
A Heuristic Method for Business Process Model

Evaluation

Volker Gruhn and Ralf Laue

Chair of Applied Telematics / e-Business�

Computer Science Faculty, University of Leipzig, Germany
{gruhn,laue}@ebus.informatik.uni-leipzig.de

Abstract. In this paper, we present a heuristic approach for finding
errors and possible improvements in business process models. First, we
translate the information that is included in a model into a set of Pro-
log facts. We then search for patterns which are related to a violation
of the soundness property, bad modeling style or otherwise give raise
to the assumption that the model should be improved. By testing our
approach on a large repository of real-world models, we found that the
heuristic approach identifies violations of the soundness property almost
as accurate as model-checkers that explore the state space of all possi-
ble executions of the model. Other than these tools, our approach never
ran into state-space explosion problems. Furthermore, our pattern sys-
tem can also detect patterns for bad modeling style which can help to
improve the quality of the models.

1 Introduction

In the past years, numerous static code analysis tools have been developed
for finding software bugs automatically. They analyze the source code stati-
cally, i.e. without actually executing the code. There exist several good tools
that are matured to be useful in production environments. Examples of such
tools are Splint (www.splint.org), JLint (jlint.sourceforge.net) or Find-
Bugs (findbugs.sourceforge.net).

These static analysis tools use very different technologies for localizing errors
in the code, including dataflow analysis, theorem proving and model checking
[1]. All the tools and technologies have in common that they use some kind of
heuristics in order to find possible problems in the code. This means that it
can happen that such a tool reports a warning for code that is in fact correct
(false positive) as well as the tool can fail to warn about an actual error (false
negative).

It is important to mention that static analysis can be applied not only for
locating bugs, but also for detecting so-called “bad code smells” like violations
of coding conventions or code duplication. This means that not only erroneous
code but also code that is hard to read or hard to maintain can be located.
� The Chair of Applied Telematics / e-Business is endowed by Deutsche Telekom AG.

A. Albani, J. Barjis, and J.L.G. Dietz (Eds.): CIAO!/EOMAS 2009, LNBIP 34, pp. 28–39, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

A Heuristic Method for Business Process Model Evaluation 29

In this paper, we show how some ideas behind such static analysis tools can
be transferred to the area of business process modeling.

2 The EPC Notation

We have developed our approach using the business process modeling language
Event-Driven Process Chains [2]. There are two reasons for this choice: The first
reason is that this modeling language is very widespread (at least this is the
case for Germany) and we have been able to collect a large repository of models.
Secondly, the EPC notation is a rather simple notation which is made up of
the basic modeling elements that can be found in more expressive languages
like BPMN or YAWL as well. These basic constructs will be introduced in the
remainder of this section.

EPCs consist of functions (activities which need to be executed, depicted as
rounded boxes), events (pre- and postconditions before / after a function is exe-
cuted, depicted as hexagons) and connectors (which can split or join the flow of
control between the elements). Arcs between these elements represent the con-
trol flow. The connectors are used to model parallel and alternative executions.
There are two kinds of connectors: Splits have one incoming and at least two
outgoing arcs, joins have at least two incoming arcs and one outgoing arc.

AND-connectors (depicted as V) are used to model parallel execution. After
an AND-split, the elements on all outgoing arcs have to be executed in parallel.
An AND-join connector waits until all parallel control flows that have been
started are finished.

customer
order

arrived

check
availability

article is
available

article is
not available

send
article

reject
order

order
processed

Fig. 1. Simple Business Process modeled as EPC

30 V. Gruhn and R. Laue

XOR-connectors (depicted as X) can be used to model alternative execution:
An XOR-split has multiple outgoing arcs, but only one of them will be processed.
An XOR-join waits for the completion of the control flow on the selected arc.

Finally, OR-connectors (depicted as V) are used to model parallel execution
of one or more flows. An OR-split starts the processing of one or more of its
outgoing arcs. An OR-join waits until all control flows that have been started
(usually by a corresponding OR-split) are finished.

Fig. 1 shows a simple business process modeled as EPC diagram. The mean-
ing of this model is as follows: When a request from a customer arrives, the
availability of the product has to be checked. If it is available, the item will be
sent; otherwise the customer will get a negative reply.

3 Our General Approach: Pattern Matching

The key idea of our approach is to search for patterns of “bad modeling”. For
the purpose of finding such patterns in a model, we used logic programming with
Prolog. The XML serialization of the model has been translated into a set of
facts in a Prolog program (as described in [3]). Each function, event, connector
and arc in the model is translated into one Prolog fact.

Furthermore, we have constructed Prolog rules that help us to specify the
patterns we are looking for.

We started with defining some rules describing the basic terminology, for
example by specifying that a connector is called a split if it has one incoming
and more than one outgoing arc or by recursively defining what we want to call
a path from some node to another.

Secondly, we defined some important relations between split and join nodes
that we can use to define the patterns. The most important definition is the one
for the relation match(S,J). It means that a split S corresponds to a join J
such that S branches the flow of control into several paths that are later merged
by a join J . As we cannot assume that splits and joins are properly nested,
this definition is the prerequisite for finding patterns that are related to control-
flow errors in arbitrary structured models. We have defined the Prolog clause
match(S,J) such that S is a split, J is a join and there are two paths from S to
J whose only common elements are S and J .

Furthermore, we defined exits from and entries into a control block between
a split S and a join J for which match(S,J) holds. For example, an exit from
such a structure is defined such that there is a path from S to an end event (i.e.
an event without outgoing arc) that does not pass J or a path from S to S that
does not pass J . In Fig. 2, model (c) is the only one that has an exit from the
control block between s and j.

By a systematic analysis of all possible patterns of matching split-join pairs
with or without “exits” and “entries”, we developed a set of 12 patterns that
are indicators for control-flow errors.

Here, we will discuss one such pattern which is a good example of the heuristic
nature of our approach: One of our rules states that we suppose the existence of

A Heuristic Method for Business Process Model Evaluation 31

s

j

s s

j

j

(a) (b) (c)

j

s

(d)

Fig. 2. The rightmost model fragment does not have a deadlock, the others have

a deadlock if there is an (X)OR-split s and an AND-join j such that match(s,j)
holds, regardless of whether there are exits or entries between the split and the
join. In most real-world models, such a pattern is indeed related to a deadlock,
some cases are shown in Fig. 2 (a)-(c).

In these models, the outgoing arcs from the XOR-split s are later joined by an
AND-join j. While only one outgoing flow from the XOR-split will be processed,
the AND-join has to wait until all incoming arcs have been completed - a typical
deadlock situation.

However, in some rare occasions (as the one shown in Fig. 2 (d)) the pattern
is found in a model that in fact does not have a deadlock.

The existence of such rare cases where our rules would give the wrong infor-
mation is inherent to the heuristic idea of our approach. It was not our goal to
make our pattern catalogue as complete as possible. In the same way as it is
known from code analysis tools, we had to find a balance between accuracy (i.e.
prevention of false positives and false negatives) and speed of execution1.

In the next sections, we will show which kind of problems can be located by
applying different kinds of patterns.

4 Control-Flow Errors

The most important correctness criterion for business process models is the
soundness property, originally introduced by van der Aalst for workflow nets
[4,5] and later adapted to the EPC notation [2,6].

For a business process model to be sound, three properties are required:

1. In every state that is reachable from a start state, there must be the possi-
bility to reach a final state (option to complete).

1 In fact, the case shown in Fig. 2 (d) is even considered by the latest version of our
Prolog rule set: The rules will produce an “error” alert for the models (a)-(c) and a
“possible error” alert for model (d).

32 V. Gruhn and R. Laue

2. If a state has no subsequent state (according to the transition relation that
defines the precise semantics), then only events without outgoing arcs (end
events) must be marked as being “active” in this state (proper completion).

3. There is no element of the model that is never processed in any execution of
the model (no needless elements).

Violations of the soundness criterion usually indicate an error in the model.
Therefore, 12 out of the 24 patterns we have defined so far aim to locate control-
flow errors that can lead to a violation of the soundness property. An example
(the combination of an (X)OR-split and an AND-join) has already been discussed
in Sect. 3.

5 Comprehensibility and Style

Correctness (in terms of the soundness property) is not the only quality require-
ment for business process models: One of the main purposes of such models is to
be used as a language in a discussion between humans. In particular, the mod-
els can serve as a bridge between the stakeholders in a software development
project. They are formal enough to serve the demands of software developers
but easy enough to be understood by business experts as well.

For this purpose, business process models should be as easy as possible to
comprehend. If there is a choice among different modeling elements to express
the same situation, the most comprehensible alternative should be used.

For example, in some cases it is possible to replace an OR-connector by an
AND- or XOR-connector which describes the situation much better (for a human
reader) without changing the semantics of the model.

As example, take a control block where an AND-split starts two paths that
are executed in parallel. Formally, it is correct to join both paths using an OR-
join. The meaning of the OR-join is to wait for all paths that have been started
as a prerequisite for transferring control to its outgoing path. This means that
in Fig. 3 (a), the OR-join acts exactly as an AND-join. While it would not make
a difference for the actual meaning of the model, the readability of the model
can be improved by substituting the OR-join by an AND-join. The same idea
can be applied for the other model fragments in Fig. 3: In model (b) and (c), the

(a) (b) (c) (d) (e)

Fig. 3. Models with OR-connectors that should be replaced

A Heuristic Method for Business Process Model Evaluation 33

OR-join should be replaced by an XOR-join. In model (d), a pair of XOR-split
and XOR-join should be used to model the fact that an activity can either be
skipped (by taking the left path) or executed (by taking the right one). Fig. 3
(e) shows another situation where an OR-split can be replaced by an XOR-split.
With an XOR-split, the mental load for the reader of the model is reduced: He or
she has not to consider the case that both outgoing arcs of the split are followed.

Using Prolog rules that specify the above patterns (and a few more that are
not described here due to space restrictions), we are able to advice the modeler
to change the model in order to improve its readability.

An organization can add own style rules, for example in order to enforce the
policy that all pairs of splits and joins have to be properly nested (which is not
required by the notation, but sometimes desirable).

6 Pragmatic Errors

So far, we have discussed “technical” errors (like deadlocks) and the readabil-
ity of the model. It is almost impossible to validate automatically whether the
model really represents the real business process without building an ontology
of the application domain (see for example [7,8]) which is usually far too time-
consuming and expensive.

There are however, some patterns that “look like” the model does not reflect
the real business process. In such a situation, the modeler can be informed to
double-check the questionable part of the model. We have discussed one such case
(that we call Partial Redo pattern) in [9]. Another (simpler) pattern is shown in
Fig. 4: After a function has been performed, an XOR-connector splits the flow of
control and exactly one of two alternative events happens. However, afterwards
both paths are joined again and the future execution of the process is the same
regardless of which event actually occurred. But why does the model show that
two different events can happen if the execution actually does not care whether
the right event or the left event occurred? In some cases, this might make sense
for documentation purposes, but it is also not unlikely that the modeler did
forget something in the model.

In our survey of real-world models we found examples where this pattern
indeed was the result of an error that had to be corrected, but of course we

Fig. 4. Why is the alternative between two events modeled if these events do not have
an effect on future execution?

34 V. Gruhn and R. Laue

also found models in which such a pattern just helps to understand the possible
progress of the business process. The false warnings produced by the heuristics
are less problematic, compared to the reward when a correct warning helps to
locate an actual modeling error.

7 Validation

We searched for the patterns described above (and some more that cannot be
described in detail due to space restrictions) in a repository of 984 models. Those
models have been collected from 130 sources. These sources can be categorized
as follows:

– 531 models from the SAP R/3 reference model, a widespread business refer-
ence model

– 112 models from 31 bachelor and diploma thesises
– 25 models from 7 PhD thesises
– 13 models from 2 technical manuals
– 82 models from 48 published scientific papers
– 12 models from 6 university lecture notes
– 4 models from sample solutions to university examination questions
– 88 models from 11 real-world projects
– 88 models from 7 textbooks
– 29 models from 14 other sources

Among the models in our repository, there is a great variation in size of the
models, purpose of modeling, business domain and experience of the modelers.
For this reason, we think that the models represent a reasonable good sample of
real-world models.

Before doing the soundness analysis with these tools, we reduced all models
using soundness-preserving reduction rules as described in [10,6]. 534 of the
models have been reduced to a single node which means that they are sound.
An analysis was necessary for the remaining 450 models.

In order to compare our heuristic results to the results of exact soundness
analysis, we selected three well-known open-source tools that check business
process models for the soundness property: EPCTools, the ProM plugin for EPC
soundness analysis and the YAWL Editor. These tools have to compute the
state space of all possible executions of the model. Because this state space can
contain a great number of states, such tools can suffer from the so-called state-
space explosion - a situation in which there is not enough available memory to
store all possible states or the computation can not be done in a reasonable time.

All these tools run as a Java program. We executed the tools on an Intel Core2
Duo CPU running at a speed of 3 GHz. By starting the Java virtual machine
with the option -Xmx1536m, we allowed a heap size of 1.5 GB to be used.

EPCTools [11,12] calculates a fixed-point semantics for a model. If such a
fixed-point semantics exists, a temporal model-checker is used by EPCTools for
deciding about the soundness property. For the majority of models, an analysis

A Heuristic Method for Business Process Model Evaluation 35

result was given in a few seconds. There was, however, one model for which the
analysis took more than 10 minutes; this model was validated in 63 minutes. For
7 models, EPCTools had to stop the computation because of an Out of Memory
error.

The ProM plugin for EPC soundness analysis [13] uses the semantics defined
by Mendling [6] for constructing a transition system for the model. For 31 models,
ProM failed to deliver a result because of an Out of Memory error. For 5 models,
the computation took more than 10 minutes, the longest computation time was
26 minutes.

The third tool, YAWL Editor [14,15], originally has been constructed for an-
alyzing YAWL models. While the mapping of EPC modeling elements to YAWL
is straightforward, there is an important difference between EPC and YAWL:
YAWL does not support process models with more than one start node. In order
to avoid the problems that arise from the different instantiation semantics for
EPC and YAWL models [16], we considered only those non-trivial 203 models for
which the EPC model has exactly one start event (after applying the reduction
rules). YAWL Editor has a built-in restriction that stops the execution of the
analysis if the state-space exceeds 10,000 states. This is necessary, because the
YAWL semantics allows an infinite state space [14]. This restriction was enforced
for 13 models, meaning that no analysis result for them was available. While the
computation was very fast for the majority of the models (133 have been ana-
lyzed in less than 1 second), there were also some that took much longer: For 8
models, the computation took more than 10 minutes. Two models could not be
analyzed within one hour; the longest computation time was 390 minutes.

For all tools which we have tested, some models turned out to be “hard cases”
where a Java heap space of 1.5 GB and a time of one hour was not enough to
judge about the soundness property by exploring the state space. EPCTools had
8 such “hard cases” (out of 450), the ProM plugin for EPC soundness analysis
31 (out of 450) and YAWL Editor 15 (out of 203).

In contrast, our Prolog-based tool needed only 65 seconds for analyzing all
models from the repository. This time included searches for 12 patterns that are
related to control-flow errors as well as searches for more 12 patterns that are
related to bad modeling style or suspiciously looking modeling elements.

After doing the analysis with the different tools, we compared the results.
Because of subtle differences among the tools when it comes to defining the
semantics of the OR-join [17,18], there were a few differences in the results of
the tools. The analysis of these differences will be the subject of another paper;
here it is sufficient to say that in cases of differences among the tools we looked at
the model and selected the result that complied with the intuitive understanding
of its semantics.

The comparison between our heuristic results and the exact results showed
that the heuristics worked almost as good as the state-space exploring tools:
For all models which have been categorized as not being sound by the “exact”
tools, our Prolog program also found at least one pattern that (likely) shows a
violation of the soundness property, i.e. we have had no “false negatives”. On

36 V. Gruhn and R. Laue

the other hand, our program warned about a possible soundness violation for
exactly one model that turned out to be sound, i.e. we have had only one “false
positive”. It is worth mentioning that the model, for which this false positive
occurred, was taken from [19] where it has been published as an example for bad
modeling that should be improved.

YAWL Editor also allows checking whether an OR-join should be replaced
(as this was the case for the model fragments in Fig. 3 (a)-(c)) which would
not affect soundness, but can be considered as an improvement in the modeling
style as discussed in Sect. 5. Our heuristics missed just one case where such
a substitution was possible (false negative), but did not produce any incorrect
warnings (false positives).

8 Related Work

Logic-based and pattern-matching approaches have been used in many published
approaches for finding modeling errors. Their main application area is the de-
tection of syntactical errors and inconsistencies within one model or between
different models [20]. Our approach adds one more perspective by also detecting
control-flow errors (like deadlocks) and even pragmatic issues.

Störrle [21] showed that a representation of models as logic facts can be very
useful for querying model repositories as well.

ArgoUML [22] is an excellent example of a user-friendly modeling tool that
runs tests in background in order to give the modeler feedback about possible
improvements. So-called “design critics” inform the modeler about possible prob-
lems. The user is allowed to create own design critics. The most design critics
currently implemented in ArgoUML either work on a rather syntactical level (i.e.
they check consistency requirements and constraints that have to be followed ac-
cording to the UML standard) or test whether modeling style conventions [23]
are followed.

Work on error patterns for business process models has been done by different
authors ([24,25,26,27]. As none of these pattern systems considered all three
types of connectors that can occur in EPC models (OR, AND and XOR), they
are of limited use for the assessment of business process models in languages in
which all these connectors can be found.

The approach by Mendling [6] which applies reduction rules for finding errors
considers all kinds of connectors. It is able to find a great part of errors in EPC
models. Therefore, we used the reduction rules given in [6] as one starting point
for creating our patterns. However, Mendling does not lay importance on the
completeness of the rules; he uses reduction rules mainly for simplifying a model
before using a state-space exploring algorithm for validating the model.

All the pattern systems mentioned above (which all share a set of basic com-
mon patterns) are reflected in our rules for detecting control-flow errors. Our
definition of matching splits and joins, which is one of the most fundamental
rules of our rule system, was inspired by the use of traps and handles in work-
flow nets for finding control-flow errors [28,5].

A Heuristic Method for Business Process Model Evaluation 37

9 Conclusions and Directions for Further Research

In our analysis of a large number of business process models, we found that our
pattern-based approach performed almost as good as tools that apply model-
checking when it comes to detect soundness violations and OR-joins that should
be replaced by XOR- or AND-joins. An advantage of our approach is that it
produced a result very fast while the other tools suffered from the symptoms of
state-space explosion and failed to deliver a result for some models. Furthermore,
we have also patterns for hard-to-read parts of the model and “suspiciously
looking” parts of the model that might indicate a pragmatic error even if the
model is sound.

Using Prolog, the patterns can be specified very easily, and it is possible to
add new patterns (for example for applying organization-wide style conventions)
very quickly. However, our pattern-based approach does not necessarily have to
be used with Prolog or another logic-based language. We have already imple-
mented a pattern-finding algorithm in the open source Eclipse-based modeling
tool bflow* 2 using the languages oAW Check and XTend from the openArchitec-
tureWare model management framework [29]. With this implementation, bflow*
gives the modeler immediate feedback about possible modeling problems.

Currently, we are working on an implementation using the query language
BPMN-Q [30]. This will allow us to apply our approach to BPMN models.

One future direction of research is to consider more sophisticated modeling
elements (like exceptions or cancellation) that exist in languages like BPMN or
YAWL. This will allow us to deal with more complex patterns like the ones we
have discussed in [9].

We are also researching problems that can be found by analyzing the textual
description of events and functions. We are already able to find some problems
this way. For example, if an OR-split is followed by both an event and its negation
(as “article is (not) available)” in Fig. 1), it is very likely that the OR-split has
to be replaced by an XOR-split, because both events cannot happen together.

References

1. Rutar, N., Almazan, C.B., Foster, J.S.: A comparison of bug finding tools for java.
In: ISSRE, pp. 245–256 (2004)

2. van der Aalst, W.M.: Formalization and verification of event-driven process chains.
Information & Software Technology 41, 639–650 (1999)

3. Gruhn, V., Laue, R.: Checking properties of business process models with logic
programming. In: Augusto, J.C., Barjis, J., Ultes-Nitsche, U. (eds.) MSVVEIS,
pp. 84–93. INSTICC Press (2007)

4. van der Aalst, W.M.P.: Verification of workflow nets. In: Azéma, P., Balbo, G.
(eds.) ICATPN 1997. LNCS, vol. 1248, pp. 407–426. Springer, Heidelberg (1997)

5. van der Aalst, W.M.P.: Structural characterizations of sound workflow nets. Com-
puting Science Reports/23 (1996)

2 http://www.bflow.org

38 V. Gruhn and R. Laue

6. Mendling, J.: Detection and Prediction of Errors in EPC Business Process Models.
PhD thesis, Vienna University of Economics and Business Administration (2007)

7. Fillies, C., Weichhardt, F.: Towards the corporate semantic process web. In:
Berliner XML Tage, pp. 78–90 (2003)

8. Thomas, O., Fellmann, M.: Semantic EPC: Enhancing process modeling using on-
tology languages. In: Hepp, M., Hinkelmann, K., Karagiannis, D., Klein, R., Sto-
janovic, N. (eds.) SBPM. CEUR Workshop Proceedings, vol. 251. CEUR-WS.org
(2007)

9. Gruhn, V., Laue, R.: Good and bad excuses for unstructured business process
models. In: Proceedings of 12th European Conference on Pattern Languages of
Programs (EuroPLoP 2007) (2007)

10. van Dongen, B.F., van der Aalst, W.M.P., Verbeek, H.M.W.: Verification of EPCs:
Using reduction rules and Petri nets. In: Pastor, Ó., Falcão e Cunha, J. (eds.)
CAiSE 2005. LNCS, vol. 3520, pp. 372–386. Springer, Heidelberg (2005)

11. Cuntz, N., Kindler, E.: On the semantics of EPCs: Efficient calculation and simula-
tion. In: EPK 2004: Geschäftsprozessmanagement mit Ereignisgesteuerten Prozess-
ketten, Proceedings, pp. 7–26 (2004)

12. Cuntz, N., Freiheit, J., Kindler, E.: On the Semantics of EPCs: Faster calculation
for EPCs with small state spaces. In: EPK 2005, Geschäftsprozessmanagement mit
Ereignisgesteuerten Prozessketten, pp. 7–23 (2005)

13. Barborka, P., Helm, L., Köldorfer, G., Mendling, J., Neumann, G., van Dongen,
B.F., Verbeek, E., van der Aalst, W.M.P.: Integration of EPC-related tools with
ProM. In: Nüttgens, M., Rump, F.J., Mendling, J. (eds.) EPK. CEUR Workshop
Proceedings, vol. 224, pp. 105–120. CEUR-WS.org (2006)

14. Wynn, M.T.: Semantics, Verification, and Implementation of Workflows with Can-
cellation Regions and OR-joins. PhD thesis, Queensland University of Technology
Brisbane, Australia (2006)

15. Wynn, M.T., Verbeek, H., van der Aalst, W.M.P., Edmond, D.: Business process
verification - finally a reality! Business Process Management Journal 15, 74–92
(2009)

16. Decker, G., Mendling, J.: Instantiation semantics for process models. In: Proceed-
ings of the 6th International Conference on Business Process Management, Milan,
Italy (2008)

17. van der Aalst, W.M.P., Desel, J., Kindler, E.: On the semantics of EPCs: A vi-
cious circle. In: EPK 2004, Geschäftsprozessmanagement mit Ereignisgesteuerten
Prozessketten, pp. 71–79 (2002)

18. Dumas, M., Grosskopf, A., Hettel, T., Wynn, M.: Semantics of BPMN process
models with or-joins. Technical Report Preprint 7261, Queensland University of
Technology, Brisbane (2007)

19. Mendling, J., Reijers, H.A., van der Aalst, W.M.P.: Seven process modeling guide-
lines (7pmg). Technical Report QUT ePrints, Report 12340, Queensland University
of Technology (2008)

20. Finkelstein, A.C.W., Gabbay, D., Hunter, A., Kramer, J., Nuseibeh, B.: Incon-
sistency handling in multiperspective specifications. IEEE Trans. Softw. Eng. 20,
569–578 (1994)

21. Störrle, H.: A prolog-based approach to representing and querying software engi-
neering models. In: Cox, P.T., Fish, A., Howse, J. (eds.) VLL. CEUR Workshop
Proceedings, vol. 274, pp. 71–83. CEUR-WS.org (2007)

22. Robbins, J.E., Redmiles, D.F.: Cognitive support, UML adherence, and XMI in-
terchange in Argo/UML. Information & Software Technology 42, 79–89 (2000)

A Heuristic Method for Business Process Model Evaluation 39

23. Ambler, S.W.: The Elements of UML Style. Cambridge University Press, Cam-
bridge (2003)

24. Onoda, S., Ikkai, Y., Kobayashi, T., Komoda, N.: Definition of deadlock patterns
for business processes workflow models. In: Proceedings of the 32nd Annual Hawaii
International Conference on System Sciences, vol. 5, p. 5065. IEEE Computer
Society, Los Alamitos (1999)

25. Koehler, J., Vanhatalo, J.: Process anti-patterns: How to avoid the common traps
of business process modeling, part 1 - modelling control flow. IBM WebSphere
Developer Technical Journal (2007)

26. Liu, R., Kumar, A.: An analysis and taxonomy of unstructured workflows. In:
Business Process Management, pp. 268–284 (2005)

27. Smith, G.: Improving process model quality to drive BPM project success (2008),
http://www.bpm.com/improving-process-model-quality-to-drive-bpm-

project-success.html (accessed November 1, 2008)
28. van der Aalst, W.M.P.: The Application of Petri Nets to Workflow Management.

The Journal of Circuits, Systems and Computers 8(1), 21–66 (1998)
29. Kühne, S., Kern, H., Gruhn, V., Laue, R.: Business process modelling with contin-

uous validation. In: Pautasso, C., Koehler, J. (eds.) MDE4BPM 2008 – 1st Interna-
tional Workshop on Model-Driven Engineering for Business Process Management
(2008)

30. Awad, A.: BPMN-Q: A language to query business processes. In: Reichert, M.,
Strecker, S., Turowski, K. (eds.) EMISA, GI. LNI, vol. P-119, pp. 115–128 (2007)

http://www.bpm.com/improving-process-model-quality-to-drive-bpm-project-success.html
http://www.bpm.com/improving-process-model-quality-to-drive-bpm-project-success.html

	A Heuristic Method for Business Process Model Evaluation
	Introduction
	The EPC Notation
	Our General Approach: Pattern Matching
	Control-Flow Errors
	Comprehensibility and Style
	Pragmatic Errors
	Validation
	Related Work
	Conclusions and Directions for Further Research
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

