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Preface

The growing emphasis on complexity concerns for ontologies has attracted
significant interest from both the researchers’ and the practitioners’ communities
in modularization techniques as a way to decrease the complexity of managing huge
ontologies. Research has produced many complementary and competing approaches,
mainly with the goal of supporting practitioners’ methodologies with sound and pre-
cisely defined foundations and alternatives. Existing prototypes substantiate research
results and experimental evaluations have been performed. Thus, a large body of
work is available.

This book has been designed to provide the reader with a detailed analysis of
where we stand today and which concepts, theories and techniques for knowledge
modularization we can confidently rely on. The material for the book has been se-
lected from research achievements that are mature enough to be considered as a firm
and reliable basis on which to inspire further work and to develop solutions in con-
crete environments.

The content of the book has been organized in three parts. Part I holds a general
introduction to the idea and issues characterizing modularization. This is followed by
three chapters that offer an in-depth analysis of properties, criteria and knowledge
import techniques for modularization. The last chapter discusses one of the three
approaches that implement the modularization idea. The two other approaches are
covered in detail in parts II and III.

Part II describes four major research proposals for creating modules from an
existing ontology, either by partitioning an ontology into a collection of modules or
by extracting one or more modules from the ontology. In both cases the knowledge
in a module is a subset of the knowledge in the ontology.

Part III reports on collaborative approaches where modules that pre-exist (as in-
dependent ontologies) are linked together through mappings to form a virtual large
ontology, called a distributed ontology. The first chapter discusses one of the core
issues, the various kinds of languages for defining the mappings between elements
of the modules. The following chapters of Part III describes three major alternative
techniques for interconnecting ontologies in view of providing enriched knowledge
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to users of the collaborative system. (Please refer to the Introduction to Part III for
more details.)

Parts II and III deal with ontologies only. Similar work in the database domain is
well known and well documented in available text books. The material in this book
was carefully reviewed before publication. We hope it will prove to be very helpful
to anybody interested in knowledge modularization.

October 2008 Heiner Stuckenschmidt
Christine Parent

Stefano Spaccapietra
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Modularization Approaches



Introduction to Part I

This part is meant to convey a general introduction to the domain of knowledge
modularization. Chapter 1 overviews the issues and the proposed solutions that are
relevant to ontology modularization. This chapter is deliberately informal to be ac-
cessible to the largest audience, so that readers can quickly get familiar with what will
make up the rest of the book. Questions addressed in this initial chapter range from
what is a module and how it can be characterized and assessed, to an overview of
strategies to build modules and link them whenever needed. Chapters 2 to 4 explore
in deeper detail and more formally specific issues that are nevertheless generic in the
sense that they can be discussed independently from a specific approach to modu-
larization. Chapter 2 establishes a formal characterization of the concept of module,
introducing formal concepts that allow making a clear distinction among different
types of modules and different relationships between the modules and the ontologies
they come from. Each type of module exhibits different properties in terms of its
potential functionalities, so it is important for a module designer to understand ex-
actly how to proceed to get the desired modularity framework. Chapter 3 reports on
an experimentation with various modularity techniques in various use case scenar-
ios. Results show significant differences, namely in the size of the modules produced
by the modularization techniques. They also provide a feedback on the qualities of
the techniques. Next, Chapter 4 investigates how knowledge can be imported into a
module from an external source. The aim of the chapter is to establish a clear and
sound classification of various import techniques, which again should support de-
signers with ways to choose the most appropriate technique given the goals to be
achieved. Finally, Chapter 5 contains the detailed description of the Mads database
modularization approach that currently best represents the efforts from the database
community in terms of modularization techniques. It also includes, for comparison
purposes, a short overview of one of the oldest approaches to modular ontologies,
namely the Cyc project. This project represents the main achievement in terms of
approaches where the definition and building of the modules and of the ontology
they belong to are done in parallel at the same time. A short comparison between
Cyc and Mads is also provided.

October 2008 Heiner Stuckenschmidt
Christine Parent

Stefano Spaccapietra
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An Overview of Modularity

Christine Parent1 and Stefano Spaccapietra2

1 HEC ISI, Université de Lausanne, Switzerland
christine.parent@epfl.ch

2 Database Laboratory, Ecole Polytechnique Fédérale de Lausanne, Switzerland
stefano.spaccapietra@epfl.ch

Summary. Modularization is a familiar concept in IT, widely used in e.g. software develop-
ment. It has been somehow neglected in knowledge management. Database research has only
marginally addressed the topic, mainly for the development of cooperative database systems.
Instead, research on ontologies, seen as the knowledge provider for the semantic web, has sig-
nificantly invested on modularization techniques, seen as a key capability in the current efforts
towards scalable solutions that will enable ontologies to grow to the huge size that we can
foresee in real world future applications. Many different approaches exist to tackle ontology
modularization, corresponding to different goals or building on different initial hypotheses.
This chapter aims at clarifying the vision of the domain by providing a detailed yet generic
characterization of the issues and solutions related to the various facets of modularization.

1.1 Introduction

Complexity is an almost pervasive feature of modern life. Computerized knowledge
management is no exception. We, both as individuals and as societies, increasingly
rely on knowledge stored in computers worldwide to acquire the pieces of informa-
tion we need to govern our personal behavior. From politicians to technical directors,
managers in charge of societal problems (e.g. environmental issues) similarly rely
on accurate extraction and synthesis of relevant knowledge. Unfortunately, knowl-
edge repositories have grown beyond our capacity to apprehend their content. We
are constantly exposed to knowledge overdoses, and one of the critical success fac-
tors nowadays is the capability to get rid of all knowledge that is unnecessary to
the task at hand, so that the knowledge to be considered downsizes to a manageable
amount. Accordingly, the research community is increasing its effort towards the
specification of frameworks and techniques that may help in downsizing knowledge.

Modularization is one of the approaches to achieve such a result. In its most
generic meaning, it denotes the possibility to perceive a large knowledge reposi-
tory (be it an ontology or a database) as a set of modules, i.e. smaller repositories
that, in some way, are parts of and compose the whole thing. Modularization ma-
terializes the long-established complexity management technique known as divide

H. Stuckenschmidt et al. (Eds.): Modular Ontologies, LNCS 5445, pp. 5–23, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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and conquer. It is routinely used in various areas of computer science, such as algo-
rithms, software engineering, and programming languages. In software engineering,
for example, module is one of the terms used to denote a software component that
is designed to perform a given task and is intended to interact with other modules
within a larger software architecture. In programming languages, module sometimes
denotes an encapsulation of some data. Easiness of understanding and potential for
reusing are among the main claimed benefits of these approaches.

In the knowledge management domain, modularization opposes the initial and
traditional vision of databases as an integrated and monolithic collection of strongly
interrelated data. This explains that the database community basically discarded mod-
ularization. Even federated databases were seen as a way to build larger databases,
not as a way to address complexity. Only few researchers (e.g., [20] [17]) addressed
for example the issue raised by the complexity of handling database schemas hav-
ing a very large number of object and relationship types. The work in [20] proposes
design techniques supporting multiple levels of details (i.e. more or less detailed
representations of the database schema), while the work in [17] develops a design
methodology built on the idea of manually identified design units, such that each
unit covers a part of the application domain.

In contrast, concerns about scalability and interoperability of ontologies have gen-
erated a significant interest in modularization from the semantic web community.
Ontologies are the knowledge repositories that enable meaningful inter-agent com-
munication in semantic web frameworks. To support the huge number of services
that will be developed in the semantic web, ontologies will grow larger and larger
to accommodate as much knowledge as possible. The universal, all-encompassing
ontology is the dream behind this trend. In more realistic approaches, ontologies are
targeted to cover a specific domain. But even these domain ontologies may grow
in size beyond human mental capacity and pose a critical challenge to reasoning
tools. An example is the ProPreo (Proteomics data and process provenance) ontol-
ogy, which in 2006 contained 18.6 million assertions for 390 classes and 3.1 million
instances [16]. Moreover, the domain covered by an ontology may be expanded to
be of use to a wider community and to promote interdisciplinary research. For exam-
ple, an ontology for biology (e.g. the Gene ontology [18]) may eventually combine
with an ontology for medicine to provide for better interoperation of specialists in
the two domains. A rising number of instances may be the growing factor for an on-
tology used to cover an increasing number of similar applications in a given domain.
For example, ontologies for tourism will grow beyond limits if they are meant to
hold instances about any possible tourist destination worldwide. There clearly is a
scalability issue, and modularization is an appealing solution as it aims at replacing
oversized ontologies with smaller ones. The issue originates in both growth in con-
cepts and growth in instances, although the two phenomena do not raise exactly the
same issues, and may call for different solutions.

Conversely, there is also a definite need from applications to gather knowledge
from several, not just one, ontological sources. It is known that, when knowledge is
distributed, the idea to collect all knowledge into a single repository (i.e. the inte-
gration approach) is very difficult to implement, because of semantic heterogeneity
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calling for human processing. Instead, implementing an interoperability framework
that supports meaningful knowledge exchange among the sources is an easier and
more efficient approach. The definition of such a distributed collaborative paradigm
that enables collaboration among existing ontologies (now seen as modules of the
larger virtual ontology that is built by the collaboration and corresponds to applica-
tion requirements) is a challenging research stream that comes under the umbrella of
modularization and has already generated several competing approaches.

The chapter hereinafter continues with the overview of modularity ideas. The next
section discusses goals that may be assigned to modularization. A given goal may
influence the way the concept of module is defined. Section 1.3 focuses on the con-
cept of module per se. Section 1.4 looks at the strategies that may be used to pro-
duce modules using semantic or syntactic criteria, with human-driven or automatic
approaches. Section 1.5 discusses the correctness criteria that should characterize
modular ontologies. Section 1.6 analyzes issues in composing existing ontologies as
modules for larger repositories. Module interconnection, essential to distributed rea-
soning, is discussed in Section 1.7. Section 1.8 introduces multi-perception features.
Section 1.9 concludes the chapter.

1.2 Goals of Ontology Modularization

Modularization in itself is a generic concept that is intuitively understood as referring
to a situation where simultaneously a thing (e.g. an ontology) exists as a whole but
can also be seen as a set of parts (the modules). How modularization is approached
and put into practice, as well as what are the advantages and disadvantages that can be
expected from modularization greatly depend on the goals that are pursued through
modularization. This section briefly reviews some frequently quoted possible goals
for modularization of ontologies. A complementary discussion, in Chapter 3 of this
book, focuses on measurable goals that can be used as evaluation criteria to assess
the relative quality of modularization techniques versus expected benefits.

Scalability for querying data and reasoning on ontologies

This is an all-embracing goal, which mainly sees modularization as a way to keep
performance of ontology services at an acceptable level. Performance concerns may
be related to query processing techniques, reasoning engines, and ontology modeling
and visualization tools. Database systems have basically solved performance issues
by developing efficient storage and querying optimizers (e.g. dynamic hashing and
multidimensional indexing) to provide fast retrieval and update of data. As they do
little reasoning, this task is not problematic for DBMS. Instead, for ontological rea-
soners the complexity of their task is directly related to the number of axioms and
facts they have to explore before coming to a conclusion. While different reasoners
are available, supporting different formalisms from RDF to OWL, they are known
to perform well on small-scale ontologies, with performances degrading rapidly as
the size of the ontology (in particular, the number of instances) increases. Keeping
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ontologies smaller is one way to avoid the performance loss, and modularization
is a way to replace an ontology that tends to become oversized by smaller subsets.
Modularization fulfills the performance goal if, whenever a query has be evaluated
or an inference performed, this can be done by looking at just one module, rather
than exploring the whole ontology. But if most queries call for distributed reasoning
to exploit knowledge from several modules, it remains to be demonstrated that the
overall time for coming up to a result is less than the time required for the same task
executed against a single ontology holding all the knowledge kept by the modules in
the network. Thus, the driving criterion for modularization aiming at performance is
to localize the search space for information retrieval within the limits of a module.
Implementing a good distribution of knowledge into modules requires knowledge
about the search queries that are expected. This type of knowledge can be extracted
a posteriori from observing information queries over some period of time. Predicting
this knowledge a priori would be more effective, but is difficult to achieve.

Scalability for evolution and maintenance

Achieving this goal is an open issue for both ontologies and databases. Here, the driv-
ing criterion for modularization is to localize the impact of updating the knowledge
repository within the limits of a module. Implementing a good knowledge distribu-
tion requires an understanding of how updates propagate within the repository. It also
requires knowledge on the steadiness of the information it contains. Steadiness here
is meant to denote the unlikeliness of an evolution. A possible factor for steadiness
is the confidence level attached to information. How confidence levels, and more
generically steadiness indicators, are acquired remains an open issue for research.

Complexity management

While scalability usually refers to system performance in processing user queries,
performing reasoning tasks, and visualizing results, a similar issue can be raised re-
garding the design of the knowledge repository. The larger the repository is, in terms
of objects and relationships or in terms of axioms and rules, the more difficult is
ensuring the quality and accurateness of the design, especially if the designers are
humans (as it is still the case). We refer here to the issue of making the design task
intellectually affordable for designers, thus creating the best conditions leading to a
semantically correct design that fulfills the informational requirements assigned to
the ontology/database at hand. Quoting Stuckenschmidt and Klein [15], ”ontologies
that contain thousands of concepts cannot be created and maintained by a single per-
son”. The best way to help designers is to reduce the size of the design problem.
That is what modularization achieves. Let designers design modules of a size they
can apprehend, and later either integrate these modules into the final repository or
build the relationships among modules that support interoperability. This is a typical
application of the divide-and-conquer principle.

Notice that the facilities provided by DL reasoners to check the consistency of
specifications address a different issue: correctness. These facilities are essential to
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guarantee the quality of a given design, but they only lift a specific problem from the
concerns of the designer. They do not make the design task easier.

Understandability

Another challenge is to be able to understand the content of an ontology (and of
the schema of a database), an obvious prerequisite to the ability to use them. This
is very similar to the previous challenge, but has to do with the usage phase rather
than the design phase. Whether the content is shown in visual or textual format, un-
derstanding is easier if the repository is small, for example just a module. Smaller
repositories are undoubtedly preferable if the user is a human being (as is visual
versus textual representation). We believe intelligent agents navigating through the
Web-services space also benefit from smaller repositories. The agent might have to
explore (browse) the schema or ontology rather than just querying it. Browsing a
few nodes is faster than browsing a huge number of nodes. Size, however, is not the
only criterion that influences understandability. The way it is structured contributes
to improving or decreasing understandability, as it has been extensively shown in the
database modeling domain (i.e., a relational schema is much harder to understand
than its equivalent entity-relationship or UML schema).

Context-awareness and Personalization

Context is a pervasive concept that also applies to knowledge repositories, and per-
sonalization is a specific kind of context use driven by the user profile. Efforts
towards context-dependent databases and ontologies are being pursued. Context-
awareness means that the database/ontology system knows that different subsets of
its content are relevant for different contexts. This implies that the creation of knowl-
edge, its storage and usage have to take context into account. What exactly makes up
a context is still an open issue and there is no universal answer to the question. Con-
texts are themselves context-dependent, i.e. they convey the specific requirements of
the applications using the contextual knowledge. One particular kind of context is
ownership of information, known to be an important factor to be taken into account
when organizing distributed cooperative systems. This may also apply to ontologies,
although most of them are seen as publicly available resources. Ownership in these
cases provides the rationale for building a modular ontology. Ownership information
can also be attached to existing ontologies in view of integrating them into a modular
ontology where modularity is based on personalization.

Reuse

Reuse is a well-know goal in software engineering. Reuse is most naturally seen as
an essential motivation for approaches aiming at building a broader, more generic
repository from existing, more specialized repositories. However, it may also apply
to the inverse approaches aiming at splitting a repository into smaller modules. In
this case, the decomposition criterion would be based on the expected reusability
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of a module (e.g., how well can the module fill purposes of various applications?).
Reusability emphasizes the need for rich mechanisms to describe modules, in a way
that maximizes the chances for modules to be understood, selected and used by other
services and applications.

1.3 The Essence of Modules

Ontologies and databases are not arbitrary collections of concepts/objects, relations,
properties, axioms and instances. The gathering and definition of their elements ful-
fills a purpose, be it to make available to potential users the knowledge and terms
covering some domain or to represent a subset of the real world that is of interest to an
organization and its applications. Similarly, the process of decomposing a (database
or ontology) repository into modules has to rely on some meaningful principles to
produce modules that make sense. Each module is expected to show a similar unit of
purpose, gluing together those elements from the global repository that participate to
a given goal (which may be seen as a sub-goal of the goal of the global repository).
For example, an ontology module would represent an agreed conceptualization of a
sub-domain of the domain of the ontology [3]. Such modules make sense for, and
can be separately used by the community of users only/mainly interested in the sub-
domain rather than the whole domain covered by the overall ontology. For example,
an enterprise database or ontology may include modules for payroll, for customer
support, for accounting, for marketing, etc. An ontology for historians may have
modules for chronological subsets (e.g., pre-history, ancient, medieval, renaissance,
and contemporary periods) and at the same time have modules by geographical area
(e.g., European, American, Asian, Middle-East, African, Oceanic history).

For knowledge management consistency, a database module shall be a (smaller)
database, and an ontology module shall be a (smaller) ontology. The benefit is that the
same software system can handle the whole repository and its modules. From a prag-
matic viewpoint, modules of the same database or ontology are most likely defined
and used according to the same model and formalism (e.g., they all follow OWL-DL
specifications or they all are relational databases), but this is not a mandatory feature.
The same rationale applies when a module is built by extracting some content from
the ontology/database, without running a global decomposition process.

The potential specificity of modules, making them different from the whole, is
that a module is aware of being a subset of a broader knowledge organization, and
therefore knows it may interact with other modules to get additional knowledge in a
sub-domain closely related to its own sub-domain. Thus, on the one hand (see Part
II of this book) each module interacts with the whole in a part/whole relationship
(leading to a focus on extraction techniques), while on the other hand (see Part III
of this book) modules may have a collective societal behavior, where the focus is on
cooperative techniques. Using an arithmetic metaphor, we can summarize this as:

module = a (smaller) ontology + inter-modules links
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The composition/interrelation duality supports two different contexts that people
associate with the idea of modularization. In one context modularization refers to the
process of turning several self-standing repositories into either a collection of interre-
lated and interoperating modules that together form a broader repository (cooperative
or distributed approaches), or a single integrated broader repository (integration ap-
proaches). In this context the modules are simply the existing repositories. The issue
is not how to delimit them, but to enable their interoperation or integration. In the
other context, modularization refers to the process of creating one or more modules
from an existing repository. Many different ways to do that have been proposed. The
next section discusses the issue.

1.4 Modularization Strategies

Defining the strategy and assumptions that rule how knowledge in a repository is dis-
tributed into modules is a fundamental task in approaching modularization. Strate-
gies may rely on semantic or syntactic criteria, informal or formal specifications,
vary in degree of automation and vary in terms of targeted goal. The latter includes
the issue whether the coexisting modules created from a given ontology have to be
disjoint or may overlap. This section first discusses disjointedness, then moves to
examining the different strategies.

Disjoint or overlapping modules

One of the basic alternatives in fixing a modularization strategy is whether the strat-
egy should enforce disjointedness among the modules of an ontology, or allow them
to overlap. The main advantage of disjointedness is easier consistency management.
Contrary to overlapping modules, disjoint modules cannot contradict each other.
Hence a set of consistent disjoint modules is always consistent. Enforcing disjoint-
edness entails that distribution of knowledge into the modules has to be controlled
by the system. The system may have complete control, meaning that it automatically
performs distribution of knowledge using some partitioning algorithm. Alternatively,
users may somehow fix the distribution, in which case two options exist to enforce
disjointedness. One option lets the system check that modules are kept disjoint by
users (disjointedness is explicitly enforced), rejecting knowledge insertions that vio-
late disjointedness. In the other option whenever the user allocates a given piece of
knowledge to multiple modules, the system creates as many copies as needed to store
one in each targeted module and does not retain the fact that copies exist (disjoint-
edness is implicitly assumed). Otherwise stated, the system iterates the insertion but
ignores the resulting duplication (each copy is considered as a separate and unique
piece of knowledge).

On the other hand, the advantage of overlapping is more flexibility in knowledge
distribution decisions and more functionalities in using modules.Assume, for exam-
ple, that a modular ontology about History is required. Possible targeted modules
could include a module about Middle Age and another one about Italy. Clearly, a
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number of concepts, e.g. the History of Medieval Italy concept, will be relevant for
both these modules. Each of these concepts is candidate for allocation to multiple
modules. In a disjointedness-oriented strategy, one may simply create as many copies
of a concept as needed to allocate one copy to each candidate module, and then for-
get about the duplication, i.e. consider each copy as a separate piece of knowledge,
independent from the other copies of the same concept. In an overlapping-oriented
strategy, concepts may be directly allocated to multiple modules (without being du-
plicated) and the system keeps awareness of this multiplicity. Using this awareness
the system can let users navigate from one module to another, i.e. from one in-
stance of a concept in one module to another instance of the same concept in another
module.

Issues related to such knowledge overlapping form a research domain per se. Prac-
tically overlapping modules may be implemented in two different ways. The mod-
ules may be created to share the same interpretation domain, as that may be the case
of ontologies and databases created as modular since the beginning, like Mads (see
Chapter 5 in this book). Alternatively, each module may have its own interpreta-
tion domain, and these domains be linked, two by two, by binary relations, like in
distributed ontologies (see Chapter 12 in this book). Remark that when real world
entities are described at the same level of granularity in two modules, the binary re-
lation should reduce to an injective function. A “full” binary relation allows mapping
an instance (object) of a module to a set of instances (objects) of the other module,
which is very different from a simple overlap.

Semantics-Driven Strategies

The most intuitive approach to modularization is to let it be driven by the semantics
of the application domain and the way the application perceives identifiable sub-
domains which could stand by themselves and handle a subset of the application
requirements. This has been stated as a “semantic correctness” requirement for mod-
ularization: “A module should make sense” for the users [7].

Semantic interpretation of knowledge relies on human appreciation, i.e. on the ex-
pertise (knowledge of the domain covered by the ontology and knowledge of appli-
cation requirements for a database) of the persons in charge of creating and updating
the content of the repository. The role of the system is usually limited to recording
the allocation of knowledge items to the modules, ensuring that every single con-
tent component (e.g., concept, role, axiom, and instance for ontologies) is allocated
to at least one module (assuming the repository is fully distributed over its mod-
ules). Modular ontology approaches such as Cyc and Mads (see Chapter 5 in this
book) follow this path. In modular ontologies the specification of a new piece of
knowledge includes its allocation to modules. We can say these are manual strate-
gies, as modularization is crafted piece by piece by users. Cyc nevertheless offers
tools for automatic placement of a new assertion in the most relevant module, as
determined by examining the concepts in the assertion. This assistance to users may
help in avoiding erroneous distribution of knowledge, such as allocating a concept to
a module and its properties to another module. Some proposals address this concern
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through the definition of semantic units that group knowledge into atomic pieces
whose components are likely to be kept together when defining the distribution into
modules. For example, Rector [12] proposes a semantic reorganization (“normaliza-
tion”) of the hierarchy of concepts in order to lead to a more semantic partition of
the ontology. This normalization is proposed as a preliminary to the extraction of
modules from the ontology.

Some approaches, where ontology and module creation are desynchronized, are
also driven by semantics and aim at bringing more automation into the module elab-
oration process. It is the case of most methods that extract modules out of a classic,
non modular, ontology. The idea of these semi-automatic approaches is simply to
compute the desired modules from initial specifications provided by users. The hu-
man designer role is to specify the desired result and the system role is to actually
build the result. A simple and quite traditional way to specify the desired module is
by writing a query that selects a subset of the ontology. The evaluation of the query
produces the module, extracted from the ontology [21] [9]. The newly extracted mod-
ule is materialized, and is independent from the ontology.

Structure-Driven Strategies

Other modularization strategies purposely avoid considering semantic aspects. They
look at an ontology as a data structure consisting of a graph of interconnected nodes
(whatever their semantics) and use graph decomposition algorithms to create sub-
sets (the modules) based on structural properties that a subset has to comply with.
For these strategies, a module is a set of concepts (and roles) that are more tightly
inter-related together than to other concepts that are not in the set. What tightly in-
terrelated exactly means varies from one proposal to another one. Hence different
strategies belong to this category, each one characterized by the specific structural
criteria they use for the decomposition. A significant example is Chapter 7 in this
book, which presents in detail a structure-based algorithm that produces a partition
of an ontology into modules. Such semantic unawareness allows the algorithm to run
automatically without relying on human input. This is essential whenever the goal
is to allow computerized agents to produce ontological modules without calling for
human interaction.

However, these algorithms can also be tuned by initially specifying the applica-
tion requirements that may influence the decomposition criteria. Typically, the mod-
ule designer identifies within the ontology a small set of kernel elements (i.e., the
concepts and roles most important to the new module) and in a second step the sys-
tem iteratively builds a module from the kernel elements by adding other elements
attached to the selected ones. This kind of “growing” algorithm needs some crite-
rion to determine how far it should go in looking for attached elements (e.g., using
something like a threshold for distance between the kernel elements and the other
elements). Moreover, a strategy has to be defined to instruct the system on what to
do whenever two related elements are allocated to different modules. Strategies pre-
sented in Chapters 8 and 9 build on the concept of kernel elements and associated
structural criteria to automatically extract modules from an ontology.
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In the database domain, fully automatic decomposition has been investigated, for
example, to allocate data within a distributed database framework based on load
balancing algorithms, i.e. a criterion driven by system performance concerns. The
algorithms produce a data distribution schema that shows which data fragments have
been defined and where they are stored [4].

A different category that may also be classified as structure-driven groups the
strategies to build a modularized ontology from existing ontologies considered as
modules of the targeted all-embracing ontology. The structural criterion on which
modules are defined is simply to take the existing pieces as modules and interconnect
them to form the new ontology. One could say that modules pre-date the ontology,
while the other strategies derive modules from the ontology. Representative of these
strategies are distributed ontologies (as discussed in Part III of this book) and feder-
ated databases [13]. Strategies differ from each other on the techniques they use to
interrelate the module (see Section 1.7 hereinafter).

Machine Learning Strategies

An alternative to human-driven modularization, also not needing an explicit modu-
larity criterion, is computed modularization based on some machine learning knowl-
edge acquisition process. For example, an analysis of the queries that are addressed
to the repository and of the paths within the repository that are used to respond to
queries may be used, considering the frequency of paths and their overlapping, to
determine the clustering rule that produces the optimal decomposition. We use the
term machine learning in a very loose sense including any one of the many available
techniques that a system may use to infer knowledge from any data log. Data mining
and clustering analysis are candidate techniques. These strategies differ from previ-
ously discussed strategies in the sense that the knowledge distribution they produce
is purely based on observing interactions that are relevant for knowledge manage-
ment, not on a human or human-driven dedicated specification (as in semantics-
driven strategies), nor on structural properties of the ontology (as in structure-driven
strategies). To the best of our knowledge, machine learning strategies have not yet
been explored for ontology modularization.

Monitoring Modularization and Making it Evolve

At last, we mention here the problem of updating the distribution of knowledge into
the modules, irrespectively of the strategy used to create them in the first round.
Whatever the modularization strategy, it is important to evaluate and monitor the re-
liability and efficiency of the knowledge services provided by modules. Knowledge
distributions that, once in use, prove to be unsatisfactory or inefficient shall be ad-
justed or corrected based on the outcome of monitoring tasks. The outcome may for
example identify a subset of a module that is frequently needed by another module,
thus suggesting that this subset should more properly be allocated to the other mod-
ule. Similarly, unused parts of modules may simply be deleted or transferred to an
archival module. Whenever queries to a module always require additional knowledge
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from another module, merging of the two modules might be advisable. Conversely,
if query patterns show independent usage of separate parts of a module, a splitting
of the module is worth considering.

1.5 Module Correctness

A very important concern when decomposing a repository is the correctness of the
modularization. A basic requirement for a modular ontology to be correct is that each
module is correct.

To evaluate correctness, first we have to define what the term means. An obvious
correctness criterion is syntactic correctness, that is to say the knowledge specifica-
tions follow the rules of the language and data model they rely on. Enforcing this
kind of correctness is usually done by the underlying tools, e.g. ontology editor tools
and schema design tools for databases. At the instance level, checking the consis-
tency between instances and specifications is done by the reasoners and the DBMS.

In the previous section we quoted the definition by Grau et al. of semantic cor-
rectness as referring to the fact that a module should make sense. Obviously there is
no way for a system to check such semantic correctness, in particular in the ontol-
ogy world where ontologies (unlike most of databases) are not confined to hold the
knowledge required by a specific application.

The same authors also defined the logical correctness concept, where logical refers
to the use of logic. Their definition states that a module is logically correct if and only
if, as long as it involves only the vocabulary of the module, the knowledge that can
be inferred by the module is the same as the one that could be inferred by the initial
ontology (see Chapter 6 in this book).

The links that interrelate the modules of an ontology must be taken into account
when computing the inferences generated by a module. This means that knowledge
targeted by the links should exist (no pending references) and be consistent with the
knowledge inside the module, i.e. augmenting the knowledge within the module with
the knowledge external to the module should not result in unsatisfiability. However,
recent work shows that a certain level of localized inconsistency between external
and internal knowledge can be allowed in the sense that queries that do not involve
the inconsistent subset can be evaluated with no problem [2].

In case an existing ontology is split into modules by partitioning, the collection
of modules should satisfy specific correctness criteria that assess the preservation of
information in the partitioning process. Information preserving may be defined as the
fact that the result of any query addressed to the collection is logically the same as
the result of the query addressed to the original ontology. This is sometimes referred
to as the fact that the whole ontology is a conservative extension of each one of its
modules. Chapters 2 and 6 in this book build on this conservative extension idea
to formally define properties of modules generated using alternative modularization
schemes. This allows ontology designers to choose a modularization approach that
best matches the properties they want to be achieved.
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Information preserving can also be statically defined as the fact that, when re-
composing the original ontology from the modules (using some composition rules),
what is obtained is equivalent to the original piece, nothing less, and nothing more1.
Depending on the modularization rules used, it may be possible to guarantee that,
if rules are obeyed, the modularization they generate is information preserving. If
information loss cannot be avoided, an estimation of the information loss can be a
very useful add-on for the query answering techniques [8].

1.6 Ontology Composition

The idea to collect data/knowledge from several existing repositories to form a new,
real or virtual repository designed for new applications has arisen as soon as com-
puter networks have become operational. Current economic trends have turned the
idea into a necessity. In the database domain the idea has become very popular in the
research community in the 80’ies and 90’ies under the label “federated databases”
[13], denoting new databases built by integrating sets of existing databases. The main
research issue from the semantic viewpoint has been data and schema integration,
i.e. how to build a homogeneous description (the integrated schema) of the whole
set of data available in the existing databases, despite their syntactic and semantic
heterogeneity [10][14]. Later, the trend turned to alternative solutions that would
support integrated data management without needing an integrated schema. These
approaches are frequently denoted as cooperative systems. Eventually, new cooper-
ation paradigms have emerged in the framework of peer-to-peer systems2. As the
name says, in these frameworks the component database systems (the peers) directly
interact with each other whenever they need information they do not have. Different
strategies use different heuristics for a peer to determine which other peers to con-
tact, given that no central description is available to tell which peer holds the desired
information. The latest trend build on memorizing the results of these exchanges
to gradually build in each peer knowledge of where relevant information has been
found. This trend is known as emergent semantics approaches [1][5].

In the ontology world, the same two approaches exist: Integration of existing
ontologies into a global, classic, non modular, ontology is similar to the federated
databases approach. On the other hand, distributed ontologies is similar to coopera-
tive databases systems. A distributed ontology is a broader global ontology, covering
a larger domain, which is built by somehow “composing” a set of existing ontolo-
gies. In this setting, from the modularization viewpoint the existing ontologies are
pre-existing modules used to build a modular ontology. The goal is not to create a
single big ontology (an effort that would probably fail for the same heterogeneity is-
sues that made data integration into federated databases a dream rather than a reality)
but to target a new modular and cooperative ontology, where the modules (existing

1 This is analogous to information preserving rules in databases for the decomposition of a
relational relation into a set of relations of higher normal form (known as the normalization
process).

2 http://en.wikipedia.org/wiki/Peer-to-peer



1 An Overview of Modularity 17

ontologies) are kept unchanged and acquisition of new knowledge is done within the
modules rather than at the global ontology level. Part III in this book presents the
best established composition approaches.

The process of composing the modules consists in identifying duplicated and
complementary knowledge among modules, and then establishing appropriate links
in between the identified pieces of knowledge. Duplicate knowledge can be linked
using a multi-instantiation link, i.e. a link whose semantics says that the two linked
elements contain each one a subset of instances that represent the same set of real
world entities; or it can be linked using a “same as” role, whose semantics says that
two different instances are in fact two representations of the same real world entity.
Complementary knowledge is linked using inter-module roles, i.e. roles whose do-
main is in one module and whose range is in another module. For example, a Person
concept in module Mi can be linked by a role to the Car concept in module Mj

assuming that the intended semantics is that a person may own a car.
It is also possible to devise strategies to compose existing ontologies where some

rules are used to redistribute or reallocate the content of modules within the global
ontology. For example, the strategy could instruct the ontology system to remove
duplicate content and replace it by inter-module links, in an effort to reduce the
individual or the cumulative size of the modules. However, this would be against the
autonomy of the modules, and should therefore applied with care, if ever.

As in federated databases, a typical issue in module composition/integration arises
from the syntactic and semantic heterogeneity that may exist among multiple de-
scriptions of the same concepts and roles in the different modules. Syntactic differ-
ences include heterogeneity of the underlying formalisms (e.g., one module uses
a paradigm from logics while another module uses a conceptual data modeling
paradigm), and of the languages used to define them (one module uses RDF, another
one uses OWL-DL). Differences in representation of shared elements arise whenever
the sub-domains covered by the modules are not mutually disjoint, a situation that is
likely to be the norm rather than the exception. For example, one module holds road
network knowledge while another one holds knowledge on roads as part of a public
transport system, resulting in different representation requirements of roads in the
two modules.

The whole ontology matching process has been and still is extensively discussed,
e.g. in [6]. Part of the issue is the detection and processing of the semantic differ-
ences that otherwise obscure knowledge sharing. Indeed, corresponding elements,
i.e. elements that at least partly represent the same set of real world entities or links,
may differ at the terminological level (different names), descriptive level (different
sets of properties), structural level (different constructs of the model are used to rep-
resent the elements), and semantic level (the elements describe different sets of real
world entities or links). The process to detect the correspondences between the ele-
ments is referred to in the integration literature as similarity search or correspondence
discovery.

When the goal is to create a global repository (as in federated databases) with
a single description (the integrated schema), differences between the source de-
scriptions have to be reconciled to enable generating the integrated element. This
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reconciliation process is called conflict resolution. Similar reconciliation is nowa-
days proposed for integration of multiple ontologies into a single ontology. Integra-
tion research is not discussed in this book as its goal is opposite to modularization.
Instead, distributed ontology approaches fully qualify as modularization techniques,
and are reported in detail in Part III of this book. In distributed ontologies the only
task is to put an inter-modules link between the corresponding elements. Termino-
logical and descriptive differences do not matter. But the inter-modules links should
support structural and semantic differences. They should allow to link elements of
different kinds and they should express various kinds of semantic differences, i.e. the
represented sets of real world entities/links are the same, or one is the subset of the
other, or the two sets are overlapping, or the two sets are disjoint but related.

1.7 Links among Modules

In a modular ontology, each module is assumed to provide ontological services re-
lated to a given sub-domain of the global domain covered by the ontology as a whole.
Basic experience in knowledge organization shows that very frequently it is impos-
sible to partition a domain into disjoint sub-domains. Whatever the modularization
principle is, some concepts inevitably end up belonging to multiple sub-domains.
Most frequently, the way a concept is characterized changes from sub-domain to
sub-domain. Usually, some characteristics, referred to as inherent or essential to the
concept, are the same whatever the sub-domain, and many others, referred to as in-
cidental to the concept, are specific to the sub-domain they relate to. This means that
complementary and duplicated knowledge about a concept exists in different mod-
ules. Users of a module may be interested in accessing the entirety of the knowledge
about a concept available within the modular ontology. Similarly, given the availabil-
ity of two modules, users of one module may be interested in connecting concepts of
this module to other concepts in the other module whenever they see a meaningful
and useful connection between the two. To gain direct access to knowledge external
to a module, inter-module links are established. They create a navigational path from
module to module that makes the knowledge in the target module available to users
of the initial module.

Inter-module links may be seen as an integral part of the module they stem from,
or as a construct that is superimposed onto the modules and external to them. In the
first case a module per se is an incomplete ontology given that its links to exter-
nal elements appear as pending links when the module is considered in isolation,
for instance for consistency checks. In the second case, links can be considered
as externally stored, possibly in a separate dedicated repository, and each module
taken in isolation is an autonomous ontology. This solution has for example been
adopted in distributed database systems, where tables with pairs of oids have been
used to store the instance-level correspondence between related objects in different
databases. Managing links externally to modules allows creating different ontologies
from the same set of modules by defining alternative sets of links.
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Inter-module links may be of different types: relationships or multi-instantiation
links. Inter-module relationships may relate two concepts of two different modules,
concepts that describe different sets of real world entities that are related by a re-
lationship. For instance, one module may describe cars and another one models of
cars. An inter-module relationship or role, e.g. hasModel, can be defined between the
two concepts. Its instantiation will have also to be defined. Chapter 11 presents such a
solution based on the ε–connections technique which is a method for combining log-
ical languages and in particular OWL-DL ontologies. The ontologies are related by
inter-module roles that link concepts of two different modules. The method supports
an extended version of the Tableau algorithm for reasoning on distributed ontologies
of kind ε-connections.

Inter-module multi-instantiation links are links that relate two elements that be-
long to different modules and describe, at least partially, the same set of real world
entities or links. The most usual kind of inter-module multi-instantiation links is
the is-a link between two concepts, for example Car in one module and Vehicle in
another one. C-OWL calls this kind of link, bridge rules. More generally, an inter-
module multi-instantiation link may express sub-set (is-a), equivalence or overlap-
ping. Chapters 5 and 12 support this kind of links. Notice that the linked elements
may be two concepts, two roles, a concept and a data-type, and a composition of
roles and a role.

In most distributed ontology approaches, inter-module multi-instantiation links
relate elements of the same kind, i.e. two concepts, two roles or two individu-
als. But more complex links are needed, for instance a role may correspond to
a composition of roles (e.g. isUncle corresponds to isParent.isBrother), or a con-
cept may correspond to the union of several concepts (e.g. Parent corresponds to
Father ∪Mother).

As in distributed ontologies each module is an autonomous ontology, it has its
own interpretation domain, which is disjoint from all the other ones. Therefore, inter-
modules links of kind is-a, or more generally multi-instantiation links, require a map-
ping between the interpretation domains of any two linked modules. In most of the
approaches the mapping is defined by a binary relation. That allows to assert that an
instance of one module corresponds to any number of instances of the other module.
Consequently, the semantics of an inter-module is-a link depends on the underlying

binary relation. For instance in Chapter 12, a bridge rule O1:C1
�−→O2:C2 does not

always say that any instance of C1 corresponds to an instance of C2. If the binary
relation leaves out some C1 instances, that would not be the case: The bridge rule
constrains only the instances of C1 and C2 that participate in the binary relation.

When a distributed ontology contains inter-modules multi-instantiation links, an
important question is the consistency of the related modules. As already discussed in
Section 1.5, knowledge sharing by different modules is prone to inconsistencies (un-
less a tight control and coordination of the evolution of the modules are enforced).
This calls for specific consistency-preserving mechanisms. A distributed ontology
will be consistent only if each component ontology is itself consistent and all the
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multi-instantiation links are consistent with the component ontologies they are link-
ing. For more general distributed reasoning issues see Chapter 12 in this book.

Another facet of the consistency issue about links is how up-to-date they are.
Modules, as ontologies in general, are expected to evolve in a desynchronized and
decentralized way. If a link has been identified and described at time t, can we guar-
antee that it is still valid for use at some later time t′ > t? For example, assume a
link specifying that a concept A in moduleMi is equivalent to a concept B in module
Mj . The evaluation of a query to Mi that references A may need to traverse the link
between Mi and Mj to find out what Mj knows about B. If, after the link has been
established, a role r(B, D) is added to Mj which somehow constrains B, it may be
that the new constraint results in the fact that the equivalence does not hold anymore.
To prevent inconsistencies, either an update propagation mechanism is developed
to keep all links up-to-date anytime, or links have to be invalidated whenever the
semantics of one of the elements they link changes.

1.8 Contextual Modules

As discussed in section 2, irrespectively of issues related to the size and complex-
ity of knowledge repositories, modularization may be used as a means to achieve
contextualization and personalization of knowledge services. Modules in this per-
spective are not conceptualizations of different sub-domains but different conceptu-
alizations of the same domain, each one tailored for a specific usage context. Each
conceptualization stems from a specific perspective on and interpretation of which
knowledge is relevant and how it has to be represented according to many parame-
ters, including the observer’s background and preferences, the purpose assigned to
its representation, the temporal and spatial framework of the observation. For ex-
ample, should the spatial context be North America and the temporal context be
before the first arrival of Europeans, the concept of horse would not be part of the
relevant knowledge as the concept was not known to American Indians at that time.
The concept become relevant with the arrival of Europeans, and denotes a kind of
quadruped. For a more recent temporal context, the term would also denote heroin
(in slang). Later, the same term would also denote persons smuggling drugs. Notice
that recording synonyms and other lexical relationship among words, as done in ter-
minological ontologies (e.g. Wordnet), does not suffice to convey the complexity of
contextual influence on knowledge description. Context-dependent modules for the
same ontological domain may provide the means to achieve context-aware informa-
tion services. These modules may be independent from each other, but most likely
they will have interdependencies to the extent they share some common knowledge.
In particular, one module may include another module [5]. For example, all knowl-
edge about a university system according to a “Professor” context may also belong
by definition to a more generic “Academic” context for representing the same uni-
versity system. We would then say that the Academic context includes the Professor
context.
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This approach to modularization suggests that the contexts of interest have been
defined first, so that when entering new knowledge into the repository the context(s)
to which it belongs can be readily identified. Existing context-awareness proposals
are built on this hypothesis [5][19][11]. They are discussed in Chapter 5 of this book.
A posteriori allocation to contexts is possible but is likely to call for manual annota-
tion, usually a non-affordable task.

1.9 Conclusion

Managing large ontologies is a serious challenge for ontology designers, reasoners
and users. One generic strategy to deal with the problem is modularization, which
aims at replacing a huge ontology by a collection of smaller component ontologies,
called modules, that can be manipulated independently from each other and are nev-
ertheless capable of collaborating in providing the same service as the whole initial
ontology. Although knowledge modularization is mainly a relatively new research
domain, it has attracted the attention of several research groups and workshops trying
to deal with large and distributed ontologies. Many research proposals have therefore
been documented in the literature. Tendencies have appeared and enable an orga-
nized survey of current achievements, which is the subject of this book. Thus, most
significant achievements related to the topic are described in detail within the book.

As a preamble, this initial chapter developed a global analysis of modularization
issues, caring to take into account the various facets and perceptions of ontology
modularization and suggesting possible answers to the many open problems. In par-
ticular, we identified a composition versus a decomposition approach to modulariza-
tion. In the former, a set of existing source ontologies are apprehended as modules of
a larger ontology that is built from the preexisting sources using some integration or
cooperation technique. In the latter, it is the global ontology that pre-exists, and mod-
ularization is seen as the process of producing a consistent set of sub-ontologies, the
modules, using some decomposition technique. Beyond this major split within the set
of approaches that deal with modularization, we identified a number of issues, from
the precise definition of the module concept to how different modules can be inter-
connected to benefit from complementarities of their semantic content. This generic
analysis is further explored in following chapters 2 to 4 in this Part I of the book,
focusing on formal properties of modularization and evaluation criteria for modular-
ization techniques, as well as the variety of knowledge importing techniques that can
be used to transfer knowledge between modules.

We have focused on identifying and showing alternative approaches, with their
underlying assumptions as well as with their specific goals. The need for modulariza-
tion does indeed emerge from different contexts, characterized by different require-
ments. A multiplicity of solutions is required to cover all potential useful contexts.

However, neither this chapter nor the book exhaust the possible research avenues
that remain open for the future. For example, one direction for future work is to focus
on using fuzzy techniques to support the possibility to attach different confidence
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degrees to the mappings between ontological modules, thus leading to some form of
fuzzy modular ontology.
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Summary. Modularity of ontologies is currently an active research field, and many different
notions of a module have been proposed. In this paper, we review the fundamental principles
of modularity and identify formal properties that a robust notion of modularity should satisfy.
We explore these properties in detail in the contexts of description logic and classical predicate
logic and put them into the perspective of well-known concepts from logic and modular soft-
ware specification such as interpolation, forgetting and uniform interpolation. We also discuss
reasoning problems related to modularity.

2.1 Introduction

The benefits of modular ontologies are manifold. In ontology design, modularity sup-
ports the structured and controlled development of large ontologies, enables ontology
design by multiple, possibly distributed designers and allows the re-use of (parts of)
already existing ontologies. In ontology deployment and usage, modularity can be
exploited for right-sizing large ontologies (by selecting and using only the relevant
part) and to speed up reasoning. Alas, making full use of modularity is hampered by
the fact that there are many different definitions of what a module in an ontology ac-
tually is. In fact, it seems unlikely that there can be a unique and generally accepted
such definition because the desirable properties of a module strongly depends on the
intended application.

In this paper, our aim is to provide guidance for choosing the right notion of mod-
ularity. In particular, we give a survey of possible options and identify three formal
properties that a notion of modularity may or may not enjoy and that can be used to
evaluate the robustness of this notion in the context of a given application. We ana-
lyze whether the surveyed notions of modularity satisfy these robustness properties
and provide further guidance by discussing the computational complexity of central
decision problems associated with modularity.

To make different notions of modularity comparable to each other, we have to
agree on some general framework for studying ontologies and modules. Generally
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speaking, a module is a part of a complex system that functions independently from
this system. To define what a module in an ontology is, we thus have to specify what
it means for such a module to function independently from the containing ontology.
It is not a priori obvious how this can be done. We start with adopting the following,
abstract view of an ontology: an ontology O can be regarded as a black box that
provides answers to queries about some vocabulary S of interest. The form that such
queries take is one of the main distinguishing factors between different applications.
Important cases include the following.

Classification. Classifying an ontology means to compute the sub-/superclass rela-
tionships between all atomic classes in the ontology. For example, if S is a vocabu-
lary for buildings and architecture, then the query Church � Building asks whether
every church is a building.

Subsumption queries. In other applications, one is interested in computing subsump-
tion between complex class expressions. For example, if S is a biological vocabulary,
then the query Father � Living being � ∃has child.� asks whether every father is a
living being having a child.

Instance data. A popular application of ontologies is their use for providing a back-
ground theory when querying instance data. In this case, one is interested in instance
queries that are posed to a knowledge base, which consists of an ontology and an
ABox that stores instances of classes and relations. Note that we do not consider the
ABox to be part of the ontology. To represent this setup in terms of queries posed to
the ontology, we consider queries that consist of an instance query together with an
ABox. For example, if S is a geographical vocabulary, then a query might consist of
the instance data

A = {Country(France),Country(Columbia), . . . , LocatedinEurope(France), . . .}

together with the conjunctive query EuropeanCountry(France). This query asks
whether it follows from the instance data A and the ontology that France is a Eu-
ropean country. The answer is yes if, for example, the ontology states that every
country LocatedinEurope is a EuropeanCountry.

These examples show that, to define what it means for a part of an ontology to
“function independently”, we first have to fix a query language and a vocabulary of
interest. Once this is done, two ontologies can be regarded equivalent if they give
the same answers to all queries that can be built in the fixed query language with
the fixed vocabulary. Similarly, given an ontology and its module, we can say that
the module functions independently from the ontology if any query built in the fixed
query language with the vocabulary associated with the module has the same answer
when querying the module and the whole ontology.

Formally, these ideas can be captured by the concept of inseparability: given a
query languageQL and a vocabularyS, two ontologiesO1 andO2 areS-inseparable
w.r.t. QL if they give the same answers to queries in QL over S. There are various
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ways in which this notion can be used to define modularity of ontologies. For ex-
ample, one can use the notion of inseparability to define a module as a subset of an
ontology that is S-inseparable (and thus functions independently) from the whole
ontology w.r.t. a query languageQL and for a signature S associated with the mod-
ule. In this case, investigations into modularity boil down to investigating conser-
vative extensions as the special case of S-inseparability in which one ontology is a
subset of the other ontology and the vocabulary S coincides with the vocabulary of
the smaller ontology [13]. Another, differently flavoured approach is to use triples
(O,QL, S) as a module, where O is an ontology, QL a query language and S a
vocabulary. The pair (QL, S) serves as an interface so that groups of independent
modules can interact by querying each other via this interface. This setup is similar
in spirit to formalisms such as DDLs and E-Connections [31, 17, 44, 4, 6]. In this
case, S-inseparability is fundamental because it allows to define what it means that
one module is equivalent to another one.

Since inseparability is at the core of most notions of modularity, our framework
for studying and comparing such notions puts inseparability (and, as a variant, con-
servative extensions) into its focus. The robustness properties mentioned above are
formulated directly in terms of inseparability. Here, the term “robustness” refers to
the ramifications of changing the signature and manipulating in certain natural ways
the involved ontologies. In particular, the properties ensure that modules and on-
tologies can be composed and decomposed in a transparent way. Our robustness
properties are closely related to well-known notions from logic, in particular to in-
terpolation and the Robinson joint consistency property. We explore this connection
and also investigate the relation between inseparability on the one hand, and forget-
ting and uniform interpolation on the other. In principle, the general ideas presented
in this paper are independent of the ontology language and query language that are
used. To analyze robustness properties in concrete cases, though, we obviously have
to fix both languages. As an ontology language, we mainly consider description log-
ics (DLs), which are a highly relevant in this context due to the standardisation of
the DL-based ontology language OWL by the W3C [5]. To round off our presenta-
tion, we will sometimes also give examples in terms of first- and second-order logic.
We consider a wide range of query languages including classification queries, sub-
sumption queries, instance queries, conjunctive queries and first- and second-order
queries.

The rest of this paper is organised as follows. In Section 2.2, we introduce on-
tology languages and description logics. In Section 2.3, we define our framework
for inseparability and introduce relevant robustness properties that notions of insep-
arability should enjoy. A variety of query languages together with the resulting ro-
bustness properties and decision problems are discussed in Section 2.5. A detailed
investigation of robustness properties and their relation to interpolation is provided
in Section 2.6. In Section 2.7 we explore the connection between inseparability and
forgetting/uniform interpolation and establish a number of results regarding the ex-
istence of uniform interpolants and ontologies that “forget” certain symbols from a
given ontology. Finally, we devote Section 2.8 to surveying results on lightweight
DLs and acyclic ontologies. We finish with a brief discussion in Section 2.9.
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2.2 Ontology Languages and Description Logics

We introduce a number of description logics, fix conventions for handling first- and
second-order logic and give a number of basic definitions concerning signatures. The
DL-literate reader may choose to skip this section.

2.2.1 The Description Logic ALC
In DLs, ontologies are sets of implications between concepts, sometimes enriched
with additional types of constraints. Thus, we start this section with introducing con-
cepts, which are inductively defined from a set NC of concept names and a set NR

of role names, using a set of concept constructors. From the perspective of first-
order logic, concept names are unary predicates and role names are binary relations.
Different sets of concept constructors give rise to different DLs.

In this paper, we will mainly be concerned with the description logic ALCand
its extensions. The concept constructors available in ALCare shown in Table 2.1,
where r denotes a role name and C and D denote concepts. A concept built from
these constructors is called an ALC-concept. A concept implication is an expression
of the form C � D, with C and D concepts. We write C ≡ D instead of the two
concept implications C � D and D � C.

Definition 1 (ALC-Ontology). An ALC-ontology is a finite set of concept implica-
tions. ALC-ontologies will also be called ALC-TBoxes. �

Some of the applications discussed in this paper are concerned not only with on-
tologies, but also with instance data. In DLs, such instance data is described using
ABoxes. To introduce ABoxes, we fix a set NI of individual names, which correspond
to constants in first-order logic. Then, an assertion is an expression of the form C(a)
or r(a, b), where C is a concept, r a role name and a, b are individual names. An
ALC-ABox is a finite set of assertions. We call the combination K = (O,A) of an
ALC-ontology and an ALC-ABox an ALC-knowledge base.

DL semantics is based on the notion of an interpretation I = (ΔI , ·I). The do-
main ΔI is a non-empty set and the interpretation function ·I maps each concept

Table 2.1. Syntax and semantics ofALC

Name Syntax Semantics

top concept � ΔI

bottom concept ⊥ ∅
negation ¬C ΔI \ CI

conjunction C �D CI ∩DI

disjunction C �D ¬(¬C � ¬D)I

existential restriction ∃r.C {d ∈ ΔI | ∃e ∈ CI : (d, e) ∈ rI}
universal restriction ∀r.C ¬(∃r.¬C)I
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name A ∈ NC to a subset AI of ΔI , each role name r ∈ NR to a binary relation rI

on ΔI and each individual name a ∈ NI to an individual aI ∈ ΔI . The extension
of ·I to arbitrary concepts is defined inductively as shown in the third column of
Table 2.1.

The semantics of ALC-ontologies is now defined as follows. An interpretation I
satisfies a concept implication C � D if CI ⊆ DI , and I is a model of an ontology
O if it satisfies all implications in O. An ontology is consistent if it has a model. A
concept C is satisfiable w.r.t. an ontologyO if there exists a model I of O such that
CI �= ∅. A concept C is subsumed by a concept D w.r.t. an ontology O (written
O |= C � D) if every model I of O satisfies the implication C � D.

Now for the semantics of ABoxes and knowledge bases. An interpretation I sat-
isfies an assertion C(a) if aI ∈ CI , and r(a, b) if (aI , bI) ∈ rI . It is a model of an
ABoxA if it satisfies all assertions inA and of a knowledge baseK = (O,A) if it is
a model of bothO andA. We say that A is consistent if it has a model, and likewise
for K.

When working with ontologies and without ABoxes, the most relevant way of
querying is subsumption: given an ontology O and concepts C,D, check whether
O |= C � D. In the presence of ABoxes, there are two prominent ways of querying:
instance checking and conjunctive query answering; see, e.g., [23, 10, 11]. Instance
checking means, given a knowledge baseK and an assertion C(a), to check whether
each model of K satisfies C(a). If this is the case, we write K |= C(a).

Example 1. Let O be a geographical ontological defined as

O = {European Country ≡ Country � Located in Europe}

and A an ABox defined as

A={Country(France),Country(Columbia), . . . , Located in Europe(France), . . .}.

Then (O,A) |= European Country(France). �

To discuss conjunctive query answering, we need a few preliminaries. An atom is of
the form C(v) or r(v, v′), where v, v′ are from a set of variables NV, C is a con-
cept and r is a role name. An ALC-conjunctive query is an expression of the form
∃v.ϕ(u,v), where v and u are disjoint sequences of variables and ϕ is a conjunc-
tion of atoms using only variables from v ∪ u (we confuse vectors and sets when
convenient). The arity of such a query is the length of u. The variables in u are the
answer variables of q, and the ones in v are the (existentially) quantified variables.
Let K be a knowledge base and q = ∃v.ϕ(u,v) an n-ary conjunctive query. Then
a sequence a of individual names of length n is a certain answer to K and q if for
every model I of K, there is a mapping π : v ∪ u→ ΔI such that

• if v is the i-th element of u and a the i-th element of a, then π(v) = aI ;
• C(v) ∈ ϕ implies π(v) ∈ CI , and r(v, v′) ∈ ϕ implies (π(v), π(v′)) ∈ rI .

Then, conjunctive query answering means to compute, given a knowledge base K
and conjunctive query q, all certain answers to K and q.
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For our purposes, it usually suffices to work with an instantiated conjunctive query
∃v.ϕ(a,v), in which the answer variables have been replaced with individual names.
We write K |= ∃v.ϕ(a,v) if a is a certain answer to the query ∃v.ϕ(u,v).

2.2.2 First- and Second-Order Logic

We use standard notation for first- and second-order logic. Throughout the paper,
we admit individual constants, truth constants � and ⊥, a binary equality symbol
‘=’ and an arbitrary number of predicates of any arity. Function symbols are not
admitted. A first-order ontology, or FO-ontology for short, is simply a finite set
of first-order sentences. As usual, we write O |= ϕ if a first-order sentence ϕ is a
consequence of an FO-ontologyO.

We will often view an ALC-ontology as an FO-ontology. Indeed, it is well-
known that most DLs such as ALCcan be conceived as (decidable) fragments of
first-order logic [3]. Note that a DL interpretation is just a first-order interpretation
restricted to only unary and binary predicates and constants. Then, (i) concepts cor-
respond to formulas in one free variable, (ii) concept implications and ABox as-
sertions correspond to sentences and (iii) ontologies, ABoxes and knowledge bases
correspond to first-order theories.

In what follows, we use C� to denote the standard translation of an ALC-concept
C into an FO-formula with one free variable x; see [3]. Thus, we have A� = A(x)
for every concept name A and, inductively,

�� = x = x

⊥� = ¬(x = x)

(C1 � C2)� = C�
1 ∧C

�
2

(¬C)� = ¬C�

(∃r.C)� = ∃y (r(x, y) ∧ C�[x/y])

where, in the last clause, y is a fresh variable. Then we can translate an ontology O
into a correspondingFO-ontology

O� :=
{
∀x
(
C�(x) → D�(x)

)
| C � D ∈ O

}
.

Thus, subsumption in ALCcan be understood in terms of FO-consequence: for all
ALC-concepts C,D, we have O |= C � D iff O� |= ∀x.(C� → D�). We can trans-
late a knowledge base K into an FO-ontologyK� in a similar way, using individual
constants. Then, instance checking and checking whether a tuple a is a certain an-
swer to a conjunctive query can also be understood as first order consequence.

Example 2. Let
O = {Father ≡ Male � ∃has child.�}

define a father as a male who has a child. Then

O� = {∀x (Father(x) ↔ (Male(x) ∧ ∃y has child(x, y)))}. �
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Second-order logic extends first-order logic by means of quantification over variables
P for sets and relations. An SO-ontologyO is a finite set of SO-sentences. We write
O |= ϕ if a second-order sentence ϕ follows from an SO-ontologyO. Clearly, every
FO-ontology is an SO-ontology as well.

2.2.3 Signatures

The notion of a signature plays an important role in this paper. In a nutshell, a sig-
nature is a finite set of extra-logical symbols, i.e., symbols whose interpretation is
not fixed a priori by the semantics. In the context of DLs, a signature may contain
concept names, role names and individual names. Logical symbols such as the truth
constants ⊥, � and the Boolean operators � and ¬ are not part of a signature. In
the context of first- and second-order logic, a signature consists of predicate sym-
bols (except equality) and individual constants. The equality symbol is not included
because its interpretation is fixed a priori.

The signature sig(O) of an ALC-ontologyO is the set of concept and role names
that occur inO, and likewise for the signature sig(C) of a conceptC and sig(C � D)
of a concept inclusion C � D. For example,

sig({� � ∃r.B � ∀r.⊥}) = {B, r}.

The signature sig(α) of an ABox assertion α, sig(A) of an ABox A and sig(K)
of a knowledge base K is defined similarly, but additionally includes all occurring
individual names.

The signature sig(ϕ) of a first- or second-order formula ϕ is the set of all pred-
icate and constant symbols (except equality) used in ϕ. Note that sig(∀P.ϕ) =
sig(∃P.ϕ) = sig(ϕ) for every SO-formula ϕ. This notion is lifted to ontologies in
the obvious way. For an SO-sentence ϕ and a relation symbol S we sometimes write
∃S.ϕ instead of ∃P.ϕ[P/S], where P is a variable for relations of the same arity as S
and ϕ[P/S] results from ϕ by replacing S by P . Clearly, sig(∃S.ϕ) = sig(ϕ) \ {S}.

In this paper, we are often interested in concepts and ontologies that are formu-
lated using a specific signature. Therefore, we talk of an S-ontologyO if sig(O) ⊆
S, and likewise for S-concepts, etc. When we want to emphasise both the DL L in
which an ontology is formulated and the signature S, we talk about LS-ontologies.

2.2.4 Some Extensions of ALC
We introduce here the most important extensions of ALCused in this paper. Some
additional extensions (and fragments) are introduced as needed. The extensions con-
sidered here fall into three categories: (i) additional concept constructors, (ii) addi-
tional roles and (iii) additional statements in TBoxes. The extensions are listed in
Table 2.2, where #X denotes the size of a set X and double horizontal lines mark
the border between extensions of type (i), (ii) and (iii), from top to bottom. The last
column lists the identifier for each extension, which is simply appended to the name
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Table 2.2. Additional constructors: syntax and semantics

Name Syntax Semantics Identifier

number restrictions (� n r C) {d | #{e | (d, e) ∈ rI ∧ e ∈ CI} ≤ n} Q
(� n r C) {d | #{e | (d, e) ∈ rI ∧ e ∈ CI} ≥ n}

nominals {a} {aI} O
inverse role r− (rI)−1 I
universal role u ΔI ×ΔI U
role inclusions r � s rI ⊆ sI H

ALC. For example, ALCextended with number restrictions and inverse roles is de-
noted by ALCQI and the extension of a DL L with the universal role is denoted
by LU .

In the following, we only give some remarks regarding the listed extensions and
refer the reader to the DL literature for more details [3]. When inverse roles are
present, they can be used inside existential and universal restrictions, and also inside
number restrictions (if present) and role inclusions (if present). In contrast, the uni-
versal role u is only allowed inside existential and universal restrictions. We remark
that the universal role is less common than the other extensions of ALC, but it will
play a prominent role in this paper.

Some care is required for defining the signature in extensions of ALC. If we
work with a description logic L that includes nominals, then signatures (of con-
cepts, ontologies, ABoxes, etc.) include also the individual names a occurring as a
nominal {a}. For example, the signature of the ALCO-ABox {(A � ∃r.{a})(b)}
is {A, r, a, b}. In contrast to nominals, the universal role is regarded as a logical
symbol and is not part of the signature. This is justified by the fact that the inter-
pretation of the universal role u is fixed a priori. Note also that for its translation
(∃u.D)� = ∃x.D� to first-order logic, no relation symbol is required.

2.3 Inseparability and Conservative Extensions

We lay the foundation of the general framework that we use to study modularity.
This framework consists of conventions that fix (in a rather liberal way) what an
ontology, an ontology language, a query, and a query language is, and of the funda-
mental notions that we use to define modularity:S-inseparability and S-conservative
extensions. We also introduce the relevant decision problems associated with S-
inseparability and S-conservative extensions.

2.3.1 Basic Notions and Conventions

For us, an ontology is a finite set of second-order sentences, an ontology language
is a (commonly infinite) set of second-order sentences, a query is a second-order
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sentence, and a query language is a (finite or infinite) set of queries. By the first-order
translations given in Section 2.2, this view captures ontologies and query languages
based on DLs. Observe that ontology languages and query languages are defined in
the same way, and we will often make use of that. We now define the core notions
for defining modularity.

Definition 2 (Inseparability and Conservative Extension). LetQL be a query lan-
guage,O1,O2 ontologies and S a signature. We say that

• O1 andO2 are S-inseparable w.r.t.QL and writeO1 ≈QL
S O2 iff for all ϕ ∈ QL

with sig(ϕ) ⊆ S, we haveO1 |= ϕ iff O2 |= ϕ.
• O2 is an S-conservative extension of O1 w.r.t. QL iff O2 ⊇ O1 and O1 and O2

are S-inseparable w.r.t. QL. If, in addition, S = sig(O1), then we say that O2 is
a conservative extension of O1 w.r.t.QL.

We say that ϕ ∈ QL separates O1 and O2 iff O1 |= ϕ and O2 �|= ϕ or vice
versa. �

Observe that if O1 ⊆ O2 are formulated in first-order logic and QL consists of all
first-order sentences, then our definition of a conservative extension w.r.t. QL coin-
cides with the standard definition of a conservative extension used in mathematical
logic [13].

For any query language QL and any signature S, the relation ≈QL
S of

S-inseparability w.r.t.QL is clearly an equivalence relation. Moreover, the following
two implications are easily seen to hold:

1. if O1 ≈QL
S O2 and S′ ⊆ S, then O1 ≈QL

S′ O2;
2. if O1 ≈QL

S O2 and QL′ ⊆ QL, thenO1 ≈QL′
S O2.

The largest query language QL considered in this paper is QLSO , the set of sen-
tences of second-order logic. It follows from Point 2 above that inseparability
w.r.t. QLSO implies inseparability w.r.t. any other query language that fits into our
framework.

2.3.2 Examples

We give several examples that illustrate the importance of S-inseparability and con-
servative extensions for handling ontologies in general and for defining notions of
modularity in particular. For simplicity, we concentrate on the rather expressive
query language QLSO for now and defer the introduction of DL-based query lan-
guages to the subsequent section.

Example 3. The following ontology defines the binary relation P (‘part of’) as a tran-
sitive and reflexive relation:

O1 = { ∀xP(x, x),
∀x∀y∀z (P(x, y) ∧ P(y, z)→ P(x, z)) }
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We now define another ontology that also defines P, but which does this in terms of
another binary relation PP (‘proper part of’) that is transitive and irreflexive:

O2 = { ∀x ¬PP(x, x),
∀x∀y∀z (PP(x, y) ∧ PP(y, z)→ PP(x, z)),
∀x∀y (P(x, y) ↔ (x = y ∨ PP(x, y)) }.

Suppose that the ontologyO2 is used in an application that refers only the predicate
P (but not PP) and is based on the query languageQL. Can we replace O2 with the
somewhat simpler ontologyO1 without causing any changes or even corruption? In
our framework, answering this question means checking whether or not O1 and O2

are {P}-inseparable w.r.t.QLSO . The answer is ‘no’: theQLSO-sentence

ϕ = ∀x∀y ((P(x, y) ∧ P(y, x)) → x = y)

separates O1 and O2 since O1 �|= ϕ and O2 |= ϕ. While O1 and O2 are toy on-
tologies, questions of this kind are of obvious importance for real applications. To
conclude this example, we remark that O1 and O2 become {P}-inseparable w.r.t.
QLSO by adding ϕ to O1. �

Example 4. According to the introduction, a module should function independently
from the containing ontology and conservative extensions can capture this. Thus, let
us use conservative extensions to give an example definition of a module.

Definition 3. Let O1 ⊆ O2 be ontologies, S a signature, and QL a query language.
Then O1 is a weak S-module of O2 w.r.t. QL if O2 is an S-conservative extension
of O1 w.r.t. QL. �

As a concrete example, consider the ALC-ontology

O1 = { Male ≡ Human � ¬Female,

Human � ∀has child.Human }

and its extension

O2 = O1 ∪ {Father ≡ Male � ∃has child.�}.

If S = sig(O1), then O1 is a weak S-module of O2. �

Example 5. Consider again the ontologies O1 and O2 from Example 4. The exten-
sion of O1 to O2 is simple, but a rather typical case in practice: one or more newly
introduced concept names are defined in terms of concept and role names that are
already defined in the existing ontology. The existing concept and role names are
only used, but not affected in any way by this extension. In particular, no new conse-
quences referring only to previously existing concept and role names is derivable,
and thus the extension is conservative. Extensions of this simple kind are called
definitorial.
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The notion of a module defined in Definition 3 is much more liberal than this:
for example, it allows the extension to make statements about existing symbols as
long as these statements are already entailed by the existing ontology. As another
example for the definition of a module, we give a stronger one that is closer to the
idea of definitorial extensions:

Definition 4. Let O1 ⊆ O2 be ontologies, S a signature and QL a query lan-
guage. Then O1 is a strong S-module of O2 w.r.t. QL if it is a weak S-module of
O2 w.r.t. QL and, in addition, O2 \ O1 and the empty ontology are S-inseparable
w.r.t.QL. �

To see an example that illustrates the difference between Definitions 3 and 4, let

O′
2 = O1 ∪ {Father � Human,Father ≡ Male � ∃has child.�}.

Let S = sig(O1). ThenO1 is not a strong S-module of O′
2 because

O′
2 \ O1 |= Male � ∃has child.� � Human

and this inclusion does not follow from the empty ontology. However, we already
have O1 |= Male � ∃has child.� � Human and, indeed, it is possible to prove that
O1 is a weak S-module of O′

2. �

We do not claim that Definitions 3 and 4 are the only reasonable definitions of a
module. As indicated already in the introduction, many subtle variations and even
completely different approaches are possible. What is common to virtually all defi-
nitions of a module is that inseparability and conservative extensions play a central
role. In this paper, we will not favour a particular definition of a module, but rather
study modularity directly in terms of inseparability and conservative extensions. We
also remark that there are other interesting applications of inseparability such as on-
tology versioning and module extraction [30, 28, 27, 14].

2.3.3 Decision Problems

The notions of inseparability and conservative extension give rise to decision prob-
lems in a natural way. Let L be an ontology language and QL a query language.
Then

• the S-inseparability problem for (L,QL) is to decide, given L-ontologies O1

andO2 and a signature S, whetherO1 ≈QL
S O2;

• the S-conservativity problem for (L,QL) is to decide, given L-ontologies O1

andO2 with O1 ⊆ O2 and a signature S, whetherO1 ≈QL
S O2;

• the conservativity problem for (L,QL) is to decide, given L-ontologiesO1 and
O2 with O1 ⊆ O2 whetherO1 ≈QL

S O2 with S = sig(O1);

In view of the examples given in this section, the utility of these problems should be
clear: they can be used to decide whether a given part of an ontology is a module,
whether two ontologies can be exchanged in some application, whether an extension
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to an ontology that is intended to be definitiorial has damaged the terms that were
already defined, etc.

We will discuss these problems in more detail when surveying the options for
query languages in Section 2.5. For now, we only remark that, in the special case
where L ⊆ QL and S ⊇ sig(O1 ∪ O2), it is not hard to see that

O1 ≈QL
S O2 iff O1 |= ϕ for all ϕ ∈ O2 and O2 |= ϕ for all ϕ ∈ O1.

It follows that in this particular case checking S-inseparability reduces to logical
entailment and thus to standard reasoning inQL.

2.4 Robustness Properties

We introduce the three robustness properties for modularity. Since we study modu-
larity in terms of inseparability, we also formulate these properties in terms of insep-
arability.

Definition 5 (Robustness Properties). Let L be an ontology language and QL a
query language. Then (L,QL) is robust

• under vocabulary extensions if, for all L-ontologies O1 and O2 and signatures
S, S′ with S′ ∩ sig(O1 ∪ O2) ⊆ S, the following holds:

O1 ≈QL
S O2 ⇒ O1 ≈QL

S′ O2;

• under joins if, for all L-ontologies O1 and O2 and signatures S with sig(O1) ∩
sig(O2) ⊆ S, the following holds for i = 1, 2:

O1 ≈QL
S O2 ⇒ Oi ≈QL

S O1 ∪ O2;

• under replacement if, for all L-ontologies O1, O2 and O and signatures S with
sig(O) ∩ sig(O1 ∪ O2) ⊆ S, the following holds:

O1 ≈QL
S O2 ⇒ O1 ∪ O ≈QL

S O2 ∪ O. �

In the remainder of this section, we give examples that motivate the usefulness of the
properties given in Definition 5.

Robustness under vocabulary extensions. In practice, most ontologies constantly
evolve: they are regularly being extended, updated, corrected, etc. This evolution
usually results in frequent modifications of the ontology’s signature. For this rea-
son, inseparability should be robust under changes of the signature, and this is what
robustness under vocabulary extensions is about. In many applications, being insep-
arable or a conservative extension is of doubtful relevance when a simple addition
of fresh symbols to the signature (i.e., symbols that are not mentioned in any of the
involved ontologies at all) can change this situation.

Robustness under joins. Taking the union of two or more ontologies is an essential
and frequently used operation. For example, the extension of an existing ontology
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Fig. 2.1. Robustness under joins

with new concept inclusions can be conceived as a union, and also the import of an
existing ontology into a newly constructed one. Robustness under joins is concerned
with the behaviour of inseparability regarding this operation. Its virtue is probably
best appreciated by considering the following consequence of robustness under joins,
formulated in terms of conservative extensions:

(∗) for all L-ontologies O0, O1, O2, if O0 ∪ O1 and O0 ∪ O2 are conservative
extensions ofO0 w.r.t.QL and sig(O1)∩sig(O2) ⊆ sig(O0), thenO0∪O1∪O2

is a conservative extension of O0 w.r.t.QL.

To see why (∗) is useful, suppose that two (or more) ontology designers simultane-
ously extend an ontologyO0, but work on different parts. They produce new sets of
concept inclusions O1 and O2 to be added to O0 and ensure that O0 ∪ Oi is a con-
servative extension of O0 w.r.t. the query language QL that is used in the intended
application, for i ∈ {1, 2}. Now, robustness under joins guarantees (via (∗)) that the
joint extensionO0 ∪O1 ∪O2 is also a conservative extension ofO0 w.r.t.QL, as il-
lustrated in Figure 2.1. In the sketched situation, robustness under joins thus ensures
that the two designers can work truly independently, i.e., they will not be forced to
redesignO1 and O2 because of unexpected interactions.

Robustness under replacement. This property is critical when a module in an on-
tology is supposed to be re-used in another ontology. We consider two example
scenarios.

Assume that an ontology designer develops an ontology O0 for hospital admin-
istration and wants to reuse a set S of medical terms from a medical ontology O1.
A typical example for O1 would be SNOMED CT, the Systematized Nomenclature
of Medicine, Clinical Terms [45]. The designer knows that queries to his ontology
will be formulated in a query languageQL. Instead of importing the whole ontology
O1, which potentially is very large (SNOMED CT comprises ∼0.4 million medical
terms), he chooses to import a weak S-module M of O1 w.r.t. QL, i.e., M ⊆ O1

and M ≈QL
S O1. If (L,QL) is robust under replacement, where L is the language

in which O0 and O1 are formulated, then it follows that

M∪O0 ≈QL
S O1 ∪ O0.
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Fig. 2.2. Robustness under replacement

It is thus indeed possible to useM instead ofO1 inO0 without loosing consequences
for the signature S in QL; observe that this does not follow from the definition of
a weak module alone. This situation is illustrated in Figure 2.2. Observe that the
argument does not depend on the details ofO0 and does not break whenO0 evolves.

For a second example, we consider the same scenario. Assume now that the de-
signer of the ontologyO0 for hospital administration imports the whole ontologyO1

to reuse the set S of medical terms. He designs O0 such that the terms from S as
defined in O1 are not corrupted, formalised by O0 ∪ O1 ≈QL

S O1. Also assume that
the ontology O1 is updated frequently. The designer wants to ensure that, when an
old version of O1 is replaced with a new one, the terms from S as given in the new
version of O1 are still not corrupted. Since he cannot foresee the changes to O1 that
will occur in the future, he needs to design O0 such that O0 ∪ O1 ≈QL

S O1 for all
ontologiesO1 with sig(O0)∩ sig(O1) ⊆ S. If (L,QL) is robust under replacement,
this is easy: it simply suffices to ensure that O0 ≈QL

L ∅. This use case has been
discussed in more detail in [16].

The importance of robustness under replacement has first been observed in
[15, 14], see also [16]. It also plays an important role in the context of the insep-
arability of programs in logic programming and answer set programming [34, 19].
Finally, we make a note on the interplay between robustness under replacements and
strong modules as introduced in Definition 4: if (L,QL) enjoys robustness under
replacements and in the realistic case that sig(O2 \ O1) ∩ sig(O1) ⊆ S, we have
that O1 is a strong S-module of O2 w.r.t. QL iff O2 \ O1 and the empty ontology
are S-inseparable w.r.t. QL, i.e., the condition that O1 is a weak module of O2 is
redundant.

2.5 Query Languages, Robustness and Complexity

So far, we have used the powerful query language QLSO . For many applications,
this is inappropriate because QLSO can separate ontologies for which no differ-
ences are observable in the application. In this section, we introduce a number of
DL-based query languages used in applications and discuss the corresponding no-
tions of S-inseparability and S-conservative extensions, as well as their robustness
properties and the complexity of the decision problems given in Section 2.3.3. We
start with rather weak query languages and gradually move towards more expressive
ones includingQLFO and QLSO.
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2.5.1 Inconsistency

A very weak query language QL⊥ can be defined as {� � ⊥}, i.e., QL⊥ consists
of an unsatisfiable first-order sentence. Clearly, O |= � � ⊥ iff O is inconsistent.
Thus, two ontologiesO1 and O2 are S-inseparable w.r.t. QL⊥ if either both O1 and
O2 are inconsistent, or both are consistent. Observe that S-inseparability w.r.t.QL⊥
does not depend on the actual signature S.

The query language QL⊥ is too weak for defining a reasonable notion of modu-
larity. However,QL⊥ can be used to ensure that the modification of an ontology has
not caused inconsistency: the extension O2 of an ontology O1 by a set of sentences
O does not cause inconsistency iff O2 is a conservative extension ofO1 w.r.t.QL⊥.

For every ontology language L, (L,QL⊥) is robust under vocabulary extensions
because S-inseparability does not depend on S. It is robust neither under joins nor
replacement, for any of the ontology languages introduced in Section 2.2. Let, for
example, O1 = {A ≡ �} and O2 = {A ≡ ⊥}. Then O1 ≈QL⊥ O2, but
O1 �≈QL⊥ O1 ∪ O2 because O1 and O2 are consistent, but O1 ∪ O2 is inconsis-
tent. Thus, (ALC,QL⊥) is not robust under joins. The decision problems associated
with (L,QL⊥) obviously have the same complexity as deciding ontology consis-
tency in L.

2.5.2 Subsumption between Concept Names

The query language QLCN is defined as the set of all queries A � B, where A and
B are concept names or truth constants ⊥ and �. Two ontologies O1 and O2 are
S-inseparable w.r.t. QLCN iff they give raise to the same classification regarding the
concept names in S, i.e., the sub-/superclass relation between any two concept names
in S is identical.

Using QLCN as a query language is useful if the application relies only on the
classification, i.e., changes in the meaning of a symbol are considered acceptable as
long as the classification does not change. Observe that S-inseparability w.r.t.QLCN

implies S-inseparability w.r.t. QL⊥, but the converse does not hold whenever S �=
∅. Also observe that S-inseparability w.r.t. QLCN is oblivious to the addition and
deletion of role and individual names to and from S.

As illustrated by the following example, the query language QLCN is still very
weak when used to define modularity.

Example 6. Reconsider the ontologies from Example 5:

O1 = {Male ≡ Human � ¬Female,Human � ∀has child.Human}
O′

2 = O1 ∪ {Father � Human,Father ≡ Male � ∃has child.�}.

Let S = sig(O1). Then O1 is a weak S-module because the same implications
between concept names in S are derivable from O1 and O′

2. However, this is
true only because we restrict ourselves to subsumption between concept names,
as we had said already that Male � ∃has child.� � Human separates the two
ontologies. �
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It is easy to see that (L,QLCN) is robust under vocabulary extensions for any ontol-
ogy languageL introduced in Section 2.2. As shown by the next example, robustness
under joins and replacement fails.

Example 7. Let O1 = {A � ∃r.B}, O2 = {∃r.B � E}, and S = {A,B, r, E}.
Then O1 ≈QLCN

S O2. Failure of robustness under joins follows from O1 �≈QLCN

S

O1 ∪ O2 since O1 ∪ O2 |= A � E andO1 �|= A � E.
For failure of robustness under replacement consider O = {A � ¬∃r.B}. Then

O1 ∪ O |= A � ⊥ but O2 ∪ O �|= A � ⊥. �

Still, QLCN has useful applications, e.g., for efficient implementations of classifi-
cation in a DL reasoner and in distributed description logics, where subsumptions
between concept names are usually all that matter. The decision problems associated
with (L,QLCN) are not harder than deciding subsumption between concept names
in L.

2.5.3 Subsumption between Complex Concepts

For any description logic L, the query language QLL is defined as the set of all
queries C � D, where C andD are L-concepts. If L admits role inclusions, we also
include queries r � s, with r and s roles. Thus, two ontologies O1 and O2 are S-
inseparable w.r.t. QLL iff they entail the same subsumptions between LS-concepts
and the same role inclusions r � s with r, s ∈ S, if role inclusions are present in L.
The following example shows that even for propositional DLs L without role names,
QLL is strictly stronger than QLCN.

Example 8. Let

O1 = ∅, O2 = {Parent �Male � Father}, S = {Parent,Male,Father}.

Then O2 is an S-conservative extension of O1 w.r.t. QLCN, but Parent � Male �
Father separatesO1 and O2 w.r.t.QLALC . �

When choosing different DLsL, the resulting notions of inseparability usually differ.

Example 9. Let

O1 ={Human � ∃parent.�}, O2 = {Human � ∃parent.Male�∃parent.¬Male}

and S = {Human, parent}. Then O1 and O2 are S-inseparable w.r.t. QLALC , but
Human � ¬(≤ 1 parent�) S-separatesO1 and O2 w.r.t.QLALCQ. �

If L provides all Boolean operators, a useful alternative definition of QLL is the
set of queries C � ⊥ with C an L-concept, i.e., two ontologies O1 and O2 are S-
inseparable w.r.t. QLL iff there is no LS-concept C that is satisfiable w.r.t. O1 but
not w.r.t. O2, or vice versa. To see that the definitions are equivalent, observe that
C � D separatesO1 and O2 iff C � ¬D � ⊥ separatesO1 andO2.

The query languages QLL are often appropriate during the design process of an
ontology.
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Example 10. Assume an ontology designer extends a medical ontology O0 written
in a DL L with a set O1 of L-sentences in order to cover some part of medicine, say
anatomy, in more detail. He wants to ensure that this operation does not impact the sub-
sumptions between complex concepts built over symbols that are already defined inO0

and not related to anatomy. Then, he should ensure thatO0∪O1 is an S-conservative
extension of O0 w.r.t. QLL, where S consists of all symbols from O0 that are unre-
lated to anatomy. Similarly, conservative extensions w.r.t.QLL can be used to ensure
that deletions of sentences from an ontology do not change the subsumptions between
concepts in an unexpected way. In the case that existing sentences are modified, the
designer should use inseparability instead of conservative extensions. �

The query languages QLL are powerful enough to define useful notions of modu-
larity, for example via Definitions 3 and 4. In particular, inseparability w.r.t. QLL
is suited to ensure a relatively strong form of module independence, in contrast to
inseparability w.r.t.QL⊥ and QLCN. We now discuss the formal properties ofQLL
in more detail. We concentrate on giving an overview of available results and thus
defer longer proofs to later sections or the appendix.

Robustness Properties

In many cases, (L,QLL) is robust under vocabulary extensions and joins. The fol-
lowing result is a consequence of Theorems 15 and 16 in Section 2.6.2.

Theorem 1. Let L be any of the DLs ALC, ALCQ, ALCI, ALCQI, ALCU ,
ALCQU , ALCIU , ALCQIU . Then (L,QLL) is robust under vocabulary exten-
sions and joins.

Thus, standard constructors such as inverse roles and number restrictions do not
cause any difficulties as far as robustness under vocabulary extensions and joins is
concerned. The situation is different for nominals and role hierarchies.

Proposition 1. (ALCO,QLALCO) and (ALCH,QLALCH) are not robust under
vocabulary extensions and joins.

Proof. We start with non-robustness under vocabulary extensions in ALCO. Let

O1 = {� � ∃r.�},
O2 = O1 ∪ {A � ∀r.¬A,¬A � ∀r.A}.

Then O2 is a conservative extension of O1 w.r.t. QLALCO , thus O1 ≈QLALCO
S O2

for S = {r}. Now observe that {a} � ∀r.¬{a} separates the two ontologies
w.r.t. QLALCO , for any nominal {a}. Thus, O1 �≈QLALCO

S′ O2 for S′ = S ∪ {a}.
Observe that the nominal {a} has no connection whatsoever with the two ontologies
O1 and O2.

Now considerALCH. Let

O1 = {� � ∀ri∀rj .⊥ | i, j = 1, 2} ∪ {∃r1.� ≡ ∃r2.�},
O2 = O1 ∪ {s � r1, s � r2, ∃r1.� � ∃s.�}.
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Then O2 is a conservative extension of O1 w.r.t. QLALCH, thus O1 ≈QLALCH
S O2

for S = {r1, r2}. However, ∃r1.� � ∀r1.A � ∃r2.A separates the two ontologies
w.r.t.QLALCH, whereA is a fresh concept name. The proof of non-robustness under
joins is similar and deferred to Proposition 7 in Appendix A. �

In Section 2.4, we have argued that robustness under replacement is an essential
property for most applications of inseparability, such as modularity. Theorem 1 thus
indicates that one has to be rather careful when usingALCO and ALCH as a query
language. In particular, weak and strong modules as in Definition 3 and 4 are inappro-
priate. However, it is possible to “build in” robustness under vocabulary extensions
when defining a module:

Definition 6. Let O1 ⊆ O2 be ontologies, S a signature, and QL a query language.
Then O1 is a weak S-module in O2 w.r.t. QL robust under vocabulary extensions
if O2 is an S′-conservative extension of O1 w.r.t. QL for all S′ such that sig(O1 ∪
O2) ∩ S′ ⊆ S. �

In a similar way, it is possible to define modules with robustness under joins built in.
We now turn to robustness under replacement. This property fails for many stan-

dard description logics such as the ones in the following result.

Theorem 2. Let L be any of the DLs ALC,ALCQ,ALCI,ALCQI , ALCO,
ALCHO. Then (L,QLL) is not robust under replacement.

Proof. Let

O1 = ∅, O2 = {A � ∃r.B}, S = {A,B}, O = {A ≡ �, B ≡ ⊥}.

It is not hard to see that for every first-order sentence ϕ with sig(ϕ) ⊆ S,

O2 |= ϕ iff {∃x A(x) → ∃y B(y)} |= ϕ.

However, the FO-ontology {∃x A(x) → ∃y B(y)} has no non-tautological conse-
quences that can be formulated inQLL using only symbols from S. Hence,O2 is an
S-conservative extension of O1 w.r.t. QLL. But then, O1 ∪ O �≈QLL

S O2 ∪ O since
� � ⊥ separates the two ontologies. �

In Section 2.4, we have argued that robustness under vocabulary extensions is needed
for the reuse modules. Thus, Theorem 2 indicates that one has to be careful when
using the query languages listed in the theorem for this application. For example,
modules such as in Definitions 3, 4 and 6 are not appropriate. One approach to fix
this is to define a notion of module that has robustness under replacements built in:

Definition 7. Let O1 ⊆ O2 be ontologies, S a signature, and QL a query language.
Then O2 is a weak S-module of O2 w.r.t. QL robust under replacement if for all
ontologiesO with sig(O) ∩ sig(O2) ⊆ S, O2 ∪O is an S-conservative extension of
O1 ∪ O w.r.t.QL. �
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The next result identifies a second approach to deal with Theorem 2: if robustness
under replacement is desired, switch from (L,QLL) to (L,QLLU ). If this is done,
robustness under replacements is recovered and it suffices to work with weak mod-
ules as in Definition 3. We shall see in Section 2.6 that the two approaches to deal
with Theorem 2 are identical in some rather strong sense. For now, we only show
that the addition of a universal role to the query language usually recovers robust-
ness under replacement.

Theorem 3. Let L be any of the DLs ALC, ALCI, ALCQ, ALCQI. Then (LU ,
QLLU ), and thus also (L,QLLU), is robust under replacement.

Proof. Let O1 ≈QLL
S O2 and assume that O1 ∪ O |= C0 � D0, where sig(O) ∩

sig(O1 ∪ O2) ⊆ S and sig(C0 � D0) ⊆ S. Let S′ = S ∪ sig(O). By robustness
under signature extensions,O1 ≈QLL

S′ O2. Clearly

O1 |= ∀u.
�

C�D∈O
¬C �D � ∀u.(¬C0 �D0).

Since O1 ≈QLL
S′ O2, O2 entails the same subsumption. Thus O2 ∪ O |= C0 � D0,

as required. �

We present one additional observation regarding robustness under replacement. In
the proof of Theorem 2, r is a role that does not occur in S. It turns out that such
roles are required to obtain counterexamples to robustness under replacement. The
following result is proved in Appendix A.

Theorem 4. Let L be any of the DLs ALC,ALCI ,ALCQ, ALCQI, S a signature,
and assume that O1 and O2 contain only roles from S. Then

O1 ≈QLL
S O2 implies O1 ∪ O ≈QLL

S O2 ∪ O,

for all L-ontologiesO with sig(O) ∩ sig(O1 ∪ O2) ⊆ S.

Decision Problems

We now discuss the computational complexity of deciding inseparability and conser-
vative extensions w.r.t.QLL. The following result is due to [21, 36].

Theorem 5. Let L be any of the DLs ALC, ALCI, ALCQ and ALCQI. Then the
S-inseparability problem for (L,QLL) is 2-EXPTIME-complete. Moreover, the S-
conservativity and conservativity problem are 2-EXPTIME-complete as well.

We remark that, in [21, 36], the results stated in Theorem 5 are proved for S-
conservativity w.r.t. QLL for ALCand ALCQI only. However, it is not too dif-
ficult to extend the proofs to ALCI and ALCQI and S-inseparability instead of
S-conservativity. For the extensions of the logics L with the universal role we note
the following conjecture.



44 B. Konev et al.

Conjecture 1. Let L be any of the DLsALCU , ALCIU , ALCQU ,ALCQIU . Then
the S-inseparability problem for (L,QLL) is 2-EXPTIME-complete.

Interestingly, the addition of nominals to ALCQI leads to undecidability [36].

Theorem 6. For (ALCQIO,QLALCQIO), the S-inseparability problem and con-
servativity problem are undecidable.

Recall that LO denotes the extension of a DL L by nominals. We conjecture that
even with nominals, S-inseparability is still 2-EXPTIME-complete for the DLs from
above which includeALCbut are strictly below ALCQI:

Conjecture 2. LetL be any of the DLsALC,ALCI,ALCQ or their extension by the
universal role. Then the S-inseparability problem for (LO,QLLO) is 2-EXPTIME-
complete.

Notions of a module such as the ones given in Definitions 6 and 7 give rise to other
decision problems than the S-inseparability problem and the conservativity prob-
lem. The following result addresses the case of Definition 6. It is proved in [16] for
(ALCO,QLALCO). The proof is easily extended to the other listed cases.

Theorem 7. Let L be any of the DLs ALC, ALCI, ALCQ or their extension by the
universal role. Given two LO-ontologies O1 and O2 and a signature S, it is unde-
cidable whetherO1 is a weak modules ofO2 w.r.t.QLLO robust under replacement.

2.5.4 ABoxes and Conjunctive Queries

If ontologies are used together with an ABox, inseparability based on subsumption
is usually too weak. In this section, we define notions of inseparability based on
instance checking and conjunctive query answering.

In principle, there are two ways to include the ABox into our framework: as part
of the ontology and as part of the query language. The first option is appropriate if
the ontology and ABox are closely coupled, e.g. they are designed and maintained
together, and the ABox does not change significantly more often than the ontology.
In this case, we should define S-inseparability between knowledge bases.

Definition 8. Let L be a description logic. We call knowledge bases K1 and K2

a) S-inseparable w.r.t. L-instance checking iff, for any L-assertion C(a) with
sig(C) ⊆ S, we have K1 |= C(a) iff K2 |= C(a).

b) S-inseparable w.r.t. L-conjunctive queries iff, for all instantiated L-conjunctive
queries q = ∃v.ϕ(v,a) with sig(q) ⊆ S, we have K1 |= q iff K2 |= q.

�

It is easy to see that the latter implies the former. However, the converse is false. For
a simple example, let L = ALC,

O1 = ∅, O2 = {A � ∃r.B}, A1 = A2 = {A(a)}, and S = {A,B}.

ThenK1 andK2 are S-inseparable w.r.t. instance checking, but the conjunctive query
∃x.B(x) separates the two knowledge bases. When applied to knowledge bases
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with an empty ABox, S-inseparability w.r.t. L-instance checking and (subsumption-
based) S-inseparability w.r.t. QLL coincide. To see this, note that (i) if C � D
separates K1 and K2, then so does D � ¬C(a), for any a ∈ NC; conversely (ii) if
C(a) separates K1 and K2, then so does � � C.

It should be clear that the above two notions of inseparability fit into our frame-
work: knowledge bases can be translated into sets of FO-sentences, and thus can
be viewed as ontologies. However, in most applications that use ABoxes, the above
approach does not seem appropriate because the ontology (conceptual modelling)
and the ABox (actual data) have a different status. In particular, the ABox is usually
unknown when the ontology is developed and changes much more frequently than
the ontology. This observation suggests that it is useful to consider a notion of insep-
arability that captures ABoxes as unknown “black boxes” and thus quantifies over
all possible ABoxes. This corresponds to making the ABox part of the query, instead
of the ontology.

Definition 9. Let L be a description logic. We say that ontologiesO1 andO2 are

c) S-inseparable w.r.t. L-instance checking iff, for all L-ABoxes A with sig(A) ⊆
S and L-assertions C(a) with sig(C) ⊆ S, we have (O1,A) |= C(a) iff
(O2,A) |= C(a).

d) S-inseparable w.r.t. L-conjunctive queries iff, for allL-ABoxesAwith sig(A) ⊆
S and all instantiatedL-conjunctive queries q = ∃v.ϕ(v, a), we have (O1,A) |=
q iff (O2,A) |= q. �

Observe that c)-d) apply to ontologies, in contrast to a)-b), which apply to knowl-
edge bases. Again, it is easy to see that if two ontologies are S-inseparable w.r.t. L-
conjunctive queries, then they are S-inseparable w.r.t. L-instance checking. The con-
verse fails, with essentially the same argument as for a) and b) above.

Note that S-inseparability of two ontologiesO1 andO2 w.r.t.L-instance checking
implies S-inseparability w.r.t. QLL because, as above, if C � D separates O1 and
O2, then so does the empty ABox together with the instance query D � ¬C(a).
However, unlike for a), the conserve does not hold.

Example 11. Let

O1 = ∅, O2 = O1 ∪ {A � ∀r.¬A,¬A � ∀r.A}, S = {r}.

Then O1 and O2 are S-inseparable w.r.t. QLALC , but (O1, {r(a, a)}) is consistent
and (O2, {r(a, a)}) is inconsistent. Thus, the ABox A = {r(a, a)} and assertion
⊥(a) separate O1 and O2. Note that this example is similar to the counterexample
given in the proof of Proposition 1. �

S-inseparability w.r.t. L-instance checking is stronger than S-inseparability w.r.t.
QLL because of the availability of the ABox, which allows us to fix a part of the
model up to isomorphism.

We show that the notions of inseparability given under c) and d) live inside our
framework. In what follows, we use individual names as first-order constants. For an
L-ABox A, define a corresponding first-order sentence
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A� :=
∧

C(a)∈A
C�[x/a] ∧

∧

r(a,b)∈A
r(a, b).

For an instantiated conjunctive query ∃v.ϕ(v,a), define a corresponding first-order
sentence q� by replacing each concept atom C(a) in ϕ with C�[x/a].

Definition 10. Let L be a description logic. Then

• QLI
L is the set of first-order sentences A� → C�[x/a], where A is an L-ABox,

C an L-concept and q an individual name;
• QLq

L is the set of first-order sentencesA� → q�, whereA is an L-ABox and q is
an instantiated L-conjunctive query. �

It is easy to see that two ontologies are S-inseparable w.r.t. L-instance checking in
the sense of Definition 9 c) iff they are S-inseparable w.r.t. QLI

L and that they are
S-inseparable w.r.t. L-conjunctive queries in the sense of Definition 9 d) iff they are
S inseparable w.r.t.QLq

L.
As indicated by the discussion above, query languages such asQLI

L andQLq
L in-

duce an even stronger notion of S-inseparability than QLL. Intuitively, their power
is between that of QLL and QLFO, as discussed in Section 2.5.5 below. For QLI

L
and QLq

L, neither the computational complexity of deciding inseparability nor ro-
bustness properties have been investigated for description logics extendingALC. In
Section 2.8, we will discuss a number of results for these query languages for on-
tologies based on weak DLs such as EL and DL-Lite.

2.5.5 Semantic Inseparability, First- and Second-Order Queries

The query languages QL considered so far are all proper fragments of first-order
logic. In fact, it is not difficult to show that inseparability w.r.t.QLFO, the set of all
first-order sentences, is stronger than any of them. To see this, consider

O1 = ∅, O2 = {A � ∃r.(A �B) � ∃r.(A � ¬B)}, S = {A}

Then,O2 is an S-conservative extension ofO1 w.r.t. all query languages considered
so far, but the first-order sentence ∃x.A(x) ⇒ ∃y.(x �= y ∧ A(y)) separates O1

and O2.

Theorem 8. Let L be a fragment of FO. Then (L,QLFO) is robust under vocabu-
lary extensions, joins and under replacement.

Proof. Robustness under vocabulary extensions and joins follow from Theorems 15
and 16 in Section 2.6.2. Robustness under replacement follows from robustness
under vocabulary extensions and the fact that first-order logic is closed under
Boolean operators: from O1 ≈FO

S O2, it follows that for all L-ontologies O with
sig(O) ∩ sig(O1 ∪ O2) ⊆ S and FO-sentences ϕ with sig(ϕ) ⊆ S, we have

O1 |=
∧
O → ϕ ⇔ O2 |=

∧
O → ϕ,

which implies
O1 ∪ O |= ϕ ⇔ O2 ∪O |= ϕ. �
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An even stronger query language than QLFO is QLSO, the set of all second-order
sentences. As has already been mentioned, S-inseparability w.r.t.QLSO implies in-
separability w.r.t. any query language allowed in our framework. Interestingly, insep-
arability w.r.t. QLSO is equivalent to a semantic notion of inseparability, which we
introduce next. Given a model I and a signature S, we denote by I|S the S-reduct
of I; i.e., ΔI|S = ΔI , XI|S = XI for all X ∈ S, and predicates not in S are not
interpreted by I|S .

Definition 11. Let O1,O2 be ontologies and S a signature. We say that

• O1 andO2 are semantically S-inseparable and write O1 ≈sem
S O2 if

{I|S | I |= O1} = {I|S | I |= O2}.

• O2 is a semantic S-conservative extension of O1 if O1 ⊆ O2 and O1 ≈sem
S

O2. �

We simply speak of a semantic conservative extension if S = sig(O1). In the litera-
ture, the term ‘model conservative extension’ is used synonymously. We now show
equivalence of semantic inseparability and inseparability w.r.t.QLSO.

Theorem 9. Let O1 and O2 be ontologies and S a signature. Then the following
conditions are equivalent:

• O1 ≈QLSO
S O2;

• O1 ≈sem
S O2.

Proof. The implication from Point 1 to Point 2 follows from the fact that no second-
order sentence using only predicates from S can distinguish two models whose
reducts to S are isomorphic. The other direction holds since we have O1 ≈sem

S O2

if O1 implies the second-order sentence ∃S1 · · · ∃Sn.
∧
O2 with {S1, . . . , Sn} =

sig(O2) \ S and O2 implies the second-order sentence ∃S′
1 · · · ∃S′

m.
∧
O1 with

{S′
1, . . . , S

′
m} = sig(O1) \ S. �

The following robustness properties are easily proved by exploiting the high expres-
sive power of SO.

Theorem 10. Let L be a fragment of SO. Then (L,QLSO) is robust under vocabu-
lary extensions, joins and under replacement.

The relation between inseparability w.r.t. QLFO and semantic inseparability has
extensively been discussed in the literature on software specification [25, 39, 46].
In [8, 47], the reader can find a proof that semantic inseparability is strictly stronger
than inseparability w.r.t. QLFO. However, when restricted to finite models, the two
notions are equivalent because every finite model can be described up to isomor-
phism in first-order logic with equality. The computational complexity of deciding
semantic S-inseparability has been studied in [36, 27].

Theorem 11. ForALC-ontologies, semantic conservativity is Π1
1 -hard, thus neither

decidable nor recursively enumerable.
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Conditions under which semantic inseparability becomes decidable are investigated
in [27]. For example, if S contains no roles, then semantic S-inseparability becomes
decidable:

Theorem 12. ForALC-ontologiesO1 andO2 and signatures S containing no roles,
it is decidable (and NEXPTIMENP-complete) whether O1 ≈sem

S O2.

2.6 More on Robustness

We take a closer look at the robustness properties and relate them to standard notions
from logic such as interpolation and Robinson consistency.

2.6.1 Robustness under Replacement

We start with addressing the question why (FO,QLFO) and (LU ,QLLU), with
L as in Theorem 3, are robust under replacement while (L,QLL) are not. A first
hint is given by the simple proof of Theorem 8, which crucially exploits that the
query language QLFO is closed under the Boolean operators. This is clearly not
the case for QLL, but also not for QLLU . However, it is well-known that there is a
close connection between the universal role and the Boolean operators, see e.g. [20].
To make this connection formal, we extend QLL to the query language QLB

L that
consists of all Boolean combinations ofQLL-sentences:QLB

L is the set of sentences
ψ defined by

ψ ::= ϕ | ψ1 ∧ ψ2 | ¬ψ,

where ϕ ∈ QLL and ψ, ψ1, ψ2 range overQLB
L -sentences. The next result explains

why (LU ,QLLU ) is robust under replacement. It is an easy consequence of the well-
known fact that QLLU and QLB

L have the same expressive power in the following
sense [20]: for every ϕ ∈ QLLU , there exists a ϕ∗ ∈ QLB

L with sig(ϕ) = sig(ϕ∗)
such that I |= ϕ iff I |= ϕ∗ holds for all interpretations I, and vice versa.

Theorem 13. Let L be any of the DLs ALC, ALCI, ALCQ, ALCQI. Then

≈QLB
L

S = ≈QLLU
S for any signature S.

In Section 2.5.3, two approaches have been identified to deal with non-robustness
under replacements of the query languageQLL when L does not contain the univer-
sal role: either build robustness under replacements into the definition of a module
as in Definition 7 or switch from (L,QLL) to (L,QLLU). We now show that these
two approaches are actually identical. To do this, it is convenient to define a no-
tion of inseparability that has robustness under replacements build in, analogous to
Definition 7: QLO

L consists of all sentences

(
∧
O�) → ϕ,

where O is an L-ontology and ϕ a query fromQLL.
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Theorem 14. Let L be any of the DLs ALC, ALCI, ALCQ, ALCQI. Then

≈QLO
L

S = ≈QLLU
S for any signature S.

Proof. By Theorem 13, it suffices to show that ≈QLO
L

S = ≈QLB
L

S . The ‘if’ direction
is easy since it is not hard to see that QLO

L ⊆ QLB
L . For the ‘only if’ direction,

assume O1≈QLO
L

S O2. Assume that O2 |= ϕ, where ϕ is a Boolean combination of
LS-implications. Clearly, ϕ is equivalent to a conjunction of formulas of the form

(� � C0) ∨ · · · ∨ (� � Cm) ∨ ¬(� � Cm+1) ∨ · · · ∨ ¬(� � Cn)

and each such conjunct is equivalent to

(� � C0) ∨ · · · ∨ (� � Cm) ∨ ¬(� � D),

where D = Cm+1 � · · · �Cn. Moreover, using the fact that models of L-ontologies
are closed under disjoint unions, one can show that there exists i ≤ m such that
O2 |= (� � Ci) ∨ ¬(� � D), which implies O2 ∪ {� � D} |= � � Ci. From

O1≈QLO
L

S O2, we obtainO1∪{� � D} |= � � Ci. Since this holds for all conjuncts
of ϕ, we get O1 |= ϕ. �
Now, the two mentioned approaches are identical since it clearly follows from The-
orem 14 that O1 is a weak S-module w.r.t. QLL robust under replacement iff O1 is
a weak S-module w.r.t.QLLU according to Definition 3.

Finally, Theorem 14 can provide us with another interesting perspective on the
relationship between (L,QLL) and (L,QLLU ). Obviously,≈QLLU

S ⊆ ≈QLL
S . How-

ever,≈QLLU
S is much more than just some coarsening of≈QLL

S that yields robustness
under replacement: it is the maximal one. The following is a direct consequence of
Theorem 14 and the definition ofQLO

L .

Corollary 1. Let L be any of the DLsALC,ALCI,ALCQ,ALCQI and S a signa-
ture. Then≈QLLU

S is the maximal subset of≈QLL
S such that for all L-ontologiesO1,

O2 and O with sig(O) ∩ sig(O1 ∪ O2) ⊆ S, O1 ≈QLL
S O2 implies O1 ∪ O ≈QLL

S

O2 ∪ O.

2.6.2 Robustness under Vocabulary Extensions and Interpolation

In this section, we discuss robustness under vocabulary extensions and its relation-
ship to interpolation. We consider the following standard notion of interpolation.

Definition 12 (Interpolation). A query languageQL has weak interpolation iff for
every set Ψ ofQL-sentences and everyQL-sentence ϕ such that Ψ |= ϕ, there exists
a set I(Ψ, ϕ) of QL-sentence such that

• sig(I(Ψ, ϕ)) ⊆ sig(Ψ) ∩ sig(ϕ);
• Ψ |= I(Ψ, ϕ);
• I(Ψ, ϕ) |= ϕ.

QL has interpolation if there always exists a finite set I(Ψ, ϕ) with these
properties. �
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For any compact1 query languageQL, weak interpolation implies interpolation. In-
terpolation has been investigated extensively in mathematical logic and for modal
logics closely related to DLs. For example, propositional logic, first- and second-
order logic, and basic modal logic have interpolation [13, 26]. Proofs of interpolation
for a variety of DLs are given in Appendix B.

The following proposition shows that weak interpolation implies robustness under
vocabulary extensions:

Proposition 2. SupposeL andQL are given and L ⊆ QL. IfQL has weak interpo-
lation, then (L,QL) is robust under vocabulary extensions.

Proof. Suppose O1 ≈QL
S O2 and let ϕ be a QL-sentence with sig(ϕ) ∩ sig(O1 ∪

O2) ⊆ S such that O1 |= ϕ. By weak interpolation, there exists an interpolant
I(O1, ϕ). From sig(I(O1, ϕ)) ⊆ S we obtainO2 |= I(O1, ϕ). Hence O2 |= ϕ. �

Theorem 15. Let L be any of the DLs ALC, ALCQ, ALCI , ALCQI, ALCU ,
ALCQU , ALCIU , ALCQIU . The following are robust under vocabulary exten-
sions:

1. (L,QLL);
2. (L′,QLFO), for any fragment L′ of first-order logic;
3. (L′,QLSO), for any fragment L′ of second-order logic.

Proof. By Proposition 9 of Appendix B, the mentioned languages QLL have inter-
polation and it thus remains to apply Proposition 2 to establish Point 1. Points 2
and 3 follow from Proposition 2 and the fact that first-and second order logic have
interpolation.

We state a partial converse of Proposition 2. An infinitary ontology is a finite or
infinite set of second-order sentences.

Proposition 3. Suppose (QL,QL) is robust under vocabulary extensions for infini-
tary ontologies. Then QL has weak interpolation.

Proof. AssumeO |= ϕ, whereO is a set ofQL-sentences and ϕ aQL-sentence. Set
S = sig(O) ∩ sig(ϕ) and

O′ = {ψ ∈ QL | O |= ψ, sig(ψ) ⊆ S}.

Then O |= O′ and O and O′ are S-inseparable w.r.t. QL. By robustness under vo-
cabulary extensions for infinitary ontologies,O andO′ are S′-inseparable w.r.t.QL,
where S′ = sig(ϕ). From O |= ϕ we obtain O′ |= ϕ. Hence I(O, ϕ) = O′ is as
required. �

1 QL is compact if Ψ |= ϕ implies that there exists a finite subset Ψ ′ of Ψ such that Ψ ′ |= ϕ.
First-order logic and its fragments are compact. Second-order logic and first-order logic
over finite models are not compact.
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An interesting logic which is robust under vocabulary extension but does not have
interpolation is first-order logic over finite models. One can easily show weak inter-
polation for this logic, and, therefore, robustness under vocabulary extensions. The
argument for failure of interpolation is as follows: using a binary predicate symbol
< and a unary predicate symbol red, one can write a finite set O1 of first-order sen-
tences that is satisfied exactly in those finite models which have an even number of
points (state that < is a linear order, exactly every second point is red, and the first
and last point have distinct colours). Use a different binary relation symbol <′ and
unary predicate green for a finite set O2 of first-order axioms which is satisfied ex-
actly in finite models with an odd number of points. ThenO1 |=fin ¬

∧
O2, but there

does not exist a finite interpolant.

2.6.3 Robustness under Joins and Interpolation

We discuss the relation between robustness under joins and interpolation. For
(QLFO,QLFO), robustness under joins is easily seen to be equivalent to the well-
known Robinson joint consistency property [13]: if T1 and T2 are consistent first-
order theories both extending an S-complete theory T0 with sig(T0) ⊆ S (i.e.
T0 |= ϕ or T0 |= ¬ϕ for all ϕ over S) and sig(T1) ∩ sig(T2) ⊆ S, then T1 ∪ T2

is consistent. As this property is known to be closely related to interpolation, it is no
surprise that robustness under joins is closely related to interpolation as well.

Proposition 4. LetL ⊆ QL and assume thatQL is closed under Boolean operators.
IfQL has weak interpolation, then (L,QL) is robust under joins.

Proof. SupposeQL has weak interpolation,O1 andO2 are S-inseparable w.r.t.QL
and sig(O1) ∩ sig(O2) ⊆ S. Assume O1 ∪ O2 |= ϕ where sig(ϕ) ⊆ S. Then

O1 |=
∧
O2 → ϕ.

Take an interpolant I(O1,
∧
O2 → ϕ) and observe that its signature is contained in

S. Then O2 |= I(O1,
∧
O2 → ϕ), by S-inseparability of O1 and O2 w.r.t. QL and

the assumption thatQL is closed under Boolean operators. HenceO2 |=
∧
O2 → ϕ.

But thenO2 |= ϕ. �

Theorem 16. Let L be any of the DLs ALC, ALCQ, ALCI , ALCQI, ALCU ,
ALCIU , ALCQU , ALCQIU . The following are robust under joins.

1. (L,QLL);
2. (L′,QLFO), for any fragment L′ of first-order logic;
3. (L′,QLSO), for any fragment L′ of second-order logic.

Proof. Using Proposition 4, Points 2 and 3 follow from the fact that first- and second-
order logic have interpolation and are closed under Boolean operators. For ALC,
ALCQ, ALCI and ALCQI, robustness under joins is proved in Proposition 10 of
Appendix A.
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It remains to show robustness under joins for LU if L is any of ALC, ALCI ,
ALCQ, ALCQI. By Proposition 9 of Appendix B, QLLU has interpolation. As
QLLU and QLB

L have the same expressive power (see Section 2.6.1), QLB
L has

interpolation. Hence, by Proposition 4, (QLB
L ,QLB

L ) is robust under joins. Once
more sinceQLLU andQLB

L have the same expressive power, (LU ,QLLU) is robust
under joins. �

The following is a partial converse of Proposition 4.

Proposition 5. Let QL be a fragment of first-order logic closed under Boolean op-
erators such that (QL,QL) is robust under joins for infinitary ontologies. ThenQL
has interpolation.

Proof. Suppose O |= ϕ. Let S = sig(O) ∩ sig(ϕ) and

Ψ0 = {ψ ∈ QL | sig(ψ) ⊆ S,O |= ψ}.

We show that Ψ0 is an interpolant for (O, ϕ). Assume not. Then Ψ0∪{¬ϕ} is satisfi-
able. Take a model I satisfying Ψ0∪{¬ϕ} and denote byO′ the set ofQL-sentences
ψ with sig(ψ) ⊆ S which are true in I. Then both O′ ∪ O and O′ ∪ {¬ϕ} are S-
conservative extensions ofO′ w.r.t.QL. By robustness under joins,O′ ∪O ∪ {¬ϕ}
is an S-conservative extension of O′ w.r.t. QL; in particular, it is consistent. Hence
O �|= ϕ and we have derived a contradiction. �

2.7 Uniform Interpolation and Forgetting

Assume that we want to re-use the information that an ontologyO provides about a
certain signature S in an application where only queries formulated in QL are rele-
vant. Then we have two options. The first is to extract an S-module, i.e., to identify
a subset O′ of O that is S-inseparable from O w.r.t. QL (or satisfies even stronger
conditions, cf. the other possible definitions of a module). In this approach, which is
pursued in [27, 14], the extracted module may also contain symbols not in S. The
second option is to construct a new ontologyOS that contains only symbols from S
and has the same consequences in QL over S as O in the sense that O and OS are
S-inseparable w.r.t.QL. Whether such an ontologyOS exists and can be effectively
constructed depends on the ontology language used, the signature S and the query
languageQL. This problem has been studied by different research communities un-
der various names such as forgetting [33, 42, 49], uniform interpolation [41, 22, 48]
and variable elimination.

Definition 13 (Uniform Interpolation (Forgetting)). (L,QL) has uniform interpo-
lation if for every L-ontologyO and signature S there exists an L-ontologyOS with
sig(OS) ⊆ S such that O ≈QL

S′ OS for all S′ with sig(O) ∩ S′ ⊆ S. In this case,
OS is called a S-uniform interpolant of O w.r.t. (L,QL). �
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Note that if (QL,QL) has uniform interpolation, thenQL has interpolation: assume
that O |= ϕ and let S = sig(O) ∩ sig(ϕ). Then O |= OS and OS |= ϕ. Thus, OS is
an interpolant. This explains the name uniform interpolant as it is an interpolant that
does not depend on the right hand side of the consequence.

In the context of forgetting, it can also be sensible to define uniform interpola-
tion in a slightly less strict way, namely by demanding inseparability only w.r.t. S
rather than the signatures S′ used in Definition 13. By Proposition 2, this definition
is equivalent to the stronger one ifQL has interpolation.

There is an intimate connection between the computation of S-uniform inter-
polants and deciding S-inseparability. In particular, if (L,QL) has uniform inter-
polation, then S-inseparability of L-ontologies O and O′ w.r.t. QL can be decided
by first computing S-uniform interpolants OS of O w.r.t. (L,QL) and O′

S of O′

w.r.t. (L,QL), and then checking whetherO′
S |= ϕ for all ϕ ∈ OS and OS |= ϕ for

all ϕ ∈ O′
S .

It is easy to see that (QLSO,QLSO) has uniform interpolation: given an ontology
O in second-order logic and a signature S, let OS consist of the sentence

∃S1. · · · ∃Sn.
∧
O,

where {S1, . . . , Sn} = sig(O) \ S. Then OS is a uniform interpolant. We now in-
vestigate uniform interpolants for weaker languages.

Example 12. Let

O = {Hand � Body part,Body part � Physical object}

and S = {Hand,Physical object}. Then OS = {Hand � Physical object} is an
S-uniform interpolant of O w.r.t. any of the query languages QL considered in this
paper. �

Example 13. Let

O = {Human � ∃child of.Male}, S = {Human,Male}

Then OS = {Human � ∃u.Male} is an S-uniform interpolant of O w.r.t. any query
language with expressivity between QLALCU andQLSO . �

Theorem 17. Let L be any of the DLs ALC, ALCQ, ALCI , ALCQI, ALCU ,
ALCIU , ALCQU , ALCQIU . Then for every L-ontology O and every signature
S that consists of concept names, there exists an S-uniform interpolant of O w.r.t.
(L,QLL).

Proof. By Theorem 15, all (L,QLL) are robust under vocabulary extensions. Thus,
it is sufficient to show that there is an ontologyOS with O ≈QLL

S OS . The set

O′
S = {C � D | O |= C � D, C, D LS-concepts}.

is our starting point. It has the required property, but may be infinite.
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Assume first that L does not contain the universal role. Then, since S does not
contain any roles, every concept C from O′

S is equivalent to some Boolean expres-
sion over S. As there are only finitely many non-equivalent such expressions, we
obtain a finite set OS ⊆ O′

S which is S-inseparable from O′
S w.r.t. QLL. OS is as

required.
Now assume that L contains the universal role. Then every LS-concept S can

be regarded as a formula of modal logic S5. It is known (and straightforward to
prove) that there are only finite many non-equivalent S5-formulas in a given number
of variables. Hence, again, we obtain a finite set OS ⊆ O′

S which is S-inseparable
fromO′

S w.r.t.QLL. OS is as required. �

It seems worthwhile to point out that uniform interpolants may be large: the smallest
such OS from Theorem 17 can be of size exponential in O [28]. In [28], it is proved
that none of the combinations (L,QLL) from Theorem 17 has uniform interpolation.

Theorem 18. Let L be any of the DLs ALC, ALCQ, ALCI , ALCQI, ALCU ,
ALCIU ,ALCQU ,ALCQIU . Then (L,QLL) does not have uniform interpolation.

Proof. For the ALC-ontology O and signature S given in the proof of Lemma 6
of [28] there does not exist a FO-ontology OS with sig(OS) ⊆ S such that O and
OS are S-inseparable w.r.t. QL, for any of the query languagesQL listed above. �

It follows from the proof of Theorem 18 that (QLFO,QLFO) does not have uniform
interpolation. We still provide a direct proof.

Proposition 6. (QLFO,QLFO) does not have uniform interpolation.

Proof. Let O be an axiomatisation of the theory of dense linear-orders using the
binary relation symbol <. Each model of O has an infinite domain, O therefore
implies ϕn = ∃x1 · · · ∃xn

∧
i�=j xi �= xj , for all n ≥ 1. But there does not exist a

finite and consistent set of first-order axioms over the empty signature which implies
all ϕn, n ≥ 1. �

We have seen that standard DLs and first-order logic do not have uniform interpo-
lation. This defect can be cured by adding second-order quantification. We briefly
discuss the extensionALCμ ofALCthat has uniform interpolation.ALCμ-concepts
C are defined as follows. Let V be an infinite set of concept variables. Then

• every ALC-concept, possibly with some concept names replaced with concept
variables, is an ALCμ-concept;

• if C is an ALCμ-concept in which X ∈ V occurs positively (under an even
number of negations), then μX.C is an ALCμ-concept.

To assign a semantics to ALCμ-concepts, an interpretation is combined with an as-
signment τ : V → 2ΔI

. Then the extension (μX.C)I,τ of μX.C is defined as

(μX.C)I,τ =
⋂
{S ⊆ ΔI | CI,τ ′ ⊆ S, τ ′(X)=S, for all Y �= X : τ ′(Y ) = τ(Y )}.

A closed ALCμ-concept is a ALCμ-concept without free concept variables. An
ALCμ-ontology is a finite set of implications C � D, where C and D are closed
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ALCμ-concepts. Other notions are now defined in the same way as for ALC.
ALCμ is a very powerful description logic in which subsumption is still EXPTIME-
complete. We refer the reader to [7, 3] for further information.

The following result can now be proved using uniform interpolation results for
the modal μ-calculus from [18].

Theorem 19. (ALCμ,QLALCμ) has uniform interpolation.

2.8 Weaker Description Logics and Acyclic TBoxes

So far, we have concentrated on extensions of ALCand ontologies that are sets of
implications between concepts or even first- and second-order sentences. In this sec-
tion, we have a brief look at what happens if we consider weaker DLs and/or a weaker
form of ontology called an acyclic ontology.

2.8.1 EL
EL and its extensions form a family of lightweight description logics that are popular
for the formulation of large medical and biological ontologies such as SNOMED CT.
Technically, EL is the fragment ofALCthat admits only the constructorsC �D and
∃r.C and EL-ontologies are finite sets of implicationsC � D between EL-concepts
C,D. In EL, subsumption and a number of other relevant reasoning tasks can be
solved in polynomial time [2]. Note that every EL-ontology is satisfiable and thus
subsumption is not reducible to satisfiability and the query languageQL⊥ does not
separate any EL-ontologies.

In the following, we briefly summarise what is known about modularity of EL-
ontologies. The query languages QLEL, QLI

EL, and QLq
EL are defined in the same

way as the corresponding query languages for ALC, except that all involved con-
cepts have to be formulated in EL. The following theorem summarises the results
for inseparability in EL obtained in [37, 28, 38]:

Theorem 20

(i) S-inseparability w.r.t.QLI
EL coincides with S-inseparability w.r.t.QLEL but does

not coincide with S-inseparability w.r.t.QLq
EL.

(ii) For QL any of QLEL, QLI
EL,QLq

EL:

• S-inseparability w.r.t.QL is EXPTIME-complete.
• (EL,QL) is robust under signature extensions and joins, but not under replace-

ment.
• (EL,QL) does not have uniform interpolation.

(iii) Semantic conservativity is undecidable for EL-ontologies.

Many interesting problems remain open for EL. For example, nothing is known
about the minimal query language extendingQLEL and robust under replacement.
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2.8.2 DL-Lite

The DL-Lite family of description logics consists of lightweight languages whose
main application is to describe constraints over data repositories. In contrast to other
DLs, data complexity of query answering is within LOGSPACE for most members of
the family, and conjunctive queries over ontologies and ABoxes can be effectively
rewritten as SQL queries so that standard database query engines can be used for
query answering [9, 10, 1].

Modularity properties and the complexity of corresponding reasoning problems
have been investigated in [29, 30] for the dialects DL-Litebool and DL-Litehorn. It turns
out that those languages are rather well-behaved. We summarise here the behaviour of
DL-Litebool and refer to [30] for information about DL-Litehorn. DL-Litebool concepts
are constructed from NC and NR using the Boolean operators,� and¬, and unqualified
number restrictions (≥ n r) and (≤ n r), where r is a role name or its inverse.
A DL-Litebool ontology is a finite set of implications between DL-Litebool-concepts.
The query languagesQLDL-Litebool andQLq

DL-Litebool
are defined in the same way as the

corresponding query languages forALC, except that now all concepts involved range
over DL-Litebool concepts. The following theorem summarises what is known about
DL-Litebool [30]:

Theorem 21. Let (L,QL) = (DL-Litebool,QLDL-Litebool). Then the following holds:

• S-inseparability w.r.t.QL is Πp
2 -complete;

• (L,QL) is robust under vocabulary extensions and joins, but not under replace-
ment;

• (L,QL) has uniform interpolation.

Let (L,QL) = (DL-Litebool,QLq
DL-Litebool

). Then the following holds:

• S-inseparability w.r.t.QL is Πp
2 -complete;

• (L,QL) is robust under vocabulary extensions, joins and replacement.

For results on uniform interpolation of (DL-Lite,QLq
DL-Litebool

), we once more refer
to [30]. Experimental results on deciding S-inseparability using QBF-solvers are
also reported in [30].

2.8.3 Acyclic Ontologies

For a description logic L, an acyclic L-ontology O is a finite set of expressions
A ≡ C and A � C, A a concept name, such that

• no concept name occurs twice on the left hand side and
• the relation≺O ⊆ NC×NC, defined by (A,B) ∈ ≺O iffB occurs in C for some

A ≡ C ∈ O or A � C ∈ O, is acyclic.

We refer the reader to [3] for more information. Many ontologies from practical
applications are acyclic, including such prominent cases as SNOMED CT. In this
section, we discuss the impact on S-inseparability and modularity of switching from
general ontologies as used so far to acyclic ones.
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For members of the EL family of DLs, this switch can significantly reduce the
complexity of reasoning about inseparability and may enable desirable features such
as uniform interpolation. In particular, it has been shown that

• S-inseparability of acyclic EL-ontologies w.r.t. QLEL is tractable, in contrast
to EXPTIME-hardness for general EL-ontologies [28]. Experiments show that
S-inseparability of distinct versions of the huge SNOMED CT ontology can be
swiftly decided in practice.

• deciding whether O2 is a semantic S-conservative extension of O1 is tractable
for acyclic EL-ontologies O1,O2 and signatures S ⊇ sig(O1), in contrast to
undecidability for general EL-ontologies [27]. An efficient module extraction
algorithm based on this result has been implemented and successfully used with
SNOMED CT.

As already mentioned, another benefit of acyclic ontologies over general ones is
uniform interpolation. While (EL,QLEL) does not admit uniform interpolation, an
S-uniform interpolant w.r.t. (EL,QLEL) exists for every acyclic EL-ontologyO and
signature S [28].

For expressive DL such as ALC, acyclicity of ontologies typically does not yield
any benefits. For example, it is still Π1

1 -hard to decide whether an acyclic ALC-
ontology is a semantic S-conservative extension of an empty ontology [27] and even
for acyclic ALC-ontologies and signatures S there does not always exist a uniform
S-interpolant w.r.t. (ALC,QLALC) [28].

2.9 Conclusion

We have investigated the notion of inseparability of ontologies w.r.t. a query lan-
guage. As argued in the introduction and throughout the paper, this notion is central
to logic-based approaches to modularity of ontologies. In particular, inseparability is
commonly used to define independence of a module inside an ontology, and it can
also be employed to understand and control the ramifications of re-using an ontol-
ogy within another ontology. We have argued that the notion of inseparability has
to be parameterised by a query language, and have identified three important meta-
properties of inseparability: robustness under vocabulary extension, under joins, and
under replacement. We have also investigated the relationship between these proper-
ties and interpolation, and discussed the computation complexity of deciding insepa-
rability. Finally, be have briefly touched upon the relationship between inseparability
and forgetting/uniform interpolation. Numerous technical problems are still open. To
mention a few, the robustness properties and computational complexity of insepara-
bility w.r.t. the query languages QLq

L defined in terms of conjunctive queries have
not yet been investigated in any detail for DLs above ALC. Also, ‘positive’ results
for forgetting/uniform interpolation have been established only for very lightweight
fragments of ALC.

The theory developed in this paper has been evaluated in practice for ontologies
formulated in the lightweight description logics EL and DL-Lite, with rather promis-
ing results [28, 30, 27]. In contrast, no ‘practical’ algorithms or experimental results
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have yet been obtained for deciding inseparability between ontologies formulated in
more expressive languages such as ALC. Thus, it remains to be explored whether
deciding inseparability in such languages is feasible in practice, or whether more
pragmatic approaches such as the locality-based one of [16] are the only feasible
logic-based way to approach inseparability of ontologies formulated in expressive
DLs.

We have confined our investigation to specific ontology and query languages, all
of them fragments of second-order logic. In general, it would be interesting to de-
velop a more general framework that allows to integrate ontologies formulated in
(almost) arbitrary languages, covering, for example, non-classical logics, algebraic
formalisms and non-monotonic languages. In software specification, the notion of
institutions provides such a framework [24] and, recently, institutions have been pro-
posed as a tool to investigate the modularity of ontologies [32, 35, 43]. However, a
lot of work remains to be done. For example, the important distinction between query
and ontology language has not yet been made explicit in the institutions approach.
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A Deferred Proofs for Section 2.5

Proposition 7. Neither (ALCO,QLALCO) nor (ALCH,QLALCH) is robust under
joins.

Proof. We start with ALCO. Let O0 = {� � ∃r.�} and

O1 = O0 ∪ {A � ∀r.¬A,¬A � ∀r.A}, O2 = O0 ∪ {{a} � ∃r.{a}}.

Then both, O1 and O2, are conservative extensions of O0 w.r.t. QLALCO . On the
other hand,O1 ∪ O2 is inconsistent. It follows that O1 ≈ALCO

S O2 for S = {r} but
O1 ∪ O2 �≈ALCO

S O2.
For ALCH take

O0 = {� � ∀ri∀rj .⊥ | i, j = 1, 2} ∪ {∃r1.� ≡ ∃r2.�},

O1 = O0 ∪ {s � r1, s � r2, ∃r1.� � ∃s.�},

and
O2 = O0 ∪ {∃r1.� � ∀r1.B � ∀r2.¬B}

Then O1 and O2 are conservative extensions of O0 w.r.t. QLALCH. Hence O1 and
O2 are S-inseparable w.r.t. QLALCH for S = {r1, r2}.

On the other hand,O1 �|= ∃r1⊥ � ⊥ and O1 ∪ O2 |= ∃r1.� � ⊥ and, therefore,
O1 and O1 ∪O2 are nor S-inseparable w.r.t. QLALCH. �

Theorem 4. Let L be any of the DLsALC, ALCI, ALCQ, ALCQI, S a signature,
and assume that O1 and O2 contain only roles from S. Then

O1 ≈QLL
S O2 implies O1 ∪ O ≈QLL

S O2 ∪ O,

for all L-ontologiesO with sig(O) ∩ sig(O1 ∪ O2) ⊆ S.

Proof. We give a sketch for the case L = ALC. Let O1 ≈QLL
S O2 and assume that

O1 ∪ O |= C0 � D0, where sig(O) ∩ sig(O1 ∪ O2) ⊆ S and sig(C0 � D0) ⊆ S.
Let S′ = S ∪ sig(O). By robustness under vocabulary extensions, O1 ≈QLL

S′ O2.
Let

Γ = {∀r1. · · · ∀rn.(¬C �D) | C � D ∈ O, ri ∈ S′, n ≥ 0}.

Using the condition that there are no additional roles inO1, it is not difficult to show
that d ∈ (¬C0 �D0)I for every model I ofO1 and d ∈ ΔI such that d ∈ EI for all
E ∈ Γ . By compactness, there exists a finite subset Γ ′ of Γ with the same property.
It follows that

O1 |=
�
Γ ′ � C0 � D0

from which we obtain O2 |=
�
Γ ′ � C0 � D0. Since O |= � �

�
Γ ′, this implies

O2 ∪ O |= C0 � D0. �
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B Interpolation

We provide a proof of the interpolation property and robustness under joins for basic
DLs. Interpolation has been extensively investigated for many modal logics closely
related to DLs [40], and also for some description logics [12]. However, one has
to be careful when transferring interpolation results from modal logic to DL: most
interpolation results in modal logic regard modal operators as logical symbols and
thus not as a part of the signature. This implies that even if the input formulas Ψ or
ϕ do not contain a modal operator �, this operator is nevertheless permitted in the
interpolant for Ψ and ϕ. In DLs, the corresponding constructor ∀r is not permitted in
the interpolant unless the role r occurs in Ψ or ϕ.

Let L be a DL. For an interpretation I, point d ∈ ΔI and signature S, we set

tL,S
I (d) = {C | d ∈ CI , C an LS-concept}.

We say that two points d1 and d2 from possibly distinct interpretations I1 and I2 are
L, S-equivalent, written (I1, d1) ∼L

S (I2, d2), if

tL,S
I1

(d1) = tL,S
I2

(d2).

We drop the L and write d1 ∼S d2 instead of (I1, d1) ∼L
S (I2, d2) if I1, I2 and L

are understood. A mapping f from ΔI1 to ΔI2 is called S-invariant iff x ∼S f(x)
for all x in the domain of f .

Proposition 8. Let L be any of the DLs ALC, ALCQ, ALCI, ALCQI, ALCU ,
ALCQU , ALCIU , or ALCQIU . Let Ψ1 and Ψ2 be sets of QLL-sentences and S a
signature such that sig(Ψ1)∩ sig(Ψ2) ⊆ S. Assume there are models I1 and I2 of Ψ1

and Ψ2, respectively, such that

(a) for all LS-concepts C: CI1 �= ∅ iff CI2 �= ∅.
Then there exists a model I of Ψ1 ∪ Ψ2 such that

• for all LS-concepts C: CI �= ∅ iff CI1 �= ∅ iff CI2 �= ∅.
If, in addition,

(b) there are points d1 ∈ ΔI1 and e1 ∈ ΔI2 such that d1 ∼L
S e1,

then I contains a point d satisfying

• tL,S1
I (d) = tL,S1

I2
(e1), where S1 = S ∪ ((NC ∪ NR) \ sig(Ψ1)) and

• tL,S2
I (d) = tL,S2

I1
(d1), where S2 = S ∪ ((NC ∪ NR) \ sig(Ψ2)).

Proof. LetL be any of the eight DLs listed in the proposition. We assume thatL con-
tains inverse roles (the prove for DLs without inverse rules is simpler and is easily
obtained from the proof below). Let I1 and I2 be interpretations satisfying condi-
tion (a). We use a standard construction from model theory. Consider the disjoint
union I0 of I1 and I2:

I0 = (ΔI1 ∪ΔI2 , AI0
1 , AI0

2 , ·I1 , ·I2),
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where we assume that ΔI1 ∩ΔI2 = ∅ and that AI0
i = ΔIi for fresh concept names

Ai, i = 1, 2. Then I0 is elementarily equivalent to an interpretation I ′0, which is
countably recursively saturated [13]. This means that, if every finite subset of a re-
cursive set of first-order formulas is satisfied in I′0, then the recursive set itself is
satisfied in I ′0. We will not go into the details of this construction but will use the
following consequences: by taking, instead of I1 and I2, the corresponding substruc-

tures I ′1 and I ′2 (induced byAI′
0

1 andAI′
0

2 ) of I ′0, we obtain interpretations which still
satisfy condition (a) of Proposition 8 and have, in addition, the following properties:

1. For each d1 ∈ ΔI′
1 , there exists d2 ∈ ΔI′

2 such that (I ′1, d1) ∼L
S (I ′2, d2) and

vice versa;
2. if (I ′1, d1) ∼L

S (I ′2, d2) and (d1, e1) ∈ rI
′
1 with r ∈ S, then there exists e2 ∈

ΔI′
2 with (d2, e2) ∈ rI

′
2 and (I ′1, e1) ∼L

S (I ′2, e2);
3. if (I ′1, d1) ∼L

S (I ′2, d2) and (d2, e2) ∈ rI
′
2 with r ∈ S, then there exists e1 ∈

ΔI′
1 with (d1, e1) ∈ rI

′
1 and (I ′1, e1) ∼L

S (I ′2, e2);
4. if (I ′1, d1) ∼L

S (I ′2, d2) and r ∈ S ∪ S− and L contains number restrictions,
then there exists an S-invariant bijection between {d | (d1, d) ∈ rI

′
1} and {e |

(d2, e) ∈ rI
′
2}.

Intuitively, for Point 4 above, we need number restrictions in L, because, without
them, DLs are too weak to determine the number of r-successors of a node. In what
follows, we use I1 and I2 to denote I ′1 and I ′2, respectively. If condition (b) of
Proposition 8 is satisfied, then take d1 and e1 satisfying (b). Otherwise, take arbitrary
S-equivalent points d1 ∈ ΔI1 and e1 ∈ ΔI2 , which exist by Point 1 above. We
unravel the model I1 starting from d1 as follows: take infinitely many copies di,
i ≥ 0, of each d ∈ ΔI1 and define J1 by taking as the domain ΔJ1 the set of all
finite sequences

(d1, r2, d
i2
2 , r3, d

i3
3 , · · · , rn, din

n ),

where di ∈ ΔI1 , ri ∈ NR ∪ NR
− ∪ {δ} (with δ being some fresh “dummy” relation

symbol) and ij ≥ 0 for j ≥ 2, such that the following conditions hold:

(i) ij = 0 whenever rj ∈ NR ∪ NR
− and L contains qualified number restrictions;

(ii) (di, di+1) ∈ rI1
i+1 whenever ri ∈ NR ∪ NR

−;
(iii)di �= di+2 whenever ri+1 = (ri+2)− and L contains qualified number restric-

tions.

The interpretation function ·J1 of J1 is defined as follows:

• (d1, r2, d
i2
2 , · · · , rn, din

n ) ∈ AJ1 iff dn ∈ AI1 , for all A ∈ NC;
• for all r ∈ NR, rJ1 consists of all pairs

((d1, r2, d
i2
2 , · · · , rn, din

n ), (d1, r2, d
i2
2 , · · · , rn, din

n , rn+1, d
in+1
n )) ∈ ΔJ1×ΔJ1 ,

where rn+1 = r, and

((d1, r2, d
i2
2 , · · · , rn, din

n , rn+1, d
in+1
n ), (d1, r2, d

i2
2 , · · · , rn, din

n )) ∈ ΔJ1×ΔJ1

with rn+1 = r−.
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It is not difficult to show, that (d1, r2, d
i2
2 , · · · , rn, din

n ) ∼NC∪NR
dn, for every

dn ∈ ΔI1 . Observe that conditions (i) and (iii) ensure that, if L contains qual-
ified number restrictions, then the number of r-successors of any point in ΔI1 ,
r ∈ NC ∪ NC

−, satisfying a certain set of concepts remains the same. In contrast, if
L does not contain qualified number restrictions, then we introduce infinitely many
copies di of any r-successor. The reason is that later we want to amalgamate the
unravellings of I1 and I2, and, therefore, need the same number of r-successors sat-
isfying the same LS-concepts in both unravellings. Construct J2 from I2 and the
point e1 in the same way.

We define an S-isomorphism ρ between J1 and J2 as the union of partial S-
isomorphisms ρ0 ⊆ ρ1 ⊆ ρ2 ⊆ . . ., where

• ρn is an S-isomorphism between the restrictions of J1 and J2 to the points of
length not exceeding n; i.e., points (d1, r2, d

i2
2 , . . . , d

im
m ) ∈ ΔJ1 , and (e1, r2, ei2

2 ,
. . . , eim

m ) ∈ ΔJ2 , where m ≤ n;
• for each w ∈ dom(ρn): w ∼S ρn(w).

The sequence of partial S-isomorphisms is inductively defined as follows. For the
induction base, set ρ1((d1)) = (e1). Consider the induction step. Suppose that ρn

has been defined. Assume ρn(w1) = w2, where

w1 = (d1, r2, d
i2
2 , . . . , rn, d

in
n ), and

w2 = (e1, s2, e
j2
2 , . . . , sn, e

jn
n ).

Observe that rn ∈ S ∪ S− implies sn = rn since ρn is a partial S-isomorphism.
Now ρn+1 is defined by adding, for each (w1, w2), the following pairs to ρn:

• If r ∈ S ∪ S− with rn �= r− and L contains qualified number restrictions, we
can take (by Point 4 above) an S-invariant bijection b between the rI1-successors
of dn and the rI2 -successors of en and extend ρn with the set

{((w1, r, d
0), (w2, r, b(d)0) | (dn, d) ∈ rI1}.

• If r ∈ S ∪ S− with rn = r− and L-contains qualified number restrictions,
consider the sets

B1 = {d | (dn, d) ∈ rI1} \ {dn−1} and B2 = {e | (en, e) ∈ rI2} \ {en−1}.

We have dn−1 ∼S en−1. Hence, by Point 4 above, there exists an S-invariant
bijection b between B1 and B2. Extend ρn with the set

{((w1, r, d
0), (w2, r, b(d)0) | d ∈ B1}.

• If r ∈ S ∪ S− and L does not contain qualified number restrictions, we find (by
Points 2 and 3) a bijection b between the sets

B1 =
⋃

i≥0

{di | (dn, d) ∈ rI1} and B2 =
⋃

i≥0

{ei | (en, e) ∈ rI2}

such that b(di) = ej implies d ∼S e. Extend ρn with the set

{((w1, r, d), (w2, r, b(d))) | d ∈ B1}.
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• Finally, take an S-invariant bijection b between the remaining points (w1, rn+1,
di

n+1) of ΔJ1 and (w2, sn+1, e
i
n+1) of ΔJ2 . This is possible, because of Point 1

above and the introduction of the dummy relation symbol δ, which ensures
that, for each d ∈ ΔI1 , there are infinitely many (w1, δ, d

i) ∈ ΔJ1 with
d ∼L

S (w1, δ, d
i), and, correspondingly, for e ∈ ΔJ2 . Add b to ρn.

The mapping ρ =
⋃

n≥1 ρn is an S-isomorphism between J1 and J2. The required
model I is now constructed by taking the model J1 but interpreting the A ∈ NC ∩
sig(Ψ2) as ρ−1(AJ2) and the r ∈ NR ∩ sig(Ψ2) as ρ−1(rJ2 ). �

Proposition 9. Let L be any of the languages ALC, ALCQ, ALCI, ALCQI,
ALCU , ALCQU , ALCIU , ALCQIU . ThenQLL has interpolation.

Proof. Let L be any of the DLs listed in the proposition. Assume that there exists a
set Ψ of QLL-sentences and L-concepts C0, D0 with Ψ |= C0 � D0 such that there
does not exist an interpolant I(Ψ,C0 � D0). Let S = sig(Ψ) ∩ sig(C0 � D0) and

ΨS = {C � D | Ψ |= C � D, sig(C � D) ⊆ S}.

Then Ψ |= ΨS and ΨS �|= C0 � D0, by compactness. Take a model I ′2 of ΨS

with e1 ∈ (C0 � ¬D0)I
′
2 . Take a model I ′1 of Ψ containing a point d1 such that

(I ′1, d1) ∼L
S (I ′2, e1). The existence of such a model follows again by compactness.

Now the proof splits into two parts.
(i) Assume first that L contains the universal role. Then, for all LS-concepts C,

CI′
2 = ∅ iff CI′

1 = ∅, because d1 ∈ (∃u.C)I1
′

iff e1 ∈ (∃u.C)I2
′
. It follows that,

for Ψ1 = Ψ and Ψ2 = ∅, the models I ′1 and I ′2 and points d1 and e1 satisfy the
conditions of Proposition 8. We obtain a model I of Ψ such that (C0 � ¬D0)I �= ∅.
Hence Ψ �|= C0 � D0 and we have derived a contradiction.

(ii) Assume now that L does no contain the universal role. Let

C = {C | C a LS-concept with Ψ �|= C � ⊥}

and take for each C ∈ C a model IC of Ψ such that CIC �= ∅. Let I1 be the disjoint
union of the models I ′1 and IC , C ∈ C. Correspondingly, let I2 be the disjoint
union of the models I ′2 and IC , C ∈ C. Again, I1, I2, d1, e1 satisfy the conditions
of Proposition 8 for Ψ1 = Ψ and Ψ2 = ∅. Hence there exists a model I of Ψ with
(C0 � ¬D0)I �= ∅ and we have derived a contradiction. �

Proposition 10. Let L be any of the languagesALC,ALCQ,ALCI ,ALCQI . Then
(L,QLL) is robust under joins.

Proof. Fix a DLL from the proposition. LetO1 andO2 beL-ontologies. AssumeO1

and O2 are S-inseparable w.r.t.QLL with sig(O1) ∩ sig(O2) ⊆ S. Let, for i = 1, 2,

Ci = {C | C a LS-concept with Oi �|= C � ⊥}.
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By S-inseparability, C1 = C2. Take, for each C ∈ C1, a model I1
C of O1 such that

CI1
C �= ∅ and let I1 be the disjoint union of the models I1

C , C ∈ C1. Similarly,
take, for each C ∈ C1, a model I2

C of O2 such that CI2
C �= ∅ and let I2 be the

disjoint union of the models I2
C , C ∈ C1. Then I1 and I2 satisfy the conditions of

Proposition 8 for Ψ1 = O1 and Ψ2 = O2. Hence, there exists a model I of O1 ∪ O2

such thatCI �= ∅wheneverC ∈ C1. It follows thatO1∪O2 andOi are S-inseparable
w.r.t.QLL, i = 1, 2. �
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Summary. While many authors have argued for the benefits of applying principles of modu-
larization to ontologies, there is not yet a common understanding of how modules are defined
and what properties they should have. In the previous section, this question was addressed
from a purely logical point of view. In this chapter, we take a broader view on possible criteria
that can be used to determine the quality of a modules. Such criteria include logic-based, but
also structural and application-dependent criteria, sometimes borrowing from related fields
such as software engineering. We give an overview of possible criteria and identify a lack of
application-dependent quality measures. We further report some modularization experiments
and discuss the role of quality criteria and evaluation in the context of these experiments.

3.1 Introduction

Problems with large monolithical ontologies in terms of reusability, scalability and
maintenance have lead to an increasing interest in techniques for extracting mod-
ules from ontologies. Currently, existing work suffers from the fact that the notion
of modularization is not as well understood in the context of ontologies as it is in
software engineering. While there is a clear need for ontology modularization, there
are no well-defined and broadly accepted ideas about the criteria that define a good
module. As a result, several approaches have been recently used to extract modules
from ontologies, each of them implementing its own intuition about what a module
should contain and what should be its qualities. In addition, a number of formal and
informal modularization criteria have been proposed that are strongly influenced by
certain use cases for modularization. This lack of consensus about quality criteria
hinders the development of the field as a whole. On one hand, it is difficult to take
up the results of the field outside itself because of a lack of guidelines about which
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technique to choose under which circumstances. On the other hand, within the field,
it is impossible to compare the various techniques to each other.

Our hypothesis is that there is no universal way to modularize an ontology and
that the choice of a particular technique or approach should be guided by the re-
quirements of the application or scenario relying on modularization. In fact, we have
already observed a strong correspondence between the two major use cases in which
modularization is needed and the two types of techniques that are used [7]. First, we
distinguish scenarios where a large, monolithic ontology needs to be split up in order
to allow its easier maintenance and use (e.g., by using reasoners and visualization
tools). Accordingly, a significant group of techniques reported in the literature per-
form ontology partitioning by dividing an ontology into a set of significant modules
that together form the original ontology [11, 6, 15]. The second class of scenarios,
geared towards selective use and reuse, are those where a smaller part of an ontology
that covers certain aspects of the domain is identified as a basis for a specific ap-
plication. Candidate parts for reuse need to be small enough to be easily visualized
and integrated in other applications than the one they have been initially built for.
Module extraction techniques address such scenarios and refer to extracting a mod-
ule from an ontology to be used for a particular purpose, i.e. covering a particular
subvocabulary of the original ontology [14, 12, 7].

Based on the observation above, we believe that modularization criteria should
be defined in terms of the applications for which the modules are created. In the
remainder of this chapter, we survey existing criteria that can be used to evaluate
modularization. Our goal is to provide a framework for evaluating and comparing
modularization techniques according to application requirements, and so, a guide-
line to chose the right technique or combination of technique in a given scenario.
Accordingly, we describe a set of experiments in which we apply a number of modu-
larization techniques and analyze the results regarding the considered criteria. Also,
as our main hypothesis is that the evaluation of modularization depends on the appli-
cation requirements, these experiments are based a concrete applications scenario:
the selection of relevant knowledge in existing ontology to be used in annotation.

The goal is to characterize the requirements of this particular application using the
reviewed criteria and thus, to analyze the results of existing ontology modularization
techniques regarding these requirements. Looking at the results of these experiments,
we aim at better understanding the fundamental assumptions underlying the current
modularization techniques and thus, at providing the building blocks for a more com-
prehensive evaluation, helping the application developers in choosing the appropriate
technique and guiding the designers of techniques in further developments.

3.2 Use Cases for Modularization

The increasing awareness of the benefits of ontologies for information processing in
open and weakly structured environments has lead to the creation of a number of
such ontologies for real world domains. In complex domains such as medicine these
ontologies can contain thousands of concepts. Examples of such large ontologies are
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the NCI Thesaurus with about 27.500 and the Gene Ontology with about 22.000
concepts. Other examples can be found in the area of e-commerce where product
classification such as the UNSPSC or the NAICS contain thousands of product cate-
gories. While being useful for many applications, the size of these ontologies causes
new problems that affect different steps of the ontology life cycle.

Maintenance

Ontologies that contain thousands of concepts cannot be created and maintained by a
single person. The broad coverage of such large ontologies normally requires a team
of experts. In many cases these experts will be located in different organizations and
will work on the same ontology in parallel. An example for such a situation is the
Gene Ontology that is maintained by a consortium of experts.

Publication

Large ontologies are mostly created to provide a standard model of a domain to be
used by developers of individual solutions within that domain. While existing large
ontologies often cover a complete domain, the providers of individual solutions are
often only interested in a specific part of the overall domain. The UNSPSC classifi-
cation for example contains categories for all kinds of products and services while
the developers of an online computer shop will only be interested in those categories
related to computer hardware and software.

Validation

The nature of ontologies as reference models for a domain require a high degree of
quality of the respective model. Representing a consensus model, it is also important
to have proposed models validated by different experts. In the case of large ontologies
it is often difficult, if not impossible, to understand the model as a whole due to
cognitive limits. What is missing is an abstracted view on the overall model and its
structure as well as the possibility to focus the inspection of a specific aspect.

Processing

On a technical level, very large ontologies cause serious scalability problems. The
complexity of reasoning about ontologies is well known to be critical even for
smaller ontologies. In the presence of ontologies like the NCI Thesaurus, not only
reasoning engines but also modelling and visualization tools reach their limits. Cur-
rently, there is no modelling tool that can provide convenient modelling support for
ontologies of the size of the NCI ontology.

All these problems are a result of the fact that a large ontology is treated as a single
monolithic model. Most problems would disappear, if the overall model consists of
a set of coherent modules about a certain subtopic that can be used independently of
the other modules while still containing information about its relation to these other
modules.



70 M. d’Aquin et al.

3.3 Modularization Approaches

We consider an ontology O as a set of axioms (subclass, equivalence, instantiation,
etc.) and the signature Sig(O) of an ontologyO as the set of entity names occurring
in the axioms of O, i.e. its vocabulary.

In the following, we deal with several approaches for ontology modularization,
having different assumptions about the definition of an ontology module. The as-
sumption we adopt as a basis for our discussion is that a module is considered to be a
significant and self-contained sub-part of an ontology. Therefore, an moduleMi(O)
of an ontology O is also a set of axioms (an ontology), with the minimal constraint
that Sig(Mi(O)) ⊆ Sig(O). Note that, while it may often be desirable, it is not
always the case that Mi(O) ⊆ O.

3.3.1 Ontology Partitioning Approaches

The task of partitioning an ontology is the process of splitting up the set of axioms
into a set of modules {M1, · · · ,Mk} such that eachMi is an ontology and the union
of all modules is semantically equivalent to the original ontologyO. Note that some
approaches being labeled as partitioning methods do not actually create partitions,
as the resulting modules may overlap. There are several approaches for ontology
partitioning that have been developed for different purposes.

The approach of [11] aims at improving the efficiency of inference algorithms
by localizing reasoning. For this purpose, this technique minimizes the shared lan-
guage (i.e. the intersection of the signatures) of pairs of modules. A message passing
algorithm for reasoning over the distributed ontology is proposed for implementing
resolution-based inference in the separate modules. Completeness and correctness of
some resolution strategies is preserved and others trade completeness for efficiency.

The approach of [6] partitions an ontology into a set of modules connected by
E-Connections. This approach aims at preserving the completeness of local reason-
ing within all created modules. This requirement is supposed to make the approach
suitable for supporting selective use and reuse since every module can be exploited
independently of the others.

A tool that produces sparsely connected modules of reduced size was presented
in [15]. The goal of this approach is to support maintenance and use of very large
ontologies by providing the possibility to individually inspect smaller parts of the
ontology. The algorithm operates with a number of parameters that can be used to
tune the result to the requirements of a given application.

3.3.2 Module Extraction Approaches

The task of module extraction consists in reducing an ontology to the sub-part, the
module, that covers a particular sub-vocabulary. This task has been called segmenta-
tion in [14] and traversal view extraction in [12]. More precisely, given an ontology
O and a set SV ⊆ Sig(O) of terms from the ontology, a module extraction mech-
anism returns a module MSV , supposed to be the relevant part of O that covers the
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sub-vocabulary SV (Sig(MSV ) ⊇ SV ). Techniques for module extraction often
rely on the so-called traversal approach: starting from the elements of the input sub-
vocabulary, relations in the ontology are recursively “traversed” to gather relevant
(i.e. related) elements to be included in the module.

Such a technique has been integrated in the PROMPT tool [12], to be used in
the Protégé environment. This approach recursively follows the properties around a
selected class of the ontology, until a given distance is reached. The user can exclude
certain properties in order to adapt the result to the needs of the application.

The mechanism presented in [14] starts from a set of classes of the input ontology
and extracts related elements on the basis of class subsumption and OWL restrictions.
Some optional filters can also be activated to reduce the size of the resulting module.
This technique has been implemented to be used in the Galen project and relies on
the Galen Upper Ontology.

Inspired from the previously described techniques, [7] defines an approach for
the purpose of the dynamic selection of relevant modules from online ontologies.
The input sub-vocabulary can contain either classes, properties, or individuals. The
mechanism is fully automatized, is designed to work with different kinds of ontolo-
gies (from simple taxonomies to rich and complex OWL ontologies) and relies on
inferences during the modularization process.

3.4 Evaluation Criteria for Modularization

In the previous section, we have briefly presented a number of different approaches
for ontology partitioning and module extraction. In this section, we take a closer look
at different criteria for evaluating either the modularization resulting from the appli-
cation of a modularization technique or the system implementing the modularization
technique. Before that, we start by looking at criteria that have been adopted for the
classical notion of a module in software engineering.

3.4.1 Criteria from Software Engineering

The author of [9] reviews a set of features of software engineering modules with
respect to what is called in this chapter the requirements for logical modules. From
this analysis, two general criteria characterizing software engineering modules can
be considered: encapsulation and independence.

Encapsulation

Encapsulation refers to the distinction between the interface and the body (or im-
plementation) of a program in software engineering. This distinction does not really
apply when using Semantic Web technologies, but can be related to other notions like
substitutability and information hiding. Indeed, the fact that a module can be easily
exchanged for another, or internally modified, without side-effects on the application
can be a good indication of the quality of the module. Module extraction techniques



72 M. d’Aquin et al.

are intrinsically related to information hiding, since they aim at removing from the
ontology the elements that are not related to the given sub-vocabulary, playing the
role of an interface between the ontology and the application.

Independence

A well-designed software module should be independent from the other modules
used in the same applications in the sense that it should be reusable and exploitable
separately. The same applies in ontology engineering, where ontology modules have
to be self-contained and reusable components. Additionally, having independent
modules is a way to improve the scalability of reasoning mechanisms by allowing to
focus on a smaller set of elements (in the case of module extraction techniques, see
e.g. [14]), or the use of distributed reasoning (in the case of partitioning techniques,
see e.g. [11, 6]).

3.4.2 Evaluating Modularizations

Logical Criteria

If we look at ontologies as logical theories, it is a natural approach to define modu-
larization criteria in terms of their logical properties, i.e. looking at their entailments.
Recently, several papers have been interested in defining such criteria.

Local Correctness

is probably the most obvious formal relation between a module Mi(O) and its orig-
inal ontology O. It states that every axiom being entailed by Mi(O) should also be
entailed by O. In other terms, nothing has been added in the module that was not
originally in the ontology.

Local Completeness

is the reverse property of local correctness. It is considered in many studies as the
most important logical criterion concerning modularization. A module is said to be
locally complete w.r.t. a local signatureLoc(Mi) ⊆ Sig(Mi) (e.g., the original set of
entities of interest in an extraction technique) if every entailment of O that concerns
only elements of Loc(Mi) is preserved in Mi(O). Local completeness has been for-
malized for example in [3] using the notion of conservative extension and also relates
to the one of uniform interpolant described in [6].

Structural Criteria

[13] describes a set of criteria that can be computed on the basis of the structure of the
modularized ontology. The criteria are inherently related to the previously mentioned
software engineering criteria as they have been designed to trade-off maintainability
as well as efficiency of reasoning in a distributed system, using distributed modules.
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Size

Despite its evident simplicity, the relative size of a module (number of classes, prop-
erties and individuals) compared to its source ontology is among the most impor-
tant indicators of the efficiency of a modularization technique. Indeed, the size of
a module has a strong influence on its maintainability and on the robustness of the
applications relying on it: a big amount of information in one module leads to less
flexibility in its exploitation and evolution. On the other hand, too small modules
would not cover a sufficiently broad domain to be useful and would lead to problems
related to other criteria (e.g. connectedness).

Intra-Module Distance

It is worth to measure how the terms described in a module move closer to each
other compared to the original ontology, as an indication of the simplification of
the structure of the module. This intra-module distance is computed by counting
the number of relations in the shortest path from one entity to the other. This is
particularly relevant in the case of module extraction techniques, where reducing
the distance between the input terms facilitates their joint visualization and helps in
understanding their relationship in the original ontology.

Quality of the Modules

There are two different kinds of approaches for determining the quality of an existing
ontology that can be used to evaluate the quality of ontology modules. While some
approaches analyze the representational structures of an ontology on the basis of the
actual content, others compare the content of the ontology with alternative repre-
sentations of the domain (e.g. a document corpus) to determine how well it models
relevant aspects of the domain it describes. We propose to use and combine these
approaches in order to get an estimation of the suitability of a module for describing
a certain aspect of a domain.

Module cohesion

Cohesion denotes the degree of relatedness of elements within the same module.
In the area of software engineering, a number of measures of cohesion have been
defined that try to measure the connectedness of methods in a module based on
criteria such as shared instance variables [2]. For the case of ontologies, Yao and
his colleagues propose a set of cohesion metrics based on the structure of the in-
heritance hierarchy [17] and show that these metrics correlate with the intuition
of human evaluators: the number of root classes in the hierarchy, the number of
leaf classes, and the maximum depth of the hierarchy. The relevance of the defini-
tions depends on all of these factors and only their combination provides a suitable
indicator.
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Richness of the representation

Another important aspect related to the quality of modules is the amount of concep-
tual information retained in the module. We can measure this amount using some
criteria that are inspired by the notion of schema richness proposed by Tatir and his
colleagues [16] to measure the quality of ontologies. Here measuring the richness
of the specifications in a module is based on the amount of relational information
present in relation to the number of classes. We distinguish between the richness of
the subsumption hierarchy – the average number of subclass relations per class –
and the richness of the relations between classes – the average number of domain
relations per class. It is clear that the richness of semantic information in a mod-
ule strongly depends on the richness of the ontology the module originated from.
A better indication of the quality is therefore provided by comparing the richness
of the module with the richness of the corresponding set of concepts in the original
ontology.

Domain coverage

In the context of real applications domain coverage is the most important criterion
as it determines how well the module fits the representational requirements of the
application at hand. In order to be able to determine the domain coverage, we need a
suitable representation of the domain that should be covered by the module. In cases
where no instance data exists, we can adopt techniques of data-driven ontology eval-
uation that have been proposed in the area of ontology learning [1]. The idea is to
compare the ontology with a corpus of documents in order to determine how well the
ontology describes the content of the documents. These evaluations help in determin-
ing if the modularization technique have generated significant module according to
the different domains or topics covered by the original ontology. What have to be
evaluated is whether or not these modules are actually focused on a restricted num-
ber of domains, and if the domains are localized in the modularization, i.e. if they
have not been spread over an important number of modules.

Relations between Modules

Connectedness

The independence (see Section 3.4.1), and so the efficiency, of a set of modules
resulting from a partitioning technique can be estimated by looking at the degree
of interconnectedness of the generated modules. A modularized ontology can be
depicted as a graph, where the axioms are nodes and edges connect every two axioms
that share a symbol. The connectedness of a module is then evaluated on the basis of
the number of edges it shares with other modules.

Redundancy

In case of partitioning techniques that allow modules to overlap, redundancy is a
common way of improving efficiency and robustness. On the other hand, having to
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deal with redundant information increases the maintenance effort, and it has been
shown in [11] that reasoning on non-redundant representations of parts of the com-
plete model can lead to performance improvements.

In addition, computing the level of redundancy (the overlap) in modules generated
using different techniques can be a way to compare and relate these techniques. More
precisely, it can indicate whether these techniques rely on similar intuitions, if one is
more general than the other, or, on the contrary, if they result in very different (and
possibly complementary) modules.

Inter-module distance

Counting the number of modules that have to be considered to relate two entities
can help in characterizing the communication effort caused by the partition of an on-
tology. Indeed, if the modules resulting from an ontology partitioning technique are
intended to be used on different machines, over a network, the inter-module distance
gives an indication of the amount of distant access to other modules that is required
to manipulate the considered entities.

3.4.3 Application Criteria

In [7] the authors focus on the use of modularization for a particular application. This
leads to the definition of several criteria, most of them characterizing the adequacy
of the design of a modularization tool with respect to constraints introduced by the
application: assumptions on the ontology, the level of user interaction, and the avail-
ability of tools for using the resulting modules. Additionally, applications may have
different requirements regarding the performance of the modularization tool.

Assumptions on the ontology

Most of the existing approaches rely on some assumptions. For example, those de-
scribed in [5] and [14] are explicitly made to work on OWL ontologies, whereas [15]
can be used either on RDF or OWL but only exploits RDF features. In [14], the
ontology is required to be well-designed and to use complex OWL constructs to de-
scribe classes. Moreover, some of the filters used to reduce the size of a module are
dependent on elements of the Galen upper ontology.

Level of user interaction

In many systems the required user entries are limited to the inputs of the algorithm.
In certain cases, some numerical parameters can be required [15] or some additional
procedures can be manually (de)activated [14]. The technique in [12] has been inte-
grated in the Protégé ontology editor to support knowledge reuse during the building
of a new ontology. In this case, modularization is an interactive process where the
user has the possibility to extend the current module by choosing a new starting point
for the traversal algorithm among the boundary classes of the module.
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Use of modules

Regarding the aspect of actually using modules in other applications, we only know
of two approaches that make their modules available to reasoners/theorem provers
(but not to any other applications). The modules extracted in [5] are linked together
using E-Connections and aim at being used in a reasoner. In a similar way, the knowl-
edge base partitions created by the approache of [11] are used in a dedicated theorem
prover.

Performance

Most of the papers concerning modularization techniques do not give any indica-
tion about the performance of the employed method (with the noticeable exception
of [14]). Performance is a particularly important element to be considered when us-
ing a modularization technique for the purpose of an application. Different applica-
tions may have different requirements, depending on whether the modularization is
intended to be used dynamically, at run-time, or as a “batch” process.

3.5 Experiments with Modularization Techniques and Criteria

In this section, we apply the criteria described in the previous section to a particular
application scenario, on the basis of two well defined examples. The idea is to evalu-
ate how these criteria can be used in characterizing the application requirements and
the assumptions underlying the modularization techniques.

3.5.1 The Knowledge Selection Scenario

Knowledge selection has been described in [7] as the process of selecting the relevant
knowledge components from online available ontologies and has been in particular
applied to the Magpie application. Magpie [8] is a Semantic Web browser which
helps users to quickly make sense of the information provided by a Web page by
allowing them to visually access the semantic data associated with that page. Avail-
able as a browser plugin in which a set of classes are displayed, Magpie can identify
instances of these classes in the current Web page and highlight them with the color
associated to each class. Core to Magpie is a manually selected ontology that con-
tains the information needed to identify the relevant instances in Web pages.

In our current work we are extending Magpie towards open semantic browsing in
which the tool automatically selects and combines online ontologies relevant to the
content of the current page. As such, the user is relieved from manually choosing a
suitable ontology every time he wishes to browse new content. Such an extension
of our tool relies on mechanisms that can not only dynamically select appropriate
ontologies from the Web, but can also extract from these ontologies the relevant and
useful parts to describe classes in the current Web page.
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Our previous work and experiences in ontology selection [10] made it clear that
modularization may play a crucial role in complementing the current selection tech-
niques. Indeed, selection algorithms tend to run into two major problems. First, if the
selection returns a large ontology this is virtually useless for a tool such as Magpie
which only visualises a relatively small number of classes at a time. Unfortunately,
in the experiments we have performed large ontologies are often returned. What is
needed instead is that the selection process returns a part (module) of the ontology
that defines the relevant set of terms. A second problem is that in many cases it is
difficult to find a single ontology that covers all terms (we observed this knowledge
sparseness phenomenon in [10]). However, a combination of one or more ontologies
could cover all the query terms. This problem is related to modularization in the sense
that it is easier to combine small and focused knowledge modules than ontologies of
large size and coverage.

Fig. 3.1. The knowledge selection process and its use for semantic browsing with Magpie

These considerations justify the need to extend selection techniques with modu-
larization capabilities. In Figure 3.1 we depict the three major generic steps of the
knowledge selection process that integrates ontology selection, modularization and
merging.

3.5.2 Experimental Setting

In the scenario described in the previous section, modularization is integrated in a
fully automatic process, manipulating automatically selected online ontologies for
the purpose of annotation in Magpie. In this section, we simulate the process of
knowledge selection on two examples, using four different techniques, in order to
evaluate and compare their results1. The purpose is to characterize the requirements
of this particular scenario using the criteria defined in Section 3.4, and to show how
modularization techniques respond to the selected experiments regarding these re-
quirements.

1 Actual results are available at
http://webrum.uni-mannheim.de/math/lski/Modularization
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The Examples

We consider two examples, originally described in the context of ontology selection
in [10], where the goal is to obtain an ontology module for the annotation of news
stories. We simulate the scenario described in Section 3.5.1 by manually extracting
relevant keywords in these stories, using ontology selection tools2 to retrieve on-
tologies covering these terms, and then applying modularization techniques on these
ontologies (steps 1 and 2 in figure 3.1).

In the first example, we consider the case where we want to annotate the news
stories available on the KMi website3. We used the keywords Student, Researcher,
and University to select ontologies to be modularized, and obtain three ontologies
covering these terms:

ISWC: http://annotation.semanticweb.org/iswc/iswc.owl
KA: http://protege.stanford.edu/plugins/owl/owl-library/

ka.owl
Portal: http://www.aktors.org/ontology/portal

It is worth to mention that this example is designed to be simple: we have chosen a
well covered domain and obtained three well defined OWL ontologies of small size
(33 to 169 classes).

The second example was used in [10] to illustrate the difficulties encountered by
ontology selection algorithms. Consequently, it also introduces more difficulties for
the modularization techniques, in particular because of the variety of the retrieved
ontologies in terms of size and quality. It is based on the following news snippet:

“The Queen will be 80 on 21 April and she is celebrating her birthday with a
family dinner hosted by Prince Charles at Windsor Castle”4

Using the keywords Queen, Birthday and Dinner, we obtained the following on-
tologies, covering (sometimes only partially) this set of terms:

OntoSem: http://morpheus.cs.umbc.edu/aks1/ontosem.owl
TAP: http://athena.ics.forth.gr:9090/RDF/VRP/Examples/

tap.rdf
Mid-Level: http://reliant.teknowledge.com/DAML/

Mid-level-ontology.owl, covering only the terms Queen and Birthday

Compared to Example 1, the ontologies used in Example 2 are bigger (from 1835
classes in Mid-Level to 7596 in OntoSem). Moreover, they contain different levels
of descriptions. For example, OntoSem is a big, complex OWL ontology containing
a lot of properties (about 600), whereas TAP is simple RDFS taxonomy without any
properties. In that sense, we use Example 1 to assess basic characteristics of the mod-
ularization techniques and then, rely on Example 2 to show how these characteristics
are influenced by the properties of the ontologies.
2 In particular Watson (http://watson.kmi.open.ac.uk).
3 http://news.kmi.open.ac.uk/
4 http://news.billinge.com/1/hi/entertainment/4820796.stm
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Evaluated criteria

Logical criteria are of particular importance when the modules resulting of the mod-
ularization techniques are intended to be used in reasoning mechanisms, but should
not be emphasized in our use case, which focuses on a human interpretation of the
module.

On the contrary, structural criteria are fundamental indicators for estimating the
efficiency of the modularization techniques. Indeed, the size of the returned ontology
module is crucial since Magpie only needs relevant parts of ontologies, small enough
to be visualized within the browser and to be easily interpreted by the user in relation
with the current Web page. However, it is essential to keep enough knowledge in the
module to maintain a understandable structure around the considered terms.

Evaluating the quality of the resulting modules is a crucial task, in particular in
applications where modularization is intended to facilitate ontology reuse. However,
applying and interpreting the metrics for evaluating module quality require important
(human) effort, which go beyond the scope of our experiments, intending to simulate
an automatic process.

Criteria dedicated to sets of interconnected modules resulting from partitioning
techniques – redundancy, connectedness, and inter-module distance – are not rele-
vant in the considered scenario, as we are only interested in one module. One of the
goals of modularization in our use case is to facilitate the exploitation, and so the in-
terpretation, of the knowledge related to the input terms in ontologies. In that sense,
the intra-module distance between these terms should be reduced in such a way that
they can be considered and apprehended together by the user.

In the knowledge selection scenario, modularization is integrated in a complete
process, leading to particular constraints concerning application criteria. The results
of Example 2 should help to better understand which assumptions the different tech-
niques rely on. Since knowledge selection is fully automatized, the required level of
user interaction should be minimal. Finally, in the considered scenario, modulariza-
tion is intended to be used at run-time, leading to fundamental constraints concerning
the performance of the modularization tool.

3.5.3 Experimented Techniques

As already described in [7], it is quite obvious that module extraction techniques fit
better in the considered scenario than partitioning tools. Indeed, we want to obtain
one module covering the set of keywords used for the selection of the ontology and
constituting a sub-vocabulary of this ontology. However, the result of partitioning
techniques can also be used by selecting the set of generated modules that cover the
considered terms. The criteria are then evaluated on this set of modules as grouped
together by union.

We have chosen to consider only available partitioning and module extraction
techniques that are sufficiently stable and that can easily be used on the previously
described ontologies (e.g., without requiring language conversion). We have selected
two ontology partitioning tools:
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PATO: A standalone application described in [15].
SWOOP: The partitioning functionality included in the SWOOP ontology editor and

described in [5].

and two module extraction tools:

KMi: A standalone application developed at KMi for the purpose of the knowledge
selection scenario, as described in [7].

Prompt: The module extraction feature of the Prompt toolkit, integrated as a plugin
of the Protégé ontology editor, as described in [12].

These tools are described in more details below.

Ontology Partitioning Technique: SWOOP

SWOOP5 is a popular ontology editor, focused on OWL ontologies and relying on an
hypertext-like way of navigating in the ontology entities (see Figure 3.2). SWOOP
is developed by the same group who made the Pellet OWL reasoner, and inference
capabilities can be used during the editing process thanks to Pellet. Another particu-
larity of SWOOP is that, in addition to standard OWL ontologies, it can manage E-
Connections based ontologies: local ontologies linked together by E-Connections [4].

SWOOP integrates a fully automatic ontology partitioning functionality. This
functionality, based on the paper [5], is supposed to divide standard OWL ontologies
to create a set of local ontologies, linked together by E-Connections. This partition-
ing feature of the SWOOP editor is further referred to as SWOOP.

Fig. 3.2. Screenshot of the SWOOP editor

5 http://www.mindswap.org/2004/SWOOP/
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Fig. 3.3. Screenshot of the PATO tool

From these elements we can already get an evaluation of some of the application
criteria: SWOOP is fully automatic, works only on OWL ontologies (without im-
ports) and there exist tools (the SWOOP editor, Pellet) to exploit the resulting set of
modules.

Ontology Partitioning Technique: PATO

PATO is a standalone application written in java (see Figure 3.3) and implementing
the technique described in [15]. In principle, PATO divides an ontology into a set of
modules by first computing a dependency graph between the entities of the ontology,
relying on RDF(S) relations between them. Entities are then clustered according to
measures inspired from the field of network analysis, aiming at minimizing the in-
terconnections between modules.

Concerning the application criteria, as it can be seen in Figure 3.3, PATO is sup-
posed to be fine-tuned using different parameters at each step of the partitioning
process. However, an ongoing work is currently conducted towards the automatic
configuration of PATO [13]. No particular reasoner is available for exploiting mod-
ules resulting from this tools. However, each module is a self-contained OWL on-
tology that can be used with usual tools. Finally, even if it works with most of the
ontologies in RDF(S) or OWL, PATO only exploits the representation primitive of
RDF(S).
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Fig. 3.4. Screenshot of the Prompt view extraction tool

Module Extraction Technique: Prompt

Prompt6 is a toolkit, integrated as a plugin of the Protégé ontology editor7 for com-
paring, merging and extracting views from ontologies. What we refer to as Prompt
in the following corresponds to the part that concerns module extraction and that is
called traversal view extraction in the Prompt toolkit [12]. This tool is designed as
an interactive process for extracting sub-parts (modules, views) of ontologies to be
integrated in the currently edited ontology (see Figure 3.4). A class of the source on-
tology is first selected by the user, using the standard navigation interface of Protégé.
The principle of the approach is to recursively “traverse” the ontology relations from
this class to reach other classes to be included. The relations to follow and the dis-
tances for which they have to be followed (the level of recursion) have to be first
entered by the user. The whole process is incremental in the sense that new classes
can be selected from the boundaries of the current module as new starting points
for the extraction of other classes, which are added to the module, expending its
boundaries.

Concerning the criterion on the level of user interaction, it is quite obvious that
Prompt is not automatic at all: it requires the intervention of the user at each step
of the process. The interactive nature of Prompt make it harder to evaluate (the re-
sulting module is dependent on the user who defined it), but can also be seen as an

6 http://protege.stanford.edu/plugins/prompt/prompt.html
7 http://protege.stanford.edu/
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Fig. 3.5. Screenshot of the KMi module extraction tool

advantage, as Prompt is less dependent on a particular intuition on modularization,
and so, less restricted in terms of usage scenarios. Concerning other application cri-
teria, Prompt can be used on any ontology manageable by Protégé and generates
modules (views) that are integrated in Protégé ontologies. The performance of the
system in terms of time is obviously an irrelevant criterion for evaluating Prompt.

Module Extraction Technique: KMi

What is called here KMi is a technique developed at the Knowledge Media Institute
(the Open University, UK) and described in [7]. It is also a “traversal approach”,
inspired from the two previous techniques for module extraction. One of the par-
ticularities of KMi is that it takes into account inferences during the modulariza-
tion process, in order to validate some interesting logical properties. Moreover, KMi
generally generates smaller modules (e.g. than GALEN) by taking shortcuts in the
ontology hierarchy8, while keeping all the necessary elements for describing the in-
cluded entities.

KMi takes as an input only a sub-vocabulary of the source ontology, in the form of
a set of class, property and individual names. Some other parameters can be modified
through the interface (see Figure 3.5) but, since only the sub-vocabulary is required,
KMi can be considered as fully automatic.

Moreover, KMi has been designed to work with – and exploit the content of – any
kind of ontology, from simple taxonomies in RDF(S) to complex OWL structures.

8 In particular, by including only the common super class of included classes, rather than the
whole branches of super-classes.
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Finally, as the resulting module is a standard, self-contained ontology, there is no
need for particular tools to exploit it.

3.5.4 Results

Running the four modularization techniques on the three ontologies of the first ex-
ample allowed us to test how they behave on simple, but yet practical real word
examples. The second example concerns larger ontologies, with more heterogeneous
levels of description. For example, TAP contains around 5500 classes, but no prop-
erty or individual, whereas Mid-Level relies on almost 200 properties and is popu-
lated with more than 650 individuals for less than 2000 classes.

Evaluating the Modularizations

Analyzing the modules resulting from the considered modularization techniques is a
way to better understand on which kinds of assumptions these techniques rely, and if
these assumptions fit the requirements of the application.

Size

Figure 3.6 shows the size of the resulting modules for each system on Example 1 in
terms of number of classes and properties (we did not include number of individ-
uals as it is not a relevant indicator here). It can be easily remarked that SWOOP
generally generates very large modules, containing 100% of the classes for two of
the three ontologies, and an important proportion of the properties: in most of the
cases, SWOOP generates one module with almost the same content as the original
ontology. Because it has not been really configured for the experiment, Prompt also
generates big modules. The tool developed in KMi is focused on generating modules

Fig. 3.6. Relative size of the resulting modules for the first example
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with a small number of classes (the smallest), so that the ontology hierarchy would
be easy to visualize. It nevertheless includes a large proportion of the properties, in
order to keep the definition of the included classes intact. Pato is optimized to give
an appropriate size. It generally operates an important reduction of the size of the
ontology.

Concerning Example 2, the difference between SWOOP and other techniques
is even more significant. Indeed, because of the poor structure of the considered on-
tologies (restricted uses of OWL constructs, few or insufficiently defined properties),
KMi and Pato result in particularly small modules (less than 10 classes), whereas
SWOOP still includes most of the content of the ontology in a single module.

Intra-module distance

The KMi tool relies on mechanisms that “takes shortcuts” in the class hierarchy for
reducing the size of the module. Indeed, instead of including all the super-classes
of the included classes, it only considers classes that relate these entities: their com-
mon super-classes. In that sense, the distance between the considered terms is also
reduced in modules provided by KMi. For example, in the Portal ontology, by elim-
inating an intermediary class between Researcher and Person, KMi has reduced the
distance between Researcher and Student, while keeping a well formed structure for
the module. Since they do not include this kind of mechanisms, the other techniques
generate modules in which the distance between included terms are the same as in
the original ontology.

Logical criteria

SWOOP is the only tool that can guarantee the local completeness of the module.
The focus SWOOP put on logical criteria can be an explanation of its unsatisfactory
results concerning the size of the module. KMi has been designed to provide mod-
ules where a weaker notion of local completeness holds [7], which can be useful to
facilitate the interpretation of the module by the user. This property generally holds
also for other techniques.

Application Criteria

Application criteria takes an important part of the evaluation, as our goal is to in-
tegrate the modularization technique into an broader scenario having particular re-
quirements. Table 3.1 summaries the evaluation of these criteria on the considered
tools.

Level of interaction

As already mentioned, SWOOP is fully automatic and does not need any parameters
besides the input ontology. As a module extraction tool, KMi requires, in addition to
the source ontology, a set of terms from the signature of the ontology, defining the
sub-vocabulary to be covered by the module. This sub-vocabulary corresponds to
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Table 3.1. Evaluation of the application criteria: Assumption on the source ontology, level of
required user interaction, availability of tools for manipulating modules, and performance on
both Example 1 and Example 2

Ontology Interaction Tool support Perf. (Ex1/Ex2)

SWOOP RDF(S)/OWL Automatic SWOOP/ (few sec/sec-min)
(in SWOOP) Pellet

PATO RDF(S) Parameters OWL tools (few sec/min)
Prompt RDF(S)/OWL, Frame Interactive Protégé N/A

(in Protégé)
KMI RDF(S)/OWL Automatic OWL tools (few sec/min)

(parsed by Jena)

the initial terms used for selecting the ontology: Researcher, Student and University.
Pato has to be fine tuned with several parameters, depending on the ontology and on
the requirements of the application. Here, it has been configured in such a way that
modularizations in which the considered terms are in the same module are preferred.
Prompt is an interactive mechanism, in which the user is involved in each step of
the process. In particular, the class to be covered and the property to traverse have
to be manually selected, requiring that the user has a good insight of the content of
the ontology, can easily navigate in it, and that he understands the modularization
mechanism. When using Prompt, we manually included the input terms and tried
to obtain an (intuitively) good module, without going too deep in the configuration.
Note that, since the system crashed at the early stage of the process, we did not
manage to obtain results for the KA ontology with Prompt.

Assumption on the source ontology

In addition to what have been already mentioned concerning the type of ontologies
the modularization tools are supposed to handle, it follows from the experiments that
some of the techniques are not designed to take into account big and heterogeneous
ontologies like the ones of Example 2. It is particularly hard for the user to handle the
process of module extraction in Prompt when having to deal with several thousands
of classes and hundreds of properties. We also did not manage to partition the On-
toSem ontology using Pato because of the way OntoSem makes use of the label
annotation property.

Moreover, the results obtained concerning the size of the modules in Example 2
shows that techniques are highly influenced by the inherent properties of the ontology
to be modularized and that, in general, they assume a high level of description.

Performance

Apart from Prompt for which this criteria is irrelevant, each tool has only taken a few
seconds or less on the small ontologies of Example 1. The ontologies in Example 2
are bigger and more heterogeneous. These elements obviously have an important
impact on the performance of the modularization techniques: in the worst cases (Pato
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and KMi on TAP), it takes several minutes to get a modularization and none of the
tested techniques can be used at run-time for such ontologies. However, as already
observed in [14], loading and processing a big ontology generally takes longer than
the actual modularization process.

3.6 Conclusion and Discussion

There is currently an important growth in interest concerning modularization tech-
niques for ontologies, as more ontology designers and users become aware of the
difficulty of reusing, exploiting and maintaining big, monolithic ontologies. The con-
sidered notion of modularity comes from software engineering, but, unfortunately, it
is not yet as well understood and used in the context of ontology design as it is
for software development. Different techniques implicitly rely on different assump-
tions about modularity in ontologies and these different intuitions require to be made
explicit.

We have reported on preliminary steps towards the characterization of ontology
modularization techniques. We reviewed existing modularization tools as well as
criteria for evaluating different aspects of a modularization (logical, structural, ap-
plication level), and used them on a particular scenario: the automatic selection of
knowledge components for the annotation of Web pages. The main conclusion of
these experiments is that the evaluation of a modularization (technique) is a difficult
and subjective task that requires a formal, well described framework – a benchmark
– taking into account the requirements of applications. Such a framework would be
useful in two ways: first for application developers, it would provide a guide for
choosing the appropriate modularization technique, and second, for the developers
of modularization techniques, it would give directions in which techniques can be
improved with respect to particular scenarios. More detailed conclusions are pre-
sented below, focusing on issues to be addressed for the evaluation of modularization
techniques.

No Universal Modularization. As described in [7], the technique developed at KMi
has been explicitly designed for the purpose of the knowledge selection scenario.
Therefore, it is not really surprising that it obtained almost the best results for most
of the evaluated criteria. Beyond the simple comparison of techniques, this result
tends to demonstrate our original assumption: the evaluation of a modularization
depends on the application requirements. Indeed, other scenarios may require more
logical properties to hold, a better defined distribution of the module, or a more
active involvement of the user, leading to the use of other techniques. It appears
that techniques are designed to be used in particular scenarios, and so, that it is
important to characterize them in terms of the requirements they fulfill to facilitate
the development of applications relying on ontology modularization.

Existing Criteria are not Sufficient. In our experiments, we rely on criteria that
have been explicitly used to evaluate different aspects of a modularization, with the
underlying assumption that these aspects are relevant indicators of its efficiency, its
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usability or its relevance. However, when looking at the resulting modules, it seems
obvious that important criteria are missing for evaluating the quality of a modular-
ization. For example, in our scenario, it seems fundamental that the module keeps
a good structure or that it maintains a well defined description of the included en-
tities. It can be argued that it is the role of logical criteria to evaluate how formal
properties are preserved in ontology modules, but it can be easily shown (at least
experimentally) that they are insufficient to evaluate the design quality of a modular-
ization. Integrating the evaluation of the quality (or rather qualities) of the produced
modules is therefor an important task. We cannot expect modularization techniques
to generate good quality modules from poorly designed ontologies, but, using these
metrics, we can measure to which extent the inherent qualities of the source ontology
are preserved in its modularization.

Techniques Need to be Improved. The difference in quality of the results for our
second example (big, heterogeneous ontologies), compared to the first one (small,
well defined ontologies), shows that, even if they are generally well designed and im-
plemented, ontology modularization techniques need lots of improvements in terms
of robustness, stability and scalability to be actually usable in real life scenarios. The
evaluation of the considered criteria, taking into account different aspects of mod-
ularization, explicitly demonstrates that existing modularization techniques rely on
different assumptions on ontologies and modularity of ontologies. Being restricted to
particular use cases and ontologies prevent these techniques to be really usable in an
environment like the Semantic Web, considering its inherent scale and heterogeneity.
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Summary. This chapter focuses on the notion of importing terms from an ontology. Rather
than proposing a specific formalism for this task and proving theorems about its properties, it
starts by surveying a sample of lesser known papers on this topic in both the AI and Database
literature. Based on this, it then derives a list of desirable properties for the notion of “im-
porting a set of identifiers from an exporting to an importing knowledge base”, and provides
a framework for alternate formal definitions of this notion. Some of the more novel aspects
are the idea of modifying the exporting ontology before the subset of axioms to be imported
is determined, and limiting the use of imported terms. The chapter concludes with a review of
the concept of “expressive power”, and how it might apply to importing mechanisms.

4.1 Introduction

As indicated in Chapters 1 and 3, there are multiple reasons why one might be inter-
ested in modularity aspects of an ontology. One reason is to provide units of inde-
pendent development: the ability to write and especially modify a large ontology in
smaller, easier to understand chunks. In this chapter, we are concerned with a second
aspect: the desire of the developer of some ontology KBimpt to reuse information
about the meaning of some set of identifiers Ω={ N1, N2, . . .} which has already
been captured in ontology KBexpt — a task we shall call importing knowledge.

One can begin by trying to identify some general approaches to this problem, sup-
ported in part by an analogy with similar notions in programming languages, where
identifiers of types, methods, and constants (corresponding to concept, property and
individual identifiers) might need to be imported from other implemented programs
(ontologies).

1. Include the whole KBexpt in KBimpt. This seems to be the “gold standard” as
far as inferences that one would want to be able to draw from the enhanced

∗ Some material in this chapter has been presented at the WOMO’06, DL’07 and WOMO’07
workshops. This research was supported in part by the U.S. DHS under ONR grant
N00014-7-1-0150.

H. Stuckenschmidt et al. (Eds.): Modular Ontologies, LNCS 5445, pp. 91–112, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



92 A. Borgida

KBimpt, but has as significant downside the explosive increase in the size (and
corresponding decrease in comprehensibility) of the importing ontology. It cor-
responds loosely to the #include preprocessor command in the C language.
The main obstacles to be overcome by such a mechanism are name conflicts
(what to do if the same name appears in multiple files), and circularity (avoiding
infinite loops in case files directly or indirectly include each other).

We note that in programming languages such as C, header files play an addi-
tional important role for independent compilation, and provide an abstraction of
the implementation of functions into their type signatures — ideas which as of
yet have not been exploited in ontology modules.

2. Partition/segment ontologies into independent modules, and then have KBimpt

import only those modules that involve names in Ω. This corresponds to the
case of programming languages like Modula and Ada, where one imports en-
tire modules, rather than particular procedure identifiers for example. Note that
in these languages each module has exactly one implementation. (Once again,
programming languages have additional important notions, namely information
hiding.)

3. Rather than relying on pre-existing modules, investigate the theory of an operator
import(Ω,KBexpt) or even import(Ω,KBexpt,KBimpt), that takes into account
the set of identifiers Ω and (properties of) the ontologies involved, to tailor-fit
the material to be imported. For a parallel in programming languages, one might
think of a Java interface as corresponding to the signature Ω of interest. An in-
terface can be implemented by alternative classes, which would correspond to
alternate exporters, which may provide additional public methods. The user of
the interface (the importer) then chooses not to use any of the additional public
identifiers made available by the exporting class, limiting himself to Ω. This dis-
tinction between the exporter and the needs of multiple importers is even clearer
in Python, where one can write a statement such as from YourModule
import name1 as name2, name3 as name4,... to use just some
of the public identifiers defined in YourModule, and even rename them
locally.

The aim of this chapter is to determine some of the desirable properties of the
import operator mentioned in item 3 above, and to look at some alternative formal
definitions for it.

4.2 Examples of Knowledge Importing

We begin by reviewing a number of proposals for knowledge import in the Artificial
Intelligence and Database literature, with the goal of extracting interesting intuitions
about importing. The original papers offer varying degrees of detail and formality.
We opt for using pseudo-code for the ones which are more informal, with the aim of
making clear the source of the intuitions we summarize in the last subsection.
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4.2.1 Importing Non-logical Symbols in Ontolingua

Ontolingua[21] was developed as a knowledge representation language, as part of
the first serious effort at studying large-scaleontology development, and is based on
First Order Logic, though it has some aspects which appear to be higher order. To be
specific, we will consider a specific ontology expressed in Ontolingua: the medical
ontology ON9.3 [1] developed at CNR in Italy as part of a decade long project on in-
tegrating medical ontologies [15]. It is one of the largest detailed ontologies available
publicly, having complex axioms expressed in KIF – a variant of First Order Logic
augmented with notations from frame representations (classes, slots). This ontology
is organized in close to 50 modules (called “theories”), almost all of which import
terms from other modules. For example, the Anatomy theory, which specifies 55
concepts, lists in its documentation

Theories included by Anatomy:
Meronymy,
Positions,
Topo-Morphology

which are cases of ordinary module inclusion. In addition, the description of
Anatomy also contains statements of the form

The following constants were used from included theories:
* 3d-Area-Of defined as a relation in theory Topo-Morphology

... (60+ other terms)

These (redundant) declarations explicitly document the specific identifiers used from
the modules imported. In this case, the predicate 3d-Area-of can be used as part
of the axioms expressed in Anatomy. Ontolingua assumes that each module defines
non-logical constants (predicates) which have globally unique names, thus avoiding
problems due to name clashes and circularity of inclusion, but allows these constants
to be given more convenient surface names. There are then rules for visibility of
modules and of identifiers within modules.

Using the taxonomy of approaches for importing mentioned at the end of
Section 4.1, these are examples of approach (2): e.g., the axioms in Topo-
Morphology were imported into Anatomy.

More interestingly, the following statement appears in the documentation of the
Anatomy theory:

The following constants were used from theories not included:

* Anatomical-Abnormality defined as class in theory Abnormalities
* Antigen defined as a class in theory Biologic-Substances
* Bacterium defined as a class in theory Natural-Kinds

* Binds-With defined as a relation in theory Molecular-Biology
... (20+ other terms)

This suggests that certain constants were imported into the theory without explicitly
including their entire modules — approach (3) above. If the modules from which
these 27 terms come would also have been included, the total number of theories
included would have risen from 3 to 14, so it seems the authors felt an intuitive need
to not import full modules when only a few constants from them were needed. This
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is not an isolated occurrence, and is present even in the original KIF ontology li-
braries, such as KIF Lists1. Unfortunately, no special semantics for this construct
is offered; instead, reference [21] states

That is, if an ontology A contains an axiom that references a symbol in the
vocabulary of an ontology B, then the system implicitly considers B to be
included in A. This inclusion rule ensures that the axioms specifying the
“meaning” (i.e., restricting the possible interpretations) of the referenced
symbol are a part of the ontology in which the reference occurs. A more
refined rule could include only those axioms that could affect the possible
interpretations of the symbol, but we have not developed such a rule.

Therefore, in Ontolingua, approach (3) reduces to approach (2).
Despite the current absence of a semantic distinction in Ontolingua, we take the

introduction of a syntactic differentiation between importing identifiers and using
names from imported modules as evidence of the pragmatic usefulness of the notion,
especially for large, complex ontologies.

4.2.2 Importing Taxonomy from WordNet

Navigli [27] is interested in situations where several small terminologies with local,
domain-specific terms have been extracted (possibly semi-automatically, using text
processing techniques). These need to be integrated, and one way to do so is by tying
them together through a general ontology, such as WordNet, where terms are already
organized in a IsA (hyperonym/hyponym) hierarchy. In particular, assuming that the
local concepts are organized in their own taxonomies already rooted at terms ti, the
first step (not discussed here) is to find closest unambiguous meanings (synsets) mi

in WordNet, and adding IsA links from ti tomi. The remaining problem is that there
are very many terms in the resulting joint terminology which are irrelevant to the
task at hand. Instead, what is wanted is a small subset of terms in WordNet that
subsume and tie together the terms in Ω={m1,m2, . . .}— a subset we shall write as
import(Ω,WordNet).

The algorithm proposed in [27] starts from the nodes for Ω, and constructs an
initial, pruned set of terms:

• S1 := IsA∗(Ω); /* Nodes in WordNet that subsume Ω.2 */

In earlier work, Swartout et al [32] used just this set for import(Ω,WordNet), pro-
jecting IsA+ over it.

Navigli, on the other hand, believes that this set may contain many concepts of
dubious utility, and proposes to further prune the result, by defining the following
additional sets:
1 http://www-ksl.stanford.edu/knowledge-sharing/ontologies/
html/index.html

2 We use IsA+ to refer to the transitive closure of the IsA relation, and IsA∗ to the reflexive
transitive closure. For binary relation ρ, we use ρ(x) to refer to the set {y | ρ(x, y)} when
x belongs to the domain of ρ, and generalize this to sets: ρ(T ) =

⋃
x∈T ρ(x).
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• S2 := {nodes in S1 that have 2 or more children (hyponyms) in S1}
• S3 := {children of nodes in S2 that belong to S1}
• Stop := {nodes in S1 that are at the very top of WordNet (top two levels)}

The final imported fragment of WordNet then consists of the concepts Ω ∪ Stop ∪
S2 ∪ S3 together with all IsA edges between these entailed by the original WordNet
taxonomy.

The motivation for including S2 (actually, for excluding the complement of S2) is
that “a node with only 1 hyponym gives no additional information and provides no
additional classification”, while the reason for including elements in S3 is “avoid
collapsing the hierarchy”.

If one thinks of WordNet as a set of axioms T in some logic such as FOPC,
consisting of atoms of the form IsA(b, c), then one aspect of this scheme worth
noting is that the material imported is not strictly a subset of the set T , but rather
of its logical consequences: IsA(d, e) is imported when term d is specialization of
e, but the intermediate concepts are eliminated (because they only have one child in
set S1).

4.2.3 Knowledge Bus

Knowledge Bus [28] is a system for generating an Information System, including
its database schema and API, from a focused subset of the Cyc ontology [22]. The
advantage of this technique is that it facilitates later integration of databases derived
from the same ontology, in contrast to the complex merger of independently devel-
oped Information Systems, which requires costly and difficult reverse engineering.
More precisely, the ultimate goal of this project is to take an initial seed set of terms,
and generate from it a deductive database implemented in the XSB system, and en-
capsulated in Java. Note that Cyc contains much more than just concept hierarchies:
there are general predicates, and formulas in CycL (a variant of FOL), as well as
default reasoning rules.

The idea of the approach in [28] is to first identify all axioms which might con-
tribute to proofs about instances of concepts in the seed set of identifiers S0 (which
correspond to our set Ω). The algorithm relies on two notions:

• each predicate p in Cyc has a signature signature(p) = T1 × . . . × Tk, which
indicates that the j-th argument of p must belong to concept Tj;

• the assumption that multiple occurrences of a variable (which in some sense per-
form “joins”, as in the case of y in the axiom p(x, y), q(y, z)→ r(x, z)) requires
the corresponding arguments of the predicates to be type-compatible (actually, in
this case IsA related).

Therefore, starting from the set S0, the algorithm computes by a fix-point iteration
(using operatorsΠ and Γ below) a final set of concepts of interest S∗, and associated
predicate names P∗. The set of axioms retrieved are those involving only predicates
in P∗.



96 A. Borgida

The operators Π and Γ are defined as

• for a set of conceptsS,Π(S) = {p | signature(p) = T1×. . .×Tk ∧ (∃j) [Tj ∈
S∧¬dataType(Tj)]} /* Gather predicates that have some argument typed by a concept
in S. These predicates can be “joined” to each other in a formula by using a variable x

whose type is in S. */
• for a set of predicates P , Γ (P ) = {T | (∃p) p ∈ P, signature(p) = T1 ×

. . . × Tk ∧ (∃j) IsA∗(Tj , T )} /* Gather generalizations of concepts used to type
arguments of predicates in P. */

A second problem that needs to be addressed at this point is translating the se-
lected Cyc axioms into the language of the deductive database. This involves trans-
lating general non-Horn clauses into directional Horn rules and integrity constraints,
dealing with time, defaults. etc. Although we do not consider the details here, this
points out both an interesting and significant general issue in knowledge importing:
the need to consider the possibility that the logic of KBimpt may not be compatible
with that of KBexpt.

4.2.4 Pruning Ontologies for Database Conceptual Design

Conesa and Olive [14] start from a list of terms (entity and relationship names) that
are of interest in a particular Information System application domain. This list may
be developed by analyzing the software requirements — names appearing in pro-
cedure parameters, pre- and post-conditions. (This is the set Ω in our case.) They
wish to enrich it with integrity constraints derived from some large existing general
ontology, in this case OpenCyc translated into UML — the material to be imported.

In [13], the task is specified as finding a minimal sub-ontologyOP of the exporting
ontologyOX that contains Ω, and all formulas/constraints in the set

Axioms1 := {formulas ψ in OX such that vocab(ψ) ⊆ IsA∗(Ω) }
while also preserving all IsA+ relationships derivable among these inOX . Although
not explicitly stated, we presume that the formulas in Axioms1 are of interest since,
by inheritance, they also “talk about” (quantify over) instances of terms in Ω. Note
that the set of axioms selected here is much smaller than in Section 4.2.3 since every
symbol in ψ must be in IsA∗(Ω), rather than allowing an arbitrary potential chain of
resolutions/inferences involving these classes. This reflects the use of Axioms1 for
integrity checking rather than deduction.

The actual algorithm presented in [14, 13] is considerably more complex, and can
again be abstracted as a sequence of set specifications:

• SSurelyNeeded := Ω ∪ vocab(Axioms1). /* This subset of terms from IsA∗(Ω) are
ones definitely wanted. */

• S2 := { y | (∃x, z ∈ SSurelyNeeded).IsA∗(x, y)∧IsA∗(y, z)} /* These are all the
terms in SSurelyNeeded or on inheritance paths between them. They appear to be needed
in maintaining the IsA relationship between elements of SSurelyNeeded. */

• S3 := remove from S2 concepts not in SSurelyNeeded, as long as (i) the existence
of some subclass path between pairs of concepts in SSurelyNeeded is preserved,
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(ii) the concepts removed have only single parents and children. /* The concepts
removed only provide redundant inheritance paths. Note that condition (ii) is suggestive
of Navigli’s trimming condition. */

It may not be clear why the algorithm doesn’t simply eliminate all terms not in
SSurelyNeeded, and project the IsA relationship on it, as in Navigli’s proposal. It
turns out that in addition to the pruning phase described above, Conesa and Olive
also suggest a refactoring phase, where, among others, concepts with single children
or parents are collapsed with their neighbors.

4.2.5 MOVE

One of the aims of the MOVE project [33] is to derive a sub-ontology starting from a
UML conceptual model, given two sets: Ω — identifiers that are definitely wanted in
the sub-ontology; and Ωexcluded — identifiers definitely not to be included; the re-
maining identifiers may or may not be included in the final ontology view depending
on which policies are adopted.

One of the interesting aspects is that MOVE permits some attribute name, e.g.,
phone#, to be selected as part ofΩ, without the class on which it originally appears,
e.g., OFFICE, also being selected. In such cases, MOVE seems to offer at least three
choices:

1. the concept OFFICE is also added to the sub-ontology;
2. phone# appears on a subclass of OFFICE that is included in the sub-ontology;
3. phone# is included indirectly as part of a new composite relationship. For

example, suppose that class EMPLOYEE is selected in Ω, and it is related
by association worksIn to OFFICE. Then one could create a new relation-
ship worksIn Office having phone#, representing the composition of
worksIn with the link OFFICE --- phone#, and make this part of the de-
rived sub-ontology. This option is conditional on the requirement that the result-
ing association be guaranteed to be functional (e.g., the maximum cardinality of
worksIn and phone# are 1).

The choice between the above options, and others like them, is made on the basis
of so-called “optimization schemes”, which represent different kinds of policies for
removing non-selected nodes and edges in the diagram. For example, the Total Sim-
plicity Optimization Scheme (TSOS) will result in the smallest possible solution that
is still a valid ontology. (The validity rules include ones requiring an ontology to be
connected, for example.) Another policy, “semantic completeness”, requires among
others that if a class is selected in Ω, then all of its super-classes will also appear in
the final result.

Option 3 above is a noteworthy novelty of this proposal, because it relies on the
ability to expand the definitions available in the ontology. To support this, the algo-
rithm investigates all paths in the UML graph connecting concepts in Ω, and even
has schemes for suggesting appropriate names for such new composite relationships.
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4.2.6 Importing/Modularizing Based on Role Identifiers

A proposal by Herzig and Varzinczag [24] seems to be based on the intuition that
roles are the more stable part of an ontology, in contrast to concepts, and therefore
may be a more appropriate basis on which to modularize it or make decisions for
importing.3

While this is a proposal for partitioning ontologies into modules, thus belonging
to Part II of this book, we survey it here because it exhibits an interesting feature in
common with many of the above proposals: the original exporting knowledge base
is modified before the modules are determined.

In general, after introducing the notation

KBR = { axioms in KB that involve roles in set R }
KB∅= { axioms in KB that do not involve any roles }

the authors consider whether an ontology has the desirable property (called “modu-
larity property”) that for each ϕ

KB |= ϕ iff KB∅ ∪KBroleNames(ϕ) |= ϕ

i.e., the only axioms necessary to reason about a formula are those involving the roles
appearing in them, as well as those involving only concepts. This provides a basis
for deciding what axiom from KB to include in the material imported for Ω: those
involving roles in Ω, plus those in KB∅.

Of course, most knowledge bases do not have the “modularity property”. Herzig
and Varzinczag [24] focus on Description Logic knowledge bases expressible as
ALC TBoxes T , and investigate how such a T can be tested to see whether it has
this property, and if not, how to modify it so the property holds.

Interestingly, the general question of having the modularity property reduces to a
question concerning only so-called boolean subsumptions (ones not involving roles):
are there such subsumptions derivable using axioms involving roles which are not
derivable only from the explicitly listed boolean axioms of the ontology, T ∅? For-
mally, it is shown that if there is no boolean subsumption judgement ϕ such that

T |= ϕ but T ∅ �|= ϕ

then the TBox T has the modularity property in the above sense. Not only does the
paper provide an algorithm for testing for this property, but if the property does not
hold, then it provides a set of boolean subsumptions T ∅

implicit, such that when these

are added, the entire knowledge base T ∪ T ∅
implicit is indeed modular. The paper

argues that the presence of the implicit axioms in T ∅
implicit is in fact a sign of poor

knowledge engineering, and makes a relatively convincing case that making them
explicit (or correcting T so the formula is not derivable) is a reasonable approach to
modifying T so that it is modular.

3 This intuition is stronger in epistemic modal logics, which are formally equivalent to the
ALC DL, where the beliefs of each believer can be reasonably separated.



4 On Importing Knowledge from Ontologies 99

Unfortunately, the above nice theory only works for TBoxes which have a spe-
cial restricted syntax: every axiom can involve at most one role identifier, so that
{T ∅} ∪ {T {ri} : riis some role identifier} actually partitions T . At the very least,
this requires taking the most common kinds of ontology axioms, having the form
A � ∃p.B� ∃q.C� . . ., and replacing them by the set {A� ∃p.B , A� ∃q.C , . . .}
thereby expanding conjunction. To deal with more general cases, including nested
restrictions, it is possible to mechanically put a set of axioms into such a form by
introducing a new concept identifier F for every role restriction ∀r.C (resp. ∃r.C)
encountered, replacing the restriction by F in existing axioms, and adding a defini-
tion equating F and the restriction: F ≡ ∀r.C (resp. F ≡ ∃r.C).

Unfortunately, it is likely that such modifications of T produce a result that is
not understandable to knowledge engineers since names like F have no intuitive
meaning.

4.2.7 Conclusions of the Survey: Some Intuitions Concerning Importing

We summarize here some of the intuitions apparent in the papers reviewed in the
preceding subsections.

Content of what is to be imported

In general, it seems that when asked to import the meaning of identifiers in Ω from
KBexpt, one is expected to behave as if all of KBexpt was included in KBimpt. The
material to be imported should at least be “sound” (i.e., it should include only axioms
about Ω that are logical consequences of KBimpt). But other desiderata below may
over-ride the need/possibility for “completeness”; i.e., not every formula involving
only Ω that is provable in KBexpt must be provable from the material imported. Nor
are there uniform requirements that when a concept is imported, so should be all of
its superconcepts—a feature of several modularization schemes.

Cutting down on what is imported

There are several reasons why it is undesirable to import all of KBexpt:

• The result may be too large for the purpose of understandability by the humans
developing KBimpt; this motivation is most evident when starting from very large
general ontologies, such as Cyc or WordNet, or when importing only one or two
terms from a module in an Ontolingua ontology (see Section 4.2.1).

• The result may be too large for the purposes of machine reasoning; this problem
arises when the imported knowledge is cached locally, as in [31], since in most
cases the complexity of reasoning rises as an (often exponential) function of the
size of the local knowledge base. Again, the size and complexity of reasoning
with Cyc in [28] make this point evident.

Therefore we enunciate

MinPrinciple: Minimize the amount of material actually imported.
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Expanded vocabulary Ω⊕

In order to understand the names in Ω, its terms need to be inter-related, and this
may require an enlarged set of symbols, which we shall call Ω⊕. For example, to
understand Dog and Cat, it is reasonable to assume that their closest superclass
from KBexpt, Animal, is also added. (This feature appears in many of the proposals
reviewed above.) Less obviously, Ω⊕ may contain not just atomic identifiers from
KBexpt, but also derived concepts/relationships built from them, as illustrated in
Section 4.2.5, where Person is related to Phone# by officeOf.hasPhone. By
assigning an identifier to such a composite term (as in [33, 31]), one gets a different
behavior than importing the individual identifiers used in the definition, since these
can no longer be combined in arbitrary ways in KBimpt.

In line with MinPrinciple above, many of the proposals we have seen try to min-
imize the size of Ω⊕. For example, Navigli [27] eliminates most concepts with
only one child of interest, while Conesa and Olive [14] remove many upper-level
concepts that do not contribute axioms that talk only about IsA∗(Ω). This makes
sense in the context of an upper-level ontology such as DOLCE [23]: if some spe-
cific domain ontology only needs the concepts AgentivePhysicalObject and
NonAgentivePhysical-Object, then it seems rather an over-kill to force the
user to understand, in addition to PhysicalObject (which is the immediate par-
ent of these two), additional super-concepts such as PhysicalSubstantial,
Substantial, and Endurant, which subsume PhysicalObject.

We remark that, as shown in [8], the effort of minimizing the number of additional
concepts introduced, may in fact be a quite considerable part of the cost of computing
the right axioms to import, because the problem is NP-complete.

Also, the technique of importing a single re-named composite relationship, de-
scribed in Section 4.2.5, provides an additional approach to the minimization of
Ω⊕. In fact, it raises the hitherto unexplored possibility that the terminology of
KBexpt be expanded with new definitions for the purpose of minimizing the ma-
terial to be imported — a problem related to the minimal rewriting of concepts using
definitions [3].

4.3 Source of Axioms to Be Imported

Before going on to consider the spectrum of approaches to formalizing the content
returned by import, we take a closer look at the issue of the source of the actual ax-
ioms imported. There are at least three possible approaches, examined in subsections
below.

4.3.1 The Syntactic-Subset Approach

One obvious approach, taken by many recent proposals for modularization and im-
port, is to import some (minimal) subset of the axioms in KBexpt. This has certain
conceptual advantages: simplicity, and, in some cases, clear evidence for the exis-
tence of a minimal set of axioms to import: Start with KBexpt and repeatedly remove
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axioms until no more can be removed without losing the desired property of describ-
ing the meaning of terms in Ω (no matter how this is specified). However, there are
also several difficulties with this approach:

• It is subject to the vagaries of the syntactic specification by knowledge engineers:
if Ω={A,B}, then one imports different things from the following logically
equivalent DL knowledge bases: T 1={A� (B� C)}, T 2={A� B, A� C}.

• As a corollary of the above example, one may end up importing more than needed
(e.g., from T 1), thus contradicting the spirit of MinPrinciple.

4.3.2 The Logical Consequence Approach

At the other extreme, one may be allowed to import all the formulae that are logical
consequences of KBexpt, and which involve only symbols from Ω. The disadvan-
tage of this approach is that such a set may not be found for some logics, and even
when it exists, characterizing such an infinite set in a finite way may be quite cum-
bersome (e.g., exponentially many logical implicants). In addition, both the meaning
and motivation for such automatically derived formulae may be totally obscure to
knowledge engineers. Using the terminology of [17], one loses “intelligibility”: the
need for ontology engineers to be able to make sense of material imported.

4.3.3 The Expanded Axioms Approach

By choice, none of the proposals we have reviewed in Section 4.2 fit either
of the above cases. We believe that they can be explained in part by an in-
termediate position which allows a limited set of modifications to the export-
ing knowledge base, before the set of axioms to be imported is determined
by the syntactic subset approach. This technique can be seen explicitly in Sec-
tion 4.2.5, where new definitions desired are added to the exporting knowledge
base, and in Section 4.2.6, where the axioms are split up so they involve only
one property, e.g., replacing axiom Person� (∀eats.Meat� ∀drinks.Wine) by
{ Person� ∀eats.Meat, Person� ∀drinks.Wine }. And one can see it being
present implicitly in Sections 4.2.2 and 4.2.4, where, for example, if the ontol-
ogy contains {IsA(Dog,Canine), IsA(Canine,Animal)}, one may import only
{IsA(Dog, Animal)} when Ω={Dog,Animal}, which can be viewed as expand-
ing KBexpt so it contains all deducible concept name subsumptions (i.e., IsA+, rather
than just IsA).

Interestingly, several of these examples are related to research on the problem of
explanation in Description Logics [26]. In particular, the following inference steps
have been found to be un-necessary to present to users explicitly, since they tend to
find them obvious:

• from E1� E2 and E2� E3 deduce E1� E3
• from E1� (E2� E3) deduce that E1� E2
• from A≡ E, where A is an identifier, deduce that A� E
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Formally, explanations are normally thought of as minimal-length proofs from TBox
T , using some proof-theory whose rules of inference are easily comprehensible by
users. (See [10] for more details on the choice of such proof theories.) The elimina-
tion of un-necessary proof steps, leading to streamlined explanations, can be modeled
by augmentingT with “trivial lemmas” — logical consequences that are obvious and
would need no explanation. (Let us use obvious(T ) to denote this augmented TBox.)
Note that the notion of what constitues an “obvious consequence” is empirical, and
depends not only on the particular logic L and its proof theory, but possibly even on
the application.

In [8], it was therefore suggested that the set of axioms to be imported should form
a subset of obvious(KBexpt), rather than KBexpt. Note that streamlined explanations
in (KBimpt∪ KBexpt) will be preserved in (KBimpt∪ import(Ω,KBexpt)). The op-
erator obvious, which should then become an explicit parameter of the import()
operator, is a particularly good candidate for expanding KBexpt because it preserves
“intelligibility” [17].

4.4 Approaches to Formalizing Import

There are a surprising number of different ways in which one can formalize the no-
tion of importing. The following is an attempt at systematically covering the choices
in the reviewed papers, and at evaluating them in light of the intuitions in Sec-
tion 4.2.7. It may be worth pointing out that with the exception of [24], none of
the papers reviewed have formal proofs concerning the soundness or completeness
of the material imported. In some cases this is relatively easy to determine by in-
spection, but in other cases, involving complex logics like CycL, it would be a much
harder issue.

4.4.1 Importing Modules

A number of previous proposals, many of which are described in Part II of this book,
have suggested partitioning an ontology into modules {Mi}, dealing with different
concepts and relationships. In this case, presumably the natural specification of the
set of axioms KBsub to import if one desires to learn about Ω would be the union of
axioms appearing in modules whose vocabulary overlaps with Ω, i.e.,

KBsub =
⋃

vocab(Mi)∩Ω �=∅
Mi

This is a syntactic subset approach according to the taxonomy in Section 4.3,
with the concomitant advantages (understandability) and disadvantages. It supports
expansion of the vocabulary, because other names appearing in each module are also
added, so that Ω⊕ is the union of the vocabularies of all modules containing some
element of Ω. Probably the biggest problem with this approach is the fact that it
does not take seriously enough MinPrinciple. For example, many modularization
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proposals have the property that if concept name C appears in a module, so do all its
super-concepts; yet we have seen that several of the examples of importing reviewed
earlier, in Section 4.2, explicitly eschew this property.

4.4.2 Importing as an Extraction Operator

The most obvious logical approach is to view import as a binary operator import2(Ω,
KBexpt), focusing on what can be deduced about Ω in KBexpt, namely the set

EΩ = {ϕ | vocab(ϕ) ⊆ Ω and KBexpt |= ϕ}

The options considered in Section 4.3 apply here to yield the following:

• syntactic subset approach: Find a sufficiently large subset KBsub of KBexpt, such
that it entails everything in EΩ , though it will likely entail other formulas too.

• expanded axioms approach: Expand KBexpt with some clearly specified set of
additional axioms (e.g., obvious(KBexpt)), to yield KBexpt

expanded, and then
apply the preceding.

• logical consequence approach: Find some valid (but finite) knowledge base
KBsub, with vocabulary Ω, whose contents are entailed by KBexpt and whose
logical consequences are precisely EΩ .

Let us now consider the other desiderata we have identified above.
In order to apply MinPrinciple, the set KBsub should be minimal in the sense

that the removal of any axioms would lead to the loss of the defining property of
KBsub. Unfortunately, there is no formal guarantee that there is only one mini-
mal set. This is most obvious in cases when there is some redundancy in KBexpt,
or there are multiple ways of deducing some fact. For example, if KBexpt con-
tains { Cat� Feline, Feline�Animal, Cat� Pet, Pet� Animal}, and we
have Ω={Cat,Animal}, then in a syntactic subset approach, {Cat� Feline,
Feline�Animal} and {Cat� Pet, Pet� Animal} are two alternative minimal
candidates for KBsub. Unfortunately, in such cases one is left with three unpleas-
ant choices: (a) proceed totally arbitrarily, choosing one of the sets; (b) take their
union, abandoning minimality; (c) take their intersection, thereby possibly missing
important parts of EΩ . Proposals for importing based on a priori segmentation into
modules often have the effect of taking approach (b), since they group together the
axioms that lead to the same conclusion.

We also note that one could apply MinPrinciple to the choice ofΩ⊕(the expanded
set of names), in order to reduce the number of candidate minimal sets. So, while
in the above example we still have the same choices, since each introduces only
one additional concept, if the original ontology had axioms Feline�Mammal,
Mammal� Animal instead of Feline�Animal, then KBsub={Cat� Feline,
Feline�Mammal,Mammal� Animal}would be eliminated since it introduced
two, rather than one, additional identifier.

Turning to expansion of the vocabulary, the logical consequence approach is se-
riously deficient, since it is based entirely on the original set of names Ω, and
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therefore provides no guidelines for constructing Ω⊕. The other two approaches
partially address the issue because when choosing a subset of formulae to cover
EΩ , one is forced to use additional names appearing in them, which become
part of Ω⊕. For example, if O= {Married≡ Person� � 1 spouse, Bachelor≡
Person�Male� � 0 spouse}, andΩ={Married, Bachelor}, then, to capture their
disjointness, we will want import2(Ω,O) to contain { Married � � 1 spouse,
Bachelor � � 0 spouse }, introducing the new identifier spouse. One could also
make a case that the actual definitions should be included, since users of the term
should appreciate that these are defined, as opposed to primitive concepts. A compro-
mise might be to allow for definitions with ellipses: { Married ≡ . . .� � 1 spouse,
Bachelor ≡ . . .� � 0 spouse }.

It remains unclear however, how one would enforce by strictly logical means gen-
eral policies such as “if A and B are included, then so should their least common
parent in the IsA hierarchy”— a policy that seems common in many of the exam-
ples reviewed. This comment also applies to all purely logic-based specifications of
importing described below. An attempt is made to address this issue in [9], using a
functional approach to knowledge bases.

4.4.3 The Influence of the Importing Ontology

Both previous techniques ignore the purpose for which the names in Ω are being
imported. One way to make this dependency explicit is to view importing as a ternary
relationship import3(Ω, KBexpt, KBimpt), where KBimpt plays an important role as
KBexpt in determining what is to be imported. To quote from a recent paper that talks
about modularization based on such principles [19],

“ . . . the central requirement for a module Q1 ⊆ Q to be reused in our on-
tology P is that P ∪ Q1 should yield the same logical consequences in the
vocabulary of P as P ∪Q does.”

When adding the set Ω of names to be imported, this means that the minimal
material to be imported is characterized not by EΩ but by EΩ

impt, specified as

{ϕ | vocab(KBimpt ∪ {ϕ}) ∩ vocab(KBexpt) ⊆ Ω and KBimpt ∪ KBsub |= ϕ}

Since the above specification allows every formula entailed by KBexpt with
vocabulary in Ω to be considered, clearly everything in import2(Ω,KBexpt)
(= EΩ from Section 4.4.2) is included in EΩ

impt, for any KBimpt. The ques-
tion arises whether the converse also holds true; i.e., whether KBimpt ∪
import2(Ω,KBexpt) |= EΩ

impt. It turns out that a counter-example can be con-
structed when there is implicit information aboutΩ in KBimpt ∪KBexpt that cannot
be captured explicitly by the logic used in KBimpt∪ KBexpt. For example, consider
a Description Logic which states axioms of UML using domain, range and num-
ber restrictions on roles, but without concept disjunction/negation traditionally used
to express subclass disjointness and covering. In particular, suppose this formalism
uses an axiom of the form cover(A,{B,C}) to indicate that A is partitioned by sub-
classes B and C. Given KBexpt={cover(A,{B,C}), D � A}, if Ω={D,B,C}, then
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import2(Ω,KBexpt) is the empty set since there is no formula not involving A, which
captures the disjointness of B and C, or the subsumption D � (B � C). On the other
hand, if KBimpt={B� ⊥}, then a sound and complete reasoner would be able to de-
duce from KBimpt∪KBexpt that D� C. Therefore the cover-expression itself (in the
syntactic subset approach) would have to be included in import(Ω,KBexpt,KBimpt).

The preceding specification of import might be considered problematic when
KBimpt can change, because every time the importing ontology is modified, the ma-
terial to be imported needs to be recomputed. So “the understanding of the meaning
of terms in Ω” changes as the knowledge base KBimpt is built. (Note that proposals
for connecting multiple ontologies using so-called “bridge rules” [11, 5] behave ex-
actly in this way, relying on the precise content of both the importing and exporting
ontology.)

A natural approach is to revert to a (modified) binary definition importe,i
2 (Ω,

KBexpt) — one which considers all possible importing knowledge bases. In this
case, the material to be imported, KBsub, once again a subset of (the logical conse-
quences of) KBexpt, needs to satisfy the property that

for all KBimpt, ϕ such that (vocab(KBimpt ∪ {ϕ}) ∩ vocab(KBexpt)) ⊆ Ω,
we have that (KBimpt ∪ KBexpt) |= ϕ iff (KBimpt ∪ KBsub) |= ϕ.

4.4.4 Some Restrictions on Importing

First, it is interesting to note that a number of proposals for knowledge import
constrain the use of imported names. For example, in the work of Navigli, Swartout
et al, and Conesa&Olive (see Sections 4.2.2 and 4.2.4) the concepts in Ω are
required to be super-classes of concepts that have been gathered by other means,
since WordNet and Cyc are supposed to act as top-level, general ontologies. On
the other hand, the proposals based on E-Connections[25, 16], essentially allow
an ontology O1 to use concepts from O2 (which can even be based on a different
logic) as long as these imported terms are used only as role restrictions on certain
specially designated roles. For example, various types of buildings may have their
location restricted in spatial logic through role locatedIn. One way to capture these
restrictions formally is to provide a grammar GΩ specifying the use of the imported
names. For example, the following trivial grammar Gwinnow restricts the use of
imported names in TBox subsumption axioms as in Sections 4.2.2 and 4.2.4:

<TBox axiom> ::= <local axiom> | <connect up axiom>

<local axiom> ::= <local DL concept>� <local DL concept>

<connect up axiom> ::= <local DL concept>� <Imported identifier>

<local DL concept> ::= ...

Therefore, it seems reasonable to consider a version of import which takes as
an additional argument a description of the restrictions of the place where imported
names can appear: importG3 (Ω,KBexpt,GΩ).
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Second, we have assumed so far that the importing and exporting knowledge
base share, if not the same vocabulary, at least the same logic. However, as il-
lustrated in Section 4.2.3, there is a need to consider cases where the logics are
different. It seems reasonable to require that the material imported, KBsub, be
represented in the language of the importing ontology. For example, if KBimpt uses
Datalog to represent ontologies, while KBexpt is expressed in CycL, with its FOL
and default rules, it does not make sense to show CycL definitions in KBimpt. This
means that the definitions in the immediately preceding section, which consider the
union of KBimpt and KBexptor KBsub, are likely to not work well. For example,
if KBexpt={A � (B � D) }, then an importing ontology that uses only the AL DL
cannot capture importe,i

2 ({A,B,D,}, KBexpt) because in case KBimpt |= B � D, it
needs to be able to deduce A � D, yet this is not entailed by KBexpt, and hence
cannot be imported. As in Section 4.2.3, the more reasonable solution is to approxi-
mate import2(Ω,KBexpt) in the logic of KBimpt. One can actually fold this into the
framework of importG3 (Ω,KBexpt,GΩ), by using as GΩ the grammar describing the
syntax of the logic used in KBimpt.

It is useful to note that by limiting the use of the imported names, both of the
above cases may enable MinPrinciple to be applied more successfully because not
all formulas in EΩ can be asked as valid queries or lead to useful new infer-
ences. For example, even if KBexpt |= N1� (N2� N3), and {N1, N2, N3} ⊆ Ω,
importG3 (Ω,KBexpt,GΩ) need not entail N1� (N2� N3) when KBimpt is a weak
DL where one can only assert or question subsumptions between atomic concept
names, and KBexpt does not support negation.

4.4.5 On Some Existing Proposals for Importing

Most of the chapters in this book deal with modularizing ontologies. Only two, [19]
and [8], explicitly consider the list of names to be imported, and how this influences
the subset of the ontology that needs to be imported. Using the notions introduced in
the preceding subsections, we can now point out the position staked out by these two
proposals.

Cuenca Grau et al [19] propose Ω-modules (called “S-modules” in the paper) as
importe,i

2 , for the case of possibly differing logics, using the syntactic subset ap-
proach, and applying MinPrinciple to the set of axioms returned. We refer the reader
to [20] for additional details of this approach.

Borgida [8] proposes a definition of import that is like importG3 , allowing both
restricted use of imported names and different logics; it uses the expanded axioms
approach, and applies MinPrinciple to both the size of the expanded set of names
and the set of axioms imported.

One could try to view several of the other entries in Part III (e.g., Chapters 13 and
14) in light of importG3 : the grammar GΩ specifies the precise content of KBimpt and
how it uses names in Ω. More importantly, the axioms in so-called “bridge rules”
should not be interpreted as normal subsumptions, but have instead a special seman-
tics via mapping functions connecting the ontology domains.
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4.5 On the Notion of “Expressive Power”

Given the variety of approaches to defining the notion of importing and its formal
semantics, it is not surprising that one would be interested in comparing them. For
example, [25, 16, 30, 5, 6] contain (sometimes contradictory) statements concerning
the expressive power of formalisms: “Formalism X is more expressive than Y”, “X
cannot express particular concept/situation β”.

The purpose of this section is, first, to alert the community to the need to proceed
carefully in this regard: just because the obvious way of stating β in X does not have
the right consequences does not mean that it cannot be expressed in formalism X. To
make a convincing case, one needs to start with an appropriate formal definition(s)
for the notion of expressive power, and then provide a mathematical proof that there
is no way that β can be expressed.

A second goal of this short section is then to provide some examples of how ex-
pressive power has been defined in prior research, in areas such as databases and
description logics, thus possibly providing a model for how research on expressive-
ness of import, or more generally module connection mechanisms might proceed.
Regretfully, we provide no new formal results here.

Finally, in Section 4.5.3, we briefly look at some of the claims about formal ex-
pressive power of module/ontology interconnections which have appeared in the lit-
erature.

4.5.1 Expressive Power of Query Languages

In the field of databases, the notion of “a query language being as/more expres-
sive than another” has been crucial since the advent of declarative query languages.
In particular, right at the beginning, Codd showed that relational algebra and rela-
tional calculus were equally expressive as query languages for relational databases.
To show that query language L1 is as expressive as L2, one views a query Q as a
function fQ from database instances to answers (sets of tuples), and then shows that
for every query Q in L1 there is a query SQ in L2 which computes the same function.
This is usually done by providing a translation τ which takes as input queries Q in
L1 and produces a query τ (Q) in L2. For a satisfying state of affairs, τ is usually
defined by structural recursion, and is therefore constructive.

To show that language L1 is more expressive than L2 one must therefore prove
that there can be no query written in L2 that expresses the function described by
some query in L1. An example of such a direct proof is the result that transitive
closure cannot be expressed in relational algebra [2].

More often, this is accomplished via complexity theory: showing that the queries
in L2 compute functions in some complexity class strictly contained in the class of
functions computed by L1.

4.5.2 Expressive Power of Description Logic

In establishing an upper bound on the expressiveness of current description logics,
[7] follows a function-based approach by equating concepts C and roles r to unary
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and binary functions λx.C(x) and λx, y.r(x, y), and then showing that these func-
tions could be expressed in First Order Logic with at most 3 variable symbols, count-
ing quantifiers and fix-point operator. It is important to note that while complexity
results concerning the family of such functions that can be captured by some DL
can still be used to distinguish the expressive ability of description logic, complexity
results concerning subsumption cannot: these deal with a different issue, sometime
tied to the brevity with which concepts can be expressed.

Baader [4] undertook a direct study of the comparative expressive power of De-
scription Logics. For example, if a DL has number restrictions but no constant for
the bottom/inconsistent concept ⊥, then one wants to say that adding ⊥ does not
increase expressive power since all its occurrences can be replaced by � 1 p� � 0 p,
which has the same denotation. This kind of replacement can be accomplished by a
translation function τ of a similar nature to the one introduced for query languages.

The novelty here is that one is interested not just in the ability to express a par-
ticular concept, but in the ontologies/TBoxes built with them, from which one can
make deductions. In this respect, one can compare two description logics, DL1 and
DL2, on strictly model-theoretic grounds or on the basis of deductions supported. In
particular, one can say DL2 is as expressive as DL1 iff for every TBox T of DL1

there is a corresponding TBox τ (T ) in DL2 such that either

• T and τ (T ) have the same models4;

or

• T and τ (T ) have the same logical consequences; i.e.,

T |= α� β iff τ(T ) |= τ (α)� τ (β)

These two definitions are not identical. For example, consider DL1, which supports
only concept constructors {� , ∀}, whileDL2also supports the declaration of transi-
tive roles in the TBox. In this particular case, there are no new subsumptions that can
be deduced as a result of a role being declared transitive. (Note that this intuitively
obvious statement needs to be backed up by a tedious inductive proof on the structure
of all possible subsumptions judgments.) However, a DL2ontology T = { A� ∃p.B,
transitive(q) } has only models that have transitive relationships as denotations of q,
and there seems to be no way to achieve this in DL1. (Again, this intuitive statement
needs to be converted into an actual proof about the absence of a possible translation
function — a proof that is much easier for T 0 = {transitive(q)}.)

What is happening here is that the TBox language can make assertions (about
transitivity) that result in model theoretic differences, but these models cannot be
distinguished using only deductions concerning subsumptions. (Were one allowed to
ask whether T |= transitive(p), the situation would be different.)

A real-world case of this occurs in [12], where the constraint that certain classes
of individuals must have unique combinations of values for so-called “key” features
{q1,q2,. . .} is shown to have no influence on the subsumptions that can be concluded.

4 To be well-defined, this requires that the two DLs have the same notion of interpretation
structure.
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Finally, the following example from [4] shows that the issue is also more complex
concerning the translation function τ : Suppose that DL2 supports TBoxes which al-
low only concept definitions, of the form A≡ α, where A is a concept name, while
DL1 supports TBoxes which allow both concept definitions A≡ α and subsump-
tion axioms of the form A� β. There is a well-known technique for encoding DL1

TBoxes in DL2 TBoxes, illustrated by the following example: the axiom Dog� Pet
is replaced by Dog ≡ Dogness � Pet, where Dogness is a new primitive concept
identifier. There is then an intuitive sense in whichDL1 andDL2 are equally expres-
sive. However, a translated DL1 ontology τ (T ) then contains additional symbols,
thus both entailing new subsumptions (e.g., dog � Dogness), and having differ-
ent interpretations. Baader [4] appropriately formulates the question of model-theory
based expressive power in the context of more complex translations (essentially com-
putable translation functions), and studies the model-theoretic definition.

4.5.3 Expressivity of Connected Logics

Bao et al [6] undertake a formal investigation of expressive power for the family of
import approaches dealing with many ontologies, which use as semantic interpreta-
tion a structure containing multiple classical “local worlds”, each interpreting some
ontology that may import or export knowledge, and connecting their domains with
so-called domain mappings (Chapters 13, 14). The paper [6] paper provides a list
of “expressivity criteria”, such as “Can the language express constraints of the form
A� ∃R.C where C and R are imported from an outside ontology?”. Such criteria are
quite syntactic (and superficially easy to answer), in contrast to something like “Can
the language express constraints that ensure that in every model, the interpretation of
A is contained in the appropriate set of objects described in terms of the interpreta-
tions of R and C.” The answer to the second question is much harder (especially if
it is going to be negative). Yet, as illustrated by the examples in Section 4.5.2, this
seems a much more relevant issue, if one is going to consider expressive power. As it
happens, [6], does provide a common model theory that underlies the formalisms—
the notion of Abstract Modular Ontology. One could therefore proceed along the
lines described in the previous subsection for simple description logics.

Chapter 11 also provides a comparison between these formalisms, this time based
on their mapping to Distributed First Order Logic (DFOL). This mapping is useful
for the stated purpose of comparing assumptions, and differences in interpretation
for the notion of “ontology mapping”. It should not however be used directly to
compare expressive power (by comparing sets of DFOL formulas covered) because
that depends on the particular mapping to DFOL chosen. One proper approach would
be to find a way to associate functions on models or individuals with DFOL theories.

Similarly, statements of the form “Formalism X cannot capture example
e/phenomenon F” (e.g., “It is inconsistent to say that Penguin inO2 is subsumed by
Bird and ¬Bird inO1”) can only be established by formal proof, once one chooses a
formal definition of how one can say things—a nontrivial task in the presence of do-
main mappings, etc. Moreover, as shown in [4], such impossibility proofs are liable
to be quite difficult.
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4.6 Conclusions

The aim of this chapter has been to gain a better understanding of the notion of con-
necting ontologies through a mechanism that allows knowledge from one ontology
to be imported into another. Rather than addressing directly the question “What is a
module?”, it focuses on “What do I need from ontology T if I want to understands
notions {C1, C2,. . .}, which are described there?”. The result is therefore not an a
priori modularization of ontology T (based on its internal structure) — as studied
in [17, 29], for example, but a modularization relative to the needs of understanding
the names in set Ω — what one might term “demand-based module extraction”, as
studied in [19, 8]. This topic is closely related, at this high level, with other entries
in Part III, which deal with more precise ways to connect disparate ontologies, but
which are distinguished by a more complex formal semantics, involving multiple
local models.

We started by surveying a number of proposals for importing knowledge that had
been used in Databases and Artificial Intelligence. From this, we extracted a few
common features, such as soundness, the need to possibly import additional identi-
fiers to help explain the meaning of those in Ω, and the desire to minimize the ma-
terial imported (both the set of extra names and the set of axioms). We then looked
at a spectrum of options available in the logical specification of import(Ω,KBexpt).
These included the question whether the axioms imported are to form a subset of the
actual axioms in KBexpt, or whether they should only be entailed by it. The most
interesting aspect here was the fact that all the proposals reviewed in Section 4.2 ac-
tually imported a subset not of the original knowledge base, but of an enlargement of
it with a carefully circumscribed set of axioms. Moreover, we pointed out that often
this enlargement corresponded to “lemmas” that followed from KBexpt but which
would not need to be explained to humans because their deduction seemed trivial.
Next, we looked at different ways in which import could be specified logically: (i)
by using a priori modularizations of KBexpt; (ii) by considering only the axioms
needed to prove the formulas entailed by KBexpt; (iii) by also considering the im-
porting ontology; (iv) by circumscribing the class of importing ontologies to limit
the use of Ω, or the logic used. This allowed us to see the precise differences be-
tween two earlier proposals for import [19, 8]. Because of the plethora of choices
available (both here and in other parts of the book), there is a temptation to make
statements that certain approaches are more expressive than others or cannot express
certain situations. For this reason, we ended with a review of (what we believe are)
appropriate grounds on which “more expressive than/can express” has been treated
in the field of database query languages and ordinary Description Logics, and then
briefly commented on current efforts to compare proposals in this book.
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Summary. Modularization can be sought for as a technique to provide context-dependent
perspectives over a given shared information repository. This chapter presents an approach to
database modularization where the modules represent application-specific perspectives over
the shared database. The approach is meant to support the creation/definition of the modules
as part of the conceptual schema definition process, that is to say the modules and the database
they are a subset of are simultaneously defined. This is similar to Cyc’s approach to ontolog-
ical microtheories definition. The chapter develops both intuitive and formal definition of the
proposed approach. It also shows the basics of how the modules are used by user transac-
tions and of how the overall multiperception database can be implemented on a commercial
database management system.

5.1 Introduction

A database stores a representation of the part of the real world that is of interest for
a set of applications. Usually, information requirements vary from one application to
another and call for different representations of the real world. For example, given a
database describing vineyards, one application may focus on production data (e.g.,
which wines, which qualities and quantities) while another application focuses on
cultivation aspects (e.g., which plants, fertilizers, harvesting techniques). Traditional
database models1 poorly comply with such situations as they do not explicitly sup-
port the definition of several representations for the same real-world phenomenon.
Database designers have the choice between two unsatisfactory solutions. One is to
define two tables (assuming a relational database) with different names (e.g., Vine-
yardProduction and VineyardCultivation), each one with its attributes. To maintain
the consistency of two instances (one in each table) describing the same vineyard,

1 This chapter employs the database terminology. The term “model” means the schema lan-
guage that allows designers to define the schema (description) of their database.
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integrity constraints have to be defined to force attributes shared by the two focuses
(e.g., an attribute holding the surface of the vineyard) to have the same value in the
two instances. Querying such a database is uneasy as the user has to pay attention
on which tables to query (one or the other or both). The second solution, more fre-
quently used, is to merge all the desired representations into a common unique repre-
sentation, the schema of the database. The view mechanism is then used to construct
alternate representations that differ from those stored. In the example, the designer
would first define in the schema a unique Vineyard table with all attributes (those
common to the two focuses as well as those relevant for only one focus). Second, the
designer would define two views, a VineyardProduction view and VineyardCulti-
vation view, where each view extracts from the Vineyard table the attributes relevant
to the targeted application. Notice that this second solution can only cope with com-
patible representations, where differences can be readily adjusted using the facilities
of the manipulation language (e.g., SQL). Unfortunately, there are situations where
differences between representation requirements go beyond the restructuring capa-
bilities of SQL. For example, two applications may need the same information, e.g.,
an attribute A, but in incompatible formats, which would typically lead current sys-
tems to define in the schema table two attributes with different names, A1 and A2,
and have each application view separately recover the A attribute from the base ta-
ble attributes A1 and A2. The drawback of this solution is that the system ignores
that A1 and A2 represent the same information and is consequently not in a posi-
tion to guarantee the consistency of the two representations. Situations of this kind
typically arise when creating a federated database out of a set of existing databases
that represent the same phenomena in different ways, or in geographic applications
that need to store the spatial extent of objects at different spatial resolutions. Current
database management systems (DBMS) and geographic information systems (GIS)
provide a few tools for explicitly supporting multiple representations. DBMS use
generalization/specialization links to provide users with several representations of
the same real-world entity with different levels of details. Some GIS allow storing
several geometries for each spatial object.

Thanks to the flexibility it supports and to its relative simplicity, the view mecha-
nism has become extremely popular with database users and designers, and has also
influenced work on ontology modularization (see Part II of this book). This is despite
the fact that views do not provide a complete solution to the problem. Inherently to
the approach, each view is a single virtual table whose instances are derived from the
stored database. Most applications need instead access to a virtual database holding
(as any database does) sets of interrelated data from different tables. In current re-
lational technology, these applications need to define one view per table they need,
make sure they do not loose the external key defining the connections between the
tables (e.g., use precomputed joins rather than the original tables, as referential in-
tegrity between the views is not supported), and acquire access rights to all their
view tables. This is not that simple and risks of inconsistency are high. The idea of a
virtual database has been initially proposed in the 1960s under the term subschema
and was implemented in legacy systems such as Codasyl DBMSs. Unfortunately (for
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application developers) it was discarded once the view mechanism was invented for
the benefit of DBMS developers.

As the name says, subschemas relied on the idea that each application needs only
a subset of the database. In this chapter we propose an approach to resume this idea,
while making it more general. Instead of associating an application with a subschema
we make it possible for each application to have its own schema (and database)
while keeping the correlations with the schemas of the other applications. All appli-
cation schemas (and databases) are stored within a single database, which we call
a “multiperception” database. We say each application has its own “perception” of
the multiperception database, and automatically gets from the DBMS the data cor-
responding to its perception. Equally correct would be to say that we change a tradi-
tional database into a multiperception database, and then each application can have
its subschema corresponding to its perception of the multiperception database. To be
precise, a perception in our approach is defined as the set of representations of all
objects and links corresponding to a specific usage of the database. For instance, in
a geographic database used for producing maps of a country at two different scales,
say 1:20’000 for hikers and 1:300’000 for car drivers, it would be useful to group in a
first perception all the 1:20’000 representations and in another one all the 1:300’000
representations. Users of this database could then open the database with the percep-
tion they need and get the corresponding homogeneous set of representations, i.e., a
virtual, consistent single perception database.

The multiperception idea provides a possible approach for modularization. Given
a database DB that one wants to modularize into modules M1, . . . ,Mn, the process
simply requires to define M1, . . . ,Mn as the desired perceptions and then tag each
element of the database with the perception(s) it belongs to. This applies whatever
the chosen technique for splitting the database into modules is. The approach is also
independent of the data model (relational, UML, . . .) used by the database designer,
and can therefore also apply to ontologies. Indeed, a very similar approach is the one
followed by Cyc to define microtheories within an ontology [5].

However, implementing a multiperception approach is not just a matter of using
a set of tags. Its full specification requires the definition of tagging consistency rules
to guarantee that each perception defines a coherent database, the definition of how
a multiperception database can be manipulated by applications that may or may not
want to share information, and the definition of how interperception processes can
be supported, in particular with interperception links.

This chapter describes the capabilities we have defined as an answer to this need
for multiperception data. These capabilities are embedded into a conceptual data
model, Mads, that we had developed for classic as well as geographic and tempo-
ral databases. The Mads mechanism for multiple perceptions and representations
allows any kind of element of the database to have several representations, and al-
lows each user to get his/her own perception of the database. In the following we use
Mads terminology, in particular the term “perception”, which the reader can read as
“module”.

Mads is primarily intended for database designers, i.e., persons in charge of speci-
fying the schema of a database in response to user/application requirements. Thus, it
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is a conceptual model: It enables a direct mapping between the perceived world and
its representation. Using Mads, designers can focus exclusively on the requirements
of their applications without having to care about implementation concerns. Mads is
complemented with data manipulation languages that allow users to specify queries
and updates at the conceptual level too. A set of tools developed during the European
project MurMur automatically implements the conceptual specifications (schema or
query) onto a DBMS or GIS [11].

A Mads database is defined from the very beginning as containing a set of objects
and relationships that may be shared by several perceptions, each object or relation-
ship being possibly perceived in a different way for each perception. Using ontology
terminology we would say that the Mads perceptions share a common interpretation
domain: There is a unique global set of object identifiers (oid) and a unique global set
of relationship identifiers (rid) which are common to all perceptions. This approach
is different from Cyc where assertions of two different microtheories (which are not
a super- and its sub-microtheory) are always independent. The basic principles of
Mads multiple perceptions and representations are: 1) Any database element, be it
composite (e.g., an object type) or atomic (e.g., a simple attribute) may have various
representations, one per perception. Any two perceptions may share any kind of ele-
ment of the database. 2) Two objects belonging to two different perceptions may be
linked by a binary relationship or by a multi-instantiation link (is-a or overlap link).
These points are developed in the following sections.

Section 5.2 sets the Mads framework by giving an overview of the characteris-
tics of the Mads data model, excluding the perceptions and representations aspect.
Section 5.3 defines the various kinds of perceptions, and shows how to design and
use perceptions. Sections 5.4 and 5.6 present, respectively, the various kinds of inter-
perception links and the dependencies between perceptions that these links generate.
Section 5.8 describes how to implement the Mads model in the relational model,
while Section 5.5 gives a formal definition of the Mads model with the perception
dimension. Section 5.9 compares the Mads approach with the ones of modular on-
tologies. Finally, Section 5.10 concludes this chapter and points to future research.

5.2 An Overview of the Mads Data Model

This section briefly presents the thematic, spatial, and temporal modeling dimensions
of the Mads data model. All three dimensions can provide criteria for modulariza-
tion. For example, spatial resolution is frequently used by geographic data providers
to build modules that target production of maps at some specific scale. Maps at differ-
ent levels of detail require data representations tailored to a specific user population:
pedestrians, hikers, cyclists, car drivers, truck drivers, trip planners, etc. Similarly,
temporal features may be used to identify modules whose data is relevant for a spe-
cific timeframe, e..g. the enterprise financial data for this year, for the year before,
etc. For sake of brevity, the discussion of the perception dimension (Sections 5.3 to
5.6) does not explicitly address its relationships to spatio-temporal features. They
are addressed implicitly by considering them as included in the generic structural
concept of attribute. In particular, we only provide a formal definition of structural
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Fig. 5.1. The Mads schema of a spatio-temporal database

constructs for a multiperception database. However, the running example used in this
chapter uses data with spatial and temporal features.

Readers interested in more detailed presentations of the MADS concepts and
rules, including the formal definition of the model, may refer to [10, 12, 2]. The per-
ception and representation characteristics are described and discussed in Sections 5.3
to 5.6. Unless the contrary is explicitly stated, examples in this section refer to
Fig. 5.1, which describes districts that are composed of land plots, where some land
plots may be built up while others are agricultural and, in particular, vineyards.

5.2.1 Structural Modeling

We first give an informal presentation. A formal one follows later. Mads structural
dimension describes the chosen data structures based on well-known features such as
objects and object types, relationships and relationship types, attributes, and meth-
ods2. Objects and relationships have a system-defined identity, called oid for ob-
jects and rid for relationships. Both objects and relationships may bear attributes.

2 For space reasons, we do not provide in this paper a detailed discussion about methods in
the Mads model.
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Attributes may be mono-valued or multivalued, simple or complex (i.e., composed
of other attributes), optional or mandatory, and may be derived (i.e., their value is
computed from the values of other attributes). Referring to the example in Fig. 5.1,
the attributes weather of District and buildings of BuiltUpLandPlot are both com-
plex attributes, while all other attributes are simple. The buildings attribute is multi-
valued, as shown by the (1,n) notation following the attribute name: it describes the
set of buildings located within the land plot, giving for each building its number and
its spatial extent. All other attributes are monovalued, with default cardinality (1,1)
not shown in the figure.

Semantic data models usually provide the capability to link objects through vari-
ous types of relationships, each one holding a specific semantics. Mads separates the
definition of relationships into two facets: (1) its structure (i.e., the roles linking ob-
ject types and the relationship attributes, if any), (2) its semantics. Each relationship
type may bear zero, one, or several specific semantics. Mads supports aggregation,
generation, transition, topological, synchronization, and inter-representation seman-
tics for the relationships. Aggregation (identified by the icon) is the most common
one: It defines mereological (also termed component or part-of) semantics. An exam-
ple is the Composes relationship. Generation relationships record that target objects
have been generated by source objects. Transition semantics expresses that an object
in a source object type has evolved to a new state that causes it to be instantiated
in another target object type. For example, in the schema diagram of Fig. 5.1 the
ChangesTo relationship type holds transition semantics (denoted by the icon)
expressing that an agricultural land plot may become a built-up land plot. Instances
of this relationship type record such transitions.

By definition, transition relationships link two instances of the same object in
different states. The fact that an object may have two (or more) instances in dif-
ferent object types3 is known as multi-instantiation. In most semantic data models
multi-instantiation is supported through is-a links, which by definition relate two in-
stances (one generic, one specific) of the same object (or relationship). Mads adds
a complementary kind of multi-instantiation link between either object or relation-
ship types: The overlap link. Overlap links are binary links expressing that the two
linked object (or relationship) types may contain instances sharing the same iden-
tity. They have a less constraining semantics than the inclusion semantics of the is-a
link. Overlapping is implicit between two types that share a common subtype. Oth-
erwise it has to be explicitly defined as in databases, contrarily to description logics,
two object (or relationship) types that are not related by multi-instantiation links
always hold disjoint sets of instances. In other words, they cannot contain two ob-
ject (or relationship) instances sharing the same oid (or rid). For example, Fig. 5.1
shows that District, LandPlot, and Wine are three disjoint object types. Conversely,
Vineyard, AgroLandPlot, LandPlot, and BuiltUpLandPlot form a network of over-
lapping types: As the ChangesTo transition relationship type implicitly defines an

3 In the case of temporal object types, the object instances linked by a transition relation-
ship may be no longer active. Indeed, disabled instances of temporal types are kept in the
database as long as they are needed by the applications.
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overlap link between AgroLandPlot and BuiltUpLandPlot, a LandPlot object can
have instances in any of the four object types.

Multi-instantiation in Mads is by default dynamic: Any object (or relationship)
may acquire new instantiations or loose existing instantiations in any of the object (or
relationship) types connected by the network of multi-instantiation links it belongs
to. This is the case for the ChangesTo relationship. However, database designers
may use explicit integrity constraints to constrain multi-instantiation within a set
of related types to be static. In this case, an object or relationship, once initially
created as instance of one or more types in the constrained set, cannot change its
membership, i.e., it cannot acquire a new instantiation nor loose any but all existing
ones (which means the object is deleted from the database).

Fig. 5.2. A relationship subtype refining a role to link a subtype of the original object type

Mads supports is-a links for object and relationship types with inheritance and
possibly refinement or redefinition. Such capability is needed for full flexibility in
defining spatial and temporal features of subtypes (given that these features are con-
veyed by attributes with a fixed name). For example, in the Vineyard object type
the lifecycle is redefined: It contains a time interval describing when the vineyard
was productive, instead of the time interval describing when the land plot was cre-
ated and deleted. An example of refinement is given in Fig. 5.2, which specifies the
VineyardChanges relationship type as a subtype of the ChangesTo transition rela-
tionship. The isSource role of the relationship type is refined to link only instances
of AgroLandPlot that are instances of Vineyard too. This expresses that transitions
of vineyards to built-up land plots are subject to an authorization, whose number is
stored in the authorization# attribute.

5.2.2 Formal Definition of Structural Constructs

For the reader unfamiliar with data modeling concepts, this section provides formal
definitions for the main structural constructs of the Mads model. Namely, for sake of
simplicity, we leave out the spatial and temporal dimensions. In the structural dimen-
sion, we only include the concepts that exist in most Entity Relationship data models.
We do not include multiassociations, relationship semantics, complex, multivalued,
and optional attributes, weak object types, and methods. Let us call SimpleMads this
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subset of the Mads model that we formalize below. The interested reader can refer to
[10] for a full and formal description of the additional capabilities. A formal defini-
tion of the temporal dimension in the context of description logics, with its associated
temporal constraints and all inferred reasoning, has been presented in [2]. Below we
also leave out the perception dimension. The formal definitions of multiperception
schema, multiperception database and perception are given in the following sections.

Definition 1 (SimpleMads schema without perceptions)
A SimpleMads schema without perceptions is a tuple: Σ = (L, REL, ATT, CARD,
ISA, OVLP, KEY), such that:

• L is a finite alphabet partitioned into the sets: O (object type symbols),R (rela-
tionship type symbols),A (attribute symbols), U (role symbols), and D (domain
symbols).

• REL (relationships) is a total function that maps a relationship type symbol R in
R to an U-labeled tuple over O, REL(R) = 〈U1 :O1, . . . , Uk :Ok〉, where k ≥ 2
is the arity of R.

• ATT (attributes) is a partial function that maps an object or relationship type sym-
bolX inO∪R to anA-labeled tuple overD, ATT(X) = 〈A1 :D1, . . . , Ah :Dh〉.

• CARD (cardinalities) is a partial function O × R × U → N × (N ∪ {∞}) that
defines cardinality constraints associated to the roles of the relationship types.
For a relationship type R such that REL(R) = 〈U1 : O1, . . . , Uk : Ok〉, we use
CMIN(Oi, R, Ui) and CMAX(Oi, R, Ui) to denote the first and second component
of CARD.

• ISA (is-a links) is a transitive binary relation ISA ⊆ (O × O) ∪ (R × R) that
defines is-a links for object and relationship types.

• OVLP (overlap links) is a symmetric binary relation OVLP ⊆ (O×O)∪ (R×R)
that defines overlapping links between object or relationship types.

• KEY is a binary relation, KEY ⊆ (O ∪R)× 2A, which associates to each object
and relationship type symbol a set of keys, each key being composed of a set of
attributes of the object or relationship type. �

The model-theoretic semantics associated with the SimpleMads model without the
perception dimension is given next.

Definition 2 (Database state of a SimpleMads schema without perceptions)
Let Σ be a SimpleMads schema without perceptions. A database state for the
schema Σ is a tuple B = (ΔB

O ∪ΔB
R ∪ΔB

D, ·B), such that: the three sets ΔB
O , ΔB

R,
and ΔB

D are pairwise disjoint; ΔB
O is a nonempty set of objects; ΔB

R is a nonempty
set of relationships, ΔB

D =
⋃

Di∈DΔ
B
Di

is the set of values for all domains used in
the schema Σ; and ·B is a function that maps:

• Every domain symbol Di to a set DB
i = ΔB

Di
.

• Every object type symbol O, to a set OB ⊆ ΔB
O.

• Every relationship type symbol R to a set RB of couples 〈r, u〉 where r ∈ΔB
Rl

and u is a U-labeled tuple overΔB
O such that if REL(R) = 〈U1 :O1, . . . , Uk :Ok〉,
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then: 〈r, u〉 ∈ RB ∧ u = 〈U1 : o1, . . . , Uk : ok〉 ⇒ ∀i ∈ {1, . . . , k} (oi ∈ OB
i ).

Further,RB is such that: ∀ 〈r1, u1〉, 〈r2, u2〉∈RB (r1 = r2 ⇒ u1 = u2).
• Every attribute symbol A to a set AB ⊆ (ΔB

O ∪ΔB
R) ×ΔB

D , such that, for each
object or relationship type X ∈ (O ∪R), if ATT(X)[A] = Di, then: x∈XB ⇒
(∃ai∈DB

i (〈x, ai〉∈AB) ∧ ∀ai (〈x, ai〉∈AB ⇒ ai∈ΔB
Di

)). �

Definition 3 (Consistent database state of a SimpleMads schema without per-
ceptions)
A database state B is said to be consistent if it satisfies all of the constraints expressed
in the schema:

• Population inclusion:
∀X1, X2∈(O ∪R) (ISA(X1, X2)⇒ XB

1 ⊆ XB
2 ).

• Population intersection:
∀X1, X2∈(O∪R) (XB

1 ∩XB
2 �=∅ ⇒ X1 = X2∨ ISA(X1, X2)∨ ISA(X2, X1)∨

OVLP (X1, X2))
• Cardinality constraints:

For each cardinality constraint CARD(O,R,U) of a relationship R∈R:

∀o∈OB (CMIN(O,R,U) ≤ #{〈r, u〉∈RB | u[U ] = o} ≤ CMAX(O,R,U)).

• Key constraints:
For each key constraint KEY(X,K) of an object or relationship type X ∈ (O ∪
R), where K = {A1, . . . , An}:
∀x1, x2∈XB ∀i∈{1, . . . , n} (〈x1, a

1
i 〉∈AB

i ∧ 〈x2, a
2
i 〉∈AB

i ∧ a1
i = a2

i )⇒
x1 = x2). �

Proposition 1 (Logical implication for a SimpleMads schema without percep-
tions)
As a consequence of the definitions of SimpleMads schema and consistent database
state, the following rule can be derived:

• Inferred overlap links from is-a links:
∀X1, X2, X3∈(O ∪R) (ISA(X1, X2) ∧ ISA(X1, X3)⇒ OVLP(X1, X3)).

5.2.3 Spatio-Temporal Modeling

In Mads, space and time description is orthogonal to data structure description, which
means that the description of a phenomenon may be enhanced by spatial and tem-
poral features whatever data structure (i.e., object, relationship, attribute) has been
chosen to represent it. Mads allows describing spatial and temporal features with
either a discrete or a continuous view. These are described next.

The discrete view (or object view) of space and time defines the spatial and tempo-
ral extents of the phenomena of interest. The spatial extent is the set of 2-dimensional
or 3-dimensional points (defined by their geographical coordinates 〈x, y〉 or 〈x, y, z〉)
that the phenomenon occupies in space. The temporal extent is the set of instants that
the phenomenon occupies in time. Temporality in Mads corresponds to valid time,
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which conveys information on when a given fact, stored in the database, is considered
valid from the application point of view.

Specific data types support the definition, manipulation, and querying of spatial
and temporal values. Mads supports two hierarchies of dedicated data types, one
for spatial data types, and one for temporal data types. Generic spatial (respectively,
temporal) data types allow describing object types whose instances may have differ-
ent types of spatial extents. For example, a River object type may contain instances
for large rivers with an extent of type Surface and instances for small rivers with
an extent of type Line. The Mads hierarchy of spatial data types is simpler that –
while compatible with – the one proposed by the Open Geospatial Consortium [9].
Examples of spatial data types are: Geo ( ), the most generic spatial data type,
Surface ( ), and SurfaceBag ( ). The latter is useful for describing objects with
a non-connected surface, like an archipelago. Examples of temporal data types are:
Instant ( ), Interval ( ), nand IntervalBag ( ). The latter is useful for describing
the periods of activity of non-continuous phenomena.

A spatial (temporal) object type is an object type that holds spatial (temporal) in-
formation pertaining to the object itself. For example, District is a spatial object type
as shown by the surface ( ) icon on the right of its name, and LandPlot is a spatial
and temporal object type with a lifespan of kind Interval ( icon on the left of its
name). Following common practice, we call spatio-temporal an object type that ei-
ther has both a spatial and a temporal extent, separately, or has a time-varying spatial
extent, i.e., its spatial extent changes over time and the history of extent values is
recorded (e.g., LandPlot). Similarly, spatial, temporal, and spatio-temporal relation-
ship types hold spatial and/or temporal information pertaining to the relationship as
a whole, exactly as for an object type. Time-varying and space-varying attributes are
described hereinafter.

The spatial and temporal extents of an object (or relationship) type are kept in
dedicated system-defined attributes: geometry for the spatial extent and lifecycle
for the temporal extent. The attribute geometry is a spatial attribute (see below) with
any spatial data type as domain. When representing a moving or deforming object
(e.g., LandPlot), geometry is a time-varying spatial attribute. On the other hand, the
attribute lifecycle allows database users to record when, in the real world, the object
(or link) was (or is planned to be) created and deleted. It may also support recording
that an object is temporarily suspended, like an employee who is on temporary leave.
Therefore, the lifecycle of an instance says at each instant what is the status of the
corresponding real-world object (or link): scheduled, active, suspended, or disabled.

A spatial (temporal) attribute is a simple attribute whose domain of values be-
longs to one of the spatial (temporal) data types. Each object and relationship type,
whether spatial, temporal, or plain, may have spatial, temporal, and spatio-temporal
attributes. For example, the BuiltUpLandPlot object type includes, in addition to
its spatial extent (inherited from LandPlot), a complex and multivalued attribute
buildings whose second component attribute, location, is a spatial attribute describ-
ing, for each building, its spatial extent, a surface. Practically, the implementation
of a spatial attribute, as well as the one of a geometry attribute, varies according
to the domain of the attribute. For instance, in 2D space a geometry of kind Point is
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usually implemented by a couple of coordinates 〈x, y〉 for each value, and a geometry
of kind Surface by a list of couples 〈x, y〉 per value.

Spatial and temporal values for an object may have to be consistent with the spatial
and temporal values of other related objects. Constraining relationships are binary
relationships linking spatial (or temporal) object types stating that the geometries (or
lifecycles) of the linked objects must comply with a spatial (or temporal) constraint.
For example, Composes is both an aggregation and a constraining relationship of
kind topological inclusion, as shown by the icon. The constraint states that a dis-
trict and a land plot may be linked only if the spatial extent of the district effectively
contains the spatial extent of the land plot. Produces is a synchronization relationship
type of kind within ( icon): It enforces the temporal extent of the Wine instance
– an instant with year granularity describing the year of the wine – to be included
within the temporal extent of the Vineyard instance – a time interval describing
when the vineyard was productive.

Beyond the discrete view, there is a need to support another perception of space
and time, the continuous view (or field view). In the continuous view a phenomenon is
perceived as a function associating to each point (or instant) of a spatial (or temporal)
extent a value. Mads supports the continuous view using space- and time-varying
attributes, which are attributes whose value is a function that records the history –
and possibly the future – of the value. The domain of the function is a spatial (and/or
temporal) extent. Its range can be a set of simple values (e.g., Real for temperature,
Point for a moving car), a set of composite values if the attribute is complex, and/or
a powerset of values if the attribute is multivalued.

The object type District shows three examples of varying attributes and their vi-
sual notation in Mads (e.g., ). Attribute elevation is a space-varying attribute
defined over the geometry of the district: It provides for each geographic point of the
district its elevation. Attribute population is a time-varying attribute defined over
a constant time interval, e.g., [1900-2007]. Attribute weather is a space and time-
varying complex attribute which records for each point of the spatial extent of the
district and for each instant of a constant time interval a composite value describing
the weather at this location and this instant. Such space- and time-varying attributes
are also called spatio-temporal attributes. As we have seen, the geometry attribute
can also be time varying, like any spatial attribute. For instance, LandPlot has a
time-varying geometry: any change of the spatial extent of land plots can therefore
be recorded. Practically, the implementation of a continuous time-varying attribute
is usually made up of (1) a list of 〈instant, value〉 pairs that records measured values
(called sample values), and 2) a method that performs linear interpolation between
two sample values to infer non-measured values. For instance, a time-varying point
would be implemented by a list of triples 〈instant, x, y〉. On the other hand, time-
varying attributes that are not continuous but that vary in a stepwise manner, like the
geometry of LandPlot, are recorded by a list of couples 〈time interval, value〉.

A constraining topological relationship may link moving or deforming objects,
i.e., spatial objects whose geometries are time-varying. An example is the topological
inclusion relationship Composes that links District (a surface) and LandPlot (a
time-varying surface). In this case two possible interpretations can be given to the
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topological predicate, depending on whether it must be satisfied either for at least one
instant or for every instant belonging to the time extent of the varying geometries.
Applied to the example of Fig. 5.1, this means that the relationship Composes can
only link a District and a LandPlot instances such that their geometries intersect
for at least one instant or for every instant of the temporal extent of the varying
geometry of the land plot. When defining the relationship type, the designer has to
specify which interpretation holds.

5.3 Perceptions

As explained in the introductory section of this chapter, the notion of perception in
Mads captures a specific perspective that guides the definition of the corresponding
content of the database. We first discuss the perception mechanism informally, and
provide a formal definition afterwards. As Mads is intended for conceptual model-
ing, the definition of perceptions is dealt with as part of the conceptual design phase.
The resulting conceptual schema will eventually be translated into logical and phys-
ical schemas. Perceptions, alike spatial and temporal features, will have to be imple-
mented using the mechanisms provided by the target DBMS. We show in Sect. 5.8 a
possible implementation of perceptions into the relational model.

Supporting multiple perceptions within the same database, as Mads does, means
that different contents coexist in the database and the system knows how to iden-
tify and extract the content that corresponds to a specific perception (which we call
simple perception) or to a combination of perceptions (which we call composite per-
ception). For instance, the schema diagram in Fig. 5.3 illustrates a multiperception
schema, separately showing the content of each of three simple perceptions designed
to support information requirements from the wine makers, the wine experts, and
the geologists working in the wine area. These perceptions are denoted Pm, Pe, and
Pg, respectively. The diagram uses visual duplication to show that the object type
Wine belongs to two simple perceptions. Before accessing the database, a typical
user transaction will specify which perception it wants to use, and will accordingly
see the corresponding subset of the database.

Fig. 5.3. A schema diagram showing three simple perceptions and one composite perception
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Some applications may need to work simultaneously with data that has been de-
fined as belonging to different perceptions. For example in Fig. 5.3, an application
may wish to relate the geological information to the vineyard information, thus span-
ning over the geologist and wine makers perceptions. Such an application may wish
to record the relationships between geological units in Pg and vineyards in Pm, cre-
ating instances of the LocatedIn relationship type. Similarly, applications may need
to simultaneously use different representations of the same phenomena belonging to
different perceptions. For instance, in cartographic databases storing data for a set
of maps representing the same region at different scales, it is common to organize
the database as holding one simple perception per targeted scale. Yet there are appli-
cations that can compare the various representations in order to check their spatial
consistency.

In summary, the perception mechanism must be able to support users using a
single simple perception as well as users using data from multiple perceptions. It
must also be able to support storing data that belong to a single perception, data
that belong to multiple perceptions, and data that relate together data from different
perceptions. We describe hereinafter a mechanism to respond to these requirements
based on the combined use of simple and composite perceptions.

A simple perception provides an application with a view of the multiperception
database that includes whatever data is defined as belonging to this perception, and
nothing else. Pm, Pe, and Pg, in Fig. 5.3 are simple perceptions. A multiperception
database holds data belonging to various simple perceptions, say (p1+p2+ . . .+pn).
A simple perception can be seen as a component of a multiperception database char-
acterized by its own schema and its own instances (both materialized), respectively
a subset of the multidatabase schema and instances. This subset is equivalent to a
traditional database without the perception dimension. The various perceptions may
differ in their scope, i.e., they may describe different sets of real-world entities and
links, but these sets may also overlap and in databases they often do overlap in a large
proportion. For instance, in Fig. 5.3 both perceptions Pm and Pe describe wines, pos-
sibly in different ways. The definition of simple perceptions is part of the schema de-
sign process, now ending up with the (basically static) definition of a multiperception
schema.

Composite perceptions support working with data from multiple simple percep-
tions. A composite perception is dynamically defined by users depending on the in-
formation needs of their transactions. Transactions use an openDatabase command
to specify which database they want to work with and which perception(s) they want
to work with:

openDatabase(dbName, myView)

where myView is either a simple perception pi or a composite perception denoted
(p1 + p2 + . . .+ pk),

The view provided by a composite perception is created by the system on the fly
and contains all the elements (schema and instances) of the component simple per-
ceptions pi, plus the interperception links (relationships, is-a and overlap links, at the
schema and instance levels), if any, that relate objects in different perceptions within
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p1, p2, . . ., and pk (e.g., an object of p1 and an object of p2). For instance, in the
Wine database of Fig. 5.3 perceptions Pm and Pg describe two disjoint parts of the
real world, yet they are linked by a relationship type, LocatedIn. This relationship
type, contrarily to ProducedBy, does not belong to any of the simple perceptions
Pm, Pe, and Pg. It belongs only to the composite perception (Pm + Pg). Therefore,
while users of Pm see Wine, Vineyard, and ProducedBy, and users of Pg see Geo-
logicalUnit, users of (Pm+Pg) see Wine, Vineyard, ProducedBy, GeologicalUnit,
and LocatedIn.

Interperception links provide an explicit means to navigate between perceptions.
By definition, they do not belong to any simple perception. For simplification pur-
poses, we keep with the idea that every element belongs to at least a simple percep-
tion by considering that interperception links belong to a special simple perception
that is system defined and not visible to users, and is denoted Pip . Referring to Fig.
5.3, the ProducedBy relationship type links two Pm object types and is defined by
the administrator as belonging to Pm: We say it is a local link. LocatedIn, instead,
links a Pm object type and a Pg object type, and is therefore automatically iden-
tified as an interperception link, implicitly tagged Pip . The set of local links and
interperception links are disjoint. In the schema illustrated in Fig. 5.5, there is one
relationship type ProducedBy which is local, even if it belongs to two perceptions,
Pm and Pe. ProducedBy in the Pm (resp. Pe) perception links Wine objects that be-
long to Pm (resp. Pe) to Vineyard objects that also belong to Pm (resp. Pe). Should
the application need to link, say, wines of Pm to vineyards of Pe, then the database
administrators would have to define another relationship type, say WmProduced-
ByVe, linking Wine objects of Pm to Vineyard objects of Pe.

The first step towards the creation of a multiperception database is for the database
administrator to identify the set of simple perceptions that need to be explicitly de-
fined (i.e., the set SP = {p1, p2, . . . , pn}). The following step for the database ad-
ministrator is to define which data belongs to which perception. Any kind of schema
element may have several representations. The population of an object or relationship
type may also vary with the perception. Whatever methodology is used to perform
this step (definitions organized by perception or by schema element), the result shall
conform to the following:

• Each object and relationship type definition includes the specification of the per-
ceptions it belongs to, and for each of these perceptions its corresponding repre-
sentation, i.e., its attributes, and roles definitions.

• Each interperception relationship type, meant to connect objects in different per-
ceptions, is defined as belonging to the peculiar perception Pip .

• An element that has a single representation may belong to multiple perceptions.
All its perceptions share its single representation. Conversely, an element can
have multiple representations only if it belongs to at least as many perceptions
(otherwise stated, an element has only one representations for each perception).

• Each perception has to denote a consistent database obeying the classical consis-
tency rules for databases (e.g., no pending role in a relationship).
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• To enforce perception consistency, an element a that is a component of an ele-
ment b (e.g., an attribute of an object type or a component attribute of a complex
attribute) can only belong to perceptions to which the b element belongs, as il-
lustrated in the example of Fig. 5.4.

Figure 5.4 illustrates the definition of a multiperception object type, providing
details about its perceptions, and attributes and keys for each of the two perceptions.
The drawing of the two perceptions of the Wine object type as a single object type
in which the two perceptions are merged is different from the drawing of the same
Wine object type in Fig. 5.3 as two boxes, one per perception. Yet the difference
only conveys the use of different visualization techniques. The information content
is the same. Figure 5.4 directly corresponds to how Wine is defined using the Mads
data definition language, which includes the definition of perceptions as part of the
definition of each metadata element (i.e., data description element of the schema).

Figure 5.4 describes the representations of the Wine object type for the wine
expert’s perception Pe and for the wine maker’s perception Pm. Attributes name,
year, and wineType are common to both perceptions, with a common representa-
tion. Attributes degree and barrels are common to both perceptions, but they have
a different definition (representation) for each perception and therefore their values
will be different too. The value of degree is simplified (integer rather than real) for
the perception Pe. Similarly, the attribute barrels is a simple Boolean attribute in
perception Pe, stating if the wine has been kept in wooden barrels or not, while in
perception Pm it is a complex attribute describing the time period during which the
wine has been kept in barrels and the kind of wood of the barrels. Perception Pe has
several attributes, rating, color, body, sugar, and food (the food matching the wine)
that are specific to it and do not exist in Pm.

Fig. 5.4. The two perceptions of the Wine object type of Fig. 5.3
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Fig. 5.5. A relationship type belonging to two perceptions

As shown, the representations hold by an object (relationship) type may have dif-
ferent sets of attributes, different characteristics for a common attribute (different
cardinalities or value domains). Perceptions are also defined at the instance level.
Therefore, an object (relationship) type belonging to several perceptions may have
different sets of instances according to the perception. Similarly each instance (ob-
ject or relationship) that belongs to several perceptions may have different values
according to the perception. This is obvious when the sets of attributes are different
for the various perceptions, but it is also true for an attribute with a unique definition.
In this case, the value of the attribute depends upon the perception, and the attribute
is said to be perception-varying. For example, in Fig. 5.4 the attribute description,
recording a text of a few lines describing the wine, is perception-varying, as iden-
tified by the icon. It has a unique definition common to both perceptions, but
it has a different value for each perception, i.e., the text used by the wine maker is
different from the text used by the wine expert.

Similarly to object types, when defining a relationship type the designer has to
specify to which perceptions it belongs and for each perception its representation,
i.e., defining its attributes and roles. Figure 5.5 illustrates two perceptions, Pm and
Pe, sharing the relationship type ProducedBy and its linked object types Wine and
Vineyard (this schema is different from the one illustrated Fig. 5.3). Let us assume
that ProducedBy in Pm has a unique attribute quantity, and in Pe no attribute at
all. Attribute quantity says how many kilograms of grapes harvested in this vineyard
have been used for producing this wine. We also assume that the populations are
different. In Pm, ProducedBy takes into account all contributing vineyards even
if the quantity of grapes is small. In Pe, ProducedBy takes into account only the
vineyards that have contributed to at least 15% of the total quantity of grapes used
for producing this wine. Therefore, there is a constraint linking the two populations
of ProducedBy as follows:

population(Pe.ProducedBy) ⊆ population(Pm.ProducedBy)

that should be defined in the schema by an interperception is-a link.
Relationship types may have different representations for their roles (e.g., have

different sets of roles according to the perception) and their semantics (e.g., being an
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Fig. 5.6. Two perceptions that differ at the schema and the instance level (instances are sym-
bolized by their oid)

aggregation relationship for a perception and a topological inclusion relationship for
another).

Given two object types, their representations in different perceptions may be dif-
ferently related, i.e., in a perception they may be related by an is-a link, in another
perception they may be defined as disjoint, and yet in another one they may pos-
sibly overlap. They may also be linked by a relationship type in a perception, and
not linked in another perception. Such flexibility is needed to allow independence
between the perceptions.

Different representations for the same real-world entities and links may even con-
tradict each other. For example, Fig. 5.6 shows a Mads schema with two perceptions.
Perception P1 considers humans to be a specific kind of animals. It therefore defines
two object types, Human and Animal, linked by an is-a link making Human a sub-
class of Animal. Perception P2 considers humans to be different from animals. It
therefore contains another representation of the same two object types, possibly with
different attributes and methods, where the two object types are by definition disjoint
(they are not interrelated by a multi-instantiation link).

In terms of constraints, the database administrator can define interperception con-
straints on the value of attributes and on instances. Examples of usual constraints for
an object or relationship type are: The set of instances – more precisely, the set of
oids or rids – is the same for all perceptions, or, on the contrary, they are disjoint.
Another constraint could state that the set of instances for a given perception is in-
cluded in the set for another perception. An example could be in Fig. 5.6: “Every
instance of Animal that has a representation in P2 has also a representation in P1.”
This should be defined in the schema by an interperception is-a.

Particularly important constraints are the identification constraints. There is in-
deed a need for being able to correlate and coordinate the various perceptions if
required by application rules. For example, the cartographic application we already
mentioned needs to be able to find all representations of an object (e.g., a building) to
check their consistency (e.g., the point representing the spatial extent of the building
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in one perception Px has to be inside the area representing the same building in
another perception Py). Knowledge about the two representations of buildings is
granted by the use of a composite perception (Px + Py), but this would not help if
the user transaction is not able to identify, at the instance level, which Px building is
the same as a given Py building. In our approach, the correlation between multiple
representations of the same object (or relationship) relies on shared object (or rela-
tionship) identity, as is the case in semantic databases for the implementation of is-a
links. All representations of an (object or relationship) instance share the same oid
(or rid in case of a relationship instance), which is defined by the system. Identity
provides the shared property that links together all the representations of the same in-
stance. As in object-oriented systems, relying on identity, rather than on user-defined
keys, guarantees that the system can keep a correct understanding of instances even
if users enter erroneous data in the database.

Identity, however, is not enough. How would the system know that the Px user
inserting a building new to her is actually creating her representation of a building
already inserted in the database by a Py user? One solution would be to enforce that
instances of shared object types, e.g., Building in both Px and Py, can only be created
by users with the composite perception (Px + Py). This solution is in our opinion
overly restrictive. We prefer the solution (adopted by relational DBMS) where users
of multiperception elements rely on a shared identification mechanism, i.e., a shared
key, to correlate the multiple representations of the same object or relationship. This
solution is presented in more detail in Sect. 5.7.

5.4 More on Interperceptions Links
As we have already seen, two simple perceptions may describe either the same part
of the real world, or disjoint or overlapping parts. The common part may be described
by different representations of the same object types, like the two representations of
Wine for perceptions Pm and Pe in Figs. 5.3 and 5.4, or the two representations of
Animal for perceptions P1 and P2 in Fig. 5.6. However, a set of real-world entities
may also be described in different perceptions by different object types. For example,
Fig. 5.7 shows a variant of Fig. 5.3 where the wine expert’s perception Pe, instead of
providing a generic Wine object type provides three disjoint object types RedWine,
WhiteWine, and RoseWine.

In this kind of situation where some instances of two object types belonging to
two different perceptions describe the same real-world entities, designers using the
Mads data model have two possibilities:

• If the mapping between the instances of the two object types is injective on both
sides, the object types may be defined as sharing oids, i.e., an interperception
is-a or overlap link can relate the two object types. As shown in Fig. 5.7, if we
assume that all wines described in Pe are also described in Pm in the Wine object
type, designers may assert:

Pe.WhiteWine is-a Pm.Wine
Pe.RedWine is-a Pm.Wine
Pe.RoseWine is-a Pm.Wine
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• If the mapping between the instances is not injective, i.e., an instance of an ob-
ject type may correspond to several instances of the other object type, designers
may relate these object types through an interperception relationship type. Mads
supports a specific kind of semantics for these relationship types that link objects
representing the same real-world entities, the inter-representation semantics. For
example, let us assume a perception containing an object type Person and an-
other one containing an object type Marriage. Designers could relate these two
object types through an interperception and inter-representation relationship type
that would link each instance of Marriage to two instances of Person, the hus-
band and the wife.

Notice that, in the case of a mapping that is injective on both sides, designers
may choose between the two solutions: either an interperception multi-instantiation
link (is-a or overlap according to the cardinalities of the mapping) or an interpercep-
tion and inter-representation relationship type. If the cardinalities of the mapping are
(1,1)–(0,1), the is-a link is equivalent to an inter-representation relationship type with
the same cardinalities. However, the is-a link is a more direct representation of the
semantics of the mapping and hence should be preferred. If the mapping is (0,1)–
(0,1), the two solutions, an interperception overlap link and an interperception and
inter-representation relationship type, are not equivalent. In the latter, each simple
perception may create instances in its object type without worrying about the other
perception. Afterwards, users of the composite perception can create the interpercep-
tion and inter-representation relationship instances that will link together the corre-
sponding instances of the two object types. On the other hand in the former solution,
the interperception overlap, the creation of an instance i1 in one object type, requires
to know if the corresponding instance, say i2, already exists in the other perception
because the insertion of i1 requires the oid of i2, in order to create i1 with the same oid.

Fig. 5.7. Interperception is-a links
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In summary, Mads supports both interperception multi-instantiation links and in-
terperception relationship types, thus allowing designers to explicitly describe many
kinds of situations where the real world described by two perceptions overlap.

5.5 Formal Definition of a SimpleMads Multiperception Database

In this section we give a formal definition of a Mads multiperception database. If
all specifications related to perceptions are taken out of the following definition, the
definition reduces to the definition of a Mads database without perceptions, which
we provided in Sect. 5.2.2. We keep here the same simplifying assumptions as in
Sect. 5.2.2. For sake of simplicity, we omit in this formalization the definition of
perception-varying attributes.

The model-theoretic semantics associated with the SimpleMads model with the
perception dimension is given next.

Definition 4 (SimpleMads multiperception schema)
A SimpleMads multiperception schema is a tuple: Σ = (L, PERC, RELl, RELip ,
ATT, CARDl, CARDip , ISAl, ISAip , OVLPl, OVLPip , KEY), such that:

• L is a finite alphabet partitioned into the sets: P (perception symbols),O (object
type symbols), R (relationship type symbols), A (attribute symbols), U (role
symbols), and D (domain symbols). Further, R is partitioned into the sets Rl

and Rip denoting, respectively, the local and the interperception relationship
type symbols. Also, P = {Pip}∪Ps where Pip is a peculiar perception to which
are attached all interperception relationship types and Ps is the set of simple
perception symbols.

• PERC (perceptions) is a total function that maps each object or relationship type
symbol X in O ∪R to a nonempty set of perceptions PERC(X) ⊆ 2P such that
∀X ∈ (O ∪Rl) (PERC(X) ⊆ Ps ∧ PERC(X) �= ∅) and ∀R∈Rip (PERC(R) =
{Pip}).

• RELl (local relationships) is a total function that maps a couple made up of a local
relationship type symbol R in Rl and a perception symbol P in PERC(R) to an
U-labeled tuple over O, RELl(R,P ) = 〈U1 :O1, . . . , Uk :Ok〉, where k ≥ 2 is
the arity of R in P , and ∀i∈{1, . . . , k} (P ∈PERC(Oi)).

• RELip (interperception relationships) is a total function that maps an interper-
ception relationship type symbol R in Rip to an U × Ps-labeled tuple over O,
RELip(R) = 〈(U1, P1) :O1, . . . , (Uk, Pk) :Ok〉, where k ≥ 2 is the arity of R,
and ∀i∈{1, . . . , k} (Pi∈PERC(Oi)).

• ATT (attributes) is a partial function that maps a couple made up of an object or
relationship type symbolX inO∪R and a perception symbol P in PERC(X) to
an A-labeled tuple over D, ATT(X,P ) = 〈A1 :D1, . . . , Ah :Dh〉.

• CARDl (local cardinalities) is a partial functionO×Rl×U×Ps → N×(N∪{∞})
that defines cardinality constraints associated to the roles of the local relationship
types in perceptions. For a local relationship type R and one of its perceptions P
such that RELl(R,P ) = 〈U1 :O1, . . . , Uk :Ok〉, we use CMINl(Oi, R, Ui, P ) and
CMAXl(Oi, R, Ui, P ) to denote the first and second component of CARDl.
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• CARDip (interperception cardinalities) is a partial function O × Rip × U ×
Ps → N × (N ∪ {∞}) that defines cardinality constraints associated to the
roles of interperception relationship types. For an interperception relationship
type R such that RELip(R) = 〈(U1, P1) : O1, . . . , (Uk, Pk) : Ok〉, we use
CMINip(Oi, R, Ui, Pi) and CMAXip(Oi, R, Ui, Pi) to denote the first and second
component of CARDip .

• ISAl (local is-a links) is a ternary relation ISAl ⊆ (O×O×Ps)∪(Rl×Rl×Ps)
that defines is-a links for object and relationship types in each perception. The
transitive closure ISA+

l of ISAl in each perception is defined as follows

∀X1, X2, X3∈(O ∪Rl) ∀P ∈Ps

ISAl(X1, X2, P )⇒ P ∈PERC(X1) ∩ PERC(X2)
ISAl(X1, X2, P )⇒ ISA+

l (X1, X2, P )
ISA+

l (X1, X2, P ) ∧ ISA+
l (X2, X3, P )⇒ ISA+

l (X1, X3, P ).

• ISAip (interperception is-a links) is a quaternary relation ISAip ⊆ (O×Ps×O×
Ps) ∪ (Rl × Ps × Rl × Ps) that defines is-a links for object and relationship
types belonging to different perceptions. ISAip is such that:

∀X1, X2∈(O ∪Rl) ∀P1, P2∈Ps (ISAip(X1, P1, X2, P2) ⇒ P1 �= P2).

The transitive closure ISA+
ip of ISAip is defined as follows:

∀X1, X2, X3∈(O ∪Rl) ∀P1, P2, P3∈Ps

ISAip(X1, P1, X2, P2)⇒ ISA+
ip(X1, P1, X2, P2)

ISA+
ip(X1, P1, X2, P2) ∧ ISA+

ip(X2, P2, X3, P3) ∧ P1 �= P3 ⇒
ISA+

ip(X1, P1, X3, P3).

• OVLPl (local overlap links) is a ternary relation OVLPl ⊆ (O×O×Ps)∪ (Rl×
Rl × Ps) that defines overlapping links between object or relationship types for
each perception.

OVLPl(X1, X2, P )⇒ P ∈PERC(X1) ∩ PERC(X2)

OVLPl is symmetric for each perception:

∀X1, X2∈(O ∪Rl) ∀P ∈Ps (OVLPl(X1, X2, P )⇒ OVLPl(X2, X1, P )).

• OVLPip (interperception overlap links) is a quaternary relation OVLPip ⊆ (O ×
Ps × O × Ps) ∪ (Rl × Ps × Rl × Ps) that defines overlapping links between
object or relationship types belonging to different perceptions. OVLPip is such
that:

∀X1, X2∈(O ∪Rl) ∀P1, P2∈Ps (OVLPip(X1, P1, X2, P2)⇒ P1 �=P2).
Further, OVLPip is symmetric:

∀X1, X2∈(O ∪Rl) ∀P1, P2∈Ps (OVLPip(X1, P1, X2, P2)⇒
OVLPip (X2, P2, X1, P1)).

• KEY is a ternary relation, KEY ⊆ (O ∪R) × P × 2A, which associates to each
object and relationship type symbol and one of its given perception a set of keys,
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each key being composed of a set of attributes of the object or relationship type
for the perception. �

The model-theoretic semantics associated with the SimpleMads model with the per-
ception dimension is given next.

Definition 5 (Database state of a SimpleMads multiperception schema)
Let Σ be a SimpleMads multiperception schema. A database state for the schema
Σ is a tuple B = (ΔB

O ∪ΔB
R ∪ΔB

D, ·B(P )), such that: the three sets ΔB
O, ΔB

R, and
ΔB

D are pairwise disjoint; ΔB
O is a nonempty set of objects; ΔB

R = ΔB
Rl
∪ΔB

Rip
is

a nonempty set of local and interperception relationships, where ΔB
Rl

and ΔB
Rip

are

disjoint; ΔB
D =

⋃
Di∈DΔ

B
Di

is the set of values for all domains used in the schema

Σ; and ·B(P ) is a function that, for some P ∈P , maps:

• Every domain symbol Di, for every simple perception P ∈ Ps , into a set
D

B(P )
i = ΔB

Di
, such that:

∀P1, P2∈Ps (DB(P1)
i = D

B(P2)
i ).

• Every object type symbol O, for any of its perceptions P ∈ PERC(O), to a set
OB(P ) ⊆ ΔB

O .
• Every local relationship type symbol R, for any of its perceptions P ∈PERC(R),

to a set RB(P ) of couples 〈r, u〉 where r ∈ΔB
Rl

and u is a U-labeled tuple over
ΔB

O such that if RELl(R,P ) = 〈U1 :O1, . . . , Uk :Ok〉, then: 〈r, u〉∈RB(P )∧u =
〈U1 : o1, . . . , Uk : ok〉 ⇒ ∀i ∈ {1, . . . , k} (oi ∈ O

B(P )
i ). Further, RB(P ) is

such that:

∀ 〈r1, u1〉, 〈r2, u2〉∈RB(P ) (r1 = r2 ⇒ u1 = u2).

• Every interperception relationship type symbolR, for the Pip perception, to a set
RB(P ) of couples 〈r, u〉 where r ∈ ΔB

Rip
and u is a U × Ps-labeled tuple over

ΔB
O such that if RELip(R) = 〈(U1, P1) :O1, . . . , (Uk, Pk) :Ok〉, then: 〈r, u〉 ∈

RB(P ) ∧ u = 〈(U1, P1) :o1, . . . , (Uk, Pk) :ok〉 ⇒ ∀i∈{1, . . . , k} (oi∈OB(Pi)
i ).

Further,RB(P ) is such that:

∀ 〈r1, u1〉, 〈r2, u2〉∈RB(P ) (r1 = r2 ⇒ u1 = u2).

• Every attribute symbolA, for a perceptionP ∈P , to a setAB(P ) ⊆ (ΔB
O∪ΔB

R)×
ΔB

D, such that, for each object or relationship type X ∈ (O ∪R) and perception
P ∈ P , if ATT(X,P )[A] = Di, then: x ∈ XB(P ) ⇒ (∃ai ∈ DB

i (〈x, ai〉 ∈
AB(P )) ∧ ∀ai (〈x, ai〉∈AB(P ) ⇒ ai∈ΔB

Di
)). �

Definition 6 (Consistent database state of a multiperception SimpleMads
schema)
A database state B is said to be consistent if it satisfies all of the constraints expressed
in the schema:

• Local population inclusion:

∀X1, X2∈(O ∪Rl) ∀P ∈Ps (ISAl(X1, X2, P )⇒ X
B(P )
1 ⊆ X

B(P )
2 ).
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• Interperception population inclusion:

∀X1, X2∈(O∪Rl) ∀P1, P2∈Ps (ISAip(X1, P1, X2, P2)⇒X
B(P1)
1 ⊆XB(P2)

2 ).

• Local population intersection:

∀X1, X2∈(O ∪R)∀P ∈Ps (XB(P )
1 ∩XB(P )

2 �=∅ ⇒ X1 = X2 ∨
ISA+

l (X1, X2, P ) ∨ ISA+
l (X2, X1, P ) ∨ OVLPl(X1, X2, P )).

• Interperception population intersection:

∀X1, X2∈(O∪R) ∀P1, P2∈Ps (XB(P1)
1 ∩XB(P2)

2 �=∅∧P1 �=P2 ⇒ X1 =X2∨
ISA+

ip(X1, P1, X2, P2) ∨ ISA+
ip(X2, P2, X1, P1) ∨ OVLPip(X1, P1, X2, P2)).

• Local cardinality constraints:
For each cardinality constraint CARDl(O,R,U, P ) of a local relationshipR∈Rl

and a perception P ∈ PERC(R): ∀o∈OB(P ) (CMINl(O,R,U, P ) ≤ #{〈r, u〉 ∈
RB(P ) | u[U ] = o} ≤ CMAXl(O,R,U, P )).

• Interperception cardinality constraints:
For each cardinality constraint CARDip(O,R,U, P ) of an interperception rela-
tionship R∈Rip and a perception P ∈PERC(O): ∀o∈OB(P )

(CMINip(O,R,U, P ) ≤ #{〈r, u〉 ∈ RB(P ) | u[(U,P )] = o} ≤
CMAXip(O,R,U, P )).

• Key constraints:
For each key constraint KEY(X,P,K) of an object or relationship type X ∈
(O ∪ R) in a perception P ∈P , where K = {A1, . . . , An}: x1, x2 ∈XB(P ) ⇒
(∀i∈{1, . . . , n} (〈x1, a

1
i 〉∈A

B(P )
i ∧ 〈x2, a

2
i 〉∈A

B(P )
i ∧ a1

i = a2
i )⇒ x1 = x2).

• Attributes common to several perceptions:
For each X ∈ (O ∪ Rl), for each P1, P2 ∈ PERC(X), for each A ∈ A, for
each D ∈D such that ATT(X,P1)[A] = ATT(X,P2)[A] = D: ∀x∈ (XB(P1) ∩
XB(P2)) ∀ 〈x, a1〉∈AB(P1) ∀ 〈x, a2〉∈AB(P2) (a1 = a2).

• Roles common to several perceptions:
For each R ∈ Rl, for each P1, P2 ∈ PERC(R), for each U ∈ U such that
RELl(R,P1)[U ] = RELl(R,P2)[U ]:

∀ 〈r1, u1〉∈RB(P1) ∀ 〈r2, u2〉∈RB(P2) (r1 = r2 ⇒ u1[U ] = u2[U ]). �

5.6 Dependencies between Perceptions

In databases, the existence of some elements may depend upon other ones (let us call
these other elements the reference elements): As databases follow the closed-world
assumption, existence-dependent elements cannot be created if these reference el-
ements do not exist, and conversely the deletion of a reference element has to be
propagated to its dependent elements or prevented as long as it has dependants. This
is the case of all relationship instances: A relationship instance cannot exist without
the objects that it links. The other elements that are existence dependent are: ob-
ject types linked to a relationship type (the reference element) through a mandatory
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role, and object and relationship types that have one or several super-types (the ref-
erence elements). Classic (i.e., without perception) database systems, which assume
the closed-world assumption, enforce these existence constraints. When dealing with
a multiple perceptions and representations database, if the dependent element, say
DE, belongs to a perception, say P1, while the reference element, say RE, belongs
to another one, say P2, then insertions of instances of DE cannot be local operations
in P1, and deletions of instances of RE cannot be local operations in P2. We say that
the perceptions P1 and P2 are mutually dependent. Insertions of instances of the de-
pendent element and deletions of the reference element require using the composite
perception (P1 + P2).

For example in Fig. 5.7, the perceptions Pm and Pg are mutually dependent be-
cause the cardinalities of the relationship type LocatedIn (shown in Fig. 5.9) say that
each Vineyard object must be linked to at least one GeologicalUnit object. This im-
plies that, when creating a Vineyard object in Pm, it should be linked straight away to
a GeologicalUnit object of Pg, thus requiring the composite perception (Pm + Pg).
On the other hand, a GeologicalUnit object of Pg can be deleted only if it is no
longer linked to Vineyard objects of Pm, or the deletion should be propagated to
the Vineyard objects, which requires the (Pm + Pg) perception. The perceptions
Pm and Pe are also mutually dependent for the creation of instances of WhiteWine,
RedWine, and RoseWine and for the deletion of instances of Wine.

An interperception overlap link also creates a dependency between the percep-
tions, because – as we have seen in previously – adding a new instance to an already-
existing object requires knowing its oid. For example, let us assume a variant of Fig.
5.7 where WhiteWine, RedWine, and RoseWine of perception Pe describe some
wines of perception Pm but also some other wines not recorded in Pm. Let us assume
that the designer expresses this knowledge by three interperception overlap links:

Overlap (Pm.Wine, Pe.WhiteWine)
Overlap (Pm.Wine, Pe.RedWine)
Overlap (Pm.Wine, Pe.RoseWine)

Then, an insertion of a wine in either perception, Pm or Pe, requires to access the
other perception in order to know if the wine already exists and then get its oid.
The two perceptions are mutually dependent for insertions. Yet deletions are local
operations.

In conclusion, any interperception link, be it a relationship type, an is-a or an
overlap link, causes a dependency between the two perceptions for the insertion or
deletion of the linked elements.

Another kind of dependency between perceptions is the propagation of reasoning
from one perception to another one. The reasoning that takes place in Mads schemas
without perceptions (inferred overlap links from is-a links) is extended to multiper-
ception Mads schemas. It allows to infer a local is-a link from two interperception
is-a links as shown in Fig.5.8, exactly like in distributed description logics where
generalized subsumptions are propagated between modules through bridge rules (see
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Fig. 5.8. Is-a propagation from one perception to another one

Chapter 12 in this book). In the same way, local and interperception overlap links are
inferred from interperception is-a links.

Proposition 2 (Logical implication for a SimpleMads multiperception schema)
As a consequence of the definitions of SimpleMads multiperception schema and
consistent database state, the following rules can be derived:

• Inferred local overlap links from local is-a links:

∀X1, X2, X3∈(O ∪Rl) ∀P ∈ Ps

(ISAl(X1, X2, P ) ∧ ISAl(X1, X3, P )⇒ OVLPl(X1, X3, P )).

• Inferred local is-a links from interperception is-a links:

∀X1, X2, X3∈(O ∪Rl) ∀P1, P2∈Ps

(ISA+
ip(X1, P1, X2, P2) ∧ ISA+

ip(X2, P2, X3, P1) ⇒ ISAl(X1, X3, P1)).

• Inferred local overlap links from interperception is-a links:

∀X1, X2, X3∈(O ∪Rl) ∀P1, P2∈Ps

(ISA+
ip(X1, P1, X2, P2) ∧ ISA+

ip(X1, P1, X3, P2) ⇒ OVLPl(X2, X3, P2)).

• Inferred interperception overlap links from interperception is-a links:

∀X1, X2, X3∈(O ∪Rl) ∀P1, P2, P3∈Ps

(ISA+
ip(X1,P1, X2, P2)∧ISA+

ip(X1, P1, X3, P3)⇒OVLPip(X2, P2, X3, P3)).

5.7 Using Perceptions

As already stated, user interaction with a multiperception database starts with the
specification of which perception the user wants to work with. The following Mads
command provides this functionality:

openDatabase(dbName, myView)

where dbName is the name of a multiperception database and myView denotes
either a simple perception pi or a composite perception (p1 + p2 + . . .+ pk).

Upon receiving this command, the system creates a new virtual database (its
schema and instantiation) out of the multiperception database dbName. This new
virtual database is the “view” provided by the perception myView to the user. If
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myView contains a composite perception the virtual database will be a true multi-
perception database, otherwise it will be a monoperception database, equivalent to a
classic database without perception. Hereinafter, we formally define the schema and
semantics of a perception, be it a simple perception or a composite one.

Definition 7 (Schema and semantics of a perception)
Let Σ = (L, PERC, RELl, RELip , ATT, CARDl, CARDip , ISAl, ISAip , OVLPl, OVLPip ,
KEY) be a SimpleMads multiperception schema, whereL = P∪O∪R∪A∪U ∪D,
P = {Pip} ∪ Ps,R = Rl ∪Rip . Let B = (ΔB

O ∪ΔB
R ∪ΔB

D, ·B(P )) be a consistent
database state forΣ. Let P ′

s be a nonempty set of perception symbols,P ′
s ⊂ Ps. The

perception P ′
s of the multiperception database (Σ,B) is a SimpleMads multipercep-

tion database, whose schema Σ′ and database state B′ are defined as follows:

Σ′ = (L′, PERC′, REL′
l, REL′

ip , ATT′, CARD′
l, CARD′

ip , ISA′
l, ISA′

ip , OVLP′l, OVLP′ip ,
KEY′), is defined by:

• L′ ⊂ L is the finite alphabet partitioned into the sets P ′, O′, R′, A′, U ′, and D′

defined by:

P ′ = {Pip} ∪ P ′
s,

O′ = {O | O∈O ∧ PERC(O) ∩ P ′
s �= ∅},

R′ = R′
l ∪R′

ip ,
R′

l = {R | R∈Rl ∧ PERC(R) ∩ P ′
s �= ∅},

R′
ip = {R | R∈Rip ∧ RELip(R) = 〈(U1, P1) :O1, . . . , (Uk, Pk) :Ok〉 ∧

∀i∈{1, . . . , k} (Pi∈P ′
s)},

A′ = {A | A∈A ∧ ∃X∈O′ ∪R′ ∃P ∈P ′ ∃D∈D ATT(X,P )[A] = D},
U ′ = {U | U ∈U ∧ ∃R∈R′

l ∃P ∈P ′
s ∃O∈O′ (RELl(R,P )[U ] = O)} ∪

{U | U ∈U ∧ ∃R∈R′
ip ∃P ∈P ′

s ∃O∈O′ (RELip(R)[(U,P )] = O)},
D′ = {D | D∈D ∧ ∃X∈O′ ∪R′ ∃P ∈P ′ ∃A∈A′ (ATT(X,P )[A] = D)}.

• PERC′ is the total function that maps each object or relationship type symbol
X∈O′ ∪R′ to a nonempty set of perceptions defined by:

∀X∈O′ ∪R′ (PERC′(X) = PERC(X) ∩ P ′).

• REL′
l is the total function that maps a couple made up of a local relationship type

symbol R in R′
l and a perception symbol P ∈ PERC′(R) to an U ′-labeled tuple

overO′ defined by:

∀R∈R′
l ∀P ∈PERC′(R) (REL′

l(R,P ) = RELl(R,P )).

• REL′
ip is the total function that maps an interperception relationship type symbol

R inR′
ip to an U ′ × P ′

s-labeled tuple overO′ defined by:

∀R∈R′
ip (REL′

ip(R) = RELip(R)).

• ATT′ is the partial function that maps a couple made up of an object or relation-
ship type symbol X in O′ ∪ R′ and a perception symbol P ∈ PERC′(X) to an
A′-labeled tuple over D′ defined by:

∀X∈O′ ∪R′ ∀P ∈PERC′(X) (ATT′(X,P ) = ATT(X,P )).
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• CARD′
l is the partial functionO′ ×R′

l×U ′×P ′
s → N× (N∪ {∞}) defined by:

∀O∈O′ ∀R∈R′
l ∀U ∈U ′ ∀P ∈PERC′(R) (REL′

l(R,P )[U ] = O ⇒
(CARD′

l(O,U,R, P ) = CARDl(O,U,R, P ))).

• CARD′
ip is the partial functionO′×R′

ip×U ′×P ′
s→N×(N ∪ {∞}) defined by:

∀O∈O′ ∀R∈R′
ip ∀U ∈U ′ ∀P ∈P ′

s (REL′
ip(R)[U,P ] = O⇒

(CARD′
ip(O,U,R, P ) = CARDip(O,U,R, P ))).

• ISA′
l is the ternary relation ISA′

l ⊆ (O′×O′×P ′
s)∪ (R′

l×R′
l×P ′

s) defined by:

∀X1, X2∈O′ ∪R′
l ∀P ∈P ′

s (ISA′
l(X1, X2, P )⇔ ISAl(X1, X2, P )).

• ISA′
ip is the quaternary relation ISA′

ip ⊆ (O′×P ′
s×O′×P ′

s)∪(R′
l×P ′

s×R′
l×P ′

s)
defined by:

∀X1, X2∈O′ ∪R′
l ∀P1, P2∈P ′

s

(ISA′
ip(X1, P1, X2, P2) ⇔ ISAip(X1, P1, X2, P2)).

• OVLP′l is the ternary relation OVLP′l ⊆ (O′×O′×P ′
s) ∪ (R′

l×R′
l×P ′

s) defined
by:

∀X1, X2∈O′ ∪R′
l ∀P ∈P ′

s (OVLP′l(X1, X2, P )⇔ OVLPl(X1, X2, P )).

• OVLP′ip is the quaternary relation OVLP′ip ⊆ (O′×P ′
s×O′×P ′

s)∪ (R′
l×P ′

s×
R′

l × P ′
s) defined by:

∀X1, X2 ∈ O′ ∪ R′
l ∀P ∈ P ′

s (OVLP′ip(X1, P1, X2, P2) ⇔
OVLPip(X1, P1, X2, P2)).

• KEY′ is the ternary relation KEY′ ⊆ (O′ ∪R′)× P ′ × 2A
′

defined by:

∀X∈O′ ∪R′ ∀P ∈P ′ ∀K∈2A
′
(KEY′(X,P,K)⇔ KEY(X,P,K)).

The state B′ of the perception is the tupleB′ = (ΔB′
O′∪ΔB′

R′∪ΔB′
D′ , ·B

′(P )) defined
by:

• The function ·B′(P ), that, for some P ∈P ′, maps:
– Every domain symbol Di ∈ D′, for any perception P ∈ P ′, to the set

D
B′(P )
i = ΔB

Di
;

– Every object type symbol O ∈O′, for any of its perceptions P ∈ PERC′(O),
to the set OB′(P ) = OB(P );

– Every relationship type symbol R ∈ R′, for any of its perceptions P ∈
PERC′(R), to the set RB′(P ) = RB(P ));

– Every attribute symbol A∈A′, for a perception P ∈P ′, to the set
AB′(P ) = {〈x, a〉 | 〈x, a〉∈AB(P ) ∧ ∃X∈O′ ∪R′ ∃D∈D′

(P∈PERC′(X)∧ATT′(X,P )[A]=D∧x∈PERC′(X,P )}).

• ΔB′
O′ =

⋃
O∈O′P∈PERC′(O) O

B′(P ),

• ΔB′
R′ =

⋃
R∈R′P∈PERC′(R)R

B′(P ),

• ΔB′
D′ =

⋃
Di∈D′ D

B′(P )
i . �
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Proposition 3. If the set of perception symbols P ′
s contains only one perception,

the multiperception database (Σ′,B′) reduces to a SimpleMads database without
perceptions. Indeed, the set R′

ip is empty, as well as the relations ISA′
ip , OVLP′ip ,

REL′
ip , and CARD′

ip .

Theorem 1. The state B′ of a perception is consistent, i.e., it satisfies all the con-
straints of the schema Σ′.

When the system receives an OpenDatabase(dbName, myView) command, it per-
forms the following process: it matches the perceptions in myView with the set of
perceptions of each object and relationship type of the database in order to determine
which object and relationship types (with which properties and which populations)
belong to the perception myView. Any element that belongs to at least one of the
perceptions in myView belongs to the (composite) perception myView. Obviously,
the myView representation of an object type includes all the representations of the
attributes that belong to at least one of the perceptions in myView. If myView is a
composite perception, this process may select several representations for the same at-
tribute. Local relationship types follow the same selection process. However, when-
ever myView is a composite perception, the system has to perform an additional
selection step to complete the definition of the myView perception: it has to look for
interperception relationship types eligible for the given composite perception. The
eligible interperception relationship types are those where all roles and linked ob-
ject types belong to myView. The myView representation of the relationship type
is made up of its selected roles and all the representations of all its attributes and
semantics that belong to at least one of the perceptions in myView.

Let us refer to the database of Fig. 5.3 for an example of accessing an interper-
ception relationship type. In order to know on which kind of soil – an attribute of
GeologicalUnit – a specific vineyard is located, the user query has to go through the
relationship type LocatedIn which does not belong to a simple perception. Thus, the
user must open the database with the composite perception (Pm + Pg) for querying
the LocatedIn relationship type.

When querying the database with a composite perception, users get for each query
a multiperception answer, i.e., a set of answers, one per perception. The component
answers are linked together by the fact that all representations describing the same
object (respectively, relationship) instance are identified by the same system-defined
identifier, oid (respectively, rid). For example, let us refer to the database of Fig. 5.6
and assume a user with the composite perception (P1 + P2) who asks the following
query: “Give me all animals”. The answer will be:

P1 : a1, a2, a3, h1, h2

P2 : a1, a2, a3

Loading and updating data in a multiperception database may be done collabora-
tively by several users with different perceptions. An object (or relationship) instance
that has several representations, say for perceptions p1, p2, . . ., and pk, may either be
inserted (or deleted) in two ways:
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• A user with the composite perception (p1 + p2 + . . .+ pk) may insert (or delete)
the whole instance with all its representations in a single operation; or

• The insertion (or deletion) is done by a sequence of operations: For each sim-
ple perception of the set {p1, p2, . . . , pk}, a user with this perception inserts (or
deletes) the corresponding representation. When processing the first insert op-
eration, the DBMS creates a new instance with a new oid and a unique repre-
sentation. Each following insert operation adds a representation to the existing
instance (there is no oid creation).

For example, adding in the Wine object type of Fig. 5.4 a new wine instance,
say Clos Vougeot 2004, with its two representations may be done by a user with
the composite perception (Pm + Pe) by giving the data for both representations as
follows:

p = insertObject(Wine, {Pm,Pe}(
/* attributes common to perceptions Pm and Pe */
name = ’Clos Vougeot’, year = 2004, . . .
/* attributes specific to perception Pm */
description.atPerception(Pm) =

’Sourced from old vines, the soft finish with silky tannins . . .’,
degree.atPerception(Pm) = 12.25, . . .
/* attributes specific to perception Pe */
description.atPerception(Pe) =

’Full of dark berry fruits on the nose, the palate depth shows . . .’,
. . .
degree.atPerception(Pe) = 12, . . . ))

Alternatively, it can be done in two steps, e.g., a user of perception Pm inserting
the Pm representation as in:

p = insertObject(Wine, {Pm}(
/* attributes of perception Pm */
name = ’Clos Vougeot’, year = 2004, . . .
description = ’Sourced from old vines, the soft finish with silky tannins
. . .’,
degree = 12.25, . . . ) )

and later a user of perception Pe inserting the Pe representation for the same Clos
Vougeot 2004 instance as in:

p = select [name = ’Clos Vougeot’ ∧ year = 2004 ] Wine ;
addObjectRepresentation(Wine, p, {Pe}(
/* attributes of perception Pe */
name = ’Clos Vougeot’, year = 2004, . . .
description = ’Full of dark berry fruits on the nose, the palate depth
shows . . .’, . . .
degree = 12, . . . ))
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As can be seen, users willing to separately (i.e., perception per perception) create
different representations for the same instance of a multiperception type have to agree
on using the same key. This key must have a unique representation common to all
perceptions. In the Wine object type, the common key is made up of two attributes,
name and year. In the above example, the user must first obtain the identifier of
the Clos Vougeot 2004 instance with a select operation in order to be able to add a
representation to that instance.

The existence of a relationship instance depends upon the one of the objects it
links. In Entity-Relationship data models pending roles of relationships are prohib-
ited. Thus, inserting or accessing a relationship instance, requires having access to
the relationship type and to the linked object instances. Hence, inserting and ac-
cessing an instance of an interperception relationship type is only possible through
a composite perception that contains all the perceptions of the linked object types.
On the other hand, local relationship types that have several representations may,
like object types, be inserted or deleted either by a unique operation on a compos-
ite perception that covers all the representations, or by a sequence of operations on
simple perceptions. For example, the relationship type ProducedBy of Fig. 5.5 is
local, i.e., any two instances, one of Wine and one of Vineyard, linked by a Pro-
ducedBy instance belong to the same perception as the ProducedBy instance. Let
us assume that the two representations of ProducedBy differ by having different
sets of attributes, e.g., number of bottles produced for Pm and vintage description for
Pe. Then inserting a new instance of ProducedBy linking the Wine Clos Vougeot
2004 with oid p to the Vineyard Vigne du Clos Vougeot with oid q can be done
either by one insert operation with perception (Pm + Pe) as in:

insertRelationship(ProducedBy, {Pm,Pe}, Wine: p, Vineyard: q ) (
/* attributes of Pm */
numberOfBottles = 3500, . . .
/* attributes of Pe */
description = ’The 2004 vintage had moderate rainfall in the winter
. . .’, . . . )

or by two insert operations, one with perception Pm and one with perception Pe.

5.8 Mapping into the Relational Model

For a database design based on Mads to be operational, we have defined an imple-
mentation approach that automatically transforms a Mads schema into an equivalent
logical schema in the relational or object-relational data model, which can then be
loaded into a commercial DBMS. The approach was materialized as a CASE tool,
whose detailed description can be found in [10, 11]. This section discusses the gen-
eral principles of that translation using the example schema in Fig. 5.9, which is an
enriched version of the schema in Fig. 5.3 with all the attributes and perceptions
shown. Our main intention is to show how multirepresentation features are conveyed
into the logical schema.
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Fig. 5.9. A detailed version of the schema of Fig. 5.3

Logical models target easiness and efficiency of implementation. They conse-
quently support less sophisticated and poorer data structures than those of conceptual
models. Therefore, when translating a conceptual schema into a logical schema, the
critical issue is to avoid or at least limit the semantic loss due to the poorer expres-
sion power of logical data models. Usually, high-level features of conceptual models
are translated into a combination of logical-level features, the combination aiming
at filling the gap between the conceptual and logical constructs and minimize the
semantic loss.

Let us illustrate this using the example schema from Fig. 5.9. Remark that
Fig. 5.9 uses the same visual presentation as Fig. 5.4: all perceptions are merged,
while Fig. 5.3 uses a visual presentation that separates the perceptions. Still the se-
mantics conveyed by these two visual presentations is the same. For the translation
into the relational model, basically there are two ways that are quite similar to the two
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Fig. 5.10. Relational implementation of the schema of Fig. 5.9

visual presentations. These two ways generate relational schemas that are different
but convey the same semantics. The difference between these two ways of translating
is whether to create for each multi-perception object (and relationship) type a unique
relational table containing all the attributes from the various perceptions, or several
tables, one table for each perception that contains only the attributes defined for this
perception. The first solution boils down to translating the multiperception schemas
as presented with all perceptions merged, while the second solution to translating
the multiperception schemas as presented with each perception on its own. The first
solution generates tuples with NULL values each time that an object does not belong
to all the perceptions defined for its object type. Here, we present the second solu-
tion, one table per object type and per perception. The translation algorithm consists
in 1) applying to each perception the classic translation algorithm from the Entity
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Relationship model without perception to the relational model, and 2) implementing
each interperception relationship type by a relational table.

The result of the translation of the schema of Fig. 5.9 into a relational schema is
shown Fig. 5.10. The first rule we used is: For each perception and for each of its
object type, generate one primary table per perception4. In the example, as Wine be-
longs to two perceptions, its translation generates the two relational tables Wine Pm
and Wine Pe, each one holding the monovalued attributes of perceptions Pm and Pe,
respectively. The second rule states that composite attributes, such as barrels in Pm

are replaced by their component attributes. This rule leads to a semantic loss (the
composite attribute itself is lost), but the loss is in the label, the attribute values are
preserved. The third rule is the traditional one that translates multivalued attributes
by generating an additional table. In our running example, for perception Pe, the
translation of the multivalued attribute food generates the table Wine Food Pe and
the translation of the multivalued attribute grapevines for perception Pm generates
the table Vineyard Grapevines Pm.

The relational representation of Wine does not make any difference between the
attributes that are identical to both perceptions, such as name, year, and wineType,
and the attributes whose value is perception dependent, such as description. Yet,
in the conceptual specification, the values of the former attributes is shared by the
two perceptions (i.e., the value is always the same in the two perceptions), while
the values of the latter, description, are independent one from the other in the two
perceptions. To prevent this semantic loss, the translation generates triggers (to be
loaded into the target DBMS) to ensure that when users update an instance of, e.g.,
Wine Pm, the updated values of name, year, and wineType (but not description)
are propagated to the corresponding instance of Wine Pe. Translation of local rela-
tionship types follows the same rule: one primary relational table per perception and
per relationship type.

Like in traditional databases, roles of relationship types are translated into external
keys. Lastly, each interperception relationship type, e.g LocatedIn, is translated into
a relational table, exactly like for any classic Entity Relationship model.

Identifiers (oids and rids) simplify the translation of is-a and overlapping links
(whether local or interperception). Consider again Fig. 5.7 where there is an inter-
perception link between Wine in perception Pe and the three disjoint object types
RedWine, WhiteWine, and RoseWine in perception Pe. In this case, the relational
representation will include the tables Wine Pm, RedWine Pe, WhiteWine Pe, and
RoseWine Pe, all of them with an attribute oid. The is-a relationship will be imple-
mented by referential integrity contraints between each of the three tables in percep-
tion Pe and the table in perception Pm.

The identifiers help also to link several representations of the same instance. For
example, if in Fig. 5.10 a wine has both representations Pm and Pe, the same oid
value will be found in tables Wine Pm and Wine Pe. For example the following
query retrieves the Pm representation of the wine “Zifandel Clos Marie” 2000:

4 The primary table is the one holding all monovalued attributes of the object type.
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SELECT * FROM Wine Pm
WHERE Wine Pm.name=”Zifandel Clos Marie” AND Wine Pm.year=2000

Similarly, the following query retrieves all representations of the same wine:

SELECT * FROM Wine Pm FULL OUTER JOIN Wine Pe
ON Wine Pm.oid=Wine Pe.oid

WHERE Wine Pm.name=”Zifandel Clos Marie” AND Wine Pm.year=2000

The translation of the Mads multiperception schema is completed by describing
in the data dictionary of the relational database the set of simple perceptions of the
schema and for each simple perception the set of tables that belong to that perception.
This information can be organized as one table:

SimplePerceptionTables (perceptionId, tableName)

Another table is required to store the definition of interperception relationship types
and the associated object types:

InterPerceptionRelationships (relationshipTable, objectTable)
objectTable REFERENCES SimplePerceptionTables

The content of these two tables for the database of Fig. 5.10 is given in Fig. 5.11.
These tables are used by the system when a user begins a working session by opening
the multiperception database with either a simple or a composite perception. For ex-
ample, a user opens the Mads database of Fig. 5.9 – let us call WineDB this database
– by issuing the following command:

openDatabase (WineDB, Pm)

The system, after looking at the SimplePerceptionTables table, will give to the user
the access rights to the Wine Pm, Vineyard Pm, and ProducedBy Pm tables. On
the other hand, if a user issues:

openDatabase (WineDB, (Pm+Pg))

the system will look for the tables to which the user will be given access
rights by searching in the SimplePerceptionTables and InterPerceptionRelation-
ships tables. The resulting list of tables will be: Wine Pm, Vineyard Pm, Pro-
ducedBy Pm, GeologicalUnit Pg, and LocatedIn.

SimplePerceptionTables
perceptionId tableName

Pm Wine Pm
Pm Vineyard Pm
Pm ProducedBy Pm
Pe Wine Pe
Pg GeologicalUnit Pg

InterPerceptionRelationships
relationshipTable objectTable

LocatedIn Wine Pm
LocatedIn GeologicalUnit Pg

Fig. 5.11. The data dictionary of the perceptions of the database in Fig. 5.10
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5.9 Related Work

This section compares the perception mechanism in Mads to other approaches that
similarly aim at supporting multiple perspectives on the same information repository,
database or ontology, be it for contextualization or modularization purposes.

On Supporting Multiple Perspectives

As the concept of perspective is subject to a variety of interpretations, a variety of
mechanisms have been developed, first in the database domain, to meaningfully par-
tition an information system into subsets defined for different purposes or character-
ized by different properties. Views and versions are available in commercial DBMS.
Distributed data solutions (e.g., federated databases, multidatabases) have been de-
fined to support modules and are therefore related to the modularization topic of this
book, but have had an impact only in the research community, except for the sim-
plest category (distributed databases) that only implies managing multiple storage
systems. The view mechanism is the most widespread and its use is routine work for
database administrators. It has also been defined for ontologies, as shown in Part II of
this book. A view is an on-demand personalized data structure (at the logical level)
built from the underlying data structures implemented in the database. As discussed
in detail in the introductory section 5.1 of this chapter, views provide poorer func-
tionality than Mads perception concept. Basically, the scope of a view is to provide
an application-specific perspective on an object type, while the scope of a perception
is to provide an application-specific (conceptual) perspective on the whole database.
Moreover, views are mostly intended for data retrieval. Updates can be performed
onto a view only if the view derivation process satisfies some quite restrictive rules.
For example, one rule states that the columns being modified in the view must di-
rectly reference the underlying data in the table columns, and thus, e.g., cannot be
derived through an aggregate function, cannot be computed from an expression that
uses other columns, or cannot be formed by using set operators such as union, differ-
ence or intersection. The reason for these restrictive rules is that the system must be
able to unambiguously translate modifications in the view into modifications in the
base tables from which the view is derived. In case of ambiguity, an update of a view
element can nevertheless be allowed if INSTEAD OF triggers have been manually
and explicitly defined by the database administrator to state how any given modifi-
cation to the data in the view is to be translated into modifications to the underlying
base tables. Perceptions, instead, are meant to fully support application-specific data
management, not just retrieval. They are therefore updatable, unless specific appli-
cation constraints are defined to restrict updatability.

Versioning, as the name says, is a mechanism specifically designed to support
change management. It allows managing an ordered graph of versions of the same
element (document, object, database, . . . ). Its main functionality is to enable back-
tracking to previous versions of an element and to retrieve a consistent set of versions
of parts of a composite element (typically sections in a document) when these parts
have evolved in a-synchronized way in a collaborative environment. The perspective
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provided by a version is alike a temporal perspective, but instead of looking at the
state of affairs at a certain instant in time it looks at the state of affairs at a certain
moment of an evolution path. Although tagging with a version identifier can be seen,
at least to some extent, as similar to tagging with a perception identifier, the two
approaches rely on fundamentally different paradigms. Versions offer successive im-
ages of an evolving element, while perceptions offer complementary images of an
element taken at the same moment in time. It would not be wise to confuse users
(and the system) by offering versioning concepts to support perceptions.

Closer to the Mads perception concept is the contextual module concept proposed
by Mylopoulos and Motschnig [7, 8]. The authors propose a generic abstract model,
independent of any specific information model, which supports modules, called
contexts. They specify basic rules for defining an information model with modules.
An example is the rule stating that elements belonging to several modules should
be allowed to have a specific name local to each module. Another rule states that
whenever two modules share some elements, they should agree on the propagation
of their updates. The Mads approach was defined independently of that work, but its
principles are very much in line with the work and its results confirm and refine the
ideas in [7, 8].

Cyc Microtheories

Let us now turn our attention to ontologies and look at Mads as an approach
to create modular ontologies, with each module representing a specific perception
on the existing data. According to this view, Mads perception modules are very
similar to Cyc microtheories concept and mechanism. Indeed, both Mads and Cyc
build on the idea that an ontology and its modules are simultaneously defined. In
other words, when creating an element (at the type or instance level) to be added
to an ontology, the creator also specifies to which module(s) the element is to be
added. Given the strong similarity between Mads and Cyc, we present here Cyc in
more detail and then compare it with Mads.

Cyc is a large, still developing, modular knowledge base that was created in the
late 80ies. Its goal is to “cover all common sense” for supporting reasoning in a
variety of domains [6]. Examples of potential applications are text understanding,
knowledge management, question answering, expert systems, intelligent search, se-
mantic integration. The authors of Cyc had, since the beginning, a pragmatic ap-
proach. They wanted to build something that will work and be useful . . . and indeed
they succeeded. The Cyc engineers have now entered enough basic knowledge in
Cyc for automatic tools to being able to pursue autonomously the same goal, in-
creasing Cyc knowledge base by browsing web pages, understanding and checking
the content of these pages, and then adding it to the Cyc knowledge base. The Cyc
knowledge base reaches beyond 3 millions assertions, 300’000 terms, and 15’000
predicates

Cyc is described in a specific logic, which mainly is first order logic with higher
order extensions that support quantification over predicates. The Cyc formalism,
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called CycL, for Cyc language, has a syntax that is similar to the one of LISP. Cyc
knowledge is described through sentences that are built up from individual items,
called individuals, like Paris and Europe, concepts that group sets of individuals,
like City or UrbanArea, n-ary predicates, functions, variables, logical connectors,
and quantifiers. The most important predicates are isa and genls, which are two
generic binary predicates expressing membership and generalization/specialization,
respectively. For instance, the (membership) predicate: (isa Paris City) expresses the
fact that Paris is a City. And the (generalization/specialization) predicate (genls City
UrbanArea) expresses the fact that every city is also an urban area. Finally, the fol-
lowing CycL sentence: (implies (and (isa ?ELT ?SUBSET) (genls ?SUBSET ?SU-
PERSET)) (isa ?ELT ?SUPERSET)) is a rule which is part of the upper knowledge
of Cyc. It defines part of the semantics of the genls predicate. It states that if an
element (?ELT) is a member of a collection (?SUBSET) and this collection is a spe-
cialization of another collection (?SUPERSET), then the element is also a member
of the second collection.

Cyc started as an unstructured knowledge base, i.e., a set of assertions. Later it was
seen as covering the three traditional levels of ontologies: 1) Upper ontology: general
knowledge (top level ontology); 2) Middle ontology: not universal, but commonly
used knowledge, and 3) Lower ontology: knowledge specific to a peculiar domain
(domain ontology). As the knowledge base grew, editing it became more and more
difficult. Cyc engineers decided to organize Cyc into small independent modules,
called microtheories or contexts [5]. Each microtheory is supposed to describe the
knowledge of a specific domain. For instance, MathMt is a microtheory that contains
mathematical knowledge. Microtheories are organized in an inheritance hierarchy
that supports multiple inheritance. If a microtheory is a child of another microtheory,
its knowledge (a set of CycL assertions) is made up of its own (local) knowledge
plus the knowledge of its parent microtheory and recursively all the knowledge of
their parents. Obviously, the local knowledge of a microtheory must be consistent
with all its inherited knowledge. For instance the GeometryMt microtheory, the mi-
crotheory describing geometry, is a child of the MathMt microtheory. A query on
GeometryMt will involve all assertions of MathMt, and recursively. Given two mi-
crotheories such that neither one inherits from the other one, their local knowledge
can be inconsistent. For instance, a microtheory can state that a human being is an
animal that is a cousin of apes, while another microtheory will state that human be-
ings are not animals. The partitioning of Cyc in microtheories allows the recording
of different points of view which may result from different groups of users (e.g. lib-
eralism as seen by republicans and as seen by democrats), different usages, different
granularities (e.g. Lausanne in a world atlas and Lausanne in Swiss maps), different
time frames (e.g. Rome today and Rome 2000 years ago)... Queries are local to a
microtheory. When users want to query Cyc knowledge base they have to send their
query to a specific microtheory. Similarly, when Cyc engineers want to add some
knowledge (i.e. some Cyc assertions) they have to define to which microtheory this
knowledge will be added. When creating a new microtheory, they have to specify
where the new microtheory will be inserted in the inheritance hierarchy. Cyc pro-
vides tools for helping users in these tasks.
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Comparing Cyc and Mads

Let us now compare the modular ontology, Cyc, and the modular database approach,
Mads. The two main similarities between Cyc and Mads are that 1/ they both are
modular repositories (a modular knowledge base for Cyc and a modular database for
Mads), i.e. repositories purposely created as composed of modules, and 2/ they both
want to be running systems: Cyc is a large running ontology, Mads is a prototype
running onto the Oracle DBMS and has been tested with several real life applications.
However, even in their commonalities, Cyc and Mads differ. For the first point, Cyc
is more dynamic than Mads, as new modules can easily be added at any time. On
the other hand, Mads, being a database, is more static: The basic modules of Mads
(called simple modules in this Chapter) are defined during the design of the schema
of the database. For the second point, Cyc has been in use since many years, while
Mads is still a research prototype.

The main difference between Cyc and Mads is how modules are related together.
Cyc modules are disjoint and are related by an inheritance hierarchy that allows a
module to inherit the whole content of one or several other modules (and recursively
the whole content of all their ancestors in the hierarchy). In Mads modules may
overlap, and the sharing unit is the class instance: Two modules may share one,
several, or all the instances of a class. Moreover in Mads inter-modules relationships
can relate an instance of a class of a module to an instance of a class of another
module.

Another difference between Cyc and Mads, resulting from the fact that Mads sup-
ports instances shared by several modules, is that in Mads these shared instances may
have a specific representation (specific structure and specific value) for each module.

A common choice of Cyc and Mads is that both systems require that their users
specify which modules they want to access. But as Mads modules are inter-related and
not Cyc ones, Cyc users can access only one module (including its ancestor modules)
at a time, while Mads users can access one or several modules at a time. This multi-
module access allows Mads users to get simultaneously several descriptions (called
representations in Mads) for the same entities.

Creating New Modules

Cyc and Mads are representative of the approach “Creating the ontology and its
modules simultaneously”. But most of actual research on modularity in ontologies
follows different approaches, namely ontology partitioning, module extraction, and
interconnection of existing ontologies (described in Parts II and III of this book).
In particular, module extraction approaches allow the dynamic creation of new mod-
ules, whenever there is a need for a new module and without an impact on the already
existing modules. The creation of a new module from a running database is also pos-
sible in Mads. The definition of an additional simple perception can be done anytime
through a schema modification process. First, an identifier has to be specified for the
new perception, and second, the definition of the database schema has to be revisited
to add the new perception identifier to the set of representations associated to the
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elements (schema and instances) the database administrator wants to see in the new
perception. This extensional process has to be validated by checking the consistency
rules that enforce a perception to obey the modeling constraints of a normal database.
The other Mads mechanism that dynamically creates new perceptions is the compo-
sition of existing perceptions into a composite perception. This intensional process is
prompted anytime a transaction uses the openDatabase command with a composite
perception. The new composite perception remains a virtual one. It is not material-
ized. Nevertheless, the database administrator can anytime decide to materialize a
composite perception, if required.

Distributed Modules

Let us now compare the constructs supported by the Mads data model to the ones
supported by approaches that connect existing ontologies. Mads supports three kinds
of links between perceptions/modules:

1. Whenever an object (or relationship) type is defined as having multiple repre-
sentations, hence belonging to multiple perceptions, the shared type implicitly
defines a link between these perceptions. At the type level the link is material-
ized by the fact that the shared type has the same name in the various perceptions,
while at the instance level it is materialized by the fact that the shared instances
bear the same oid (rid).

2. Two different object types belonging to two different perceptions, but represent-
ing at least partially the same real-world entities, may be linked by an interper-
ception multi-instantiation link (is-a or overlap link).

3. Two different object types belonging to two different perceptions may be linked
by an interperception relationship type.

The first and second kinds of interperception links, in the case where the popu-
lations of the linked types are one included in or equal to the other, are similar to
the bridge rules of C-OWL, which allow relating two concepts that, in any interpre-
tation, describe two sets of entities that are linked by an inclusion [3]. A difference
between the Mads links and the bridge rules is that Mads first mechanism works even
if the populations are disjoint, and Mads second mechanism works with included or
overlapping populations. On the other hand, bridge rules are only intended for two
concepts related by an inclusion (or an equality). Mads third mechanism is similar
to the link property of ε–connections that allows relating two classes from disjoint
modules (i.e., modules that describe disjoint parts of the world) by an inter-module
role, called link property [4].

The main difference between Mads and approaches that connect existing ontolo-
gies is that Mads allows representing the same real-world phenomenon with repre-
sentations that are quite dissimilar from each other. Two representations may have
disjoint populations and still be two representations of the same object type. For
instance, a perception of the Wine object type may describe only European wines
while another perception may describe only American wines. As another example,
in Fig. 5.4 the attribute barrels has two representations that are quite dissimilar,
and still in Mads these two representations are related: Users querying the barrels
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attribute with the composite perception (Pm + Pe) get for each wine two values, one
for each perception. This possibility of stating that several object types, several rela-
tionship types, or several attributes describe the same phenomenon, even if they are
totally different, is – as far as we know – peculiar to Mads.

5.10 Conclusion

This chapter has described an approach to database modularization in terms of
supporting multiple perceptions over a database and multiple representations of its
elements. The new concepts and rules that form the approach are presented as em-
bedded in the Mads conceptual data model. Perception features can thus be applied to
the thematic as well to the spatio-temporal characteristics of a database. The chapter
focused on discussing perceptions. A detailed description of other Mads features can
be found elsewhere [10], namely including its concepts, how to use them in database
modeling, and the operations to work with these concepts to create and maintain a
multiperception database.

Defining data corresponding to a specific perception is equivalent to defining a
module in a modular database. To this extent, the perception and module concepts are
synonyms. This explains that the Mads approach and solution share many common-
alities with the Cyc approach to modular ontologies. However, differences between
the goals of Mads and Cyc induce different solutions. Cyc is a huge and still grow-
ing ontology where reuse is important. Therefore, the organization of Cyc modules
is an inheritance hierarchy, while Mads modules are organized along a composition
graph. Mads’ goal is to provide different groups of users with different perceptions
of the same database. Consequently, all Mads modules share the same interpretation
domain, while each Cyc microtheory has its own. Moreover, in Mads the system is
aware – and manages – the fact that the same real-world phenomenon is described by
several representations. In Cyc two microtheories may contain different representa-
tions of the same phenomenon but Cyc ignores it. Users interested in modularizing a
knowledge repository from its creation onwards should carefully analyze which goal
they are trying to achieve to choose the most suitable solution.

The Mads model has been used in many real-world applications. For example,
in a cartographic application at the French Mapping Agency (IGN) the multirep-
resentation features of the model were used for describing the representations of
geographic objects at different levels of detail (i.e., resolution). This cartographic
application also needed the interperception links to compare the different represen-
tations of real-world objects for validation purposes. In another application realized
at Cemagref, a research center on risk management, perceptions were used to define
different user profiles to obtain customized information from the same database. For
example, information about natural risks, such as avalanches or landslides, is deliv-
ered to users depending on their profile: the general public obtains validated and less
technical information with respect to risk experts.

Future work for the Mads model includes the extension of interperception links be-
tween constructs of different kinds, e.g., when the same phenomenon is represented
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as an object type in one perception and as an attribute or as a relationship type in
another perception. In view of targeting semantic Web applications a formalization
of the Mads model according to latest W3C standards would be needed. Unfortu-
nately, spatio-temporal semantics is not supported by standard description logics. For
this reason we are exploring a complementary approach consisting in using database
technology (which somehow knows how to manage spatio-temporal data) to handle
ontological data and services. As a first step, a prototype, called OntoMinD, has been
developed to store large DL ontologies in an extended object-relational database sys-
tem. The OntoMinD extension relies on the specification of a set of stored procedures
that perform ontological reasoning on the TBox and ABox [1].
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Part II

Partitioning and Extraction of Modules



Introduction to Part II

In an ideal world, ontologies would be build in a modular way from the start thus
showing the benefits well known from modularization in software engineering. The
first part of this book contained an example of how this can be done for databases.
Unfortunately, the field of ontology engineering has not yet developed comprehen-
sive models and methods to fully support the development of modular ontologies.
There are some approaches aiming at developing principles and formalisms in this
direction, but they have not yet found their way into mainstream ontology engineer-
ing. As a result, existing ontologies are monolithic models without a clear internal
structuring. As the size and complexity of these models can be quite significant (the
NCI cancer ontology contains about 27.500 the Gene ontology about 22.000 con-
cepts and the Formal Model of Anatomy (FMA) even 75.000 concepts). A viable
way of handling such large models is to chop them up into manageable parts. This
part of the book deals with approaches for this task of partitioning large ontologies
into smaller parts.

As already discussed in chapter 3, there are various approaches to this problem
that differ in the goal and the criteria used for determining modules in an ontology.
In particular, we can distinguish between partitioning approaches that aim at split-
ting the entire ontology up into a set of possibly overlapping modules according to
some criteria and module extraction approaches, whose goal in contrast is to extract
a single module from a large ontology that contains relevant information for a given
task. Concerning criteria for determining modules, we can roughly distinguish be-
tween logical and structural criteria - a more detailed typology of criteria is given
in chapter 3. While logical criteria use the notion of logical consequence to deter-
mine what information should reside in the same module, normally with the goal
of ensuring the completeness of local reasoning, structural approaches analyze the
explicit definitions contained in an ontology with respect to dependencies between
different elements in the ontology and try to group highly related elements in the
same module. The process of determining strongly related elements is normally per-
formed by converting the ontology into a graph structure and using graph algorithms
for determining modules.

In this part of the book, a number of concrete approaches for determining mod-
ules of large ontologies are presented in more detail. The methods presented dif-
fer significantly in the way they approach the problem of modularizing an ontology
thereby providing examples for the different goals and criteria mentioned above and
discussed in chapter 3.

In chapter 6 Cuenca-Grau and others present an approach for partitioning ontolo-
gies based on logical criteria. This work is part of a research effort of the authors that
was the first serious attempt to tackle the problem of partitioning description logic
ontologies from a logical point of view and is still a cornerstone for theoretical work
on modularity in ontologies. In this chapter the authors provide a logical definition
of the notion of a module in terms of the completeness of reasoning with respect
to a certain subset of the signature and provide some negative results concerning
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the computability of such modules for reasonably expressive languages. Further, the
authors show that the notion of a conservative extension that is discussed in detail
in chapter 2 can be used as a sound, but incomplete test for a module and present
algorithms for performing this test.

The PATO System presented in chapter 7 takes a very different approach by com-
pletely relying on structural criteria for partitioning ontologies. The underlying parti-
tioning method was one of the first methods being proposed for the partitioning task
in relation to ontologies on the semantic web. In contrast to the logic-based approach,
the partitioning method described in this chapter has the disadvantage that it cannot
make any guarantees with respect to logical properties of the resulting modules, on
the other hand, it has the advantage, that it can be applied to a wide range of mod-
els including simple taxonomies on which the logic-based approach fails to produce
sensible results. Further, the method is designed in such a way that it can be adapted
to different applications because the system allows to define and adapt the criteria
used to determine modules. The corresponding mechanisms are explained in detail
in the chapter.

The method described in section 7 was aimed at generality thereby sacrificing
opportunities for of modularization for specific, highly relevant cases. Clearly fo-
cussing on ontologies specified using the web ontology language OWL is such a
relevant case. While the PATO system was also designed for handling OWL ontolo-
gies, it does not deeply investigate the different modelling elements of OWL and
their potential contribution to the determination of modules. This gap is filled by the
work presented in chapter 8 where Seidenberg presents an approach for extracting a
relevant module from an OWL ontology using an algorithm that traverses an OWL
model following certain typical modelling constructs. The method returns part part
of the ontology that is relevant with respect to a given class thus aiming at mod-
ule extraction rather than partitioning. The chapter presents the method and shows a
detailed evaluation in the area of medical ontologies.

A very similar approach to the problem of extracting the relevant part of an on-
tology is presented in chapter 9. In this work, which was originally done before the
approach described in chapter 8, reduces the problem of module extraction to the
problem of defining a specific view over the ontology at hand, thereby borrowing
from concepts in the database area. The advantage of this approach is the ability to
compose different definitions thereby creating new modules based on the definitions
of other ones. This declarative approach to defining modules eases the investiga-
tion of formal properties of the resulting modules in terms of properties of certain
operators defined over modules, an idea that has been used before to characterize
ontologies and has currently been adopted for the analysis of semantic links between
different ontologies, a topic that is treated in more details in part III of this book.

October 2008 Heiner Stuckenschmidt
Christine Parent

Stefano Spaccapietra
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Summary. The ability to extract meaningful fragments from an ontology is essential for on-
tology reuse. We propose a definition of a module that guarantees to completely capture the
meaning of a given set of terms, i.e., to include all axioms relevant to the meaning of these
terms. We show that the problem of determining whether a subset of an ontology is a module
for a given vocabulary is undecidable even for OWL DL. Given these negative results, we
propose sufficient conditions for a for a fragment of an ontology to be a module. We propose
an algorithm for computing modules based on those conditions and present our experimental
results on a set of real-world ontologies of varying size and complexity.

6.1 Introduction

The design, maintenance, reuse, and integration of ontologies are complex tasks.
Like software engineers, ontology engineers need to be supported by tools and
methodologies that help them to minimize the introduction of errors, i.e., to ensure
that ontologies are consistent and do not have unexpected consequences. In order to
develop this support, important notions from software engineering, such as module,
black-box behavior, and controlled interaction, need to be adapted.

For example, suppose that an ontology engineer is building an ontology about
research projects, which specifies different types of projects according to the research
topic they focus on. The ontology engineer in charge of the projects ontology may
use terms such as Cystic Fibrosis and Genetic Disorder in his descriptions of medical
research projects. The ontology engineer is an expert on research projects; he may be
unfamiliar, however, with most of the topics the projects cover and, in particular, with
the terms Cystic Fibrosis and Genetic Disorder. In order to complete the projects
ontology with suitable definitions of these medical terms, he decides to reuse the
knowledge about these subjects from a well-established medical ontologyQ.

The most straightforward way to reuse these concepts is to construct the logical
unionP ∪Q of the axioms in P andQ. This form of reuse is used frequently and can
be achieved in OWL using the owl : imports construct. Well-established medical on-
tologies, such as NCI and SNOMED, are, however, typically very large, and importing
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the whole ontology would make the consequences of the additional information costly
to compute and difficult for our ontology engineers (who are not medical experts) to
understand. Thus, in practice, we need to extract a module that includes just the rele-
vant information. Ideally, this module should be as small as possible while still guar-
anteeing to capture the meaning of the terms used; that is, when answering arbitrary
queries against our projects ontology, importing the module would give us exactly the
same answers as if we had imported the whole medical ontology. In this case, impor-
ting the module instead of the whole ontology will have no observable effect on our
ontology—apart from allowing for more efficient reasoning.

Concerning the efficiency of reasoning, the time needed to process an ontology
is often too high for ontology engineering, where fast response under changes in
the ontology is required, or for deployment in applications, where fast response to
queries is required. The ability to extract modules in the sense described above would
address both these problems: it would allow us to identify a (hopefully small) part of
the ontology that is affected by a given change or that is sufficient to answer a given
query—and then to reason over this part only without losing any consequences.

The contributions of this paper are as follows:

1. We propose a definition of a module Q1 within a given ontology Q for a given
vocabulary S.

2. We take the above definition as a starting point, and investigate the problem of
computing modules. We show that none of the reasonable variants of this prob-
lem is solvable in general already for rather restricted sub-languages of OWL
DL. In fact, it is even not possible to determine whether a subsetQ1 of an onto-
logyQ is a module in Q for S.

3. Given these negative results, we propose sufficient conditions for a fragment
of an ontology to be a module—that is, if the fragment satisfies our conditions
then we can guarantee that it is a module but not vice versa These conditions are
based on the notion of locality of an ontology w.r.t. a signature, as first introduced
in [4].

4. We propose an algorithm for computing locality-based modules.
5. We describe our implementation and present empirical results on a set of real-

world ontologies of varying size and complexity. Using our syntactic approxi-
mation, we obtain modules that are small enough for reuse applications.

6.2 Preliminaries

In this section we introduce description logics (DLs) [2], a family of knowledge
representation formalisms which underlie modern ontology languages, such as
OWL DL [16]. A hierarchy of commonly-used description logics is summarized in
Table 6.1.

The syntax of a description logic L is given by a signature and a set of construc-
tors. A signature (or vocabulary) Sg of a DL is the (disjoint) union of countably
infinite sets C of atomic concepts (A,B, . . . ) representing sets of elements, R of
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Table 6.1. The hierarchy of standard description logics

Constructors Axioms [ Ax ]
Rol Con RBox TBox ABox

EL r �, A, C1 � C2, ∃R.C A ≡ C, C1 � C2 a : C, r(a, b)
ALC –��– –��–, ¬C –��– –��–
S –��– –��– Trans(r) –��– –��–

+ I r−

+ H R1 � R2

+ F Funct(R)
+ N (� n S)
+ Q (� n S.C)
+ O {i}

Here r ∈ R, A ∈ C, a, b ∈ I, R(i) ∈ Rol, C(i) ∈ Con, n ≥ 1 and S ∈ Rol a
simple role[10].

atomic roles (r, s, . . . ) representing binary relations between elements, and I of indi-
viduals (a, b, c, . . . ) representing constants. We assume the signature to be fixed for
every DL.

Each DL provides constructors for defining the set Rol of (general) roles
(R,S, . . . ), the set Con of (general) concepts (C,D, . . . ), and Ax of axioms
(α, β, . . . ) which includes the role axioms (RBox), terminological axioms (TBox)
and assertions (ABox).
EL [1] is a simple DL which allows one to construct complex concepts using

conjunction C1 �C2 and existential restriction ∃R.C starting from atomic concepts
A, roles R and the top concept �. EL provides no role constructors and no role
axioms; thus, each role R in EL is atomic. The TBox axioms of EL can be either
concept definitionsA ≡ C or general concept inclusion axioms (GCIs)C1 � C2. EL
assertions are either concept assertions a :C or role assertions r(a, b). We assume
the concept definition A ≡ C is an abbreviation for two GCIs A � C and C � A.

The basic description logic ALC [17] is obtained from EL by adding the concept
negation constructor ¬C. We introduce some additional constructors as abbrevia-
tions: the bottom concept ⊥ is a shortcut for ¬�, the concept disjunction C1 � C2

stands for ¬(¬C1 � ¬C2), and the value restriction ∀R.C stands for ¬(∃R.¬C). In
contrast to EL, ALC can express contradiction axioms like � � ⊥. The logic S is
an extension of ALC where, additionally, some atomic roles can be declared to be
transitive using a role axiom Trans(r).

Further extensions of DLs add features such as inverse roles r− (indicated by
appending a letter I to the name of the logic), role inclusion axioms (RIs) R1 � R2

(+H), functional roles Funct(R) (+F ), number restrictions (�nS), with n ≥ 1,
(+N ), qualified number restrictions (�nS.C), with n ≥ 1, (+Q)1, and nominals
{a} (+O). Nominals allow for the construction of concepts representing a singleton

1 The dual constructors (� n S) and (� n S.C) are abbreviations for ¬(� n + 1 S) and
¬(� n + 1 S.¬C), respectively.
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set {a} (a nominal concept) from an individual a. These extensions can be used in
different combinations; for example ALCO is an extension of ALC with nominals;
SHIQ is an extension of S with role hierarchies, inverse roles and qualified number
restrictions; and SHOIQ is the DL that uses all the constructors and axiom types
we have presented.

Modern ontology languages, such as OWL, are based on description logics and, to
a certain extent, are syntactic variants thereof. In particular, OWL DL corresponds to
SHOIN [9]. In this paper, we assume an ontology O based on a description logic
L to be a finite set of axioms in L. The signature of an ontologyO (of an axiom α) is
the set Sig(O) (Sig(α)) of atomic concepts, atomic roles and individuals that occur
in O (respectively in α).

The main reasoning task for ontologies is entailment: given an ontologyO and an
axiom α, check if O implies α. The logical entailment |= is defined using the usual
Tarski-style set-theoretic semantics for description logics as follows. An interpreta-
tion I is a pair I = (ΔI , ·I), where ΔI is a non-empty set, called the domain of
the interpretation, and ·I is the interpretation function that assigns: to every A ∈ C
a subset AI ⊆ ΔI , to every r ∈ R a binary relation rI ⊆ ΔI ×ΔI , and to every
a ∈ I an element aI ∈ ΔI . Note that the sets C, R and I are not defined by the
interpretation I but assumed to be fixed for the ontology language (DL).

The interpretation function ·I is extended to complex roles and concepts via DL-
constructors as follows:

(�)I = Δ
(C �D)I = CI ∩DI

(∃R.C)I = {x ∈ ΔI | ∃y.〈x, y〉 ∈ RI ∧ y ∈ CI}
(¬C)I = ΔI \CI

(r−)I = {〈x, y〉 | 〈y, x〉 ∈ rI}
(�nR)I = { x ∈ ΔI | �{y ∈ ΔI | 〈x, y〉 ∈ RI} ≥ n }

(�nR.C)I = { x ∈ ΔI | �{y ∈ ΔI | 〈x, y〉 ∈ RI ∧ y ∈ CI} ≥ n }
{a}I = {aI}

The satisfaction relation I |= α between an interpretation I and a DL axiom α (read
as I satisfies α, or I is a model of α) is defined as follows:

I |= C1 � C2 iff CI
1 ⊆ CI

2 ; I |= a : C iff aI ∈ CI ;

I |= R1 � R2 iff RI
1 ⊆ RI

2 ; I |= r(a, b) iff 〈aI , bI〉 ∈ rI ;

I |= Trans(r) iff ∀x, y, z ∈ ΔI [ 〈x, y〉 ∈ rI ∧ 〈y, z〉 ∈ rI ⇒ 〈x, z〉 ∈ rI ];
I |= Funct(R) iff ∀x, y, z ∈ ΔI [ 〈x, y〉 ∈ RI ∧ 〈x, z〉 ∈ RI ⇒ y = z ];

An interpretation I is a model of an ontologyO if I satisfies all axioms in O. An
ontology O implies an axiom α (written O |= α) if I |= α for every model I of
O. Given a set I of interpretations, we say that an axiom α (an ontology O) is valid
in I if every interpretation I ∈ I is a model of α (respectively O). An axiom α is a
tautology if it is valid in the set of all interpretations (or, equivalently, is implied by
the empty ontology).
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Let S1,S be signatures such that S1 ⊆ S. The restriction of an S-interpretation
I = (ΔI , ·I) to S1 is an interpretation I|S1 = (ΔI1 , ·I1) over S1 such that ΔI1 =
ΔI and XI1 = XI for every X ∈ S1. An expansion of an S1-interpretation I1

to S is an S-interpretation I such that I|S1 = I1. A trivial expansion of an S1-
interpretation I1 to S is an expansion of I1 to S such that XI = ∅ for every atomic
concept and atomic role X ∈ S \ S1.

6.3 Modules for Knowledge Reuse

Suppose that an ontology engineer wants to build an ontology about
research projects. He defines two concepts Genetic Disorder Project and
Cystic Fibrosis EUProject in his ontology P . The first one describes projects about
genetic disorders; the second one, European projects about cystic fibrosis, as given
by the axioms P1 and P2 in Figure 6.1.

Ontology of medical research projects P:

P1 Genetic Disorder Project ≡ Project � ∃has Focus.||Genetic Disorder||
P2 Cystic Fibrosis EUProject ≡ EUProject � ∃has Focus||Cystic Fibrosis||.
P3 EUProject � Project

Ontology of medical terms Q:

M1 ||Cystic Fibrosis|| ≡ Fibrosis � ∃located In.Pancreas � ∃has Origin.Genetic Origin

M2 Genetic Fibrosis ≡ Fibrosis � ∃has Origin.Genetic Origin

M3 Fibrosis � ∃located In.Pancreas � Genetic Fibrosis

M4 Genetic F ibrosis � Genetic Disorder

M5 DEFBI Gene � Immuno Protein Gene � associated WithCystic Fibrosis

Fig. 6.1. Reusing medical terminology in an ontology on research projects

The ontology engineer is an expert on research projects: he knows, for exam-
ple, that a EUProject is a Project (axiom P3). He is unfamiliar, however, with most
of the topics the projects cover and, in particular, with the terms Cystic Fibrosis and
Genetic Disorder mentioned in P1 and P2. In this case, he decides to reuse the know-
ledge about these subjects from a well-established and widely-used medical ontology

The most straightforward way to reuse these concepts is to import the medical
ontology. This may be, however, a large ontology, which deals with other matters
in which the ontology engineer is not interested, such as genes, anatomy, surgical
techniques, etc. Ideally, one would like to extract a (hopefully small) fragment of the
medical ontology—a module—that describes in detail the concepts we are reusing in
our ontology. Intuitively, importing the moduleQ1 intoP instead of the full ontology
Q should have no impact on the modeling of the ontology P .

Suppose that the concepts Cystic Fibrosis and Genetic Disorder are described in
an ontologyQ containing axioms M1-M5 in Figure 6.1. If we include in the module
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Q1 just the axioms that mention either Cystic Fibrosis or Genetic Disorder, namely
M1, M4 and M5, we lose the following dependency:

Cystic Fibrosis � Genetic Disorder (6.1)

The dependencies Cystic Fibrosis � Genetic Fibrosis � Genetic Disorder fol-
low from axioms M1-M5, but not from M1, M4, M5, since the dependency
Cystic Fibrosis � Genetic Fibrosis does not hold after removing M2 and M3. The
dependency (6.1), however, is crucial for our ontology P as it (together with axiom
P3) implies the following axiom:

Cystic Fibrosis EUProject � Genetic Disorder Project (6.2)

This means, in particular, that all the projects annotated with the concept name
Cystic Fibrosis EUProject must be included in the answer for a query on the con-
cept name Genetic Disorder Project. Consequently, importing a part of Q contai-
ning only axioms that mention the terms used in P instead of Q results in an
underspecified ontology. We stress that the ontology engineer might be unaware of
dependency (6.2), even though it concerns the concepts of his primary scope.

The example above suggests that the central requirement for a module Q1 ⊆
Q to be reused in our ontology P is that P ∪ Q1 should yield the same logical
consequences in the vocabulary ofP asP∪Q does. Note that, as seen in the example,
this requirement does not force us to include inQ1 all the axioms in Q that mention
the vocabulary to be reused, nor does it imply that the axioms in Q that do not
mention this vocabulary should be omitted.

Based on the discussion above, we formalize our first notion of a module as
follows:

Definition 1 (Module). Let L be a description logic, Q1 ⊆ Q be two ontologies
expressed in L and let S be a signature. We say thatQ1 is an S-module inQw.r.t. L, if
for every ontologyP and every axiomα expressed in L with Sig(P∪{α})∩Sig(Q) ⊆
S, we have P ∪Q |= α iff P ∪Q1 |= α. �

In Definition 1 the signature S acts as the interface signature between P andQ in the
sense that it contains the symbols thatP and αmay share withQ. It is also important
to realize that there are two free parameters in Definition 1, namely the ontology P
and the axiom α. Both P and α are formulated in some ontology language L, which
might not necessarily be OWL DL.

Fixing the language L in which P and α can be expressed is essential in Defini-
tion 1 since it may well be the case thatQ1 is a module inQ w.r.t. a language L1, but
not w.r.t. L2. Fixing L, however, is not always reasonable. If Q1 is an S-module in
Q, it should always be possible to replaceQ withQ1 regardless of the particular lan-
guage in which P and α are expressed. In fact, we may extend our ontology P with
a set of Horn rules, or extend our query language to support arbitrary conjunctive
queries. In any case, extending the ontology language for P and the query language
for α should not preventQ1 from being a module in Q.

It is therefore convenient to formulate a more general notion of a module which
abstracts from the particular language under consideration; that is, we say that Q1
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is an S-module in Q iff it is an S-module in Q, according to Definition 1 for every
language L with Tarski-style set-theoretic semantics. The modules we obtain in this
paper will be modules in precisely this stronger sense.

According to Definition 1, there may be a large number of modules for a given
input ontology and signature. In many applications one is usually not interested in
extracting arbitrary modules from a reused ontology, but in extracting modules that
are easy to process afterwards. Ideally, the extracted modules should be as small
as possible. Hence, it is reasonable to consider the problem of extracting minimal
modules—that is, modules that contain no other module as a subset In our example
from Figure 6.1, there are two minimal S-modules Q1 = {M1,M2,M4} and
Q2 = {M1,M3,M4}: if we remove any axiom from them, the dependency (6.1)
will no longer hold.

As seen above, minimal modules are not necessarily unique. While in some cases
it is reasonable to extract all minimal modules, in others it may suffice to extract just
one. Thus, givenQ and S, the following tasks are of interest:

T1. compute all minimal S-modules in Q
T2. compute some minimal S-module in Q (6.3)

Axioms that do not occur in a minimal module of Q are not essential for P in the
sense that they do not need to be imported into P . This is not true for the axioms that
occur in minimal modules of Q. These arguments motivate the following notion:

Definition 2 (Essential Axiom). Given a signature S and an ontologyQ, we say that
an axiom α ∈ Q is S-essential in Q w.r.t. L if α belongs to some minimal S-module
in Q w.r.t. L. �

In our example, the axioms M1 −M4 from Q are essential for the signature S =
{CysticFibrosis,Genetic Disorder}, and the axiom M5 is not essential. In certain
situations one might be interested in computing the set of (non)essential axioms of
an ontology, which can be done by computing the union of all minimal modules.
Hence, the following task may also be of interest:

T3. compute the union of all minimal S-modules in Q,
which is the set of all S-essential axioms in Q (6.4)

Note that computing the union of minimal modules might be easier than computing
all the minimal modules since one does not need to identify which axiom belongs to
which minimal module.

6.4 Computational Properties of Module Extraction

In this section, we study the decidability/computability of the tasks described in
Section 6.3. We start by investigating the relationships between Tasks T1,T2 and
T3; our main result is that tasks T1 and T2 are inter-reducible whereas T3 is “eas-
ier” than both T1 and T2. Next, we establish the relationship between our notion of
module and the notion of a conservative extension, whose complexity/decidability
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for Description Logics has been recently established. Finally, we show that deciding
whether an axiom is essential in an ontology for a given signature is an undecidable
problem for the logicALCO. As a consequence, tasks T1-T3 are proved algorithmi-
cally unsolvable forALCO.

6.4.1 Reductions between Tasks

Before we formalize we establish the reductions between tasks T1-T3, we prove in
the following proposition some important properties of modules that we will exploit
along this section.

Proposition 1 (Properties of Modules)
Let Q1 ⊆ Q2 ⊆ Q3 be three SHOIQ ontologies and S be a signature. Then:

1. If Q1 is an S-module in Q2 and Q2 is an S-module in Q3 then
Q1 is an S-module in Q3 (transitivity)

2. If Q1 is an S-module in Q3 then
(a)Q1 is an S-module in Q2 and (b)Q2 is an S-module in Q3 (convexity)

Proof

1. Suppose that Q1 is an S-module in Q2 and Q2 is an S-module in Q3. In order
to prove that Q1 is an S-module in Q3 according to Definition 1, take any ontology
P and an axiom α such that Sig(P ∪ {α}) ∩ Sig(Q3) ⊆ S and P ∪ Q3 |= α. We
demonstrate that P ∪Q1 |= α (�):

SinceQ2 is an S-module in Q3, Sig(P ∪ {α}) ∩ Sig(Q3) ⊆ S and P ∪Q3 |= α,
we have P ∪Q2 |= α. Since Q1 is an S-module in Q2, Sig(P ∪ {α}) ∩ Sig(Q2) ⊆
Sig(P ∪ {α}) ∩ Sig(Q3) ⊆ S, and P ∪Q2 |= α, we have P ∪Q1 |= α (�).

2.(a) Suppose that Q1 is an S-module in Q3. In order to prove that Q1 is an S-
module in Q2, consider any ontology P and an axiom α such that Sig(P ∪ {α}) ∩
Sig(Q2) ⊆ S and P ∪Q2 |= α. We demonstrate that P ∪Q1 |= α (�):

Without loss of generality, we can assume that Sig(P∪{α})∩Sig(Q3) ⊆ S, since
the symbols that are in Sig(P ∪ {α}) but not in Sig(Q2) could be renamed so that
they are not contained in Sig(Q3). Since Q1 is an S-module in Q3 and P ∪ Q3 |=
P ∪Q2 |= α, we have P ∪Q1 |= α (�).

2.(b) Suppose that Q1 is an S-module in Q3. In order to prove that Q2 is an S-
module in Q3, consider any ontology P and an axiom α such that Sig(P ∪ {α}) ∩
Sig(Q3) ⊆ S and P ∪Q3 |= α. We demonstrate that P ∪Q2 |= α (†):

SinceQ1 is an S-module inQ3, Sig(P ∪{α})∩ Sig(Q3) ⊆ S, and P ∪Q3 |= α,
we have P ∪Q1 |= α. SinceQ1 ⊆ Q2, we have P ∪Q2 |= α (†). �

Intuitively, Part 2(a) of Proposition 1 claims that every superset of an S-module of
this ontology is also an S-module of the ontology. This means, in particular, that it
is sufficient to compute only the minimal modules of an ontology in order to have a
complete information about all the modules.

Intuitively, task T2 should be simpler than T1. That is, any procedure which solves
the task T1, also provides a solution for task T2. Surprisingly, the converse of this
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property holds as well: any procedure for T2 can be turned into a procedure for T1.
The following lemma is the key property underlying this reduction:

Lemma 1 (A Criterium for Minimal Modules)
Let Q be an ontology and S be a signature. Let M be the set of all subsets Q2 of Q
such thatQ2 is a minimal (and hence is the only) S-module in Q2.

Then Q1 is a minimal S-module in Q iff (i) Q1 ∈ M, and (ii) there is no
Q2 ∈M such thatQ1 � Q2.

Proof

(⇒) Suppose Q1 is a minimal S-module in Q. We need to show that properties (i)
and (ii) above hold forQ1.

(i) Suppose, to the contrary, that the property (i) does not hold for Q1, i.e. Q1

is not a minimal module in Q1. Then there exists a Q2 � Q1 ⊆ Q such that Q2 is
an S-module in Q1. Since Q1 is an S-module in Q, By the part 1 of Proposition 1
(transitivity), Q2 is an S-module in Q. Hence Q1 is not a minimal module in Q
contrary to what has been assumed.

(ii) Suppose, to the contrary, that the property (ii) does not hold for Q1, that is,
there exists Q2 ∈ M such that Q1 � Q2 ⊆ Q. Since Q1 is an S-module in Q,
by the part 2(a) of Proposition 1, Q1 is an S-module in Q2. Hence Q2 /∈ M by
the definition of M (since Q2 is not a minimal S-module in Q2), which yields a
contradiction.

(⇐) Assume that conditions (i) and (ii) above hold forQ1, butQ1 is not a minimal
S-module in Q. There are two cases possible: (a) Q1 is not an S-module in Q, and
(b)Q1 is an S-module in Q, but not a minimal S-module.

In the case (a), there has to be a minimal S-moduleQ2 inQ such thatQ1 � Q2 ⊆
Q. By the direction (⇒) of the lemma applied to Q2, we have Q2 ∈ M. But this
contradicts the condition (ii), sinceQ1 ∈ M and Q1 � Q2.

In the case (b), there is a minimal S-module Q2 in Q such that Q2 � Q1 ⊆ Q.
By the property 2.(a) of Proposition 1, Q2 is an S-module in Q1, which contradicts
the condition (i) sinceQ1 is not a minimal S-module in Q1. �

We use this property to show that tasks T1 and T2 are indeed inter-reducible:

Proposition 2. Tasks T1 and T2 from (6.3) are inter-reducible.

Proof. As it has been already pointed out, using a procedure for task T1 one can
obtain a procedure for task T2 by just returning any of the computed minimal S-
modules in Q.

Now suppose we have a procedure P2 for task T2, namely, that given a signature
S and an ontology Q returns some minimal S-module Q1 in Q. We construct a
procedure P1 that returns all minimal S-modules, which is based on the criterium
for minimal S-modules formulated in Lemma 1. Note that procedure P2 satisfies the
following property:

Given S andQ2, the procedure P2 for T2 returnsQ2 if and
only if Q2 is the only minimal S-module in Q2.

(6.5)
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Procedure P1 should work as follows. Given S and Q, P1 first computes the set
M of subsets Q2 in Q such that Q2 is the only S-module in Q2 using property
(6.5) of procedure P2. More precisely, in order to computeM, we enumerate all the
subsets of Q and select those subsets Q2 for which P2 returns Q2. Next, P1 returns
those sets from M that are contained in no other set from M. By Lemma 1, P1
returns exactly all minimal S-modules in Q. �

Obviously, task T3 is at least not harder then task T1:

Proposition 3. Tasks T1 and T2 are reducible to task T3; that is, any procedure for
T1 or T2 can be used for solving T3.

It is not clear, however, whether the procedure for T3 can be used to obtain a pro-
cedure for T1. Nevertheless, as we will demonstrate Section 6.4.2, this issue is not
relevant since all of the tasks formulated above are algorithmically unsolvable for
OWL DL.

6.4.2 Modules and Conservative Extensions

The notion of a module is closely related to the notion of a conservative extension
which has been used to characterize formal requirements in ontology integration
tasks [7, 5, 4, 12]. In the literature we can find at least two different notions of con-
servative extensions in the context of ontologies [12]:

Definition 3 (Conservative Extensions)
Let Q1 ⊆ Q be two ontologies, S a signature and L a logic. We say that Q is a
deductive S-conservative extension of Q1 w.r.t. L, if for every axiom α over L with
Sig(α) ⊆ S, we have Q |= α iff Q1 |= α. We say that Q is a model S-conservative
extension of Q1 if, for every model I1 of Q1, there exists a model I of Q such that
I|S = I1|S. �

Intuitively, an ontology Q is a deductive conservative extension of an ontology
Q1 ⊆ Q for a signature S iff every logical consequence α of Q constructed using
only symbols from S is already a consequence of Q1; that is, the additional axioms
in Q do not add new logical consequences over the vocabulary S. Analogously to
modules, the notion of a deductive conservative extension depends on the ontology
language L in which Q and α are expressed.

In contrast, model conservative extensions are not defined in terms of logical en-
tailment, but using the models directly. Intuitively, an ontology Q is a model con-
servative extension of Q1 ⊆ Q if every model of Q1 can be expanded to a model
of Q by interpreting new symbols and leaving the interpretations of the old symbols
unchanged.

The notion of model conservative extension is strictly stronger than the deductive
one [12] since it does not depend on expressivity of the ontology language. That is,
if Q is a model S-conservative extension ofQ1, it is also a deductive S-conservative
extension of Q1, but not necessarily vice versa.

Example 1. Let Q be the ontology consisting of axioms M1 −M5 in Figure 6.1.
Let S = {Cystic Fibrosis, Genetic Disorder} and Q1 = {M1, . . . ,M4}. We show
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that Q is a model S-conservative extension of Q1 and, hence, also a deductive con-
servative extension ofQ1.

Let I1 be an arbitrary model ofQ1. We demonstrate that we can always construct
a model I ofQ which interprets the symbols from S in the same way as I1 does, i.e.
I|S = I1|S.

Let I be as I1 except for the interpretation of the atomic concepts DEFBI Gene
and Immuno Protein Gene, and the atomic role associatedWith, all of which we
interpret in I as the empty set. Note that these atomic concepts and this atomic role
do not occur in Q1. Hence, I interprets the concepts in Q1 exactly like I1, and so
I is a model of Q1. Furthermore, I is a model of M5 since the concepts on the left-
hand-side and the right-hand-side of this axiom are both interpreted as the empty set.
Thus,Q is a model S-conservative extension ofQ1.

In fact, it was sufficient to take any expansion I of I1 in which DEFBI Gene
is interpreted as the empty set. Hence Q is a model S-conservative extension of
Q1 for every S that does not contain DEFBI Gene since M5 is satisfied in every
interpretation where this concept is interpreted as the empty set.

Now, if we remove M2 and M3 from Q1, then Q is no longer a model S-
conservative extension of Q1 for S = {Cystic Fibrosis, Genetic Disorder}. Indeed,
it is possible to find an interpretation I1 of the remaining axioms M1 and M4 from
O1, in which Genetic Disorder is interpreted as the empty set, but Cystic Fibrosis is
not. For example, consider an interpretation I1 = ({a}, ·I1) with:

Cystic FibrosisI1 = FibrosisI1 = PancreasI1 = Genetic OriginI1 = {a};
located InI1 = has OriginI1 = {(a, a)}; and
Genetic FibrosisI1 = Genetic DisorderI1 = ∅.

We cans see that I1 is a model of M1 and M4, but there is no model I of Q
such that I|S = I1|S. Indeed, for every model I of Q, we must have I |= α :=
(Cystic Fibrosis � Genetic Disorder) because Q |= α. However, this would im-
ply also that I1 |= α, since I|S = I1|S, but this does not hold for I1 defined
above. �

Although Definition 1 is close to the notion of deductive conservative extension,
there are two important differences. First, in the definition of deductive conservative
extension, the logical consequences are considered only w.r.t. the ontologies Q and
Q1 of interest whereas, in our definition of module, all the possible ontologies P in
which the module can be used are taken into account. Second, in the definition of
deductive conservative extension, the signature of α is required to be a subset of S
whereas, in our definition of module, only the common part of {α} ∪P andQ is re-
quired to be a subset of S. Despite these differences, the two notions of conservative
extensions are related to our notion of module:

Proposition 4 (Modules vs. Conservative Extensions)
Let Q1 ⊆ Q be two ontologies. Then:

1. IfQ1 is an S-module inQ w.r.t. L thenQ is a deductive S-conservative extension
ofQ1 w.r.t. L;
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2. IfQ is a model S-conservative extension ofQ1 thenQ1 is an S-module in Q for
every ontology language L with Tarski-style set-theoretic semantics.

Proof

1. Let α be an axiom with Sig(α) ∈ S such that Q |= α. We have to show
that Q1 |= α (�). Take P := ∅ (the empty ontology). Since Q1 is a module in Q,
Sig(P ∪ {α}) ∩ Sig(Q) ⊆ S, and P ∪ Q = Q |= α, by Definition 1, we have
Q1 = P ∪Q1 |= α.

2. Assume that Q is a model S-conservative extension of Q1, but Q1 is not an
S-module in Q w.r.t. some logic L. According to Definition 1, this means that there
exists an ontology P and an axiom α over L with Sig(P ∪{α})∩ Sig(Q) ⊆ S, such
that P ∪ Q |= α but P ∪ Q1 �|= α. The last implies that for some interpretation I1,
we have I1 |= P ∪ Q1, but I1 �|= α. Let I ′1 := I1|S∪Sig(Q). Obviously, I ′1 |= Q1.
By Definition 3, since Q is a model S-conservative extension of Q1, there exists
an interpretation I ′ such that I ′ |= Q and I ′|S = I ′1|S. Let I be the expansion
of I ′|S∪Sig(Q) to Sig(P ∪ {α}) by setting XI := XI1 for every X ∈ Sig(P ∪
{α}) \ S. Note that we also have I|S = I ′|S = I ′1|S = I1|S, hence I|Sig(P∪{α}) =
I1|Sig(P∪{α}), and so I |= P and I �|= α. Since I|S∪Sig(Q) = I ′|S∪Sig(Q) and
I ′ |= Q, we have I |= Q, which yields a contradiction. �

Proposition 4 shows that our notion of module stays “in between” the two notions
of conservative extensions. In particular, by applying Property 2 in Proposition 4 to
Example 1, we can show that the axioms M1-M4 in Figure 6.1 constitute a module in
the ontology Q, consisting of M1-M5. The converse of Property 1 in Proposition 4,
however, does not hold in general:

Example 2. Let Q1 = {}, Q = {� � ∃R.A} and S = {A}. The ontology Q is
a deductive S-conservative extension of Q1 w.r.t. ALC. Indeed, every ALC-axiom
α = (C1 � C2) over S = {A}, is equivalent in ALC to either � � �, � � ⊥,
� � A or A � ⊥, which are indistinguishable by Q1 and Q—that is, the axiom
is implied by Q1 iff it is implied by Q. Q1, however, is not an S-module in Q.
Consider anALC-ontologyP = {A � ⊥}, which is constructed over S. We can see
that P ∪Q |= � � ⊥, but P ∪Q1 �|= � � ⊥. �

Note that the construction in Example 2 also shows that the notion of deductive con-
servative extension is strictly weaker than the notion of model conservative extension
(as shown in [12]): Q is a deductive conservative extension of Q1 but, according to
Property 2 in Proposition 4, it is not a model conservative extension.

6.4.3 Undecidability Results

Given the relationships between our definition of module and conservative exten-
sions, it is worth examining the computational complexity of the associated pro-
blems. The problem of deciding whetherQ is an S-conservative extension ofQ1 has
been studied in [12], where it is proved to be 2-EXPTIME complete for ALCIQ
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(roughly OWL-Lite) and undecidable for OWL DL. For model conservative ex-
tensions, the problem is highly undecidable (non recursively enumerable), even for
ALC [12].

The decidability result from [12] for deductive conservative extensions, however,
does not transfer to our problem since an ontology Q may well be an S-deductive
conservative extension of Q1, but still Q1 might not be an S-module in Q. In fact,
we show that our problem is already undecidable forALCO ontologies:

Theorem 1 (Undecidability for Essential Axioms)
Given a signature S, an ALC-ontology Q and an axiom α ∈ Q, it is undecidable
whether α is S-essential in Q w.r.t. L = ALCO.

Proof. The proof is a variation of the construction for undecidability of deciding
deductive conservative extensions in ALCQIO given [12], based on a reduction
from a domino tiling problem.

A domino system is a triple D = (T,H, V ) where T is a finite set of tiles and
H,V ⊆ T × T are horizontal and vertical matching relations. A solution for a
domino system D is a mapping t(·,·) that assigns to every pair of integers i, j ≥ 1 an
element ti,j ∈ T , such that (ti,j , ti,j+1) ∈ V and (ti,j , ti+1,j) ∈ H . A periodic so-
lution for a domino system D is a solution ti,j for which there exist integers m ≥ 1,
n ≥ 1 called periods such that ti+m,j = ti,j and ti,j+n = ti,j for every i, j ≥ 1.

Let D be the collection of all domino systems, D∫ be the subset of D that admit
a solution and D√∫ be the subset of D that admit a periodic solution. Note that

D√∫ ⊆ D∫ . It is well-known [3, Theorem 3.1.7] that the sets D \ D∫ and D√∫ are

recursively inseparable, that is, there is no recursive (i.e. decidable) subset D′ ⊆ D
of domino systems such that D√∫ ⊆ D′ ⊆ D∫ .

We use this property in our reduction. For every domino systemD, we construct a
signature S = S(D), an ontologyQ = Q(D) which is anALC-TBox, and an axiom
α ∈ Q such that:

(a) if D does not have a solution then α is not S-essential in Q w.r.t. L, and
(b) if D has a periodic solution then α is S-essential in Q.

In other words, for the set D′ of domino systems D such that α is S-essential
in Q = Q(D) w.r.t. L, we have D√∫ ⊆ D′ ⊆ D∫ . Since D \ D∫ and D√∫ are

recursively inseparable, this implies undecidability for D′ and hence for the prob-
lem of checking S-essential axioms, because otherwise one can use this problem for
deciding membership in D′.

The signature S, ontologyQ and axiom α ∈ Q are constructed as follows. Given
a domino system D = (T,H, V ), let S consist of fresh atomic conceptsAt for every
t ∈ T and two atomic roles rH and rV . We defineQ to consists of axioms (q1)–(q5)
from Figure 6.2 and set α to be the axiom (q5).

Axioms of form (q1)–(q4) express that every domain element in a model for Q
is assigned with a unique tile t ∈ T and has horizontal and vertical matching suc-
cessors. Axiom (q5) plays a special role in our reduction for excluding those models
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(q1) � � At1 � · · · �Atn if T = {t1, . . . , tn}
(q2) Ati �Atj � ⊥ whenever ti �= tj ,

(q3) Ati � ∃rH .(
⊔

(ti,tj)∈H Atj ) ti, tj ∈ T

(q4) Ati � ∃rV .(
⊔

(ti,tj)∈V Atj )

(q5) � � ∃s.[∃rH .∃rV .B � ∃rV .∃rH .¬B] =: α

Fig. 6.2. An ontology Q for a domino system D

of Q for which the horizontal and vertical matching relations do not commute. We
can show that all axioms fromQ are independent, i.e. none of the axioms is a logical
consequence of the remaining axioms. In the remainder, we prove properties (a) and
(b) formulated above.

In order to prove property (a), assume that α is S-essential in Q w.r.t. L. We
demonstrate that D has a solution in this case.

Let Qα be a minimal S-module in Q containing α. Note that Qα implies all
axioms of form (q1)–(q4) in Q, since the signature of these axioms is a subset of S.
SinceQα contains α and all axioms ofQ are independent, this is only possible when
Qα = Q.

Since Qα = Q is a minimal S-module in Q, the set Q1 := Q \ {α} is not an S-
module inQ, and so, by the part 2 of Proposition 4,Q is not a model S-conservative
extension of Q1. This means that there is an S-interpretation I1 = (Δ, ·I1) that is a
model of the axioms of form (q1)–(q4), but which cannot be expanded to a model of
α by interpreting atomic role s and atomic concept B. We claim that this is possible
only if relations rH and rV commute in I1, that is, whenever rH(a, b), rV (b, c1),
rV (a, d) and rH(d, c2) hold in I1, then it must be the case that c1 = c2. Indeed,
otherwise one can expand I1 to a model I of α by setting sI = {(x, a) | x ∈
Δ} and BI = {c1}. Since I satisfies all formulas of forms (q1)–(q4) and admits
commutativity property for relations rH and rV , we can see that D has a solution.

In order to prove property (b), assume that D has a periodic solution ti,j with
the periods m,n ≥ 1. We demonstrate that α is S-essential in Q by showing that
Q1 := Q \ {α} is not an S-module in Q. For this purpose we construct an ALCO-
ontology P such that P ∪ Q |= ⊥, but P ∪ Q1 �|= ⊥. We define P such that every
model of P is a finite encoding of the periodic solution ti,j . For every pair (i, j) with
1 ≤ i ≤ m and 1 ≤ j ≤ n we introduce a fresh individual ai,j and add the following
axioms to P

(p1) ai,j :Ati,j , (p4) � �
⊔

1≤i≤m, 1≤j≤n {ai,j},
(p2) rV (ai1,j, ai2,j), (p5) {ai1,j} � ∀rV .{ai2,j}, i2 = i1 + 1 mod m
(p3) rH(ai,j1 , ai,j2), (p6) {ai,j1} � ∀rH .{ai,j2}, j2 = j1 + 1 mod n

The axioms (p1)–(p4) encode the solution ti,j for D, and so, ensure that axioms
(q1)–(q4) are satisfied. The axioms (p5) and (p6) ensure that the relations rV and rH
are defined completely, i.e. no other relations except for those specified in the first
column hold in models of P . In particular, in every model of P , relations rH and
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rV commute, and so, axiom α is not satisfied. Consequently,P ∪Q is unsatisfiable,
whereas P ∪Q1 is satisfiable, and so,Q1 is not an S-module in Q. �

Corollary 1. There exists no algorithm for performing any of the tasks T1-T3 from
(6.3), and (6.4) for ALCO-ontologies.

Proof. Theorem 1 implies directly that there is no algorithm for task T3 from (6.4),
because otherwise, one can check if an axiom α is S-essential in Q by simply com-
puting the set of all essential axioms by this algorithm for T3 and then checking if α
is contained in this set. The remaining tasks from (6.3) are unsolvable since they are
reducible to T3 by Proposition 3. �

Corollary 2. Given a signature S, an ALC-ontologyQ and an ontologyQ1 ⊆ Q, it
is undecidable whetherQ1 is an S-module in Q w.r.t. L = ALCO.

Proof. The procedure for deciding ifQ1 is an S-module inQ can be used for solving
task T1, which is not possible by Corollary 1. Indeed, by enumerating the subsets
of Q and checking if they are modules, one can compute all subsets M of Q that
are S-modules in Q. The set of all minimal modules in Q can be then computed
from M by filtering out those sets in M that are proper subsets of some other sets
inM. �

Corollary 2 has a strong impact on the problem of knowledge reuse and forces us to
revisit the original problem we aim at solving. As the problem of extracting minimal
modules cannot be computationally solved for OWL DL in none of the forms T1-T3,
T1s or T2s, we propose to relax some of the requirements in these tasks. We cannot
drop the requirements that extracted fragments should be modules since, in this case,
we have no guarantee for the correctness of the result. We can sacrifice, however,
the minimality requirements for the computed modules and consider the following
weakened version of the task T2:

T2w. compute some small enough S-module in Q (6.6)

Although it is always possible to extract an S-module in Q (one can simply return
Q which is always an S-module in Q), it still makes sense to develop, compare,
and practically apply procedures that compute reasonably small modules. In what
follows, we describe two procedures of this form, based on the notions of locality,
which we first introduced in [4]. The modules we obtain might be larger than the
minimal modules and therefore we need to show that, in practice, they are still rea-
sonably small.

6.5 Modules Based on Locality

In this section, we formulate the notion of locality, first introduced in [4] which
will constitute the basis of our algorithm for extracting modules. In this section, we
restrict ourselves to SHIQ, although the results provided here could we extended to
SHOIQ using the same treatment for nominals as in [4].
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6.5.1 Locality

As a consequence of Case 2 in Proposition 4, model conservative extensions can be
used as a sufficient condition for the notion of module. It is not possible, however, to
design a procedure that extracts modules based on this condition since the problem
of deciding model conservative extensions is highly undecidable [12]. The idea un-
derlying this notion, however, can be used to establish sufficient conditions for the
notion of module which are decidable and can be used in practice.

Consider the first part of Example 1, where we show that the setQ of axioms M1-
M5 in Figure 6.1 is a model S-conservative extension of Q1 = {M1, . . . ,M4}, for
S = {Cystic Fibrosis, Genetic Disorder}. In this example, the model conservative
extension was shown by finding expansions of Sig(Q1)-interpretations to models
of Q in which all concept and atomic roles not in Sig(Q1) were interpreted as the
empty set. One could consider the cases where conservative extensions (and hence
modules) can be determined in this manner. This idea can be formalized using the
notion of locality:

Definition 4 (Locality [4]). Let S be a signature. We say that an axiom α is local
w.r.t. S if every trivial expansion of any S-interpretation to S ∪ Sig(α) is a model
of α. We denote by local(S) the collection of all axioms that are local w.r.t. S. An
ontologyO is local w.r.t. S if O ⊆ local(S). �

Intuitively, an ontologyO is local w.r.t. a signature S if we can take any interpretation
for the symbols in S and extend it to a model of O that interprets the additional
symbols as the empty set.

Example 3. Axiom M5 is local for S = {Cystic Fibrosis, Genetic Disorder}. In-
deed, as shown in Example 1, for every trivial expansion I of an S-interpretation
to S ∪ Sig(α), the concept DEFBI Gene is interpreted as the empty set, and so, I
satisfies M5.

On the other hand, M5 is not local w.r.t. S = {DEFBI Gene}. Indeed, take any
S-interpretation I1 in which DEFBI Gene is interpreted as a non-empty set. Then,
for every trivial expansion I of I1, the concept on the left-hand-side of M5 is always
interpreted as a non-empty set, whereas the concept on the right-hand-side is always
interpreted as the empty set. So I does not satisfy α.

In fact, this shows that axiom M5 is local w.r.t. S if and only if S does not contain
DEFBI Gene. �

The following is a simple but useful property of locality shows that the set of local
axioms can only become smaller if the signature expands:

Lemma 2 (Anti-Monotonicity of Locality). Let S1 and S2 be signature sets. Then
S1 ⊆ S2 implies local(S2) ⊆ local(S1).

Proof. Let α ∈ local(S2). We demonstrate that α ∈ local(S1). For this purpose, let
I1 be an arbitrary S1-interpretation. We need to show that every trivial expansion I′1
of I1 to S1 ∪ Sig(α) is a model of α.
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Let I2 be a trivial expansion of I1 to S2 (note that S1 ⊆ S2). Since α ∈ local(S2),
every trivial expansion I ′2 of I2 to S2 ∪ Sig(α) is a model of α. Note that I ′2 is a
trivial expansion of I1 to S2 ∪ Sig(α), hence I ′1 = I ′2|S1∪Sig(α) |= α. �

Locality can be used to formulate a sufficient condition for an ontology to be a model
conservative extension of another ontology:

Proposition 5 (Locality ⇒ Model Conservativity). Let O1, O2 be two ontologies
and S a signature such that O2 is local w.r.t. S ∪ Sig(O1). Then O1 ∪ O2 is an
S-model conservative extension of O1.

Proof. Let I1 be a model of O1. We show that there exists a model I of O1 ∪ O2

such that I|S = I1|S.
Let I be a trivial expansion of I1|S∪Sig(O1) to S ∪ Sig(O1) ∪ Sig(O2), thus, in

particular, I|S∪Sig(O1) = I1|S∪Sig(O1). We need to show that I is a model ofO1∪O2.
Since O2 is local w.r.t. S ∪ Sig(O1), by Definition 4, I is a model ofO2. Moreover,
since I|Sig(O1) = I1|Sig(O1) and I1 |= O1, we have I |= O1. Hence, I |= O1 ∪ O2

what was required to show. �

Using Proposition 5 and Property 2 of Proposition 4 we obtain:

Corollary 3. LetO1,O2 and S be as given in Proposition 5. ThenO1 is an S-module
in O1 ∪ O2.

Corollary 3 suggests how one can use locality for extracting modules. Given an on-
tologyQ and a signature S, it is sufficient to partitionQ into Q1 ∪ Q2 such thatQ2

is local w.r.t. S ∪ Sig(Q1). In this case,Q1 is an S-module in Q.

Definition 5 (Modules based on Locality Condition)
Given an ontology Q and a signature S, we say that Q1 ⊆ Q is a locality-based
S-module in Q if Q \ Q1 is local w.r.t S ∪ Sig(Q1). �

Remark 1. Note from Definition 5 that every locality-based S-module Q1 in Q, is
also a locality-based S ∪ Sig(Q1)-module in Q. �

Remark 2. Note that Q1 is a locality-based S-module in Q if every trivial expansion
of every model ofQ1 based on S ∪ Sig(Q1) to S ∪ Sig(Q), is a model forQ. �

Example 4 (Example 3, continued). We have seen in Example 3 that axiom M5 is
local w.r.t. every S that does not contain the atomic concept DEFBI Gene. In par-
ticular, for Q1 consisting of axioms M1-M4 from Figure 6.1, M5 is local w.r.t.
Sig(Q1). Hence, according to Definition 5, Q1 is a locality-based S-module in
Q = {M1, . . . ,M5} for every S ⊆ Sig(Q1). �

Remark 3. Note that the analog of the Part 1 in Proposition 1 does not hold for
locality-based modules since locality-based modules are not necessarily upward-
closed. For example, consider the following ontology and a signature:

Q = {(1) A1 � A2; (2) B � A1; (3) B � A2} S = {A1, A2}
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It is easy to see that the set Q1 = {A1 � A2} consisting of the first axiom from
Q is a locality-based S-module in Q, since both axioms (2) and (3) are local w.r.t.
S ∪ Sig(Q1) = {A1, A2}. However, its superset Q′

1 = {A1 � A2; B � A1} is
not a locality-based module w.r.t. S, since the axiom B � A2 in Q \ Q′

1 is not local
w.r.t. S ∪ Sig(Q′

1) = {A1, A2, B}. Note that Q′
1 is an S-module in Q, since it is a

superset of an S-moduleQ1. �

6.5.2 Testing Locality

As demonstrated in Example 3, for testing locality of an axiom α w.r.t. S, it is suf-
ficient to interpret every atomic concept and atomic role not in S with the empty
set and then check if α is satisfied for all interpretations of the remaining symbols.
This observation suggests that locality can be tested by first simplifying the ontology
by eliminating atomic roles and concepts that are not in S, and then checking if the
resulting axioms are satisfied in every interpretation for the remaining symbols. This
idea is formalized as follows:

Proposition 6 (Testing Locality). Let O be a SHIQ ontology and S a signature.
Let OS be obtained fromO by applying the transformations below, where every A is
an atomic concept, every r is an atomic role with A, r /∈ S, and every R is a role r
or r− with r /∈ S: (1) replace all concepts of form A, ∃R.C or (�nR.C) with ⊥;
(2) remove every transitivity axiom Trans(r); (3) replace every assertion a :A and
r(a, b) with the contradiction axiom � � ⊥.

Then O is local w.r.t. S iff every axiom in OS is a tautology.

Proof. It is easy to check that the transformation above preserves the satisfaction
of axioms under every trivial expansion I of every S-interpretation to S ∪ Sig(O).
Hence, the resulting ontology OS is local w.r.t. S iff the original ontology O was
local w.r.t. S. Moreover, it is easy to see that there are no atomic concepts and atomic
roles outside S left in OS after the transformation. Hence, every axiom α from OS

is a tautology iffQ is local w.r.t. S. �

Note that according to Definition 4, assertions a :A and r(a, b) can never be local
since they can only be satisfied by interpretations that interpretA and r as non-empty
sets. Hence, assertions must be included in every locality-based module, which is
reflected in the step (3) of the transformation in Proposition 6.

Example 5. Recall that in Example 3 we have demonstrated that axiom M5 from Fig-
ure 6.1 is local w.r.t. S = {Cystic Fibrosis, Genetic Disorder}. Now we demonstrate
this using Proposition 6. Indeed, according to this proposition we need to perform
the following replacements:

DEFBI Gene ⇒ ⊥ (by (1) since DEFBI Gene �∈ S)

Immuno Protein Gene ⇒ ⊥ (by (1) since Immuno Protein Gene �∈ S)

∃associated With.Cystic Fibrosis⇒ ⊥ (by (1) since associated With �∈ S)

Hence, axiom M5 will be translated to axiom ⊥ � ⊥�⊥ which is a tautology. �
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An important conclusion of Proposition 6 is that one can use the standard capabili-
ties of available DL-reasoners2 such as FaCT++ [19], RACER [13], Pellet [18] or
KAON2 [14] for testing locality since these reasoners can test for DL-tautologies.
Checking for tautologies in description logics is, theoretically, a difficult problem
(e.g. for DL SHIQ is NEXPTIME-complete). There are, however, several reasons
to believe that the locality test would perform well in practice. First, and most im-
portantly, the size of the axioms in an ontology is usually small compared to the size
of the ontology. Second, DL reasoners are highly optimized for standard reasoning
tasks and behave well for most realistic ontologies.

In case this is too costly, it is possible to formulate a tractable approximation to
the locality conditions for SHIQ:

Definition 6 (Syntactic Locality for SHIQ). Let S be a signature. The following
grammar recursively defines two sets of concepts C⊥S and C�S for a signature S:

C⊥S ::= A⊥ | (¬C�) | (C � C⊥) | (∃R⊥.C)
| (∃R.C⊥) | (�nR⊥.C) | (�nR.C⊥) .

C�S ::= (¬C⊥) | (C�
1 � C�

2 ) .

where A⊥ /∈ S is a atomic concept, R is a role, and C is a concept, C⊥ ∈ C⊥S ,
C�

(i) ∈ C�S , i = 1, 2, and R⊥ /∈ Rol(S) is a role.
An axiom α is syntactically local w.r.t. S if it is of one of the following forms:

(1) R⊥ � R, or (2) Trans(R⊥), or (3) C⊥ � C or (4) C � C�. We denote
by s local(S) the set of all SHIQ-axioms that are syntactically local w.r.t. S. A
SHIQ-ontologyO is syntactically local w.r.t. S if O ⊆ s local(S). �

Intuitively, every concept in C⊥S becomes equivalent to⊥ if we replace every symbol
A⊥ or R⊥ not in S with the bottom concept ⊥ and the empty role respectively,
which are both interpreted as the empty set under every interpretation. Similarly, the
concepts from C�S are equivalent to � under this replacement. Syntactically local
axioms become tautologies after these replacements.

For example, it is easy to show that the axiom M2 from Figure 6.1 is local w.r.t.
S = {Fibrosis, has Origin}: if we replace the remaining symbols in this axiom with
⊥, we obtain a tautology⊥ ≡ ⊥:

⊥
︷ ︸︸ ︷
Genetic Fibrosis ≡ Fibrosis � ∃has Origin.

⊥
︷ ︸︸ ︷
Genetic Origin

︸ ︷︷ ︸
⊥

To distinguish the original notion of locality from its syntactic approximation, we
sometimes call the first as semantic locality, as it is defined in terms of the interpre-
tations.

2 See http://www.cs.man.ac.uk/˜sattler/reasoners.html for a list of cur-
rently available reasoners.
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It is easy to show that the analog of Lemma 2 also holds for syntactic locality:

Lemma 3 (Anti-Monotonicity of Syntactic Locality)
Let S1 and S2 be signature sets. Then S1 ⊆ S2 implies s local(S2) ⊆ s local(S1).

Proof. It is easy to see from Definition 6 that C⊥S2
� C⊥S1

, C�S2
� C�S1

, and hence,
s local(S2) � s local(S1). �

As expected, syntactic locality is an approximation for semantic locality:

Proposition 7. Let S be a signature. Then s local(S) ⊆ local(S).

Proof. Let α be an axiom that is syntactically local w.r.t. S and let I = (Δ, ·I) be a
trivial expansion of some S-interpretation to S∪Sig(α). We have to demonstrate that
I is a model of α. By induction over the definitions of C⊥S and C�S from Definition 6,
it is easy to show that: (i) every role R /∈ Rol(S) and every every concept from C⊥S
is interpreted in I with the empty set, and (ii) every concept from C�S is interpreted
in I with Δ. By checking all the possible cases for a syntactically local axiom α in
Definition 5, it is easy to see that in every of these cases I is a model of α. �

The converse of Proposition 7 does not hold in general since there are semantically
local axioms that are not syntactically local. For example, the axiom α = (A �
A � B) is a tautology and thus is local w.r.t. every S. This axiom, however, is not
syntactically local w.r.t. S = {A, B} since it involves symbols in S only. Another
example, which is not a tautology, is the GCI α = (∃R.¬A � ∃R.¬B), which is se-
mantically local w.r.t. S = {R} (∃R.� � ∃R.� is a tautology), but not syntactically

Q1 is a syntactical locality-based S-module inQ

Q1 is a locality-based S-module inQ

Q1 contains all S-essential axioms
w.r.t. L inQ

(Proposition 10)

Q is a model S-conservative
extension of Q1

Q1 is an S-module in Q w.r.t. L

Q is a deductive S-conservative extension of Q1 w.r.t. L

(Proposition 4, part 1)

(Proposition 4, part 2)

(Proposition 5)

(Corollary 4)

(Definition 2)

Fig. 6.3. Summary for the main theoretical results of the chapter
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local. Thus, the limitation of syntactic locality is its inability to perform reasoning
on elements from S.

We distinguish the notion of modules based on these two locality conditions as
semantic locality-based modules and syntactic locality-based modules.

Corollary 4. IfQ1 is a syntactic locality-based S-module in Q, thenQ1 is a seman-
tic locality-based S-module in Q.

For the reference and for the convenience of the reader, we illustrate in Figure 6.3
the relationships between the key theoretical results in this chapter.

6.5.3 Computing Locality-Based Modules

Recall that, according to Definition 5, in order to construct a locality-based S-module
in an ontology Q, it suffices to partition the ontology Q as Q = Q1 ∪ Q2 such
that Q2 is local w.r.t. S ∪ Sig(Q1). Algorithm 1 outlines a simple procedure which
performs this task. Given an effective locality test locality test(α,S) (which uses
either a reasoner or the syntactical approximation) which returns true only if the
axiom α is local w.r.t. S, the algorithm first initializes the partition to the trivial one:
Q1 = ∅ and Q2 = Q, and then repeatedly moves to Q1 those axioms from Q2 that
are not local w.r.t. S ∪ Sig(Q1) until no such axioms are left in Q2.

In Table 6.2 we provide a trace of Algorithm 1 for the input (Q,S), where Q is
an ontology consisting of the axioms M1-M5 from Figure 6.1 and S is a signature
S = {Cystic Fibrosis, Genetic Disorder}. Each row in the table corresponds to an
iteration of the while loop in Algorithm 1. The last column of the table provides the
results of the locality test in line 4. Note that the syntactic locality condition was suf-
ficient in all tests: all axioms that were semantically non-local were also syntactically
non-local.

Algorithm 1. extract module(Q,S)
Input:
Q: ontology
S: signature

Output:
Q1: a locality-based S-module inQ

1: Q1 ← ∅ Q2 ← Q
2: while not empty(Q2) do
3: α← select axiom(Q2)
4: if locality test( α, S ∪ Sig(Q1) ) then
5: Q2 ← Q2 \ {α} {α is processed}
6: else
7: Q1 ← Q1 ∪ {α} {move α intoQ1}
8: Q2 ← Q \Q1 {reset Q2 to the complement of Q1}
9: end if

10: end while
11: returnQ1
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Table 6.2. A trace of Algorithm 1 for the input Q = {M1, . . . ,M5} and S =
{Cystic Fibrosis, Genetic Disorder}

Q1 Q2 New elements in S ∪ Sig(Q1) α local?

1 − M1−M5 Cystic Fibrosis, Genetic Disorder M1 No

2 M1 M2−M5 Fibrosis, located In, Pancreas,
has Origin, Genetic Origin M2 No

3 M1,M2 M3−M5 Genetic Fibrosis M3 No

4 M1−M3 M4,M5 − M4 No

5 M1−M4 M5 − M5 Yes

6 M1−M4 − − −

Proposition 8 (Correctness of Algorithm 1)
For every inputQ and S, Algorithm 1 computes a locality-based S-module in Q.

Proof. We have to show that (1) Algorithm 1 terminates for every input, and (2) the
output extract module(S,Q) is a locality-based S-module in Q.

(1) Termination of the algorithm follows from the fact that in every iteration of the
while loop either the size ofQ1 increases, or the size ofQ1 remains the same but the
size of Q2 decreases. Note that this means that Algorithm 1 terminates in quadratic
time in the number of axioms in Q, assuming constant time locality test.

(2) It is easy to observe that every axiom α that is neither in Q1 nor in Q2 is
local w.r.t. S ∪ Sig(Q1), since the only way such an α can appear is at the line 3
of the algorithm, and α remains in Q \ (Q1 ∪ Q2) only if S ∪ Sig(Q1) does not
change. �

Note that there is an implicit non-determinism in Algorithm 1, namely, in line 3 in
which an axiom fromQ2 is selected. It might well be the case that several choices for
α are possible at this moment. For example, the trace in Table 6.3 makes a different
choice for α from Q2 than the trace in Table 6.2. In the first iteration of the while
loop, we select α = M2 from Q2 instead of M1 as in Table 6.2. This has resulted
in a longer trace yet with the same result Q1 = {M1, . . . ,M4}. Note that axioms
M2 andM3 are selected several times and produce different results for the locality
tests, since Q1 has been modified. This demonstrates the reason why we reset Q2

to Q \ Q2 at the line 8 of Algorithm 1, namely, not to miss axioms that has been
checked to be local w.r.t. old Q1, but are no longer local w.r.t. newQ1.

As we have seen from the traces in Table 6.2 and Table 6.3, Algorithm 1 has
produced the same output despite the fact that different choices for α has been made
inside the while loop. One might wonder if this is always the case. It turns out that the
choices for α indeed do not have any impact on the result of Algorithm 1, provided
that the locality test satisfy some rather natural requirements:

Definition 7. We say that a locality test locality test(α,S) is anti-monotonic if for
every S1 ⊆ S2, whenever locality test(α,S2) succeeds then locality test(α,S1) suc-
ceeds as well.
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Table 6.3. An alternative trace of Algorithm 1 for the input Q = {M1, . . . ,M5} and S =
{Cystic Fibrosis, Genetic Disorder}

Q1 Q2 New elements in S ∪ Sig(Q1) α loc.

1 − M1−M5 Cystic Fibrosis, Genetic Disorder M2 Yes

2 − M1,M3−M5 − M3 Yes

3 − M1,M4,M5 − M1 No

4 M1 M2−M5 Fibrosis, located In, Pancreas,
has Origin, Genetic Origin M3 No

5 M1,M3 M2,M4,M5 Genetic Fibrosis M4 No

6 M1,M3,M4 M2,M5 − M5 Yes

7 M1,M3,M4 M2 − M2 No

8 M1−M4 M5 − M5 Yes

9 M1−M4 − − −

We say that locality ofQ1 w.r.t. S inQ1 is provable using locality test(α,S) if for
every α ∈ Q \ Q1, we have that locality test(α,S ∪ Sig(S1)) succeeds. �

Proposition 9 (Determinism of Algorithm 1)
The output of Algorithm 1 based on anti-monotonic locality test(α,S) is the smallest
Q1 such that locality of Q1 w.r.t. S is provable using locality test(α,S).

Proof. It is easy to see (see the proof of Proposition 8) that the locality of every
output Q1 of Algorithm 1 is provable using locality test(α,S). It remains, thus, to
show that for every subsetQ′

1 ⊆ Q such that locality of Q′
1 w.r.t. S in Q is provable

using locality test(α,S), we haveQ1 ⊆ Q′
1.

Assume, to the contrary, that for some run of the algorithm, the output Q1 is not
a subset of Q′

1. Since the initial Q1 = ∅ was a subset of Q′
1, there is a moment

in the computation such that Q1 was a subset of Q′
1, but Q1 ∪ {α} is no longer

a subset of Q′
1. For these particular values of Q1 and α we have: (i) Q1 ⊆ Q′

1,
(ii) α ∈ Q\Q′

1, and (iii) locality test(α,S∪ Sig(Q1)) fails. From (ii) by property
of Q′

1 we have locality test(α,S ∪ Sig(Q′
1)) succeeds, which implies using (i) and

anti-monotonicity of locality test that locality test(α,S ∪ Sig(Q1)) succeeds which
contradicts to (iii). This proves that Q1 is indeed a subset of Q′

1. �

Corollary 5 (Uniqueness of a Minimal Locality-Based Module)
Algorithm 1 using a test based on the semantic locality produces a unique minimal
locality-based S-module in Q.

Proof. By Lemma 2 the semantic locality admits anti-monotonicity. �

Corollary 6 (Uniqueness of a Minimal Syntactic Locality-Based Module)
Algorithm 1 using a test based on the syntactic locality produces a unique minimal
syntactic locality-based S-module in Q.

Proof. By Lemma 3 the syntactic locality admits anti-monotonicity. �
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6.5.4 Properties of Locality-Based Modules

In this section, we outline some interesting properties of locality-based modules
which make it possible to use them for applications other than knowledge reuse.

Let Qloc
S be the smallest locality-based S-module in Q, which is unique by Co-

rollary 5 and is the output of Algorithm 1 for Q and S. The first property is a direct
consequence of Corollary 5:

Proposition 10. Qloc
S contains all S-essential axioms in Q w.r.t. every language L

with Tarski-style set-theoretic semantics.

Proof. LetQ1 be a minimal S-module inQ. We need to show thatQ1 ⊆ Qloc
S . Since

(i) Q1 is a subset of a locality-based S-module in Q (say, of Q itself) and (ii) there
is no proper subset of Q1 that is a locality-based S-module in Q, we have thatQ1 is
a subset of a minimal locality-based S-module in Q. Since such a module is unique
by Corollary 5, and it is Qloc

S , we have thatQ1 ⊆ Qloc
S . �

As shown in Table 6.2 and Table 6.3, the minimal locality-based S-module extracted
from Q contains all S-essential axioms M1–M4. In our case, the module contains
only essential axioms; in general, however, locality-based modules might contain
non-essential axioms; otherwise, they would provide a solution for our task T3 in
(6.4).

Proposition 11. Let Q be ontology, A and B atomic concepts and S(i) a signature.
Then:

1. S1 ⊆ S2 implies Qloc
S1
⊆ Qloc

S2
(monotonicity);

2. Q |= (A � B) iff Qloc
{A} |= (A � B).

3. Q |= (A � B) implies Qloc
{B} ⊆ Qloc

{A} or Qloc
{A} |= A � ⊥.

Proof

1. Since Qloc
S2

is a locality-based S2-module in Q, we have Q \ Qloc
S2

is local
w.r.t. S2 ∪ Sig(Qloc

S2
). By anti-monotonicity of locality (see Lemma 2), Q \ Qloc

S2
is

local w.r.t. S1 ∪ Sig(Qloc
S2

), hence Qloc
S2

is a locality-based S1-module in Q. Since
Qloc

S1
is contained in every locality-based S1-module in Q by Corollary 5, we have

Qloc
S1
⊆ Qloc

S2
.

2. The “if” part of this property is trivial since Qloc
{A} ⊆ Q. In order to prove the

“only if” part of the property, assume that Q |= (A � B). Let S := Sig(Qloc
{A}) ∪

{A}, and consider the following two cases:
(a) B ∈ S. Then by Remark 1,Qloc

{A} is an S-module inQ, and so,Qloc
{A} |= (A �

B) since Sig(A � B) ⊆ S.
(b) B �∈ S. We demonstrate that Qloc

{A} |= A � ⊥ which suffices for proving

Qloc
{A} |= A � B.

Assume, to the contrary, that Qloc
{A} �|= A � ⊥. Then there exists an S-

interpretation I such that I |= Qloc
{A} and AI �= ∅. Let I ′ be a trivial expansion of
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I to S ∪ Sig(Q). Since Qloc
{A} is a locality-based S-module in Q (see Remark 1 and

Remark 2), we have I ′ |= Q. However, I ′ is not a model of (A � B) sinceAI′ �= ∅,
but BI′

= ∅ since B /∈ S. This contradicts to the assumptionQ |= A � B.
3. As has been shown in the proof of property 2 above, if Q |= (A � B),

then either B ∈ Sig(Qloc
{A}) or Qloc

{A} |= A � ⊥. So, it remains to show that

B ∈ Sig(Qloc
{A}) implies that Qloc

{B} ⊆ Qloc
{A}. Indeed, by Remark 1, Qloc

{A} is a

locality-based (Sig(Qloc
{A}) ∪ {A})-module in Q. Since B ∈ Sig(Qloc

{A}), then, in

particular, Qloc
{A} is a locality-based {B}-module in Q. Since Qloc

{B} is contained in

every locality-based {B}-module in Q, we have Qloc
{B} ⊆ Qloc

{A} what was required
to prove. �

Proposition 11 gives two interesting properties of locality-based modules. The first
one states that such modules may only grow if the input signature extends. The se-
cond one implies that the module for a single atomic concept A provides complete
information about all the super-classes ofA. This property can be used for optimizing
classification: in order to classify an ontologyQ, i.e. to compute all subsumption rela-
tionsA � B between pairsA,B of atomic concepts inQ, it is sufficient to (1) extract
all modulesQloc

{A} ofQ for each atomic conceptA (2) classify each of these modules
independently (possibly in parallel), and (3) merge the results of the individual clas-
sifications. By Property 2, if the subsumption A � B is implied by the ontology Q
then it is implied by the moduleQloc

{A} and, hence, it will be obtained in step (2).
Finally, Property 3 in Proposition 10 can also be used to optimize classification.

The property provides a necessary condition for a subsumption A � B to hold in
an ontology, which can be used to quickly detect non-subsumptions: If the inclusion
Qloc

{B} ⊆ Qloc
{A} between the minimal locality-based modules does not hold, and A

is found to be satisfiable, then a reasoner does not need to prove the subsumption
A � B w.r.t.Q, since it never holds.

We have used these properties of locality-based modules for optimizing incremen-
tal classification—that is, to improve the efficiency of DL reasoners under changes
in the ontology. We refer the interested reader to [8] for details.

6.6 Implementation and Evaluation

In this section, we show that minimal locality-based modules obtained from realistic
ontologies are small enough to be useful in practice. For evaluation and comparison,
we have implemented the following algorithms using Manchester’s OWL API:3

A1:The PROMPT-FACTOR algorithm, as described in [15];
A2:The algorithm for extracting modules described in [6];
A3:Our algorithm for extracting modules (Algorithm 1), based on locality.

As a test suite, we have collected a set of well-known ontologies available on the
Web, which can be divided into two groups:

3 http://sourceforge.net/projects/owlapi
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Simple. In this group, we have included the National Cancer Institute (NCI) Onto-
logy,4 the SUMO Upper Ontology,5 and the Gene Ontology (GO),6 These ontologies
are expressed in a simple ontology language and are of a simple structure; in partic-
ular, they do not contain GCIs, but only definitions.

Complex. This group contains the well-known GALEN ontology (GALEN-Full),7

the DOLCE upper ontology (DOLCE-Lite),8 and NASA’s Semantic Web for Earth
and Environmental Terminology (SWEET)9. These ontologies are complex since
they use many constructors from OWL DL and/or include a significant number of
GCIs. In the case of GALEN, we have also considered a version GALEN-Small
that has commonly been used as a benchmark for OWL reasoners. This ontology
is almost 10 times smaller than the original GALEN-Full ontology, yet similar in
structure.

Table 6.4. Comparison of Different Modularization Algorithms

Ontology � Atomic A1: Prompt-Factor A2: Mod. in [6] A3: Loc.-based mod.
Concepts Max.(%) Avg.(%) Max.(%) Avg.(%) Max.(%) Avg.(%)

NCI 27772 87.6 75.84 55 30.8 0.8 0.08
GO 22357 1 0.1 1 0.1 0.4 0.05
SUMO 869 100 100 100 100 2 0.09
GALEN-Small 2749 100 100 100 100 10 1.7
GALEN-Full 24089 100 100 100 100 29.8 3.5
SWEET 1816 96.4 88.7 83.3 51.5 1.9 0.1
DOLCE-Lite 499 100 100 100 100 37.3 24.6

For each of these ontologies, and for each atomic concept in their signature, we
have extracted the corresponding modules using algorithms A1-A3 and measured
their size. We use modules for single atomic concepts to get an idea of the typical
size of locality-based modules compared to the size of the whole ontology. Also,
as seen before, modules for atomic concepts are especially interesting for optimized
classification of ontologies.

The results we have obtained are summarized in Table 6.4. The table provides the
size of the largest module and the average size of the modules obtained using each
of these algorithms. In the table, we can clearly see that locality-based modules are
significantly smaller than the ones obtained using the other methods; in particular,
in the case of SUMO, DOLCE, and GALEN the algorithms A1 and A2 retrieve the
whole ontology as the module for each atomic concept. In contrast, the modules

4 http://www.mindswap.org/2003/CancerOntology/nciOncology.owl
5 http://ontology.teknowledge.com/
6 http://www.geneontology.org
7 http://www.openclinical.org/prj_galen.html
8 http://www.loa-cnr.it/DOLCE.html
9 http://sweet.jpl.nasa.gov/ontology/
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we obtain using our algorithm are significantly smaller than the size of the input
ontology. In fact, our modules are not only smaller, but are also strict subsets of the
respective modules computed using A1 and A2.

For NCI, GO and SUMO, we have obtained very small locality-based modules.
This can be explained by the fact that these ontologies, even if large, are simple in
structure and logical expressivity. For GALEN, SWEET and DOLCE, the locality-
based modules are larger. Indeed, the largest module in GALEN-Small is 1/10 of the
size of the ontology. For DOLCE, the modules are even bigger—1/3 of the size of
the ontology—which indicates that the dependencies between the different concepts
in the ontology are very strong and complicated. The SWEET ontology is an excep-
tion: even though the ontology uses most of the constructors available in OWL, the
ontology is heavily underspecified, which yields small modules.

6.7 Conclusion

We have proposed a definition of a module for a given vocabulary within an ontology
to be reused. Based on this definition, we have formulated three reasoning problems
concerning the extraction of minimal modules and shown that none of them is al-
gorithmically solvable, even for simple fragments of OWL DL. We have introduced
locality-based modules as an approximation to minimal modules and have empir-
ically demonstrated that such modules are reasonably small for many real-world
ontologies.
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Summary. In this chapter we describe a method for structure-based ontology partitioning
and its implementation that is practically applicable to very large ontologies. We show that
a modularization based on structural properties of the ontology only already results in mo-
dules that intuitively make sense. The method was used for creating an overview graph for
ontologies and for extracting key topics from an ontology that correspond to topics selected
by human experts. Because the optimal modularization of an ontology greatly depends on the
application it is used for, we implemented the partitioning algorithm in a way that allows for
adaption to different requirements. Furthermore this adaption can be performed automatically
by specifying requirements of the application.

7.1 Introduction

In our work, we focus on the task of splitting up an existing ontology into a set
of modules according to some criteria that define the notion of a good modular-
ization. Intuitively, we can say that a module should contain information about a
coherent subtopic that can stand for itself. This requires that the concepts within
a module are semantically connected to each other and do not have strong depen-
dencies with information outside the module. These considerations imply the need
for a notion of dependency between concepts that needs to be taken into account.
There are many different ways in which concepts can be related explicitly or im-
plicitly. At this point we abstract from specific kinds of dependencies and choose
a general notion of dependency between concepts. The resulting model is the one
of a weighted graph O = 〈C,D,w〉 where nodes C represent concepts and links
D between concepts represent different kinds of dependencies that can be weighted
according to the strength of the dependency. These dependencies can reflect the def-
initions of the ontology or can be implied by the intuitive understanding of concepts
and background knowledge about the respective domain. Looking for an automatic
partitioning method, we are only interested in such kinds of dependencies that can be
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derived from the ontology itself. This leads us to a first central assumption underlying
our approach:

Assumption 1: Dependencies between concepts can be derived from the
structure of the ontology.

Depending on the representation language, different structures can be used as indi-
cators of dependencies. These structures can be subclass relations between classes,
other relations linked to classes by the range and domain restrictions or the appear-
ance of a class name in the definition of another class. In previous work, we have
shown that this assumption is valid in many cases [13]. A second basic assumption
of our approach that directly follows from the first assumption and will be the focus
of this paper is the following:

Assumption 2: The quality of a modularization can be determined on the
basis of the structure of the individual modules and the connections between
them.

This assumption does not only provide a rationale for structure-based ontology par-
titioning, it also allows us to adapt the partitioning algorithm originally proposed in
[13] by explicitly taking structural criteria for measuring the quality of the resulting
modular ontology into account.

In the subsequent section we describe the different steps of the partitioning algo-
rithm. Section 3 comprises an overview of the implementation including instruction
for its utilization. We demonstrate application of the tool for visualization and iden-
tification of key topics in section 4. The last section summarizes the main ideas and
results and gives an outlook on future work.

7.2 Algorithm

Our algorithm consists of three tasks that are executed in six independent steps. The
first task (Steps 1.1 and 1.2) is the creation of a dependency graph from an ontology
definition. Guided by this graph the actual partitioning is the second task. The third
task is optimization of the partitioning by assignment of isolated concepts, merging
some modules and duplicating selected axioms. Step 4 describes how parameters that
are required by the different partitioning steps are determined automatically, based
on a given set of criteria.

7.2.1 Dependency Graph

The first task of the algorithm is the conversion of an ontology in OWL, RDF or KIF
format into a weighted graph. It consists of two steps, the creation of the graph and
the computation of the weights.

Step 1.1: Create Dependency Graph: In the first step a dependency graph is ex-
tracted from an ontology source file. The elements of the ontology (concepts,
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relations, instances) are represented by nodes in the graph. Links are introduced
between nodes if the corresponding elements are related in the ontology. There
are five types of relations between elements to choose from for the creation of
links: subclass, property, definition, substring and distance relations.

When property relations are to be included, domain and range of each property are
connected by a link. Definition relations are established between a concept and terms
contained in its definition (either only properties or also other resources). These can
be used to make concepts dependent on some shared property. The remaining two
relations, substring and string distance, look at the concept names (or labels if spec-
ified). They create a relation if one concept name is contained in another or if the
string distance between two concept names is below a certain threshold. The string
relations are oportune when the terms of the ontology have a compositional struc-
ture. For example, [10] found that in the Gene ontology 65% of the terms encode a
semantic relation in their name (e.g. regulation of cell proliferation is related to cell
proliferation).

Step 1.2: Determine Strength of Dependencies: In the second step the strength of
the dependencies between the concepts has to be determined. Following the ba-
sic assumption of our approach, we use the structure of the dependency graph to
determine the weights of dependencies. In particular we use results from social
network theory by computing the proportional strength network for the depen-
dency graph. The strength of the dependency of a connection between a node
ci and cj is determined to be the proportional strengths of the connection. The
proportional strength describes the importance of a link from one node to the
other based on the number of connections a node has. In general it is computed
by dividing the sum of the weights of all connections between ci and cj by the
sum of the weights of all connections ci has to other nodes (compare [4], page
54ff):

w(ci, cj) =
aij + aji∑

k

aik + aki

Here aij is the weight preassigned to the link between ci and cj - in the exper-
iments reported in this section this will always be one. As a consequence, the
proportional strength used in the experiments is one divided by the number of
nodes ci is connected to.

The intuition behind it is that individual social contacts become more important if
there are only few of them. In our setting, this measure is useful because we want
to prevent that classes that are only related to a low number of other classes get
separated from them. This would be against the intuition that classes in a module
should be related.

We use node d in Fig. 7.1 to illustrate the calculation of weights using the propor-
tional strength. The node has four direct neighbors, this means that the proportional
strength of the relation to these neighbors is 0.25 (one divided by four). Different
levels of dependency between d and its neighbors now arise from the relative depen-
dencies of the neighbors with d (the proportional strength is non-symmetric). We see
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Fig. 7.1. An example graph with proportional strength dependencies

that e and f having no other neighbors completely depend on d. The corresponding
value of the dependency is 1. Further, the strength of the dependency between g and
d is 0.5, because g has two neighbors and the dependency between b and d is 0.33
as b has 3 neighbors.

7.2.2 Identification of Modules

Step 2: Determine Modules The proportional strength network provides us with a
foundation for detecting sets of strongly related concepts. For this purpose, we
make use of an algorithm that computes all maximal line islands of a given size
in a graph [2].

Definition 1 (Line Island). A set of vertices I ⊆ C is a line island in a depen-
dency graph G = (C,D,w) if and only if

• I induces a connected subgraph of G
• There is a weighted graph T = (VT , ET , wT ) such that:

– T is embedded in G
– T is an maximal spanning tree1 with respect to I
– the following equation holds:

max
{(v,v′)∈D|(v∈I∧v′ �∈I)∨(v′∈I∧v �∈I)}

w(v, v′) < min
(u,u′)∈ET

w(u, u′)

Note that for the determination of the maximal spanning tree the direction of
edges is not considered. �

This criterion exactly coincides with our intuition about the nature of modules given
in the introduction, because it determines sets of concepts that are stronger internally
connected than to any other concept not in the set. The algorithm requires an upper
and a lower bound on the size of the detected set as input and assigns an island

1 A maximal spanning tree is a spanning tree with weight greater than or equal to the weight
of every other spanning tree.
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number to each node in the dependency graph. We denote the island number assigned
to a concept c as α(c). The assignment α(c) = 0 means that c could not be assigned
to an island.

We use different sets of nodes in the graph in Fig. 7.1 to illustrate the concept of
a line island. Let us first consider the set {a, ..., f}. It forms a connected subgraph.

The maximal spanning tree of this set consists of the edges a 1.0−→ c, b 1.0−→ c,

c 0.33−→ d, e 1.0−→ d, and f 1.0−→ d. We can see however, that this node set is not an
island, because the minimal weight of an edge in the spanning tree is 0.33 and there

is an incoming edge with strength 0.5 (g 0.5→ d). If we look at the remaining set of
nodes {g,h}, we see that it fulfills the conditions of an island: it forms a connected

subgraph, the maximal spanning tree consists of the edge h 1.0→ g and the maximal

value of in- or outgoing links is 0.5 (g 0.5→ d). This set, however, is not what we are
looking for because it is not maximal: it is included in the set {d, ...,h}. This set is a

line island with the maximal spanning tree consisting of the edges e 1.0−→ d, f 1.0−→ d,

g 0.5−→ d and h 1.0−→ g where the minimal weight (0.5) is higher than the maximal

weight of any external link which is c 0.33−→ d. Another reason for preferring this
island is that the remaining node set {a,b, c} also forms a line island with maximal

spanning tree a 1.0−→ c, b 1.0−→ c and the weaker external link c 0.33−→ d.
The actual calculation of the islands is done by an external program written by

Matjaz Zaversnik2. This program requires specification of minimum and maximum
island sizes to compute the above defined line islands. The minimum size is always
set to 1 for not restricting the island creation more than necessary.

7.2.3 Optimization 1: Assignment of Isolated Concepts

After partitioning, in some cases there will be some leftover nodes which are not
assigned to any cluster. The algorithm will automatically assign these nodes based
on the strength of the relations to nodes already assigned to a module.

Step 3.1: Assign Isolated Concepts Leftover nodes are assigned to the cluster to
which they have the strongest connection. In particular this is the island of the
neighboring node they have the strongest relation to. In cases where all neigh-
boring nodes are unassigned as well, these nodes are assigned first.

How this process works can best be explained by an example. Fig. 7.2 shows an
example network. It contains two modules (M1 and M2) and one leftover node (c8).
c8 is connected to module M1 by one edge with strength 0.3 and to module M2
by two arcs with strengths 0.2 and 0.3. To determine the strength of a connection
between a leftover node and a module, the strengths of all edges and arcs that connect
the two are summed. Because edges are undirected and work in this respect in both
directions, they can be considered twice as strong as arcs. Therefore their weight is
doubled. In the example network the connection between c8 and M1 is 0.6, between
c8 and M2 0.5, so the leftover node will be assigned to module M1.

2 http://vlado.fmf.uni-lj.si/pub/networks/
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Fig. 7.2. Example network for the assignment of leftover nodes to modules

7.2.4 Optimization 2: Merging

Looking at the result of the example application we get a first idea about the strengths
and weaknesses of the algorithm. We can see that the algorithm generates some mo-
dules that meet our intuition about the nature of a module quite well. In some cases
subtrees that could be considered to form one module are further split even if the
complete subtree does not exceed the upper size limit. This can be explained by an
unbalanced modelling of the ontology as subtrees tend to be split up at concepts with
a high number of direct subclasses compared to its sibling classes. This phenomenon
often reflect a special importance of the respective concept in the ontology that also
justifies the decision to create a separate model for this concept. The iterative strat-
egy frees us from determining a lower bound for the size of modules. As a result,
however, the algorithm sometimes create rather small modules. This normally hap-
pens when the root concept of a small subtree is linked to a concept that has many
direct subclasses. For the result of the partitioning method these subsets are often
pathological because a coherent topic is split up into a number of small modules that
do not really constitute a sensible model on their own.

When inspecting the dependencies in the relevant parts of the hierarchy, we dis-
covered that most of the problematic modules have very strong internal dependen-
cies. In order to distinguish such cases, we need a measure for the strength of the
internal dependency. The measure that we use is called the ‘height’ of an island. It
uses the minimal spanning tree T used to identify the module: the overall strength of
the internal dependency equals the strength of the weakest link in the spanning tree.

height(I) = min
(u,u′)∈ET

w(u, u′)

We can again illustrate the the concept of height using the example from Fig. 7.1.
We identified two islands, namely {a,b, c} and {d, ...,h}. As the maximal spanning

tree of the first island consists of the two edges a 1.0−→ c, b 1.0−→ c, the height of this
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Fig. 7.3. Sizes and heights of partitions in the SUMO ontology

Fig. 7.4. Sizes and heights of partitions in the NCI ontology

island is 1.0. In the maximal spanning tree of the second island the edge g 0.5→ d is
the weakest link that therefore sets the height of the island to 0.5.

We found many cases where generated modules that do not make sense had an
internal dependency of strength one. In a post-processing step this allows us to au-
tomatically detect critical modules. While for the case of an internal strength of one
we almost never found the corresponding module useful in the context of the original
ontology, it is not clear where to draw the line between a level of internal dependency
that still defines sensible modules and a level that overrules important dependencies
to concepts outside the module. In our experiments we made the experience that a
threshold of 0.5 leads to good results in most cases.3

3 Note that due to the calculation of the dependency value, the internal strength is always of
the form 1

n
.
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Figures 7.3 and 7.4 show the results of comparing the size and the height of com-
puted islands. The plots clearly show a correlation between these properties. We also
see that—except for one case—islands with a height of one are quite small.4 The re-
sults of these experiments provided us with sufficient evidence that the height of an
island is a useful criterion for judging the quality of a module. As described above,
one of the findings in the first experiments was the strong correlation between size
of modules and the degree of internal dependency. Further, we found out that small
modules were unnatural in most cases. In a second experiment, we show that this
result can be used to ’repair’ the result of the straightforward partitioning.

Step 3.2: Merging All modules whose height reaches the given threshold are merged
into adjacent modules with a lower height. In many cases, there is only one
adjacent module to merge with. In cases where more than one adjacent module
exist, the strength of the dependencies between the modules is used to determine
the candidate for merging.

7.2.5 Optimization 3: Criteria Maximization

Starting point of a partitioning problem is usually an application in need for a par-
titioning that meets certain requirements. Investigation of applications for ontology
modularization reveals that the criteria for determining a “good” partitioning depend
heavily on the concrete application [6]. For enabling adjustment to different applica-
tion requirements the parameters that influence the final partitioning are customizable.

In order to support users to chose the right setting for a given application, we do
not force to directly provide values for the parameters mentioned above. Instead, the
user is asked to select and rank quality criteria for the resulting partitioning. This
frees the user from the need to understand the partitioning method and the influence
of the different parameters. In contrast, the user only has to be concerned with the
requirements of the application at hand. We believe that this is a big step towards
enabling domain experts with limited knowledge about the technical details of rep-
resentation languages for ontologies to use this technology.

It can be assumed that different applications may not only impose different
weights for the built-in criteria but also require consideration of new criteria that
are defined by the user. For usage of additional criteria our tool provides a simple in-
terface. We assume that althought there may be various types of requirements, they
all can be described by concrete measurements that map partitionings to decimal
numbers. Different applications may share some measurements but disagree on their
relative importance, it could even happen that one measurement is positive for one
application and negative for another.

Criteria

The most obvious criteria used for optimization are number of modules, avarage
module size and variance of size. Uniformity of the size distribution, is measured
4 The exception is a part of the NCI ontology that lists all countries of the world and therefore

contains 1 class with more than 200 subclasses.
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by the criteria bulkyness and granularity. The intention of bulkyness is to indicate
that some modules are to large, e.g. the largest module has almost the same size as
the whole ontology. For obtaining a smooth function module sizes ni = |Mi| are
mapped to values in [0, 1] depending on the size n of the ontology.

bulkyness(ni, n) =
1
2
− 1

2
cos(π · ni

n
)

These values are averaged over all modules (weighted by module sizes) to obtain a
measurement for the whole partitioning. Similarly, granularity indicates that modules
are to small, e.g. when half of the concepts are contained in modules of size 1.

granularity(ni, n) = (
1
2

+
1
2
cos(π · ni

n
))20

The precise value of the exponent does not matter, 20 is a value that worked well in
practice. The graphs depicted in Fig. 7.5 illustrates the choice of functions. If there
are two modules of the same size the bulkyness value is 0.5. If one of these modules
is further partitioned into modules with size 1% of the size of the ontology, the granu-
larity value is 0.5. In addition to criteria computed from size and number of modules,
connectedness depends on the links between the modules. In many applications the
number of symbols shared between axioms in different modules should be as small
as possible. We consider the fraction of inter-modules edges with respect to the total
number of edges. A detailed investigation of this measurement can be found in [12].

connectedness =
#{(v, v′) ∈ D | α(v) �= α(v′)}

#{(v, v′) ∈ D}

whereD is the set of edges of the dependency graph andα the assignment to modules
(see Def. 1).

For optimization depending on specific terms contained in the ontology two addi-
tional criteria are defined. Number of relevant modules and relative size of relevant

Fig. 7.5. Bulkyness and granularity of modules against the relative size



196 H. Stuckenschmidt and A. Schlicht

modules are computed depending on a given set of terms, i.e. a module is considered
relevant if it contains one of the terms. For the relative size, the sum of the sizes of
the relavant modules is compared to the size of the ontology.

There are different mechanisms for optimizing the configuration according to
given criteria:

Dynamic defaults

Firstly, parameters that are not given in the settings file are determined automatically
depending on given criteria. If for example the parameter “maximum island size” is
not set in the input, it is set to number of terms

10 · connectedness weight
bulkyness weight . These dynamic

default settings constitute an approximation of the optimal configuration.

Axiom Duplication

The preceding partitioning and optimization steps result in a non-redundant dis-
tributed representation of the source ontology. A term can not be allocated to more
than one module. Sometimes it can be beneficial, however, to include certain axioms
in several modules to decrease the connectedness of the resulting modularization.
As on the other hand, copying axioms increases the redundancy, there has to be a
tradeoff between these two conflicting requirements. Currently, this can be specified
by setting an upper bound for the acceptable redundancy introduced. This means that
the maximal redundancy is another parameter that influences the quality of the re-
sulting partitioning in terms of connectedness and redundancy, Algorithm 2 shows
the method for duplicating axioms based on a maximal redundancy value.5

Algorithm 2. Axiom Duplication
Require: partitioning: Set<Set<Axiom>>
Require: maxRedundancy: double

limit =∞
candidates = ∅
while redundancy < maxRedundancy & limit > 0 do

for all (axiom,module) ∈ partitioning do
if numberOfLinks(axiom,module) > limit then

candidates.add(axiom,module)
end if

end for
for all (axiom,module) ∈ candidates do

if duplicating axiom to module decreases connectedness then
duplicate(axiom, module, partitioning)

end if
end for
limit = limit - 1

end while

5 A partitioning is represented by a set of modules which in turn are represented by sets of
axioms.
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Fig. 7.6. Criteria-based determination of the configuration for the extraction application (see
Sect. 7.4.3), displaying the value of (−connectedness− 5 · bulkyness)

Step 3.3: Axiom Duplication Axioms with a high number of links to another mo-
dule are copied to that module if connectedness is decreased by this duplication.
Duplication stops when the maximum redundancy is reached.

Automatic configuration

The most advanced feature of the algorithm is the ability to automatically determine
an optimal configuration of parameter settings:

Step 4: Criteria-Based Optimization Based on a set C of criteria and their weights
wc a configuration p is chosen that maximizes the weighted sum of the criteria
values vc,p.

max
p∈Config

∑

c∈C

wc · vc,p

Figure 7.6 demonstrates the selection of the configuration. The highest point of the
surface corresponds to the best configuration for the given criteria.

7.3 Tool Support for Automatic Partitioning

The algorithm described in the last sections is implemented in the Partitioning
Tool Pato, a Java application with two interfaces. Firstly, it performs the partition-
ing interactively through a graphical user interface. Secondly, the configuration can
be specified in the settings file directly, providing control over additional parame-
ters. A default configuration is computed, if only the source ontology file is speci-
fied. The tool is freely downloadable6 and licensed under the GNU General Public
6 http://webrum.uni-mannheim.de/math/lski/Modularization/
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License. The features that where added in Pato1.3 (mainly criteria-based optimiza-
tion and OWL-output) are not yet supported by the GUI, they are controlled using
the settings file.

7.3.1 Graph Generation

Figure 7.7 shows a screen shot of the tool in which an OWL ontology is converted to
a dependency network. The screen is divided into three parts: the upper part gives a
short help text about the currently selected tab, the middle part is for specifying the
required arguments (in this case the input ontology and the output network) and the
bottom part is for various optional parameters that influence the conversion. The tool
converts an ontology written in RDFS or OWL to a dependency graph, written in
Pajek format. Once the ontology is converted to a Pajek network, it can be visualized
and further processed using Pajek, a network analysis program.7

Fig. 7.7. Screen shot of the partitioning tool with the ontology conversion tab active

This tool uses Sesame, a system for storing and querying data in RDF and
RDFS.[3] The ontology is loaded into a local Sesame repository, after which it can
be easily queried via an API. Because Sesame does not have native OWL support,
some extra programming had to be done to deal with ontologies in this format. This

7 http://vlado.fmf.uni-lj.si/pub/networks/pajek/
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includes explicitly querying for resources of type owl:Class while retrieving all
classes (Sesame only returns resources of type rdfs:Class) and following blank
nodes for determining the definition relations (see below).

To filter out irrelevant resources, the user can specify a number of namespaces
that are to be ignored. They are entered in a text area (see Fig. 7.7). Resources that
occur in those namespaces do not show up in the resulting network. In most cases the
classes and properties defined in RDFS and OWL can be ignored, and by entering
the corresponding namespaces in the text area those resources are prevented from
appearing in the network.

Before converting an ontology, the user has to decide what relations to include in
the network, and if those relations are to be represented by edges (undirected) or arcs
(directed). The tool allows five types of relations to be included: subclass, property,
definition, substring, and string distance relations. The user also has to decide about
the strength of each type. At the moment, only subclass relations that are explicitly
stated in the ontology are included in the network. No reasoners are used to infer
new subclass relations. This will be added in a future version.

A simple but effective feature added in Pato 1.3 is the option to select if the values
of “rdfs:label” or “rdf:ID” are prefered for vertex labels. Now the use of “rdfs:label”
can be turned of by setting “ontology conversion - use labels=false” for ontologies
that use labels for verbose descriptions or other purposes.

7.3.2 Partition Generation and Improvement

The actual creation of the partitions is based on the previously generated dependency
network. It iteratively splits the network into smaller parts until a specified maximum
number of concepts per cluster is reached. Alternatively the occurence of very large
and very small clusters is measured and the iteration stops at the weighted optimum
of these measures.

The actual calculation of the islands is done by an external Windows program
written by Matjaz Zaversnik8. On Unix Systems Pato searches for Wine9 and tries to
use this application for executing the Windows program.

7.3.3 Criteria-Based Optimization

The criteria-based optimization can be performed using build in analysis methods
and/or additional criteria. Currently Pato computes connectedness of modules and
some measures that depend on the size distribution of the modules. Either the par-
titioned graph structure and the final resulting distributed ontology are subject to
analysis.

The relevant criteria are specified in the settings file, with weights indicating their
relative importance. For example “criteria weight - connectedness=3.7” sets the im-
portance of the connectedness-criterion.

8 http://vlado.fmf.uni-lj.si/pub/networks/
9 http://www.winehq.org/
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It can be assumed that different applications may not only impose different
weights for the build-in criteria but also require consideration of new criteria that are
defined by the user. For usage of additional criteria the simple interface “Analyse” is
provided that contains two methods, one for setting the input and one for getting the
result, both represented as instances of java.util.Properties. The new analyse-class
computes the value of one or more new criteria, its “getResult”-methode then re-
turns the criteria name - criteria value pairs as an Properties-instance. The only thing
to do apart from implementing the computation of the new criteria is declaring the
name of the new class in the settings file (e.g. “analyse class=some.package.name.
AnalyseImplementation”). After registration the new class is used automatically
without recompiling Pato.

7.3.4 Visualization of Criteria Dependencies

If lists of parameters are specified for the parameters “maximum island size” and/or
“height threshold”, the corresponding criteria values are additionally stored as ma-
trices. The produced file can be loaded into matlab or scilab for plotting the depen-
dencies between criteria and parameters, Fig. 7.6 was created this way. Furthermore
the matrices can be used for efficient determination of the pareto-optimal10 configu-
ration. Especially when relative importance of criteria is vague it might be necessary
to try different weights, the optimal configurations for all possible weight assign-
ments are the pareto-optimal configurations.

7.3.5 Module Graph Creation

For creating the ontologies overviews like displayed in Fig. 7.8 Pajek is used. Pato
generates a network file (named “...net”) for the graph and a corresponding vector file
(“...vec”) that defines the vertex sizes. The two files are loaded via Pajeks graphical
user interface. Drawing is initiated by selecting “Draw-Vector” from the Draw-menu.
For determination of vertex labels Pajeks centrality calculation is performed on the
dependency graph created by Pato. The resulting vector file is in the settings file as
value of “centrality vector file” prior to the module graph creation.

7.3.6 Comparison and Evaluation

To evaluate the partitioning against some golden standard or against some other par-
titioning, the tool can calculate three similarity measurements: precision, recall and
EdgeSim[9]. The first two measures are based on the numbers of intra-pairs, which
are pairs of concepts that are in the same cluster[1]. The EdgeSim measure considers
both the vertices and the edges and is not sensitive to the size and number of clusters
(as are precision and recall). An intra-edge connects an intra-pair of vertices while
an inter-edge connects vertices from different clusters.

10 A pareto-optimal configuration is a configuration that can not be improved for any criterion
without degrading the value of another criterion.



7 Structure-Based Partitioning of Large Ontologies 201

Precision: The precision of a partitioning is defined as the ratio of intra-pairs in the
generated partitioning that are also intra-pairs in the optimal partitioning.

Recall: The recall of a partitioning is defined by the ratio of intra-pairs in the optimal
partitioning that are also intra-pair in the generated one.

EdgeSim: The EdgeSim measure is defined by the ratio of edges that are either
intra-edges in both partitions or inter-edges in both partitions.

The three measures give an indication of how well the partitioning was performed
and therefore what relations and strengths give best results.

7.4 Application

The main application area for Pato is visualization and identification of the key topics
of an ontology. Visualization devides into the different tasks of visualizing a whole
ontology by identifying modules and partitioning for visualization of single modules.
Considering single modules is also relevant for facilitated reasoning and is related to
module extraction.

7.4.1 Visualization of Large Ontologies

Module Graph

Apart from the resulting OWL-modules, Pato generates networks that can be visual-
ized using Pajek11, a tool for large network analysis. The network shown in Fig. 7.8

Fig. 7.8. The module graphs displays the connections between modules. For each module the
name of the vertex with the highest centrality labels the module.

11 http://vlado.fmf.uni-lj.si/pub/networks/pajek/
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Fig. 7.9. The criteria evaluation for visualization displays the value of −2 ·
abs(numberOfModules − 30) − connectedness

displays each module as a vertex, the size corresponding to the number of terms in
the module. In addition to visualization, we used Pajek for determining the module
labels. In particular, a module is labeled by the vertex with the highest betweenness12,
a centrality measurement defined by [8] for social networks.

For successful visualization of the whole ontology, the number of modules should
be about 30 to provide as much information as can be displayed. Furthermore very
large modules should be avoided. Therefore the criteria weights are set to (-1) for
connectedness and (-2) for abs(numberOfModules-30).

According to this criteria, Pato chooses the configuration13. Figure 7.9 shows the
weighted sum of the criteria values. Dependency weights14 where set directly, they
depend on the type of relations that are to be visualized in the module graph.

7.4.2 Identification of Key Topics

We consider an imaginary optimal partitioning of the ontology. An automatically
generated partitioning is evaluated against this optimal partitioning in terms of recall
and precision.

12 The betweenness of a vertex v ∈ V is the percentage of shortest paths this vertex lies on:
betweenness(v) =

∑
s,t∈V
s �=v �=t

σst(v)
σst

were σst is the number of shortest paths between the

vertices s and t, and σst(v) is the number of shortest paths between s and t that v lies on.
13 Height threshold=0.2, max island size=7000.
14 Strength subclass links=7, strength property links=0.2, strength definition links=3.
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The basic problem of evaluating a partitioning is the fact, that in most cases we
do not have an optimal partitioning to compare to. For these cases, we have to rely
on alternative methods to determine the quality of the partitioning. A possibility
that we will explore is empirical evaluation through user testing. Such an evaluation
requires that the subjects have some knowledge about the domain modeled by the
ontology. Therefore the ontology and the subjects have to be chosen carefully. The
first option is to chose an ontology about a rather general topic (e.g. the transportation
ontology). In this case any student is knowledgable enough to be chosen as a test
subject. The other option is to chose a more specialized model and look for domain
experts. Options here are the use of a computer science specific ontology (eg. the
ACM classification) or a medical ontology. The advantage of the former is that test
subjects are easier available while the time of medical experts is often rather limited.

A basic problem of empirical evaluation is the complexity of the task. Users will
often not be able to oversee the complete ontology and to determine a good partition-
ing for themselves (in fact this is the reason why we need automatic partitioning).
The most basic way of doing empirical evaluation is to directly use the notion of
intra-pairs. As we have seen above, knowing all intra-pairs is sufficient for deter-
mining the quality measures defined above. This means that we can present pairs
of concepts to subjects and ask them whether or not these concepts should be in the
same part of the ontology. A problem of this approach is that the subject is not forced
to be consistent. It might happen, that according to a subject A and B as well as A
and C should be in the same part, but B and C should not. The second problem is
the number of tests necessary to determine a partitioning. In the case of the ACM hi-
erarchy, more that 1,5 Million pairs would have to be tested. In order to avoid these
problems of consistency and scalability of empirical evaluation, we decided to per-
form an evaluation that is not based on concept pairs. The setting of our experiments
is described in the following.

Setting

We used the ACM classification of computer science topics as a basis for performing
an empirical evaluation of our partitioning method. The nature of the ACM hierarchy
allows us to evaluate our method in terms of the number of key concepts identified
when partitioning the model. The idea is that the root of each subtree distinguished
by our partitioning algorithm should denote a unique subfield of computer science.
When partitioning richer ontologies the hierarchy of one part would be a forest and
centrality measures would be a better choice for denoting a subfield. However, for
a partitioned hierarchy the subhierarchies are connected and the root is its superor-
dinate concept. In order to determine such subfields that should be identified by the
method, we analyzed the organization of computer science departments of Dutch
universities with respect to the topics they used to identify subdivisions of their de-
partment. We then manually aligned these topics with the ACM topic hierarchy by
translating the topic found into terms appearing in the ACM topic hierarchy. In cases
where the topic matched more than one ACM terms (e.g. databases and information
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systems) both terms were counted. Terms that do not have a counterpart in the ACM
hierarchy were ignored (e.g. ’mediamatics’).

The test set consisted of 13 Dutch universities. Ten out of these had computer sci-
ence departments. We extracted 85 terms from the corresponding web sites, mostly
names of departments, groups or institutes. We were able to map 77 of these terms
into 42 distinct terms from the ACM hierarchy. We distinguish three subsets of these
42 terms: terms that occur at least once, terms that occur at least twice and terms that
occur at least three times. We can assume that terms that occur more than once to
be important subfields of computer science that we would like to capture in a single
module.

Results

We compared these extracted terms with the root concepts of subtrees of the ACM
hierarchy generated using our partitioning method. We chose to use a setting where
the maximal size of an island is set to 100 and the threshold for merging islands is
0.2. With these settings, the method generated 23 modules. We decided to ignore
three of the root terms:

ACM CS Classification: This is the root of the hierarchy and not a proper term de-
noting a computer science topic

Mathematics of Computation: The subtopics of this will normally be found in math-
ematics rather than computer science departments and were therefore not cov-
ered by our test set.

Hardware: The subtopics of this module will normally be found in electrical engi-
neering rather than computer science departments.

After this normalization, we compared the root terms of the generated modules
given in Table 7.1 with the terms identified on the department web pages and used
overlap to compute the quality of the partitioning in terms of precision and recall of
our method.

From the web pages of Dutch computer science departments, we extracted the 42
ACM terms shown in Table 7.2. The most often occurring term was ’Algorithms’
that described 5 groups, followed by ’Software’ and ’Software Engineering’. Other
frequently appearing topics were ’Robotics, ’Computer Systems’, ’Computer Graph-
ics’, Information Systems’, ’Expert Systems and Applications’ (often referred to as
’Intelligent Systems’), Life Science applications, ’Systems Theory’ and ’Theory of
Computation’.

We can see that there is quite some overlap between the root nodes of the subtrees
determined by our methods and the terms from the test set. The overlap is especially
striking when we only consider the set of terms that occurred more than two times in
the description of groups. Six out of these eleven terms where also determined by our
method. The recall becomes worse when considering terms than only occurred twice
or once. This was expected, however, because there are single research groups on
more specific topics such as distributed databases that are not necessarily regarded
as important subfields by a large majority of people. We included these terms with
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Table 7.1. The method determined 20 terms to represent important subareas of computer sci-
ence. (Apart from the three nodes Mathematics of Computing, ACM CS Classification and
Hardware).

1. Numerical Analysis
2. Image Processing and Computer Vision
3. Management of Computing and Information Systems
4. Computing Milieux
5. Software Engineering
6. Computer Communication Networks
7. Data
8. Information Storage and Retrieval
9. Operating Systems

10. Database Management
11. Computer Systems Organization
12. Information Interfaces and Presentation
13. Software
14. (Mathematics of Computing)
15. Theory of Computation
16. (ACM CS Classification)
17. Information Systems
18. Computer Applications
19. Simulation and Modeling
20. Artificial Intelligence
21. Computer Graphics
22. Computing Methodologies
23. (Hardware)

less support in the test set to evaluate how many of the terms found by our method
are used to describe the topics of groups. It turns out that 12 out of the 20 terms occur
in the test set leading to a maximal precision of 60% for the largest test set. We used
to F-Measure ((2 ∗ (precision ∗ recall))/(precision + recall)) to determine the
overall quality of the results. It turns out that we receive the best results on the set of
terms that occur at least twice. A summary of the results is shown in Table 7.3.

The main observation is that there is a significant overlap between topics that
occur in the name of computer science research groups and the root nodes of the
subtrees determined by our method. We were able to reach a precision of up to 60
percent when considering all terms occurring on the web sites. When only consider-
ing terms that are used more than two times, our method reached a recall of almost
55 percent. This can be considered a very good result as the chance of picking the
most frequently occurring terms from the ACM hierarchy is

(
11

1300

)
(the binomial of

11 over 1300) and we do not have more information than the pure structure of the
concept hierarchy.

This result supports our claim, that the structure of concept hierarchies contains
important information about key concepts that in turn can be used to partition the
hierarchy. Our hypothesis is, that this phenomenon is not random, but that people,
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Table 7.2. ACM terms extracted from web sites of Dutch Computer Science Departments

occurrence ACM term

> 2 Algorithms
Software
Software Engineering
Robotics
Computer Systems Organization
Computer Graphics
Information Systems
Applications And Expert Systems
Life And Medical Sciences
Systems Theory
Theory Of Computation

> 1 User Interfaces
Programming Techniques
Artificial Augmented And Virtual Realities
Artificial Intelligence
Image Processing And Computer Vision
Input/Output And Data Communications
Parallelism And Concurrency
Probability And Statistics

> 0 Computer-Communication Networks
Business
Computing Methodologies
Control Design
Decision Support
Distributed Artificial Intelligence
Distributed Databases
Formal Methods
Games
Information Search And Retrieval
Information Theory
Management Of Computing And Information Systems
Microcomputers
Natural Language Processing
Neural Nets
Numerical Analysis
Physical Sciences And Engineering
Real-Time And Embedded Systems
Security
Signal Processing
Software Development
System Architectures
Systems Analysis And Design
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Table 7.3. Summary of evaluation results

Test Set Precision Recall F-Measure
> 2 30% 6 of 20 54.55% 6 of 11 38.71%
> 1 40% 8 of 20 42.11% 8 of 19 41.03%
> 0 60% 12 of 20 28.57% 12 of 42 38.71%

when creating classification hierarchies are more careful when determining the sub-
classes of important classes. The result is a high number of children that cause our
method to split the hierarchy at this particular point.

7.4.3 Visualization and Reasoning via Module Extraction

Large ontologies often cause problems for reasoning and editing. Furthermore the
time needed for a human to overlook an ontology dramatically increases with its
size. If not the whole ontology but only parts of it are relevant for an application the
straight forward approach to dealing with too large ontologies is to consider only a
part of it.

[5] describes a scenario in which knowledge is selected from online available
ontologies. This knowledge selection procedure was applied to the semantic web
browser plugin Magpie [7]. Magpie requires to automatically select and combine
online available ontologies for identifying and highlighting instances of concepts in
associated colors. Figure 7.10 depicts the sequence of tasks that have to be performed
a detailed desciption of the application can be found in Chap. 3.1.

Fig. 7.10. The knowledge selection process and its use for semantic browsing with Magpie.
Illustration from [6].

The partitioning method adressed in this chapter was applied for step 2, the extrac-
tion of relevant modules from the previously selected ontologies. A comparision of
different extraction methods for this scenario is reported in [6], here we demonstrate
how Pato is applied for the extraction process.

Usually knowledge extraction tools rely on a traversal approach and gather infor-
mation from an ontology starting from a set of relevant terms. Nevertheless, in cases
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where knowledge is extracted repeatedly from the same ontology using a partition-
ing tool may be more efficient. The partitioning can be computed offline, repeated
traversal of the whole ontology is replaced by the less complex selection of modules.

Setting

The scenario described above was simulated by manually extracting relevant key-
words in news stories, using ontology selection tools15. In an example first described
in [11] the keywords Student, Researcher, and University where used to select on-
tologies. Three ontologies covering these terms where obtained:

ISWC: http://annotation.semanticweb.org/iswc/iswc.owl
KA: http://protege.stanford.edu/plugins/owl/owl-library/ka.owl
PORTAL: http://www.aktors.org/ontology/portal

The appropriateness of Patos partitionings for this application is evaluated by two
new criteria. First, the size of the obtained modules should be small with respect to
the original ontology. Second partitioning with all relevant terms in one module are
prefered i.e. the number of modules containing relevant terms should be small.

relativeSize=-40
numberOfRelevantModules3=-1

The former criterion is the relative size of the resulting module compared to the
size of the ontology, the latter criterion was emphazised by an exponent. In this
application the relative importance of the two criteria can not be modelled by linear
weights only because its gradient is not zero. By setting the exponent to 3 we make
sure the rating of a partitioning is more affected by the decreasing the number of
relevant modules from e.g. 3 to 2 than by the decreasement from 2 to 1.

Results

Table 7.4 shows that for ISWC and KA the merging optimization was not necessary
(the height ranges between 0 and 1, so merging modules with heigth 1.1 and larger
means not merging at all). Due to the application requirement of small module size
leftover nodes and small modules are not merged into larger modules. The low height

Table 7.4. Configuration and evaluation for the knowledge extration setting

ISWC KA PORTAL

configuration max island size 40 10 15
height threshold 1.1 1.1 0.2
strength definition links 1 0 0

evaluation relevant modules 1 2 1
relative Size 0.54 0.14 0.27

15 In particular Swoogle (http://swoogle.umbc.ed).
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Fig. 7.11. Relevant modules of ISWC, KA and PORTAL ontologies for the terms researcher,
student, university

threshold for PORTAL is caused by the second criterion. For forcing all terms into one
module more merging was necessary.

7.5 Conclusion

In this chapter we have described a method for structure-based ontology partitioning
that is practically applicable to very large ontologies. The main idea of the algorithm
is translating the structure of the ontology to a weighted graph. This graph is split up
such that the resulting modules are stronger internally connected than externally con-
nected. Finally three optimization steps are performed to improve the partitioning.
Experiments on different ontologies have shown that a modularization based only on
structural properties of the ontology already results in modules that intuitively make
sense. Helpful visualization of large ontologies and extraction of key topics provided
evidence for the appropriateness of the proposed approach.

Because modularizing an ontology essentially is a modeling activity, there is no
“golden standard” to compare our results with. Actually, the notion of a “good” parti-
tioning depends to a large extent on the application that uses the partitioned ontology.
For enabling adaption to different application requirements we designed a parameter-
ized partitioning algorithm. The parameters that determine the resulting partitioning
are set automatically depending on given requirements. Encoding parameter selec-
tion as an optimization problem with respect to relevant quality criteria has been
crucial for implementing automatic parameter selection. This disburdens the user
from thinking about technical details of the algorithm and draws his attention to the
requirements of the application at hand.

In future work we are planning to use our partitioning tool for distributed rea-
soning. The performance of distributed reasoning algorithms depends on additional
properties like the size of the shared language. These requirements will be evaluated
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and implemented in the further development process of Pato. Thus it will be possi-
ble to configure the partitioning process to result in a reasonable trade-off between
reasoning related requirements and maintainability requirements.
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vol. 4248, pp. 96–111. Springer, Heidelberg (2006)

12. Schlicht, A., Stuckenschmidt, H.: Towards Structural Criteria for Ontology Modulariza-
tion. In: Workshop on Modular Ontologies ISWC (2006)

13. Stuckenschmidt, H., Klein, M.: Structure-based partitioning of large concept hierar-
chies. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS,
vol. 3298, pp. 289–303. Springer, Heidelberg (2004)



8

Web Ontology Segmentation:
Extraction, Transformation, Evaluation

Julian Seidenberg

Bio-Health Informatics Group,
University of Manchester, UK
j@deltaflow.com

Summary. In this chapter we present an algorithm for extracting relevant segments out of
large description logic ontologies for the purposes of increasing tractability for both humans
and computers. We offer several variations on this algorithm for different purposes. The seg-
ments are not mere fragments, but stand alone as ontologies in their own right. This technique
takes advantage of the detailed semantics captured within an OWL ontology to produce highly
relevant segments. However, extracted segments make no guarantee for preserving the seman-
tics of the complete ontology.

8.1 Introduction

The research presented in this chapter uses the large and complex GALEN ontology
of medical terms and surgical procedures (produced during the 1990s by the Univer-
sity of Manchester in the OpenGALEN project [34] [30]) as a test platform for such
an ontology segmentation algorithm. Since the complete GALEN ontology was only
available in its own proprietary format, it was converted into an OWL representa-
tion for the purposes of this research. Only small, incomplete versions of GALEN in
OWL have previously been available1.

A basic algorithm for segmentation by traversal is presented and evaluated. This
algorithm is modified to limit the depth of the recursive evaluation. This so-called
boundary-depth limited algorithm minimizes the size of the resulting segments.

The algorithm is further modified by filtering certain property relations. This prop-
erty filtered algorithm increases the tractability of the ontology for classification by
description logic reasoning systems.

The algorithm is also adapted to transform the extracts during segmentation.
Different techniques for creating effects of transitive propagation [29] are applied
while the extracted segments are created. The classification performance of these

1 The complete GALEN in OWL along with a web application that can generate custom
GALEN segments is available online at http://www.co-ode.org/galen

H. Stuckenschmidt et al. (Eds.): Modular Ontologies, LNCS 5445, pp. 211–243, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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different transformed segments is evaluated. This technique shows how transforming
an ontology while segmenting can be used to increase ontology performance [39].

Finally, an overview of various alternative approaches is given, grouping the seg-
mentation techniques into segmentation by query, network partitioning and segmen-
tation by traversal [40].

8.1.1 The Problem of Large Ontologies

Ontologies can add tremendous value to web technologies. As Jim Hendler has
pointed out on numerous occasions “a little semantics goes a long way” [12]. The
knowledge captured in ontologies can be used, among other things, to annotate data,
distinguish between homonyms and polysemy, generalize or specialise concepts,
drive intelligent user interfaces and even infer entirely new (implicit) information.

The ultimate vision for a semantic web is to create a world wide web that com-
puters can understand and navigate. Making this vision a reality will either require
an extremely large ontology that describes every term of interest on the Internet, or,
more realistically, numerous domain-specific ontologies, which, when aligned with
one another, form a web of semantic inter-ontology relations. Either way, the result
is a very large knowledge corpus.

Examples of such enormous ontologies are already starting to appear. For exam-
ple, the biomedical domain has numerous very large ontologies such as SNOMED-
CT [43], GALEN [30], FMA [36] and NCI-Thesaurus [9]. However, these ontologies
have grown too large to effectively used and maintained, often requiring large teams
of highly trained experts [44].

If a truly massive semantic web is going to be of use to anyone, users and appli-
cations will have to find a way to limit their scope. The knowledge web, as a whole,
will be too big and mostly irrelevant for any single task.

8.1.2 Solutions to the Scaling Problem

Google solves the problem of scaling web search by creating partially sorted barrels
of keyword indexes. Searches are distributed over a very large cluster of computers
[5]. A similarly sophisticated distributed system may be feasible for use with the
ontologies of the semantic web. However, ontologies, such as those represented in the
Web Ontology Language (OWL) [22], are significantly more complex data structures
than mere web pages. OWL builds several levels of complexity on top of the XML
of conventional web data [4] [15]. It is likely that large and complex ontologies will
require a novel solution.

We suggest such a solution: instead of attempting to capture the entire semantic
web in a gigantic index, each web application extracts and uses a custom ontology
segment specific to its particular needs. Segments are big enough to be useful, but
not so big that scaling becomes a problem.

The ontology segmantation techniques shown in this chapter exploit the semantic
connections between ontology terms and thereby enable web-application developers
to quickly (or even automatically) create the custom ontologies they require. This is
a first step towards a working application layer on top of a large-scale semantic web.
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8.1.3 Other Applications for Segmentation

Custom ontology segments, as described above, show potential for a wide variety of
use cases. For example:

• Query efficiently could be substantially improved by querying segments instead
of querying the complete ontology network.

• Segments could be used as examples of and discussion points for specific mode-
ling patterns.

• Segments could be captured at specific time points as backup or provenance data.
• Similar segments from different ontologies in the same domain could be used for

comparison and evaluation purposes.
• Segmentation could be used to specify, outline and annotate specific ontology

sub-sections.
• Segments from general purpose ontologies could be transformed on-the-fly

during the extraction process to produce optimal ontologies for a specific
applications.

8.1.4 Scope

The algorithm presented in this chapter is optimized to work with knowledge bases
similar to the GALEN ontology. That is, a large ontology with over 1000 classes and
dense connectivity, with at least, on average, one restriction asserted per concept.

Another pre-requisite for our segmentation methodology is that the ontology be
normalised [31]. Normalisation greatly simplifies ontology maintenance.

Primitive classes in a normalised ontology have no more than one primitive su-
perclass: multiple parents are modeled implicitly and left to be explicitly inferred
later. This is done because a mono-hierarchy is much easier to maintain than a poly-
hierarchy. When using normalisation the reasoner can do the hard work of creating
the poly-hierarchy.

Defined classes have exactly one named class in their definition. This named class
can be viewed as a primitive class’ single superclass and so the segmentation algo-
rithms presented herein can work equally well on both primitive and defined con-
cepts.

GALEN in OWL uses the SHIF subset (without negation or disjunction) of
the full SHOIN (D) expressivity of OWL-DL, so the segmentation is currently
constrained to that. The methodology presented here is not meant to offer a complete
solution with rigorous logical proofs. Instead, we present empirical evidence as to
the effectiveness of our approach.

Most ontologies’ properties are structured as flat lists. GALEN however employs
a rich property hierarchy with over 500 distinct properties. This is especially useful
for producing extracts constrained to specific user and/or application requirements.
Ontologies with simple property structures, such as, for example, the Gene Ontology
[42], will not be able to take advantage of this aspect of the segmentation algorithm
presented herein.

We do not consider instances in our segmentation algorithm.
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8.1.5 Aim: Useful Classification and Small Size

Description logic reasoners such as FaCT++ [47], RACER [11], or Pellet [27] can
be used to infer new information that is implicit in an ontology [19]. This process
is very important, especially for an ontology like GALEN, which was built with
normalisation principles in mind. It is therefore critical that GALEN in OWL can be
classified.

However, none of the above mentioned description logic reasoners based on the
tableaux algorithm are currently able to classify the complete GALEN ontology.
GALEN is too large and complex for these reasoning systems. A primary aim of
this research was therefore to produce classifiable segments. The ideal segment is as
small and focused as possible, while still containing enough information to enable
the reasoner to infer relevant new subsumption relationships. However, as will be
seen later, certain segmentation techniques can result in incomplete classification
results.

8.2 Links in Description Logic

8.2.1 Restrictions as Links

OWL ontologies usually contain large hierarchies of concepts. They also feature the
ability to add restrictions to such concepts. The most common types of restrictions
restrict the individuals that a certain class describes. These restrictions are quantified
by, for example, the existential (∃) or universal (∀) quantifiers. Quantified restrictions
also include a property and filler concept to specify how the members of a class are
restricted.

Restrictions, from one point-of-view, are anonymous classes and can be added
as superclasses of another (named) class. For example: the class MalePerson might
have the restriction in Figure 8.1 asserted as its superclass. This means that all indi-
viduals that the MalePerson class defines must have one or more relations using the
hasGender property to individuals in the class MaleGender. Figure 8.1 illustrates
this relationship.

However, seen from another point-of-view, restrictions represent cross-links be-
tween different classes as shown in Figure 8.2, so that an ontology can be seen as a
large hierarchy of classes linked by restrictions.

In reality, of course, the anonymous qualified restriction superclasses actually re-
strict individuals’ relations to other individuals, but it is useful to think of them sim-
ply as links. We will, from here on, assume this model of ontological topology.

8.2.2 Reciprocal Links

Besides normal forward links, as described above, backward links, or usages, also
known as reciprocal links, are also important in understanding the structure of an
ontology.
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Fig. 8.1. Superclass restriction and the corresponding links between individuals

Fig. 8.2. Interpreting quantified restrictions as links between classes

Even though “isPartOf” and “hasPart”are inverses of each other, the reciprocal
statements in Figure 8.3 are not equivalent; in fact neither implies the other.

GALEN is unusual in that it commonly represents anatomy using reciprocal
pairs of restrictions. This representation is inherently cyclical and connects every
piece of anatomy with every related piece in both directions. Tableaux classifiers
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Finger � ∃ isPartOf . Hand
(all fingers are part of some hand)

Hand � ∃ hasPart . F inger
(all hands have some finger as part)

Fig. 8.3. Example of a reciprocal link

intrinsically scale exponentially when faced with such constructs. None of the cur-
rent tableaux-based reasoners listed in Section 8.1.5 can classify even a small extract
of the GALEN ontology containing both types of reciprocal links present in the orig-
inal. (Note: the original classifier used in GALEN used different principles and did
not suffer from this particular limitation [16].)

The algorithm presented herein therefore takes the approach of taking all recip-
rocals into account, but producing actual segments with only one-way links, using,
for example, only “isPartOf” relations. Some of the new relations may be virtual: i.e.
have only been found by first adding the reciprocals.

Finger � ∃ hasPart . Hand
(all fingers have some hand as part)

Hand � ∃ hasPart . F inger
(all hands have some finger as part)

Fig. 8.4. Example of a symmetric link

It is important to note that these reciprocal links differ from symmetric links. That
statement in Figure 8.4 is a symmetric link, which has a very different meaning to
the example of a reciprocal link given above. Symmetric links do not adversely affect
classification.

8.3 Basic Segmentation Algorithm

The basic segmentation algorithm starts with one or more classes of the user’s choice
and creates an extract based around those and related concepts. These related classes
are identified by following the ontology link structure.

8.3.1 Upwards Traversal of the Hierarchy

Assuming, for example, that a segment of the Heart class is to be produced. The ob-
vious first class to include is the Heart class, the Heart’s superclass (InternalOrgan),
then that class’ superclass and so on, all the way up the hierarchy, until the top (�)
concept is reached. Since this hierarchy is often quite deep (13 superclasses in this
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case) one might consider collapsing the tree by merging several superclasses. Howe-
ver, this destroys some of the semantic accuracy of the ontology. It may be sensible
when constructing an ontology view or perspective, but is not useful for any extract
that is to be used in an application (such as a classifier), since each superclass might
contain critical information.

8.3.2 Downwards Traversal of the Hierarchy

The algorithm also goes down the class hierarchy from the Heart class, including its
subclasses (in this case: UniventricularHeart). This is especially relevant when seg-
menting an ontology that has already been classified where newly inferred subclasses
of a particular class are likely to be of interest.

The property hierarchy is however never traversed downwards. Properties are not
of interest unless they are used in the class hierarchy. So, if they are used, they, their
superproperties and no other properties, are included.

8.3.3 Sibling Classes in the Hierarchy

Sibling classes are not included in the extract. The Heart class’ siblings include
concepts like the Lung, Liver and Kidney. It is reasonable to assume that these are
not relevant enough to be included by default. The user can always explicitly select
them for inclusion, if they are of interest.

8.3.4 Upwards and Downwards and Upwards from Links

Having selected the classes up & down the hierarchy from the target class, their
restrictions, intersection, union and equivalent classes now need to be considered:
intersection and union classes can be broken apart into other types of classes and
processed accordingly. Equivalent classes (defined classes which have another class
or restriction as both their subclass and their superclass) can be included like any
other superclass or restriction, respectively. Restrictions generally have both a type
(property) and a filler (class), both of which need to be included in the segment.

Additionally, the superproperties and superclasses of these newly included proper-
ties and classes also need to be recursively included, otherwise these concepts would
not have a place in the subsumption hierarchy and would all end up as subclasses of
OWL:Thing. That is, without being attached to the hierarchy, concepts are assumed
to simply be subsumed by the top concept (�), leading to a very messy, confusing
and often intuitively incorrect view of the unclassified ontology.

Figure 8.5 gives an illustration of this segmentation algorithm. Starting at the tar-
get of the extract, the algorithm traverses the hierarchy upwards all the way to the
root class. It also traverses it downwards all the way to the leaf classes. Additionally,
any links across the hierarchy from any of the previously traversed classes are fol-
lowed. The hierarchy is traversed upwards (but not downwards) from any of these
classes that the cross-links point to. Links pointing at other classes from these newly
traversed classes are also included. This continues until there are no more links left
to follow.
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Fig. 8.5. Traversal Up & Down and Up from links

8.3.5 But Not Downwards from Upwards Links

Finally, one might also consider including the subclasses of those classes included
via links. However, doing so would result in including the entire ontology. This is
something one definitely wants to avoid when creating an extract.

8.4 Constraining Segment Size

The segmentation algorithm outlined above produces an extract of all concepts re-
lated to the target concept. However, with densely interconnected ontologies, such as
for example GALEN, this new ontology is usually only up to one fifth the size of the
original. A means of further constraining segments is needed.

8.4.1 Property Filtering

If the aim is to produce a segment for use by a human, or specialized application,
then filtering on certain properties is a useful approach.

For example, if a user is not interested in the diseases modeled in GALEN, he or
she can specify to exclude all locative properties. These are properties that specif-
ically link diseases to the locations in the body where they might occur: e.g. “Is-
chaemicCoronaryHeartDisease hasLocation Heart”.

The upper-level meta-properties which it may be logical to include and/or exclude
will be different for each ontology to be segmented. These meta-properties are, in
this case, actual properties, since GALEN groups related properties together under
super-properties. The following meta-properties and their inverses were selected for
course grain property filtering:

• modifierAttribute: properties which can be used to modify a given class such
as “colour” or “status”. These are sometimes also known as “value partitions”
[7]. They are almost always safe to include in an extract, since the class values
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they link to do not themselves link onwards to other classes and therefore will
not significantly increase a segment’s size.

• constructiveAttribute: the super-property of all the following properties.
– locativeAttribute: properties that link diseases to anatomical locations that

they are in some way related to.
– structuralAttribute: properties linking anatomical body structures together

by physical composition.
– partitiveAttribute: properties that link classes based on processes, divisions

and other partitive relations
– functionalAttribute: properties that link classes by action or function.

Note: The various properties could be broken down much more elaborately. Howe-
ver, the point is that organizing properties under any sensible upper-level property
structure will enable some degree of useful property filtering. A more detailed anal-
ysis of the GALEN property hierarchy may be found in [35].

Removing trivially equivalent definitions

Properties are filtered by removing all restriction in which they occur. However, upon
removing such restrictions from defined class, it frequently occurs that a definition
becomes indistinguishable and therefore equivalent to another similar definition. The
resultant long chains of equivalent classes, while not wrong in the context of the fil-
tered ontology segment, are not what was intended in the original base ontology.
They are also difficult to view in ontology editors such as Protégé OWL [18]. Triv-
ially equivalent definitions are therefore transformed into primitive classes by the
segmentation algorithm. These still occupy the correct place in the hierarchy and are
easy for editors to display.

SkinOfFrontalScalp ≡(
SkinOfScalp �

∃ hasSpecificProximity . FrontalBone

)

SkinOfFrontalScalp ≡ SkinOfScalp

SkinOfFrontalScalp � SkinOfScalp

Fig. 8.6. Property filtering with trivial definition removal

As shown in the progression in Figure 8.6, if the filtering process removes the
restriction on a class and this results in a trivial equivalence, then the definition is
converted into a primitive class.

8.4.2 Depth Limiting Using Boundary Classes

Depth limiting is a useful approach for accurately adjusting the size of a segment so
that it can, for example, be classified successfully by automated reasoners.
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A chain of links is followed to create a list of classes to include in an extract.
In doing so, each classes’ restrictions’ filler classes should be included to produce
an extract that retains the structure of the original (see Sections 8.2.1 and 8.3.4).
However, if, upon reaching a certain recursion depth, calculated from the extract’s
target concept, all the links on a class are removed, this class becomes a boundary
class.

Heart � ∃ hasStructuralComponent . Pericardium
Pericardium � SerousMembrane
Pericardium �

∃ isStructuralComponentOf . CardiovascularSystem

Fig. 8.7. Example of a boundary class

For example, one might remove the axiom in Figure 8.7 stating that the Peri-
cardium (the membrane that surrounds the heart) is a component of the Cardiova-
suclarSystem (line three of the Figure), since one may not be interested in including
the CardiovascularSystem and everything related to it in a segment of the Heart. This
creates a boundary class that is still defined in the hierarchy (under SerousMem-
brane) and therefore still makes sense within the ontology, but has an incomplete
definition.

The named superclasses of a boundary class (line two of Figure 8.7) must be in-
cluded in the extract in order to place classes in their proper position in the hierarchy.
These classes would otherwise all be subsumed under the top concept (�). These su-
perclasses are however also boundary classes, unless they are linked to by way of
shorter recursion path along another concept, as shown in Figure 8.8.

The main hierarchy of “is-A” superclass relationships between classes should not
be counted when calculating the traversal depth, since they need to be included in
any case and do not substantially increase the complexity of the segment. Subclass
relations can be ignored completely, since they are not included in the extract in the
first place (see Section 8.3.5). Figure 8.8 illustrates the entire boundary extraction
procedure.

This methodology effectively limits the size of the ontology, since the presence
of a boundary class will cause a link traversal algorithm to terminate. Otherwise,
in the case of a densely interlinked ontology such as GALEN, practically the entire
ontology could be “linked-in”.

Noy and Musen’s ontology extraction research [24], also uses the boundary class
term, but defines it as any class which is in the range of any property that is used in
each restriction on each of the classes which are targeted by the extract. The resulting
list of boundary classes is to function as a reminder to the user of other classes they
might want to include in the view they are constructing. This approach relies on
property ranges being specified in the ontology, which is often not the case and on a
graphical user interface to “prompt” [23] the user. The approach presented here takes
a more automated approach, aiming to produce a heuristic algorithm that creates a
useful segment without much user intervention.
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Fig. 8.8. Boundary extract with depth limited to ‘two’

8.5 Transitive Propagation Transformation

This section describes transitive propagation and different ways it can be approx-
imated in description logic. These different techniques for representing transitive
propagation are then applied as transformations during segmentation process.

8.5.1 Transitivity

A transitive relation is a relation between three elements if it holds between the first
and second and it also holds between the second and third it must necessarily hold
between the first and third [45].

Transitivity is one of the three intrinsic properties of part/whole relations. Winston
calls this “a single sense of part” [49]: if the door is part of the car and the door-handle
is part of the door, then the door-handle is also part of the car. If (A isPartOf B) and
(B isPartOf C) then (A isPartOf C).

8.5.2 Transitive Propagation

However, the above does not necessarily hold true universally. Odell [26] points out
that there are many different kinds of composition. When we say “part of” we often
mean very different things. For example, “Iron isPartOf Car” implies a material-
object relation, i.e. the car object is made of the iron material, while “Car isPartOf
Traffic” implies a member-bunch relation, i.e. the car is a member of the collection
of things which make up the Traffic concept.
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While each specific type of part/whole relation is transitive along relations with
the same semantics, as illustrated in Figure 8.9, this does not necessarily hold true
across different types of relations, as shown in Figure 8.10.

(Piston isPartOf Engine) � (Engine isPartOf Car)→ (Piston isPartOf Car)

Fig. 8.9. Transitive relation because of similar semantics

(Piston isPartOf Car) � (Car isPartOf Traffic) � (Piston isPartOf Traffic)

Fig. 8.10. Non-transitive relation because of different semantics

However, as will be explained in the next section, in some cases, transitive prop-
agation (sometimes also called a role path, or propagates-via) along relations with
different semantics is desireable.

(Note: up to this point we referred to all relations as “partOf” in order to illustrate
transitivity. However, for the purpose of more clearly distinguishing between rela-
tions with different semantics, we will proceed to name them more descriptively.)

8.5.3 Styles of Transitive Propagation

A specific illustrative example will be used throughout this chapter to show the diffe-
rent styles of modelling transitive propagation in OWL. Assuming the knowledge
base in Figure 8.11 is given:

Foot � ∃ isPartOf . Leg
Toe � ∃ isPartOf . F oot
Burn � ∃ isLocatedIn . T oe

LegInjury ≡ ∃ isLocatedIn . Leg

Fig. 8.11. Initial example ontology

The defined class in the last line of Figure 8.11 serves as a query. It should sub-
sume all possible injures to the Leg when the knowledge base is classified. That
is, once all implicit relationships in the ontology are made explicit, and assuming
transitive propagation is properly modeled, then Burn should be subsumed under
LegInjury.

8.5.4 Property Subsumption

One way of simulating transitive propagation is to use the property hierarchy to as-
sert one property as a subproperty of another. For example, if “isLocatedIn propa-
gatesVia isPartOf ”, then “isPartOf subsumes isLocatedIn”, where both isLocatedIn
and isPartOf are transitive properties. This is shown more formally in Figure 8.12.
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r ◦ s �̇ r ⇒ s � r (◦ indicates transitive propagation)
s ∈ R+ (R+ is the set of transitive property names)

Fig. 8.12. Simulating transitive propagation by using the property hierarchy

This method is easy to understand, simple to implement and, as will be shown
later in section 8.7, provides good performance. However, it also has numerous dis-
advantages.

As pointed out by Rector in [31], a tangled ontology is very difficult to maintain.
Tangled ontologies have subsumption hierarchies with more than one superclass per
class. The maintenance difficulty is equally applicable to a hierarchy of properties.
Using property subsumption to simulate transitive propagation in ontologies with
large numbers of properties can therefore quickly lead to an unmaintainable know-
ledge base. In such cases, the information about mutual propagtion among properties
is best kept externally and applied to ontology using a script. JOT [6], for example,
is well suited for this purpose.

Another disadvantage of this method is that its logical meaning is inaccurate. Un-
expected logical inferences are therefore sometimes possible. For example, given
the knowledge bases in Figure 8.11 and the property subsumption method, as out-
lined above (isLocatedIn ◦ isPartOf �̇ isLocatedIn ⇒ isPartOf � isLocatedIn),
the query for LegInjury would result in both Burn and Toe. That is, both concepts
would be inferred as subclasses of LegInjury, since any isPartOf relation is also an
isLocatedIn relation.

Inferring Toe as a subclass of LegInjury is obviously not the intended meaning,
but may be acceptable in some cases. For example, further restricting the query by
adding more information, as shown in Figure 8.13, yields the expected result. The
property subsumption technique for transitive propagation certainly requires careful
analysis and should never be applied blindly.

Burn � Injury
Burn � ∃ isLocatedIn . T oe

LegInjury ≡
(

Injury �
∃ isLocatedIn . Leg

)

Fig. 8.13. Correctly behaving LegInjury query using property subsumption

8.5.5 Classic SEP Triples

Schulz and Hahn introduce the idea of SEP triples [37]. Their idea allows transi-
tivity to be modeled explicitly. That is, SEP triples enable transitive relations to be
expressed in formalisms that do not include transitivity by explicitly distinguishing
between the whole of a concept, parts of a concept and the disjunction of the whole
of a concept and its parts. Details of these triples may be found in [37].

An implementation of classic SEP triples requires extensive modification of the
ontology class hierarchy. Three separate classes need to be introduced for every
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actual concept in the knowledge base. This results in a complex ontology structure
that is difficult to maintain. Furthermore, we do not know of any algorithm for cre-
ating an ontology with SEP triples from a base ontology, given a list of transitively
propagating properties. The performance of classic SEP triples was therefore not
evaluated as part of this research. However, we presume their performance is inferior
to that of the adapted SEP triples methodology (see below), since they do not take
full advantage of OWL.

8.5.6 Adapted SEP Triples

Rector suggests an adapted SEP triples formalism [29] for use in description logics
with transitive properties such as OWL (SHOIN (D)) [15].

Similar to classic SEP triples, this methodology explicitly models transitive prop-
agation in the knowledge base. However, unlike Schulz and Hahn’s original idea,
adapted SEP triples take advantage of OWL’s ability to represent transitive proper-
ties. This removes the need to model transitivity explicitly in the knowledge base and
therefore allows a much cleaner SEP triple-like representation to be created.

Example

isLocatedIn ∈ R (R is the set of all property names)
isPartOf ∈ R+ (R+ is the set of transitive properties)
R+ ⊆ R

LegInjury ≡ ∃ isLocatedIn .

(
Leg �

∃ isPartOf . Leg

)

Fig. 8.14. Adapted SEP triples query

Reusing the example knowledge base from Figure 8.11 above and classifying it to-
gether with the the query in Figure 8.14, results in the the expected inference: Burn
is found to be a subclass of LegInjury.

Figure 8.15 shows how this adapted SEP triples mechanism works:

Toe, Foot and Leg are all concepts that are transitively part of each other, as indi-
cated by the solid, upwards arcing arrows. There is also the Burn concept located in
the Toe. Additionally, the model contains LegInjury, which is the defined class from
Figure 8.14 that captures all things located in the Leg, or any of its parts.

Since isPartOf is a transitive property, the Toe concept is also part of the Leg
concept. Therefore, anything located in the Toe (such as the Burn) matches the se-
cond part of the definition of LegInjury. That is, it is located in something which is
part of the Leg. This results in Burn being inferred as a subclass of LegInjury when
the knowledge base is classified by a description logic reasoner, as indicated by the
dotted, straight, upwards pointing arrow.
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Fig. 8.15. Adapted SEP triples in action

Constraints and assumptions

Since the ontology used in our evaluation (see section 8.7) is normalised [31], only
defined classes lead to inferences of new subsumption relations. Because of this only
these defined classes need to be modified in order to create adapted SEP triples.
However, in arbitrary ontologies SEP triples need to be applied to all classes in order
to achieve a logically complete solution.

Transformations

Figure 8.16 shows the transformations that need to be applied to the defined classes
in a knowledge base in order to create adapted SEP triples.

for: R ◦ S �̇ R (where S is a transitive property)

∃R . C ⇒ ∃R . (C � ∃S . C)

∀R . C ⇒ ∀R . (C � ∃S . C)

∃R−. C ⇒ (∃R−. C) � (∃S−. (∃R−. C))

∀R−. C ⇒ ∀R
−. C

∃S−.� � ∀R−. C

Fig. 8.16. Transformations for creating adapted SEP triples

The last transformation rule requires some explanation: a class transformed in
this way captures all classes that match the basic inverse restriction, while also being
restricted to some other class in the ontology (�) via the secondary property (S),
where that other class must also have the same basic restriction as its superclass.
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Handling multiple transitive propagations

Chains of defined classes require special consideration as the rules in Figure 8.16
must be applied recursively. That is: when one defined class references another de-
fined class, the transformed SEP triple restriction no longer matches the original def-
inition. The original defined class must therefore be transformed to match the newly
transformed definition of the second defined class. Chains of defined classes do not
classify correctly without this additional transformation.

Figure 8.18 gives an example of such a case: suppose we take the ontology from
Figure 8.15 and add a second SEP triple definition. If only the necessary and suf-
ficient condition on the FootComponent class (≡ ∃ isPartOf .(Foot � ∃ isMultipleOf
.Foot)) is asserted, then the link from the FootComponent to the original Foot con-
cept does not hold and the SEP triple inference cannot take effect; i.e. the Burn2

isLocatedIn ∈ R
isPartOf ∈ R+

isMultipleOf ∈ R+

LegInjury ≡ ∃ isLocatedIn .

⎛

⎝
Leg �

∃ isPartOf .

(
Leg �

∃ isMultipleOf . Leg

)
⎞

⎠

Fig. 8.17. New query for adapted SEP triples with chained definitions

Fig. 8.18. Example of multiple transitive propagations
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concept is not classified correctly. However, if an additional transformation is applied
to LegInjury, resulting in the new definition of that class as shown in Figure 8.17, then
the link indicated by the striped curved upwards pointing arrow is captured and the
correct inference results. That is: Burn2 is inferred as being a kind of LegInjury.

It should be noted that these kinds of chained universal restrictions may not need
to be taken into account when creating SEP triples, depending on the ontology in
question. However, some medical ontologies (such as GALEN) contain a substantial
amounts of transitive propagation. A correct implementation is crucial in these cases.

Rector neglects to mention the need for a recursive algorithm when originally
describing adapted SEP triples [29].

Discussion

Advantages of this modelling methodology are that it is logically correct and there-
fore, unlike the property subsumption method, will not produce any unexpected be-
haviour. It can also be applied selectively (unlike the potential implementation in the
SROIQ description logic [14] based on complex property chain inclusion axioms
[17]), so some concepts in an ontology can use transitive propagation, while others
do not.

However, adapted SEP triples (unlike property subsumption) modify concept se-
mantic (though not as drastically as classic SEP triples do) and may therefore be more
difficult for a beginner to comprehend. They also require a somewhat complicated re-
cursive transformation algorithm when dealing with chained transitive propagation.

8.6 Evaluation of Segmentation

The performance of this methodology was evaluated by various statistical measures.
(Tests were carried out on a 2.8 Ghz Pentium 4 with 2.5 GB of RAM running

Racer 1.8.0 on Windows XP service pack 2.)

8.6.1 Segmentation Speed

Figure 8.19 gives a breakdown of how long various aspects of the segmentation pro-
cess take. The first step is loading the target ontology. The next involves an initial
pass over the ontology, scanning for and marking the classes to include in the even-
tual segment extraction process. Extraction constructs a new, self-contained ontology
segment, which is then saved to disk.

As can be seen from the figure, the complete segmentation process takes an av-
erage of one minute to complete. However, most time is spent loading the ontology.
Once the target ontology is in memory, the segmentation itself takes only around six
seconds to complete. It can be observe that segments from large ontologies can be
created with good computational efficiency, though this is, of course, dependent on
the specific implementation of the extraction algorithm.
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Fig. 8.19. Time to compute a segment

Performance is currently not fast enough for real-time user queries. However, the
results show good potential for future optimisations, especially if loading times can
be reduced by streaming segmentation techniques and/or caching. Furthermore, seg-
mentation is not meant to replace querying. Instead, it enables efficient querying of
otherwise intractable ontologies.

8.6.2 Basic Segmentation

The basic segmentation algorithm targeted around the GALEN “Heart” concept pro-
duced the results shown in Table 8.1. As can be seen from the table, the segment
is roughly a quarter the size of the original ontology, with the number of properties
being reduced the least and the number of primitive classes being reduced the most.
A similar pattern can be observed when segmenting using different target classes.

Table 8.1. Basic segment of the Heart concept

original segment size difference

number of classes 23139 5794 25%
primitive classes 13168 2771 21%

defined classes 9971 3023 30%
number of properties 522 380 71%

filesize in KB 22022 5815 26%
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This reduction in size is not enough to enable classification given current mem-
ory and reasoner applications. All current tableaux algorithm-based description logic
reasoner systems face a stack-overflow when attempting to classify the basic extract
of GALEN. The filtering and boundary extraction algorithms do however create clas-
sifiable ontology segments (see Section 8.6.3).

8.6.3 Property Filtering Segmentation Results

A segment was produced by including only properties from each of the main prop-
erty categories identified in Section 8.4.1. Segments using combinations of property
categories were also produced. It was found that the combination of Partitive, Func-
tional and Modifier properties produced the largest ontology that could still be classi-
fied successfully. Statistics for this combination segment are therefore also included
in the tables below.

Table 8.2. Filtering segmentation size results

filter
total defined number of size

classes classes properties in KB

Modifier 99 10 56 63
Functional 129 17 22 57
Structural 357 29 74 258

Partitive 518 175 62 362
Locative 524 131 112 295

Part+Func+Mod 909 285 164 664
Constructive 5567 2954 284 5096

Basic seg. 5794 3023 380 5815
Original 23139 9971 522 22022

Table 8.2 gives an overview of the size of various property filtered segments. As
can be seen from the results, segments could be reduced in size by an average factor
of 20 over the original ontology and by a factor of five over the basic extraction
methodology.

Probe classes

ProbeHeart ≡ ∃ attribute . Heart

Fig. 8.20. Probe class use to test classification performance

The test query (probe class) in Figure 8.20 was introduced into every segmented
ontology to test its classification performance. An approximate measure of the degree
of knowledge present in a segment may be obtained by counting the number of new
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classes inferred as subclasses of the probe. The probe effectively answers the query
“everything related to the Heart” by using the “attribute” property, which is the top-
level property in GALEN.

Classification tests

Table 8.3 shows several classification statistics.

Note: The “new inferences” column only lists new inferences under the probe class.
Many other new subclass relationships are inferred in each segment, but these are not
necessarily relevant to the extract’s target concept and were therefore not counted as
part of this evaluation.

Table 8.3. Basic segment of the Heart concept

filter
defined new speed ms per new inf.
classes inf. in sec def. per def.

Structural 29 1 5 172 0.03
Modifier 10 1 1 100 0.1
Locative 131 30 7 52 0.23

Part+Func+Mod 285 85 22 77 0.30
Partitive 175 58 11 63 0.33

Functional 17 13 2 118 0.76
Constructive 2162 n/a n/a n/a n/a

Discussion

• The segment using all Constructive properties (combination of Structural, Loca-
tive, Functional and Partitive properties) was too large to classify.

• The Functional and Partitive segments produced the most new inferences rela-
tive to their size. This indicates that a majority of the knowledge in GALEN is
covered by these two structures.

• As expected, the Modifier properties do not add very much complexity to a seg-
ment and are therefore almost always safe to include in any segment.

• Structural properties do not play a major role in the ontology, since they do not
add much information.

• Locative properties are of small, but not insignificant consequence to the classifi-
cation. This indicates that complexity of the anatomical model in GALEN is far
greater than the complexity of disease model.

8.6.4 Boundary Class Segmentation Results

Boundary size results

As one might expect, the boundary extraction algorithm produces progressively
smaller segments, in proportion with the boundary cut-off (note: we presume that the
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Fig. 8.21. Boundary depth, boundary classes and segment size

two instances of larger segments resulting from larger boundary depths shown in the
Figure 8.21 is due to the depth-first implementation of the segmentation algorithm.
So, a lesser boundary-depth could result in more of the ontology being selected, as
the algorithm follows a different path through the link structure of the ontology).
However, there seems to be no correlation between the number of boundary classes
created at each cut-off level and the size of the resultant ontology. Figure 8.21 illus-
trates the differences in boundary sizes.

This result indicates that the link structure of the GALEN ontology is very inter-
woven and unpredictable. There seem to be no tight group of boundary classes that
limit a particular extract and therefore also no way to cleanly divide an ontology into
modules. That is, the complex ontological relationships cannot be cleanly divided
into fixed categories. We should therefore expect traditional partitioning methodolo-
gies, such as those discussed in Section 8.8, to be of limited use in this domain.

Boundary classification results

Table 8.4 shows the results of the boundary classification testing. Only boundary
depth “one” could be successfully classified.



232 J. Seidenberg

Table 8.4. Boundary extract classification tests

boundary defined new speed ms per new inf.
depth classes inf. in sec def. per def.

1 279 2 34 121 0.007

Boundary extraction by itself provides a very good means of controlling the size
of an extract, but does not seem to provide much optimization for classification. A
combination of boundary extraction and filtering segmentation allows one to control
both the classifiability and size of a segment. This combination represents the optimal
segmentation strategy.

8.7 Evaluation of Transformation during Segmentation

8.7.1 Test Setup

Classification speed tests were carried out using the RACER 1.8 description logic
reasoning system [11] on a 2.8 Ghz Pentium 4 with 2.5 GB of RAM running Win-
dows XP. All tests were carried out utilizing the maximum memory possible in 32-bit
Java applications running in Windows XP (1.5 GB). The figures quoted are the times
spent in actual reasoning. Data transfer latency is not shown. Tests were run for as
long as necessary. That is, classification failure is reported only if the reasoner appli-
cation crashed while attempting to classify a particular ontology.

8.7.2 Ontology Segment Test Sets

The ontology segmentation algorithm described in in section 8.3 was therefore used
to create a test set of smaller, classifiable segments of the complete GALEN ontology.
This test set consisted of a total of 162 ontology extracts centred around the Heart
concept from the GALEN ontology [32]. Segments were chosen so all the base-case
extracts were tractable.

The GALEN ontology was filtered (using the algorithm described in section 8.4.1)
using four individual meta-properties (locative, structural, partitive, functional) as
well as four combinations of meta-properties (functional + modifier, structural +
modifier, partitive + functional + locative, structural + functional). These property
sets were used to generate a various ontology segments. Additionally, the depth of
the link traversal algorithm was limited in order to produce even more tightly con-
strained versions of these ontologies. Segments were created with maximal depths
for the recursive ontology segmentation algorithm ranging from one to five, as well
as without any depth limit. Finally, different styles of transitive propagation, based
upon rules harvested from the original GALEN ontology, were applied to each ex-
tract (no transitive propagation, property subsumption and adapted SEP triples). This
lead to a total of 144 test ontologies ((4 + 4)× 6× 3 = 144).
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Fig. 8.22. Timing test results
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8.7.3 Test Evaluation

The following observations can be made from the tests shown in Figure 8.22:

• Classification performance for functional properties is similar regardless of the
method used. This is due to the relatively small amount of transitive propagation
in those extracts.

• Extracts transformed to employ SEP triples using locative properties take an or-
der of magnitude longer to classify than those using partitive segments. This is in
spite of the partitive extracts having more actual SEP triples (388 vs. 244 triples
in the case of unlimited extract depth). One can therefore conclude that classi-
fication speed is not directly correlated with the number of triples, but is more
complex of an issue. Indeed, in both cases, the property subsumption technique
performs very well.

• All the structural segments that employ property subsumption transformations
crash the reasoner.

• The slowest classification performance in the test set results from an extract com-
bining the structural and functional properties. Both of these property sets can
be classified individually within about a second. However, the combination per-
forms up to one hundred times slower. A similar pattern can be observed from
the combination of partitive and functional properties.

• Extracts filtered using structural properties are unclassifiable when using the
property subsumption technique. However when functional properties and struc-
tural properties are combined, this combination extract suddenly becomes
tractable. However, classification performance suffers by almost three orders of
magnitude compared to functional properties on their own.

In summary: structual properties scale extremely badly for property subsumption.
Locative properties scale badly for SEP triples. SEP triples performance is slower
than property sumbsumption and far slower than classification without transitive
propagation. In rare cases, adding more information/complexity causes previously
intractable knowledge bases to become classifiable.

8.7.4 Discussion of Transformation Results

The property subsumption method of adding transitive propagation to an ontology
results in a tangled property hierarchy, which can create complex cycles. These cy-
cles can make classification completely intractable. This technique is also logically
inaccurate and can result in incorrect/unintended inferences. However, performance
is only slightly worse than the base-case.

Adapted SEP triples, on the other hand, add a large number of disjunctions in the
knowledge base, thereby increasing the number of possibilities a tableaux reason-
ing system must explore in order to classify the ontology [13]. This can result in
a significant increase in classification time. However, unlike the property subsump-
tion mechanism, the increase in complexity does not result in intractability and is
logically correct.
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8.8 Related Work

8.8.1 Overview

The idea of extracting a subset of a larger ontology is referred to by many different
names by different authors. Research regarding views, segments, extracts, islands,
modules, packages and partitions may be broken down into three main categories:

1. Query-based methods
2. Network partitioning
3. Extraction by traversal

The research presented here falls into category three. These are first suggested in
[40] and further refined in [8].

8.8.2 Query-Based Methods

Many researchers, taking inspiration from the databases field, define ontological
queries in an SQL-like syntax. As illustrated in figure 8.23, these queries can return
sub-ontology segments as their answer-sets.

Fig. 8.23. Segmentation by querying

SparQL

The SPARQL query language [38] defines a simple query mechanism for RDF. Mul-
tiple queries are required in order to extract complex knowledge as, for example, a
class and its transitive closure (all classes related to it). SparQL might be a good
low-level tool for implementing ontology segmentation, but is not a solution in and
of itself.

KAON views

Volz and colleagues define an ontology view mechanism based upon the RQL query
language [48]. They highlight RQL [1] as the only RDF query language that takes
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the semantics of RDF Schema into account. Their view system has the ability to
place each concept in its corresponding place in the complete RDF hierarchy. This
practice, similar to the algorithm presented in Section 8.3, gives a more complete
picture of the structure of a query answer than merely returning the relevant concepts
in isolation. They do not however provide a means of materializing a view, i.e. views
are transient: they are discarded as soon as they have served their purpose.

RVL

Magkanaraki and colleagues present a similar approach to Volz’s, except their sys-
tem also allows queries to reorganize the RDFS hierarchy when creating a view
[21]. This allows views to be customized on-the-fly for specific applications’ require-
ments. They however also side-step the ontology updating problem by only creating
virtual views. Their views are merely a collection of pointers to the actual concepts,
and are discarded after they have served their purpose.

Discussion

Query-based methods provide a view mechanism similar to SQL. This makes them
intuitively familiar to computer scientists with a background in databases. The short-
comings of these approaches are that they provide only very low-level access to the
semantics of the ontology being queried. They also do not address the issue of up-
dating the original ontology when an extract is changed, although they would be a
in unique position to offer such a feature. Query-based views are good for getting
very small, controlled, single-use extracts, which are tightly focused around a few
concepts of interest.

By contrast, the methods presented herein create self-standing, persistent, multi-
use ontology segments. That is, the segments have a life of their own: they can be
transformed, updated, shared, annotated, plugged into applications and otherwise
manipulated in myriad of ways.

8.8.3 Network Partitioning

The basic idea of partitioning comes from Herbert Simon. He asserts that any system
has the property of near-complete decomposability [41]. That is, we can always find
clusters of objects that are more related to each other than to the other objects around
them. How complete a decomposition is possible depends on the nature of the system
in question.

Researchers in networking use algorithms to organize the nodes on a network
into inter-related islands [2]. Some ontology researchers propose applying a similar
methodology to segmenting ontologies (as illustrated by figure 8.24).

An ontology can, from this point of view, be viewed as a network of nodes con-
nected by links. The class hierarchy can be interpreted as a directed acyclic graph
(DAG) and any relations between classes can be represented as links between the
nodes (a simplified model of the paradigm presented in Section 8.2.1).
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Fig. 8.24. Segmentation by partitioning

Structure-based partitioning

Stuckenschmidt and Klein present a method of partitioning the classes hierarchy into
modules [44]. They exploit the structure of the hierarchy and constraints on proper-
ties’ domains and ranges (for example: the “hasGender” property might have a do-
main of “Animal” and a range of “Male or Female”) to iteratively break the ontology
up into dynamically sized modules. This method does not take OWL restrictions,
which can act as additional links between concepts, into account. Instead it relies on
the globally asserted domain & range constraints. However, domains and ranges are
optional and may not therefore be asserted in a given ontology.

Structure-based partitioning is primarily meant for breaking an ontology into
broad packages or modules so that it can be more easily maintained, published and/or
validated. However, this process destroys the original ontology, leaving it decom-
posed into whatever modules the partitioning algorithm deemed appropriate. More-
over, ontologies, particularly those modeled in OWL, tend to be more semantically
rich than a simple network abstraction will capture.

SNARK and Vampire

MacCartney et al. use the same partitioning idea to solve a different problem: they
present a first-order logic theorem prover (SNARK) [20], which decomposes the
knowledge base into self-contained mini-prover partitions, which then communicate
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with each other using message passing techniques. The researchers thereby success-
fully improve the efficiency of their reasoning algorithm when answering queries
over large knowledge bases.

Tsarkov and Horrocks [46] use a similar approach for optimizing the classification
performance of the Vampire first-order logic theorem prover [33] when classifying
description logic ontologies.

8.8.4 Extraction by Traversal

Ontology extraction by traversal (as illustrated by figure 8.25), similar to the network
partitioning approach, also sees the ontology as a networking or graph. However,
instead of decomposing the entire graph into modules, this methodology starts at a
particular node (usually a concept) and follows its links, thereby building up a list of
nodes (concepts) to extract. A key difference is that this leaves the structure of the
original ontology intact: it creates an extract, not a decomposition.

Fig. 8.25. Segmentation by traversal

Extracting Modules from Ontologies

Grau and colleagues [10] present a method for modularizing OWL ontologies into
logically independent modules. Each module contains all the axioms relevant to the
meaning of the concepts in that module. More densely interconnected ontologies
(such as GALEN) result in several very large modules, while simpler ontology struc-
tures produce much smaller modules. This approach does not however allow the user
to constrain module size ( e.g by property filtering or boundary limiting), since mo-
dules are guaranteed to contain all relevant axioms and size constraining techniques
might break this warrant.
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This module extraction approach decomposes ontologies into distinct modules,
yielding, from an external perspectives, structures similar to other network par-
titioning approaches. However, the approach internally uses a more traversal-like
procedure.

PROMPT

Noy and Musen present an extension to the PROMPT suite [23] of ontology main-
tenance tools, which are themselves plug-ins to the Protégé ontology editor [25].
Their extraction methodology [24] focuses on traversal directives, which define how
the ontology links should be traversed. Collections of directives completely and un-
ambiguously define an ontology view and can themselves be stored as an ontology.
They also introduce the concept of boundary classes around the edges of an ex-
tract. However, their view of boundary classes differs from the perspective given in
section 8.4.2.

Noy’s research establishes the mechanics of ontology view extraction, but does
not address how her system might be used to construct relevant, useful and compu-
tationally tractable segments.

MOVE

Bhatt, Wouters and company have a different focus: They present the Materialized
Ontology View Extractor (MOVE) system for distributed sub-ontology extraction
[3]. It is a generic system that can theoretically be adapted to work with any onto-
logy format. The system extracts a sub-ontology based on a user’s labelling of which
ontology terms to include and which to exclude. It also has the ability to optimise an
extract based upon a set of user selectable optimisation schemes. These schemes can
produce either the smallest possible extract, a medium size one, or include as much
detail as possible. These extracts can be further restricted by enforcing a set of addi-
tional constraints. Their system can, for example, enforce the semantic completeness
and well-formedness of an extract [50].

However, the primary focus of Bhatt and Wouters’ architecture is parallel process-
ing. While, their extract system performs very poorly when run on a single machine
(17 minutes to produce an extract from a 5000-concept ontology), it achieves opti-
mum performance using around five separate processors.

We argue that speed is not a critical factor in the extraction process. Perfor-
mance is too poor to facilitate an instant, on-demand extraction web-service, but
not poor enough that it becomes a serious problem. For example, extraction tests on
the GALEN ontology by these authors took in the order of two to five minutes to
complete.

Discussion

Both MOVE and PROMPT produce a materialized view, i.e. a self-standing onto-
logy that has no direct connection with its origin. Both also have the notion of the
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transitive closure of a concept (Wouters et al. call this semantic completeness [50]).
However, neither methodology addresses the important issue of how to update the
main ontology if the view is modified, how to transform the ontology on-the-fly while
extracting, nor do they discuss the ability to classify an extract using description-
logic reasoning systems. Finally, neither systems make use of meta-information
about an ontology’s semantics in determining the best extract. The user must make a
great deal of manual selections and choices for each new extract he or she wishes to
produce.

By contrast, the segmentation algorithms presented herein automates the extrac-
tion process as much as possible by taking advantage of meta-information. Addi-
tionally, these methods have the ability to transform the extracted ontology segments
(see Section 8.4.1).

The key difference between the approach present here and the other approaches is
that we do not aim to create views of one type or another. Instead, we aim to produce
independently useful and usable ontologies.

8.9 Conclusion

Ontologies with over ten-thousand classes suffer severely from scaling problem. Seg-
mentation by traversal is a way of overcoming these difficulties. Developers can
use ontology segmentation techniques to quickly and easily create the relevant, self-
standing custom ontologies they require, instead of having to rely on the initial au-
thors’ decomposition. Developers can also transform segments while they are being
extracted using different ontology design patterns. Ontology segments can be spe-
cialized further by only including links of specific types in the extract (property fil-
tering), limiting the depth of the link traversal algorithm (boundary extraction), or a
combination of both.

The methods presented take advantage of many ontology maintenance princi-
ples: normalisation [31], upper-ontologies [28] and rich property hierarchies [30]
are all taken into account in order to produce more relevant segments that are easy to
transform.

Evaluation has shown that segmenting ontologies can decrease their size consider-
ably and significantly improve their performance. The size of the GALEN ontology
was reduced by a factor of 20. The classification performance of transitive propaga-
tion could be customized to either be very fast when using the property subsumption
approximation, or relatively slow but reliable using adapted SEP triples. Depend-
ing on choice of segment target, filtering technique, boundary limit and ontology
transformation, classification performance could be varied significantly. Classifica-
tion speeds ranged from fractions of seconds to classification failure. All these results
yield useful insights into an ontology’s meta-structure.

A application for generating custom ontology segments is available for free down-
load at: http://www.co-ode.org/galen
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mar, V., Mun, Y., Tan, C.J.K., Gervasi, O. (eds.) ICCSA 2004. LNCS, vol. 3045, pp.
508–517. Springer, Heidelberg (2004)

4. Bray, T.: What is RDF?
http://www.xml.com/pub/a/2001/01/24/rdf.html (January 2001)

5. Brin, S., Page, L.: The anatomy of a large-scale hypertextual Web search engine. Com-
puter Networks and ISDN Systems 30(1–7), 107–117 (1998)

6. Dameron, O.: JOT: a Scripting Environment for Creating and Managing Ontologies. In:
7th International Protégé Conference (2004)
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Summary. One of the original motivations for ontology research was the belief that ontolo-
gies can help with reuse in knowledge representation. However, many of the ontologies that
are developed with reuse in mind, such as standard reference ontologies and controlled termi-
nologies, are extremely large, while the users often need to reuse only a small part of these
resources in their work. Specifying various views of an ontology enables users to limit the set
of concepts that they see. In this chapter, we develop the concept of a Traversal View, a view
where a user specifies the central concept or concepts of interest, the relationships to traverse
to find other concepts to include in the view, and the depth of the traversal. For example, given
a large ontology of anatomy, a user may use a Traversal View to extract a concept of Lung
and organs and organ parts that surround the lung or are contained in the lung. We define
the notion of Traversal Views formally, discuss their properties, present a strategy for main-
taining the view through ontology evolution and describe our tool for defining and extracting
Traversal Views.

9.1 Ontology Views

Ontologies constitute an integral and important part of the Semantic Web. For the
Semantic Web to succeed, developers must create and integrate numerous ontolo-
gies, from general top-level ontologies, to domain-specific and task-specific ones.
One of the original motivations behind ontology research was the belief that ontolo-
gies can help with reuse in knowledge representation [6]. By virtue of being formal
and explicit representations of a domain, ontologies could represent shared domain
descriptions that different applications and agents use. When a person developing a
new application chooses to reuse a published shared ontology of the domain rather
than to create his own model, he gains a number of advantages: not having to rein-
vent the wheel, using an ontology that has already been tested in other applications,
and, perhaps, most important of all, tremendously facilitating the path to information
integration among different applications that use the same ontology.

Currently, there are several efforts to develop standard reusable ontologies in var-
ious domains and to make them available on the Semantic Web: from the generic
upper-level ontology of SUO1 and lexical corpus of WordNet [4] to domain-specific
1 http://suo.ieee.org/
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ontologies such as UMLS [10]. Consider for example the Foundational Model of
Anatomy (FMA)—a declarative representation of anatomy developed at the Univer-
sity of Washington [16]. The ontology represents the result of manual and disciplined
modeling of the structural organization of the human body. While the FMA ontology
is a relatively recent development, many in medical informatics already consider it to
be a tremendous resource that will facilitate sharing of information among applica-
tions that use anatomy knowledge. However, the size and complexity of the ontology
is immense: approximately 70,000 concepts at the time of this writing. As a result,
the project authors often get requests for self-contained portions of the ontology that
describe only specific organs and organ parts.

In general, while providing a shared, tested, and well-accepted vocabulary, many
of the large standard resources pose a formidable challenge to Semantic Web users:
these resources are huge, often containing tens of thousands of concepts. However,
many Semantic Web users need only a small fraction of the resource for their ap-
plication. Currently such a user still needs to make sense of the complete resource,
importing it as a whole, and dragging along this extra “baggage” of concepts, most of
which he is never going to use. In addition to the cognitive challenge of understand-
ing the large resource (or at least figuring out which swaths of it are not relevant and
can be safely ignored), there can be a considerable computational penalty as well if
the user needs to perform reasoning with the whole ontology.

Therefore, users need the ability to extract self-contained portions of ontologies
and to use these portions in their applications. For example, suppose a user is in-
terested in applications related to lung cancer. This user may specify that he needs
a portion of the FMA that contains everything that is directly related to the lung as
well as definitions of all organs and organ parts that surround the lung. The user may
also ask to include organs and organ parts that are “twice removed” from the lung—
related to the lung through one other concept. Or, the user may ask for everything
related to the lung concept—a transitive closure of all relations in which the concept
participates.

The notion of creating a self-contained portion of a resource has long been an
area of research in databases. A database view provides exactly that: users specify
a query that extracts a portion of database instances satisfying the query, creating a
specific view on the data in the database. Similarly, we call a portion of an ontology
an ontology view.

In databases, a view is specified as a query: all instances satisfying the query con-
stitute the view. Current research on ontology views (see Section 9.7) takes a similar
approach: an ontology view is specified as a query in some ontology-query language.
However, this query-based approach does not allow users to specify a portion of an
ontology that results from a particular traversal of ontology links, as in the lung exam-
ple above. Therefore, we suggest a complementary way of defining ontology views:
by traversal specification. In such a specification, we define a starter concept or con-
cepts, the “central” or “focus” concepts in the result, and the details of the relation-
ships to traverse, starting at these concepts. We call such a view a Traversal View.

Another way of defining a view is by defining meta-information in the ontology
itself that describes which parts of the ontology should appear in a particular view.
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This meta-information includes annotation of concepts and relations in the ontology
with information describing the perspectives in which these concepts and relations
should appear, and how the terms should be presented or named in each perspective.
For instance, while the FMA takes a structure-based view of anatomy and is devel-
oped as a general reference model, a radiologist or a surgeon may use different terms
or view some relationships differently. Similarly, an ontology developer may want
to indicate that certain concepts or relations should be displayed only to the users
who identify themselves as experts, while presenting a simpler, trimmed-down view
for novices. Having such meta-information in the ontology enables the generation of
different views and perspectives automatically.

We believe that various types of view definitions—query-based and traversal-
based, views based on meta-information, and perhaps several others—are necessary
to provide full flexibility to Semantic Web users in extracting specific parts of an
ontology. We are developing a suite of tools that provides a convenient interface to
allow users to specify views in different ways, to examine the resulting views, and
to use them in their applications. In this chapter, we focus on Traversal Views, defin-
ing their properties, describing an algorithm for computing them, and presenting our
user-centered tools for specifying and using them.

More specifically, this chapter makes the following contributions:

• defines the approach of specifying ontology views through traversal of concepts
• presents alternative algorithms for finding the results of traversal-view definitions
• identifies properties of Traversal Views
• presents a strategy for maintaining Traversal Views through ontology evolution
• describes a user-oriented tool for specifying Traversal Views

9.2 Specification of Traversal Views

In this work, we mainly consider ontologies expressed in RDF Schema and therefore
consisting of classes, their properties, and instances [19]. However, as we discuss in
Section 9.3, our approach can be easily adapted to ontologies expressed in OWL. In
fact, our implementation, which we describe in Section 9.6, works both with RDFS
and OWL ontologies.

We combine all the properties related to a class or an instance in a concept defi-
nition:

Definition 1 (Concept definition). Given an RDF graphG and an RDF resourceR,
the definition ofR in the graphG,Def(R,G), is a set of RDF triples inG such that:

• any RDF triple with R as a subject is in Def(R,G)
• for any property P such that R is in the domain of P (as defined by rdfs :

domain), any triple with P as a subject is in Def(R,G)

No other triples are in Def(R,G). �

This definition implies for example, that a definition for a class C includes all the
property range statements for all the properties that contain C in their domain. Sim-
ilarly, they include all the triples specifying property values for C.
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Fig. 9.1. An excerpt from the FMA, showing the class Lung and some of its relationships

We can now define the notion of Traversal Views. Traversal Views help users
exploring a new ontology to find its subset that covers a particular “topic.” For in-
stance, one may not be interested in the entire human anatomy, but just in the lung
and the organs that are physically close to it (say, separated from it by at most one
other anatomical structure). Traversal Views enable users to extract a manageable
and self-contained portion of the ontology relevant to their needs, allowing them to
use and extend it for their own purposes.

Intuitively, we specify a Traversal View by specifying a starter concept (e.g.,
Lung), a list of relationships (property names) that should be traversed and the max-
imum distance to traverse along each of the relationships.

Example 1. Consider an excerpt from the FMA ontology presented in Figure 9.1.
This excerpt contains the class Lung, some of its parts, the class it is contained in
(ThoracicCavity), and its parts.2 We can specify a traversal view that starts
at the class Lung and traverses the hasPart relationship for 2 steps and the
containedIn relationship for 1 step. We then compute the view in the follow-
ing way:

1. Lung is included in the view
2. If Lung is in the domain of the property hasPart, then all classes in the

range of this property are also included in the view. We will denote the set of
these classes ChasPart. From the classes in Figure 9.1, at this step, we will add
LungParenchyma and PulmonaryLymphaticTree to the view and to
ChasPart.

3. If Lung was also an instance (RDF Schema does not prevent classes from being
instances as well) and had a value for the property hasPart, those values are
also included in the view. We also add these values to the set ChasPart. The view
now contains the traversal along the hasPart property of depth 1.

2 We do not include all parts of Lung or any related classes for simplicity. In the FMA, all
the classes in Figure 9.1 have many more parts.
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4. We repeat steps 2 and 3 once for each concept in the set ChasPart to add values
for the traversal along the hasPart property of depth 2. In the example, in
Figure 9.1, this step will add the class PulmonaryInterstitium to the
view.

5. We repeat steps 2 and 3 for the class Lung and property containedIn once,
adding values for the traversal along the property containedIn of depth 1.
This step will add the class ThoracicCavity from Figure 9.1 to the view.

As a result of this process, the view will contain all classes in Figure 9.1, except for
Mediastinum. �

We now present a formal definition of a traversal view. The definition consists of
two parts: the view specification (Definitions 2 and 3) and the view computation
(Definitions 4 and 5) .

Definition 2 (Traversal Directive). A traversal directiveD for ontologyO is a pair
〈Cst,PT 〉 where

• Cst is a class or an instance in O (the starter concept of the traversal);
• PT is a set of property directives. Each property directive is a pair 〈P, n〉, where

P is a property in O and n is a nonnegative integer or infinity (inf), which speci-
fies the depth of the traversal along the property P . If n = inf , then the traversal
includes a transitive closure for P starting with Cst. �

In Example 1, we defined a single traversal directive, with Lung playing the role
of the starter concept Cst and two property directives in PT : 〈hasPart, 2〉 and
〈containedIn, 1〉.

Definition 3 (Traversal View Specification). A Traversal View specification T is a
set of traversal directives T D �

The view specification in Example 1 contained only one traversal directive.

Example 2. Suppose that in addition to the concept Lung and its related concepts
from the view in Example 1, we also want to include all parts of the lung in the
view (without limiting the depth of the traversal). We will then include the following
directive into the view specification (in addition to the directives in Example 1):

• Cst = Lung
• PT = {〈hasPart, inf〉}

�

We define the procedure for computing Traversal Views recursively as follows.

Definition 4 (Traversal Directive Result)
Given a traversal directive D = 〈Cst,PT 〉 for an ontology O, a traversal directive
result D(O) (the result of applying directive D to O) is a set of instance and class
definitions (in the sense of Definition 1) from O such that
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1. Cst is in D(O) (the starter concept is in the result)
2. If PT consists of only one property directive Ds = 〈P, n〉 and n > 0, then
• if Cst is a class in the domain of the property P , and a class C ∈ O is in

the range definition for P at Cst, then C is in D(O) and all elements of the
traversal directive result for 〈C, {〈P, n− 1〉}〉 are in D(O)

• if Cst is an instance and it has a value for the property P , and this value is
another class or instance F ∈ O, then F is in D(O) and all elements of the
traversal directive result for 〈F, {〈P, n− 1〉}〉 are in D(O).
If n = inf , then n− 1 = inf .

3. If PT consists of more than one property directive, then for each property di-
rective Ds ∈ PT , then D(O) is a union of the traversal directive results for
〈Cst, {Ds}〉.

No other concepts are in D(O). �

This definition describes the procedure that we followed in finding the view in
Example 1. Intuitively, we separate the property directives for each of the properties,
and compute the traversal separately for that property directive, taking the union of
the results. Note that along with the concept itself, we include its definition in the
view, which includes the property values for the concept, as well as range, cardinal-
ity, and other constraint statements for the properties for which the concept serves as
a domain.

Finally, we define the concept of a traversal view.

Definition 5 (Traversal View). Given an ontology O and a Traversal View specifi-
cation T , consisting of a set of traversal directives T D, a traversal view TV (O, T )
is the union of traversal directive results for each traversal directive D ∈ T D �

In other words, a Traversal View is a subset of an ontology that consists of classes
and instances on the path of the traversal specified in the view.

Note that if the user wants to specify a view that contains the starter concept and
everything that is related to it—the transitive closure of all relations emanating from
the starter concept—he needs to specify all the properties in the ontology and set the
infinite depth of traversal on all of them (The user interface that we describe later
makes this operation easy by having a single “everything related” button.)

9.2.1 Standard Properties

In addition to the domain-specific properties defined in the ontology, traversal direc-
tives can include standard relations such as rdfs:subclassOf, rdf:type, and
so on. In fact, a useful directive could include a starter concept, and some specific
number of levels of its subclasses (or superclasses). To include these standard
ontology relations in the traversal directives, internally, we treat them as properties:
Each class has a propertydirect-subclasses; the values of this property are all
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subclasses of the class. Similarly, there are properties direct-superclasses,
direct-instances, type-of.3 Therefore, these properties can be used in
traversal directives just as all the regular properties.

9.2.2 View Boundary

When we extract a portion of an ontology for the view, we inevitably leave some
of the definitions in the ontology incomplete. For instance, a view may include a
class C1 but not a class C2 which is a range for a property P for C1. Therefore,
the definition of C1 in the view is incomplete. At the same time, we may not be
able to include C2 in the view since it will violate the specific directives in the view
definition.

In this case, we say that the concept C2 in this example is in the boundary of
the view definition: it is referenced by one of the concepts in the view but it is not
itself included in the view. Maintaining the list of concepts in the view boundary
is extremely useful for interactive specification of a view: the user can see which
concepts are missing from the definition of the view and add them to the specification
if necessary.

9.2.3 Traversal Views for Description Logics Formalisms

While we used RDF Schema to define Traversal Views, we can also specify views for
description-logic ontologies, such as ontologies in OWL [3]. Classes and properties
in OWL are similar to classes and properties in RDF Schema. Definitions 2, 3, 5 are
trivially adapted by adjusting terminology.

In the Step 2 of Definition 4 we consider all properties that have the starter con-
cept as part of their domain. There are a number of ways to restrict a property value
in OWL, by using allValuesFrom, someValuesFrom, or hasValue restric-
tions. These restrictions have classes or individuals as their values. More specifically,
we add the following concepts to D(O) in Step 2 of the Definition:

• If an object property P (a property that specifies relations between instances of
classes) has a restriction for Cst, the classes specified in the restriction (whether
for allValuesFrom, someValuesFrom, hasValue) are in D(O)

• If an object property P has Cst in its domain, the classes in the range of P are
in D(O)

• If an object property P has a value for Cst as an individual, that value is in
D(O)

The view designed in such a way has all the same properties that we discuss for
general Traversal Views in the next section.

3 The Protégé ontology-editing environment, which was the platform for our implementation
discussed later, takes exactly this approach.
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9.3 Properties of Traversal Views

We now discuss the properties of Traversal Views that follow from Definitions 2
through 5. We consider compositional properties of single traversal directives and
complete views. We then discuss completeness of our definition and computational
cost of computing the view. Finally we discuss the issue of using Traversal Views to
answer queries.

9.3.1 Composition of Directives and Views

Composition of traversal directives

It is easy to show, based on Definitions 2 and 4, that traversal directives are com-
mutative with respect to composition: the set of concepts in the traversal view does
not depend on the order of traversal directives in the view. Each directive is applied
to the complete source ontology, thus traversal directive results are not affected by
other directives. The result of the view is the union of the results of applying each
directive.

Traversal directives are also distributive. Recall that a traversal directive D con-
sists of a starter concept Cst and a set of property directives. Consider two traversal
directivesD1 andD2 with the same starter conceptCst. It follows from Definition 4
that composition of traversal directives is distributive:

〈Cst,PT 1〉 ⊕ 〈Cst,PT 2〉 = 〈Cst,PT 1 ◦ PT 2〉 (9.1)

Here the composition of the sets of property directives PT 1 and PT 2 is the union
of the directives in each set.

Composition and chaining of Traversal Views

Given an ontology O and two Traversal View specifications T1 and T2, we define
composition of T1 and T2 as applying both T1 and T2 to O and then taking the
union of the result:

T1 ⊕ T2 = TV (O, T1) ∪ TV (O, T2) (9.2)

Composition defined in this way is commutative: the results of applying directives in
one of the traversal views does not depend on the other view, since both are applied
to the complete ontologyO.

Chaining of Traversal Views T1 and T2 is the result of applying T2 to the result
of applying T1 to O:

T1 ◦ T2 = TV (TV (O, T2), T1) (9.3)

Chaining of Traversal Views is not commutative: When the view T2 applied to T1,
the set of concepts in T2 is limited by the concepts that were included in T1. These
concepts may not include some of the concepts that would have been in T2 if it was
applied to all of the ontologyO. In fact, the specification of the view T2 may not even
be a valid view specification since some of the starter concepts in traversal directives
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in T2 may not even be in T1. Thus, Traversal Views are not commutative with respect
to chaining.

9.3.2 Completeness and Complexity

Completeness

Traversal Views are complete in the sense that for any subset of concepts in an onto-
logy there is a (not necessarily unique) Traversal View that defines it. Let {c1, ..., cn}
be a subset of concepts. A Traversal View consisting of a set of traversal directives
{td1, ...tdn} such that tdk = (ck, ∅) defines exactly the set {c1, ..., cn}. In other
words, for each concept in the subset, we create a traversal directive containing that
concept as a starter concept and no property directives.

Computational Properties

Let t be the number of traversal directives in a view definition and n be the number
of concepts in the ontology. Then the running time of computing the Traversal View
isO(t∗n). In other words, if the number of traversal directives in a view is limited by
some constant c, computation of a Traversal View is linear in the size of the ontology.
Indeed, computation of each traversal directive, which simply follows Definition 4,
needs to examine each concept in the ontology exactly once. Suppose a concept
C was examined during iteration i. If C is visited at any subsequent iterations in
computing the same traversal directive, we do not need to compute the traversal
directive 〈C,PT next〉: the depths for all the property directives will be necessarily
less than at iteration i and therefore computing this directive will not add any new
concepts to the view.

9.3.3 Using Traversal Views in Inference

Consider an ontology O and a Traversal View specification T . If the ontology O
is consistent (for example, based on the interpretation of RDF Schema Semantics
[5]), then the Traversal View TV (O, T ) also represents a consistent ontology based
on this semantic interpretation: According to Definition 4, we do not add any new
triples to TV (O, T ) that did not already exist in O. Further, given the fact that the
constructs available in RDF Schema are monotonic, if a set of triples is consistent
according to the RDF Semantics interpretation, then its subset is also consistent.
Therefore, any relation between concepts in the view TV (O, T ) that is entailed by
the view definition, is also entailed by the definitions in the full ontology O.

Note that this property of views is not true in general for Traversal Views for
OWL ontologies. Consider for example the notion of disjointness in OWL. If the
disjointness axiom is not included in the view, we may conclude that two entities
are equivalent that should not be equivalent if disjointness is considered. We are
currently working on identifying a set of syntactic constraints for an OWL ontology
that would allow us to assert that any relation between two entities that is entailed by
TV (O, T ) is also entailed by O.
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9.4 Mixed-Path Traversals

In Example 1 and in the definitions in Section 9.2, we followed “homogeneous” paths
to reach all nodes included in the view: All edges in a single paths were labeled with
the same property.

We can also consider an alternative way of traversing the properties, which allows
“mixed” paths–paths where we allow a traversal along any of the properties specified
in the traversal directive. In this case, we treat the depth of a traversal for a particular
property P as a specification of whether or not we should traverse the property P
when we are n steps away from the starter concept, regardless of which edges we
used to get to this point.

Example 3. Consider the same view specification as in the Example 1:

• Cst = Lung
• PT = {〈hasPart, 2〉, 〈containedIn, 1〉}

For the mixed-path traversal, we will generate the view in the following way:

1. Lung is included in the view
2. If Lung is in the domain of the property hasPart or the property
containedIn, then all classes in the range of these properties are also in-
cluded in the view

3. If Lung was also an instance (RDF Schema does not prevent classes from being
instances as well) and had a value for propertieshasPart and containedIn,
those values are also included in the view

The view resulting from this process contains the traversal along the
hasPart and containedIn properties of depth 1. More specifically, it will
add the following classes from Figure 9.1 to the view: LungParenchyma,
Pulmonary-LymphaticTree, and ThoracicCavity.

We then apply the same procedure to all classes in the resulting view but consider
only the hasPart property to compute the traversal along the hasPart property
of depth 2 (Recall that we requested a traversal of depth 1 along the containedIn
property.) This step will add the classes PulmonaryInterstitium and
Mediastinum to the view.

This view will contain all classes in Figure 9.1, including the class
Mediastinum, which was not included in the view in Example 1, which followed
only homogeneous paths. This class can be reached through the mixed path that
includes both containedIn and hasPart. Intuitively, in this type of traversal,
at each step n, we include everything within n nodes from the concept where we
started as long as it can be reached through any combination of properties that have
a traversal depth of less than n specified for them. �

More formally, we can define the process for computing a traversal directive result
for mixed-path traversals as follows:
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Definition 6 (Mixed-Path Traversal Directive Result)
Given a traversal directive D = 〈Cst,PT 〉 for an ontology O, a traversal directive
result for mixed-path traversal D(O) (the result of applying directive D to O) is a
set of instance and class definitions (in the sense of Definition 1) from O such that

1. Cst is in D(O) (the starter concept is in the result)
2. For each property directive Ds ∈ PT , where Ds = 〈P, n〉, n > 0,
• if Cst is a class in the domain of the property P , and a class C ∈ O is in the

range definition for P at Cst, then C in D(O)
• if Cst is an instance and it has a value for the property P , and this value is

another class or instance F ∈ O, then F is in D(O)
3. PT next is a set of property directives such that for each property directiveDs =
〈P, n〉 in PT , the directive 〈P, n−1〉 is in PT next. If n = inf , then n−1 = inf .
For each class or instance F that was added to D(O) in step 2, the traversal
directive result for a traversal directive DF = 〈F,PT next〉 is in D(O).

No other concepts are in D(O). �

The definition for Traversal View itself (Definition 5) remains unchanged.
We can envision use cases for both types of traversal—homogeneous and mixed-

path traversals. It is easy to show that all the properties of traversal views that we
discussed in Section 9.3 apply to mixed-path traversal views.

9.5 Traversal Views and Ontology Evolution

It is inevitable that ontologies change and users need to work with different ver-
sions of the same ontology. After using Traversal Views to extract a portion of an
ontology, and then getting a new version of this ontology, the user should be able to
determine (1) whether the view definition is still valid for the new version (that is, all
the starter concepts and all the properties explicitly mentioned in the view definition
are present in the new version of the ontology); and (2) whether the subset of the
ontology specified by the view is unchanged.

Noy and Musen [12] have developed the PROMPTDIFF algorithm to compare
different versions of the same ontology. We integrated PROMPTDIFF with Traver-
sal Views to answer the questions above.

Given two versions of an ontology Vold and Vnew , for each concept in Vold,
PROMPTDIFF determines a corresponding concept in Vnew if there is one. (It uses a
set of heuristics to find correspondences for classes and properties that changed their
names or definitions). Using this information we determine whether a view T , which
was defined for Vold, is still valid for Vnew. If for each concept from Vold that is
explicitly used in T as a starter concept or a property name, there is a corresponding
concept in Vnew , then the view is valid. Furthermore, if any of the concepts explicitly
used in T have changed, the user has the option of updating the view T to refer to
the corresponding new concepts.

If the view has been materialized, we can use a similar technique to determine
if the materialized view needs to be updated by examining the view to determine
whether each concept in the view has a corresponding concept in the new version.
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9.6 Implementation

We have implemented Traversal Views as a plugin to the Protégé ontology-
development environment.4 Protégé provides an intuitive graphical user interface for
ontology development, a rich knowledge model, and an extensible architecture that
provides API access both to the Protégé knowledge bases and to its user-interface
components.

Figure 9.2 presents the user interface for Traversal View specification. First, the
user selects a starter concept by browsing the ontology (Figure 9.2A). Then the user
specifies property directives. Specification may simply include checking some of the
built-in relationships, such as subclasses or superclasses (Figure 9.2B). If the user
wants to specify a more detailed directive, he does this through an additional dialog
(Figure 9.2C), specifying the depth of traversal for each property. In addition, the
user can select the “everything” option and set the same depth of traversal for all the
properties in the ontology.

After the user specifies and issues a traversal directive, we materialize the directive
by copying the concepts in the view to the user’s local space. In addition, we save
the traversal directives as instances in an ontology of traversal directives.

When the user saves the results of his work, both the materialized view (the ex-
tracted portion of the source ontology) and the ontology representing the traversal

Fig. 9.2. Specifying and examining Traversal Views. The user chooses the starter concept by
browsing the hierarchy (A), specifies the traversal along the built-in properties (B), brings up
a separate window (C), which lists all the properties in the ontology and built-in properties
(D). The user can examine and edit the defined views through a simple form-based interface
of Protégé (E).

4 http://protege.stanford.edu
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directive (the view definition) are saved. The user then has the option of automati-
cally “replaying” these directives on the source ontology. Another possibility would
be to “mark” concepts from the ontology that belong to the view rather than to ma-
terialize the view.

Using an ontology to store the directive is likely to lower the level of expertise
required from the user to update the directive: In Protégé users browse and edit onto-
logy instances (which is exactly what traversal directives are) through a simple form
interface. To many, editing traversal directives through this interface (Figure 9.2E) is
easier than writing an SQL query. Furthermore, a user can open the ontology with
saved traversal directives in an ontology editor, such as Protégé, and use this simple
interface to change the directives before applying them again.

9.7 Related Work

Our work is complementary to the work of using queries to define ontology views.
Volz and colleagues [17, 18], for instance, define a view language based on the RQL
query language [8]. In this framework, a view represents a new class or property
in the ontology. The authors restrict the RQL queries that can be used in the view
to ensure that the view returns only unary or binary relations (classes or properties
respectively).

In theory, query-based approaches to defining ontology views are equivalent to our
traversal-based approach in terms of their completeness: Just as we showed that any
subset of an ontology can be produced by a combination of trivial traversal directives,
we can show that any subset of an ontology can be produced by a combination of
trivial queries. However, depending on what the user needs in the view and what
information he can specify about the view result, a query-based or a traversal-based
approach may be more appropriate.

Magkanaraki and colleagues [11] take the approach of defining query-based views
further. In their RVL language, which also uses RQL for querying ontologies, the
authors propose mechanisms for restructuring the original class and property hierar-
chies, allowing the creation of new resources, property values, classes, or properties.
Therefore, a view definition includes not only the query itself, but also a set of state-
ments that define these new structures, linking them to the query results. We can take
a similar approach with Traversal Views, allowing the users to rename or reorganize
the concepts in the view.

XML query languages, such as XQuery [2] are also based on traversing structures.
There are, however, important differences between languages such as XQuery and
Traversal Views: In XQuery, the traversal is aimed at collecting the data themselves
rather than the schema and at presenting the data in the result according to a particular
structure specified in the query. Traversal Views are aimed at traversing and collecting
the schema elements themselves in the result.

Researchers in the Process Interchange Format (PIF) Project have introduced the
notion of Partially Shared Views as a way of allowing different groups to extend a
shared standard [9]. A Partially Specified View includes of the type hierarchy and
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templates, which are similar to concept definition. In this sense, Partially Specified
Views are reminiscent of Traversal Views: they include definitions of concepts them-
selves rather that their instantiations.

The early work on traversing hypertext graphs also addressed the issue of speci-
fying queries and views using traversal, in this case, traversal of hypergraphs. In the
Gram system [1] , for instance, the authors implemented an SQL-based query lan-
guage where the FROM clause contained a regular expression specifying a traversal.
Unlike the traversals in our work, in hypertext, the results of the query where docu-
ments themselves rather than the schema. However, the traversal specification using
regular expressions allowed specifying constraints on the traversal. For instance, one
could traverse only the nodes that satisfied a particular set of conditions. Adding
such more powerful traversal-specification mechanism for Traversal Views would be
a useful extension.

A combination of views as a mechanism for extracting ontology subsets and
mechanisms that allow for renaming or slight reorganization of concepts in the
view is crucial to encouraging ontology reuse. This reuse, in turn, can facilitate the
problem of integrating ontologies. Orbst [14] suggests creating application views of
ontologies as a means of enabling applications to use standard well-developed on-
tologies. This approach combines views or “perspectives” with mappings between
concepts in the view and in the application. The task of creating the mappings be-
comes much easier if the ontology to map to is smaller and contains only the con-
cepts that are relevant to the application. Ontology views as means for extracting
self-contained subsets of standard ontologies can help in this task.

9.8 Summary and Open Issues

We have presented Traversal Views as a way of defining an ontology view. In a
Traversal View, a user specifies a subset of an ontology to include in the view by
specifying starter concepts to include, the links to follow from those concepts. This
mechanism enables users to extract self-contained portions of an ontology related to
a particular concept or a set of concepts (such as all parts and components of the
Lung).

Database researchers have done a lot of work on using views directly to answer
queries [7]. Since database views are themselves queries, this area of research centers
on reformulating the user’s query to express it in terms of existing views. While
Traversal Views do not map to queries directly, whether we can use their definitions
directly in answering (perhaps a restricted set of) queries is an open research issue.

Traversal Views enable users to extract classes and instances to include in the
view, thus simplifying the original ontology for them. However, these classes and
instances can have definitions that are themselves very complex. The next step would
be to allow pruning the definitions, hiding some of the parts or presenting some of
the parts differently, based on the user’s perspective.

We limited a concept definition for a concept C to RDF triples where C is the
subject and to ranges of properties where C is a domain. This definition can be
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generalized to include a wider “neighborhood” of the concept C in an RDF graph.
For example, it can include an anonymous closure of an RDF graph [15], which is
computed by following graph edges, from subject to object of statements, until an
anonymous RDF resource or RDF Literal is found. This extension will include, for
example, all members of an RDF collection of values for a property of C in the
concept definition of C. This, and similar, extensions to a concept definition, effect
what a Traversal View ultimately includes.

A similar issue is the treatment of transitive properties for languages such as
OWL. Suppose a Traversal View includes a traversal directive with a starter concept
Cst and a property directive 〈P, 1〉, where P is a transitive property. If we issue a
query for all concepts X such that P (Cst, X), looking for all the concepts directly
related to Cst through property P , we will get all concepts in the transitive closure of
Cst with respect to P , rendering the depth of traversal meaningless. One possibility
to handle limited traversal of transitive properties is to distinguish between explicit
and inferred triples in the ontology definition.

As part of future work, we plan to perform user studies to evaluate different ap-
proaches to these issues to determine which ones provide Traversal Views that cor-
respond most closely to users’ intuition, and whether users find homogeneous or
mixed-paths traversals more useful and more practical.

Finally, we would like to link query-based views, Traversal Views and other types
of view-definition techniques in a unified framework to enable users to combine the
different means of defining ontology views. Furthermore, we consider definition and
manipulation of ontology views to be part of the general framework for ontology
management. We have developed a suite of tools—PROMPT [13]—that supports var-
ious tasks in ontology management, such as comparing ontologies, merging them
together, maintaining and comparing different versions, and so on. For example, the
users can compare or merge views of different ontologies, find diffs between diffe-
rent versions of a view, integrate two views into a single ontology.
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Introduction to Part III

Another valid view on modularity is ontologies that differs from the one taken in
part II of the book is the idea that modules are not created by splitting up a large
ontology into smaller parts but by composing a number of small ontologies that have
been created independently of each other into a larger model. In this scenario that
was investigated in more detail in chapter 4 the original ontologies become modules
in a large modular ontology. The advantage of this scenario is not easier maintenance
and analysis of the overall system - in fact integrating different ontologies normally
makes both more complicated compared to the individual models. The rationale for
this approach is the benefit of being able to reuse knowledge that has been created
by other people as well as the Data that might be associated with the ontologies to be
integrated. This scenario is much closer to the original vision of the semantic web,
where information sources describe their information using ontologies and informa-
tion is found and reused by linking it on the level of ontologies thus creating a system
of interlinked ontologies in which information can be interpreted in a uniform way.

There are several problems that have to be solved to out this vision to work: first of
all, correspondences between different ontologies have to be identified manually or
automatically. This process is normally referred to as ontology alignment. Once such
correspondences have been found, there is a need for a way to formally represent and
reason over these correspondences. As different ontologies often take contradicting
views and use terms in different ways, corresponding formalisms have to be robust
against problems that might arise from these differences. Finally, in order to be able
to use information in such a network of ontologies across the whole system, methods
have to be developed that use the formalized versions of the correspondences to
retrieve information from different sources. In this part of the book, we focus on
formalisms for representing correspondences between different ontologies acting as
modules in such a system. The process of finding correspondences between elements
in different ontologies is covered in detail in a recent book by Euzenat and Shvaiko.
The retrieval of Information in a system of distributed ontologies has been discussed
by different researchers, mostly in connection with Ontology-based P2P and Multi-
agent system.

Being a central idea of the semantic web, the representation of links between diffe-
rent ontologies has already been designed into the Web Ontology Language OWL.
In the definition of the language, links to other ontologies are established by using
names of classes, properties or instances that are defined in other ontologies as parts
of the local definitions. In addition to this, it is possible to explicitly import other
ontologies for the purpose of using the definitions contained therein. It has been ar-
gued that the semantics defined for these ways of referring to other ontologies is not
suitable for many applications. In particular it has been criticized that OWL takes
an all or nothing attitude towards reusing definitions from other ontologies. More
specifically, elements from other ontologies that are just mentioned in local defini-
tions loose their associated meaning that might be defined in the other ontology and
are just treated as new names without any further meaning. Importing an ontology,
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on the other hand has the same effect as copying all the definitions from the ex-
ternal ontologies into the local model without the possibility to leave out or alter
definitions. As a result of this criticism a number of different formalisms have been
proposed that try to overcome these problems by using non-standard semantics for
import and links between ontologies. As it is nicely described in chapter 4 people
tend to have very different ideas and intentions when importing knowledge from an
external source, therefore, there cannot be a single formalism that perfectly matches
every situation and different approaches have different strengthes and weaknesses.

Chapter 10 provides a comparison of different existing formalisms with the goal
of understanding their differences and commonalities. The approach taken is to en-
code the approaches considered in a common formalism powerful enough to repre-
sent all the approaches. Distributed first-oder logic, an extension of first-order logic
with a local model semantics provides such a language. The authors show that the
approaches under consideration do not only make different assumptions about the
nature of the relation between the information contained in different ontologies, but
also that these assumptions are not compatible with each other thus supporting the
claim made above that different applications need different formalisms. In the second
part of the chapter, the authors describe a meta-model based approach for recording
the requirements of a representation problem as a basis for selecting the appropriate
formalism.

Chapter 11 presents an approach for linking ontologies that is based on the theory
of ε-connections that have their origin in multi-dimensional logic. The underlying
idea of this approach is to connect different ontologies that describe different as-
pects of a domain by special domain relations that establish a connection between
these aspects. A typical example would be the are of medicine where one ontology
could describe diseases and another one drugs. The links between classes in these
two ontologies could be established by the ’treats’ relation which is assigned a diffe-
rent meaning than an ordinary domain relation. It has been shown that this way of
connecting ontologies by domain relations has theoretical advantages, in particular
concerning the complexity of reasoning. The paper describes the formal foundations
of the approach as well as the implementation of a specialized reasoner for linked
ontologies.

Distributed Description Logics, presented in chapter 12 target a different situation
in which the ontologies to be linked do not describe different aspects of a domain
but the same aspects of the domain, possibly from different points of view. In this
scenario, being able to deal with inconsistent definitions is of specific importance
as they naturally appear when ontologies take different points of view. The solution
offered by distributed description logics is based on earlier work on context-logics
and allows the user to define subsumption- and equivalence relations between classes
and instances in different ontologies to indicate overlap in these models which is not
foreseen in the ε-connections model although it has been shown that theoretically dis-
tributed description logic is a special case of ε-connections where only one type of
link exists between a pair of ontologies which is interpreted as the subsumption rela-
tion. In the chapter Serafini and Tamilin present the theory of distributed description
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logics and present DRAGO, a distributed reasoning system for we inferring sub-
sumption relations across ontologies.

Distributed description logics have been criticized for their rather weak interpre-
tation of subsumption relations that prevents some seemingly intuitive deductions
across to be made. This weak semantics has been introduced to deal with the prob-
lem of inconsistent views in mind but also has some unwanted aspects such as the
non-transitivity of the subsumption relation across ontologies that makes distributed
description logic unsuited for modelling typical import relations between ontologies.
Chapter 13 presents an approach that modifies the description logic semantics in such
a way, that the typical properties of the subsumption relation such as the transitivity
is retained. This is achieved by requiring a one-to-one relation between objects in
the different ontologies that are linked. In this final chapter Bao and others intro-
duce this approach called Package-Based Description logics focussing on the formal
properties of the approach.

October 2008 Heiner Stuckenschmidt
Christine Parent

Stefano Spaccapietra
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Summary. The compositional approach where several existing ontologies are connected to
form a large modular ontology relies on the representation of mappings between elements
in the different participating ontologies. A number of languages have been proposed for this
purpose that extend existing logical languages for ontologies in a non-standard way. In this
chapter, we compare different proposals for such extensions on a formal level and show that
these approaches exhibit fundamental differences with respect to the assumptions underlying
their semantics. In order to support application developers to select the right mapping language
for a given situation, we propose a mapping metamodel that allows us to encode the formal
differences on the conceptual level and facilitates the selection of an appropriate formalism
on the basis of a formalism-independent specification of semantic relations between different
ontologies by means of a graphical modelling language.

10.1 Motivation

The compositional approach to modular ontologies relies on appropriate definitions
of interfaces between different modules to be connected. In an ideal case, these in-
terfaces are defined at design time when modules are created in a modular fashion.
In reality, we are faced with a situation where no interfaces are defined and relevant
connections between ontologies have to be discovered and represented at composi-
tion time. There are two main lines of research addressing this problem. The first line
is concerned with the development of methods for identifying semantic relations be-
tween elements in different ontologies. The second line of research is concerned with
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formalisms for encoding and using semantic relations (mappings) between ontolo-
gies. These formalisms are often based on non-standard extensions of the logics used
to encode the ontologies. Examples of such mapping formalisms are [3, 7, 6, 14]. In
this chapter we compare these approaches and show that they are mostly orthogonal
in terms of assumptions made about the right interpretation of mapping relations.
This means that the approaches cover a large variety of possible interpretations of
semantic relations, but it also means that they are incompatible with each other and
that the choice of a particular formalism is an important decision with significant in-
fluence on remaining options for interpreting and using mappings. Further, making
the right decision with respect to a mapping formalism requires in depth knowledge
of the corresponding logics and the hidden assumptions made as well as the specific
needs of the application.

In order to make an informed decision about which mapping formalism to use,
this decision should be made as late as possible in the modeling process because it
is often not possible to decide whether a given mapping formalism is suitable for
specifying all relevant connections. Therefore, mappings should first be specified on
a purely informal level by just marking parts of the ontologies that are somehow se-
mantically related. In a next step, the kind of semantic relation that exists between the
elements should be specified. In order to support this process, we need a formalism-
independent format for specifying mappings. On the other hand, we have to make
sure that concrete mapping representations can be derived automatically from this
model in order to support the implementation and use of the mappings. In order
to meet these requirements, we propose a metamodel based approach to specifying
ontology mappings independent from the concrete mapping formalism. In particu-
lar, we propose a Meta Object Facility-based metamodel for describing mappings
between OWL DL ontologies as well as a UML profile that defines a graphical for-
mat for mapping modeling. When building the metamodel there is a natural tradeoff
between coverage and precision of the metamodel: We focus on approaches that
connect description logic based ontologies where mappings are specified in terms
of logical axioms. This allows us to be more precise with respect to the nature and
properties of mappings. At the same time, we cover a number of relevant mapping
approaches that have been developed that satisfy these requirements, including the
approaches mentioned in [19]. Further, the restriction to description logics allows us
to use previous work on a meta-modeling approach for OWL DL [5] as a starting
point.

10.1.1 Related Work and Contributions

There is some related work on meta-modeling and formalism independent mode-
ling of mappings between conceptual models. Omelayenko introduces a model for
specifying relations between heterogeneous RDF schema models for the purpose of
data transformation in e-commerce [18]. The idea is to construct a separate RDF
model that defines the relations in terms of so-called bridges. These bridges are ac-
companied by transformations that execute the translation. Maedche and others [17]
describe an approach that is similar to the one of Omelayenko. They also define
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‘bridges’ between elements of the different models and add transformation descrip-
tions. As in the work of Omelayenko, the semantics of the bridges is only specified
in terms of an RDF schema. The mapping ontology by Crubézy and colleagues [8]
defines the structure of specific mappings and the transformation functions to trans-
fer instances from one ontology to another. This ontology can then be used by tools
to perform the transformations. The ontology provides different ways of linking con-
cepts from the source ontology to the target ontology, transformation rules to specify
how values should be changed, and conditions and effects of such rules. Our work
extends and improves these approaches with respect to various aspects:

• Our approach addresses state of the art standards in the area of ontology technol-
ogy, in particular OWL and rule extensions.

• Our approach is based on a sound formal foundation in terms of an encoding of
different mapping formalisms in distributed first-order logic.

• We base our meta-modeling on widely used standards in the area of model-driven
architectures, in particular MOF and UML.

• Our approach was designed to be able to cover most existing proposals for formal
mapping approaches

• Our approach includes new insights about hidden assumptions of ontology map-
ping formalisms and can therefore more easily be linked to different formalisms
for the sake of implementing modeled mappings.

10.1.2 Outline

We start our investigation with an informal discussion of several aspects of mapping
languages including the kind of semantic relations supported, the kinds of ontology
elements connected and some assumption underlying the semantics of different map-
ping formalisms in 10.2. In sections 10.3 and 10.4 we compare a number of mapping
languages on a more formal level. For this purpose, we first introduce distributed first
order logic as a unifying framework for encoding different mapping languages in sec-
tion 10.3. In section 10.4, we encode different mapping language in distributed first
order logic. The encoding shows that differences between mapping languages can be
expressed in terms of types of axioms used to connect elements in two ontologies
and basic assumptions about the relation of the domains under consideration that can
be expressed in terms of a set of axioms in Distributed First Order Logic (DFOL). As
these results are of purely theoretical interest so far, sections 10.5 and 10.6 are de-
voted to the problem of providing practical support for the selection of an appropriate
mapping formalism. In particular, we propose a metamodel for ontology mappings
based on an existing metamodel for OWL ontologies that captures differences and
commonalities between different mapping languages on a conceptual level and can
be refined to model a particular mapping language by adding constraints to the gen-
eral model. Section 10.6 presents a graphical modelling language that is based on the
metamodel. The language supports the representation of mappings independent of a
specific formalism. We close with a discussion of the approach and topics for future
work.
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10.2 Ontology Mapping Formalisms

In contrast to the area of ontology languages where the Web Ontology Language
OWL has become a de facto standard for representing and using ontologies, there
is no agreement yet on the nature and the right formalism for defining mappings
between ontologies. In a recent discussion on the nature of ontology mappings, some
general aspects of mapping approaches have been identified [20]. We briefly discuss
these aspects in the following and clarify our view on mappings that is reflected in
the proposed metamodel with respect to these aspects.

What do mappings define ?

In this paper, we restrict our attention to declarative mapping specifications. In par-
ticular, we see mappings as axioms that define a semantic relation between elements
in different ontologies. Most common are the following kinds of semantic relations:

Equivalence (≡) Equivalence states that the connected elements represent the same
aspect of the real world according to some equivalence criteria. A strong form
of equivalence is equality, if the connected elements represent exactly the same
object.

Containment (�,$) Containment states that the element in one ontology represents
a more specific aspect of the world than the element in the other ontology. De-
pending on which of the elements is more specific, the containment relation is
defined in the one or in the other direction.

Overlap (o) Overlap states that the connected elements represent different aspects of
the world, but have an overlap in some respect. In particular, it states that some
objects described by the element in the one ontology may also be described by
the connected element in the other ontology.

In some approaches, these relations are supplemented by their negative counterparts.
The corresponding relations can be used to describe that two elements are not equiv-
alent ( �≡), not contained in each other ( ��) or not overlapping or disjoint respectively
( � o). Adding these negative versions of the relations leaves us with eight semantic
relations to cover all existing proposals for mapping languages.

In addition to the type of semantic relation, an important distinction is whether the
mappings are to be interpreted as extensional or as intensional relationships: In ex-
tensional mapping definitions, the semantic relations are interpreted as set-relations
between the sets of objects represented by elements in the ontologies. In the case of
intensional mappings, the semantic relations relate the elements directly, i.e. consid-
ering the properties of the element itself.

What are the formal properties of mappings ?

It is normally assumed that mappings preserve the ‘meaning’ of the two models in the
sense that the semantic relation between the intended interpretations of connected el-
ements is the one specified in the mapping. A problem with this assumption is that it
is virtually impossible to verify this property. Instead, there are a number of verifiable
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formal properties that mappings can be required to satisfy. Examples of such formal
properties are the satisfiability of the overall model, the preservation of possible in-
ferences or the preservation of answers to queries. Often, such properties can only be
stated relative to a given application context, such as a set of queries to be answered
or a set of tasks to be solved. The question of what is preserved by a mapping is
tightly connected to the hidden assumptions made by different mapping formalisms.
A number of important assumptions that influence this aspect have been identified
and formalized in [19]. The assumptions identified in the referred paper are:

• The naming of instances (are instances with the same name assumed to denote
the same object?)

• The way inconsistency affects the overall system (does an inconsistency in one
ontology also cause the mapped ontologies to become inconsistent)

• The assumptions about the relationships between the mapped domains (where
with the global domain assumption both ontologies describe exactly the same set
of objects, while with the local domain assumption the sets of objects may also
be completely disjoint or overlap each other)

In [19] it has been shown that the differences between existing proposals of mapping
languages for description logics can completely be described in terms of the kinds of
semantic relations than can be defined and the assumptions mentioned above. This
means that including these aspects in the metamodel ensures that we can model all
currently existing mapping approaches and that we are able to distinguish them based
on specifications that instantiate the metamodel.

Other assumptions made by approaches concerns the use of unique names for
objects - this assumption is often made in the area of database integration - and
the preservation of inconsistencies across mapped ontologies. In order to make an
informed choice about which formalism to use, these assumptions have to be repre-
sented by the modeler and therefore need to be part of the proposed metamodel.

What do mappings connect ?

In the context of this work, we decided to focus on mappings between ontolo-
gies represented in OWL DL. This restriction makes it much easier to deal with
this aspect of ontology mappings as we can refer to the corresponding metamodel
for OWL DL specified in [5]. In particular, the metamodel contains the class
OntologyElement, that represents an arbitrary part of an ontology specification.
While this already covers many of the existing mapping approaches, there are a num-
ber of proposals for mapping languages that rely on the idea of view-based mappings
and use semantic relations between queries to connect models, which leads to a con-
siderably increased expressiveness.

How are mappings organized ?

The final question is how mappings are organized. They can either be part of a
given model or be specified independently. In the latter case, the question is how
to distinguish between mappings and other elements in the models. Mappings can be
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uni- or bidirectional. Further, it has to be defined whether a set of mappings is norma-
tive or whether it is possible to have different sets of mappings according to different
applications, viewpoints or different matchers. In this work, we use a mapping archi-
tecture that has the greatest level of generality in the sense that other architectures can
be simulated. In particular, a mapping is a set of mapping assertions that consist of
a semantic relation between elements in different ontologies. Further mappings are
first-class objects that exist independently of the ontologies. Mappings are directed
and there can be more than one mapping between two ontologies. These choices
allow considerable freedom for defining and using mappings. Approaches that see
mappings as parts of an ontology can be represented by the ontology and a single
mapping. If only one mapping is defined between two ontologies, this can be seen
as normative, and bi-directional mappings can be described in terms of two directed
mappings.

10.3 Distributed First-Order Logic

This section introduces distributed first order logic as a basis for modeling distributed
knowledge bases. More details about the language including a sound and complete
calculus can be found in [12].

Let {Li}i∈I (in the following {Li}) be a family of first order languages with
equality defined over a non empty set I of indexes. Each language Li is the language
used by the i-th knowledge base (ontology). The signature of Li is extended with
a new set of symbols used to denote objects which are related with other objects in
different ontologies. For each variable, and each index j ∈ I with j �= i we have
two new symbols x→j and xj→, called arrow variables. Terms and formulas of Li,
also called i-terms and i-formulas and are defined in the usual way. Quantification on
arrow variables is not permitted. The notation φ(x) is used to denote the formula φ
and the fact that the free variables of φ are x = {x1, . . . , xn}. In order to distinguish
occurrences of terms and formulas in different languages we label them with their
index. The expression φ : i denotes the formula φ of the i-th knowledge base.

The semantics of DFOL is an extension of Local Models Semantics defined
in [10]. Local models are defined in terms of first order models. To capture the fact
that certain predicates are completely known by the i-th sub-system we select a sub-
language of Li containing the equality predicate, denoted as Lc

i we call the complete
fragment of Li. Complete terms and complete formulas are terms and formula of Lc

i

and vice versa.

Definition 1 (Set of local Models). A set of local models of Li are a set of first order
interpretations of Li, on a domain domi, which agree on the interpretation of Lc

i ,
the complete fragment of Li. �

As noted in [9] there is a foundational difference between approaches that use epis-
temic states and approaches that use a classical model theoretic semantics. The two
approaches differ as long as there is more than one model m. Using the notion of
complete sublanguage Lc, however, we can force the set of local models to be either
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a singleton or the empty set by enforcing that Lc = L. Under this assumption the two
ways of defining the semantics of submodels are equivalent. Using this assumption,
we are therefore able to simulate both kinds of semantics in DFOL.

Two or more models can carry information about the same portion of the world. In
this case we say that they semantically overlap. Overlapping is unrelated to the fact
that the same constant appears in two languages, as from the local semantics we have
that the interpretation of a constant c in Li is independent from the interpretation
of the very same constant in Lj , with i �= j. Overlapping is also unrelated to the
intersection between the interpretation domains of two or more contexts. Namely
if dom1 ∩ dom2 �= ∅ it does not mean that L1 and Lj overlap. Instead, DFOL
explicitly represent semantic overlapping via a domain relation.

Definition 2 (Domain relation). A domain relation from domi and domj is a bi-
nary relations rij ⊆ domi × domj . �

Domain relation from i to j represents the capability of the j-th sub-system to repre-
sent in its domain the domain of the i-th subsystem. A pair 〈d, d′〉 being in rij means
that, from the point of view of j, d in domi is the representation of d′ in domj .
We use the functional notation rij(d) to denote the set {d′ ∈ domj | 〈d, d′〉 ∈ rij}.
The domain relation rij formalizes j’s subjective point of view on the relation be-
tween domi and domj and not an absolute objective point of view. Or in other
words rij �= rji because of the non-symmetrical nature of mappings. Therefore
〈d, d′〉 ∈ rij must not be read as if d and d′ were the same object in a domain shared
by i and j. This facts would indeed be formalized by some observer which is external
(above, meta) to both i and j. Using the notion of domain relation we can define the
notion of a model for a set of local models.

Definition 3 (DFOL Model). A DFOL model, M is a pair 〈{Mi}, {rij}〉 where,
for each i �= j ∈ I: Mi is a set of local models for Li, and rij is a domain relation
from domi to domj . �

We extend the classical notion of assignment (e.g., the one given for first order logic)
to deal with arrow variables using domain relations. In particular, an assignment a,
provides for each system i, an interpretation for all the variable, and for some (by not
necessarily all) arrow variables as the domain relations might be such that there is no
consistent way to assign arrow variables. For instance if ai(x) = d and rij(d) = ∅,
then aj cannot assign anything to xi→.

Definition 4 (Assignment). Let M = 〈{Mi}, {rij}〉 be a model for {Li}. An as-
signment a is a family {ai} of partial functions from the set of variables and arrow
variables to domi, such that:

1. ai(x) ∈ domi;
2. ai(xj→) ∈ rji(aj(x));
3. aj(x) ∈ rij(ai(x→j));

An assignment a is admissible for a formula φ : i if ai assigns all the arrow variables
occurring in φ. Furthermore, a is admissible for a set of formulas Γ if it is admissible



274 S. Brockmans et al.

for any φ : j ∈ Γ . An assignment a is strictly admissible for a set of formulas Γ if it
is admissible for Γ and assigns only the arrow variables that occurs in Γ . �

Using the notion of an admissible assignment given above, satisfiability in distributed
first order logic is defined as follows:

Definition 5 (Satisfiability). Let M = 〈{Mi}, {rij}〉 be a model for {Li}, m ∈
Mi, and a an assignment. An i-formula φ is satisfied by m, w.r.t, a, in symbols
m |=D φ[a] if

1. a is admissible for φ : i and
2. m |= φ[ai], according to the definition of satisfiability for first order logic.

M |= Γ [a] if for all φ : i ∈ Γ and m ∈ Mi, m |=D φ[ai]1. �

Mappings between different knowledge bases are formalized in DFOL by a new form
of constraints that involves more than one knowledge bases. These formulas that will
be the basis for describing different mapping approaches are called interpretation
constraints and defined as follows:

Definition 6 (Interpretation constraint). An interpretation constraint from
i1, . . . , in to i with ik �= i for 1 ≤ k ≤ n is an expression of the form

φ1 : i1, . . . , φn : in → φ : i (10.1)

�

The interpretation constraint (10.1) can be consider as an axiom that restrict the set
of possible DFOL models to those which satisfies it. Therefore we need to define
when a DFOL model satisfies an interpretation constraint.

Definition 7 (Satisfiability of interpretation constraints). A modelM satisfies the
interpretation constraint (10.1), in symbolsM |= φ1 : i1, . . . , φn : in → φ : i if for
any assignment a strictly admissible for {φ1 : i1, . . . , φn : in}, if M |= φk : ik[a]
for 1 ≤ k ≤ n, then a can be extended to an assignment a′ admissible for φ : i and
such thatM |= φ : i[a′]. �

Notice that, depending on the fact that an arrow variable x→ occurs on the left or
on the right side of the constraint, x→ has a universal or an existential reading. Fig-
ure 10.1 summarizes the different possible readings that will reoccur later. Notation-
ally for any predicate P , ||P ||i =

⋂
m∈Mi

m(P ), where m(P ) is the interpretation
of P in m.

By means of interpretation constraints on equality, we can formalize possible re-
lations between heterogeneous domains.

1 Since it will be clear from the context, in the rest we will use the classical satisfiability
symbol |= instead of |=D and we will write m |= φ[a] to mean that an i-formula φ is
satisfied by m. In writing m |= φ[a] we always mean that of a is admissible for φ : i (in
addition to the fact that m classically satisfies φ under the assignment a).
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a)M |= i : P (x→j)→ j : Q(x) iff For all d ∈ ||P ||i and for all d′ ∈ rij(d), d′ ∈
||Q||j

b)M |= i : P (x)→ j : Q(xi→) iff For all d ∈ ||P ||i there is a d′ ∈ rij(d), s.t.,
d′ ∈ ||Q||j

c)M |= j : Q(xi→)→ i : P (x) iff For all d ∈ ||Q||j and for all d′

with d ∈ rij(d
′), d′ ∈ ||P ||i

d)M |= j : Q(x)→ i : P (x→j) iff For all d ∈ ||Q||i there is a d′ with d ∈ rij(d
′),

s.t., d′ ∈ ||P ||i

Fig. 10.1. Implicit Quantification of Arrow Variables in Interpretation Constraints

Fij =
{
x→j = y→j : i→ x = y : j

}

INVij =
{
x = yj→ : i→ xi→ = y : j
x = yi→ : j → xj→ = y : i

}

ODij = Fij ∪ Fji ∪ INVij

EDij = ODij ∪ {x = x : i→ xi→ = xi→ : j}
IDij = EDij ∪ EDji

RDij =
{
x = c : i→ xi→ = c : j
x = c : j → xj→ = c : i

∣
∣
∣
∣ c ∈ Li ∩ Lj

}

IPij = ⊥ : i→ ⊥ : j

Proposition 1. LetM be a DFOL model and i �= j ∈ I .

1. M |= Fij iff rij is a partial function.
2. M |= INVij iff rij is the inverse of rji.
3. M |= ODij if rij(= r−1

ji ) is an isomorphism between a subset of domi and a
subset of domj . I.e., domi and domj (isomorphically) overlap.

4. M |= EDij iff rij(= r−1
ji ) is an isomorphism between domi and a subset of

domj . I.e., domi is (isomorphically) embedded in domj

5. M |= IDij iff rij(= r−1
ji ) is an isomorphism between domi and domj . I.e.,

domi is isomorphic to domj .
6. M |= RD, if for every constant c of Li and Lj , if c is interpreted in d for all
m ∈ Mi then c is interpreted in rij(d) for all models of m ∈ Mj , and vice-
versa. I.e., the constant c is rigidly interpreted by i and j in two corresponding
objects.

7. Finally M |= IPij iff Mi = ∅ implies that Mj = ∅. I.e., inconsistency propa-
gates from i to j.

10.4 Modeling Mapping Languages in DFOL

Mapping languages formalisms are based on four main parameters: local languages
and local semantics used to specify the local knowledge, and mapping languages
and semantics for mappings, used to specify the semantic relations between the local
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knowledge. In this section we focus on the second pair and as far as local languages
and local semantics it is enough to notice that:

Local languages. In all approaches local knowledge is expressed by a suitable frag-
ment of first order languages.

Local semantics. With the notable exception of [9], where authors propose an epis-
temic approach to information integration, all the other formalisms for ontology
mapping assume that each local knowledge is interpreted in a (partial) state of the
world and not into an epistemic state. This formally corresponds to the fact that
each local knowledge base is associated with at most one FOL interpretation.

The first assumption is naturally captured in DFOL, by simply considering Li to
be an adequately restricted FOL language. As far as the local semantics, in DFOL
models each Li is associates with a set of interpretations. To simulate the single
local model assumption, in DFOL it is enough to declare each Li to be a complete
language. This implies that all the m ∈ Mi have to agree on the interpretation of
Li-symbols.

Notationally, φ, ψ, . . . will be used to denote both DL expressions and FOL open
formulas. If φ is a DL concept, φ(x) (or φ(x1, . . . , xn)) will denote the correspon-
ding translation of φ in FOL as described in [1]. If φ is a roleR then φ(x, y) denotes
its translation P (x, y), and if φ is a constant c, then φ(x) denote its translation x = c.
Finally we use x to denote a set x1, . . . , xn of variables.

10.4.1 Distributed Description Logics/C-OWL

The approach presented in [2] extends DL with a local model semantics similar to the
one introduced above and so-called bridge rules to define semantic relations between
different T-Boxes. A distributed interpretation for DDL on a family of DL language
{Li}, is a family {Ii} of interpretations, one for each Li plus a family {rij}i�=j∈I of
domain relations. While the original proposal only considered subsumption between
concept expressions, the model was extended to a set of five semantic relations dis-
cussed below. The Semantics of the five semantic relations defined in C-OWL is the
following:

Definition 8 ([4]). Let φ and ψ be either concepts, or individuals, or roles of the
descriptive languages Li and Lj respectively2.

1. I |= φ : i
�−→ ψ : j if rij(φIi) ⊆ ψIj ;

2. I |= φ : i
�−→ ψ : j if rij(φIi) ⊇ ψIj ;

3. I |= φ : i ≡−→ ψ : j if rij(φIi) = ψIj ;

4. I |= φ : i ⊥−→ ψ : j if rij(φIi) ∩ ψIj = ∅;
5. I |= φ : i ∗−→ ψ : j if rij(φIi) ∩ ψIj �= ∅;

2 In this definition, to be more homogeneous, we consider the interpretations of individuals
to be sets containing a single object rather than the object itself.
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An interpretation for a context space is a model for it if all the bridge rules are
satisfied. �

From the above satisfiability condition one can see that the mapping φ : i ≡−→ ψ : j
is equivalent to the conjunction of the mappings φ : i

�−→ ψ : j and φ : i
�−→

ψ : j. The mapping φ : i ⊥−→ ψ : j is equivalent to φ : i
�−→ ¬ψ : j. And

finally the mapping φ : i ∗−→ ψ : j is the negation of the mapping φ : i
�−→

ψ : j. Therefore for the translation we will consider only the primitive mappings.
As the underlying notion of a model is the same as for DFOL, we can directly try
to translate bridge rules into interpretation constraints. In particular, there are no
additional assumptions about the nature of the domains that have to be modeled. The
translation is the following:

C-OWL DFOL

φ : i �−→ ψ : j φ(x→j) : i→ ψ(x) : j

φ : i �−→ ψ : j ψ(x) : j → φ(x→j) : i

φ : i ��−→ ψ : j No translation

We see that a bridge rule basically corresponds to the interpretation a) and d) in
Figure 10.1. The different semantic relations correspond to the usual reads of impli-

cations. Finally negative information about mappings (i.e., φ : i ��−→ ψ : j) is not
representable by means of DFOL interpretation constraints.

10.4.2 Ontology Integration Framework (OIS)

Calvanese and colleagues in [7] propose a framework for mappings between on-
tologies that generalizes existing work on view-based schema integration [22] and
subsumes other approaches on connecting DL models with rules. In particular, they
distinguish global centric, local centric and the combined approach. Differences be-
tween these approaches are in the types of expressions connected by mappings. With
respect to the semantics of mappings, they are the same and are therefore treated as
one.

OIS assumes the existence of a global model g into which all local models s are
mapped. On the semantic level, the domains of the local models are assumed to
be embedded in a global domain. Further, in OIS constants are assumed to rigidly
designate the same objects across domain. Finally, global inconsistency is assumed,
in the sense that the inconsistency of a local knowledge makes the whole system
inconsistent. As shown in Proposition 1, we can capture these assumptions by the
set of interpretation constraints EDsg , RDsg , and IPsg , where s is the index of any
source ontology and g the index of the global ontology.
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According to these assumptions mappings are described in terms of correspon-
dences between a local and the global model. The interpretation of these correspon-
dences are defined as follows:

Definition 9 ([7]). Correspondences between source ontologies and global ontology
are of the following three forms

1. I satisfies 〈φ, ψ, sound〉 w.r.t. the local interpretation D, if all the tuples satisfy-
ing ψ in D satisfy φ in I

2. 〈φ, ψ, complete〉 w.r.t. the local interpretation D, if no tuple other than those
satisfying ψ in D satisfies φ in I,

3. 〈φ, ψ, exact〉 w.r.t. the local interpretation D, if the set of tuples that satisfies ψ
in D is exactly the set of tuples satisfying φ in I.

�

From the above semantic conditions, 〈φ, ψ, exact〉 is equivalent to the conjunction
of 〈φ, ψ, sound〉 and 〈φ, ψ, complete〉. It is therefore enough to provide the trans-
lation of the first two correspondences. The definitions 1 and 2 above can directly
be expressed into interpretation constraints (compare Figure 10.1) resulting in the
following translation:

GLAV Correspondence DFOL
〈φ, ψ, sound〉 ψ(x) : s→ φ(xs→) : g
〈φ, ψ, complete〉 φ(x) : g → ψ(x→g) : s

The translation shows that there is a fundamental difference in the way mappings are
interpreted in C-OWL and in OIS. While C-OWL mappings correspond to a univer-
sally quantified reading (Figure 1 a), OIS mappings have an existentially quantified
readings (Figure 1 b/d). We will come back to this difference later.

10.4.3 DL for Information Integration (DLII)

A slightly different approach to the integration of different DL models is described in
[6]. This approach assumes a partial overlap between the domains of the models Mi

and Mj rather than a complete embedding of them in a global domain. This is cap-
tured by the interpretation constraint ODij . The other assumptions (rigid designators
and global inconsistency) are the same as for OIS.

An interpretation I associates to each Mi a domain Δi. These different models
are connected by inter-schema assertions. Satisfiability of interschema assertions is
defined as follows:3

Definition 10 (Satisfiability of interschema assertions). If I is an interpretation
for Mi and Mj we say that I satisfies the interschema assertion

3 To simplify the definition we introduce the notation �I
nij = �I

ni ∩ �I
nj for any n ≥ 1.

Notice that �I
nij = Δn

i ∩Δn
j .
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φ �ext ψ, if φI ⊆ ψI φ ��ext ψ, if φI �⊆ ψI

φ ≡ext ψ, if φI = ψI φ �≡ext ψ, if φI �= ψI

φ �int ψ, if φI ∩ �I
nij ⊆ ψI ∩ �I

nij

φ ≡int ψ, if φI ∩ �I
nij = ψI ∩ �I

nij

φ ��int ψ, if φI ∩ �I
nij �⊆ ψI ∩ �I

nij

φ �≡int ψ, if φI ∩ �I
nij �= ψI ∩ �I

nij
�

As before ≡est and ≡int are definable as conjunctions of �est and �int, so we can
ignore them for the DFOL translation. Furthermore, a distinction is made between
extensional and intentional interpretation of inter-schema assertions, which leads to
different translations into DFOL.

inter-schema assertions DFOL
φ �ext ψ φ(x) : i→ ψ(xi→) : j
φ ��ext ψ, φ �≡ext ψ No translation
φ �int ψ φ(x→j) : i→ ψ(x) : j
φ ��int ψ, φ �≡int ψ No translation

While the extensional interpretation corresponds to the semantics of mappings in
OIS, the intentional interpretation corresponds to the semantics of mappings in C-
OWL. Thus using the distinction made in this approach we get an explanation of
different conceptualizations underlying the semantics of C-OWL and OIS that use
an extensional and an intentional interpretation, respectively.

10.4.4 E-Connections

A different approach for defining relations between DL knowledge bases has
emerged from the investigation of so-called E-connections between abstract descrip-
tion systems [16]. Originally intended to extend the decidability of DL models by
partitioning it into a set of models that use a weaker logic, the approach has recently
been proposed as a framework for defining mappings between ontologies [13].

In the E-connections framework, for every pair of ontologies ij there is a set Eij of
links, which represents binary relations between the domain of the i-th ontology and
the domain of the j-th ontology. Links from i to j can be used to define i concepts,
in a way that is analogous to how roles are used to define concepts. In the following
table we report the syntax and the semantics of i-concepts definition based on links.
(E denotes a link from i to j and C denotes a concept in j). The only assumption
about the relation between domains is global inconsistency (see above).

In DFOL we have only one single relation between from i to j, while in E-
connection there are many possible relation. However, we can use a similar tech-
nique as used in [2] to map relations on inter-schema relations: each of the relation
in Eij acts as a rij . To represent E-connection it is therefore enough to label each

arrow variable with the proper link name. The arrow variable x
Own−→ j is read as the

arrow variable x→i where rij is intended to be the interpretation of Ownij . With this
syntactic extension of DFOL concepts definitions based on links (denoted as E) can
be codified in DFOL as follows:
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E-connections DFOL

φ � ∃E.ψ φ(x) : i→ ψ(xi
E−→) : j

φ � ∀E.ψ φ(x
E−→j) : i→ ψ(x) : j

φ �≥ nE.ψ
∧n

k=1 φ(x1) : i→
∧n

k �=h=1 ψ(xi
E−→

k ) ∧ xk �= xh : j

φ �≤ nE.ψ φ(x) ∧
∧n+1

k=1 x = x
E−→j

k : i→
∨n+1

k=1

(
ψ(xk) ⊃

∨
h �=k xh = xk

)
: j

We see that like OIS, links in the E-connections framework have an extensional
interpretation. The fact, that the framework distinguishes between different types
of domain relations, however, makes it different from all other approaches.

Another difference to the previous approaches is that new links can be defined
on the bases of existing links similar to complex roles in DL. Syntax and seman-
tics for link constructors is defined in the usual way: (E−)I =

(
EI)−1

(Inverse),

(E � F )I = EI ∩ F I (Conjunction), (E � F )I = EI ∪ F I (Disjunction), and
(¬E)I = (Δi ×Δj) \ EI (Complement). Notice that, by means of inverse link we
can define mapping of the b and d type. E.g., the e-connection statement φ � ∃E−ψ,
encodes corresponds to the DFOL bridge rules i : φ(x) → j : ψ(xi→) which is of
type b). Similarly the e-connection φ � ∀E−ψ corresponds to a mapping of type d).

As the distinctions between different types of links is only made on the model
theoretic level, it is not possible to model Boolean combinations of links. Inverse
links, however, can be represented by the following axiom:

y = x
E−→j : i→ y

E−
−→i = x : j

y
E−
−→i = x : j → y = x

E−→j : i

Finally the inclusion axioms between links, i.e., axioms of the formE � F whereE
and F are homogeneous links, i.e., links of the same Eij , can be translated in DFOL
as follows:

x = y
E−→j : i→ xi

F−→ = y : j

We can say that the E-connections framework significantly differs from the other
approaches in terms of the possibilities to define and combine mappings of different
types.

10.4.5 Summary

The encoding of different mapping approaches in a common framework has two
immediate advantages. The first one is the ability to reason across the different
frameworks. This can be done on the basis of the DFOL translation of the diffe-
rent approaches using the sound and complete calculus for DFOL [11]. As there
are not always complete translations, this approach does not cover all aspects of the
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different approaches, but as shown above, we can capture the most aspects. There
are only two aspects which cannot be represented in DFOL, namely “non mappings”
(φ : i ∗−→ ψ : j in C-OWL, φ ��int ψ etc. in DLII) and “complex mappings” such
as complex links in E-connection. The second benefit is the possibility to compare
the expressiveness of the approaches. We have several dimensions along which the
framework can differ:

Arity of mapped items4 C-OWL allows only to align constants, concepts and roles
(2-arity relations), E-connection allows to align only 1-arity items, i.e., concepts,
while DLII and OIS allow to integrate n-arity items.

Positive/negative mappings Most approaches state positive facts about mapping, e.g.
that two elements are equivalent. The DLII and C-OWL frameworks also allow
to state that two elements do not map (φ �≡ ψ).

Domain relations The approaches make different assumptions about the nature of
the domain. While C-OWL and E-connections do not assume any relation be-
tween the domains, DLII assumes overlapping domains and OIS local domains
that are embedded in a global domain.

Multiple mappings Only E-connection approach supports form the definition of
different types of mappings between ontologies that partition the inter-domain
relations.

Local inconsistency Some approaches provide a consistent semantics also in the
case in which some of the ontologies or mappings are inconsistent.

We summarize the comparison in the following table.

Int. constr. (cf. fig. 10.1) Mapping type Domain Arity Local
a) b) c) d) Pos. Neg. Mult. relation ⊥

C-OWL × × × × Het. 2 ×
OIS × × × Incl. n
DLII × × × × Emb. n
E-Conn. × × × × × × × Het. 1

We conclude that existing approaches make choices along a number of dimen-
sions. These choices are obviously influenced by the intended use. Approaches in-
tended for database integration for example will support the mapping of n-ary items
that correspond to tuples in the relational model. Despite this fact, almost no work
has been done on charting the landscape of choices to be made when designing a
mapping approach and for adapting the approach to the requirement of the appli-
cation. The work reported in this paper provides the basis for this kind of work by
identifying the possible choices on a formal level. An important topic of future work
is to identify possible combinations of features for mapping languages on a for-
mal level in order to get a more complete picture of the design space of mapping
languages.

4 Due to limited space we did not discuss the encoding of mapped items in this paper.
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10.5 Conceptual Comparison of Mapping Languages

As we have shown in the previous section, the differences between mapping lan-
guages can be described in terms of a fixed set of features including the kinds of
semantic mappings and assumptions about the relation between the domains of in-
terest. Other features are the kinds of language elements that can be connected by
mappings. We can use these features to lift the comparison of different mapping lan-
guages from the formal to the conceptual level. For this purpose, we define a general
metamodel of ontology mappings that defines structural aspects of the different for-
malisms and also includes attributes for defining the formal aspects that have been
identified as distinguishing features of different languages.

10.5.1 A Metamodel for OWL DL Ontologies

We now review our previous work on a metamodel for OWL DL. Figure 10.2 shows
the central part of the OWL DL metamodel. Among others, it shows that every el-
ement of an ontology is a subclass of the class OntologyElement and hence a
member of an Ontology. The diagram of Figure 10.2 is the main part of the OWL
DL metamodel but does by far not represent it fully. The metamodel is, just like OWL
DL itself, a lot more extensive. Additionally, the metamodel is augmented with con-
straints, expressed in the Object Constraint Language ([23]), specifying invariants
that have to be fulfilled by all models that instantiate the metamodel. However, for
lack of space, we refer to [5] for a full specification. The metamodel for OWL DL
ontologies ([5]) has a one-to-one mapping to the abstract syntax of OWL DL and
thereby to its formal semantics. Our metamodel is built based on a similar approach
as in [15], although the two metamodels have some fundamental differences.

Further, we have defined a metamodel for rule extensions of OWL DL. For the
details, we refer the reader to [5]. In our mapping metamodel, we reuse parts of the
rule metamodel, as we explain in detail in Section 10.5.2.

10.5.2 Extending the Metamodel with Mappings

We propose a formalism-independent metamodel covering OWL ontology mappings
as described in Section 10.2. The metamodel is a consistent extension of our earlier
work on metamodels for OWL DL ontologies and SWRL rules [5]. It has constraints
defined in OCL [23] as well, which we omit here due to lack of space and instead
refer to [5] for a complete reference. Figure 10.3 shows the metamodel for mappings.
In the figures, darker grey classes denote classes from the metamodels of OWL DL
and rule extensions. The central class in the metamodel is the class Mapping with
four attributes. The URI, defined by the attribute uri, allows to uniquely identify
a mapping and refer to it as a first-class object. The assumptions about the use of
unique names for objects and the preservation of inconsistencies across mapped on-
tologies, are defined through the boolean attributes uniqueNameAssumption
respectively inconsistencyPreservation. For the assumptions about the
domain, we defined an attribute DomainAssumption. This attribute may take
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Fig. 10.2. Main Elements of the Ontology Definition Metamodel

Fig. 10.3. Metamodel for ontology mappings

specific values that describe the relationship between the connected domains: over-
lap, containment (in one of the two directions) or equivalence. A mapping is al-
ways defined between two ontologies. An ontology is represented by the class
Ontology in the OWL DL metamodel. Two associations from Mapping to
Ontology, sourceOntology and targetOntology, specify the source re-
spectively the target ontology of the mapping. Cardinalities on both associations
denote that to each Mapping instantiation, there is exactly one Ontology con-
nected as source and one as target. A mapping consists of a set of mapping assertions,
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denoted by the MOF aggregation relationship between the two classes Mapping and
MappingAssertion. The elements that are mapped in a MappingAssertion
are defined by the class MappableElement. A MappingAssertion is defined
through exactly one SemanticRelation, one source MappableElement and
one target MappableElement. This is defined through the three associations start-
ing from MappingAssertion and their cardinalities.

We defined four semantic relations along with their logical negation to be de-
fined in the metamodel. Two of these relationship types are directly contained in
the metamodel through the subclasses Equivalence and Overlap of the class
SemanticRelation. The other two, containment in either direction, are de-
fined through the subclass Containment and its additional attribute direction,
which can be sound (�) or complete ($).

The negated versions of all semantic relations are specified through the boolean
attribute negated of the class SemanticRelation. For example, a negated
Overlaps relation specifies the disjointness of two elements. The other attribute
of SemanticRelation, interpretation, defines whether the mapping as-
sertion is assumed to be interpreted intensionally or extensionally. Please note that
the metamodel in principle supports all semantic relations for all mappable elements,
including individuals.

A mapping assertion can connect two mappable elements, which may be onto-
logy elements or queries. To support this, MappableElement has two subclasses
OntologyElement and Query. The former is previously defined in the OWL
DL metamodel. The class Query reuses constructs from the SWRL metamodel.
The reason for reusing large parts of the rule metamodel lies in the fact that con-
ceptually, rules and queries are of similar nature [21]: A rule consists of a rule body
(antecedent) and rule head (consequent), both of which are conjunctions of logical
atoms. A query can be considered as a special kind of rule with an empty head. The
distinguished variables specify the variables that are returned by the query. Infor-
mally, the answer to a query consists of all variable bindings for which the grounded
rule body is logically implied by the ontology.

Fig. 10.4. Metamodel for ontology mappings - definition of a query
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Figure 10.4 shows this connection and shows how a Query is composed. It de-
picts how atoms from the antecedent and the consequent of SWRL rules can be
composed. Similarly, a Query also contains a PredicateSymbol and some,
possibly just one, Terms. We defined the permitted predicate symbols through the
subclasses Class, DataRange, Property and BuiltIn. Similarly, the four
different types of terms are specified as well. The UML association class TermList
between Atom and Term allows to identify the order of the atom terms. Dis-
tinguished variables of a query are differentiated through an association between
Query and Variable.5

10.6 Formalism Independent Mapping Specification

The metamodel presented in the previous section allowed us to lift the comparison of
mapping languages from the formal to a conceptual level and to abstract from formal
details. This step does not only ease the comparison of languages it also supports the
selection of an appropriate mapping language based on the actual requirements of a
given application. We believe that these requirements are best captured by providing
the user with the possibility of specifying semantic relations between ontologies in-
dependent of a concrete language. In this section, we present a graphical modelling
language for mappings that is based on the mapping metamodel presented above.
Basing the modelling language on the metamodel ensures that the resulting models
can later be linked to constructs in a concrete language via the metamodel. It further
allows us to test a given model against the constraints different mapping languages
pose on the general metamodel and decide whether a certain language can be used
to implement the graphical model.

10.6.1 A UML Profile for OWL DL Ontologies

Our UML profile is faithful to UML2 as well as to OWL DL, with a maximal reuse of
features from the languages. Since the UML profile mechanism supports a restricted
form of metamodeling, our proposal contains a set of extensions and constraints
to UML2. This tailors UML2 such that models instantiating the OWL DL meta-
model can be defined. Our UML profile has a basic mapping, from OWL class to
UML class, from OWL property to binary UML association, from OWL individual
to UML object, and from OWL property filler to UML object association. Extensions
to UML2 consist of custom UML-stereotypes, which usually carry the name of the
corresponding OWL DL language element, and dependencies.

Figure 10.5 shows a small example of an ontology using the UML profile. It
contains the definition of classes Article, Book and Thesis as subclasses of
Publication. The first two classes are defined to be disjoint. The ontology con-
tains another class Person and its subclass Researcher. An association between

5 A variable which is defined as distinguished variable in the source mappable element, must
be defined as distinguished variable in the target mappable element as well.
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Publication and Person denotes the object property authorOf, from which
domain and range are defined via an association class. Furthermore, the ontology de-
fines object properties between Publication and Topic, and between Topic
and Name. Finally, the ontology contains some instances of its classes and object
property. For a discussion of all details of the UML profile for OWL DL ontologies,
we refer to [5].

Another small ontology of the same domain is presented in Figure 10.6. In typ-
ical use cases such as data translation, data integration, etc. mappings between the
two ontologies would have to be defined, as described in the earlier sections. The
following sections present a metamodel and UML profile for the definition of these
ontology mappings.

Fig. 10.5. A First Sample Ontology Depicted using the UML Profile for the Ontology Meta-
model

Fig. 10.6. A Second Sample Ontology Depicted using the UML Profile for the Ontology Meta-
model
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Fig. 10.7. Visual notation for a mapping between two ontologies

Fig. 10.8. Sample containment relation between two concepts

Fig. 10.9. Sample extensional containment relation between two properties

Fig. 10.10. Sample intensional equivalence relation between two individuals

10.6.2 A UML Profile for Ontology Mappings

This section describes the UML profile as a visual notation for specifying ontology
mappings, based on the metamodel discussed in Section 10.5.2. The UML profile
is consistent with the design considerations taken for the previously defined UML
profiles for OWL ontologies and rule extensions.

First of all, users specify two ontologies between which they want to define
mappings. The visual notation for this as defined in our profile, is presented in
Figure 10.7. Just as for ontologies as collections of ontology elements, we apply
the UML grouping construct of a package to represent mappings as collections of
mapping assertions. Attributes of the mapping, like the domain assumption, are rep-
resented between curly brackets. In Figure 10.8, a source concept Publication
is defined to be more specific than the target concept Entry. The example in
Figure 10.9 relates two properties authorOf and creatorOf using an exten-
sional containment relationship. Figure 10.10 models Researcher Fowler and
Author MartinFowler as two equivalent instances. Both source and target
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elements of mapping assertions are represented in a box, connected to each other
via a dependency with the corresponding symbol of the semantic relation. In the
first step of the process, when users just mark elements being semantically related
without specifying the type of semantic relation, the dependency does not carry any
relation symbol. Stereotypes in the two boxes denote source- and target ontology.
Like defined in the metamodel, these mapped elements can be any element of an on-
tology (metaclass OntologyElement) or a query (metaclass Query). They are
represented like defined in the UML profile for OWL and rules. The parts of the
mappable elements which are effectively being mapped to each other, are denoted
via a double-lined box, which becomes relevant if the mapped elements are more
complex constructs, as explained in the following.

A more complex example mapping assertion is pictured in Figure 10.11. The ex-
ample defines that the union of the classes PhDThesis and MasterThesis, is
equivalent to the class Thesis.

Fig. 10.11. Sample equivalence relation between complex class descriptions

Figure 10.12 shows another example of an equivalence relation between two ex-
pressions. It specifies that the class which is connected to the class Publication
via a property authorOf with the someValuesFrom restriction, is equivalent to
the class Author.

Fig. 10.12. Sample equivalence relation between complex class descriptions

Figure 10.13 shows an example of an equivalence relation between two queries.
The first query is about a Publication X with a Topic Y named Z. The target query
is about an Entry X with subject Z. The mapping assertion defines the two queries to
be equivalent. The effective correspondences are established between the two distin-
guished variables X and Z, again denoted with a double-lined box.
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Fig. 10.13. Sample equivalence relation between two queries

10.7 Discussion and Conclusions

In this chapter, we have presented a comprehensive comparison of ontology mapping
languages on a formal and a conceptual level. Based on an encoding in distributed
first order logic, we have shown that existing mapping languages differ in a number
of quite fundamental assumptions that make them largely incompatible with each
other. We have concluded that the choice of a suitable mapping formalism is a crit-
ical success factor for a successful composition of ontologies. It is clear that this
choice should be based on the formal characteristics of the languages. In order to
support the choice of a language based on these characteristics we have presented
a metamodel and a graphical modelling language to support formalism independent
graphical modeling of mappings between OWL ontologies and their required charac-
teristics. The metamodel ties in with previous work on similar metamodels for OWL
DL and rule extensions and the results of the formal analysis of mapping languages.
In order to be able to provide support not only for the acquisition of mappings but
also for their implementation in one of the existing formalisms, three additional steps
have to be taken. In a first step, we have to link the abstract metamodel to concrete
mapping formalisms. This can best be done by creating specializations of the generic
metamodel that correspond to individual mapping formalisms. This normally means
that restrictions are added to the metamodel in terms of OCL constraints that formal-
ize the specific properties of the respective formalism. In a second step, we have to
develop a method for checking the compatibility of a given graphical model with a
particular specialization of the metamodel. This is necessary for being able to deter-
mine whether a given model can be implemented with a particular formalism. Pro-
vided that specializations are entirely described using OCL constraints, this can be
done using an OCL model checker. Finally, we have to develop methods for translat-
ing a given graphical model into an appropriate mapping formalism. This task can be
seen as a special case of code generation where instead of executable code, we gen-
erate a formal mapping model that can be operationalized using a suitable inference
engine.



290 S. Brockmans et al.

References

1. Borgida, A.: On the relative expressiveness of description logics and predicate logics.
Artificial Intelligence 82, 353–367 (1996) (research note)

2. Borgida, A., Serafini, L.: Distributed description logics: Assimilating information from
peer sources. Journal of Data Semantics 1, 153–184 (2003)

3. Bouquet, P., Giunchiglia, F., van Harmelen, F., Serafini, L., Stuckenschmidt, H.: C-OWL:
Contextualizing ontologies. In: Fensel, D., Sycara, K.P., Mylopoulos, J. (eds.) ISWC
2003. LNCS, vol. 2870, pp. 164–179. Springer, Heidelberg (2003)

4. Bouquet, P., Giunchiglia, F., van Harmelen, F., Serafini, L., Stuckenschmidt, H.: Contex-
tualizing ontologies. Journal on Web Semantics 1(4), 325–343 (2004)

5. Brockmans, S., Haase, P.: A Metamodel and UML Profile for Networked On-
tologies – A Complete Reference. Technical report, Universität Karlsruhe (April
2006), http://www.aifb.uni-karlsruhe.de/WBS/sbr/publications/
ontology-metamodeling.pdf

6. Calvanese, D., Giacomo, G.D., Lenzerini, M.: Description logics for information inte-
gration. In: Kakas, A.C., Sadri, F. (eds.) Computational Logic: Logic Programming and
Beyond. LNCS, vol. 2408, pp. 41–60. Springer, Heidelberg (2002)

7. Calvanese, D., Giacomo, G.D., Lenzerini, M.: A framework for ontology integration. In:
Cruz, I., Decker, S., Euzenat, J., McGuinness, D. (eds.) The Emerging Semantic Web, pp.
201–214. IOS Press, Amsterdam (2002)
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Summary. The standardization of the Web Ontology Language, OWL, leaves (at least) two
important issues for Web-based ontologies unsatisfactorily resolved, namely how to represent
and reason with multiple distinct, but linked ontologies, and how to enable effective knowledge
reuse and sharing on the Semantic Web. In this paper, we present a solution for these problems
based on E -Connections. We aim to use E -Connections to provide modelers with suitable
means for developing Web ontologies in a modular way and to provide an alternative to the
owl:imports construct.

With such motivation, we present in this paper a syntactic and semantic extension of the
Web Ontology language that covers E -Connections of OWL-DL ontologies. We show how to
use such an extension as an alternative to the owl:imports construct in many modeling situ-
ations. We investigate different combinations of description logics for which it is possible to
design and implement reasoning algorithms, well-suited for optimization. Finally, we provide
support for E -Connections in both an ontology editor, Swoop, and an OWL reasoner, Pellet.

11.1 Motivation

The Semantic Web architecture has been envisioned as a set of new languages that
are being standardized by the World Wide Web Consortium (W3C). Among these
languages, the Web Ontology Language (OWL) plays a prominent role, and Descrip-
tion Logics have deeply influenced its design and standardization [1][20]. Two of the
three variants, or dialects, of OWL, namely OWL-Lite and OWL-DL, correspond to
the logics SHIF(D) and SHOIN (D) , respectively [20] [26] [28].

The acceptance of OWL as a Web standard will yield to the rapid proliferation of
DL ontologies on the Web and it is envisioned that, in the near future, the Semantic
Web will contain a large number of independently developed ontologies. The stan-
dardization of OWL, however, leaves two important issues for Web-based ontologies
unsatisfactorily resolved, namely how to represent and reason with multiple distinct,
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but linked ontologies, and how to enable effective knowledge reuse and sharing on
the Semantic Web.

First, in order to provide support for integrating ontologies, OWL defines the
owl:imports construct, which allows to include by reference in an ontology the
axioms contained in another ontology, published somewhere on the Web and identi-
fied by a global name (a URI). The functionality provided by this construct, however,
is unsatisfactory for a number of reasons [8]:

• The only way that the owl:imports construct provides for using concepts from
a different ontology is to bring into the original ontology all the axioms of the
imported one. Therefore, the only difference between copying and pasting the
imported ontology into the importing one and using an owl:imports statement is
the fact that with imports both ontologies stay in different files. This certainly
provides some syntactic modularity , but not a logical modularity, which would
be indeed more desirable.

• The entities of an ontology, such as classes and properties, are, as the ontologies
themselves, identified by unique names (URIs) on the Semantic Web. For exam-
ple, suppose that we are developing an ontology about “People” and we want to
define the concept of a “Dog Owner”. It may seem natural for such a purpose to
use the URI of a certain class “Dog”, that appears in an ontology about “Pets”
that we have found on the Web. We may think then that we are committing to the
meaning of “Dog” in that ontology (a dog is an animal, for example). Neverthe-
less, if we use the URI for “Dog” without importing the corresponding ontology,
we are bringing nothing from the meaning of the term in the the foreign ontology,
while if we import it, we are bringing all the axioms of the “Pet” ontology to our
logical space, even if we are only interested in dogs, and not in cats or hamsters.

• The use of owl:imports results in a flat ontology, i.e., none of the imported axioms
or facts retain their context. While it is possible to track down the originator(s) of
some assertions by inspecting the imported ontology, OWL reasoning does not
take such context into account.

Second, enabling knowledge reuse and sharing has always been a major goal of
the Web Ontology Working Group. Ontology engineering is a time-consuming task.
As more ontologies are built and become available, and as the size of ontologies
grows, knowledge sharing and reuse become important issues. On the one hand,
when ontologies grow, they become harder for the reasoners to process and for hu-
mans to understand, and also harder to reuse. On the other hand, as more ontologies
become available, the advantages of reusing existing ontologies become more ap-
parent. In order to make reuse and sharing easier, ontologies should be designed
as mostly independent and self-contained modules [30][29]. Intuitively, a module
should contain information about a self-contained application domain. Then, suitable
means should be provided for integrating and connecting those modular ontologies.

In this paper, we present an approach for tackling these two issues based on E-
Connections. The E-Connections technique [25] [24] is a method for combining logi-
cal languages. The main motivation of E-Connections is to combine decidable logics
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in such a way that the resulting combined formalism remains decidable, although the
increase of expressivity may result in a higher worst-case complexity.

In this paper, we present an extension of the Web Ontology language that co-
vers E-Connections of OWL-DL ontologies. We show how such an extension can
be used to achieve modular ontology development on the Semantic Web and how
E-Connections provide a suitable framework for integration of Web ontologies. We
investigate the use of E-Connections as an alternative to the owl:imports construct in
many modeling situations. We show that, in the case of E-Connections of OWL-DL
ontologies, it is possible to design reasoning algorithms, well-suited for implemen-
tation and optimization. We prove that these algorithms can be implemented as an
extension of current reasoners and, contrary to what is thought about E-Connections,
we argue that they have a potential for enhancing performance, since they suggest
new optimization techniques. Finally, we provide support for E-Connections in both
an OWL ontology editor (Swoop [23]) and an OWL reasoner (Pellet [27]).

11.2 E-Connections of Web Ontologies

An E-Connection is a knowledge representation language defined as a combination
of other logical formalisms. Each of the component logics has to be expressible in the
Abstract Description System (ADS) framework [2], which includes Description Log-
ics (and hence OWL-DL), some temporal and spatial logics, Modal and Epistemic
logics. Obviously, different component logics will give rise to different combined
languages, with different expressivity and computational properties.
E-Connections were originally introduced in [31] as a way to increase the ex-

pressivity of each of the component logics, while preserving the decidability of the
reasoning services. Thus, E-Connections were conceived for providing a trade-off
between the expressivity gained and the computational robustness of the combina-
tion. Here, we will use E-Connections as a language for defining and instantiating
combinations of OWL-DL ontologies. We will restrict ourselves to OWL-DL, since
OWL-Full is beyond the Abstract Description System framework. From now on in
the paper, whenever we mention OWL, we will implicitly refer to OWL-DL. In this
section, we assume that the reader is familiar with OWL.

An E-Connection is a set of “connected” ontologies. An E-Connected ontology1

contains information about classes , properties and their instances , but also about
a new kind of properties, called link properties , which establish the connection be-
tween the ontologies.

Link properties are similar in spirit to datatype properties in the sense that they
are used for combining information from different domains (the actual application
domain of the ontology and the domain of datatypes , in the case of datatype proper-
ties). The coupling between datatypes and the ontology is always achieved through

1 In this paper, we use “E -Connection Language” to denote a formalism, i.e. a logic; we
will use “E -Connection” to denote a knowledge base written in such a language. These
knowledge bases are composed of a set of “connected” ontologies, for which we will use
the term “E -Connected ontology” or “component ontology”.
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restrictions on datatype properties. For example, a “retired person” can be defined
in OWL as a person whose age is greater than 65, by using a class (“Person”) in
the ontology and a restriction on a datatype property “age” with value “greater than
65”. Both from a logical and from a modeling perspective, the domain of the on-
tology and the domain of datatypes are separate: from a modeling perspective, the
(application) domain of “persons” does not overlap with the (application) domain
of “numbers”; from a logical perspective, in OWL, the domain where classes, prop-
erties and individuals in the ontology are interpreted is disjoint from the domain of
datatypes, and datatype properties are interpreted as binary relations with the first
element belonging to the domain of the ontology and the second on the domain of
the datatypes. In the same vein, link properties allow to create classes in a certain
ontology based on information from a different ontology. For example, a GraduateS-
tudent in an ontology about “people” could be defined as a student who is enrolled
in at least one graduate course, by using the class Student in the people ontology and
a someValuesFrom restriction on the link property enrolledIn with value Graduate-
Course, which would be a class in a different ontology dealing with the domain of
“academic courses”.

Link properties are logically interpreted as binary relations, where the first ele-
ment belongs to its “source” ontology and the second to its “target ontology”. Con-
ceptually, a link property will be defined and used in its “source” ontology. For exam-
ple, the link property “enrolledIn” would be defined as a link property in the “people”
ontology with target ontology “academic courses”.

An E-Connected ontology can be roughly described as an OWL-DL ontology,
extended with the ability to define link properties and construct new classes in terms
of restrictions on them. An E-Connection is then defined as a set of E-Connected
ontologies. From the modeling perspective, each of the component ontologies in an
E-Connection is modeling a different application domain, while the E-Connection
itself models the union of all these domains. For example, an E-Connection could be
used to model all the relevant information referred to a certain university, and each of
its component ontologies could model, respectively, the domain of people involved
in the university, the domain of schools and departments, the domain of courses, etc.

11.2.1 Basic Elements

In order to illustrate the basic elements of an E-Connection, let us consider the fol-
lowing application domains, that we want to formalize: let D1 be the domain of
“travel accommodations”, D2 the domain of “leisure activities”, D3 the domain
of “travel destinations”, and D4 the domain of “people”. We want to use an E-
Connection to model the union of these domains, i.e., the domain of “tourism”.

We want to model each application domain in a different component of the E-
Connection and then use link properties to talk about their relationships.

As in OWL, each E-Connected ontology is written in a different file, and the
vocabularies being used in each of them can be specified by a set of namespace dec-
larations and entity definitions. In this Section, we use the namespace ec: to denote
the new vocabulary we introduce for E-Connections.
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For our domains, we create the following root classes2:

(accommodations)
<owl:Class rdf:ID= "Accommodation"/>

(activities)
<owl:Class rdf:ID= "Activity"/>

(destinations)
<owl:Class rdf:ID= "Destination"/>

(people)
<owl:Class rdf:ID= "Person"/>

We would like to define classes like BudgetDestination (a travel destination which
provides a choice of budget accommodations), a CaribbeanHotel (a hotel accommo-
dation offered at a Caribbean destination), and a SportsDestination (a destination that
offers a variety of activities related to sport).

In order to attain this goal, we define a set of link properties, i.e. properties that
relate elements of the different domains. For example, the links providesAccommo-
dation and offersActivity relate the domain of “destinations” to the domain of “ac-
commodations” and “activities” respectively.

(destinations)
<ec:LinkProperty rdf:ID="providesAccommodation">

<ec:foreignOntology rdf:resource="&acco;"/>
<rdfs:domain rdf:resource="#Destination"/>
<rdfs:range>

<ec:ForeignClass rdf:about="&acco;#Accommodation">
<ec:foreignOntology rdf:resource="&acco;"/>

</ec:ForeignClass>
</rdfs:range>

</ec:LinkProperty>
<ec:LinkProperty rdf:ID="offersActivity">

<ec:foreignOntology rdf:resource="&activities;"/>
<rdfs:domain rdf:resource="#Destination"/>
<rdfs:range>

<ec:ForeignClass rdf:about="&activities;#Activity">
<ec:foreignOntology rdf:resource="&activities;"/>

</ec:ForeignClass>
</rdfs:range>

</ec:LinkProperty>

A link property is a binary relation between instances of classes, which belong
to different E-Connected ontologies. The source of a link property is the ontology
in which it has been declared; the target of the link is the ontology specified in the
owl:foreignOntology tag in the declaration.

The first element of the relation always belongs to an instance of a class in the
source ontology. In the example, both providesAccommodation and offersActivity
have been defined in the “destinations” ontology. The second element of the rela-
tion corresponds to an individual in the target ontology, i.e. the “accommodations”

2 In brackets, we specify the ontology each class has been defined in; we use this informal
notation along this section for clarity and brevity, in order to avoid including the namespace
and ontology headers of each ontology in the combination.
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ontology in the case of providesAccommodation and the activities ontology in the
case of offersActivity.

The definition of a link property must include a single owl:foreignOntology tag.
As in the case of object properties, link properties can be assigned a domain and
a range. For example, the link property offersActivity relates instances of the class
Destination to instances of the class Activity. The class specified as a range of a link
property must be declared as a class in the target ontology. In the source ontology,
such a class can be declared as “foreign” using the owl:ForeignClass tag.

A URI cannot be used in a given ontology both as “local” (declared as a class in
the ontology using the owl:Class tag) and “foreign”; if this happens, a reasoner must
treat such an ontology as inconsistent.

A link property can be defined as functional or inverse functional, with the usual
meaning.

However, as opposed to object properties in OWL, a link property cannot be
tagged as transitive or symmetric. Note that, within an E-Connection, a link prop-
erty is defined in a certain “source” ontology and points to a specific “target onto-
logy”. In other words, each link property connects (only) two ontologies in a given
E-Connection.

Restrictions on link properties can be used to generate new concepts. For example,
we can define a “budget destination” as a travel destination that offers at least one
kind of budget accommodation:

(destinations)
<owl:Class rdf:ID="BudgetDestination">

<owl:intersectionOf rdf:parseType="Collection">
<owl:Class rdf:about="#Destination"/>
<owl:Restriction>
<owl:onProperty rdf:resource="#providesAccommodation"/>
<owl:someValuesFrom>

<ec:ForeignClass rdf:about="&acco;BudgetAccommodation">
<ec:foreignOntology rdf:resource="&acco;"/>

</ec:ForeignClass>
</owl:someValuesFrom>

</owl:Restriction>
</owl:intersectionOf>

</owl:Class>

Similarly, we can define a CinemaLover as a person who likes Cinema:

(persons)
<owl:Class rdf:ID="CinemaLover">

<rdfs:subClassOf>
<owl:Class rdf:about="#Person"/>

</rdfs:subClassOf>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#likesActivity"/>
<owl:someValuesFrom>

<ec:ForeignClass rdf:about="&activities;CinemaActivity">
<ec:foreignOntology rdf:resource="&activities;"/>

</ec:ForeignClass>
</owl:someValuesFrom>

</owl:Restriction>
</rdfs:subclassOf>

</owl:Class>
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Using an “allValuesFrom” restriction we can define a FanaticCinemaLover as a
CinemaLover who likes no activity other than cinema:

(persons)
<owl:Class rdf:ID="FanaticCinemaLover">

<rdfs:subClassOf>
<owl:Class rdf:about="#CinemaLover"/>

</rdfs:subClassOf>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#likesActivity"/>
<owl:allValuesFrom>

<ec:ForeignClass rdf:about="&activities;CinemaActivity">
<ec:foreignOntology rdf:resource="&activities;"/>

</ec:ForeignClass>
</owl:allValuesFrom>

</owl:Restriction>
</rdfs:subclassOf>

</owl:Class>

where in the “activities” ontology we would define the class CinemaActivity as a
subclass of Activity:

(activities)
<owl:Class rdf:ID="CinemaActivity">

<rdfs:subClassOf>
<owl:Class rdf:about="#Activity"/>

</rdfs:subClassOf>
</owl:Class>

Cardinality restrictions on link properties allow to constrain the number of objects
linked by the connecting relations. For instance, we can define a SportsDestination
as a travel destination that offers more than 10 different sports activities:

(destinations)
<owl:Class rdf:ID = "SportsDestination">

<rdfs:subClassOf>
<owl:Class rdf:about="#Destination"/>

</rdfs:subClassOf>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="offersSportActivity"/>
<owl:minCardinality rdf:datatype="&xsd;Integer">10
</owl:minCardinality>

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

The “hasValue” restriction on link properties allows to specify classes in an E-
Connected ontology based on the existence of a particular individual in a different
ontology. For example, we can define the class SurfingDestination as a travel desti-
nation that offers surfing as one of their activities, where surfing is an instance of the
class SportsActivity.

(destinations)
<owl:Class rdf:ID = "SurfingDestination">

<rdfs:subClassOf>
<owl:Class rdf:about="#Destination"/>

</rdfs:subClassOf>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource = "offersSportActivity"/>
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<owl:hasValue>
<ec:ForeignIndividual rdf:about="&activities;surfing">

<ec:foreignOntology rdf:resource="&activities;"/>
</ec:ForeignIndividual>

</owl:hasValue>
</owl:Restriction>

</rdfs:subClassOf>
</owl:Class>

where in the “activities” ontology surfing is defined to be an individual of the class
SportsActivity.

(activities)
<activities:Surfing rdf:ID="surfing"/>

A link property can be defined as the inverse of another link property. For example,
link inversion would allow to define a WaterSport activity a SportsActivity that is
offered at a BeachDestination:

(activities)
<owl:Class rdf:ID="WaterSport">

<rdfs:subClassOf>
<owl:Class rdf:about="#Sport"/>

</rdfs:subClassOf>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#isOfferedAt"/>
<owl:someValuesFrom>

<ec:ForeignClass rdf:about="&dest;BeachDestination">
<ec:foreignOntology rdf:resource="&dest;"/>

</ec:ForeignClass>
</owl:someValuesFrom>

</owl:Restriction>
</rdfs:subclassOf>

</owl:Class>

(activities)
<ec:LinkProperty rdf:ID="isOfferedAt">

<ec:foreignOntology rdf:resource="&dest;"/>
<owl:inverseOf rdf:resource="&dest;offersActivity"/>

</ec:LinkProperty>

A link property may be defined as a sub-property of another link property; e.g. we
can define offersSportActivity as a sub-property of offersActivity:

(destinations)
<ec:LinkProperty rdf:ID="offersSportActivity">

<ec:foreignOntology rdf:resource="&activities;"/>
<rdfs:subPropertyOf rdf:about="#offersActivity"/>

</ec:LinkProperty>

Obviously, a link property cannot be declared as a sub-property of an object
or datatype property, nor a sub-property of a link relation with a different foreign
ontology.

11.2.2 Axioms and Facts in an E-Connected Ontology

An E-Connected ontology is a sequence of axioms and facts : logical sentences that
allow to make assertions about the domain. For example, as in OWL, we can use an
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axiom to assert that GraduateStudent is a subclass of Student and a fact to state that
john is enrolledIn the WebTechnologies course.

In E-Connected ontologies it is also possible to use a fact to instantiate a link prop-
erty. For example, we can assert that SaintThomasIsland is an instance of Caribbe-
anDestination and that it offers the surfing activity:

(destinations)
<rdf:Description rdf:about="#SaintThomasIsland">

<rdf:type>
<owl:Class rdf:about="#CaribbeanDestination"/>

</rdf:type>
<offersActivity>

<ec:ForeignIndividual rdf:about="&activities;#surfing">
<ec:foreignOntology rdf:resource="&activities;"/>

</ec:ForeignIndividual>
</offersActivity>

</rdf:Description>

The E-Connections framework imposes some restrictions to axioms and facts. For
example, a class cannot be declared in an ontology as a subclass of a class declared
in a foreign ontology in the combination. A property (object, datatype or link) cannot
be declared as sub-relation of a foreign property; an individual cannot be declared as
an instance of a foreign class, and a pair of individuals cannot instantiate a foreign
property.
E-Connections also constrain the use of URIs. In OWL-DL, a URI cannot be

used, for example, both as a class and a datatype, or as an object property and a
datatype property. In an E-Connected ontology, a set of additional restrictions must
be imposed, namely a URI cannot be used “locally” in two different component
ontologies.

11.2.3 What Is a E-Connection in a Semantic Web Context?

An E-Connection is a set of E-Connected ontologies. However, this definition can
be ambiguous, since it may not be apparent at the first sight to which set we are
referring to.

For example, let us consider again the “tourism” domain. At first sight, one would
say that we have a single E-Connection, namely, the one composed by the ontolo-
gies: “destinations”, “activities”, “accommodations”, “people”. However, this is not
strictly correct.

Suppose that the “people” ontology contains an explicit contradiction. Assume
we load the “accommodations” ontology in a reasoner and try to check its consis-
tency; what should the reasoner do? The “accommodations” ontology contains no
link property declarations, i.e., it is an “ordinary” OWL ontology. In this case, an E-
Connections aware reasoner should only check the consistency of that ontology, and
ignore the rest, i.e., it should not report the inconsistency in the “people” ontology.

Given an E-Connected ontology, a reasoner should consider only all the E-
Connected ontologies in its transitive closure under link references. For example, the
“destinations” ontology defines a link property providesAccommodation to the “ac-
commodations” ontology and a link offersActivity to the “activities” ontology. Since
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“accommodations” does not contain any link property (it is an ordinary OWL onto-
logy) and “activities” only includes the link property isOfferedAt to “destinations”
again, the reasoner would consider the following set of E-Connected ontologies:

Kdestinations = {destinations, accommodations, activities}
We say that Kdestinations is the E-Connection induced by the destinations onto-

logy. Looking at the link references between the different ontologies of the example,
it is easy to see that:

Kaccommodations = {accommodations}
Kactivities = {activities, destinations, accommodation}

Kpeople = {people, destinations, accommodations, activities}
An OWL ontology O can be seen as an E-Connected ontology which induces an

E-Connection with O as its only component.

11.3 Modeling with E-Connections

E-Connections can be used, as in the example on tourism, for integrating existing on-
tologies, which describe different application domains, by adding knowledge about
how these domains are related to each other.

In this section, we illustrate how to use E-Connections the other way round,
namely for decomposing a knowledge base into smaller, connected ontologies. For
details about this application, we refer the interested reader to [11, 10].

As an example, let us consider the ontology used in the OWL documentation: the
Wine Ontology [28]. This ontology describes different kinds of wines according to
various criteria, like the area they are produced in, the kinds of grapes they contain,
their flavor and color, etc. For example, a “Cabernet Franc Wine” is defined to be
a dry, red wine, with moderate flavor and medium body and which is made with
Cabernet Franc grapes3:

CabernetFranc ≡ Wine � ∃madeFromGrape.{CabernetFrancGrape} �
� ≤ 1madeFromGrape

CabernetFranc � ∃hasColor .{Red} � ∃hasFlavor .{Moderate}
�∃hasBody.{Medium}

A Bordeaux is defined to be a wine produced in the Bordeaux area4:

Bordeaux ≡Wine � ∃locatedIn.{BordeauxRegion}
Note that the Wine Ontology does not contain information about wines only, but

also information about regions, wineries, colors, grapes, and so on. This illustrates a

3 In this section, instead of using the RDF/XML notation as in Section 2 we will use for clar-
ity and brevity standard DL notation. The equivalence between this notation and abstract
syntax is summarized in Tables 2 and 3.

4 In both examples the braces represent nominals.
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general feature of OWL ontologies: although they usually refer to a core application
domain, they also contain “side” information about other secondary domains.

This modeling paradigm is not only characteristic of small and medium sized
ontologies, but also occurs in large, high-quality knowledge bases, written by groups
of experts. A prominent example is the NCI (National Cancer Institute) ontology
[12], a huge ontology describing the cancer domain. The NCI ontology is mainly
focused on genes, but it also contains some information about many other domains,
like professional organizations, funding, research programs, etc.

In all these cases, it is more natural to represent each application domain in a
different E-Connected ontology, where link properties are used in the component
KBs whenever information from a different ontology in the combination is required.
The component ontologies in an E-Connection are mostly self-contained in the sense
that they only contain information about a single “topic”, and are loosely coupled,
since the coupling between E-Connected ontologies can only be achieved through
restrictions on link properties.

In the case of the Wine Ontology, the combined KB is composed of six ontologies,
dealing with grapes, wine descriptors (color, flavor,...), regions, wineries, years, and
wines respectively5.

When transforming a DL knowledge base into an E-Connected KB, many ob-
ject properties in the original ontology become link properties in the E-Connected
KB. For example, in the definition of Cabernet Franc wines, the object property
madeFromGrape becomes a link property from the wine ontology to the grapes on-
tology, while hasColor , hasFlavor and hasBody connect the wine ontology and
the wine descriptors ontology. Obviously, this effect depends on the number of E-
Connected ontologies.

The use of E-Connections for both integration and decomposition of OWL know-
ledge bases suggests a new modeling methodology, applicable to knowledge en-
gineering with Description Logics in general, and to the Semantic Web in particular.
The core idea is to keep ontologies small and disjoint and to use these ontologies as
reusable units that can be combined in various ways using E-Connections depending
on the modeler’s needs.

It is worth emphasizing here that E-Connections are not a suitable technique for
combining ontologies dealing with highly overlapping domains, which prevents its
use in some important Knowledge Engineering applications, such as ontology refine-
ment. For example, if we developed a new ontology on grapes with richer descrip-
tions about a certain kind of grape, we would not be able to connect it to the old one
using our technique. However, E-Connections were not designed for such a purpose.

11.4 Tool Support

In this section, we discuss the key issues to be addressed for providing tool and
application support for E-Connections, and we describe our implementation of an
5 In this section, we are using a version of the Wine Ontology that does not import the Food

Ontology.
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E-Connection aware infrastructure that extends the OWL-API [6] and is integrated
to the ontology editor Swoop [23].6

11.4.1 Requirements

Basic Functionality

A basic implementation for E-Connections must perform similar tasks as an OWL
implementation itself:

• Serializing: Producing the extended OWL concrete syntax, introduced in Section
2, from some internal representation.

• Modeling: Providing a suitable internal representation (model) for E-Connected
ontologies.

• Parsing: Building an internal representation from a document in the concrete
syntax.

This basic functionality must be provided by Semantic Web high-level program-
ming interfaces, such as the OWL-API.

Ontology browsers and editors must provide additional rendering and editing
functionality. Perhaps, the most important requirement for an E-Connections aware
ontology editor is the ability to deal effectively with multiple ontologies, which im-
plies, for example, the ability to load, save and manipulate several ontologies simul-
taneously, as well as the ability to easily navigate from one to another.

Ontology editors must also be able to provide browsing and editing capabilities
for the extended RDF/XML and abstract syntaxes7 and support for the simultaneous
use of imports and E-Connections.

Combining Imports and E-Connections

The combined use of E-Connections and owl:imports raises a number of difficulties.
For example, suppose a simple case in which we have two connected ontologies: the
ontology OA about “people” and the ontology OB about “animals”. Suppose that
in OA there are link properties connecting OA to OB and vice-versa. Assume that
the modeler decides at some point that persons should be described as a subclass of
animals and that the application which is using the connected ontologies relies on
such a decision. Consequently, the modeler makes OA import OB . The following
issue immediately arises: what should a tool automatically do in such a case?

In principle, an editor should automatically modify the ontology OA, and leave
the ontologyOB unaltered in the workspace, in order to comply with the asymmetric
nature of the owl:imports construct. Then, the tool should transform, in OA, all the
link properties fromOA toOB and fromOB toOA

8 into ordinary object properties.

6 Swoop is available for download at http://www.mindswap.org/2004/SWOOP
7 The extended abstract syntax for E -Connections will be presented in next section.
8 Note that those are imported.
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In other words, OA is transformed into a “plain” OWL ontology, which treats the
domains of people and animals as a single one.

However, those modifications leave the ontology OB , which is still E-Connected
to the (modified) OA ontology, in a pretty much non-sensical state, since OB would
be E-Connected to the “union” of OA and itself. What should happen next? Clearly,
the E-Connection has been “broken” by the owl:imports statement, since, as we will
discuss later, there is a violation in the restrictions on the usage of URIs within an
E-Connection.

In such a situation, “merging” OA and OB turns out to be the most plausible
solution. A merge would enforce that all the link properties pointing to OB will now
point toOA (which is importingOB) and all the link properties fromOB will become
object properties. These operations will “disconnect”OB from the combination.

11.4.2 Implementation

Extending the OWL-API

We have extended Manchester’s OWL-API in order to provide a high-level program-
matic interface for parsing, serializing and manipulating E-Connected ontologies.

The OWL-API RDF parser and internal model have been extended to deal with
the new constructs. Link properties in an E-Connected ontology are internally repre-
sented as object properties that additionally specify the URI of its target ontology. On
the other hand, E-Connected ontologies extend OWL ontologies with functionality
for retrieving link properties and foreign entities (classes, properties and individu-
als). In order to manipulate the structures in the internal representation, we have
provided functionality for adding/removing a foreign entity to/from an E-Connected
ontology, and to set the target ontology of a link property. The functionality for
adding/removing link properties is provided by reusing the corresponding function-
ality for object properties.

Extending Swoop

Swoop [23] is a Web Ontology browser and editor.
Swoop assumes the use of multiple ontologies and supports this use in a number of

ways. Being a multiple ontology engineering environment, Swoop is an ideal testbed
for experimenting with E-Connections in the Semantic Web context.

Swoop uses the new functionality added to the OWL-API in order to provide basic
rendering and editing support for E-Connections. As in the case of the OWL-API,
we have tried to keep the main UI and design decisions in Swoop and to incorporate
the required functionality with a minimal extension of the code.

The extension of the OWL-API automatically provides the functionality for load-
ing and saving E-Connected ontologies in the extended RDF/XML syntax presented
in Section 2. When loading an E-Connected ontology, link properties and foreign
entities are distinguished in the UI from the rest of OWL entities.
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All these new elements are hyperlinked; thus, for example, if the user clicks on the
URI of a foreign ontology, the ontology will be loaded in the workspace. The idea is
to provide easy and intuitive navigation through the ontologies in an E-Connection.

Swoop provides basic tool support for creating and editing E-Connected ontolo-
gies. Link properties can be added to the ontology and it is possible to define restric-
tions on them. Incorrect editing is prevented when possible: link properties cannot be
made transitive or symmetric and restrictions on link properties can only be applied
to classes/individuals in its target ontology.

Finally, Swoop provides a graph layout for visualizing the connections between
components in an E-Connection. Given a selected ontology in the workspace, Swoop
provides means for displaying its induced E-Connection.

11.5 An Extension of OWL-DL

11.5.1 Abstract Syntax

The syntax presented in this section is an extension of the normative OWL abstract
syntax, as described in the OWL abstract syntax and semantics recommendation
[26], and we use the same Extended BNF syntax as in the normative document.

An E-Connected ontology K contains a sequence of annotations, axioms and
facts. Annotations, as in OWL, can be used to record authorship and other infor-
mation associated with the ontology, including imports.

E-ConnectedOntology :: =
‘E-ConnectedOntology(’[ ontologyID] { directive } ‘)’

directive :: = ‘Annotation(’ ontologyPropertyID ontologyID ‘)’
| ‘Annotation(’ annotationPropertyID URIreference ‘)’
| ‘Annotation(’ annotationPropertyID dataLiteral ‘)’
| ‘Annotation(’ annotationPropertyID individual ‘)’
| axiom
| fact

E-Connected ontologies are referenced using a URI. E-Connected ontologies con-
tain information about the same kind of entities as OWL ontologies (classes, object
properties, etc.), but they also contain information about link properties. Link prop-
erties are also denoted by URI references.

linkID :: = URIreference

In order to ensure the separation of vocabularies, a URI-reference cannot be both
a linkID, an individual-valued property ID, a datatype property ID, an annotation
property ID or an ontology property ID in an E-Connected ontology. Intuitively,
while individual-valued properties relate individuals to other individuals in the same
ontology, link properties relate individuals corresponding to different interpretation
domains. Thus, link properties act as a bridge between different ontologies, which
remain separate, and keep their own identity.
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An OWL ontology in the abstract syntax contains a sequence of axioms and facts.
In order to provide support for E-Connections on the Semantic Web, we propose a
syntactic and semantic extension of OWL-DL with new kinds of axioms and facts.
Every OWL ontology can be seen as an E-Connected ontology in which no link
properties have been declared.

Axioms

In a E-Connected ontology, link properties can be defined using the following axiom:

axiom ::= ‘Link(’ linkID[‘Deprecated’] { annotation }
‘foreignOntology(’ OntologyID’)’
{ ‘super(’ linkID ‘)’ }
{ ‘domain(’ description ‘)’ }
{ ‘range(’ foreignDescription ‘)’ }
[ ‘inverseOf(’ linkID ‘)’ ]
[ ‘Functional’ | ‘InverseFunctional’ ]

Link properties used in an abstract syntax ontology must be declared, and hence
need an axiom. A link property cannot be declared twice as referring to different
ontologies.

Link properties can be made functional or inverse functional and can be given
global domains and ranges. As opposed to object properties, link properties cannot
be made transitive or symmetric.

Link properties can be equivalent to or sub-properties of others. Of course, in or-
der for these axioms to model useful information, the link properties that are related
through equivalence or subsumption should refer to the same foreign ontology.

axiom ::= ‘EquivalentProperties(’ linkID linkID { linkID } ‘)’
| ‘SubPropertyOf(’ linkID linkID ‘)’

In E-Connections the coupling between the ontologies is achieved through restric-
tions on link properties. As in OWL, universal (allValuesFrom), existential (someVal-
uesFrom) and value (hasValue) restrictions can be defined.

restriction::= ‘Restriction(’linkID
linkRestrictionComponent { linkRestrictionComponent } ’)’

linkRestrictionComponent::= ‘allValuesFrom(’ foreignDescription ‘)’
| ‘someValuesFrom(’ foreignDescription ‘)’
| ‘value( ForeignIndividual(’ individualID ‘))’
| cardinality

Range axioms and restrictions on link properties are referred to foreign class de-
scriptions. Foreign classes are classes that, though used in a certain E-Connected
ontology, correspond to a different ontology in the combined knowledge base. If a
foreign description is used in a range axiom or in a restriction corresponding to a link



308 B. Cuenca Grau, B. Parsia, and E. Sirin

property, it will always be interpreted in the domain of the target ontology of the link
property.

foreignDescription ::= ‘ForeignClass(’ description ‘)’

Facts

Our proposal extends the OWL-DL facts by adding the following production rule to
the normative OWL abstract syntax:

value ::= ‘value(’ ForeignIndividual( linkID individualID ’)’
These facts allow to instantiate link properties with named individuals.

11.5.2 Direct Model-Theoretic Semantics

This section provides a model-theoretic semantics to E-Connected ontologies written
in the abstract syntax.

As in OWL, the definition of the semantics starts with the notion of a combined
vocabulary.

Definition 1. A combined OWL vocabulary V consists of a set VL of literals and the
following sets of URI references: For i = 1, ..., n, VCi are sets of class names, each
of which contains owl:Thing and owl:Nothing; VIi are sets of individual names;
VDPi , VIPi and VAPi are sets of datatype, object and annotation property names
respectively, where each VAPi contains owl:versionInfo, rdfs:label, rdfs:comment,
isDefinedBy, seeAlso; VD is the set of datatype names, which also contains the URI
references for the built-in OWL datatypes and rdfs:Literal; VO the set of ontology
names and VOP the set of URI references for the built-in ontology properties; finally,
for i, j = 1, ..., n with i �= j, Eij are sets of URI references denoting link properties.

In any vocabulary, the (VCi − {owl : Thing, owl : Nothing}) are pair-wise
disjoint, and disjoint with VD. Also, for each i, j = 1, ..., n with i �= j, the
VDPi ,VIPi ,(VAPi − {owl : versionInfo, rdfs : label, rdfs : comment}),VOP ,
Eij are all pair-wise disjoint. �

Given an E-Connected ontology, the vocabulary must include all the URI references
and literals utilized in each of the ontologies, as well as those used in ontologies
that are imported or referenced through a link property by any of the component
ontologies, but can contain other URI references and literals as well.

As in OWL, a datatype d is characterized by a lexical space, L(d), which is a
set of Unicode strings; a value space, V (d); and a total mapping L2V (d) from the
lexical space to the value space.

Definition 2. A datatype map D is a partial mapping from URI references to
datatypes that maps xsd:string and xsd:integer to the appropriate XML Schema
datatypes. �
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The original E-Connections proposal did not explicitly mention datatypes; however,
these trivially fit within the framework and we will explicitly include them here,
since they are an important component of OWL.

The model-theoretic semantics is provided by the notion of a combined
interpretation.

Definition 3. Let D be a datatype map. A combined OWL interpretation with re-
spect to D with combined vocabulary V is a tuple of the form:

I = (R, (Ri)1≤i≤n, (ECi)1≤i≤n, (ERi)1≤i≤n, L, (Si)1≤i≤n, ED,LV,N),

where (with P being the powerset operator):

• R the set of resources of the interpretation is a non-empty set
• LV ⊂ R, the set of literal values of I , contains the set of Unicode strings, the

set of pairs of Unicode strings and language tags, and the value spaces for each
datatype in D

• Ri = Oi ∪ LV , where Oi is non-empty, disjoint from LV and disjoint from
Oj , ∀j = 1, ..., n; i �= j

• ECi : VCi → P(Oi)
• ED : VD → P(LV )
• ERi : VIPi → P(Oi ×Oi)
• ERi : VDPi → P(Oi × LV )
• ERi : Eij → P(Oi ×Oj)
• L : TL→ LV , where TL is the set of typed literals in VL

• ERi : VAPi → P(Ri ×Ri)
• ERi : VOP → P(Ri ×Ri)
• Si : VIi → Oi

• Si : VIi∪ VCi∪ VD∪ VDPi∪ VIPi∪ VAPi ∪ Eij∪ { owl:Ontology} → N , where
N ⊂ R 9 is disjoint with LV and with each of the Oi, ∀i = 1, ..., n

• ECi(owl : Thing) = Oi ⊆ R
• ECi(owl : Nothing) = ∅
• ECi(rdfs : Literal ) = LV
• If D(d′) = d then ED(d′) = V (d)
• If D(d′) = d, then L(‘v′∧∧d′) = L2V (d)(v)
• If D(d′) = d and v /∈ L(d), then L(‘v′∧∧d′) ∈ R − LV �

In a combined OWL interpretation, the functions (ECi)1≤i≤n provide logical mean-
ing for URI references used as classes in the E-Connected ontology Ki. The func-
tions (ERi)1≤i≤n assign logical meaning to the URIs in the ontologies (Ki)1≤i≤n

that are used as OWL properties or links10. In a combined interpretation the ab-
stract interpretation domain is partitioned into n disjoint parts, each of which corres-
ponding to a different component ontology. Link properties are interpreted through
(ERi)1≤i≤n as pairs of elements corresponding to different parts of the abstract
logical domain.
9 Vocabulary Names.

10 As in OWL, the property rdf:type is added to the annotation properties in order to provide
meaning for deprecation.
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Table 11.1. Extension of ECi

Abstract Syntax Interpretation (value of ECi)
restriction(l allValuesFrom( {x ∈ Oi|(x, y) ∈ ERi(l)⇒ y ∈ ECj(c)}

ForeignClass(c)))
restriction(l someValuesFrom( {x ∈ Oi|(x, y) ∈ ERi(l) ∧ y ∈ ECj(c)}

ForeignClass(c)))
restriction(l value( {x ∈ Oi|(x, Sj(id)) ∈ ERi(l)}

ForeignIndividual(id)))
restriction(l minCardinality(n)) {x ∈ Oi|#({y ∈ Oj : (x, y) ∈ ERi(l)}) ≥ n}
restriction(l maxCardinality(n)) {x ∈ Oi|#({y ∈ Oj : (x, y) ∈ ERi(l)}) ≤ n}
restriction(l Cardinality(n)) {x ∈ Oi|#({y ∈ Oj : (x, y) ∈ ERi(l)}) = n}

Table 11.2. Interpretation of Axioms and Facts

Directive Conditions on Interpretations
Link(l

foreignOntology(Ontj ) ERi(l) ⊆ Oi ×Oj

annotation(p1 o1) ... Si(l) ∈ ECi(annotation(p1 o1))...
... annotation(pk ok) ...Si(l) ∈ ECi(annotation(pk ok))

super(s1) ... super(sn)) ERi(l) ⊆ ERi(s1) ∩ ... ∩ERi(sn)
domain(d1)... domain(dn) ERi(l) ⊆ ECi(d1)×Oj ∩ ... ∩ECi(dn)×Oj

range(r1) ... range(rn) ERi(l) ⊆ Oi × ECj(r1) ∩ ... ∩Oi × ECj(rn)
[inverseOf(m)] ERi(l) = (ERj(m))−

[Functional] ∀x ∈ Oi ∀y, z ∈ Oj , (ERi(l))(x, y)
∧(ERi(l))(x, z)→ y = z

[InverseFunctional] ∀y, z ∈ Oi, ∀x ∈ Oj , (ERi(l))(y, x)
∧(ERi(l))(z, x)→ y = z

)
EquivalentProperties(l1...ln) ERi(lj) = ERi(lk)∀1 ≤ j ≤ k ≤ n

SubpropertyOf(l1, l2) ERi(l1) ⊆ ERi(l2)

The function L provides meaning for typed literals and the function ED to the
datatypes used in the E-Connection. Note that, as opposed to the abstract interpreta-
tion domain, the domain in which datatypes and literals are interpreted is not parti-
tioned.

The functions (Si)1≤i≤n provide meaning to OWL individuals. Analogously to
OWL, these functions are extended to plain literals in VL by mapping them onto
themselves. Note that, if the same literal “l” is used in different component on-
tologies, say i, j, the functions Si, Sj will map it to the same value in LV , i.e.
Si(l) = Sj(l) = l ∈ LV .

The functionsECi are extended to class descriptions, individuals and annotations
an in the OWL specification [26]; the additional constructs are interpreted according
to Table 11.1, where l is a link property declared in Ki with foreign ontologyKj .



11 Ontology Integration Using E -Connections 311

A combined OWL interpretation I satisfies axioms and facts as given in the OWL
specifications [26] and in Table 11.2.

We now define precisely the notion of the E-Connection induced by an ontology,
introduced informally in Section 2.3.

Definition 4. Let K1 be an E-Connected ontology. The E-Connection induced by of
K1 is defined to be the following set of E-Connected ontologies:

K = (K1, ...,Kn) = clos(K1)

where the set clos(K1) is inductively defined as follows:

• K1 ∈ clos(K1).
• If K ′ belongs to clos(K1) and there is a link property with source K ′ and target

K ′′, then K ′′ ∈ clos(K1). �

Note that an E-Connected ontology K1 is an “ordinary” OWL ontology, as speci-
fied in the normative documents if and only if the E-Connection induced by K1 is
precisely itself, i.e. K = (K1).

Since a URI can be used in an E-Connected ontology either as local or foreign,
we need to provide a formal distinction between both cases. For such a purpose, we
introduce the notion of a URI to belong to an E-Connected ontology as follows:

Definition 5. Let K = (K1, ...,Kn) be the E-Connection induced by K1. We say
that a URI reference u belongs to the E-Connected ontology Ki if either of the fol-
lowing conditions holds:

• It is used in Ki or in an ontology imported by Ki, but not in the context of a
restriction on a link property.

• It is used in Kj , j �= i in the context of a restriction on a link property with
foreign ontology Ki. �

For example, assume that the URI foo:Publication is used in an E-Connected on-
tology O1 in the context of the following restriction: restriction(l ForeignClass
(foo:Publication)), where l is defined to be a link property with foreign ontology
O2; then, the URI would belong to the ontology O2 and would necessarily need to
be declared as a class in O2.

The semantics of an E-Connection is given as follows:

Definition 6. Let D be a datatype map, K1 be an E-Connected ontology, and K =
(K1, ...,Kn) the E-Connection induced by K1 . A combined OWL interpretation I
with respect to D with vocabulary V , satisfies K1 (denoted by I |= K1) iff:

1. Each URI reference belonging to Ki, used as a classID (datatypeID, individ-
ualID, data-valued property ID, annotation property ID, annotation ID, on-
tology ID) belongs to a single component ontology Ki and is contained in
VCi(VD, VIi , VDPi , VIPi , VAPi , VO , respectively).

2. Each literal in Ki belongs to VL.
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3. Each URI reference in Ki used as a linkID, with foreign ontology Kj , is in Eij .
4. I satisfies each directive in Ki, except for ontology annotations.
5. For each i = 1, ..., n there is some oi ∈ N ⊂ R with (oi ,Si(owl : Ontology))
∈ ERi(rdf : type) such that for each ontology annotation Annotation(p v),
(oi, Si(v)) ∈ ERi(p) and if the component ontology Ki has name ni, then
Si(ni) = oi.

6. I satisfies each E-Connected ontology in K .
7. I satisfies each ontology mentioned in an owl:imports annotation directive of

any Ki. �

At this point, it is worth discussing the semantics we have provided to URIs within
an E-Connection.

The meaning of names is a contentious issue in the Semantic Web. Numerous
proposals have been given for how to provide meaning for names in the Semantic
Web, ranging from a strict localized model-theoretic semantics to proposals for a
unified single meaning. Certainly, the latter was the original goal of URIs, as “global”
identifiers. However, currently, the meaning of a name in RDF and hence in OWL is
relative to a particular RDF graph [7]. In other words, the meaning of the same URI
in other documents is not considered at all. The only way that the OWL standards
provide in order to take into account the meaning of a URI in a different ontology
is to import that ontology. When an ontology imports another one, identical URIs
are merged; otherwise, the meaning of a URI is entirely “local” to an RDF/OWL
document.

In the framework of E-Connections, we provide a stronger meaning to URIs.
Roughly, we prevent the use of the same global name (URI reference) to denote
different things within an E-Connection.

Recall also that, although each ontology within an E-Connection is interpreted in
a different domain, datatypes in every ontology are interpreted in the same domain.
As opposed to the case of object domains, there is no reason to partition the datatype
domain. Note that the original E-Connections framework as presented in [25] does
not consider datatype theories, nor we considered datatypes in the reasoning algo-
rithms presented in [9]. However, our approach in this paper concerning datatypes
does not affect the results in [25] and allows for a straightforward extension of the
algorithms in [9].

The main reasoning services are, as in OWL, consistency and entailment.

Definition 7. An E-Connected ontology K1 is consistent with respect to a datatype
mapD (denoted by I |=D K iff there is some combined interpretation I with respect
to D such that I satisfies K1. �

Definition 8. An E-Connected ontology K1 entails an E-Connected ontology K2

with respect to a datatype map D, denoted by K1 |=D K2 iff every combined
interpretation that satisfies K1 with respect to D also satisfies K2 with respect
to D. �
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The following results are a straightforward consequence of the definitions of entail-
ment and satisfaction under a combined interpretation:

Consequence 1. Let K1 be an E-Connected ontology and K = (K1, ...,Kn) be the
E-Connection induced by K1. Then K1 |=D Kj , ∀j = 1, ..., n.

Consequence 2. The E-Connection K = (K1, ...,Kn) induced by K1 entails the
E-Connection O = (O1, ..., Om) induced by O1 with respect to a datatype map D
(K |=D O) iff K1 |=D O1.

These results show that a E-Connection is identified in a Semantic Web context by
its “generating” E-Connected ontology.

11.6 Reasoning

11.6.1 Reasoning in OWL

OWL-DL and OWL-Lite can be seen as expressive Description Logics, with an onto-
logy being equivalent to a Description Logics knowledge base. Among the myriad of
very expressive DLs, the SH family of logics plays a prominent role [19]. All mod-
ern, highly optimized DL reasoners , such as FaCT [15], RACER [31] and Pellet[27]
have been designed for these logics.

In order to obtain a suitable balance between computational properties and ex-
pressivity, the design of the DL-based species of OWL has been grounded on the

Table 11.3. The SH family of Description Logics

Construct Name DL Syntax OWL Syntax Logic
Atomic Concept A A(URI reference)

Universal Concept � owl:Thing
Atomic Role R R (URI reference)
Conjunction C �D intersectionOf(C,D) S
Disjunction C �D unionOf(C,D)

Negation ¬C ComplementOf(C)
Existential Restriction ∃R.C restriction(R someValuesFrom(C))

Value Restriction ∀R.C restriction(R allValuesFrom(C))
Transitive Role Trans(R) ObjectProperty(R [Transitive])
Role Hierarchy R � S subPropertyOf(R,S) H

Inverse Role S = R− ObjectProperty(S [inverseOf(R)]) I
Nominals {o1, ..., on} OneOf(o1, ...., on) O

Functional Role Funct(R) ObjectProperty(R [Functional]) F
Functional ≥ 2R restriction(R minCardinality(1))

Number Restrictions ≤ 1R restriction(R maxCardinality(1))
Unqualified ≥ nR restriction(R minCardinality(n)) N

Number Restrictions ≤ nR restriction(R maxCardinality(n))
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SH family of logics. OWL-Lite corresponds to SHIF(D), while OWL-DL corre-
sponds to SHOIN (D).

The first algorithm for the logic SH was presented in [14]. The extension for
SHIF was presented in [21], and qualified number restrictions (an extension of
the number restrictions used in OWL) were introduced for the logic SHIQ in [19].
Nominals and datatypes were presented for the logic SHOQ(D) in [17]. In [13] it
was proved using the tableau systems formalism that satisfiability in SHIO is can
be decided with a tableau algorithm. Finally, the design of a reasoning procedure for
SHOIQ has been achieved recently [22].

11.6.2 A Family of E-Connection Laguages

There are two ways to obtain new E-Connection languages. The first possibility is
to vary the set of component logics; the second would be to change the logic of the
link properties, i.e., to vary the set of operators that can be applied on link properties.
Different choices in the component logics and in the logic of the link properties will
yield, in general, different combination languages, with different expressivity and
computational properties.

A family of E-Connection languages can be specified by fixing the component
logics and varying the logic of the link properties. In this paper, we have tacitly
specified, in the abstract syntax and semantics section the E-Connection language
that allows the use all the expressivity of SHOIN (D), and hence of OWL-DL, in
the component ontologies, and the use of inverse link properties, link hierarchies
and someValuesFrom, allValuesFrom, hasValue and cardinality restrictions on link
properties.

It is not hard to see that the first requirement for reasoning on an E-Connection
language is the ability to reason independently on each of its component logics. Our
aim is to show that it is possible to design and implement practical tableau-based
algorithms for E-Connections on top of existing DL reasoners. Therefore, in this
paper, we will focus on the family of combination languages involving OWL-DL—
that is, SHOIN (D)—ontologies.

Once the component logics have been identified, it remains to investigate the ex-
pressivity that should be allowed on link properties. Due to the presence of inverses
in this language, cardinality restrictions on link properties allow to transfer nominals
in its full generality from one component to another [25], which would invalidate the
separation of domains and hence “break” the E-Connection.11 Note that the problem
we just described is related to the ability to transfer individuals between components,
which violates the principles of E-Conenctions; it is not related to decidability in the
case the E-connection only combines SHOIN is always decidable.

However, it is worth emphasizing here that, in many special cases, we can still
process combined OWL-DL ontologies, even if number restrictions and inverses on
link properties, as well as nominals, are used in the combination. Indeed such an E-
Connected KBK = (K1, ...,Kn) can be processed as long as, for every possible pair

11 Obviously, if none of the component logics contained nominals, it would be safe to use the
full expressivity on the link properties.
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of component ontologiesKi,Kj for i, j ∈ {1, ..., n}, i �= j, the following conditions
do not hold simultaneously:

1. Some Ki contains nominals.
2. An inverse of a link property from Ki to Kj or vice-versa is used.
3. Number restrictions on links from Ki to Kj or vice-versa are used.

Of course, in order to be able to handle arbitrary combined ontologies, we need
to further restrict the expressivity allowed on link properties. In the sections that
follow, we will discuss how to handle algorithmically the E-Connections verifying
the conditions above.

11.6.3 Tableau Algorithms for E-Connections of Description Logics

In this section, we provide a general intuition on how the reasoning algorithms we
have developed for E-Connections work. We will not include here a detailed presen-
tation and refer the interested reader to [9] for a detailed discussion. We assume that
the reader is familiar with tableaux algorithms for DLs.

Modern DL reasoners, like FaCT, RACER and Pellet implement the tableaux
method [4] for solving the main reasoning tasks in expressive Description Logics.

Tableau algorithms are focused on satisfiability; other reasoning problems, like
subsumption, or entailment (the main inference problem in OWL) can be solved by
first reducing them to satisfiability [3].

In order to check satisfiability of a given concept C0 w.r.t. a knowledge base Σ, a
tableau algorithm tries to construct a common model ofC0 andΣ. If it succeeds, then
the algorithm determines that C0 is satisfiable w.r.t. Σ, and unsatisfiable otherwise.

The main elements that specify a tableau algorithm are [5]:

• An underlying data structure, called the completion graph.
• A set of expansion rules.
• A blocking condition, for ensuring termination.
• A set of clash-triggers, to detect logical contradictions (clashes).

Completion graphs are finite, labeled, directed graphs, which roughly correspond
to abstractions of possible models for C and Σ.

Each node and edge in a completion graph G is labeled with a set of concepts and
a set of roles respectively. To decide the satisfiability of C w.r.t. Σ, the algorithm
generates an initial graph G, constructed from C and Σ and repeatedly applies the
expansion rules until a clash (i.e. a contradiction) is detected in the label of a node,
or until a clash-free graph is found to which no more rules are applicable. The appli-
cation of a rule may add new concepts to the label of a node, trigger the generation
of a new node or cause two different nodes to merge.

Tableau algorithms for expressive DLs are non-deterministic in the sense that
there might exist completion rules that yield more than one possible outcome. A
tableau algorithm will return “satisfiable” iff there exists at least one way to apply
the non-deterministic rules such that a clash-free graph is obtained, to which no rules
are applicable.
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Termination is guaranteed through blocking: halting the expansion process when
a “cycle” is detected [4]. When the algorithm detects that a path in the graph will be
expanded forever without encountering a contradiction, then the application of the
generating rules is blocked, so that no new nodes will be added to that path. There
are different kinds of blocking conditions, depending on the presence of inverses and
number restrictions in the logic.

The basic strategy to extend a DL tableau algorithm with E-Connections support
is based on “coloring” the completion graph 12. Nodes of different “colors”, or sorts,
correspond to different domains (ontologies).

The presence of someValuesFrom and minCardinality restrictions on a node
label trigger the generation of a successor node of a different “color”. The presence
of different kinds of nodes in a the graph has several consequences in the way the
tableau algorithm works:

• A node may only be blocked by an ancestor node with the same color, and the
blocking condition applied to those nodes depends on the logic of the corres-
ponding component ontologies. This implies, for example, that if a certain com-
ponent ontology does not contain inverse object properties, we can apply subset
blocking to its corresponding nodes in the tableau expansion even if other com-
ponent ontologies do contain inverses.

• If a node x is a successor of a node y with a different color, then a special blocking
condition is applied to x. Such a blocking condition only depends on the logic of
the link properties, and not on the logic of the component ontology to which x
corresponds. Intuitively, if inverses on link properties are present, then equality
blocking is applied; otherwise, subset blocking suffices.

• In Description Logics, inclusions between complex classes C,D are usually
transformed into a single class involving a disjunction between D and the nega-
tion of C. Such a concept is then added to the label of all the nodes in the graph
during the execution of the algorithm. With E-Connections, each of those classes
is added only to the labels of nodes corresponding to that component ontology.

• The presence of maxCardinality restrictions and nominals (has-Value, oneOf)
in node labels may cause the merge of two nodes in the graph. Obviously, only
nodes of the same color can ever be merged.

When implementing tableau algorithms for E-Connections as an extension of an
OWL reasoner, all these issues have to be thoroughly considered.

11.6.4 Implementation in an OWL Reasoner

We have implemented the tableau algorithms for the E-Connection languages that
combine OWL-DL ontologies by either disallowing inverses or number restrictions
on the link properties in the OWL reasoner Pellet.

Pellet is a sound and complete tableau reasoner for the description logic
SHOIN (D). Pellet implements the usual suite of optimizations, including lazy

12 Please, note that our problem has no relation with the graph coloring problem. We just use
the term “color” metaphorically to distinguish between different kinds of nodes.
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unfolding, absorption, dependency directed backjumping, and semantic branching.
It provides support for handling conjunctive ABox queries and incorporates datatype
reasoning for the built-in primitive XML Schema datatypes. Pellet is implemented
in pure Java and available as open source software.

Pellet has been extended to process E-Connected ontologies, which are imple-
mented as a collection of TBoxes and RBoxes, indexed by the ontology they corres-
pond to. During parsing, each class, object property, datatype property and link
property is added to its corresponding component, and after parsing each compo-
nent of the KB is pre-processed separately.

When performing a satisfiability test, the nodes in the tableau expansion are also
labeled with the ontology they refer to. Links are implemented as object properties
of a special kind, since they indicate the name of the foreign ontology they point
to. When the generating link rules are applied, the ontology label of the new nodes
is set to the foreign ontology of the link property involved in the rule application.
The distinction between different kinds of nodes also implies that the rules will only
merge nodes belonging to the same ontology, and the class names in labels will be
replaced by their definition in the corresponding ontology. Finally, blocking distin-
guishes between nodes which are generated as link successors and nodes created as
successors of common roles, since different conditions apply.

When a KB is represented using E-Connections, we can use a set of optimization
techniques that would not be applicable if the KB had been represented monolithi-
cally using a single KB in OWL. All these techniques take advantage of the parti-
tioning of the domains in order to reduce the computational cost:

• Detection of obvious non-subsumptioms: Non-subsumptions are hard to detect
for tableaux algorithms [16]. Typically, when computing the classification hier-
archy of a DL ontology, many subsumption tests that are performed at each node
are very likely to fail. These unnecessary tests can be computationally costly
and also very repetitive, and hence they affect significantly the performance of a
DL reasoner. This problem is usually dealt with using caching, an optimization
technique that allows to prove non-subsumptions by using cached results from
previous satisfiability tests.

In an E-Connection, many non-subsumptions become obvious, since a sub-
sumption test A � B involving two classes A,B belonging to different ontolo-
gies in the E-Connection will necessarily fail. However, if these classes were
contained in a DL ontology, the satisfiability test could have been actually per-
formed. Hence, the separation of ontologies using E-Connections naturally en-
hances the effect of caching for avoiding unnecessary subsumption tests.

• Separation of non-absorbable GCIs: When general inclusion axioms are
present in a knowledge base, a disjunction must be added to the label of each
node for each GCI. The resulting increase of non-determinism in the tableau ex-
pansion dramatically affects the performance of the DL reasoner. In order to over-
come this problem, modern DL reasoners implement an optimization technique
called absorption [16], which allows to transform many GCIs into primitive def-
inition axioms. However, although absorption typically allows to eliminate most
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of the GCIs in a knowledge base, many general axioms may still remain. Non-
absorbable GCIs, even in a reduced number, can notably degrade the performance
of reasoners. In an E-Connection, non-absorbable GCIs are typically also spread
among the different ontologies of the combination. When performing the tableau
expansion, a GCI only adds a disjunction to the nodes corresponding to the onto-
logy the GCI belongs to, whereas, in the case of a single ontology, the same GCI
would add a disjunction in all the nodes during the expansion.

• Separation of ABox individuals: Typical reasoning services when ABoxes are
present are instantiation (checking if an individual is an instance of a concept),
and retrieval (computing all the instances of a certain concept). The presence of
a large ABoxes degrades significantly the performance of DL reasoners. When
using E-Connections, the ABox axioms and individuals are partitioned among
the different ontologies in the combination. This separation is important since it
may spare the application of a large number of rules in many satisfiability tests.

• Optimization of blocking and better use of certain optimization techniques:
Blocking ensures the correct termination of tableau algorithms by limiting the
tree expansion depth, which otherwise would become infinite. However, when
dealing with logics like SHIQ, the blocking condition is quite sophisticated
and blocking may occur late in the tableau expansion. Having a more permissive
blocking condition is important to establish blocks at a shallower depth, and can
substantially increase performance. Although the restrictions can be made less
strict [18], the resulting blocking condition still remains less efficient than subset
or equality blocking, which unfortunately are not sound for logics like SHIQ.
However, in an E-Connection, blocking is optimized for each of the components,
which implies, for example, that subset blocking is still applicable in a com-
ponent without inverse properties, even if such a component is connected to a
SHIQ component. On the other hand, certain optimization techniques are not
valid for certain logics. For example, caching the satisfiability status of nodes
within a tableau expansion cannot be performed in logics containing inverse
roles. For the same reason as in blocking, optimizations like caching could still
be applied to some of the component ontologies in the combination.

11.7 Conclusion and Future Work

In this paper, we have presented E-Connections as a suitable formalism for com-
bining OWL ontologies. We have discussed the applicability and usefulness of E-
Connections as a combination technique for many application scenarios.

In order to integrate E-Connections in the Semantic Web, we have extended the
syntax and semantics of the OWL-DL recommendation and we have discussed the
issues of handling URIs and imports in this new framework. We have provided suit-
able tool support for browsing and editing E-Connected ontologies in Swoop.

We have shown how to reason with certain families of E-Connections and proved
that it is possible to implement our tableau algorithms for E-Connections as an exten-
sion of existing DL reasoners, as shown by our implementation in the Pellet system.
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Our initial empirical results suggest that reasoning over expressive E-Connections
is reasonably efficient and, in practice, it is not harder than reasoning with OWL
itself. Finally, we have also identified the limitations of E-Connections as a combi-
nation technique, in particular for tasks, such as ontology refinement, that involve
connecting ontologies dealing with highly overlapping domains.

In the future, it would be interesting to explore the design and implementation of
practical algorithms for combinations of Description Logics with spatial and tem-
poral logics. These combinations are important for many applications, since OWL
is not a suitable formalism for representing temporal and spatial information. For
instance, in the Wine Ontology example, the ontology about regions could be rep-
resented using a qualitative spatial logic, like S4u, instead of using OWL. In [31]
the decidability of such combinations was proved and the development of practi-
cal algorithms will provide a strong motivation for bringing these formalisms to the
Semantic Web.
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Summary. This chapter demonstrates the use of the Distributed Description Logics frame-
work (DDL) and the distributed reasoner DRAGO as formal and practical tools for composing
modular ontologies from purely terminological SHIQ ontology modules. According to DDL
vision, a modular ontology can be formally represented by a distributed T-box, comprising a
set of separate T-boxes (one for each ontological module), which are pairwise interrelated by
“bridge rules” (inter-module connectives allowing to access and import knowledge contained
in modules). The chapter gives the semantic explanations of knowledge import via bridge
rules as well as presents the distributed tableaux reasoning technique for its computation.
Practically, the implementation of the distributed tableaux in DRAGO reasoner and its use for
modular ontology composition is described and experimentally evaluated.

12.1 Motivation and Approach

Recent years have witnessed the theoretical birth and practical maturation of the web
ontology technology. Significant amount of academic research has been directed on
the proposal and later the World Wide Web consortium standardization of represen-
tational languages for publishing ontologies on the web, such as OWL [4], proving
the appropriateness of Description Logic formalism for being an underpinning the-
ory for performing the formal analysis of ontologies [3, 2, 1, 15, 13], and finally the
development of effective reasoning algorithms [12, 18, 19, 25, 26, 16] and practical
implementations of automatic inference systems [14, 11, 10] facilitating the auto-
mated processing and use of ontologies. Despite the important steps ahead toward
strengthening the web ontology technology, the distinguishing feature of the devel-
oped representation languages and tools is their monolithic treatment of ontologies
and a little support for organizing ontologies in a modular way.

Practical need for ontology modularization and clarification of what a modular
ontology is can be perceived from two complementary scenarios. A promising way
of dealing with large-scale ontologies is to decompose (partition) them into a collec-
tion of smaller, more specific ontologies, which, together with the relations between

H. Stuckenschmidt et al. (Eds.): Modular Ontologies, LNCS 5445, pp. 321–347, 2009.
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them, constitute the representation that is semantically equivalent to the original on-
tology. Conversely, it may be desirable to compose a set of ontologies into a coherent
network that can be referred to as a single entity. In both cases, the ultimate ontology
can be referred as modular – it comprises a set of autonomous ontological modules,
which are interrelated by inter-module connectives. The inter-module connectives
enable modules to access the knowledge contained in other connected modules and
allowing, therefore, the integral use of the whole modular ontology.

In the current proposal of web ontology language (OWL) the support of ontology
modularization is represented by the construct owl:imports. The import functionality
of OWL, however, has several limitations moderating its modularization capabilities.
Theoretically, the semantics of OWL is defined in such a way that all ontologies,
imported and importing, share the single global interpretation. As a consequence,
imported and importing ontologies cannot describe differently the very same portion
of the world, using different perspectives and levels of granularity, without rising a
logical contradiction. The practical consequence of the global semantics of OWL re-
sults in a global reasoning approach implemented in existing reasoners. The global
reasoning approach consists in taking all ontologies participating in the import, com-
bining them together in a unique reasoning space and further reasoning in it. The
final shortcoming of owl:imports concerns with its ability to import ontologies only
as a whole, while it is often the case in practice that only a certain part of imported
ontology is of interest to the importing ontology.

Taking the above disadvantages, we see the following challenging requirements
to be satisfied by the practically utilizable ontology modularization approach:

• Supporting semantic locality of ontological modules. This requirement addresses
the ability of modules to have semantics different from the created modular on-
tology, being expressed in local languages of different expressive power so that
each module can be dealt with a reasoner, specially tuned for it.

• Preserving loose coupling and autonomy of ontological modules. In other words,
modularization technology should be able to keep ontological modules as sepa-
rate contributors to the desired modular ontology, rather than hardly integrating
them in a monolithic entity. This consequently implies that some sort of a dis-
tributed reasoning is required to operate over a set of autonomous ontological
modules.

• Enabling a partial reuse of knowledge from ontological modules. In many prac-
tical cases we would like to reuse only part of a certain module, since the other
part of the module may be irrelevant to the application domain of the modular
ontology or, in the worst case, can even contradict some of its knowledge.

• Preserving directionality of knowledge import. This requirement means that the
ontology module should not be affected by the modular ontology importing it.
For example, if the importing ontology becomes inconsistent the modules it im-
ports should not be automatically rendered as inconsistent too.

• Ensuring a scalability of modular ontology technology. Scalability criterion ad-
dresses two aspects: representation and reasoning. The scalability of the rep-
resentation means the ease of large-scale ontology maintenance through its
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modularization, while the reasoning scalability concerns with the ability to rea-
son with large-scale ontologies by modularizing them.

In this chapter we demonstrate the use of the Distributed Description Logics
framework [5, 20] and the distributed reasoner DRAGO [21] as formal and prac-
tical tools for composing modular ontologies. In this work we consider construc-
tion of modular ontologies from purely terminological SHIQ ontologies. Such a
restriction is explained by the current limitations of the DDL distributed reasoning
technique implemented in DRAGO. According to DDL, a modular ontology is for-
mally encoded into a distributed T-box, comprising a set of T-boxes (one for each
ontological module), which are pairwise interrelated by “bridge rules” (inter-module
connectives allowing to access and import knowledge contained in modules). The
semantics of DDL fits into requirements of semantic locality and directionality, the
partial reuse criterion is met due to the use of bridge rules allowing to selectively ac-
cess the knowledge in the modules, loose coupling and reasoning scalability is met
by the use of the distributed reasoning approach of DDL.

The chapter is further organized as follows. In Section 12.2 we introduce the basic
definitions of the DDL framework. In Section 12.3 we outline the use of DDL for
encoding modular ontologies. In Section 12.4 we present how bridge rules allow to
access and import knowledge from modules. The distributed tableaux reasoning tech-
nique for automatic computation of knowledge import via bridge rules is presented
in Section 12.5. The practical implementation of the distributed reasoner DRAGO
and its use for modular ontologies composition is discussed in Section 12.6. The ex-
perimental evaluation of the proposed modular framework finalizes the presentation
in Section 12.7.

12.2 Introduction to Distributed Description Logics

As introduced by Borgida and Serafini in [5], Distributed Description Logics (DDL)
is a framework for representing multiple ontologies pairwise interconnected by di-
rectional semantic mappings. In this section we overview basic syntactical constructs
of DDL, discuss the principle semantic assumptions of the framework, and further
describe the supported inference services.

12.2.1 Syntax

Given a set O = {Oi}i∈I of ontologies, let {DLi}i∈I be a set of Description Log-
ics.1 For each i ∈ I , let us denote a T-box of DLi as Ti. Each T-box Ti contains
all the information necessary to define the terminology of an ontologyOi, including
not just concept and role definitions, but also general axioms relating descriptions,
as well as declarations such as the transitivity of certain roles. Given that setting, the

1 We assume the reader is familiar with Description Logic and related reasoning systems, as
described in [2].
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initial set of ontologies O can be formally represented as a corresponding family of
T-boxes T = {Ti}i∈I .

Since the very same symbol can be used in two ontologies with different meaning,
to unambiguously refer to elements of Ti, they are prefixed with the index i of the
ontology, e.g., i : C, i : C � D, and etc.

To express the links between concepts of different ontologies, DDL introduces a
special construct called a bridge rule.

Definition 1 (Bridge rule). Given a family T = {Ti}i∈I of terminologies, a bridge
rule from i to j is an expression of the following two forms:

i : X �−→ j : Y – an into-bridge rule

i : X �−→ j : Y – an onto-bridge rule

where X,Y are concepts of Ti and Tj respectively. The derived equivalence bridge

rule i : X ≡−→ j : Y can be defined as a pair of into- and onto-bridge rules from
i : X to j : Y . �

Bridge rules do not represent semantic relations stated from an external objective
point of view. Indeed, there is no such point of view on the web. As such, bridge
rules from i toward j express directional relations between i and j viewed from the

j’s subjective point of view. Intuitively, the into-bridge rule i : PhDThesis
�−→

j : Thesis states that, from the j’s point of view, the concept PhDThesis in i
is less general than its local concept Thesis. Conversely, the onto-bridge rule i :
InProceedings

�−→ j : ConferencePaper expresses the j’s point of view that
InProceedings in i is more general than the local concept ConferencePaper in j.

Note, that since bridge rules reflect a subjective point of view, bridge rules from j
to i are not necessarily the inverse of the rules from i to j, and in fact there may be
no rules in one or both the directions.

Example 1. Let us consider two simple concept hierarchies, depicted in Figure 12.1,
extracted from two ontologies describing the domain of scientific publications.

The following are possible examples of bridge rules from O1 to O2:

1 : Publication ≡−→ 2 : ScientificPaper (12.1)

1 : InProceedings
�−→ 2 : ConferencePaper �WorkshopPaper (12.2)

1 : InBook
�−→ 2 : BookArticle (12.3)

�

Given a family of T-boxes and a possibility to interlace them with bridge rules, we
can define the notion of a distributed T-box.

Definition 2 (Distributed T-box). A distributed T-box T = 〈T ,B〉 consists of a
collection of T-boxes T = {Ti}i∈I and a collection of bridge rules B = {Bij}i�=j∈I

between pairs of them. �
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Fig. 12.1. Extracts of concept hierarchies of two ontologies describing domain of publications

(a) Acyclic (b) Cyclic

Fig. 12.2. Examples of bridge graphs of distributed T-boxes

In order to characterize the topology of a distributed T-box, DDL utilizes a notion of
a bridge graph.

Definition 3 (Bridge graph of a distributed T-box). Given a distributed T-box
T = 〈T ,B〉, a bridge graph GT of a T is a directed graph with a set of nodes
corresponding to collection of T-boxes T = {Ti}i∈I and an arc from i to j when the
set of bridge rules Bij in the family B is non-empty. �

As depicted in Figure 12.2(a) and 12.2(b), similarly to the classical graph theory,
bridge graphs can be acyclic and cyclic, depending on a family B of bridge rules of
the distributed T-box.

12.2.2 Semantics

DDL semantics is a customization of the Local Model Semantics for Multi Context
Systems [8, 9]. Given a family T = {Ti}i∈I of ontologies, the fundamental idea
of DDL is that all ontologies Ti are locally interpreted on their local interpretation
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Fig. 12.3. Visualized semantics of DDL

domains. Given that setting, the first component of DDL semantics is a family of
local interpretations {Ii}i∈I , one for each Ti.

In accordance with the definition of interpretation in Description Logic, each in-
terpretation Ii consists of a non-empty, possibly infinite domainΔIi , and a valuation
function ·Ii , which maps every concept to a subset of ΔIi , every role to a subset of
ΔIi × ΔIi . In order to support the directionality of knowledge import via bridge
rules, as well as allow to semantically localize inconsistent parts of distributed T-
boxes, the DDL framework admits the use of a special hole interpretations as a local
interpretation. For the sake of simplicity, we omit the discussion of technical proper-
ties of DDL with holes in this work and refer the interested reader to [20].

Since local interpretation domainsΔIi can be heterogeneous, the semantic corre-
spondences between them are modeled using a second component of DDL seman-
tics, a domain relation.

Definition 4 (Domain relation). A domain relation rij from ΔIi to ΔIj is a subset
of ΔIi ×ΔIj , such that

• rij(d) denotes {d′ ∈ ΔIj | 〈d, d′〉 ∈ rij}
• for any subset D of ΔIi , rij(D) denotes

⋃
d∈D rij(d)

• for any R ⊆ ΔIi ×ΔIi , rij(R) denotes
⋃

〈d,d′〉∈R rij(d)× rij(d′) �

A domain relation rij represents a possible way of mapping the elements ofΔIi into
the domainΔIj , seen from subjective j-th perspective. For instance, if ΔI1 andΔI2

are the representations of cost in US Dollars and in Euro, then r12 could be the rate
of exchange function, or some other approximation relation.

It should be noted that the domain relation is defined as a generic relation – thus
it is not a function; it is not total; rij is not the inverse of rji, i.e., rij �= r−1

ji ; it is not
compositional, i.e., in a general setting (rij ◦ rjk) �= rjk .
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Figure 12.3 intuitively depicts component elements of DDL semantics. All to-
gether these elements form the principle semantic component of DDL – a distributed
interpretation.

Definition 5 (Distributed interpretation and satisfiability). A distributed interpre-
tation I = 〈{Ii}i∈I , {rij}i�=j∈I〉 of a distributed T-box T = 〈T ,B〉 consists of a
family of local interpretations Ii (classical or holes) on local interpretation domains
ΔIi and a family of domain relations rij between pairs of local domains.

A distributed interpretation I satisfies a distributed T-box T = 〈T ,B〉, is called
a model of T, if all T-boxes Ti in T = {Ti}i∈I are locally satisfied

• Ii |= Ti

and all bridge rules are satisfied

• rij(CIi) ⊇ DIj for all i : C
�−→ j : D ∈ Bij

• rij(CIi) ⊆ DIj for all i : C
�−→ j : D ∈ Bij �

12.2.3 Inference Services

Similarly to reasoning services defined for Description Logic, the fundamental rea-
soning services of Distributed Description Logics lay in verification of concept sat-
isfiability/subsumption within certain ontology. What makes the difference is that in
DDL, besides the ontology itself, the other linked ontologies should be taken into
account.

Given a distributed T-box T = 〈T ,B〉, the distributed inference services can be
defined as follows:

Satisfiability: Given a conceptC of Ti,C is satisfiable in iwith respect to T if there
exist a distributed interpretation I of T such that CIi �= ∅.

Subsumption: Given a pair of conceptsC andD of Ti, C is subsumed by a concept
D in i with respect to T if for every distributed interpretation I of T we have
that CIi ⊆ DIi . In this case we will write T |= i : C � D.

12.3 Modular Ontologies as Distributed T-Boxes in DDL

As it has been outlined in the opening section of this chapter, a modular onto-
logy comprises a set of autonomous ontological modules, which are interrelated by
inter-module connectives allowing to access and import knowledge contained in the
connected modules. A modular ontology, consequently, can be defined as a tuple
consisting of a collection of ontological modules plus inter-module connectives be-
tween them. Given a module, the representational language of it can be partitioned
into the “local language” and “external language”. Local language contains symbols
whose meaning is defined locally within a module, whereas the meaning of symbols
belonging to external language is defined in the external module and can be accessed
following the inter-module links.
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Revisiting definitions of the Distributed Description Logics framework given in
the previous section, we see DDL as fitting the above vision of modular ontologies.
The general idea consists in encoding modules as T-boxes and utilizing bridge rules
as means of bringing the meaning of externally defined symbols into a local con-
text of a module. Consequently, a modular ontology can be formally defined as a
distributed T-box, in which T-boxes Ti represent DL formalization of i-th ontolog-
ical module, and collections of bridge rules Bij formalize the inter-module links
allowing the module j to access the knowledge contained in the module i.

Given a bridge rule i : X R−→ j : Y , with R ∈ {�,$,≡}, the module j views
the concept j : Y as externally defined concept, since its meaning is defined in
the module i. The use of bridge rules enables the designer selectively reuse know-
ledge contained in ontological modules without a necessity to import modules as
wholes.

12.4 Knowledge Access and Import via Bridge Rules

In this section we shed the light on the capability of bridge rules to transfer know-
ledge across component ontologies in DDL. This mechanism plays a substantial role
in enabling the use of DDL for access and import of knowledge contained in mo-
dules, and hence enabling the overall composition of modular ontologies. We start
by recalling the knowledge propagation patterns in DDL and then give a charac-
terization to these propagations in terms of operator. Further, we state the result on
soundness and completeness of the knowledge propagation in DDL when expressiv-
ity of component ontologies is restricted to SHIQ Description Logic. The material
of this section relies on works [5, 20], in which the propagation of knowledge in
DDL has been introduced and studied.

12.4.1 Knowledge Propagation Patterns

To describe the capability of bridge rules to propagate knowledge from T-box i (the
source) to j (the target) in a distributed T-box T = 〈T ,B〉, we apply the following
scheme:

(1) axioms in i, (2) bridge rules from i to j
(3) axioms in j

which must be read as: if the axioms in (1) are true in Ti, the bridge rules in (2) are
contained in Bij , then the axioms in (3) must be true in Tj .

The simplest case illustrating the knowledge propagation in DDL is the following:

i : A � B, i : A �−→ j : G, i : B �−→ j : H
j : G � H

(12.4)

Indeed,GIj ⊆ rij(AIi) ⊆ rij(BIi) ⊆ HIj .
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Fig. 12.4. Simple propagation of a subsumption axiom from Ti to Tj

In other words, a combination of onto- and into-bridge rules allows for propagat-
ing subsumption axioms across ontologies. Practically, this means that if an ontology
T1 contains an axiom InBook � Publication, and an ontology T2 just defines two

concepts ScientificPaper and BookArticle, then bridge rules 1 : Publication
�−→

2 : ScientificPaper and 1 : InBook
�−→ 2 : BookArticle entail in T2 the axiom that

BookArticle is a ScientificPaper. Figure 12.4 illustrates this simple subsumption
propagation graphically.

In languages that support disjunction, the simplest propagation rule can be gen-
eralized to the propagation of subsumption between a concept and a disjunction of
other concepts in the following way:

i : A � B1 � . . . �Bn, i : A
�−→ j : G, i : Bk

�−→ j : Hk (1 � k � n)
j : G � H1 � . . . �Hn

(12.5)
The important property of the described knowledge propagation is that it is di-

rectional, i.e., bridge rules from i to j support knowledge propagation only from i
toward j. Moreover, the generalized propagation rule (12.5), as we see further, ap-
pears to be the most general form of propagation across SHIQ ontologies and thus
allows capturing correctly and completely terminological propagation in DDL with
SHIQ components.

12.4.2 Soundness and Completeness

To capture the knowledge propagation, DDL proposes to associate with a set Bij of
bridge rules an operator with the same name, which essentially applies generalized
subsumption propagation, rule (12.5), to find a set of subsumption axioms in j-th
T-box which are the result of propagation, via bridge rules, of subsumption axioms
in i-th T-box.

Definition 6 (Bridge operator). Given a set of bridge rules B12 from T1 to T2, an
operator B12(·), taking as input T1 and producing a set of axioms for T2, is defined
as follows:
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B12(T1) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

G �
n⊔

k=1

Hk

∣
∣
∣∣
∣
∣
∣
∣
∣

T1 |= A �
⊔n

k=1 Bk

1 : A �−→ 2 : G ∈ B12

1 : Bk
�−→ 2 : Hk ∈ B12

1 � k � n , n � 02

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
�

The bridge operator contains essentially all the inferences that one can get by com-
bining into- and onto-bridge rules, which can be expressed by the following theorem.

Theorem 1. Let T12 = 〈{T1, T2}, {B12}〉 be a distributed T-box with two compo-
nent SHIQ T-boxes, T1 and T2, and a unidirectional set of bridge rules B12 from
T1 to T2, then for every pair X and Y of SHIQ concepts or roles of T2

T12 |= 2 : X � Y ⇐⇒ T2 ∪B12(T1) |= X � Y

Some remarkable outcomes:

Upper bound and complexity: If the mapping from 1 to 2 is finite and contains
m into-bridge rules and n onto-bridge rules, then the bridge operator B12 ap-
plied to a distributed T-box generates at most n ∗ 2m subsumption statements.
Since the propagation of statements needs checking subsumption in the source
T-box, which is EXPTIME complete, we have that computing subsumption in a
distributed setting is EXPTIME complete in the dimension of the source T-box
plus links.

Vanilla implementation: The above theorem supports a vanilla implementation of
forward chaining inference engine for DDL. The implementation consists of
three steps: computation of propagation operator B12(T1), construction of ex-
tended version of T-box T2 as T2 ∪B12(T1), and finally applying to this T-box
one of existing DL reasoners, such as FaCT++ [27], Racer [11], or Pellet [22].

This approach to reasoning has a strong advantage of reuse of existing highly
optimized DL reasoners, however it can be very costly for situations when se-
mantic mappings are changed dynamically or when the required number of
reasoning questions to be verified is relatively small. In the next section, we
overview an alternative, backward chaining reasoning approach, which does
“lazy”, or on demand, computation of propagated axioms.

As it has been shown in [20], the results of Theorem 1 can be generalized to ar-
bitrary distributed T-boxes T = 〈T ,B〉, containing more than two components. Ac-
cording to the generalization, the operator B for a family of T-boxes can be defined
as follows:

B({Ti}i∈I) =

⎧
⎨

⎩
Ti ∪

⋃

j �=i

Bji(Tj)

⎫
⎬

⎭
i∈I

2 In case when n = 0 we will denote
⊔0

k=1 Dk as ⊥.
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The remarkable thing is that if I is finite and each Bij is finite, then there is a
positive integer b such that for every family T = {Ti}i∈I of T-boxes Bb(T ) =
Bb+1(T ). If further we define operator B∗(T ) as Bb(T ) taking as b the first positive
integer witnessing the fixed point, then the following generalized result can be stated.

Theorem 2 (Soundness and Completeness). For every distributed T-box T =
〈T ,B〉 and for every pair X and Y of SHIQ concepts or roles of Ti

T |= i : X � Y ⇐⇒ B∗(T )i |= X � Y

where B∗(T )i is the i-th T-box in B∗(T ).

12.5 Distributed Reasoning Technique

In this section, we use theoretical results of the previous sections in order to define a
tableau-based decision procedure that is capable of checking subsumption (satisfia-
bility) in DDL, i.e., if T |= i : X � Y (T |= i : X) for some concepts X , Y . Note
that similarly to Description Logic, checking concept satisfiability can be reduced
to checking subsumption and vice versa [2]. For example, given concepts C and D,
i : C � D ⇐⇒ i : C � ¬D is unsatisfiable.

12.5.1 Intuition

The proposal, which we would like to pursue further in this section, consists in
building a decision procedure for a set T = {Ti}i∈I of ontologies which is dis-
tributed among them. More precisely, such a reasoning procedure is constructed
as a distributed combination of local decision procedures, which decide subsump-
tion/satisfiability with respect to ontologies Ti. Prior to formal introduction of the
distributed reasoning procedure, let us consider a simple example revealing the intu-
ition behind.

Example 2. Suppose that T12 is a two-component distributed T-box with a set of
unidirectional bridge rules between components, i.e., T12 = 〈{T1, T2}, {B12}〉. Fur-
thermore, suppose that T1 contains axiomsA1 � B1 andA2 � B2, whereas T2 does
not contain any axiom. Given the set of bridge rules

1 : B1
�−→ 2 : H1 1 : B2

�−→ 2 : H2 (12.6)

1 : A1
�−→ 2 : G1 1 : A2

�−→ 2 : G2 (12.7)

let us show that T12 |= 2 : G1 � G2 � H1 � H2, i.e., that for any distributed
interpretation I = 〈{I1, I2}, {r12}〉, (G1 �G2)I2 ⊆ (H1 �H2)I2 .

1. Suppose that by contradiction there exists x ∈ Δ2 such that x ∈ (G1 � G2)I2

and x �∈ (H1 �H2)I2 .
2. Then x ∈ GI2

1 , x ∈ GI2
2 and either x �∈ HI2

1 or x �∈ HI2
2 .
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Fig. 12.5. Illustration of the distributed tableaux intuition for Example 2

3. Let us consider the case where x �∈ HI2
1 . From the fact that x ∈ GI2

1 , by the
bridge rule (12.7), there exists y ∈ ΔI1 with 〈y, x〉 ∈ r12 such that y ∈ AI1

1 .
4. From the fact that x �∈ HI2

1 , by bridge rule (12.6), we can infer that for all
y ∈ ΔI1 if 〈y, x〉 ∈ r12 then y �∈ BI1

1 .
5. But, since A � B ∈ T1, then y ∈ BI1

1 and this is a contradiction.
6. The case where x �∈ HI2

2 is analogous. �

As shown in Figure 12.5, the reasoning above can be seen as a combination of a
tableau in T2 with a tableau in T1. Note that for the sake of simplicity the depicted
tableaux are given in the standard logic tableau notation so that a tableau contains
all possible branches created during the expansions. This is slightly different from
the tableau notation in Description Logic in which the distinct branch is supposed
to be a tableau. In the following section we clarify the formal definitions of tableau
technique for Description Logic.

12.5.2 Distributed SHIQ Tableaux Algorithm

In this section we present a distributed tableaux algorithm for reasoning in DDL.
The main design idea consists in constructing a network of standard DL tableaux,
one for each of ontologies in DDL, which communicate via mappings in a backward
fashion.

Since we restricted the expressivity of ontologies participating in DDL to SHIQ
DL, we will consider in the following that ontologies Ti are attached with SHIQ-
tableau reasoning procedures [17]. For sake of clarity, we first consider the case
of a distributed T-box T12 = 〈{T1, T2}, {B12}〉 composed from two components
and unidirectional bridge rules between them. Further we generalize the results to
distributed T-boxes with arbitrary bridge graphsGT=〈T ,B〉.



12 Composing Modular Ontologies with Distributed Description Logics 333

We need the usual notion of axiom internalization [17]: given a T-box Ti, the
concept CTi is defined as CTi =

�
E�D∈Ti

¬E � D; also, the role hierarchy RTi

contains the role axioms of Ti, plus additional axioms P � U , for each role P of Ti,
with U some fresh role.

The algorithm for testing j-satisfiability of a concept expressionX (i.e., checking
T = 〈T ,B〉 �|= j : X � ⊥) builds, as usual, a finite representation of a distributed
interpretation I, by running local autonomous SHIQ tableaux procedures to find
each local interpretation Ii of I.

Definition 7 (DTabj). For each j ∈ I , let us define a function DTabj which takes as
an input a concept X and further tries to build a representation of Ij with XIj �= ∅
(called a completion tree [17]) for the concept X � CTj � ∀U.CTj , by applying
SHIQtableau expansion rules, w.r.t. the role hierarchy RTj , plus the following ad-
ditional “bridge” expansion rule

Bij -rule:

if 1. G ∈ L(x), such that i : A �−→ j : G ∈ Bij ,

H ⊆ {Hk | i : Bk
�−→ j : Hk ∈ Bij},

B = {Bk |Hk ∈ H, i : Bk
�−→ j : Hk ∈ Bij},

2. DTabi(A � ¬
⊔

B) = Unsatisfiable for
⊔

H �∈ L(x),

then L(x) −→ L(x) ∪ {
⊔

H}
�

The idea behind the DTabj procedures is inspired by Definition 12.6 of the bridge
operator Bij(·). Whenever DTabj encounters a node x that contains a labelGwhich
is a consequence of an onto-bridge rule, then if G �

⊔
H is entailed by the bridge

rules, the label
⊔

H, is added to x. To determine if G �
⊔

H is entailed by bridge
rules Bij , DTabj invokes DTabi on the satisfiability of the concept A � ¬

⊔
B. In

its turn, DTabi will build (independently from DTabj) an interpretation Ii.

Example 3. To illustrate invocation and execution of DTabj functions, let us consider
the setting introduced in Example 1. Figure 12.6 depicts the trace of satisfiability
test of 2 : BookArticle � ¬ScientificPaper concept. Notice that at step (2) DTab2

applies Bij -rule and invokes DTab1 in accordance with the bridge rules (12.1)
and (12.3). �

Theorem 3 (Termination, Soundness, Completeness). Given SHIQ DL T-boxes
T1 and T2, let T12 = 〈{T1, T2},B12〉 be a distributed T-box. Then, given a SHIQ
concept X

1. a distributed procedure DTab2(X) terminates, and
2. X is satisfiable in T2 with respect to T12 if and only if DTab2(X) yields a

complete and clash-free completion tree.
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DTab2(BookArticle � ¬ScientificPaper)
Step Tree Labeling Expansion rule
(1) x L(x) = {BookArticle � ¬ScientificPaper} �-rule
(2)∗ x L(x) = {BookArticle,¬ScientificPaper} Bij -rule
(3) x L(x) = {BookArticle,¬ScientificPaper, ScientificPaper}
(4) x L(x) = {Clash}

DTab1(InBook� ¬Publication)

Step Tree Labeling Expansion rule
(1) x L(x) = {InBook � ¬Publication}

... SHIQ-rules
(n) x L(x) = {Clash}

Fig. 12.6. Illustration of satisfiability test of 2 : BookArticle � ¬ScientificPaper

Some remarkable observations and generalizations of the above theorem:

Application to parallelization: The construction of the distributed interpretation
proposed in the distributed tableaux algorithm enjoys parallelization; each lo-
cal tableau procedure DTabj can run independently from the others, without
checking for standard SHIQ-blocking conditions with nodes generated by the
other tableaux.

Generalization to cycles: The second observation concerns with the possibility of
generalization of the distributed tableaux algorithm to the case of distributed T-
boxes with arbitrary bridge graphs. To prevent the infinite looping due to the
possible cycles in the bridge graph and guarantee the termination of the dis-
tributed procedure, we can apply the standard cycle resolution strategy used in
distributed query answering systems. Namely, the initial satisfiability request to
a certain DTab procedure is marked with a unique identifier, say id, which is
later on used for marking all of the requests generated by bridge expansion rules
to other DTabs. If during traversing the bridge graph the request generates itself,
then it is required to be blocked, i.e., DTab returns value “Satisfiable” and thus
bridge expansion rules are not applied.

Application to caching: A number of researchers have considered the idea of
caching locally the necessary information from the imported ontology Tother ,
since this is assumed to be both more efficient (there is no need to interrupt
local reasoning, while waiting for answers from the other ontology), and more
perspicuous from the point of view of the local user: in order to understand an
imported concept D, it is not necessary to understand all of Tother , only the lo-
cally cached part, which is presumed to be much smaller. Such an approach to
the task of reasoning with modular ontologies is exploited in [23]. Theorem 2 of
the previous section indicates that it is possible to finitely pre-compile in a sound
and complete manner the subsumption information imported into an ontology Tj

by bridge rules in a distributed T-box T: compute and store it.
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12.6 Distributed Reasoning with DRAGO

In this section we overview the design and implementation principles that lay in the
base of DRAGO (Distributed Reasoning Architecture for a Galaxy of Ontologies),
the system for reasoning with multiple ontologies interconnected by pairwise links.3

The material of the section relies on the original proposal of DRAGO by Serafini and
Tamilin in [21].

12.6.1 General Vision

As depicted in Figure 12.7, DRAGO envisages a setting when multiple ontologies
together with semantic mappings between them are distributed amongst a peer-to-
peer network of DRAGO Reasoning Peers, or shortly DRP.

Each peer DRPp hosts an ontologyOp together with a set of semantic mappings
{Mpi}i�=p incoming to Op from other ontologies Oi. Furthermore, the DRP hosts a
standard tableau-based DL reasoner Rp (FaCT [14], RACER [11], Pellet [10], etc.)
which is supposed to be optimally tuned for the local language of Op. The tableau
algorithm of each local reasoner Rp is modified by enriching it with additional ex-
pansion rules in accordance with the distributed reasoning algorithm presented in the
previous section.

Fig. 12.7. Peer-to-peer reasoning vision of DRAGO

3 The DRAGO system is available for download from http://drago.fbk.eu
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The modifications, performed to local reasoners, allow hosting DRPs to invoke
their reasoners in two inference modes: local and distributed. The local reasoning
mode consists in executing the standard DL tableau functionality of a reasoner. Con-
versely, the distributed reasoning mode applies the bridge expansion rules in order
to take into account semantic mappings and additional knowledge induced by them.
As such, the distributed reasoning mode makes reasoning peers communicate via
mappings.

Services provided by each reasoning peer can be partitioned into three categories:

• Registration service allows attaching ontology and semantic mappings to a rea-
soning peer.

• Reasoning services offer access to local and distributed peers’ inference func-
tionality over the hosting ontology.

• Communication service is responsible for propagating reasoning requests to
other, foreign, reasoning peers.

The registration and reasoning services are public services, thus they can be in-
voked by users or applications working with reasoning peers. While the communi-
cation service is private – it is invoked only by a peer itself in order to establish
communication channels with other peers when this is required by the distributed
tableaux reasoning algorithm.

12.6.2 Architecture

The DRAGO Reasoning Peer is a principle building block of the DRAGO system.
Each peer, being started, gets a reference address, allowing other peers or other ap-
plications to request its functionality.

Figure 12.8 depicts the unfolded view of DRP showing its major functional com-
ponents. Let us stepwise describe the role and the details of each of the components.

Registration Service. In order to host an ontology with a collection of attached
semantic mappings, a user or application invokes the Registration Service of a DRP
and sends to it the following registration information:

• URL of the local ontology,
• collection of URLs for semantic mappings attached to the local ontology,
• for each of foreign ontologies participating in the attached semantic mapping,

the reference address of DRPs hosting them should be specified; doing that we
acquaintance the current DRP with the other peers so that the future distributed
reasoning is possible.

The registration procedure involves the following components of DRP. The Parser
component translates the peer ontology and mappings to the object representation of
DL knowledge base. The ontology parser is tailored on ontology languages (e.g.,
OWL/RDF [4]). The result of the ontology parsing consists in extraction of T-box.
The mapping parser is tailored on semantic mapping languages (e.g., C-OWL [6]).
The result of its application is a set of extracted semantic correspondences (M-box).
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Fig. 12.8. Architecture of the DRAGO Reasoning Peer

All steps together form the tuple 〈T-box, M-box〉 that constitutes a Distributed Know-
ledge Base of the DRP.

The Acquaintances storage accumulates the addresses of other DRPs whose on-
tologies participate in the attached mappings. As we see further, the storage is con-
sulted whenever some reasoning sub task is generated by the DRP reasoner and is
needed to be propagated to the responsible peer.

Reasoning Services. After the completion of the registration phase the DRP is ready
to be started and serve reasoning request for the hosting ontology. Once the reasoning
request is caught, the peer invokes corresponding method of the Reasoning Program-
ming Interface layer asking through it the Distributed Knowledge Base component to
reformulate the reasoning query for evaluating it by the tableau reasoning algorithm.
Practically, the Distributed Knowledge Base applies the reduction of DL inference
tasks to the one inference task implemented in the reasoner, which is typically the
consistency check. The reformulated query is further delivered to the Reasoner and
processed.

The Reasoner is the central component of the DRP. As we already pointed out
in the vision section, the DRP reasoner is implemented on top of standard DL rea-
soner whose standard tableau algorithm is modified by adding additional completion
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rules allowing for the distributed reasoning. This modification allows the reasoner to
be used in two modes: local and distributed. Local reasoning mode simply ignores
mappings and applies the standard reasoning algorithm. The distributed mode uses
the mappings contained in the M-box and employs the tableau algorithm enriched
with additional bridge expansion rule. In accordance with the distributed reasoning
algorithm, the tableau completion in the distributed mode may require verification,
induced by the mappings, of certain sub reasoning queries over other ontologies. To
find the DRP hosting the desired ontology and propagate the query to it, the current
peer first employs the Reasoner Request Propagator which consults Acquaintances
base to find out the address of the DRP hosting the ontology to be asked, and further
refers to the Communication Service for dispatching the query.

Communication Service. Communication service represents a subordinate service
which is invoked only internally by the peer. Its main task consists in dispatching the
reasoning requests to “foreign” DRPs and delivering back the responses. Technically
the cross DRP communication in DRAGO is organized in a message-passing fashion
adopting a simple textual communication protocol.

12.6.3 Implementation

Input Languages. Practically, DRAGO works with ontologies represented in OWL
[4] and semantic mappings encoded in C-OWL [6, 7]. Due to the restrictions of the
distributed reasoning algorithm to SHIQ ontologies, DRAGO prohibits the use of
nominal-related constructs in OWL, such as owl:oneOf and owl:hasValue.

Distributed Tableaux Reasoner. In order to build the Reasoner component of the
DRP, any of the standard tableau-based reasoner should be extended with the addi-
tional bridge expansion rule. Such a modification of the completion strategy couldn’t
be organized using the reasoner as a black-box since none of the currently existing
reasoners provide an access to the constructed completion graph. That is why the
selection of open-source DL reasoner for implementing DRAGO was crucial.

For the modifications, we have selected an open-source OWL-DL Reasoner Pel-
let written in java programming language [10, 22]. Pellet is based on the tableaux
algorithms developed for very expressive Description Logics [16] and covers com-
pletely the DL fragment of OWL language. In order to support future extensions, the
internals of Pellet tableaux reasoner have been built on an extensible architecture. In
particular, the completion algorithm inside the tableau reasoner has been designed
so that different Completion Strategies can be plugged in which gave us a perfect
opportunity to add the developed distributed completion strategy.

12.6.4 Using DRAGO for Modular Ontology Reasoning

The implementation of modular ontology reasoning with DRAGO becomes a
straightforward task consisting of the following steps. For each module i the DRAGO
Reasoning Peer should be instantiated. The peer should be further attached with an
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ontology i and a set of possible inter-module links Bki incoming to the module
i from other modules k. After that step all modules’ peers should be started which
forms the DRAGO network providing the reasoning infrastructure for the given mod-
ular ontology.

12.7 Experimental Evaluation

We have conducted a number of experiments for evaluating the reasoning with mod-
ular ontologies. The goal of the evaluation was to address the requirement of scal-
ability of modular ontology reasoning. Given a modular ontology, we measured the
performance of the DDL distributed reasoning algorithm implemented in DRAGO
against the performance of the standard DL reasoning algorithm employing the en-
coding of DDL into standard DL as proposed in [5].

12.7.1 Experimental Setting

In order to perform the tests, we have selected several real world ontologies of diffe-
rent size and complexity. Some of the ontologies have been borrowed from the Onto-
Farm project [24], the others has been downloaded from on-line Protégé ontology
library.4 Table 12.1 describes the ontologies we used, specifying their size and ex-
pressive power in terms of the underlying logic.

Table 12.1. Modular ontology reasoning: ontologies test set

Ontology DL Expressivity Number of classes Number of properties
CMT ALCIF(D) 30 59
TRAVEL ALCIF(D) 51 71
EKAW SHIN 73 33
KA AL(D) 96 60
OPENGALEN SHIF 175 73

Modular ontologies to be tested have been generated synthetically using ontolo-
gies in Table 12.1 as modules. We evaluated three topologies of modular ontologies,
namely when there exists a target module Tt which is connected via bridge rules
to one source module T1, connected to two source modules T1 and T2, and finally
connected to three source modules T1, T2, and T3 (see Figure 12.9 for visual repre-
sentations of the evaluated topologies).

To synthesize a set of experimental modular ontologies, we have used as source
and target modules the very same ontology from the Table 12.1. Bridge rules between
modules have been generated randomly varying their amount. The idea was to inves-
tigate how the percent of involvement of concepts in target module in bridge rules
affects the reasoning in the target module. In particular, we have evaluated the 20,

4 http://protege.stanford.edu/plugins/owl/owl-library/
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(a) 1 source module (b) 2 source modules (c) 3 source modules

Fig. 12.9. Topologies of test modular ontologies

40, 60, 80 and 100% coverage of target ontology by bridge rules. In case of several
source modules, the bridge rules have been considered equally distributed between
sources.

Given a synthesized modular ontology, we further employed the following evalu-
ation scheme:

• Initialize the DRAGO network with the modular ontology and measure the CPU
time spent by the reasoner to load modules (dLoad variable). The time spent by
the reasoner is the time the DL tableau algorithm requires for standard knowledge
base preprocessing.

• Submit 50 random distributed satisfiability tests to be verified in target module
Tt, and measure the average time spent by distributed reasoning algorithm of
DRAGO for verification of a single satisfiability request (dSat variable).

• Create a global ontology equivalent to the modular ontology using the encoding
described in [5]. Load it to the Pellet DL reasoner and measure the time spent for
preprocessing this global ontology (gLoad variable).

• Submit the same set of 50 satisfiability tests to the global reasoner and measure
the average time spent for deciding satisfiability of a single satisfiability request
(gSat variable).

12.7.2 Results

All tests and measurements reported in this section have been carried out on Intel
Pentium M processor 2.00GHz with 1.00 GB of RAM running Microsoft Windows
XP Professional.

The results of the conducted evaluation are summarized in Table 12.2. Note that
although Table 12.1 contains OPENGALEN ontology in the test set, the evaluation
results table contains no figures about this ontology. This is due to the fact, that even
in case of one source module and 20% coverage of OPENGALEN by bridge rules,
the global encoding either takes unacceptably long time to load the ontology into
the reasoner or the reasoner fires an exceptional situations running out of system
memory.
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Table 12.2. Modular ontology reasoning: performance evaluation
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Let us do several observations concerning the figures in Table 12.2. Despite the
change of coverage parameter or number of source modules, the dLoad variable
slightly deviates along a certain value within each of ontologies. This value is ac-
tually equal to the loading time of a single ontology since loading of all modules
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(a) Distributed reasoning

(b) Global loading

Fig. 12.10. CMT modular ontology reasoning

is done simultaneously, in parallel, by the DRAGO reasoning peers instantiated for
each of the modules. Another stable variable is gSat. This is explained by the fact
that once the ontology is preprocessed the similar reasoning requests takes a similar
time to be verified. The remaining variables dSat and gLoad appear to be mutable in
the experiments. In Figures 12.10-12.13 we graphically depict the trends of dSat and
gLoad variables. With the increase of coverage of target ontology by bridge rules it
is getting more difficult both to preprocess a global ontology, as well as it is more
difficult to verify distributed satisfiability in DRAGO since more and more bridge
rules actively participate in the distributed reasoning process.
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(a) Distributed reasoning

(b) Global loading

Fig. 12.11. TRAVEL modular ontology reasoning

Despite the synthetic nature of the preformed experiments and relatively small on-
tologies involved, the obtained figures collected in Table 12.2 still allow us to draw
some trends concerning the problem of scalability of the modular ontology reason-
ing in the DDL framework. The application of the distributed reasoning technique
allows keeping distinctly the reasoning spaces for each module in a given modular
ontology. Such a distribution allows loading and preprocessing the modules by their
dedicated reasoners in parallel, possibly on different computers. Such a distinction
of the reasoning spaces later allows to overcome the problem of failing to load and
preprocess the modular ontology as a whole by a single reasoner, as in the case of our
experiments with the OPENGALEN ontology. More difficult is the configuration of a
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(a) Distributed reasoning

(b) Global loading

Fig. 12.12. EKAW modular ontology reasoning

modular ontology, i.e., the amount of modules as well as the amount of inter-module
links — more complicated is the start of the single global reasoner compared to the
simultaneous start of the several distributed local reasoners. This property of the dis-
tributed reasoner allows dealing with modular ontologies when the global reasoning
approach fails to do it.

Once a modular ontology is loaded, arises the question on the responsiveness
of the reasoner to the reasoning queries to be evaluated. At this point the situation
with the performance of distributed and global reasoners is inverting. Indeed, the
global reasoner has all the knowledge of a given modular ontology locally, while
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(a) Distributed reasoning

(b) Global loading

Fig. 12.13. KA modular ontology reasoning

the distributed reasoner has to compute the knowledge possibly propagated from
other modules on-the-fly, by distributed communication with corresponding module
reasoners.

12.8 Conclusion

In this chapter we have presented an application of the Distributed Description
Logics framework and the DRAGO reasoning system to the task of composing
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modular ontologies. We have shown that the bridge rules of DDL can serve as inter-
module links enabling the access and import of the knowledge contained in modules.
The practical feasibility of the proposed modular ontologies composition has been
demonstrated by the application of the DRAGO reasoning system. Several synthetic
test-cases has been generated and evaluated to see how the system treats modular on-
tologies of different configurations. The distributed reasoning technique of DRAGO
has been confronted against the global reasoning in the standard tableau reasoner Pel-
let to which the whole modular ontology (containing all modules and all inter-module
links) has been loaded. As we expected, the distributed reasoner allows loading such
complex modular ontologies which the global reasoning technique cannot deal with.
However, in the comparison with the global reasoner, the faster load of a modular
ontology into the distributed reasoner sacrifices the speed of further reasoning due to
the necessary distributed communications with other reasoners attached to the mo-
dules.

In this work we have considered the construction of modular ontologies from
purely terminological SHIQ ontologies. As a future work we plan to relax this re-
striction and extend the results to SHIQ ontology modules containing individual
assertions. Technically, the extension of the DDL framework concerns with admis-
sion of a new individual correspondence construct allowing to express inter-module
links between individuals and to accommodate the access and import assertional
knowledge contained in ontological modules.
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Summary. We present the syntax and semantics of a family of modular ontology languages,
Package-based Description Logics (P-DL), to support context- specific reuse of knowledge
from multiple ontology modules. In particular, we describe a P-DL SHOIQP that allows
the importing of concept, role and nominal names between multiple ontology modules (each
of which can be viewed as a SHOIQ ontology). SHOIQP supports contextualized inter-
pretation, i.e., interpretation from the point of view of a specific package. We establish the
necessary and sufficient conditions on domain relations (i.e., the relations between individuals
in different local domains) that need to hold in order to preserve the unsatisfiability of concept
formulae, monotonicity of inference, transitive reuse of knowledge across modules.

13.1 Introduction

The success of the world wide web can be partially attributed to the network effect:
The absence of central control on the content and the organization of the web al-
lows thousands of independent actors to contribute resources (web pages) that are
interlinked to form the web. Ongoing efforts to extend the current web into a se-
mantic web are aimed at enriching the web with machine interpretable content and
interoperable resources and services [7]. Realizing the full potential of the semantic
web requires the large-scale adoption and use of ontology-based approaches to shar-
ing of information and resources. Constructing large ontologies typically requires
collaboration among multiple individuals or groups with expertise in specific areas,
with each participant contributing only a part of the ontology. Therefore, instead of
a single, centralized ontology, in most application domains it is natural to have mul-
tiple distributed ontologies covering parts of the domain. Such ontologies represent
the local knowledge of the ontology designers, i.e., knowledge that is applicable in
a context. Because no single ontology can meet the needs of all users under every
conceivable scenario, there is an urgent need for theoretically sound, yet practical,
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approaches that allow knowledge from multiple autonomously developed ontologies
to be adapted and reused in user, context, or application-specific scenarios.

Ontologies on the semantic web need to satisfy two apparently conflicting objec-
tives [9]:

• Sharing and reuse of knowledge across autonomously developed ontologies. An
ontology may reuse another ontology by direct importing of selected terms in the
other ontology (e.g., by referring to their URLs), or by using mappings between
ontologies.

• The contextuality of knowledge or accommodation of the local points of view.
For example, an assertion of the form “everything has the property that...” is
usually made within an implicit local context which is often omitted from the
statement. In fact, such a statement should be understood as “everything in this
domain has the property that...”. However, when reusing an existing ontology,
the contextual nature of assertions is often neglected, leading to unintended in-
ferences.

OWL adopts an importing mechanism to support integration of ontology modules.
However, the importing mechanism in OWL, implemented by the owl:imports
construct, in its current form, suffers from several serious drawbacks: (a) It directly
introduces both terms and axioms of the imported ontologies into the importing onto-
logy, and thus fails to support contextual reuse; (b) It provides no support for partial
reuse of an ontology module.

Consequently, there have been several efforts aimed at developing formalisms
that allow reuse of knowledge from multiple ontologies via contextualized inter-
pretations in multiple local domains instead of a single shared global interpretation
domain. Contextualized reuse of knowledge requires the interactions between local
interpretations to be controlled. Examples of such modular ontology languages in-
clude: Distributed Description Logics (DDL) [8], E-Connections [16] and Semantic
Importing [20].

An alternative approach to knowledge reuse is based on the notion of conser-
vative extension [12, 13, 14, 15], which allows ontology modules to be interpreted
using standard semantics by requiring that they share the same global interpretation
domain. To avoid undesired effects from combining ontology modules, this approach
requires that such a combination be a conservative extension of component modules.
More precisely, if O is the union of a set of ontology modules {O1, ..., On}, then
we say O is a conservative extension of Oi if O |= α ⇔ Oi |= α, for any α in the
language of Oi. This guarantees that combining knowledge from several ontology
modules does not alter the consequences of knowledge contained in any component
module. Thus, a combination of ontology modules cannot induce a new concept in-
clusion relation between concepts expressible in any of the component modules.

Current approaches to knowledge reuse have several limitations. To preserve con-
textuality, existing modular ontology languages offer only limited ways to connect
ontology modules and, hence, limited ability to reuse knowledge across modules.
For instance, DDL does not allow concept construction using foreign roles or con-
cepts. E-Connections, on the other hand, does not allow concept subsumptions across
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ontology modules or the use of foreign roles. Finally, Semantic Importing, in its cur-
rent form, only allows each component module to be in ALC. None of the existing
approaches supports knowledge reuse in a setting where each ontology module uses
a representation language that is as expressive as OWL-DL, i.e., SHOIN (D).

Furthermore, some of the existing modular ontology languages suffer from rea-
soning difficulties that can be traced back to the absence of natural ways to restrict
the relations between individuals in different local domains. For example, DDL
does not support the transitivity of inter-module concept subsumptions (known as
bridge rules) in general. Moreover, in DDL a concept that is declared as being more
specific than two disjoint concepts in another module may still be satisfiable (the
inter-module satisfiability problem) [3, 16]. Undisciplined use of generalized links in
E-Connections has also been shown to lead to reasoning difficulties [2].

Conservative extensions [13, 14, 15], in their current form, require a single global
interpretation domain and, consequently, prevent different modules from interpreting
axioms within their own local contexts. Hence, the designers of different ontology
modules have to anticipate all possible contexts in which knowledge from a spe-
cific module might be reused. As a result, several modeling scenarios that would,
otherwise, be quite useful in practice, such as the refinement of relations between
existing concepts in an ontology module and the general reuse of nominals [19], are
precluded.

Against this background, this chapter, building on previous work of a majority
of the authors [3], develops a formalism that can support contextual reuse of know-
ledge from multiple ontology modules. The resulting modular ontology language,
Package-based Description Logic (P-DL) SHOIQP :

• Allows each ontology module to use a subset of SHOIQ [17], i.e., ALC
augmented with transitive roles, role inclusion, role inversion, qualified num-
ber restriction and nominal concepts and, hence, covers a significant fragment of
OWL-DL.

• Supports more flexible modeling scenarios than those supported by existing ap-
proaches through a mechanism of semantic importing of names (including con-
cept, role and nominal names) across ontology modules1.

• Contextualizes the interpretation of reused knowledge. Locality of axioms in on-
tology modules is obtained “for free” by its contextualized semantics, thereby
freeing ontology engineers from the burden of ensuring the reusability of an on-
tology module in contexts that are hard to foresee when constructing the module.
A natural consequence of contextualized interpretation is that inferences are al-
ways drawn from the point of view of a witness module. Thus, different modules
might infer different consequences, based on the knowledge that they import
from other modules.

1 Note that importing in OWL, implemented by the owl:imports is essentially syn-
tactic in nature. The difference between syntactic importing and semantic importing is
best illustrated by an analogy with the writing of scientific articles: Knowledge reuse via
owl:imports analogous to cut and paste from a source article; In contrast, semantic
importing is akin to knowledge reuse by means of citation of source article.



352 J. Bao et al.

• Ensures that the results of reasoning are always the same as those obtained by
a standard reasoner over an integrated ontology resulting from combining the
relevant knowledge in a context-specific manner. Thus, unlike in the case of DDL
and Semantic Importing of Pan et al., P-DL ensures the monotonicity of inference
in the distributed setting.

• Avoids several of the known reasoning difficulties of the existing approaches,
e.g., lack of support for transitive reusability and nonpreservation of concept un-
satisfiability.

13.2 Semantic Importing

This section introduces the syntax and semantics of the proposed language
SHOIQP . We will use a simple example shown in Figure 13.1 to illustrate some
of the basic features of the P-DL syntax.

Fig. 13.1. Semantic Importing

13.2.1 Syntax

Packages

Informally, a package in SHOIQP can be viewed as a SHOIQ TBox and RBox.
For example, in Figure 13.1 there are two packages, packageP1 describes the domain
of People and P2 describes the domain of Work.

We define the signature Sig(Pi) of a package Pi as the set of names used in Pi.
Sig(Pi) is the disjoint union of the set of concept names NCi, the set of role names
NRi and the set of nominal names NIi used in package Pi. The set of roles in Pi is
defined as NRi = NRi∪{R−|R ∈ NRi}whereR− is the inverse of the role nameR.

The signature Sig(Pi) of package Pi is divided into two disjoint parts: its lo-
cal signature Loc(Pi) and its external signature Ext(Pi). Thus, in the example
shown in Figure 13.1, Sig(P2) = {Employee,Adult,Employer, hires}; Loc(P2) =
{Employee,Employer, hires}; and Ext(P2) = {Adult}.

For all t ∈ Loc(Pi), Pi (and only Pi) is the home package of t, denoted by Pi =
Home(t), and t is called an i-name (more specifically, an i-concept name, an i-role
name, or an i-nominal name). We will use “i : X” to denote an i-name X and may
drop the prefix when it is clear from the context. We use i-role to refer to an i-role
name or its inverse. In the example shown in Figure 13.1, the home package of the
terms Child and Adult is P1 (People); and that of Employee,Employer and hires is
P2 (Work).

A role name R ∈ NRi may be declared to be transitive in Pi using an axiom
Transi(R). IfR is declared transitive,R− is also said to be transitive. We use Tri(R)
to denote a role R being transitive in Pi.
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A role inclusion axiom in Pi is an expression of the form R � S, where R and
S are i-roles. The role hierarchy for Pi is the set of all role inclusion axioms in Pi.
The RBox Ri consists of the role hierarchy Ri for Pi and the set of role transitivity
declarations Transi(R). For a role hierarchy Ri, if R � S ∈ Ri, then R is called a
sub-role of S and S is called a super-role of R w.r.t. Ri. An i-role is called locally
simple if it neither transitive nor has any transitive sub-role in Pi.

The set of SHOIQP concepts in Pi is defined inductively by the following gram-
mar:

C := A|o|¬kC|C �C|C � C|∀R.C|∃R.C|(≤ nS.C)|(≥ nS.C)

where A ∈ NCi, o ∈ NIi, n is a non-negative integer, R ∈ NRi, and S ∈ NRi is a
locally simple role; ¬kC denotes the contextualized negation of concept C w.r.t. Pk.
For any k and k-concept name C, �k = ¬kC � C, and ⊥ = ¬kC � C. Thus, there
is no universal top (�) concept or global negation (¬). Instead, we have for each
package Pk, a contextualized top �k and a contextualized negation ¬k. This allows
a logical formula in P-DL (includingSHOIQP) to be interpreted within the context
of a specific package. Thus, in the example shown in Figure 13.1, ¬11 : Child in P1

describes only the individuals in the domain of People that are not not children (that
is, not 1 : Child).

A general concept inclusion (GCI) axiom in Pi is an expression of the form C �
D, where C,D are concepts in Pi. The TBox Ti of Pi is the set of GCIs in Pi. Thus,
formally, a package Pi is a pair Pi := 〈Ti,Ri〉. A SHOIQP ontologyΣ is a set of
packages {Pi}. We assume that every name used in a SHOIQP ontology Σ has a
home package in Σ.

Semantic Importing between Packages

If a concept, role or nominal name t ∈ Loc(Pj) ∩ Ext(Pi), i �= j, we say that Pi

imports t and denote it as Pj
t−→ Pi. We require that transitivity of roles be preserved

under importing. Thus, if Pj
R−→ Pi where R is a j-role name, then Transi(R) iff

Transj(R). If any local name of Pj is imported into Pi, we say that Pi imports Pj

and denote it by Pj &→ Pi. In the example shown in Figure 13.1, P2 imports P1.
The importing transitive closure of a package Pi, denoted by P+

i , is the set of all
packages that are directly or indirectly imported by Pi. That is, P+

i is the smallest
subset of {Pi}, such that

• ∀j �= i, Pj &→ Pi ⇒ Pj ∈ P+
i

• ∀k �= j �= i, (Pk &→ Pj) ∧ (Pj ∈ P+
i ) ⇒ Pk ∈ P+

i

Let P ∗
i = {Pi}∪P+

i . A SHOIQP ontologyΣ = {Pi} has an acyclic importing
relation if, for all i, Pi �∈ P+

i ; otherwise, it has a cyclic importing relation. The
importing relation in the example in Figure 13.1 is acyclic.

We denote a Package-based Description Logic (P-DL) by adding the letter P to
the notation for the corresponding DL. For example, ALCP is the package exten-
sion of the DL ALC. We denote by PC a restricted type of P-DL that only allows
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importing of concept names. P− denotes a P-DL with acyclic importing. In partic-
ular, ALCP−

C was studied in [1], ALCPC was studied in [4] and SHOIQP was
studied in [5]. The example in Figure 13.1 is in ALCP−

C .

Syntax Restrictions on Semantic Importing

Restrictions on Negations. We require that ¬kC (hence also �k) can appear in Pi,
i �= k, only if Pk &→ Pi. Intuitively, this means that k-negation can appear only in
Pk or any package that directly imports Pk.

Restrictions on Imported Role Names. We require that an imported role should not
be used in role inclusion axioms. This restriction is imposed because of two reasons.
First, decidability requires that a role that is used in number restrictions be “globally”
simple, i.e., that it has no transitive sub-role across any importing chain2 [18]. In
practice, it is useful to restrict the use of imported roles in such a way that a role
is globally simple iff it is locally simple. Second, a reduction of SHOIQP without
such a restriction to an integrated ontology may require some features that are beyond
the expressivity of SHOIQ, such as role intersection.

SHOIQP Examples

The semantic importing approach described here can model a broad range of scenar-
ios that can also be modeled using existing approaches.

Example 1. Inter-module concept and role inclusions. Suppose we have a people
ontology P1:

¬11 : Man � 1 : Woman

1 : Man � 1 : People

1 : Woman � 1 : People

1 : Boy � 1 : Girl � 1 : Child

1 : Husband � 1 : Man � ∃1 : marriedTo.1 : Woman

Suppose the Work ontology P2 imports some of the knowledge from the people
ontology:

2 : Employee � 1 : People (13.1)

2 : Employer ≡ ∃2 : hires.1 : People (13.2)

1 : Child � ¬22 : Employee (13.3)

2 : EqualOpportunityEmployer � ∃2 : hires.1 : Man � ∃2 : hires.1 : Woman (13.4)

Axioms (13.1) models inter-module concept inclusion. This example also illus-
trates that the semantic importing approach can realize concept specialization (Ax-
iom (13.2)) and generalization (Axiom (13.3)).

2 This follows from the reduction from SHOIQP to SHOIQ given in Section 13.3.
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Example 2. Use of foreign roles or foreign concepts to construct local concepts.
Suppose a marriage ontology P3 reuses the people ontology:

(= 1 (1 : marriedTo).(1 : Woman)) � 3 : Monogamist (13.5)

3 : MarriedPerson � ∀(1 : marriedTo).(3 : MarriedPerson) (13.6)

3 : NuclearFamily � ∃(3 : hasMember).(1 : Child) (13.7)

A complex concept in P3 may be constructed using an imported role (13.6), an
imported concept (13.7), or both an imported role and an imported concept (13.5).

Example 3. The use of nominals. Suppose the work ontology P2, defined above, is
augmented with additional knowledge from a calendar ontology P4, to obtain an
augmented work ontology. Suppose P4 contains the following axiom:

4:WeekDay = {4:Mon, 4:Tue, 4:Wed, 4:Thu, 4:Fri},

where the nominals are shown in italic font. Suppose the new version of P2 contains
the following additional axioms:

4 : Fri � ∃(2 : hasDressingCode).(2 : CasualDress)
�2 � ∃(2 : hasDressingCode−).(4 : WeekDay)

13.2.2 Semantics

A SHOIQP ontology has localized semantics in the sense that each package has
its own local interpretation domain. Formally, for a SHOIQP ontologyΣ = {Pi},
a distributed interpretation is a tuple I = 〈{Ii}, {rij}Pi∈P+

j
〉, where Ii is a local

interpretation of package Pi, with (a not necessarily non-empty) domain ΔIi , rij ⊆
ΔIi × ΔIj is the (image) domain relation for the interpretation of the direct or
indirect importing relation from Pi to Pj . For convenience, we use rii = idΔIi :=
{(x, x)|x ∈ ΔIi} to denote the identity mapping in the local domain ΔIi . Taking
this convention into account, the distributed interpretation I = 〈{Ii}, {rij}Pi∈P+

j
〉

may also be denoted by I = 〈{Ii}, {rij}Pi∈P∗
j
〉.

To facilitate our further discussion of interpretations, the following notational con-
ventions will be used throughout. Given i, j, such that Pi ∈ P ∗

j , for every x ∈ ΔIi ,
A ⊆ ΔIi and S ⊆ ΔIi ×ΔIi , define3 (please see Figure 13.2 and 13.3 for illustra-
tion):

rij(A) = {y ∈ ΔIj |∃x ∈ A, (x, y) ∈ rij}, (concept image)

rij(S) = rij ◦ S ◦ r−ij (role image)

= {(z, w) ∈ ΔIj ×ΔIj |∃(x, y) ∈ S, (x, z) ∈ rij ∧ (y, w) ∈ rij},
S(x) = {y ∈ ΔIi |(x, y) ∈ S} (successor set)

3 In this chapter, f1 ◦ ... ◦ fn denotes the composition of n relations f1, ..., fn, i.e., (f1 ◦ ... ◦
fn)(x) = f1(...fn(x)).
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Fig. 13.2. Concept Image

Fig. 13.3. Successor Set and Role Image

Moreover, let ρ be the equivalence relation on
⋃

iΔ
Ii generated by the collection

of ordered pairs
⋃

Pi∈P∗
j
rij . This is the symmetric and transitive closure of the set

⋃
Pi∈P∗

j
rij . Define, for every i, j, ρij = ρ ∩ (ΔIi ×ΔIj ).

Each of the local interpretations Ii = 〈ΔIi , ·Ii〉 consists of a domain ΔIi and an
interpretation function ·Ii , which maps every concept name to a subset ofΔIi , every
role name to a subset of ΔIi ×ΔIi and every nominal name to an element in ΔIi .
We require that the interpretation function ·I satisfies the following equations, where
R is a j-role, S is a locally simple j-role, C,D are concepts:

RIi = (RIi)+, if Transi(R) ∈ Ri

(R−)Ii = {(x, y)|(y, x) ∈ RIi}
(C �D)Ii = CIi ∩DIi

(C �D)Ii = CIi ∪DIi

(¬jC)Ii = rji(ΔIj )\CIi

(∃R.C)Ii = {x ∈ rji(ΔIj )|∃y ∈ ΔIi , (x, y) ∈ RIi ∧ y ∈ CIi}
(∀R.C)Ii = {x ∈ rji(ΔIj )|∀y ∈ ΔIi , (x, y) ∈ RIi → y ∈ CIi}

(� nS.C)Ii = {x ∈ rji(ΔIj )| |{y ∈ ΔIi |(x, y) ∈ SIi ∧ y ∈ CIi}| � n}
(� nS.C)Ii = {x ∈ rji(ΔIj )| |{y ∈ ΔIi |(x, y) ∈ SIi ∧ y ∈ CIi}| � n}
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Note that, when i = j, since rii = idΔIi , (¬jC)Ii reduces to the usual negation
(¬iC)Ii = ΔIi\CIi . Similarly, the other semantic definitions also reduce to the
usual DL semantic definitions.

For an example of contextualized negation, suppose A = CIi in the Figure 13.2,
then (¬iC)Ij will only contain y2 but not y3. On the other hand, (¬jC)Ij is will
contain both y2 and y3.

A local interpretation Ii satisfies a role inclusion axiom R1 � R2 iff RIi
1 ⊆ RIi

2

and a GCI C � D iff CIi ⊆ DIi . Ii is a model of Pi, denoted by Ii � Pi, if it
satisfies all axioms in Pi.

The proposed semantics of SHOIQP is motivated by the need to overcome some
of the limitations of existing approaches that can be traced back to the arbitrary con-
struction of domain relations and the lack of support for contextualized interpreta-
tion. Specifically, we seek a semantics that satisfies the following desiderata:

• Preservation of concept unsatisfiability. The intuition is that an unsatisfiable
concept expression should never be reused so as to be interpreted as a satisfiable
concept. Formally, we say that a domain relation rij preserves the unsatisfiability
of a concept C, that appears in both Pi and Pj , if whenever CIi = ∅, it is
necessarily the case that CIj = ∅.

• Transitive reusability of knowledge. The intention is that the consequences of
some of the axioms in one module can be propagated in a transitive fashion to
other ontology modules. For example, if a package Pi asserts that C � D, and
Pj directly or indirectly imports that axiom from Pi, then it should be the case
that C � D is also valid from the point of view of Pj .

• Contextualized interpretation of knowledge. The idea is that the interpreta-
tion of assertions in each ontology module is constrained by their context. When
knowledge, e.g., axioms, in that module is reused by other modules, the interpre-
tation of the reused knowledge should be constrained by the context in which the
knowledge is being reused.

• Improved expressivity. Ideally, the language should support
1. both inter-module concept inclusion and concept construction using foreign

concepts, roles and nominals;
2. more general reuse of roles and of nominals than allowed by existing ap-

proaches.

A major goal of this chapter is to explore the constraints that need to be imposed
on local interpretations so that the resulting semantics for SHOIQP satisfies the
desiderata enumerated above. These constraints are presented in the following:

Definition 1. An interpretation I = 〈{Ii}, {rij}Pi∈P∗
j
〉 is a model of a SHOIQP

KB Σ = {Pi}, denoted as I � Σ, if
⋃

i Δ
Ii �= ∅, i.e., at least one of the local

interpretation domains is non-empty4, and the following conditions are satisfied:

4 This agrees with conventional model-theoretic semantics, where an ordinary model (of a
single package) is assumed to have a non-empty domain.
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1. For all i, j, rij is one-to-one, i.e., it is an injective partial function.
2. Compositional Consistency: For all i, j, k s.t. Pi ∈ P ∗

k and Pk ∈ P ∗
j , we have

ρij = rij = rkj ◦ rik .
3. For every i-concept name C that appears in Pj , we have rij(CIi) = CIj .
4. For every i-role R that appears in Pj , we have RIj = rij(RIi).
5. Cardinality Preservation for Roles: For every i-role R that appears in Pj and

every (x, x′) ∈ rij , y ∈ RIi(x) iff rij(y) ∈ RIj(x′).
6. For every i-nominal o that appears in Pj , (oIi , oIj ) ∈ rij .
7. Ii � Pi, for every i.

The proposed semantics for SHOIQP is an extension of the semantics forALCPC
[4], which uses Conditions 1,2,3 and 7 above, and borrows Condition 5 from the
semantics of Semantic Importing [20].

Intuitively, one-to-oneness (Condition 1, see Figure 13.4) and compositional con-
sistency (Condition 2, Figure 13.5) ensure that the parts of local domains connected
by domain relations match perfectly. Conditions 3 and 4 ensure consistency between
the interpretations of concepts and of roles in their home package and the interpre-
tations in the packages that import them. Condition 5 (Figure 13.6) ensures that rij
is a total bijection from RIi(x) to RIj (rij(x)). In particular, the sizes |RIi(x)| and
|RIj(rij(x))| are always equal in different local domains. Condition 6 ensures the
uniqueness of nominals. In Section 4, we will show that Conditions 1-7 are mini-
mally sufficient to guarantee that the desiderata for the semantics of SHOIQP as
outlined above are indeed satisfied.

Note that Condition 2 implies that if Pi and Pj mutually (possibly indirectly)
import one another, then rij = ρij = ρ−ji = r−ji and rij is a total function from ΔIi

to ΔIj . However, if Pj �∈ P ∗
i , rji does not necessarily exist even if rij exists. In that

case, rij is not necessarily a total function.

Definition 2. An ontology Σ is consistent as witnessed by a package Pw of Σ if P ∗
w

has a model I = 〈{Ii}, {rij}Pi∈P+
j
〉, such that ΔIw �= ∅. A concept C is satisfiable

as witnessed by Pw if there is a model I of P ∗
w, such that CIw �= ∅. A concept

An image domain relation in P-DL is one-to-one, i.e., it is a partial injective function.
It is not necessarily total, i.e., some individuals of CIi may not be mapped to ΔIj .

Fig. 13.4. One-to-One Domain Relation
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Fig. 13.5. Compositionally Consistent Domain Relation

If an i-role p is imported by Pj , then every pair of p instances must have a “preimage”
pair in Δi. The cardinality preservation condition for roles, illustrated in this figure,
requires that, if an individual x in ΔIi has an image individual x′ in ΔIj , then each
of its p-neighbors must have an image in ΔIj which is a p-neighbor of x′.

Fig. 13.6. Cardinality Preservation for Roles

subsumption C � D is valid as witnessed by Pw, denoted by C �w D, if, for every
model I of P ∗

w, CIw ⊆ DIw .

Hence, in SHOIQP , the questions of consistency, satisfiability and subsumption
are always answered from the local point of view of a witness package and it is
possible that different packages draw different conclusions from their own points of
view.

The following examples show some inference problems that a P-DL ontology can
tackle. Precise proofs for general cases will be given in Section 13.4.
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Example 4. Transitive subsumption propagation. Given three packages: P1 : {1 :
A � 1 : B}, P2 : {1 : B � 2 : C}, P3 : {2 : C � 3 : D}, the subsumption query
1 : A � 3 : D is answered in the affirmative as witnessed by P3.

Example 5. Detection of inter-module unsatisfiability. Given two packages P1 : {1 :
B � 1 : F}, P2 : {1 : P � 1 : B, 2 : P � ¬1 : F}, 2 : P is unsatisfiable as
witnessed by P2.

Example 6. Reasoning from a local point of view. Given two packages P1 : {1 :
A � 1 : C}, P2 : {1 : A � ∃2 : R.(2 : B), 2 : B � 1 : A � (¬1 : C)}, consider
the satisfiability of 1 : A as witnessed by P1 and P2, respectively. It is easy to see
A is satisfiable when witnessed by P1, but unsatisfiable when witnessed by P2. Thus,
inferences in P-DL are always drawn from the point of view of a witness package.
Different witnesses, because they operate on different domains, and have access to
different pieces of knowledge, can draw dramatically different conclusions.

Discussion: Relation between the Semantics of P-DL and
Partially-Overlapping Local Domain Semantics

In [10] a semantics based on partially overlapping domains was proposed for termi-
nology mappings between ontology modules. In that framework, a global interpreta-
tion I = 〈ΔI , ·I〉 is given together with local domains ΔIi , that are subsets of ΔI .
Any two local domains may be partially overlapping. Moreover, inclusions between
concepts are of the following two forms:

• i : C �ext j : D (extensional inclusion), with semantics CI ⊆ DI , and
• i : C �int j : D (intentional inclusion), with semantics CI ∩ ΔIi ∩ ΔIj ⊆

DI ∩ΔIi ∩ΔIj .

Since P-DL semantics does not envision a global point of view, extensional inclu-
sion has no corresponding notion in P-DL semantics. In addition, P-DL semantics
differs significantly from this approach in that, while both intentional and exten-
sional inclusions are not directional, the semantic importing in P-DL is. To make
this distinction clearer, consider two packages Pi and Pj , such that Pi &→ Pj . Let
C,D be two i-concept names that are imported by Pj and consider the interpre-
tation where ΔIi = {x, y, z}, ΔIj = {y, z}, CIi = {x, y}, DIi = {y, z} and
rij = {〈y, y〉, 〈z, z〉}. Then, in P-DL, from the point of view of package Pi, we have
CIi = {x, y} �⊆ {y, z} = DIi . Therefore, I �|=i C � D. Similarly, from the point
of view of package Pj , we have CIj = rij(CIi) = rij({x, y}) = {y} ⊆ {y, z} =
rij({y, z}) = rij(DIi) = DIj . Therefore, I |=j C � D. However, in the partially
overlapping domain semantics of [10], C =int D holds from both Pi’s and Pj’s
point of view.

Thus, in spite of the fact that the intersection of two sets is “seen equally” from
both sets’ points of view, the example that was presented above illustrates that the
way concept names are interpreted in these models still preserves some form of di-
rectionality in the subsumption reasoning.
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Despite this subtle semantic difference between the partially overlapping domain
semantics of [10] and the semantics of P-DL presented here, it is still possible to pro-
vide P-DL with a different kind of overlapping-domain-style semantics. More pre-
cisely, in the proof of Lemma 3, it is shown how one may combine the various local
domains of a P-DL interpretation into one global domain. The P-DL model satisfies a
given subsumptionC � D from a witness Pi’s point of view if and only if the global
model satisfies an appropriately constructed subjective translation #i(C) � #i(D)
of the given subsumption (see Section 3). Moreover, in the proof of Lemma 2, it is
shown how, conversely, starting from a global domain, one may construct a P-DL
model with various local domains; if the aforementioned subjective translation of a
subsumption is satisfied in the global domain, then the original subsumption is sat-
isfied from Pi’s point of view. If the two constructions are composed, starting from
the original P-DL model one obtains another equivalent model that is based on a
partially-overlapping-style domain semantics. However, due to the interpretations of
the translations of the concept names in this model, directionality is still preserved,
unlike the situation in the ordinary partially overlapping domain semantics of [10].

Since any ordinary P-DL model gives rise to an equivalent model with partially-
overlapping-style semantics, the question arises as to why the latter is not chosen as
the fundamental notion of semantics for P-DL. The main reason is that, in many ap-
plications, local models are supposed to be populated independently of one another
before semantic relations between their individuals are physically established. More-
over, the whole point of introducing modular description logics is to give temporally
and spatially unrelated designers the chance to develop modules of a complex know-
ledge base independently.Additionally, the semantics of P-DL is derived from the Lo-
cal Model Semantics [11], of which the directionality of domain relations, which will
be lost in the partially-overlapping-style semantics, are crucial as domain relations
also subjective. By keeping the directionality of domain relations, it also opens the
possibility for various future extensions of P-DL when it is infeasible to use partially-
overlapping-style semantics, e.g., when transitive knowledge propagation should be
controlled among only trusted entities. � (End of Discussion)

As immediate consequences of the proposed semantics for the P-DL SHOIQP ,
extensions of various versions of the De Morgan’s Law may be proven. Those deal
with both the ordinary propositional logical connectives, including local negations,
and with the quantifiers. For instance, it may be shown that, from the point of view of
a package Pj which directly imports packages Pi and Pk, we have that ¬i(C�D) =
¬iC � ¬iD and also, ¬i(∀R.C) = ¬i�k � ∃R.¬jC, where R is a k-role name.
Similar semantic equivalences hold for various other connectives and quantifiers.
Via these relations, proofs involving existential restriction and value restriction may
be reduced to those involving the corresponding number restrictions.

In the next lemma, it is asserted that Condition 3 of Definition 1 holds not only
for concept names, but, in fact, for arbitrary concepts. Beyond its own intrinsic in-
terest, it becomes handy in Section 4 in showing that the package description logic
SHOIQP supports monotonicity of reasoning and transitive reusability of modules.
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Lemma 1. Let Σ be a SHOIQP ontology, Pi, Pj two packages in Σ such that
Pi ∈ P+

j , C a concept such that Sig(C) ⊆ Sig(Pi) ∩ Sig(Pj), and R a role name
such that R ∈ Sig(Pi) ∩ Sig(Pj). If I = 〈{Iu}, {ruv}Pu∈P+

v
〉 is a model of Σ, then

rij(CIi) = CIj and rij(RIi) = RIj .

The proof of Lemma 1 involves a structural induction on the concept formula C,
that, by hypothesis, appears both in Pi and in Pj . The induction step employs the
fact that, if x′ = rij(x), then

• rij : RIi(x) → RIj (x′) is a total bijection and
• rij : RIi(x) ∩DIi → RIj (x′) ∩DIj is also a total bijection, for every concept

D, that appears in both Pi and Pj , and is such that rij(DIi) = DIj .

13.3 Reduction to Ordinary DL

In this section, we present a translation from concept formulas that appear in a given
package of a SHOIQP KB Σ to concept formulas of a SHOIQ KB Σ�. The
SHOIQ KB Σ� is constructed in such a way that the top concept �w, associated
with a specific package Pw ofΣ, is satisfiable byΣ� in the ordinary DL sense if and
only ifΣ itself is consistent from the point of view of Pw (see Theorem 1). (Note that
the SHOIQ KB Σ� is dependent on the importing relations present in SHOIQP
Σ). This shows that the consistency problem in SHOIQP is reducible to the satis-
fiability problem in SHOIQ, which is known to be NEXPTIME-complete [23, 24].
This has the consequence that the problems of concept satisfiability, concept sub-
sumption and consistency in SHOIQP are also NEXPTIME-complete (see The-
orem 2). Moreover, as will be seen in Section 4, this result also plays a central
role in showing that some of the desiderata presented in Section 2.2 are satisfied by
SHOIQP . For instance, Reasoning Exactness, Monotonicity of Reasoning, Transi-
tive Reusability of Knowledge and Preservation of Unsatisfiability are all features of
SHOIQP , which are shown to hold by employing the translation from SHOIQP
to SHOIQ, that will be presented in this section.

The reduction ' from a SHOIQP KB Σ = {Pi} to a SHOIQ KB Σ� can be
obtained as follows: the signature of Σ� is the union of the local signatures of the
component packages together with a global top �, a global bottom ⊥ and local top
concepts�i, for all i, i.e., Sig(Σ�) =

⋃
i(Loc(Pi) ∪ {�i}) ∪ {�,⊥}, and

a) For all i, j, k such that Pi ∈ P ∗
k , Pk ∈ P ∗

j , �i � �j � �k is added to Σ�.
b) For each GCI X � Y in Pj , #j(X) � #j(Y ) is added toΣ. The mapping #j()

is defined below.
c) For each role inclusion X � Y in Pj , X � Y is added to Σ�.
d) For each i-concept name or i-nominal name C in Pi, i : C � �i is added to Σ�.
e) For each i-role name R in Pi, �i is stipulated to be its domain and range, i.e.,
� � ∀R−.�i and � � ∀R.�i are added to Σ.
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f) For each i-role name R in Pj , the following axioms are added to Σ�:
− ∃R.�j � �j (local domain);
− ∃R−.�j � �j (local range).

g) For each i-role name, add Trans(R) to Σ� if Transi(R).

The mapping #j() is adapted from a similar one for DDL [8] with modifications
to facilitate context preservation whenever name importing occurs. For a formula X
used in Pj , #j(X) is:

• X , for a j-concept name or a j-nominal name.
• X � �j , for an i-concept name or an i-nominal name X .
• ¬#j(Y ) ��i � �j , for X = ¬iY , where Y is a concept.
• (#j(X1)⊕#j(X2))��j , for a conceptX = X1⊕X2, where⊕ = � or⊕ = �.
• (⊗R.#j(X ′)) � �i � �j , for a concept X = (⊗R.X ′), where ⊗ ∈ {∃, ∀,≤

n,≥ n} and R is an i-role.

For example, if C,D are concept names and R a role name,

#j(¬i i : C) = ¬(C � �j) � �i � �j

#j(j : D � i : C) = (D � (C � �j)) � �j

#j(∀(j : R).(i : C)) = ∀R.(C � �j) � �j

#j(∃(i : R).(i : C)) = ∃R.(C � �j) � �i � �j

It should be noted that #j() is contextualized so as to allow a given formula
to have different interpretations when it appears in different packages. See also the
Discussion subsection in Section 2.2.

13.4 Properties of Semantic Importing

In this section, we further justify the proposed semantics for SHOIQP . More
specifically, we present the main results showing that SHOIQP satisfies the
desiderata listed in Section 2.

The first main theorem shows that the consistency problem of a SHOIQP onto-
logy w.r.t. a witness package can be reduced to a satisfiability problem of a SHOIQ
concept w.r.t. an integrated ontology from the point of view of that witness pack-
age, namely, '(P ∗

w). Note that there is no single universal integrated ontology for
all packages. Each package, sees an integrated ontology (depending on the witness
package and all the packages that are directly or indirectly imported by the witness
package), and hence different packages can witness different consequences.

Theorem 1. A SHOIQP KB Σ is consistent as witnessed by a package Pw if and
only if �w is satisfiable with respect to '(P ∗

w).

Proof: Sufficiency is proven in Lemma 2 and necessity in Lemma 3. We present
these two lemmas below, but give only outlines of their proofs. Detailed proofs are
provided in [6].
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Lemma 2. Let Σ be a SHOIQP KB and Pw a package of Σ. If �w is satisfiable
with respect to '(P ∗

w), then Σ is consistent as witnessed by Pw.

Proof: Assume that �w is satisfiable with respect to '(P ∗
w) and let I = 〈ΔI , ·I〉 be

a model of '(P ∗
w), such that �I

w �= ∅. We construct a model 〈{Ii}, {rij}i∈P∗
j
〉 of

P ∗
w, such that ΔIw �= ∅. For each package Pi ∈ P ∗

w, the local interpretation Ii is
constructed as a projection of I in the following way:

• ΔIi = �I
i ;

• For every concept name C that appears in Pi, CIi = CI ∩ �I
i ;

• For every role name R that appears in Pi, RIi = RI ∩ (�I
i ×�I

i );
• For every nominal name o that appears in Pi, oIi = oI ;

and for every pair i, j, such that Pi ∈ P ∗
j ⊆ P ∗

w, we define

rij = {(x, x)|x ∈ ΔIi ∩ΔIj}.

Clearly, we have ΔIw = �I
w �= ∅, by the hypothesis. Moreover, it may be shown

that 〈{Ii}, {rij}Pi∈P∗
j
〉 is a model of the modular ontology P ∗

w, i.e., that it satisfies
the seven conditions postulated in Definition 1. The most challenging part is to
show that, for every concept inclusion C � D in Pj , we must have CIj ⊆ DIj .
Since, by the hypothesis, #j(C)I ⊆ #j(D)I holds in I, it suffices to show that, for
every concept formula X that appears in Pj , we have #j(X)I = XIj . This may be
accomplished by structural induction on X . The details are omitted. Q.E.D.

Next, we proceed to show the reverse implication.

Lemma 3. Let Σ be a SHOIQP KB. If Σ is consistent as witnessed by a package
Pw, then �w is satisfiable with respect to '(P ∗

w).

Proof: Suppose that Σ is consistent as witnessed by Pw. Thus, it has a distributed
model 〈{Ii}, {rij}Pi∈P∗

j
〉, such that ΔIw �= ∅. We proceed to construct a model

I of '(P ∗
w) by merging individuals that are related via chains of image domain

relations or their inverses. More precisely, for every element x in the distributed
model, we define its equivalence class x = {y|(x, y) ∈ ρ} where ρ is the symmetric
and transitive closure of the set

⋃
Pi∈P∗

j
rij . Moreover, for a set S, we define S =

{x̄|x ∈ S} and for a binary relation R, we define R = {(x, y)|(x, y) ∈ R}.
A model I = 〈ΔI , ·I〉 of Σ is now defined as follows:

• �I = ΔI =
⋃

iΔ
Ii , and ⊥I = ∅.

• For every i-name X , XI := XIi .
• For every i, �I

i = ΔIi .

Next, it is shown that I is a model of '(P ∗
w), such that �I

w �= ∅. As in the proof
of Lemma 2, the most challenging part is to show that, if C � D appears in Pj ,
then #j(C)I ⊆ #j(D)I holds in I. Since, by hypothesis, CIj ⊆ DIj and this
implies that CIj ⊆ DIj , it suffices to show that #j(C)I = CIj , for every concept
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formula C that appears in Pj . This is accomplished by induction on the structure of
the concept C. The details can be found in [6]. Q.E.D.

Using Theorem 1 and the fact that concept satisfiability in SHOIQ is NEXPTIME-
complete [23, 24], we obtain

Theorem 2. The concept satisfiability, concept subsumption and consistency pro-
blems in SHOIQP are NEXPTIME-complete.

The next theorem shows that concept subsumption problems in a SHOIQP on-
tology Σ, from the point of view of a specific witness package, can be reduced to
concept subsumption problems in a corresponding SHOIQ ontology.

Theorem 3 (Reasoning Exactness). For a SHOIQP KB Σ = {Pi}, C �j D iff
'(P ∗

j ) |= #j(C) � #j(D).

Proof: As usual, we reduce subsumption to (un)satisfiability. It follows directly from
Theorem 1 that P ∗

j and C � ¬jD have a common model if and only if '(P ∗
j ) and

#j(C) � ¬#j(D) � �j have a common model. Since #j(C) � �j , this holds if
and only if '(P ∗

j ) and #j(C) � ¬#j(D) have a common model. Thus, '(P ∗
j ) |=

#j(C) � #j(D). Q.E.D.

Discussion of Desiderata

To show that the package description logic SHOIQP supports transitive reusabil-
ity and preservation of unsatisfiability, we prove the monotonicity of reasoning in
SHOIQP .

Theorem 4 (Monotonicity and Transitive Reusability). Suppose Σ = {Pi} is a
SHOIQP KB, Pi ∈ P+

j and C,D are concepts, such that Sig(C) ∪ Sig(D) ⊆
Sig(Pi) ∩ Sig(Pj). If C �i D, then C �j D.

Proof: Suppose that C �i D. Thus, for every model I of P ∗
i , CIi ⊆ DIi . Now

consider a model J of P ∗
j . Since Pi ∈ P ∗

j , J is also an interpretation of P ∗
i . If⋃

Pk∈P∗
i
ΔJk = ∅, then the conclusion holds trivially. Otherwise, J is a model of

P ∗
i and, therefore, CJi ⊆ DJi . Hence, rij(CJi ) ⊆ rij(DJi), whence, by Lemma

1, CJj ⊆ DJj . This proves that C �j D. Q.E.D.

Theorem 4 ensures that when some part of an ontology module is reused, the restric-
tions asserted by it, e.g., domain restrictions on roles, will not be relaxed in a way
that prohibits the reuse of imported knowledge. Theorem 4 also ensures that con-
sequences of imported knowledge can be transitively propagated across importing
chains.

In the special case where D = ⊥, we obtain the following corollary:

Corollary 1 (Preservation of Unsatisfiability). For a SHOIQP knowledge base
Σ = {Pi} and Pi ∈ P+

j , if C �i ⊥ then C �j ⊥.
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Finally, the semantics of SHOIQP ensures that the interpretation of an axiom in
an ontology module is constrained by its context, as seen from the reduction to a
corresponding integrated ontology: C � D in Pj is mapped to #j(C) � #j(D),
where #j(C) and #j(D) are now relativized to the corresponding local domain
of Pj .

When a package Pi is directly or indirectly reused by another package Pj , some
axioms in Pi may be effectively “propagated” to module Pj (i.e., may influence
inference from the point of view of Pj). P-DL semantics ensures that such axiom
propagation will affect only the “overlapping” domain rij(ΔIi) ∩ΔIj and not the
entire domain ΔIj .

Example 7. For instance, in Figure 13.1, package P1 contains an axiom ¬1Child �
Adult and package P2 imports P1. The assertion ¬1Child � Adult is made within
the implicit context of people, i.e. every individual that is not a child is an adult.
Thus, every individual within the domain of people are either a Child or an Adult
(�1 � Child�Adult). However, it is not necessarily the case in P2 that�2 � Child�
Adult. For example, an Empolyer in the domain of Work may be an organization
which is not a member of the domain of People. In fact, since r12(ΔI1) ⊆ ΔI2 ,
ΔI1\ChildI1 ⊆ AdultI1 , i.e., ΔI1 = ChildI1 ∪ AdultI1 , does not necessarily imply
ΔI2 = ChildI2 ∪ AdultI2 .

Hence, the effect of an axiom is always limited to its original designated context.
Consequently, it is not necessary to explicitly restrict the use of the ontology lan-
guage to ensure locality of axioms, as is required, for instance, by conservative ex-
tensions [13]. Instead, the locality of axioms follows directly from the semantics of
SHOIQP .

13.5 Discussion of the P-DL Semantics

13.5.1 Necessity of P-DL Constraints on Domain Relations

The constraints on domain relations in the semantics of SHOIQP , as given in Def-
inition 1, are minimal in the sense that if we drop any of them, we can no longer
satisfy the desiderata summarized in Section 13.2.2.

Dropping Condition 1 of Definition 1 (one-to-one domain relations) leads to dif-
ficulties in preservation of concept unsatisfiability. For example, if the domain re-
lations are not injective, then C1 �i ¬iC2, i.e., C1 � C2 �i ⊥, does not ensure
C1 �C2 �j ⊥ when Pj imports Pi. If the domain relations are not partial functions,
multiple individuals in ΔIj may be images of the same individual in ΔIi via rij ,
whence unsatisfiability of a complex concept can no longer be preserved when both
number restriction and role importing are allowed. Thus, if R is an i-role name and
C is an i-concept name, ≥ 2R.C �i ⊥ does not imply ≥ 2R.C �j ⊥.

Dropping Condition 2 of Definition 1 (compositional consistency of domain rela-
tions) would result in violation of the transitive reusability requirement, in particular,
and of the monotonicity of inference based on imported knowledge, in general. In the
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absence of compositional consistency of domain relations, the importing relations
would be like bridge rules in DDL, in that they are localized w.r.t. the connected
pairs of modules without supporting compositionality [25].

In the absence of Conditions 3 and 4 of Definition 1, the reuse of concept and
role names would be purely syntactical, i.e., the local interpretations of imported
concepts and role names would be unconstrained by their interpretations in their
home package.

Condition 5 (cardinality preservation of role instances) is needed to ensure the
consistency of local interpretations of complex concepts that use number restrictions.

Condition 6 is needed to ensure that concepts that are nominals can only have
one instance. Multiple “copies” of such an instance are effectively identified with a
single instance via domain relations.

Finally, Condition 7, i.e., that Ii � Pi, for every i, is self-explanatory.

13.5.2 Contextualized Negation

Contextualized negation has been studied in logic programming [21, 22]. Existing
modular ontology languages DDL and E-Connections do not explicitly support con-
textualized negation in their respective syntax. In fact, in those formalisms, a nega-
tion is always interpreted with respect to the local domain of the module in which
the negation occurs, not the union of all local domains. Thus, in fact, both DDL and
E-Connections implicitly support contextualized negation.

The P-DL syntax and semantics, proposed in this work, support a more general
use of contextualized negation so that a package can use, besides its own negation,
the negations of its imported packages5.

13.5.3 Directionality of Importing

There appears to be some apparent confusion in the literature regarding whether the
constraints imposed by P-DL allow the importing relations in P-DL to be indeed
directional [15]. As noted by Grau [15], if it is indeed the case that a P-DL model I
satisfies rij(sIi) = sIj if only if it satisfies rji(sIj ) = sIi , for any symbol s such
that Pi

s−→ Pj (Definition 18 and Proposition 19 in [15]) it must follow that a P-
DL ontology can be reduced to an equivalent imports-free ontology. Then, a shared
symbol s of Pi and Pj must have the same interpretation from the point of view
of both Pi and Pj , i.e., sIi = sIj . However, according to our definition of model
(Definition 1), it is not the case that a P-DL model I satisfies rij(sIi) = sIj if only
if it satisfies rji(sIj ) = sIi , for any symbol s such that Pi

s−→ Pj . As noted by Bao
et al. [2, 3]:

• P-DL semantics does not require the existence of both rij and rji. Their joint
existence is only required when Pi and Pj mutually import one another. Hence,
even if rij(sIi) = sIj , it is possible that the corresponding rji may not exist in
which case rji(sIj ) is undefined.

5 We thank Jeff Pan for discussions on this issue.
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• Domain relations are not necessarily total functions. Hence, it need not be the
case that every individual of ΔIi is mapped (by the one-to-one domain relation
rij) to an individual of ΔIj .

• Satisfiability and consistency have only contextualized meaning in P-DL. If Pj

is not in P ∗
i , then models of P ∗

i need not be models of P ∗
j . This is made clear in

Definition 2 where satisfiability and consistency are always considered from the
point of view of a witness package.

In the following subsection, we will present an additional example (Example 8)
that illustrates the directionality of importing in P-DL.

13.5.4 P-DL Consistency and TBox Consistency

In Section 13.3 we have shown how to reduce a SHOIQP P-DL ontology to a
corresponding DL (SHOIQ) ontology. We have further shown (Theorem 1) that
determining the consistency of a SHOIQP ontology from the point of view of a
package Pw can be reduced to the satisfiability of a SHOIQ concept with respect to
a SHOIQ ontology obtained by integrating the packages imported by Pw. However,
it is important to note that this reduction of SHOIQP is different from a reduction
based on S-compatibility as defined in [15].

Definition 3 (Expansion). [15] Let A-interpretation denote an interpretation over
a signature A. An S-interpretation J = (ΔJ , ·J ) is an expansion of an S′-
interpretation J ′ = (ΔJ ′

, ·J ′
) if

(1) S′ ⊆ S,
(2) ΔJ ′ ⊆ ΔJ , and
(3) sJ = sJ

′
, for every s ∈ S′.

Definition 4 (S-compatibility). [15] Let T1 and T2 be TBoxes expressed in a de-
scription logic L, and let S be the shared part of their signatures. We say that T1 and
T2 are S-compatible if there exists an S-interpretation J , that can be expanded to a
model J1 of T1 and to a model J2 of T2.

As the following example illustrates, a P-DL ontology is not always reducible to the
imports-free ontology that is obtained by simply taking the union of the modules
(packages).

Example 8. Let T1 = {D � ¬D � C}, T2 = {C � ⊥}. The shared signature
S = {C} and T1 and T2 are not S-compatible. However, suppose we have a P-DL

ontology such that T1
C−→ T2 and negation in T1 becomes contextualized negation

¬1. Then we have a model:

Δ1 = CI1 = DI1 = {x}
Δ2 = {y}, CI2 = ∅
r12 = r21 = ∅



13 Package-Based Description Logics 369

On the other hand, all models of a P-DL ontology where T2
C−→ T1 have empty

Δ1. Thus, the whole ontology is consistent as witnessed by T2 but inconsistent as
witnessed by T1. This example demonstrates that P-DL importing is directional.

The next example shows that, in the presence of nominals, the P-DL consistency
problem is not reducible to the consistency of an imports-free ontology obtained by
simply combining the P-DL modules.

Example 9 (Use of Nominals). Consider the following TBoxes:

T1 = {� � i � j, i � j � ⊥}
T2 = {� � i},

with the shared signature S = {i}, where i, j are nominals. T1 and T2 are S-
compatible but T1 ∪ T2 is not consistent. Suppose we have a P-DL ontology with

T1
i−→ T2. Since “�” only has contextualized meaning in P-DL, these TBoxes in fact

should be represented as

T1 = {�1 � i � j, i � j � ⊥}
T2 = {�2 � i}

Now, there exists a model for this P-DL ontology:

Δ1 = {x, y}, iI1 = {x}, jI1 = {y}
Δ2 = {x′}, iI2 = {x′}
r12 = {(x, x′)}

In general, the reduction from P-DL modules to imports-free TBoxes with shared
signatures based on S-compatibility, as suggested by [15], does not preserve the se-
mantics of P-DL. Thus, there is a fundamental difference between the two settings:
P-DL has no universal top concept and, as a result, P-DL axioms have only localized
effect. In the case of imports-free TBoxes, in the absence of contextualized seman-
tics, it is not possible to ensure that the effects of axioms are localized. Consequently,
it is not possible to reduce reasoning with a P-DL ontology with modules {Ti} to
standard DL reasoning over the union of all ontology modules T = T1 ∪ ... ∪ Tn.

In contrast, in the previous section we have shown that such a reduction from
reasoning in P-DL from the point of view of a witness package to reasoning with a
suitably constructed DL (as shown in Section 13.3) is possible. Nevertheless, relying
on such a reduction is not attractive in practice, because it requires the integration
of the ontology modules, which may be prohibitively expensive. More importantly,
in many scenarios encountered in practice, e.g., in peer-to-peer applications, cen-
tralized reasoning with an integrated ontology is simply infeasible. Hence, work in
progress is aimed at developing federated reasoners for P-DL that do not require the
integration of different ontology modules (see, e.g., [4]).
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13.6 Summary

In this chapter, we have introduced a modular ontology language, package-based de-
scription logic SHOIQP , that allows reuse of knowledge from multiple ontologies.
A SHOIQP ontology consists of multiple ontology modules each of which can be
viewed as a SHOIQ ontology. Concept, role and nominal names can be shared by
“importing” relations among modules.

The proposed language supports contextualized interpretation, i.e., interpretation
from the point of view of a specific package. We have established a minimal set
of constraints on domain relations, i.e., the relations between individuals in different
local domains, that allow the preservation of the satisfiability of concept expressions,
the monotonicity of inference, and the transitive reuse of knowledge.

Ongoing work is aimed at developing a distributed reasoning algorithm for
SHOIQP by extending the results of [4] and [20], as well as an OWL extension
capturing the syntax of SHOIQP . We are also exploring several variants of P-DL,
based on a more in-depth analysis of the properties of the domain relations and the
preservation of satisfiability of concept subsumptions across modules.
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