LNCS 5547

Willem-Jan van Hoeve
John N. Hooker (Eds.)

Integration

of Al and OR Techniques

in Constraint Programming
for Combinatorial
Optimization Problems

6th International Conference, CPAIOR 2009
Pittsburgh, PA, USA, May 2009
Proceedings

@ Springer

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Alfred Kobsa

University of California, Irvine, CA, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA
Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

5547

Willem-Jan van Hoeve John N. Hooker (Eds.)

Integration

of Al and OR Techniques
in Constraint Programming
for Combinatorial
Optimization Problems

6th International Conference, CPAIOR 2009
Pittsburgh, PA, USA, May 27-31, 2009
Proceedings

@ Springer

Volume Editors

Willem-Jan van Hoeve

John N. Hooker

Carnegie Mellon University

Tepper School of Business

5000 Forbes Avenue, Pittsburgh, PA 15213, USA

E-mail: vanhoeve @andrew.cmu.edu, john @hooker.tepper.cmu.edu

Library of Congress Control Number: Applied for

CR Subject Classification (1998): G.1.6, G.1, G.2.1, F2.2,1.2,J.1
LNCS Sublibrary: SL 1 — Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-642-01928-5 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-01928-9 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2009
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12686247 06/3180 543210

Preface

The 6th International Conference on the Integration of AT and OR Techniques in
Constraint Programming for Combinatorial Optimization Problems (CPAIOR
2009) was held in Pittsburgh, USA, May 29-31, 2009. More information about
the CPAIOR conference series can be found at www.cpaior.org. This volume
contains the papers and extended abstracts that were presented during the con-
ference.

In total there were 65 high-quality submissions, including 41 full paper and
24 extended abstract submissions. The full papers reflect original unpublished
work, whereas the extended abstracts can be either original unpublished work
or a summary of work published elsewhere. Each full paper was reviewed by at
least three Program Committee members, and most extended abstracts by two.
After general discussion, the Program Committee accepted 20 full papers and 10
extended abstracts for presentation during the conference and publication in this
volume. The submissions, reviews, discussion, and the proceedings preparation
were all handled by the EasyChair system. We thank the Program Committee,
as well as the external reviewers, for their hard work.

In addition to the full paper and extended abstract presentation, the program
contained two invited talks, by Eva K. Lee (Georgia Institute of Technology)
and Mark Wallace (Monash University). A summary of each invited talk is also
included in this volume.

A two-day tutorial on constraint programming was held before the conference,
during May 27-28, 2009. There were four parts to the tutorial: “Introduction
to CP Concepts” presented by Peter van Beek, “Modeling in CP” presented by
Helmut Simonis, “Combining CP and Operations Research” presented by John
Hooker, and “CP Languages, Systems, and Examples” presented by Laurent
Michel, Pascal Van Hentenryck, and Paul Shaw. We thank all tutorial speakers
for their efforts. We also thank the tutorial chair Gilles Pesant for his help in
organizing this event.

Two satellite workshops took place on May 28, 2009. The workshop “Bound
Reduction Techniques for Constraint Programming and Mixed-Integer Nonlinear
Programming” was organized by Pietro Belotti. The workshop “Optimization in
Health and Medicine” was organized by Sebastian Brand, Eva K. Lee, and Barry
O’Sullivan.

Finally, we want to thank all the sponsors who made this event possible:
National Science Foundation, Tepper School of Business, Air Force Office of
Scientific Research, Association for Constraint Programming, IBM T.J. Watson
Research Center, Jeppesen Technology Services, NICTA, and ILOG.

March 2009 Willem-Jan van Hoeve
John Hooker

Program Chairs

Willem-Jan van Hoeve
John Hooker

Tutorial Chair

Gilles Pesant

Organization

Carnegie Mellon University, USA
Carnegie Mellon University, USA

University of Montreal, Canada

Program Committee

Philippe Baptiste
Roman Bartak
Chris Beck
Sebastian Brand
John Chinneck
Emilie Danna
Andrew Davenport
Ismael de Farias
Yves Deville
Robert Fourer
Bernard Gendron
Carmen Gervet
Carla Gomes
Ignacio Grossmann
Joerg Hoffmann
Narendra Jussien
Thorsten Koch
Olivier Lhomme
Andrea Lodi
Laurent Michel
Michela Milano
Eric Monfroy
Yehuda Naveh
Barry O’Sullivan
Laurent Perron
Gilles Pesant
Jean-Charles Régin
Mauricio Resende
Andrea Roli
Louis-Martin Rousseau

Ecole Polytechnique France

Charles University, Czech Republic
University of Toronto, Canada
University of Melbourne, Australia
Carleton University, Canada

ILOG, USA

IBM, USA

Texas Tech University, USA

Université Catholique de Louvain, Belgium
Northwestern University, USA
University of Montreal, Canada

The German University in Cairo, Egypt
Cornell University, USA

Carnegie Mellon University, USA

SAP, Germany

University of Nantes, France

Z1B, Germany

ILOG, France

University of Bologna, Italy

University of Connecticut, USA
University of Bologna, Italy

University of Nantes, France

IBM, Israel

University College Cork, Ireland
Google, France

University of Montreal, Canada
University of Nice-Sophia Antipolis, France
AT&T Labs, USA

University of Bologna, Italy

University of Montreal, Canada

VIII Organization

Michel Rueher University of Nice-Sophia Antipolis, France
Ashish Sabharwal Cornell University, USA

Nick Sahinidis Carnegie Mellon University, USA
Matt Saltzman Clemson University, USA
Tuomas Sandholm Carnegie Mellon University, USA
Meinolf Sellmann Brown University, USA

Helmut Simonis 4C, Ireland

Stephen Smith Carnegie Mellon University, USA
Mohit Tawarmalani Purdue University, USA

Michael Trick Carnegie Mellon University, USA
Pascal Van Hentenryck Brown University, USA

Petr Vilim ILOG, France

Mark Wallace Monash University, Australia
Tallys Yunes University of Miami, USA
Weixiong Zhang Washington University, USA

External Reviewers

Xiaowei Bao Bertrand Neveu
Timo Berthold Fabio Parisini
Marie-Claude Coté Thomas Stiitzle
Yahia Lebbah Guido Tack
Michele Lombardi Kati Wolter
Arnaud Malapert Neil Yorke-Smith
Claude Michel Fengqi You
Sylvain Mouret Erik Zawadzki

Nina Narodytska

Table of Contents

Invited Talks

Machine Learning Framework for Classification in Medicine and

Biology . .o

Fva K. Lee

G12 - Towards the Separation of Problem Modelling and Problem

SOLVING .t

Mark Wallace and the G12 team

Regular Papers

Six Ways of Integrating Symmetries within Non-overlapping

Constraintst

Magnus Agren, Nicolas Beldiceanu, Mats Carlsson, Mohamed Sbihi,
Charlotte Truchet, and Stéphane Zampelli

Throughput Constraint for Synchronous Data Flow Graphs
Alessio Bonfietti, Michele Lombardi, Michela Milano, and
Luca Benini

A Shortest Path-Based Approach to the Multileaf Collimator
Sequencing Problem
Hadrien Cambazard, Foin O’Mahony, and Barry O’Sullivan

Backdoors to Combinatorial Optimization: Feasibility and

Optimalityo
Bistra Dilkina, Carla P. Gomes, Yuri Malitsky,
Ashish Sabharwal, and Meinolf Sellmann

Solution Enumeration for Projected Boolean Search Problems
Martin Gebser, Benjamin Kaufmann, and Torsten Schaub

k-Clustering Minimum Biclique Completion via a Hybrid CP and SDP
Approach
Stefano Gualandi

Optimal Interdiction of Unreactive Markovian Evaders................
Alexander Gutfraind, Aric Hagberg, and Feng Pan

Using Model Counting to Find Optimal Distinguishing Tests
Stefan Heinz and Martin Sachenbacher

11

26

41

o6

71

X Table of Contents

Reformulating Global Grammar Constraints. 132
George Katsirelos, Nina Narodytska, and Toby Walsh

IBM ILOG CP Optimizer for Detailed Scheduling Illustrated on Three
Problems 148
Philippe Laborie

Open Constraints in a Boundable World 163
Michael J. Maher

Sequencing and Counting with the multicost-regular Constraint. 178
Julien Menana and Sophie Demassey

Bandwidth-Limited Optimal Deployment of Eventually-Serializable

Data Services. 193
Laurent Michel, Pascal Van Hentenryck, Elaine Sonderegger,
Alexander Shvartsman, and Martijn Moraal

Tightening the Linear Relaxation of a Mixed Integer Nonlinear
Program Using Constraint Programming 208
Sylvain Mouret, Ignacio E. Grossmann, and Pierre Pestiaux

The Polytope of Context-Free Grammar Constraints 223
Gilles Pesant, Claude-Guy Quimper, Louis-Martin Rousseau, and
Meinolf Sellmann

Determining the Number of Games Needed to Guarantee an NHL
Playoff Spoto 233
Tyrel Russell and Peter van Beek

Scalable Load Balancing in Nurse to Patient Assignment Problems 248
Pierre Schaus, Pascal Van Hentenryck, and Jean-Charles Régin

Learning How to Propagate Using Random Probing 263
Efstathios Stamatatos and Kostas Stergiou

DFS* and the Traveling Tournament Problem 279
David C. Uthus, Patricia J. Riddle, and Hans W. Guesgen

Max Energy Filtering Algorithm for Discrete Cumulative Resources 294
Petr Vilim

Extended Abstracts

Hybrid Branching 309
Tobias Achterberg and Timo Berthold

Table of Contents XI

Constraint Programming and Mixed Integer Linear Programming for
Rescheduling Trains under Disrupted Operations: A Comparative
Analysis of Models, Solution Methods, and Their Integration 312
Rodrigo Acuna-Agost, Philippe Michelon, Dominique Feillet, and
Serigne Gueye

Constraint Models for Sequential Planning 314
Roman Bartak and Daniel Toropila

A Fast Algorithm to Solve the Frequency Assignment Problem 316
Mohammad Dib, Alexandre Caminada, and Hakim Mabed

A Hybrid LS/CP Approach to Solve the Weekly Log-Truck Scheduling
Problem 319
Nizar El Hachemi, Michel Gendreau, and Louis-Martin Rousseau

Modelling Search Strategies in Rules2CP........... 321
Frangois Fages and Julien Martin

CP-INSIDE: Embedding Constraint-Based Decision Engines in
Business Applications 323
Jacob Feldman, Eugene Freuder, and James Little

An Integrated Genetic Algorithm and Integer Programming Approach
to the Network Design Problem with Relays.............. 325
Abdullah Konak and Sadan Kulturel-Konak

A Benders’ Approach to a Transportation Network Design Problem 326
Benjamin Peterson and Michael A. Trick

Progress on the Progressive Party Problem 328
Helmut Simonis

Author Index 331

Machine Learning Framework for Classification
in Medicine and Biology

Eva K. Lee

Center for Operations Research in Medicine and HealthCare,
School of Industrial and Systems Engineering,
NSF I/UCRC Center for Health Organization Transformation,
Center for Bioinformatics and Computational Genomics,
Georgia Institute of Technology, Atlanta, Georgia 30332-0205

Abstract. Systems modeling and quantitative analysis of large amounts
of complex clinical and biological data may help to identify discrimina-
tory patterns that can uncover health risks, detect early disease forma-
tion, monitor treatment and prognosis, and predict treatment outcome.
In this talk, we describe a machine-learning framework for classification in
medicine and biology. It consists of a pattern recognition module, a feature
selection module, and a classification modeler and solver. The
pattern recognition module involves automatic image analysis, genomic
pattern recognition, and spectrum pattern extractions. The feature selec-
tion module consists of a combinatorial selection algorithm where
discriminatory patterns are extracted from among a large set of pattern
attributes. These modules are wrapped around the classification modeler
and solver into a machine learning framework. The classification mod-
eler and solver consist of novel optimization-based predictive models that
maximize the correct classification while constraining the inter-group mis-
classifications. The classification/predictive models 1) have the ability to
classify any number of distinct groups; 2) allow incorporation of hetero-
geneous, and continuous/time-dependent types of attributes as input; 3)
utilize a high-dimensional data transformation that minimizes noise and
errors in biological and clinical data; 4) incorporate a reserved-judgement
region that provides a safeguard against over-training; and 5) have suc-
cessive multi-stage classification capability. Successful applications of our
model to developing rules for gene silencing in cancer cells, predicting the
immunity of vaccines, identifying the cognitive status of individuals, and
predicting metabolite concentrations in humans will be discussed. We ac-
knowledge our clinical/biological collaborators: Dr. Vertino (Winship
Cancer Institute, Emory), Drs. Pulendran and Ahmed (Emory Vaccine
Center), Dr. Levey (Neurodegenerative Disease and Alzheimer’s Disease),
and Dr. Jones (Clinical Biomarkers, Emory).

1 Introduction

Discriminant analysis involves the classification of an entity into one of several a
priori, mutually exclusive groups based upon specific measurable characteristics

W.-J. van Hoeve and J.N. Hooker (Eds.): CPAIOR 2009, LNCS 5547, pp. 1{-7,|2009.
© Springer-Verlag Berlin Heidelberg 2009

2 E.K. Lee

of the entity. A discriminant (predictive) rule is formed from data collected on
a sample of entities for which the group classifications are known. New entities,
whose classifications are unknown, will be classified based on this rule. Often
there is a trade-off between the discriminating ability of the selected attributes
and the expense of obtaining measurements on these attributes. Indeed, the mea-
surement of a relatively definitive discriminating feature may be prohibitively
expensive to obtain on a routine basis, or perhaps impossible to obtain at the
time that classification is needed. Thus, a discriminant rule based on a selected
set of feature attributes will typically be an imperfect discriminator, sometimes
misclassifying entities. Depending on the application, the consequences of mis-
classifying an entity may be substantial. In such a case, it may be desirable to
form a discrimination rule that allows less specific classification decisions, or even
non-classification of some entities to reduce the probability of misclassification.

Many methods have been used to develop classification models, in-
cluding pattern recognition, artificial intelligence, optimization/mathematical
programming-based methods, support vector machines, neural networks, data
mining, and statistical analysis. In our computational center, since 1997 (Gal-
lagher et al 1996, 1997, Lee et al 2003), we have been developing a general-
purpose discriminant analysis modeling framework and computational engine
that is applicable to a wide variety of applications, including biological, biomed-
ical and logistics problems.

2 The Mixed Integer Programming-Based Classification
Model

Our work was motivated by the 1969 probability model introduced by Anderson
which maximizes the probability of correct allocation subject to misclassifica-
tion probability constraints. For two groups the optimal solution can be mod-
eled rather straightforward. However, finding an optimal solution (rule) for the
general case is a difficult problem, with the difficulty increasing as the number
of groups increases. We offer an avenue for modeling and finding the optimal
solution in the general case. (Gallagher et al 1996, 1997).

Assume that we have G = {1,...,G} groups with a training sample of N
entities whose group classifications are known; say n, entities are in group g,
Ny, ={1,...,n4}, where Zle ng = N. Let the k dimensional vectors 297, g =
1,...,G, j =1,...,ng, contain the measurements on £ available characteristics
of the entities. Let fh, h=1,...,G, be the estimated group conditional density
functions, let 7;, denote an estimator for the prior probability that a randomly
selected entity is from group g, g = 1, ..., G, and define p,;(z) = fz(:v)/ ZtG:1 ft(m)

Our objective is to determine a partition {Ry, ..., Rg} of R* that maximizes
the correct classification, while ensuring that the number of group g training
entities in region Rj is less than or equal to a pre-specified percentage, g
(0 < apg < 1), of the total number, ngy, of group g entities, h, g € {1,...,G},
h # g. Here Ry is the reserved-judgement region. Mathematically, let uyg; be
a binary variable indicating whether or not 97 lies in region Rj; i.e., whether

Machine Learning Framework for Classification in Medicine and Biology 3

or not the jth entity from group ¢ is allocated to group h. The MIP-based
classification model can be written as

(DAMIP-Classifier) Maximize » > gy,

geEG jJEN,
Subject to
Lng; = #npn(x¥) — > Ninpi(z%) h,g € G,j € Ny (1)
i€G\h
Yg; = max{0,Lyg; :h=1,...,G} g€ G,j€ Ny (2)
Ygi — Lgg; < M(1 — ugg;) g€G,jE N (3)
Ygi — Lngj > €(1 — ungj) h,g€ G,j€ Ng,h#g (4)
Y ungi < langny] hgeG,h#g (5)

JENg
—00 < Lpgj < 00,Ygj > 0, Xin > 0,ung; € {0, 1}

Constraint (1) defines the variable Ljg; as the value of the function Ly
evaluated at z%. Therefore, the continuous variable y,;, defined in constraint
(2), represents max{Lp(z%) : h=0,...,G}; and consequently, 2%/ lies in region
Ry, if, and only if, y4; = Lpg;. The binary variable ujg; is used to indicate
whether or not 29/ lies in region Ry; i.e., whether or not the jth entity from
group ¢ is allocated to group h. In particular, constraint (3), together with
the objective, force ugq; to be 1 if, and only if, the jth entity from group g
is correctly allocated to group g; and constraints (4) and (5) ensure that at
most |apgng| (i.e., the greatest integer less than or equal to apgng) group g
entities are allocated to group h, h # g. One caveat regarding the indicator
variables upgy; is that although the condition ung; = 0, h # g, implies (by
constraint (4)) that 29 ¢ Ry, the converse need not hold. As a consequence,
the number of misclassifications may be overcounted. However, in our numerical
study we found that the actual amount of overcounting is minimal. One could
force the converse (thus, upe; = 1 if and only if 299 € R;,) by adding constraints
Ygj — Lng; < M(1 —upgy;), for example. Finally, we note that the parameters M
and € are extraneous to the discriminant analysis problem itself, but are needed
in the model to control the indicator variables upg4;. The intention is for M and
€ to be, respectively, large and small positive constants.

3 Complexity and Characteristics of DAMIP-Classifier

Performance of DAMIP classifier and comparison with other methods were re-
ported in Gallagher et al 97, and in Lee et al 2003. We have proved that DAMIP-
Classifier is NP-complete for G > 2 (Brooks, Lee 2008), further the classification
rule resulting from DAMIP-Classifier is universally strongly consistent (Brooks,
Lee 2008). Since 1996, Lee and her medical colleagues have explored and demon-
strated the capability of DAMIP-Classifier in classifying various types of data
arising from real biological and medical problems. In these applications, DAMIP-
Classifier has been able to consistently maximize the correct classification rate

4 E.K. Lee

(80% - 100% correct rates were obtained) while satisfying pre-set limits on inter-
group misclassifications (Gallager et al 1996, 1997, Feltus, Lee et al 2003, Feltus
et al 2006, Lee et al 2002, 2003, 2004, Lee 2007, Lee, Wu 2007, Querec et al
2008, McCabe, et al 2009). In each of these studies, beyond reporting the ten-
fold cross-validation results, the resulting classification rule was also blind tested
against new data of unknown group identity and resulted in remarkable rates of
correct prediction. The real applications provide an empirical basis for making
some general statements on the characteristics of the DAMIP rules: (1) The pre-
dictive power of a DAMIP rule is independent of sample size, the proportions of
training observations from each group, and the probability distribution functions
of the groups. (2) A DAMIP rule is insensitive to the choice of prior probabilities.
(3) A DAMIP rule is capable of maintaining low misclassification rates when the
number of training observations from each group varies significantly.

Computationally, the resulting MIP instances are large scale, and ill-condi-
tioned, with the LP relaxation rather dense and difficult to solve. These charac-
teristics are also observed in optimization-based support vector machines. To
improve tractability, we developed applicable polyhedral theory and cutting
plane algorithms for solving these instances.

4 Classification Results on Real-World Applications

We performed ten-fold cross validation, and designed simulation and comparison
studies on our models. The results, reported in Gallagher, et al 1997, Lee, et al
2003, Brooks and Lee, 2008, show the methods are promising, based on appli-
cations to both simulated data and real-application datasets from the machine
learning database repository. Furthermore, our methods compare well to existing
methods, often producing better results than other approaches such as artificial
neural networks, quadratic discriminant analysis, tree classification, and other
support vector machines.

To illustrate the power and flexibility of the classification model and solution
engine, and its multi-group prediction capability, application of the predictive
model to a broad class of biological and medical problems is described. Ap-
plications include: the differential diagnosis of the type of erythemato-squamous
diseases; predicting presence/absence of heart disease; genomic analysis and pre-
diction of aberrant CpG island meythlation in human cancer; discriminant anal-
ysis of motility and morphology data in human lung carcinoma; prediction of
ultrasonic cell disruption for drug delivery; identification of tumor shape and
volume in treatment of sarcoma; multistage discriminant analysis of biomark-
ers for prediction of early atherosclerois; fingerprinting of native and angiogenic
microvascular networks for early diagnosis of diabetes, aging, macular degener-
acy and tumor metastasis; prediction of protein localization sites; and pattern
recognition of satellite images in classification of soil types. In all these applica-
tions, the predictive model yields correct classification rates ranging from 80%
to 100%. This provides motivation for pursuing its use as a medical diagnostic,
monitoring and decision-making tool.

Machine Learning Framework for Classification in Medicine and Biology 5

Strategy For Predicting Immunity Of Vaccines. (Querec et al 2008) The
purpose of this study involves the development of methodologies to predict the
immunity of a vaccine without exposing individuals to infection. This addresses
a long-standing challenge in the development of vaccines—that of only being
able to determine immunity or effectiveness long after vaccination and, often,
only after being exposed to infection. The study employs the yellow fever vaccine
(YF-17D) as a model. Yellow fever vaccine has been administered to nearly half
a billion people over the last70 years. A single shot of the vaccine induces immu-
nity in many people for nearly 30 years. Despite the great success of the yellow
fever vaccine, little has been known about the immunological mechanisms that
make it effective. The team vaccinateda set of healthy individuals with YF-17D
and studied the T cell and antibody responses in their blood. Gene expression
patterns in white blood cells were collected for a period of time. About 50,000
gene signatures per individual were among the attributes collected. Applying
DAMIP-classifier, we were able to identify distinct gene signatures that corre-
lated with the T cell response and the antibody response induced by the vaccine.
To determine whether these gene signatures could predict immune response, we
vaccinated a second group of individuals and were able to predict with up to 90
percent accuracy which of the vaccinated individuals would develop a strong T
or B cell immunity to yellow fever. The ability to successfully predict the immu-
nity and effectiveness of vaccines would facilitate the rapid evaluation/design of
new and emerging vaccines, identify individuals who are unlikely to be protected
by a vaccine, and answer the fundamental questions that can lead to better vac-
cinations and prevention of disease.

Identifying Rules for Gene Silencing in Cancer Cells. (Feltus et al 2003,
2006, McCabe et al 2009) CpG islands are the discreet regions of DNA sequence
with high concentration of CpG dinucleotides. On their way to becoming tumors,
cells have to somehow inactivate several ”tumor suppressor” genes that usually
prevent cancer formation. Aberrant methylation of normally unmethylated CpG
islands occurs frequently in human cancers. Methylation is a subtle punctuation-
like modification of the DNA that marks genes for silencing, meaning that they
are inactive and do not make RNA or proteins. Using breast cancer cell lines that
artificially overproduce an enzyme which adds methylation markers to DNA, we
applied a sequence pattern recognition algorithm (Lee, Easton, Kapil, 2006) to
identify attributes for each CpG island. Applying the DAMIP-classifier described
herein to the patterns found, we were able to derive a classification function based
on the frequency of seven novel sequence patterns (PatMAn) that was capable of
discriminating methylation-prone from methylation-resistant CpG islands with
90% correctness upon cross-validation, and 85% accuracy when tested against
blind CpG islands unknown to us on the methylation status. This predictive rule
offers a set of guidelines that allow biologistis to predict which genes have an
increased risk of silencing by DNA methylation. That vulnerability could make
those genes good markers for diagnosis and risk assessment in patients. In partic-
ular, PatMAn, which is based on seven “key words”, 8-10 nucleotides long, can

6 E.K. Lee

predict which genes become methylated in breast and lung cancers in addition
to the artificial cell lines.

If the key words are in the DNA sequence near the promoter of the gene, it is
more likely to be methylated. The promoter of a gene is the place where enzymes
start making DNA into RNA. Further analysis shows that PatMAn overlaps with
the pattern of DNA bound by a set of proteins known as the Polycomb complex
in embryonic stem cells. Polycomb appears to keep genes that regulate early
development turned off in embryonic stem cells. Combining PatMAn with the
Polycomb binding pattern to produce the “super-pattern” SUPER-PatMAn al-
lows one to blind predict methylation-prone genes in cancers with more than
80 percent accuracy. The methylation pattern in cancer cells appears to echo
Polycomb’s binding in embryonic stem cells. Many of the genes affected play
important roles in embryonic development. Many of the genes predicted to be
methylation-prone are developmental regulators. The findings could support the
idea that methylation-mediated silencing helps to lock the developmental state
of tumor cells into being more stem cell-like. Among cancer biologists, hyper-
methylation is now the most well characterized epigenetic change to occur in
tumors. The pattern recognition and classification tools offer the opportunity to
classify the more than 29,000 known (but as yet unclassified) CpG islands in hu-
man chromosomes. This will provide an important resource for the identification
of novel gene targets for further study as potential molecular markers that could
have an impact on both cancer prevention and treatment. For aggressive cancers
such as pancreatic cancer or some forms of incurable brain tumor, the ability
to identify such sites offers potential new therapeutic interventions, leading to
improved treatment.

References

1. Brooks, J.P., Lee, E.K.: Solving a Mixed-Integer Programming Formulation of a
Multi-Category Constrained Discrimination Model. In: INFORMS Proceedings of
Artificial Intelligence and Data Mining, pp. 1-6 (2006)

2. Brooks, J.P., Lee, E.K.: Analysis of the Consistency of a Mixed Integer
Programming-based Multi-Category Constrained Discriminant Model. Annals of
Operations Research on Data Mining (Early version appeared online) (in press,
2008

3. Feltu)s, F.A., Lee, E.K., Costello, J.F., Plass, C., Vertino, P.M.: Predicting Aberrant
CpG Island Methylation. Proceedings of the National Academy of Sciences 100(21),
12253-122558 (2003)

4. Feltus, F.A., Lee, E.K., Costello, J.F., Plass, C., Vertino, P.M.: DNA Signatures
Associated with CpG island Methylation States. Genomics 87, 572-579 (2006)

5. Gallagher, R.J., Lee, E.K., Patterson, D.: An Optimization Model for Constrained
Discriminant Analysis and Numerical Experiments with Iris, Thyroid, and Heart
Disease Datasets. In: Cimino, J.J. (ed.) Proceedings of the 1996 American Medical
Informatics Association, pp. 209-213 (1996)

6. Gallagher, R.J., Lee, E.K., Patterson, D.A.: Constrained discriminant analysis via
0/1 mixed integer programming. Annals of Operations Research 74, 65-88 (1997)
(Special Issue on Non-Traditional Approaches to Statistical Classification and Re-
gression)

10.

11.

12.

13.

14.

15.

16.

Machine Learning Framework for Classification in Medicine and Biology 7

Lee, E.K., Gallagher, R.J., Patterson, D.: A Linear Programming Approach to
Discriminant Analysis with a Reserved Judgment Region. INFORMS Journal on
Computing 15(1), 23-41 (2003)

Lee, E.K.: Large-scale optimization-based classification models in medicine and
biology. Annals of Biomedical Engineering, Systems Biology and Bioinformat-
ics 35(6), 1095-1109 (2007)

Lee, E.K., Easton, T., Gupta, K.: Novel evolutionary models and applications to
sequence alignment problems. Annals of Operations Research — Computing and
Optimization in Medicine and Life Sciences 148, 167-187 (2006)

Lee, E.K., Fung, A.Y.C., Brooks, J.P., Zaider, M.: Automated Tumor Volume Con-
touring in Soft-Tissue Sarcoma Adjuvant Brachytherapy Treatment. International
Journal of Radiation Oncology, Biology and Physics 47(11), 1891-1910 (2002)
Lee, E.K., Gallagher, R., Campbell, A., Prausnitz, M.: Prediction of ultrasound-
mediated disruption of cell membranes using machine learning techniques and sta-
tistical analysis of acoustic spectra. IEEE Transactions on Biomedical Engineer-
ing 51(1), 1-9 (2004)

Lee, E.K., Galis, Z.S.: Fingerprinting Native and Angiogenic Microvascular Net-
works through Pattern Recognition and Discriminant Analysis of Functional Per-
fusion Data (submitted, 2008)

Lee, E.K., Ashfaq, S., Jones, D.P., Rhodes, S.D., Weintrau, W.S., Hopper, C.H.,
Vaccarino, V., Harrison, D.G., Quyyumi, A.A.: Prediction of early atherosclerosis
in healthy adults via novel markers of oxidative stress and d-ROMs. Working paper
(2009)

Lee, E.K., Wu, T.L.: Classification and disease prediction via mathematical pro-
gramming. In: Seref, O., Kundakcioglu, O.E., Pardalos, P. (eds.) Data Mining,
Systems Analysis, and Optimization in Biomedicine, ATP Conference Proceedings,
vol. 953, pp. 1-42 (2007)

McCabe, M., Lee, E.K., Vertino, P.M.: A Multi-Factorial Signature of DNA Se-
quence and Polycomb Binding Predicts Aberrant CpG Island Methylation. Cancer
Research 69(1), 282-291 (2009)

Querec, T.D., Akondy, R., Lee, E.K., et al.: Systems biology approaches predict
immunogenicity of the yellow fever vaccine in humans. Nature Immunology 10,
116-125 (2008)

G12 - Towards the Separation of Problem
Modelling and Problem Solving

Mark Wallace and the G12 team

Monash University, Faculty of Information Technology,
Building H, Caulfield, Vic. 3800, Australia
mark.wallace@infotech.monash.edu.au
www.infotech.monash.edu.au/~wallace

Abstract. This paper presents the G12 large scale optimisation soft-
ware platform, and discusses aspects of its architecture.

Keywords: constraint programming, modeling, optimization, software
platform, search.

G12 is a software platform for solving combinatorial optimisation problems
ISGM™05|. Tt was originally called a “constraint programming” platform, but
we rather see it as an agnostic system which equally supports linear and mixed
integer programming, constraint propagation and inference and a variety of other
search and inference-based approaches for solving complex problems.

Problem modelling is separated in G12 as much as possible from problem solv-
ing. It is not (of course) our goal to automatically compile user-oriented problem
models to highly efficient algorithms. Our target is to provide a software environ-
ment in which a user can initially write down a precise problem specification of
his or her problem, without considering issues of computational efficiency. G12
supports the powerful 'Zinc’ specification language [MNR08], and the freely
available "MiniZinc’ subset [NSBT07]. Subsequently a possibly different user can
then add control information so as to guide the G12 system to exploit particular
problem decompositions, inference techniques and search methods [BBBT0S].

In recent years three different kinds of language have emerged for specify-
ing and solving combinatorial optimisation problems. The first, most generic,
languages are high-level modelling languages whose implementations include a
number of solving techniques. These languages include mathematical program-
ming languages, such as AMPL, constraint programming languages, such as
CHIP and hybrid languages such as OPL. Such languages can be thought of
as “80/20” languages which are designed to be able to handle many problems
efficiently, but do not seek to cover all classes of problem.

Many problems require specialised solving techniques, which are not sup-
ported by the previous high-level languages. For these problems it is necessary to
express specialised constraints and constraint behaviours, as well as specialised
problem decompositions, and solver hybrids. Languages for expressing constraint
behaviour have been particularly researched in the CP community. In particular

W.-J. van Hoeve and J.N. Hooker (Eds.): CPAIOR 2009, LNCS 5547, pp. 8[10] 2009.
© Springer-Verlag Berlin Heidelberg 2009

www.infotech.monash.edu.au/~wallace

G12 - Towards the Separation of Problem Modelling and Problem Solving 9

we think of languages for writing propagators in Oz; attributed variables, sus-
pensions, delayed goals, demons and action rules in languages such as SICStus
Prolog, ECLiPSe and B-Prolog; and novel languages for encoding new global
constraints by Beldiceanu, Pesant and others.

The third class of languages for solving complex problems are search languages
supporting sophisticated combinations of branching, iteration, and improvement.
These languages include Salsa, ToOLS and Comet.

A few years ago it when I was in the ECLiPSE team, we planned that the
ECLiPSE language be broken down into three language subsets along these
lines: a language for problem specification, a language for specifying constraint
behaviour and a language for controlling search.

The G12 approach has deliberately taken quite a different path. Firstly G12
offers no language for specifying constraint behaviour. It supports a range of
libraries for constraint propagation and solving, and interfaces which make it
relatively straightforward to introduce new libraries at will [BGM™06]. New
“global” constraints can also be easily interfaced to the system. However the G12
user cannot easily build new constraints with specialised constraint behaviours.

The G12 view is that efficiency is most effectively and easily achieved by
mapping a problem down to an appropriate combination of solvers and search
[PSWB0§|, rather than by adding new constraint implementations. Instead of a
language for specifying constraint behaviours, therefore, G12 has a language for
mapping problems to a form which can be evaluated efficiently [DDS08]. The
problem modelling language is Zinc, and the language for mapping Zinc to a
more efficient form is Cadmium. (The language used to run the resulting efficient
algorithm is Mercury. The name G12 comes from the group in the periodic table
which contains Mercury, Cadmium and Zinc.)

There is no additional language for expressing search in G12. Instead it sup-
ports two quite different ways of specifying the search method. The first way is
as an extension to the Zinc search language [RMG™08|. A few generic search
functions are available in Zinc, parameterised by Zinc functions. The philosophy
behind this is that a Zinc problem model has a default behaviour, and the search
function naturally belongs to Zinc both syntactically and semantically as a way
of overruling its default behaviour. The second way that G12 supports search is
that it can be built into certain solvers. G12 solvers have different capabilities:
some can simply check for consistency of the current set of constraints, some
can infer (“propagate”) new constraints, some can optimise and some can even
return candidate solutions. Search may be used in support of this last capability.

The G12 experiment is now gradually coming to fruition. G12 suports finite
domain constraints, interval constraints over float variables, linear and mixed
integer constraint solvers, propositional satisfiability solvers and search methods,
BDD, set solvers and more. The Zinc and MiniZinc modelling languages are
supported. The Cadmium mapping language is implemented - now in a fully
general form so it can be applied to Zinc or any other modelling language for
which a syntax and semantics are defined.

10 M. Wallace

The first public release of G12 is due in early 2010, but already there are a num-
ber of major application projects in Australia for which G12 is the chosen software
platform. We are excited to see G12 emerging at last from the laboratory.

References

[BBBT08]

[BGM™*06]

[DDS08]

[MNR*08]

[NSB*07]

[PSWBOS]

[RMGT08]

[SGM™05]

Becket, R., Brand, S., Brown, M., Duck, G., Feydy, T., Fischer, J., Huang,
J., Marriott, K., Nethercote, N., Puchinger, J., Rafeh, R., Stuckey, P., Wal-
lace, M.: The many roads leading to Rome: Solving Zinc models by vari-
ous solvers. In: Proc. ModRef: 7th International Workshop on Constraint
Modelling and Reformulation (2008)

Becket, R., de la Banda, M.G., Marriott, K., Somogyi, Z., Stuckey, P.J.,
Wallace, M.: Adding constraint solving to Mercury. In: Van Hentenryck,
P. (ed.) PADL 2006. LNCS, vol. 3819, pp. 118-133. Springer, Heidelberg
(2005)

Duck, G., De Koninck, L., Stuckey, P.: Cadmium: An implementation of
ACD term rewriting. In: de la Banda, M.G., Pontelli, E. (eds.) ICLP 2008.
LNCS, vol. 5366, pp. 531-545. Springer, Heidelberg (2008)

Marriott, K., Nethercote, N., Rafeh, R., Stuckey, P., Garcia de la Banda,
M., Wallace, M.: The design of the Zinc modelling language. Con-
straints 13(3), 229-267 (2008)

Nethercote, N., Stuckey, P., Becket, R., Brand, S., Duck, G., Tack, G.:
MiniZinc: Towards a standard CP modelling language. In: Bessiere, C.
(ed.) CP 2007. LNCS, vol. 4741, pp. 529-543. Springer, Heidelberg (2007)
Puchinger, J., Stuckey, P., Wallace, M., Brand, S.: From high-level model
to branch-and-price solution in G12. In: Perron, L., Trick, M.A. (eds.)
CPAIOR 2008. LNCS, vol. 5015, pp. 218-232. Springer, Heidelberg (2008)
Rafeh, R., Marriott, K., de la Banda, M.G., Nethercote, N., Wallace, M.:
Adding search to Zinc. In: Stuckey, P.J. (ed.) CP 2008. LNCS, vol. 5202,
pp. 624-629. Springer, Heidelberg (2008)

Stuckey, P., de la Banda, M.G., Maher, M., Marriott, K., Slaney, J., So-
mogyi, Z., Wallace, M., Walsh, T.: The G12 project: Mapping solver in-
dependent models to efficient solutions. In: van Beek, P. (ed.) CP 2005.
LNCS, vol. 3709, pp. 13-16. Springer, Heidelberg (2005)

Six Ways of Integrating Symmetries within
Non-overlapping Constraints

Magnus Agren!, Nicolas Beldiceanu?, Mats Carlsson', Mohamed Sbihi?,
Charlotte Truchet®, and Stéphane Zampelli2

1 SICS, P.O. Box 1263, SE-164 29 Kista, Sweden
{Magnus .Agren,Mats.Carlsson}@sics.se
2 Ecole des Mines de Nantes, LINA UMR CNRS 6241, FR-44307 Nantes, France
{Nicolas.Beldiceanu, Mohamed.Sbihi, Stephane.Zampelli}@emn. fr
3 Université de Nantes, LINA UMR CNRS 6241, FR-44322 Nantes, France
Charlotte.Truchet@Quniv-nantes.fr

Abstract. This paper introduces six ways for handling a chain of lexico-
graphic ordering (lex-chain) constraint between the origins of identical ortho-
topes (e.g., rectangles, boxes, hyper-rectangles) subject to the fact that they
should not pairwise overlap. While the first two ways deal with the integration of
a lex-chain constraint within a generic geometric constraint kernel, the four latter
ways deal with the conjunction of a lex-chain constraint and a non-overlapping
or a cumulative constraint. Experiments on academic two and three dimensional
placement problems as well as on industrial problems show the benefit of such a
strong integration of symmetry breaking constraints and non-overlapping ones.

1 Introduction

Symmetry constraints among identical objects are ubiquitous in industrial placement
problems that involve packing a restricted number of types of orthotopes (generalized
rectangles) subject to non-overlapping constraints.

In this context, an orthotope corresponds to the generalization of a rectangle in the
k-dimensional case. An orthotope is defined by the coordinates of its smallest corner
and by its potential orientations. An orientation is defined by k integers that give the
size of the orthotope in the different dimensions. Two orthotopes are said to be identical
if and only if their respective orientation sizes form identical multisets. In the rest of this
paper, we assume that we pack each orthotope in such a way that its borders are parallel
to the boundaries of the placement space.

In the context of Operations Research, breaking symmetries has been handled by
characterizing and taking advantage of equivalence and dominance relations between
patterns of fixed objects [1]]. In the context of Constraint Programming, a natural way
to break symmetries is to enforce a lexicographic ordering on the origin coordinates of
identical orthotopes. This can be directly done by using a lex-chain constraint such as
the one introduced in [2]]. Even if this drastically reduces the number of solutions, it does
not allow much pruning and/or speedup when we are looking for one single solution.
This stems from the fact that symmetry is handled independently from non-overlapping.

W.-J. van Hoeve and J.N. Hooker (Eds.): CPAIOR 2009, LNCS 5547, pp. 11£25] 2009.
(© Springer-Verlag Berlin Heidelberg 2009

12 M. Agren et al.

The question addressed by this paper is how to directly integrate a lex-chain constraint
within a non-overlapping constraint and how it pays off in practice.

Section 2 recalls the context of this work, namely the generic geometric constraint
kernel and its core algorithm, a multi-dimensional sweep algorithm, which performs fil-
tering introduced in [3]. Since this algorithm will be used in the rest of the paper, Section2]
alsorecalls the principle of the filtering algorithm behind a lex-chain constraint. Section[3
describes two ways of directly handling symmetries in the multi-dimensional sweep al-
gorithm, while Section[d]shows how to derive bounds on the coordinates of an orthotope
from the interaction of symmetries and non-overlapping constraints. Since the cumula-
tive constraint is a necessary condition for the non-overlapping constraint [4], Section[3]
shows how to directly integrate symmetries within two well known filtering algorithms
attached to the cumulative constraint. Section[@levaluates the different proposed methods
both on academic and industrial benchmarks and Section[7lconcludes the paper.

2 Context

This work is in the context of the global constraint geost(k, O, S, C) introduced in [3],
which handles the location in space of k-dimensional orthotopes O (k € NT), each
of which taking an orientation among a set of possible orientations S, subject to ge-
ometrical constraints C[] Each possible orientation from S is defined as a box in a
k-dimensional space with the given sizes. More precisely, a possible orientation s € S
is an entity defined by its orientation id s.sid, and sizes s.l[d] (where s.I[d] > 0 and
0 < d < k). All attributes of a possible orientation are integer values. Each object
o € O is an entity defined by its unique object id 0.0id (an integer), possible orienta-
tion id o.sid (an integer for monomorphic objects, which have a fixed orientation, or
a domain variabld3 for polymorphic objects, which have alternative orientations), and
origin o.z[d], 0 < d < k (integers, or domain variables).

Since the most common geometrical constraint is the non-overlapping constraint be-
tween orthotopes, this paper focuses on breaking symmetries in this context (i.e., each
shape is defined by one single box). For this purpose, we impose a lex-chain con-
straint on the origins of identical orthotopes. Given two vectors, x and y of k variables,
(0, 15+ Tp—1) <lex (Y0,Y1,---,Yr—1) ifandonly if k = 0V (xg < yo) V (xo =
Yo N {x1, - Zk—1) <iex (Y1,---,Yk—1)). Unless stated otherwise, the constraint is
imposed wrt. the k£ dimensions 0,1, ...,k — 1. The original filtering algorithm of the
lex-chain constraint described in [2] is a two phase algorithm. In a first phase, it com-
putes for each vector of the chain feasible lexicographic lower and upper bounds. In a
second phase, a specific algorithm [5]] filters the components of each vector of the chain
according to the fact that it has to be located between two fixed vectors.

3 Integrating Symmetries within the Sweep Kernel

This section first recalls the principle of the sweep point algorithm attached to geost.
It then indicates how to modify it in order to take advantage of the fact that we have

" In the context of this paper we have simplified the presentation of geost.
% A domain variable v is a variable ranging over finite set of integers denoted by dom(v); v and
v denote respectively the minimum and maximum possible values of v.

Six Ways of Integrating Symmetries within Non-overlapping Constraints 13

a restricted number of types of orthotopes. Without loss of generality, it assumes that
we have one non-overlapping constraint over all orthotopes of geost and one lex-chain
constraint for each set of identical orthotopes.

3.1 Description of the Original Sweep Algorithm

The use of sweep algorithms in constraint filtering algorithms was introduced in [6]] and
applied to the non-overlapping 2D rectangles constraints. Let a forbidden region f be
an orthotope of values for o.x that would falsify the geost constraint, represented as a
fixed lower bound vector f. min and a fixed upper bound vector f. max. Algorithm I}
PruneMin(o, d, k), searches for the first point ¢, by lexicographic order wrt. dimensions
d,(d+1) mod k,...,(d—1) mod k, that is inside the domain of 0.z but not inside
any forbidden region. If such a c exists, the algorithm sets 0.z[d] to c[d], otherwise it
fails. Two state vectors are maintained: the sweep point ¢, which holds a candidate value
for o.x, and the jump vector n, which records knowledge about encountered forbidden
regions.

The algorithm starts its recursive traversal of the placement space at point ¢ = o.x
with n = 0.2 41 and could in principle explore all points of the domains of 0.z, one by
one, in increasing lexicographic order wrt. dimensions d, (d + 1) mod k,...,(d — 1)
mod k, until the first desired point is found. To make the search efficient, it skips points
that are known to be inside some forbidden region. This knowledge is encoded in n,
which is updated for every new f (see line 5) recording the fact that new candidate
points can be found beyond that value. Whenever we skip to the next candidate point,
we reset the elements of n that were used to their original values (see lines 6-15).

3.2 Enhancing the Original Sweep Kernel wrt. Identical Shapes

In the context of multiple occurrences of identical orthotopes, we can enhance the sweep
algorithm attached to geost by trying to reuse the information computed so far from one
orthotope to another orthotope. For this purpose we introduce the notion of domination
of an orthotope by another orthotope.

Given a geost(k, O, S, C) constraint where C consists of one non-overlapping con-
straint between all orthotopes of O and a lex-chain constraint between each set of iden-
tical orthotopes, an orthotope o; € O is dominated by another orthotope 0; € O if and
only if the following conditions hold:

1. dom(o;.z[p]) € dom(o;.z[p]),Vp € [0,k — 1],
2. dom(o,.sid) C dom(o;.sid),
3. the origin of 0; should be lexicographically greater than or equal to the origin of o;.

Now, for one invocation of the sweep algorithm, which performs a recursive traversal
of the placement space, we can make the following observation. If an orthotope o; is
dominated by another orthotope o; and if we have already called the sweep algorithm
for updating the minimum value of o;.z[p] (p € [0,k — 1]), we can take advantage
of the information obtained while computing the minimum of o;.z[p]. Let ¢;;, and 1y,
respectively denote the final values of vectors c and n after running PruneMin(o;, p, k).
Note that while computing the minimum of o;.z[p|, instead of starting the recursive

14 M. Agren et al.

PROCEDURE PruneMin(o, d, k) : bool
1: c+—ox // initial position of the point
2:n—ox+1 // upper limits+1 in the different dimensions
3: f «— GetFR(o, ¢, k) /I check if c is infeasible
4: while f # 1 do
5: n <« min(n, f.max+1) // maintain n as min of u.b. of forbidden regions
6: for j — k — 1 downto O do
7 j —(j+d) modk // least significant dimension first
8: cli’] < nlj’] /1 use n[j'] to jump
9: nl[j'] —oz[j']+1 /] reset n[j’] to max
10: if c[j'] < o.z[j] then
11: goto next /I candidate point found
12: else
13: clj'] < o.z[j’] // exhausted a dimension, reset c[4’]
14: end if
15: end for
16: return false /I no next candidate point
17: next: f — GetFR(o,c, k) /I check again if c is infeasible
18: end while
19: o.x[d] < c[d] /1 adjust earliest start in dim. d
20: return true

Algorithm 1. Adjusting the lower bound o.z[d]. GetFR(o, ¢, k) scans a list of forbidden regions,
starting at the latest encountered one, returns L if c is in the domain of 0.z and not inside any
forbidden region f, and f # L otherwise.

traversal of the placement space from ¢ = o;.x¢ with n = o;.z¢ + 1, we can start from
the position ¢;;, and with the jump vector n;,. By using this observation, we decrease
the number of jumps needed for filtering the bounds of the coordinates of n identical
orthotopes from k-n? to k-n. Finally note that for one invocation of the sweep algorithm,
forbidden regions for the origins of identical orthotopes need only be computed once.
This observation is valid even if we don’t have any lexicographic ordering constraints
and is crucial for scalability in the context of identical orthotopes.

3.3 Integrating a Chain of Lexicographic Ordering Constraint within the Sweep
Kernel

The main interest of the sweep algorithm attached to geost is to aggregate the set of
forbidden points coming from different geometric constraints. In our context, these are
the non-overlapping and lex-chain constraints. As a concrete example, consider the
following problem:

Example 1. We have to place within a placement space of size 6 x 5 three squares
S1, 82, s3 of size 2 x 2 so that their respective origin coordinates (z1,y1), (2,¥y2),
(z3,ys) are lexicographically ordered in increasing order. Moreover, assume that the
first and third squares are fixed so that (z1,y1) = (2,3) and (z3,y3) = (5,2), and

Six Ways of Integrating Symmetries within Non-overlapping Constraints 15

that (z2,y2) € ([1,5],[1,4]). If we don’t consider together the non-overlapping and
the lex-chain constraint we can only restrict the domain of x5 to interval [2, 5]. But, as
shown in Figure[dl if we aggregate the forbidden points coming from the lex-chain and
non-overlapping constraints, we can further restrict the domain of x5 to interval [3, 4].

So the question is how to generate forbidden regions for a lex-chain constraint of the
form (lo,l1, ..., lk—1) <iex (Zo,Z1,...,Tk—1) <iex (Uo,U1,...,ur—1) Where l;, x;
and u; respectively correspond to integers, domain variables and integersE Let us first
illustrate what forbidden regions we want to obtain in the context of Example[Il

Continuation of Example[ll Consider the constraint (2,4) <jex (z2,%2) <iex (5,1).
We can associate to this lex-chain constraint the following forbidden regions; see the
crosses in Part (B) of Figure [T}

— Since 2 < 2 is not possible, we have f.min = [1, 1], f. max = [1, 5] (column 1);

- Since £ = 2 A y2 < 4 is not possible, we have f.min = [2,1], f. max = [2, 3]
(column 2);

— Since z2 > 5 is not possible, we have f.min = [6, 1], f. max = [6, 5] (column 6);

- Since 3 = 5 A y2 > 1is not possible, we have f.min = [5,2], f. max = [5, 5]
(column 5).

— N W A W

— N W A W

—_— N W Rk W
— N W kA W

123456 123456 123456 123456
(A) (B) © (D)

Fig. 1. (A) The two fixed squares s; and s3 (gray squares are not possible for the origin of s since
it has to be included within the placement space depicted by a thick line); (B) Forbidden points
(a cross) wrt. the lex-chain constraint; (C) Forbidden points (a cross) wrt. the non-overlapping
constraint; (D) Aggregating all forbidden points: (3, 1) and (4, 4) are the only feasible points for
the origin of s, which leads to restricting 2 to interval [3, 4].

We show in AlgorithmPlhow to generate such forbidden regions in a systematic way.
As in Example[Il lines 1-6 generate for the lower bound constraint a forbidden region
according to the fact that the most significant components zq, x1, . . . , £;—1 of vector x
are respectively fixed to lo, l1,...,l;—1 (i € [0,k — 1]). Similarly, lines 7-12 generate
k forbidden regions wrt. the upper bound .

3 As mentioned in Section 2} propagating a lex-chain constraint leads to generating such sub-
problems.

16 M. Agren et al.

PROCEDURE LexBetweenGenForbiddenReg(k, z,l,u) : f[0..2 - k — 1]
/I GENERATE FORBIDDEN REGIONS WITH RESPECT TO LOWER BOUND |
fori — 0tok — 1do
Vj € [0,0) : flil. minlj] — L3 £l maxls] — Iy
Sl min[d] < z;; f[i]. max[i] — ; — 1
Vj € [i+1,k) : fli]. min[j] — 2;; f[i]. max[j] < Tj
end for
/I GENERATE FORBIDDEN REGIONS WITH RESPECT TO UPPER BOUND u
:fori —0tok —1do
Vi € [0,4) : flk + 4. min[j] «— uy; f[k + 4]. max[j] — u;
10: f[k + ¢]. min[i] < w; + 1; f[k + 7). max[i] < 77
1 Vi efi+1,k): flk+id minfj] « z;; f[k +i]. max[j] < T

PRAIN B RN

b

12: end for

13: return f
Algorithm 2. Generates the 2 - k forbidden regions wrt. variables xo, x1,...,xr_1 associated
with the constraint <lo, ll, Ceey lk_1> <lex <$0, T1,... ,CL‘k_1> <lex <UQ, Uty .., uk_1>.

4 Integrating Symmetries within the Non-overlapping Constraint

We just saw how to aggregate forbidden regions coming from a lex-chain and a set of
non-overlapping constraints. This section shows how to combine these two types of
constraints more intimately in order to perform more deduction.

4.1 Deriving Bounds from the Interaction of the Chain of Lexicographic
Ordering and Non-overlapping Constraints: The Monomorphic Case

We first consider the case of n orthotopes {0; | 0 < j < n} corresponding to a
given fixed orientation s subject to non-overlapping as well as lex-chain!] In this con-
text, we provide a lower bound low; and an upper bound up; for the origin of each
orthotope, wrt. both constraints. Let S[i] denote the size of the placement space in di-
mension ¢ (0 < ¢ < k). Furthermore, let us denote by O[0..k — 1] and P[0..k — 1]
the points respectively defined by O[i] = min(og.z[i], 01.z[i], ..., 0n—1.2[i]) and by
P[i] = max(og.x[t],01.2[d],...,0n—1.2[i]) + s.l[i]. We have lowj <lex 0. <lex
up;, 0 < j < n, where:

: p=k—1) S[p]
J mod (Hpi Lsz[p]J)
k—1, S
= L)
. k—
(n—1-3j) mod (IILZ\ ' 51)
k—1
HZ:i-H Ls_l[p]J

low;[i] = O[] + sdi] (0<i<k) (1)

up;li] = Pli] - s.lli] — s.d[i] (0 < i < k)

@)

* In practice, this occurs in placement problems involving several occurrences of a given ortho-
tope with the same fixed orientation.

Six Ways of Integrating Symmetries within Non-overlapping Constraints 17

The intuition behind formula ([I]ﬁ in order to find the lower bound of the j*" object
in dimension ¢ is:

— First, fill complete slices wrt. dimensions ¢,¢2 + 1, ...,k — 1 (such a complete slice

involves Hijfl 15 I[Q]J objects),

— Then, with the remaining objects to place (i.e., j; mod (sz_l Lfl[fﬁ] |) objects),

compute the number of complete slices wrt. dimensions ¢ + 1,7 + 2,...,k — 1

j mod (II2ZF1L 51)
ez L)

slice (i.e., s.1[7]).

(i.e., J slices) and multiply this number by the length of a

4.2 Deriving Bounds from the Interaction of the Chain of Lexicographic
Ordering and Non-overlapping Constraints: The Polymorphic Case

We now consider the case of n identical orthotopes {o; | 0 < j < n}, again subject
to non-overlapping as well as lex-chain. In this context, we provide three incompara-
ble lower and upper bounds for the origin of each object. The first bound is based on
the bound previously introduced. It simply consists in reducing the box sizes to their
smallest values. For the second and third bounds, instead of reducing the sizes of a box
to its smallest size, we decompose a box into n, smaller identical boxes that all have
the same size ¢ in the different dimensions[d Assume that we want to find the lower
bound for box o;. The idea is to saturate the placement space with n, - (j + 1) boxes by
considering the least significant dimension first and by starting at the lower left corner
of the placement space. Then we subtract from the last end corner the different sizes of
o; in decreasing order (i.e., for the most significant dimension we subtract the largest
size)ﬂ In the context of an upper bound, the idea is to saturate the placement space with
ng - (n — j) — 1 small boxes by considering the least significant dimension first and by
starting at the upper right corner of the placement space. Then we subtract ¢ from the
last end corner of the (1 - (n — 7)) smallest box. Based on the preceding formulas we
obtain the following bounds. Without loss of generality, we assume that s.l are sorted
in decreasing order. A box can be decomposed into n, = Z;é Ls'le[d]J cubes of size /
with possibly some loss. We havdd

((G+1)-ne—1) mod ([[2= 7Y

p=t

‘ ‘ 1) .
low;[i] = O[3 P A+ L —sldli] 3)
[i] = Ofi] + { [t 5 J [1]

1) mod (T
((n=34)-ne—1) mod ([],—; LEDJ-K—K 4)

—k— S
= 15

5 Formula () is obtained in a similar way. The proof is available in [7].

6 ¢ takes its value between 1 and the smallest size of the box we consider Ge,1 < /¢ <
min{s.l[7] | 0 < i < k}).

7 In Figures 2] and 3 diagonal lines depict this subtraction.

8 The proof is available in [7].

WMZPM—{

18 M. Agren et al.

— —
c c
kel . k]
@ 12 - 2 12
g1 . g 1
B 10 (B 10
9 9
8 8
7 7
6 = 6
1
5 Iﬂ] 5
4 { 4
3 3
A
o[1] 2 2
1 1
12 3 4 5 6 7 8 9 1011 12 13 14 1 2 3 4 5 6 7 8 9 1011 12 13 14
o[0] dimension 0 dimension 0
(A) (B)

Fig. 2. Computing the lower (A) and upper (B) bounds of a set of rectangles for the second bound
with £ = min(4, 3) for the polymorphic case

- -
c C
kel Q2
@ @ 12)
(9] 0.)11
£ £
© U10
9
8
7
6
5
4
3
o] 2
1
12 3 45 6 7 8 9 10 11 12 13 14 1 2 3 4 5 6 7 8 9 10 11 12 13 14
dimension 0 dimension 0
ol (A) (B)

Fig. 3. Computing the lower (A) and upper (B) bounds of a set of rectangles for the second bound
with £ = ged (4, 3) for the polymorphic case

In practice it is not clear which value of ¢ provides the best bound. Therefore, we cur-
rently restrict ourselves to the values s.minl and ged(s.l[0], s.l[1], ..., s.l[k — 1]). The
bounds obtained with these two values are incomparable. Figures 2] and 3] respectively
illustrate this second bound for placing a set of 5 rectangles for which the orientation
sizes form the multiset {{3, 4} } within a big rectangle of size 10 x 9 with £ = min(4, 3)
and ¢ = ged(4, 3).

5 Integrating Symmetries within the Cumulative Constraint

We have already shown how to combine a lex-chain and a non-overlapping constraint.
But, in the context of a non-overlapping constraint, the cumulative constraint is a well
known necessary condition [4]. This section shows how to directly integrate the fact
that we have a lex-chain constraint within two well known filtering algorithms of the

Six Ways of Integrating Symmetries within Non-overlapping Constraints 19

cumulative constraint: filtering wrt. the compulsory part profile [8] and filtering wrt.
task intervals [9].

5.1 Handling Symmetries in the Context of the Compulsory Part Profile

Let us first recall the notion of compulsory part profile, which will be used throughout
this section. In the context of the cumulative constraint, the compulsory part of a task
t corresponds to the intersection of all feasible schedules of ¢. As the domain of the
start of task ¢ gets more and more restricted the compulsory part of ¢ will increase until
becoming a schedule of task ¢. The compulsory part of a task ¢ can be directly computed
by making the intersection between the earliest start and the latest end of task ¢. The
compulsory part profile associated with the tasks 7 of a cumulative constraint is the
cumulated profile of all compulsory parts of tasks of 7.

In the context of non-overlapping constraints, many search strategies [[10] try to first
fix the coordinates of all objects in a given dimension d before fixing all the coordinates
in the other dimensionsﬂ But now, if we don’t take care of the interaction between the
cumulative and lex-chain constraints, we can have a huge compulsory part profile which
will be totally ignored by the lex-chain constraint. The following illustrative example
will make things clear.

Example 2. Assume that we have to place 8 squares of size 2 x 2 within the bounding
box [0, 9] x [0, 3] (i.e., in the context of cumulative, 0 and 9+ 1 respectively correspond
to the earliest start and the latest end, while 4 is the resource limit). In addition, assume
that the compulsory part profile in the most significant (wrt. <je) dimension of the
placement space corresponds to the following 3 consecutive intervals [0, 3], [4, 5] and
[6, 9] of respective heights 0, 2 and 09 1f there is no interaction between this cumula-
tive constraint and the lexicographic ordering constraint that states that the eight 2 x 2
squares should be lexicographically ordered, then we get the following domain reduc-
tions: The earliest start of the first two squares of the lexicographic ordering is 0, the
earliest start of the third and fourth squares is 2, the earliest start of the fifth and sixth
squares is 4, and the earliest start of the last two squares is 6. This is obviously an under-
estimation since, because of the compulsory part profile of the cumulative constraint,
we can start at most one single square at instant 4.

In the context of a cumulative constraint, we now show how to estimate the earliest
start in the most significant dimension (msd) of each orthotope of a lex-chain constraint
according to an existing compulsory part proﬁle To each orthotope o corresponds a
task ¢ for which the origin, the duration and the height are respectively the coordinate of
o in the msd, the size of o in the msd, and the product of the sizes of o in the dimensions
different from the msd. Now, the idea is to simply consider the orthotopes in increasing
lexicographic order and to find out for each corresponding task its earliest possible start

° In the benchmarks presented in Section [@l this is the case e.g. for the heuristic used for the
monomorphic Partridge problem.

1 The compulsory part corresponding to interval [4, 5] does not correspond to the 8 squares to
place, for it comes from another fixed object.

"' The same idea can be used for estimating the latest end in the msd.

20 M. Agren et al.

on the msd. The following condition is checked for testing whether a start is feasible or
not: When added to the cumulative profile, the maximum height should not exceed the
resource limit["]

By reconsidering Example 2] this idea is illustrated
on the right hand side, estimating the minimum value
of the coordinates in the msd of eight squares of size
2. The squares are successively placed at their earliest
possible start according to the compulsory part pro-
file. Consequently, the minimum values of the coor- 01 23456 789
dinates in the most significant dimension of squares
1,2,...,8 equal respectively 0, 0, 2, 2, 4, 6, 6 and 8 (and not to 0, 0, 2, 2, 4, 4, 6 and 6
as before).

1 3 6 8

5.2 Handling Symmetries in the Context of Task Intervals

In the context of the cumulative constraint, task interval methods prevent the overuse as
well as the underuse of intervals derived from the earliest start and the latest end of the
tasks to schedule. This section focuses on the problem of pruning the origin of the tasks
of the cumulative constraint so that we don’t lose too much space within a given fixed
interval according to the fact that we have an ordering on the origin of identical tasks[3
For this purpose, consider the set of all identical tasks 7" of duration d and height h, an
interval [inf, sup) and the height gap of free space on top of the interval, and the slack
o of the interval (i.e., the maximum allowed unused space of the interval). For a given
set of tasks S, let overlap(S) denote the sum of the maximum overlap of the tasks in
S. To find out whether or not ¢ € T must intersect [inf, sup), the task intervals pruning
rule makes the test:

(sup —inf) - gap — (overlap(T') — overlap({t})) > o (5)

If this test succeeds, we know that ¢ must overlap the free space of [inf, sup) to some
extent. Specifically, ¢ must then overlap the free space of [inf, sup) at least by

(sup — inf) - gap — (overlap(T) — overlap({t})) — o

which means that ¢ must intersect in time [inf, sup) at least by:

[(sup —inf) - gap — (overlap(T') — overlap ({t})) — O'—‘
d

This can be strengthened in the presence of symmetries. Assume a partial order <
over the start times of the tasks 7" implied by a lex-chain constraint. Assume moreover
that t; # t; € T are tasks such that ¢; < t;. Then the positionings of ¢; and ¢; wrt.
interval [inf, sup) are in fact not independent:

12 The resource limit equals the product of the sizes of the placement space in the dimensions
different from the msd.

13 Such an ordering exists for the cumulative constraint associated with the msd of the lexico-
graphic ordering constraint.

Six Ways of Integrating Symmetries within Non-overlapping Constraints 21

— if t; is assumed to end strictly before the interval [inf, sup), then ¢; must also be
assumed to end strictly before [inf, sup); and

— if ¢, is assumed to start strictly after the interval [inf, sup), then ¢; must also be
assumed to start strictly after [inf, sup).

Considering now the chain t; < --- < t,, and assuming that ¢ is the ith task t; of
this chain, we split the pruning rule above into two cases: the first case corresponding to
the tasks ¢1, ..., t;—1 not succeeding ¢;; and the second case corresponding to the tasks
tit1,-..,tn not preceding t;.

For the first case, since each of the tasks ¢, ..., ¢;_; must not succeed ¢;, assuming
that ¢; ends before [inf, sup) implies that the tasks ¢1, ..., ¢;_1 must also end before
[inf, sup). Hence, the test (3) can be strengthened to:

(sup —inf) - gap — (overlap(T) — overlap({t1,...,ti})) > o (6)
If this test succeeds, we know that all the tasks ¢4, . . ., t; must overlap the free space of
[inf, sup) at least by:

(sup — inf) - gap — (overlap(T) — overlap({t1,...,ti})) — o (7

Now, since we wish to prune ¢;, this must be translated into how far into [inf, sup)
we must force ¢; so that the remaining tasks may overlap the free space of [inf, sup)
enough. This can be calculated in two steps as follows:

— STEP 1: Calculate the largest number dfill of columns of maximum height and
width d, covering part of but not more than the free space of [inf, sup).

— STEP 2: Calculate the smallest number unitfill of columns of maximum height and
width 1, covering the remaining free space of [inf, sup).

We use tofill to denote the value (7). STEP 1 can be calculated by:

o —min ([%7],4) [largest number of stacked tasks]
B« Vgﬁ}ilJ [largest number of unit-size columns]
dfill — {gJ [largest number of d-size columns]

Given this, the remaining free space of [inf, sup) is:

restfill = tofill — dfill-a-d-h
When restfill > 0, STEP 2 can then be calculated by:

vy — min(i — dfill - o,) [largest number of stacked tasks still available]
unitfill — Pe}ffﬂ [smallest number of unit-size columns]

Now, given the values dfill and unitfill, to overlap the free space of [inf, sup) by at
least the value (@), the start time of ¢; must be at least inf +(dfill — 1) - t;.d + unitfill.
An example of this method can be found in [[7]].

22 M. Agren et al.

6 Performance Evaluation

All the new filtering methods described in this paper were integrated into our geost ker-
nel [3] in order to strengthen the sweep-based filtering for non-overlapping constraints.
The experiments were run in SICStus Prolog 4 compiled with gcc version 4.1.0 on a
3GHz Pentium IV with 1MB of cache.

We ran two benchmarks, Scale and KLS, seeking to evaluate the performance gain
of domination in greedy execution mode, where the constraint tries to assign all vari-
ables in a single run, and simply fails if it cannot. Note that this greedy mode fits well
inside a tree search based procedure: at every node of the search tree, a greedy step
can be attempted in order to solve the problem in one shot, and if it fails, a normal
propagation and branching step can be done. Three benchmarks, Conway, Partridge
and Pallet were run in normal propagation mode, under tree search. The symmetry that
stems from multiple pieces of the same shape is broken by imposing a lexicographic or-
der on their origins. The purpose here was to compare the performance of treating these
lexicographic ordering constraints inside non-overlapping and cumulative as opposed
to posting them separately. Since this is not a paper on heuristics, the exact models and
search procedures are probably of little interest, and are only given in the corresponding
code of the benchmarks in Appendix B of [[7]. We now describe the five benchmarks
and the results, which are shown in Table[1l

Scale. As in [3]], we constructed a set of loosely constrained placement problems
(i.e., 20% spare space), generating one set of random problem instances of m &
{210 211222} 2D items involving ¢t € {1, 16,256, 1024} distinct shapes. The re-
sults indicate that domination brings the time complexity down from roughly O(m?)
to virtually O(m). The results also show that the speedup gained by domination goes
down as the number of distinct shapes goes up. In the larger instances, the total number
of items vastly outnumbers the number of distinct shapes. With domination, we could
now pack 222 2D items of 1024 distinct shapes (over 8 million domain variables) in
four CPU minutes, an improvement by more than two orders of magnitude over [3]].

KLS. To evaluate the greedy mode in a setting involving side-constraints in addition
to non-overlapping, we studied the problem of packing a given number of 3D items
into containers, with the objective to minimize the number of containers required. The
containers all have the same size and weight capacity, whereas the items come in 59
different shapes and weights. The items cannot overlap and must be fully inside some
container. The total weight of the items inside a

given container must not exceed the weight capac- rovcn

ity. Also, some items must be placed on the con- rosor Gomort —=—
tainer floor, whereas other items cannot be placed 1os06 -
underneath any other item. The whole problem

can be modeled as a single 6D geost constraint. 10000
We ran 25 instances of different size; see the fig- 1000 /r
ure on the right hand side. The largest instance, 100
with 16486 items, was solved in 35 seconds with 1 T T
domination and 1284 seconds without. problem size (1000 boxes)

100000

time (msec)

Six Ways of Integrating Symmetries within Non-overlapping Constraints

23

Table 1. Top: Scale for 2D items, with domination on and off. Center: Results for Conway and
Partridge. Bottom left: An instance pallet(x,y, a, b, n, h) denotes the task of packing h pieces
of shape a x b and n — h pieces of shape b X a into a placement space of shape x X y. Bottom
right: Polymorphic variants of the same instances, where the parameter h has been left free.
lex-chain constraints are treated inside geost in columns marked lex in and posted separately in
columns marked lex out. All runtimes (ms) and backtrack counts are for finding the first solution.

m t=1 t=16 t = 256 t =1024
dom on dom off{dom on dom off{dom on dom off{dom on dom off
1024 20 100 30 120 50 120 120 150
2048 60 310 50 410 90 370 210 400
4096 90 1160 100 1480 170 1270 380 1320
8192 220 4640 230 5780 360 5030 780 5170
16384 400 18060 450 19010 710 19990, 1550 20270
32768 890 71210 910 73230, 1410 77340 3050 77200
65536| 1650 279480| 1880 300540 2920 296650 6100 299510
131072 3590 1118410, 3760 1177900 5910 1188740, 10280 1186030
262144 7020 4488510| 7980 4812300| 12020 4758390 25280 4746410
524288| 17100 22671540| 18000| 23210070 29210 23553550| 58910| 23512450
backtracks runtime
lex in| lex out lexin| lex out
conway(5,5,5) 6658 10192 11890 12850
partridge(8,1) 565 853 6400 3460
partridge(9,1) | 27714 63429 347100/ 367050
partridge(10,1)|683643|1265284|15160080| 9154320
partridge(11,1)| 80832| 189797| 2009150| 1964130
partridge(12,1)|790109|1676827(37850240(24203920
partridge(6,3) 7122 20459 13680 29610
monomorphic polymorphic
backtracks runtime backtracks runtime
lex in|lex out| lex in|lex out| lexin| lex out| lex in|lex out
pallet(26,19,5,2,49,30) 0 0| 130 110 8 8 180 920
pallet(28,17,5,2,47,25)| 184 325| 570 320 398 433 660 360
pallet(29,20,4,3,48,28)| 664| 1419| 1890 1300| 9767| 14457| 22500| 14870
pallet(30,17,4,3,42,18)| 778| 1580| 2380 1290| 19807| 28015| 28190| 20130
pallet(30,19,7,2,40,24) 74 115 190 140 19 81 150 90
pallet(31,19,7,2,41,24) (20544 | 73695|34190| 57840(728743| 932846|666010(506730
pallet(32,17,7,2,38,20)| 491 850/ 630 660 159 172 310 140
pallet(33,17,7,2,39,20)| 8129| 26644|13300| 26030|390539| 567304|366320|286930
pallet(33,19,7,2,44,30)| 3556| 34778| 9690| 23450|789894(1460451|689080|743530
pallet(33,22,5,3,48,24) 41 54| 220 160 65 73 290 140
pallet(34,17,5,3,38,24) 0 268 90 170 425 900 390 380
pallet(36,34,7,4,43,25)(14030| 28855|25830| 16800| 33874| 41648| 66520| 42220
pallet(37,19,7,2,49,33) 96 136| 240 160 113 215 260 170
pallet(38,26,5,4,49,29)| 6141| 12830(14880| 10910| 39486| 52787| 75450| 46530

24 M. Agren et al.

Conway. The problem consists in placing 6 pieces of shape 4 x 2 x 1, 6 pieces of shape
3 X 2 x 2 and 5 unit cubes within a 5 x 5 x 5 cube. All pieces can be rotated freely.
Partridge. The problem consists in tiling a square of size ”'(gﬂ) by 1 square of size 1,
2 squares of size 2, ..., n squares of size n. It was initially proposed by R. Wainwright
We tried the instances n = 8, ..., n = 12. Note that, to our best knowledge, this is the
first reported solution for n = 12. We also tried a polymorphic variant of the problem:
tile a rectangle of size 21 x 63 by 1 rectangle of size 1 x 3, 2 rectangles of size 2 x 6,
..., 6 rectangles of size 6 x 18, where all rectangles can be rotated.

Fallet. The problem consists in placing a given number of identical, non-overlapping,
rectangular pieces of a given size onto a rectangular pallet, also of a given size. We
selected several instances from D. Lobato’s data setd!J and ran two variants of each in-
stance: (i) a polymorphic variant, with 90 degrees rotation allowed, and (ii) a monomor-
phic variant with the number of horizontal vs. vertical pieces fixed.

Evaluation of methods. We ran the last three benchmarks in versions where only one
given method at a time was switched on. For reasons of space we cannot present the
full results; instead, we summarize the findings. First, we found that for monomor-
phic benchmarks, integration of symmetries into cumulative was more effective than
integration into non-overlapping, but for polymorphic benchmarks, it was the other
way around. Finally, integration into non-overlapping had the highest runtime over-
head among the methods. Integration into task intervals was the least effective among
the methods, but had a very low overhead.

7 Conclusion

For the first time, symmetry breaking has been fully integrated into the filtering algo-
rithms of global constraints. This was done in two contexts:

(a) Real-life placement problems tend to involve many more objects to place than dis-
tinct shapes. They can be too large to solve solely with constructive search. The
ability to perform a greedy assignment, possibly with a limited amount of search,
staying inside a constraint programming framework, can be crucial to solving such
problems. By using the fact that many objects are of the same shape, we showed
that the complexity of such a greedy assignment in the context of a sweep algorithm
can go down from O(n?) to virtually O(n) for n objects.

(b) We identified and exploited four ways of handling symmetry breaking lex-chain
constraints inside a non-overlapping or cumulative constraint. Our results show that
the tight integration saves search effort but not necessarily CPU time: slowdown up
to 2 times, but also sometimes speedup up to 2.5 times, was observed.

Finally, we found the first reported solution to partridge(12,1).

4 Seelhttp://mathpuzzle.com/partridge.html
5 Seehttp://lagrange.ime.usp.br/~lobato/packing/

http://mathpuzzle.com/partridge.html
http://lagrange.ime.usp.br/~lobato/packing/

Six Ways of Integrating Symmetries within Non-overlapping Constraints 25

Acknowledgements

This research was conducted under European Union Sixth Framework Programme Con-
tract FP6-034691 “Net-WMS”. In this context thanks to A. Aggoun from KLS OPTIM
(http://www.klsoptim.com/) for providing relevant industrial benchmarks.

References

10.

Scheithauer, G.: Equivalence and dominance for problems of optimal packing of rectangles.
Ricerca Operativa 27(83), 3-34 (1998)

Carlsson, M., Beldiceanu, N.: Arc-consistency for a chain of lexicographic ordering con-
straints. Technical Report T2002-18, Swedish Institute of Computer Science (2002)
Beldiceanu, N., Carlsson, M., Poder, E., Sadek, R., Truchet, C.: A generic geometrical
constraint kernel in space and time for handling polymorphic k-dimensional objects. In:
Bessiere, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 180-194. Springer, Heidelberg (2007)
Aggoun, A., Beldiceanu, N.: Extending CHIP in order to solve complex scheduling and
placement problems. Mathl. Comput. Modelling 17(7), 57-73 (1993)

Beldiceanu, N., Carlsson, M., Rampon, J.-X.: Global constraint catalog. Technical Report
T2005-08, Swedish Institute of Computer Science (2005),

http://www.emn. fr/x-info/sdemasse/gccat/Clex_between.html
Beldiceanu, N., Carlsson, M.: Sweep as a generic pruning technique applied to the non-
overlapping rectangles constraints. In: Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, pp. 377-
391. Springer, Heidelberg (2001)

Agren, M., Beldiceanu, N., Carlsson, M., Sbihi, M., Truchet, C., Zampelli, S.: Six ways of in-
tegrating symmetries within non-overlapping constraints. SICS Technical Report T2009:01,
Swedish Institute of Computer Science (2009)

Lahrichi, A.: Scheduling: the notions of hump, compulsory parts and their use in cumulative
problems. C.R. Acad. Sci., Paris 294, 209-211 (1982)

Caseau, Y., Laburthe, F.: Cumulative scheduling with task intervals. In: Joint International
Conference and Symposium on Logic Programming (JICSLP 1996). MIT Press, Cambridge
(1996)

Simonis, H., O’Sullivan, B.: Search strategies for rectangle packing. In: Stuckey, P.J. (ed.)
CP 2008. LNCS, vol. 5202, pp. 52-66. Springer, Heidelberg (2008)

http://www.klsoptim.com/
http://www.emn.fr/x-info/sdemasse/gccat/Clex_between.html

Throughput Constraint for Synchronous Data
Flow Graphs

Alessio Bonfietti, Michele Lombardi, Michela Milano, and Luca Benini

DEIS, University of Bologna
V.le Risorgimento 2, 40136, Bologna, Italy

Abstract. Stream (data-flow) computing is considered an effective para-
digm for parallel programming of high-end multi-core architectures for em-
bedded applications (networking, multimedia, wireless communication).
Our work addresses a key step in stream programming for embedded mul-
ticores, namely, the efficient mapping of a synchronous data-flow graph
(SDFG) onto a multi-core platform subject to a minimum throughput re-
quirement. This problem has been extensively studied in the past, and its
complexity has lead researches to develop incomplete algorithms which
cannot exclude false negatives. We developed a CP-based complete algo-
rithm based on a new throughput-bounding constraint. The algorithm has
been tested on a number of non-trivial SDFG mapping problems with
promising results.

1 Introduction

The transition in high-performance embedded computing from single CPU plat-
forms with custom application-specific accelerators to programmable multi pro-
cessor systems-on-chip (MPSoCs) is now a widely acknowledged fact [3/4]. All
leading hardware platform providers in high-volume applications areas such as
networking, multimedia, high-definition digital TV and wireless base stations are
now marketing MPSoC platforms with ten or more cores and are rapidly mov-
ing towards the hundred-cores landmark [BJ67]. Large-scale parallel program-
ming has therefore become a pivotal challenge well beyond the small-volume
market of high-performance scientific computing. Virtually all key markets in
data-intensive embedded computing are in desperate need of expressive program-
ming abstractions and tools enabling programmers to take advantage of MPSoC
architectures, while at the same time boosting productivity.

Stream computing based on a data-flow model of computation [89] is viewed
by many as one of the most promising programming paradigms for embedded
multi-core computing. It matches well the data-processing dominated nature of
many algorithms in the embedded computing domains of interest. It also offers
convenient abstractions (synchronous data-flow graphs) that are at the same
time understandable and manageable by programmers and amenable to auto-
matic translation into efficient parallel executions on MPSoC target platforms.
Our work addresses one of the key challenges in the development of programming
tool-flow for stream computing, namely, the efficient mapping of synchronous

W.-J. van Hoeve and J.N. Hooker (Eds.): CPAIOR 2009, LNCS 5547, pp. 26 2009.
© Springer-Verlag Berlin Heidelberg 2009

Throughput Constraint for Synchronous Data Flow Graphs 27

data-flow graphs (SDFG) onto multi-core platforms. More in detail, our objec-
tive is to find allocations and schedules of SDFG nodes (also called actors or
tasks) onto processors that meet throughput constraints or mazimize through-
put, which can be informally defined as the number of executions of a SDFG in
a time unit. In particular, an allocation is an unique association between actors
and processors and a schedule is a static order between actors running on the
same processor. Meeting a throughput constraint is often the key requirement
in many embedded application domains, such as digital television, multimedia
streaming, etc.

The problem of SDFG mapping onto multiple processors has been studied
extensively in the past. However, the complex execution semantic of SDFGs on
multiple processors has lead researchers to focus only on incomplete mapping al-
gorithms based on decomposition [12] [I4]. Allocation of actors onto processors is
first obtained, using approximate cost functions such as workload balancing [12],
and incomplete search algorithms. Then the throughput-feasible or throughput-
maximal scheduling of actors on single processors is computed, using incomplete
search techniques such as list scheduling [§]. The reason for the use of incom-
plete approaches is that both computing an optimal allocation and an optimal
schedule is NP-hard.

Our approach is based on Constraint Programming and tackles the overall
problem of allocating actors to processors and schedule their order such that a
throughput constraint is satisfied; hence we avoid the intrinsic loss of optimality
due to the decomposition of the problem into two separated stages. In fact,
our method is complete, meaning that it is guaranteed to find a feasible or an
optimal solution in case it exists. The core of the approach is a novel throughput
constraint, based on the computation of the maximum cycle mean over a graph
that is modified during search according to allocation and scheduling decisions.
To our knowledge this is the first time a throughput constraint is implemented
into a CP language. We have evaluated the scalability of our code on three sets
of realistic instances: cyclic, acyclic and strongly connected graphs. The second
set of instances is quite difficult and scales poorly, while the first and third sets
scale well. We can solve instances up to 20-30 nodes in the order of seconds for
finding a feasible solution and in the order of few minutes for proving throughput
optimality.

2 Preliminaries on SDFG and HSDFG

Synchronous Dataflow Graphs (SDFGs) [I] are used to model multimedia appli-
cations with timing constraints that must be bound to a Multi Processor System
on Chip. They allow modeling of both pipelined streaming and cyclic dependen-
cies between tasks. To test the performances of an application on a platform,
one important parameter is the throughput. In the following we provide some
preliminary notions on synchronous data flow graphs used in this paper.

Definition 1. An SDFG is a tuple (A,D) consisting of a finite set A of actors
and a finite set D of dependency edges. A dependency edge d = (a,b, p,q,tok)

28 A. Bonfietti et al.

Fig.1. (A) An example of SDFG; (B) the corresponding equivalent HSDFG

denotes a dependency of actor b on a. When a executes it produces p tokens on d
and when b executes it removes q tokens from d. Edge d may also contain initial
tokens. This number is notated by tok.

Actor execution is defined in terms of firings. An essential property of SDFGs
is that every time an actor fires it consumes a given and fixed amount of tokens
from its input edges and produces a known and fixed amount of tokens on its
output edges. These amounts are called rates. The SDFG illustrated in figure
[MA presents initial token on edges (A4,4) and (C,B) with tok values respectively
1 and 3. The rates on the edges determine how often actors have to fire w.r.t.
each other such that the distribution of tokens over all edges is not changed.
This property is captured in the repetition vector.

Definition 2. A repetition vector of an SDFG=(A,D) is a function v: A — N
such that for every edge (a,b,p,q,tok) € D froma € A tobe A, py(a) = ¢vy(b).
A repetition vector q is called non-trivial if Va € A, v(a) > 0.

The SDFG reported in figure [[A has three actors. Actor A has a dependency
edge to itself with one token on it. It means that the two firings of A cannot be
executed in parallel because the token on the edge (A,A) forces the sequential
execution of the actor A. Also, each time A executes it produces one token that
can be consumed by B. Each time B executes it produces 3 tokens while C
consumes 2 tokens. Also when C executes it produces 2 tokens while C requires
3 tokens to fire. Thus, every 2 executions of B correspond to 3 executions of C.
This is captured in the repetition vector reported in figure[TJA. Concerning initial
tokens, they both define the order of actor firings and the number of instances
of a single actor simultaneously running. For example, at the beginning of the
application, A only can start (as there are tokens enough on each ingoing arc).
A will be then followed by B and then C.

An SDFG is called consistent if it has a non-trivial repetition vector. The
smallest non-trivial repetition vector of a consistent SDFG is called the repeti-
tion vector. Consistency and absence of deadlock are two important properties
for SDFGs which can be verified efficiently [2], [I1]. Any SDFG which is not
consistent requires unbounded memory to execute or deadlocks, meaning that
no actor is able to fire. Such SDFGs are not useful in practice. Therefore, we
focus on consistent and deadlock free SDFGs.

Throughput Constraint for Synchronous Data Flow Graphs 29

Throughput is an important design constraint for embedded multimedia sys-
tems. The throughput of an SDFG refers to how often an actor produces an
output token. To compute throughput, a notion of time must be associated with
the firing of each actor (i.e., each actor has a duration also called response time)
and an execution scheme must be defined. We consider as execution scheme the
self timed execution of actors: each actor fires as soon as all of its input data
are available (see [II] for details). In a real platform self timed execution is
implemented by assigning to each processor a sequence of actors to be fired in
fixed order: the exact firing times are determined by synchronizing with other
processors at run time.

SDFGs in which all rates associated to ports equal 1 are called Homogeneous
Synchronous Data Flow Graphs (HSDFGs, [1]). As all rates are 1, the repetition
vector for an HSDFG associates 1 to all actors. Every SDFG G = (A,D) can
be converted to an equivalent HSDFG GH = (AH,DH), by using the conversion
algorithm in [2], sec. 3.8. In figure[IB we report the HSDFG corresponding to the
SDFG in figure[TIA. For each node in the SDFG we have a number of nodes in the
HSDFG equal to the corresponding number in the repetition vector. Equivalence
means that there exists a one-to-one mapping between the SDFG and HSDFG
actor firings, therefore the two graphs have the same throughput. The fastest
method to compute the throughput of an HSDFG is the use of the maximum
cycle mean (MCM) algorithm [2], as the throughput is 1/MCM. In the context
of SDFGs, the cycle mean of a cycle C' is the total computation time of actors in
C divided by the number of tokens on the edges in C; the maximum cycle mean
for an SDFG is also known as iteration period. Clearly longer cycles influence
the throughput more than shorter ones.

The problem we face in this paper is the following: given a multiprocessor
platform with homogeneous processors we have to allocate each actor to a pro-
cessor and to order actors on each processors such as all precedence constraints
and the throughput constraints are met. Both the allocation and the schedule are
static, meaning that they remain the same over all the iterations. In this paper
we assume negligible delay associated to inter-processor communication and a
uniform memory model for the processors. This models fits well the behavior of
a cache-coherent, shared memory single-chip multiprocessor, such as the ARM
MPCore [I§].

3 Related Work

The body of work on SDFG mapping is extensive and covers more than two
decades, starting from the seminal work by Lee and Messerschmitt [10]. Hence,
a complete account of all related contributions is not possible in this paper.
The interested reader is referred to [2] for an excellent, in-depth survey of the
topic. Here we focus on categorizing the two main classes of approaches taken
in the past, summarizing state-of-the-art and putting them in perspective with
our work.

The first class of approaches, pioneered by the group lead by E. Lee [I1]
and extensively explored by many other researchers [2], can be summarized

30 A. Bonfietti et al.

as follows. A SDFG specification is first checked for consistency, and its non-
null repetition vector is computed. The SDFG is then transformed, using the
algorithm described in [2] into a HSDFG. The HSDFG is then mapped onto
the target platform in two phases. First, an allocation of HSDFG nodes onto
processors is computed, then a static-order schedule is found for each proces-
sor. The overall goal is to maximize throughput, given platform constraints.
Unfortunately, throughput depends on both allocation and scheduling, but in
this approach scheduling decisions are postponed to a second phase. Hence, an
approximate cost function is used to drive allocation decisions: for instance, a
bin-packing heuristic aiming at balancing processor workload is proposed in [12].
After allocation, scheduling is reduced to a set of single-processor actor ordering
decisions. Scheduler implementation issues mandate for static orders, which are
decided off-line. This is however not an easy problem to solve either, as through-
put depends on the order of execution of actors and we have an exponential
blowup of the solution space. Incomplete search strategies are used, such as list
scheduling, driven by a priority function related to throughput. For instance,
high priority can be given to actors which belong to long cycles in the HSDFG
and therefore have most probably more impact on the throughput [2].

The second class of approaches computes mapping and scheduling directly
on the SDFG, without a preliminary HSDFG transformation [I3]. This has the
main advantage to avoid potential blow-up in the number of actors, which can
happen for SDFGs with highly un-balanced rates with a large minimum common
multiple. Unfortunately, there is no known way to analytically compute through-
put for a generic SDFG with scheduling and allocation, hence these approaches
resort to heuristic cost functions to generate promising solutions, and then com-
pute the actual throughput by performing state-space exploration on the SDFG
with allocation end scheduling information until a fixed point is reached [I4].
This process is quite time consuming. Furthermore, even though the throughput
computation via state-space exploration is accurate, there is no guarantee that
the solutions generated by the heuristic search are optimal.

The incomplete approaches summarized above obviously cannot give any
proof of optimality. Our work aims at addressing this limitation, and it pro-
poses a complete search strategy which can compute max-throughput mappings
for realistic-size instances. Our starting point is a HSDFG, which can be ob-
tained from a SDFG by a pseudo-polynomial transformation. The analysis of
complete search strategies starting directly from a generic SDFG, without HS-
DFG transformation, will be subject of future work.

4 Scheduling and Allocation as a Constraint Problem

Due to the cyclic nature of the problem, a scheduling approach deciding the
starting time of optional activities running on alternative unary resources has
to cope with the transition phase which always appears at execution time be-
fore the application becomes periodic (enabling throughput computation). A
classical solution is to schedule over time several iterations of the HSDFG until

Throughput Constraint for Synchronous Data Flow Graphs 31

OO
®

Fig. 2. The HSDFG corresponding to the SDFG of figure

the periodic phase is reached, with a possibly drastical increase of the num-
ber of actors. We therefore opted for an alternative approach, somehow similar
to Precedence Constraint Posting techniques [20], and devised an order-based,
rather than time-based model. Our approach relates to [I3] in that the basic idea
is to model the effects of design choices by means of modifications to the graph.
Consider for example the HSDFG in figure PIA, where all rates are assumed to
be one and actors A,D are mapped on one processor, while actors B, C and E on
another. From the fact that no more than one task can execute on a processor
at the same time, it also follows that two instances of the same task cannot run
simultaneously: this can be modeled by adding an auto-cycle to each actor, as
depicted in figure where the added arcs are dotted.

Moreover, actors mapped on the same processor must be mutually exclusive:
this is captured by adding arcs to create a cycle between each pair of non depen-
dent tasks with the same mapping; note this requires adding one arc for the (A,
D) and (B, E) pairs in figure 2B and two arcs for the (B, C) and(C, E) pairs.
In order to avoid deadlocks a token must be placed for each of these cycles:
while the choice is forced for the (A, D) and (B, E) pair, both arcs are suitable
for (B, C), (C, E), as hinted by the empty circles in figure 2B. Choosing the
placement of those tokens amounts to take scheduling decisions: for example in
figure 2IC the order B, C, E was chosen. Note the presence of the edge (B,E) is
not necessary, since the path from B to E (B,D,E) implies that the execution
of actor F depends on the execution of B.

The main advantage with this approach is that a standard throughput com-
putation algorithm can be used (almost) off the shelf to evaluate the effect of
each design decision. We therefore devised a two layer CP model; on one level
the model features two sets of decision variables, respectively representing the
processor each actor is mapped to and the scheduling/ordering decisions, and on
another level a set of graph description variables. Let n be the number of actors
in the input HSDFG and let p be the number of processor in the platform, then
the decision variables are:

Vi=0...n—1: PROC; € [0..p — 1] Vi=0...n—1: NEXT; € [-1..n — 1]

whereas the (dynamically changing) graph structure is described via a matrix
of binary variables Y;; € [0, 1] such that Y;; = 1 iff an arc from a; to a; ex-
ists. Note that the token positioning is implicitly defined by the NEXT; variables
and is built on-line only at throughput computation time. The value of NEXT;

32 A. Bonfietti et al.

defines the successor of the actor 4; the negative value means the lack of a succes-
sor. These variables are connected to allocation decisions and to dependencies
between actors.

Existing arcs in the input HSDFG result in some pre-filling of the Y matrix,
such that Y;; = 1 for each arc (a;, aj,1, 1, tok) in the original graph. Channeling
constraints link decision and graph description variables; in particular, as for the
PROC; variables, the relation depends on whether a path with no tokens exists
in the original graph between two nodes a;, a;. Let us write a; < a; if such path
exists; then, if ¢ # j and neither a; < a; nor a; < a;:

PROC; = PROC; = Yij + Y5 = 2 (1)

Constraint ([IJ) forces two arcs to be added, if two independent nodes are mapped
to the same processor (e.g. nodes B and C in figure 2B). If instead there is a
path from a; to a; (a; < a;), then the following constraint is posted:

|:(PRDC1 = PROC;) A < 3" (PROC = PROC:) = 0) A (>~ (PROGx = PROC;) = 0)} =¥ =1

ap<a; aj<ag

The above constraint completes dependency cycles: considering only tasks on
the same processor (first element in the constraint condition), if there is no task
before a; in the original graph (second element) and there is no task after a; in
the original graph (third element), then close the loop, by adding an arc from
a; to a;. Finally, auto-cycles can be added to each node in a pre-processing step
and are not considered here.

The NEXT variables do not affect the graph description matrix; a number
of constraints, however, are used to ensure their semantic consistence. In first
place, dependencies in the input SDFG cannot be violated: thus a; < a; =
NEXT; # . Less intuitively, the presence of an arc (a;,a;, 1,1,tok) with tok =1
in an HSDFG implies a; to fire always after a; (e.g. A2 and A; in fig.) , and
therefore, NEXT; # j.

No two nodes can have the same NEXT on the same processor: PROC; =
PROC; = NEXT; # NEXT;. Then, a node a; can be next of a; only if they are
on the same processor: PROC; # PROC; = NEXT; # j. The -1 value is given to the
last node of each (non empty) processor:

n—1 n—1
Vproc : Z(PROCi =proc) > 0= Z[(PRUCi = proc) x (NEXT; = —1)] =1
i=0 =0

Finally, transitive closure on the actors running on a single processor is kept
by posting a nocycle constraint [I9] on the related NEXT variables. Standard
tree search is used with minimum size domain as variable selection heuristics.
Symmetry due to homogeneous processors are broken at search time.

4.1 Throughput Constraint

The relation between decision variables and the throughput value is captured in
the proposed model by means of a novel throughput constraint, with signature:

th cst(TPUT, [PROC;], [NEXT,], [Ys;], W, T)

Throughput Constraint for Synchronous Data Flow Graphs 33

where TPUT is a real valued variable representing the throughput, [PROC;], [NEXT;]
and [Yi;] are defined as above, W is a vector of real values such that W; is the
computation time of actor a; and 7 is a matrix such that 7;; is the number
of initial tokens tok on the arc from a; to a;. Clearly 7;; > 0 implies Y;; = 1;
note that in this paper we assume 7;; = [0,1]: this is usually true for HSDFG
resulting from conversion of an original SDFG.

We devised a filtering algorithm consistently updating an upper bound on
TPUT (this is sufficient for a throughput maximization problem) and performing
what-if propagation on the NEXT and PROC variables. The filtering algorithm
relies on throughput computation inspired from the algorithms described in [I5]
and [16], which in turn are based on Karp’s algorithm (1978). The description
is organized in three steps: steps 1 and 2 describe how to build a HSDFG based
on current search state to obtain a throughput bound, while step 3 focuses on
the computation algorithm.

Step 1 - building the input graph: The input for the throughput computa-
tion is a “minimal” graph built by adding arcs to the original HSDFG based on
current state of the model. More precisely, an arc is assumed to exist between
actors a; and a; iff Y;; = 1; unbound Y variables are therefore treated as if they
were set to 0. Note that the computation of a lower bound for the throughput
would require arcs for unbound Y variables as well, thus providing a “maximal”
graph.

Step 2 - Token positioning: Next we construct a dependency graph DG with
the same nodes as the original HSDF graph G, and such that an arc (a;,a;)
exists in DG iff either an arc (a;,a;,1,1,0) exists in G (detected since Y;5 = 1
and 7;; = 0) or NEXT; = j. A token matrix TK is then built, according to the
following rules:

TKij =0 if a; -<DG a;

YZ]:():}TKZ]:O Yij:l:>{TKm‘:1OtheI'WiS€

where we write a; <P¢ a; if there is path from a; to a; in DG. This matrix

describes the position of the tokens on the new graph G used for the bound com-
putation. The above rules ensure the number of tokens is over-estimated, until
all NEXT and PROC are fixed. In the actual implementation, the dependency check
is performed without building any graph, while the token matrix T K is actually

PROC, = 0
PROC; = 1
PROC = 1
PROC, = 0
PROC, = 1
NEXT, = C

Fig. 3. HSDF graph structure and token positioning for throughput computation dur-
ing the search; note the number of tokens between actors C and E is overestimated

34 A. Bonfietti et al.

stored in the constraint. Note that considering a suitable under-estimation of the
number of token would be required to compute a throughput lower bound. Fig-
ure[BA shows some assignments of decision variables for the HSDFG in figure [2A
(remaining variables are considered unbound); figure[3B shows the corresponding
arc structure (without autocycles), figure BIC the extracted dependency graph
DG and figure BD the derived token positioning.

Step 2: Throughput computation: For a HSDFG, the throughput equals
the inverse of a quantity known as the iteration period of the graph and denoted
as A(HSDFG); formally:

1 _ wW(C)
i = MHSDEG) = max . ey

where C'is a cycle in the HSDFG, W(C) = >, - W; is the sum of the execution
time of all actors in C' and T(C) = Z(ai,a_j)ec TK;j is the total number of
tokens on the arcs of C. Intuitively, T(C') can be thought of as the amount of
concurrency which can be exploited on the cycle. In [I5] it is shown how to
compute the iteration period as the mazimum cycle mean of an opportunely
derived delay graph; Karp’s algorithm is used for the computation. With some
tricks, we show that a maximum cycle mean algorithm can be used to compute
the iteration period directly on a HSDFG.

The basic idea is that, according to Karp’s theorem, the critical loop con-
straining the iteration period can be found by analyzing cycles on the worst case
k-arcs paths (e.g. the longest ones) starting from an arbitrary source. Since no
cycle can involve more than n nodes, considering k-arcs paths with &£ up to n
is sufficient. Our algorithm shares most of its structure with that proposed in
[16]. Worst case paths are stored in a (n + 1) x n table D; the element on level
(row) k and related to node a; is referred to as Dg(a;) and contains the length
of the k-arcs path P from the source to a; maximizing the quantity W (P)/T(P)
(if any such path exists). Other than D, the algorithm also employs two equally

Algorithm 1. Throughput computation - build D table

1: set all Dy(a;) = —oco, mx(ai) = NIL, 7 (a;) =0
2: Ve = {ao}
3 V=0
4: Do(ag) =0
5: for k=1 to n do
6: for a; € V do
7 for a; € AT (a;) do
8: Vo=V, U {aj}
9: define TP = max(1, 7 (a;) + TK;j;)
10: define WP = Dy (a;) + W;
. wW(P Dy (aj)
11: if T((P)) > _r:(a J) then
12: Dk(a]) WP, ‘rk(aj):TP, Tl'k(aj):i
13: end if
14: end for

15: end for

16: find loops on level k
17: VC:Vn"/n:w
18: end for

Throughput Constraint for Synchronous Data Flow Graphs 35

sized tables m and 7, respectively storing the predecessor 7y (a;) of node a; and
the number of tokens 7x(a;) on the paths.

Pseudo code for the throughput computation is reported in Algorithm [T
where A% (a;) denotes the set of direct successors of a;. Once the table is initial-
ized (line 1), an arbitrary source node is chosen; in the current implementation
this is the node with minimum index (ap). Note that the choice has no influence
on the method correctness, but a strong impact on its performance, hence the
introduction of a suitable heuristic will be thoroughly considered in the future.

Next, the procedure is primed by setting Dg(ag) to 0 (line 4) and adding ag
to the list of nodes to visit V' (line 3); then we start to fill levels 1 to n one by
one (lines 6 to 18). For each node in V' each successor a; is considered (lines
6, 7), and, if necessary, the corresponding cells in D, 7, 7 are updated to store
the k-arcs path from ag to a; (lines 9 to 12); in case of an equality at line 11
the number of tokens is considered. Once a level is filled, loops are detected as
described in Algorithm[2and then we move to the next k value (line 17). A single

Algorithm 2. Throughput computation - finding loops

1: let k be the starting level on the D table
2: let Vbe the set of nodes to visit on level k
3: for a; € V do

4: define k' = k,a’ = a;
5: define WC =W,, TC =0
6: repeat
7: define h = index of a’
8: TC = max(1,TC + Terk,(a’),h)
9: WC':WC’+W,rk,(a/)
10: if WS > WE then
11: wWC =wc*, TC =TC*
12: TPUT < WS,
13: end if
14: a =a, (@), k=k—1
k/

15: until o’ =a; Va' = NIL
16: end for
STEP 0: D,n,T STEP 1: D,n,T STEP 2: D,n,T

A B C D E A B C D E A B C D E
o0{ 0/-/0 -/-/0 -/-/0 -/-/0 -/-/O 0: 0/-/0 -/-/0 -/-/0 -/-/0 -/-/0 o: 0/~/0 -/-/O -/-/0 -/-/O -/-/O
i -/-/0 -/-/0 -/-/O -/-/0 -/-/0 1 -/-/0 -/-/0 1/A/0O 1/A/O -/0/0 1{ -/-/0 -/-/0 1/A/O 1/A/0 -/0/0
2{ -/-/0 -/-/0 -/-/0 -/-/0 -/-/0 2; -/-/0 -/-/0 -/-/0 -/-/0 -/-/0 2i2/b/1 2/C/Z1 -/-/0 -/-/0 2/D/O
3{ -/-/0 -/-/0 --/0 -/-/0 -/-/O 3y -/-/0 --/0 -/-/0 -/-/0 -/-/O 3 -//0 --/0 -/-/0 -/-/0 -/-/O
4 -/-/0 -/-/0 -/-/0 -/-/0 -/-/0 4i -/-/0 -/-/0 -/-/0 -/-/0 -/-/0 4: --/0 -/-/0 -/-/0 -/-/0 -/-/0
50 -0 -0 -0 /0 /4O 5i /0 /O -0 ~-J0 /-0 5i -0 O O O -0
STEP 3: D,n,T STEP 4: D,n,T STEP 5: D,n,T

A B C D E A B C D E A B C D E
o0; 0/-/0 -/-/0 -/-/0 -/-/0 -/-/O 0: 0/-/0 -/-/0 -/-/0 -/-/0 -/-/0 o0; 0/-/0 -/-/0 -/-/0 -/-/O -/-/O
1{ -/-/0 -/-/0 1/A/O 1/A/O -/0/0 1 -/-/0 -/-/0 1/A/O 1/A/O -/0/0 1{ -/-/0 -/-/0 1/A/O 1/A/O -/0/0
2i2/D/1 2/C/Z1 -/-/0 -/-/0 2/D/O 2i2/D/1 2/C/1 -/-/0 -/-/0 2/D/O 2i2/b/1 2/C/Z1 -/-/0 -/-/0 2/D/O
3: -/-/0 3/E/1 3/A/1 3/A/1 -/-/0 3i -/-/0 3/E/L 3/A/1 3/A/1 -/-/0 3i -/-/0 3/E/1 3/A/1 3/A/1 -/-/0
4 -/-/0 -/-/0 --/0 -/-/0 -/-/0 4:4/D/2 4/C/2 4/B/1 4/B/1 4/C/2 4] 4/D/2 4/C/2 4/B/1 4/B/1 4/C/2
5{ -/-/0 -/-/0 -/-/0 -/-/0 -/-/O 5{ -/-/0 -/-/0 -/-/0 -/-/0 -/-/0 5{5/D/2 5/C/2 5/A/2 5/A/2 5/D/1

Fig. 4. Example of table filling (Algorithm [I)

36 A. Bonfietti et al.

iteration of the algorithm is sufficient to compute the throughput of a strictly
connected graph; otherwise, the process is repeated starting from the first never
touched node, until no such node exists.

Figure [shows the value of all tables at each step when Algorithm [l is ex-
ecuted on the graph of figure Bt all execution times are assumed to be 1. As
an example, consider the transition between step 1 and 2 in the figure: at level
1 the set V. of the nodes to be visited contains actors C' and D. When C' is
visited all its direct successors are processed: when moving from C to B we tra-
verse one more node (WP = D;(C) +Wp =14 1) and collect one more token
(TP =m(C)+1=0+1), hence we set Dy(B) = WP =2, o(B) =TP =1
and the predecessor m2(B) becomes C; similarly, when processing the arc from
C to E, we set Dy(E) = 2, o(E) = 1, ma(E) = C. Next, actor D is visited;
when processing the arc from D to A we set Dy(A) =2, 72(A) =1, ma(A) = D;
the second outgoing arc of D ends in the already visited node E: for this path
WP =2 and TP = max(1,7(D) + 0) = 1, but no token is collected; for this
reason, even if the ratio W P/T P has the same value as Dy(E)/72(E), we set D
as the predecessor of E and D3(F) =2, 7o(E) = 0.

The loop finding procedure (Algorithm 2]) is started at a specific level (let this
be k). From each actor a; on level k to be visited, the algorithm moves backward
along the predecessor chain (7 (a’) is the predecessor of current node) collecting
execution time of every node met along the path (lines 8, 9). When a second
occurrence of the starting node a; is detected (a’ = a; in line 14) a cycle is found.
If this loop constrains the iteration period more the last one found so far (line
10), this is set as critical cycle (WC*, TC* — initially WC* = 0,T7C* = 1) and
pruning is performed (line 12). The algorithm also stops when the start of D is
reached (a/ = NIL in line 14).

Algorithm [2] is executed for each value of k during the throughput compu-
tation. For instance, with regard to figure Ml at step 5 the procedure finds the
loops (stated backward): “A « D «— B « E « D/2 tokens”, “B «— C/1
token”, “D «— A/1 token”, “E «— D « B/1 token”. No loop is found at this
level starting from C. Loop E <+ D « B is critical and sets the iteration bound
to 3; the computed throughput is therefore 1/3, which is a valid upper bound
for the throughput of the original HSDFG. Note that by finding new loops the
upper bound always decreases; hence, if at any step a cycle is found such that
the resulting throughput is lower the than the minimum value of the TPUT vari-
able, then the constraint fails. Moreover, it could be proven that no more than
1 token can be collected by traversing a sequence of nodes on a single processor:
the filtering algorithm exploits this property to improve the computed bound at
early stages of the search, where the number of tokens is strongly overestimated.

5 Experimental Results

The system described so far was implemented on top of ILOG Solver 6.3 and
tested on graphs belonging to three distinct classes of HSDFGs, built by means
of the generator provided in the SDF3 framework [I7]. Graph classes include

Throughput Constraint for Synchronous Data Flow Graphs 37

in first place cyclic, connected graphs, which commonly arise when modeling
streaming applications. Those are probably the most interesting instances, as
they also reflect the typical structure of homogeneous graphs resulting from the
conversion of a SDFG. Note the throughput for a cyclic graph is intrinsically
bounded by the heaviest cycle, no matter how many processor it is mapped to.

Furthermore, acyclic and strictly connected HSDFGs were considered. Acyclic
graphs expose the highest parallelism: this makes them the most challenging
instances, but also lets the solver achieve the best throughput values, as no
intrinsic bound is present (beside the computation time of the heaviest actor).
The class of strictly connected graphs is interesting as this is the type of graph
the Maximum Cycle Mean computation algorithms (such as the one we use)
were originally designed for; for this reason, the solver is expected to have the
best run time on this class of instances.

For each class, groups of 6 graphs with 10, 15, 20, 25 nodes were generated and
tested on platforms with different number of processors (2, 4, 8). An iterative
testing process was adopted: first the mapper and scheduler is run with a very
loose throughput requirement; whenever a solution is returned, this is stored
and the throughput value is used as a lower bound for the next iteration. When
the problem becomes infeasible, the last solution found is the optimal one. A
time limit of 20 minutes is set for each of the iterations; all tests were run on a
Core2Duo machine with 1GB of RAM.

Table[dlreports results for the first class of graphs on all types of platform; the
number of processors is reported as the first column (‘proc’). For each group of
6 instances with the same number of nodes the table shows in column ‘T > TL’
the number of timed out instances (those for which no solution at all could be
found within the time limit), and statistics about the solution time. In detail, the
average running time and number of fails for an iteration are reported (‘T'(all)’
and ‘F(all)’), together with the average time to solve the iteration when the
throughput constraint is the tightest one (‘T(opt)’), to show how the method
performs in a very constrained condition, when a heuristic approach is likely
to fail; the number of instances not considered in the averages is always shown
between round brackets. Finally, the average time for the fastest (‘T(best)’)
and the slowest (‘T(worst)’) iteration give an intuition of the variability on the
running time, which is indeed considerably high. A triple dash “---” is shown

Table 1. Results for cyclic, connected graphs - times are in seconds

proc nodes T(opt) T(all) F(all) T(best) T(worst) T > TL

10 0.03 0.04 53 0.02 0.05 0
2 15 0.30(1) 5.27 3658 0.17 27.97 1
20 2.52(2) 28.37(2) 4374(2) 0.63(2) 86.44(2) 2
25 - - - 8.33 78.65 3
10 0.03 0.05 46 0.03 0.07 0
4 15 1.13(1) 4.45(1) 3303 0.21 25.03 1
20 1.94(2) 21.60(2) 1808(2) 0.64(2) 32.17(2) 2
25 - - - 8.62 228.86 3
10 0.04 0.06 47 0.03 0.09 0
8 15 0.25(1) 4.91(1) 3195 0.20 29.38 1
20 6.65(2) 26.13(2) 2222(2) 0.72(2) 42.12(2) 2
25 - - - 9.83 264.98 3

38 A. Bonfietti et al.

Table 2. Results for acyclic graphs - times are in seconds

proc nodes T(opt) T(all) F(all) T(best) T(worst) T > TL

10 0.05 0.13 234 0.06 0.58 0
2 15 0.11 6.75 9263 0.09 22.52 3
20 -— -— -—- -—- -— 6
25 - - -—- -—- - 6
10 0.03 0.11 187 0.02 0.58 0
4 15 0.09 4.94 6450 0.07 24.17 3
20 - - -—- -—- - 6
25 -— -— -—- -—- -— 6
10 0.09 0.11 161 0.03 0.64 0
s 15 0.11 4.63 5712 0.09 24.60 3
20 -— -— -—- -—- -— 6
25 - - -—- -—- - 6

Table 3. Results for strictly connected graphs - times are in seconds

proc nodes T(opt) T(all) F(all) T(best) T(worst) T > TL

10 0.03 0.04 12 0.03 0.05 0
2 15 1.38 0.82 430 0.10 1.58 0
20 1.49(4) 35.17(4) 4474(4) 0.48(1) 112.47(1) 0
25 - - 348(4) 1.17(4) - 1
10 0.03 0.04 29 0.03 0.04 0
4 15 0.11 0.14 40 0.10 0.23 0
20 0.89(4) 30.25(4) 3578(4) 0.43(1) 122.88(1) 0
25 - - 349(4) 1.27(1) - 1
10 0.14 0.16 177 0.03 0.30 0
8 15 0.13 0.17 42 0.12 0.28 0
20 - - - 0.50(1) 303.87(1) 0
25 - - 352(4) 1.22(1) - 1

when the available data are not sufficient for the average to be meaningful. All
time values are in seconds.

As expected, the time to solve the most constrained iteration and the average
running time grows exponentially with the size of the instances. However, the
solution time is reasonable for realistic size graphs, counting 10 to 20 nodes.
Propagation for the throughput constraint often takes around 50% of the overall
process time, pushing for the introduction of caching and incremental compu-
tation in the filtering algorithm. The best case and worst case behavior is quite
erratic, as it is quite common for CP/pure tree search based approaches. Finally,
it is worth to point how, unlike in usual allocation and scheduling problems, the
number of processors appears to have no strong impact on the problem hardness.

Tables Pl and B] show the same data respectively for acyclic ad strictly con-
nected graphs. Acyclic graphs are indeed very hard to cope with, yielding time-
outs for all the 20 and 25 nodes instances (regardless of the number of pro-
cessors): this will require further investigation. Conversely, strictly connected
graphs are the most easily tackled; despite the average run time is often a little
higher than table [the number of timed out instances is the lowest among the
three classes. As previously pointed out, this was somehow expected.

Finally, figure [shows the run time (in logarithmic scale) of all iterations
of the testing process for a sample instance; as the iteration number grows,
the throughput constraint becomes tighter and tighter. The observed trend is

Throughput Constraint for Synchronous Data Flow Graphs 39

loglO(sol. time)
°

g T 3 E] T 5
iteration number

Fig. 5. Log. runtime/iteration number of the testing process for a sample instance

common to many of the instances used for the tests and features a sharp com-
plexity peak in the transition phase between a loosely and a tightly constrained
problem. This is an appealing peculiarity, since the complexity peak is located
where a heuristic approach would likely perform quite well and could be used
instead of the complete method, which on the other hand becomes more effective
right in the (very constrained) region where it is also more useful.

6 Conclusions

We presented a CP based method for allocating and scheduling HSDFGs on
multiprocessor platforms; to the best of our knowledge this is the first complete
approach for the target problem. The core of the system is a novel throughput
constraint embedding a maximum cycle mean computation procedure, which
proved to be crucial for the performance, but very time consuming as well.
This sets the need for strong optimization of the filtering algorithm and for
the introduction of caching and incremental computation. Also, a revision of
the throughput constraint aimed to improve its usability is planned, in order to
make it more easily applicable to other problems as well.

The approach has interesting run time for classes of realistic size instances.
Sometimes however the conversion of a SDFG into a HSDFG leads to a blow
up of the number of nodes; if the graph becomes too large the approach is not
likely to work out. A method to partly overcome the problem is to avoid the
conversion and compute throughput directly on the SDFG; for example in [13]
this is done by simulation. Integration of such a technique in the throughput
constraint is another interesting topic for future research.

Acknowledgement. The work described in this publication was supported by
the PREDATOR Project funded by the European Community’s 7th Framework
Programme, Contract FP7-ICT-216008.

References

1. Lee, E., Messerschmitt, D.: Synchronous dataflow. Proceedings of the IEEE 75(9),
1235-1245 (1987)

2. Sriram, S., Bhattacharyya, S.: Embedded Multiprocessors Scheduling and Synchro-
nization. Marcel Dekker, Inc., New York (2000)

40

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

A. Bonfietti et al.

. Muller, M.: Embedded Processing at the Heart of Life and Style. In: IEEE ISSCC
2008, pp. 32-37 (2008)

. Jerraya, A., et al.: Roundtable: Envisioning the Future for Multiprocessor SoC.
IEEE Design & Test of Computers 24(2), 174-183 (2007)

. Pham, D., et al.: Overview of the architecture, circuit design, and physical im-
plementation of a first-generation cell processor. IEEE Journal of Solid-State Cir-
cuits 41(1), 179-196 (1996)

. Paganini, M.: Nomadik: A Mobile Multimedia Application Processor Platform. In:
IEEE ASP-DAC 2007, pp. 749-750 (2007)

. Bell, S., et al.: TILE64 Processor: A 64-Core SoC with Mesh Interconnect. In:
ISSCC 2008, pp. 88-598 (2008)

. Lee, A., Bhattacharyya, S.S., Murthy, K.: Software synthesis from data flow graphs.
Kluwer Academic Publishers, Dordrecht (1996)

. Moreira, O., Poplavko, P., Pastrnak, M., Mesman, B., Mol, J.D., Stuijk, S.,

Gheoghita, V., Bekooij, M., Hoes, R., van Meerbergen, J.: Data Flow analysis

for real-time embedded multiprocessor system design. In: Dynamic and robust

streaming in and between connected consumer-electronic devices. Springer, Hei-

delberg (2005)

Lee, E.A., Messerschmitt, D.C.: Static scheduling of synchronous data flow pro-

grams for digital signal processing. IEEE Trans. on Computers (Feburary 1987)

Sriram, S., Lee, E.: Determining the order of processor transactions in statically

scheduled multiprocessors. Journal of VLSI Signal Processing 15, 207-220 (1996)

Moreira, O., Mol, J.D., Bekooij, M., van Meerbergen, J.: Multiprocessor Resource

Allocation for Hard-Real Time Streaming with a Dynamic Job-Mix. In: IEEE

RTAS 2005, pp. 332-341 (2005)

Geilen, M., Stuijk, S., Basten, T., Corporaal, H.: Multiprocessor resource allocation

for throughput-constrained synchronous data flow graphs. In: DAC 2007 (2007)

Stuijk, S., Basten, T., Moonen, A., Bekooij, M., Theelen, B., Mousavi, M., Ghamar-

ian, A., Geilen, M.: Throughput analysis of synchronous data flow graphs. Appli-

cation of Concurrency to System Design (2006)

Ito, K., Parhi, K.K.: Determining the Minimum Iteration Period of an Algorithm.

VLSI Signal Processing 11(3), 229-244 (1995)

Dasdan, A., Gupta, R.K.: Faster maximum and minimum mean cycle algorithms

for system-performance analysis. IEEE Trans. on CAD of Integrated Circuits and

Systems 17(10), 889-899 (1998)

Stuijk, S., Geilen, M., Basten, T.: Sdf*: sdf for free. In: Acsd 2006, pp. 276-278

(2006)

Goodacre, J., Sloss, A.N.: Parallelism and the ARM instruction set architecture.

Computer 38(7), 42-50 (2005)

Pesant, G., Gendreau, M., Potvin, J.-Y., Rousseau, J.M.: An exact constraint logic

programming algorithm for the travelling salesman problem with time windows.

Transportation Science 32, 12-29 (1998)

Policella, N., Cesta, A., Oddi, A., Smith, S.F.: From precedence constraint posting

to partial order schedules: a csp approach to robust scheduling. AT Commun. 20(3),

163-180 (2007)

A Shortest Path-Based Approach to the Multileaf
Collimator Sequencing Problem

Hadrien Cambazard, Eoin O’Mahony, and Barry O’Sullivan

Cork Constraint Computation Centre
Department of Computer Science, University College Cork, Ireland
{h.cambazard, e.omahony,b.osullivan}@4c.ucc.ie

Abstract. The multileaf collimator sequencing problem is an important compo-
nent in effective cancer treatment delivery. The problem can be formulated as
finding a decomposition of an integer matrix into a weighted sequence of binary
matrices whose rows satisfy a consecutive ones property. Minimising the cardi-
nality of the decomposition is an important objective and has been shown to be
strongly NP-Hard, even for a matrix restricted to a single row. We show that in
this latter case it can be solved efficiently as a shortest path problem, giving a sim-
ple proof that the one line problem is fixed-parameter tractable in the maximum
intensity. This result was obtained recently by [9] with a complex construction.
We develop new linear and constraint programming models exploiting this idea.
Our approaches significantly improve the best known for the problem, bringing
real-world sized problem instances within reach of complete methods.

1 Introduction

Radiation therapy is a treatment modality that uses ionising radiation in the treatment
of patients diagnosed with cancer (and occasionally benign disease). Radiation therapy
represents one of the main treatments against cancer, with an estimated 60% of cancer
patients requiring radiation therapy as a component of their treatment. The aim of radia-
tion therapy is to deliver a precisely measured dose of radiation to a well-defined tumour
volume whilst sparing the surrounding normal tissue, achieving an optimum therapeu-
tic ratio. Recent progress in technology and computing science have allowed significant
improvement in the planning and delivery of all radiation therapy techniques.

Our primary objective is to apply recent advances in constraint programming to mul-
tileaf collimator sequencing in intensity-modulated radiotherapy (IMRT). At the core of
advanced radiotherapy treatments are hard combinatorial optimisation problems, which
are typically computationally intractable (Section 2] and [3). The contributions of this
paper rely on the insight that the multileaf collimator sequencing problem restricted to
a single row can be solved as a shortest path problem. A similar but more general result
was obtained recently by [9]. We give a simple proof that the single row problem is
fixed-parameter tractable in the maximum intensity of the row (Section) and exploit
this insight to develop novel linear and constraint programming models (Section [3).
These approaches significantly out-perform the best known for the problem, and bring
real-world sized instances within reach of complete methods (Section[G)).

W.-J. van Hoeve and J.N. Hooker (Eds.): CPAIOR 2009, LNCS 5547, pp. 41155]2009.
(© Springer-Verlag Berlin Heidelberg 2009

42 H. Cambazard, E. O’Mahony, and B. O’Sullivan

Fig. 1. An example IMRT treatment plan (Courtesy of the Advanced Oncology Center, Inc.)

2 Intensity-Modulated Radiotherapy

IMRT is an advanced mode of high-precision radiotherapy that utilises computer con-
trolled x-ray accelerators to deliver precise radiation doses to a malignant tumour, or
specific areas within the tumour. A treatment plan is devised for an individual patient
based on the three-dimensional (3D) shape of the patient’s tumour. Figure [presents an
example IMRT treatment plan, clearly showing the location of the tumour in the centre
of the image, the positions from which the tumour will be irradiated, and the dosage
to be delivered from each position. The treatment plan is carefully developed based on
3D computed tomography images of the patient, in conjunction with computerised dose
calculations to determine the dose intensity pattern that will best conform to the tumour
shape. There are three optimisation problems relevant to this treatment. Firstly, the ge-
ometry problem considers the best positions for the beam head from which to irradiate.
Secondly, the intensity problem is concerned with computing the exact levels of radia-
tion to use in each area of the tumour. Thirdly, the realisation problem, tackled in this
paper, deals with the delivery of the intensities computed in the intensity problem.
Combinatorial optimisation methods in cancer treatment planning have been re-
ported as early as the 1960s [3]]. There is a large literature on the optimisation of IMRT,
which has tended to focus on the realisation problem [8]. Most researchers consider the
sequencing of multileaf collimators (Figure[2(2)). The typical formulation of this prob-
lem considers the dosage plan from a particular position as an integer matrix, in which
each integer corresponds to the amount of radiation that must be delivered to a partic-
ular region of the tumour. The requisite dosage is built up by focusing the radiation
beam using a multileaf collimator, which comprises a double set of metal leaves that
close from the outside inwards. Therefore, the collimator constrains the possible set of
shapes that can be treated at a particular time. To achieve a desired dosage, a sequence
of settings of the multileaf collimator must be used. One such sequence is presented in
Figure 2(b)] The desired dosage is presented on the left, and it is delivered through a
sequence of three settings of the multileaf collimator, which are represented by three

A Shortest Path-Based Approach to the Multileaf Collimator Sequencing Problem 43

100 00
0

ocnNnnao
coonao

o
"
~
ER-R- RN

11
11
11
00
00

©

o
TvLwawawow
TvLwawrwaw
NNCswaaeNn
NNCaNaGaaN
NNnoo

No oo

11
11

o

(a) A multileaf collimator. (b) A multileaf sequencing problem.

Fig. 2. A simplified view of the optimisation problem associated with sequencing multileaf colli-
mators in IMRT, Figure 2(b) has been adapted from [T]]

matrices. Each matrix is exposed for a specific amount of time, corresponding to the
weight associated with the matrix, thus delivering the requisite dosage.

Formally, this problem can be formulated as the decomposition of an integer matrix
into a weighted sum of 0/1 matrices, in which each row has the “consecutive ones
property” [2l6]. The state-of-the-art approach is based on constraint programming [1]].

3 Formulation of the Multileaf Collimator Sequencing Problem

We present a direct formulation of the multileaf collimator sequencing problem. Let
I represent the dosage intensity matrix to be delivered. We represent this as an m X
n (rows X columns) matrix of non-negative integers. We assume that the maximum
dosage that is delivered to any region of the tumour is M units of radiation. Therefore,
weset [;; < M,1<i<m,1<j<n.

To ensure that each step in the treatment sequence corresponds to a valid setting
of the multileaf collimator, we represent each step using a 0/1 matrix over which we
specify a row-wise consecutive ones property (C1). Informally, the property requires
that if any ones appear in a row, they appear together in a single block. A C1 matrix is
a binary matrix in which every row satisfies the consecutive ones property. Formally, =
is an m X n C1 matrix if and only if for any line ¢, 1 < a < b < c < n,

Tia =1ANZTje =1 — x5 =1. (D)

A solution to the problem is a sequence of C1 matrices, {2, in which each x, is asso-
ciated with a positive integer by, such that: I = >, _,(by - xx). Let B and K be the
sum of coefficients by and the number of matrices x; used in the decomposition of I,
respectively. Then B =), _, by and K = [£2|. B is referred to as the total beam-on
time of the plan and K is its cardinality. The typical problem is to minimise B or K
independently (known as the decomposition time and decomposition cardinality prob-
lem, respectively) or a combination of both. The minimisation of B alone is known to
be linear [216]], while minimizing K alone is strongly NP-Hard [2]]. We will tackle the

44 H. Cambazard, E. O’Mahony, and B. O’Sullivan

formulation preferred by practitioners, and mostly used in the literature so far, which is
to minimise B first and then K (see Figure 2(b)). The problem is the following: given
the optimal value B* of B, find a treatment plan that minimises f, i.e.

Minimise(K) such that
> oken bk = B

I'=2 heobrtk
Vk € (2, xy, is a C1 matrix.

We now briefly explain how B* can be found. The minimum sum of weights needed

to have a C1 decomposition of a (single) row matrix [I1, ..., I;] can be computed as:
n—1
Zmax([i+1 —Ii,O) (2)
i=0

assuming Iy = 0 [2)6]. The expression ;1 — I; represents the supplementary sum of
weights needed for [, 1, the remainder being reused without breaking the consecutive
ones property. We provide a small example to help understand Equation[2]

Example 1 (Computing the Minimum Sum of Weights). Consider a dosage plan [=
[3,2, 0, 3]. The minimum sum of weights computed according to the previous formula
would be 3 + 0 4+ 0 + 3 = 6. The weights used to achieve the first value 3 could be
reused for the following 2, but all weights already used before the 0 cannot be re-used
for the last 3, since all the corresponding row matrices must have a 0 in this position to
satisfy the C1 property. Then, three more unit of weights are needed to make the last 3,
giving a decomposition I = (1,0,0,0)+2-(1,1,0,0) +3-(0,0,0, 1). A

The B* corresponding to the whole matrix is the maximum of the B* values amongst
the m rows of the matrix. A number of CP models for the multileaf collimator sequenc-
ing problem have been proposed in the literature. We briefly present these below.

3.1 The Direct Model

For a fixed K, the problem specification given above can be almost directly encoded
with a variable per coefficient of the decomposition and a variable per cell of the matri-
ces in the decomposition, as follows:

Variables : Vk < K b €{1,...,M}
Vk< K,i<m,j<n, zf; € {0,1}
DM1 : Zk<Kbk:B*
DM by > ba,...> by
DMs : Vk < K,i <m, CONSECUTIVEONES({z¥,, ..., 2% 1)
DM, : Vi<m,j<n Shex be Xz = L

The CONSECUTIVEONES constraint (DM3) can be implemented using a contiguity
constraint [10] or the REGULAR global constraint [12]] with a straightforward deter-
ministic finite automaton. Constraint DM eliminates symmetries amongst the weights.
A number of symmetries amongst the ¥ variables remain. We quote here the example
given in [1]] to highlight this important drawback of the Direct Model.

A Shortest Path-Based Approach to the Multileaf Collimator Sequencing Problem 45

Example 2 (Symmetries of the Direct Model). Consider part of a decomposition with
two identical weights of value 2. The two following decompositions are symmetrical.

111 010 111 010
2(111)*2(010> _2<110>+2<011>
The values in the right bottom corners of the matrices can be swapped without changing
the solution since the weights are identical. A

Symmetries due to identical weights can be partially avoided by dynamically adding
lexicographic constraints on the rows and columns (once the weights are known in
the search) but that would not be enough. Rows and columns remain lexicographically
ordered in this example. The next model was proposed in [[1] to address this issue.

3.2 The Counter Model

The Counter Model is based on IV}, variables representing the number occurrences of
weight b in the decomposition. Qi—’j variables refine this information by counting the
number of times a weight b contributes to the sum of I;;. The model is stated as follows:

Objective : Minimise(K) such that:
Variables : Vb < M Ny €{0,...,B"}
Vi<m,j<nb<M Q% €{0,...,M}

CM; : Vi<m,j<n Zg‘;befj:Iij

CMs : o bx N, = B*

CMs : Sl Ny =K

CMy : Vb < M,i < m, SUMOFINCREMENTS({Q%, ..., Q% }, Ny)

Constraint CM 1 ensures that each element of [is properly decomposed. CM 2 and
CM 3 relate the N, variables to B* and K. The model makes use of an ad-hoc global
constraint to enforce the C1 property of this decomposition expressed in term of occur-
rences of each weight. It is the SUMOFINCREMENTS [4]], defined by:

n—1
SUMOFINCREMENTS({V4, ..., Vo },U) = Y " maz(Vigr — Vi,0) < U with Vo =0 (3)
1=0

A C1 decomposition of I can be derived from a C1 decomposition of Q for each b.
The key intuition behind this model is that it is sufficient to find an unweighted decom-
position (only with weights of 1) of each Q° instead of looking for a decomposition of
I (see [I). Keep in mind that Q® is the matrix defining the number of times a weight
equal to b is used to decompose each element of I, thus a weighted decomposition of
Qb would result in identical matrices. The cardinality would, therefore, be reduced by
merging the corresponding matrices and increasing the weight. Thus all matrices have
to be different and the decomposition of Q° is necessarily unweighted in an optimal
solution.

As explained earlier in Section[3] the expression Y-, maz(V;41 — V;,0) is a con-
venient way to compute the minimum sum of weights needed for a C1 decomposition
of a row. Obviously, if we seek an unweighted decomposition, the formula returns the
minimum number of weights needed. Therefore, this formula can be used as a lower
bound for IV, to ensure the C1 property (constraint CMy).

46 H. Cambazard, E. O’Mahony, and B. O’Sullivan

4 The Single Row Problem as a Shortest Path

As mentioned previously, finding the minimum total beam-on time, B, for a given in-
tensity matrix can be solved in linear time. However, minimising the cardinality of the
multileaf collimator sequence is NP-hard [5]. More recently, it has been shown that
even when restricting the problem to a single row of the intensity matrix, minimising
the cardinality is strongly NP-Hard [2]]. This result was refined by [9] who showed that
not only is the single row problem polynomial when the maximum intensity is bounded,
but also the complete problem. In this section we show a simple construction represent-
ing the single row problem as a shortest path. This gives a simple proof that the single
row problem is fixed-parameter tractable (FPT) in the maximum element in the row 1.
Although [9] achieves a better complexity, we will develop very efficient algorithms
based on our construction outperforming the results of [9]] in practice. In general, a
problem is FPT with respect to a parameter & if there exists an algorithm for it that
has running time O(f(k) - n®1)), where n is the size of the problem and f(k) is an
arbitrary function depending only on k. This result will be the keystone to designing
very efficient linear and CP models in the remainder of this paper.

C1 DECOMPOSITION CARDINALITY PROBLEM (DC)
Instance: A row matrix of n integers, I = (I3, ..., I,), a positive integer K.
Question: Find a decomposition of [into at most K C1 row matrices.

In any solution of the DC problem, there must be a subset of the weights of the de-
composition that sum to every element I; of the row. In other words, the decompo-
sition must contain an integer partition of every intensity. To represent these integer
partitions the following notation will be used: P(a) is the set of partitions of integer
a, p € P(a) is a particular partition of a, and |p| its number of integer summands
in p. We denote by occ(p, v), the number of occurrences of value v in p. For ex-
ample, P(5) = {(5),(4,1),(3,2),(3,1,1),(2,2,1),(2,1,1,1),(1,1,1,1,1)}, and if
p=(3,1,1) then |p| = 3 and occ(p, 1) = 2.

Observe that the DC problem can be formulated as a shortest path problem in a
weighted directed acyclic graph, G, which we refer to a partition graph. A partition
graph G of a row matrix I = (Iy,...,I,) is a layered graph with n + 2 layers, the
nodes of each layer i corresponding to the set of integer partitions of the row matrix
element I;. A source and sink nodes, denoted pg and p,, 1 respectively, are associated
with the empty partition) for sake of simplicity. Two adjacent layers form a complete
bipartite graph and the cost added to an edge, p; — p;, between two partitions, p; and p;
represents the number of additional weights that need to be added to the decomposition
to satisfy the C1 property when decomposing the two consecutive elements with the
corresponding partitions. The cost of each edge p; — p; in the partition graph is:

where ¢(b, p;, pj) = max(oce(b, p;j) — occ(b, p;),0). A shortest path in the partition
graph answers DC.

Example 3 (A Partition Graph). Consider a single row intensity matrix I = [3,2, 3, 1].
The partition graph for this row problem is presented in Figure[3l Excluding the source

A Shortest Path-Based Approach to the Multileaf Collimator Sequencing Problem 47

Fig.3. A partition graph, showing transition weights, for the single row intensity matrix
I = [3,2,3,1]. A shortest path is indicated in bold.

and sink, there are four levels, one corresponding to each element of I. The costs asso-
ciated with the edges are computing using Equationdl For example, the cost associated
with the edge between the partition (1, 1,1) of element 3 of layer 1 and partition (2)
of element 2 represents the extra weight that must be added to decompose element 2 if
(1,1, 1) is used for element 3. In other words, as one moves along a path in this graph
the partition chosen to decompose the element at layer ¢ contains the only weights that
can be reused to decompose the element at layer ¢ + 1 because of the C1 property. A

This formulation is only a refinement over the Counter Model which gives an easy
way to show that this algorithm is correct. Consider a row I of n elements and its
partition graph G. A path I = (po,...,pn+1) in G defines a decomposition of [
whose cardinality is the length of the path: K = Y7 ¢(p;, pi+1). From this path
II, we can build a solution to the Counter Model (without the beam-on time con-
straint CM>) by setting N, = > i c(b, pi, pit1) and Q% = occ(b, p;). Constraint
CM; is satisfied as p; is an integer partition of I;. Constraint CMy is ignored as we
are in the case of the unconstrained cardinality. Constraint CM, is satisfied because
Ny = >0 g clb,pi,piv1) = >oiq maz(QY,, — @Q%,0) which is the SUMOFINCRE-
MENTS constraint. Finally, one can check the cardinality of the path (constraint CM3)
by computing the sum of the NN, variables: Zé\il N, = Zévil " oclb,pispig1) =
S é\il c(b, pispiv1) = >oiy c(pispiv1) = K. As a path encodes a solution to
the Counter Model, and the length of the path is exactly the cardinality, the shortest
path gives the optimal K and an answer to DC. We now consider the single row prob-
lem when constraining the beam-on time.

C1 DECOMPOSITION-CARDINALITY WITH TIME CONSTRAINT (DCT)
Instance: A row matrix of n integers, I = [I1,..., I,], positive integers K
and B.

Question: Find a decomposition of I into at most X C1 row matrices such that
the sum of its weights is at most B.

To deal with this problem we extend the previous graph with a resource for every edge:
r(pipy) = Xpey b % (b, pipy)- (5)

Finding a shortest path IT = (pg,...,pn+1) in the partition graph whose sum of
weights, >, 7(pi,pi+1), is at most B is a shortest path problem with resource

48 H. Cambazard, E. O’Mahony, and B. O’Sullivan

constraints (SPPRC). The two-resource SPPRC is better known as the shortest path
problem with time windows (SPPTW), which was studied initially by [[L1]. A single
time window [0, B] can be added to the sink node, capturing constraint CM; of the
Counter Model. The problem is NP-Hard, but pseudo-polynomial algorithms do exist
based on dynamic programming. An algorithm of complexity O(n?B) is given in [I1],
where n is the number of nodes of the graph.

Example 4 (Encoding DCT as a SPPTW). The new partition graph of I = [3,2,3,1],
with a cost and resource consumption per edge is given Figure 4] A

[0.B]

Fig. 4. Encoding an example DCT problem

This formulation of the single row problem corresponds to a simple FPT result.

Theorem 1 (Fixed-Parameter Tractibility of the Single Row Problem). Finding an
optimal solution to the DC and DCT problems is fixed-parameter tractable in the size
of the maximum element of the single-row intensity matrix, 1.

Proof. Let k be the maximum element of the row matrix /. The number of edges in the
partition graph is bounded by |P(k)|? x n because the number of nodes of a layer i is
the number of integer partitions of the corresponding integer value I;. In this acyclic
graph, solving a simple shortest path problem can be done in O(|P(k)|?> x n). The
time complexity can be written as O(nf(k)), where f(k) = |P(k)|?, showing that
DC is fixed-parameter tractable in k. Similarly for DCT, using the pseudo-polynomial
algorithm of [T1] we get a complexity of O(n?|P(k)|*>B). B can be bounded by nk
giving a time complexity of O(n3 f(k)), with f(k) = k|P(k)|>. []

In [9] a more sophisticated construction for the shortest path is presented giving an
O(n) complexity for DCT whereas our representation as a SPPTW gives a complexity
in O(n?). In [4] a global constraint, called the SUMOFINCREMENTS was proposed for
maintaining the C1 property and a bounds consistency algorithm in O(n) was given.
An O(nd) arc-consistency algorithm can be obtained based on finding shortest paths.

Corollary 1. Generalised Arc Consistency on the SUMOFINCREMENTS constraint
can be done in O(nd) where n is the number of variables and d the maximum domain
size.

A Shortest Path-Based Approach to the Multileaf Collimator Sequencing Problem 49

Proof. We recall that SUMOFINCREMENTS({V4, ..., V,, },U) is equivalent to the ex-
pression Z?;OI maz(Vig1 — V;,0) < U with Vj = 0. Consider a layered graph in
which each layer corresponds to a variable V; and each node of layer ¢ corresponds to
the values of D(V;). The cost associated with two values a € D(V;) and b € D(V;41)
is simply max(b — a,0). Consider an instantiation of all the V; variables. The value of
the expression 2?;01 maz(Vi11 — V;,0) is obviously given by the cost of the corre-
sponding path. Ensuring that the SUMOFINCREMENTS is GAC can be easily done by
checking that the value of the shortest path in the layered graph is less than the upper
bound of U. The shortest path from the source to all nodes and from all nodes to the
sink can be obtained in O(e) where e is the number of edges of the layered graph. Thus,
the filtering process can be done in O(nd) where d is the maximum domain size. W

5 Shortest Path-Based Models

5.1 A Shortest Path Constraint Programming Model

We index, in lexicographic order, the integer partitions of each element I;; of the in-
tensity matrix, and use an integer variable P;; to denote which partition is used to
decompose element I;;. For example, P(5) = {(5),(4,1),(3,2),(3,1,1),(2,2,1),
(2,1,1,1),(1,1,1,1,1)}, so P;; = 4 means that the weights 3,1 and 1 are used to
sum to this element in the decomposition. The domain of P;;, denoted D(P;;) thus
ranges from 1 to | P(I;;)|. We also have a variable N} giving the number of occurrences
of weight b in the decomposition, similar to the Counter Model presented earlier.

Our CP model makes use of the SHORTESTPATH(G, { P4, ..., P, },U) constraint,
which enforces U to be greater than the shortest path in a graph G. Our CP model
posts the SHORTESTPATH constraint over three different graphs G (¢), G2(, b), G (i),
which although topologically identical, are weighted using three different costs:

Cl(piapj) :Zl];\/il CQ(bapiupj)
CQ(bupiupj) = maﬁ'(OCC(b,p]‘) - OCC(b,pi), 0) (6)
c3(piypj) = D p=q b x c2(b,pispj)

Example 5 (Example of the Costs G1,G2,G3). Consider I = [3,2,3,1]. The three
partition graphs are identical in structure, only the costs vary. Gy, G2 for value b = 1
and G35 are shown in Figure[3] giving the three costs ¢y, ¢, 3, respectively. A

3

{11y
000 1 [0.B]

%‘ 00,0
e

Fig. 5. Example of the three graph costs used in our CP model

50 H. Cambazard, E. O’Mahony, and B. O’Sullivan

Therefore, our CP model is summarised as follows:

Objective : Minimise(K) with K € {0,...,B*}

Vo< M Ny, € {0,...,B"

Vi<m,j<n, Py e{1,...,[P(Iij)[}
CP; : S bx Ny =B*
CP;, : LNy =K
CPs : Vi < m, SHORTESTPATH(G1 (i), {P;1, ..., Pin}, K)
CP, : Vi<m,b< M SHORTESTPATH(Gx2(i,b), {Pi1, . .., Pin}, Np)
CPs : Vi < m, SHORTESTPATH(G3(i), { Pi1, ..., Pin}, BY)
CPG : Vi S m,V] <ms.t Iij = Il',j+1 Pi]' = Pi,j+1

The C1 property of the decomposition is enforced by constraints CP4. The number
of weights of each kind, b, needed so that a C1 decomposition exists for each line i is
maintained as a shortest path in Gi2(b, 7). As those shortest paths are computed indepen-
dently, maintaining a shortest path in G () provides a lower bound on the cardinality
needed for the decomposition of each line ¢. This is the purpose of CP5, which acts as
a redundant constraint. Finally CP; is a useful redundant shortest path constraint that
maintains the minimum value of B associated with each line, which can provide valu-
able pruning by strengthening CP;. CPs breaks some symmetries by stating that the
same partition can be used for two consecutive identical elements in the same row. If
the two partitions were different, a solution could be obtained by using any of the two
partitions for the two elements. This could not violate the C1 property as the elements
are consecutive and any of those two partitions was also satisfying the C1 property.

Filtering the SHORTESTPATH Constraint. The shortest path constraint has already
been studied in Constraint Programming [7]]. Here, the SHORTESTPATH constraint is
simple as the graph is layered and contains only non-negative costs. The constraint
SHORTESTPATH(G, { P, ..., P, },U) states that U is greater than the shortest path in
the partition graph defined by the domains of {Pi, ..., P,} and the cost information
G. A layer i of the graph corresponds to variable P; and the nodes of each layer to the
domain values of P;. Our implementation of the constraint maintains for every node «
of layer 4, the value of the current shortest path from the source, S, and to the sink,
S¢,. These two integers are restorable upon backtracking.

If a value is pruned from a layer we proceed with forward (resp. backward) phases
to update the S (resp. S_,) values maintaining the simple following equations :

5S¢ = minﬁep(p%l)(s(ﬁ_ + (B, a)) @)
Si = minﬁep(pprl)(sﬁ + C(Oé, ﬂ))

The constraint is partially incremental, so if none of the S (resp. S_,) values of the
nodes on layer ¢ have been updated, the process stops and does not examine layer ¢ + 1
(resp. i — 1). At each update of a S or S_,, we prune the corresponding value if
S + S_, is greater than the upper bound of U. The time complexity of the forward
and backward step including the pruning is O(e) where e is the number of edges in the
graph. S*F (or §°9U"°¢) is used to update the lower bound of U. As the upper bound of
U is not updated, there is no need to reach a fixed point and arc-consistency is achieved

A Shortest Path-Based Approach to the Multileaf Collimator Sequencing Problem 51

in O(e). Notice that this constraint could also be decomposed by introducing S and
S_, as variables, stating Equations [7] as constraints as well as S¢ + S* > U —
P # a.

Example 6 (SHORTESTPATH using G1). Consider I = [3,2,3,1] and U = 3. The
graph underlying SHORTESTPATH(G1, { P, ..., Py}, U) is shown in Figure[@ The two
restorable integers S and S_, are given for each node in brackets. A node filled in
grey has been pruned because the sum of its two shortest paths is greater than 3. Values
{1,1,1},{1,1} and {1, 1, 1} are pruned respectively from P;, P, and Ps. A

3
3

3.1 0

\ 4,0)
L1} 2
TaL n

—_

X

—_

03 [2 @ C0) \
— > {1y (3.0) 0 3.0) 0 [3.0]
source 1 {2,1} | e | K
1 {2,1} 1 {1} sink
2,1
12
(2 2} 1 3.H

3}

NN

Fig. 6. The SHORTESTPATH using Cost G1

Note that our CP model is exponential in space as the implementation of the SHORT-
ESTPATH constraint maintains information for each integer partition of the elements of
the matrix. Therefore, the model strongly relies on the fact that the maximum intensity
in the matrix is bounded in practice and instances with small intensities remain open.

Search. The branching strategy first assign the K variable in a bottom-up fashion (from
its lower bound to its upper bound) until a feasible solution is found (the first feasible
solution found is thus an optimal one). The branching then considers the NV, variables
and proceeds with ‘minimum domain first’ variable ordering and lexicographic value
ordering (from the lower bound to the upper bound of each N,). Once the N, vari-
ables are known, the problem is split into m independent sub-problems (one per row).
Those problems are solved independently by branching on the P variables, again us-
ing minimum domain variable ordering and lexicographic value ordering. The rows are
examined in decreasing value of their beam on-time, similar to [[1]]. Branching on P is
mandatory, since the shortest paths on G2 (i, b) are maintained independently for each
b. At this stage we are facing a multi-resource constrained shortest path problem as we
have a limit N, of each resource b as well as a limit K on the shortest path in G.

5.2 A Shortest Path Linear Programming Model

A simple shortest path formulation in Linear Programming (LP) is unimodular, guar-
anteeing that the continuous relaxation provides an integral solution. We investigated if

52 H. Cambazard, E. O’Mahony, and B. O’Sullivan

encoding the previous model based on shortest path in LP could lead to a strong lower
bound for the whole problem. The linear model simply introduces a boolean variable
for each possible integer partition of each element I;; of the intensity matrix.

Wb < M Ny € {0,...,B*}
Vi <m,j <n,p<|P(IL)] zijp € {0,1}

Again, N;, denotes the number of occurrences of value b in the decomposition of B*,
whereas x;;, indicates whether partition p is used or not to sum to I;;. The consecutive
ones property is enforced as a shortest path problem on each line in the partition graphs
G1, Gz and G'3. The nodes of those graphs are mapped to the x;,, variables and the costs
are computed using Equations|[6] 24,0,0 and x; 41,0 are two nodes acting as the source
and sink of the graph of line 7, respectively. A linear model called S P (i) encoding the
shortest path problem for each line ¢ uses one variable per edge:

Vi < n,pa <[Pl ps < |1P(Lij+1)] Yijpaps € 10,1}

The variables y; ; p,, p, indicate whether or not the edge between partition p,, of layer
J and partition pg of layer j + 1 is used in the solution of line ¢. The three shortest path
constraints introduced in the CP model can be encoded using a simple linear model for
shortest path by stating the flow conservation at each node. The following constraints
encode the flow conservation, the three costs of the paths and channels the edge vari-
ables to the nodes variables, respectively.

Vi <n,pa < [P(Lij)], Zp[,g\p(jlyjfln Yij—1.pg.pa = Zp[,g\p(jlwrl)\ Yi,j,pa,ps
Zpaélp(hl)l Yi0,0pa =1
Pa<IP(Lig)| Yimntlpa =1
b<M Ny > Zj,pa,pg c1(pa,pp) X Yi,j,paspg
vbell,..., M) No 2325 po g ©2(0:Pa,P8) X Yijpa.ps
B* > Zj,pmpﬁ 3(Pas PB) X Yijpa.pg
Vi <n,pa < |P(L«'j)‘7 Tijpa = Zp5§|P(c71,j+1)\ Yij,pa.ps
Vi <n,pa < [P(Lij)], Tijpa = Zpﬁgp(ci,j_l)\ Yi,j—1.pg,pa

The overall model is written in the following way:

minimise Y, s No
Vi<m SP(i)
> p<ns b X Ny = B
The number of variables for this model is exponential as it depends on the number of
integer partitions of the maximum element of the matrix, but this is bounded in practice.

6 Experimental Results

We performed a direct comparison between our CP model and the current state-of-
the-art [4J1] which showed our approach to be the fastest by more than two orders-of-
magnitude, as well as the most scalable. It solves all 340 instances in the benchmark

A Shortest Path-Based Approach to the Multileaf Collimator Sequencing Problem 53

Table 1. Comparing the Shortest Path Model CPSP with the Counter Model

CPSP Counter model
Inst Time (seconds) Time (seconds)
NS min med avg max NS min med avg max

12-12-10 20 0.11 0.18 0.25 0.66 20 0.32 0.83 1.00 3.62
12-12-11 20 0.14 0.22 0.71 332 20 0.67 2.27 2.63 6.23
12-12-12 20 0.23 0.50 0.94 6.94 20 1.04 391 476 1230
12-12-13 20 0.28 1.63 193 477 20 2.26 7.13 8.57 30.50
12-12-14 20 0.35 1.59 3.28 2636 20 1.19 9.63 11.58 49.76
12-12-15 20 0.61 5.76 12.70 7459 20 437 23.00 40.68 156.23
15-15-10 20 0.13 0.31 0.73 5.67 20 251 1316 14.18 46.14
15-15-12 20 041 129 3.86 1820 20 9.02 53.41 10522 47595
15-15-15 20 1.55 1545 2898 10292 16 111.01 587.73 790.11 3409.69
18-18-10 20 0.24 046 1.01 588 20 26.22 135.03 183.91 851.34
18-18-12 20 0.47 3.07 6.00 1936 18 121.84 1131.85 1371.88 4534.41
18-18-15 20 2.35 2047 64.85 571.19 6 2553.80 3927.24 3830.12 4776.23
20-20-10 20 0.23 0.52 3.99 43.11 19 81.63 660.03 1190.01 3318.89
20-20-12 20 0.72 5.10 15.34 83.03 10 666.42 2533.41 3105.34 6139.53
20-20-15 20 3.15 61.73 180.70 697.51 0O - - - -
30-30-10 20 0.88 2.97 76.77 47426 O - - - -
40-40-10 20 1.42 11.33 468.19 353322 0 - - - -

suite whereas the best known approach can solve only 259 of thend] Secondly, we eval-
uated the quality of the continuous relaxation of our LP model, showing they typically
were extremely close to optimal, and demonstrated that it could sometimes be useful
for giving lower bounds to the CP model, providing significant speed-up over the CP
model alone on large instances.

Evaluation of the CP Model. We compared our CP Shortest Path model (CPSP), from
Section [5.1] against the Counter model of [4/1], which is the best known approach to
this problem. The same 340 problem instances and an executable binary from [[1] were
kindly provided by the authors, facilitating a direct and fair comparison. The bench-
marks comprised 17 categories of 20 instances ranging in size from 12 x 12 to 40 x 40
with maximum elements between 10 and 15, denoted m-n-M in our results tables. Ta-
ble [reports the number of instances solved in each category (column NS), along with
the minimum, median, average and maximum time for each category using a time limit
of 2 hours on an iMadd. Our CPSP approach clearly outperforms the Counter Model
as the size grows. On 20-20-10 instances where the Counter Model fails to solve one
instance within two hours, the speed-up is almost two orders-of-magnitude. Our CP
model is implemented in ChOC(E and Java, whereas the Counter Model is implemented
in Mercury{z_‘f and compiled to C. Results in [9] use 15 x 15 intensity matrices with a
maximum element of 10, requiring up to 10 hours to solve using a 2GHz workstation.

Evaluation of the LP Model. Although the IP shortest-path model is not able to com-
pete with CPSP, the continuous relaxation (LP) is very tight and leads to excellent lower
bounds, which are often optimal for large instances. Table 2] reports, for each category,
the percentage of instances for which the optimal value of the relaxation matches the

! Benchmark suite available from http://www.4c.ucc.ie/datasets/imrt
2 Mac OS X 10.4.11, 2.33 GHz Intel Core 2 Duo, 3 GB 667MHz DDR2 SDRAM.
3 http://choco.sourceforge.net
‘http://nicta.com.au/research/projects/

constraint programming platform

http://www.4c.ucc.ie/datasets/imrt
http://choco.sourceforge.net
http://nicta.com.au/research/projects/constraint_programming_platform
http://nicta.com.au/research/projects/constraint_programming_platform

54 H. Cambazard, E. O’Mahony, and B. O’Sullivan

Table 2. The quality and time taken to compute the linear programming relaxation

Inst %Opt Avgtime Inst %Opt Avgtime
12-12-10 95 1.76 18-18-10 100 3.96
12-12-11 85 252 18-18-12 95 16.91
12-12-12 95 5.00 18-18-15 100 93.97
12-12-13 95 7.91 20-20-10 100 4.69
12-12-14 95 13.79 20-20-12 90 18.41
12-12-15 60 2691 20-20-15 95 136.97
15-15-10 95 2.61 30-30-10 95 13.40
15-15-12 85 9.86 40-40-10 100 24.86
15-15-15 85 50.04

Table 3. Comparing the CP model with and without initial lower bounds from the LP relaxation

CPSP Hybrid = LP + CPSP
Inst Time (seconds) Nodes Time (seconds) Nodes
NS min med avg max avg NS min med avg max avg

12-12-10 20 0.05 0.10 0.14 0.60 12555 20 1.25 1.79 1.86 278 108.10
12-12-11 20 0.07 0.12 043 2.25 25925 20 1.82 256 280 526 201.20
12-12-12 20 0.14 0.32 0.66 5.47 19465 20 324 511 538 894 156.35
12-12-13 20 0.18 1.24 1.46 3.70 250.00 20 4.16 8.02 8.64 1595 171.80
12-12-14 20 0.23 1.17 2.61 21.16 37325 20 5.39 14.63 1540 26.07 298.00
12-12-15 20 0.40 4.64 10.65 63.98 611.85 20 16.39 30.36 35.27 85.61 518.05
15-15-10 20 0.07 0.20 0.51 4.07 301.15 20 1.70 254 276 504 17745
15-15-12 20 0.25 1.05 3.24 15.75 389.15 20 7.61 10.22 11.66 2550 289.50
15-15-15 20 1.13 13.08 25.37 89.55 938.35 20 31.13 56.63 62.75 138.34 613.65
18-18-10 20 0.16 0.34 0.82 5.30 367.05 20 250 3.87 424 631 29630
18-18-12 20 0.25 2.66 5.31 18.10 598.95 20 11.73 18.75 18.83 31.84 409.50
18-18-15 20 1.81 17.28 56.03 494.07 1366.20 20 70.40 96.85 105.86 169.47 622.35
20-20-10 20 0.14 0.41 3,56 39.83 131340 20 252 531 520 984 564.15
20-20-12 20 045 4.59 1398 7391 132930 20 12.51 19.25 24.01 81.89 836.75
20-20-15 20 2.44 58.04 159.50 612.43 4435.65 20 92.43 155.19 207.95 635.92 2295.70
30-30-10 20 0.52 2.60 75.52 472.25 15771.05 20 10.73 14.87 26.55 161.09 7144.85
40-40-10 20 0.91 6.89 466.68 3631.50 130308.80 20 24.27 28.98 49.07 209.02 23769.35

real optimal value, as well as the average time of LP. Table [3] compares the CP model
(CPSP) against a hybrid approach in which lower bounds are first computed based on
the LP to start the bottom-up approach of CPSPH. The LP was solved using the barrier
algorithm with CPLEX (version 10.0.0). Although the hybrid model is often slowed
down by the continuous relaxation (the minimum times of CPSP are far better than the
minimum times of the hybrid), it scales better on the 40-40-10 instances. On 40-40-10,
the hybrid approach is on average 9 times faster than CPSP.

7 Conclusion

We have provided a new approach to solving the Multileaf Collimator Sequencing Prob-
lem. Although the complexity of the resulting algorithm depends on the number of in-
teger partitions of the maximum intensity, which is exponential, it can be used to design
very efficient approaches in practice. We proposed a new CP and Linear models encod-
ing each line as a set of shortest path problems and obtained two orders-of-magnitude
improvements compared to the best known method for this problem. The linear model
is a very tight formulation giving excellent lower bounds for the cardinality. A simple

5 These experiments ran as a single thread on a Dual Quad Core Xeon CPU, 2.66GHz with
12MB of L2 cache per processor and 16GB of RAM overall, running Linux 2.6.25 x64.

A Shortest Path-Based Approach to the Multileaf Collimator Sequencing Problem 55

hybrid approach, using the continuous relaxation at the root node before starting the
search with CP, outperforms the CP model alone on large instances.

The resulting approaches strongly rely on the fact that the maximum radiation in-
tensity is often small compared to the size of the matrix. It is, therefore, interesting to
determine the complexity of the algorithm by the maximum intensity. [1] explains that
in the instances available to them, the maximum intensity does not exceed 20 whereas
the collimators can reach 40 rows. This limitation might, thus, not be critical in prac-
tice. However many possibilities remain to be investigated to allow better scaling in
terms of the maximum element of the intensity matrix. The LP model typically has an
exponential number of variables and could certainly be solved more efficiently using
column generation techniques. Reasoning on the CP models could be strengthened by
solving resource constrained shortest path for each row using dynamic programming
and avoiding any branching on the partition variables. Finally, there are other objective
functions to consider in this problem, which we will study in the future.

Acknowledgements. This work was supported by Science Foundation Ireland under
Grant Number 05/IN/I886. We are indebted to Sebastian Brand for providing his bench-
mark instances and an executable version of the solver presented in [[1]].

References

1. Baatar, D., Boland, N., Brand, S., Stuckey, P.J.: Minimum cardinality matrix decomposition
into consecutive-ones matrices: CP and IP approaches. In: Van Hentenryck, P., Wolsey, L.A.
(eds.) CPAIOR 2007. LNCS, vol. 4510, pp. 1-15. Springer, Heidelberg (2007)

2. Baatar, D., Hamacher, H.W., Ehrgott, M., Woeginger, G.J.: Decomposition of integer ma-
trices and multileaf collimator sequencing. Discrete Applied Mathematics 152(1-3), 6-34
(2005)

3. Bahr, G.K., Kereiakes, J.G., Horwitz, H., Finney, R., Galvin, J., Goode, K.: The method of
linear programming applied to radiation therapy planning. Radiology 91, 686—-693 (1968)

4. Brand, S.: The sum-of-increments constraints in the consecutive-ones matrix decomposition
problem. In: SAC 2009: 24th Annual ACM Symposium on Applied Computing (2009)

5. Burkard, R.E.: Open problem session. In: Oberwolfach Conference on Combinatorial Opti-
mization (November 2002)

6. Engel, K.: A new algorithm for optimal multileaf collimator field segmentation. Discrete
Applied Mathematics 152(1-3), 35-51 (2005)

7. Gellermann, T., Sellmann, M., Wright, R.: Shorter path constraints for the resource con-
strained shortest path problem. In: Bartdk, R., Milano, M. (eds.) CPAIOR 2005. LNCS,
vol. 3524, pp. 201-216. Springer, Heidelberg (2005)

8. Hamacher, H.-W., Ehrgott, M.: Special section: Using discrete mathematics to model multi-
leaf collimators in radiation therapy. Discrete Applied Mathematics 152(1-3), 4-5 (2005)

9. Kalinowski, T.: The complexity of minimizing the number of shape matrices subject to mini-
mal beam-on time in multileaf collimator field decomposition with bounded fluence. Discrete
Applied Mathematics (in press)

10. Maher, M.J.: Analysis of a global contiguity constraint. In: Workshop on Rule-Based Con-
straint Reasoning and Programming (2002)

11. Martin, D., Francois, S.: A generalized permanent labelling algorithm for the shortest path
problem with time windows. INFOR 26(3), 191-212 (1988)

12. Pesant, G.: A regular language membership constraint for finite sequences of variables. In:
Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 482-495. Springer, Heidelberg (2004)

Backdoors to Combinatorial Optimization:
Feasibility and Optimality

Bistra Dilkina!, Carla P. Gomes!, Yuri Malitsky?,
Ashish Sabharwal®, and Meinolf Sellmann?

! Department of Computer Science, Cornell University, Ithaca, NY 14853, U.S.A.
{bistra,gomes,sabhar}@cs.cornell.edu
2 Department of Computer Science, Brown University, Providence, RI 02912, U.S.A.
{ynm,sello}@cs.brown.edu

Abstract. There has been considerable interest in the identification of
structural properties of combinatorial problems that lead, directly or in-
directly, to the development of efficient algorithms for solving them. One
such concept is that of a backdoor set—a set of variables such that once
they are instantiated, the remaining problem simplifies to a tractable
form. While backdoor sets were originally defined to capture structure
in decision problems with discrete variables, here we introduce a notion
of backdoors that captures structure in optimization problems, which of-
ten have both discrete and continuous variables. We show that finding a
feasible solution and proving optimality are characterized by backdoors
of different kinds and size. Surprisingly, in certain mixed integer pro-
gramming problems, proving optimality involves a smaller backdoor set
than finding the optimal solution. We also show extensive results on the
number of backdoors of various sizes in optimization problems. Overall,
this work demonstrates that backdoors, appropriately generalized, are
also effective in capturing problem structure in optimization problems.

Keywords: search, variable selection, backdoor sets.

1 Introduction

Research in constraint satisfaction problems, in particular Boolean satisfiability
(SAT), and in combinatorial optimization problems, in particular mixed inte-
ger programming (MIP), has had many historic similarities (see, e.g., |2]). For
example, the earliest solution methods for both started out as processes that
non-deterministically or heuristically chose new inferred information to add re-
peatedly until the problem was fully solved. In SAT, this took the form of adding
“resolvents” of two clauses and formed the original Davis-Putnam procedure. In
MIP, this took the form of repeatedly adding cuts. In both cases, it was soon
observed that the vast array of possibilities for such resolvents and cuts to add
can easily turn into a process without much focus, and thus with limited success.
The remedy seemed to be to apply a different, top-down technique instead of
deriving and adding new information bottom-up. The top-down process took
the form of DPLL search for SAT and of branch-and-bound for MIP. Again,

W.-J. van Hoeve and J.N. Hooker (Eds.): CPAIOR 2009, LNCS 5547, pp. 56 2009.
© Springer-Verlag Berlin Heidelberg 2009

Backdoors to Combinatorial Optimization: Feasibility and Optimality 57

it was realized that such branch-and-bound style systematic search has its own
drawbacks, one of them being not learning anything as the search progresses.
The fix—a relatively recent development in the long history of SAT and MIP
methods—was to combine the two approaches. In SAT, this took the form of
“clause learning” during the branch-and bound process, where new derived con-
straints are added to the problem upon backtracking. In MIP, this took the form
of adding “cuts” and “tightening bounds” when exploring various branches dur-
ing the branch-and-bound search.

This similarity between SAT and MIP research suggests that concepts that
have been used successfully in one realm can perhaps also be extended to the
other realm and lead to new insights. We investigate this from the angle of ap-
plying ideas from SAT to MIP. In particular, we consider heavy-tailed behavior
of runtime distribution and the related concept of backdoor sets. It has been ob-
served that (randomized) SAT solvers often exhibit a large variation in runtimes
even when using randomization only for tie-breaking. At the same time, one of-
ten sees a SAT solver solve a hard real-world problem very quickly when in fact
the problem should have been completely out of the reach of the solver by stan-
dard complexity arguments. Backdoor sets provide a way to understand such
extremely short runs often seen on structured real-world instances and rarely
seen on randomly generated instances.

We remark that the study of backdoors in constraint satisfaction problems
was motivated by the observation that the performance of backtrack-style search
methods can vary dramatically depending on the order of variable and value se-
lection during the search. In particular, backtrack search methods exhibit large
variance in runtime for different heuristics, different problem instances, and, for
randomized methods, for different random seeds even on the same instance. The
discovery of the “heavy-tailed” nature of the runtime distributions in the context
of SAT [4, 15, |7, [10] has resulted in the effective introduction of randomization
and restart techniques [6] and has been related to the presence of small back-
doors [12]. A question, then, naturally arises: do the runtime distributions of
combinatorial optimization problems also exhibit a similar behavior? In particu-
lar, are these distributions heavy-tailed?

Formally, heavy-tail distributions exhibit power-law decay near the tail end of
the distribution and are characterized by infinite moments. The distribution tails
are asymptotically of the Pareto-Levy form. Most importantly for us, the log-log
plot of the tail of the survival function (i.e., how many instances are not solved
in a given runtime) of a heavy-tailed distribution exhibits linear behavior. We
considered the runtime distributions of MIP instances from the MIPLIB library
[1], using CPLEX’s [8] branch-and-bound search with a randomized branching
heuristic. While heavy-tailed behavior has been reported mostly in the context
of constraint satisfaction, some of the MIP optimization instances in our exper-
iments did show heavy-tailed behavior.

These observations for MIP optimization problems motivate an in-depth study
of the concept of backdoors for these problems, which is the main focus of this
paper. Informally, backdoors for constraint satisfaction are sets of variables the

58 B. Dilkina et al.

systematic search can, at least in principle, be limited to when finding a solution
or proving infeasibility. We extend the concept of backdoor sets to optimization
problems, which raises interesting new issues not addressed by earlier work on
backdoor sets for constraint satisfaction. We introduce “weak optimality back-
doors” for finding optimal solutions and “optimality-proof backdoors” for prov-
ing optimality. The nature of optimization algorithms, often involving adding
new information such as cuts and tightened bounds as the search progresses,
naturally leads to the concept of “order-sensitive” backdoors, where information
learned from previous search branches is allowed to be used by the sub-solver
underlying the backdoor. This often leads to much smaller backdoors than the
“traditional” ones.

We investigate whether significantly small backdoors also exist for standard
benchmark instances of mixed integer programming optimization problems, and
find that such instances often have backdoors involving under 5% of the dis-
crete variables. Interestingly, sometimes the optimality-proof backdoors can in
fact be smaller than the weak optimality backdoors, and this aligns with the
relative runtime distributions for these problems when finding an optimal solu-
tion vs. when proving optimality. A large part of our experimental work involves
the problem of determining how many backdoors of various kinds and sizes ex-
ist in such optimization problems, and whether information provided by linear
programming relaxations (e.g., the “fractionality” of the variables in the root
LP relaxation) can be used effectively when searching for small backdoors. Our
results provide positive answers to these questions.

2 Background: Backdoors for Constraint Satisfaction

We begin by recalling the concept of weak and strong backdoor sets for constraint
satisfaction problems. For simplicity of exposition, we will work with the Boolean
satisfiability (SAT) problem in this section, although the concepts discussed
apply equally well to any discrete constraint satisfaction problem.

Backdoor sets are defined with respect to efficient sub-algorithms, called sub-
solvers, employed within the systematic search framework of SAT solvers. In
practice, these sub-solvers often take the form of efficient procedures such as
unit propagation, pure literal elimination, and failed-literal probing. In some
theoretical studies, solution methods for structural sub-classes of SAT such as 2-
SAT, Horn-SAT, and RenamableHorn-SAT have also been studied as sub-solvers.
Formally [11], a sub-solver A for SAT is any poly-time algorithm satisfying
certain natural properties on every input formula F: (1) Trichotomy: A either
determines F' correctly (as satisfiable or unsatisfiable) or fails; (2) A determines
F for sure if F' has no constraints or an already violated constraint; and (3) if
A determines F, then A also determines F'|,—¢ and F|,—; for any variable x.

In the definitions of backdoor sets that follow, the sub-solver A will be implicit.
For a formula F' and a truth assignment 7 to a subset of the variables of F', we will
use F[7] to denote the simplified formula obtained after applying the (partial)
truth assignment to the affected variables.

Backdoors to Combinatorial Optimization: Feasibility and Optimality 59

Definition 1 (Weak and Strong Backdoors for SAT [11]). Given a
Boolean formula F' on variables X, a subset of variables B C X is a weak back-
door (w.r.t. a specified sub-solver A) if for some truth assignment T : B — {0, 1},
A returns a satisfying assignment for F[r]. Such a subset B is a strong backdoor
if for every truth assignment 7 : B — {0,1}, A returns a satisfying assignment
for F[1] or concludes that F[r] is unsatisfiable.

Weak backdoor sets capture the fact that a well-designed heuristic can get
“lucky” and find the solution to a hard satisfiable instance if the heuristic guid-
ance is correct even on the small fraction of variables that constitute the back-
door set. Similarly, strong backdoor sets B capture the fact that a systematic
tree search procedure (such as DPLL) restricted to branching only on variables
in B will successfully solve the problem, whether satisfiable or unsatisfiable.
Furthermore, in this case, the tree search procedure restricted to B will succeed
independently of the order in which it explores the search tree.

3 Backdoor Sets for Optimization Problems

This section extends the notion of backdoor sets from constraint satisfaction
problems to combinatorial optimization problems. We begin by formally defining
optimization problems and discussing desirable properties of sub-solvers for such
problems. Without loss of generality, we will assume throughout this text that
the optimization to be performed is minimization. For simplicity of notation, we
will also assume that all variables involved have the same value domain, D.

Definition 2 (Combinatorial Optimization Problem). A combinatorial
optimization problem is a four-tuple (X, D,C,z) where X = {x;} is a set of
variables with domain D, C is a set of constraints defined over subsets of X,
and z : DXI — Q is an objective function to be minimized.

A constraint ¢ € C over variables var(c) is simply a subset of all possible value
assignments to the variables involved in ¢, i.e., ¢ C DI"9"() A value assignment
v is said to satisfy c if the restriction of v to the variables var(c) belongs to the
set of value tuples constituting c.

Definition 3 (Sub-Solver for Optimization). A sub-solver A for optimiza-
tion is an algorithm that given as input a combinatorial optimization problem
(X, D,C, 2) satisfies the following four conditions:

[(a)]

1. Trichotomy: A either infers a lower bound on the optimal objective value z
or correctly determines (X, D,C, z) (as either unsatisfiable or as optimized
providing a feasible solution that is locally optimal),

2. Efficiency: A runs in polynomial time,

3. Trivial solvability: A can determine whether (X, D, C, z) is trivially satisfied
(has no constraints) or trivially unsatisfiable (has an empty constraint), and

60 B. Dilkina et al.

4. Self-reducibility: If A determines (X, D, C, z), then for any variable x; and
value v € D, A also determines (X, D,C U {z; = v}, z).

For some partial assignments, the sub-solver might learn a new lower bound on
the objective value. For some partial assignments, the solver may find a feasible
solution that is a locally optimal solution. Any feasible solution provides an upper
bound on the optimal objective value. Hence, for some partial assignments, the
sub-solver might learn a new upper bound on the objective value.

In extending the notion of backdoor sets to optimization problems, we need
to take into account that we face two tasks in constrained optimization: first, we
need to find a feasible and optimal solution, and second, we need to prove its
optimality which essentially involves proving infeasibility of the problem when
the objective bound is reduced beyond the optimal value. This naturally leads
to three kinds of backdoors: weak optimality backdoors will capture the task
of finding optimal solutions, optimality-proof backdoors will capture the task
of proving optimality given the optimal objective value, and strong optimality
backdoors will capture the full optimization task, i.e., finding an optimal solution
and proving its optimality.

Weak backdoors for optimization are the most straightforward generalization
from the constraint satisfaction realm. One notable difference, however, is that
since we are trying to decouple the solution-finding task from the optimality-
proof task, we assume that the solution-finding task is, in a sense, somehow aware
of the optimal objective value and can stop when it hits an optimal solution.
In our experiments designed to identify backdoor sets, we achieve this by pre-
computing the optimal objective value and forcing the search to stop when a
feasible solution achieving this objective value is encountered.

We use the word “traditional” in the next few definitions to distinguish them
from the concept of order-sensitive backdoors to be discussed in Section 3.1l In
the following, C' U 7 denotes adding to C' the constraint {(vi,...,v,) | Va; €
B, v; = 7(x;)} imposing the partial assignment 7 on the variables in B.

Definition 4 ((Traditional) Weak Optimality Backdoor). Given a com-
binatorial optimization problem (X,D,C,z), a subset of the variables B C X
is a (traditional) weak optimality backdoor (w.r.t. a specified sub-solver A) if
there exists an assignment T : B — D such that A returns a feasible solution for
(X, D,CUT,z) which is of optimal quality for (X, D, C,z).

In contrast to decision problems, solving an optimization instance also requires
proving that no better feasible solution exists. Therefore, we define the notion
of backdoor sets for the optimality proof itself. Once we have found an optimal
feasible solution z*, this immediately also provides the optimal upper bound
to the objective, making the new problem of seeking a better objective value
infeasible. Optimality-proof backdoors are sets of variables that help one deduce
this infeasibility efficiently.

Definition 5 ((Traditional) Optimality-Proof Backdoor). Given a com-
binatorial optimization problem (X, D,C,z) and an upper bound z* on the ob-
jective value, a subset of the variables B C X is a (traditional) optimality-proof

Backdoors to Combinatorial Optimization: Feasibility and Optimality 61

backdoor (w.r.t. a specified sub-solver A) if for every assignment T: B — D, A
correctly decides (X, D,C UTU{z < 2*},2) to be infeasible.

The notion of optimality-proof backdoor allows us to decouple the process of
finding feasible solutions from proving the optimality of a bound. An optimality-
proof backdoor is particularly relevant when there is an external procedure that
finds good feasible solutions (e.g., heuristic greedy search). Given the best solu-
tion quality found by the greedy search, we can use an optimality-proof backdoor
to confirm that no better solution exists or perhaps to disprove the bound by
finding a better feasible solution.

Both the definition of weak optimality backdoor and of optimality-proof back-
door implicitly or explicitly rely on the knowledge of an upper bound z* on the
objective value, i.e., they do not capture solving the original optimization prob-
lem for which the optimal value is unknown. Recall that strong backdoors for
constraint satisfaction problems capture the set of variables that are enough to
fully solve the problem—either prove its infeasibility or find a solution. We would
like to define a similar notion for optimization problems as well. To this end, we
define strong backdoors for optimization, which are enough to both find an op-
timal solution and prove its optimality, or to show that the problem is infeasible
altogether. When the problem is feasible, a strong backdoor set is both a weak
optimality backdoor and an optimality-proof backdoor.

Definition 6 ((Traditional) Strong Optimality Backdoor). Given a com-
binatorial optimization problem (X,D,C,z), a subset of the variables B C X
is a (traditional) strong optimality backdoor (w.r.t. a specified sub-solver A)
if it satisfies the following conditions. For every assignment 7 : B — D, A
infers a lower bound lb(T) on the optimal objective value for (X,D,C UT,z);
Ib(T) = +inf if infeasible. If, for T, the sub-solver also finds an optimal solution
&(7) for (X,D,CUT,z), then let 2(1) = z(&(7)), else let 2(T) = + inf. We must
have: min, Ib(7) = min, 2(7).

3.1 Order-Sensitive Backdoors

We now discuss an issue that arises naturally when we work with backdoor
sets for state-of-the-art optimization algorithms, such as CPLEX for mixed in-
teger programming (MIP) problems: order-sensitivity of backdoor sets. Order-
sensitivity plays an increasingly important role as we extend the notion of back-
doors to constraint optimization problems.

The standard requirement implicit in the notion of backdoor sets in con-
straint satisfaction problems is that the underlying systematic search procedure
restricted to backdoor variables should succeed independently of the order in
which it explores various truth valuations of the variables; in fact, for strong
backdoors, the sub-solver must succeed on every single search branch based
solely on the value assignment to the backdoor variables. This condition, how-
ever, ignores an important fact: a crucial feature of most branch-and-bound
algorithms for constrained optimization problems is that they learn information

62 B. Dilkina et al.

about the search space as they explore the search tree. For example, they learn
new bounds on the objective value and the variables, and they might add vari-
ous kind of “cuts” that reduce the search space without removing any optimal
solution. These tightened bounds and cuts potentially allow the sub-solver to
later make stronger inferences from the same partial assignment which would
have normally not lead to any strong conclusions. Indeed, in our experiments
designed to identify weak optimality backdoor sets for MIP problems, it was of-
ten found that variable-value assignments at the time CPLEX finds an optimal
solution during search do not necessarily act as traditional weak backdoors, i.e.,
feeding back the specific variable-value assignment doesn’t necessarily make the
underlying sub-solver find an optimal solution. This leads to a natural distinction
between “traditional” (as defined above) and “order-sensitive” weak optimality
backdoors. In the following definitions, search order refers to the sequence of
branching decisions that a search method uses in exploring the search space and
possibly transferring any available learned information (such as cuts or tigher
bounds) from previously explored branches to subsequent branches.

Definition 7 (Order-Sensitive Weak Optimality Backdoor). Given a
combinatorial optimization problem (X, D, C, z), a subset of the variables B C X
is an order-sensitive weak optimality backdoor (w.r.t. a specified sub-solver A)
if there exists some search order involving only the variables in B that leads to an
assignment T : B — D such that A returns a feasible solution for (X, D,CUT, 2)
which is of optimal quality for (X, D, C,z).

In fact, added cuts and tightened bounds form an integral part of solving a MIP
optimization problem and can critically help even when “only” detecting a feasi-
ble solution of optimal quality. The same distinction also applies to optimality-
proof backdoors and to strong backdoors, simplifying the rather cumbersome
definition in the latter case.

Definition 8 (Order-Sensitive Optimality-Proof Backdoor). Given a
combinatorial optimization problem (X,D,C,z) and an upper bound z* on
the objective wvalue, a subset of the wvariables B C X is an order-sensitive
optimality-proof backdoor (w.r.t. a specified sub-solver A) if there exists some
search order involving only the wvariables in B such that A correctly decides
(X,D,CU{z < 2*},z) to be infeasible.

Definition 9 (Order-Sensitive Strong Optimality Backdoor). Given a
combinatorial optimization problem (X, D, C, z), a subset of the variables B C X
is an order-sensitive strong backdoor (w.r.t. a specified sub-solver A) if there
exists some search order involving only the variables in B such that A either
correctly decides that the problem is infeasible, or finds an optimal solution and
proves its optimality.

4 Experimental Evaluation

To investigate the distribution of backdoor sizes in optimization problems, we
consider the domain of Mixed Integer Programming. In our empirical study, we

Backdoors to Combinatorial Optimization: Feasibility and Optimality 63

use instances from the MIPLIB library [1], and employ the branch-and-bound
search framework provided by CPLEX [g]. Due to the computationally intensive
analysis performed in this study, we only evaluate MIPLIB instances that could
be solved reasonably fast with CPLEX.

The sub-solver applied by CPLEX at each search node of the branch-and-
bound routine uses a dual simplex LP algorithm in conjunction with a variety
of cuts. In our previous study [3] of backdoors in Satisfiability problems, we
investigated the sub-solver routine used in Satz [9] which applied probing to each
search node. Similarly here, we set CPLEX to use strong branching, adding a
lot of additional inference at each node. In summary, the sub-solver is dual
simplex+ CUTS+pr0bing

We investigate the probability that a randomly selected subset of the variables
of a given cardinality k is a backdoor. To approximate this probability, we sample
many sets (500) of each given size, and for each evaluate whether the chosen
set is a traditional weak optimality backdoor, order-sensitive weak optimality
backdoor, and/or optimality-proof backdoor.

In our experiments we consider order-sensitive optimality-proof backdoors
(and not traditional optimality-proof backdoors). For brevity, we will refer to
them simply as optimality-proof backdoors. To decide whether a given set B of
variables is an optimality-proof backdoor, we initialize CPLEX with the optimal
solution and allow branching only on the set B. As soon as we reach a search
node at which all variables of B are fixed but the infeasibility of the sub-problem
at the node cannot be concluded, we reject B. Note that with a different search
order, CPLEX could have succeeded in proving infeasibility if the alternative
order provided stronger cuts earlier. Hence our results provide a lower bound on
the probability that a set of a certain size is an optimality-proof backdoor.

To decide whether a given set B of variables is an order-sensitive weak opti-
mality backdoor, we allow branching only on the chosen set. As soon as we find
an incumbent which has optimal objective value, (precomputed ahead of time),
we accept the set. That is, we stop the search when an optimal solution is found,
but the optimal value is not given explicitly to the CPLEX search procedure
to avoid that the subsolver can infer information from the lower bound on the
objective. If we reach a search node in which all variables in the set B are fixed
but the sub-solver cannot conclude the infeasibility of the sub-problem or infer
a integer feasible solution, we prune the search node and continue searching. If
we explore the full partial tree on the set B without finding an optimal solution,
we reject B. Again, there could have been an alternative search order in which
succeeded with B. Our results are again lower bounds on the true probability of
order-sensitive weak optimality backdoors.

If a set was rejected as an order-sensitive weak backdoor with this procedure,
then we indeed explored the full partial tree over B. Hence, we know that for

! For practical reasons, we consider the dual-simplex algorithm as an efficient subsolver
despite its exponential worst-case complexity; after all, the problem it solves lies
in the complexity class P and dual-simplex is one of the most efficient practical
procedures for this problem.

64 B. Dilkina et al.

sure that B is not a traditional weak optimality backdoor. In addition, for every
set that was accepted as order-sensitive weak backdoor, we record the values of
the variables in B at the incumbent node with optimal value. We test whether
assigning B to these values without prior search results in inferring an integer
feasible solution of optimal quality. If yes, then the set is accepted as traditional
weak optimality backdoor. If not it is rejected. Again, there can be false negatives
due the fact that some other assignment different than the incumbent found
could have sufficed. Therefore, our results on the probability that a set is a
traditional weak optimality backdoor are lower bounds.

4.1 Smallest Backdoors

The size of the smallest traditional weak optimality and order-sensitive
optimality-proof backdoor that we have found is presented in Table [Il repre-
senting an upper bound on the true smallest size. The values for the traditional
weak optimality backdoor sizes are also an upper bound on the smallest order-
sensitive weak optimality backdoor size. Note that the instance 10teams does not
have an optimality-proof backdoor because its objective value is already fixed in
the problem specification. Overall, we find that the vast majority of instances
have small or very small (traditional) weak optimality backdoors of less than
6% of the variables. For air04 and air05 we even find that setting less than one
thousandth of the variables is already enough to enable the sub-solver to com-
pute an overall optimal integer feasible solution! However, as the exceptions pk1,
pp08a and pp08aCUTS show, some real-world MIPs might not exhibit small
backdoors, even for very strong sub-solvers.

Table 1. Upper bounds on the smallest size of (traditional) weak optimality backdoors
and of optimality-proof backdoors in absolute value and as percentage of the number
of discrete variables in the problem instance

discrete weak backdoors orderOpt backdoors

instance variables variables size % size %

10teams 2025 1800 10 0.56% NA NA
aflow30a 842 421 11 2.61% 85 20.19%
air04 8904 8904 3 0.03% 14 0.16%
air05 7195 7195 3 0.04% 29 0.40%
fiber 1298 1254 7 0.56% 5 0.40%
fixnet6 878 378 6 1.59% 5 1.32%
rout 556 315 8 2.54% 172 54.60%
setlch 712 240 14 5.83% 28 11.67%
vmp2 378 168 11 6.55% 19 11.31%
pkl 86 55 20 36.36% 55 100.00%
pp08a 240 64 11 17.19% 47 73.44%

pp08aCUTS 240 64 11 17.19% 32 50.00%

Backdoors to Combinatorial Optimization: Feasibility and Optimality 65

4.2 Probability of Finding Small Backdoors

In addition to the smallest size of a backdoor, one is interested in knowing how
hard it is to find small backdoor sets. One way to assess this difficulty is to
estimate how many backdoor sets of a particular size exist for a given problem.

We want to approximate the probability that a set of variables of a given
cardinality k is a backdoor. For each given backdoor size k, we sampled, uni-
formly at random, subsets of cardinality k£ from the discrete variables of the
problem. For each set we evaluated whether it is a backdoor or not with the
setup described in the beginning of this section.

We conducted this experiment many thousands of times for various cardinal-
ities k. Figure [Il presents results for the instances fiber and vpm2. The curves
labeled orderOpt refer to order-sensitive optimality-proof backdoors. The curves
labeled trad Weak refer to weak optimality backdoors that are not order-sensitive.
The curves labeled order Weak refer to weak optimality backdoors that are order-
sensitive. The curves labeled trad Weak+orderOpt refer to sets that are both (tra-
ditional) weak optimality backdoors and optimality-proof backdoors. Finally, the
curves labeled orderStrong refer to sets that are both order-sensitive weak opti-
mality backdoors and order-sensitive optimality-proof backdoors.

For the instance fiber, we observe that the probability that a set of a given size
is an optimality-proof backdoor is much higher than the probability that a set
of this size is a weak optimality backdoor. This evidence suggests that there are
many more small optimality-proof backdoors than weak optimality backdoors.
In addition, the probability that a set is both an optimality-proof backdoor and
a weak backdoor is almost equal to the probability that it is a weak optimality
backdoor. Our data shows that almost every set that was a weak optimality
backdoor was also an optimality-proof backdoor. This suggests that for fiber the
difficulty of the problem might lie in finding the optimal solution as opposed to
proving its optimality.

Our study suggests that solving problems with a hardness profile similar to
fiber can be significantly boosted by the availability of good initial solutions
found by some heuristic search. This aligns well with the recent development of

fiber vpm2
" I T 8- tradWeak
it S S-S0 B-a
5 ! TEe 5 " —_ orderOpt(+tradWeak). &= ga
o - o] .
2 o8 2 o8 e
[*] [*] =
& &
5 06 5 06
= =
5 04 orderOpt —+— Z o4
s orderWeak —— s
[orderStrong [
c 02 tradWeak & c 02
0 tradWeak+orderOpt ¥ 0 -
0 20 40 60 80 100 0 20 40 60 80 100
Percentage of discrete variables Percentage of discrete variables

Fig. 1. Probability that a subset of variables of a given size is a backdoor when sampling
uniformly

66 B. Dilkina et al.

state-of-the-art MIP solvers for which it has been found that primal heuristics,
so-called “feasibility pumps”, can significantly boost performance.

For the instance vpm2, we have avoided displaying the order-sensitive weak
backdoors because they fully overlap with the curve for the traditional weak
backdoors. Contrary to fiber, for vpm2 the probability that a set of a given
size is a weak optimality backdoor is considerably higher than the probability
that it is an optimality-proof backdoor. In addition, every set that was found
to be an order-sensitive optimality-proof backdoor was also weak optimality
backdoor. In other words, the curve for optimality-proof backdoors perfectly
overlaps with the curve for sets that are both weak optimality and optimality-
proof backdoors, including the curve for order-sensitive strong backdoors. We
label the curve orderOpt(+tradWeak). The results for vpm2 give the intuition
that the difficulty of the problem lies in proving optimality as opposed to finding
an optimal solution.

To confirm the intuitions about the hardness profiles for solving fiber and
vpm?2, in Figure 2l we present the runtime distributions for fiber and vpm?2 in
terms of the probability that a run is completed in a given number of search
nodes. Three curves are presented for each instance. The curves labeled ‘full
run’ represent the number of search nodes that it took to solve the problem fully
- both find an optimal solution and prove its optimality. The curves ‘opt soln run’
represent the number of search nodes that were explored before the incumbent
solution had the known optimal value. The curves ‘proof run’ capture the number
of search nodes that were explored to prove that a solution of a better quality
does not exist, i.e., proving infeasibility once an optimal solution is provided.
This comparison allows us to estimate the relative effort spent on each task and
the effort overall. We see that the intuition from the distribution of backdoor
sizes was indeed correct. For fiber, the effort spent of finding the optimal solution
explains almost all of the full runtime, while the effort that is needed when only
proving infeasibility is considerably less. On the other hand, for vpm2 the gap
between the effort on finding an optimal solution and the full effort is substantial,
especially in the beginning. The full runs are clearly taking much longer than the

fiber RTDs vpm2 RTDs

1 1
0.9 0.9
0.8 0.8
0.7 0.7
g 0.6 g 0.6
\% 0.5 \% 0.5
x 04 x 04
0.3 0.3

0.2 proof run = 0.2 proof run

0.1 optsolnrun o 0.1 opt soln run

0 full run x 0 full run

0 50 100 150 200 250 300 350 400 450 500 550 0 500 1000 1500 2000 2500
nodes nodes

Fig. 2. Runtime distributions for finding an optimal solution, for proving optimality,
and for fully solving the problem

Backdoors to Combinatorial Optimization: Feasibility and Optimality 67

fastest solution-finding runs, but about the same as the slowest solution-finding
runs. Here, proving optimality takes longer than the fastest solution-finding runs
but shorter than the slowest solution-finding runs.

4.3 LP Relaxations as Primal Heuristics

We saw that MIPs, even when they have small backdoors, may only have very few
weak backdoor sets of a particular (small) size. The question arises of how a MIP
solver could exploit its sub-solver to find small backdoors. To see whether LP
relaxations can provide guidance about which variables may belong to a small
backdoor set, we slightly modified the experiment from the previous section.
Rather than sampling sets of desired cardinality by selecting variables uniformly
at random, we biased the selection based on the “fractionality” of variables in
the root relaxation. The fractionality of a variable measures how far it is from
the nearest integer value. E.g., the fractionality of a variable X with domain 0,1
is simply f(X) = min{|z|, |1 —z|}. More formally, if the root LP value of variable
X, is ;, then its fractional part is f; = ; — |z;|. We assign to each variable
a weight f(X;) < 0.5 —|0.5 — f;|. Note that the quantity f(X;) captures the
“infeasibility” of a variable which is a well-known measure for picking branching
variables in mixed integer programming. Some discrete variables could be inte-
gral in the root LP. For such variables X;, we assign a small non-zero weight
f(X;) = e. After we normalize the variable weights, we choose a subset of size
k where each variable is selected with probability proportional to its normalized
weight.

For each desired size k, we sampled many sets of variables again and tested
which ones were backdoors. The result of these experiments is summarized in
FigureBlfor fiber and in Figure[for vpm2. The effect of sampling sets in a biased
fashion is clearly visible (curves resulting from biased selection are marked with a
“b-"). For the instance fiber, choosing sets biased by the root LP clearly increases
the probability of selection a set which is an optimality-proof backdoor or a set
which is a weak optimality backdoor. Surprisingly, selecting 6% of the variables

1| pEEE4=8 1
+,
5 s |
T 08 T 08
[5] [5]
@ @
< 06 < 06
o o
z 2 |
3 04 5 04
2 2 !
[[i i b-orderWeak --+--
o 02 a 02F Mo orderWeak —»—
b-orderOpt —&— : b-tradWeak &
0 orderOpt —+— o b tradWeak -
0 20 40 60 80 100 0 20 40 60 80 100
Percentage of discrete variables Percentage of discrete variables

Fig. 3. FIBER: Comparing the probability that a subset of variables of a given size is
a backdoor when sampling uniformly versus when sampling based on the fractionality
of variables at the root

68 B. Dilkina et al.
1 1 B8 R 005 g_ygﬁg..gﬂ“
§ § x)z< X*
a g
% 0.8 % 0.8 N *
g g ¥ *
5 0.6 5 0.6 !
- - X X
= = X X
o 0.4 o 0.4
[[
Qo Q
Q Q ;
a 02 -orderOpt —&— a 02 o b-tradWeak &
pregblve-orderOpt --©-- S presolve-tradWeak --x--
0 lomale orderOpt —+— o K tradWeak -
0 20 40 60 80 100 0 20 40 60 80 100

Percentage of discrete variables Percentage of discrete variables

Fig. 4. VPM2: Comparing the probability that a subset of variables of a given size is
a backdoor when sampling uniformly versus when sampling based on the fractionality
of variables at the root

in this fashion is enough to guarantee that the set is an optimality-proof backdoor
(100%), and give a 95% chance that the selected set is a weak backdoor.

The improvement effect is even more dramatic for the instance vpm2. Here,
with 20% of the variables selected in the biased way we are guaranteed to select
a weak backdoor, compared to a less than 2% chance when selected uniformly.
Also, while with 30% of the variables selected in the biased way we have a 93%
chance of selecting an optimality-proof backdoor set, we have less than 0.02%
chance of such event when selecting uniformly. This shows clearly that an LP
sub-solver can be exploited effectively to find small backdoors.

One thing to note is that before solving the root LP, CPLEX applies a pre-
processing procedure which simplifies the problem and removes some variables
whose values can be trivially inferred or can be expressed as an aggregation of
other variablesd. This procedure can sometimes result in dramatic reduction in
the effective problem size. In fiber, the discrete variables removed by preprocess-
ing are less than 17%. However, for vpm2 the preprocessing removes 50% of the
discrete variables.

One advantage of biasing the set selection by the root LP is that the vari-
ables trivially inferred by the preprocessing will have integral values, and will
be selected only with some very small probability. To evaluate whether the bi-
ased selection draws its advantage over the uniform selection solely on avoiding
pre-processed variables, we evaluated the probability of selecting a backdoor set
when sampling uniformly among only the discrete variables remaining after pre-
processing for vpm2. The results for this experiment are presented in the curves
presolve-orderOpt and presolve-trad Weak in Figure @l These curves show that
choosing uniformly among the remaining variables is more effective for finding
backdoors than choosing uniformly among all discrete variables, but it is not as
good as the biased selection based on the root LP relaxation. Hence biasing the
selection by the fractionality of the variables of the root LP has additional merit
for discovering small backdoor sets.

2 However, the user-defined branching procedure of CPLEX still works on the original
set of variables.

Backdoors to Combinatorial Optimization: Feasibility and Optimality 69

10teams aflow30a
L 1 PE—DEDEDEDE—DE— . 1 M
<3 s
S 8
2 o8 2 os
S $
& &
5 06 5 06
2 =
Z 04 2 o4
3 3
3 2 g 0.2
c O unif —%— c O unif —%—
0 biased 0 biased
0 20 40 60 80 100 0 20 40 60 80 100
Percentage of discrete variables Percentage of discrete variables
air04 setich
L 1 O L 1 H
<3 s
S 8
2 os 2 os
S $
& &
5 06 5 06
2 =
Z 04 2 o4
3 3
3 2 g 0.2
& O unif —¢— a) unif ——
0 biased 0 L biased
0 20 40 60 8 100 "2 ' 4 60 8 100

Percentage of discrete variables Percentage of discrete variables

Fig.5. Probability that a subset of variables of a given size is a traditional weak
optimality backdoor backdoor when sampling uniformly (crosses) versus when sampling
based on the fractionality of variables at the root (biased)

Other MIPLIB instances for which we have found that the biased selection
has a substantial effect are 10teams, aflow30a, air04, and setich. We present the
results in Figure Bl For these instances, we only performed a quick evaluation,
where we tested whether a set of variables B is a traditional weak optimality
backdoor by setting their values to the values in the optimal solution found
by default by CPLEX. Hence, the results are loose lower bounds on the actual
probabilities.

5 Conclusion

In this work, we extended the concept of backdoor sets from constraint satisfac-
tion problems to combinatorial optimization problems. This extension also in-
volved incorporating learning into the notion of backdoors by introducing order-
sensitive backdoors. While it has been previously shown that real-world SAT
instances have very small backdoors, here we showed that small backdoors also
exists to standard benchmark instances in mixed integer programming. In par-
ticular, optimization instances can have very small weak optimality backdoors
and often also small optimality-proof backdoors. Surprisingly, sometimes the
optimization-proof backdoors can in fact be smaller than the weak optimality
backdoors.

We also considered the question of how hard it is to find small backdoor sets
and provided extensive numerical results. We studied the probability that a set
of a given size is an order-sensitive optimality-proof backdoor and the proba-
bility that it is an order-sensitive or traditional weak optimality backdoor. In
general, we have shown that the difference in the distributions of weak optimal-
ity backdoors and of optimality-proof backdoors for a particular instance is well

70 B. Dilkina et al.

aligned with the difference in the runtime distributions for the tasks of finding
an optimal solution and proving optimality, respectively. Finally, we have also
demonstrated that the fractionality of variables in the root LP relaxation is a
very good heuristic for uncovering small backdoors for both solution finding and
for proof of optimality.

Acknowledgments

This research was supported by IISI, Cornell University (AFOSR grant FA9550-
04-1-0151), NSF Expeditions in Computing award for Computational Sustain-
ability (Grant 0832782), NSF IIS award (Grant 0514429), and the Cornflower
Project (NSF Career award 0644113). The third author was partly supported
by NSERC Postgraduate Fellowship. Part of this work was done while the forth
author was visiting McGill University.

References

[1] Achterberg, T., Koch, T., Martin, A.: MIPLIB 2003. Operations Research Let-
ters 34(4), 1-12 (2006), http://miplib.zib.de

[2] Bixby, R.E.: Solving real-world linear programs: A decade and more of progress.
Oper. Res. 50(1), 3-15 (2002)

[3] Dilkina, B., Gomes, C.P., Sabharwal, A.: Tradeoffs in the complexity of backdoor
detection. In: Bessiere, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 256-270. Springer,
Heidelberg (2007)

[4] Gent, I.P., Walsh, T.: Easy problems are sometimes hard. AI J. 70, 335-345 (1994)

[5] Gomes, C.P., Selman, B., Crato, N.: Heavy-tailed distributions in combinatorial
search. In: Smolka, G. (ed.) CP 1997. LNCS, vol. 1330, pp. 121-135. Springer,
Heidelberg (1997)

[6] Gomes, C.P., Selman, B., McAloon, K., Tretkoff, C.: Randomization in backtrack
search: Exploiting heavy-tailed profiles for solving hard scheduling problems. In:
4th Int. Conf. Art. Intel. Planning Syst. (1998)

[7] Hogg, T., Williams, C.: Expected gains from parallelizing constraint solving for
hard problems. In: Proceedings of the Twelfth National Conference on Artificial
Intelligence (AAATI 1994), Seattle, WA, pp. 1310-1315. AAAIT Press, Menlo Park
(1994)

[8] ILOG, SA. CPLEX 10.1 Reference Manual (2006)

[9] Li, C.M., Anbulagan: Heuristics based on unit propagation for satisfiability prob-
lems. In: 15th IJCAI, Nagoya, Japan, pp. 366-371 (August 1997)

[10] Smith, B.M., Grant, S.A.: Sparse constraint graphs and exceptionally hard prob-
lems. In: 14th IJCAI, Montreal, Canada, vol. 1, pp. 646-654 (August 1995)

[11] Williams, R., Gomes, C., Selman, B.: Backdoors to typical case complexity. In:
18th IJCAI, Acapulco, Mexico, pp. 1173-1178 (August 2003)

[12] Williams, R., Gomes, C., Selman, B.: On the connections between heavy-tails,
backdoors, and restarts in combinatorial search. In: 6th SAT, Santa Margherita
Ligure, Italy, pp. 222-230 (May 2003)

http://miplib.zib.de

Solution Enumeration for Projected Boolean Search
Problems

Martin Gebser, Benjamin Kaufmann, and Torsten Schaub*

Institut fiir Informatik, Universitéit Potsdam, August-Bebel-Str. 89, D-14482 Potsdam, Germany

Abstract. Many real-world problems require the enumeration of all solutions of
combinatorial search problems, even though this is often infeasible in practice.
However, not always all parts of a solution are needed. We are thus interested
in projecting solutions to a restricted vocabulary. Yet, the adaption of Boolean
constraint solving algorithms turns out to be non-obvious provided one wants a
repetition-free enumeration in polynomial space. We address this problem and
propose a new algorithm computing projective solutions. Although we have im-
plemented our approach in the context of Answer Set Programming, it is readily
applicable to any solver based on modern Boolean constraint technology.

1 Introduction

Modern Boolean constraint technology has led to a tremendous boost in solver perfor-
mance in various areas dealing with combinatorial search problems. Pioneered in the
area of Satisfiability checking (SAT; [1/23]) where it has demonstrated its maturity for
real-world applications, its usage is meanwhile also advancing in neighboring areas,
like Answer Set Programming (ASP; [4]) and even classical Constraint Processing. Al-
though traditionally problems are expressed in terms of satisfiability or unsatisfiability,
many real-world applications require surveying all solutions of a problem. For instance,
inference in Bayes Nets can be reduced to #SAT (cf. [3]]) by counting the number of
models. However, the exhaustive enumeration of all solutions is often infeasible. Yet
not always all parts of a solution are needed. Restrictions may lead to a significant de-
crease of computational efforts; in particular, whenever the discarded variables have
their proper combinatorics and thus induce a multitude of redundant solutions.

We are thus interested in projecting solutions to a restricted vocabulary. However, the
adaption of Boolean constraint solving algorithms turns out to be non-obvious, if one
wants a repetition-free enumeration in polynomial space. We address this by proposing
anew algorithm for solution projection. Given a problem A having solutions S(A) and
a set P of variables to project on, we are interested in computing the set {SN P | S €
S(A)}. We refer to its elements as the projective solutions for A wrt P. To compute
all such projections, we first provide a direct extension of a conflict-driven learning
algorithm by means of solution recording. Although this approach is satisfactory when
the number of projective solutions is limited, it does not scale since it is exponential
in space. After analyzing the particularities of the search problem, we propose a new
conflict-driven learning algorithm that uses an elaborated backtracking scheme and only

* Affiliated with Simon Fraser University, Canada, and Griffith University, Australia.

W.-J. van Hoeve and J.N. Hooker (Eds.): CPAIOR 2009, LNCS 5547, pp. 71186] 2009.
(© Springer-Verlag Berlin Heidelberg 2009

72 M. Gebser, B. Kaufmann, and T. Schaub

a linear number of solution-excluding constraints. Although we have implemented our
approach in the context of ASP, it is readily applicable to any solving approach based
on modern Boolean constraint technology. Lastly, we provide an empirical analysis
demonstrating the computational impact of our approach.

2 Background

The idea of ASP is to encode a problem as a logic program such that its answer sets
represent solutions to the original problem. More formally, a logic program 11 is a finite
set of rules of the form a < b1, ..., bm, ~Cpmy1, ..., ~cp, where a, by, c; are atoms for
0<i2<m,m<j<n and ~ is (default) negation. The answer sets of II are particular
models of I satisfying an additional stability criterion. For brevity, we refer the reader
to [6] for a formal introduction to ASP.

As a running example, consider the program composed of the following rules:

T q,r (1) Y — x,~q (5) Z =z,)]
x—r~y,~z (2) Yy — ~x,~z (6) z «— ~x,~y (10)
p—z (3) qg—z (7 T T (11)
P~ 4) q =T ®) T g (12) .

Among the ten (classical) models of this program, we find five answer sets: {p, ¢, y},
{p,q,2},{p,q,r,x}, {p,r,y}, and {p,r, z}. Projecting them onto the atoms {p, ¢, r}
results in only three distinct solutions: {p, ¢}, {p, ¢, 7}, and {p, r}.

An assignment A is a sequence (071, . ..,0y,) of literals o; of the form Tv; or Fu;
where v; is a (Boolean) variable for 1 < ¢ < n; Tv; expresses that v; is true and Fo;,
that it is false. We denote the complement of a literal o by o, that is, Tv = Fv and
Fv = Tw. Also, we let var(Tv) = var(Fv) = v. We sometimes abuse notation and
identify an assignment with the set of its contained literals. Given this, we access the
true and false variables in A via AT = {v | Tv € A} and A¥ = {v | Fv € A}.
For a canonical representation of (Boolean) constraints, we make use of nogoods [[7].
In our setting, a nogood is a finite set {01, ..., 0., } of literals, expressing a constraint
violated by any assignment A containing o1, ..., 0,,. For a set A of nogoods, define
var(A) = Usea{var(c) | o € 6}. An assignment A such that AT N AF = () and
{6 € A|Joed:oe€ A} = Aisasolution for A. For a given set P of variables,
we call a set P of literals such that PT U P¥ = P a projective solution for A wrt P, if
there is some solution A for A such that P C A.

A translation of logic programs in ASP into nogoods is developed in [4]]. For brevity,
we illustrate it by two examples. First, consider the nogoods induced by atom y in
the above program. Atom y depends on two bodies: {z,~q} and {~z,~z} in @)
and (6). We get the nogoods {Ty, F{z,~q}, F{~z,~z}}, {Fy, T{z,~q}}, and
{Fy, T{~x,~z}} by taking for convenience the actual bodies rather than introduc-
ing new variables. For instance, the first nogood eliminates solutions where y is true
although neither the rule in (3) nor (€) are applicable. In turn, body {z, ~¢q} induces
nogoods {F{z, ~q}, Tz, Fq}, {T{x,~q},Fz}, and {T{z, ~q¢}, Tq}. The last two
nogoods deny solutions where the body is true although one of its conjuncts is false.

Solution Enumeration for Projected Boolean Search Problems 73

3 Algorithms for Solution Projection

When enumerating solutions, standard backtracking algorithms like that of Davis, Put-
nam, Logemann, and Loveland (DPLL; [819]) usually encounter multiple solutions be-
ing identical on a projected vocabulary. Such redundancy could easily be avoided by
branching on projected before any other variables. However, the limitation of branch-
ing can cause an exponential degradation of performance (see below).

Also our enumeration algorithms for projective solutions make use of a decision
heuristic: SELECT(A, V, A, P) takes a set A of (input) nogoods, a set V of (recorded)
nogoods, an assignment A, and a set P of variables as arguments. Dynamic heuristics
devised for DPLL typically consider A and A for their decisions. In contrast, heuristics
devised for Conflict-Driven Clause Learning (CDCL; [1I2{3]) are far more interested
in V, containing nogoods derived from conflicts. Finally, as speculated above, a heuris-
tic tailored for the enumeration of projective solutions could pay particular attention to
the set P of variables to project on. For instance, OPTSAT [10] makes use of a decision
heuristic preferring minimal literals in a partially ordered set. Although OPTSAT does
not aim at enumeration, a similar intervention could be used in our setting for canceling
redundancies. However, we argue below that constraining the heuristic in such a way
can have a drastic negative impact. Hence, we refrain from devising any ad hoc heuris-
tic and leave the internals of SELECT(A, V, A, P) unspecified. As a matter of fact, the
formal properties of our algorithms are largely independent of heuristics.

Projective Solution Recording. Our goal is the repetition-free enumeration of all pro-
jective solutions for a given set A of nogoods wrt a set P of variables. To illustrate
the peculiarities, we start with a straightforward approach recording all projective solu-
tions in order to avoid recomputation. Our enumeration algorithm is based on CDCL,
but presented in terms of nogoods and thus called Conflict-Driven Nogood Learning
(CDNL). It deviates from the corresponding decision algorithm, which halts at the first
solution found, merely by recording computed projective solutions as nogoods and then
searching for alternative solutions.

Algorithm [T] shows our first main procedure for enumerating projective solutions.
Its input consists of a set A of nogoods, a set P of variables to project on, and a
number s of projective solutions for A wrt P to compute. Projective solutions are
obtained from assignments A (initialized in Line 1) that are solutions for A. The
dynamic nogoods in V (initialized in Line 2) are derived from conflicts (cf. Line 9-10).
In general, nogoods in V are consequences of those in A and may thus be deleted at
any time in order to achieve polynomial space complexity. Only such nogoods that are
asserting (explained below) must not be deleted from V, but their number is bound
by the cardinality of var(A). Finally, the decision level di (initialized in Line 3)
counts the number of heuristically selected decision literals in A. The global structure
of Algorithm [I] is similar to the one of the decision version of CDNL (or CDCL)
by iterating propagation (Line 5) and distinguishing three resulting cases: a conflict
(Line 6-11), a solution (Line 12-20), or a heuristic decision (Line 22-24). Function
BOOLEANCONSTRAINTPROPAGATION(A U V, A) first augments A with implied
literals, that is, literals necessarily contained in any solution for A U V that extends A.
A well-known technique to identify such literals is unit propagation (cf. [213]); it

74 M. Gebser, B. Kaufmann, and T. Schaub

Algorithm 1. CDNL-RECORDING
Input : A set A of nogoods, a set P of variables, and a number s of requested solutions.

1 A0 // assignment
2 V90 // set of (dynamic) nogoods
3dl+—0 // decision level
4 loop

5 A — BOOLEANCONSTRAINTPROPAGATION(A U V, A)

6 if e C A forsome e € AUV then // conflict
7 if dl = 0 then exit

8 else

9 (8, dl) «— CONFLICTRESOLUTION(e, AUV, A)

10 V —VUuU{d}

11 A — A\{o e A|dlevel(c) > dl}

12 elseif {§ € A|Jo€d:0€ A} = Athen // solution
13 S — {op € A | var(op) € P}

14 print S

15 s s —2lPI-IsI

16 if s < 0 or max{dlevel(o,) | op € S} = 0 then exit

17 else

18 A — AU{S} // record solution (persistently)
19 dl — max{dlevel(op) | 0 € S} — 1
20 A — A\{oe€A|dlevel(c) > dl}
21 else

22 04 < SELECT(A,V, A, P) // decision
23 dlevel(og) «— dl — (dl + 1)
24 A—Aooy

iteratively adds complements o to A, if 6\ A = {0} for some § € AUV, until reaching
a conflict or a fixpoint. In the context of ASP, propagation also includes unfounded set
checks (cf. [4411]). In principle, other techniques, such as failed literal detection, could
be applied in addition, but they are less common in CDNL (or CDCL). We next de-
tail the cases encountered after propagation, starting with the simplest one of a decision.

Decision. As mentioned above, we do not assume any particular heuristic but
stipulate for any literal o4 returned by SELECT(A, V, A, P) that {4,04} N A =
and var(oq) € var(A U V). That is, o4 must be undecided and occur in the input.
For every literal o € A, dlevel(o) provides its decision level. Based on this, operation
A o ¢’ inserts o’ as the last literal of dlevel(o’) into A, before any o € A such that
dlevel (o) > dlevel (o). A decision literal o4 is always appended to A (in Line 24).

Conflict. A conflict is encountered whenever some nogood ¢ is violated by A (cf.
Line 6). If no decision has been made, there is no (further) solution for A, and
enumeration terminates (Line 7). Otherwise, a reason ¢ for the conflict is calculated
(Line 9) and recorded as a dynamic nogood (Line 10). We assume that the nogood &
returned by CONFLICTRESOLUTION(e, A U V, A) is violated by A and contains a

Solution Enumeration for Projected Boolean Search Problems 75

Unique Implication Point (UIP; [1/12]), viz., there is some literal ¢ € ¢§ such that
dlevel(o) > max{dlevel(c’) | o' € § \ {o}}. We assume conflict resolution to work
according to the First-UIP scheme [3I12]], resolving ¢ against nogoods used to derive
implied literals in € (this is why A is a sequence; cf. [4/11]) until reaching the first UIP,
which is not necessarily a decision literal. Backjumping (Line 11) then returns to deci-
sion level dI = max{dlevel(c’) | o' € §\{o}}, where ¢ implies o by unit propagation.
Note that 0 is the single nogood in A U V justifying the inclusion of ¢ in A at decision
level di; such a dynamic nogood is called asserting. Even though Algorithm[Ildoes not
mention deletion, dynamic nogoods that are not asserting may be deleted at any time.
Since there cannot be more asserting nogoods than literals in A, this permits running
the decision version of CDNL in polynomial space. Finally, by altering conflict resolu-
tion to simply return all decision literals in A, we can mimic DPLL with Algorithm [I]
(rather than explicitly flipping a decision literal, its complement is asserted). Thus, the
considerations below apply also to DPLL variants for enumerating projective solutions.

Solution. The last case is that of a solution, viz., an assignment A containing the com-
plement of at least one literal from each nogood (cf. Line 12). The corresponding pro-
jective solutions for A wrt P are represented by S, the set of literals in A over variables
in P (cf. Line 13). After printing S (Line 14), we calculate the number of projective
solutions still requested (Line 15). Note that, for P\ (AT UAF) = {py,...,px}, each
of the 2% sets SU {X;p; | 1 <i<k} such that X; € {T,F} for 1 <i <k is a projective
solution for A wrt P, so that A represents 2/71~18! of them. If the number of requested
projective solutions have been enumerated or if all literals in S are implied at decision
level 0 (independent of decisions), we are done with enumeration (Line 16). Otherwise,
our first procedure records S persistently in A (Line 18). In fact, unlike dynamic no-
goods in V, S is not a consequence of A because its literals belong to a solution for A.
Hence, we must exclude the deletion of S, and so cannot store it as a dynamic nogood
in V. Finally, at least one literal of S has to be unassigned in order to enumerate any
further projective solutions. This is accomplished by retracting the maximum decision
level of literals in S as well as all greater decision levels (Line 19-20). In principle, it
is also possible to backtrack further or even to restart search from scratch by retract-
ing all decision levels except for 0. The strategy of leaving as many decision levels as
possible assigned is guided by the goal of facilitating the discovery of projective solu-
tions nearby S. However, as with nogood deletion, restarts can optionally be included,
permitting the customization of backtracking from a solution.

We proceed by stating formal properties of Algorithm[1l The first one, termination,
follows from the termination of CDNL on unsatisfiable sets of nogoods (cf. [13] for a
proof) and the fact that solutions are excluded by strengthening the original problem.

Theorem 1. Let A be a finite set of nogoods, P a set of variables, and s a number.
Then, we have that CDNL-RECORDING(A, P, s) terminates.

The second property, soundness, is due to the condition in Line 12 of Algorithm[Il

Theorem 2. Let A be a finite set of nogoods, P a set of variables, and s a number.
For every S printed by CDNL-RECORDING(A, P, s) and every Q C P, we have that
SU{Tq|qe Q\S¥}U{Fr|r e P\ (QUST)} isaprojective solution for A wrt P.

76 M. Gebser, B. Kaufmann, and T. Schaub

The third property, completeness, follows from the prerequisite that any nogood in V is
a consequence of those in A. Hence, no projective solution for A wrt P is ever excluded
by A U V before it was enumerated][]

Theorem 3. Let A be a finite set of nogoods, P a set of variables, and P =
var(A) N P. For every projective solution P for A wrt P, we have that CDNL-
RECORDING(A, Pha, 2|PA|) prints some S C P.

Finally, redundancy-freeness is obtained from the fact that each already enumerated
projective solution is represented by a nogood 6 € A, so that all further solutions for A
must contain the complement o, of at least one literal o}, € d.

Theorem 4. Let A be a finite set of nogoods, P a set of variables, and s a number. For
every projective solution P for A wrt P, we have that CDNL-RECORDING(A, P, s)
prints some S C P at most once.

In the worst case, there are exponentially many (representative literal sets of) projective
solutions for A wrt P, each of which must be recorded in some way by Algorithm I
Thus, our next goal is revising Algorithm [I]to work in polynomial space under main-
taining its properties, in particular, redundancy-freeness. The peculiarities of this task
are listed next. For brevity, we refrain from giving exemplary inputs A and P exhibiting
the listed possibilities, but it is not difficult to come up with them.

First, for a solution A for A, there can be another solution B for A differing from A
only on variables outside P (requiring a different decision on some variable outside P).

Fact 1. Let A be a solution for a set A of nogoods containing decision literals
{o1,...,0;}. It is possible that there is some solution B for A such that {o, € A |
var(op) € P} C B, but {o1,...,0;} "B # 0. Then, if 0; € B for 1 <i < j, we have
var(c;) ¢ P. We conclude that flipping some literal(s) in {o; | 1 <i<j, var(o;) ¢ P}
may not exclude repetitions of projective solutions for A wrt P.

Second, for a solution A for A, there can be another solution B for A differing
from A on some variable in P, but not on any decision literal in A over P.

Fact 2. Let A be a solution for a set A of nogoods containing decision literals
{o1,...,0;}. It is possible that there is some solution B for A such that {o, € A
var(op) € P} € B, but {o; | 1 <i<j,var(o;) € P} C B. Then, B includes the de-
cision literals over P from A, still covering different projective solutions for A wrt P.
We conclude that flipping some literal(s) in {o; | 1 <i<j,var(o;) € P} may eliminate
non-redundant projective solutions for A wrt P.

Combining Fact 1 and 2, we observe that flipping decision literals over variables out-
side P does not guarantee redundancy-freeness, while flipping decision literals over P
might sacrifice completeness. Hence, with a heuristic free to return an arbitrary deci-
sion literal, we do not know which literal of a solution A for A should be flipped. This
obscurity could be avoided by deciding variables in P before those outside P. How-
ever, such an approach suffers from a negative proof complexity result on unsatisfiable
inputs, and for hard satisfiable problems, similar declines are not unlikely.

Fact 3. Any restricted decision heuristic that returns a literal o4 such that
var(cq) ¢ P only wrt assignments A such that var(A\{d € A|Jo€d:0€ A})N

"'t is sufficient to consider the set Pa of variables occurring in both A and P, along with the
size 21721 of the power set of Pa.

Solution Enumeration for Projected Boolean Search Problems 77

P C ATUAYF (thatis, var(c) ¢ P holds for all undecided literals o in not yet satisfied
nogoods of A) incurs super-polynomially longer optimal computations than can be ob-
tained with an unrestricted decision heuristic on certain inputs. This handicap follows
from Lemma 3 in [[I4)], showing that CDCL with decisions restricted to variables P act-
ing as input gates of Boolean circuits has super-polynomially longer minimum-length
proofs of unsatisfiability than DPLL on infinite family {EPHP" 1} of Boolean circuits.
The circuits in this family can be translated into a set A of nogoods [14l] such that every
assignment A satisfying var(A\ {0 € A|Jo €d:0€ A}) NP C AT UAF yields
an immediate conflict. We conclude that any restricted decision heuristic is doomed to
return only literals o4 such that var(oq) € P; hence, it handicaps CDNL computations
in the sense of Lemma 3 in [14].

The last fact tells us that any heuristic guaranteeing redundancy-freeness (and com-
pleteness) right away must fail on certain inputs. To avoid this, we need to devise a
procedure that adaptively excludes redundancies.

Projective Solution Enumeration. Our second procedure for the enumeration of pro-
jective solutions for A wrt P is shown in Algorithm [2l Its overall structure, iterating
propagation before distinguishing the cases of conflict (Line 6—18), solution (Line 19—
38), and decision (Line 40—42), is similar to our first algorithm. We thus focus on the
differences between both procedures. In this regard, the progress information of Algo-
rithm [2] involves an additional systematic backtracking level bl (initialized in Line 3).
The basic idea is to gather decision literals over P at decision levels 1 to bl that are to
be backtracked systematically for the sake of enumerating further non-redundant pro-
jective solutions. In this way, Algorithm 2] establishes an enumeration scheme that can
be maintained in polynomial space, abolishing the need of persistent solution record-
ing. But as mentioned above, an important objective is to avoid interference with the
actual search. In particular, before any projective solutions have been found, there is no
cause for enforcing systematic backtracking. Hence, systematic backtracking levels are
introduced only after finding some projective solutions, but not a priori. The case of a
solution is explained next.

Solution. Projective solutions for A wrt P are extracted from a solution A for A and
counted like in the first algorithm (cf. Line 19-22). As before, enumeration terminates
if enough projective solutions have been computed or if the search space has been ex-
hausted (Line 23). If neither is the case, the treatment of the discovered projective so-
lutions in S distinguishes Algorithm 2] from its predecessor that simply records S. Let
us assume that S has been constructed from at least one heuristically selected literal
(Line 31-38), so that alternative decisions may lead to distinct projective solutions. In
order to enumerate them, we must certainly flip some decision literal(s) in A, but Fact 1
and 2 tell us that we cannot be sure about which one(s). This obscurity is now dealt with
via systematic backtracking, and thus we increment b/ (Line 31) in order to introduce
anew systematic backtracking level. The introduction involves storing S in A, but now
as a nogood §(bl) associated with bl (Line 32-33). The other cases of Algorithm[2lare
such that 6(bl) is removed from A as soon as b! is retracted, which establishes polyno-
mial space complexity. Until then, §(bl) guarantees redundancy-freeness. The next step
consists of retracting all literals of decision levels not smaller than bl from A (Line 34)

78 M. Gebser, B. Kaufmann, and T. Schaub

Algorithm 2. CDNL-PROJECTION

Input : A set A of nogoods, a set P of variables, and a number s of requested solutions.

1 A0 // assignment
2 V10 // set of (dynamic) nogoods
3dl—0bl—0 // decision and (systematic) backtracking level
4 loop

A — BOOLEANCONSTRAINTPROPAGATION(A U V, A)

5

6 if ¢ C A for some e € AUV then
7 if dl = 0 then exit

8 else if dI = bl then

9 A— A\ {5(bD)}

10 oq < dliteral(bl)

11 A — A\{o € A|dlevel(c) = bl}
12 dlevel(oq) <« dl — bl — (bl — 1)
13 A—Aooy

14 else

15 (6, k) < CONFLICTRESOLUTION(s, AUV, A)
16 V —VuU{d}

17 dl — max{k, bl}

18 A — A\{oe€A|dlevel(c) > dl}
19 elseif {§ € A|Jo€d:0e€ A} = Athen
20 S — {op € A | var(op) € P}

21 print S

22 s s —2IPI7I8I

23 if s < 0 or max{dlevel(op) | op € S} = 0 then exit
24 else if max{dlevel(o}) | o, € S} = bl then
25 A— A\ {5(b))}

26 o4 — dliteral(bl)

27 A — A\{o €A dlevel(c) > bl}
28 dlevel(oq) <« dl — bl — (bl — 1)
29 A—Aoogy

30 else

31 bl — bl +1

32 o(bl) — S

33 A— AU{S(bl)}

34 A — A\{o €A dlevel(c) > bl}
35 let g € §(bl) \ Ain

36 dliteral(bl) «— oq

37 dlevel(oq) < dl — bl

38 A—Aoogy

39 else

40 04 < SELECT(A,V, A, P)

@ dlevel(oq) — dl — (dl+1)

42 A—Aooy

// conflict

// remove for polynomial space complexity

// solution

// remove for polynomial space complexity

// record solution (temporarily)

// decision

Solution Enumeration for Projected Boolean Search Problems 79

to make a clean cut on some unassigned literal o4 (selected in Line 35) from §(bl).
Recall Fact 2 telling us that flipping o4 may eliminate non-redundant projective
solutions, hence, it is taken unflipped as decision literal of bl (Line 36-38). In sum-
mary, the reassignment of a literal o4 from S makes sure that not yet enumerated
projective solutions are not excluded by A (for completeness), while the temporary
inclusion of §(bl) in A prohibits a recomputation of S (for redundancy-freeness and
termination). In the subsequent iterations, Algorithm [2] first exhausts the search space
for further projective solutions including o4, and afterwards flips o4 to o4 along with
removing the then satisfied nogood 6 () from A (for polynomial space complexity). In
fact, such a systematic backtracking step is performed (in Line 25-29) if the maximum
decision level of literals in S is bl (tested in Line 24), which means that the decision
literal o4 of bl (marked before in Line 36 and recalled in Line 26) must now be flipped
for enumerating any further projective solutions. Finally, note that complement o is
assigned (in Line 29) at decision level (bl — 1) or the new systematic backtracking
level (cf. Line 28), respectively. As a matter of fact, there is no nogood in A U V that
implies o4, so that conflict resolution (as in Line 15) cannot be applied at the new sys-
tematic backtracking level.

Conflict. As before, a conflict at decision level 0 means that there are no (further)
projective solutions (Line 7). Otherwise, we now distinguish two cases: a conflict at
systematic backtracking level b/ (Line 9—13) or beyond bl (Line 15-18). As men-
tioned above, a conflict at bl cannot be analyzed because of literals in A lacking a
reason in A U V. In fact, any conflict at bl is caused by §(bl) or flipped decision lit-
eral(s) o4 such that o4 belongs to previously computed projective solutions. Unlike in
Algorithm[T] such projective solutions are no longer available in A, and the mere reason
for the presence of o4 in A is that the search space of o4 has been exhausted. Thus, a
conflict at bl is not analyzed, and systematic backtracking proceeds as with projective
solutions located at bl (compare Line 9-13 with Line 25-29). On a conflict beyond bl,
conflict resolution (Line 15) returns a dynamic nogood ¢ (recorded in Line 16), as with
Algorithm[1l The modification consists of restricting backjumping (in Line 18) to nei-
ther retracting bl nor any smaller decision level (Line 17), even if § is asserting at a
decision level £ < bl. Note that such an assertion reassigns some literal of previously
computed solutions. If this leads to a conflict, §(bl) or some flipped literal o4 at bl is in-
volved. Then, both are retracted by a systematic backtracking step in the next iteration.

dl 1 A dl 1 A dl 1 Az dl 1 Ay dl 1 As

0 0 0 0 Tp 0 Tp
1 42 Ty 1 42 Ty 1 38 Tq 1 38 Tgq 29 Fq
2 42 Tp Fz 2 42 Fp Tr Tr
3 42 Tx Fz Fx Tz Fx
Tq Tp (Tz) Fy 1 42Ty
(Fq) 2 42 Tq ({Fp},0) Fz Fz
({Tz, Ty}, 1) Fr
{Tp, Tq,Fr} {Tp, P, Fr}

Fig. 1. Trace of Algorithm[2]

80 M. Gebser, B. Kaufmann, and T. Schaub

For illustration, consider Figure[Ilgiving a trace of Algorithm[on (nogoods resulting
from) the rules in (I—-(12) and P = {p, q, 7}. We give all five assignments A; yielding
either a conflict or a solution; a resulting nogood is shown below. Column d! provides
the decision levels of literals in A;, where the systematic backtracking level bl is given
in bold. For (flipped) decision literals, column [provides the line of Algorithm [2]in
which the literal has been assigned; all other literals are inferred by propagation (in
Line 5). For simplicity, we do not include variables for bodies of the rules in (I)-({12)
in A;, but note that such variables are functionally dependent. Tracing Algorithm 2]
successive decisions on Ty, Tp, and Tx give rise to the conflicting assignment A
by propagation. While Tq is needed for deriving = from the rule in (1), complemen-
tary literal Fg is mandatory for deriving y from the rule in (3). This makes us en-
ter conflict resolution (in Line 15), yielding nogood {Tx, Ty} and decision level 1
to jump back to. Hence, assignment (Ty) constitutes the basis of As. Propagating
with {Tz, Ty} gives Fuz; further propagation and decision literal Tq lead to solution
A, = (Ty,Fa,Fz, Tp, Tq, Fr), whose projective solution, { Tp, Tq, Fr}, is printed
(in Line 21). At this point, our proceeding starts to deviate from standard CDNL.
Given that the maximum decision level 2 of literals Tp, Tq, and Fr lies above 0,
we store {Tp, Tq, Fr} (in Line 33) to avoid computing answer sets comprising the
same projective solution. Afterwards, selecting Tq at the new systematic backtracking
level 1 makes us first explore further projective solutions containing Tq. Assignment
(Tq) is then extended to conflicting assignment As, and conflict resolution results in
the addition of nogood {Fp}, effective at decision level 0. Nonetheless, the systematic
backtracking and decision level remain at 1, and further propagation yields solution A 4,
comprising projective solution { Tp, Tq, Tr}. The fact that all its literals are established
at 1 indicates the exhaustion of the search space for Tq. Hence, the projective solution
at hand is not recorded, while {Tp, Tq, Fr}, associated with systematic backtracking
level 1, is removed to stay in polynomial space. All literals assigned at 1 are then re-
tracted from A4 (in Line 27). Finally, the systematic backtracking level is decremented
and the search directed to projective solutions with Fg. The construction of solution A5
thus starts with Tp and Fq at the new systematic backtracking level 0 and ends after
printing the corresponding projective solution {Tp, Fgq, Tr}. Notably, A5 still contains
a decision literal, T'y, but flipping it cannot lead to any further projective solutions.

We conclude this section by providing formal properties of Algorithm [2l As with
Algorithm [T soundness is clear due to verifying solutions (in Line 19) before printing
anything. Termination and redundancy-freeness are obtained from the fact that enumer-
ated projective solutions are excluded either by temporarily storing them (in Line 33)
or by flipping some of their literals (in Line 13 or 29) upon systematic backtracking. Fi-
nally, completeness is guaranteed because temporarily stored projective solutions do not
exclude not yet enumerated ones, while a systematic backtracking step is applied only if
no further projective solutions are left beyond bl. Notably, any dynamic nogood derived
by resolving with temporarily stored projective solutions S (in Line 15) is universally
valid: since the literals of S are not to be reestablished in the future, S is indeed a no-
good. Given the above considerations, we conclude that Theorem [Tl Pl Bl and Bl remain
valid if replacing CDNL-RECORDING in their statements with CDNL-PROJECTION.
Beyond this, Algorithm[2lruns in polynomial space, in view of the fact that there cannot

Solution Enumeration for Projected Boolean Search Problems 81

be more temporarily stored projective solutions and asserting dynamic nogoods than
literals in A, while all other dynamic nogoods can be deleted at any time. However,
it would be unfair to claim that the exponential savings in space complexity come
without a cost: an introduced systematic backtracking level can only be retracted by a
systematic backtracking step (in either Line 11 or 27), while backjumping (cf. Line 17—
18) and optional restarts must leave all decision levels up to bl intact for not losing
progress information However, systematic backtracking levels are introduced only af-
ter finding projective solutions, so that negative proof complexity results for procedures
restricting decisions a priori [14] do not apply to Algorithm[2l

4 Experiments

We implemented our approach to solution projection within the ASP solver clasp (1.2.0-
RC3; [4]]). Our experiments consider clasp using four different types of enumeration: (a)
its standard solution enumeration mode [11]]; (b) enumeration by appeal to standard so-
lution recording; (c¢) projective solution recording; (d) projective solution enumeration.
Moreover, we implemented and evaluated two refinements of Algorithm 2] differing in
the way selections are made in Line 35 and 40, respectively. Variant (d[h]) uses clasp’s
BerkMin-like decision heuristic to select o4 in Line 35 (without sign selection); other-
wise, simply the first unassigned literal in §(bl) is selected. Variant (d[p]) makes use
of clasp’s progress saving option to direct the choice of o4 in Line 40. Progress saving
enforces sign selection according to the previously assigned truth value and thus directs
search into similar search spaces as visited before (cf. [[15]). Variant (d[hp]) combines
both features, while (d[]) uses none of them. We refrained from testing further solvers
because, to the best of our knowledge, no ASP nor SAT solver features the redundancy-
free computation of projective solutions. Furthermore, ASP solvers enumerate standard
solutions either via systematic backtracking, e.g., smodels, or like SAT solvers via solu-
tion recording, e.g., cmodels. The latter strategy is subsumed by clasp variant (b), while
the former has in [11] been shown to have no edge over variant (a). Also note that we did
not implement any decision heuristic specialized to preferring projected variables, as it
had required another customization of clasp. All experiments were run on a 3.4GHz PC
under Linux, each individual run restricted to 1000s time and 1GB RAMH

In Table[Tland 2] we investigate the relative performance of the different enumeration
approaches in terms of the proportion of projected variables. To this end, we consider
two highly combinatorial benchmarks, the 11/11-Pigeons “problem” and the 15-Queens
puzzle. For both of them, we gradually increase the number of projected variables (in
columns #var), viz., the number of monitored pigeons or queens, respectively. The num-
ber of obtained projective solutions is given in columns #sol; the two last ones give the
number of standard solutions. Columns (a)—(d[hp]) provide the runtimes of the different
clasp variants in seconds; “>1000" stands for timeout. Note that #var and #sol do not
affect (a) and (b), which always (attempt to) enumerate all standard solutions. At the
bottom of Table[[]and Pl row & provides the average runtime of each clasp variant.

2 This is similar to the enumeration algorithm for non-projected solutions in [LT]).
3 The benchmarks are available at: http: //www.cs.uni-potsdam.de/clasp/

82 M. Gebser, B. Kaufmann, and T. Schaub

Table 1. Benchmark Results: 11/11-Pigeons

fva] #sol @ | ® [(© | @ [@hD)]dpD [dhp))]
11({100.38|>1000|| 0.01| 0.01| 0.01f 0.01] 0.01
110{/100.38|>1000|| 0.01| 0.01] 0.01] 0.01] 0.01
990((100.38|>1000{| 0.05| 0.07| 0.06/ 0.07| 0.07
7920(/100.38/>1000{| 0.60| 0.35| 0.34| 0.35| 0.35
55440(/100.38|>1000|| 9.08| 1.67| 1.68| 1.61 1.67
332640(/100.38|>1000((281.05| 6.34| 6.32| 6.50| 6.34
16632001(/100.38{>1000(|>1000| 20.63| 20.17| 21.04| 20.39
6652800({100.38|>1000{|>1000| 49.97| 51.20| 50.10| 49.18
19958400(/100.38(>1000(|>1000| 88.77| 88.73| 89.63| 91.18
39916800(/100.38(>1000||>1000{114.17{119.36{119.12|114.82
39916800(/100.38(>1000||>1000{114.30{113.92{116.80|118.83

2 [[100.38]>1000]]480.98] 36.03] 36.53] 36.84] 36.62]

— O 0 XN R W=

—_

Table 2. Benchmark Results: 15-Queens

va] #sol @ | ® [© [@ [@hD] dlpD[dhpD)]
15((243.14|773.57 0.01] 0.02| 0.01/ 0.02 0.01
182((243.14|773.57 0.08/ 0.08/ 0.08, 0.14, 0.12
1764((243.14|773.57 0.79] 0.63| 0.66| 1.47 1.37
13958(|243.14|773.57| 11.69] 5.79| 6.08| 10.91| 11.51
86360((243.14|773.57||158.40| 40.71| 43.71| 63.76| 69.88
369280((243.14|773.57||454.33|153.49(168.46|219.87|226.75
916096((243.14|773.57||>1000(331.42(357.31|444.69|437.23
1444304|(243.14|773.57||>1000|463.46|461.78|584.59|542.46
1795094|(243.14|773.57||>1000|512.19|523.86|652.37|577.66
2006186/(243.14|773.57||>1000|528.36({436.70(647.49|478.34
11|2133060([243.14|773.57||>1000(525.23|407.40{616.43|450.80
1212210862([243.14|773.57||>1000|516.56|357.22|552.67|384.30
13|2254854/243.14|773.57||>1000(462.83|322.50{496.17|356.18
14|2279184((243.14|773.57||>1000(413.72|283.82|432.62|327.35
152279184(|243.14|773.57||>1000{250.13|250.06(245.97{249.11

| @ [243.14]773.57][641.69]280.31]241.31]331.28[274.20]

e e I N S

—_
(=]

Looking into Table [I] it is apparent that variant (b) and (c), persistently recording
either standard or projective solutions, do not scale. For the last problem solved by (c),
projecting to 6 out of 11 pigeons, the ratio of standard to projective solutions is 120.
Furthermore, all variants of (d) are faster than standard solution enumeration (a) up
to 9 out of 11 pigeons, at which point there are twice as many standard as projective
solutions. For 10 and 11 pigeons, variant (a) is a bit faster than (d). In fact, (a) saves
some overhead by not distinguishing projected variables within solutions. Finally, there
are no significant differences between the variants of (d), given that the underlying
problem is fully symmetric.

With the 15-Queens puzzle in Table 2] search becomes more important than with
11/11-Pigeons. Due to the reduced number of solutions, standard solution recording (b)

Solution Enumeration for Projected Boolean Search Problems 83

now completes in less than 1000s, even though it is still slower than all enumeration
schemes without persistent recording. We also see that projective solution recording (c)
is the worst approach. In fact, its recorded projective solutions consist of #var literals
each, while (b) stores decision literals whose number decreases the more solutions have
been enumerated. For the variants of (d), we see that the number of projective solutions
does not matter that much beyond 7 queens. Rather, heuristic aspects of the search start
to gain importance, and variant (d[h]), which aims at placing the most critical queen
first, has an edge. In contrast, progress saving alone here tends to misdirect search,
as witnessed by (d[p]). Finally, (a) enumerating standard solutions becomes more effi-
cient than (d) from 7 queens on, where the ratio of standard to projective solutions is
about 2.5. As with 11/11-Pigeons, the reason is less overhead; in particular, (a) does not
even temporarily store any nogoods for excluding enumerated solutions. The reconver-
gence between (a) and variants of (d) at 15 queens is by virtue of an implementation
trick: if the decision literal at level (b] 4+ 1) in a solution (cf. Line 31-38 in Algo-
rithm[2)) is over a variable in P, then clasp simply increments bl and backtracks like in
Algorithm[I] (Line 19). This shortcut permits unassigning fewer variables.

The benchmarks in Table 3] belong to three different classes. The first one deals
with finding Hamiltonian cycles in clumpy graphs containing n clumps of n vertices
each. For each value of n, we average over 11 randomly generated instances. Note that,
due to high connectivity within clumps, clumpy graphs typically allow for a vast num-
ber of Hamiltonian cycles, but finding one is still difficult for systematic backtracking
methods. In our experiments, we project Hamiltonian cycles to the edges connecting
different clumps, thus, reducing the number of distinct solutions by several orders of
magnitude. Second, we study benchmarks stemming from consistency checks of bio-
logical networks [16]. The five categories, each containing 30 randomly generated yet
biologically meaningful instances, are distinguished by the number n of vertices in a
network. The task is to reestablish consistency by flipping observed variations (increase
or decrease) of vertices. Solutions are then projected to the vertices whose variations
have been flipped, while discarding witnesses for the consistency of the repaired net-
work. After a repair, there are typically plenty of witnesses, so that the number of pro-
jective solutions is several orders of magnitude smaller than that of standard ones. The
third class considers a variation of Ravensburger’s Labyrinth game on quadratic boards
with n rows and n columns, each size comprising 20 randomly generated configura-
tions. The idea is that an avatar is guided from a starting to a goal position by moving
the rows and columns of the board as well as the avatar itself, and projection consists of
disregarding the moves of the avatar. It turns out that Labyrinth instances are pretty dif-
ficult to solve, and usually there are not many more standard than projective solutions.

Table [3] shows average runtimes and numbers of timeouts per benchmark category;
timeouts are taken as maximum time, viz., 1000s. The rows with & /X provide the aver-
age runtime and sum of timeouts for each clasp variant over all instances of a benchmark
class and in total, respectively. For the clumpy graphs and biological networks, denoted
by Clumpy and Repair in Table[3] there are far too many standard solutions to enumer-
ate them all with either (a) or (b). Even on the smallest category of Clumpy, (a) and (b)
already produce timeouts, while enumerating projective solutions with (c) or (d) is un-
problematic. On the larger Clumpy categories, there is no clear winner among (c) and

84 M. Gebser, B. Kaufmann, and T. Schaub

Table 3. Benchmark Results: Clumpy,Repair, and Labyrinth

Benchmark] n @ | ® [(© | @D [@h) | dph [@hp) |

Clumpy| 08| 204.50/02| 468.48/05 0.02/0 0.02/0 0.02/0 0.02/0 0.02/0
18| >1000/11| >1000/11 99.65/1| 104.43/1| 105.18/1| 81.31/0| 79.72/0
20| >1000/11| >1000/11|| 255.04/2] 254.80/2| 313.22/1| 219.05/1| 118.95/0
21| >1000/11| >1000/11|| 603.74/6| 612.33/6| 619.37/6| 396.47/4| 318.04/3
22|| >1000/11| >1000/11|| 144.64/1| 266.72/2| 275.54/2| 410.98/4| 321.07/3

\ /% [840.90/46] 893.70/49][220.62/10[247.66/11[262.67/10] 221.57/9] 167.56/6]

Repair|2000|| >1000/30| >1000/30|| 126.81/0| 118.43/0| 118.69/0| 113.04/0| 112.79/0
2500{| >1000/30{ >1000/30(| 232.57/2| 223.07/2| 223.37/2| 217.17/2| 216.22/2
3000|| >1000/30| >1000/30|| 404.75/6| 386.70/5| 387.39/5| 377.74/5| 378.18/5
3500|| >1000/30| >1000/30|| 322.10/6| 312.76/6| 312.72/6| 306.93/6| 306.67/6
4000(| >1000/30| >1000/30(| 424.23/7| 409.50/7| 409.84/7| 400.44/7| 399.78/7

| /X [[>1000/150[>1000/150][302.09/21]290.09/20[290.40/20]283.06/20]282.73/20

Labyrinth| 16 52.49/0 58.46/1|| 59.69/1| 61.72/1] 59.03/1] 61.54/1| 59.11/1
17| 165.15/2| 162.60/2| 198.32/2| 220.13/2| 196.83/3| 220.26/3| 198.25/3
18|| 212.59/2| 218.90/2|| 289.84/4| 298.56/3| 253.06/3| 286.05/3| 257.38/3
19| 238.24/4| 241.26/4| 260.63/4| 266.96/5| 245.83/4| 264.68/5| 250.90/4
20|| 319.67/5| 324.43/5| 355.48/6| 359.51/7| 343.47/6| 360.33/7| 346.13/6

y /% | 197.63/13] 201.13/14][232.79/17]241.38/18]219.64/17]238.57/19]222.35/17
[Total &/X [[708.24/209[718.91/213[[264.68/48]266.47/49]262.20/47]257.39/48]242.17/43]

the variants of (d), taking also into account that difficulty and number of projective so-
lutions vary significantly over instances. However, it appears that progress saving (d[p])
and its combination with heuristic (d[hp]) tend to help. In the Repair categories, there are
hardly any differences between the variants of (d), and projective solution recording (c)
is competitive too. Finally, on Labyrinth, non-projecting enumeration approaches (a)
and (b) have an edge on projecting ones. This is not a surprise because there not many
more standard than projective solutions here. The disadvantages of projective solution
enumeration are still not as drastic as their advantages are on other benchmarks. Among
the different (d) variants, the use of a heuristic slightly promotes (d[h]), while progress
saving alone (d[p]) is not very helpful. Finally, the last row in Table 3] shows that, over
all instances, projective solution enumeration variants are not far away from each other,
even though (d[hp]) has a slight advance. In fact, enumeration can benefit from the incor-
poration of search techniques, such as a heuristic or progress saving. Their usefulness,
however, depends on the particular benchmark class, so that fine-tuning is needed. Im-
portantly, the enumeration of all projective solutions may still be possible when there are
far too many standard solutions, which can be crucial for the feasibility of applications.

5 Discussion

Answer set projection is already supported by almost all ASP systems, given that
hide and show directives are available in the input language. However, up to now, no
ASP system was able to enumerate projective solutions without duplicates. Rather, the

Solution Enumeration for Projected Boolean Search Problems 85

existing solvers exhaustively enumerate the entire set of solutions and merely restrict
the output to visible atoms. This is accomplished either via systematic backtracking or
via solution recording; the latter is also done by SAT solvers. To the best of our knowl-
edge, the first dedicated solution enumeration algorithm that integrates with CDNL in
polynomial space was proposed in [L1] in the context of ASP; cf. variant (a) in Sec-
tion] This algorithm turned out to be competitive for exhaustive solution enumeration,
but it cannot be used for redundancy-free solution projection in view of the arguments
given in Section[3 Although our new technique has also been implemented for ASP, it
is readily applicable in neighboring areas dealing with Boolean or (with the necessary
adaptions) even general constraints.

From a user’s perspective, the sometimes intolerable redundancy of exhaustive so-
lution enumeration necessitates the development of wrappers feeding projections of
computed solutions as constraints back into a solver. For instance, such a workaround
was originally used for the diagnosis task in [[16] where certificates are required for solu-
tions. These certificates, however, do neither belong to a projective solution nor can the
resulting symmetries be broken by hand. The sketched approach boils down to projec-
tive solution recording, which does not scale because of exponential space complexity.
If there are too many (projective) solutions to store them all, it is of course also impos-
sible for a user to inspect each of them individually. However, if one is interested in
counting occurrences of (combinations of) literals within solutions, enumerating more
solutions than can be stored explicitly is tolerable. To enable it, the duplicate-free enu-
meration of solutions projected to relevant parts is crucial. Finally, abolishing the need
of developing wrappers to cut redundancies is already something that should help users
to concentrate on the interesting aspects of their applications.

Acknowledgements. This work was funded by DFG under grant SCHA 550/8-1.

References

1. Marques-Silva, J., Sakallah, K.: GRASP: A search algorithm for propositional satisfiability.
IEEE Transactions on Computers 48(5), 506-521 (1999)
2. Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an efficient
SAT solver. In: Proc. DAC 2001, pp. 530-535. ACM Press, New York (2001)
. Mitchell, D.: A SAT solver primer. Bulletin of the EATCS 85, 112-133 (2005)
4. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Conflict-driven answer set solving. In:
Proc. IICAI 2007, pp. 386-392. AAAI Press, Menlo Park (2007)
5. Davies, J., Bacchus, F.: Using more reasoning to improve #SAT solving. In: Proc. AAAI
2007, pp. 185-190. AAAI Press, Menlo Park (2007)
6. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-
bridge University Press, Cambridge (2003)
7. Dechter, R.: Constraint Processing. Morgan Kaufmann, San Francisco (2003)
8. Davis, M., Putnam, H.: A computing procedure for quantification theory. Journal of the
ACM 7, 201-215 (1960)
9. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving. Commu-
nications of the ACM 5, 394-397 (1962)
10. Giunchiglia, E., Maratea, M.: Solving optimization problems with DLL. In: Proc. ECAI
2006, pp. 377-381. 10S Press, Amsterdam (2006)

(9%}

86

11.

12.

13.

14.

15.

16.

M. Gebser, B. Kaufmann, and T. Schaub

Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Conflict-driven answer set enumera-
tion. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007. LNCS, vol. 4483, pp. 136—
148. Springer, Heidelberg (2007)

Zhang, L., Madigan, C., Moskewicz, M., Malik, S.: Efficient conflict driven learning in a
Boolean satisfiability solver. In: Proc. ICCAD 2001, pp. 279-285. IEEE Press, Los Alamitos
(2001)

Ryan, L.: Efficient algorithms for clause-learning SAT solvers. MSc’s thesis, SFU (2004)
Jarvisalo, M., Junttila, T.: Limitations of restricted branching in clause learning. Constraints
(to appear), http://www.tcs.hut.fi/~mjj/

Pipatsrisawat, K., Darwiche, A.: A lightweight component caching scheme for satisability
solvers. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 294—
299. Springer, Heidelberg (2007)

Gebser, M., Schaub, T., Thiele, S., Usadel, B., Veber, P.: Detecting inconsistencies in large
biological networks with answer set programming. In: Garcia De La Banda, M., Pontelli, E.
(eds.) ICLP 2008. LNCS, vol. 5366, pp. 130-144. Springer, Heidelberg (2008)

http://www.tcs.hut.fi/~mjj/

k-Clustering Minimum Biclique Completion
via a Hybrid CP and SDP Approach

Stefano Gualandi

Politecnico di Milano, Dipartimento di Elettronica e Informazione
stefano.gualandi@polimi.it

Abstract. This paper presents a hybrid Constraint Programming (CP)
and Semidefinite Programming (SDP) approach to the k-clustering min-
imum biclique completion problem on bipartite graphs. The problem
consists in partitioning a bipartite undirected graph into k clusters such
that the sum of the edges that complete each cluster into a biclique,
i.e., a complete bipartite subgraph, is minimum. The problem arises
in telecommunications, in particular in bundling channels in multicast
transmissions. In literature, the problem has been tackled with an Integer
Bilinear Programming approach. We introduce two quasi-biclique con-
straints and we propose a SDP relaxation of the problem that provides
much stronger lower bounds than the Bilinear Programming relaxation.
The quasi-biclique constraints and the SDP relaxation are integrated
into a hybrid CP and SDP approach. Computational results on a set
of random instances provide further evidence about the potential of CP
and SDP hybridizations.

1 Introduction

The k-Clustering Minimum Biclique Completion (k-CMBC) problem consists in
partitioning an undirected bipartite graph into k£ clusters such that the sum
of the edges that complete each cluster into a biclique, i.e., a complete bipar-
tite subgraph, is minimum. While the problem of covering undirected graphs
by bicliques has been widely studied in the literature for its connections to fac-
torization problems of 0/1 matrices (e.g, for a survey see [I]), the k-CMBC
problem has received little attention. This combinatorial optimization problem
is NP-hard even for k = 2, as proven in [2]. In literature, it has been tackled
only by an Integer Bilinear Programming approach.

Constraint Programming has proved to be a successful programming para-
digm to solve pure combinatorial optimization problems, such as, for instance,
the maximum clique problem [3],[4], and the minimum graph coloring prob-
lem [5]. The success of applying Constraint Programming to pure combinatorial
optimization problems relies on the design of cost-based filtering algorithms, in-
troduced in [6]. The integration of Constraint Programming and Semidefinite
Programming is pioneered in [7], where a Semidefinite Programming relaxation
is exploited within a Constraint Programming solver for solving the maximum
clique problem. The Semidefinite Programming relaxation is used to derive a

W.-J. van Hoeve and J.N. Hooker (Eds.): CPAIOR 2009, LNCS 5547, pp. 87 2009.
© Springer-Verlag Berlin Heidelberg 2009

88 S. Gualandi

tight lower bound at the root node of the CP search tree, and to design an
effective labeling heuristic by interpreting the solution of the Semidefinite Pro-
gramming relaxation as the likelihood that a variable get assigned a given value
in the optimal solution. Semidefinite Programming relaxations for the MAX-
SAT problem are compared to Integer Linear Programming relaxations in [J],
where the computational results show that the Semidefinite Programming relax-
ation provides stronger bounds and is very effective when used as guidance in
the labeling heuristic.

The main contributions of this paper are to introduce two optimization con-
straints, the quasi-bicligue and the one-shore-induced quasi-biclique constraints,
and to present a new Semidefinite Programming relaxation of the k-CMBC prob-
lem. The quasi-biclique constraint forces the subgraph induced by a subset of ver-
tices to be a bipartite graph completed into a biclique by a number of additional
edges. The one-shore-induced quasi-biclique has the additional requirement that
the second shore is equal to the union of the neighborhoods of the vertices of
the first shore. These constraints are closely related to the maximum clique con-
straint introduced in [3] and improved in [4]. The proposed SDP relaxation is
based on an interpretation of the problem as a Max-Cut problem on the comple-
mentary bipartite graph, and is closely related to the relaxations of the Max-Cut
problem proposed in [9] and of the Max-k-Cut problem proposed in [I0]. The
motivation for developing the SDP relaxation is that it provides much stronger
lower bounds than the bilinear programming relaxation.

The new optimization constraints and the SDP relaxation are integrated into
a hybrid CP and SDP approach that extends to clustering problems the hybrid
method introduced in [7]. The values of the SDP relaxation are interpreted as
the likelihood that two vertices belong to the same cluster, yielding a labeling
heuristic that selects a pair of values and tries to assign the two values to the
same set variable. In addition, we propose a method to solve the SDP relaxation
at every node of the CP search tree that produces solution having a small gap
with the optimum. Computational results on a set of random instances gener-
ated as in [2] show that our hybrid approach is competitive with the existing
Integer Bilinear Programming approach, and provide further evidence about the
potential of CP and SDP hybridizations.

The outline of this paper is as follows. Section 2l defines the problem, and
presents an Integer Bilinear Programming formulation. Section Bl and Section
@ introduce respectively the CP formulation and the SDP relaxation of the
k-CMBC problem. Section [l presents the integration of the CP model and the
SDP relaxation. Section [f discusses the computational results, and Section [1]
concludes the paper presenting future works.

1.1 Notation

Let G = (5,T,F) be an undirected bipartite graph. The complementary
graph of a bipartite graph is G = (S,T,E), with E = {(i,5) | i € S,j €
T,(i,j) ¢ E}. The bipartite subgraph induced by two subsets S’ C S and

k-Clustering Min Biclique Completion via a CP-SDP Approach 89

T’ C T is denoted by G[S",T'] = (S',T',E'), where E' = {(i,5) | i € S',j €
T’,(i,j) € E}. The neighborhood of a vertex i is denoted by N(i), and the
degree by 6(i) = |N(7)]. The one-shore-induced bipartite subgraph induced by
a subset S” C S is denoted by G[S"] = (S”,T",E"), where T" = | J;cq» N (i),
and E” = {(i,j) | i € 8", € T",(i,j) € E}. The degree of vertex i in the
complementary graph G is denoted by d5(i).

A biclique is a complete bipartite graph, that is £ = § x T. A c-quasi-
biclique, or a quasi-biclique of cost ¢, is a bipartite graph that is completed into
a biclique by ¢ additional edges. The cost of the c-quasi-biclique G = (S,T, E)
is equal to ¢ = |S|-|T| — |E| = |E| = ¥,c 4 0a(%)-

2 Problem Description

Let G = (S, T, E) be a bipartite undirected graph, and & be the number of desired
clusters. A cluster is defined as a bipartite subgraph of G, or equivalently as a
c-quasi-biclique of G. The k-CMBC problem consists of partitioning the set of
vertices S into k subsets S;, with i = 1,..., k, such that the sum of the cost ¢;
of each quasi-bicliques G[S;] is minimum.

Ezample 1. Figure[Ila shows a bipartite graph G with S = {1,...,4} and T =
{5,...,9}. Figure [[lb represents a possible 2-clustering induced by S; = {1,2}
and Sy = {3,4}. The dashed edges belong to the one-shore-induced subgraph
G[S1] and those in bold to G[Sz]. Note that vertex 9 belongs to both quasi-
bicliques. The complementary graph G is shown in Fig. [lc. The cost of this
2-clustering is equal to four, given by three edges of G[S;] and one of G[S2], that
are respectively (1,9),(2,5), and (2,7) for the first biclique, and (3,9) for the
second biclique.

The k-CMBC problem has a significant application in telecommunications, as
shown in [2], for bundling channels in multicast transmissions. Given a set of

Fig. 1. An example of the k-CMBC problem for k = 2

90 S. Gualandi

demands of services from clients, the application consists of finding & multicast
sessions that partition the set of demands. Each service has to belong to a single
multicast session, while each client can appear in more sessions. This problem
is represented on a bipartite graph G = (5,7, E) as follows: every service i is
represented by a vertex in S, and every client j by a vertex in T'. The demand of a
service ¢ from a client j is represented by the edge (i, j) € E. A c-quasi-biclique of
G represents a multicast session that transmits ¢ times an unrequested service.
The cost ¢ gives a measure of the waste of bandwidth of the corresponding
multicast session. Solving the k-CMBC problem on this bipartite subgraph, is
equivalent to finding k& multicast sessions that minimizes the overall waste of
bandwidth.

Integer Bilinear Programming formulation. Let x;, and y;, be 0/1 vari-
ables indicating whether the vertex ¢ € S or the vertex j € T are in the cluster p.
Let K = {1,...,k} be the set of the clusters. The Integer Bilinear Programming
formulation of the k-CMBC problem is as follows:

w* = min Z Z Tip Yjp (1)

PEK (i,5)€E

st > @y =1, Vi€ S, (2)
peK
Z Tip Yjp =]-7 V(hj) € Ev (3)
pEK
Tip, Yjp € {0,1}, Vie S,VjeT,Vpe K. (4)

The objective function () minimizes the number of edges that completes each
induced bipartite subgraph into a biclique. Constraints (2] assign each vertex of
the shore S to a single cluster. Constraints ([B]) force each neighbor j of a vertex
i to be (also) in the same cluster of i.

The model [I)-() is linearized by introducing 0/1 variables z;;, equal to 1
if the edge (i,7) € E completes the p-th cluster into a biclique. The resulting
Integer Linear Programming model is as follows:

w* = min Z Z Zijp (5)

PEK (i,5)€E

s.t. Z Tip =1, YieV, (6)
peEK
Tip + Yjp < 1+ Zijp, V(i,j) € E,Vp € K, (7)
Tip — Yjp < 0, Y(i,j) € E,¥p € K, (8)
Tip, Yip € {0,1}, Vie V,Vje W,Vp e K, (9)
zijp € {0, 1}, V(i,j) € E,¥p € K. (10)

k-Clustering Min Biclique Completion via a CP-SDP Approach 91

The new variable z;;, and the constraints (7)) are used to linearize the bilinear
term x;py;p appearing in the objective function (II). Constraints (8] linearize the
constraints ().

The main limit of the formulation (B)—(I0) is that any permutation of the in-
dices p gives the same optimal solution. This issue is tackled in [2] by introducing
symmetry-breaking constraints.

3 Constraint Programming Formulation

The CP formulation of the k--CMBC problem is based on two new optimization
constraints: the quasi-biclique constraint and the one-shore-induced quasi-
biclique constraint. The definitions of these two constraints are based on the no-
tation used in the book [I1]. A constraint C on the ordered set of variables X' (C) is
a subset 7 (C) of the Cartesian product between the domain of each variable that
specifies the allowed combinations of values for the variables in X'(C).

Definition 1. A quasi-biclique constraint is a constraint C defined on a
bipartite graph G = (S,T,E), on two set variables X C S and Y C T and a
finite domain integer variable ¢, with 0 < ¢ < |E|, and

T(C) ={r s.t. 7 is a tuple of X(C) = [X,Y,],
and GIX,Y] = (X,Y, F),
and F'={(i,j) | i€ X,j €Y,(i,j) € E},
and c = |X|-|Y| —|F|}.

It is denoted by qbiclique(X,Y,c, G).

Definition 2. A one-shore induced quasi-biclique constraint is a con-
straint C defined on a bipartite graph G = (S, T, E), on two set variables X C S
andY C T and a finite domain integer variable ¢, with 0 < ¢ < |E|, and

T(C) ={r s.t. 7 is a tuple of X(C) = [X,Y,],
and Y = U N (i),
i€X
and gbiclique(X,Y, ¢, G)}.

It is denoted by osi-gbiclique(X,Y,c,G).

3.1 The CP Model

Let (X,,Y,) be a pair of finite domain integer set variables that represents the
vertices of the p-th quasi-biclique. Let ¢, be an integer variable representing the
cost of the p-th quasi-biclique, i.e., the number of added edges, and let d be an
integer variable for the sum of the cost of each cluster. The CP formulation of
the k-CMBC problem is as follows:

92 S. Gualandi

variables/domains: X, C S, Vp € K, (11)
Y, CT, Vp € K, (12)

0<c¢,<|Bl, Vpek, (13)

0<d<|E| (14)

constraints: partition([Xq,...,X,],9), (15)
osi-gbiclique(X,,Y,, ¢, G), Vp€ K, (16)

(17)

d:Zcp.

Constraints (1)) force each vertex of the shore S to appear in a single cluster.
Constraints (6] constrain each subgraph induced by a pair (X, ¥,) to be a
quasi-biclique of cost equal to ¢p. Constraint (') sums up the cost of every
cluster. The CP model ([[I)—(IT) relies on the filtering algorithm used for the
osi-gbiclique constraint, which is described next.

3.2 A Filtering Algorithm for the osi-gbiclique Constraint

Similarly to the maximum clique constraint introduced in [3], the gbiclique
and osi-gbiclique constraints use a pair of current sets (C1,Cs), with C; C S
and Cy C T, for the vertices that belong to the current quasi-biclique G[Cy, Ca],
and a pair of candidate sets (Py, Py), with P, C S\ Cy and P, C T\ Cs, for the
vertices that could extend the current quasi-biclique. The filtering algorithms
of these constraints remove from the pair of candidate sets (P, P») the vertices
that cannot extend the pair (C1, Cs) to a quasi-biclique of cost equal to c.

Lemma 1. Let G = (S,T, E) be a bipartite graph and let G[C1,Cs] be a quasi-
biclique of G induced by C1 C S and Co C T, with cost ¢. Let P, C S and
Py C T be the candidate sets for C1 and Cy. Let ¢ be the required cost for the
quasi-biclique. Then,

1. Vi € Py such that ¢ + |Co\ N(i)| > ¢, the vertex i cannot extend Cy to
obtain a c-quasi-biclique;

2. ¥j € Py such that ¢ + |C1\ N(j)| > ¢, the vertex j cannot extend Cy to
obtain a c-quasi-biclique.

Proof. (sketch for point 1.) If we added a vertex ¢ € P; to C1, the lower bound
of the cost of the biclique would increase of a factor |Cy \ N(i)|, equal to the
number of vertices of Cs that are not adjacent to vertex 1. O

Lemma 2. Let G = (S,T,E) be a bipartite graph and let G[C4] be the one-
shore-induced quasi-biclique of G induced by C1 C S, with cost ¢. Let Py C S be
the candidate set for C1, and let ¢ be the required cost for the one-shore-induced
quasi-biclique. Then, Yi € P such that:

¢+ (G +1)-IN@)\Co| +1]Co| =6()) > ¢, (18)

the vertex i cannot extend Cy to a one-shore-induced quasi-biclique of cost c.

k-Clustering Min Biclique Completion via a CP-SDP Approach 93

Algorithm 1. Sketch of the osi-biclique filtering algorithm.

Var (C1,C>) : pair of current sets

Var (P1, P») : pair of candidate sets

Var ¢ : cost of the one-shore-induced quasi-biclique G[C]
Var c : desired cost

In G : bipartite graph

¢ —|C]-|Ca| = X, 6(d)
Py UiEC’l N(Z)
for alli € P, do
if e+ (|C1|+1) - [N(@@) \ C2| + |C2| — §(i) > ¢ then > Apply Lemma 2]
PL— P\ {3}
Py — P\ {N(i) \ P2}
end if
end for

Proof. If the vertex i is added to Cy, then N (i) is added to Cs, and the new
quasi-biclique constraint is G = (C1 U {i},C2 U N(i), E). Note that |E| =
Z]eclu{ 1 6(j). By definition, the cost ¢ of the extended biclique is equal to:

¢=|Cy Ui} [CoUN(i)| = [E| =|Cy U{i}|- [Co UNG) = > 6(j
JjeC1U{i}
= (|C1]+1) - (|C2| + N (i) \ C2l) + > 64) | =
Jje€C
=|C1|-1Cal = Y 6() + (ICal+1)-|N(i)\ Cal +|Cal — 6(i),
jeC1

this is equal to
that is equal to the first term of (IS)). O

Algorithm [I] sketches the filtering algorithm of the osi-gbiclique constraint.
For the sake of clarity, the filtering algorithm is described using the pairs of
current sets (C1,C3) and of candidate sets (P;, P2), while the osi-gbiclique
constraint is defined using two finite set variables X and Y. However, they are
strictly related, since the greatest lower bound of the set variable X is equal to
C1, and the lowest upper bound is equal to Cy U Py, i.e., C; € X C Cy U Py,
and similarly, Coy C Y C Cy U P,. The worst-case complexity of the filtering
algorithm is O(|S] - |T]).

4 Semidefinite Programming Formulations

This section formulates the SDP relaxation of the k-CMBC problem. The pro-
posed formulation is related to the SDP relaxations of the Max-Cut problem

94 S. Gualandi

Fig. 2. (a) The k-CMBC problem with k = 2. (b) The complementary graph of an op-
timal solution. (c) The extended Max-Cut interpretation of the complementary graph:
the edges in bold belong to the cut edges set. Vertex 9 is considered as it were in both
subsets, since it belongs to two clusters.

proposed in [9] and of the Max-k-Cut problem proposed in [I0]. Let us consider
first the case kK = 2, and then to extend the formulation to the case k > 2.

The k-CMBC problem minimizes the number of edges of the complementary
graph that appear within the same cluster. This corresponds to maximize the
number of edges of the complementary graph that are in the cut given by the
two clusters G[S1] and G[S2]. Therefore, for k = 2, the idea is to formulate a
relaxation of the k-CMBC problem as an extended Max-Cut problem. FigurePlb
shows the optimal solution of the Example 1 and Fig. Blc an extended Max-Cut
interpretation. The two sets of vertices that belong to a single cluster represent
the two shores of a solution of the Max-Cut problem. The vertices appearing
in both clusters behave as they were in both shores, and their incident edges
do not belong to the cut edge set. In Fig. Blc the two shores of the cut are
the sets {1,2,5,6,7} and {3,4,8}, while vertex 9 behaves as it were in both
shores.

4.1 Extended Max-Cut

Let x; be a {—1,1} variable that indicates whether the vertex ¢ € S is in the
cluster Sy if x; = 1, or in the cluster Sy if z; = —1. If two vertices ¢ and j are
in the same shore, the product z;z; of the corresponding variables is equal to
1, otherwise is equal to -1. Similarly to the Max-Cut model presented in [9], let
zij be a {—1,1} variable equal to 1 if the complementary edge (i,j) € E is not
in the cut. An edge (i,7) € E does not belong to the cut if another vertex [
exists such that | € N(j) and [is in the same cluster of 4, that is z;z; = 1. This
is equivalent to set z;; = max;ec y(;){zsx1}, which is linearized by the following
inequalities: z;; > x;x;, VI € N(j).

k-Clustering Min Biclique Completion via a CP-SDP Approach 95

Using the variables x; and z;;, the 2-CMBC problem is formulated as the
following integer quadratic problem:

Wine = MAX ; Z 7(1 — Zij) (19)
(i,J)eEE

stz > xa, V(i,j) € E,l € N(j), (20)

x; € {—1,1}, Viels, (21)

zij € {—1,1}, V(i,j) € E. (22)

Property 1. The following relation holds: w* = |E| — wpe.

We used the labeling technique proposed in [9] to derive an SDP relaxation of
the problem ([[A)—(22). Every vertex ¢ of S UT is labeled with a unit vector
v; € RISHITI The geometric interpretation is that two vertices i and j are in
the same cluster if the angle between them is small enough, that is, if viv; = 1.
Let V be a matrix such that column ¢ is given by vector v;, and let Z = V!V,
Let e be the vector of all ones. The SDP relaxation of the 2-CMBC problem is
as follows:

1
max > (1-2y) (23)

(i,j)EE
ZijZZilv V(Lj)EEJEN(j% (24)
diag(Z) = e, (25)
Z = 0. (26)

Constraints (24)) are equivalent to constraints (20), where each entry (i,5) € E of
Z;; is used for variable z;;, and each entry (i,1) € S x S is used for the product
x;x;. Together constraints (25)-(286]) correspond to relax constraints (2I) and
(IZZI)in—ngijgl.

4.2 Extended Max-k-Cut

We extend the model 23)-28]) to the case k > 2 by using a formulation sim-
ilar to the Max-k-Cut formulation given in [10]. Let us consider k unit vectors
ai,...,a; € RF! satisfying ala; = —, ', for 1 < i # j < k. Let x; be a
real vector variable for each vertex i € S, such that x; € {a;,...,a;}, i.e., the
variable x; is equal to one of the a; vectors. Note that in the case k = 2, we get
a1 =—-1,a2 =1,and x; € {—1,1}, as in 2-CMBC . Let two vertices ¢ and j in S
be in the same cluster if x!x; = 1, and be in different clusters if x{x; = — ' .
As for the case k = 2, the variable z;; can take only two values: if the comple-
mentary edge (4, j) is not in the k-cut then z;; = 1, otherwise z;; = —kfl. The
formulation of the k-CMBC problem is as follows:

96 S. Gualandi

k-1
Winke = Max i Z _(1 — Zij) (27)
(i,5)EE
s.t. Zij Z XﬁXl, V(Zaj) € Eal € N(])7 (28)
x; €{ay,..., a5}, Vies, (29)
k _
Zije{_k_1a1}7 V(ZaJ)EE (30)

Constraints (28) are equivalent to constraints ([20), and force to consider two
no-adjacent vertices i € S and j € T as they were in the same cluster, if at least
one neighbor [€ N(j) of vertex j is in the same cluster as vertex i. The objective
function has the correction factor kgl that compensates the case in which the
edge (i,7) is in the k-cut, since in this case z;; = ;% and (1—)= F .

The SDP relaxation of the k-CMBC problem for k& > 2 is obtained using the
same labeling technique as for k£ = 2, and it is as follows:

k—1
Wedp = MAX i Z 7(1 — Zij) (31)
(1,7)€E
Zij 2 Zy, Y(i,j) € E,l € N(j), (32)
diag(Z) = e, (33)
1
ZijZ—k_l, Vi, j € SUT,i# j, (34)
Z = 0. (35)

Together constraints (B3)-(B5) relax constraints 29),B0) into —, ', < Z;; < 1.
This formulation is used to compute a lower bound of k-CMBC problem.

Property 2. Since wsqp > Wmke, the following relation holds: w* > |E| — |Wsdp |-

5 CP and SDP Integration

The integration of SDP relaxations within CP solvers was pioneered in [7] for tack-
ling the maximum clique problem. The idea for exploiting the SDP relaxation was
to solve the SDP relaxation once, and then to use the optimal solution in the CP
solver for deriving a labeling heuristic and for bounding the cost-variable.

We extend the idea by proposing a different labeling heuristic, and by pro-
viding two graph transformations that allow to recompute the SDP relaxation
within the CP search tree.

5.1 SDP-Based Labeling Heuristic

The SDP-based labeling heuristic given in [7] assumes implicitly that given an
integer variable 4, for each value v of its domain there is an entry in the solution
matrix Z; of the SDP relaxation representing the likelihood that the variable i

k-Clustering Min Biclique Completion via a CP-SDP Approach 97

Algorithm 2. SDP-based labeling heuristic for clustering problems.
In Z* : optimal solution of an SDP relaxation
In [X1,...,Xk] : vector of set variables; each variable is a pair X, = (Cp, Pp)
Out : a labeling basic constraint

P—Uck P
* k

(v,w) argmaxierjeP{|Zij| - 2(k71>}
: 1 «— selectVariable(X, v, w) > v and/or w are in the candidate set P;
. * k
if 725, > (k1) then

* try to assign v and w to X; *
else

* try to assign either v or w to X; *
: end if

I I R ol

is equal to v in an optimal solution. The higher is the value of Z} , the sooner
the variable i gets labeled with value v in the CP search tree.

The main idea for extending the SDP-based labeling heuristic is to interpret
the entries of Z* as the likelihood that two vertices belong to the same cluster.
The entries Z},, range in the real interval [— kil , 1], which has the midpoint at

Given a set variable X; and a pair of values v and w in its domain, the

the higher is the likelihood that {v,w} € X;. The
smaller is the value of Z7¥,,, the higher is the probability either v € X; or w € X;.
The closer the value of Z7%, is to 2(k’i 1) the more the membership of v and w
is uncertain.

Algorithm 2] shows the labeling heuristic based on this interpretation of the
SDP relaxation. First, the heuristic takes every value in the candidate sets.
Second, it selects a pair of values (v, w) such that at least one of the two values
is in P, and the distance of Z};, to 2(in1) is maximum. Third, it selects a set

k
2(k—1)
higher is the value of Z*

vw?

variable X; having v and/or w in its domain. Finally, if Z} 6 — 2(kk—1) were
positive, it tries to put v and w in the same set, otherwise in different sets.

5.2 SDP-Based Cost Pruning

In our approach, the SDP relaxation computes bounds at each node of the CP
search tree. Two graph transformations map a partial solution to a weighted
version of the k-CMBC problem. The first graph transformation is used when
in the partial solution two vertices ¢ and j are in the same cluster, while the
second transformation is used when the two vertices are in different clusters.
Let G = (S,T,FE) be a bipartite graph, and let X be a partial solution of
the k-CMBC problem. Recall that each element of X has a current set and a
candidate set, i.e., X; = (C;, P;). Let f(G, X) denote the cost of the k-CMBC

problem given the graph G and the partial assignment in X.

98 S. Gualandi

Proposition 1. Given a candidate set C; in)?, the graph G is augmented with
the edges of the induced complementary subgraph G[C;], obtaining the new graph
GM(C) | The graph GM(C4) s used to compute a lower bound of X as follows:

16 R) = waap (GM) + 37 66(0). (36)

jeC;

Proposition 2. Given a pair of candidate sets C; and C; in)/(\', the complemen-
tary graph G is transformed into a weighted graph GP(CC5) by giving a weight
equal to M = |E|+1 to the edge set EP(C:Ci) = O x {Ulecj NO\Uee, N(D)}
of the complementary graph. The graph GP(Ci.C5)
bound of X as follows:

is used to compute a lower

F(G, X) > waap (GD@CJ‘)) +a-m Y ‘ED(Ci,C_n
ijEK j>i

. (37

The lower bound of f(G, X) is computed by performing two series of transforma-
tions: first the graph G is modified into GM by applying Proposition [l to every
candidate set C;, then GM is transformed into GMP by applying Proposition 2]
to every pair C; and Cj, with 4,5 = 1,...,k and ¢ < j. If we combine the two
equations ([B0) and ([B7), we get the following lower bound:

(G, X) > weap(GMP) + Z Z S5a(j) + (1 — M) Z ’EM,D(Ci,Cj) .

ieK jeC; ijEK j>i

Ezample 2. Let us consider the problem of Example 1. Figure Bla shows in bold
the edges added to G for considering the vertices ¢ and j in the same cluster.
Figure Blb shows in bold the edges of the complementary graph G that have
been weighted since the vertices 1 and 2 are in different clusters.

(a) GgM{1,.2}) (b) GPb{1L.2} (c) GM1,2),D({1,2},4)

Fig. 3. The graph of Example 1 modified by considering: (a) the vertices (1,2) in the
same cluster; (b) in different cluster; (c) the vertices (1,2) in the same cluster, but
(1,4), (2,4) in different clusters

k-Clustering Min Biclique Completion via a CP-SDP Approach 99

Ezample 3. Let X be such that Cy = {1,2} and Cy = {4} are the candidate sets
of X; and Xs. This is equivalent to merge the vertices (1,2) in the same cluster,
and to force (1,4) and (2,4) to be in different clusters. Figure Blc shows the com-
plementary graph of GM:P resulting after the corresponding transformations.

6 Preliminary Results

The osi-gbiclique constraint has been implemented in C++ using the Gecode
constraint development environment [12]. The SDP relaxation is solved using the
DSDP solver [I3] that implements a dual scaling interior point algorithm. The
ILP (B)-(0) is solved using CPLEX 11.0 with the default settings. As bench-
marks, we used a set of random instances corresponding to the most difficult
instances reported in [2], and available at [I4].

We performed a first set of experiments for assessing the quality of the SDP-
based labeling heuristic proposed in Sect. 5. The idea is to compare the gap from
the optimum w* given by the cost w of the first solution found by a CP solver that
implements a given labeling heuristics. A perfect labeling heuristic would yield
a gap equal to one, i.e., w = w*. The first labeling heuristic considered, called
MAXDEGREE, selects an unassigned set variable and the value of its domain cor-
responding to the vertex having maximum degree. The other heuristic are based
on the SDP relaxation: the SDP-ONCE heuristic solves the relaxation at the root
node of the CP search tree, and then it follows Algorithm 2. The SDP-ALL heuris-
tic recomputes the relaxation at every node of the CP search tree using both graph
transformations given in Sect. 5.2. The SDP-pPOs heuristic recomputes the relax-
ation only when two nodes are merged in the same cluster, corresponding to use
the graph transformation given in Proposition 1.

Table [l reports the results of the first set of experiments, giving in each row
the averages over 10 instances of bipartite graphs with |S| = |T'| = 12. The first
two columns of the table give the density of the graph d and the number of clus-
ters k. Then, for each labeling heuristic, the table reports the averages and the
standard deviations (between brackets) of the gap f , and the average compu-
tation time in seconds. The MAXDEGREE heuristic is very fast, but it produces
solutions with loose gaps. Solving the SDP relaxation within the search tree helps
in decreasing the gap, but at the cost of higher computational times. The SDP-
POS heuristics produces very good solutions, but is too expensive to be embedded
in a branch-and-bound search. However, the SDP-ONCE heuristic offers a good
trade-off between the quality of the gap and the computational time.

A second set of experiments aimed at comparing a pure CP approach with the
MAXDEGREE labeling, a hybrid CP-SDP approach with the SDP-ONCE labeling,
and the Integer Bilinear Programming approach, for solving to optimality the
k-CMBC problem. Table 2l reports for each approach the averages of branch-
and-bound nodes and CPU times, using the same set of instances of Table [Tl
For the two CP approaches, the table reports also the time t,+ at which the
optimal solution was found. The pure CP approach is very fast for k = 2, even if
it enumerates more search nodes. For k = 4, the hybrid SDP-ONCE approach is

100 S. Gualandi

Table 1. Comparing the quality of the first solution found with different labeling

w

heuristics. The gap with the optimum w* is measured as . The time is in seconds.
Each row gives the averages over 10 instances of bipartite graphs with |S| = |T'| = 12.
The standard deviations of the gaps are given between brackets.

MAXDEGREE SDP-ONCE SDP-ALL SDP-pros

gap time gap time gap time gap time
1.24 (0.14) 0.00 1.23 (0.14) 0.29 1.28 (0.10) 38.1 1.13 (0.10) 14.4
1.91 (0.24) 0.00 1.59 (0.22) 0.43 1.59 (0.21) 37.1 1.21 (0.11) 15.0
2.59 (0.43) 0.00 1.48 (0.38) 0.69 1.20 (0.14) 41.8 1.07 (0.05) 16.7
0.5 1.04 (0.05) 0.43 1.16 (0.08) 0.24 1.18 (0.10) 39.3 1.18 (0.09) 13.4
1.41 (0.13) 0.81 1.30 (0.15) 0.30 1.32 (0.14) 33.3 1.15 (0.06) 16.7
1.60 (0.23) 1.02 1.28 (0.23) 0.40 1.25 (0.18) 38.1 1.08 (0.06) 17.9
1.19 (0.06) 0.00 1.18 (0.11) 0.24 1.15 (0.08) 14.7 1.22 (0.08) 7.2
1.26 (0.10) 0.00 1.30 (0.17) 0.30 1.20 (0.15) 13.7 1.25 (0.09) 8.5
1.39 (0.17) 0.00 1.29 (0.21) 0.40 1.20 (0.13) 14.2 1.17 (0.11) 8.2

Mean: 1.51 (0.17) 1.31 (0.19) 1.26 (0.14) 1.16 (0.08)

0.7

DN RN NS
N 2N ANGANG RS RN NN

Table 2. Comparison between the number of branch&bound nodes and the time (in
seconds) for proving optimality; ¢.~ denotes the time the optimal solution was found.
Each row gives the averages over 10 instances of bipartite graphs with |S| = |T| = 12.

MAX-DEGREE SDP-ONCE ILP @)—0)

k d nodes ty+ time nodes ¢, time nodes time
20.3 502 0.10 0.17 360 0.35 0.44 24 2.33
0.5 601 0.06 0.29 459 0.33 0.47 24 1.11
0.7 507 0.04 0.22 376 0.48 0.61 92 2.01

403 186,004 24 70 30,133 39 17 2939 19
0.5 218,674 35 69 44,456 4.3 21 2,987 21
0.7 207,658 14 88 29,314 2.5 17 2,987 10

6 0.3 3,939,535 640 1152 330,434 1.4 151 154,200 341
0.5 6,582,521 933 2273 513,511 1.2 276 670,865 1104
0.7 3,670,015 269 1223 420,450 5.9 238 154,200 356

competitive with the Integer Bilinear Approach, while for k = 6 is slightly faster.
However, the hybrid approach is very fast in finding the optimum solution, i.e.,
tw+ is short, but it needs to explore many search nodes to prove optimality.

7 Conclusions

We have presented a hybrid CP and SDP approach to the k-CMBC problem.
The CP model is based on two new optimization constraints, the quasi-biclique
and the one-shore-induced quasi-biclique constraints. A SDP relaxation was de-
veloped, since the Bilinear Programming relaxation provides weak lower bounds.
The proposed SDP relaxation differs from SDP relaxations used in the literature,

k-Clustering Min Biclique Completion via a CP-SDP Approach 101

because it provides the likelihood that two values belong to the same set vari-
able. Computational results provide further evidence that hybrid CP and SDP
approaches are a promising approach to tackle combinatorial optimization prob-
lems. In particular, the proposed SDP labeling heuristics produces very good
initial solutions, when at every node of the CP search tree partial solutions are
mapped to new SDP relaxations. However, the limit of this approach is that cur-
rent SDP solvers provide little support for re-optimization. Any improvement in
the development of SDP solvers with this respect will enhance hybrid CP and
SDP approaches as well.

References

10.

11.

12.

13.

14.

Monson, S., Pullman, N., Rees, R.: A survey of clique and biclique coverings and
factorizations of (0,1)-matrices. Bull. of the Combin. and its Appl. 14, 17-86 (1992)
Faure, N., Chrétienne, P., Gourdin, E., Sourd, F.: Biclique completion problems
for multicast network design. Discrete Optim. 4(3), 360-377 (2007)

Fahle, T.: Simple and fast: Improving a branch-and-bound algorithm for maximum
clique. In: Méhring, R.H., Raman, R. (eds.) ESA 2002. LNCS, vol. 2461, pp. 485—
498. Springer, Heidelberg (2002)

Régin, J.C.: Using constraint programming to solve the maximum clique problem.
In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 634-648. Springer, Heidelberg
(2003)

. Barnier, N., Brisset, P.: Graph coloring for air traffic flow management. Ann. of

Oper. Res. 130, 163-178 (2004)

Focacci, F., Lodi, A., Milano, M.: Cost-based domain filtering. In: Jaffar, J. (ed.)
CP 1999. LNCS, vol. 1713, pp. 189-203. Springer, Heidelberg (1999)

van Hoeve, W.: Exploiting semidefinite relaxations in constraint programming.
Computers & OR 33, 2787-2804 (2006)

Gomes, C., van Hoeve, W.J., Leahu, L.: The power of semidefinite programming
relaxations for MAXSAT. In: Beck, J.C., Smith, B.M. (eds.) CPAIOR 2006. LNCS,
vol. 3990, pp. 104-118. Springer, Heidelberg (2006)

Goemans, M., Williamson, D.: Improved approximation algorithms for maximum
cut and satisfiability problems using semidefinite programming. J. of the ACM 42,
1115-1145 (1995)

Frieze, A., Jerrum, M.: Improved approximation algorithms for max k-cut and
max-bisection. Algorithmica 18, 67-81 (1997)

Régin, J.C.: Global Constraints and Filtering Algorithms. In: Milano, M. (ed.)
Constraint and Integer Programming-Toward a Unified Methodology. Kluwer, Dor-
drecht (2004)

Gecode: Generic constraint development environment, http://www.gecode.org
Benson, S.J., Ye, Y.: Algorithm 875: DSDP5—software for semidefinite program-
ming. ACM Trans. Math. Softw. 34(3), 1-20 (2008)

k-CMBC Web Resources, http://home.dei.polimi.it/gualandi/bicliques

http://www.gecode.org
http://home.dei.polimi.it/gualandi/bicliques

Optimal Interdiction of Unreactive Markovian Evaders

Alexander Gutfraind', Aric Hagberg?, and Feng Pan?

1" Center for Applied Mathematics, Cornell University, Ithaca, New York 14853
ag362@cornell.edu
2 Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
hagberg@lanl.gov
3 Risk Analysis and Decision Support Systems, Los Alamos National Laboratory, Los Alamos,
New Mexico 87545
fpan@lanl.gov

Abstract. The interdiction problem arises in a variety of areas including military
logistics, infectious disease control, and counter-terrorism. In the typical formu-
lation of network interdiction, the task of the interdictor is to find a set of edges
in a weighted network such that the removal of those edges would maximally
increase the cost to an evader of traveling on a path through the network.

Our work is motivated by cases in which the evader has incomplete informa-
tion about the network or lacks planning time or computational power, e.g. when
authorities set up roadblocks to catch bank robbers, the criminals do not know all
the roadblock locations or the best path to use for their escape.

We introduce a model of network interdiction in which the motion of one or
more evaders is described by Markov processes and the evaders are assumed not
to react to interdiction decisions. The interdiction objective is to find an edge set
of size B, that maximizes the probability of capturing the evaders.

We prove that similar to the standard least-cost formulation for deterministic
motion this interdiction problem is also NP-hard. But unlike that problem our in-
terdiction problem is submodular and the optimal solution can be approximated
within 1 — 1/e using a greedy algorithm. Additionally, we exploit submodularity
through a priority evaluation strategy that eliminates the linear complexity scaling
in the number of network edges and speeds up the solution by orders of magni-
tude. Taken together the results bring closer the goal of finding realistic solutions
to the interdiction problem on global-scale networks.

1 Introduction

Network interdiction problems have two opposing actors: an “evader” (e.g. smuggler)
and an “interdictor” (e.g. border agent.) The evader attempts to minimize some objec-
tive function in the network, e.g. the probability of capture while traveling from network
location s to location ¢, while the interdictor attempts to limit the evader’s success by
removing network nodes or edges. Most often the interdictor has limited resources and
can thus only remove a very small fraction of the nodes or edges. The standard formu-
lation is the max-min problem where the interdictor plays first and chooses at most B
edges to remove, while the evader finds the least-cost path on the remaining network.
This is known as the B most vital arcs problem [[1].

W.-J. van Hoeve and J.N. Hooker (Eds.): CPAIOR 2009, LNCS 5547, pp. 102L116] 2009.
(© Springer-Verlag Berlin Heidelberg 2009

Optimal Interdiction of Unreactive Markovian Evaders 103

This least-cost-path formulation is not suitable for some interesting interdiction sce-
narios. Specifically in many practical problems there is a fog of uncertainty about the
underlying properties of the network such as the cost to the evader in traversing an edge
(arc, or link) in terms of either resource consumption or detection probability. In ad-
dition there are mismatches in the cost and risk computations between the interdictor
and the evaders (as well as between different evaders), and all agents have an interest
in hiding their actions. For evaders, most least-cost-path interdiction models make op-
timal assumptions about the evader’s knowledge of the interdictor’s strategy, namely,
the choice of interdiction set. In many real-world situations evaders likely fall far short
of the optimum. This paper, therefore, considers the other limit case, which for many
problems is more applicable, when the evaders do not respond to interdictor’s deci-
sions. This case is particularly useful for problems where the evader is a process on the
network rather than a rational agent.

Various formulations of the network interdiction problem have existed for many
decades now. The problem likely originated in the study of military supply chains and
interdiction of transportation networks [2l3]. But in general, the network interdiction
problem applies to wide variety of areas including control of infectious disease [4], and
disruption of terrorist networks [5]]. Recent interest in the problem has been revived due
to the threat of smuggling of nuclear materials [6]. In this context interdiction of edges
might consist of the placement of special radiation-sensitive detectors across transporta-
tion links. For the most-studied formulation, that of max-min interdiction described
above [1], it is known that the problem is NP-hard [[7i8] and hard to approximate [9].

2 Unreactive Markovian Evader

The formulation of a stochastic model where the evader has limited or no information
about interdiction can be motivated by the following interdiction situation. Suppose
bank robbers (evaders) want to escape from the bank at node s to their safe haven at
node #; or node #,. The authorities (interdictors) are able to position roadblocks at a few
of the roads on the network between s, #; and #,. The robbers might not be aware of
the interdiction efforts, or believe that they will be able to move faster than the author-
ities can set up roadblocks. They certainly do not have the time or the computational
resources to identify the global minimum of the least-cost-path problem.

Similar examples are found in cases where the interdictor is able to clandestinely re-
move edges or nodes (e.g. place hidden electronic detectors), or the evader has bounded
rationality or is constrained in strategic choices. An evader may even have no intelli-
gence of any kind and represent a process such as Internet packet traffic that the inter-
dictor wants to monitor. Therefore, our fundamental assumption is that the evader does
not respond to interdiction decisions. This transforms the interdiction problem from the
problem of increasing the evader’s cost or distance of travel, as in the standard for-
mulation, into a problem of directly capturing the evader as explicitly defined below.
Additionally, the objective function acquires certain useful computational properties
discussed later.

104 A. Gutfraind, A. Hagberg, and F. Pan

2.1 Evaders

In examples discussed above, much of the challenge in interdiction stems from the
unpredictability of evader motion. Our approach is to use a stochastic evader model to
capture this unpredictability [6410]]. We assume that an evader is traveling from a source
node s to a target node ¢ on a graph G(N, E) according to a guided random walk defined
by the Markovian transition matrix M; from node i the evader travels on edge (i, j) with
probability M;;. The transition probabilities can be derived, for example, from the cost
and risk of traversing an edge [[10]].

Uncertainty in the evader’s source location s is captured through a probability vector
a. For the simplest case of an evader starting known location s, a; = 1 and the rest of the
a;’s are 0. In general the probabilities can be distributed arbitrarily to all of the nodes as
long as Y;cya; = 1. Given a, the probability that the evader is at location i after n steps
is the i’th entry in the vector n = aM".

When the target is reached the evader exits the network and therefore, M;; = 0 for
all outgoing edges from ¢ and also M;; = 0. The matrix M is assumed to satisfy the
following condition: for every node i in the network either there is a positive probability
of reaching the target after a sufficiently large number of transitions, or the node is
a dead end, namely M;; = O for all j. With these assumptions the Markov chain is
absorbing and the probability that the evader will eventually reach the target is < 1. For
equality to hold it is sufficient to have the extra conditions that the network is connected
and that for all nodes i #1¢, Y, ;M;; = 1 (see [11].)

A more general formulation allows multiple evaders to traverse the network, where
each evader represents a threat scenario or a particular adversarial group. Each evader
k is realized with probability wk) Cu wk) = 1) and is described by a possibly dis-
tinct source distribution a¥), transition matrix M®), and target node). This gen-
eralization makes it possible to represent any joint probability distribution f(s,#) of
source-target pairs, where each evader is a slice of f at a specific value of ¢: a(k>|s =
F(5,6%9) /3 £(5,6%)) and wk) = 3 £(s5,1%)). In this high-level view, the evaders col-
lectively represent a stochastic process connecting pairs of nodes on the network. This
generalization has practical applications to problems of monitoring traffic between any
set of nodes when there is a limit on the number of “sensors”. The underlying network
could be e.g. a transportation system, the Internet, or water distribution pipelines.

2.2 Interdictor

The interdictor, similar to the typical formulation, possesses complete knowledge about
the network and evader parameters a and M. Interdiction of an edge at index i, j is
represented by setting r;; = 1 and r;; = 0 if the edge is not interdicted. In general some
edges are more suitable for interdiction than others. To represent this, we let d;; be
the interdiction efficiency, which is the probability that interdiction of the edge would
remove an evader who traverses it.

So far we have focused on the interdiction of edges, but interdiction of nodes can be
treated similarly as a special case of edge interdiction in which all the edges leading to
an interdicted node are interdicted simultaneously. For brevity, we will not discuss node
interdiction further except in the proofs of Sec.[Blwhere we consider both cases.

Optimal Interdiction of Unreactive Markovian Evaders 105

2.3 Objective Function

Interdiction of an unreactive evader is the problem of maximizing the probability of
stopping the evader before it reaches the target. Note that the fundamental matrix for
M, using I to denote the identity matrix is

N=I+M+M+--.=I-M)"', (1)

and N gives all of the possible transition sequences between pairs of nodes before the
target is reached. Therefore given the starting probability a, the expected number of
times the evader reaches each node is (using (I)) and linearity of expectation)

aN=a(I-M) !)

If edge (i, j) has been interdicted (r;; = 1) and the evader traverses it then the evader
will not reach j with probability d;;. The probability of the evader reaching j from i
becomes
M;j = M;j — Mjjrijd;j . 3)
This defines an interdicted version of the M matrix, the matrix M.
The probability that a single evader does not reach the target is found by considering
the £’th entry in the vector E after substituting M for M in Eq. @),

Ja,Mr,d) =1— (a[l-(M—M@r@d)r‘)t, (4)

where the symbol ® means element-wise (Hadamard) multiplication. In the case of
multiple evaders, the objective J is a weighted sum,

J=Y why®, (5)
k
where, for evader k,
-1
JO@® MO pd)y=1— (a<k> [1 - (M(k) ~MYore d)]) . ®)
(k)

Equations @) and (@) define the interdiction probability. Hence the Unreactive
Markovian Evader interdiction problem (UME) is

argmax J(a,M,r,d), (7
ref

where r;; represents an interdicted edge chosen from a set F C 2% of feasible interdic-
tion strategies. The simplest formulation is the case when interdicting an edge has a unit
cost with a fixed budget B and F are all subsets of the edge set E of size at most B. This
problem can also be written as a mixed integer program as shown in the Appendix.
Computation of the objective function can be achieved with ~ % |N |3 operations for
each evader, where |N| is the number of nodes, because it is dominated by the cost
of Gaussian elimination solve in Eq.). If the matrix M has special structure then it
could be reduced to O(|N|?) [10] or even faster. We will use this evader model in the

106 A. Gutfraind, A. Hagberg, and F. Pan

simulations, but in general the methods of Secs. [3 and] would work for any model
that satisfies the hypotheses on M and even for non-Markovian evaders as long as it is
possible to compute the equivalent of the objective function in Eq. ().

Thus far interdiction was described as the removal of the evader from the network,
and the creation of a sub-stochastic process M. However, the mathematical formalism
is open to several alternative interpretations. For example interdiction could be viewed
as redirection of the evader into a special absorbing state - a “jail node”. In this larger
state space the evader even remains Markovian. Since M is just a mathematical device it
is not even necessary for “interdiction” to change the physical traffic on the network. In
particular, in monitoring problems “interdiction” corresponds to labeling of intercepted
traffic as “inspected” - a process that involves no removal or redirection.

3 Complexity

This section proves technical results about the interdiction problem (7) including the
equivalence in complexity of node and edge interdiction and the NP-hardness of node
interdiction (and therefore of edge interdiction). Practical algorithms are found in the
next section.

We first state the decision problem for (7).

Definition 1. UME-Decision

Instance: A graph G(N,E), interdiction efficiencies 0 < d; < 1 for each i € N, budget
B >0, and real p > 0; a set K of evaders, such that for each k € K there is a matrix
M©® on G, a sources-target pair (a1 %)) and a weight w®).

Question: Is there a set of (interdicted) nodes Y of size B such that

1
®) (2 (1_ N
3w (a (1-M®))t(k>§p? (8)

kek

The matrix M®) is constructed from M%) by replacing element MIKJI-{) by MIKJI-{)(I —d;)
fori€Y and each (i, j) corresponding to edges € E leaving i. This sum is the weighted
probability of the evaders reaching their targets. a

The decision problem is stated for node interdiction but the complexity is the same for
edge interdiction, as proved next.

Lemma 1. Edge interdiction is polynomially equivalent to node interdiction.

Proof. To reduce edge interdiction to node interdiction, take the graph G(N,E) and
construct G’ by splitting the edges. On each edge (i, j) € E insert a node v to create the
edges (i,v), (v, j) and set the node interdiction efficiency d, = d;;,d; = d; = 0, where
d;j is the interdiction efficiency of (i, j) in E.

Conversely, to reduce node interdiction to edge interdiction, construct from G(N, E)
a graph G’ by representing each node v with interdiction efficiency d, by nodes i, j,
joining them with an edge (i, j), and setting d;; = d,. Next, change the transition matrix
M of each evader such that all transitions into v now move into { while all departures
from v now occur from j, and M;; = 1. In particular, if v was an evader’s target node in
G, then j is its target node in G'. O

Optimal Interdiction of Unreactive Markovian Evaders 107

Consider now the complexity of node interdiction. One source of hardness in the UME
problem stems from the difficulty of avoiding the case where multiple edges or nodes
are interdicted on the same evader path - a source of inefficiency. This resembles the Set
Cover problem [12]], where including an element in two sets is redundant in a similar
way, and this insight motivates the proof.

First we give the definition of the set cover decision problem.

Definition 2. Set Cover. For a collection C of subsets of a finite set X, and a positive
integer B, does C contain a cover of size < 3 for X ? O

Since Set Cover is NP-complete, the idea of the proof is to construct a network G(N, E)
where each subset ¢ € C is represented by a node of G, and each element x; € X is
represented by an evader. The evader x; is then made to traverse all nodes {c¢ € C|x; € c}.
The set cover problem is exactly problem of finding B nodes that would interdict all of
the evaders (see Fig.[Il)

Theorem 2. The UME problem is NP-hard even if d; = h (constant) ¥ nodes i € N.

Proof. First we note that for a given a subset ¥ C N with |¥| < B, we can update M%)
and compute (8) to verify UME-Decision as a yes-instance. The number of steps is
bounded by O(|K||N|?). Therefore, UME-Decision is in NP.

To show UME-Decision is NP-complete, reduce Set Cover with X,C to UME
-Decision on a suitable graph G(N,E). It is sufficient to consider just the special case
where all interdiction efficiencies are equal, d; = 1. For each ¢ € C, create anode cin N.

(a) (b)

Fig. 1. Illustration of the reduction of Set Cover to UME-Decision. (a) A set cover prob-
lem on elements x| ...xs € X with subsets K = {x;,x0},R = {x1,x3},B = {x3,x4,x5},G =
{x2,%4,%5,%6},Y = {x2,x¢} contained in X. (b) The induced interdiction problem with each sub-
set represented by a node and each element by an evader. Each arrow indicates the path of a single
evader.

108 A. Gutfraind, A. Hagberg, and F. Pan

We consider three cases for elements x € X; elements that have no covering sets, ele-
ments that have one covering set, and elements that have at least two covering sets.

Consider first all x € X which have at least two covering sets. For each such x create
an evader as follows. Let O be any ordering of the collection of subsets covering x.
Create in E' a Hamiltonian path of |O| — 1 edges to join sequentially all the elements of
O, assigning the start, @ and end 7 nodes in agreement with the ordering of O. Construct
an evader transition matrix of size |C| x |C| and give the evader transitions probability
M;;=1iffi,j € Candi < j, and = 0 otherwise.

For the case of zero covering sets, that is, where Ix € X such thatx ¢ S for all S € C,
represent x by an evader whose source and target are identical: no edges are added
to E and the transition matrix is M = 0. Thus, J in Eq. (@) is non-zero regardless of
interdiction strategy.

For the case when x has just one covering set, that is, when Jx € X such that there is
aunique ¢ € C with x € ¢, represent ¢ as two nodes i and j connected by an edge exactly
as in the case of more than one cover above. After introducing j, add it to the middle
of the path of each evader x if i is in the path of x, that is, if ¢ € C. It is equivalent
to supposing that C contains another subset exactly like c. This supposition does not
change the answer or the polynomial complexity of the given instance of Set Cover. To
complete the reduction, set B= 3, p =0,X =K, wX) =1/|X|and d; = 1, Vi € N.

Now assume Set Cover is a yes-instance with a cover € C C. We set the interdicted
transition matrix Ml-(JI-{) =0 forall (i, j) € E corresponding to ¢ € C, and all k € K. Since

A

C is a cover for X, all the created paths are disconnected, Y. (a®) (I—M®)~1) (=0
and UME-Decision is an yes-instance.

Conversely, assume that UME-Decision is a yes-instance. Let Y be the set of inter-
dicted nodes. For y € Y, there is element y of C. Since all the evaders are disconnected
from their target and each evader represents a element in X, Y C C covers X and |Y| < 3.
Hence, Set Cover is a yes-instance. Therefore, UME-Decision is NP-complete. O

This proof relies on multiple evaders and it remains an open problem to show that UME
is NP-hard with just a single evader. We conjecture that the answer is positive because
the more general problem of interdicting a single unreactive evader having an arbitrary
(non-Markovian) path is NP-hard. This could be proved by creating from a single such
evader several Markovian evaders such that the evader has an equal probability of fol-
lowing the path of each of the Markovian evaders in the proof above.

Thus far no consideration was given to the problem where the cost ¢;; of interdicting
an edge (i, j) is not fixed but rather is a function of the edge. This could be termed
the “budgeted” case as opposed to the “unit cost” case discussed so far. However, the
budgeted case is NP-hard as could be proved through reduction from the knapsack
problem to a star network with “spokes” corresponding to items.

4 An Efficient Interdiction Algorithm

The solution to the UME problem can be efficiently approximated using a greedy algo-
rithm by exploiting submodularity. In this section we prove that the UME problem is
submodular, construct a greedy algorithm, and examine the algorithm’s performance.

Optimal Interdiction of Unreactive Markovian Evaders 109

We then show how to improve the algorithm’s speed by further exploiting the submod-
ular structure using a “priority” evaluation scheme and ““fast initialization”.

4.1 Submodularity of the Interdiction Problem

In general, a function is called submodular if the rate of increase decreases monotoni-
cally, which is akin to concavity.

Definition 3. A real-valued function on a space S, f : S — R is submodular [[/3| Prop.
2.1iii] if for any subsets S| C S, C S and any x € S\ S, it satisfies

JS1U{x}) = f(S1) = f(S20{x}) = £ (S2) - ©)
Lemma 3. J(r) is submodular on the set of interdicted edges.

Proof. First, note that it is sufficient to consider a single evader because in Eq. (3)), J(r)
is a convex combination of k evaders [[13, Prop. 2.7]. For simplicity of notation, we drop
the superscript & in the rest of the proof.

Let S = {(i,/) € E|rjj = 1} be the interdiction set and let J(S) be the probability
of interdicting the evader using S, and let Q(p) be the probability of the evader taking
a path p to the target. On path p, the probability of interdicting the evader with an
interdiction set S is

HMﬂzamG— HﬁU—%O- (10)
(i,))epns
Moreover,
J(S) =Y P(pls). (11)
14

If an edge (u,v) ¢ S is added to the interdiction set S (assuming (u,v) € p), the proba-
bility of interdicting the evader in path p increases by

P(p|SU{(u,v)}) = P(plS)=Q(p)dw [T (1-dy),

(i,j)epns

which can be viewed as the probability of taking the path p times the probability of
being interdicted at (u,v) but not being interdicted elsewhere along p. If (u,v) € S or
(u,v) ¢ p then adding (u,v) has, of course, no effect: P(p|SU{(u,v)}) — P(p|S)=0.

Consider now two interdiction sets S7 and S, such that §; C S5. In the case where
(u,v) ¢ S) and (u,v) € p, we have

P(p|Siu{(u,v)}) =P(plS) =0(p)dw [I (1—dy), (12)
(i,J)€pnSy

> Q(p)duv H (1_dij)7 (13)
(i,J)EPNS2

> P(plS2U{(u,v)}) = P(plS2). (14)

In the above (I3) holds because an edge («',V') € (S2 . S1) N p would contribute a factor
of (1 —d,) < 1. The inequality (I4) becomes an equality iff (u,v) ¢ S,. Overall (I4)

110 A. Gutfraind, A. Hagberg, and F. Pan

holds true for any path and becomes an equality when (u,v) € S;. Applying the sum of
Eq. D gives

J(plS1U{(u,v)}) = J(pIS1) = J(p|S2U{(u,v)}) = (p|S2). (15)
and therefore J(S) is submodular. O

Note that the proof relies on the fact that the evader does not react to interdiction. If the
evader did react then it would no longer be true in general that P(p|S) =
o(p) (1— i jyepns (1 —d 7)) above. Instead, the product may show explicit depen-
dence on paths other than p, or interdicted edges that are not on p. Also, when the
evaders are not Markovian the proof is still valid because specifics of evader motion are
contained in the function Q(p).

4.2 Greedy Algorithm

Submodularity has a number of important theoretical and algorithmic consequences.
Suppose (as is likely in practice) that the edges are interdicted incrementally such that
the interdiction set S; O S;_; at every step /. Moreover, suppose at each step, the inter-
diction set S; is grown by adding the one edge that gives the greatest increase in J. This
defines a greedy algorithm, Alg.[Il

Algorithm 1. Greedy construction of the interdiction set S with budget B for a graph
G(N,E).
S—o
while B > 0 do
X — g
0f ——1
for all x € E~\ S do
A(S,x):=J(SU{x})—J(S)
if A(S,x) > &* then
X {x}
0% — A(S,x)
S —Sux*
B—B—1
Output(S)

The computational time is O(B|N|3|E|) for each evader, which is strongly polyno-
mial since |B| < |E|. The linear growth in this bound as a function of the number of
evaders could sometimes be significantly reduced. Suppose one is interested in inter-
dicting flow f(s,¢) that has a small number of sources but a larger number of targets.
In the current formulation the cost grows linearly in the number of targets (evaders) but
is independent of the number of sources. Therefore for this f(s,7) it is advantageous to
reformulate UME by inverting the source-target relationship by deriving a Markov pro-
cess which describes how an evader moves from a given source s to each of the targets.
In this formulation the cost would be independent of the number of targets and grow
linearly in the number of sources.

Optimal Interdiction of Unreactive Markovian Evaders 111

4.3 Solution Quality

The quality of the approximation can be bounded as a fraction of the optimal solution
by exploiting the submodularity property [13]]. In submodular set functions such as J(S)
there is an interference between the elements of S in the sense that sum of the individual
contributions is greater than the contribution when part of S. Let Sy be the optimal
interdiction set with a budget B and let S5 be the solution with a greedy algorithm.
Consider just the first edge x; found by the greedy algorithm. By the design of the
greedy algorithm the gain from x; is greater than the gain for all other edges y, including
any of the edges in the optimal set S*. It follows that

A(@,x1)B> Y, A(2,y) > J(Sp). (16)

yeSy

Thus x; provides a gain greater than the average gain for all the edges in S,

J(S%
A>T (17)
B
A similar argument for the rest of the edges in S5 gives the bound,
g 1 i
I85> (1=,) (s, (1)

where e is Euler’s constant [13} p.268]. Hence, the greedy algorithm achieves at least
63% of the optimal solution.

This performance bound depends on the assumption that the cost of an edge is a con-
stant. Fortunately, good discrete optimization algorithms for submodular functions are
known even for the case where the cost of an element (here, an edge) is variable. These
algorithms are generalizations of the simple greedy algorithm and provide a constant-
factor approximation to the optimum [14/15]. Moreover, for any particular instance of
the problem one can bound the approximation ratio, and such an “online” bound is often
better than the “offline” a priori bound [16].

4.4 Exploiting Submodularity with Priority Evaluation

In addition to its theoretical utility, submodularity can be exploited to compute the same
solution much faster using a priority evaluation scheme. The basic greedy algorithm
recomputes the objective function change A (S;,x) for each edge x € E \. S; at each step
1. Submodularity, however, implies that the gain A (S;,x) from adding any edge x would
be less than or equal to the gain A (S, x) computed at any earlier step k < [. Therefore,
if at step I for some edge X, we find that A(S;,x") > A(Sg,x) for all x and any past step
k <1, then x' is the optimal edge at step [; there is no need for further computation (as
was suggested in a different context [16].) In other words, one can use stale values of
A(Sy,x) to prove that x’ is optimal at step [.

As a result, it may not be necessary to compute A(S;,x) for all edges x € E\ S at
every iteration. Rather, the computation should prioritize the edges in descending order
of A(Sy,x). This “lazy” evaluation algorithm is easily implemented with a priority queue

112 A. Gutfraind, A. Hagberg, and F. Pan

which stores the gain A(Sy,x) and k for each edge where k is the step at which it was
last calculated. (The step information k determines whether the value is stale.)

The priority algorithm (Alg. B) combines lazy evaluation with the following fast
initialization step. Unlike in other submodular problems, in UME one can compute
A(@,x) simultaneously for all edges x € E because in this initial step, A(&,x) is just
the probability of transition through edge x multiplied by the interdiction efficiency
dy, and the former could be found for all edges in just one operation. For the “non-
retreating” model of Ref. [10] the probability of transition through x = (i, j) is just the
expected number of transitions though x because in that model an evader moves through
x at most once. This expectation is given by the i, j element in a(I—M)~' ®M (derived
from Eq. @)). The probability is multiplied by the weight of the evader and then by d,:

A(D,x) =3y (a(k)(l - M(k))*l) 4Ml-<j]-{) w®)d,. In addition to these increments, for dis-
1

connected graphs the objective J(S) also contains the constant term 3, w® (3.,),

where Z(*) C N are nodes from which evader k cannot reach his target ().

In subsequent steps this formula is no longer valid because interdiction of x may
reduce the probability of motion through other interdicted edges. Fortunately, in many
instances of the problem the initialization is the most expensive step since it involves
computing the cost for all edges in the graph. As aresult of the two speedups the number
of cost evaluations could theoretically be linear in the budget and the number of evaders
and independent of the size of the solution space (the number of edges).

The performance gain from priority evaluation can be very significant. In many com-
putational experiments, the second best edge from the previous step was the best in
the current step, and frequently only a small fraction of the edges had to be recom-
puted at each iteration. In order to systematically gauge the improvement in perfor-
mance, the algorithm was tested on 50 synthetic interdiction problems. In each case, the

Algorithm 2. Priority greedy construction of the interdiction set S with budget B
S—o
PQ — & {Priority Queue: (value,data,data)}
for all x= (i, j) € E do
A(x) «{The cost found using fast initialization }
PUSH (PQ,(A(x),x,0))
s—0
while B > 0 do
s—s+1
loop
(A(x),x,n) < POP(PQ)
if n = s then
S—Su{x}
break
else
Ax) —J(SU{x})—J(S)
PUSH (PQ,(A(x),x,s))
B—B—-1
Output(S)

Optimal Interdiction of Unreactive Markovian Evaders 113

underlying graph was a 100-node Geographical Threshold Graph (GTG), a possible
model of sensor or transportation networks [[17]], with approximately 1600 directed
edges (the threshold parameter was set at 6 = 30). Most of the networks were con-
nected. We set the cost of traversing an edge to 1, the interdiction efficiency d, to 0.5,
Vx € E, and the budget to 10. We used two evaders with uniformly distributed source
nodes based on the model of [10] with an equal mixture of A = 0.1 and A = 1000. For
this instance of the problem the priority algorithm required an average of 29.9 evalua-
tions of the objective as compared to 31885.2 in the basic greedy algorithm - a factor
of 1067.1 speedup.

The two algorithms find the same solution, but the basic greedy algorithm needs to
recompute the gain for all edges uninterdicted edges at every iteration, while the priority
algorithm can exploit fast initialization and stale computational values. Consequently,
the former algorithm uses approximately B|E| cost computations, while the latter typi-
cally uses much fewer (Fig.[2h).

Simulations show that for the priority algorithm the number of edges did not seem to
affect the number of cost computations (Fig.2b), in agreement with the theoretical limit.
Indeed, the only lower bound for the number of cost computations is B and this bound
is tight (consider a graph with B evaders each of which has a distinct target separated
from each evader’s source by exactly one edge of sufficiently small cost). The priority
algorithm performance gains were also observed in other example networks/l

107 109
" [e e basic greedy o (a) e e Dbasic greedy ®
£ ¢ o priority greedy | é 105 F & o priority greedy
%105’ o ° E=] ...ooo°°°.
= ° ° £ 104 L® .o
= E
3 L 4
8 10 8 103 F
% N i 2
o & . 1
O ol ¢] ©10 *
10 ° * °
p * ‘ ‘ L ® “”““00‘0&
10° 10! 107 100 10750 1000 1500 2000
Budget Number of edges

Fig. 2. Comparison between the basic greedy (blue circles) and the priority greedy algorithms (red
diamonds) for the number of cost evaluations as a function of (a) budget, and (b) number of edges.
In (a) each point is the average of 50 network interdiction problems. The average coefficient of
variation (the ratio of the standard deviation to the mean) is 0.10 for basic greedy and 0.15 for
the priority greedy. Notice the almost perfectly linear trends as a function of budget (shown here
on a log-log scale, the power ~ 1.0 in both.) In (b), the budget was fixed at 10 and the number of
edges was increased by decreasing the connectivity threshold parameter from 6 = 50 to 8 = 20
to represent, e.g., increasingly dense transportation networks.

I Specifically, the simulations were a two evader problem on a grid-like networks consisting of
a lattice (whose dimensions were grown from 8-by-8 to 16-by-16) with random edges added
at every node. The number of edges in the networks grew from approximately 380 to 1530 but
there was no increasing trend in the number of cost evaluations.

114 A. Gutfraind, A. Hagberg, and F. Pan

The priority algorithm surpasses a benchmark solution of the corresponding mixed
integer program (See Appendix) using a MIP solver running CPLEX (version 10.1) in
consistency, time, and space. For example, in runs on 100-node GTG networks with
4 evaders and a budget of 10, the priority algorithm terminates in 1 to 20 seconds,
while CPLEX terminated in times ranging from under 1 second to 9.75 hours (the high
variance in CPLEX run times, even on small problems, made systematic comparison
difficult.) The difference in solution optimality was zero in the majority of runs. In the
hardest problem we found (in terms of its CPLEX computational time - 9.75 hours), the
priority algorithm found a solution at 75% of the optimum in less than 10 seconds.

For our implementation, memory usage in the priority algorithm never exceeded
300MiB. Further improvement could be made by re-implementing the priority algo-
rithm so that it would require only order O(|E|) to store both the priority queue and
the vectors of Eq. (). In contrast, the implementation in CPLEX repeatedly used over
1GiB for the search tree. As was suggested from the complexity proof, in runs where
the number of evaders was increased from 2 to 4 the computational time for an exact
solution grew rapidly.

5 Outlook

The submodularity property of the UME problem provides a rich source for algorithmic
improvement. In particular, there is room for more efficient approximation schemes and
practical value in their invention. Simultaneously, it would be interesting to classify
the UME problem into a known approximability class. It would also be valuable to
investigate various trade-offs in the interdiction problem, such as the trade-off between
quality and quantity of interdiction devices.

As well, to our knowledge little is known about the accuracy of the assumptions of
the unreactive Markovian model or of the standard max-min model in various applica-
tions. The detailed nature of any real instance of network interdiction would determine
which of the two formulations is more appropriate.

Acknowledgments

AG would like to thank Jon Kleinberg for inspiring lectures, David Shmoys for a helpful
discussion and assistance with software, and Vadas Gintautas for support. Part of this
work was funded by the Department of Energy at Los Alamos National Laboratory
under contract DE-AC52-06NA25396 through the Laboratory Directed Research and
Development Program.

References

1. Corley, H.W., Sha, D.Y.: Most vital links and nodes in weighted networks. Oper. Res.
Lett. 1(4), 157-160 (1982)

2. McMasters, A.W., Mustin, T.M.: Optimal interdiction of a supply network. Naval Research
Logistics Quarterly 17(3), 261-268 (1970)

10.

11.

12.

13.

14.

15.

16.

17.

Optimal Interdiction of Unreactive Markovian Evaders 115

Ghare, P.M., Montgomery, D.C., Turner, W.C.: Optimal interdiction policy for a flow net-
work. Naval Research Logistics Quarterly 18(1), 37 (1971)

Pourbohloul, B., Meyers, L., Skowronski, D., Krajden, M., Patrick, D., Brunham, R.: Model-
ing control strategies of respiratory pathogens. Emerg. Infect. Dis. 11(8), 1246-1256 (2005)
Farley, J.D.: Breaking Al Qaeda cells: A mathematical analysis of counterterrorism opera-
tions (a guide for risk assessment and decision making). Studies in Conflict and Terrorism 26,
399411 (2003)

Pan, F., Charlton, W., Morton, D.P.: Interdicting smuggled nuclear material. In: Woodruff, D.
(ed.) Network Interdiction and Stochastic Integer Programming, pp. 1-19. Kluwer Academic
Publishers, Boston (2003)

Ball, M.O., Golden, B.L., Vohra, R.V.: Finding the most vital arcs in a network. Oper. Res.
Lett. 8(2), 73-76 (1989)

Bar-Noy, A., Khuller, S., Schieber, B.: The complexity of finding most vital arcs and nodes.
Technical report, University of Maryland, College Park, MD, USA (1995)

Boros, E., Borys, K., Gurevich, V.: Inapproximability bounds for shortest-path network inte-
diction problems. Technical report, Rutgers University, Piscataway, NJ, USA (2006)
Gutfraind, A., Hagberg, A., lzraelevitz, D., Pan, F.: Interdicting a Markovian evader
(preprint) (2009)

Grinstead, C.M., Snell, J.L.: Introduction to Probability. Second revised edn. American
Mathematical Society, USA (July 1997)

Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W.
(eds.) Complexity of Computer Computations, pp. 85-103. Plenum, New York (1972)
Nemhauser, G., Wolsey, L., Fisher, M.: An analysis of the approximations for maximizing
submodular set functions-I. Mathematical Programming 14, 265-294 (1978)

Khuller, S., Moss, A., Naor, J.S.: The budgeted maximum coverage problem. Information
Processing Letters 70(1), 39-45 (1999)

Krause, A., Guestrin, C.: A note on the budgeted maximization on submodular functions.
Technical report, Carnegie Mellon University, CMU-CALD-05-103 (2005)

Leskovec, J., Krause, A., Guestrin, C., Faloutsos, C., VanBriesen, J., Glance, N.: Cost-
effective outbreak detection in networks. In: KDD 2007: Proceedings of the 13th ACM
SIGKDD international conference on Knowledge discovery and data mining, pp. 420—429.
ACM, New York (2007)

Bradonji¢, M., Kong, J.S.: Wireless ad hoc networks with tunable topology. In: Forty-Fifth
Annual Allerton Conference, UIUC, Illinois, USA, pp. 1170-1177 (2007)

Appendix: Mixed Integer Program for UME

In the unreactive Markovian evader interdiction (UME) problem an evader k € K is
sampled from a source distribution a® and moves to a sink /) with a path specified
by the matrix M®). This matrix is the Markov transition matrix with zeros in the row
of the absorbing state (sink). The probability that the evader arrives at t*) is (aX) (I —
M®)=1) ;) and is 1 without any interdiction (removal of edges).

Notation summary

G(N,E): simple graph with node and edge sets N and E, respectively.
K: the set of evaders.
wk): probability that the evader k occurs.

a

)

: probability that node i is the source node of evader k.

116 A. Gutfraind, A. Hagberg, and F. Pan

1(®): the sink of evader k.

M®): the modified transition matrix for the evader k.

d;j: the conditional probability that interdiction of edge (i, j) would remove an evader
who traverses it.

B: the interdiction budget.

7rl.<k): decision variable on conditional probability of node evader k traversing node i.
rij: interdiction decision variable, 1 if edge (i, j) is interdicted and O otherwise.

Definition 4. Unreactive Markovian Evader interdiction (UME) problem

min H(r) =Y, w® p®) (r) |
kek
s.t. 2 rij==B,
(i,j)€E
tij € {0,1}, v(i,)j) €E,

where

h(k>(l') = mgn ”Ak) y

s.t. ﬂfl-(k) — 2 (Mj(fc) —Mj(.f)djirj,-)nj(.k) = agk), VieN, (19)
(j,i)€E
) >0, VieN. (20)

The constraint (19) is nonlinear. We can replace this with a set of linear constraints, and
the evader problem becomes

Y (r) = minm

s 7¥_ 3 0¥ —a®, vien,

(jd)eE
k k k k ..
0% > Ml — MW dry, V(i) €E, (21a)
0% > M (1—d;)nl, v(j.i)€E, (21b)
(x) .
;" >0, V(i,j) €EE,
P >0, VieN

If we set rj; = 0, the constraint (21a) is dominating 21B), and 6;; will take value

MY ﬂi(k) at optimal because of the minimization. If we set r;; = 1, the constraint (21D)

ij
is dominating since 7"/ < 1. Although formulation ZI) has an additional variable 8, at

the optimum the two formulations are equivalent because 7 and r have the same values.

Using Model Counting to Find
Optimal Distinguishing Tests

Stefan Heinz!'* and Martin Sachenbacher?

1 Zuse Institute Berlin, Takustr. 7, 14195 Berlin, Germany
heinz@zib.de
2 Technische Universitiat Miinchen, Institut fiir Informatik
Boltzmannstrafe 3, 85748 Garching, Germany
sachenba@in.tum.de

Abstract. Testing is the process of stimulating a system with inputs
in order to reveal hidden parts of the system state. In the case of non-
deterministic systems, the difficulty arises that an input pattern can
generate several possible outcomes. Some of these outcomes allow to
distinguish between different hypotheses about the system state, while
others do not.

In this paper, we present a novel approach to find, for non-deterministic
systems, modeled as constraints over variables, tests that allow to distin-
guish among the hypotheses as good as possible. The idea is to assess the
quality of a test by determining the ratio of distinguishing (good) and not
distinguishing (bad) outcomes. This measure refines previous notions pro-
posed in the literature on model-based testing and can be computed using
model counting techniques. We propose and analyze a greedy-type algo-
rithm to solve this test optimization problem, using existing model coun-
ters as a building block. We give preliminary experimental results of our
method, and discuss possible improvements.

1 Introduction

In natural sciences, it often occurs that one has several different hypotheses
(models) for a system or parts of its state. Testing asks whether one can reduce
their number by stimulating the system with appropriate inputs, called test pat-
terns, in order to validate or falsify hypotheses from observing the generated
outputs. Applications include, for example, model-based fault analysis (check-
ing technical systems for the absence or presence of faults [QJI7]), autonomous
systems (acquiring sensory inputs to discriminate among competing state esti-
mates [4]), and bioinformatics (designing experiments that help to distinguish
between different possible explanations of biological phenomena [I8§]).

For deterministic systems where each input generates a unique output, such as
digital circuits, it has been shown how generating test inputs can be formulated
and solved as a satisfiability problem [6/TT]. The non-deterministic case, however,

* Supported by the DFG Research Center MATHEON Mathematics for key technologies
in Berlin.

W.-J. van Hoeve and J.N. Hooker (Eds.): CPAIOR 2009, LNCS 5547, pp. 117 2009.
© Springer-Verlag Berlin Heidelberg 2009

118 S. Heinz and M. Sachenbacher

where the output is not uniquely determined by the inputs, is more frequent in
practice. One reason is that in order to reduce the size of a model, for example, to
fit it into an embedded controller [I4120], it is common to aggregate the domains
of system variables into small sets of values such as ‘low’, ‘med’, and ‘high’;
a side-effect of this abstraction is that the resulting models can no longer be
assumed to be deterministic functions, even if the underlying system behavior
was deterministic [I9]. Another reason is the test situation itself: even in a rigid
environment such as an automotive test-bed, there are inevitably variables or
parameters that cannot be completely controlled while testing the device.

The difficulty of test generation with non-deterministic models is that each
input pattern can generate a set of possible outcomes instead of a single outcome.
For two hypotheses and a fixed test input, let A and B be the sets of possible
outputs. These sets can either overlap or be disjoint as illustrated in Figure [l
Assuming that at least one hypothesis captures the actual behavior of the system,
there are two possible cases: (i) the actual observed output of the system could
either fall into the intersection of A and B or (ii) outside the intersection. In the
first case no information is gained, as none of the hypotheses can be refuted. In
the latter case, however, one of the hypotheses can be refuted. Thus, if the sets
overlap as depicted in Figure|l(a), the test input might distinguish between the
two hypotheses, whereas if the sets are disjunct as shown in Figure|1(. the test
input will certainly distinguish among them. Note that, if the assumption that
at least one hypothesis captures the actual behavior of the system fails, there is
a third possible outcome, where the observed output lies outside of both sets. In
this case, both hypotheses can be refuted since they do not describe the actual
behavior of the system.

This qualitative distinction of tests for non-deterministic models was noted in
several research areas. In the field of model-based diagnosis with first-order logi-
cal models, Struss [I7] introduced so-called possibly and definitely discriminating
tests, for short PDT and DDT, respectively. The first type of test (PDT) might
distinguish between fault hypotheses and corresponds to Figure whereas
the second type (DDT) will necessarily do so, which corresponds to Figure
Struss [I7] further provided a characterization of PDTs and DDTs in terms of
relational (logical) models, together with an ad-hoc algorithm to compute them.
In the field of automata theory, Alur et al. [3] have studied the analogous prob-
lem of generating so-called weak and strong distinguishing sequences. These are

O

(a) overlapping b) non-overlapping

Fig. 1. Given two non-deterministic models, a test input can either lead to overlap-
ping [(a)] or non-overlapping [(b)] output sets A and B

Using Model Counting to Find Optimal Distinguishing Tests 119

input sequences for a non-deterministic finite state machine, such that based on
the generated outputs, one can determine the internal state either for some or all
feasible runs of the machine. Finding weak and strong sequences with a length
less than or equal to a bound k € N can be reduced to the problem of finding
PDTs and DDTs, by unrolling automata into a constraint network using k copies
of the transition relation and the observation relation [9].

In previous work [I3], we have shown how PDTs and DDTs can be formalized
and computed using quantified constraint satisfaction problems, a game-theoretic
extension of constraint satisfaction problems. In the next section, we summarize
this constraint-based framework for testing. In section B we then propose a
novel, quantitative distinction of tests that refines and generalizes the previous
notions of weak versus strong and possibly versus definitely discriminating tests.
The key idea is to measure the quality of a test by determining the actual ratio
of distinguishing and not distinguishing outcomes, corresponding to the ratio
of non-intersecting and intersecting areas in Figure [Il Because test inputs that
maximize this measure distinguish among given hypotheses as good as possible,
we call them optimal distinguishing tests (ODTs). We show how in a constraint-
based framework, ODTs can be defined and computed using model counting
techniques. In Section @, we propose a greedy algorithm that can quickly find
distinguishing tests, using existing model counters as a building block (in our
experiments, we used a model counting extension of a constraint integer pro-
gramming solver SCIP [1l2]). We give preliminary experimental results of our
method using a small real-world problem from automotive industry. Finally, in
the last section we discuss possible improvements and directions for future work.

2 Distinguishing Tests

We briefly introduce the theory of constraint-based testing similar to [I3I17]. We
first define the notion of a constraint satisfaction problem (CSP).

Definition 1 (Constraint Satisfaction Problem). A constraint satisfaction
problem M is a triple M = (V, D, C), where D = D(v1)X...xD(vy,) are the finite
domains of finitely many variables v; € V, j =1,...,n, and C = {C,...,Cy}
is a finite set of constraints with C; C D, i = 1,...,m. The task is to find an
assignment x € D to the variables such that all constraints are satisfied, that is,
xe(C; fori=1,...,m.

We denote by X the set of all solutions of a given constraint satisfaction problem.
That is,

X={x|zeD, Clx)}, withC(zx):xecC;Vi=1,...,m.

Testing attempts to discriminate between hypotheses about a system — for ex-
ample, about different kinds of faults — by stimulating it in such a way that the
hypotheses become observationally distinguishable. Thereby, the system under
investigation defines a set of controllable (input) variables Z and a set of o0b-
servable (output) variables O. Formally, a hypothesis M for a system is a CSP
where the variable set V contains the input and output variables of the system.

120 S. Heinz and M. Sachenbacher

Definition 2 (Hypothesis). A hypothesis for a system is a CSP whose vari-
ables are partitioned into VY =T UOUS, such that T and O are the input and
output variables of the system, and for all assignments to Z, the CSP is solvable.
The remaining variables S =V \ (ZU O) are called internal state variables.

Note that the internal state variable sets S can differ for two different hypotheses.
We denote by D(Z) and D(O) the cross product of the domains of the input and
output variables, respectively:

D(Z) = X D() and D)= X D(v).

vel veO

The goal of testing is then to find assignments of the input variables Z that will
cause different assignments of output variables O for different hypotheses. For a
given hypothesis M we define the output function X as follows:

X :D(T) — 2P witht — {y |y € D(O), Iz € X : x[T] =t A z[O] = y},

where 2P(©) denotes the power set of D(O), and [Z], [O] denote the restriction
of the assignment vector x to the input variables Z and the output variables O,
respectively. Note that since M will always yield an output, X'(t) is non-empty
for all t € D(7).

Definition 3 (Distinguishing Tests). Consider k € N hypotheses My, ..., My,
with input variables T and output variables O. Let X; be the output function of
hypothesis M; withi € {1,...,k}. An assignmentt € D(T) to the input variables T
is a possibly distinguishing test (PDT), if there exists ani € {1,...,k} such that

x\Jx # o
JF#i

An assignment t € D(T) is a definitely distinguishing test (DDT), if for all
i€{l,...,k} it holds that

20\ | (8) = xi(0).

ji

Verbally, a test input is a PDT if there exists a hypothesis for which this test
input can lead to an output which is not reachable for any other hypothesis.
On the other hand, an assignment to the input variables is a DDT if for all
hypotheses the possible outputs are pairwise disjoint. This means, there exists
no overlapping of the possible outcomes at all.

In the following, we restrict ourselves to the case where there are only two
possible hypotheses, for example corresponding to normal and faulty behavior
of the system.

To illustrate the above definitions, consider the system in Figure 2l It consists
of five variables x, y, z, u, and v, where x, y, and z are input variables and v is an
output variable. Furthermore, the system has two components, one comparing

Using Model Counting to Find Optimal Distinguishing Tests 121

XOR: T Y U Atu 2z v A:u z v
7 | xor u LLL LLL LLL
L HH L HL L HL
HL H L HH HL L
HHL HL L HHL
Hoo
HHH

Fig. 2. Circuit with a possibly faulty adder

signals « and y with result 4 and the other adding signals u and z. The signals
have been abstracted into qualitative values ‘low’ (L) and ‘high’ (H). This means,
each variable of the system has the same domain set {L, H}; thus, for instance,
values L and H can add up to the value L or H, and so on. Assume we have two
hypotheses M7 and Ms about the system that we want to distinguish from each
other: the first hypothesis is that the system is functioning normally, which is
modeled by the constraint set {XOR, A} (see Figure 2]). The second hypothesis is
that the adder is stuck-at-L, which is modeled by the constraints {XOR, A’}. Note
that only the second constraint of both hypotheses contains a non-deterministic
behavior. The assignment (x,y,z) = (L, H, L), for example, is a PDT, since it
leads to the observation v = L or v = H for M4, and v = L for M5. One the other
hand, the assignment (z,y, z) = (L, H, H) is a DDT for the two hypotheses, since
this assignment leads to the observation v = H and v = L for the hypotheses M;
and Ms, respectively.

Testing can be extended from the above case of logical, state-less models to
the more general case of automata models that have internal states. This means
that we are no longer searching for a single assignment to input variables, but
rather for a sequence of inputs over different time steps. The following definitions
are adapted from [5] and [7]:

Definition 4 (Plant Hypothesis). A (partially observable) plant is a tuple
P = {(29,85,1,0,0,)), where S,1,0 are finite sets, called the state space, input
space, and output space, respectively, xo € S is the start state, § C S x I x S
is the transition relation, and A C S x O is the observation relation.

Such plant models are for instance used in NASA’s Livingstone [2I] or MIT’s
Titan model-based system [20]. Note that a plant need not be deterministic,
that is, the state after a transition may not be uniquely determined by the state
before the transition and the input. Likewise, a plant state may be associated
with several possible observations.

For technical convenience, it is assumed that the relations § and A\ are com-
plete, that is for every x € S and i € I there exists at least one z’ € S such that
(z,i,7') € 6 and at least one o € O such that (z,0) € A\. We write 6(z,4,z) for
(x,i,2") € §, and A(s, 0) for (z,0) € A. A feasible trace of a plant P is a pair (o, p),
where o0 = i1,19,...,1; € I is a sequence of k inputs and p = og, 01, ...,0 € O*

122 S. Heinz and M. Sachenbacher

L LH L LH

(ro)—= (z0)—
H L

0 1 0 1
5 0
LH

Fig. 3. Two plants P, (left) and P» (right)

is a sequence of k + 1 outputs, such that there exists a sequence zg, z1,..., Tk
of states with 6(z;j_1,4;,2;) for all 1 < j <k and A(z;,0;) for all 0 < j < k.

Definition 5 (Distinguishing Test Sequences). Given two plants P, =
(20,5,1,8,0,\) and Py = (yo,Y,1,n,0,p), a sequence of inputs o € I* is a
weak test, if there exists a sequence of outputs p € O* such that (o, p) is a fea-
sible trace of Py but not of Py. The sequence o is a strong test for Py and P, if
and only if for all sequences of outputs p, it holds that if (o, p) is a feasible trace
Py then it is not a feasible trace of Ps.

Notice that due to the assumptions about completeness, for every input sequence
o € I* there exist output sequences p, 7 € O* such that (o, p) is a feasible trace
of P, and (o, 7) is a feasible trace of Ps.

Analogous to PDTs and DDTs, a weak test is a sequence that may reveal
a difference between two hypotheses, whereas a strong test is a sequence that
will necessarily do so. For example, Figure B shows two plants P; and P, with
I={L,H} and O = {0, 1}. The input sequence ¢ = L, L is a weak test for the
two plants, because, for example, 0, 1,0 is a possible output sequence of P, but
not of P;. The sequence o’ = H, H is a strong test for P, and P;, because the
only possible output sequence 0, 0,0 of P, cannot be produced by P;.

From a practical point of view, it is often sufficient to consider bounded test
sequences that do not exceed a certain length &k € N. In this case, the problem
of finding weak and strong tests for automata models can be reduced to finding
PDTs and DDTs:

Remark 1. Finding weak and strong tests with a length less than or equal to
a bound k£ € N can be reduced to the problem of finding PDTs and DDTs, by
unrolling automata into a constraint network using k copies of the transition
relation and the observation relation [9].

In the following, we consider only tests with such a bounded length. Therefore,
we assume the hypotheses are given as CSPs over finite-domain variables (Defi-
nition [2]). This covers both the case of logical models and (bounded) automata
models.

Using Model Counting to Find Optimal Distinguishing Tests 123

3 Optimal Distinguishing Tests

In [I3], we have shown how PDTs and DDTs can be formalized and computed
using quantified constraints satisfaction problems (QCSP), a game-theoretic ex-
tension of CSPs. However, for larger hypotheses, the computational cost of solv-
ing such QCSPs can be prohibitive. Moreover, due to limited observability or
a high degree of non-determinism in the system under investigation, it is not
uncommon that a DDT for the hypotheses does not exist, and one can instead
only find PDTs.

In the following, we therefore propose a novel, quantitative measure for tests
that refines and generalizes the previous, qualitative notions of PDTs and DDTs.
The key idea is to determine the ratio of distinguishing and not distinguishing
outcomes of a test input, corresponding to the degree of overlap between the
output sets shown in Figure[ll This measure provides a way to further distinguish
between different PDTs. In addition, even if computing this measure is by itself
not easier than finding PDTs and DDTs, approximations of it can be used as a
guiding heuristic in the search for tests, providing a basis for greedy methods to
quickly find good tests.

The main assumption underlying our approach is that for a test input and
a non-deterministic hypothesis, the possible outcomes (feasible assignments to
the output variables) are all (roughly) equally likely. Then, a PDT will be more
likely to distinguish among two given hypotheses compared to another PDT, if
the ratio of possible outcomes that are unique to a hypothesis versus the total
number of possible outcomes is higher.

This intuition is captured in the following definitions.

Definition 6 (Distinguishing Ratio). Given a test input t € D(I) for two
hypotheses My, My with input variables T and output variables O, we define I'(t)
to be the ratio of feasible outputs that distinguish among the hypotheses versus
all feasible outputs:

MO U0 - G0N 2@ @0 Xa()]
14(8) U () 4(6) U Aa(8)]°

I' is a measure for test quality that can take on values in the interval [0, 1]. It
refines the notion of PDTs and DDTs in the following precise sense: if I is 0,
then the test does not distinguish at all, as both hypotheses lead to the same
observations (output patterns). If the value is 1, then the test is a DDT, since
both hypotheses always lead to different observations. If the value is between 0
and 1, then the test is a PDT (there is some non-overlap in the possible observa-
tions). Note that I" is well-defined since for any chosen t € D(Z), the sets X ()
and X(t) are non-empty (see Definition [2]).

Ir):

Remark 2. For computing the distinguishing ratio for a fixed test input ¢ it is
only necessary to compute (model count) the value | X1 (t) N Xa(t)[, |X1(¢)], and
| X2 ()], since

_a@)na@) _ |1 (8) N Xa(t))]

TO=1" %o ="' 10w + 106 - 400X

124 S. Heinz and M. Sachenbacher

Based on this measure, we can formalize our goal of finding tests that discrimi-
nate among two hypotheses as good as possible:

Definition 7 (Optimal Distinguishing Test). An assignment t € D(Z) is
an optimal distinguishing test (ODT) for two hypotheses My, Ms with input
variables T and output variables O if its distinguishing ratio is maximal, that is,
I(t) = maxzepr) ().

Note that each DDT is also an ODT. To illustrate the previous definition, consider
again the example in Figure Bl The input sequence t = (L, L) is a weak test
or equivalently, a PDT if the automata are expanded into suitable constraint
networks. The possible outcomes (output patterns) for P; and P, are

X1 (¢)={(0,0,0),(0,0,1),(0,1,1)} X2(¢t)={(0,0,0),(0,0,1),(0,1,1),(0,1,0)}.

Thus, for this test there is only one possible outcome (0, 1,0) that is unique to
a hypothesis, out of a total of four possible outcomes. Hence, I'(t) = }l. There
exists another weak test (PDT), namely the input sequence ' = (L, H), with
possible outcomes

X1 (t') ={(0,0,1),(0,1,1)} Aa(t") = {(0,0,0),(0,1,1)}.

This test has two possible outcomes {(0,0,0),(0,0,1)} that are unique to a
hypothesis, out of three possible outcomes {(0, 0,0), (0,0,1), (0,1, 1)}. This leads
to I'(t') = 3. Note that for this example, there exists a test ¢ = (H, H) with
I'(t"") = 1, which is a DDT and therefore an ODT.

Now we present a general lower bound on the optimal distinguishing ratio.

Theorem 1. Consider a system with input variable set T and output variable
set O. Furthermore, let My and My be two hypotheses for this system. Let

X;[Z,0l ={(z,y) | £ € D(Z), y € D(O), At € X; : t[Z] = = AN t[|O] = y},
where X; is the set of all feasible solutions of the hypothesis M;, i € {1,2}. Then,

| X1[Z, O] N Xo|Z, O

1—
| X1 [Z, O] U X5[Z, O

s a lower bound on the optimal distinguishing ratio.

Proof. Let Z and O be the input and output variable sets of an arbitrary system
and M; and My two hypotheses. Furthermore, let X;[Z, O] and X3[Z, O] be the
sets to the hypotheses as defined in the theorem.

Given an input variable v € Z, we denote by Ty the subset of D(Z) which is
restricted to the elements where the input variable v is fixed to d € D(v). That
is, Ty = {x | ® € D(Z) A x[{v}] = d}. These subsets form a partition of D(Z).
This means, D(Z) = Uye p(y) Ta and Ty NTy = @ for all d, k € D(v) with d # k.
Hence, these subsets can be used to partition X;[Z, O] as follows:

X[7,0l = |J {(@.y) |z €Ty, y e DO),IteX; : tI] =z At[O] =y}
deD(v)

Using Model Counting to Find Optimal Distinguishing Tests 125

Therefore,
IXG[Z,0ll= > {(xy) |@eTy,yeDO),Ite X t[I] =z At[0] =y}
deD(v)

We claim that

XiLOING[L0) _ [X(1,0]0 X,[7,0]0 (Ty x D(O))
1X1[Z, 0] U Xo[T, 0] ~ denw) |(X1[Z,0) U X, [T, 0)) N (Ta x D(O))|’

To this end, let d* € D(v) be a domain value of v, which attains the minimum
on the right hand side. In a first step, we decompose the left hand side using
that the subsets Ty are a partition of D(Z):

| X1[Z, O] N Xo|Z, O _ ZdeD(v)\Xl[Iv O] N X2[Z, 01N (Ty x D(O))|
|X1[I’ 0] UX?[Iv OH ZdeD(v)‘(Xl[Iv O} U XQ[Iv O]) N (Td X D(O))‘

Now we substitute

= |X41[Z,0] N X3[Z, 0] N (T x D(O))|
i = |(X1[Z, 0] U Xa[Z,0]) N (Ty x D(O))|.

To prove the claim, it is left to show that

ZdeD(v) ad - ad

o> with dezcjd* Vd € D(v).
ZdED(v) ad Qd* ad Qax
This follows since
> deD(v) 0d
R DI S
2 den(v) 4 deD(v) deD(v) a-

and

aq - dd aqx *
I I R ML T
aq G~ Qg
deD(v) deD(v) deD(v) deD(v
Therefore, we have proven, that it is possible to fix any input variable such that
the claimed lower bound holds. Doing this sequentially for all input variables
leads to an assignment which has as distinguishing ratio which is at least as

good as the claimed lower bound. O

4 GREEDY Algorithm for Distinguishing Test Generation

In the previous section we stated the optimization problem of computing an opti-
mal distinguishing test (ODT). In this section, we propose and analyze a greedy-
type algorithm to solve this problem, which can use existing model counting
methods (exact or approximate) as a building block.

126 S. Heinz and M. Sachenbacher

The idea of the greedy algorithm is to select at each step an input variable
which is not fixed yet. For each possible value of this variable, the algorithm
computes a local form of the distinguishing ratio (comparison of model counts,
as defined in Section B]) for assigning this value. The variable is then fixed to a
value that attains the maximal (local) distinguishing ratio.

To formalize this idea, we canonically extend the function I" from single as-
signments t € D(Z) to sets of assignments T' C D(Z) by defining

X(T) = x@).

teT

Algorithm [[lshows the algorithm GREEDY. It takes as input the controllable and
observable variable sets Z and O defined by the system under investigation and
two hypotheses M; and M; to distinguish. As output it returns an assignment
for the input variables.

For example, consider the system shown in Figure[l It has two input variables
T = {v1,v2} and one output variable O = {vs}. Let D(v1) = D(ve) = {0,1}
and D(v3) = {0,1,2}. Consider two hypotheses M; and M, for this system,
where both hypotheses have no internal state variables. Each hypothesis has one
constraint

Cl = D(’Ul) X D('UQ) X D(Ug)
C2 = D(v1) x D(v2) x D(v3) \ {(0,0,1),(0,0,2),(0,1,2),(1,0,2)},

where C7 and Cy belong to hypothesis M; and Ms, respectively. Assume the
algorithm selects the variables in the order vy, vs. Then for the two values of

Input: Hypotheses M; and My with set of input and output variables Z and O
Output: Test t € D(T)

T — D),
foreach v € 7 do
bestratio «— —1;
bestfixing «— o0;
foreach d € D(v) do
T «— {x|zeTnz[{v}] =d};
ratio «— I'(T");
if ratio > bestratio then
bestratio <« ratio;
bestfixing « d;
end
end
T «— Tn{x|xecDZ)Ax[{v}] = bestfixing};
end
returnt T

Algorithm 1. GREEDY algorithm for distinguishing test input generation

Using Model Counting to Find Optimal Distinguishing Tests 127

U1 —
?
vz } "

Fig. 4. Example system schema

v1, it computes the two ratios vy = 0 — I'(T') = } and v; = 1 — I'(T") = 0.
It chooses value 0 for vy, since it has the highest ratio. Continuing with wvo, its
ratios are determined as vy =0 — I'(T") = 3 and v = 1 — I'(T') = ;. Thus
value 0 for vy is chosen. The computed input (0,0) is an ODT for this example.

4.1 Properties of the Algorithm

Note that if the system consists only of one input variable, GREEDY computes an
ODT, since the algorithm just enumerates all possible variable assignments for
the input variable and selects the assignment that maximizes the distinguishing
ratio. In general, however, the GREEDY algorithm has no constant approximation
factor.

Theorem 2. The GREEDY algorithm has no constant approximation factor.
That is, there exists no constant ¢ such that for all instances

I'(t)<c- Iz
e (t) <c-I'(z"),

where x* is the solution computed by GREEDY.

Proof. Consider again the system stated in Figure 4 and let the domain of the
input variables be D(v;) = D(v2) = {0,1} and of the output variable vs be
D(v3) ={0,...,n}, n € N, and n > 2. W.Lo.g. let the domains be ordered as:

D= D('Ul) X D('UQ) X D(’Ug).
Let M, and M5 be defined by the following sets of feasible solutions:

X1 ={(0,0,0),(1,0,0)}U{(z,1,2) |x € D(n1) Az €{2,...,n}} CD
X, ={(0,1,0),(1,0,0), (1,1,)} U{(z,z,2) |z € {0,1} Az €{2,...,n}} C D,

where X7 and X5 belong to hypothesis M7 and Ms, respectively. Both hypothe-
ses have no internal state variables. It is assumed that the GREEDY algorithm
selects vy first. The best possible assignment for this variable is v; = 1, since
vp=0—-I(T")=0and vy =1 — I'(T’) > 0. In the final step GREEDY has to
fix variable v with respect to the previous fixing of v; = 1. The best possible
decision is, to fix vy also to 1, since fixing vy to 0 leads to an distinguishing ratio
of zero and for va = 1 we have I'((1,1)) = ! . Note that the computed test input
(v1,v2) = (1,1) is independent of the chosen n.

An ODT for this problem, however, is (v1,v3) = (0,0), which is also a DDT.
This test input has, therefore, a distinguishing ratio of 1. For n tending to in-
finity, the distinguishing ratio of the test input computed by GREEDY tends to
zero. This proves that the GREEDY algorithm has in general no constant approx-
imation factor. O

128 S. Heinz and M. Sachenbacher

Note that if GREEDY would choose variable vs first, it would compute an ODT for
this example. This rises the question, whether there exist always a permutation
of the input variables such that the GREEDY algorithm computes an ODT. The
following theorem answers this question.

Theorem 3. In general, the GREEDY algorithm does not compute an ODT even
if it is allowed to try all possible input variable permutations.

Proof. Again, consider the abstract system depicted in Figure @l with the input
variable set Z = {v1,v2}, D(v1) = D(ve) = {0,1}, the output variable set O =
{vs}, and D(v3) = {1,2,3,4}. Let M; and M be two hypotheses given through
the constraints:

¢y ={(0,0,1),(1,0,2),(0,1,2),(1,1,2),(1,1,3),(1,1,4)} Cc D
Cy = {(‘Tvy72) ‘ T,y € {071}} C D,

where C; belongs to hypothesis M7, Cs to hypothesis Ma, and D = D(v1) x
D(’UQ) X D(’Ug).

The test input (v1,vs) = (0,0) is the unique DDT and, therefore, the unique
ODT. If we show that the GREEDY algorithm fixes in the first iteration, inde-
pendently of the chosen input variable, this variable to 1, then we have proven
the theorem.

Independently from the chosen input variable, GREEDY fixes this variable to 1
since for i € {1,2} it follows v; =0 = I'(T") = and v; =1 - I'(T") = 3. O

In the example at the beginning of Section @ the sequence of distinguishing
ratios I'(T”) computed by GREEDY increases monotonically. This observation
can also be made later in the computational results for the automotive example
(see Table [2). However, this needs not be the case in general.

Theorem 4. In general, the sequence of distinguishing ratios computed by
GREEDY is not monotonically increasing.

Proof. Consider the system stated in Figure @ and let the domain of the input
variables be D(v1) = {0}, D(v2) = {0,1}, and of the output variable vs be
D(v3) ={0,1,2}. W.lo.g. let the domains be ordered as:

D= D('Ul) X D('UQ) X D(’Ug).
Let M, and M5 be defined by the following sets of feasible solutions:
X, ={(0,0,0),(0,1,0),(0,1,1)} c D
X2 - {(O7Oa 0)7 (Oa 170)? (O7Oa 2)} - D

where X; and X5 belong to hypothesis M; and M, respectively. Both hypothe-
ses have no internal state variables. It is assumed that the GREEDY algorithm
selects vy first. Since v; has only one possible value in its domain, GREEDY fixes
v1 to this value 0. The (local) distinguishing ratio yields:

_ ‘{071}0{072“ _ 2 : —
NT)=1- 01U {0.2)] = 3 with T =D

Using Model Counting to Find Optimal Distinguishing Tests 129

In the final step GREEDY has to fix variable vy with respect to the previous
fixing of v; = 0:

ey

0,1} N {0} .
rry=1- 10, =1 with T"={z|xe€DAx[{va}] =1}.
{o,1}u{o}} 2
Independently of the chosen fixing for the variable vy, the (local) distinguishing
ratio decreases. O

4.2 Computational Results

We have implemented Algorithm [using the constraint integer programming
solver SCIP [II2] as (exact) model counter.

We ran our prototype implementation on a small real-world automotive exam-
ple. The example is based on a mixed discrete-continuous model of an engine air
intake test-bed [I2]. It has been turned into a coarse CSP model by abstracting
continuous system variables into suitable finite domains with up to 12 values,
corresponding to different operating regions. The system consists of the three
major components ENGINE, PIPE, and THROTTLE; for each component, a fault
model is defined that simply omits the respective constraint from the model.
Thus, there are four diagnostic hypotheses (CORRECT, NO-ENGINE, NO-PIPE,
and NO-THROTTLE), corresponding to all components functioning normally and
one of them failing. The goal is to find an assignment to two controllable vari-
ables (throttle angle v1, valve timing vs), such that one can discriminate among
hypotheses based on two observable variables (engine speed and air flow) in

Table 1. Model counts for the four hypotheses in the automotive example

CORRECT NO-ENGINE NO-PIPE NO-THROTTLE
|X| 329 6552 25356 8560
|X[Z,0]| 43 552 168 127
|X (D(T))| 13 72 41 22

Table 2. Distinguishing ratios computed by GREEDY for the automotive example

sequence of distinguishing ratio I'(T")
permutation lower bound 0 iteration 1 iteration 2 iterations

CORRECT VS. NO-ENGINE

(v1,v2) 1— 23 =0.922 1— %2 =0.819 1- 2 =087 1-— 214 =0.958

(v2,v1) 1— 25 =0.922 1— 73 =0819 1— 7 =0.944 1— ., =0.958
CORRECT Vs. NO-PIPE

(v1,v2) 1- 14628 =0.744 1— g =0.683 1- 32 =0.889 1— 4 =0.933

(v2,v1) 1— [=0.744 1— 12 =0683 1— .5 =0.826 1— L =0933
CORRECT VS. NO-THROTTLE

(v1,v2) 1— /2% =0.661 1— 1% =0.409 1— 5 =0.864 1— 5 =0.889

(v2,v1) 1- 5 =o0.661 1— §§ =0.409 1— 5 =05 1—- 5 =05

130 S. Heinz and M. Sachenbacher

the system. Table [I] shows the model counts (total number of solutions |X| and
the total number of projected solutions |X[Z,O]| and |X(D(Z))|) for the four
hypotheses. Table 2l shows the computational results of the GREEDY algorithm
for finding tests to distinguish the normal system behavior from the faults. The
first column states the used permutation, the second column gives the general
lower bound on the optimal distinguishing ratio, as stated in Theorem[I] and the
last three columns the sequence of the distinguishing ratios as GREEDY iterates
through the input variables. In all cases except the last (finding a test input to
identify a NO-PIPE fault given the variable order v, v1), the test input generated
by the algorithm is an ODT. The last test shows that in general, the GREEDY
algorithm does not compute a test input whose distinguishing ratio is at least as
good as the general lower bound. The run-time of the algorithm on this example
is in the order of a few seconds.

5 Conclusion and Future Work

We presented a method for generating tests to distinguish system hypotheses
modeled as constraints over variables. It is based on maximizing the number of
non-overlapping versus overlapping observable outcomes and extends previous
notions of testing for non-deterministic systems. We showed how this proposed
test quality measure can be computed as a ratio of model counts. Challenges
arise from the computational cost of generating optimal distinguishing tests,
since computing the optimal distinguishing ratios can be very expensive.

We proposed an algorithm that greedily assigns input variables and thus re-
quires only a limited number of model counts, but sometimes misses the optimal
solution. An alternative approach that we would like to investigate in the future
is to use a complete (branch-and-bound like) algorithm, but to combine it with
approzimate counting methods that compute confidence intervals for solution
counts [I0]. Also, in practice, testing problems often have additional structure:
for instance, in the automotive example in Section .2 pairs of hypotheses share
significant identical portions. There exist decomposition techniques in test gen-
eration that can exploit this fact [5]; therefore, an interesting question is whether
these can be adapted to model counting approaches. In [I6], we have recently
developed an approach that exploits model structure by pre-compiling the ODT
problem into decomposable negation normal form (DNNF) [§].

Another extension concerns relaxing the simplifying assumption that the pos-
sible outcomes of a non-deterministic hypothesis all have similar likelihood. In
this context, methods for weighted model counting [I5] could be used to capture,
for instance, probability distributions in the hypotheses.

References

1. Achterberg, T.: Constraint Integer Programming, PhD thesis, TU Berlin (2007)

2. Achterberg, T., Heinz, S., Koch, T.: Counting solutions of integer programs using
unrestricted subtree detection. In: Perron, L., Trick, M.A. (eds.) CPAIOR 2008.
LNCS, vol. 5015, pp. 278-282. Springer, Heidelberg (2008)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Using Model Counting to Find Optimal Distinguishing Tests 131

. Alur, R., Courcoubetis, C., Yannakakis, M.: Distinguishing tests for nondetermin-

istic and probabilistic machines. In: Proc. of the twenty-seventh annual ACM sym-
posium on Theory of computing, pp. 363-372 (1995)

. Blackmore, L., Williams, B.C.: Finite horizon control design for optimal discrimina-

tion between several models. In: Proc. IEEE Conference on Decision and Control,
pp. 1147-1152 (2006)

. Boroday, S., Petrenko, A., Groz, R.: Can a model checker generate tests for non-

deterministic systems? Electron. Notes Theor. Comput. Sci 190, 3-19 (2007)

. Brand, S.: Sequential automatic test pattern generation by constraint program-

ming. In: Proc. CP 2001 Workshop on Modelling and Problem Formulation (2001)

. Cimatti, A., Pecheur, C., Cavada, R.: Formal verification of diagnosability via

symbolic model checking. In: Proc. of IJCAI 2003, pp. 363-369 (2003)

. Darwiche, A., Marquis, P.: A knowledge compilation map. J. Artif. Intell. Res. 17,

229-264 (2002)

. Esser, M., Struss, P.: Fault-model-based test generation for embedded software. In:

Proc. of IJCAI 2007, pp. 342-347 (2007)

Gomes, C., Sabharwal, A., Selman, B.: Model counting: A new strategy for obtain-
ing good bounds. In: Proc. of AAAT 2006, pp. 54-61 (2006)

Larrabee, T.: Test pattern generation using boolean satisfiability. IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems 11, 4-15
(1992)

Luo, J., Pattipati, K.R., Qiao, L., Chigusa, S.: An integrated diagnostic develop-
ment process for automotive engine control systems. IEEE Transactions on Sys-
tems, Man, and Cybernetics 37, 1163-1173 (2007)

Sachenbacher, M., Schwoon, S.: Model-based testing using quantified CSPs: A map.
In: ECAI 2008 Workshop on Model-based Systems, pp. 37-41 (2008)
Sachenbacher, M., Struss, P.: Task-dependent qualitative domain abstraction. Ar-
tif. Intell. 162, 121-143 (2005)

Sang, T., Beame, P., Kautz, H.: Solving bayesian networks by weighted model
counting. In: Proc. of AAAT 2005 (2005)

Schumann, A., Sachenbacher, M., Huang, J.: Computing optimal tests for non-
deterministic systems using DNNF graphs. In: Proc. Fifth Workshop on Model-
Based Testing (MBT 2009) (2009)

Struss, P.: Testing physical systems. In: Proc. of AAAT 1994, pp. 251-256 (1994)
Vatcheva, 1., de Jong, H., Bernard, O., Mars, N.J.: Experiment selection for the
discrimination of semi-quantitative models of dynamical systems. Artif. Intell. 170,
472-506 (2006)

Weld, D.S., de Kleer, J. (eds.): Readings in qualitative reasoning about physical
systems. Morgan Kaufmann, San Francisco (1990)

Williams, B.C., Ingham, M.D., Chung, S.H., Elliott, P.H.: Model-based program-
ming of intelligent embedded systems and robotic space explorers. Proc. of the
IEEE 91, 212-237 (2003)

Williams, B.C., Nayak, P.P.: A model-based approach to reactive self-configuring
systems. In: Proc. of AAAT 1996, pp. 971-978 (1996)

Reformulating Global Grammar Constraints*

George Katsirelos!, Nina Narodytska?, and Toby Walsh?

L NICTA, Sydney, Australia
george.katsirelos@nicta.com.au
2 NICTA and University of NSW, Sydney, Australia
ninan@cse.unsw.edu.au, toby.walsh@nicta.com.au

Abstract. An attractive mechanism to specify global constraints in rostering
and other domains is via formal languages. For instance, the REGULAR and
GRAMMAR constraints specify constraints in terms of the languages accepted
by an automaton and a context-free grammar respectively. Taking advantage of
the fixed length of the constraint, we give an algorithm to transform a context-free
grammar into an automaton. We then study the use of minimization techniques
to reduce the size of such automata and speed up propagation. We show that
minimizing such automata after they have been unfolded and domains initially
reduced can give automata that are more compact than minimizing before un-
folding and reducing. Experimental results show that such transformations can
improve the size of rostering problems that we can “model and run”.

1 Introduction

Constraint programming provides a wide range of tools for modelling and efficiently
solving real world problems. However, modelling remains a challenge even for experts.
Some recent attempts to simplify the modelling process have focused on specifying con-
straints using formal language theory. For example the REGULAR [1]] and GRAMMAR
constraints [2J3] permit constraints to be expressed in terms of automata and gram-
mars. In this paper, we make two contributions. First, we investigate the relationship
between REGULAR and GRAMMAR. In particular, we show that it is often beneficial to
reformulate a GRAMMAR constraint as a REGULAR constraint. Second, we explore the
effect of minimizing the automaton specifying a REGULAR constraint. We prove that
by minimizing this automaton after unfolding and initial constraint propagation, we can
get an exponentially smaller and thus more efficient representation. We show that these
transformations can improve runtimes by over an order of magnitude.

2 Background

A constraint satisfaction problem consists of a set of variables, each with a domain of
values, and a set of constraints specifying allowed combinations of values for given
subsets of variables. A solution is an assignment to the variables satisfying the con-
straints. A constraint is domain consistent iff for each variable, every value in its do-
main can be extended to an assignment that satisfies the constraint. We will consider

* NICTA is funded by the Australian Government’s Department of Broadband, Communica-
tions, and the Digital Economy and the Australian Research Council.

W.-J. van Hoeve and J.N. Hooker (Eds.): CPAIOR 2009, LNCS 5547, pp. 132 2009.
(© Springer-Verlag Berlin Heidelberg 2009

Reformulating Global Grammar Constraints 133

constraints specified by automata and grammars. An automaton A = (X, Q, qo, F, 0)
consists of an alphabet X, a set of states (), an initial state gg, a set of accepting states
F, and a transition relation § defining the possible next states given a starting state
and symbol. The automaton is deterministic (DFA) is there is only one possible next
state, non-deterministic (NFA) otherwise. A string s is recognized by A iff starting
from the state gy we can reach one of the accepting states using the transition rela-
tion J. Both DFAs and NFAs recognize precisely regular languages. The constraint
REGULAR(A, [X1,...,X,]) is satisfied iff X; to X, is a string accepted by A [1I].
Pesant has given a domain consistency propagator for REGULAR based on unfolding
the DFA to give a n-layer automaton which only accepts strings of length n [[1]].

Given an automaton A, we write unfold,, (A) for the unfolded and layered form of
A that just accepts words of length n which are in the regular language, min(.A) for
the canonical form of A with minimal number of states, simplify (A) for the simplified
form of A constructed by deleting transitions and states that are no longer reachable
after domains have been reduced. We write f4(n) < ga(n) iff f4(n) < ga(n) for all

n, and there exist A such that log fcjgzg = 2(n). That is, g.4(n) is never smaller than
fa(n) and there are cases where it is exponentially larger.

A context-free grammar is a tuple G = (T, H, P, S), where T is a set of terminal
symbols called the alphabet of G, H is a set of non-terminal symbols, P is a set of
productions and S is a unique starting symbol. A production is a rule A — « where
A is a non-terminal and « is a sequence of terminals and non-terminals. A string in
X* is generated by G if we start with the sequence o = (S) and non deterministically
generate o’ by replacing any non-terminal A in a by the right hand side of any pro-
duction A — « until o’ contains only terminals. A context free language £(G) is the
language of strings generated by the context free grammar G. A context free grammar
is in Chomsky normal form if all productions are of the form A — BC where B and
C are non terminals or A — a where a is a terminal. Any context free grammar can
be converted to one that is in Chomsky normal form with at most a linear increase in
its size. A grammar G,, is acyclic iff there exists a partial order < of the non-terminals,
such that for every production A; — AsAs, Ay < A and A; < As. The constraint
GRAMMAR ([X1, ..., X,], G) is satisfied iff X to X, is a string accepted by G [2/3].

Example 1. As the running example we use the GRAMMAR([X1, X2, X3], G) con-
straint with domains D(X;) = {a}, D(X32) = {a, b}, D(X3) = {b} and the grammar
G in Chomsky normal form [3]] {S — AB,A — AA|a,B — BB | b}.

Since we only accept strings of a fixed length, we can convert any context free grammar
to aregular grammar. However, this may increase the size of the grammar exponentially.
Similarly, any NFA can be converted to a DFA, but this may increase the size of the
automaton exponentially.

3 GRAMMAR Constraint

We briefly describe the domain consistency propagator for the GRAMMAR constraint
proposed in [213]. This propagator is based on the CYK parser for context-free gram-
mars. It constructs a dynamic programing table V' where an element A of Vi, j] is a

134 G. Katsirelos, N. Narodytska, and T. Walsh

non-terminal that generates a substring from the domains of variables X;, ..., X; ;1
that can be extended to a solution of the constraint using the domains of the other vari-
ables. The table V' produced by the propagator for Example[Ilis given in Figure[1l

o=
(ol :
© OO
olcIcEING

D(X,)={a} D(X;)={a,b} D(X;)={b}

Fig. 1. Dynamic programming table produced by the propagator of the GRAMMAR constraint.
Pointers correspond to possible derivations.

An alternative view of the dynamic programming table produced by this propagator
is as an AND/OR graph [4]. This is a layered DAG, with layers alternating between
AND-NODES or OR-NODES. Each OR-NODE in the AND/OR graph corresponds to
anentry A € Vi, j]. An OR-NODE has a child AND-NODE for each production A —
BC so that A € VI[i,j|, B € V[i,k] and C € V[i + k,j — k|. The children of
this AND-NODE are the OR-NODES that correspond to the entries B € Vi, k] and
C € Vi + k,j — k]. Note that the AND/OR graph constructed in this manner is
equivalent to the table V' [4]], so we use them interchangeably in this paper.

Every derivation of a string s € £(G) can be represented as a tree that is a subgraph
of the AND/OR graph and therefore can be represented as a trace in V. Since every
possible derivation can be represented this way, both the table V' and the corresponding
AND/OR graph are a compilation of all solutions of the GRAMMAR constraint.

4 Reformulation into an Automaton

The time complexity of propagating a GRAMMAR constraint is O(n3|G|), as opposed
to O(n|d|) for a REGULAR constraint. Therefore, reformulating a GRAMMAR con-
straint as a REGULAR constraint may improve propagation speed if it does not require a

Fig.2. AND/OR graph

Reformulating Global Grammar Constraints 135

large transition relation. In addition, we can perform optimizations such as minimizing
the automaton. In this section, we argue that reformulation is practical in many cases
(sections 4. 11i4.3)), and there is a polynomial test to determine the size of the resulting
NFA (section[4.4). In the worst case, the resulting NFA is exponentially larger then the
original GRAMMAR constraint as the following example shows. Therefore, performing
the transformation itself is not a suitable test of the feasibility of the approach.

Example 2. Consider GRAMMAR([X1, ..., X,,], G) where G generates L = {ww!|w
€ {0,1}™/2}. Solutions of GRAMMAR can be compiled into the dynamic programming
table of size