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Abstract. Advantages and shortcomings of different process modeling
languages are heavily debated, both in academia and industry, but little
evidence is presented to support judgements. With this paper we aim
to contribute to a more rigorous, theoretical discussion of the topic by
drawing a link to well-established research on program comprehension.
In particular, we focus on imperative and declarative techniques of mod-
eling a process. Cognitive research has demonstrated that imperative
programs deliver sequential information much better while declarative
programs offer clear insight into circumstantial information. In this pa-
per we show that in principle this argument can be transferred to respec-
tive features of process modeling languages. Our contribution is a pair of
propositions that are routed in the cognitive dimensions framework. In
future research, we aim to challenge these propositions by an experiment.

Keywords: Process model understanding, declarative versus imperative
modeling, cognitive dimensions framework.

1 Introduction

At the present stage, formal properties of process modeling languages are quite
well understood [1]. In contrast to these formal aspects, we know rather little
about theoretical foundations that might support the superiority of one process
modeling language in comparison to another one. There are several reasons why
suitable theories are not yet in place for language design, most notably because
the discipline is still rather young. Only little research has been conducted empir-
ically in this area so far, e.g. [2,3] relating model understanding to the modeling
language and to model complexity.
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The context for process modeling efforts is often that a model builder constructs
a process model that aims to facilitate human understanding and communication
among various stakeholders. This shows that the matter of understanding is well-
suited to serve as a pillar on the quest for theories of process modeling language
quality. Furthermore, insights from cognitive research on programming languages
point to the fact that ‘design is redesign’ [4]: a computer program is not written
sequentially; a programmer typically works on different chunks of the problem in
an opportunistic order which requires a constant reinspection of the current work
context. If process builders design their models in a similar fashion, understanding
is an important quality factor for the modeler himself.

The lack of theories on modeling language quality with empirical support
has contributed both to the continuous invention of new techniques and to the
claims on the supposed superiority of such techniques. For instance, Nigam and
Caswell introduce the OpS technique in which “the operational model is targeted
at a business user and yet retains the formality needed for reasoning and, where
applicable, automated implementation” implying that existing languages fall
short on these characteristics [5]. In a Popkin white paper, Owen and Raj are less
careful and claim a general superiority of BPMN over UML Activity Diagrams
because “it offers a process flow modeling technique that is more conducive
to the way business analysts model” and “its solid mathematical foundation is
expressly designed to map to business execution languages, whereas UML is not”
[6]. Smith and Fingar simply state in their book that “BPML is the language of
choice for formalizing the expression, and execution, of collaborative interfaces”
[7]. We do not want to judge on the correctness of these statements here, but
rather emphasize that we currently lack theories to properly assess such claims.

Throughout this paper,wewill discuss inhow far insights fromcognitive research
on programming languages could be transferred to the process modeling domain.
In particular, it is our aim to investigate the spectrum of imperative versus declar-
ative process modeling languages, as this distinction can be considered as one of
the most prominent for today’s modeling languages. For example, with respect to
the recent development ofConDec (first published as “DecSerFlow”), a declarative
process modeling language, the first design criterion that is mentioned is that “the
process models developed in the language must be understandable for end-users”
[8, p.15]. While it is claimed that imperative (or procedural 1) languages, in com-
parison, deliver larger and more complex process models, only anecdotal evidence
is presented to support this. Also, in the practitioner community opinions are man-
ifold about the advantages of declarative versus imperative languages to capture
business processes, see for example [10,11,12]. These claims and discussions clearly
point at the need for an objective, empirically founded validation of the presumed
advantages of the different types of process modeling languages.

The contribution of this paper is that it presents a set of theoretically grounded
propositions about the differences between imperative and declarative process
modeling languages with respect understandability issues. As such, this paper is

1 Computer scientists prefer the term “procedural”; the term “imperative” is popular
in other communities [9]. In this paper, we will be using the terms as synonyms.
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an essential stepping stone to an empirical evaluation of these languages, which is
planned by the authors as future research. To argue and support the hypotheses,
this paper is structured as follows. Section 2 summarizes empirical findings and
concepts from programming language research. Section 3 characterizes the nota-
tional spectrum of process modeling languages. Section 4 derives propositions on
when a process modeling language could be superior to another one based on the
cognitive dimensions framework. Section 5 concludes the paper and describes the
empirical research agenda for validating the propositions.

2 Cognitive Research on Programming Languages

Various authors have noted the similarities between process models and software
programs [13,14]. For example, a software program is usually partitioned into
modules or functions, which take in a group of inputs and provide some out-
put. Similar to this compositional structure, a business process model consists
of activities, each of which may contain smaller steps (operations) that may up-
date the values of data objects. Furthermore, just like the interactions between
modules and functions in a software program are precisely specified using various
language constructs, the order of activity execution in a process model is defined
using logic operators. For software programs and business process models alike,
human agents are concerned with properly capturing their logic content. This
stresses the importance of sense-making for both types of artifacts, both during
the construction process and while updating such artifacts at a later stage.

While computer science is a relatively young field in relation to other engi-
neering disciplines or the formal sciences, it has clearly a longer history than
business process modeling. Therefore, it is worthwhile to reflect on the insights
that are available with respect to the understanding of software code.

In the past, heated debates have taken place about the superiority of one
programming language over the other with respect to expressiveness [15] or ef-
fectiveness [16], and such debates have extended to the issue of understandability.
Edsger Dijkstra’s famous letter on the harmfulness of the GOTO statement, for
instance, builds on the argument that “our powers to visualize how processes
evolving in time are poorly developed” [17]. This made him dismissive of any
higher level programming language supporting this construct. Another example
is the development of visual programming languages, which have been claimed
to be easier to understand than textual languages [18]. Finally, object-oriented
programming languages have also been expected to foster understandability in
comparison with more traditional languages, see e.g. [19].

During the 1970s and 1980s, alternative views were proposed on how program-
mers make sense of code as to provide a theoretical explanation of the impact of
different programming languages on this process. One view is based on the idea of
“cognitive restructuring”, in which problem-solving involves the access of infor-
mation from both the world and memory (short- and long-term), and the restruc-
turing of this information in working memory to provide a solution. Therefore,
languages from which information can be easily accessed and transferred to work-
ing memory will be easier to understand [20,21].
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An alternative view is that every programming language is translated into
the same mental representation, and that comprehension performance reflects
the extent to which the external program maps to people’s internal/cognitive
representation primitives. This view is in line with certain theories on natural
language processing [22] and forms the theoretical basis for experiments aimed
at establishing people’s internal representations of computer programs [23,24].

What has proven to be problematic with both these views is that they support
the prediction that one programming language is easier or harder to understand
than another in an absolute sense – whatever the exact aspect of the program
that is studied. In work by Green [25,26], and Gilmore and Green [27], however,
it has both been postulated and empirically validated that different tasks that
involve sense-making of software code are supported differently by the same
programming language. For example, the overall impact of a modification of a
single declaration may be difficult to understand in a PASCAL program, but it
is relatively easy to develop a mental picture of the control-flow for the same
program. The implication of this view is that a programming language may
provide superior support with respect to one comprehension task, while it may
be outperformed by other languages with respect to a different task.

The latter view was originally the basis for the “mental operations theory”
[27], which in essence states that a notation that requires fewer mental opera-
tions from a person for any task is the better performing one. In other words,
a “matched pair” between the notational characteristics and a task gives the
best performance. This view has evolved and matured over the years towards
the “cognitive dimensions framework” (CDF) [28,29], which contains many dif-
ferent characteristics to distinguish notations from each other. Several of these
dimensions directly matter to process modeling understanding, e.g. whether the
model demands hard mental operations from the reader, whether there are hid-
den dependencies between notation elements, or whether changes can be applied
locally (viscosity). The framework has been highly influential in language usabil-
ity studies and over 50 publications have been devoted to its further development
[30]. The CDF extends the main postulate of the mental operations theory to-
wards a broad evaluation tool for a wide variety of notations, e.g. spreadsheets,
style sheets, diagrams, etc. While its application to business process models is,
to our knowledge, limited to the work in [31], it seems to provide the strongest
available theoretical foundation for our aims with this paper.

In particular, an important result that has been established in the development
of the CDF relates to the difference between the tasks of looking for sequential and
circumstantial information in a program. Sequential information explains how in-
put conditions lead to a certain outcome. An example of looking for sequential
information is: “In this program, after action X is performed, what might the
next action be?”. Typically, one can distinguish between sequential information
that relates to actions immediately leading to or following from a certain out-
come. On the other hand, given a conclusion or outcome, circumstantial informa-
tion relates to the overall conditions that produced that outcome. An example of
looking for circumstantial information is: “In this program, what combination of
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circumstances will cause action X to be performed?”. Circumstantial information
may either relate to conditions that have or have not occurred. Empirical evidence
is found to support the hypothesis that procedural programming languages dis-
play sequential information in a readily-used form, while declarative languages
display circumstantial information in a readily-used form [25,27]. The reverse is
also true: Just as procedural languages tend to obscure circumstantial informa-
tion, so do declarative languages tend to obscure sequential information. In other
words, one “cannot simple-mindedly claim that procedural languages are easier
or harder to read than declarative ones” [28].

The implication for this paper is (a) that we will adopt a similar relativist
starting point for the formulation of our hypotheses and (b) that we will refine
the distinction between sequential and circumstantial information within the
context of process models.

3 The Declarative-Imperative Spectrum

Given the insights from programming language research, this section analyzes
in how far an analogy can be established between procedural and declarative
programming and respective approaches to process modeling. Section 3.1 elab-
orates on the difference between imperative and declarative programming; we
discuss to which extent the distinction of sequential and circumstantial infor-
mation is appropriate for process modeling thereafter. Section 3.3 illustrates the
declarative-imperative spectrum with examples of process modeling languages.

3.1 Imperative versus Declarative Programming

Assuming that the reader has an intuitive understanding of what an imperative
(or procedural) program is, we approach the topic from the declarative angle.
According to Lloyd “declarative programming involves stating what is to be
computed, but not necessarily how it is to be computed”[32]. Equivalently, in the
terminology of Kowalski’s equation [33] ‘algorithm = logic + control’, it involves
stating the logic of an algorithm (i.e. the knowledge to be used in problem
solving), but not necessarily the control (i.e. the problem-solving strategies).
While the logic component determines the meaning of an algorithm, the control
component only affects its efficiency [33].

Roy and Haridi [34] suggest to use the concept of a state for defining the line
between the two approaches more precisely. Declarative programming is often
referred to as stateless programming as an evaluation works on partial data struc-
tures. In contrast to that, imperative programming is characterized as stateful
programming [34]: a component’s result not only depends on its arguments, but
also on an internal parameter, which is called its “state”. A state is a collection of
values being intermediate results of a desired computation (at a specific point in
time). Roy and Haridi [34] differentiate between implicit (declarative) state and
explicit state. Implicit states only exist in the mind of the programmer without
requiring any support from the computation model. An explicit state in a pro-
cedure, in turn, is a state whose lifetime extends over more than one procedure
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call without being present in the procedure’s arguments. Explicit state is visible
in both the program and the computation model.

3.2 Imperative versus Declarative Process Modeling

Process modeling is not concerned with programs, variables, and values, but aims
at describing processes. In general, a process is a collection of observable actions,
events, or changes of a collection of real and virtual objects. A process modeling
language provides concepts for representing processes. Discussions of declarative
versus imperative process modeling are scarce and so are precise distinctions. A
description is given in Pesic’s PhD thesis [8, p.80]: “[Imperative] models take an
‘inside-to-outside’ approach: all execution alternatives are explicitly specified in
the model and new alternatives must be explicitly added to the model. Declar-
ative models take an ‘outside-to-inside’ approach: constraints implicitly specify
execution alternatives as all alternatives that satisfy the constraints and adding
new constraints usually means discarding some execution alternatives.” Below,
we relate declarative and imperative modeling techniques to the notion of state.

An imperative process modeling language focuses on the aspect of continuous
changes of the process’ objects which allows for two principal, dual views. The
life of each object in the process can be described in terms of its state space
by abstractly formulating the object’s locations in a real or virtual world and
its possibilities to get from one location to another, i.e. state changes. The dual
view is the transition space which abstractly formulates the distinct actions,
events, and changes of the process and how these can possibly succeed each other.
Based on topological considerations of Petri [35], Holt [36] formally constructs
a mathematical framework that relates state space and transition space and
embeds it into the theory of Petri nets [1]. Holt deducts that Petri net places (or
states in general) act as “grains in space” while Petri net transitions (or steps
in general) act as “grains in time” providing dedicated concepts for structuring
the spatial and the temporal aspect of a process. A directed flow-relation defines
pre- and post-places of transitions, and corresponding pre- and post-transitions
of places. Thus, in a Petri net model, beginning at any place (state) or transition,
the modeler can choose and follow a continuous forward trajectory in the process
behavior visiting more places (states of objects) and transitions. Likewise, the
modeler can follow a continuous backward trajectory to see the process behavior
that leads to this place (state) or transition. This interpretation positions Petri
nets as a clear imperative process modeling language.

A declarative process modeling language focuses on the logic that governs the
overall interplay of the actions and objects of a process. It provides concepts to
describe key qualities of objects and actions, and how the key qualities of different
objects and actions relate to each other in time and space. This relation can be
arbitrary and needs not be continuous; it shall only describe the logic of the
process. In this sense, a declarative language only describes what the essential
characteristics of a process are while it is insensitive to how the process works.
For instance, a possible key quality of a process can be that a specific action
is “just being executed”. Formalizing this quality as a predicate ranging over a
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set of actions, one can use the temporal logic LTL to model how executions of
actions relate to each other over time. The logical implication thereby acts as the
connective between cause and effect: Each action is executed a specific number of
times (e.g. at least once, at most three times); the execution of one action requires
a subsequent execution of some other action (at some point); the execution of
two given actions is mutually exclusive; etc. Thereby state and step are not
explicated in the model, but they are constructed when interpreting predicates
and formulas. This kind of description relies on an open-world assumption leaving
room for how the process’ changes are continuously linked to each other. Any
behavior that satisfies the model is a valid behavior of the process. This approach
was formalized for modeling processes in the language ConDec [37].

The probably most notable difference between imperative and declarative
modeling is how a given behavior can be classified as satisfying a model or not. In
an imperative model, the behavior must be reconstructible from the description
by finding a continuous trajectory that looks exactly like the given behavior
or corresponds to it in a smooth way. For instance, the linear runs of a Petri
net are not explicitly visible in the net’s structure, but states and steps can be
mapped to places and transitions preserving predecessor and successor relations.
In a declarative model, all requirements must be satisfied by the given behavior;
there is no smooth correspondence required between behavior and model.

The reason for this difference between imperative and declarative modeling
is the degree to which these paradigms make states and transitions explicit. An
imperative process model like a Petri nets explicitly denotes states or transitions
or both and their direct predecessor-successor relations. Thus enabled transitions
and successor states can be computed locally from a given state or transition;
runs can be constructed inductively. In a declarative model like an LTL formula
states and transitions are implicitly characterized by the predicates and the
temporal constraints over these predicates. Any set of states and transitions
that are “sufficiently distinct” and relate to each other “sufficiently correct” are
a valid interpretation of the model. This prohibits a construction of runs, but
allows for characterizing states and transitions as satisfying or not.

Despite these differences, declarative and imperative models can be precisely
related to each other. For instance, any LTL formula can equivalently be trans-
lated into a (finite) Büchi automaton [38]. The translation has the price of a
technical overhead to express the genuine concepts of one language by the avail-
able concepts of another language. While this prohibits a direct transformation
of declarative models into well-conceivable imperative models, the resulting im-
perative model is operational and allows for executing declarative ones [37].

3.3 A Characterization of Process Modeling Languages

As we stated in the previous section, process modeling languages differ with
respect to the degree in which they make states and transitions explicit. This is
in line with Roy and Haridi’s [34] suggestion that “declarative” is no absolute
property. The following languages lend themselves as evidence for this hypothesis
as they position themselves in the imperative-declarative spectrum of process
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modeling languages. At the imperative end we position Petri nets, and LTL
at the declarative end of the spectrum. Because of the large variety of process
modeling languages, our list cannot be exhaustive.

Petri nets. We already illustrated the key concepts of imperative process mod-
eling languages by the help of Petri nets which make state and transition ex-
plicit. A Petri net model of a process provides for each atomic action a dedicated
transition and for each atomic state of a process resource a dedicated place. Dur-
ing modeling, one usually has to augment the model by further transitions and
places to implement the desired process logic, e.g. loops, decisions, synchroniza-
tion, etc. At any stage the modeler may mentally execute the process by placing
mental tokens on the given places and mentally firing enabled transitions. These
mental operations are supported by the continuous graph-based structure of the
model that makes sequential information explicit as explained above. Several
techniques like sub-nets transitions or patterns aid in structuring processes and
making composite actions explicit.

Colored Petri nets [39] extend Petri nets by offering arbitrary values, objects,
and structures to be passed through the net, instead of black tokens; these nets
are used for modeling processes with data. Which colored tokens (values) are
consumed, and how these are manipulated by firing transitions is specified in
arc inscriptions and transition guards being algebraic terms with free variables.
Thereby, the terms only denote how different colored tokens relate to each other
allowing the transition to fire in many different modes. This adds circumstan-
tial information to a transition which is positioned in a sequential context. The
modeler has to mentally instantiate the arc inscriptions to get an explicit repre-
sentation of the behavior. For larger pieces of continuous behavior, inscriptions
of several transitions must be instantiated correspondingly.

Flow-based modeling languages like UML Activity Diagrams or BPMN ma-
terialize structuring techniques of Petri nets in dedicated concepts. Besides dif-
ferent kinds of actions, these languages know control-flow nodes like AND-split
and XOR-join to route control-flow between activities. Event nodes explicitly
denote process instantiation, communication and termination. These modeling
concepts offer a way to represent some of the key corresponding mental concepts
of processes requiring fewer mental operations to understand the model.

The Business Process Execution Language (BPEL) has a block-oriented
structure and provides even more specialized concepts for process modeling in a
web service context. The block-oriented design allows to read a BPEL model like
procedural program. But concepts like exception handling, negative control-flow
and handling of concurrent events break the sequential nature of the process.
The exact mechanics that coordinate normal process execution and exception
handling etc. are not visible in the model, but hidden in the language. The
modeler has to reconstruct them mentally to get a consistent image.

Scenario-based languages like Message Sequence Charts (UML Sequence Di-
agrams) and Life-Sequence Charts provide an explicit notion of behavior in terms
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of scenarios [40]. A scenario denotes a partial execution of the process as a par-
tially ordered set of actions. A model is a set of scenarios sharing some actions.
How actions of different scenarios relate to each other is not stated explicitly.
Rather, a scenario’s structure and annotations describe how it can or cannot be
extended by other scenarios. A scenario provides both, sequential and circum-
stantial information: It describes a continuous piece of behavior. At the same
time, when asking “How to execute the last action of this scenario?”, it presents
the partial answer “Execute all preceding actions of the scenario.”.

The Pockets of Flexibility approach [41] combines imperative and declarative
modeling elements in an integrated manner. Essentially, a pocket of flexibility
constitutes a placeholder action in a flow-based process model; the pocket is dy-
namically refined to a flow-based process fragment at run-time. For each pocket
declarative modeling constraints can be specified, which have to be obeyed upon
refinement. A pocket introduces a region into a process model, where no ex-
plicit sequential information is available. The modeler has to link restricting
constraints to the surrounding flow, and vice versa, when constructing the model.

TLA. The Temporal Logic of Actions (TLA) [42] allows to model process steps
in terms of variable values in the current state and in the next state. Together
with temporal operators like in LTL, TLA allows to model processes in terms of
behavioral invariants as well as in terms of continuous changes.

ConDec. The process modeling language ConDec [37] formalizes key temporal
relationships between executions of activities of a process in LTL patterns; e.g.
the number of executions of an action or how two (or more) actions must or must
not succeed each other. This makes some temporal concepts of process behavior
explicit, similar to BPMN compared to Petri nets. The concepts of ConDec are
stateless and give only circumstantial information for the (non-) executability
of an action. The semantic domain of ConDec is limited to a specific, finite
set of activities (out of which the process consists). Thus, the possibilities to
relate different circumstances, like “executing action A” and “executing action
B”, to each other are restricted. This eases a mental construction of continuous
behavior that connects them.

LTL. The entire Linear-Time Temporal Logic (LTL) neither restricts process
models nor the valid interpretations. The model may refer to further key qualities
of a process like “availability of resource R”. Arbitrary circumstantial informa-
tion can be constructed with the logical connectives, specifically the implication
to relate cause and effect, and the temporal operators always (ϕ holds), eventually
(ϕ holds), and until (ϕ holds until ψ holds). The next operator allows to express
sequential information as it denotes a specific situation holding in the next state.

The languages which we have just presented highlight some points in the
imperative-declarative spectrum of process modeling languages. The concepts
range from an explicit notion of state and step to an explicit notion of process
logic. Our list shows that an explicit notion of step does not exclude an ex-
plicit notion of logic as most languages provide concepts for both. An important
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observation on our examples is that if process logic is explicated, an explicit
notion of state is put in relation to that logic, and vice versa. The information
that is conveyed by one explicit notion is relative to the information conveyed
by other explicit notions. The reason for this relativity roots in the following
observation.

Every explicit notion conveys some implicit, hidden information. Whatever is
not explicated is implicit in the model as it can and must be inferred. When-
ever step and logic are explicated together in some way, the implied, hidden
information of one concept must be consistent with explicit information of the
other concept. Picking up the analogy to programs, the process control (states
and steps) must enact the process logic, and the process logic must be imple-
mented in the process control. A relative interpretation of the language concepts
provides the freedom for a consistent combination of both.

Our illustration of the imperative-declarative spectrum of process modeling
languages shows that there are no predetermined points for combining imperative
and declarative concepts, but that languages contain both in varying degrees.

4 Propositions

As stated in the introduction, it is our purpose to formulate a set of propositions
that can be used as a basis to evaluate the comprehensiveness of process models
specified in an imperative or declarative spirit. At this point, we have explored
two important elements for this purpose. In the first place, we presented the
CDF as the most plausible and dominant theory for sense-making of information
artifacts in Section 2. Most notably, it stresses the task-notation relationship,
e.g. in the hard mental operations and hidden dependency dimensions. This has
provided us with a relativist viewpoint on the superiority of process modeling
techniques – it is the match between the task and the language that will de-
termine the overall effectiveness, not the technique in absolute terms. Also, the
important concepts of finding sequential and circumstantial information give a
strong clue to what types of tasks may give a better match with imperative or
declarative process models.

Secondly, we reviewed the distinction between declarative and imperative pro-
cess modeling languages in Section 3. We argued that the more a process mod-
eling language emphasizes states and transitions, the more imperative it can be
regarded. Similarly, the more a process modeling language relies on providing
the mere requirements on acceptable behavior, the more declarative it is. Inher-
ent to these views is our acceptance that the distinction between declarative and
imperative process modeling languages is not a binary one. By combining the
two elements, we arrive at the two following main propositions:

P1. Given two semantically equivalent process models, establishing sequential
information will be easier on the basis of the model that is created with the
process modeling language that is relatively more imperative in nature.

P2. Given two process models, establishing circumstantial information will be
easier on the basis of the model that is created with the process modeling
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language that is relatively more declarative in nature. Establishing circum-
stantial information will be easier on the basis of a declarative process model
than with an imperative process model.

The reasoning for these propositions can be directly related to the hard mental
operations and hidden dependencies dimensions. Sequence is a hidden depen-
dency from the perspective of a declarative language and requires hard mental
operations to construct it. An imperative language, on the other hand, is de-
manding in terms of circumstantial information because it is hidden and men-
tally hard to reconstruct. Specifically, we would expect that these propositions
hold whether ease of understanding is measured in terms of accuracy or speed,
cf. operationalizations of these notions in [4].

Finally, consistent with the CDF, we would expect these propositions to hold
both when subjects have direct access to the process model and when they have
to establish this information on recall, i.e. the memorization of a process model
they have seen earlier. Remember that the CDF refutes the idea that people
shape a similar problem situation into the same mental model, regardless of the
form in which it is presented to them.

5 Conclusion

In this paper, we presented a set of propositions that relate to the understand-
ability of process modeling languages. Specifically, these propositions focus on
the distinction between declarative and imperative languages, formulating rel-
ative strengths and weaknesses of both paradigms. The most important theo-
retical foundation for these propositions is the cognitive dimensions framework
including the results that are established for programming languages. Also, it is
argued that any actual process modeling language finds itself somewhere on the
spectrum from a less to a more imperative (declarative) nature. An analysis of
existing process modeling languages is provided to support this argument.

This paper is characterized by a number of limitations. First of all, there is
a strong reliance on similarities between process modeling languages on the one
hand and programming languages on the other. Differences between both ways of
abstract expression may render some of our inferences untenable. At this point,
however, we do not see a more suitable source of inspiration nor any strong
counter arguments. Note that it can be argued that the issue of understand-
ability may be even more important in the domain of process modeling than
that of programming. After all, not only designers are reading process models
but end users too – which is unusual for computer programs. Furthermore, we
have focused exclusively on the issue of understanding but other quality aspects
may be equally important. If design is redesign, as argued in this paper, not
only understanding but also ease of change is important. There are respective
cognitive dimensions that need to be discussed for process modeling notations,
in particular, viscosity (ease of local change) and premature commitment.

As follows from the nature of this paper, the next step is to challenge the
propositions with an empirical investigation. We intend to develop a set of
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experiments that will involve human modelers to carry out a set of tasks that
involve sense-making of a set of process models. Such tasks will be characterized
by establishing both sequential and circumstantial information and including
more and less declarative (imperative) languages. The cooperation of various
academic partners in this endeavor facilitates extensive testing and replication
of such experiments. Ideally, this empirical investigation will lead to an informed
voice in the ongoing debate on the superiority of process modeling languages.

References

1. Reisig, W., Rozenberg, G. (eds.): APN 1998. LNCS, vol. 1491. Springer, Heidelberg
(1998)

2. Recker, J., Dreiling, A.: Does it matter which process modelling language we teach
or use? an experimental study on understanding process modelling languages with-
out formal education. In: Toleman, M., Cater-Steel, A., Roberts, D. (eds.) 18th
Australasian Conference on Information Systems, pp. 356–366 (2007)

3. Mendling, J., Reijers, H., Cardoso, J.: What makes process models understandable?
In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp.
48–63. Springer, Heidelberg (2007)

4. Gilmore, D.J., Green, T.R.G.: Comprehension and recall of miniature programs.
International Journal of Man-Machine Studies 21(1), 31–48 (1984)

5. Nigam, A., Caswell, N.: Business artifacts: An approach to operational specifica-
tion. IBM Systems Journal 42(3), 428–445 (2004)

6. Owen, M., Raj, J.: BPMN and Business Process Management: Introduction to
the New Business Process Modeling Standard. Technical report, Popkin (2003),
http://whitepaper.techweb.com/cmptechweb/search/viewabstract/71

7. Smith, H., Fingar, P.: Business Process Management: The Third Wave (2003)
8. Pesic, M.: Constraint-Based Workflow Management Systems: Shifting Control to

Users. PhD thesis, Eindhoven University of Technology (2008)
9. Boley, H.: Declarative and Procedural Paradigms - Do They Really Compete? In:

Boley, H., Richter, M.M. (eds.) PDK 1991. LNCS, vol. 567, pp. 383–385. Springer,
Heidelberg (1991)

10. Korhonen, J.: Evolution of agile enterprise architecture (April 2006),
http://blog.jannekorhonen.fi/?p=11 (retrieved February 10, 2009)

11. Goldberg, L.: Seven deadly sins of business rules (September 2007),
http://www.bpminstitute.org/articles/article/article/

seven-deadly-sins.html (retrieved February 10, 2009)
12. McGregor, M.: Procedure vs. process (January 2009),

http://www.it-director.com/blogs/Mark_McGregor/2009/1/

procedure_vs_process.html (retrieved February 10, 2009)
13. Vanderfeesten, I., Reijers, H., van der Aalst, W.: Evaluating workflow process de-

signs using cohesion and coupling metrics. Comp. in Ind. 59(5) (2008)
14. Guceglioglu, A., Demirors, O.: Using Software Quality Characteristics to Measure

Business Process Quality. In: van der Aalst, W.M.P., Benatallah, B., Casati, F.,
Curbera, F. (eds.) BPM 2005. LNCS, vol. 3649, pp. 374–379. Springer, Heidelberg
(2005)

15. Felleisen, M.: On the Expressive Power of Programming Languages. Science of
Computer Programming 17(1-3), 35–75 (1991)

http://whitepaper.techweb.com/cmptechweb/search/viewabstract/71
http://blog.jannekorhonen.fi/?p=11
http://www.bpminstitute.org/articles/article/article/seven-deadly-sins.html
http://www.bpminstitute.org/articles/article/article/seven-deadly-sins.html
http://www.it-director.com/blogs/Mark_McGregor/2009/1/
procedure_vs_process.html


Declarative versus Imperative Process Modeling Languages 365

16. Prechelt, L.: An Empirical Comparison of Seven Programming Languages. Com-
puter, 23–29 (2000)

17. Dijkstra, E.: Letters to the editor: go to statement considered harmful. Communi-
cations of the ACM 11(3), 147–148 (1968)

18. Glinert, E.: Nontextual programming environments. In: Visual Programming Sys-
tems, pp. 144–230. Prentice-Hall, Englewood Cliffs (1990)

19. Wiedenbeck, S., Ramalingam, V., Sarasamma, S., Corritore, C.: A comparison of
the comprehension of object-oriented and procedural programs by novice program-
mers. Interacting with Computers 11(3), 255–282 (1999)

20. Meyer, R.: Comprehension as affected by the structure of the problem representa-
tion. Memory & Cognition 4(3), 249–255 (1976)

21. Shneiderman, B., Mayer, R.: Syntactic/semantic interactions in programmer be-
havior: A model and experimental results. International Journal of Parallel Pro-
gramming 8(3), 219–238 (1979)

22. Fodor, J., Bever, T., Garrett, M.: The Psychology of Language: An Introduction to
Psycholinguistics and Generative Grammar. McGraw-Hill Companies, New York
(1974)

23. McKeithen, K., Reitman, J., Rueter, H., Hirtle, S.: Knowledge organization and
skill differences in computer programmers. Cogn. Psych. 13(3), 307–325 (1981)

24. Adelson, B.: Problem solving and the development of abstract categories in pro-
gramming languages. Memory & Cognition 9(4), 422–433 (1981)

25. Green, T.: Conditional program statements and their comprehensibility to profes-
sional programmers. Journal of Occupational Psychology 50, 93–109 (1977)

26. Green, T.: Ifs and thens: Is nesting just for the birds? Software Focus 10(5) (1980)
27. Gilmore, D., Green, T.: Comprehension and recall of miniature programs. Interna-

tional Journal of Man-Machine Studies 21(1), 31–48 (1984)
28. Green, T.: Cognitive dimensions of notations. In: Sutcliffe, A., Macaulay, L. (eds.)

People and Computers V, Proceedings, pp. 443–460 (1989)
29. Green, T., Petre, M.: Usability Analysis of Visual Programming Environments: A

Cognitive Dimensions Framework. J. Vis. Lang. Computing 7(2), 131–174 (1996)
30. Blackwell, A.: Ten years of cognitive dimensions in visual languages and computing.

J. Vis. Lang. Computing 17(4), 285–287 (2006)
31. Vanderfeesten, I., Reijers, H., Mendling, J., Aalst, W., Cardoso, J.: On a Quest for

Good Process Models: The Cross-Connectivity Metric. In: Bellahsène, Z., Léonard,
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