
An Examination of the Effects of Offshore and

Outsourced Development on the Delegation of
Responsibilities to Software Components

Subhajit Datta� and Robert van Engelen

Department of Computer Science and School of Computational Science, Florida State
University, Tallahassee, FL 32306, USA

sd05@fsu.edu

Abstract. Offshore and outsourced development are the latest facts of
life of professional software building. The easily identifiable advantages
of these trends – such as cost benefits, continuous delivery and sup-
port – have already been explored to considerable extent. But how does
offshore and outsourced development affect the delegation of responsi-
bilities to components of a software system? In this paper we investigate
this question by applying the RESP-DIST technique on a set of real
life case studies. Our RESP-DIST technique uses metrics and a linear
programming based method to recommend the reorganization of com-
ponents towards an expedient distribution of responsibilities. The case
studies embody varying degrees of offshore and outsourced development.
Results from the case studies lead to some interesting observations on
whether and how offshore and outsourced development influences soft-
ware design characteristics.

1 Introduction

The paradigm of offshore and outsourced software development involves distribu-
tion of life cycle activities and stakeholder interests across geographical, political,
and cultural boundaries. In this paper we will use the phrase dispersed develop-
ment to refer to offshore and outsourced software development. We use the term
“dispersed” in the sense of distribution of software development resources and
concerns across different directions and wide area.

We seek to examine whether dispersed development has any impact on how
responsibilities are delegated to components in a software system. Towards this
end, we will apply the RESP-DIST technique across a spectrum of software
development projects and analyze the results. RESP-DIST is a mechanism to
guide RESPonsibility DISTribution in components of a software system such
that they are best able to collectively deliver the system’s functionality. RESP-
DIST uses the metrics Mutation Index [6], Aptitude Index, and Concordance
Index [7] and a linear programming (LP) based algorithm [7] to recommend the
merging or splitting (as defined in more detail in the next section) of components
� Corresponding author.

K. Berkling et al. (Eds.): SEAFOOD 2008, LNBIP 16, pp. 73–89, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

74 S. Datta and R. van Engelen

to lead to an even distribution of responsibilities and resilience to requirement
changes. As discussed in a later section, aptitude and concordance are the design
characteristics which RESP-DIST considers while making its recommendations.
By applying RESP-DIST across a set of software projects of varying disper-
sion in their development, we expect to discern whether and how offshore and
outsourced development affects the responsibility delegation aspect of software
design.

The remainder of this paper is organized as follows: In the next section we
describe a model for the software development space which will serve as a foun-
dation for applying RESP-DIST. The following section informally reviews some
key concerns of software design, followed by the introduction of the ideas of ap-
titude and concordance. We then define the metrics and specify the RESP-DIST
technique. Subsequently, results from applying RESP-DIST on five real life soft-
ware projects are presented. The paper ends with a discussion of related work,
open issues and planned future work, and conclusions.

2 A Model for the Software Development Space

The discussion of this paper is based on the following connotations of certain
definitions:

– A requirement is described as “... a design feature, property, or behaviour of
a system” by Booch, Rumbaugh, and Jacobson [2]. These authors refer to
the statement of a system’s requirements as the assertion of a contract on
what the system is expected to do; how the system does that is essentially
for the designer to decide.

– A component carries out specific responsibilities and interacts with other
components through its interfaces to collectively deliver the system’s func-
tionality (within acceptable non-functional parameters).

– A collaboration is described in the Unified Modelling Language Reference
Manual, Second Edition as a “... society of cooperating objects assembled
to carry out some purpose” [18]. Components collaborate via messages to
fulfil their tasks. In this paper “collaboration” and “interaction” will be used
interchangeably.

– Merging of a particular component will be taken to mean distributing its
responsibilities to other components in the system and removing the com-
ponent from the set of components fulfilling a given set of requirements. So
after merging, a set of components will be reduced in number, but will be
fulfilling the same set of requirements as before.

– Splitting of a particular component will be taken to mean distributing some
its responsibilities to a new component in the system which will interact on
its own with other components to collectively deliver the system’s function-
ality. So after splitting, a set of components will be increased in number,
but will be fulfilling the same set of requirements as before.

We now present an abstraction of how requirements are fulfilled by components.

An Examination of the Effects of Offshore and Outsourced Development 75

In order to examine the dynamics of software systems through a set of metrics,
a model is needed to abstract the essential elements of interest [7].

Let the development space of a software system consist of the set requirements
Req = {R1, ..., Rx} of the system, which are fulfilled by the set of components
Comp = {C1, ..., Cy}.

We take fulfilment to be the satisfaction of any user defined criteria to judge
whether a requirement has been implemented. Fulfilment involves delivering the
functionality represented by a requirement. A set of mapping exists between
requirements and components, we will call these relationships. At one end of a
relationship is a requirement, at the other ends are all the components needed
to fulfil it. Requirements also mesh with one another – some requirements are
linked to other requirements, as all of them belong to the same system, and
collectively specify the overall scope of the system’s functionality. The links
between requirements are referred to as connections. From the designer’s point
of view, of most interest is the interplay of components. To fulfil requirements,
components need to collaborate in some useful ways, these are referred to as the
interactions of components.

Based on this model, an important goal of software design can be stated as:
Given a set of connected requirements, how to devise a set of interacting compo-
nents, such that the requirements and components are able to forge relationships
that best deliver the system’s functionality within given constraints?

3 Key Concerns of Software Design

To examine whether and how distributed development affects software design,
we discuss the act of design in some detail.

We may say that the conception of a particular system’s design is instantiated
by allocating particular tasks to components and specifying their interaction with
other components such that the set of components collectively fulfil the system’s
requirements within acceptable non-functional parameters such as performance
etc. In this paper, we focus entirely on the functional aspect of design. How does
one decide on allocating tasks and specifying interactions?

Larman has called the ability to assign responsibilities as a “desert-island
skill” [16], to underline its criticality in the design process. Indeed, deciding
which component does what remains a key challenge for the software designer.
Ideally, each component should perform a specialized task and cooperate with
other components to deliver the system’s overall functionality. Whenever a new
functionality comes to light by analyzing (new or modified) requirements, the
designer’s instinct is to spawn a new component and assign it the task for de-
livering that functionality. This new component acts as something of an initial
placeholder for the new functionality; to be reconsidered later if necessary. With
increasing accretion of functionality a system usually ends up having a large
number of fine grained components. Why does the designer instinctively spawn
a new component for a new functionality, and not just commandeer an existing
component to deliver that functionality?

76 S. Datta and R. van Engelen

The instinct perhaps is inspired by one of the lasting credos of effective and el-
egant software design: shunning large, bloated units of code (the so called “Swiss
army knife” or “do-it-all” components) in preference to smaller, more coherent,
and closely collaborative ones. However, recognizing the inherently iterative na-
ture of software design, there is always scope – sometimes a pressing need –
for deciding to merge some components while splitting others as development
proceeds. Merging helps consolidate related responsibilities, thereby decreasing
redundant and sometimes costly method calls across components. It is a natural
way to refine components and their interactions after new components had been
spawned (often indiscriminately) earlier to address new functionalities. But of-
ten, splitting a component is an useful way to isolate the implementation of a
piece of functionality that is undergoing frequent modifications due to changing
requirements. Such isolation helps insulate other components and their interac-
tions from the effects of requirements that change often.

Thus the design of a software system in terms of its components – their in-
dividual responsibilities and collective interaction – matures iteratively through
merging and splitting. Over such repeated reorganizations, design objectives of
expediently fulfilling requirements as well as being resilient to some of their
changes, are progressively met. But how does one decide on which component
to merge and which to split? This is one the most important concerns of the
software designer, usually addressed through experience or intuition or nameless
“gut-feelings”. RESP-DIST brings in a degree of discipline and sensitivity into
such decisions – the technique seeks to complement the best of designers’ judg-
ment, and constrict their worst. RESP-DIST leverages certain characteristics of
a software system’s design which we discuss next.

4 Delegation of Responsibilities in Software Design

Design is usually an overloaded word, even in the software development context.
There are no universally accepted features of good design, while symptoms of
bad design are easy to discern. In the model for the software development space
presented in an earlier section, we highlighted one aspect of the design problem.
Based on this aspect, we introduce aptitude and concordance [7] as two key
characteristics of design.

Every software component exists to perform specific tasks, which may be
called its responsibilities. Software design canons recommend that each compo-
nent be entrusted with one primary responsibility. In practice, components may
end up being given more than one task, but it is important to try and ensure
they have one primary responsibility. Whether components have one or more re-
sponsibilities, they can not perform their tasks entirely by themselves, without
any interaction with other components. This is specially true for the so-called
business objects – components containing the business logic of an application.
The extent to which a component has to interact with other components to fulfil
its core functionality is an important consideration. If a component’s responsi-
bilities are strongly focused on a particular line of functionality, its interactions

An Examination of the Effects of Offshore and Outsourced Development 77

with other components can be expected to be less disparate. We take aptitude to
denote the quality of a component that reflects how coherent its responsibilities
are. Intuitively, the Aptitude Index measures the extent to which a component
(one among a set fulfilling a system’s requirements) is coherent in terms of the
various tasks it is expected to perform.

The Aptitude Index [7] seeks to measure how coherent a component is in terms
of its responsibilities.

To each component Cm of Comp, we attach the following properties [5]. A
property is a set of zero, one or more components.

– Core - α(m)
– Non-core - β(m)
– Adjunct - γ(m)

α(m) represents the set of component(s) required to fulfil the primary respon-
sibility of the component Cm. As already noted, sound design principles suggest
the component itself should be in charge of its main function. Thus, most often
α(m) = {Cm}.

β(m) represents the set of component(s) required to fulfil the secondary re-
sponsibilities of the component Cm. Such tasks may include utilities for accessing
a database, date or currency calculations, logging, exception handling etc.

γ(m) represents the component(s) that guide any conditional behaviour of the
component Cm. For example, for a component which calculates interest rates for
bank customers with the proviso that rates may vary according to a customer
type (“gold”, “silver” etc.), an Adjunct would be the set of components that help
determine a customer’s type.

Definition 1. The Aptitude Index AI(m) for a component Cm is a relative
measure of how much Cm depends on the interaction with other components for
delivering its core functionality. It is the ratio of the number of components in
α(m) to the sum of the number of components in α(m), β(m), and γ(m).

AI(m) =
|α(m)|

|α(m)| + |β(m)| + |γ(m)| (1)

As reflected upon earlier, the essence of software design lies in the collabora-
tion of components to collectively deliver a system’s functionality within given
constraints. While it is important to consider the responsibility of individual
components, it is also imperative that inter-component interaction be clearly
understood. Software components need to work together in a spirit of harmony
if they have to fulfil requirements through the best utilization of resources. Let us
take concordance to denote such cooperation amongst components. How do we
recognize such cooperation? It is manifested in the ways components share the
different tasks associated with fulfilling a requirement. Some of the symptoms of
less than desirable cooperation are replication of functionality – different compo-
nents doing the same task for different contexts, components not honouring their
interfaces (with other components) in the tasks they perform, one component

78 S. Datta and R. van Engelen

trying to do everything by itself etc. The idea of concordance is an antithesis
to all such undesirable characteristics – it is the quality which delegates the
functionality of a system across its set of components in a way such that it is
evenly distributed, and each task goes to the component most well positioned to
carry it out. Intuitively, the metric Concordance Index [7] measures the extent
to which a component is concordant in relation to its peer components in the
system.

Definition 2. The Concordance Index CI(m) for a component Cm is a relative
measure of the level of concordance between the requirements being fulfilled by
Cm and those being fulfilled by other components of the same system.

The Requirement Set RS(m) for a component Cm is the set of requirements
that need Cm for their fulfilment [7].

For a set of components Comp = {C1,C2,...,Cn,...,Cy−1,Cy} let,
W = RS(1) ∪ RS(2) ∪ ... ∪ RS(y − 1) ∪ RS(y)

For a component Cm (1 ≤ m ≤ y), let us define,
X(m) = (RS(1) ∩ RS(m)) ∪ ... ∪ ((RS(m − 1) ∩ RS(m)) ∪
((RS(m) ∩ (RS(m + 1)) ∪ ... ∪ ((RS(m) ∩ (RS(y))

Thus X(m) denotes the set of requirements that are not only being fulfilled
by Cm but also by some other component(s).

Expressed as a ratio, the Concordance Index CI(m) for component Cm is:

CI(m) =
|X(m)|
|W | (2)

How do the ideas of aptitude and concordance relate to cohesion and cou-
pling? Cohesion is variously defined as “... software property that binds together
the various statements and other smaller modules comprising the module” [8]
and “... attribute of a software unit or module that refers to the relatedness of
module components” [1]. (In the latter quote, “component” has been used in
the sense of part of a whole, rather than a unit of software as is its usual mean-
ing in this paper.) Thus cohesion is predominantly an intra-component idea –
pointing to some feature of a module that closely relates its constituents to one
another. But as discussed above, concordance carries the notion of concord or
harmony, signifying the spirit of successful collaboration amongst components
towards collective fulfilment of a system’s requirements. Concordance is an inter-
component idea; the concordance of a component can only be seen in the light
of its interaction with other components.

Coupling has been defined as “... a measure of the interdependence between
two software modules. It is an intermodule property” [8]. Thus coupling does not
take into account the reasons for the so called “interdependence” – that modules
(or components) need to cooperate with one another as they must together fulfil
a set of connected requirements. Aptitude is an intra-component idea, which
reflects on a component’s need to rely on other components to fulfil its primary
responsibility/responsibilities.

An Examination of the Effects of Offshore and Outsourced Development 79

Cohesion and coupling are legacy ideas from the time when software systems
were predominantly monolithic. In the age of distributed systems, successful soft-
ware is built by carefully regulating the interaction of components, each of which
are entrusted with clearly defined responsibilities. The perspectives of aptitude,
and concordance complement cohesion and coupling in helping recognize, isolate,
and guide design choices that will lead to the development of usable, reliable, and
evolvable software systems.

As mentioned earlier, one of the main drivers of design change is changing
requirements. Let us take the term mutation to mean any change in a particular
requirement that would require a modification in one or more components ful-
filling either one or a combination of the display, processing, or storage aspects
of the requirement. In keeping with the principle of separation of concerns, it
is usually taken to be good design practice to assign specific components to de-
liver each of the display, processing, and storage aspects. Components (or sets
of components) delegated to fulfil the display, processing, and storage aspects
of requirement(s) map to the stereotypes of analysis classes: boundary, control,
and entity [13]. Intuitively, the metric Mutation Index [6] measures the extent
to which a requirement has changed from one iteration to another, in terms of
its display, processing, and storage aspects.

For a system let Req = {R1, R2, ..., Rm..., Rx} denote the set of requirements.
Between iterations Iz−1 and Iz each requirement is annotated with its Mutation
V alue; a combination of the symbols D, P and S. The symbols stand for:

D ≡ Display(1)
P ≡ Processing(3)
S ≡ Storage(2)

The parenthesized numbers denote the Weights attached to each symbol. The
combination of more than one symbol signifies the addition of their respective
Weights, thus:

PD ≡ DP ≡ 1 + 3 = 4
SD ≡ DS ≡ 1 + 2 = 3
SP ≡ PS ≡ 3 + 2 = 5
SPD ≡ ... ≡ DPS ≡ 1 + 3 + 2 = 6

The Weight assigned to each category of components – Display, Processing
and Storage – is a relative measure of their complexities. (Complexity here refers
to how intense the design, implementation, and maintenance of a component
are in terms of development effort.) Processing components usually embody
application logic and are most design and implementation intensive. Storage
components encapsulate the access and updating of application data stores; their
level of complexity is usually lower than that of the Processing components but
higher than Display ones. Accordingly, Display, Processing and Storage have
been assigned the Weights 1, 3 and 2 respectively. Exact values of Weights
may be varied from one project to another; the essential idea is to introduce a
quantitative differentiation between the types of components.

80 S. Datta and R. van Engelen

Definition 3. The Mutation Index MI(m) for a requirement Rm is a relative
measure of the extent to which the requirement has changed from one iteration
to another in terms of the components needed to fulfil it.

Expressed as a ratio, the MI(m) for requirement Rm :

MI(n) =
The Mutation V alue for Rm

The maximum Mutation V alue
(3)

In the next section, we present how the RES-DIST technique uses the metrics
Aptitude Index, Concordance Index, and Mutation Index to recommend merging
or splitting of components.

5 The RESP-DIST Technique

Software design is about striking a balance (often a very delicate one!) between
diverse factors that influence the functioning of a system. The ideas of aptitude,
concordance, and mutation as outlined earlier are such factors we will consider
now. The RESP-DIST technique builds on a LP formulation to maximize the
Concordance Index across all components, for a given set of requirements, in a
particular iteration of development, within the constraints of not increasing the
number of components currently participating in the fulfilment of each require-
ment. Results from the LP solution are then examined in the light of the metric
values and suggestions for merging or splitting components arrived at. (RESP-
DIST is the enhanced version of the COMP-REF technique we proposed in [7]
– the latter only guided merging of components without addressing situations
where components may require to be split.)

A new variable an (an ∈ [0, 1]) is introduced corresponding to each component
Cn, 1 ≤ n ≤ N , where N = the total number of components in the system. The
values of an are arrived at from the LP solution. Intuitively, an for a component
Cn can be taken to indicate the extent to which Cn contributes to maximizing
the Concordance Index across all components. As we shall see later, the an values
will help us decide which components to merge.

The LP formulation can be represented as:

Maximize
y∑

n=1

CI(n)an

Subject to: ∀Rm ∈ Req,
y∑

n=1

an ≤ pm/N , an such that Cn ∈ CS(m). pm =

|CS(m)|. (As defined in [6], the Component Set CS(m) for a requirement Rm is
the set of components required to fulfil Rm.)

So, for a system with x requirements and y components, the objective function
will have y terms and there will be x linear constraints.

The COMP-REF technique is summarized as: Given a set of requirements
Req = {R1, ..., Rx} and a set of components Comp = {C1, ..., Cy} fulfilling it in
iteration Iz of development,

An Examination of the Effects of Offshore and Outsourced Development 81

– STEP 0: Review Req and Comp for new or modified requirements and/or
components compared to previous iteration.

– STEP 1: Calculate the Aptitude Index for each component.
– STEP 2: Calculate the Requirement Set for each component.
– STEP 3: Calculate the Concordance Index for each component.
– STEP 4: Formulate the objective function and the set of linear constraints.
– STEP 5: Solve the LP formulation for the values of an.
– STEP 6: For each component Cn, check:

• Condition 6.1: an has a low value compared to that of other components?
(If yes, implies Cn is not contributing significantly to maximizing the
concordance across the components.)

• Condition 6.2: AI(n) has a low value compared to that of other compo-
nents? (If yes, implies Cn has to rely heavily on other components for
delivering its core functionality.)

– STEP 7: If both conditions 6.1 and 6.2 hold TRUE, proceed to next step,
else GO TO STEP 10

– STEP 8: For Cn, check:
• Condition 8.1: Upon merging Cn with other components, in the resulting

set C̃omp of q components (say), CI(q) �= 0 for all q? (If yes, implies
resulting set of q components has more than one component).

– STEP 9: If condition 8.1 is TRUE, Cn is a candidate for being merged.
– STEP 10: Let Comp′ denote the resulting set of components after above

steps have been performed. For each component Cn′ in Comp′:
• 10.1 Calculate the average MI(m) across all requirements in RS(n′).

Let us call this M̄I(m).
• 10.2 Identify the requirement Rm with the highest MI(m) in RS(n′).

Let us call this MI(m)highest.
– STEP 11: For each component Cn′ , check:

• Condition 11.1: AI(n′) has a high value compared to that of other com-
ponents? (If yes, implies component relies relatively less on other com-
ponents for carrying out its primary responsibilities.)

• Condition 11.2: CI(n′) has a low value compared to that of other compo-
nents? (If yes, implies component collaborates relatively less with other
components for collectively delivering the system’s functionality.)

– STEP 12: If both conditions 11.1 and 11.2 hold TRUE for component Cn′ , it
is tending to be monolithic, doing all its activities by itself and collaborating
less with other components. Thus the Cn′ is a candidate for being split;
proceed to next step, else GO TO STEP 14.

– STEP 13: Repeat STEPs 10 to 12 for all components of Comp′. For the
component for which conditions 11.1 and 11.2 hold TRUE, choose the ones
with the highest M̄I(m) and split each into two components, one with the
requirement corresponding to the respective MI(m)highest and the other
with remaining requirements (if any) of the respective Requirement Set. If the
component was fulfilling only one requirement, the responsibility for fulfilling
the requirement’s functionality may now be delegated to two components.

– STEP 14: Wait for the next iteration of development.

82 S. Datta and R. van Engelen

6 Experimental Validation

6.1 Validation Strategy

To explore whether or how dispersed development affects the distribution of re-
sponsibilities amongst software components, we have studied a number software
projects, which vary significantly in their degrees of dispersion. The projects
range from a single developer team, to an open source system being developed
through a team whose members are located in different continents, a software
system built by an in-house team of a large financial organization, and stan-
dalone utility systems built through remote collaboration. We discuss results
from 5 such projects in the following subsections.

6.2 Presentation of the Results

Due to space constraints, we limit the detailed illustration of the application of
RESP-DIST to one project in detail. The summary of all the validation scenarios
are presented in Table 1.

Table 2 gives metrics values and the LP solution for an iteration of Project
A. Note: The project had 8 requirements: R1, R2, R3, R4, R6, R7, R8, R9 with
requirement R5 having been de-scoped in an earlier iteration of development. In
the table Avg MI(m) denotes M̄I(m) and Rm

h denotes the requirement Rm

with the highest MI(m) in RS(n′). MI(m) and Rm
h values are not applicable

(NA) for C4 since RESP-DIST recommends it to be merged as explained later.
From the design artefacts, we noted that R1 needs components C3, C5, C6 (p1

= 3), R2 needs C5, C7 (p2 = 2), R3 needs C1, C3, C4 (p3 = 3), R4 needs C2, C3

(p4 = 2), R6 needs C1, C2, C6 (p6 = 3), R7 needs C2, C6 (p7 = 2), R8 needs C7

(p8 = 1), and R9 needs C8 (p9 = 1) for their respective fulfilments. Evidently,
in this case |W |= N = 8.

Based on the above, the objective function and the set of linear constraints
was formulated as:
Maximize
0.25 ∗ a1 + 0.25 ∗ a2 + 0.5 ∗ a3 + 0.13 ∗ a4 + 0.25 ∗ a5 + 0.25 ∗ a6 + 0.13 ∗ a7 + 0.a8

Subject to
a3 + a5 + a6 ≤ 0.38
a1 + a3 + a4 ≤ 0.38
a2 + a3 ≤ 0.25
a1 + a2 + a6 ≤ 0.38
a7 ≤ 0.13
a8 ≤ 0.13

The linprog LP solver of MATLAB 1 was used to arrive at the values of an in
the Table 2. Let us examine how RESP-DIST can recommend the merging or
splitting of components. Based on the an values in Table 2, evidently components
C2, C4, C6 have the least contribution to maximizing the objective function. So
1 http://www.mathworks.com/

An Examination of the Effects of Offshore and Outsourced Development 83

Table 1. Experimental Validation: A Snapshot

System Scope and Technology Salient Features Findings

Project A A 5 member team dispersed de-
velopment project – with 1 mem-
ber interfacing with the customer
and other members located in an-
other continent – to build an auto-
mated metrics driven tool to guide
the software development life cycle
activities. The system was released
as an open source product.

8 requirements, 8 compo-
nents; system developed
using Java.

RESP-DIST recommended
1 component be merged, 1
component be split. Detailed
calculations are given later
in this section.

Project B A 2 member team dispersed de-
velopment project – with virtual
collaboration between the team
members – to build a stan-
dalone utility to execute stan-
dard text classification algorithms
against bodies of text, allowing
for different algorithm implementa-
tions to be added, configured and
used. Among other uses, a spam de-
tection application can use this util-
ity to try out different detection al-
gorithms.

8 requirements, 7 compo-
nents; system developed
using Java. The system
was selected from a com-
petition and integrated
in a broader application
framework. The develop-
ers had financial incen-
tives.

RESP-DIST did not recom-
mended merging of any com-
ponents, but 2 components
could be split.

Project C A 2 member team dispersed de-
velopment project – with virtual
collaboration between the team
members – to define, read, and
build an object representation of an
XML driven business work flow, al-
lowing manipulation and execution
of the workflow through a rich API
interface for the easy addition of
workflow operations.

11 requirements, 13 com-
ponents; system devel-
oped using the .NET
platform. The system
was selected from a com-
petition and integrated
in a broader application
framework. The develop-
ers had financial incen-
tives.

RESP-DIST recommended
merging of 3 components,
and splitting of 2 compo-
nents.

Project D A 6 member team dispersed devel-
opment project – with the devel-
opers and customers spread across
two cities of the same country – to
develop an email response manage-
ment system for a very large finan-
cial company. The system allows for
emails from users across six prod-
uct segments to be processed and
placed in designated queues for cus-
tomer associates to respond, and
deliver the responded back to the
users within prescribed time limits.

5 requirements; 10
components; system
developed using Java,
Netscape Application
Server (NAS), and Lo-
tus Notes. Developers
worked on the system
as a part of their job
responsibilities. The
system has been running
for several years, with
around 100,000 users.

RESP-DIST recommended
merging of 1 component,
and splitting of 4 compo-
nents.

Project E A 1 member team project to build
a Web based banking application
which allowed users to check their
profile and account information,
send messages to the bank; and
administrators to manage user ac-
counts, transactions, and messages.

12 requirements, 28
components; system de-
veloped according to the
Model-View-Controller
(MVC) architectural
pattern with J2EE and
a Cloudscape database.

Result from applying RESP-
DIST was inconclusive.

84 S. Datta and R. van Engelen

Table 2. Details for Project A

Cm RS(n) Avg MI(m) Rm
h α(n) β(n) γ(n) AI(n) |X(n)| CI(n) an

C1 R3, R6 0 - C1 C3, C5, C7 - 0.25 2 0.25 0.21

C2 R4, R7 0 - C2 C3, C7 C6 0.2 2 0.25 0.08

C3 R1, R3, R4, R6 0.17 R1 C3 C1, C5, C7 - 0.25 4 0.5 0.17

C4 R3 NA NA C4 C3, C5 - 0.33 1 0.13 0

C5 R1, R2 0.5 R1 C5 C1 - 0.5 2 0.25 0.12

C6 R1, R7 0.34 R1 C6 C2, C7 - 0.33 2 0.25 0.09

C7 R2, R8 0.5 R8 C7 - - 1 1 0.13 0.13

C8 R9 1 R9 C8 - - 1 0 0 0.105

the tasks performed by these components may be delegated to other compo-
nents. However, as mandated by RESP-DIST, another factor needs be taken
into account before merging. How self-sufficient are the components that are
sought to be merged? We thus turn to the AI(n) values for the components in
Table 2. We notice, AI(2) = 0.2, AI(4) = 0.33, AI(6) = 0.33. Out of these, C4 is
contributing nothing to maximizing concordance (a4 = 0), and its AI(n) value
is not very high either (0.33 on a scale of 1). So a4 can be merged with other
components. Now we check for the highest M̄I(m), which corresponds to C8. C8

also has a high AI(8) value of 1 and a low CI(8) value of 0. Thus C8 is trying
to do all its task by itself, without collaborating with other components – this
is indeed a candidate for splitting. The Rm with the highest MI(m) in RS(8)
is R9 – in fact R9 is the only requirement in this particular case fulfilled by C8.
So RESP-DIST recommends C8 be split into two components, each fulfilling a
part of R9. Relating the recommendations to the actual components and require-
ments, we find that C4 is an utility component in charge of carrying out some
numerical calculations; whose tasks can very well be re-assigned to components
which contain the business logic behind the calculations. On the other hand, R9

is a requirement for extracting data from design artefacts. This is certainly a
requirement of very large sweep and one likely to change frequently, as the data
needs of the users change. Thus it is justifiable to have R9 fulfilled by more than
one component, to be able to better localize the effects of potential changes in
this requirement. Figure 1 summarizes these discussions, indicating merging for
C4 and splitting for C8.

6.3 Interpretation of the Results

We examined the factors of dispersed development that could potentially affect
the outcome of applying the RESP-DIST technique on these projects.

The Agile Manifesto lists the principles behind agile software development
– methodologies being increasingly adopted for delivering quality software in
large and small projects in the industry, including those utilizing dispersed de-
velopment [15]. The Manifesto mentions the following among a set of credos:
“The most efficient and effective method of conveying information to and within
a development team is face-to-face conversation”, and “Business people and

An Examination of the Effects of Offshore and Outsourced Development 85

Fig. 1. Values of an, AI(n), M̄I(m) and CI(n) corresponding to the components
C1,...,C8 for Project A. The RESP-DIST technique suggests merging for C4 and split-
ting for C8 – detailed discussion in section 6.3.

developers must work together daily throughout the project” 2. Evidently, the
very nature of dispersed development precludes this kind of interaction between
those who commission and use a software system (these two groups may be iden-
tical or different, they are often clubbed together as customers) and those who
develop it, that is, the developers.

We identify the key drivers of the effects of dispersed development on software
design as locational asynchrony (LA), and perceptional asynchrony (PA). LA
and PA may exist between customers and developers or within the development
team. Locational asynchrony arises from factors like differences in geography
and time zones. An example of LA would be the difficulty in explaining a simple
architectural block diagram over email or telephone conversation, which can be
easily accomplished with a white board and markers in a room of people (some-
thing similar to the consequence of distance highlighted in [10]). Perceptional
asynchrony tends to be more subtle, and is caused by the complex interplay of
stakeholder interests that dispersed development essentially entails. For example,
in dispersed development scenarios, developers who have no direct interaction
with the customer often find it hard to visualize the relevance of the module
they are working on in the overall business context of the application – this is
a manifestation of PA. With reference to Table 1, Project A has high LA but
moderate PA; Projects B and C have moderate LA but high PA; Project D has
moderate LA and low PA, while Project E has low LA and PA.

Apparently, there is no clear trend in the recommendations from RESP-DIST
by way of merging or splitting components in Table 1 that suggests locational
asynchrony or perceptional asynchrony have noticeable impact on how responsi-
bilities are delegated. However, Projects B and C have a higher requirement to
component ratio compared to others. This not only influences the way RESP-
DIST runs on these projects but also indicates that moderate to high percep-
tional asynchrony may lead to a more defensive analysis of requirements – being

2 http://agilemanifesto.org/principles.html

86 S. Datta and R. van Engelen

relatively unsure of the customers’ intents developers are more comfortable deal-
ing with finer grained requirements. The inconclusiveness of RESP-DIST’s rec-
ommendation for Project E is also interesting. Project E’s scenario represents by
far the most controlled conditions of development amongst all the projects stud-
ied. It was developed by a single developer – a software engineer with more than
5+ years of industry experience – who had the mandate to refine the respon-
sibility delegations amongst components repeatedly until the system delivered
as expected. So naturally, RESP-DIST did not have much scope for suggesting
merging or splitting of components. Also, compared to other projects Project E
had a relatively unrelated set of requirements and relatively high number compo-
nents with uniformly distributed responsibilities. Thus from the results related
to Project A to D, RESP-DIST is seen to work best on a small set of closely
related requirements and components. For a system with many requirements
and components, it can be applied separately on subsystems that constitute the
whole system.

7 Related Work

Freeman’s paper, Automating Software Design, is one of the earliest expositions
of the ideas and issues relating to design automation [9]. Karimi et al. [14] report
their experiences with the implementation of an automated software design as-
sistant tool. Ciupke presents a tool based technique for analyzing legacy code to
detect design problems [3]. Jackson’s Alloy Analyzer tool employs “automated
reasoning techniques that treat a software design problem as a giant puzzle to
be solved” [12].

Collaboration platforms for offshore software development are evaluated in
[17]. Shami et al. simulate dispersed development scenarios [20] and a research
agenda for this new way of software building is presented in [19].

Herbsleb and Grinter in their papers [10], [11] have taken a more social view
of distributed software development. In terms of Conway’s Law – organizations
which design systems are constrained to produce designs which are copies of the
communication structures of these organizations [4] – Herbsleb and Grinter seek
to establish the importance of the match between how software components
collaborate and how the members of the teams that develop the software com-
ponents collaborate.

8 Open Issues and Future Work

From the interpretation of the case study results, it is apparent the recommen-
dations of merging or splitting components from applying the RESP-DIST tech-
nique are not significantly influenced by the degree of dispersion in a project’s
development scenario in terms of their location or perceptional asynchronies.
However, factors other than locational or perceptional asynchrony may also

An Examination of the Effects of Offshore and Outsourced Development 87

stand to affect the delegation of responsibilities in some dispersed development
projects. In future work we plan to develop mechanisms to investigate such
situations.

The case studies we presented in this paper range from 1 member to 6 member
development teams, 5 to 12 requirements, and 7 to 28 components. Evidently,
these are small to medium projects. We expect the execution of the RESP-
DIST technique to scale smoothly to larger systems – more requirements and
components will only mean more terms and linear constraints, which can be
handled easily by automated LP solvers. However, the ramifications of larger
systems on the dynamics of dispersed development is something which can only
be understood by further case studies, some of which are ongoing.

We also plan to fine-tune the RESP-DIST technique by studying more projects
across a diverse range of technology and functional area. The applicability of
techniques like RESP-DIST are highly enhanced with tool support. We are work-
ing on an automated tool that will take in design artefacts and/or code as input,
apply RESP-DIST and suggest the merging or splitting of relevant component.

9 Conclusion

In this paper, we examined whether and how offshore and outsourced develop-
ment influences the delegation of responsibilities to software components. We
applied the RESP-DIST technique – which uses the metrics Aptitude Index,
Mutation Index and Dependency Index, and a linear programming based algo-
rithm to recommend reorganization of the responsibilities of a software system’s
components through merging or splitting – on a range of software projects that
embody varying degrees of offshore and outsourced development. It appears that
two aspects of offshore and outsourced development – what we call as locational
asynchrony and perceptional asynchrony – do not have significant effect on how
responsibilities are distributed in the projects studied. However these factors may
influence the way requirements are abstracted by the development team, which
in turn can influences the application of the RESP-DIST technique. We plan
to extend our work in refining the RESP-DIST technique by conducting further
case studies. We are also working on developing a software tool to automate the
application of the RESP-DIST technique.

Acknowledgements

We wish to thank Sean Campion, Project Manager at TopCoder Inc.; Dr Ani-
mikh Sen, Executive Director of Strategic Planning and Program Development at
Boca Raton Community Hospital; Kshitiz Goel, Pooja Mantri, Prerna Gandhi,
and Sidharth Malhotra, graduate students at Symbiosis Center for Information
Technology for their help with acquiring and analyzing some of the case study
information. We would also like to thank the anonymous reviewers for their
helpful comments and criticism.

88 S. Datta and R. van Engelen

References

1. Bieman, J.M., Ott, L.M.: Measuring functional cohesion. IEEE Trans. Softw.
Eng. 20(8), 644–657 (1994)

2. Booch, G., Rumbaugh, J., Jacobson, I.: The Unified Modeling Language User
Guide, 2nd edn. Addison-Wesley, Reading (2005)

3. Ciupke, O.: Automatic detection of design problems in object-oriented reengineer-
ing. In: TOOLS 1999: Proceedings of the Technology of Object-Oriented Languages
and Systems, Washington, DC, USA, p. 18. IEEE Computer Society, Los Alamitos
(1999)

4. Conway, M.: How do committees invent? Datamation Journal, 28–31 (April 1968)
5. Datta, S.: Agility measurement index: a metric for the crossroads of software devel-

opment methodologies. In: ACM-SE 44: Proceedings of the 44th annual southeast
regional conference, pp. 271–273. ACM Press, New York (2006)

6. Datta, S., van Engelen, R.: Effects of changing requirements: a tracking mechanism
for the analysis workflow. In: SAC 2006: Proceedings of the 2006 ACM symposium
on Applied computing, pp. 1739–1744. ACM Press, New York (2007)

7. Datta, S., van Engelen, R.: Comp-ref: A technique to guide the delegation of re-
sponsibilities to components in software systems. In: Fiadeiro, J.L., Inverardi, P.
(eds.) FASE 2008. LNCS, vol. 4961, pp. 332–346. Springer, Heidelberg (2008)

8. Dhama, H.: Quantitative models of cohesion and coupling in software. In: Selected
papers of the sixth annual Oregon workshop on Software metrics, pp. 65–74. Else-
vier Science Inc., Amsterdam (1995)

9. Freeman, P.: Automating software design. In: DAC 1973: Proceedings of the 10th
workshop on Design automation, Piscataway, NJ, USA, pp. 62–67. IEEE Press,
Los Alamitos (1973)

10. Herbsleb, J.D., Grinter, R.E.: Architectures, coordination, and distance: Conway’s
law and beyond. IEEE Softw. 16(5), 63–70 (1999)

11. Herbsleb, J.D., Grinter, R.E.: Splitting the organization and integrating the code:
Conway’s law revisited. In: ICSE 1999: Proceedings of the 21st international con-
ference on Software engineering, pp. 85–95. IEEE Computer Society Press, Los
Alamitos (1999)

12. Jackson, D.: Software Abstractions: Logic, Language and Analysis. MIT Press,
Cambridge (2006)

13. Jacobson, I., Booch, G., Rumbaugh, J.: The Unified Software Development Process.
Addison-Wesley, Reading (1999)

14. Karimi, J., Konsynski, B.R.: An automated software design assistant. IEEE Trans.
Softw. Eng. 14(2), 194–210 (1988)

15. Kornstadt, A., Sauer, J.: Mastering dual-shore development - the tools and ma-
terials approach adapted to agile offshoring. In: Meyer, B., Joseph, M. (eds.)
SEAFOOD 2007. LNCS, vol. 4716, pp. 83–95. Springer, Heidelberg (2007)

16. Larman, C.: Applying UML and Patterns. Prentice Hall, Englewood Cliffs
(1997)

17. Rodriguez, F., Geisser, M., Berkling, K., Hildenbrand, T.: Evaluating collabora-
tion platforms for offshore software development scenarios. In: Meyer, B., Joseph,
M. (eds.) SEAFOOD 2007. LNCS, vol. 4716, pp. 96–108. Springer, Heidelberg
(2007)

An Examination of the Effects of Offshore and Outsourced Development 89

18. Rumbaugh, J., Jacobson, I., Booch, G.: The Unified Modeling Language Reference
Manual, 2nd edn. Addison-Wesley, Reading (2005)

19. Sengupta, B., Chandra, S., Sinha, V.: A research agenda for distributed software
development. In: ICSE 2006: Proceeding of the 28th international conference on
Software engineering, pp. 731–740. ACM, New York (2006)

20. Shami, N.S., Bos, N., Wright, Z., Hoch, S., Kuan, K.Y., Olson, J., Olson, G.: An
experimental simulation of multi-site software development. In: CASCON 2004:
Proceedings of the 2004 conference of the Centre for Advanced Studies on Collab-
orative research, pp. 255–266. IBM Press (2004)

	An Examination of the Effects of Offshore and Outsourced Development on the Delegation of Responsibilities to Software Components
	Introduction
	A Model for the Software Development Space
	Key Concerns of Software Design
	Delegation of Responsibilities in Software Design
	The RESP-DIST Technique
	Experimental Validation
	Validation Strategy
	Presentation of the Results
	Interpretation of the Results

	Related Work
	Open Issues and Future Work
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

