
K. Berkling et al. (Eds.): SEAFOOD 2008, LNBIP 16, pp. 166–180, 2009.
© Springer-Verlag Berlin Heidelberg 2009

A Closer Look at Extreme Programming (XP)
with an Onsite-Offshore Model to Develop
Software Projects Using XP Methodology

Ponmurugarajan S. Thiyagarajan and Sachal Verma

Tata Consultancy Services
Rajan.st@tcs.com

Sachal.Verma@tcs.com

Abstract. The business world of today is highly competitive. Business users
demand IT organizations to adapt quickly to changes and provide on-time, cost-
effective solutions. This compels companies to look closely at their software
development processes, to improve them and remain cost-effective. Offshoring
is a well-known cost-effective solution for projects that follow waterfall and
other traditional software development life cycles (SDLC). Waterfall SDLC
may not be ideal when requirements are changing rapidly. Achieving rapidness
in software development along with offshoring will enable companies to pro-
vide quick and cost effective IT solutions. To manage rapidly changing re-
quirements, a large telecommunications company moved out of traditional
waterfall model and adopted Extreme programming (XP) software development
methodology. This paper discusses, in detail, a Telecommunication software
project case study along with the customized XP onsite-offshore model that was
successfully used in developing the project. This paper also share the lessons
learnt from this XP onsite-offshore model.

Keywords: Extreme Programming, XP, Offshore, Model, Telecommunication.

1 Introduction

In today’s world, business changes are very rapid due to intense competition and
frequent introduction of new products to the market. These changes to business re-
quirements trigger changes to traceable IT requirements. Managing rapidly changing
business and IT requirements and developing durable and adaptable software may be
challenging and costly. Traditional models like waterfall software development meth-
odology may not even fit or be efficient in such situations. A move towards agile
software development techniques may be necessary. Agile software development
techniques, like Extreme Programming or XP (Kent Beck, 2000), can adjust to rapidly
changing requirements and help refactor the software accordingly. Extreme Pro-
gramming an agile software development methodology, is a predictable way to de-
velop high quality software with minimal risk in the short term and the long term,
which the customers will like. A reason for this liking is customer presence and close
contact with the team through out the tenure of the project.

 A Closer Look at Extreme Programming (XP) with an Onsite-Offshore Model 167

Offshoring has now become a common option for many organizations to develop and
maintain their cost effective software. Extreme Programming, developed by Kent Beck,
is born out of the desire to apply best in class software practices in a disciplined and
reproducible way. To perform disciplined software development using XP methodology
involving onsite and offshore teams may require suitable customization of XP method-
ology. There are efforts by researchers (Samantha Butler et. al., 2003), but not complete
study, to investigate the effectiveness of global software development using XP.

This paper is mainly organized as follows: Section 2 provides an overview of XP
and compares it with other traditional models. Section 3 details a case study with an
onsite-offshore model developed and successfully completed for a large Telecommu-
nication company based in the United States. Here, the authors also compare tradi-
tional and customized onsite-offshore XP practices. Lessons learnt from this project
are also listed. Section 4 describes conclusions.

2 Overview of XP

XP is a deliberate and disciplined approach of software development. It enables users
to get reliable, working software quickly and continue development at a rapid, confi-
dent, and predictable pace with ever-increasing quality. It is designed to suite environ-
ments where requirements are rapidly changing and scope is unclear. It emphasizes on
customer satisfaction and teamwork. The following sub-sections discuss some of the
important XP concepts.

2.1 XP Values

Key XP values (Chromatic, 2003) are simplicity, communication, testing and courage.
XP requires communication to be simple with involvement of onsite business customer
during all software development phases. XP encourages good communication so that
business people do not promise the unachievable and technical people do not achieve
the unwarranted. It involves starting with simple solutions so that more complex func-
tionalities shall be added later. Requirements are tweaked into simple and clear user
stories for better understanding. Feedback is another key value of XP. Feedback from
customers, teams and systems are ensured in all phases of development. Unit tests
ensure feedback from systems. Regular presence of customers ensures continuous
feedback from them. Daily stand-up calls and pair-programming ensures continuous
feedback from teams. Feedback from customers is obtained at all phases to perform
necessary refactoring. Courage is another key XP value. XP lets customer drive the
project courageously. XP based software development is in small and regular cycles
involving frequent evaluations. It practices pair-programming and encourages team to
sit together so that everybody could see what each one is capable of doing.

2.2 XP and Traditional Models Compared

Traditional way to software development usually have these:

i. Months of meetings with customers before and during the project startup
phase

ii. Generate requirements, specification documents, use cases etc.

168 P.S. Thiyagarajan and S. Verma

iii. Customers negotiate a release date
iv. Developers design, code and test
v. Customer performs User Acceptance Testing (UAT)
vi. Often pieces and requirements are missed
vii. Often whole process takes longer than expected

In an XP way,

i. Customer interacts with XP team regularly during development
ii. Customer writes requirements which are broken down into clear and crisp

user stories
iii. Developer estimate user stories
iv. Stories are grouped into releases comprising of various iterations
v. Customer provides feedback during development and reviews outputs at

the end of each iteration
vi. Customer writes acceptance tests
vii. Developers test, code and refactor
viii. Customer controls team’s direction

Following diagram (Figure 1) compares traditional methods like Waterfall and Itera-
tive development with XP. You can see that XP takes small and simple steps to
achieve the target whereas Waterfall and Iterative development progresses in rela-
tively large steps and in phases. In a waterfall model, any change or issue discovered
at a later point of the project will badly impact project completion and cost.

Fig. 1. XP and Traditional Methods – Compared

The following diagram (Figure 2) compare the development phases in Waterfall
mapped to XP. You may note that a release of software in XP methodology consist of
several iterations.

 A Closer Look at Extreme Programming (XP) with an Onsite-Offshore Model 169

Fig. 2. XP and Waterfall - Compare Releases

2.3 Typical XP Process

The following diagram (Figure 3) illustrates the End-to-End XP Process (Donovan
Wells, 1999).

Fig. 3. XP Process

170 P.S. Thiyagarajan and S. Verma

An XP project consists of a series of releases, approximately 1 to 3 months long,
each providing some business value. A release consists of number of iterations that
are approximately 1 to 3 weeks long. Each iteration consists of stories, which, in turn,
are made up of tasks. A task is executed in test and functional code. During release
planning, the customer chooses the stories the customer wants in that release. Stories
are selected for each iteration based on the customer preference and available user
velocity. Stories are spiked or split based on its complexity. Developers estimate
effort for each user story. Velocity is a measure of capacity or the effort each team
member can put for the iteration. Task assignments are based on available velocity of
the team member. Unit tests are written to completely test the user story. Coding and
testing take place as pair programming. Once coding and testing is completed, auto-
mated integrations tests are run to ensure correctness and completeness of the devel-
opment planned for that iteration. At the end of each iteration, customer performs user
acceptance tests and once signed-off is implemented in production through a release.

In the next section, the authors explain a case study and discuss a successfully im-
plemented onsite-offshore model for an XP based development project for a Tele-
communications company.

3 A Case Study

3.1 The Telco Project

A major Telecommunications provider wanted to consolidate its three legacy cus-
tomer account management (CAM) applications into a single regional Java based
application. Due to mergers and acquisitions, which happened years before, this tele-
communication provider had to maintain 3 different legacy applications to perform
customer account management functions. These 3 legacy applications ran in main-
frame environment. Software enhancement and maintenance of these legacy applica-
tions were costly and time consuming, and, demanded consolidation.

The team members of these legacy mainframe applications were located in various
locations involving onsite and offshore. Onsite teams were located in Denver, Seattle
and Omaha whereas offshore team was in Chennai, India. Onsite teams comprised of
business subject matter experts and technical leads which included Telco’s employees
and onsite consultants. Onsite consultants, from a contracting company, reporting to
the onsite Project Manager, interacted and shared work with their offshore consultants
(of the same contracting company). Offshore teams primarily consisted of a Project
Manager, programmers and testers.

This was the time, when the Telco made the decision to move out of Waterfall
SDLC to XP based software development. With well-known benefits of XP (Gittins
et. al., 2001 and 2002), management was committed to propagate and adhere to the
new XP methodology and use it for the new CAM project. To avail the best benefits
of XP, the team should follow its defined, deliberate and disciplined process.

The proposed consolidated CAM application was designed to be based on J2EE ar-
chitecture. The new Java based application was planned to be developed using an
open source based integrated development environment (IDE), Eclipse (Eclipse Plat-
form Review, 2003). Following is the comparison (Table 1) of the different technolo-
gies involved with legacy and new CAM applications.

 A Closer Look at Extreme Programming (XP) with an Onsite-Offshore Model 171

Table 1. Technologies Compared

 Legacy CAM applications New Consolidated CAM application
(XP)

Operating
System

z/OS mainframe, MVS Linux

Programming
Languages

COBOL, Assembler, JCL Java

Configuration
management

Endevor PVCS Dimensions

Database DB2, IMS-DB Oracle
Other Software Viasoft, Rexx J2EE Technologies, Hibernate, TIBCO

3.2 Onsite-Offshore Model

3.2.1 Challenges
XP is ideal for teams working at a single location that can ensure face to face com-
munication. With the current team distribution (3 onsite location and 1 offshore loca-
tion), it was impossible to bring the team in one location. These factors triggered
customization of the XP methodology and practices for the project and the need to
enhance the existing onsite-offshore model. The main challenges were to manage
teams located in several geographical locations and working in different time zones.
Adding to these challenges, lack of Java skilled programmers was another issue.
Telco’s legacy applications SMEs (Subject Matter Experts) were experts in main-
frame and did not possess necessary Java/J2EE skills.

3.2.2 Planning and Solutions
Offshore consultant team was ready to ramp up trained and skilled Java programmers.
Telco’s legacy SMEs were trained in Java technologies for a month’s time period
before the project startup. This, to some extent, solved the issue of shortage of Java
skilled programmers. Next challenge was to address the team distribution at onsite
and offshore. Onsite teams were scattered at various US locations - Denver, Omaha
and Seattle. Offshore team was located in Chennai. XP process, ideally, demand
teams to sitting face to face at the same location (as shown below in Figure 4). Fol-
lowing diagram is an illustration of a typical XP ‘pod’, XP development area.

Pods were created or modified, as necessary, at all 3 onsite locations so that respec-
tive teams can ensure face-to-face communication at that location. Team members
have to perform XP development work only from their pods. Pods were equipped
with telephones, personal computers with web conferencing facilities and whiteboards
to ensure effective communication as demanded by XP. Now that infrastructure and
other set-up are planned and ready, let us discuss the onsite-offshore XP model to
develop the software project.

172 P.S. Thiyagarajan and S. Verma

Fig. 4. XP Pod

3.2.3 The Model
The following diagram (Figure 5) represents the onsite-offshore model customized to
work in XP methodology.

Fig. 5. Onsite-Offshore XP Model

 A Closer Look at Extreme Programming (XP) with an Onsite-Offshore Model 173

Onsite and Offshore Project Managers: Effective Communication is ensured be-
tween onsite and offshore teams. For this, the onsite consultant Project Manager (PM)
interacts with offshore consultant PM on a daily basis. Onsite PM provide necessary
clarifications on user stories and work with the offshore PM to identify the stories for
onsite and offshore developers. Onsite and Offshore PMs participate in daily stand-up
calls and identify the user stories based on the velocity of onsite and offshore consult-
ant teams.

Proxy Customer: Offshore PM acts as a proxy customer, during the offshore day, for
offshore team members. The offshore PM, the proxy customer, provides clarifications
to questions raised by offshore team. Questions unanswerable by the offshore PM are
discussed in the next day stand-up call with onsite.

The following diagram (Figure 6) explains the XP based software development
workflow.

Fig. 6. Onsite-Offshore workflow

Offshore Representation: Offshore consultants work with their corresponding onsite
team. To avoid confusion and reduce ambiguity, onsite consultant teams regularly
discuss during onsite meetings about the user story tasks, for both onsite and offshore
teams, to be performed that day. They discuss the questions and concerns rose, if any,
by offshore team and obtain necessary clarifications from customer and functional
experts.

Overlapping Work Hours: Onsite team then pairs up with offshore team during the
planned overlapping work hours between onsite and offshore. Overlapping hours are

174 P.S. Thiyagarajan and S. Verma

defined well ahead. These overlap hours can change on a weekly basis based on the
availability and requirement of onsite and offshore consultants. After the overlapping
work window, onsite team pair up with onsite Telco teams and continue work on user
stories.

Pair-Programming: Communication, via email, is sent to offshore asking them to
continue with the user story tasks. Offshore team, then, pair up with other offshore
team members to continue working on the user story. At the end of their days, onsite
and offshore team check-in code into PVCS Dimensions and ensure that they did not
break each others code.

Collective Ownership: Onsite and offshore team work together on each user story.
During the day, onsite team works on the user story and sends the code to offshore at
the end of the day. Both onsite and offshore teams follow test first and develop meth-
odology. They emphasize on continuous integration testing to ensure that a change
does not break any other part of the code. If, in case, either onsite or offshore breaks
the code at the end of the day, the work done for the day is scrapped and the same
details are communicated via emails.

Documentation: XP encourages minimum documentation. With onsite-offshore
model, documentation effort is higher than what is normally required in an XP pro-
ject. For the CAM project, Javadocs were created and this served as a reference
document for the code. Automated tests and JUNITs reports served as test documen-
tation. Transition documents were created to train new team members.

3.2.4 Distributed Onsite-Onsite Communication
It was a minor challenge to manage onsite-onsite communication as the teams were
located in different geographical locations and time zones within the United States –
Omaha, Seattle and Denver. Onsite time zone difference across regions was 1 or 2
hours depending on the location. Team members were asked to adjust their work
hours such that varying time zone issue can be minimized. This had a slight impact on
pair programming involving pairs from 2 different locations. During necessary situa-
tions, the start and end of the day, pairs were formed from single location. Daily
stand-up calls were conducted in the morning time when team members from all 3
locations were available.

The following sub-section discusses about the customization of XP practices in this
onsite-offshore model context.

3.3 Customized XP Practices

Below sub-sections describe and compare the traditional XP practices with custom-
ized onsite-offshore XP practices for CAM project.

 A Closer Look at Extreme Programming (XP) with an Onsite-Offshore Model 175

3.3.1 Practices That Regulate Planning

Table 2. Compare XP Practices that regulate planning

XP Practices Traditional XP Customized
Onsite-Offshore XP

Release Planning

The team plans the content of the
release. A release comprises of
one or more iterations.

The team plans the content
of the release that is 90 days
in length. A release com-
prises of one or more itera-
tions with 2 weeks iterations.

Iterations

The team plans and periodically
releases software. Iterations con-
sist of completed stories.

The team plans and releases
software internally on a 2
weeks cycle. Iterations mainly
consist of completed stories. If
bugs exist or customer not
happy, then incomplete stories
will be carried over to future
iterations

Small Releases Releases are implemented as soon
as there is enough system func-
tionality to add business value to
the customer.

Releases, that are 90 days
long, are implemented as
soon as there is enough sys-
tem functionality to add busi-
ness value to the customer.

3.3.2 Practices That Regulate Social and Technical Relationships in the
Technical Team

Table 3. Compare XP Practices that regulate social and technical relationships

XP Practices Traditional XP Customized Onsite-
Offshore XP

Collective Ownership

Any pair can improve any line
of code, anywhere in the sys-
tem, at any time.

Offshore PM or another
representative, participates in
the daily stand-up calls for
discussions. Pair program-
ming involve combinations
of onsite and offshore pairs.
Code is checked into a com-
mon software configuration
management tool, PVCS
Dimensions, which can be
accessed from onsite as well
as offshore.

176 P.S. Thiyagarajan and S. Verma

Table 3. (Continued)

Simple Design

The simplest thing that could
possible work to make the unit
test pass, in the context of an
overall system architecture that
supports the requirements.
Refactor as necessary.

Design is kept simple with
agreement between onsite and
offshore teams. Design infor-
mation is accessible at a com-
mon folder location and can be
accessed through a configura-
tion management tool.

Coding Standards

Developers and testers write all
code in accordance to prede-
fined rules that enhance com-
munication through the code

Java coding standards are
devised and shared with on-
site-offshore teams and the
same is ensured during pair
programming involving onsite
and offshore pairs. A Java
based IDE; Eclipse is used
by both onsite and offshore
teams. Software packages,
components conventions and
standards are followed across
the board.

Refactoring

Design changes, no matter how
sweeping, take place in small,
safe steps

Pair programming involving
onsite and offshore ensure
necessary refactoring for
simplification of code and
design.

3.3.3 Practices That Help to Assure Quality Software

Table 4. Compare XP Practices that assure quality

XP Practices Traditional XP Customized Onsite-
Offshore XP

Pair Programming

All code is written (includ-
ing acceptance tests) with
two people at one machine

Pair programming involving
onsite and offshore team
member combinations is
achieved through web con-
ferencing (for example,
Microsoft Net Meeting) and
telephone conferencing. Pair
programming also happen at
‘pods’ at respective offshore
and onsite locations. In few
scenarios, triplets of pro-
grammers (combinations of
onsite and offshore) were

 A Closer Look at Extreme Programming (XP) with an Onsite-Offshore Model 177

Table 4. (Continued)

 present during programming
for better understanding
of business and technology.
Triplets, for example, were
formed between an onsite
Subject Matter Expert,
onsite Technical Lead and
offshre programmer. A
common overlapping work
period is devised and fol-
lowed for onsite-offshore
pair programming.

Test-first Develop-
ment

New code is written or existing
code is refactored only after a
unit test has been created and
verified to pass/fail

Unit tests are written and
stored in PVCS Dimension
which could be accessed via
the Eclipse IDE by both
onsite and offshore teams.
JUNITs are written for per-
forming unit tests. Tests are
automated to the best possi-
ble extent.

Continuous
Integration

Code is checked into a central
repository and the entire system
is checked out and built from
scratch AND passes all unit tests
100%. Unit tests automated

A common configuration
management tool (PVCS
Dimensions) is used for
software and document
management. This tool is
accessible by both onsite an
offshore. This helped in
version control. Unit tests
are also checked into the
configuration management
tool. Daily builds were en-
sured at the end of the re-
spective end of the days by
the onsite and offshore PMs.

Acceptance Tests

A test is defined by the cus-
tomer to accept the story

Acceptance tests are only
performed by customer with
support from onsite team.

3.4 Lessons Learnt

Listed below are some of the key lessons learnt from this project, which were experi-
enced in the customized XP onsite-offshore model based project.

178 P.S. Thiyagarajan and S. Verma

• Offshore suitability should be evaluated. Following types of projects are sug-
gested to best suitable:
 Projects with longer/more iterations. Projects that have longer duration are

ideal.
 Projects to be developed from scratch. Brand new development projects.
 Projects previously developed projects from offshore. Repetitive or stream-

line type of projects are best suited to work on the onsite-offshore model.
 Project with minimal dependencies with other applications. More number of

interfacing applications makes the project complex and possibility of missing
functions and requirements related to interfaces.

• Functional Experts must be identified at offshore; who understand business and
can provide clarification to offshore developers. Before project startup, offshore
functional experts must travel to onsite and obtain a mandatory to provide
knowledge transition about the project. Large XP projects often start with a lock-
down session. Functional experts should ensure mandatory participation in these
lockdown planning sessions.

• Communication must be effective and efficient. Use of Teleconference, WebEx
and NetMeeting tools must be encouraged. Must have overlapping hours between
Onsite/Offshore teams. Frequent and structured meetings between customers and
development teams must be arranged. Onsite coordinators must remain in con-
stant touch with customers for any clarifications, validations and suggestions.

• Configuration & Change Management processes must be effective. Should
have centralized check-in and checkout along with coordinated code integration
between onsite and offshore teams. End of the day checks should be in place to
ensure that components which are checked-out are checked back in.

• Coding Standards should be clearly defined and followed. As documentation is
relatively less in XP, usage of inline comments should be encouraged.

• Issue Resolution and Escalation must be done at the earliest possible. Identify
issues, clarify them, understand them, and resolve them. Ensure everyone under-
stands the resolutions and preventive actions, if any.

• Entry & Exit Criteria for each task must be explicitly defined. Offshore should
understand these in order to avoid schedule slippage.

• Documentation should be minimal as per project requirements. In an onsite-
offshore model, minimum documentation is mandatory. This documentation en-
sures knowledge transition and help for training new team members.

• Client Review must be detailed and thorough - not just “sign-offs”. Distance
factor (onsite-offshore) should be taken in to account and “sign-offs”, most often,
determine the exit criteria for an iteration or release.

• Productivity Increase can be achieved by having triplets of developers with one
onsite and two offshore. This is something innovative and when tried in an on-
site-offshore model can be effective. Having combination of a technical expert
and a subject matter expert, at offshore, added more value to pair programming.
Here, the subject matter expert gets an opportunity to improve his technical skills
and vice versa.

• Based on the type of project and needs, Work Timings shall be adjusted such
that both onsite and offshore teams work during same timings. This can be
achieved by making one of the teams work in night shift timings (or equivalent

 A Closer Look at Extreme Programming (XP) with an Onsite-Offshore Model 179

matching timings). This type of timing adjustments are needed when either sub-
ject matter experts or technical experts are not available at onsite or offshore. In
these situations, pairs must be formed with 1 onsite and 1 offshore team member.
In cases where there work timings can not be matched, overlapping work hours
should be ensured, ideally, at the start or the end of a work day.

• At offshore, Work environment for XP could not be made exactly like a ‘pod’,
as demanded by XP, due to floor space and infrastructure issues. So, teams had to
assemble in a meeting room for stand-up calls. Work spaces were organized, to
the best possible extent, such that project team members were located close to one
another.

• Training new team members in XP project was a challenge. With minimum
documentation available, team members had to learn from fellow pairs. Due to
this, interestingly, the learning curve of new team members was quick and
seemed to be very effective.

• Managing maintenance projects in XP mode was another challenge. In reality,
many XP practices could not be applied to maintenance projects.

• Usage of agile Test Tools like JUNIT, Eclipse etc., are mandatory for executing
any XP project in an onsite-offshore model. These tools will help minimize effort
overrun and schedule slippages, as XP methodology require significant amount
of testing effort.

4 Conclusions

XP is a proven software development methodology to produce high quality software
products. There are challenges to customize XP in an onsite-offshore software devel-
opment situation. This paper is an attempt to share the experiences of a Telco’s appli-
cation consolidation project developed in XP methodology and successfully completed
using an onsite-offshore model. This consolidation project was very complex to con-
solidate 3 legacy systems with unclear understanding of the to-be-developed applica-
tion. Using traditional models like Waterfall, it could have taken a long duration to
complete the project. By adopting XP, there were opportunities for the client to adjust
the scope and requirement of the project until a clear understanding of the consolidated
application was available. Ability to adjust and proceed further is a good feature of XP
and this helped in successful completion of the project within the planned duration of
the project.

References

Chromatic: Extreme Programming Pocket Guide. O’Reilly, Sebastopol (2003)
Donovan Wells (1999),
 http://www.extremeprogramming.org/map/project.html
Eclipse Platform Technical Overview, Object Technology International, Inc. (2003),
 http://www.eclipse.org/
Gittins, R.G., Hope, S., Williams, I.: Qualitative Studies of XP in a Medium Sized, Business.

UPGRADE The European Online Magazine for the IT Professional III(2) (2002),
 http://www.upgrade-cepis.org

180 P.S. Thiyagarajan and S. Verma

Gittins, R.: Qualitative Studies of XP in a Medium Sized Business. In: Proceedings of the 2nd
International Conference on Extreme Programming and Flexible Processes in Software Engi-
neering, Sardinia, Italy, pp. 20–23 (2001)

Beck, K.: Extreme Programming Explained: Embrace Change. Addison-Wesley Longman
Publishing Co., Boston (2000)

Butler, S.J., Hope, S.: Evaluating Effectiveness of Global Software Development Using the
eXtreme Programming Development Framework (XPDF). In: ICSE 2003, Global Software
Development Workshop. IEEE, Los Alamitos (2003)

	A Closer Look at Extreme Programming (XP) with an Onsite-Offshore Model to Develop Software Projects Using XP Methodology
	Introduction
	Overview of XP
	XP Values
	XP and Traditional Models Compared
	Typical XP Process

	A Case Study
	The Telco Project
	Onsite-Offshore Model
	Customized XP Practices
	Lessons Learnt

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

