Towards Object-Aware Process Management
Systems: Issues, Challenges, Benefits

Vera Kiinzle and Manfred Reichert

Institute of Databases and Information Systems, Ulm University, Germany
{vera.kuenzle, manfred.reichert}@uni-ulm.de

Abstract. Contemporary workflow management systems (WIMS) offer
promising perspectives in respect to comprehensive lifecycle support of
business processes. However, there still exist numerous business applica-
tions with hard-coded process logic. Respective application software is
both complex to design and costly to maintain. One major reason for the
absence of workflow technology in these applications is the fact that many
processes are data-driven; i.e., progress of process instances depends on
value changes of data objects. Thus business processes and business data
cannot be treated independently from each other, and business process
models have to be compliant with the underlying data structure. This pa-
per presents characteristic properties of data-oriented business software,
which we gathered in several case studies, and it elaborates to what de-
gree existing WEMS are able to provide the needed object-awareness. We
show that the activity-centered paradigm of existing W{MS is too inflex-
ible in this context, and we discuss major requirements needed to enable
object-awareness in processes management systems.

Keywords: Workflow Management, Object-aware Process Management
Systems, Data-driven Process Execution.

1 Introduction

Nowadays, specific application software (e.g., ERP, CRM, and SCM systems)
exists for almost every business division. Typically, respective software enables
access to business data and offers a variety of business functions to its users. In
addition, it often provides an integrated view on the business processes. Though
such tight integration of process, function and data is needed in many domains,
current application software still suffers from one big drawback; i.e., the hard-
coding of the process and business logic within the application. Thus, even simple
process changes require costly code adaptations and high efforts for testing. Ex-
isting application software typically provides simple configuration facilities; i.e.,
based on some settings one can configure a particular process variant. Prob-
lems emerging in this context are the lack of transparency of the configurable
processes and the mutual dependencies that exist between the different con-
figuration settings. In addition, like the overall process logic the settings are
often (redundantly) scattered over the whole application code, which therefore

T. Halpin et al. (Eds.): BPMDS 2009 and EMMSAD 2009, LNBIP 29, pp. 1974210 2009.
© Springer-Verlag Berlin Heidelberg 2009



198 V. Kiinzle and M. Reichert

becomes complex and difficult to maintain over time. This results in long devel-
opment cycles and high maintenance costs (e.g., when introducing new features).

In principle, workflow management systems (WIMS) offer promising perspec-
tives to cope with these challenges. Basically, a WfMS provides generic functions
for modeling and executing processes independent from a specific application.
Contemporary WIMS, however, are not broadly used for realizing data- and
process-oriented application software, particularly if a close integration of the
process and the data perspective is needed. In the latter case the processes are
typically data-driven; i.e., the progress of single process instances does not di-
rectly depend on the execution of activities, but on changes of attribute values of
data objects. Thus business processes and data cannot be treated independently
from each other, and business process models need to be compliant with the
underlying data structure; i.e. with the life cycles of the used data objects.

In this paper we demonstrate why the activity-centered paradigm of existing
WIMS is inadequate for supporting data-oriented processes. For this purpose,
we elaborate important properties of existing application software and show to
what degree they can be covered by existing WfMS. Based on the identified
shortcomings, we define major requirements for a generic system component
enablingdata-oriented processes with integrated view on both business processes
and business data. To clearly distinguish this approach from existing WfMS we
denote it as Object-aware Process Management System in the following.

Section 2 summarizes characteristics of contemporary WEMS and introduces
an example of a data-oriented process. We use this running example throughout
the paper to illustrate different issues relevant for the support of data-oriented
processes. In Section 3 we describe five key challenges for realizing an Object-
aware Process Management System. We check to what degree contemporary
WIMS cover the properties of data-oriented applications. Based on the problems
identified in this context we derive the requirements for Object-aware Process
Management Systems. Section 4 describes related work. The paper concludes
with an outlook on our future research in Section 5.

2 Backgrounds and Illustrating Example

This section describes basic workflow terminology and introduces an illustrating
example. Based on this information we discuss the deficiencies of contemporary
WIMS in the following sections.

Existing WfMS. In existing WfMS, a process definition consists of a set of
activities and their control flow [I]. The latter sets out the order and constraints
for executing the activities. It can be defined based on a number of workflow
patterns which, for example, allow to express sequential, alternative and parallel
routing as well as loop backs [2]. Each activity, in turn, represents a particular
task and is linked to a specific function of an application service. To be able to
assign human tasks to the respective actors, in addition, actor expressions (e.g.,
user roles) need to be defined for the corresponding activities. At runtime, for



Towards Object-Aware Process Management Systems 199

each business case an instance of the corresponding process definition is created
and executed according to the defined control flow. A particular activity may be
only enabled if all activities preceding in the control flow are completed or cannot
be executed anymore (except loop backs). When an interactive activity becomes
enabled, corresponding work items are added to the work lists of responsible
users. Finally, when a work item is selected by a user, the WfMS launches the
associated application service.

Example of a Data-Oriented Process. We consider the (simplified) process
of a job application as it can be found in the area of human resource manage-
ment. Using an online form on the Internet, interested candidates may apply for
a vacancy. The overall goal of the process then is to decide which applicant shall
get the offered job. A personnel officer may request internal reviews for each job
applicant. Corresponding review forms have to be filled out by employees from
functional divisions until a certain deadline. Usually, they evaluate the applica-
tion(s), make a proposal on how to proceed (e.g., whether or not a particular
candidate shall be invited for an interview), and submit their recommendation to
the personnel officer. Based on the provided reviews the personnel officer makes
his decision on the application(s) or he initiates further steps like an interview
or another review. In general, different reviews may be requested and submitted
respectively at different points in time. In any case, the personnel officer should
be able to sign already submitted reviews at any point in time.

3 Findings, Problems, Requirements

In several case studies we have evaluated the properties of data- and process-
oriented application software. This section summarizes basic findings from these
studies and illustrates them along our running example. We then reveal char-
acteristic problems that occur when using existing workflow technology for im-
plementing the identified properties. This leads us to a number of fundamental
requirements to be met by object-aware process management systems.

3.1 Challenge 1: Integration of Data

Findings. Usually, application systems manage data in terms of different object
types represented by a set of attributes. At runtime, for each object type several
object instances exist, which differ in the values of their attributes. Each object
type has at least one attribute representing its object ID. Using this attribute any
object instance can be uniquely identified. Relationships between object types
are described using attributes as well. At runtime, object IDs of other object
instances are then assigned to these attributes. Generally, an object instance
may be referenced by multiple other object instances of a particular object type.

Business Data is represented by a wvariable number of object instances of
different object types which are related to each other.

Fig. [k depicts the data structure for our running example. For each applica-
tion multiple reviews can be requested (cf. Fig.[Ib). Thereby the precise number



200 V. Kiinzle and M. Reichert

of related object instances varies from case to case; i.e., the number of requested
reviews may differ from application to application, and it may also change dur-
ing runtime (e.g., if for an application some reviews are requested or completed
later than others).

In data- and process-oriented applications, available information can be ac-
cessed by authorized users at any point in time regardless of the process status.

From a user perspective, the instances of a particular object type correspond
to rows in a table. Table columns, in turn, relate to selected attributes of the
object type or — more precisely — to attribute values of the object instances.
Attributes representing object relationships are resolved; i.e., their values are
substituted by (meaningful) attribute values of the related object instances. Ad-
ditional information on object instances (e.g., attributes not displayed by default
within the table or detailed information about referenced object instances) can
be viewed on-demand. Using this data- or object-centric view, besides working
on mandatory process activities , authorized users may optionally edit attribute
values of single object instances at arbitrary points in time (optional activities).

Problems. Existing WfMS are unable to provide such object-centric views.
Most of them only cover simple data elements, which store values of selected
object attributes, while the object instances themselves are stored in external
databases. More precisely, only the data needed for control flow routing and for
supplying input parameters of activities are maintained within the WIMS (i.e.,
so-called workflow relevant data), while other application data is unknown to it.
Obviously, this missing link between application data and business process pro-
hibits an integrated access to them; i.e., access to detailed business information
is only possible when executing an activity and its related application function
respectively. Fig. [t shows a process activity for perusing a particular review.
Which review shall be displayed can be controlled by the WfMS by handing over
its objectID to the invoked activity. However, the WfMS cannot control which
attributes of the review object or of related objects (e.g., the application) can
be accessed. Missing or incomplete context information, however, often leads to
inefficient work and erroneous results [3].

(@ SETITTTI ) ST

processinstance

ob offer  [D-review 4
: view
[“application | review

'
What data?
'

attri

Fig. 1. Data structure and access to context information



Towards Object-Aware Process Management Systems 201

processtype

edit edit
data data
edit init edit .
interview data reject
H compare evaluate .
O skills recommendation decision
application init
reviews
edit edit
optional activity data data
mandatory activity

Fig. 2. Mandatory and optional activities in contemporary WfMS

In principle, optional activities, enabling access to application data at arbi-
trary points in time, could be emulated in WfMS by explicitly modeling them
at different positions in the control flow. However, this would lead to spaghetti-
like process models with high number of redundant activities, which are difficult
to comprehend for users. Besides this, users would not be able to distinguish
optional activities from mandatory ones. Fig. [ illustrates this problem along
our running example. Here, optional activity edit data is embedded multiple
times in the process definition in order to be able to access application data
if required. Note that without such an explicit integration of optional activi-
ties, needed changes of application data would have to be accomplished directly
within the applications system. When bypassing either the WIMS or appl. sys-
tem, however, inconsistencies with respect to attributes, redundantly maintained
in both systems, might occur. Worst case, this can result in runtime errors or
faulty process executions.

Requirements. Object-aware process management systems need to be tightly
integrated with application data. In particular, these data should be manageable
and accessible based on complex objects rather than on atomic data elements.
Another challenge is to cope with the varying and dynamic number of object
instances to be handled at runtime. Thereby, the different relations between
the object instances have to be considered as well. Finally, regardless of process
status, it should be possible to access object information at any time.

3.2 Challenge 2: Choosing Granularities for Processes and Activities

Findings. For different object types separate process definitions exist [§)]. The
creation of a process instance is directly coupled with the creation of an object
instance; i.e., for each object instance exactly one process instance exists.

Fig. B illustrates the mapping between object and process types as well as
between object and process instances. The object type of a job application has
its own process type. At runtime, there are several instances of a job application
object. Correspondingly, for each of them a separate process instance is created.

Regarding the process type associated with a particular object type, each ac-
tivity refers to one or more attributes of the object type. There is one action per
attribute to read or write its value. Each activity consists of at least one action.



202 V. Kiinzle and M. Reichert
build time run time
objecttypes objectinstances
1
“appiication_J

1
0 —n1
[ review }——{ employee |

[ review H-up—{ employee H-HJ

processtypes

compare evaluate
skills rec.

processinstances

init
interview

compare
skills

init
interview

init

H decision Q.

oy

evaluate i
decision
rec.

review

propose
rec.

set view . evaluate -
O delivery HsubmltH rec. ‘ O

Fig. 3. Analogy between data and process structure

When executing a particular process instance related subordinate processes
may be triggered. Results collected during their execution are relevant for the
execution of the superordinate process instance as well. In this context the cre-
ation of a subordinate process instance is also coupled with the creation of a
corresponding object instance. The latter has to refer to the object instance of
the superordinate process instance. Consequently, the number of subordinate
process instances depends on the number of object instances which reference the
object instance associated with the superordinate process instance.

The relations between process types correspond to the relations between object
types within the overall data structure [)].

Fig. [lillustrates the analogy between data structure and process structure.
For each job application an arbitrary number of reviews may be requested, and
for each review object one process instance is running. The latter constitutes a
subordinate process of the process instance related to the job application.

Problems. Granularity issues are not adequately addressed in existing W{MS;
i.e., processes, sub-processes and activities may be modeled at arbitrary level
of granularity. Neither a uniform methodology nor practical guidelines exist for
process modeling [5], often resulting in inconsistent or non-comparable models.
Furthermore, when modeling and executing processes in WfMS, there exists no
direct support for considering the underlying data structure; i.e., the objects
and their relations. In particular, two drawbacks can be observed: First, the
creation of (sub) process instances cannot be coupled with the creation of object
instances. Second, in many WfMS the number of sub process instances has to be
fixed already at build time [6]. Note that WIMS enabling multi-instance patterns
constitute an exception in the latter respect [2].

Requirements. The modeling of processes and data constitute two sides of the
same coin and therefore should correspond to each other [5]. Thereby, we have
to distinguish between object level and (data) structure level: First, a process
type should always be modeled with respect to a specific object type; process
activities then may directly relate to attributes of this object type. Second,



Towards Object-Aware Process Management Systems 203

> time > ] run time > time >
L ] review @ delivery d”a’(e is| |delivery date > recommendation is submit finish
null today not null = true = true
~
preconditions et de
aﬂribultes @
-[D-review _ )@ D] D) 6]
-(D-application ) @ ) @ D) @ D) @ ) @ D)
-(ID-employee O A D) 1 1 1 1
-deliverydate ) ( D) 09/12/08 09/12/08 09/12/08 09/12/08
~fecommendation) ( D) init interv.
~gradin C D) C D)
-comment C DI D) C D}
~(submit ) (alse D) alse alse true
-(finish ) (alse ) (false ) false > false > @&

Fig. 4. Progress within data and data-based modeling

at the structure level, process relations should correspond to the ones between
the corresponding data objects. Finally, instantiation of processes needs to be
coupled with the creation of related object instances.

3.3 Challenge 3: Data-Based Modeling

Findings. The progress of a process instance correlates with the attribute values
of the associated object instance. Corresponding to this, the steps of a process are
less defined on basis of black-box activities, but more on explicit data conditions.

Fig. M shows an instance of a review object together with the related pro-
cess instance. For each process step, pre-conditions on the attribute values of
the object instance as well as the attribute values changed within this step are
depicted. In particular, the process is defined by setting goals described in terms
of conditions on object attribute values. Regarding our example from Fig. [E]
these data conditions are related to the attributes of the review object. This way,
process state and object state sync at any point in time. Mandatory activities
can be identified by analyzing the data conditions. More precisely, they comprise
those actions changing object attributes in a way such that the conditions for
executing subsequent activities become fulfilled [3]. For each process step at least
one mandatory activity exists.

Problems. In existing WIMS, process designers have to explicitly define the
activities to be carried out as well as their order constraints. In particular, no
support exists for verifying whether or not the (semantic) goals of a process can
be achieved [7I8/9]. Some approaches define pre- and post-conditions for certain
activities in relation to application data. If the pre-conditions of such an activity
cannot be met during runtime, however, process execution is blocked. In this
context, it is no longer sufficient to only postulate certain attribute values for
executing a particular activity. It then must be also possible, to dynamically
react on current attribute values.

Requirements. In object-aware process management systems, the modeling of
a process type should not be based on the activities to be carried out. Instead,



204 V. Kiinzle and M. Reichert

run time
4= asynchronous =p

R interview [

compare
skills K

-ﬁl
propose submit evaluate .'

rec. rec. [

set
delivery

4=asynchronous =y

Fig. 5. Synchronizing process instances

process steps should be defined in terms of data conditions. The latter, in turn,
should relate to the attributes belonging to the corresponding object type.

3.4 Challenge 4: Synchronizing Process Instances

Findings. A subordinate process is always instantiated during the execution
of another process instance [6]. Like for the superordinate process instance, a
corresponding object instance is then created. In particular, this object instance
references the one related to the superordinate process instance. Finally, the
pre-condition of the process step, in which the subordinate process instance is
created, corresponds to a data condition on the superordinate object instance.

The creation of a particular object instance depends on the progress of the
process instance related to the superordinate object instance.

Fig. Bh illustrates this relationship. A new review object cannot be created
before the skills of the applicant have been compared with the job profile.

During the execution of a superordinate process instance, information from its
subordinate process instances may be used for decissions within the superordinate
process instance.

To accomplish such evaluation, data of multiple subordinate object instances
may be required [6]; i.e., we need to aggregate the values of particular attributes
of subordinate object instances. Which subordinate object instances shall be
taken into account may depend on the execution progress of their corresponding
process instances. Fig. Bb illustrates this along our running example. Within the
parental process instance handling a particular job application, the requested
reviews (i.e., results from different subordinate processes) are jointly evaluated.
Thereby, only submitted reviews are considered.

The executions of different process instances may be mutually dependent [J6].
Respective dependencies may exist between instances of the same process type as
well as between instances of different process type.

Considering this, the data conditions for executing process steps are even
more complex in existing application software than described above; i.e., these
data conditions may be not only based on the attributes of the corresponding
object type, but also on the attributes of related object types. For example, a



Towards Object-Aware Process Management Systems 205

review may only be marked as completed after a decision on the job application
has been made (cf. Fig. Bk).

Problems. In existing WIMS, process instances are executed in isolation to each
other [6]. Neither dependencies between instances of different process types nor
dependencies between instances of the same process type can be defined at a
reasonable semantical level. Often, the modeling of subordinate processes serves
as a workaround. However, in existing WfMS the execution of subordinate pro-
cess instances is tightly synchronized with their superordinate process instance;
i.e., the latter is blocked until the sub process instances are completed. Thus,
neither aggregated activities nor more complex synchronization dependencies as
described above can be adequately handled in WIMS [6].

Requirements. Generally, it should be possible to execute both instances of
the same and instances of different process types in a loosely coupled manner,
i.e., asynchronously to each other. However, due to data dependencies at object
instance level, we need to be able to synchronize their execution at certain points.
Furthermore, to a superordinate process instance several subordinate process
instances should be assignable in accordance with the relationships between
corresponding object instances as well as their cardinalities.

3.5 Challenge 5: Flexibility

Findings. As described, there are optional as well as mandatory activities. The
former are used to gather object information at any point in time regardless
from the progress of the corresponding process instance. Opposed to this, the
latter are mandatory and comprise actions that change the values of the object
attributes used within the data conditions of one or multiple process steps.

The activation of an activity does not directly depend on the completion of
other activities; i.e., it may be executed as soon as its data condition is satisfied.

An activity can be also executed repeatedly as long as its data condition is
met. Depending on how the data conditions of the different activities look like,
a more or less asynchronous execution becomes possible (cf. Fig. [A]).

Generally, activities consist of one or more atomic actions for reading or writ-
ing the different attributes of an object instance. Which object attributes can
be actually modified in a given context depends on the progress of the related
process instance. For example, Fig. [{]shows the different actions available within

run time
delivery date is | delivery date > |[recommendation
null today is not null
view review
edit review
set delivery date | view application |
propose recommendation [
[ submit [ finish |

submit = true finish = true

Fig. 6. Asynchronous and overlapping execution of activities



206 V. Kiinzle and M. Reichert

objecttype
review dellvery délﬂ delivery date] [recommend. submit * ﬂms?
is null > toda is not null = true = true

i attributes

D-review read read read read read
D-application read read read read read
D-employee read read read read read
delivery date read read read read
recommendation write read read
rading ) write write read read
comment ) write write read I read
i-~-{submit ) read read
—(inish ) read

Fig. 7. Granularity of activities with optional and mandatory actions

the (optional) activity for entering the data of a review object. As can be seen,
the concrete set of selectable actions depends on the conditions actually met
by the object instance; i.e., (optional) activities dynamically adapt their behav-
ior to the progress of the corresponding process instance (denoted as horizontal
dynamic granularity). Interestingly, the attribute changes required to fulfill the
data condition of a particular process step can be also realized when executing
an optional activity. Since this can be done asynchronously at arbitrary point
in time, high process flexibility can be achieved. Furthermore, for a particular
activity optional and mandatory actions can be differentiated. Fig. [ shows the
mandatory actions for a review. Note that these actions may differ from step
to step. As opposed to optional activities, mandatory ones only include those
actions necessary for the fulfillment of the data conditions of subsequent steps.

Mandatory activities belonging to different instances of the same process type
may be executed together.

Required data is only entered once by the user; i.e., users may group a number
of activities for which they want to provide the same input data (denoted as
vertical dynamic granularity). Fig. [ illustrates this for activity finish.

Problems. Due to the activity-driven execution of process instances in exist-
ing WIMS, an activity can usually be activated only once (except loop backs).
Furthermore, activity execution must take place in a precisely defined context.
However, such rigid behavior is not always adequate. Sometimes an activity needs
to be repeated spontaneously; or it has to be executed in advance, or first be
stopped and then be caught up at a later point in time [3]. Conventional WfMS

> time > run time > time >
set view propose . o
O dellve appli. rec. submit rec.
- - - =

set view ropose 5 evaluate
e submit rec -QO

delive appli. rec.
w W - 4 -

set E propose . evaluate

" . submit ».
delivel appli. rec. rec.

Fig. 8. Grouping of activities



Towards Object-Aware Process Management Systems 207

do not allow for this kind of flexibility. Furthermore, users are typically involved
in the execution of multiple instances of a particular process type. Thus, their
worklist usually contains many activities of same type. However, each of them
needs to be processed separately in WfMS, which does not always comply with
common work practice. In summary, the isolated execution of process instances
in existing WIMS is too inflexible [10].

Requirements. Data-driven process execution is needed; i.e., process execution
should be not guided by activities, but rather be based on the state of the
processed object instances. Thereby, a much more flexible execution behavior
and optional activities can be realized. Furthermore, it should be possible to
make the selectable actions within an activity execution dependable on the state
of the process instances. Finally, it should be possible to work on several activities
with same type, but belonging to different process instances, in one go.

The above discussions have revealed the limitations of current WfMS. Only
being able to cope with atomic or stateless data elements is by far not sufficient.
Instead, tight process and data integration is needed. This integration can based
on objects, object attributes and object relations. Therefore, these three levels
need to be reflected in process definitions as well; i.e., activities should be related
to object attributes and process modeling should be based on objects. The hi-
erarchical relations between processes and other process interdependencies then
depend on object relations; i.e., on references between objects. In summary, we
need comprehensive support for the data-based modeling and data-driven exe-
cution of business processes.

4 Related Work

The described challenges have been partially addressed by existing work. How-
ever, a comprehensive solution for object-aware process management is still miss-
ing. Fig. @l summarizes what challenges have been addressed by which approach.

Challenge 1: Integration of Data. Concepts for better integration of pro-
cesses and data are suggested in Artifact-Centric Modeling [I1], Production-
Based Workflow Support [5/12], Data-Driven Process Coordination (Corepro)
[4], and Case Handling [3]. [12] establishes relations between atomic data ele-
ments, but neither supports complex objects nor varying numbers of data el-
ements. Corepro, in turn, allows to model objects and object relations [II3];
object definition does not consider attributes and cardinalities of object rela-
tions. In [I1], so-called artifacts have to be identified first. Like objects, artifacts
consist of different attributes which can be also used to define relations between
them. Unlike objects, they are not defined at type level and therefore cannot
be instantiated multiple times. In all approaches, access to data is only possible
in the context of an activity execution, i.e. at a certain point during process
execution. Only Case Handling [3] allows access to data outside the scope of
activities, but does not provide explicit support for complex objects and data
structures.



208 V. Kiinzle and M. Reichert

Challenge 2: Choice of Granular-

: ity for Activities and Processes.
ke Objects and object relations constitute
: 3 guidelines for choosing the granular-
; : ity for processes, sub-processes and ac-

& [ atomic slemens /attributes | X | X x | x| x tivities. Process definitions are based
T . . . . .

5 Sty on objects and activities are used to
E relations between data X X . .

- —— : modify the values of corresponding at-
o lexible quantity .

& [ sl canites X tributes. Furthermore, a process struc-
[ P . :

s | actiy X " ture should be in accordance with
25| process o x| o] x the data structure. Granularity issues

| databasedmodaling | 0 | x | 0 | x | | | are addressed by the previously men-

‘__— tioned approaches and by Proclets [6].
synchronisation ‘ ‘ ‘ X ‘ ‘ X ‘ ‘

I — However, none of them enables com-
horizontal dynamic granul. X oy .

g . ; plete process definition with references

2 vertical dynamic granularity X K K R

2 [ data-driven execution x| o|x to attributes, objects and object re-

lations. In [T1] activities are modeled

Fig. 9. Overview of related work based on one ore more artifacts, but

without deriving the granularity of
processes automatically. Proclets [6] are lightweight processes, which communi-
cate with each other via messages. The granularity of a process is not explicitly
defined. By considering the quantity of process instances, an implicit analogy
between processes and objects can be drawn. Corepro [4] explicitly coordinates
individual processes based on the underlying data structure. The granularity of
processes and activities can be chosen freely. [BJI2] consider both the granularity
of activities and the one of processes. Activities always relate to one or more
atomic data elements. The structure of the process corresponds to the relation-
ships between the data elements. Sub-processes do not exist. In [3] activities are
described in terms of atomic data elements as well. Due to their indirect encapsu-
lation, a process is defined based on an individual ”case”. However, relationships
are not considered.

Challenge 3: Data-Based Modeling. Though [IT] does not allow for data-
based modeling, activities are defined with references to the identified artifacts.
In Corepro, process coordination is realized in accordance with the objects and
their relations. Objects are defined in terms of states and transitions between
them. Furthermore, processes assigned to different objects can be related to each
other based on external transitions. The most advanced approaches in relation
to data-based modeling are provided by [3] and [512]. Data-based modeling of
activities in terms of atomic data elements is possible. However, for each process
step still an activity has to be explicitly defined.

Challenge 4: Synchronization. In [6], processes are synchronized based on
messages. Thereby, a variable number of process instances is considered. How-
ever, their synchronization is not explicitly based on the data structure. The
most powerful approach in the given context is provided by the data-driven



Towards Object-Aware Process Management Systems 209

coordination of processes in Corepro []. Process synchronization is in accor-
dance with the related data structure. Thereby, a variable number of instances
can be created. The creation of new object instances at runtime is possible, but
requires an ad-hoc change of the related data structure [13].

Challenge 5: Flexibility. Case Handling [3] enables horizontal dynamic gran-
ularity. A data element can be read and written within several activities. These
data elements can either be free, mandatory or optional. A data element which is
mandatory for an activity can be optional for preceding ones. [10] enables vertical
dynamic granularity of activities; same activities of different process instances
can be grouped and executed together. [B12] enable the data-driven execution of
processes based on current values of the data elements. In Corepro [4] processes
themselves are still activity-driven, whereas process synchronization follows a
data-driven approach.

5 Outlook

Our overall vision is to develop a framework for object-aware process manage-
ment; i.e., a generic component for enabling data-driven processes as well as an
integrated view on process and data. On the one hand we want to provide simi-
lar features as can be found in some hard-coded, data-oriented applications. On
the other hand we want to benefit from the advantages known from workflow
technology. However, a tight integration of data and process is only one of the
challenges to be tackled. Other ones arise from the involvement of users and the
handling of access privileges; e.g., depending on object data. In future papers we
will provide detailed insights into the different components of an object-aware
process management system as well as their complex interdependencies.

References

1. Aalst, W., Hee, K.: Workflow-Management - Models, Methods and Systems. MIT
Press, Cambridge (2004)

2. Aalst, W., Hofstede, A., Kiepuszewski, B., Barros, A.: Workflow patterns. Distr.
& Parallel Databases 14, 5-51 (2003)

3. Aalst, W., Weske, M., Griinbauer, D.: Case handling: A new paradigm for business
process support. DKE 53(2), 129-162 (2005)

4. Miiller, D., Reichert, M., Herbst, J.: Data-driven modeling and coordination of
large process structures. In: Meersman, R., Tari, Z. (eds.) OTM 2007, Part I.
LNCS, vol. 4803, pp. 131-149. Springer, Heidelberg (2007)

5. Reijers, H., Liman, S., Aalst, W.: Product-based workflow design. Management
Information Systems 20(1), 229-262 (2003)

6. Aalst, W., Barthelmess, P., Ellis, C., Wainer, J.: Workflow modeling using proclets.
In: Scheuermann, P., Etzion, O. (eds.) CoopIS 2000. LNCS, vol. 1901, pp. 198-2009.
Springer, Heidelberg (2000)

7. Ryndina, K., Kiister, J., Gall, H.: Consistency of business process models and
object life cycles. In: Kiihne, T. (ed.) MoDELS 2006. LNCS, vol. 4364, pp. 80-90.
Springer, Heidelberg (2007)



210

8.

10.

11.

12.

13.

V. Kiinzle and M. Reichert

Redding, G., Dumas, M., Hofstede, A., Tordachescu, A.: Transforming object-
oriented models to process-oriented models. In: ter Hofstede, A.H.M., Benatal-
lah, B., Paik, H.-Y. (eds.) BPM Workshops 2007. LNCS, vol. 4928, pp. 132-143.
Springer, Heidelberg (2008)

Gerede, C., Su, J.: Specification and verification of artifact behaviors in business
process models. In: Kramer, B.J., Lin, K.-J., Narasimhan, P. (eds.) ICSOC 2007.
LNCS, vol. 4749, pp. 181-192. Springer, Heidelberg (2007)

Sadiq, S., Orlowska, M., Sadiq, W., Schulz, K.: When workflows will not deliver:
The case of contradicting work practice. In: Proc. BIS 2005 (2005)

Liu, R., Bhattacharya, K., Wu, F.: Modeling business contexture and behavior
using business artifacts. In: Krogstie, J., Opdahl, A.L., Sindre, G. (eds.) CAiSE
2007 and WES 2007. LNCS, vol. 4495, pp. 324-339. Springer, Heidelberg (2007)
Vanderfeesten, I., Reijers, H., Aalst, W.: Product-based workflow support: Dy-
namic workflow execution. In: Bellahséne, Z., Léonard, M. (eds.) CAiSE 2008.
LNCS, vol. 5074, pp. 571-574. Springer, Heidelberg (2008)

Miiller, D., Reichert, M., Herbst, J.: A new paradigm for the enactment and dy-
namic adaptation of data-driven process structures. In: Bellahséne, Z., Léonard,
M. (eds.) CAiSE 2008. LNCS, vol. 5074, pp. 48-63. Springer, Heidelberg (2008)



	Towards Object-Aware Process Management Systems: Issues, Challenges, Benefits
	Introduction
	Backgrounds and Illustrating Example
	Findings, Problems, Requirements
	Challenge 1: Integration of Data
	Challenge 2: Choosing Granularities for Processes and Activities
	Challenge 3: Data-Based Modeling
	Challenge 4: Synchronizing Process Instances
	Challenge 5: Flexibility

	Related Work
	Outlook
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (Photoshop 4 Default CMYK)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




