments
have been run on an Intel Core 2 Duo 2.16GHz processor.

In both basic and extended cases, Table 1 gives the solution of the MILP and the
NLP, the corresponding optimality gap, and the total CPU time and the number
of nodes explored during the search. In the ExtendedRelaxation case, the compu-
tational time for generating McCormick cuts using CP is also displayed in column
”CP”, it is already included in the total CPU time. The computational time for
solving NLPs is not reported as it is always lower than 5s.

The results show that using the approach developed in this paper leads to
important reductions of the optimality gap compared to the BasicRelaxation
algorithm (3.48% vs 14.83% average gap). Besides, a better feasible solution
(3.3% cost reduction) has been found for problem 2 using the two-step MILP-
NLP procedure. This demonstrates how the linear relaxation of the MINLP
can been tightened by adding McCormick constraints to the subproblems of the
MILP leading to integer feasible solutions. More precisely, at the node where the
optimal MILP solution of problem 1 is found, two rounds of cuts are added. The
first round of cuts leads to an increase of the objective value from 199.1 to 212.4
(6.7% increase), while the second round increases the objective value to 213.7
(0.6% increase). This indicates that few rounds of cuts are necessary in this case
and that the first round of cuts is the most important in order to tighten the
MILP relaxation.

The optimality gaps obtained in the BasicRelaxation case are much larger
than the optimality gaps obtained in [2]. This is due to the fact that the objective
function considered in this previous work is linear, thus leading to a tighter MILP
relaxation.

In terms of computational expense, the required CPU time increases by 9.5%
for the ExtendedRelaxation procedure. This is due to the increase of the number
of nodes explored in some cases (problems 2 and 3), the increase of the model

Table 1. Results obtained with BasicRelaxation and ExtendedRelaxation algorithms

BasicRelaxation ExtendedRelaxation

Pb
MILP NLP

Gap
MILP NLP

GapSolution CPU Nodes Solution Solution CPU CP Nodes Solution
1 199.1 9s 22 222.3 11.7% 213.7 11s 1s 20 222.3 4.0%
2 297.8 215s 55 362.9 21.9% 343.1 246s 19s 57 351.2 2.4%
3 254.6 224s 73 287.6 13.0% 269.2 337s 16s 95 287.6 6.8%
4 331.8 600s 20 374.0 12.7% 371.3 554s 18s 19 374.0 0.7%
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Table 2. Results obtained with several algorithms on problems 1 and 2

Problem 1 Problem 2
Algorithm Solution CPU time Gap Solution CPU time Gap

BasicRelaxation 222.3 9s 11.7% 362.9 215s 21.9%
ExtendedRelaxation 222.3 11s 4.0% 351.2 246s 2.4%

DICOPT 233.5 14s - 351.2 1235s -
sBB Local Infeas. 14s - Local Infeas. 697s -

Bonmin-OA 222.3 27s - No solution +3600s -
AlphaECP 222.3 260s - 358.0 +3600s -
BARON 222.3 +3600s 4.1% No solution +3600s -

size for subproblems for which McCormick constraints have been generated, and
the time used for performing constraint propagation on the CP model (4.7% of
total CPU time). This last point can be improved with a better CP model and
a more efficient implementation.

Table 2 shows computational results obtained with several algorithm on prob-
lem 1. Local optimizers DICOPT, sBB, Bonmin and AlphaECP have been tested
as well as the global solver BARON. DICOPT and sBB did not return the best
known solution, sBB failed to find any feasible solution. However, the corre-
sponding CPU times are similar to the BasicRelaxation and ExtendedRelaxation
procedures. Bonmin-OA found the best-known solution in reasonable time. Al-
phaECP and BARON also found the best known solution, but the former re-
quires one order of magnitude increase in CPU time and does not give any
optimality gap estimate, while the latter requires more than two orders of mag-
nitude increase in CPU time (optimization is stopped after 1 hour) but has the
smallest optimality gap.

8 Conclusion

We have presented a new approach for handling bilinear terms in MINLPs.
It involves using CP bound contraction techniques in order to generate cuts
based on McCormick convex envelopes for products of continuous variables. The
procedure has the advantage of being implemented with the commercial solver
(Ilog Cplex and Solver). This allows using their complementary strengths to
obtain better solutions, reduce the optimality gap, with a reasonable increase of
computational expense.

This approach may be improved by extending the interaction between MILP
and CP as in the programming system SCIP (see [12]). Also, MINLP cuts such
as McCormick cuts can be generated not only for integer feasible subproblems,
but for other subproblems, thus pruning additional nodes during the search.
Finally, optimality-based reduction techniques (see [9]) can be used to add new
constraints to the CP model to remove feasible solutions that are not optimal.
As a consequence variable bounds may be further contracted leading to a tighter
MILP relaxation.



218 S. Mouret, I.E. Grossmann, and P. Pestiaux

References

1. Lee, H., Pinto, J.M., Grossmann, I.E., Park, S.: Mixed-integer linear programming
model for refinery short-term scheduling of crude oil unloading with inventory
management. Industrial and Engineering Chemistry Research 35(5), 1630–1641
(1996)

2. Mouret, S., Grossmann, I.E., Pestiaux, P.: A novel priority-slot based continuous-
time formulation for crude-oil scheduling problems. Industrial and Engineering
Chemistry Research (to appear)

3. Jia, Z., Ierapetritou, M.G., Kelly, J.D.: Refinery short-term scheduling using contin-
uous time formulation: Crude-oil operations. Industrial and Engineering Chemistry
Research 42(13), 3085–3097 (2003)

4. Karuppiah, R., Furman, K.C., Grossmann, I.E.: Global optimization for scheduling
refinery crude oil operations. Computers and Chemical Engineering 32(11), 2745–
2766 (2008)

5. McCormick, G.P.: Computability of global solutions to factorable nonconvex pro-
grams: Part 1 - convex underestimating problems. Mathematical Programming 10,
147–175 (1976)

6. Bergamini, M.L., Grossmann, I.E., Scenna, N., Aguire, P.: An improved piecewise
outer-approximation algorithm for the global optimization of minlp models involv-
ing concave and bilinear terms. Computers and Chemical Engineering 32, 477–493
(2008)

7. Wicaksono, D.S., Karimi, I.A.: Piecewise milp under- and overestimators for global
optimization of bilinear programs. AIChE Journal 54(4), 991–1008 (2008)

8. Pham, V., Laird, C.D., El-Halwagi, M.: Convex hull discretization approach to the
global optimization of pooling problems. Industrial and Engineering Chemistry
Research (2009) (to be published)

9. Sahinidis, N.V.: Global Optimization and Constraint Satisfaction: The Branch-
and-Reduce Approach. In: Bliek, C., Jermann, C., Neumaier, A. (eds.) COCOS
2002. LNCS, vol. 2861, pp. 1–16. Springer, Heidelberg (2003)

10. Balas, E., Jeroslow, R.G.: Canonical cuts on the unit hypercube. SIAM Journal on
Applied Mathematics 23(1), 61–69 (1972)

11. ILOG Inc.: ILOG CPLEX 11.0 User’s Manual (September 2007)
12. Achterberg, T.: Scip - a framework to integrate constraint and mixed integer pro-

gramming. Technical report, Zuse Institute Berlin (2004)

Appendix A: MINLP Model [2]

Sets

– T = {1, . . . , n} is the set of priority-slots
– W is the set of all operations
– WU ⊂ W is the set of unloading operations
– WT ⊂W is the set of tank-to-tank transfer operations
– WD ⊂W is the set of distillation operations
– R is the set of resources (i.e. reservoirs)
– RV ⊂ R is the set of vessels
– RS ⊂ R is the set of storage tanks
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– RC ⊂ R is the set of charging tanks
– RD ⊂ R is the set of distillation units
– Ir ⊂ W is the set of inlet transfer operations on resource r

– Or ⊂ W is the set of outlet transfer operations on resource r

– C is the set of products (i.e. crudes)
– K is the set of product properties (e.g. crude sulfur concentration)

Parameters

– H is the scheduling horizon
– [ND, ND] are the bounds on the number of distillation

– [FRv, FRv] are the bounds on the flowrate of transfer operation v

– Sr is the arrival time of vessel r

– Vr is the minimum volume transferred during unloading of vessel r

– [xvk, xvk] are the limits of property k of the blended products transferred
during operation v

– xck is the value of the property k of crude c

– [Lr, Lr] are the capacity limits of reservoir r

– [Dr, Dr] are the bounds of the demand on products to be transferred out of
the charging tank r during the scheduling horizon

Minimize

Z = SWITCHINGCOST
∑

r∈CDU

⎛⎝ ∑
i,v∈Ir

Ziv − 1

⎞⎠
+ UNLOADINGCOST

∑
i,v∈UNLOAD

Div

+ SEAWAITINGCOST
∑

i,v∈UNLOAD

WAITiv

+ FIXEDSTORAGECOST

+
∑

i,r1,r2,v∈Or1∩Ir2

(
Ċr2 − Ċr1

)(
H − Siv −

Div

2

)
Viv

s.t.

– Assignment constraints:

∑
v∈W

Ziv = 1 i ∈ T (1)
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– Variable constraints

Siv + Div ≤ H · Ziv i ∈ T, v ∈W

(2)

Viv ≤ Vv · Ziv i ∈ T, v ∈W
(3)∑

c∈C

Vivc = Viv i ∈ T, v ∈W

(4)

Lir = L0r +
∑

j∈T,j<i

∑
v∈Ir

Viv −
∑

j∈T,j<i

∑
v∈Or

Viv i ∈ T, r ∈ R

(5)

Lirc = L0rc +
∑

j∈T,j<i

∑
v∈Ir

Vivc −
∑

j∈T,j<i

∑
v∈Or

Vivc i ∈ T, r ∈ R, c ∈ C

(6)

– Sequencing constraints: ∑
i∈T

∑
v∈Or

Ziv = 1 r ∈ RV

(7)

ND ≤
∑
i∈T

∑
v∈WD

Ziv ≤ ND (8)

∑
j∈T,j<i

∑
v∈Or2

Zjv +
∑

j∈T,j≥i

∑
v∈Or1

Zjv ≤ 1 i ∈ T, i �= 1, r1, r2 ∈ RV , r1 < r2

(9)

– Scheduling constraints:

∑
v∈WU

(Siv + Div) ≤
∑

v∈WU

Sjv + H · (1 −
∑

v∈WU

Zjv) i, j ∈ T, i < j

(10)∑
v∈Ir

(Siv + Div) ≤
∑

v∈Or

Sjv + H · (1 −
∑

v∈Or

Zjv) i, j ∈ T, i < j, r ∈ RS ∪ RC

(11)∑
v∈Or

(Siv + Div) ≤
∑
v∈Ir

Sjv + H · (1 −
∑
v∈Ir

Zjv) i, j ∈ T, i < j, r ∈ RS ∪ RC

(12)∑
v∈Or

(Siv + Div) ≤
∑

v∈Or

Sjv + H · (1 −
∑

v∈Or

Zjv) i, j ∈ T, i < j, r ∈ RC

(13)
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∑
v∈Ir

(Siv + Div) ≤
∑
v∈Ir

Sjv + H · (1−
∑
v∈Ir

Zjv) i, j ∈ T, i < j, r ∈ RD

(14)

Siv + Div ≤ Sjv + H · (1− Zjv) i, j ∈ T, i < j, v ∈W
(15)∑

i∈T

∑
v∈Ir

Div = H r ∈ RD

(16)

Siv = Sr · Ziv + Wiv i ∈ T, r ∈ RV , v ∈ Or

(17)

– Operation constraints:

FRv ·Div ≤ Viv ≤ FRv ·Div i ∈ T, v ∈W

(18)

Viv ≥ Vr · Ziv i ∈ T, v ∈W
(19)

xvk · Viv ≤
∑
c∈C

xckVivc ≤ xvk · Viv i ∈ T, v ∈W, k ∈ K

(20)
Lirc

Lir
=

Vivc

Viv
(ignored in MILP relaxation) i ∈ T, r ∈ R, v ∈ Or , c ∈ C

(21)

– Resource constraints:

Lr ≤ Lir ≤ Lr i ∈ T, r ∈ RS ∪RC

(22)

0 ≤ Lirc ≤ Lr i ∈ T, r ∈ RS ∪RC , c ∈ C
(23)

Lr ≤ L0r +
∑
i∈T

∑
v∈Ir

Viv −
∑
i∈T

∑
v∈Or

Viv ≤ Lr r ∈ RS ∪RC

(24)

0 ≤ L0rc +
∑
i∈T

∑
v∈Ir

Vivc −
∑
i∈T

∑
v∈Or

Vivc ≤ Lr r ∈ RS ∪RC , c ∈ C

(25)

Dr ≤
∑
i∈T

∑
v∈Or

Viv ≤ Dr r ∈ RC

(26)
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– Symmetry-breaking constraints with deterministic finite automaton M =
(Q, Σ, δ, q1, F ) (see [2]): ∑

q

Sivq = Ziv i ∈ T, v ∈ W (27)

∑
v

S1vq1 = 1 (28)∑
v,q′,q=δ(q′,v)

S(i−1)vq′ −
∑

v

Sivq = 0 i ∈ T, i �= 1, q ∈ Q (29)

∑
v,q,δ(q,v)∈F

Snvq = 1 (30)
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Abstract. Context-free grammar constraints enforce that a sequence of variables
forms a word in a language defined by a context-free grammar. The constraint
has received a lot of attention in the last few years as it represents an effective
and highly expressive modeling entity. Its application has been studied in the
field of Constraint Programming, Mixed Integer Programming, and SAT to solve
complex decision problems such as shift scheduling. In this theoretical study we
demonstrate how the constraint can be linearized efficiently. In particular, we pro-
pose a lifted polytope which has only integer extreme points. Based on this result,
for shift scheduling problems we prove the equivalence of Dantzig’s original set
covering model and a lately introduced grammar-based model.

Keywords: grammar constraints, polytope.

1 Introduction

Global constraints capture natural substructures of common combinatorial optimization
or satisfaction problems. They facilitate the modeling process and, at the same time,
offer the solver awareness of structures that it can exploit to boost performance. In con-
straint programming, global constraints allow greater filtering effectiveness. In integer
programming, they offer the possibility to linearize specific structures more effectively
than a non-expert is able to achieve. Systems like SCIP [1] and SIMPL [12] linearize
entire substructures automatically and effectively.

In this short theoretical study, we show how context-free grammar constraints can
be linearized effectively. We prove that the linearization proposed in [3] results in a
polytope which has integer feasible corners only, thus giving us the convex hull of all
integer feasible points and allowing us to obtain tight linear relaxation models when
grammar constraints are used in combination with other constraints.
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2 Basic Concepts

We start by reviewing some well-known definitions from the theory of formal languages
and the existing algorithm for filtering context-free grammar constraints. For a full in-
troduction, we refer the interested reader to [5] and [11] where all the proofs that are
omitted in this paper can be found.

Definition 1 (Alphabet and Words). Given sets Z , Z1, and Z2, with Z1Z2 we denote
the set of all sequences or strings z = z1z2 with z1 ∈ Z1 and z2 ∈ Z2, and we call
Z1Z2 the concatenation of Z1 and Z2. Then, for all n ∈ IN we denote by Zn the set
of all sequences z = z1z2 . . . zn with zi ∈ Z for all 1 ≤ i ≤ n. We call z a word of
length n, and Z is called an alphabet or set of letters. The empty word has length 0 and
is denoted by ε. It is the only member of Z0. We denote the set of all words over the
alphabet Z by Z∗ :=

⋃
n∈IN Zn. In case that we wish to exclude the empty word, we

write Z+ :=
⋃

n≥1 Zn.

Definition 2 (Context-Free Grammars). A grammar is a tuple G = (Σ, N, P, S0)
where Σ is the alphabet, N is a finite set of non-terminals, P ⊆ (N ∪ Σ)∗N(N ∪
Σ)∗ × (N ∪ Σ)∗ is the set of productions, and S0 ∈ N is the start non-terminal. We
will always assume that N ∩ Σ = ∅. Given a grammar G = (Σ, N, P, S0) such that
P ⊆ N× (N ∪Σ)∗, we say that the grammar G and the language LG are context-free.
A context-free grammar G = (Σ, N, P, S0) is said to be in Chomsky Normal Form if
and only if for all productions (A → α) ∈ P we have that α ∈ Σ1 ∪N2. Without loss
of generality, we will then assume that each literal a ∈ Σ is associated with exactly
one unique non-literal Aa ∈ N such that (B → a) ∈ P implies that B = Aa and
(Aa → b) ∈ P implies that a = b.

Remark 1. Throughout the paper, we will use the following convention: Capital letters
A, B, C, D, and E denote non-terminals, lower case letters a, b, c, d, and e denote
letters in Σ, Y and Z denote symbols that can either be letters or non-terminals, u, v,
w, x, y, and z denote strings of letters, and α, β, and γ denote strings of letters and
non-terminals. Moreover, productions (α, β) in P can also be written as α→ β.

Definition 3 (Derivation and Language).

– Given a grammar G = (Σ, N, P, S0), we write αβ1γ ⇒
G

αβ2γ if and only if there

exists a production (β1 → β2) ∈ P . We write α1
∗⇒
G

αm if and only if there exists

a sequence of strings α2, . . . , αm−1 such that αi ⇒
G

αi+1 for all 1 ≤ i < m. Then,

we say that αm can be derived from α1.
– The language given by G is LG := {w ∈ Σ∗ | S0

∗⇒
G

w}.

2.1 Context-Free Grammar Constraints

Based on the concepts above, we review the definition of context-free grammar con-
straints introduced in [11]:
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Definition 4 (Grammar Constraint). For a given grammar G = (Σ, N, P, S0) and
variables X1, . . . , Xn with domains D1 := D(X1), . . . , Dn := D(Xn) ⊆ Σ, we say
that GrammarG(X1, . . . , Xn) is true for an instantiation X1 ← w1, . . . , Xn ← wn

if and only if it holds that w = w1 . . . wn ∈ LG ∩ D1 × · · · × Dn. We denote a
given grammar constraint GrammarG(X1, . . . , Xn) over a context-free grammar G

in Chomsky Normal Form by CFGCG(X1, . . . , Xn).

The filtering algorithm for CFGCG presented in [11] is based on the parsing algorithm
from Cooke, Younger, and Kasami (CYK). CYK works as follows: Given a word w ∈
Σn, let us denote the subsequence of letters starting at position i with length j (that
is, wiwi+1 . . . wi+j−1) by wij . Based on a grammar G = (Σ, N, P, S0) in Chomsky
Normal Form, CYK determines iteratively the set of all non-terminals from which we
can derive wij , i.e. Sij := {A ∈ N | A ∗⇒

G
wij} for all 1 ≤ i ≤ n and 1 ≤ j ≤ n− i.

It is easy to initialize the sets Si1 just based on wi and all productions (A → wi) ∈ P .
Then, for j from 2 to n and i from 1 to n− j + 1, we have that

Sij =
j−1⋃
k=1

{A | (A → BC) ∈ P with B ∈ Sik and C ∈ Si+k,j−k}. (1)

Then, w ∈ LG if and only if S0 ∈ S1n. From the recursion equation it is simple to
derive that CYK can be implemented to run in time O(n3|G|) = O(n3) when we treat
the size of the grammar as a constant.

The filtering algorithm for CFGCG that we sketch in Algorithm 1 works bottom-up
by computing the sets Sij for increasing j after initializing Si1 with all non-terminals
that can produce in one step a terminal in the domains of Xi. Then, the algorithm works
top-down by removing all non-terminals from each set Sij which cannot be reached
from S0 ∈ S1n. In [11], we showed:

Theorem 1. Algorithm 1 achieves generalized arc-consistency for the CFGC and re-
quires time and space cubic in the number of variables.

Example 1. Assume we are given the following context-free, normal-form grammar
G = ({], [}, {A, B, C, S0}, {S0 → AC, S0 → S0S0, S0 → BC, B → AS0, A →
[ , C → ] }, S0)that gives the language LG of all correctly bracketed expressions (like,

Algorithm 1. CFGC Filtering Algorithm
1. We run the dynamic program based on recursion equation (1) with initial sets Si1 :=

{A | (A → v) ∈ P, v ∈ Di}.
2. We define the directed graph Q = (V, E) with node set V := {vijA | A ∈ Sij} and arc

set E := E1 ∪ E2 with E1 := {(vijA, vikB) | ∃ C ∈ Si+k,j−k : (A → BC) ∈ P} and
E2 := {(vijA, vi+k,j−k,C) | ∃ B ∈ Sik : (A → BC) ∈ P} (see Figure 1).

3. Now, we remove all nodes and arcs from Q that cannot be reached from v1nS0 and denote the
resulting graph by Q′ := (V ′, E′).

4. We define S′
ij := {A | vijA ∈ V ′} ⊆ Sij , and set D′

i := {v | ∃ A ∈ S′
i1 : (A → v) ∈

P}.
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Fig. 1. The picture shows sets Sij in Algorithm 1
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Fig. 2. The left picture shows the sets S′
ij in Algorithm 1. We see that the constraint filtering

algorithm determines that the word may not start with a closing, nor end with an opening bracket.

for example, “[[][]]” or “[][[]]”). In Figures 1 and 2, we illustrate how Algorithm 1
works when the initial domain of all domains are D1 = · · · = D4 = {[, ]}: First, we
work bottom-up, adding non-terminals to the sets Sij if they allow to generate a word
in Di × · · · × Di+j−1. Then, in the second step, we work top-down and remove all
non-terminals that cannot be reached from S0 ∈ S1n.

3 Linearization of Context-Free Grammar Constraints

In [9] an And/Or representation of the graph constructed in Algorithm 1 was given. The
idea is to split each node vijA1 in the original graph into one Or-node Nor

ijA1 which re-
ceives all incoming arcs of the original node. This Or-node then connects to And-nodes
Nand

ijA1A2A3k for all productions (A1 → A2A3) ∈ P and k < j. Each Nand
ijA1A2A3k

then connects to Nor
ikA2 and Nor

i+k,j−k,A3 . For Or-nodes Nor
i1Aa

on the lowest level, we

add one And-node Nand
i1a , whereby we assume that the only production in P with non-

terminal Aa on the left-hand side and a on the right is (Aa → a). In Figure 3 we show
how the graph in Figure 2 is transformed in this way.
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Fig. 3. The picture shows the modified And/Or-graph. The solid nodes denote And-nodes.

Based on this And/Or representation, in [3] a linearization of context-free grammar
constraints was introduced which works as follows. A boolean variable is introduced
for each node (AND/OR) of the graph, taking a value of 1 when the associated node is
true. In the following, Nor and Nand respectively refer to the sets of all Or-nodes and
And-nodes. Letting u ∈ Nor (resp. v ∈ Nand) be an Or-node (resp. And-node) then ou

(resp. av) refers to its associated 0-1 variable. We also define p(u) the set of u’s parent
nodes and, when not considering a leaf node, c(u) the set of u’s children nodes. The
constraint in the associated MIP model was formulated as:∑

v∈c(u)

av = ou ∀u ∈ Nor (2)

∑
v∈p(u)

av = ou ∀u ∈ Nor (3)

a1,n,S0 = 1 (4)

ou, av ∈ {0, 1} ∀u ∈ Nor, v ∈ Nand (5)

The main difference between the MIP model and the AND/OR graph is that if there
exist more than one parsing tree for a sequence, all nodes in the AND/OR graph that
belong to at least one parsing tree are set to true, while for the MIP, one parsing tree is
arbitrarily selected and only its variables are set to one. All other variables, including
those that belong to other parsing trees, are set to zero. Choosing an arbitrary parsing
tree simplifies the MIP without changing the solution space. Indeed, only one parsing
tree is necessary to prove that a sequence belongs to a context-free language.

This model can however be simplified: we can remove the variable associated with
Or-nodes (since (2) and (3) can be combined) and use non-negative variables instead of
binary ones (as (4) imposes an upper bound on all variables). These changes will also
significantly simplify the proof that all extreme points of the defined polytope are integer.
The new model becomes:
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v∈c(u)

av =
∑

v∈p(u)

av ∀u ∈ Nor (6)

a1,n,S0 = 1 (7)

av ≥ 0, ∀v ∈ Nand (8)

It is also possible to define the grammar polytope directly from the signature of the
constraint, that is without referring to the AND/OR graph. The polytope is then defined
as follows:

IP− CF = min
∑

cijABCkaijABCk +
∑

ci1aai1a (9)

s.t.

∑
(A→BC)∈P

1≤k<j

aijABCk =
∑

(B→AC)∈P

j<k<n

aikBACk+
∑

(B→CA)∈P

j<k<n

ai+j−k,k,BCAk

∀ i, j≥1
∀ A∈Sij

i+j ≤ n+1
(10)

∑
(Aa→a)∈P

ai1a =
∑

(B→AaC)∈P

1<k<n

aikBACk +
∑

(B→CAa)∈P

1<k<n

ai+1−k,k,BCAk
∀ i ∈ 1..n

∀Aa ∈ Si1
(11)

1 =
∑

(S0→BC)∈P

1≤k<n

a1nS0BCk (12)

0 ≤ aijABCk, ai1a

∀ Aa ∈ Si1

∀ i, j ≥ 1
i + j ≤ n

(13)

Example 2. Continuing with the bracketing example (Example 1), we illustrate the lin-
earization of the corresponding grammar constraint. For the graph depicted in Fig-
ure 3, among other constraints, according to Equation 6, we enforce

a14S0BC3 + a32S0AC1 = a41],

and according to Equation 4, we enforce

a14S0BC3 + a14S0S0S02 = 1.

4 The Context-Free Grammar Polytope

We now state and prove the main result of this theoretical study. Given a grammar
constraint, the polytope defined by (6)-(8) has the following property:
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Theorem 2. The linearization IP-CF of a given context-free grammar constraint has
integer-feasible corners only.

Proof. We can write IP-CF in the form minimize cT a such that Aa = b, a ≥ 0. Let a1

denote an optimal solution to IP-CF, and u1 the corresponding optimal dual solution.
According to the well-known complementary slackness conditions, we know that all
a with Aa = b and aT (AT u1 − c) = 0 are optimal. The complementary slackness
conditions ensure that at optimality, we have aT

i = 0 or AT
i u1 − ci = 0 for every i. It

is therefore sufficient to construct an integer-feasible solution a0 to Aa = b for which
AT

i u1 < ci implies a0
i = 0. In particular, we want to construct an integer-feasible

solution a0 for which a0
i is greater than zero only if the non-integer solution satisfies

a1
i > 0 or equivalently AT

i u1 = ci. That is, it is sufficient to construct an integer-
feasible solution a0 to Aa = b whose support (the set of variables that take non-zero
values) is a subset of the support of a1.

Let us consider any node in cell S1n for which a1
1nS0BCk > 0 (at least one such

node must exist according to Equation 12), and set a0
1nS0BCk = 1. Now, since the

Or-nodes o1kB and ok,n−k,C received a positive “flow” according to a1, according to
Equations 10 there must exist some And-nodes for which a1

1kBDEh, a1
k,n−k,CFGl > 0.

Again, we set a1
1kBDEh = 1 and a1

k,n−k,CFGl = 1 and continue until we fade out at the
bottom level. All other variables are set to zero. The tree of And-nodes which we con-
structed obeys all constraints in IP-CF. Moreover, we only utilized And-nodes that were
already used in the fractional solution a1. Consequently, a0 obeys the complementary
slackness conditions with respect to u1 and is thus optimal. ��

The result applies to models where costs are associated with variables taking specific
values as studied in [6], but also models where using certain productions incurs specific
costs as studied in [7].

5 Implication for Shift Scheduling Problems

We illustrate the use of grammar constraints in the domain of shift scheduling. Given
a planning horizon divided into periods of equal length, a set of employees and a de-
mand for different activities (work activities, lunch, break, rest) at each period, the shift
scheduling problem consists in assigning one activity to each employee in each period
in such a way that the demands are met. In this context, a shift is a sequence of activities
corresponding to a continuous presence at work (that may include lunch and break, but
not rest periods). The original objective (introduced by Dantzig in [2]) is to build a set
of shifts that minimize labor costs while meeting labor regulations.

Given that Ω is the set of legal shifts, T the set of all time periods, di the required
number of employees at time i, cs the cost of shift s (equal to a weighted sum of the
number of periods it covers), ais an indicator specifying whether s covers time period
i, and xs is an integer variable that represents the number of employees assigned to s,
we can state the original model of [2] as follows:
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SC = min
∑
s∈Ω

csxs (14)

s.t.
∑
s∈Ω

aisxs ≥ di ∀i ∈ T (15)

xs ≥ 0, integer ∀s ∈ Ω (16)

The most common methods used to solve this problem ([4]) are various set covering
heuristics, which select from a set of potentially good shifts, the ones that together
generate the best schedule. In order to generate an optimal solution the set covering
model has to be defined over the entire set of possible shifts and solved through branch
and price when Ω is too large.

For the purpose of comparison (and also many other practical issues that involve
the need to track individual employees) this model can be disaggregated to identify the
shift performed by each employee in set E. The boolean decision variable xse indicates
whether employee e performs shift s.

SCe = min
∑

s∈Ω,e∈E

csxse (17)

s.t.
∑

s∈Ω,e∈E

aisxse ≥ di ∀i ∈ T (18)

∑
s∈Ω

xse = 1 ∀e ∈ E (19)

xse ∈ {0, 1} ∀s ∈ Ω, e ∈ E (20)

In [3] Coté et al. showed that one could express implicitly the set of all shifts using
a simple context-free grammar imposed on the sequence of fine grained decisions yie

(employee e works at time i). At a high level, the model was:

SCg = min
∑

i∈T,e∈E

ciyie (21)

s.t.
∑
e∈E

yie ≥ di ∀i ∈ T (22)

grammar(G, yi∈T,e) ∀e ∈ E (23)

yie ∈ {0, 1} ∀i ∈ T, e ∈ E (24)

where ci is the cost of having an employee working at time i and G is the grammar
defining how the shifts in Ω can be assembled. Note that even though Models SC
and SCe could encapsulate more sophisticated costs than the weighted sum of the
worked periods, it would also be possible to impose costs on the variables associated to
the And-nodes of the grammar constraint formulations allowing for substantial flexibil-
ity in modeling.

Corollary 1. Given that the cs =
∑

i∈T aisci ∀s ∈ Ω then models SCe and SCg are
equivalent.
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Proof. From Theorem 2, the linearization of (23) yields a polytope that admits only
integer extreme points which are, by definition of G, all the pairs (valid shifts s ∈ Ω,
employee e ∈ E). Thus any feasible solution y.e associated to one employee can be
written as a convex combination of the extreme points (s,e). If we associate a Boolean
variable to each of these extreme points, say xse, we can convert any solution vector
given in terms of the extreme points x back to the original variable y by applying

yie =
∑
s∈Ω

aisxse ∀i ∈ T, ∀e ∈ E (25)

Using (25), we can rewrite the yie variables in SCg (where (23) is no longer necessary)
as a convex combination of the extreme point variables xse:

SCg = min
∑

i∈T,e∈E

ci

∑
s∈Ω

aisxse (26)

s.t.
∑
e∈E

∑
s∈Ω

aisxse ≥ di ∀i ∈ T (27)

∑
s∈Ω

aisxse = 1 ∀i ∈ T, e ∈ E (28)

xse ∈ {0, 1} ∀s ∈ Ω, e ∈ E (29)

Given that cs =
∑

i∈T aisci ∀s ∈ Ω and that (28) is derived from (12), this is exactly
SCe. ��

6 Conclusion

Grammar constraints have received much attention in last few years, as they have been
studied in the context of Constraint Programming [6,9,11], SAT [10], Mixed Integer
Programming [3], and Large Neighborhood Search [8]. In this paper we studied the lin-
earization of this global constraint and showed that it is possible to generate a polytope
that possesses only integer feasible extreme points. We believe this result is fundamental
as it means that the use of grammar constraints in the context of Mixed Integer Program-
ming does not introduce any integrality gap. We know that the grammar constraint can
be very useful to solve shift scheduling problems [8], and we plan to investigate other
areas where these structures can be useful.
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Abstract. Many sports fans invest a great deal of time into watching
and analyzing the performance of their favourite team. However, the
tools at their disposal are primarily heuristic or based on folk wisdom.
This paper provides a concrete mechanism for calculating the minimum
number of points needed to guarantee a playoff spot in the National
Hockey League (NHL). Along with determining how many games need
to be won to guarantee a playoff spot comes the notion of “must win”
games. Our method can identify those games where, if a team loses, they
no longer control their own playoff destiny. As a side effect of this, we
can also identify when teams get lucky and still make the playoffs even
though another team could have eliminated them.

1 Introduction

Hockey fans are interested in knowing when their team clinches a playoff spot.
This problem can be modelled as a satisfaction problem and solved using con-
straint programming [1]. However, if the team has not clinched a playoff spot,
this method provides no information about how close a team is to earning a
playoff position. The problem of determining how close a team is to clinching
a playoff spot can be modelled as an optimization problem that determines the
minimum number of points that is necessary to guarantee a spot. This bound on
the number of points can also be used to determine when a team has no guar-
antee of making the playoffs and when a team has lost a crucial game and left
destiny in the hands of another team. These factors are interesting to hockey fans
and can be generalized to other sports with playoff structures, such as baseball
and basketball.

We solve the problem using a constraint model and a mixture of techniques
from constraint programming and operations research including network flows,
constraint propagation and dominance constraints. We decompose the problem
so that we can use a multi-stage approach that adds constraints at each stage
if no feasible solution is found. The NHL determines positioning by points and,
if tied by points, by several tie breaking conditions. The stages of the solver
correspond to the extra constraints needed to determine the extra tie breaking
conditions. The first stage uses a combination of enumeration and network flows
to determine a tight lower bound on the points needed and whether there exists

W.-J. van Hoeve and J.N. Hooker (Eds.): CPAIOR 2009, LNCS 5547, pp. 233–247, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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a feasible solution using only points as a criterion. The second stage also uses
network flows to check the first tie breaking condition. The third stage uses a
backtracking constraint solver to determine if there are any solutions using the
second tie breaking condition.

Our solver can determine the minimum number of points for a given team, at
any point in the season, within ten minutes and, for dates near the end of the
season, in seconds. In sports, analysts, reporters and coaches often refer to “must
win” games. The method used in this paper can identify games where losing that
game, the team puts its playoff aspirations into the hands of its opponents. While
this does not mean the team will not qualify for the playoffs, it does mean that
nothing the team does guarantees a playoff spot. We identify nine teams in the
2006-07 season that lost one of these “must win” games and found themselves
in a position to earn a playoff spot again through the actions of their opponents.
Several teams experienced this phenomenon four times during the season.

In the remainder of the paper, we give a brief description of the mechanics
of playoff qualification in the NHL. Some related work is presented in Section
3. A formal definition of the optimization problem for determining the minimal
number of points needed to guarantee a team makes the playoffs is presented.
Afterwards, we introduce the concept of an elimination set and explain how
this is used to determine tight lower bound values on the optimal value. Since
the bound requires the relaxation of tie breaking conditions, we discuss how
we can reincorporate those conditions using the same sets. Finally, the specific
constraint model is introduced along with some optimizations in the form of
exploited dominance and combined consistency checking.

2 The NHL Playoff System

Since the last expansion of the league in 2000, the NHL has consisted of thirty
teams arranged into two conferences of fifteen teams. Each conference is broken
into three divisions with five teams each. Each team in the NHL plays eighty two
games with 41 home games and 41 away games. Eight teams make the playoffs
from each conference and to earn a playoff position a team must either be a
division leader or one of the five best teams in their conference not including
division leaders, called wild card teams.

Positioning in the NHL is determined by one primary criterion and several
secondary tie breaking criteria. The primary criterion is the number of points
earned by a team. The two common secondary criteria are total wins and points
earned against teams with the same number of points and wins. A third tie
breaking criteria, which is the number of goals scored on opponents, is sometimes
used to break ties between teams tied applying the first three criteria.

Like many North American sports, an NHL game must end in a win or loss.
However, the NHL has a unique scoring system as there are points awarded for
reaching overtime even if a team does not win the game. The game is separated
into three twenty minute periods and, if teams are tied after sixty minutes, a
five minute overtime period. If teams are tied after overtime, there is a shootout
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to decide the winner. If the game ends during regulation time— the first sixty
minutes— then the winner of the game is awarded two points and the loser earns
no points. If, however, the game ends either during the overtime period, which
is sudden death, i.e. ends when a goal is scored, or the shootout, which must
conclude with a winner, then the winner still earns two points but the loser earns
a single point in consolation.

3 Related Work

Russell and van Beek [1] created a constraint programming model for calculating
whether a given team had clinched a playoff spot. However, the optimization
of the decision model requires a relaxation of the dominance constraints. This
relaxation of the constraints along with the increased search space leads to a
significant increase in the execution time of the solver such that relatively late
season instances could not be solved within a day.

Approaches for determining the minimum number of games needed to guar-
antee a playoff spot have been proposed for the Brazilian football championship
[2] and in Major League Baseball [3]. These sports either have a simpler scoring
model or a simpler playoff qualification method. Robinson [4] suggested a model
for the NHL but his model did not allow for wild card teams or tie breaking
conditions. As well, only a theoretical model was presented without experimen-
tal results. Gusfield and Martel [5] show that this problem is NP-Hard. They
put forth a method for calculating bounds on when a team has been eliminated
from the playoffs but their method only works for a single wild card team and a
simple win-loss scoring model. Our technique uses a similar method but differs
in approach as we must account for multiple wild card teams.

Wayne [6] introduced the concept of a constant that could be used to deter-
mine whether or not a team was eliminated from the playoffs. Specifically, he
introduced the concept of lower bound constant W ∗ which denoted the mini-
mum number of points needed to earn a playoff spot. Gusfield and Martel [5]
show how this idea can be extended to include a single wild card team and
multiple division leaders. In this paper, we will also discuss the existence of an
upper bound constant which represents the minimum number of points needed
to guarantee a playoff spot.

4 A Formal Problem Definition

To define the problem formally, certain concepts and notations must first be
introduced. We denote the set of teams in the NHL as T . We denote the confer-
ence that team i belongs to as Ci and the division that team i belongs to as Di.
Table 1a shows the different time variables that we use to superscript the other
feature-based variables. Table 1b shows the different features in the NHL and
the notation for each feature based on the number and type of opponent. For
each instance, there is a schedule and a date d0 along with the results of games
prior to d0. We define a scenario S to be a completion of the schedule from d0
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Table 1. Variable Notation (a) The variables representing the different dates under
consideration. (b) The variables representing the current state of the results at a given
time dt.

Date Notation
Current d0

End de

Generic dt

Feature vs. j vs. Opposite Conference Total
Points pdt

i,j ocpdt
i pdt

i

Wins wdt
ij ocwdt

i wdt
i

Overtime Losses oldt
ij ocoldt

i oldt
i

Games Remaining gd0
ij ocgdt

i gdt
i

(a) (b)

by assigning wins, losses, and overtime losses to the games scheduled after d0.
We refer to the maximum possible points that could be earned by a team i if
they won all of their remaining games from a given date dt as mppdt

i . We refer
to the maximum points over all teams T ′ ⊆ T at a given time dt as maxdt (T ′)
and the minimum points over all teams T ′ ⊆ T at a given time dt as mindt (T ′).

A team only qualifies for a playoff spot if they are a division leader or a wild
card team. We define a division leader to be the team i that has the maximal
points at the end of the season within their own division (i.e. pde

i = maxde(Di))
and has better tie breakers than any team with equivalent points in their division
at time de. We define a wild card team i to be any team that is not a division
leader but has a pde

i greater than at least seven other teams in i’s conference
that are also not division leaders.

Given team k, a given date of the season, d0, a given schedule of remaining
games and given results up to d0 in the season, a Playoff Optimization Problem
is to determine the minimal number of points at the end of the season, pde

k , such
that there exists no scenario where k does not qualify for the playoffs as either
the leader of the division or one of the five wild card teams. Note that we refer
to the given team as either the elimination team or simply k for the remainder
of the document.

5 Solution Overview

In this section, we provide an overview to the solver that we use to solve the
optimization problem. In order to solve all instances, we use a multi-stage solver
that applies different techniques at each stage. In the first stage, we enumerate
all of the feasible elimination sets of teams (see Sec. 6) and derive a tight lower
bound for the number of points needed. If pd0

k is greater than the bound then
they have already qualified and if mppd0

k is less than the bound then they can no
longer guarantee. If the bound falls in between those values then with each set
that obtains our lower bound, we check each tie break condition to determine
if this lower bound is a feasible number of points to guarantee a playoff spot.
The second stage checks to see if the first tie break condition, wins, is enough
to eliminate k. We do this by enumerating the possible win values and checking
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them with a feasible flow algorithm (see Sec. 7). If there is no feasible solution
using only points and wins as criteria, the third stage again uses a feasible flow
algorithm to check if there are any sets where teams are tied in both points and
wins (see Sec. 7). If there exists feasible tie breaking sets, we use a backtracking
constraint solver to determine if one of the sets can eliminate k (see Sec. 8). If
there are no solutions at this point then k can guarantee a playoff spot if they
earn enough points to reach the bound. Otherwise, the solution to the problem
is one greater than our lower bound.

6 Generating and Bounding the Elimination Sets

In this section, we define elimination sets and present a method for determining
a bound on the points achievable by that set. To calculate the lower bound, we
generate all sets of eight teams that could compose the three division leaders
and five wild card teams. Each of these sets has the potential to eliminate k at
some point bound. The largest bound over all of these sets forms a tight lower
bound on the solution to our problem, differing by at most one point.

We define an Elimination Set, E, as a set of eight teams from the same
conference with at least one team from each division and does not include k. For
each team i, they must either have mppd0

i > pd0
k or be the only team in the set

from a division Di such that Di �= Dk.
We define the bound of an elimination set, E, as the max (minde (E)) under

all scenarios S where either pde

k = minde (E) or pde

k = mppd0
k . The maximum

bound over all elimination sets is a tight lower bound on the solution to the
complete problem differing by at most one point.

6.1 Calculating the Bound

To calculate the bound for a given elimination set, we adapt an idea by Brown [7]
using iterative max flows to solve a sharing problem. We implemented a similar
algorithm that shares the games between the teams so that the worst team in
the set has the most points possible. By constructing a flow graph that allows
us to determine a feasible share, we iterate until a valid distribution of games is
found. We start out with a possible bound and determine its feasibility. If the
bound is not feasible, we update the bound and check the feasibility of the new
bound.

In order to find the best bound, teams win as many points as possible. This
means that every loss by a team in the elimination set is an overtime loss and
teams in the elimination set win all of their games against teams that are not
except k. We formalize the points earned by a team i under this situation as,

p′i = pd0
i + 2ocgd0

i + 2
∑

j /∈E∪{k}
gd0

ij +
∑

j∈E∪{k}
gd0

ij . (1)

Equation (1) represents the sum of the points already earned (pd0
i ), the wins

against teams not in the set E ∪ {k} (2ocgd0
i + 2

∑
j /∈E∪{k} gd0

ij ) and one point
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(a) (b) (c) (d)

Fig. 1. The relaxed bound algorithm. (a) The original problem with 6 games remain-
ing. The solid rectangles represents pd0

i and the dashed rectangles represents mppd0
i .

The first step is to sort the teams by pd0
i . (b) shows the sorted teams with the

min (mppd0
i ) shown as the solid horizontal line. (c) We assign games to the teams

with the least points. In this case, one game to the first team. (d) In the next iter-
ation, four teams need games and we allocate four of the remaining five games. The
bound is reached and the final solution has one game remaining.

each from games against teams in E ∪{k} (
∑

j∈E∪{k} gd0
ij ). These preprocessing

steps are valid dominance relations as we are looking for the scenario where we
get the maximum minde (E) and these steps either increase the points of a team
in E or leave them the same while not affecting the maximum possible points of
the teams in E.

6.2 The Relaxed Bound

To determine the starting point for the lower bound, we solve a relaxation of the
bound calculation where we relax the constraint that a specific number of games
must be played between two teams. Instead, we consider all games as a pool of
unplayed games with no assigned opponents and assign them to the worst team
until the games are used or the mini∈E(mppd0

i ) is reached. Figure 1 shows an
example bound calculation.

6.3 The Flow Network and the Bound

Once we have a starting point calculated by the relaxed bound algorithm, we are
looking to find the first feasible bound when we include the constraints removed
during the infeasible calculations. We formulate this as a feasible flow problem
[8] with an artificial sink and source. These graphs look similar to the graphs
constructed by Schwartz [9] in his paper on baseball elimination.

Every team in the elimination set and the team k needs to win a certain
number of games to reach the bound and this must be incorporated into the
graph. We define the need of a team i, ni, to be bound− p′i (where bound is the
current lower bound on points and p′i is defined in (1)). The exception to this
rule is k where the bound may be greater than mppk. In that case, we calculate
nk as mppk − p′k. We use the p′ values since we are still looking for best case
results for the set E∪{k}. A bound is feasible if the maximum flow in the graph
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bound ← InfeasibleBound(E,k);
repeat

Needs ← CalculateNeeds(E,k,bound);
need ←∑

i∈E ni;
G ← ConstructGraph(Needs);
flow ← CalculateFlow(G);
if flow < need then

bound ← bound − 1;

until flow ≥ need ;
return bound

Algorithm 1. This algorithm shows the steps for calculating the bound for a given
elimination set, E. First, we generate an infeasible bound as a starting point. From
that starting point, we generate, for each team, the number of points needed to reach
the bound, denoting the set of needs as Needs. Then we check feasibility using a flow
algorithm. If the flow meets the needs, we return the bound. Otherwise, we reduce
the bound and iterate.

is equal to the sum of the needs of the teams in the elimination set. If not, a new
bound must be tried. Algorithm 1 describes the process by which the bound is
calculated. We denote the maximum bound calculated by the algorithm over all
elimination sets as p and prune any set that does not reach that bound.

Once we know the needs for a given elimination set, it is relatively simple to
construct the graph. An example graph is in Fig. 2 showing the variables and
the associated capacities in the graph. We create two nodes s and t to be the
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Fig. 2. (a) A variable representation of the values in the flow graph for a three team
elimination set ({1, 2, 3}). The implementation of the graph uses the domain of the
variables as the capacity bounds. (b) The capacities to determine feasibility for the
flow graph. All variables are given their domain maximum. Since the flow is split in
nodes (1, 2), (1, 3) and (2, 3), a feasible flow is a valid assignment. If the max flow can
saturate the needs of the teams then there is a feasible solution for this elimination set.
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source and sink, respectively. We add one node for each pair of teams in the set
and one node for each team in the set. On top of this, we add an extra node that
represents games played against k by any team in E. Each node representing
a pair of teams has three edges where one is an incoming edge from s with a
capacity equal to the number of games between those two teams gd0

ij and two
are outgoing edges to the nodes for the teams with the same capacity as the
incoming edge. There is also an edge from each node representing a team in
the set to the sink node t with a capacity equal to the need of the node. Last,
the node representing the games against k has an edge from the source with a
capacity of gd0

k −nk and one link each to every team node with a capacity equal
to the number of games played between them.

7 Win Values and Tie Breaking Sets

In this section, we describe how win values are used to determine if an instance
has a solution and how to generate feasible tie break sets. Once we have a point
bound and set of teams that could potentially reach that bound, we determine
the possible values for the secondary criteria and only solve feasible instances.
This means that we determine if the elimination set can eliminate k with only
wins or whether some teams must be tied. We use a modification of the original
flow problem to determine both of these quantities. First, observe that if a team
earns p points then we have the following constraint,

(pde

i = p) ⇒ (p− pd0
i )− gd0

i ≤ wde

i − wd0
i ≤

⌊
(p− pd0

i )
2

⌋
. (2)

This constraint represents that any team i with p points at the end of the season
would have earned the fewest extra wins if every loss was an overtime loss thus
earning at least one point per game and the most extra wins when they win as
many games as possible while still only earning p points. This constraint also
holds true for k so we can determine a feasible range of wins for the elimination
team given the elimination set, E, and the point bound p. For each possible
number of wins w for k, we determine if the set can eliminate with that number
of wins and, if not, which sets of teams can be tied.

Both of these tasks can be solved by checking for feasible flows on the same
graph using slightly different needs in each case. We modify the graph for calcu-
lating point bounds by allowing k as a proper team on the right hand side and
adding links directly to the nodes for games outside the set (see Fig. 3a). Games
against opponents outside E ∪ {k} do not have to be won by any team in the
set so they have no lower bound but those in the set must be won by one of the
teams; therefore, they have a lower bound. We construct the graph so that each
team that must be tied with k in wins has a lower and upper bound equal to
their need. The need calculation for this graph is different than the point graph.
Since both points and wins are both fixed, we get the following equation for
calculating need,
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ni =

⎧⎪⎪⎨⎪⎪⎩
w− wd0

i if (pde

i = p) ∧ (wde

i = w)
0 if (p− pd0

i )− gd0
i < 0

(p− pd0
i )− gd0

i if (p− pd0
i )− gd0

i + wd0
i > w

(p− pd0
i )− gd0

i + 1 otherwise

. (3)

Each condition of Equation (3) represents the number of wins needed to elim-
inate k in the best case scenario using as few wins as possible. The first condition
denotes that the elimination team must have exactly w wins. The second condi-
tion denotes that teams that would have equal or more points using only extra
points from overtime losses do not have to win any more games. The third condi-
tion ensures that teams that win the minimal number of games to reach p have
more wins than k and eliminate k. The fourth condition corrects the number
of wins needed when the second and third condition do not hold by adding an
additional win to the minimal number of wins. For teams tied with k in wins, we
introduce a tie break set. We define a Tie Break Set as any subset of the teams
in Ck where every team can reach both the point bound p and the win bound w
exactly. We test all subsets by setting the need of teams in the tie break equal
to w− wd0

i .
Since our graph has minimum and maximum capacities on the edges, we

transform the graph into a different max flow problem as described by Ahuja
et al. [8]. The transformation can be seen in Fig. 3. Once we have checked the
wins tie breaker with the flow graph and determined which sets of nodes can
be tied in both points and wins, we determine if any of those tie break sets can
eliminate k with points against teams that are tied. We model this problem as
a satisfaction problem and solve it using backtracking search as described next.
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Fig. 3. (a) A network flow graph with three teams. Team 1 has a lower bound con-
straint on the number of wins and is in the elimination set and not in the tie break
set, team 2 is in the tie break set and has a fixed number of possible wins, and team
3 is in neither the elimination set or the tie break set and has no bounds on either
points or wins. (b) A flow graph transformed to remove the lower bound capacities.
Two additional nodes are added v and w. A feasible flow exists in the original graph
if the maximum flow is equal to the sum of the lower bounds on the original graph
(n1 + n2 + g12).
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8 The Decision Problem

In this section, we describe the constraint model used to determine if the final tie
breaks eliminate k. Once we have fixed the elimination set (E), point bound (p),
win bound (w) and tie break set (TB), we verify this combination eliminates the
team k. We examine possible scenarios of wins (wi,j) and overtime losses (oli,j)
as these are the two factors that affect the points and hence the outcome of a
given scenario. We break the teams into four mutually exclusive classes to help
describe our model.

A = {i | i ∈ E ∧ i /∈ TB} C = {i | i /∈ E ∧ i ∈ TB}
B = {i | i ∈ E ∧ i ∈ TB} D = {i | i /∈ E ∧ i /∈ TB}

8.1 The Model

There are four major constraints to this model. Each of which is modified slightly
depending on which class a given team belongs. Constraint (4) represents the
constraint that each of the teams must either meet or exceed the bounds de-
pending on their class. These rules are derived from the NHL tie breaking rules.
Constraint (5) represents the constraint that each game must have a winner. The
exception to both of these constraints are those teams in D. These teams are
not restricted by the bounds and thus we can ignore any game where they are
playing other teams in D. We also must constrain the number of overtime losses
so that the team does not earn more overtime losses than losses. This constraint
is reflected in (6). Lastly, we must deal with constraints on games played against
teams in the opposite conference. Teams in A can win these games freely, teams
in D can lose them freely and teams in B and C can win them depending on
the constraints applied in (4). We define these constraints explicitly in (7).

pde

i > p ∨ (pde

i = p ∧ wde

i > w) if i ∈ A .

pde

i = p ∧ wde

i = w ∧
2
∑

j∈TB

wde

ij +
∑

j∈TB

olde

ij > 2
∑

j∈TB

wde

kj +
∑

j∈TB

olde

kj if i ∈ B .

pde

i = p ∧ wde

i = w if i ∈ C . (4)

∀j wde

ij + wde

ji = gij if i /∈ D .

(∀j∈A wde

ij = wd0
ij ∧ wde

ji = wd0
ji + gd0

ij ∧
(∀j∈B∪C wde

ij + wde

ji = wd0
ji + gd0

ij ∧
(∀j∈D wde

ij = wd0
ij ∧wde

ji = wd0
ij ) if i ∈ D . (5)

∀j wde

ij + olde

ij = wd0
ij + old0

ij + gd0
ij if i ∈ A .

∀j wde

ij + olde

ij ≤ wd0
ij + old0

ij + gd0
ij if i ∈ B ∪ C .

∀j olde

ij = old0
ij if i ∈ D . (6)
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ocwde

i = ocwd0
i + ocgd0

i ∧ ocolde

i = ocold0
i if i ∈ A .

ocwde

i + ocolde

i ≤ ocwd0
i + ocold0

i + ocgd0
i if i ∈ B ∪C .

ocwde

i = ocwd0
i ∧ ocolde

i = ocold0
i if i ∈ A . (7)

8.2 Updating Dominance during Search

As the search progresses, it is often possible to force the assignment of certain
games. The most important dominance is to notice that only win variables within
the tie break and elimination set must be set via search. Once those variables
have been set, all that remains is to ensure teams meet or exceed p and w and
to make sure teams trying to beat k earn as many of their necessary overtime
losses within the tie break set and k wins as many of them as possible out of the
tie break set. These dominances lead to a correct solution and makes sure teams
in B earn as many points within the tie break as possible.

Another opportunity is when teams have satisfied (4). Specifically, once a
team in A has met the conditions of (4), they may give points to other teams
in A without any consequences. Another dominance is that once a team in the
tie break set has achieved both p and w they must lose any remaining games in
regulation time.

8.3 Pruning Values from Constrained Teams via Flow Manipulation

As mentioned in Sec. 7, the feasibility of the tie break set depends on whether
there exists a max flow equal to the needs of the teams in the flow graph repre-
sented by Fig. 3. An important observation that can be made is that any feasible
flow is a valid assignment of the win variables of the teams in the elimination
and tie break sets. We can prune the variables within the solver by attempting
to update an already existing flow to contain a specific test value using a method
adapted from Maher et al.[10]. If there is a flow that contains the value then
there is a support for that value and that value is kept. If not, then we prune
the value from the domain of the variable. The idea is similar to the idea used
in the Ford-Fulkerson algorithm. However, in our case, we are trying to find a
path not from s to t but from j to i. We must repeat the update at most d times
where d is the size of the domain of wij and wji.

To reduce the practical complexity of the algorithm, we reduce the residual
graph to only those components that will be updated. In a graph containing a
feasible flow, the edges out of v and into w are completely saturated. Since any
modification must also be a feasible flow, these edges must remain saturated
and any modification should not alter these edges. The other reduction that we
can make to the graph depends on the symmetry between nodes representing
teams and the links to their matched games. This allows us to remove the nodes
representing the matched games and link the nodes directly together.

Example 1. Examine Fig. 4b and note that in the residual graph links into v
and out of w are saturated and can be removed. Also observe that the edge
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Fig. 4. (a) An example flow graph for three teams where Team 1 must earn between
2 and 3 games, Team 2 must earn exactly 2 games and Team 3 is unbounded. (b) The
residual graph containing a maximum flow.
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Fig. 5. Reduced Pruning Graph. (a) shows the reduced residual graph of Figure 4. In
(b), we reduce the link between nodes 1 and 2 and increase the link between nodes 2
and 1, which ensures the constraint that the flow between them equals some mutual
capacity. (c) shows the path that is found from node 2 to node 1 correcting the imbal-
ance. Once a path is found, the flow is redirected and the opposite edges are updated
by the change. (d) shows the new stable solution showing support for the assignments
of w12 = 1 and w21 = 2.

from node 1 to node (1, 2) is the same as the edge from node (1, 2) to node 2.
Therefore, we can remove node (1, 2) and directly link (2, 1). Figure 5 shows the
reduced pruning graph along with a single variable update.

9 Results

We implemented the solver in C++ using the Boost Graph Library [11] for the
feasible flow calculations and ILOG Solver[12] to solve the final constraint model.
In order to test our solver, we used the 2006-07 season results to calculate the
minimum points needed to clinch a playoff spot. Table 2 shows the results of
those calculations. In total, determining the bound for all 30 teams on all 181
game days of the 2006-07 NHL season (5430 problems) took a little over 46 hours.
Each individual instance, representing a team at a given date, took less than ten
minutes to calculate the bound and those problems near the end of the season,
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Table 2. The counts of problems solved via the various stages of the solver. Positively
solved instances means a solution was found and the bound must be increased. Neg-
atively solved instances means that bound was valid for that instance. Any problem
without a definitive solution was passed to the next phase of the solver.

Solver Stage & Result Number of Instances (/5430)
Solved via Enumeration 1212
Solved via Win Checks (Positively) 2249
Solved via Win Checks (Negatively) 1524
Solved via Backtracking Search (Positively) 338
Solved via Backtracking Search (Negatively) 107
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Fig. 6. The minimum number of points needed by Toronto and Pittsburgh to guarantee
a playoff spot in the 2006-07 NHL season

where the results matter the most, were calculated in seconds. We note that our
enumeration techniques solves 1212 of the 5430 of the problems and when we add
first level tie breaking with wins we solve a further 3773 problems, which makes
up about 92% of the problems. However, the remaining 8% problems require a
backtracking constraint solver to calculate the final number. Also, note that in
47% of the total instances, which amounts to 61% of the instances not solved
directly by enumeration, the answer differs from the initial lower bound given
by enumeration.

We plot the result against both the current points of the team and maximum
possible points of the team. If the result is greater than the maximum possible
points, then the team is no longer able to guarantee a playoff spot. If the result
is equal to the number of points needed by the team then that team has clinched
a playoff spot. Figure 6 shows the result calculated for Toronto and Pittsburgh.
Note that Toronto did not make the playoffs because they never reached the
bound value. Also note that Toronto placed themselves in a position where they
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Table 3. Shows some of the features that can be highlighted by calculating the mini-
mum number of points needed to guarantee a playoff spot

Feature Value Team(s)
Earliest Day where a Team could
not Guarantee

64 days St. Louis

Most Days where a Team could not
Guarantee

118 days St. Louis

Most Times a Team got Lucky 4 Toronto, Boston and NY Rangers
Number of Teams that got Lucky
and Earned a Spot

2 NY Islanders and NY Rangers

Number of Teams that got Lucky
but Failed to Earn a Spot

7 Toronto, Boston, Washington,
Carolina, Edmonton, Phoenix and
Columbus

could not guarantee a playoff spot and got lucky four times. In other words, they
lost a “must win” game five times during the 2006-07 season while Pittsburgh
was never in that situation. Another interesting feature is that we can see, in
both graphs, the bound on points, 145, needed at the start of the season to
guarantee a playoff spot.

Table 3 shows an overview of the results of the 2006-07 NHL season in terms
of the minimum points needed to guarantee a playoff spot. One interesting ob-
servation that can be made from this table is that of the nine teams that got
a second chance only two of those teams ended up earning a playoff spot. As
well, of those seven teams, two of them had four chances to make the playoffs
after losing a must win game. Another interesting note is that St. Louis could
not guarantee a playoff spot after only the sixty-fourth game day and never
recovered during the final one hundred and eighteen game days.

10 Conclusion

As the season winds down, the fans of the NHL are interested in knowing how far
their team is from clinching a playoff spot. We present a method for calculating
the minimum number of points that must be earned in order to ensure that
the team reaches a playoff spot. We preform this calculation efficiently by using
a multi-stage solver that combines enumeration, flow network calculations and
backtracking search.

A side effect of this calculation is the ability to determine when the team
is in danger of losing control of their destiny. These games, often described
by coaches as “must win” games, can be identified by their loss reducing the
maximum possible points to below the bound of the team. We identified nine
different teams in the 2006-07 NHL season that lost control of their fate and then
gained that control back through mistakes by their opponents. We also noted
that only two of these teams took full advantage of this situation and clinched
a playoff spot.
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Our solver used a decomposition of the problem to allow us to effectively
apply several different strategies in several stages to ensure a quick solution to
the problem. The results of this work could be applied to other sports. One area
that seems to be missed entirely is basketball, especially NBA basketball, where
that league shares many similarities with the NHL. The tie breaking conditions
vary slightly and the NBA uses a simpler scoring model with only wins and
losses.
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Abstract. This paper considers the daily assignment of newborn infant
patients to nurses in a hospital. The objective is to balance the workload
of the nurses, while satisfying a variety of side constraints. Prior work
proposed a MIP model for this problem, which unfortunately did not
scale to large instances and only approximated the objective function,
since minimizing the variance cannot be expressed in a linear model.
This paper presents constraint programming (CP) models of increasing
complexity to solve large instances with hundreds of patients and nurses
in a few seconds using the Comet optimization system. The CP models
use the recent spread global constraint to minimize the variance, as well
as an exact decomposition technique.

1 Introduction

This paper considers the daily assignment of newborn infant patients to nurses in
a hospital described in [5]. In this problem, some infants require little attention,
while others need significant care. The amount of work required by the infant
during one shift is called the acuity. A nurse is in charge of a group of infants
and the total amount of acuity is the workload of the nurse during that shift.
For ensuring an optimal care quality and perceived fairness for the nurses, it is
essential to balance the workload. In addition, the problem features various side
constraints:

– A nurse can work in only one zone, but the patients are located in p different
zones.

– A nurse cannot be responsible of more than childrenmax infants.
– The total amount of acuity of a nurse cannot exceed acuitymax.

The balance objective and the various constraints make it very difficult to find
a good solution in a reasonable time. Since nurses only work in one zone, the
number of nurses assigned to each zone has already a huge impact on the quality
of the balancing. In [5], the problem was tackled using a MIP model, but the
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results were not satisfactory. In this paper, we present a series of increasingly
sophisticated constraint programming models in order to reach the required
solution quality and scalability.

The rest of the paper is organized as follows. Section 2 presents the instances
proposed in [5] and Section 3 describes the MIP model and its limitations. Section
4 reviews the Spread constraint for load balancing and characterizes its pruning
(as implemented in Comet). Section 5 presents a first constraint programming
(CP) model that can solve two-zones instances. Section 6 presents a two-step
approach that first assigns the nurses in each zone and then assigns the infants
to nurses to balance the load optimally. Finally, Section 7 shows that the second
step can be decomposed by zones without losing the optimality guarantees. This
final model is instrumental in solving large instances with dozens of zones and
hundreds of patients.

2 Problem Instances

Reference [5] specifies a statistical model to generate instances very similar to
their real instances. This statistical model was also used to measure the robust-
ness of their solution technique with respect to the number of nurses, the number
of infants, and the number of zones. The model contains a single parameter: the
number of zones. The maximum acuity per nurse is fixed to acuitymax = 105
and the maximum number of infants per nurse is fixed to childrenmax = 3. The
instance generator fixes the number of nurses, the number of infants, the acuity,
and the zone of each infant. The different steps to generate an instance are as
follows:

– The number of patients in a zone is specified by a Poisson random variable
with mean 3.8 and offset by 10.

– The acuity Y of a patient is obtained by first generating a number X ∼
Binomial(n = 8, p = 0.23) and then choosing the number Y ∼ Unif(10 ·
(X + 1), 10 · (X + 1) + 9).

– The total number of nurses is obtained by solving a First Fit Decreasing
(FFD) procedure in each zone. More precisely, the total number is the num-
ber of nurses found in each zone by the FFD procedure. The FFD procedure
starts by ranking the patients in decreasing acuity. Then, the patient with
the highest acuity is assigned to the first nurse. The next patients are as-
signed successively to the first nurse that can accommodate them without
violating the maximum acuity and the number of patient constraints.

3 The MIP Model

We now review the main variables of the MIP model from [5]. We also describe
the limitations of the MIP model and suggest why a CP approach may address
them. Due to space reasons, we do not reproduce the entire MIP model but
readers can consult [5] for more details. The technical details presented here are
sufficient for our purposes. The MIP model contains four families of variables:
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1. Xij = 1 if infant i is assigned to nurse j and 0 otherwise;
2. Zjk = 1 if nurse j is assigned zone k and 0 otherwise;
3. Yk,max is the maximum acuity of a nurse in zone k;
4. Yk,min is the minimum acuity of a nurse in zone k.

All these variables are linked with linear constraints to enforce the constraints
of the problem. The objective function implements what we call the range-sum
criterion and consists of minimizing the sum of the acuity ranges of the p zones,
i.e.,

p∑
k=1

(Yk,max − Yk,min).

The MIP model has a fundamental limitation: The objective function may pro-
duce poorly balanced workloads. It tends to equalize the workload inside the
zones but may produce huge differences among the workload of different zones.
This is illustrated in Figure 1. The workloads are depicted in the top-right cor-
ner of each Comet visualization. The left solution is obtained by minimizing the
range-sum criterion and the right solution by minimizing the variance (L2 norm
in the next section). The range-sum objective is minimal on the left because the
workloads inside each of the two zones are identical. Unfortunately, nurses in
the first zone work twice as much as those in the second zone. The right solu-
tion is obtained by minimizing the variance and is significantly more appealing.

Fig. 1. Comparison of Two Solutions on a 6 Nurses, 14 Infants, and 2 zones Problem.
Solution on the left is obtained by minimizing the range-sum criterion. Solution on the
right is obtained by minimizing the variance.
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This illustrates clearly that “the high level objective that all nurses should be as-
signed an equal amount of patient acuity” [5] is not properly captured with the
range-sum criterion.

It is not immediately obvious how to remedy these problems. The variance
is non-linear and is not easily modelled in a MIP approach. In addition, a CP
approach may exploit the combinatorial structure in the bin-packing and the
side-constraints, while the MIP relaxation is generally bad for bin-packing like
problems. Finally, there are important symmetries that are not removed in their
model: For a given solution, the nurses are completely interchangeable. We now
review load balancing constraints before turning to the CP models.

4 Load Balancing Constraints

Balancing constraints arise in many real-world applications, most often to ex-
press the need of a fair distribution of items or work. For instance, Simonis
[15] suggested a global constraint to balance the shift distribution among nurses
and Pesant [7] proposed the use of balancing constraints for a fair allocation of
individual schedules.

Two global constraints and their propagators are available in constraint pro-
gramming for optimizing load balancing: spread [6,11], which constrains the
variance and the mean of a set of variables, and deviation [12,13], which con-
strains the mean absolute deviation and the mean of a set of variables. We also
say that spread and deviation respectively constrain the L2 and L1 norms of
a set of variables X1..Xn with respect to their mean (s =

∑
i∈[1..n] Xi), i.e.,

– L1:
∑

i∈[1..n] |Xi − s/n|;
– L2:

∑
i∈[1..n](Xi − s/n)2.

These criteria are not equivalent: Minimizing L1 or L2 does not lead to the same
solutions and it is not always obvious which one to choose. In fact, this is an old
and recurrent debate (see for instance [3]). For this application, we use spread
because the L2 criteria is more sensitive to outliers, which we consider significant
in this application.

We use the following definitions and notations to describe the semantics of
the spread constraints and propagators.

Definition 1. Let X be a finite-domain (discrete) variable. The domain of X
is a set of ordered values that can be assigned to X and is denoted by Dom(X).
The minimum (resp. maximum) value of the domain is denoted by Xmin =
min(Dom(X)) (resp. Xmax = max(Dom(X)). An integer interval with integer
bounds a and b is denoted [a..b] ⊆ Z, while a rational interval is denoted [a, b] ⊆
Q. An assignment on the variables X = [X1, X2, ..., Xn] is denoted by the tuple
x and the i-th entry of this tuple by x[i]. The extended rational interval domain
of Xi is IQ

D(Xi) = [Xmin
i , Xmax

i ] and its integer interval domain is IZ
D(Xi) =

[Xmin
i .. Xmax

i ].

We now define the spread constraint with a fixed mean.
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Definition 2. Given finite domain variables X = (X1, X2, ..., Xn), an integer
value s and a finite domain variable Δ, spread(X, s, Δ) holds if and only if∑

i∈[1..n]

Xi = s and Δ ≥ n×
∑

i∈[1..n]

|Xi − s/n|2.

Observe also
n ·

∑
i∈[1..n]

|Xi − s/n|2 = n×
∑

i∈[1..n]

X2
i − s2. (1)

Since s is an integer, this quantity is integer, which is why it is more convenient
to work with n×

∑
i∈[1..n] X

2
i − s2 than with

∑
i∈[1..n] |Xi − s/n|2.

Example 1. Tuple x = (4, 6, 2, 5) ∈ spread([X1, X2, X3, X4], s = 17, Δ = 40)
but x = (3, 6, 2, 6) /∈ spread([X1, X2, X3, X4], s = 17, Δ = 40) because 4 · (32 +
62 + 22 + 62)− 172 = 51 > 50.

The filtering algorithm for spread achieves Z-bound-consistency.

Definition 3 (Q-bound-consistency and Z-bound-consistency). A con-
straint C(X1, . . . , Xn) (n > 1) is Q-bound-consistent (resp. Z-bound-consistent)
with respect to domains Dom(Xi) if for all i ∈ {1, . . . , n} and each value vi ∈
{Xmin

i , Xmax
i }, there exist values vj ∈ IQ

D(Xj) (resp. vj ∈ IZ
D(Xj)) for all

j ∈ {1, . . . , n} − {i} such that (v1, . . . , vn) ∈ C.

The propagators described in [6,11] achieve Q-bound-consistency, which means
that they assume that the variables can be assigned rational numbers. The prop-
agators implemented in Comet implement the stronger Z-bound-consistency by
adapting the algorithms from [6,11]. In particular, to achieveZ-bound-consistency,
the propagators for spread compute ΔZ to filter Δmin, and X

Z

i and XZ
i to filter

Xmax
i and Xmin

i :

ΔZ = min
x
{n ·

∑
i∈[1..n]

(x[i]− s/n)2 s.t.
∑

i∈[1..n]

x[i] = s (2)

and ∀i ∈ [1..n] : x[i] ∈ IZ
D(Xi)}

X
Z

i = max
x
{x[i] s.t. n ·

∑
j∈[1..n]

(x[j]− s/n)2 ≤ Δmax and (3)

∑
j∈[1..n]

x[j] = s and ∀j : x[j] ∈ IZ
D(Xj)}.

The filtering of Δ is implemented in O(n · log(n)) requiring to sort the bounds
of the domains, and that of X in O(n2) in the Comet System [2,10].

5 A Basic CP Model

We now present a CP based resolution which addresses the issues raised for the
MIP model.
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The CP Model. Let m be the number of nurses, n the number of patients,
and ai be the acuity of patient i. The set of patients in zone k is denoted by
Pk and [P1, ...,Pp] forms a partition of {1, ..., n}. For each patient i, we use a
decision variable Ni ∈ [1..n] representing her/his nurse. The workload of nurse
j is represented by variable Wj ∈ [0..acuitymax]. The objective and constraints
are modelled as follows.

– The objective, i.e., minimizing the L2 norm, is expressed by a spread con-
straint over the workload variables [W1, ..., Wm], the total acuity, and the
acuity spread: spread([W1, ..., Wm],totalAcuity,spreadAcuity). Note
that spreadAcuity is the variable to minimize.

– To express that nurses have a total acuity of atmost acuitymax, we link
the variables Ni, Wj , and the acuities with a global packing/multiknapsack
constraint [14]: multiknapsack([N1, ..., Nn], [a1, ..., an], [W1, ..., Wm]).

– To model that a nurse takes care of at most childrenmax infants and at least
one, we use a global cardinality constraint [8]:
cardinality(1, [N1, ..., Nn], childrenmax).

– The constraint that a nurse can work in at most one zone is modelled by a
pairwise-disjoint constraint pairwiseDisjoint([Z1, ..., Zp]), where Zk is an
array of variables containing the variables Ni associated with zone k.

The Comet Program. The model in Comet is shown in Listing 1.1. Lines 1–3
declare the decision variables. Line 4 declares the arrays for the zones, which are
filled in lines 5–7. The objective function is in lines 8–9 and 11. Lines 12–14 de-
pict the constraints. The pairwiseDisjoint constraint introduces set-variables
representing the set of nurses working in each zone NSk =

⋃
i∈Pk

Ni. The set
NSk is maintained with a global constraint unionOf. Then, the pairwise empty
intersections between the set variables are enforced with a global disjoint con-
straint. Comet uses a reformulation with channeling constraints and a global
cardinality constraint as explained in [9,1].

The search is implemented in the using block in lines 16–24. The search dy-
namically breaks the value symmetries originating from the nurse interchange-
ability. The patient having the largest acuity is selected first in line 17. Then the
search tries to assign a nurse to this patient, starting first with those with the
smaller load (lines 19–22). The symmetry breaking is implemented by consider-
ing the already assigned nurses and at most one additional nurse without any
assigned patient (a similar technique was used for the steel mill slab problem in
[4]). Value mn is the maximal index of a nurse already assigned to a patient. The
tryall statement considers all the nurse indexes until mn+1 (nurse mn+1 having
currently no patient).

Experimental Results. As a first experiment, we generated 10 instances with 2
zones, as was the case for the real instances studied in [5]. These instances have
about 10–15 nurses, 20–30 infants, and cannot be solved by the MIP model.
All the instances were solved optimally with our Comet model in less than 30
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Listing 1.1. Patient-Nurse Assignment Model

1 var<CP>{int} N[patients](cp,nurses);
2 var<CP>{int} W[nurses](cp,1..MaxAcuity);
3 var<CP>{int} spreadAcuity(cp,0..System.getMAXINT());
4 var<CP>{int}[] Z[zones];
5 int k = 1;
6 forall(i in zones,j in 1..nbPatientsInZone[i])
7 Z[i][j] = N[k++];
8 minimize<cp>
9 spreadAcuity

10 subject to {
11 cp.post(spread(W,sum(p in patients) acuity[p],spreadAcuity));
12 cp.post(multiknapsack(N,acuity,W));
13 cp.post(cardinality(minNbPatients,N,maxNbPatients));
14 cp.post(pairwiseDisjoint(Z));
15 }
16 using {
17 forall(p in patients: !N[p].bound()) by (−acuity[p],N[p].getSize()) {
18 int mn = max(0,maxBound(N));
19 tryall<cp>(n in nurses: n <= mn + 1) by (W[n].getMin())
20 cp.label(N[p],n);
21 onFailure
22 cp.diff(N[p],n);
23 }
24 }

Table 1. Patients to Nurses Assignment Problem with 2 zones and minimization of
L2 with spread

m n #fails time(s) avg workload sd. workload
11 28 511095 170.2 86.09 2.64
11 29 1126480 302.0 80.27 1.76
10 26 104931 24.7 76.50 2.29
12 30 259147 136.5 83.42 1.93
10 28 2990450 1138.5 91.80 6.84
10 26 779969 206.9 88.40 2.29
12 29 555243 198.2 80.08 2.72
10 27 931858 343.9 90.60 5.33
10 25 1616689 434.5 82.70 7.32
8 22 4160 1.2 87.50 3.12

minutes (the time constraint specified in [5] by the hospital to find the assign-
ment). Table 1 depicts the experimental results. All results are using Comet
1.1 [2] on 2.4 GHz Intel Core Duo with 4GB running MacOS 10.5.6.
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6 A Two-Step CP Model

The basic CP model can solve 2-zone instances but has great difficulty for 3 zones
or more. We now show how to simplify the resolution by a two-step approach
which first pre-computes the number of nurses assigned to each zone and then
assigns the patients to nurses. This simplifies the resolution by

1. removing one degree of flexibility which is the number of nurses in each zone.
2. removing the disjointness constraint since the set of nurses that can be as-

signed to each patient can be pre-computed.

A Relaxation. This first step is important because the decomposition may be
significantly sub-optimal if these numbers are not properly chosen. Indeed, the
number of nurses assigned to each zone has a crucial impact on the quality of
the balancing. However, after visualizing some optimal solutions, we observed
that the workloads of the nurses are extremely well balanced (almost the same)
inside the zones. This suggested solving a relaxation of the problem to discover
a good distribution of the nurses to the zones. The relaxation allows the acuity
of a child in a zone to be distributed among the nurses of that zone (continuous
relaxation of the acuity). Since the acuity of a child can be split, the relaxed
problem will have an optimal solution where the nurses of a zone have exactly
the same workload Ak

xk
, i.e., the total acuity Ak =

∑
i∈Pk

ai of zone k divided by
the number of nurses xk in zone k. This is schematically illustrated on Figure 2
for a two-zone relaxation problem and stated in Theorem 1.

Theorem 1. An optimal solution of the relaxed problem must have the same
workload for all the nurses in a given zone.

Proof. Otherwise, given m variables [W1, . . . , Wm] with sum s =
∑m

i=1 Wi, the
L2 criterion can be improved on these variables if two of them can be made

Zone 1 Zone 2

x
1

x
2

A
1

x
1

Fig. 2. Illustration of a solution of the relaxation solved to find the number of nurses
in each zone
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closer (2 nurses of the same zone with a different workload). Let Wi and Wj

be the variables that can be made closer and assume without loss of generality
that Wi > Wj . The variables after modification are respectively W ′

i and W ′
j .

If Wi and Wj are made closer this means that W ′
i − W ′

j < Wi − Wj . Since
the sum is fixed then W ′

i + W ′
j = Wi + Wj . Thus Wi − W ′

i = W ′
j − Wj and

so there exists δ with (Wi−Wj)
2 ≥ δ > 0 such that Wi −W ′

i = δ = W ′
j −Wj .

That is W ′
i = Wi − δ and W ′

j = Wj + δ. The starting sum of square deviations
with formula (1) is Δ = m ·

∑m
i=1(Wi)2 − s2. With W ′

i and W ′
j it becomes

Δ′ = m · (
∑

k �=i,j(Wk)2 +(Wi− δ)2 +(Wj + δ)2)− s2 = Δ−2mδ · (Wi−Wj − δ).
Since (Wi −Wj − δ > 0), we have Δ′ < Δ. ��

Given Theorem 1, the mathematical formulation of the relaxed problem is

min
p∑

k=1

xk ·

⎛⎝Ak

xk
−

p∑
j=1

Aj

m

⎞⎠2

(4)

s.t.

p∑
k=1

xk = m (5)

xk ∈ Z+
0 (6)

The workload of all the nurses of zone k is Ak

xk
and the average workload is∑p

j=1
Aj

m . Hence the contribution to the L2 criterion for the xk nurses of zone k

is xk ·
(

Ak

xk
−
∑p

j=1
Aj

m

)2
.

Solving the Relaxation. In our CP model, we approximate this relaxation in
O(p·log(p)) time. First, we solve the continuous relaxation of the problem, i.e., we
drop the integrality constraint (6). The solution to this continuous optimization
problem is xk = m· Ak∑p

j=1 Aj
, which corresponds to assigning the average workload∑p

j=1
Aj

m to every nurse. The continuous solution xk = m · Ak∑p
j=1 Aj

can be
transformed greedily into an integer solution using the following steps:

– By developing the objective (4), it appears that it is equivalent to minimize∑p
k=1

(Ak)2

xk
.

– The transformation into an integer solution starts by first rounding up the
number of nurses in every zone xk = *m · Ak∑p

j=1 Aj
+. The effect is that the

constraint (5) may be violated and the objective might decrease.
– Then, the xk > 1 are considered to be decreased by one unit until the

constraint (5) is satisfied again. The index k of the next xk to be decreased
is argmink{

A2
k

xk−1 −
A2

k

xk
}, i.e., the variable that will increase the least its

corresponding term in the equivalent objective
∑p

k=1
A2

k

xk
.

Our experimental results show that this approximation is optimal on all the
instances the first CP model solved.
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Fig. 3. Illustration of the Lower Bound on L2 using the Pre-Computation of the Num-
ber of Nurses in Each Xone

Lower Bound on the Spread. The pre-computation of the number of nurses
assigned to each zone is also instrumental in computing a lower bound on the
L2 criterion. Inside a zone, the average load is μk = Ak/xk. Since the acuity
of patients are integers, we can strengthen the lower bound of the objective (4)
by enforcing the workloads of nurses of zone k to be either �μk� or *μk+. This
is illustrated on Figure 3. Since the total workload of zone k must remain Ak,
the distribution of the workload among �μk� and *μk+ are given respectively by
αk = Ak + xk · (1 − *μk+) and βk = xk − αk. The lower bound on the spread
variable ΔZ computed with formula (1) is thus

m ·
p∑

k=1

(αk · *μk+2 + βk · �μk�2)− (
p∑

k=1

Ak)2. (7)

The Comet Model. The two-step CP model in Comet is given in Listing 1.2
and assumes that the xk are already computed. The model does not create the
N variables in line 2: These will be created at the same time as the zone arrays,
since their domains are now restricted to a subset of the nurses. Lines 6–12
create the zone arrays, line 10 constructing the array for zone i. Note that the
domains of these variables are defined in lines 9 and 11, using the number of
nurses assigned in the zones. Lines 13–15 assign the zone variables to the nurse
variables (the opposite of the first model, since the zone variables now have
restricted domains). The constraints are similar but there is no longer a need
for the pairwiseDisjoint constraint. The search in lines 23–34 is a little bit
more complicated as the patients are assigned one zone at a time. The dynamic
symmetry breaking scheme is the same but adapted to this by zone assignment.

Table 2 reports the results obtained on the same 2-zones instances as for
Table 1 using the pre-computation of the number of nurses assigned to each
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Listing 1.2. Two steps Patient-Nurse Assignment Model

1 Solver<CP> cp();
2 var<CP>{int} N[patients];
3 var<CP>{int} W[nurses](cp,1..MaxAcuity);
4 var<CP>{int} spreadAcuity(cp,0..System.getMAXINT());
5 var<CP>{int}[] Z[zones];
6 range nursesOfZone[zones];
7 int j=1;
8 forall(i in zones) {
9 nursesOfZone[i] = j..j+x[i]−1;

10 Z[i] = new var<CP>{int}[1..nbPatientsInZone[i]](cp,nursesOfZone[i]);
11 j += x[i];
12 }
13 int k = 1;
14 forall(i in zones,j in 1..x[i])
15 N[k++] = Z[i][j];
16 minimize<cp>
17 spreadAcuity
18 subject to {
19 cp.post(spread(W,sum(p in patients) acuity[p],spreadAcuity));
20 cp.post(multiknapsack(N,acuity,W));
21 cp.post(cardinality(minNbPatients,N,maxNbPatients));
22 }
23 using {
24 forall(i in zones){
25 forall(p in Z[i].rng(): !Z[i][p].bound()) by(−acuityByZone[i][p],Z[i][p].getSize()){
26 int shift = i==1? 0 : nursesOfZone[i−1].getUp();
27 int mn = max(0,maxBound(Z[i]))+shift;
28 tryall<cp>(n in nursesOfZone[i]: n <= mn + 1) by (W[n].getMin())
29 cp.label(Z[i][p],n);
30 onFailure
31 cp.diff(Z[i][p],n);
32 }
33 }
34 }

zone. The last column is the lower bound obtained with equation (7). A first
observation is that the computation times are greatly reduced. They do not
exceed 10 seconds with the new model, while they were over 1000 seconds for
the most difficult instances with the old one. The CP model finds the correct
number of nurses in the first step, since the standard deviation with previous
model are exactly the same (hence optimum) as the optimal values in Table 1. It
is also interesting to see that the lower bound is reasonably close to the optimum
values which also validates the approach.

Since the instances with 2 zones can now be solved easily, we tried to solve in-
stances with 3 zones. The results are presented on Table 3. Only 6 instances (out
of 10) could be solved optimally within 30 minutes with this two-step approach.
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Table 2. Patients to Nurses Assignment Problem with 2 zones with precomputation
of the number of nurses in each zone

m n #fails time(s) avg workload sd. workload lb. sd.
11 28 25385 4.5 86.09 2.64 2.23
11 29 4916 1.4 80.27 1.76 0.62
10 26 458 0.1 76.50 2.29 2.29
12 30 17558 6.7 83.42 1.93 1.19
10 28 29865 4.8 91.80 6.84 6.81
10 26 3705 1.0 88.40 2.29 1.43
12 29 6115 1.2 80.08 2.72 0.64
10 27 1109 0.4 90.60 5.33 5.22
10 25 3299 0.6 82.70 7.32 6.71
8 22 127 0.0 87.50 3.12 3.04

Table 3. Patients to Nurses Assignment Problem with 3 zones with precomputation
of the number of nurses in each zone

sol m n #fails time(s) avg workload sd. workload lb. sd.
1 15 42 19488 5.3 84.20 3.04 2.93
1 18 43 3619310 919.2 79.78 5.84 5.49
0 17 43 9023072 1800.0 81.41 4.75 3.45
1 17 42 483032 106.9 83.82 5.65 5.59
0 18 43 7124370 1800.0 81.00 7.11 4.94
1 14 38 590971 145.2 85.36 3.08 2.16
0 19 48 3786580 1800.0 87.42 3.18 2.30
1 16 44 3888210 839.8 84.88 6.70 6.39
0 19 49 5697272 1800.0 86.00 2.70 1.95
1 17 41 61250 17.3 82.18 3.40 3.07

7 A Two-Step CP Model with Decomposition

The previous approach can solve easily two-zone problems but has difficulties
to solve 3 zones problems and instances with more that 3 zones are intractable.
It thus seems natural to decompose the problem by zone and to balance the
workload of nurses inside each zone independently rather than balancing the
workload of all the nurses globally. Interestingly, this decomposition preserves
optimality, i.e., it reaches the same solution for the L2 criterion as the two-
step approach of Section 6 for a given pre-computation of the number of nurses
assigned in each zone. In other words, given the pre-computed number of nurses
in each zone, it is equivalent to minimize L2 among all the nurses at once or to
minimize L2 separately inside each zone. We now prove this result formally.

Lemma 1. Minimizing n ·
∑xk

i=1(yi−Ak/xk)2 such that
∑xk

i=1 yi = Ak is equiv-
alent to minimizing n ·

∑xk

i=1(yi − (Ak/xk + c))2 such that
∑xk

i=1 yi = Ak.
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Table 4. Patients to Nurses Assignment Problem with 3 zones with precomputation
of the number of nurses in each zone and decomposition by zone

m n #fails time(s) avg workload sd. workload lb. sd.
15 42 203 0.1 84.20 3.04 2.93
18 43 608 0.1 79.78 5.84 5.49
17 43 8134 1.1 81.41 4.46 3.45
17 42 345 0.1 83.82 5.65 5.59
18 43 24994 3.2 81.00 5.77 4.94
14 38 151 0.0 85.36 3.08 2.16
19 48 3695 0.8 87.42 3.07 2.30
16 44 384 0.1 84.88 6.70 6.39
19 49 2056 0.4 86.00 2.49 1.95
17 41 776 0.2 82.18 3.40 3.07

Fig. 4. Solution of a 15-Zone Instance

Proof. The first objective can be reformulated from formula 1 as xk ·
∑xk

i=1 y2
i −

A2
k. The second one can be reformulated after some algebraic manipulations as

c2 ·x2
k +xk ·

∑xk

i=1 y2
i −A2

k. Since they differ only by a constant term, they produce
the same set of optimal solutions. ��

Theorem 2. It is equivalent to minimize L2 among all the nurses at once or to
minimize L2 separately inside each zone.

Proof. This follows directly from Lemma 1. If the minimization of L2 is per-
formed globally for all the nurses, the least square L2 criterion is computed with
respect to the global average load of all the nurses that is wrt

∑p
k=1 Ak/m. This

corresponds to choosing c in Lemma 1 equal to the difference between the aver-
age load in zone k and the global average load: c =

∑p
k=1 Ak/m−Ak/xk. ��

We solved again the 3-zone instances with the decomposition method. The results
are given on Table 4. One can observe that, as expected, the objectives are
the same for the instances that could be solved optimally in Table 3. For the
remaining ones, the algorithm produces strictly better solutions. The time is also
significantly smaller. Figure 4 shows a Comet visualization of a solution for a
15-zones instance with 81 nurses and 209 patients. This instance could be solved
in only 7 seconds and 10.938 fails.
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8 Conclusion

This paper considered the daily assignment of newborn infant patients to nurses
in a hospital. The objective is to balance the workload of the nurses, while
satisfying a variety of side constraints. Prior work proposed a MIP model for this
problem which exhibits two limitations. It did not scale to large instances and its
objective function did not balance the workload properly. The paper presented
a direct CP model which balances the load appropriately and easily solve 2-
zone instances. To scale the CP approach, the paper showed how to decompose
the problem in two steps: an assignment of nurses to zones followed by the
assignment of nurses to patients. The first step is obtained from a relaxation
of the problem which could be solved quickly. The second step is solved by a
simplification of the direct model. This 2-step approach dramatically improved
the results on the 2-zone instances and could solve some 3-zone instances. The
paper then showed that the zone problems can be solved independently without
quality loss. This resulting CP model solves 3-zone problems almost instantly
and is highly scalable. For instance, a 15-zone problem with 81 nurses and 209
patients was solved in 7 seconds.

There are a number of interesting issues left to investigate. It would be in-
teresting to study the quality of the approximation performed in the first step.
Our experimental results indicate that it is optimal on all our tested intances
but a performance guarantee would be desirable. Alternatively, we could con-
sider solving this first step exactly, an algorithmic issue we need to investigate.
In addition, it would be interesting to study problems in which nurses have
qualifications which restrict their possible zone assignments.
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10. Schaus, P.: Balancing and bin-packing constraints in constraint programming. PhD
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Abstract. In constraint programming there are often many choices re-
garding the propagation method to be used on the constraints of a
problem. However, simple constraint solvers usually only apply a stan-
dard method, typically (generalized) arc consistency, on all constraints
throughout search. Advanced solvers additionally allow for the modeler
to choose among an array of propagators for certain (global) constraints.
Since complex interactions exist among constraints, deciding in the mod-
elling phase which propagation method to use on given constraints can
be a hard task that ideally we would like to free the user from. In this pa-
per we propose a simple technique towards the automation of this task.
Our approach exploits information gathered from a random probing pre-
processing phase to automatically decide on the propagation method to
be used on each constraint. As we demonstrate, data gathered though
probing allows for the solver to accurately differentiate between con-
straints that offer little pruning as opposed to ones that achieve many
domain reductions, and also to detect constraints and variables that are
amenable to certain propagation methods. Experimental results from an
initial evaluation of the proposed method on binary CSPs demonstrate
the benefits of our approach.

1 Introduction

Constraint propagation is a crucial reason for the success of constraint program-
ming in solving hard combinatorial problems. Hence, this topic has attracted
considerable interest and numerous generic and specialized constraint propaga-
tion techniques have been developed. As a result, when modelling a CSP there
are, quite often, many choices regarding the propagation method to be used on
the constraints of the problem. For example, advanced constraint solvers offer
efficient filtering algorithms for both bounds consistency and generalized arc con-
sistency (GAC), also known as domain consistency, for certain global constraints
(e.g. alldifferent). The former are typically faster but the latter are stronger. As
another example, there are numerous choices for local consistencies that can be
applied on binary constraints. Despite the wealth of choices for constraint propa-
gation, simple constraint solvers usually only apply a standard method, typically
(G)AC, on all constraints throughout search. For instance, arc consistency is al-
most exclusively used on binary constraints. Advanced solvers can also apply a
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predetermined propagation method but in addition they allow for the modeler
to choose among an array of propagators for certain (global) constraints. Finally,
some solvers employ mechanisms for dynamically determining the propagation
method during search based on the event that triggered propagation. Typically
this is done on particular types of constraints such as arithmetic constraints.

Since complex interactions exist among constraints, which may only be re-
vealed during search, deciding in the modelling phase which propagation method
to use on given constraints can be a hard task that we would like to free the
user from. For the case of a binary constraint, for example, it is very difficult to
know a priori if choosing to propagate it using a strong local consistency such
as singleton arc consistency or path consistency will pay off. Ideally, we would
like to avoid using a strong propagation method on a constraint that will never,
or rarely, cause domain reductions during search as this would result in needless
cpu effort. Also, it would be preferable to choose say a cheap bounds consistency
propagator for a constraint if we knew that stronger propagators achieve little
extra pruning. But again this is very difficult to predict prior to search.

Deciding on which propagator to use for certain constraints based on static
features of the problem is part of the modelling process and has attracted con-
siderable interest. However, most of these works are problem-specific and re-
quire specialized modelling skills. The dynamic selection of propagators during
search has also been investigated before, but to a far lesser extent (for exam-
ple [10,17,15,19,20]). In this paper we propose a simple novel technique towards
automating the task of choosing the right propagation method for individual
constraints prior to search. Our approach differs from previous works as it does
not the require the modeler’s involvement in the process. Furthermore, it can be
easily combined with dynamic methods or in itself extended to operate dynam-
ically during search.

The proposed approach, which we call LPP (Learning Propagators through
Probing) uses information gathered from a random probing preprocessing phase
to automatically decide on the propagation method to be used on each constraint.
A random probe is a single run of a search algorithm with random variable
ordering, a fixed cut-off, and propagation turned on. Random probes provide a
sample of diverse areas in the search space and in our case can provide useful
information regarding the percentage of fruitful revisions for each constraint,
the number of value deletions caused by certain propagation methods, etc. We
show that by exploiting such data the solver is able to accurately differentiate
between constraints that offer little pruning as opposed to ones that achieve
many domain reductions. As a result, the solver may automatically choose to
propagate the former constraints using a low-cost propagation method and the
latter using a stronger, and more expensive, propagator. Further to this, LPP
can detect constraints and variables that are amenable to certain propagation
methods. As we explain, these are accomplished through the use of a clustering
algorithm that partitions the constraints into clusters having different features.

Although the method proposed is generic, we only present an initial evalua-
tion on binary CSPs. To obtain the required data from random probing, we built
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a staged propagator [18] for binary problems, i.e. a set of multiple propagators
having varying cost and pruning power. This propagator progressively applies
various local consistencies starting with bounds consistency and culminating in
bounds singleton arc consistency. In a series of random probes where the propa-
gator is applied after each variable assignment, we recorded the number of times
each constraint was fruitfully revised, the local consistency that was responsible
for each such revision, and the number of value deletions caused by each con-
sistency. A comparison of these results to similar results obtained by running
heuristically guided search to termination (using the same propagator) revealed
interesting patterns. For instance, constraints that display a very low percentage
of fruitful revisions can be accurately discovered through random probing.

Our methodology exploits the results of random probing to decide how to
propagate each constraint during search using simple heuristic rules. Experimen-
tal results from various benchmarks demonstrate that LPP outperforms MAC,
i.e. the standard search algorithm for binary problems, on hard instances, some-
times by a very large margin. Also, LPP is quite competitive with heuristics from
[19] which dynamically switch between two local consistencies throughout search.

The rest of the paper is structured as follows. Section 2 gives some necessary
background and introduces notation. In Section 3 we describe the staged propa-
gator for binary constraints that we used in our experiments. Section 4 presents
the LPP framework and gives experimental results demonstrating the accuracy
of its predictions. In Section 5 we make an experimental evaluation of LPP on
various binary problems. In Section 6 we discuss related work, and finally in
Section 7 we conclude.

2 Background

A Constraint Satisfaction Problem (CSP) is a tuple (X, D, C) where: X =
{x1, . . . , xn} is a set of n variables, D = {D(x1), . . . , D(xn)} is a set of do-
mains, one for each variable, and C = {c1, . . . , ce} is a set of e constraints. Each
constraint c is a pair (var(c), rel(c)), where var(c) = {x1, . . . , xk} is an ordered
subset of X , and rel(c) is a subset of the Cartesian product D(x1)x . . . xD(xk).
In a binary CSP, a directed constraint c, with var(c) = {xi, xj}, is arc consistent
(AC) iff for every value ai ∈ D(xi) there exists a value aj ∈ D(xj) s.t. the 2-
tuple <(xi, ai), (xj , aj)> satisfies c. In this case (xj , aj) is called an AC-support
of (xi, ai) on c. A problem is AC iff there is no empty domain in D and all the
constraints in C are AC. Maintaining arc consistency (MAC), which the most
commonly used search algorithm for binary CSPs, applies AC to the problem
after each variable assignment. A variable xi is singleton arc consistent (SAC)
iff for each value ai ∈ D(xi) after assigning ai to xi and applying AC there is no
empty domain [9]. A problem is SAC iff all variables are SAC.

Assuming finite integer domains for the variables, each domain D(xi) has a
minimum and a maximum value, called the bounds of D(xi) and denoted by
minD(xi) and maxD(xi) respectively. A directed constraint c is bounds consis-
tent (BC) iff both minD(xi) and maxD(xi) have AC-supports on c. This defini-
tion of BC corresponds to BC(D) as defined in [4]. Bounds SAC (BSAC) is a
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restricted version of SAC that only applies SAC on the bounds of the variables’
domains [14].

A directed constraint c, with var(c) = {xi, xj}, is max restricted path con-
sistent (maxRPC) iff it is AC and for each value (xi, ai) there exists a value
aj ∈ D(xj) that is an AC-support of (xi, ai) s.t. the 2-tuple <(xi, ai), (xj , aj)>
is path consistent (PC) [9]. A tuple <(xi, ai), (xj , aj)> is PC iff for any third
variable xm there exists a value am ∈ D(xm) s.t. (xm, am) is an AC-support of
both (xi, ai) and (xj , aj).

The revision of a binary constraint c, with var(c) = {xi, xj}, using a local
consistency A is the process of checking whether the values of xi verify the
property of A. For example, the revision of c using AC verifies if all values in
D(xi) have AC-supports on c. We say that a revision is fruitful if it deletes at
least one value, while it is redundant if it achieves no pruning.

3 A Staged Propagator for Binary Constraints

Staged propagators were introduced by Schulte and Stuckey as a way to effi-
ciently apply the different propagators that may be available for certain types
of constraints [18]. A staged propagator for a constraint c is a set of propagators
for c, having varying pruning power and cost, that are combined together. Each
staged propagator has an internal state variable, called the state of the propa-
gator, which determines the individual propagation method to be used once an
event that triggers propagation for c occurs. For example, assuming that vari-
able xi appears in c, the removal of minD(xi) may force the staged propagator
to enter a state where a bounds consistency algorithm will be applied.

Here we describe a simple staged propagator for binary constraints that com-
bines together four local consistencies: BC, AC, maxRPC, and BSAC. For sim-
plicity, we will use the term stage to refer to one of the local consistencies that
are combined together. For example, value deletions caused by the AC stage will
refer to value deletion caused by the application of AC. We slightly abuse the
definition of a staged propagator as we have implemented a variable-oriented
propagation scheme where variables are the entities added to and removed from
the propagation queue. Although in constraint solvers like Ilog Solver and Gecode
the entities handled by the propagation queue are propagators, in the case of
binary constraints variable-oriented propagation is more efficient. This has been
previously demonstrated for arc consistency algorithms (e.g. [6,1]), but it is also
true for higher level consistencies. To be precise, our experimental results showed
a speed-up of up to three times in favor of variable-oriented propagation com-
pared to its constraint-oriented counterpart1.

Figure 1 gives an abstract high-level description of the staged propagator used.
During preprocessing with random probing this propagator is applied as shown in
Figure 1 after each variable assignment (current variable denotes the currently
assigned variable). The propagator removes a variable xi from the queue and
revises all constraints involving xi. That is, it applies all four stages successively,

1 These experimental results are omitted because of space restrictions.
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function Binary Staged Propagation(X,D,C,current variable)
1: add current variable to Q
2: while Q �= ∅
3: remove variable xi from Q;
4: for any constraint c, with var(c) = {xj , xi}
5: successively apply BC,AC,maxRPC to c;
6: apply BSAC to xj ;
7: if D(xj) = ∅ then return FAILURE;
8: else if D(xj) has been reduced then add xj to Q;
9: return TRUE;

Fig. 1. A staged propagator for binary CSPs

as long as no domain wipeout (DWO) occurs. After the application of each
stage the propagator records information concerning the pruning effects of the
relevant constraint and the currently applied stage, as detailed in the next section
(this is not shown in Figure 1 for simplicity). Once the process terminates, the
data gathered is processed as will be explained below to select the propagation
method to be applied on each constraint during search. Note that using the
staged propagator in its full power throughout search is prohibitively expensive
as it incurs many redundant revisions resulting in cpu times that can be orders
of magnitude slower than MAC. Also, using SAC instead of BSAC results in
more domain reductions albeit with a much higher cost.

4 Learning through Random Probing

In this section we first show that results gathered through random probing,
concerning the pruning effects of the constraints, often reflect similar results
gathered by running search to completion. Then we explain how LPP exploits
this to decide on the propagator for individual constraints prior to search.

4.1 Accuracy of Learning

The LPP methodology utilizes the staged propagator described previously to
gather data concerning the filtering power of the various propagation stages on
individual constraints. For each constraint c we record the following information:

1. the number of times c was revised,
2. the ratio of fruitful revisions over the total number of revisions,
3. the ratio of fruitful revisions over the total number of revisions for each of

the propagator’s stages,
4. the total number of value deletions caused by c,
5. the ratio of value deletions over the total number of deletions caused by each

stage separately.

The third item above is computed by simply recording the stage that is re-
sponsible for each value deletion during a fruitful revision of a constraint. Table 1
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Table 1. Sample data gathered by random probing in a frequency assignment problem

recorded data c1 c2 c3 ...
#revisions 60 63 69
fr-ratio 0.28 0.47 0.05
frBC-ratio 0.08 0.27 0.01
frAC-ratio 0.03 0.35 0.01
frmaxRPC -ratio 0.28 0.00 0.04
frBSAC-ratio 0.00 0.00 0.00
#deletions 51 136 8
delBC -ratio 0.06 0.60 0.25
delAC -ratio 0.03 0.40 0.25
delmaxRP C-ratio 0.91 0.00 0.50
delBSAC-ratio 0.00 0.00 0.00

depicts part of the data gathered by random probing in tabular form. There is
one column for each constraint, and each row corresponds to a piece of informa-
tion concerning the pruning achieved by the constraints. The sample data shown
is taken from a frequency assignment problem where we run 20 random probes
each being cut off once 100 nodes (i.e. variable assignments) have been counted.

As one can see, constraint c1 displayed a relatively high ratio of fruitful to
total revisions (28% in row 2), the maxRPC stage contributed at least one value
deletion in each of the constraint’s fruitful revisions (the number in row 5 is the
same as in row 2), and most of the value deletions it caused were due to the
maxRPC stage (91% in row 10). Constraint c2 displayed an even higher ratio of
fruitful revisions but this time all value deletions were contributed by the BC
and AC stages. Finally, constraint c3 had a low ratio of fruitful revisions (only
5%) and the 8 value deletions it caused were due to either BC, AC, or maxRPC.
BSAC did not contribute any value deletions for these three constraints.

As the data in Table 1 demonstrates, the various constraints can display
different behavior with respect to their revisions and the pruning they cause. The
interesting question is whether this behavior observed during random probing
is relevant to the corresponding behavior of the constraints during heuristically
guided search. Or in other words, whether we can “predict” how each constraint
will behave based on the random probing results. First of all, to get a better
picture of the distribution of the constraints into different patterns of behavior,
we run the clustering algorithm fuzzy c-means on the data gathered by random
probing. The following paragraph briefly discusses fuzzy c-means and then we
present some clustering results.

Fuzzy c-means (FCM) is one of the most frequently used clustering algorithms.
FCM allows one piece of data to belong to more than one clusters [5]. To this
end, data are bound to each cluster by means of a membership function. Given a
predefined number of clusters, FCM iteratively optimizes an objective function
that is based on the distance of each data point from the cluster centers and
the degree of membership in each cluster. In comparison to k-means, another
well-known clustering algorithm, the FCM objective function differs in taking
into account the degrees of membership in each cluster as well as an additional
parameter (the fuzzifier) that determines the level of cluster fuzziness. A large
fuzzifier results in fuzzier clusters whereas a fuzzifier equal to 1 results in crisp
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Fig. 2. Clustering results from a frequency assignment (left plots) and a random prob-
lem (right plots). The x-axis gives the ratio of fruitful revisions while the y-axis gives
the ratio of value deletions due to the maxRPC stage. The top plots show clusters
formed from the random probing results while the bottom ones show clusters formed
from search results.

partitioning. The iteration stops when the degrees of membership of data in each
cluster are not significantly modified in successive iteration steps. Similarly to
k-means, FCM tends to group data spatially according to their distance from
the cluster centers. However, this spatial partitioning is more flexible due to the
fuzzifier parameter. In this paper, we used 3 clusters and set the fuzzifier to 2
based on preliminary experiments.

The top plots in Figures 2 and 3 show how constraints are clustered after
running FCM on the data gathered by random probing for four different prob-
lems. The input parameters for FCM were the ratio of fruitful revisions and
the corresponding ratios for the propagation stages. The horizontal axis in the
figures gives the ratio of fruitful revisions while the vertical axis gives the ratio
of value deletions caused by the maxRPC stage. As is evident, in all four prob-
lems the three clusters created partition the constraints mainly according to the
ratio of fruitful revisions. Going from left to right the three clusters include con-
straints with increasing ratio. Apart from this differentiation additional useful
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Fig. 3. Clustering results from a frequency assignment (left plots) and a quasigroup
completion problem (right plots). The top plots show clusters formed from the random
probing results while the bottom ones show clusters formed from accumulated probing
and search results.

information can also be extracted. For example, the rightmost cluster in the top
left plot of Figure 3 mostly includes constraints with low ratio of value deletions
by maxRPC. Hence, it seems that for these constraints the maxRPC stage has
little effect.

To answer the question posted above on whether the pruning behavior of the
constraints during random probing is relevant to their behavior during search,
we run a search algorithm that applied the staged propagator after each vari-
able assignment. We also recorded the same information regarding revisions and
value deletions as during random probing. The bottom plots in Figure 2 show
how constraints are clustered after running FCM on this data for the same two
problems as in the top plots. Figure 3 displays similar results but in these two
cases random probing was applied prior to search. That is, the data is accumu-
lated from both preprocessing and search. In the three structured problems (the
left problem in Figure 2 and both problems in Figure 3) the distribution of the
constraints in the three clusters resembles the corresponding distribution from
the random probing results, especially in Figure 3. In contrast, the clusters in
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the random problem (right plots in Figure 2) are quite different compared to the
corresponding clusters from random probing. This indicates that in the absence
of structure it is difficult to predict the behavior of the constraints using random
probing.

Note that the bottom left plot in Figure 2 includes fewer data points (i.e.
constraints) than the top left one. This is because heuristically guided search
focuses on certain parts of the search space and as a result many constraints are
not revised at all, which means that the corresponding data points have (0,0)
coordinates on the plot. Also, in the bottom plot the three clusters are shifted
to the right compared to the top one. However, the membership of constraints
to clusters remains similar. That is, most constraints that belong to a particular
cluster in the top plot, say the middle one, belong to the corresponding cluster
in the bottom plot as well.

Table 2. Accuracy of clusters for various problems. The second column gives the
number of constraints in each problem.

instance e % accuracy % left cluster accuracy
scen11-f6 4102 70 96
scen11-f7 4102 79 97
driver9 17446 83 89
qcp15-120-9 3149 92 99
qwh20-166-1 7599 95 99
qwh20-166-8 7599 95 99
3-fullins-5-5 33750 58 94
myciel7-4 2359 65 72
frb40-19-0 320 59 73

Table 2 gives further evidence concerning the similarity of the clusters created
using the random probing results compared to the clusters created using results
from search. Each row in the table gives results from a benchmark problem.
These problems are all structured (either real or academic) apart from the last
one which was randomly generated (see Section 5 for more details). The third
column gives the percentage of constraints that were assigned to corresponding
clusters in both the random probing and the final clusterings. The fourth column
gives the percentage of constraints that were assigned to the leftmost cluster in
the preprocessing clustering and remained assigned to the leftmost cluster in
the final clustering. This is particularly useful as it demonstrates the accuracy
in identifying constraints that have a low ratio of fruitful revisions. For most
problems the percentage is very high, getting close to 100%. As expected, the
similarity between the clusterings is lower in the case of the random problem.

4.2 Exploiting Learning to Determine Propagators

Having shown that some important aspects of the pruning behavior that the
constraints display can be predicted through random probing, the question that
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naturally arises is how to exploit this in order to make informed automatic de-
cisions about the propagators to use on individual constraints during search. A
naive answer would be to simply look at the results gathered (e.g. Table 1) and
select the propagation stage that caused the highest number of deletions for a
constraint c as the propagator to be used on c. Although this is not entirely
useless (experiments showed it outperforms MAC!), it suffers from certain draw-
backs. Most notably it ignores the ratio of fruitful revisions which is a crucial
piece of information. Choosing a strong propagator for constraints that have a
low ratio is not cost-effective. For example, following this naive approach the
solver would select to propagate constraint c3 of Table 1 using maxRPC. This
can result in many redundant revisions of high cost.

LPP answers the above question by exploiting the results provided by the
FCM clustering algorithm and making the decisions using simple (heuristic)
rules which basically constitute a decision tree. Note that it is easy to identify
the three clusters by looking at the clusters’ centers. The cluster whose center has
the lowest value of fruitful revisions ratio is the one which includes constraints
with low ratio of fruitful revisions. Accordingly, we can differentiate the other
two clusters through their centers. The rules we have used are as follows.

– Any constraint belonging to the cluster whose center has the lowest ratio of
fruitful revisions (the leftmost cluster in the plots) is propagated with AC
or BC, depending on which one has the highest ratio of deletions.

– Any constraint belonging to the cluster whose center has the highest ratio
of fruitful revisions (the rightmost cluster in the plots) is propagated with
maxRPC if 1) the cluster center’s ratio of fruitful revisions by maxRPC
(frmaxRPC -ratio in Table 1) is the highest among the three clusters and
2) maxRPC has the highest ratio of deletions (delmaxRPC -ratio in Table 1)
compared to the other stages for this constraint. Otherwise, it is propa-
gated using heuristic H∨

12 from [19]. This heuristic switches between AC and
maxRPC during search according to certain conditions explained below.

– Any constraint belonging to the remaining cluster (the middle cluster) is
propagated using heuristic H∨

12 except if: 1) the cluster center’s ratio of
fruitful revisions by maxRPC is the highest among the three clusters in
which case it is propagated with maxRPC, or 2) the maxRPC stage does
not cause any deletions at all, in which case it is propagated with AC.

– BSAC is applied on any variable whose ratio of fruitful calls to BSAC over
the total number of calls is more that 0.5. That is, line 6 in Figure 1 is only
executed for these variables.

Heuristic H∨
12 monitors and counts revisions, DWOs and value deletions for

the constraints in the problem. It uses two (user defined) thresholds l1 and l2,
set to 100 and 10 in this paper, to switch between a weak but cheap local consis-
tency W and a stronger but more expensive one S. A constraint c is made S if
the number of times it was revised since the last time it caused a DWO is less or
equal to l1, or if the number of times it was revised since the last time it caused a
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value deletion is less or equal to l2. If none of these conditions holds, c it is made
W . In this paper W and S were set to AC and maxRPC respectively. Setting S
to BSAC or SAC resulted in a very cost-inefficient method.

A drawback of our method is that the heuristic rules described above were pre-
determined based on intuition and preliminary experiments, and hence required
expertise. The intuition is simple: we select a low-cost propagator for constraints
that displayed many redundant revisions during preprocessing, and a high-cost
but more efficient one for constraints that displayed many fruitful revisions most
of which were due to the high-cost propagator. Automatic generation of heuristic
rules is an important topic that requires further research.

5 Experimental Results

In this section we present an initial evaluation of LPP on binary CSPs. We
compare the method to the widely used MAC algorithm and also to heuristic
H∨

12 applied to all constraints of the problem as proposed in [19]. The solver
we used applies d-way branching, lexicographic value ordering, the dom/wdeg
variable ordering heuristic [7], and restarts. Concerning the restart policy, the
initial number of allowed backtracks for the first run has been set to 10 and at
each new run the number of allowed backtracks increases by a factor of 1.5. We
set the number of random probes to 20 and the cut-off limit for each probe to
100 nodes. We noticed little variance in the results when these settings changed,
but finding the “optimal” settings for each problem is an issue that requires
further research. Another topic for future work is the use of random probes with
random value ordering which may result in even more diverse sampling of the
search space. To keep preprocessing times manageable BSAC, which can be quite
time consuming, was only applied in 1/5th of the nodes (randomly selected).

We experimented with the following classes of problems: radio links frequency
assignment (RLFAPs), graph coloring (GC), haystacks (H), quasigroup comple-
tion (QCP), quasigroups with holes (QWH), forced random problems (R). All
apart from the last class are structured binary CSPs. Tables 3 and 4 give in-
dicative experimental results. The specific benchmark instances taken from C.
Lecoutre’s web page. The first table gives results from insoluble problems while
the second from soluble ones. For LPP we give both the total cpu time and the
time required for random probing and clustering. Note that the time required
for clustering is negligible compared to that for random probing.

As results demonstrate, LPP can be considerably more efficient than MAC
on the majority of the problems, and especially on the hard insoluble ones. The
random probing preprocessing phase consumes a significant portion of the ex-
ecution time for easier instances, but in most cases this becomes negligible as
the problems become harder. Comparing heuristic H∨

12 to LPP we can see that
the methods are competitive with LPP often being faster despite the time spent
on preprocessing. LPP, as well as H∨

12, is not competitive with MAC on random
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Table 3. Nodes (n) and cpu times (t) in seconds from insoluble problems. The LPP
column gives the total cpu time of preprocessing + search and in brackets the time
required for preprocessing (i.e. random probing and clustering). A time out limit of 2
hours was set.

type instance MAC H∨
12 LPP

RLFAP scen11-f6 n 74,879 7,895 4,871
t 58 14 66 (50)

RLFAP scen11-f5 n 321,435 52,750 12,501
t 254 94 99 (53)

RLFAP scen11-f4 n 1,110,401 167,786 22,112
t 856 266 110 (61)

RLFAP scen11-f3 n 4,995,046 167,596 23,334
t 3917 274 111 (62)

GC homer-8 n 228,495 11,770 201,023
t 102 7 118 (3)

GC myciel5-5 n 22,640,358 22,640,358 22,640,358
t 638 2021 842 (1)

GC myciel6-5 n 6,915,618 6,915,618 6,915,618
t 654 2815 896 (5)

GC miles-500-10 n 19,996,866 9,693 18,048
t 3596 3 15 (9)

H haystacks-5 n 1,203,768 3,256 942
t 13 0.5 0.2 (0.1)

H haystacks-6 n - 23,328 25,732
t >2h. 2 2 (0.2)

QCP qcp15-120-10 n 8,580,800 2,747,682 113,487
t 1860 1340 50 (5)

QCP qcp15-120-13 n 1,007,089 155,971 230,591
t 235 71 108 (4)

problems, which gives further evidence that the absence of structure hinders the
accuracy of the learning process.

Interestingly, on the myciel graph coloring problems maxRPC and BSAC do
not offer any more pruning than AC. LPP discovers this during preprocessing and
does not select these two consistencies for any constraint. Hence the same node
visits but reduced cpu times compared to H∨

12 which “blindly” switches between
AC and maxRPC during search. However, the second rule of Section 4.2 selects
to propagate some constraints using H∨

12 which accounts for the increased times
compared to MAC. On a negative note, problem homer-8 is an example where
LPP fails to interpret the random probing results in an efficient way. Although
the leftmost cluster created includes constraints with low ratio of fruitful revi-
sions, this is the only cluster that includes constraints where the maxRPC stage
makes value deletions. Despite this, all constraints in this cluster are selected to
be propagated with AC or BC which accounts for the significant difference in
node visits and cpu time compared to H∨

12.
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Table 4. Nodes (n) and cpu times (t) in seconds from various soluble problems

type instance MAC H∨
12 LPP

QCP qcp15-120-9 n 135,267 29,812 29,383
t 30 12 31 (4)

QCP qcp20-187-1 n 189,942 344,418 172,574
t 102 262 149 (10)

QWH qwh20-166-7 n 88,429 10,945 22,023
t 206 19 49 (9)

QWH qwh20-166-8 n 70,945 12,565 29,199
t 160 23 72 (10)

GC homer-10 n - 3,505 2,994
t >2h. 3 6 (4)

R frb35-17-0 n 59,910 10,155 4,320
t 14 13 20 (10)

R frb40-19-0 n 170,345 46,596 94,722
t 45 80 238 (10)

R frb45-21-0 n 1,028,028 767,550 1,205,280
t 320 1862 1844 (10)

6 Related Work

Random probing has been used in constraint programming before, albeit in dif-
ferent contexts. Grimes and Wallace have used probing to initialize the scores
of the dom/wdeg heuristic and in this way make it more informed at the initial
stages of search [12]2. Ruml proposed an adaptive probing scheme that itera-
tively adapts the search guiding heuristic in subsequent searches [16]. Beck used
probing in the context of multi-point constructive search [2]. Probes are used
to initialize a set of “elite” partial solutions some of which are thereafter used
as starting points for subsequent searches. Finally, probing has been to measure
the promise of variable ordering heuristics [3].

There have been several efforts, which are mainly related to the modelling
of specific CSPs, on deciding which propagator to apply on certain constraints
based on static features of the problem. As most of these works are not general
but rather problem-specific, we will not review them in detail. Instead, we will
focus on approaches that try to select the propagation method using dynamic
features of the problem.

Adaptive constraint propagation has attracted interest in the past. The most
common manifestation of adaptive propagation is the use of different propagators
for different types of domain reductions in arithmetic constraints. When handling
arithmetic constraints most solvers differentiate between events such as removing
a value from the middle of a domain, or from a bound of a domain, or reducing
a domain to a singleton, and apply suitable propagators accordingly.

2 Note that we did not do this in our experiments to avoid adding bias to the results.
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Works on adaptive propagation for general constraints include the following.
El Sakkout et al. proposed a scheme called adaptive arc propagation for dynam-
ically deciding whether to process individual constraints using AC or forward
checking [10]. Freuder and Wallace proposed a technique, called selective relax-
ation which can be used to restrict AC propagation based on two criteria; the
distance in the constraint graph of any variable from the currently instantiated
one, and the proportion of values deleted [11]. Chmeiss and Sais presented a
backtrack search algorithm, MAC (dist k), that also uses a distance parameter
k as a bound to maintain a partial form of AC [8].

Schulte and Stuckey proposed techniques for dynamically selecting which
propagator to apply to a given constraint using priorities and staged propa-
gators [17]. Their proposed methods either select a single propagator from a
given set or propagators or choose the order in which the propagator stages will
be applied [17]. These methods are based on interpreting the event that triggers
propagation for a constraint at any point in time, such as the reduction of a do-
main to a singleton or the removal of a value from a bound of a domain. Similar
ideas are also implemented in constraint solvers such as Choco [13].

Probabilistic arc consistency is a scheme that can help avoid some consistency
checks and constraint revisions that are unlikely to cause any domain pruning
[15]. As in [10], the scheme is based on information gathered by examining the
supports of values in constraints which can be very expensive for non-binary con-
straints. Szymanek and Lecoutre studied ways to select values on which to apply
“shaving” (i.e. make the values SAC) using the semantics of global constraints
(e.g. alldifferent) to suggest values that are most likely to be removed by shaving
[20]. Finally, Stergiou proposed heuristics for dynamically switching between two
propagators on individual constraints during search [19]. These heuristics take
advantage of the fact that in structured problems propagation events usually
occur in clusters, but it is difficult to see how they can be generalized to work
with more than two propagators.

As discussed, our work makes a static selection of propagator for individual
constraints, but it can be combined with most dynamic approaches as we demon-
strated for [19]. Combining with such approaches is an interesting direction for
future work. Also, we can extend LPP to a dynamic version where constraint
propagation data acquired during search is taken into account to perhaps read-
just the initial static propagator choices if necessary.

7 Conclusions

Choosing the right propagator for specific constraints prior to search is a diffi-
cult task for CP modelers. We have presented LPP, a simple approach toward
automating this task. Our approach is based on gathering data concerning the
pruning behavior of the constraints in a random probing preprocessing phase.
A case study on binary constraints was presented, and as experimental results
demonstrated, decisions taken using the random probing results can be quite
accurate in many cases, resulting in improved cpu times during search. In ad-
dition, we believe that our work emphasizes the largely untapped potential of
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using machine learning techniques, such as clustering, to boost the performance
of CP systems.

A drawback of LPP is that the preprocessing phase can be too expensive on
very large problems with many variables and constraints. To overcome this we
may lift the requirement that all stages of the propagator used are applied at
each node and for each constraint. In the future we plan to extend the work
presented here to include a wider range of local consistencies for binary as well
as non-binary constraints. Also, we would like to investigate the use of machine
learning techniques to automatically build the decision tree which exploiting
random probing results will be able to propose propagators for the constraints.
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Abstract. Our paper presents a new exact method to solve the traveling
tournament problem. More precisely, we apply DFS* to this problem and
improve its performance by keeping the expensive heuristic estimates
in memory to help greatly cut down the computational time needed.
We further improve the performance by exploiting a symmetry property
found in the traveling tournament problem. Our results show that our
approach is one of the top performing approaches for this problem. It
is able to find known optimal solutions in a much smaller amount of
computational time than past approaches, to find a new optimal solution,
and to improve the lower bounds of larger problem instances which do not
have known optimal solutions. As a final contribution, we also introduce
a new set of problem instances to diversify the available instance sets for
the traveling tournament problem.

1 Introduction

The traveling tournament problem (TTP)[3] emerged from the difficulties of
scheduling real-world sports leagues. It simplified many of the constraints and
requirements found in sports leagues to a problem manageable for theoretical
research. Despite this simplification, it has been found to be a difficult problem:
solutions have been proven optimal for only the smallest few problem instances.
The difficulty lies in its unusual structure (round robin tournaments) and its
feasibility constraints.

We present a new approach to the TTP by applying the search algorithm
DFS*[9]. We are able to improve its performance for this application by using a
new idea of storing expensive heuristic estimates in memory to greatly reduce the
running time. In addition, we exploit a symmetry property found in the TTP, in
which all schedules are symmetrically equivalent to one other schedule[5]. Our
results show that this approach is one of the best performing approaches for
the TTP, finding previously known optimal solutions in a fraction of the time
of other approaches while being able to find both a new optimal solution and
new lower bounds for unsolved problem instances. We also introduce a new set
of problem instances for the TTP. This new set is derived from the rugby union
league Super 14, which is composed of teams from Australia, New Zealand, and
South Africa.
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2 Traveling Tournament Problem

The TTP is a sports scheduling combinatorial optimization problem. It involves
n teams, n being even, and takes in an n × n matrix of distances between the
teams. The problem consists of a double round robin tournament with 2 · (n− 1)
rounds. The teams must play once during each round and are required to play
every other team twice, once at home and once away. The objective is to create a
tournament such that the total summed travel distance amongst all of the teams
is minimized. The travel distance, which is calculated individually for each team,
is the total distance a team must travel between locations during the tournament.
All teams start at home prior to the first round and end at home after the final
round. There is no travel cost for playing consecutive games at home.

The TTP has two feasibility constraints. The first is the no repeat constraint.
This forbids a team from playing the same team in consecutive rounds. The
second constraint is the at most constraint, which restricts a team to being able
to play at most three games consecutively at home or away.

There are four problem sets for the TTP[7]. The NL set and the larger NFL
set are derived from Major League Baseball and the National Football League
respectively. Both of these sets use real distances between the cities where the
teams are located. The other two problem sets use artificial distances. The CIRC
set has all the teams placed on a circle, and the distance between two teams is
the minimal number of teams a team has to go through to get to the other team.
The CON set has all distances set to 1, which changes the problem to minimizing
the number of trips[7].

In this paper, we focus our work on the NL and CIRC sets. We do not work
with the NFL set since the size of the instances are too large for us to work with
while the CON set has been solved for all instances except for 20 teams. So far,
only the smallest few problem instances for the NL and CIRC sets have been
solved to optimality. These are NL4, NL6, and NL8 for the NL set and CIRC4 and
CIRC6 for the CIRC set[7]. For larger instances, only lower and upper bounds of
the optimal solutions have been found. Some of the various techniques that have
been used to find optimal solutions are integer and constraint programming[4],
Lagrangian relaxation and constraint programming[1], independent lower bound
estimations[8], and branch-and-price with column generation[5].

3 DFS*

We are taking a new approach to the TTP by applying DFS*. DFS* is an
algorithm which combines IDA* with depth-first branch-and-bound (DFB&B)
search. It goes through an iterative process like IDA*, starting with a small
upper bound and increasing it after every iteration. However, it differs in that
it uses DFB&B for the final iteration. This is due to the difference in how it
creates the new upper bound thresholds. In IDA*, the new upper bound after
every iteration is the minimal lower bound that exceeded the upper bound of the
previous iteration. When the first solution is found, it knows that this solution is
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optimal and the algorithm is finished. In DFS*, after every iteration, it increases
the upper bound by a greater amount than IDA*. This will eventually cause
DFS* to create an upper bound that is greater than or equal to the optimal
solution. Because of this, when the first solution is found, it is unknown whether
it is optimal or not. To prove optimality, the algorithm then works like a standard
DFB&B approach, searching the rest of the solution space to prove either the
solution is optimal or that there is another solution which is optimal.

We do take note that there are two similar algorithms to DFS* under different
names called IDA* CR[6] and MIDA*[10]. The original papers describing these
three approaches were published at relatively the same time. Any of these works
would have sufficed, as they shared the same underlying idea of using IDA*
with DFB&B and only slightly differed on how to increase the upper bound
thresholds.

One of the advantages of using DFS* over other depth-first search approaches
like DFB&B is that it can find lower bounds of an unknown optimal solution for
problems where it would take too long to find the optimal solution. For every
iteration of DFS* in which it increases the upper bound, if it cannot find any
solutions for that upper bound, then the upper bound is the lower bound of
the optimal solution for these problem instances. This is important for the TTP
since very few optimal solutions have been found so far. Much work has focused
on decreasing the difference between the best known upper and lower bounds of
the optimal solutions for the problem instances.

A disadvantage of using DFS* is that it may not return a feasible solution
within a reasonable amount of time if it spends too much time on the iterations
prior to the final iteration. If a feasible solution is needed, then it is better to use
DFB&B by itself. Many of the improvements described in this paper can easily
be applied to DFB&B to improve its performance on the TTP.

The following sections describe our application of DFS* to the TTP. We begin
with how we perform the depth-first search, then continue on with heuristics and
lower bounds, memory, symmetrical schedules, subtrees, upper bound thresholds,
and conclude with the parallelization of DFS* for the TTP.

3.1 Depth-First Search

DFS* uses backtracking search with constraint propagation[2] to perform the
depth-first search when applied to the TTP. It constructs the solutions from
round 1 to 2 · (n − 1). Within each round, it pairs up all the teams prior to
scheduling teams for the subsequent round. As the solution is being built, it
propagates constraints after each pairing using forward checking. This involves
making sure that teams play only once per round; that teams only play once at
home and once away against every other team; and that teams do not violate
the no repeat and at most constraints during the following round.

Algorithm 1 shows the specifics of the depth-first process. It first sets the
index, i, to 1 and then begins to search through the solution space. At each
index, it calculates the current round, r ← * 2·i

n +, and chooses team1 and team2.
For team1, it picks the first, unpaired team in numerical order for round r. It
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then goes through team1’s domain that is associated with round r, D(team1i,r),
taking the first, untried team and designating it as team2. We note that with
the domains described here, they list all of the feasible teams a team can play
at home and then all of the feasible teams it can play away. Thus DFS* will
always try pairing team1 with teams it can play at home before teams it can
play away.

Algorithm 1. Constructing solutions
1: procedure ConstructSolution
2: i ← 1
3: while 0 < i do
4: r ←  2·i

n
�

5: team1i ← ChooseTeam1(r)
6: team2i ← ChooseTeam2(team1i, Dteam1i,r)
7: if LB < UB∧ PropagateConstraints = valid then
8: i ← i + 1
9: if i = n · (n − 1) then

10: UpdateBestSolution
11: i ← i − 1
12: UndoPairing(team1i, team2i, i)
13: else
14: UndoPairing(team1i, team2i, i)
15: if Dteam1i,r = ∅ then
16: i ← i − 1
17: UndoPairing(team1i, team2i, i)

If pairing team1 with team2 does not cause the lower bound estimate, LB, to
be greater than the upper bound, UB, nor does propagating constraints cause
any domains to become empty, DFS* will then attempt to pair up another set of
teams. Otherwise, it continues to try the rest of the available teams in team1’s
domain. If it cannot find any teams that can be paired with team1, it backtracks
to the previous pairing and undoes it. When it undoes a pairing, it also undoes
any constraint propagations that it had done when pairing the two teams.

DFS* will have found a solution when i is equal to n·(n−1), the largest possible
index for this problem. Once this is true, it updates the best solution, backtracks,
and then continues to search the rest of the solution space. As described earlier,
DFS* acts like a DFB&B approach after it has found a solution, which is why
it does not stop searching after finding a solution.

The reason we perform the depth-first search and construct solutions in this
manner is two-fold. The first is that it is easy to verify that constraints are not
being violated and to do constraint propagation for the following round. Second,
we can easily calculate the total distance seen so far for a partial solution, which
is necessary for estimating the lower bounds.
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3.2 Heuristics and Lower Bounds

The independent lower bound[3] is used as the admissible heuristic to calculate
an estimated cost for the lower bound. For each individual team, it estimates
the optimal tour that can be obtained based on what it has constructed so far.
These estimates are independent of the other teams’ schedules.

The heuristic estimates are found by using a general DFB&B approach for a
single team. All characteristics, such as the number of consecutive away games
already played, the number of away games remaining, the last team played, and
the remaining teams it still needs to play away at, are taken into consideration
along with the at most constraint. What is not taken into consideration is the
team’s domain in the future rounds nor the domains of other teams.

The heuristic estimates also do not take into consideration the number of
remaining home games, but instead try to find the best possible schedule with
as many home games as needed. The reason for this is to reduce the size of the
memory footprint, as described later in Section 3.3. But in order to reduce the
running time of DFB&B, the maximum number of home games is set to half
the number of remaining away games, rounded up, for each heuristic estimate.
The heuristic estimate will still be admissible since there cannot be a shorter
trip requiring more home games due to the following theorem.

Lemma 1. Given a team, t, and two teams it has to play away, a1 and a2,
the shortest tour visits a1 and a2 consecutively prior to returning home if the
distances satisfy the triangle inequality.

Proof. Let d1 be the distance between t and a1, let d2 be the distance between
t and a2, let d3 be the distance between a1 and a2, and let d4 be the distance
for returning home between visits to a1 and a2. Form the triangle ,a1a2t. If
all angles of the triangle are less than 180 ◦, then by definition of the triangle
inequality, d3 < d1 + d2. If one of the angles of the triangle is 180 ◦, then t, a1
and a2 form a straight line and d3 = d1 + d2. In either case, returning home
between visits to a1 and a2 results in d4 = d1 + d2. Taking into account both
cases, d3 ≤ d4. Therefore, the shortest tour visits a1 and a2 consecutively prior
to returning home. ��
Theorem 1. Assume ‘a’ is the remaining number of away games a team has
to play. Then the shortest tour uses no more than h = *a

2 + home games if the
distances satisfy the triangle inequality.

Proof. Let h = *a
2 +. When a is even, partition the set of remaining away teams

into subsets of two. Create a tour that returns home after visiting every subset
of two, which is possible since there are h home games to use. When a is odd,
partition the set of remaining away teams into �a

2 � subsets of two and one subset
of the remaining team, which is possible since there are h home games to use.
Create a tour that returns home after visiting every subset of two and then visit
the final, single team. In both cases, when a is even or odd, using an additional
home game within a subset of two will not result in a shorter tour because of
Lemma 1. Thus if a is the remaining number of away games a team has to play,
then the shortest tour uses no more than h = *a

2 + home games. ��
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To calculate the actual lower bound, the distances traveled so far are summed
up with each team’s estimates. Since each team’s estimate is admissible, the sum
of their estimated distances will also be admissible, thus it does not violate the
requirements of an admissible lower bound for DFB&B.

3.3 Memory

The heuristic estimates used for this problem are expensive to calculate. To
mitigate this, they are kept in memory. This is possible since DFS*, like other
depth-first algorithms, uses a minimal amount of memory. By keeping the heuris-
tic estimates in memory, they only need to be calculated once each and can then
be reused. The calculations are all done at the start of the algorithm. Calculating
all of the heuristic estimates at the start of the algorithm instead of the first time
each is needed makes it easier to parallelize DFS*, as described later in Section
3.7. If DFS* were not being parallelized, then it would be possible to calculate
and store the heuristic estimates when they are first seen. The advantage of this
would be that unused estimations would not be calculated.

The heuristic estimates are stored with a minimal amount of memory in a
multi-dimensional matrix. All that is stored at each index is the estimated dis-
tance. The index is composed of five aspects of the heuristic estimate: which
team the estimate belongs to, the number of away games, which teams left to
play away, the previous number of consecutive away games, and the last team
played if away. As stated earlier, the heuristic estimates are calculated assuming
as many home games as needed, thus the number of home games remaining is
not used. This reduces the number of dimensions in the matrix by one.

The number of heuristic estimates needed is as follows. For each team’s set
of estimates, there are two cases: when the previous game was at home or away.
When the previous game played was at home, there are (n− 1) possible number
of remaining away games. Related to this is the number of combinations of teams
it can play away. With the combinations, order and duplicates are ignored. This
results in:

n−1∑
i=1

i∑
j=1

(
n− 1

j

)
(1)

When the last game was not played at home, there are (n− 1) possible teams it
could have last played. There are three possibilities of the length of the number
of previous consecutive away games: [1-3]. Related to this is the number of re-
maining away games and the combinations. These last two values will be smaller
due to the number of previous away games being greater than 0. This results in:

(n− 1) ·
3∑

k=1

n−1−k∑
i=1

i∑
j=1

(
n− 2

j

)
(2)

Together, those two values are the number of estimates needed for one team. As
each team needs its own set of estimates, the number of heuristic estimates is:
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n ·

⎛⎝n−1∑
i=1

i∑
j=1

(
n− 1

j

)
+ (n− 1) ·

3∑
k=1

n−1−k∑
i=1

i∑
j=1

(
n− 2

j

)⎞⎠ (3)

or, in more general terms, O(n3n!).
Each checkup into the matrix requires the index to be calculated, which is

O(n). The O(n) is from having to go through a team’s remaining away games
and calculating the index based on what teams it has and has not played using
binomial coefficients. This allows a mapping of combinations to indices. To min-
imize this, caching is used in a similar manner to how modern machines cache
data. To do so, a two-level approach for the caching is used. At the upper level
is the matrix with all the estimates. At the lower level, the heuristic estimates
are cached for the next round for a team, since the values will not change until
the team’s previous round pairing has been changed.

3.4 Symmetrical Schedules

In the TTP, half of all the solutions can be discarded due to symmetry[5]. Sym-
metry in the TTP means that all schedules can be flipped across their rounds
and still have the same distance. Thus, half of the schedules in the solution
space are symmetrical images of the other half. An example of this can be seen
in Figure 1.

The symmetry described here is the same general idea as described in the work
by Irnich and Schrempp[5]. What differs is only how the idea is implemented.
We have adapted their idea for a depth-first search approach instead of a col-
umn generation approach. Our approach also differs in that they customized the
implementation for each of the NL and CIRC sets, while our general approach
can be applied to any TTP instance.

The reason there is symmetry is because each team’s schedule is treated in-
dependently for calculating distances, and the total distance is the sum of each
individual schedule. All distances are symmetrical, resulting in a symmetrical
traveling salesman problem for each team. In the symmetrical traveling sales-
man problem, a circular path can be traversed either way and will result in the
same distance. Since a team’s schedule starts and ends at home, it can be viewed
as a circular path. Thus, each individual path can be reversed and made sym-
metrical. Two complete schedules are considered symmetric when each can be
obtained by reversing the individual team schedules of the other.

To break this symmetry, DFS* begins with Team 1 as a “pivot”. Team 1
is used since it is the first team to be paired for each new round. Once half

Team 1 2 3 4 5 6
1 3 2 4 @3 @2 @4
2 4 @1 @3 @4 1 3
3 @1 4 2 1 @4 @2
4 @2 @3 @1 2 3 1

Team 1 2 3 4 5 6
1 @4 @2 @3 4 2 3
2 3 1 @4 @3 @1 4
3 @2 @4 1 2 4 @1
4 1 3 2 @1 @3 @2

Fig. 1. Symmetric schedules with equivalent total distances. Both are optimal for NL4.
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of a solution is constructed, meaning all games up to round n − 1 have been
scheduled, it checks that either the number of remaining home or away games
is greater than the other. If the check fails, DFS* backtracks.

This check will discard half of the schedules for the following reason. When
it has come to the midpoint, the algorithm will have seen (n− 1) rounds so far.
This will be an odd number since n is always even. With (n − 1) being odd,
then either the number of remaining home games or away games will be greater
than the other. By restricting to one of the two symmetrical checks, half of the
solutions are removed from the solution space.

When checking that the number of remaining away games is greater than the
number of remaining home games, this is called symmetry-A, while checking that
the number of remaining home games is greater is called symmetry-H. How this
is done can influence the performance of DFS*, as will be later seen in Section
4.1. It is important to note that only one of these checks can be used during
the running of DFS*, not both. If both were applied, then the algorithm would
never be able to construct a complete solution.

In relation to propagating constraints, this check can be done before the mid-
point of solution construction. In the earlier rounds, after each time Team 1 is
paired with another team, DFS* will ensure that the symmetry check for Team
1 will not be violated once it gets to the solution construction midpoint.

3.5 Subtrees

Instead of performing one depth first search through the solution tree during each
iteration of DFS*, we use a concept we call subtrees, in which DFS* performs
multiple depth first searches from different starting points during each iteration.
A subtree has its initial four pairings already fixed, or the initial two or three
pairings in the cases of problem sets with four or six teams respectively.

To form the list of subtrees, DFS* creates all permutations of the initial,
feasible pairings of teams in the same manner as the depth first search process.
The first pairing will always involve Team 1, the second pairing will always
involve either Team 2 or 3, mattering which team is paired with Team 1, and so
forth. A subtree will have associated with it one of these permutations. This list
of subtrees is created at the beginning and is reused for every iteration of DFS*.

The maximal number of fixed pairings is limited to four due to the branching
factor of the search tree. For the first pairing, after choosing the first team, there
is a possible 2 · (n− 1) teams it can be paired with in terms of both playing at
home or away. The second pairing will have 2 ·(n−3), the third pairing will have
2 · (n − 5), and the final pairing 2 · (n − 7). Limiting the number of pairings to
four helps keep the list of subtrees from growing too big for larger problem sets.

There are three reasons for using subtrees. The first reason is for calculating
upper bound thresholds. When working with DFS*, additional information is
stored with each subtree. This consists of a subtree’s maximal depth that it
constructed a solution to in the last iteration of DFS* and the minimal lower
bound for that depth. This will then be used for calculating new upper bounds,
which is explained later in Section 3.6.
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The second reason deals with the order upon which subtrees are worked.
Before the start of every iteration after the first, the subtrees are sorted by two
criteria. They are first sorted in descending order according to the deepest depth
they were able to construct a solution. Within each depth level, they are then
sorted in ascending order by the minimal lower bounds. The reason they are
sorted by this criteria is that the subtrees which will be seen first are most likely
to be able to complete a solution once the upper bound is past the optimal
solution. Secondly, this complete solution will hopefully be either the optimal or
near-optimal solution, reducing the size of the search tree.

The third reason is that they are used in the parallelization of DFS*. In this
case, they are used to help distribute the work amongst the various processors.
This concept will be further explained later in Section 3.7.

3.6 Upper Bound Thresholds

Our approach differs from the original DFS* algorithm for calculating upper
bound thresholds. The calculations of our new upper bound thresholds are tai-
lored for this problem. While our approach differs, we have kept true to the
spirit of the original papers, making sure the upper bound thresholds grow at a
fast-enough pace to reduce the number of iterations needed.

DFS* begins with an upper bound cost of 0. After every iteration, a new
upper bound is created based on the information gained from the subtrees. The
new upper bound, UB, is the sum of two values, LBm and D. The first value,
LBm, is the minimal lower bound of all subtrees that constructed solutions to
the furthest depth. The second value, D, is a value which combines the deepest
depth used and the average distance in the distance matrix of the problem.

To find the first part of the new upper bound, LBm, DFS* goes through the
sorted list of subtrees and finds the first subtree with a minimal lower bound
that is greater than the previous iteration’s upper bound. It then sets LBm to
the subtree’s minimal lower bound value. In all cases that we have seen, the
algorithm ends with a new LBm that is greater than the previous upper bound.
This is due to the large number of subtrees. The only possible way that none of
the subtrees would have a distance value greater than the previous upper bound
would be if all of their deepest depths were caused by constraint violations and
not because they had lower bound violations. If this were to happen, LBm would
be set to the previous upper bound value. The new upper bound is still increased
by adding the value D, but grows slowly in this rare case.

The reason we use only the first minimal lower bound instead of finding a LBm

value of all the subtrees is that this allows the algorithm to base the upper bound
on promising subtrees which are closer to building a complete solution. These
promising subtrees have a greater chance of containing the optimal solution than
a subtree which cannot construct a solution past a much lower depth but having
a LBm value smaller than the promising subtrees.
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After calculating LBm, DFS* takes another step to help increase the rate of
the upper bound’s growth and reduce the number of iterations DFS* needs. For
each new upper bound created, it adds to it the value D, which is defined as:

D =
⌈
avg · (n · (n− 1))− im

n · (n− 1)

⌉
(4)

with avg being the average of the non-zero distances in the problem instance’s
distance matrix, n the number of teams in the problem, and im the depth of
LBm. As stated earlier, n · (n−1) is the total number of pairings in the problem,
thus the largest possible depth. What this formula does is that the smaller of
the value of im, the greater of the value added to the new upper bound. In the
beginning, it increases the upper bound by a large amount. As the algorithm is
able to build the search tree to a deeper depth, it decreases the amount being
added to the upper bound. This makes sure the new upper bound does not
overshoot the optimal solution by too much.

3.7 Parallelism

In order to further improve the performance of DFS*, we looked into paral-
lelization [11]. We have designed a distributed approach to work across multiple
processors with shared memory.

To distribute the work, the processors access the list of subtrees. Every pro-
cessor will each have one subtree to work with at a time. It will expand the tree
from that subtree, taking into account the best upper bound found so far or the
maximum upper bound allowed. After a processor has expanded a subtree as
far as it can, it will then place that subtree with the appropriate information
into a new list of subtrees. These will be processed and sorted after the current
iteration is over if no solution is found.

One of the advantages of our approach is that there are very few critical areas
where the multiple processors share variables. The three key areas are the list of
subtrees, the upper bound, and the heuristic estimate values. For the subtrees,
locks are used when reading from the original list and writing to the second
list which holds the finished subtrees. The upper bounds changes values within
an iteration only during the final iteration, and this also requires a lock for
race conditions. With the heuristic estimate values, these are calculated prior to
running DFS*, thus there are no race conditions. The work for calculating the
heuristic estimates is distributed across the processors, allowing the algorithm
to calculate them as efficiently as possible.

4 Experiments

We ran two sets of experiments. The first set was to look at the performance of
our approach in terms of the different improvements we have discussed in this
paper. The second set was comparing our approach with other approaches and
seeing how well it can find either new optimal solutions or new lower bounds to
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the optimal solutions of different problem instances. For all of our experiments,
they were run on a virtual machine utilizing between 1 to 4 processors running
at 2.4Ghz with 3GB of shared memory. All code was written in C++.

4.1 Performance

Table 1 shows the results of looking at the different components. These tests
were done sequentially on a single processor. All numbers represent the amount
of time, in seconds, to finish. For comparison purposes, we worked with both
DFS* and a standard DFB&B approach. In the cases of NL4 and CIRC4, we
recorded a time of 0.0 seconds due to the algorithms being able to finish faster
than the smallest resolution of time.

As we see in Table 1, using DFB&B and DFS* by themselves results in poor
performance. More interestingly, DFB&B performs better than DFS* for the
CIRC set. This may be due to the fact that there is little disparity between the
distances for the CIRC instances, thus it does not benefit from using DFS* for
the smaller problem sets.

Keeping heuristic estimates in memory had the largest impact in minimizing
the running time of the approaches. It was able to reduce the time needed by over
2000% when applying DFS* to NL8 and over 1000% when applied to CIRC8.
The other components tested, symmetry-A and symmetry-H, further reduced
the running times. As can be seen, symmetry-A worked better than symmetry-
H in 3 of the 4 instances. The reason symmetry-A works better in most cases
is because of the way the depth first process picks values from the domains: it
chooses home games before away games. It is important to note that symmetry
breaking will not always cut the running time in half. The reason for this is
that many of the solutions do not go past the midpoint of solution construction
because of the strong lower bound heuristic estimations.

The size of the memory used when keeping heuristic estimates in memory
was small for the tested problem instances. When looking at the larger problem
sizes, the memory remained small up until 18 teams. Testing DFS* on 18 teams
with the heuristic estimates in memory took up roughly 16.2% of the 3GB of
RAM. For larger problem instances and problems other than the TTP, when
the number of heuristic values is too great to store all in memory, then it may

Table 1. Comparison of the components used. “M” stands for keeping heuristic esti-
mates in memory and “SA” and “SH” stands for using symmetry-A and symmetry-H
respectively.

Instance DFB&B DFS* DFB&B+M DFS*+M DFS*+M+SA DFS*+M+SH
NL4 0.0 0.0 0.0 0.0 0.0 0.0
NL6 25.61 16.58 4.03 2.03 0.98 1.53
NL8 315 443.73 94 881.22 2 321.02 426.16 262.42 392.27
CIRC4 0.0 0.0 0.0 0.0 0.0 0.0
CIRC6 7.76 15.33 1.50 2.94 2.05 1.77
CIRC8 71 598.93 122 259.7 839.72 1 207.85 984.69 1 010.08
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be beneficial to keep either the hardest to calculate estimates in memory or the
most frequently used estimates in memory. In either case, the approach would
result in better performance than not keeping any heuristic estimates in memory.

The amount of time needed to calculate all the heuristic estimates was minimal
for most of the problem sets we worked with. When running in parallel across
four processors, the wall time needed for problem sets of eight teams or less was
under a second. The time increased quickly though for larger problem sets. When
running DFS* on the NL set, NL10 took 6 seconds, NL12 took 1 317 seconds, and
NL14 took 159 876 seconds. With the CIRC set, CIRC10 took 3 seconds, CIRC12
took 327 seconds, and CIRC14 took 40 714 seconds. There are two reasons for
this sharp increase in time. The first is the larger number of estimates needed.
The second is that we used a general DFB&B approach, which is not as efficient
for calculating larger estimates. This was not an issue for the problem sets we
mostly worked with, but if one wants to work with larger problem sets, then it is
necessary to use more advanced techniques to calculate the heuristic estimates.

The number of iterations that DFS* went through were few: NL4 took 3
iterations, CIRC4 took 4 iterations, NL6 and CIRC6 took 5 iterations each,
and NL8 and CIRC 8 took 6 iterations each. Generally the first few iterations
required less than a second each, building up the upper bound towards a value
near the optimal value. Then DFS* would take one or two additional longer
iterations before the upper bound threshold had surpassed the optimal solution,
allowing for the final iteration. While we have not solved NL10 or CIRC10, both
problem sets have so far showed similar patterns for the iterations.

Table 2 looks at the parallelization of DFS*. As can be seen, parallelizing
reduced the running time of DFS*. While it was not 100% efficient due to the
overhead of parallelization, it was able to distribute the workload so processors
were not being underused. We think what may be limiting the efficiency in these
situations is the locks for the subtrees, as the processors can process a subtree
very quickly for these smaller problem instances. We would expect our approach
to reach higher efficiency with larger problem instances, as the processors would
then be spending more time working on an individual subtree.

Table 2. Comparison of number of CPUs used. Times listed are wall times in seconds.

Instance 1 2 3 4
NL4 0.0 0.0 0.0 0.0
NL6 0.98 0.43 0.40 0.38
NL8 262.42 143.14 106.49 104.67
CIRC4 0.0 0.0 0.0 0.0
CIRC6 2.05 1.09 0.94 0.87
CIRC8 984.69 516.42 430.89 337.09

4.2 Comparison With Other Approaches

We compared the timings of our results with the current best approach at
the time of the writing of this paper: Irnich and Schrempp’s approach using a
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Table 3. Comparison with Irnich and Schrempp’s approach to the TTP

Instance Irnich and Schrempp Us
NL4 <0.3 secs 0.0 secs
NL6 <19 mins 0.98 secs
NL8 <18 hrs 262.42 secs
CIRC4 <0.2 secs 0.0 secs
CIRC6 <18 hrs 2.05 secs

branch-and-price algorithm with column generation[5]. We only compared the
times on fully constrained problem instances that they were able to prove op-
timality. We did not run experiments on problem instances where some of the
constraints were relaxed, making the problems easier. Their approach used a
single processor of unknown speed, so we only list our timings which also used
a single processor.

Table 3 shows the comparison between the two approaches. We list their
timings in the same notation that they used. As can be seen by the results, our
approach outperformed their approach by a large margin.

4.3 Final Results

Our final tests were applying DFS* to larger NL and CIRC instances. We also
introduce a new problem set, the SUPER set, along with showing the results of
applying DFS* to this new problem set.

NL and CIRC. We looked at applying our approach to a few of the larger NL
and CIRC instances listed on the TTP website[7]. Table 4 displays the results
of our approach. For these results, we used DFS* with heuristic estimates in
memory, symmetry-A, and running across 4 processors. All times listed are total
wall times for the approaches in seconds. We stopped each experiment when it
became apparent that the time needed to finish the current iteration of DFS*
was too long.

As we can see, our approach proved the previously known upper bound of
CIRC8 is optimal while being able to find new lower bounds for three larger
instances. Running DFS* on CIRC10 and NL10 took a long period of time, yet
it was able to significantly reduce the gap between the previously best known
lower bound and the current best known upper bound of the optimal solution.

Table 4. Final results. LB and UB are previously found lower and upper bounds of
the optimal solution. Italicized lower bounds are improved lower bounds. Bold faced
lower bounds are optimal solutions.

Instance LB UB New LB Decrease In Gap % Time
NL10 57817 59436 58831 62.6 1 066 593
NL12 107548 110729 108244 21.9 102 806
CIRC8 130 132 132 100 337.09
CIRC10 228 242 237 64.3 2 723 466
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Table 5. Results from the SUPER instances

Instance LB UB Time
SUPER4 63405 63405 0.0
SUPER6 130365 130365 0.27
SUPER8 182409 182409 361.20
SUPER10 316329 316329 710 236
SUPER12 367812 - 637
SUPER14 467839 - 98 182

Super 14. Our final tests were done on a new set of instances we have created for
the TTP. These instances are derived from the Super 14 rugby league. The teams
in this league are from three countries: Australia with four teams, New Zealand
with five teams and South Africa with five teams. This geography differs greatly
from other problem sets, where the teams are generally evenly distributed. With
the Super 14, we essentially have three clusters of teams, with two of the clusters
close together and one very far from the other two.

To create these instances, we took the same approach as was used in creating
the NL instances[3]. We found the distances between all 14 cities, and then
took subsets to create SUPER4, SUPER6, SUPER8, SUPER10, SUPER12, and
SUPER14. The number following “SUPER” refers to the number of teams in
the instance. We made sure that the teams in each set are evenly distributed
amongst the three countries.

We ran DFS* on all of the SUPER instances, using the same configuration
as described for the NL and CIRC final experiments. As can be seen in Table 5,
the SUPER set has shown varied difficulty. SUPER6 and SUPER10 both proved
to be easier to solve than their NL and CIRC counterparts, but SUPER8 took
longer. This may be a result of the distribution of teams amongst the three
countries for each problem instance.

5 Conclusions and Discussion

In this paper, we have presented a new DFS* approach to the traveling tourna-
ment problem. It utilized memory to store heuristic estimates that are expensive
to calculate. As we have shown, our approach is currently the best approach for
this problem to date. We have been able to find previously-known optimal solu-
tions in a far shorter amount of time than past approaches; we have found new
optimal solutions to unsolved problem instances; and lastly, we have improved
the lower bounds of optimal solutions for larger, unsolved problem instances.

One avenue of research to look at in the future is the constraint propagation
used. As described in this paper, we only use forward checking for the constraint
propagation. It is possible to apply more advanced techniques, though they usu-
ally come at a cost of additional overhead. We believe using these advanced
techniques would slow down the depth first search for the smaller problem sets,
but they may be beneficial for larger problem sets.
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A further way of improving the performance is looking at the possibility of
running our approach across multiple computers that may not have shared mem-
ory. Various trade-offs will have to come into consideration, especially how to
handle the heuristic estimates. But by going this route, it could be possible to
solve the much larger instances in a reasonable amount of wall time.
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Abstract. In scheduling using constraint programming we usually rea-
son only about possible start times and end times of activities and remove
those which are recognized as unfeasible. However often in practice there
are more variables in play: variable durations of activities and variable
resource capacity requirements. This paper presents a new algorithm for
filtering maximum durations and maximum capacity requirements for
discrete cumulative resources. It is also able to handle optional interval
variables introduced in IBM ILOG CP Optimizer 2.0. Time complexity
of the algorithm is O(n log n). The algorithm is based on never published
algorithm by Wim Nuijten and a on slightly modified e-feasibility check-
ing algorithm by Armin Wolf and Gunnar Schrader. The later algorithm
is also described in the paper.

Keywords: Constraint Programming, Scheduling, Discrete Cumulative
Resource, Propagation.

1 Introduction

Nowadays, constraint based scheduling engines like IBM ILOG CP Optimizer
[1] allows to describe and solve very complex scheduling problems involving a
variety of different constraints. This paper is focused on one of them – discrete
cumulative resource for the case when durations and/or individual capacity re-
quirements are not fixed. Traditionally we reason only about minimum start
times and maximum end times using algorithms like Edge Finding [2], Not-
First/Not-Last [5] or Energetic Reasoning [3]. This paper provides an algorithm
for filtering of maximum activity durations and maximum capacity requirements.

The algorithm is not completely new. Although it was never published, Wim
Nuijten implemented a similar algorithm for ILOG Scheduler several years ago.
The old version of the algorithm has time complexity O(n2), this paper presents
a faster version with time complexity O(n log n).

To demonstrate the problem on a simple example, lets consider the following
subproblem: there is a pool of 10 workers (i.e., a discrete capacity resource with
maximum capacity C = 10) who perform different tasks. Among these tasks
there is a task to produce one particular product P . How many units of the
product P is produced depends on how many workers are assigned to the tasks
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(i.e., how much capacity of the resource is used) and for how long (i.e., what is
the duration of the task):

nbP = workers× duration

If we do not produce at least 500 units of product P then we will have to buy
the rest for the following cost (deduced from an initial budget):

cost = max(0, 500− nbP)× 1$

In this example, the budget and production of product P are tightly con-
nected:

1. If we see that no more than 200$ can be invested into the purchase of prod-
uct P (because the rest of the budget is needed for other things) then we
need to allocate workers to produce at least 300 units of product P .

2. On the other hand if we see that there is no way to produce more than 100
units of product P (because the workers are needed for other tasks) we can
immediately allocate 400$ from the budget to buy remaining products P .
This is a critical propagation especially if the budget is short.

Both propagations above are very important for speeding up the search by better
pruning the search tree. However for the propagation 2 it is necessary to be able
to compute the maximum possible production of product P . And this is the
topic of the paper.

The algorithm presented in the paper is also useful if there are optional activ-
ities – activities which may or may not be present in the solution (for example
alternatives between several resources). In this case the algorithm can detect
that there is no way to process an optional activity and therefore it cannot be
present in the solution (and, in case of an alternative, another alternative must
be chosen), see [4, 1].

2 Notation

Let us formalize the problem. There is a set T of n = |T | non-preemptive non-
optional activities. For the first part of the paper we assume that none of the
activities in T is optional, that is, all activities in T are necessarily present in
the solution. After we present Max Energy algorithm for non-optional activities
we will show how to use it for optional activities.

Each activity i ∈ T is described by the following attributes:

– the earliest possible starting time esti ∈ N,
– the latest possible completion time lcti ∈ N,
– the minimum processing time (duration) pi ∈ N,
– the maximum processing time (duration) pi ∈ N.

Moreover, each activity i ∈ T consumes during its processing some capacity of a
resource. The capacity consumption during the whole processing of the activity
is constant, however it may not be known in advance. In this case there is a
range of possible capacity consumption:
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– the minimum required capacity ci ∈ N,
– the maximum required capacity ci ∈ N.

The resource can process several activities at the same time, however at any
time the total used capacity cannot exceed the maximum resource capacity C.
For an example see Figure 1.

esti = 0 lcti = 20

i

pi = 4

pi = 10

ci = 2 ci = 1 C = 6

0 5 10 15 20

Fig. 1. An example of an activity i on a resource with capacity C = 6

Another way to characterize an activity is its energy. Informally, energy of an
activity is:

energy = processingTime× capacity

Because processing time and/or required capacity may be unbound, we charac-
terize the energy of a task i by two numbers: minimum energy ei = ci pi and
maximum energy ei = cipi. The presented algorithm modifies maximum energy
ei and this way also maximum capacity ci and maximum processing time pi:

ci := min {�ei/ pi� , ci} (1)
pi := min {�ei/ ci� , pi} (2)

2.1 Earliest Completion Time, Energy Envelope

For the following algorithms we need a way to quickly estimate the earliest
completion time of any set of activities Θ ⊆ T . If Θ contains only one activity i
then the computation of the earliest completion time is simple:

ecti = esti + pi

However in the general case it is much more complicated. Therefore we are
looking for a good lower bound, traditionally defined as:

preEct (Θ) = estΘ +
⌈eΘ

C

⌉
where:

estΘ = min
i∈Θ
{esti}

eΘ =
∑
i∈Θ

ei
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esta = 0

a

lcta = 8

b

estb = 14 lctb = 20

C = ca = cb = 2

0 5 10 15 20

Fig. 2. An example: preEct ({a, b}) = 4 even though {a, b} cannot end before ectb = 16

a

b

c d

esta = estb = 2 lcta = lctb = 5 estc = estd = 8 lcta = lctb = 13

C = 2Env(Θ) = 24

0 5 10

Fig. 3. Example of a set Θ = {a, b, c, d} with earliest completion time Ect(Θ) = 12 and
energy envelope Env(Θ) = 24. Maximum envelope is achieved by the set Ω = {c, d}.
Energy envelope is depicted by gray lines.

Note that preEct is only a lower bound. For example:

(i) If we closely inspect all subsets Ω ⊆ Θ we can achieve better estimation of
earliest completion time of the set Θ. For an example Figure 2.

(ii) Since we take into account only total energy of the set Θ, we assume that
all activities in Θ are fully “elastic”. For example for Θ = {i} from Figure 1
preEct(Θ) = 1 even though activity i cannot end before ecti = 4. 1

In this paper we will address only issue (i) by defining better estimation of
earliest completion time:

Ect(Θ) = max
Ω⊆Θ

{preEct (Ω)}

What is algebraically equivalent to:

Ect(Θ) = max
Ω⊆Θ

{
estΩ +

⌈eΩ

C

⌉}
=
⌈

maxΩ⊆Θ{C estΩ + eΩ}
C

⌉
Lets call the numerator of the last fraction energy envelope of the set Θ:

Env(Θ) = max
Ω⊆Θ

{C estΩ + eΩ} (3)

Hence:

Ect(Θ) =
⌈

Env(Θ)
C

⌉
For an example of Ect(Θ) and Env(Θ) see Figure 3.

The reason we defined energy envelope is that it is simpler to use in the
algorithms than the earliest completion time.
1 That is also the reason why earliest start time of an activity i is denoted by lower-

case letters ecti but earliest completion time of a set of activities Θ is denoted by
Ect(Θ) with capital E.
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3 Overload, E-Feasibility

This section provides a variation of the e-feasibility checking algorithm by Armin
Wolf and Gunnar Schrader [7]. This algorithm is the basis of the Max Energy
algorithm presented later in this paper.

Traditionally, we define an overload as a situation when a subset of activities
Ω ⊆ T requires more resource energy than what is available between earliest
possible start and latest possible end time of the set Ω (see for example [3]). If
there is overload then no solution exists:

∀Ω ⊆ T : (eΩ > C(lctΩ − estΩ) ⇒ fail) (OL)

where:
lctΩ = max {lcti, i ∈ Ω}

If there is no overload then we say that the problem is e-feasible.
It would take too much time to check all subsets Ω ⊆ T . Fortunately there is

a faster way:

Proposition 1. The problem is e-feasible if and only if

∀j ∈ T : Env (LCut (T, j)) ≤ C lctj

where LCut(T, j) is a left cut of T by activity j:

LCut(T, j) = {k, k ∈ T & lctk ≤ lctj}

Proof. We will prove the equivalence by proving both implications:

1. If rule (OL) detects overload then there is a set Ω such that C lctΩ <
C estΩ + eΩ. In this case we define j ∈ Ω to be activity from set Ω such that
lctj = lctΩ (if there are more activities with this property, we can choose
arbitrarily). Thanks to the definition of j it holds that Ω ⊆ LCut(T, j) and
therefore:

C lctj = C lctΩ < C estΩ + eΩ

(3)
≤ Env (LCut (T, j))

Therefore the second rule also detects overload.
2. If Env (LCut (T, j)) > C lctj then by (3) there is a set Ω ⊆ LCut(T, j) such

that C estΩ + eΩ = Env (LCut (T, j)). And for this set Ω:

C lctΩ ≤ C lctj < Env (LCut (T, j)) = C estΩ + eΩ

And therefore rule (OL) also detects overload. ��

The key idea of the algorithm is to organize set LCut(T, j) = Θ in a balanced
binary tree, which we call Θ-tree (it is an extension of Θ-tree structure for unary
resources described for example in [6]). Activities are represented by leaf nodes2

2 This is the main difference from the algorithm in [7], that algorithm represents
activities also in the internal nodes of the tree.
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and sorted by esti from left to right. Each node v of the tree holds the following
values:

ev = eLeaves(v) (4)
Envv = Env (Leaves (v)) (5)

Where Leaves(v) is a set of all activities represented by leaves of the subtree
rooted in v. Figure 4 shows a Θ-tree from an example from Figure 3. Notice that
the energy envelope of the represented set Θ is equivalent to the value Env of
the root node.

e = 14

Env = 24

e = 6

Env = 10

e = 8

Env = 24

esta = 2

ea = 3

Env = 7

estb = 2

eb = 3

Env = 7

estc = 8

ec = 4

Env = 20

estd = 8

ed = 4

Env = 20

Fig. 4. An example of a Θ-tree for Θ = {a, b, c, d} from Figure 3

For a leaf node v representing an activity i ∈ T the values in the tree are set
to:

ev = ei

Envv = Env ({i}) = C esti + ei

For internal nodes v these values can be computed recursively from their children
nodes left(v) and right(v):

Proposition 2. For an internal node v, values ev and Envv can be computed
by the following recursive formula:

ev = eleft(v) + eright(v) (6)

Envv = max
{
Envleft(v) + eright(v), Envright(v)

}
(7)

Proof. Formula (6) is trivial, we will prove only formula (7). From the definition
(5), the value Envv is:

Envv = Env (Leaves (v)) = max {C estΩ + eΩ , Ω ⊆ Leaves(v)}
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With respect to the node v we will split the sets Ω into the following two cate-
gories:

1. Left(v) ∩Ω = ∅, i.e., Ω ⊆ Right(v). Clearly:

max {C estΩ + eΩ , Ω ⊆ Right(v)} = Env (Right(v)) = Envright(v)

2. Left(v) ∩ Ω �= ∅. Then estΩ = estΩ∩Left(v) because leaf nodes are sorted by
esti. Let S be the set of all possible Ω considered in this part of the proof:

S = {Ω, Ω ⊆ Θ & Ω ∩ Left(v) �= ∅}

Then:

max {C estΩ + eΩ , Ω ∈ S} =

= max
{
C estΩ∩Left(v) + eΩ∩Left(v) + eΩ∩Right(v), Ω ∈ S

}
=

= max
{
C estΩ∩Left(v) + eΩ∩Left(v), Ω ∈ S

}
+ eRight(v) =

= Envleft(v) + eright(v)

We used the fact that the maximum is achieved only by such a set Ω for
which Right(v) � Ω. We also used the fact that Ω ∩ Left(v) enumerates all
possible subsets of Left(v) and therefore:

max
{
C estΩ∩Left(v) + eΩ∩Left(v), Ω ∈ S

}
= Envleft(v)

Combining the results of parts 1 and 2 together we see that formula (7) is correct.
��

Thanks to formulas (6) and (7), computation of values ev and Envv can be
integrated within usual operations with balanced binary trees without changing
their time complexity, see Table 1.

Table 1. Worst-case time complexities of operations on Θ-tree

Operation Time Complexity

Θ := ∅ O(1)
Θ := Θ ∪ {i} O(log n)
Θ := Θ \ {i} O(log n)
Env(Θ) O(1)

The idea of the overload checking algorithm follows. We will iterate over all
left cuts LCut(T, j) by non-decreasing lctj . The cuts will be represented by Θ-
tree what allows to quickly recompute Env (LCut (T, j)) each time when j is
changed. For each set Θ = LCut(T, j) we check e-feasibility using Proposition 1.
The resulting Algorithm 1.1 has worst-case time complexity O(n log n).
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Algorithm 1.1. Overload Checking in O(n log n)

1 Θ := ∅ ;
2 ��� j ∈ T in non-decreasing order of lctj �� ����	

3 Θ := Θ ∪ {j} ;
4 �� Env(Θ) > C lctj 
��	

5 ��� ; {No solution exists}
6 �	� ;

4 Max Energy Propagation

In this section we will extend the algorithm for overload detection to compute
maximum energy of each activity i ∈ T . The idea of the propagation is to protect
possible overload caused by increase of some energy demand ei.

Consider for example situation on Figure 3. In this example, minimum re-
quired energy of activity c is ec = 4. Maximum required energy ec is not depicted
on the figure, but lets say that ec = 10. However considering also activity d
(which requires at least ed = 4) the maximum feasible energy for activity c is 6,
otherwise there would be an overload for Ω = {c, d}. Therefore we can update
ec := 6, and according to formula (2) pc := 3. What we just described on the
example is the goal of the presented algorithm: for each activity i ∈ T , compute
maximum feasible energy ei such that if ei is increased above ei then there will
be an overload.

In Proposition 1 we have learned that the resource is e-feasible iff:

∀j ∈ T : Env (LCut (T, j)) ≤ C lctj

In other words we can assign to each set LCut (T, j) a maximum feasible envelope
Env:

Env (LCut (T, j)) := C lctj (8)

The idea is to propagate maximum feasible envelope from the set LCut(T, j)
into all its members and this way find maximum feasible energy of all activities.

Lets have have a look on the Θ-tree representing a particular set Θ =
LCut(T, j). For overload checking we compute recursively in each node the fol-
lowing values by formulas (6) and (7):

ev = eleft(v) + eright(v) (6)

Envv = max
{
Envleft(v) + eright(v), Envright(v)

}
(7)

The idea is to extend the tree by adding two more attributes into each node of
the tree:

– maximum feasible energy envelope Envv of the set Leaves(v),
– and maximum feasible energy ev for the set Leaves(v).
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The additional attributes can be also computed recursively, this time from root
down to the leaves. It starts at the root node r (see (8)):

Envr := C lctj (9)
er := ∞ (10)

The recursive rules to propagate these values down the tree are:

Envright(v) := Envv (11)

Envleft(v) := Envv − eright(v) (12)

eright(v) := min
{
Envv − Envleft(v), ev − eleft(v)

}
(13)

eleft(v) := ev − eright(v) (14)

For an example of computation of e and Env see Figure 5.

e = 14

Env = 24

e = ∞
Env = 26

e = 6

Env = 10

e = ∞
Env = 18

e = 8

Env = 24

e = 16

Env = 26

esta = 2

ea = 3

Env = 7

e = ∞
Env = 15

estb = 2

eb = 3

Env = 7

e = 11

Env = 18

estc = 8

ec = 4

Env = 20

e = 12

Env = 22

estd = 8

ed = 4

Env = 20

e = 6

Env = 26

Fig. 5. Computation of Env and e for Θ = {a, b, c, d} from Figure 3. Notice that from
the nodes representing activities c and d we can conclude that ec ≤ 6 and ed ≤ 6. In
case of activity d because of e in the node, in case of activity c because of Env in the
node as will be described by (15).

Formal proof of the recursive rules (11) – (14) will follow. But let us first
explain for example construction of formula (13). If eright(v) is increased then it
will cause also an increase of ev by formula (6). However maximum feasible value
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of ev is ev and therefore the maximum feasible value of eright(v) has to fulfill the
following formula:

eright(v) ≤ ev − eleft(v)

Similarly, increase of eright(v) can lead to the increase of Envv by formula (7) but
it cannot exceed the maximum feasible value Envv. Therefore:

eright(v) ≤ Envv − Envleft(v)

Combining the these two formulas we get rule (13). The remaining three rules
(11), (12) and (14) are constructed in a similar way.

Let us formally proof correctness of the rules (11) – (14). We start with the
following lemma:

Lemma 1. For a node w and its parent node v in a Θ-tree: if one of the values
Envw and ew are not respected (that is Envw > Envw or ew > ew) then at least
one of the values Envv, ev is not respected too.

Proof. We will split the proof into two parts depending on whether w is left or
right son of node v:

1. Case w = left(v). If ew is not respected then:

ew > ew
(14)
= ev − eright(v)

ew + eright(v) > ev

ev > ev by (6)

Therefore if ev is not respected then ev is not respected too.
Similarly if Envw is not respected then:

Envw > Envw
(12)
= Envv − eright(v)

Envw + eright(v) > Envv

max{Envw + eright(v), Envright(v)} > Envv

Envv > Envv by (7)

So if Envw is not respected then Envv is not respected too.
2. Case w = right(v). If ew is not respected then:

ew > ew
(13)
= min{Envv − Envleft(v), ev − eleft(v)}

Therefore
(a) Either:

ew > Envv − Envleft(v)

Envleft(v) + ew > Envv

Envv > Envv by (7)

And so Envv is not respected.
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(b) Or:

ew > ev − eleft(v)

eleft(v) + ew > ev

ev > ev by (6)

And so ev is not respected.

Finally if Envw is not respected then:

Envw > Envw
(11)
= Envv

Therefore

Envv
(7)
= max{Envleft(v) + ew, Envw} ≥ Envw > Envv

And thus Envv is not respected. ��
A consequence of this lemma is:

Proposition 3. Let i ∈ LCut(T, j) and let v be a leaf node representing activ-
ity i in Θ-tree for LCut(T, j). If ei > min

{
ev, Envv − C esti

}
then there is an

overload and therefore the problem is unfeasible.

Proof. If ei > min
{
ev, Envv − C esti

}
then it means that either ev or Envv in

the node v is not respected. By the previous lemma it means that at least one of
these values is not respected also in parent node of v. And so we continue this
way to the root node r and prove that er or Envr is not respected.

However for root node r, er = ∞ by (10) therefore er has to be respected.
The conclusion is that Envr is not respected and therefore:

Envr > Envr
(9)
= C lctj

Env (LCut (T, j)) > C lctj

So there is overload by Proposition 1. ��
The proposition above gives as an upper bound for maximum energy available
for each activity i ∈ LCut(T, j):

ei ≤ min
{
ev, Envv − C esti

}
(15)

Notice that for example on Figures 3 and 5 the formula (15) gives ec = 6 and
ed = 6 and therefore by (2) pc = 3 and pd = 3.

The basic idea of the algorithm follows: we iterate over all activities j ∈ T
and for each j we build Θ-tree representing LCut(T, j) by adding new nodes into
the Θ-tree from the previous iteration. In each Θ-tree we propagate the maxi-
mum energy envelope C lctj from the root to leave nodes and assign maximum
energies to activities i ∈ LCut(T, j) according to formula (15). First version of
the algorithm with time complexity O(n2) is provided by Algorithm 1.2. Note
that this is not the O(n2) algorithm by Wim Nuijten, for better understanding
we start with O(n2) algorithm and then speed it up to O(n log n).
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The algorithm uses two procedures:

– push down(v) pushes the values Envv and ev from the node v down the tree
using the rules (11) – (14).

– set energy max(i) sets maximum energy ei of the activity i using for-
mula (15).

Algorithm 1.2. Maximum energy propagation in O(n2)

1 Θ := ∅ ;
2 ��� j ∈ T in non-decreasing order of lctj �� ����	

3 Θ := Θ ∪ {j} ;
4 �� Env(Θ) > C lctj 
��	

5 ��� ; {No solution exists}
6 EnvΘ := C lctj ;
7 ��� nodes v in Θ-tree in non-decreasing order of their depth ��

8 push_down (v ) ;
9 ��� i ∈ Θ ��

10 set_energy_max ( i ) ;
11 �	� ;

Time complexity of this algorithm is O(n2) because the inner cycles on lines
7 – 8 and 9 – 10 have time complexity O(n). In the following we will show how
to improve the time complexity from O(n2) to O(n log n).

The key observation is that it is not necessary to push values ev and Envv

down to leaves immediately. The values ev and Envv stays valid until new node is
inserted into the subtree of v. Therefore it is possible to postpone push down(v)
until new node is inserted somewhere under the node v.

Current procedure push down(v) simply overwrites values e and Env in chil-
dren nodes of v. However that is no longer possible in the new algorithm be-
cause children nodes may contain information which was not pushed down yet.
Therefore it is necessary create new procedure push down2(v) which implements
modified rules (11) – (14):

Envright(v) := min
{
Envv, Envright(v)

}
(16)

Envleft(v) := min
{
Envv − eright(v), Envleft(v)

}
(17)

eright(v) := min
{
Envv − Envleft(v), ev − eleft(v), eright(v)

}
(18)

eleft(v) := min
{
ev − eright(v), eleft(v)

}
(19)

The values ev and Envv must be initialized to:

ev := ∞
Envv := ∞
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The postponed calls of push down2(v) must be executed just before new node
is added into the tree. The most suitable place is to replace Θ := Θ∪{j} on line
3 by procedure add(Θ, j) which will make necessary postponed calls.

For simplicity, lets assume that the shape of the tree is fixed and no re-
balancing occurs during the addition of new node into the tree3. The procedure
add(Θ, j) has following steps:

1. Find a node w under which new node will be inserted.
2. Call push down2(v) on all nodes v on the path from the root to w, and then

reset these nodes to:

ev := ∞
Envv := ∞

3. Add new node in the tree, fill the leaf representing j by data about the
activity j.

4. Recompute values ev and Envv on the path from this leaf to the root.

The resulting Algorithm 1.3 has worst case time complexity O(n log n).

Algorithm 1.3. Maximum energy propagation in O(n log n)

1 Θ := ∅ ;
2 ��� j ∈ T in non-decreasing order of lctj �� ����	

3 add (Θ , j ) ;
4 �� Env(Θ) > C lctj 
��	

5 ��� ; {No solution exists}
6 EnvΘ := C lctj ;
7 �	� ;
8 ��� nodes v in Θ-tree in non-decreasing order of their depth ��

9 push_down2 (v ) ;
10 ��� i ∈ T ��

11 set_energy_max ( i ) ;

5 Optional Activities

As mentioned in the introduction, IBM ILOG CP Optimizer 2.0 [1] introduce
a new variable type designed for scheduling – interval variable. The difference
between activity (as we used this word in this paper) and an interval variable
is that an interval variable by itself does not require any resource. An activity
is created when an interval variable is constrained to require a resource. One
interval variable may require more than one resource, in this case the interval
variable is associated with several activities and all of them share their start
times and end times.
3 This can be achieved for example by computing perfectly balanced tree of all activ-

ities in advance.
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Interval variable in IBM ILOG CP Optimizer has very important aspect: it
can be declared as optional, that is, it may or may not be present in the solution.
In this case all its activities are also optional.

Typical use of optional interval variables are alternative between two different
actions. This can be easily modeled by two optional interval variables and a
constraint that exactly one of them is present in the solution. Both optional
intervals can require some discrete cumulative resource during their execution,
however the interval which is not present in the solution does not affect any
resource. For more details about optional interval variables see [4, 1].

From the point of view of the resource, there are some optional activities
which may or may not be executed on the resource, this is yet to be decided.
During the search an optional activity may become:

A) preset if:
1) we decide to execute it as a search decision,
2) or if we proved (by propagation) that no other alternative is possible,

B) absent if:
1) we decided to not to execute it by a search decision,
2) or if we proved (by propagation) that execution of this activity is not

possible.

The algorithm Max Energy presented in this paper can do the propagation B2)
above. This is very important propagation because usually any propagation on
optionality status has a big impact on other variables.

How to use Algorithm 1.3 with optional activities? First observe that from
the point of view of discrete cumulative resource, there is no difference between
absent activity and activity with zero energy (that is, activity with zero duration
or zero capacity requirement). Zero-energy activity can be processed anytime
even though the resource is already full.

The idea is to use Algorithm 1.3 directly without any modification, but on
modified input data. If an activity is optional then (just for the algorithm) its
minimum energy is set to zero. This way, optional activity cannot influence any
other activity, however upper bound ei for energy computed by the algorithm is
valid also for optional activity i. Furthermore if ei < ei we can deduce that the
activity i cannot be present in the solution.

6 Conclusions and Further Work

This paper presents a new Max Energy propagation algorithm which updates
maximum durations and maximum capacity requirements on discrete cumula-
tive resource with optional activities. The algorithm has better time complexity
(O(n log n) versus O(n2)) than old never published algorithm by Wim Nuijten.
Experiments show that the new algorithm begin to be faster than the old one
for n around 10. The algorithm is used by IBM ILOG CP Optimizer [1] since
version 2.0.
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State-of-the-art solvers for Constraint Satisfaction Problems (CSP), Mixed In-
teger Programs (MIP), and satisfiability problems (SAT) are usually based on a
branch-and-bound algorithm. The question how to split a problem into subprob-
lems (branching) is in the core of any branch-and-bound algorithm. Branching
on individual variables is very common in CSP, MIP, and SAT. The rules, how-
ever, which variable to choose for branching, differ significantly. In this paper,
we present hybrid branching, which combines selection rules from all three fields.

Branching Rules. In MIP, reliability pseudocost branching [2] is the current
state-of-the-art. This rule estimates the objective change in the LP relaxation
when branching downwards and upwards. It uses the average objective gains
per unit change, taken over all nodes, where this variable has been chosen for
branching. The resulting two values are called the pseudocosts of a variable.

In CSP and SAT, where no objective function is available, one may better
estimate the impact of a branching by taking the number of implied reductions
of other variable domains into account [4]. In analogy to the pseudocosts, we call
the estimated numbers of implied reductions the inference values of a variable.

In pure SAT solvers, learning short, valid conflict clauses from the analysis
of infeasible subproblems is one of the key ingredients [5]. The variable state
independent decaying sum (VSIDS) [6] branching strategy, which is a common
rule in SAT solving, prefers variables that have been used to create recent conflict
clauses. We call the VSIDS the conflict values of a variable.

The idea to use the average lengths of the conflict clauses a variable appears
in for branching was recently suggested by Kilinc et. al. [3]. We call this the
conflict lengths of a variable.

As noted above, all the described measures exist twice for each variable: for
upwards and downwards branching. Therefore, one has to combine them into a
single score value, which we do by multiplication [1].

Hybrid Branching. Hybrid branching combines all four selection criteria into
a single one and additionally includes a score which is based on the number of
subproblems that could be pruned due to branching on this variable, called the
cutoff values. We first normalize all the five individual values by mapping them
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Table 1. Shifted geometric means of time (in sec.) and branch-and-bound nodes over
four test sets

test set Miplib2003 Cor@l Cor@l-BP Infeasible
Time Nodes Time Nodes Time Nodes Time Nodes

reliability 450.4 5091 803.6 4110 672.4 2145 290.7 5612
hybrid 445.6 5051 735.0 3575 577.2 1681 166.0 1998
ratio reli/hyb 1.01 1.01 1.09 1.15 1.16 1.28 1.75 2.81

into the interval [0, 1). Afterwards, we take a weighted sum of them that puts
a high weight on the pseudocosts, a medium weight on the conflict values and
lengths, and a low weight on the inference and cutoff values.

Computational Results. We tested our approach on a set of infeasible binary
programs (BPs) and two libraries of general MIP instances which are publicly
available: the Miplib2003 (http://miplib.zib.de) and the Cor@l collection
(http://coral.ie.lehigh.edu). All tests were performed on a Intel Xeon 5150
2.66GHz with 4 MB cache and 8 GB RAM. A time limit of one hour was imposed.

We incorporated hybrid branching into the constraint integer programming
framework SCIP [1], version 1.1.0.5, using SoPlex 1.4.1 as underlying LP solver.
We compared hybrid branching against reliability pseudocost branching, which
is state-of-the-art in MIP solving. The shifted geometric means of the running
times and the branch-and-bound nodes were used as performance measures.

It turns out that for the Miplib2003, both branching rules perform equally
well, the difference is 1% in mean. For the Cor@l library, hybrid branching
outperforms reliability branching, the running time increases by 9%, the number
of nodes by 15%, when using reliability branching instead of hybrid branching.
If we only regard binary programs, which are roughly a third of the Cor@l test
set, the difference in performance is even larger. This meets our expectations,
since the inference and conflict values are especially meaningful for 0-1 variables.

The results for BPs gave rise to the last experiment, which showed that for a
set of infeasible binary programs, reliability branching is 75% slower and nearly
triplicates the number of branch-and-bound nodes. The conflict values and con-
flict lengths arose from the analysis of infeasible subproblems, which explains
that taking them into account is crucial for handling infeasible MIPs.

Overall, hybrid branching is a successful integration of CSP, SAT, and MIP
technologies, which enables to solve standard MIP problems faster. By now,
hybrid branching is used as default branching rule in SCIP.
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Extended Abstract

The problem of rescheduling trains under disrupted operations has received more
attention in the last years because of the increasing demand in railway trans-
portation. Railway networks are more and more saturated and the probability
that delayed trains affect others is large. Therefore, it is very important to re-
act after incidents by recalculating new arrival/departure times and reassigning
tracks/platforms with the aim of minimizing the effect of propagation of inci-
dents.

It is possible to define the rescheduling railway problem as follows: given a set
of trains, a railway network, an original schedule (i.e., arrival/departure times
of every train as well as the complete assignment of tracks and platforms), and
known delays of one or several trains; the problem is to create a new provisional
schedule by minimizing the difference with the original plan respecting several
operational and commercial constraints. We propose to use an objective function
that penalizes delays, changes of tracks/platforms, and unplanned stops; all of
them referred to the original (unperturbed) schedule.

We present two different approaches: MIP (Mixed Integer Linear Program-
ming) and CP (Constraint Programming). The solutions of both are comparable
because they use the same objective function. Nevertheless, the definition of de-
cision variables and constraints differs significantly.

On the one hand, the MIP uses an extension of a formulation originally pre-
sented in [5]. The more interested reader will find a full description of the model
in our previous work [3]. This model includes many practical rules and constraints,
which explains its relative complexity compared to other models presented in the
literature. It supports allocation of tracks and platforms, connection of trains,
bidirectional multi-track lines, and extra time for accelerating and braking.
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Three solution methods are proposed: right-shift rescheduling, a MIP-based
local search method, and a new approach called SAPI (statistical analysis of
propagation of incidents) [2] [3] [4]. Our computational experiments show that
these method are very efficient but limited to little and medium size instances.
The MIP model become unmanageable for big instances because of the expo-
nential number of binary variables used to model the order of trains.

On the other hand, the CP model has an important advantage: it has fewer
variables and constraints. As a consequence, the CP model requires only a frac-
tion of the memory needed by the MIP model. Nevertheless, experimental results
show that solution methods associated to this model are not as good as MIP
methods.

In order to develop an efficient method for bigger instances, we combined
both models considering their advantages. This methodology uses a MIP-based
method (e.g., SAPI) in a little subproblem limiting the time horizon after the
incidents where affected trains are concentrated. Then, the value of the objective
function is used to estimate a lower and upper bounds of the complete, big size,
problem. These values are then added as constraints in the CP model. The
purpose of the added constraints is to remove portions of the search space which
cannot lead to better solutions than the upper bound and worse than the lower
bound, i.e., the remained search space is limited to all feasible solutions between
both bounds. Thank to constraint propagation, the domain reduction of the
objective function is reflected on the domain of the decision variables. It should
be noted that the quality of the solution and the efficiency of the method depend
on the quality of these bounds. Consequently, several procedures to estimate
these bound are considered.

For evaluating the quality of these methods, some computational experiments
have been executed in a real French network composed of 4454 arrival/departure
events. The results show that MIP methods are the best for little and medium
size instances while the combined methodology is better to solve big instances.
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1   Background 

Planning and constraint satisfaction are important areas of Artificial Intelligence, but 
surprisingly constraint satisfaction techniques are not widely applied to planning 
problems where dedicated solving algorithms dominate. Classical AI planning deals 
with finding a sequence of actions that transfer the initial state of the world into a 
desired state. One of the main difficulties of planning is that the size of the solution – 
the length of the plan – is unknown in advance. On the other hand, a constraint 
satisfaction problem needs to be fully specified in advance before the constraint 
model goes to the solver. As Kautz and Selman showed, the problem of shortest-plan 
planning can be translated to a series of SAT problems, where each SAT instance 
encodes the problem of finding a plan of a given length. First, we start with finding a 
plan of length 1 and if it does not exist then we continue with a plan of length 2 etc. 
until the plan is found. The same approach can be applied when constraint satisfaction 
is used instead of SAT. There exists a straightforward constraint model of this type 
but more advanced constraint models exploit the structure of a so called planning 
graph, namely GP-CSP and CSP-PLAN. There also exist hand-crafted constraint 
models for particular planning problems such as CPlan. All these models share the 
logical representation of the problem where Boolean variables describe whether a 
given proposition holds in a given state and whether a given action is applied to a 
given state. Constraints are in the form of logical formulae (frequently implications). 
In our opinion, these models do not exploit fully the potential of constraint 
satisfaction, namely domain filtering techniques and global constraints. Therefore, we 
suggested to use multi-valued representation of states based on the state variable 
formalism SAS+ that contributes to fewer variables with larger domains where 
domain filtering pays off. Also, we proposed to encapsulate the sets of logical 
constraints into combinatorial constraints with an extensionally defined set of 
admissible tuples. This extended abstract summarizes our recent results in the design 
of constraint models for planning problems presented in [1,2]. 

2   Reformulating Constraint Models 

We first reformulated CSP-Plan, so far the fastest sequential constraint-based planner, 
to multi-valued representation. There is a set of variables Vi

s describing values of state 
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variables for each state s and action variables As. These variables are connected by 
constraints describing preconditions of actions: 

 As = act → Pre(act)s , ∀act ∈ Dom(As), 

where act is a value representing particular action and Pre(act) is a formula describing 
precondition of the action. The second group of constraints describes how the state 
variable is changing between the states, a so called successor-state constraint: 

Vi
s = val ↔ As-1 ∈ C(i,val) ∨ (Vi

s-1 = val ∧ As-1 ∈ N(i)), 

where C(i,val) denotes the set of actions containing Vi = val among their effects, and 
N(i) denotes the set of actions that do not affect Vi. 

The main problems of the above model lay in the large number of constraints and 
weak domain filtering due to disjunctive character of constraints. To overcome these 
problems, we adopted the approach of substituting the above-mentioned propositional 
formulae using the constraints with extensionally defined set of admissible tuples 
(sometimes also called combinatorial constraints). The idea was to union the scope of 
“similar” constraints and to define the admissible tuples in extension rather than using 
a formula. In particular, we used one constraint to encapsulate all precondition 
constraints in each state and one constraint per state variable for each pair of 
subsequent states. The experimental results confirmed that the reformulated model 
leads to much better efficiency [1]. 

2.1   Enhancing Constraint Models  

It is rare that a direct constraint model is enough to solve complex problems and 
frequently some extensions are necessary. We already proposed three extensions of 
the above base model. The first extension mimics the technique called lifting where 
instead of instantiating the action variables, we use domain splitting. This technique 
decreases the branching factor during backward (regression) planning. The second 
improvement adds dominance constraints to break plan permutation symmetries. The 
motivation is to forbid some subsequences of actions that lead to states reached by 
already explored plans. Finally, we used the idea of singleton consistency to validate 
whether an action that newly appeared in the last layer of the plan has some 
supporting action in the layer before. This technique decreases the size of the search 
space by eliminating some unreachable actions. All these extensions contributed to 
improved performance of the planner especially for harder problems [2]. 
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Abstract. The problem considered in this paper consists in defining an 
assignment of frequencies to radio link between transmitters which minimize 
the number of frequency used to solve a CSP very well referenced as 
ROADEF’01 challenge. This problem is NP-hard and few results have been 
reported on techniques for solving it optimally. We applied to this version of 
the frequency assignment problem an original hybrid method which combines 
constraint propagation and Tabu search. Two Tabu lists are used to filter the 
search space and to avoid algorithm cycles. Computational results, obtained on 
a number of standard problem instances, show the efficiency of the proposed 
approach. 

1   Tabu Search and Constraints Propagation Method  

We propose here a constraint propagation algorithm using a dynamic backtrack 
process based on the concepts of nogood and Tabu list [1]. Search starts with a 
consistent partial configuration otherwise an empty solution. At each iteration the 
algorithm tries to extend the current partial solution in such manner to maintain the 
consistency. The instantiation of a new variable implies adding a new constraint, 
called decision constraint and noted xi = di. When a decision constraint proves to be 
incompatible with the union of problem constraints C and the set of decision 
constraints, the algorithm reacts by repairing the incompatible decisions and cancels 
some instantiations already done. Constraints propagation procedure consists in 
filtering domains of the not yet affected variables in order to detect in advance the 
blocking situations called deadend. A deadend is detected when the domain of a 
given variable becomes empty. When a deadend is detected, the set of the 
incompatible decisions leading to the raised inconsistency is marked. These 
incompatible decisions are what we called a nogood [2]. When a deadend is reached, 
one of the decisions taking part in the nogood is cancelled. In our approach the 
storage of nogoods in a permanent Tabu list makes it possible to prevent the re-
exploration of the blocking branches in the decision tree. It brings a lot of efficiency 
in the algorithm search. After nogood cancellation, the current partial solution is 
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extended with the Dom/Deg heuristic to choose a variable. The choice of a value for 
the chosen variable must obey to two rules. Firstly, the partial solution resulting from 
the extension procedure should not contain any stored nogood in permanent Tabu list. 
Secondly the decision to be added should not be in a temporary Tabu list at the 
current iteration that is used to avoid short term cycles. The algorithm principle is 
described below.  

Begin 
1. iter = 0; 
2. repeat 
3. ConstraintPropagation(); /*Propagation*/ 
4. if isDeadEnd() 
5.    repeat  
6.     Nogood =getNogood(); 
7.     AddNogoodInPermanentTabuList(Nogood); 
8.     CancelADecision (); 
9.    AddCancelledDecisionInTemporaryTabuList(); 
10.     ConstraintPropagation(); 
11.    until none isDeadEnd() 
12. end if 
13. iter = iter+1; 
14. ExtendSolution(); /*extend the solution*/ 
15. until FindSolution() or iter >= iterMax 

2   Tests and Results 

Several methods are proposed in the literature to solve FAP. We used two test sets 
noted CELAR and GRAPH. Table 1 shows a comparison between the results of our 
method with those of the CN-Tabu [3]. CN-Tabu has proven its efficiency in the 
frame of ROADEF'01 challenge by obtaining the first rank among several concurrent 
teams. It was applied on the instances presented in Table 1 with Min-Span objective 
(minimizing the maximal frequency in the spectrum used by the solution). For each of 
these 12 instances, the table plots its name, the number of variables, the number of 
constraints to satisfy, the best result (the highest frequency used) obtained by CN-
Tabu, the CPU time in seconds (same case for CN-Tabu and our method: P-IV, 3 
GHz, 1GB RAM) and also the percentage of success rate (optimal solutions obtained 
on 20 executions). The character “-” is for absence of information. The results show 
the competitiveness of our hybrid method. We also did a performance comparison 
with ALS [4] which confirmed the good results (to be published soon). 

 
Scenario Variables Constraints [3] Time SR Our results Time SR 
SCEN 01 916 5548 680 1 - 680 1 100% 
SCEN 02 200 1235 394 1 - 394 1 100% 
SCEN 03 400 2760 666 1 - 652 1 100% 
SCEN 05 400 2598 792 1 100% 792 1 100% 
GRAPH 01 200 1134 408 1 - 408 7 100% 
GRAPH 02 400 2245 394 1 - 394 1 100% 
GRAPH 03 200 1134 380 1 100% 380 1 100% 
GRAPH 04 400 2244 394 1 40% 394 1 100% 
GRAPH 08 680 3757 652 15 - 652 11 100% 
GRAPH 09 916 5246 666 664 - 666 435 100% 
GRAPH 10 680 3907 394 17 25% 394 10 100% 
GRAPH 14 916 4638 352 30 - 352 22 100% 



318 M. Dib, A. Caminada, and H. Mabed 

References 

[1] Dib, M., Caminada, A., Mabed, H.: Constraint Propagation with Tabu List for Min-Span 
Frequency Assignment Problem. In: Le Thi, H.A., Bouvry, P., Pham Dinh, T. (eds.) MCO 
2008. CCIS, vol. 14, pp. 97–106. Springer, Heidelberg (2008) 

[2] Jussien, N., Lhomme, O.: Local search with constraint propagation and conflict-based 
heuristics. Artificial Intelligence 139(1), 21–45 (2002) 

[3] Dupont, A.: Étude d’une méta-heuristique hybride pour l’affectation de fréquences dans 
les réseaux tactiques évolutifs. PhD thesis, Université Montpellier II (October 2005) 

[4] Devarenne, I., Mabed, H., Caminada, A.: Analysis of Adaptive Local Search for the Graph 
Coloring Problem. In: 6th Metaheuristic International Conference, MIC (2005) 



A Hybrid LS/CP Approach to Solve the Weekly
Log-Truck Scheduling Problem

Nizar El Hachemi, Michel Gendreau, and Louis-Martin Rousseau

Interuniversity Research Centre on Enterprise Networks,
Logistics and Transportation (CIRRELT)

C.P. 6128, succursale centre-ville, Montreal, Canada H3C 3J7
{nizar,michelg,louism}@crt.umontreal.ca

We present a hybrid approach to solve the log-truck scheduling problem (LTSP),
which combines routing and scheduling of forest vehicles and includes aspects
such as multiple products and inventory management. The LTSP is closely re-
lated to some routing problems encountered in other industries, in particular,
so called ”pick-up and delivery problems”. In general, the LTSP are more com-
plex than classical PDP, since in the LTSP we must synchronise trucks and
log-loaders to avoid as much as possible waiting times.

Several models and methods have been developped in the litterature to solve
the LTSP. In Chile [4] proposed a heuristic-based model (ASICAM) to a sim-
plified variant of the LTSP that does not consider log-loader waiting times, and
produce only daily plan for trucks. [3] developped a hybrid CP / IP method,
where the IP model generates optimal routes in term of deadhead, while CP
deals with the scheduling part. The main two contributions of this paper are,
first, to present a weekly version of the LTSP in which inventories have to be
accounted for, and second, to propose a more efficient hybrid approach to this
problem. A major interest for solving the weekly version of the LTSP lies in the
fact that it allows to operate in a just-in-time mode, where saw mills receive
what they need for production on a daily basis.

We proposed a two-phase method, in the first phase, we solve an IP formula-
tion of a tactical problem, where we handle demand and stock constraints (per
product and per day) at each woodmill. In order to ensure loading feasibility,
we introduce daily capacity constraints at each supply point. At this level, re-
stritions are on time availibity of trucks, the objective function is to minimize
the cost of opening sites and the travel cost of full truckloads. This model can
either be solved by an efficient MIP solver or through Local Search. We choose
to use a tabu search algorithm by using the LS module of Comet1.1. In this
case the search starts by supposing that all forest areas are opened all the week.
Once the initial solution is generated, the local search is performed based on two
neighborhoods structures. One which tries to close a single site, and one which
flips the status of two sites having initially different status.

This first phase yields seven daily scheduling problems (from monday to sun-
day), in which, routing and scheduling decisions are integrated into a hybrid LS
/ CP method. This method is based on a local search approach operating on
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the trucks routes and two different scheduling models. The first one based on
constraint-based local search (CBLS) and the programming language Comet1.1
(LS module). It takes advantage of invariants (one-way constraints) and a rich
constraint language (see [1] and [2]). The second one is the constraint program-
ming model used by [3]. Each time trucks routes are modified by the routing
operator, the scheduling model is solved by a greedy algorithm (CBLS), and
occasionnaly by the CP Comet solver. The CP search strategy consists on as-
signing times to all unloading activities (by using the SetTimes function) and
generating values to all truck waiting time variables.

The algorithm structure of the second phase is organised as follow; at the
beginning the search is focused only on the CBLS part. Once the improvement
becomes less frequent, a hybridization between the CBLS and CP models is
realized by imposing the best solution of the CBLS part as an upper bound in
the CP model. The CP model is called every time, when the CBLS operator is
unable to improve the best solution found so far, or when a promising solution
with regards to routing decision yields cannot be efficiently scheduled by CBLS.

Experiments performed on real data provided by a large canadian timber
company show a considerable gain comparing to previous work ( [3]) both in
term of problem size (weekly problem instead of daily problem) and a solution
speed (minutes instead of hours). It also demonstrate that both CBLS and CP
are essentiel ingredients to achieve good results. Research directions consist on
developping new communication methods between hybrid CBLS and CP models,
and how to controle when it is benefic to perform this communication.
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The Packing Knowledge Modelling Language (PKML) is a Rules2CP library
developed in the European project Net-WMS for dealing with real size non-
pure bin packing problems in logistics and automotive industry. PKML refers
to shapes in ZK . A point in this space is represented by the list of its K integer
coordinates. A shape is a rigid assembly of boxes, represented by a record. A
box is an orthotope in ZK . An object , such as a bin or an item, is a record
containing one attribute shapes for the list of its alternative shapes, one origin
point, and some optional attributes such as weight, virtual reality representations
or others. The alternative shapes of an object may be the discrete rotations of
a basic shape, or different object shapes in a configuration problem. The end in
one dimension and the volume of an object with alternative shapes are defined
with reified constraints.

PKML uses Allen’s interval relations in one dimension, and the topological
relations of the Region Connection Calculus in higher-dimensions, to express
placement constraints. Pure bin packing problems can be defined as follows:

non_overlapping(Items,Dims) --> forall(O1,Item, forall(O2,Items,

uid(O1)<uid(O2) implies notoverlap(O1,O2,Dims))).

containmentAE(Items,Bins,Dims) -->

forall(I,Items, exists(B,Bins, contains_rcc(B,I,Dims))).

bin_packing(Items,Bins,Dims) --> containmentAE(Items,Bins,Dims)

and non_overlapping(Items,Dims) and labeling(Items).

Other rules about weights, stability, as well as specific packing business rules
can be expressed, e.g.

gravity(Items) --> forall(O1,Items, origin(O1,3)=0

or exists(O2,Items, uid(O1)\#uid(O2) and on\_top(O1,O2))).
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In this abstract, we present a rule-based modelling language for constraint pro-
gramming, called Rules2CP [1], and a library PKML for modelling packing prob-
lems. Unlike other modelling languages, Rules2CP adopts a single knowledge rep-
resentation paradigm based on logical rules without recursion, and a restricted
set of data structures based on records and enumerated lists given with iterators.
We show that this is sufficient to model constraint satisfaction problems together
with search strategies, where search trees are expressed by logical formulae, and
heuristic choice criteria are defined by preference orderings on variables and
formulae. Rules2CP statements are compiled to constraint programs over finite
domains (currently SICStus-prolog and soon Choco-Java) by term rewriting and
partial evaluation.
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The search is specified here with a simple labeling of the (coordinate) variables of
the items. Heuristics can be defined as preference orderings criteria, using the ex-
pressive power of the language by pattern matching. For instance, the statement
variable ordering([greatest(volume(^ )), is(z(^ ))]) expresses the choice of
the variables belonging to the objects of greatest volume first, and among them,
the z coordinate first.

On Korf’s benchmarks of optimal rectangle packing problems [2] (i.e. finding
the smallest rectangle containing n squares of sizes Si = i for 1 ≤ i ≤ n),
compared to the SICStus Prolog program of Simonis and O’Sullivan [3] which
improved best known runtimes up to a factor of 300, the SICStus Prolog program
generated by the Rules2CP compiler explores exactly the same search space,
and is slower by a factor less than 3 due to the interpretation overhead for
the dynamic search predicates. The following table shows the compilation and
running times in seconds:

N R2CP compilation Rules2CP Original
18 0.266 13 6
20 0.320 20 10
22 0.369 364 197
24 0.443 5230 1847
25 0.509 52909 17807

Rules2CP differs from OPL, Zinc
and Essence modelling languages in
several aspects among which: the use
of logical rules, the absence of recur-
sion, the restriction to simple data
structures of records and enumerated lists, the specification of search by logical
formulae, the specification of heuristics as preference orderings, and the absence
of program annotations. The expression of complex search strategies and heuris-
tics is currently not expressible in Zinc and Essence, and can be achieved in OPL
in a less declarative manner by programming. On the other hand, we have not
considered the compilation of Rules2CP to other solvers such as local search, or
mixed integer linear programs, as has been done for OPL and Zinc systems.

As for future work, a large subset of PKML rules has been shown in [4] to be
compilable with indexicals within the geometrical kernel of the global constraint
geost providing better performance than by reification. The generality of this
approach will be explored with greater generality for Rules2CP. The specification
of search strategies in Rules2CP will also be explored more systematically, pos-
sibly with adaptive strategies in which the dynamic criteria depend on execution
profiling criteria.
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The CP-INSIDE project seeks to make constraint programming technology more ac-
cessible. In particular, it aims to facilitate the embedding of CP technology in business
applications, and its integration with familiar software tools. A major objective of the
CP-INSIDE project is to allow business developers to create constraint-based decision
engines utilizing the power of CP technology in a vendor-neutral way. CP-INSIDE
simplifies the development of specialized decision engines making them independent
of the underlying generic CP solvers. There have already been several attempts to unify
constraint programming languages (for instance, [1,2,3]) that directly or indirectly con-
tributed to the same objective. CP-INSIDE is based on the following principles:

– Use main-stream programming languages like Java giving business application de-
velopers a simple CP API with no new languages to learn and with an easy access
to already existing business objects and packages.

– Provide pre-built interfaces to commonly used software products such as MS Excel,
Google Apps, and different rule engines. Application developers should be able to
use familiar languages, tools, and a learn-by-example technique instead of becom-
ing CP gurus.

– Not to develop another CP solver, but rather externalize commonly used features
from the most popular CP solvers and provide a unified way to build adapters for
different, already existing solvers.

– Allow CP researches to implement new algorithms/constraints in a unified way, test
them with different solvers, and make them commonly available.

While we considered both Java and C# for CP-INSIDE, the initial release has been
implemented in Java as a three-tier framework presented on Figure 1. The first tier
“Business Interfaces” uses the second tier “Common CP API” to provide pre-built
unified interfaces between different CP Solvers and popular tools such as MS Excel,
Google Calendar, Facebook, MATLAB, or business rules management systems such
as OpenRules. It also provides examples of how to build web interfaces for CP-based
engines and to deploy them as web services. The Common CP API provides a Java

� This material is based upon works supported by Enterprise Ireland under Grant CFTD/06/209
and by the Science Foundation Ireland under Grant No. 05/IN/I886.
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Fig. 1. CP-INSIDE Architecture

interface for major CP concepts and methods that can be utilized by business applica-
tion developers to define and solve their own constraint satisfaction problems.

Along with an interface, the Common CP API includes default implementations for
major constraints and search goals that do not depend on a specific underlying CP
solver. However, the API also allows a user to utilize the power of a specific solver
by providing an access to the native implementation. With the CP API a user may
define new custom constraints and search goals without the necessity to go down to
the CP solver level. CP-INSIDE includes a Scheduler built on top of the CP API,
thus providing scheduling concepts, constraints, and goals even for solvers that do
not support them. Similarly, we plan to build add-ons for other business verticals.
The third tier provides a set of adapters for popular existing Java-based CP solvers.
The initial set includes adapters for commercial ILOG JSolver (www.ilog.com)
and open source CP solvers Choco (www.choco.sourceforge.net), Constrainer
(www.constrainer.sourceforge.net). These adapters can be used as exam-
ples for integrating other Java-based CP solvers.
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Extended Abstract 

The network design problem with relays (NDPR) arises in many real-life telecommu-
nication and supply chain networks. Similar to the multi-commodity network design 
problem, a set of commodities is given, and each commodity k is to be routed through 
single path from the source node s(k) to the sink node t(k). However, an upper bound 
λ is imposed on the distance that a commodity k can travel on the path from the 
source node s(k) to the sink node t(k) without visiting special nodes, called relays.  
For example, in digital telecommunication networks, relays represent points where 
attenuated communication signals are regenerated.  A fixed cost of fi is incurred when 
a node i is dedicated as a relay, and each edge (i, j) has an installation cost of ci,j and a 
length of di,j. The NDPR is defined as selecting a set of edges from a given set of 
candidate edges and determining relay nodes to minimize the network design cost 
while making sure that each commodity k is routed through a single path on which the 
distances between the node s(k) and the first relay, between any consecutive relays, 
and between the last relay and the node t(k) are less than the upper bound λ.   

This research first presents a new path-based formulation of the NDPR. Based on 
this formulation, it is shown that for a given set of commodity paths, the optimal loca-
tion of relays can be determined by solving a set covering problem. Then, this ap-
proach is used in a genetic algorithm (GA) to solve the NDPR in two phases. Using a 
specialized crossover-mutation operator, the GA searches for a path for each commod-
ity, and the relay locations are determined by solving the corresponding set covering 
problem.  The proposed approach is extensively tested on several problems.  Compari-
sons with the existing exact and heuristic approaches show that the proposed GA is 
very effective.  Further research may focus on how to extend the proposed approach to 
solve the two-edge disjoint NDPR or the capacitated version of the problem. 



A Benders’ Approach to a Transportation
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Benders’ decomposition is an iterative technique for mathematical programming
in which a problem is decomposed into two parts: a master problem which solves
for only a subset of the variables, and a subproblem which solves for the remain-
ing variables while treating the master variables as fixed. The technique uses
information from the solution of the subproblem to design a constraint that is
unsatisfied by the current master solution but necessary for the optimal solution
of the full problem. The master problem and subproblem are solved iteratively as
new constraints are added to the master problem until no such constraint exists
and the last master solution therefore optimizes the full problem. In traditional
Benders’ decomposition [1], the subproblem is a linear program, and the Ben-
ders’ constraint is based on the dual solution to that subproblem. More recently,
logic-based [3] or combinatorial Benders’ [2] have been developed that generate
Benders constraints based on infeasibility or suboptimality-based constraints. By
not requiring a linear programming subproblem, Benders approaches provide an
excellent approach to integrating disparate optimization approaches.

We apply a form of this technique to a mixed-integer network optimization
problem, in which a set of deliveries are required to move between pairs of
points in a network, and a set of feasible routes are given to carry the deliveries
from which a minimum-cost feasible set must be found. This model appeared
in [4] in the context of choosing transportation contracts by the United States
Postal Service. A contract corresponds to a particular transportation route at a
particular time. Packages can be assigned to chosen routes that meet the service
time requirements of the package.

Full Problem:
min

∑
r∈R Cryr

s.t.
∑

r∈inR Ardxrd ≥ 1, ∀d ∈ D∑
d∈D ArdVdxrd ≤ Sryr, ∀r ∈ R

yr ∈ {0, 1}, ∀r ∈ R
xrd ≥ 0, ∀d ∈ D, r ∈ R

Variables:
yr = 1 if route r is used, 0 otherwise
xrd = proportion of delivery d carried
by route r

Parameters:
R = set of routes
D = set of deliveries
Cr = cost of route r
Sr = capacity of route r
Vd = volume of delivery d
Ard = 1 if route r can carry deliv-
ery d, 0 otherwise

We decompose the problem by assigning the route variables y to the master
problem and the assignment variables x to the subproblem as follows. The goal
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is to find an optimal solution to the master problem that is also feasible in the
subproblem using relatively few of the iteratively-generated constraints.

Master Problem:
min

∑
r∈R Cryr

s.t.
∑

r∈R ai
ryr ≥ bi, ∀i ∈ I

yr ∈ {0, 1}, ∀r ∈ R
where I is a set of iteratively added
constraints

Subproblem:

min 0
s.t.

∑
r∈R Ardxrd ≥ 1, ∀d ∈ D∑
d∈D ArdVdxrd ≤ Sr ȳr, ∀r ∈ R

xrd ≥ 0, ∀d ∈ D, r ∈ R
where ȳ is that last computed solution
of the master problem.

The master problem begins with only its binary constraints and I empty,
thus it returns the solution ȳ = 0. Each master solution ȳ is then checked for
feasibility in the subproblem. If infeasible, a cut

∑
r ∈ Rai

ryr ≥ bi is constructed
and added to the master problem to be resolved. The cuts we construct have a
natural interpretation. If we have some subset Z of the deliveries D, the total
capacity of all routes used in the master solution ȳ that are capable of carrying
a delivery in Z must be at least the total volume of the deliveries in Z. The
necessity of this condition is fairly obvious, but we also prove that the set of
all such constraints for all possible subsets Z ⊆ D is sufficient to describe the
entire feasible region of the subproblem. That is, all solutions satisfying these
constraints satisfy the constraints of the subproblem and vice versa. We can find
sets Z with insufficient capacity relative to ȳ by solving a relatively small mixed
integer program.

It is our goal to iteratively generate a relatively small set of these constraints
as quickly as possible such that the optimal solution to the master problem is
also feasible in the subproblem. We found that if we initially add the constraint
constructed from the full set Z0 = D of deliveries, and then add a constraint in
each iteration constructed from the delivery set Zi of minimum cardinality such
that cuts off the current master solution, then we arrive a full problem optimal
solution quickly.

In our computational experiments, we discover that the most recent release
of CPLEX, version 11.0, is able to solve the full network problem much faster
than previous releases, suggesting that the latest version is very adept at finding
good cuts for the full MIP on its own. However, in the current implementation of
our algorithm using the Benders’ approach, we are able to arrive at an optimal
solution in about half the time required by CPLEX for most of our test instances.
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We report new results for solving the progressive party problem with finite domain con-
straints, which are competitive with the best local search results in the literature. When
introduced in [1], the progressive party problem was a show case for finite domain con-
straint programming, since a solution of the original problem for 6 time periods could
be found in 26 minutes with Ilog Solver, while an integer programming model was not
successful. Improved results using finite domains were reported in [2]. Since then, al-
ternative solutions using MILP have been proposed, while local search methods have
been significantly faster, as well as more stable for given problem variations. The best
results (to my knowledge) are from [3].

Details of the problem can be found on its CSPLIB page (http://www.csplib.
org). The problem consists of assigning guest teams of different sizes to host boats
(different capacities) for multiple team periods. Each guest can visit a host atmost once,
and two guest teams should also meet atmost once. We look for feasible solutions for
different numbers of time periods and/or host/guest sizes.

We have explored two models for the problem. The first considers the complete prob-
lem by posting all variables for all time periods together. It creates alldifferent
constraints for all variables of each guest team, expressing that a guest team can visit
a host atmost once. For each time period we state a bin-packing constraint [4] to
handle the capacity constraints for the host boats. A collection of reified equality con-
straints between pairs of guests handle the condition that two guests meet atmost once.

When analysing the behaviour of the first model, it was easy to see that there was
very limited interaction between time periods, and no effective constraint propagation
for one level until variables of that level were assigned. This suggested a decomposi-
tion model (already used in [1]) which sets up the problem for one time period at a
time. If guests are assigned to the same host in a time period, then disequality con-
straints are imposed between them for future time periods. Each layer adds new dis-
equality constraints, so that the problem for each following layer becomes more con-
strained. These disequalities can be expressed with a global some-different [5]
constraint, although we use the binary decomposition. The model then consists of a
single bin-packing constraint and a some-different constraint expressing all
disequalities between the variables for a time period. Surprisingly, we do not loose
propagation with this decomposed model compared to the first model, while speeding
up execution significantly.

The key to solving this problem is a customized search routine, which combines
five elements. We to solve the problem period by period, i.e. assigning all variables
� This work is supported by Science Foundation Ireland (Grant Number 05/IN/I886) and by

Cisco Systems Inc. through the Cisco Collaborative Research Initiative.
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for one period before starting on the next. This provides a more stable method than
using first fail over all variables. We use a first fail variable selection inside
each time period. For each time period we use of a partial search strategy (credit-based
search [2]) to avoid deep backtracking in dead parts of the search tree. A randomized
value selection leads to a more equitable choice of values. Once this randomization
element is in place, we can also use a restart strategy which cuts off search after all
credit in some layer has been expended, and begins exploration from the top again.

We compare results obtained with our second model in ECLiPSe 6.0 with the results
published in [3]. Except for a single problem instance (4/9), results are comparable.
A full version of the paper can be found at http://4c.ucc.ie/˜hsimonis/
party.pdf

Table 1. Results on Problems from [3]

ECLiPSe 6.0 Comet
Problem Size Solved Min Max Avg σ Solved Min Max Avg σ

1 6 100 0.187 0.343 0.226 0.027 100 0.33 0.38 0.35 0.01
1 7 100 0.218 0.515 0.271 0.044 100 0.39 0.49 0.44 0.02
1 8 100 0.250 2.469 0.382 0.258 100 0.50 0.72 0.57 0.04
1 9 100 0.266 9.906 1.253 1.734 100 0.74 1.46 1.01 0.15
1 10 100 0.375 136.828 23.314 21.738 100 1.47 41.72 4.68 5.80
2 6 100 0.218 2.375 0.624 0.484 100 0.37 0.52 0.43 0.04
2 7 100 0.266 3.453 1.117 0.873 100 0.47 1.64 0.73 0.18
2 8 100 0.297 15.421 2.348 2.263 100 0.75 7.16 2.69 1.26
2 9 100 0.469 107.187 20.719 21.162 99 4.41 162.96 33.54 34.10
3 6 100 0.219 3.266 0.551 0.504 100 0.37 0.56 0.43 0.04
3 7 100 0.250 3.734 0.889 0.705 100 0.49 1.45 0.74 0.18
3 8 100 0.296 21.360 2.005 2.417 100 0.84 11.64 2.85 1.55
3 9 100 1.078 173.266 34.774 32.731 96 4.41 164.44 40.10 40.14
4 6 100 0.219 9.922 2.443 2.146 100 0.39 0.72 0.47 0.05
4 7 100 0.360 25.297 3.531 3.421 100 0.55 2.33 0.87 0.26
4 8 100 0.438 53.547 8.848 9.193 100 1.23 11.38 3.68 1.91
4 9 63 3.062 494.109 206.324 161.250 94 8.35 166.90 59.55 44.44
5 6 100 0.203 7.922 1.498 1.441 100 0.53 5.29 1.67 0.75
5 7 100 0.266 28.000 5.889 5.463 100 1.77 132.82 29.72 28.76
6 6 100 0.219 15.219 2.147 2.661 100 0.58 31.84 2.74 3.31
6 7 100 0.407 64.312 11.328 12.290 88 3.24 152.37 56.92 48.91
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