

Lecture Notes
in Business Information Processing 16

Series Editors

Wil van der Aalst
Eindhoven Technical University, The Netherlands

John Mylopoulos
University of Trento, Italy

Norman M. Sadeh
Carnegie Mellon University, Pittsburgh, PA, USA

Michael J. Shaw
University of Illinois, Urbana-Champaign, IL, USA

Clemens Szyperski
Microsoft Research, Redmond, WA, USA

Kay Berkling Mathai Joseph
Bertrand Meyer Martin Nordio (Eds.)

Software Engineering
Approaches for
Offshore and
Outsourced Development

Second International Conference, SEAFOOD 2008
Zurich, Switzerland, July 2-3, 2008
Revised Papers

13

Volume Editors

Kay Berkling
Polytechnic University of Puerto Rico
00919 San Juan, Puerto Rico
E-mail: kay@berkling.com

Mathai Joseph
Tata Consultancy Services
Pune 411 001, India
E-mail: m.joseph@tcs.com

Bertrand Meyer
Martin Nordio
ETH Zurich
8092 Zurich, Switzerland
E-mail: {bertrand.meyer,martin.nordio}@inf.ethz.ch

Library of Congress Control Number: Applied for

ACM Computing Classification (1998): K.6, D.2

ISSN 1865-1348
ISBN-10 3-642-01855-6 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-01855-8 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2009
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12681969 06/3180 5 4 3 2 1 0

Preface

Major economic upheavals can have the sort of effect that Schumpeter foresaw 60
years ago as creative destruction. In science and technology, equivalent upheavals
result from either scientific revolutions (as observed by Kuhn) or the introduction
of what Christensen calls disruptive technologies. And in software engineering,
there has been no technology more disruptive than outsourcing. That it should
so quickly reach maturity and an unparalleled scale is truly remarkable; that it
should now be called to demonstrate its sustainability in the current financial
turmoil is the challenge that will prove whether and how it will endure. Early
signs under even the bleak market conditions of the last 12 months are that it
will not only survive, it will firmly establish its role across the world of business.

Outsourcing throws into sharp focus the entire software engineering lifecy-
cle. Topics as diverse as requirements analysis, concurrency and model-checking
need to find a composite working partnership in software engineering practice.
This confluence arises from need, not dogma, and the solutions required are
those that will have the right effect on the associated activities in the world of
the application: e.g., reducing the time for a transaction or making the results
of a complex analysis available in real-time. While the business of outsourcing
continues to be studied, the engineering innovations that make it compelling are
constantly changing. It is in this milieu that this series of conferences has placed
itself.

SEAFOOD 2008, the Second International Conference on Software Engi-
neering Approaches to Outsourcing and Offshore Development, was held in
Zurich during July 2-3, 2008. There were outstanding invited talks by Ashish
Arora (then at the Heinz School, Carnegie-Mellon University) and Dick Simmons
(Texas A&M University), the first on how outsourcing has grown in countries as
different as India, Israel and Ireland, and the second on the effects of outsourcing
on software engineering in the past, the present and the future.

SEAFOOD 2008 received submissions spanning a wide range of topics, from
processes, and risks to education in distributed software development. This vol-
ume includes 14 papers from the conference selected after review by the Pro-
gram Committee. SEAFOOD 2008 received 50 submissions; the acceptance rate
was 28%. Papers covered areas such as extreme programming and code review,
predicting timelines in software development subject to changes and software
process improvement in small companies. There was an outstanding panel dis-
cussion (not reported in this volume) organized by Peter Kolb with speakers
from banking, insurance and engineering industries.

Many people contributed to SEAFOOD 2008. We thank the Program Com-
mittee and the external reviewers for their excellent work in reviewing and select-
ing papers. SEAFOOD 2008 was co-located with TOOLS 2008; we are grateful
to Manuel Oriol and Marco Piccioni for their support and to Claudia Günthart

VI Preface

for once again providing with unwavering efficiency the organization that made
SEAFOOD 2008 a success.

March 2009 Mathai Joseph
Bertrand Meyer
Martin Nordio

Organization

Program Chairs

Bertrand Meyer ETH Zürich, Switzerland - Co-chair
Mathai Joseph Tata Consultancy Services, India - Co-chair
Kay Berkling Polytechnic University of Puerto Rico, Puerto

Rico - Program Chair
Peter Kolb Red Expel, Switzerland - Panel Chair

Program Committee

Gabriel Baum La Plata National University, Argentina
Manfred Broy Technische Universität München, Germany
Jean Pierre Corriveau School of Computer Science, Carleton University,

Canada
Barry Dwolatzky South Africa
Kokichi Futatsugi Japan Advanced Institute of Science and Technology,

Japan
Victor Gergel University of Nizhnyi-Novgorod, Russia
Amar Gupta University of Arizona, USA
Pankaj Jalote IIT Delhi, India
Koichi Kashida SRA Key-Tech Lab, Japan
Philippe Kruchten University of British Columbia, Canada
Mingshu Li Chinese Academy of Sciences, China
Christine Mingins Monash University, Australia
Jianjun Zhao School of Software, Shanghai Jiao Tong University,

China
Cleidson de Souza Federal University of Para, Brazil

Local Organization

Martin Nordio ETH Zürich, Switzerland
Claudia Günthart ETH Zürich, Switzerland

VIII Organization

External Reviewers

Dong, Fei
Fritzsche, Martin
He, Mei
Islam, Shareeful
Juergens, Elmar
Keil, Patrick
Kishida, Koichi
Kong, Weiqiang
Kuhrmann, Marco
Li, Yin
Liu, Dapeng

Mattarelli, Elisa
Nakamura, Masaki
Ogata, Kazuhiro
Pister, Markus
Smith, David
Sudaman, Fadrian
Wagner, Stefan
Wu, Shujian
Xie, Lizi
Yang, Da
Zundel, Armin

Table of Contents

Outsourcing through Combining Software Departments of Several
Companies . 1

Jarmo J. Ahonen, Anu Valtanen, Paula Savolainen,
Timo Schalkowski, and Mikko Kontio

Timeline Prediction Framework for Iterative Software Engineering
Projects with Changes . 15

Kay Berkling, Georgios Kiragiannis, Armin Zundel, and
Subhajit Datta

Outsourcing-Iterative Improvement Model for Transforming Challenges
to Mutual Benefits . 33

Atanu Bhattacharya

A Structure for Management of Requirements Set for e-Learning
Applications . 46

Dumitru Dan Burdescu, Marian Cristian Mihăescu, and
Bogdan Logofatu

Evaluation of Software Process Improvement in Small Organizations 59
Pedro E. Colla and Jorge Marcelo Montagna

An Examination of the Effects of Offshore and Outsourced Development
on the Delegation of Responsibilities to Software Components 73

Subhajit Datta and Robert van Engelen

Students as Partners and Students as Mentors: An Educational Model
for Quality Assurance in Global Software Development 90

Olly Gotel, Vidya Kulkarni, Christelle Scharff, and Longchrea Neak

Problems and Solutions in Distributed Software Development:
A Systematic Review . 107

Miguel Jiménez and Mario Piattini

Design and Code Reviews in the Age of the Internet 126
Bertrand Meyer

Preliminary Analysis for Risk Finding in Offshore Software Outsourcing
from Vendor’s Viewpoint . 134

Zhongqi Sheng, Hiroshi Tsuji, Akito Sakurai, Ken’ichi Yoshida, and
Takako Nakatani

Evidence-Based Management of Outsourced Software Projects 149
Fadrian Sudaman and Christine Mingins

X Table of Contents

A Closer Look at Extreme Programming (XP) with an Onsite-Offshore
Model to Develop Software Projects Using XP Methodology 166

Ponmurugarajan S. Thiyagarajan and Sachal Verma

Measuring and Monitoring Task Couplings of Developers and
Development Sites in Global Software Development 181

Yunwen Ye, Kumiyo Nakakoji, and Yasuhiro Yamamoto

Automated Process Quality Assurance for Distributed Software
Development . 196

Jian Zhai, Qiusong Yang, Ye Yang, Junchao Xiao, Qing Wang, and
Mingshu Li

Author Index . 211

Outsourcing through Combining Software Departments
of Several Companies

Jarmo J. Ahonen, Anu Valtanen, Paula Savolainen, Timo Schalkowski,
and Mikko Kontio

Department of Computer Science
University of Kuopio

P.O. Box 1627
FI-70211 Kuopio, Finland

jarmo.ahonen@uku.fi, anu.valtanen@uku.fi,
paula.savolainen@uku.fi, timo.schalkowski@uku.fi,

mikko.kontio@uku.fi

Abstract. The different types of outsourcing have emerged during the latest few
years. The most common types of those cases and their features have been doc-
umented and analysed fairly well. In this paper a specific type of outsourcing
through combining software departments of several companies is documented
and analysed. The analysed case differs from the more commonly analysed cases
and therefore adds an interesting point of view to the general knowledge of out-
sourcing and the possible pitfalls associated with outsourcing activities.

1 Introduction

Outsourcing has became a notable issue on the information and communication (ICT)
industry area and related services [1]. Despite the fact that there has been a lot of de-
bate on business benefits versus risks, outsourcing has become a quite common and
widespread practice [2].

Outsourcing is an activity where the outsourcing company decides to handle its ICT
operations by purchasing services from some external ICT-suppliers. Such services may
include software development, software maintenance and operation. The suppliers will
take care of the activities the outsourcer used to perform itself [3]. Some large scale
enterprises have outsourced all the ICT operations to third party suppliers. In some
cases the supplier organisation is from the same country than the outsourcer, but in
many cases the supplier is from another country. One of the most legendary places in
which those suppliers may be located is India.

There seem to be two main reasons for outsourcing. The first one is to reduce the
costs and the risks related to business and technology [2][4][5]. The second one is to
allow the outsourcer to concentrate to its main field of business and let the suppliers to
handle supporting operations like ICT. This attitude seems to be reasonable if the role
of ICT is not dominant in the business domain in question. If the role of ICT is very
important, then the situation is not as straightforward.

In those cases in which the role of ICT is not dominant in the business, it seems to
be fairly safe to assume that ICT services are often cheaper in the external marketplace.

K. Berkling et al. (Eds.): SEAFOOD 2008, LNBIP 16, pp. 1–14, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

2 J.J. Ahonen et al.

In such cases the ICT costs are seen as an overhead cost instead of being an investment.
Therefore it is easy to provide the necessary argumentation for ICT outsourcing.

It is, however, true that outsourcing may not be as easy as expected. Having a foreign
supplier may also be something that is not suitable for the customers that are searching
for certain types of benefits, e.g. cost efficiency and the faster reaction time enabled by
larger resources. Both of those benefits are not straightforward to be realized.

Considering the cost efficiency of outsourcing it must be noted that the possible prob-
lems encountered include hidden costs, contractual differences, service debasement and
loss of organization competences [6]. All those problems have a clear negative impact
on the general cost efficiency of the outsourcing operation. The most important issue
could be the introduction of possible hidden costs. The hidden costs may be both ad-
ditional costs caused by the management of the new business relation and time-related
issues.

The analysis of the real impact of outsourcing should include all relevant dimensions
of the situation. A certain outsourcing solution may not be suitable one due to some
specific reasons. Those reasons may include the special characteristics of the business
domain or some of the generally recognised risks like communication barriers, higher
management attention, different languages and cultures and geopolitical risks [7].

The basic problem of an outsourcer/supplier-relationship is the management
problem [3]. Factors like ICT-strategy, information management, contracts, contract
management and availability of human resources need to be considered and their man-
agement planned while outsourcing. Another management related problematic issue to
take into account is the possible inability to write formal contracts and service level
agreements [6][8].

In many cases a company that decides to go for an outsourcing solution is going to
use several suppliers at the same time. This is a smart move in eliminating and man-
aging different risks [5]. Using several suppliers at once may, however, increase the
possibility of undesirable consequences. One of the possible solutions for achieving the
balance between the benefits of outsourcing and the unwanted consequences it that not
all ICT-services are outsourced. In such a solution the outsourcer’s ICT-department of-
ten remains responsible of some services [3]. This way it is possible to be sure that the
core competence and services stay inside the company.

One interesting approach to the possible benefits of outsourcing is to create the sup-
plier company from the scratch. In such a case the company might be created by setting
up a completely new company or by combining the software engineering departments
of different companies into a new company. This article documents a solution in which
a group of companies decided to create a new supplier company by combining their
own software engineering departments into a new company.

In addition to the history of the company the difficulties in setting up the new
company are analysed and discussed. These issues include problems with the software
engineering process of the company and some other related problems. Despite those
problems the selected outsourcing solution — a brand new company — seems to suit
the business domain and the requirements of the original companies quite well. It even
may be the case that using a supplier situated far away from the customer companies
would not be a working solution.

Outsourcing through Combining Software Departments of Several Companies 3

The structure of this article is as follows: the next section will outline the research
questions, the third section will outline the research method used, the fourth section will
shed some light to the history of the outsourcing solution, the fifth section presents the
findings regarding the situation, the sixth section consists of an analysis, and the last
section is a discussion.

2 The Research Problem

In the research described in this article the main goal was to find out whether the per-
formed outsourcing operations were functioning as intended. It was almost inevitable
that the closer analysis would reveal serious problems. One part of the research was
to find out the most problematic issues and try to find solutions for those problems. In
addition to those practically oriented aims the researchers had an additional aim which
was to find out possible reasons whether the solution to outsource the ICT activities
was suitable in the case presented here or could there have been better solutions how to
arrange the ICT departments of the companies.

In other words, the goals of the research were to

1. find out possible problems;
2. provide solutions for possible problems revealed; and
3. analyse the suitability of the outsourcing solution in this case.

The success and impacts of outsourcing has normally been studied from the eco-
nomical point of view. The economists have evolved a number of outsourcing related
theories. These theories include the resource-dependence theory, transaction-cost the-
ory and agent cost theory [6]. The theories help to define when some activity should
be outsourced and when not [5]. One of the original goals the research presented here
was to consider the general suitability of outsourcing for the customer companies in the
light of those theories. That analysis was not, however, performed in an explicit way
due to the reasons covered in the analysis and discussion sections.

There is one remarkable thing about the case reported here that makes it an interest-
ing subject for further outsourcing research despite the previous research in the field.
About ten companies on the same line of business decided to outsource their ICT-
departments for one ICT supplier they founded together. The outsourcing was done
for synergy and scale reasons of the business domain. Even though there are a lot of
research made on outsourcing there is little information on situations like this one, in
which several outsourcers establishes their own supplier.

3 Research Methods

In this case the research method was a combination of case-specific analysis and action
research [9]. When the researcher’s intention is not only to observe, interpret and under-
stand a case, but also participate in the efforts of changing the situation, the approach
can be described an action case research.

4 J.J. Ahonen et al.

The first step in a case like the one reported in this article is to get an overview
of the actual situation. In order to get that overview a sufficiently detailed but rela-
tively light-weight procedure was performed. The procedure consists of the following
three steps:

1. The modeling of the actual information flows in the organisation.
2. The modeling of the actual software engineering processes of the organisation.
3. Interviews of several members of the staff of the organisation.

The actual information flows were modeled by using the technique outlined in [10]
with some variations. Those variations included the modeling of information flows be-
tween different roles and different geographical locations. The original diagonal matrix
technique was used.

During the information-flow modeling sessions the number of the software engineers
and other relevant staff members who participated the sessions were either five or six
persons in every geographical location. In Figure 1 a part of a wall-chart produced
during a modeling session is shown. In order to get the permission to use the picture
we had to paint over most of the texts. That is regrettable but understandable from the
company’s point of view.

Fig. 1. An example of the wall-charts created during the information flow modeling sessions

Outsourcing through Combining Software Departments of Several Companies 5

The software engineering processes were modeled by using the light-weight tech-
nique described in [11]. The most important aspects of that approach are its light-weight
nature and its informal nature. Due to those features that modeling technique has turned
out to be very effective in revealing the real software engineering processes and their
problems, see e.g. [12] and [13].

The process-modeling sessions were also based on the use of wall-charts. The rea-
son for the use of the technique was its familiarity to both the staff of the companies
and the researchers. The problems with modeling processes with the technique are out-
lined in [11].

The modeling sessions were directed by the researches in every case. It is, however,
worth to note that only one of the authors participated every case and therefore there
might be some slight variation in the flow of the events. In addition to that it must
be noted that the author who participated every modeling session did not act as the
chairman in all modeling sessions.

There were several modeling sessions hold even for modeling the same information
flows and processes. The reason for multiple modeling sessions regarding the same
process was the geographical distribution of the company. Big parts of the company
were in different locations, see the figures 2–4 for reference, although the workings of
the company should have been identical in every location. That identicality was not
expected by the researchers due to the fact that in other cases remarkable differences
between locations have been observed.

After the information flow modeling sessions and the process modeling sessions
the models were written into electronic forms and sent to the representatives of the
company. The company representatives added missing knowledge to the models and
changed them in some degree.

After analysing the information flows and the process models it was decided that the
interviews of software engineers should be fairly similar to the interviews used in [14].
The most notable difference is that in the reported case the interviews were performed
in a very informal manner and in some times in several occasions.

The interviews or informal discussions with the representatives of the company cov-
ered the following issues:

1. How many people belong to your team?
2. How many products or projects your team manages in a six-month period?
3. Please describe your work during a typical month.
4. What are the main quality hindrances in you team and the company in general?
5. Which are the strengths of software engineering processes, issues or parts in your

team and the company in general?
6. What are the tools your team is using? Are they adequate?
7. How is your working time divided between different tasks? Please describe the

tasks and the time you use for each task.
8. Do you think that the amount of training (tools, methodologies, domain training, or

any other type training) is enough?
9. What kind of training would you like to get?

10. How should software quality be improved in your company?
11. How would you like to improve your working environment?

6 J.J. Ahonen et al.

After the information flow models and the process models were accepted by the
representatives of the company in question and the interviews were analysed the results
were combined into a report in which the situation was analysed and corrective steps
proposed. The report was given to the representatives of the company. The company
followed the recommendation into some extent.

In the following section the birth of the analysed company is described and in the
section after that the analysis and the steps are outlined in a level that has been accepted
by the company.

4 How the Company Was Created

The creation of the company has been a slightly uncommon process. In the original
situation there were over ten companies with their own software engineering depart-
ments and some existing supplier/customer relations outside the group of companies.
The original situation is shown in Figure 2, in which there are only some of the original
companies shown. The same clarity-related simplification is kept for the figures 3 and
4 also.

Fig. 2. The original situation

In Figure 2 Company B includes Company A because Company A was owned by
Company B alone. The cooperation between Company A and Company B was naturally
very close. All of the companies had their own software engineering units and some of
them had a common customer, which is named Customer X in the figure.

The company with more ambitious software engineering activities was Company A
which incorporated a fairly sophisticated software development services (SDS) depart-
ment. Company A sold its services to several companies outside the cluster of compa-
nies that created their own outsourcing solution. The number of software engineering
staff in Company A was clearly larger than in any other company and the type of busi-
ness much more like the business of a normal software engineering services supplier.

Outsourcing through Combining Software Departments of Several Companies 7

In the first round of organisational change the software engineering operations were
transferred to Company A from other companies. The in-house development team of
Customer X remained unchanged. The result of the change is shown in Figure 3.

Fig. 3. The first round of oursourcing

The resulting company, Company A, was owned by all the companies B, C, D, and E.
In the situation after the first round of outsourcing the original companies B, C, D, and
E were customers of Company A. The relative role of Company X was quite remarkable
as a customer, but it was not an owner of Company A.

It turned out, however, fairly soon that the relative efficiency of the in-house develop-
ment team of Customer X was worse than the relative efficiency of Company A. After
a while the owners of Customer X, some of which were owners of all other companies
also, decided that the situation was not a good one.

Fig. 4. The final organisation

8 J.J. Ahonen et al.

After some complex negotiations the owners of Company X and the other owners of
the other companies in question decided to implement another round of organisational
changes. The result of those changes is shown in Figure 4.

One of the significant features of the analysed case is that the original companies
were located in different geographical regions. The employees of the re-organised Com-
pany A continued to work in their previous locations and therefore Company A became
geographically distributed. Some employees of Company A continued to work even
in the premises of their previous employers. Two reasons for this arrangement were
the need of instant communication and the lessened risk of misuse or loss of critical
data. The authors of this article assume that the most prominent reason has been the
fact that the new company was started very fast and several issues were left for future
considerations.

5 Analysis and Recommendations

In this section the results of the modeling sessions are analysed and corrective actions
recommended. It must be noted that the third research question about the suitability of
the selected oursourcing solution will not be discussed here. It will be covered in the
next section.

The general problems are outlined in Table 1 with their proposed solutions. The
problem and the solution are more closely covered in the following subsections.

Table 1. Process problems and recommendations

Problem Description Recommendation

Work management Problems with work control
and tracking

Breaking the cycle by
moving developers to new
premises

Project management Customers did not see need
for project managers

Set-up of a process model
that requires a project man-
ager

Communication Inter-company communica-
tion difficult

Proper processes and work-
ing practices

Timetable issues Rapid changes in timetables
and no proper estimates

Use of a formal estimation
approach

Infrastructure Different infrastructure in
different locations

General infrastructure for ev-
ery location

Documentation Customers not used for ex-
plicit documentation

Find the minimum suitable
level

5.1 Work Management

Work management was a problem in several locations because the company’s employ-
ees were located in the office of their previous employer. This might not have been a
problem if there had not been the common history between the employee and his/her
previous employer.

Outsourcing through Combining Software Departments of Several Companies 9

The long history of working together had led to the situation in which some of the
employees worked just like they had been doing before the outsourcing. They carried
out whatever tasks their previous managers wanted them to perform, which caused a
large part of real work to dissappear into the void outside the official projects. The
supplier company was unable to invoice such work, which lead to somewhat awkward
situations.

The proposed solution to this problem was to move the developers away from the
customers office to some premises located reasonably near in order to break the vicious
cycle. In addition to that, it was proposed that the communication regarding new or
additional tasks should go through the project manager.

5.2 Project Managers and Projects

Before the outsourcing operation the companies had used the same project manager
for both the business case and the development effort. Therefore customer companies
were not used to have specific project managers for the ICT-parts of the projects. This
background explains why the customer companies were not willing to pay project man-
agement expenses — they had managed very well without such expenses before the
outsourcing. The lack of a project manager from the supplier side confused the situa-
tion because the employees of the supplier company did not exactly know who was their
boss regarding the project. This problem was connected to the problem that employees
were doing tasks that the supplier could neither invoice nor follow.

In addition to the lack of formal project managers it was obvious that the customer
companies did not consider smaller software development efforts or updates a project.
They considered them to be a part of the normal operation of the organisation, although
the software professional were not any more part of the customer company’s organisa-
tion. This caused problems because even the updates included implementation of new
business logic.

The recommended solution was to nominate a formal project manager for each
project and make the personnel of the supplier aware that the project manager is their
boss.

5.3 Communication Problems

Most of the outsourcer’s employees were transferred to the supplier but some of their
managers continued working for the original customer companies. This inflicted prob-
lems on the communications. The outsourcer’s representatives used to contact the
supplier’s employees directly for example regarding changes in the requirements of
timetables. The supplier’s project managers and other management was not able to fol-
low the work properly as changes were done without going through the normal mode
of operation.

Once again the geographical distribution strengthened this problem. In many cases
the project manager was sitting far away from the outsourcer and the employees some-
times worked in the same office than the customer company’s managers. This caused
constant misunderstandings and false assumptions on the real level of resource usage.

10 J.J. Ahonen et al.

5.4 Timetable Problems

Timetable problems were considered one of the most difficult issues. It was not defined
how the outsourcing was affecting timetables but it seems that combining projects from
different customers turned out to be very difficult. The reason for this was that the
representatives of the customer companies thought that their previous employees still
were members of their own staff.

The timetables were normally very strict. If there were changes in the requirements
or techniques used, the timetables were not normally reset. Sometimes even large
changes were performed in the middle of a project without sufficient replanning.

The timetables were dictated by the customer companies due to the pressures set by
the business domain. It was noted that in those cases in which the supplier had some
well-argued reasons for proposing a not-that-strict timetable a reasonable compromise
was often found. Without good argumentation such agreement was very difficult to find.

The proposed solution was to take a reasonably light-weight method for effort esti-
mation into use. Some variation of the function-point methods was considered as the
most promising solution.

5.5 Infrastructure Problems

The supplier was founded by combining several development teams from various geo-
graphic locations. The technical infrastructure of the supplier had not been given proper
consideration and that had started to hinder the use of company’s resources. In the be-
ginning the lack of common infrastructure had not been a problem because the employ-
ees continued to use the infrastructure of their previous employer and worked in the
projects of their previous employer.

After some time had passed and the supplier had started to reallocate its personnel
to new projects the infrastructure problem started to have its impact. In some cases it
turned out very difficult for employees located in one position to work in a project done
for a customer in another location. The common infrastructure started to be a must.

The obvious recommendation was to create a solid enough infrastructure that would
provide the required development tools and environments to every location. As a part
of that development is was considered natural that the employees of the supplier would
move away from the office of their previous employer — especially in the case that they
were working in a project that was not related to their previous employer.

5.6 Documentation Problems

The documentation process of the new supplier/customer-relationship was not in a good
order. The main reason for the situation seemed to be that when the developers had been
employees of the customer company the documentation had been created as needed and
not in a systematic way. Because a large part of the created software was at the end of
its life-cycle very fast it had been thought unnecessary to create large documentation
for that software. In those cases in which the life-time of software was longer the doc-
umentation had been created after it had been realized that the life-time of the system
could be longer than originally assumed.

Outsourcing through Combining Software Departments of Several Companies 11

This had caused a situation in which the customers were unwilling to pay for the cre-
ation of documentation even in those cases in which the expected life-time of the soft-
ware was longer. After the projects were finished and documentation needed it turned
out to be very difficult to create the documentation due to the fact that the developers
often were busy in other projects. That hold even in those cases in which the customer
was willing to pay for the documentation after realising the problems caused by the lack
of proper documents.

The proposed solution was to restructure the negotiations with the customers in a
way that would pay enough attention to the necessary documentation and the resources
required by the creation of that documentation.

6 Effects of Recommendations and the Suitablity of the
Outsourcing Solution

Most of the problems were corrected in a six month period observed by the researchers.
Some problems were not fixed. Improvements are, however, going on.

The next subsection describes the current situation in the company after the improve-
ment process and the second subsection of this section discusses and the suitability of
the outsourcing solution.

6.1 The Effects of the Recommendations

The transition of the company’s employees away from the customer’s premises did
solve some of the problems related with resource allocation and work management.
If people were working at the customer site, then it was very difficult to use them for
projects that were not related to that specific customer. In the office of the supplier such
problems did not exist any more.

The work management situation was improved after moving the employees to the
company’s own premises. The direct and uncontrolled communication and work distri-
bution between the previous managers of the outsourced employees did not completely
stop. It did, however, fizzle to an insignificant level. The new situation has clearly helped
the company to manage its personnel in a more coherent and systematic way.

The general project management problem was also made less urgent by moving em-
ployees away from the customer’s premises. The project management problem was
mainly the lack of project managers in some projects and that was caused by the cus-
tomer’s unwillingness to pay for a project manager from the supplier. After the sep-
aration of the outsourced employees from their previous managers was performed by
moving the employees to the supplier’s own office it turned out much more easier to
set up a process which required a real project manager. In addition to that, the customer
organisations understood the need of project management and project managers much
better when the workers were not sitting in the office of the customer.

The inter-company communication problem was, also, a clearly diminished one af-
ter the supplier company had obtained its own offices. Just the fact that the supplier
company’s employees were not in the customer’s premises made the customers more

12 J.J. Ahonen et al.

willing to obey clear rules for communicating with their previous personnel. In addi-
tion to that, the communication between the different locations of the company itself
was easier in the organisational, technological and cultural sense when the employees
were working in the offices owned by the company itself.

The difficulty of estimating the timetables for projects and keeping those timetables
was at least partly due to the lack of any formal estimation method. The proposed esti-
mation technique, FiSMA 1.1 functional size measurement method [15], had been taken
into use. The method turned out to be fairly easy to use and able to provide accurate
enough estimates. The use of a formal method proved to be helpful in the negotiations
with the customers by giving both sides a better idea of the size and difficulty of the
project. Without any type of estimation method even the project negotiations would be
much more difficult than they currently are.

The infrastructure of the supplier was fairly easy to improve. Proper facilities and
tools in the own premises of the company were set up and taken into use. After a short
period of time the new infrastructure had removed most of the previous hindrances
caused by inadequate and nonuniform tools. The cost of the new infrastructure had a
very short pay-back time, only a couple of months.

The documentation related problems were not solved during the followed period. The
customer companies made the decision to shorten the project timetables by neglecting
documentation on purpose. They are willing to pay for the creation of the documen-
tation when the need arises but not during the creation of the system. That may make
some sense regarding the need of rapid releases, but it causes constant problems with
systems that live longer.

6.2 The Suitability of the Outsourcing Solution

The success of the outsourcing is difficult to estimate due to the fact that the representa-
tives of the companies that outsourced their software engineering were not interviewed
in the research. The reason for that lack is that the reported research was commissioned
by the company created by the outsourcing activity, and the researches come into the
situation after the the last restructuring, i.e. into the situation shown in Figure 4. The
performed analysis remains a superficial one due to the fact that the the researchers had
no real data on the situation before the restructuring, i.e. the one shown in Figure 2.

It is, however, assumed that the benefits sought after were:

– the benefits of scale and larger resources,
– the ability to react faster to new requirements due to better resources, and
– cost benefits.

According to the estimates made by the researchers, the benefits of scale and larger re-
sources have been realized in a good way. This is especially remarkable in the business
domain in which the outsourcer companies operate. In that domain the business is ex-
treamly ICT-dependent and requires astonishingly rapid adaptation and development of
information systems in order to be fast enough to react to the actions of the competitors
and similarly fast action in order to maintain the proactive attitude.

The faster reaction time had also been achieved. The extreamly fast life-cycle of
products and services provided by the outsourcing companies does, however, have its

Outsourcing through Combining Software Departments of Several Companies 13

impact on the general customer/supplier-relationship. The business domain requires
very fast development times and quite high dependability of the developed systems.
Larger resource pool has clearly helped in that respect. It must be noted, however, that
the additional level of management that the outsourcing-relationship imposes on the
practical operations has its own negative impact on the speed of development.

It seems that some type of combination of agile development and proper process
control suits the business domain, the outsourcers, and the supplier company. Fast and
uncomplicated communication and rapid reactions are clearly so important that it is
somewhat difficult to consider a working solution with a supplier that were located
far away. The fast development times and close cooperation would require an exten-
sive amount of traveling to the customer site. Such amount of traveling would clearly
diminish any benefits achievable by using a far-away supplier.

Considering the situation in the light of the information available to the researchers it
seems to be the case that outsourcing was a good solution for the original companies. In
addition to that, the current solution in which the supplier is located near the customer is
a working one in the light of the demands of the business domain in which the customer
companies operate.

7 Discussion

The separation of the customer companies and the new supplier had not been done in
a way that would have fulfilled the benefits of outsourcing. After making the customer
companies and the supplier company less intertwined the benefits were possible to be
achieved.

It is, however, very interesting to note that after the outsourcing and separation of
the customer and the supplier more professional processes were easier to follow than
before. The real separation of companies seems to provide some professional back-
bone for both the business people needing a new information system and the software
engineers creating it. Better professional attitude may explain some of the successes
of outsourcing, especially in those cases in which the supplier is located in another
country.

The better professional attitude and more systematic ways of work do not, however,
compensate the possible time delays and cultural differences in every case. In a case like
the reported one, the fastness of communication and and rapid reaction time of the ICT
supplier are essential. Therefore some unprofessionalism or even sloppy work might be
tolerated as a balancing factor.

It must, however, be noted that the case reported in this article belongs to a specific
type of outsourcing in which several companies create a supplier by outsourcing their
own ICT-departments. Cases belonging to this type have not been often reported, al-
though the authors of this article know a few similar cases. Unfortunately the necessary
data on those cases is not available for comparative analysis.

Although the reported case supports the outsourcing tendency it does show that dif-
ferent business needs give way for different outsourcing solutions. In some business
domains and types of operation the use of a supplier that is located far away is not a
working solution. That does, however, hold only in the case that the local suppliers are

14 J.J. Ahonen et al.

not much worse than the ones located in e.g. India. With similar performance the local-
ity of the supplier may offer benefits that cannot be compensated by somewhat lower
costs.

References

1. Sarder, M.B., Rogers, K., Prater, E.: Outsourcing swot analysis for some us industry.
In: Technology Management for the Global Future, 2006. PICMET 2006, pp. 239–242
(2006)

2. Oh, W.: Why Do Some Firms Outsource IT More Aggressively Than Others? The Effects
of Organizational Characteristics on IT Outsourcing Decisions. In: Proceedings of the 38th
Annual Hawaii International Conference on System Sciences, HICSS 2005, p. 259c (2005)

3. Beulen, E., Ribbers, P.: Managing complex it outsourcing - partnerships. In: Proceedings of
the 35th Annual Hawaii International Conference on System Sciences, HICSS 2002 (2002)

4. Gan, W.: Analysis on the costs of it-outsourcing. Digital Object Identifier
10.1109/SOLI.2006.328954, 785–789 (2006)

5. Oh, W.: Analyzing it outsourcing relationships as alliances among multiple clients and ven-
dors. In: HICSS 1999: Proceedings of the Thirty-second Annual Hawaii International Con-
ference on System Sciences, Washington, DC, USA, vol. 7, p. 7066. IEEE Computer Society,
Los Alamitos (1999)

6. Sun, S.Y., Lin, T.C., Sun, P.C.: The factors influencing information systems outsourcing part-
nership - a study integrating case study and survey research methods. In: HICSS 2002: Pro-
ceedings of the 35th Annual Hawaii International Conference on System Sciences (HICSS
2002), Washington, DC, USA, vol. 8, p. 235. IEEE Computer Society, Los Alamitos (2002)

7. Beulen, E., Tija, P.: It-leveranciers in lagelonelanden - hoge kwaliteit tegen lage kosten, mits
je op de kleine lettertjes let (2003)

8. Goo, J., Nam, K.: Contract as a source of trust–commitment in successful it outsourcing
relationship: An empirical study. In: HICSS, p. 239 (2007)

9. Jarvinen, P.: On Research Methods. Opinpajan Kirja, Tampere, Finland (2001)
10. Karjalainen, A., PÃd’ivÃd’rinta, T., TyrvÃd’inen, P., Rajala, J.: Genre-based metadata for

enterprise document management. In: HICSS (2000)
11. Ahonen, J.J., Forsell, M., Taskinen, S.K.: A modest but practical software process model-

ing technique for software process improvement. Software Process Improvement and Prac-
tice 7(1), 33–44 (2002)

12. Ahonen, J.J., Junttila, T., Sakkinen, M.: Impacts of the organizational model on testing: Three
industrial cases. Empirical Software Engineering 9(4), 275–296 (2004)

13. Ahonen, J.J., Junttila, T.: A case study on quality-affecting problems in software engineering
projects. In: Proceedings of 2003 IEEE International Conference on Software — Science,
Technology & Engineering, SwSTE 2003, November 2003, pp. 145–153 (2003)

14. Ahonen, J.J., Aho, A.M., Sihvonen, H.M.: Three case-studies on common software process
problems in software company acquisitions. In: Richardson, I., Runeson, P., Messnarz, R.
(eds.) EuroSPI 2006. LNCS, vol. 4257, pp. 62–73. Springer, Heidelberg (2006)

15. FiSMA: Fisma 1.1 functional size measurement method. Technical report, FiSMA (2008),
http://www.fisma.fi/in-english/methods/

http://www.fisma.fi/in-english/methods/

K. Berkling et al. (Eds.): SEAFOOD 2008, LNBIP 16, pp. 15–32, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Timeline Prediction Framework for Iterative Software
Engineering Projects with Changes

Kay Berkling1, Georgios Kiragiannis1, Armin Zundel1, and Subhajit Datta2

1 Polytechnic University of Puerto Rico, Department of Computer Science and Engineering,
377 Ponce de León Ave., San Juan, Puerto Rico 00918

kay@berkling.com, gakirag@gmail.com, azundel@pupr.edu
2 Department of Computer Science and School of Computational

Science, Florida State University,
Tallahassee, FL 32306, USA

sd05@fsu.edu

Abstract. Even today, software projects still suffer from delays and budget
overspending. The causes for this problem are compounded when the project
team is distributed across different locations and generally attributed to the de-
creasing ability to communicate well (due to cultural, linguistic, and physical
distance). Many projects, especially those with off-shoring component, consist
of small iterations with changes, deletions and additions, yet there is no formal
model of the flow of iterations available. A number of commercially available
project prediction tools for projects as a whole exist, but the model adaptation
process by iteration, if it exists, is unclear. Furthermore, no project data is avail-
able publicly to train on and understand the iterative process. In this work, we
discuss parameters and formulas that are well founded in the literature and
demonstrate their use within a simulation tool. Project timeline prediction capa-
bility is demonstrated on various scenarios of change requests. On a real-world
example, we show that iteration-based data collection is necessary to train both
the parameters and formulas to accurately model the software engineering proc-
ess to gain a full understanding of complexities in software engineering process.

1 Introduction and Background

Software projects often suffer from delays and budget overspending. With the addi-
tion of off-shoring in the software industry, the complexities of such projects have
increased. While it is still very difficult to even understand the mechanics of regular
projects, taking the next step in complexity to distributed teams, decreases the ability
to trace the effects of change requests on the course of the project. Gaining under-
standing of and control over the timeline and consequently the costs of a project is
often accomplished through experience of the project manager. However, without that
experience, no comprehensive mathematical model of how the timeline is affected
throughout iterations is available to replace that experience. Simulators of such a
model would provide a deeper understanding of the parameters and how they drive a
project.

16 K. Berkling et al.

For the case of total effort estimation, there are a number of function point estima-
tion tools on the market such as Charismatek, Softwaremetrics, TotalMetrics [29],
EstimatorPal. But as far as the authors can tell, none of these open their parameters to
the user or adapt these by iterations to the project itself. This can be problematic as
depicted in Table 1. Despite the large number of studies on this subject, it can be seen
how models of such projects can vary. While the trends (formula types) are consistent
across studies, the parameters vary greatly, without providing enough guidelines in
how they apply to a specific project.

In order to deal with this adaptation, one has to look at iterations to learn the pa-
rameters from the project. Drappa et al. [9] developed a simulator to train project
managers and give them hands on experience. The project manager interacts with the
simulator as s/he would with a team of software developers. The project manager is
required to have a set of theoretical skills and uses the tool to gain “practical” experi-
ence. This simulator works with function points, that the project manager enters into
the tool along with the number of workers used and a set of directions. The simulator
will then advance a set amount of time and reflect the status of the project. At each
step the project manager continues making decisions to navigate through to the end.
Thus, this work takes into account iterations within a project and decision making of
the project manager at each stage to change the course of the project. However, while
Drappa’s work deals with the interaction between project manager decisions and the
workers, our work additionally deals with effects of change requests and opens both
the parameters and formulas for adaptation. Both systems are based on similar rules
of thumb [16]. Jones developed these rules of thumb that are widely quoted and used
in the field of software engineering. However, it is still not proven that the same for-
mulae hold for iterations within a project. For now, the simulator uses the rules of
thumb that define the parameters needed for data collection but with an understanding
that the formula may need to be adapted as data is collected.

Table 1. Table taken from Fairley [10] – demonstrating the large variety of models describing
the relationship between development time and lines of code and time elapsed vs. man months

Effort Equation Schedule Equation Reference

PM = 5.2 (KDSI)0.91 TDEV = 2.47 (PM) 0.35 Walston [26]

PM = 4.9 (KDSI)0.98 TDEV = 3.04 (PM) 0.36 Nelson [19]

PM = 1.5 (KDSI)1.02 TDEV = 4.38 (PM) 0.25 Freburger et al[12]

PM = 2.4 (KDSI)1.05 TDEV = 2.50 (PM) 0.38 Boehm [6]

PM = 3.0 (KDSI)1.12 TDEV = 2.50 (PM) 0.35 Boehm [6]

PM = 3.6 (KDSI)1.20 TDEV = 2.50 (PM) 0.32 Boehm [6]

PM = 1.0 (KDSI)1.40 Jones [17]

PM = 0.7 (KDSI)1.50 Freburger et al[12]

PM = 28 (KDSI)1.83 Schneider [24]

 Timeline Prediction Framework for Iterative Software Engineering Projects 17

In order to look at how change affects project timelines, it is necessary to under-
stand the relationships between artifacts. Cleland-Huang et al. [14] worked on a
framework to capture traceability in artifacts in order to propagate changes across the
project correctly. The framework contains three parts: event server, requirements man-
ager and the subscriber manager that combine to partially automate the process and
support the workers in maintaining correct traceability. Our work builds on the
subscription model for artifacts that she proposes in order to establish links between
artifacts and propagate changes correctly. The traceability is important in order to cor-
rectly propagate the effects of change requests to all affected artifacts in the project.

Finally, the degree of change in indirectly related artifacts is important. To this end,
Datta [7][8] suggests three metrics: Mutation Index, Component Set, and Dependency
index. Mutation Index indicates the level of change a requirement has undergone across
iterations; Component Set specifies all the components a particular requirement needs
for its fulfillment; and Dependency Index reflects on the extent to which a particular
requirement's implementation depends on the implementation of other requirements.
These three metrics help evaluate the effects of requirement changes for a software
system. Although our work groups function points according to use cases and not re-
quirements, under reasonable assumptions, the Dependency Index is applicable in our
scenario, and is referred to in this paper as . Mechanisms for extracting this metric
value automatically from code is under development by Datta.

One of the difficulties in working on simulation of projects is the dearth of rich,
publicly available training data. A number of databases are available in the public
market. The main repository is available through the International Software Bench-
marking Standard Group (ISBSG) [28]. This non-profit organization had put together
a standard for benchmarking software development in three categories: software en-
hancements, software implementations, and software maintenance. The information
enclosed in the repository is divided into a few types of data like: Rating, Sizing, Ef-
fort, Productivity, Schedule and others. However, this repository does not provide
information on the changes of parameters as a function of time. The data is not given
by iteration or phases.

This work argues towards the collection of discussed parameters by iteration and
the importance of adapting the simulator to the specific project by allowing the user
to adjust the parameters. Currently, available databases are not yet sufficient to train
an iteration-based simulator, nor do they collect sufficient data to appropriately ana-
lyze the effect of addition, change and deletion on each iteration or the project as a
whole. Yet, iterations and adaptations to very project-specific data are absolutely
essential when outsourcing is involved in order to reliably estimate timelines. A
more accurate timeline prediction for distributed projects will lead to fewer unpre-
dictable events and will support management decisions by giving more specific and
precise estimates. The rest of this paper will describe our approach to combining a
number of formulas and parameters into a simulator that can then be used to simulate
project timelines and collect data in order to adapt both functions and parameters
built into the simulator. We demonstrate reasonable functionality of the current
simulator based on well-known facts about projects and show that adaptation is abso-
lutely necessary based on a real-world example, therefore making the call for data
collection based on iteration.

18 K. Berkling et al.

Section 2 will discuss the building blocks of the approach used in this paper.
Section 3 will discuss trends and parameters within software engineering projects that
are used within the simulator. Section 4 will discuss the implementation of the simu-
lator and validate the basic simulator functionality by looking at sequence of opera-
tions whose properties transcendent project-specific characteristics. Section 5 will
conclude by looking at an example project, demonstrating the clear need and feasibil-
ity for both parameter and formula adaptation for any simulation tool on an iteration
basis. Section 6 concludes by listing a number of enhancements necessary to expand
the model under future work and propose the availability of a web-based tool for data
collection and simulation and online adaptation.

2 Foundations

The theoretical foundations of this work include the methodology of software project
management, Function Point estimation of project size based on Use Cases and
Traceability usage in projects. These three topics are described in more detail before
Section 3 will clarify their usage in this work.

2.1 Methodology

For the purpose of this work we use the terminology of the Rational Unified Process
(RUP) because it presents the collection of best practices from industry and is readily
reducible to other methods [15]. RUP defines the artifacts that the simulator produces
to emulate a software project timeline. Artifacts are either final or intermediate work
products that are produced and used during a project and generally include documen-
tation and software. They are used to capture and convey project information and re-
sults. The simulator works with the major artifacts listed below:

• Use Case
Use cases capture the functional requirements of a project. They are usually based on
a number of requirements to come together in order to formulate a goal that an ac-
tor/specific user of the system will achieve, such as “withdraw money”. A Use Case
contains both functional as well as non-functional requirements. The Use Case further
is the primary document used by the implementation team to produce the Class dia-
gram, the implementation code and the test case.
• Software Requirement Specification
The Software Requirement Specification (SRS) is the document that contains all the
functional and non-functional requirements of the system as a whole. The document
refers to Use Case documentation for the functional details but retains the overall in-
formation. While functional requirements are mainly covered through the use cases,
non-functional requirements are usually found in the SRS and can be categorized as
usability-, reliability, performance, and substitutability-requirements, design con-
straints, platform environment and compatibility issues, or applicable standards. In
addition, requirements that specify need of compliance with any legal and regulatory
requirements may be included. Non-functional requirements that apply to an individ-
ual use case are captured within the properties of that use case.

 Timeline Prediction Framework for Iterative Software Engineering Projects 19

• Class Diagram
The Class Diagram is a document which is based on the entirety of the project and
therefore depends on all the Use Cases. A change to any Use Case can affect a change
in the class diagram.
• Code
The Code is designed to implement a Use Case that describes its functionality. For the
purpose of this paper the code may belong to several Use Cases as there may be some
degree of overlap between Use Cases through common requirements. Therefore,
change in one Use Case may affect different code pieces to varying degrees.
• Test Case
Test Cases are designed to test the code for a particular Use Case. A change in the
Use Case may effect both Test Case and Code.
• Test Code
Test Code implements the test case.

2.2 Function Points

Function Points (FP) is a metric for measuring the functional size of a software sys-
tem. The usage of function points is well known and a tested sizing technique in soft-
ware engineering [21][18][25][11][13]. FPs have been used since 1979 when Allan
Albrecht of IBM [3][4] introduced them. There are other Functional Assessment
techniques, mainly Bang, BMA, CASE Size, Entity, IE, Mark II FPA, MGM, and
Usability. According to McDonell, Table 2 summarizes that the most tested and gen-
erally used functional assessment technique is Function Point Analysis. Mark II FP
expects 19 adjustment factors instead of 14 on the original FPA method, making the
adjustment factor more difficult to asses in a step in the process where usually the
user or PM has little information on the system. Boehm [6] developed and redesigned
later an algorithmic cost model called (COCOMO). It provides formulas for the esti-
mation of programmer-month and development schedule based on the estimated
number of Delivered Source Instructions (DSI). COCOMO model is based on LOC,
this metric is harder to obtain in early stages of the product life cycle making FPA the
only tested and validated and more reasonable choice.

Table 2. Comparison of functional assessment and estimation methods (taken directly from
McDonell [19])

Method Automation Comprehensive Objectivity Specification Testing Validity
Bang No Yes No Yes Yes No
BMA Yes Yes Yes Yes Yes No
CAES Yes Yes Yes Yes Yes No
Entity Yes Yes Yes Yes No No
FPA No Yes No No Yes Yes
IE No Yes No No Yes Yes

Mark II
FPA

No Yes No Yes Yes Yes

MGM No Yes No No No No
Usability No No No Yes No No

20 K. Berkling et al.

In this work we focus on the existing relationship between Use Cases, Function
Points and duration of code implementation that has been studied by a variety of re-
searchers in the past. While this is a controversial approach [1] [2], it has been shown
to work in real-world industrial applications for certain types of projects [10] [5]. The
following is a brief presentation of Function Points and the approach chosen for the
simulation model in this work because it is empirically shown to work to a reasonable
degree according among others also from the International Software Benchmarking
Standards Group.

Function Points can be calculated in two parts. The first part relates to the entire
project with a handful of parameters, such as: Data communications, Distributed
data/processing, performance objectives, tight configuration, high transaction rate, on-
line inquiry data entry, end user efficiency, on-line update, complex processing, code
reusability, conversion/installation ease, operational ease, multiple site installation,
facilitate change. The second number is calculated at the Use Case level by looking at
the number of inputs outputs, files accessed, inquiries, and number of Interfaces. This
model is based on Albrecht [4] and is more precise in estimation than the previous
model of unadjusted function points.

The measurement for a Use Case results from a formula which combines the over-
all and the specific values into a final FP value. This final number relates to time
spent on their implementation through a function that has been established [30] to
have a non-linear relationship similar to what is approximated by Figure 1. The rela-
tion of function points versus effort can be estimated automatically after a few itera-
tions, assuming that the workers are stable.

FP vs. effort (hrs)

0

20

40

60

80

100

120

0 50 100 150 200

effort (hrs)

F
u

n
ct

io
n

 P
o

in
ts

formula

real data

Fig. 1. Assumed relationship function between Function Points and Time spent on coding

2.3 Traceability

Traceability [27] is the process of tracking relationships between artifacts. It is used
in software engineering for verification, cost reduction, accountability, and change

 Timeline Prediction Framework for Iterative Software Engineering Projects 21

management. Tracking the effect of change requests, such as additions, changes or
deletions of use cases on other artifacts are tracked in this manner. Its importance
can be appreciated by this statement: “The US Department of Defense spends about
4 percent of its IT costs on traceability.” [23][22]. A model to simulate project data,
like artifacts, meeting minutes, meeting agendas, stakeholders, assumes certain re-
quired traceability links for artifacts involved in the project in order to propagate the
effects of change correctly. Figure 2 below shows how change can be traced through
various artifacts in a project.

Fig. 2. Simplistic example of how change affects the software life cycle

This project simulator will process specific input like use cases and change re-
quests through traceability models and assumptions into a static project spreadsheet
that will capture specific changes in artifacts and all its links. In summary, traceability
allows us to see how artifacts are interrelated within a project. This allows us to apply
the rules to the project given the collected data.

3 Implementation

Each of the components described above covers aspects of project description that in
combination are able to support the simulation model. In order to take the complex
interrelationships into account that result in the model of iterations, this section de-
scribes a combination of formulas and parameters that make up the simulator.

3.1 Model

The Model presented in the previous section using the RUP terminology is now de-
scribed in more detail with further assumptions and parameters and outlining the
interrelationships between the artifacts.

• Software Requirement Specification
The Software Requirement Specification (SRS) is the document that describes the sys-
tem as a whole and refers to the Use Cases for details of the functional specifications in

22 K. Berkling et al.

a modularized fashion. Change requests to Use Cases may affect the SRS. The time to
write an SRS is related to the number of Use Cases and non-functional requirements of
the system.
• Use Cases
For the purpose of this work, change requests act on Use Cases directly. More than
one change request is required if more than one Use Case documentation is affected
by the change. This does not hold true for code and class diagram. There is a degree
of interdependence between class diagrams across Use Cases. A change request to a
Use Case at the documentation level does affect code of other Use Cases to some
degree. We model this interdependence with α as indicated by Figure 3. For the pur-
pose of this work, we can assume that there is some degree of overlap between Use
Cases regarding the Classes/Objects and the corresponding code sections that are
generated. For example, imagine a system with two use cases. The first one describes
how books are entered with title only, the second one how to search for them by title.
Now, the first use case, for entering new books, receives a change request to add the
author field. After those changes are made, the second use case receives the change
request to be able to search by author as well. This change is done much faster than
the first change since the class diagram has already been updated and the only
change that is needed is at the user interface level. This difference in effort required
due to the overlap is denoted by α in Figure 3 below. The overlap or interdependency
of requirements that make up each of the Use Cases results in various degrees of
interdependence between the Use Cases and is one of the parameters of the simulator
that can currently be varied. However, it represents a value that can be extracted
from the software and is currently studied by one of the authors, S. Datta.

Fig. 3. Simplified view of interrelationships between artifacts

• Class Diagram
It is through the use cases that changes in the Class Diagram are effected and propa-
gated through to the Code.

 Timeline Prediction Framework for Iterative Software Engineering Projects 23

• Code
A change in the Use Case is measured in function points and effects a change in the
code with the amount of effort related to the FP. Code can be reused between Use
Cases whish is related through as described above. Therefore, change in one Use
Case may affect different code pieces to varying degrees. Changes directly acting on
code, such as refactoring of code, are not currently taken into account in this simulator.
• Test Case
A change in the Use Case effects a change in the test case directly.
• Test Code
Test Code implements the test case and is affected directly by a change in the Test
Case.

There are other artifacts that belong to the Rational process which should be taken
into account in a later version of this simulator. These are, among others the metrics
report, the configuration management plan, the project plan, test management plan,
the risk management plan, the risk list, the user manual and the installation manual.
We currently leave their more detailed implementation for the future work section.
Section 3.2 describes how it is possible to lump the entire lines of written documenta-
tion into an overall effort size that relates directly to function points as well.

In addition to taking into account the interdependence between artifacts that add to
the level of complexity of changes, we model the penalty factor called “Level of
change”. It relates to the time difference between modifications of an artifact under
the assumption that it becomes increasingly difficult to change older artifacts. For
example, if a use case is inserted in iteration 3 and modified in iteration 7 then the
level of change is 7-3=4. According to the level of change, x, the penalty is calcu-
lated by (1-(1/x^.5)) in the current simulator. This function is based on heuristics of
managers, a verification of function and parameter is possibly only through iteration-
based data collection.

3.2 Documentation Time

A number of formulas and parameters derived from various sources are combined to
formulate the duration of tasks within the project plan. In this section, the formulas
are listed, the parameters identified and the default values stated. The equation for the
total number of pages produced in a project is related to function points as defined by
Caper Jones [16] and given by Equation 1, where AFP stands for the adjusted func-
tion points and TNP stands for Total Document Pages in Project. The parameter p is a
value defined as 1.15 Jones and is the default value used by the simulator as specified
in Table 2.

TNP = pAFP (1)

The following documents are currently part of the simulator: Software Requirements
Specifications, Use Case, and Test case documents. All other documents are lumped
into a single set, containing metrics report, the configuration management plan, the
test management plan, the risk management plan, the risk list, the user manual and the
installation manual. Equation 2 shows how these components make up the total num-
ber of pages TNP from Equation 1, where uc, srs, tc, and o denote the percentage of

24 K. Berkling et al.

added pages to the total number TNP. This relationship has to be collected from data.
The assumptions made by the simulator are stated in Table 2 but can be adapted after
several iterations of the project to reflect the specific project more accurately.

TNP = uc·TNP + srs·TNP + tc·TNP + o·TNP (2)

The total number of pages is converted into time by using yet another equation that
relates writing time to page numbers [31] as defined by Equation 3, where WPP is
words per page and WPM stands for Words per Minute.

Documentation Minutes = TNP * WPP / WPM (3)

Though these formulas are research based, it seems unlikely that pages written for
different documents can be written with equal speed. Therefore, this data should also
be collected. The true relationship would have to be given through the data. Table 3
depicts the default values that are used in the current system that can be adapted after
a few iterations. Similarly, Equation 2 could be rewritten differently not in terms of
Function Points but rather in terms of number of Use Cases as well as function points.
One can assume that the size of a Use Case is a relatively constant number UC_base
since Use Cases have a limited size. The SRS also grows linearly with respect to
the number of Use Cases added (SRS_base + n · SRS_add). Parts of the Use Case
(activity diagram) and the Test Case (test scenarios dependent on activity diagram)
depend heavily on the function points in terms of time to write those pages, but not
necessarily in terms of number of pages. Therefore, none of these components weigh
heavily in the polynomial. Most of the documenting pages therefore must be spent on
the other documents that were lumped into “other” (such as project plan, risk man-
agement plan, test plan, etc.) or the formula seems wrong. Equation 4 depicts the form
the resulting formula would take, which would need to be verified with real data.

Time = n · FPA + qFPA (4)

Table 3. List of variables needed by simulator and their initial values

Documentation Variable Value

 Use Case + Test Case + SRS (uc + srs + tc) n = .76

 Exponent p 1.15 [16]

 Words per page WPP 250 [31]

 Words per Minute WPM 19 [32]

3.3 Coding Time

As described in Section 2.1, coding time has a determinable relationship to function
points usually depicted as a polynomial curve as defined by Equation 5, where the
number of man months increases at a faster rate than the number of function points
but is linear for smaller function point levels. It is also well-known that the slope

 Timeline Prediction Framework for Iterative Software Engineering Projects 25

depends largely on the team and the type of project. Therefore, the user is asked to
supply this variable, q in Equation 5, with each iteration. It is necessary to record this
variable for each iteration during data collection in order to see the detailed effects of
changes in a particular project. The non-linearity effect is not visible for small Use
Cases and change requests.

SLOC = AFP^q; q = 0.6 (5)

Effort is then calculated based on rate of coding (LOCperday) and hours worked per
day (hrsperday) as described by Equation 6.

Hours = (SLOC / LOCperDay) · hrsperday (6)

These two formulas cover coding, but not really design. Class and database diagram
are inherently related to function points as is the user interface. It is not unreasonable to
assume a polynomial function relates Function Points to design effort in a similar way
as it does to coding effort. This function can be approximated with a linear function for
medium sized (3-6 months) projects, perhaps with a different constant that will have to
be collected as well from the project. Table 4 summarizes the variables and their origi-
nal default values that are consequently adapted after each iteration.

Table 4. List of variables relating design

Artifact Variable Formula

Source Code
 Hrsperday / LOCper-
Day

 = 8/100

Source Code Q = Entered by user; default .6

Class/Database Dia-
gram

 q' = AFP^q' ; q' = q

GUI Interface q'' = AFP^q'' ; q'' = q

 Source Code SLOC = AFP^q q = 0.6

Test Code SLOTC = c ·SLOC, c=1

3.4 Assumptions

The model described above specifies key documents of the project management proc-
ess. Similar models have to be developed for other documents. In addition, communi-
cation and meeting time becomes a major component as a function of both project
size and distance between team members, becoming potentially non-linear. These
relationships and their changes need to be captured for each iteration. The current
simulator assumes one worker, a first step before expanding the model to several
workers and distributed environments. The simulator also follows the assumption that
the formulas in the literature are correct. However, as data is collected, these formulas
as well as their parameters are open for adaptation. Section 5 will demonstrate this
necessity on a sample project.

26 K. Berkling et al.

4 Simulation

The simulator proceeds in several steps that serve to collect project-specific data. In
this manner the project variables can be set at the beginning and during the project.

(a)

(b)

(c)

(d)

Fig. 4. Sequence of displays to start a project. (a) project specific information, (b,c) variables
from Tables 3 and 4, (d) Use Case function points detailed entry form.

Fig. 5. Data entry for Adding, Subtracting and Changing a Use Case in terms of Function
Points

 Timeline Prediction Framework for Iterative Software Engineering Projects 27

The entry of function points for each use case and change request into the simula-
tor is depicted in Figure 6 as described in Section 2. Each component (input, output,
inquiries, files, interfaces) is qualified as simple, medium or complex. This categori-
zation is clearly defined by Paton and Abran [21].

The resulting screenshot for the first iteration is shown in Figure 6. It shows the ar-
tifacts created within the project, using traceability rules: A Use Case as entered in the
screen in Figure 5 is linked to several documents that depend on it: SRS, Code, Test
Case and Test Code as well as the design documents.

Fig. 6. Screenshot depicting the first iteration of Use Cases

The basic operations in Software Engineering regarding change requests are the
adding, deleting and changing of use cases as well as the order and size these opera-
tions are presented in. There are well known effects on project timelines that result
from particular scenarios. We know that change requests submitted late in the project
are more expensive than early change requests, smaller use cases are easier to change
than larger ones and less modular code and documentation is difficult to update ac-
cording to change requests. With the current set of formulas and parameters the simu-
lator is sufficiently complex to demonstrate the effects as expected. These scenarios
hold true for a large range of parameters. That is because they transcendent project
specific information. Below, are example simulation runs for specific parameters for
each of these well-known scenarios.

28 K. Berkling et al.

“Change requests are more economical in the beginning of the project than in
the end”
In this example four Use Cases with 10 FP each, are added consecutively in sepa-
rate iterations. After four iterations the project is completed. The simulator should
reflect that a change request to the first Use Case submitted in iteration 2 will affect
the entire project less than the same change request submitted late in iteration 4.
Below is the depiction of the project details of each scenario. A late change request
has a bigger impact on the project duration. This demonstrates both the level of
change property as well as the impact provided by changes on more artifacts due to
the parameter α.

Scenario A: 4 Iterations with a new USE
CASE in each iteration of 10FP with a
change on iteration 2 of 8 FP
Total Artifacts: 23
Iterations 1: 1.38 days
Iterations 2: 3.63 days
Iterations 3: 1.63 days
Iterations 4: 1.75 days
Total: 8.38 days

Scenario B: 4 Iterations with a new USE
CASE in each iterations of 10FP with a
change on iteration 4 of 8FP
Total Artifacts: 27
Iterations 1: 1.38 days
Iteration 2: 1.38 days
Iteration 3: 1.5 days
Iteration 4: 5.5 days
Total: 9.75days

“A larger number of small use cases are more efficient than a smaller number of
large use cases”
In this experiment we want to show that all being equal a Project of 80FP at the first
Iteration and a change of 10FP in second iteration will take less time if the project
is broken into more functional units. In order to show the effect, two scenarios are
created. The first project contains 2 use cases of 40 FP each totaling 80 FP. Then
Use Case 1 will be modified by adding 10 more FP. In the second project 4 Use
Cases of 20 FP each totaling 80 FP will be followed by a change request to Use
Case 1 by 10 FP.

Scenario A: 2UC with 80FP Total Count
Amount of Artifacts: 15
Iteration1: 21.88 days
Iteration2: 7 days
Total: 28.88 days

Scenario B: 4UC with 80FP Total Count
Amount of Artifacts: 25
Iteration1: 15.63 days
Iteration2: 7 days
Total: 22.13

In this example, a delay of approximate 6 days is due because the Use Cases were
larger in Scenario 2. The entire project takes less time in the second example because
changes to smaller and well modularized code a) have less dependency on other code
and b) are less difficult to change due to their size. Point (a) is denoted by α as de-
picted in Figure 3 and is set to 5% for this demonstration. Point (b) is implemented
with the non-linear function described in Equation 5. As a result, fulfilling a change
request of 10 function points is less work when applied to a 20 FP Use Case than a 40
FP Use Case.

 Timeline Prediction Framework for Iterative Software Engineering Projects 29

“Show effect of non-modularity of Use Cases”
In this example, the simulator compares two scenarios in which two use cases overlap
to varying degrees as modeled by α depicted in Figure 3, a parameter that reflects the
degree of overlap of components in the database model. In Scenario A, α is set to 5%
overlap, modeling a good separation of the use cases; in Scenario B, α is set to 45%
overlap, demonstrating a high degree of overlap between use cases. In both projects, a
change request is submitted in the second iteration. The simulator can show that a
larger degree of dependence between use cases results in a longer duration as pre-
dicted by common sense and the model. Both projects have two use cases with 80 FP
in total and were affected by the same change request in the second iteration.

Scenario A: 5percent overlap within two
usecases of 20FP each and a change of
10FP
Amount of Artifacts: 15
Iteration 1: 7.38
Iteration 2: 4.63
Total: 12 days

Scenario B: 45percent overlap within two
usecases of 20FP each and a change of
10FP
Amount of Artifacts: 15
Iteartion 1: 7.38
Iteration 2: 6.63
Total 14 days

Scenario A is 2 days shorter due to the lesser degree of overlap between use cases.
With increased overlap between use cases change requests add more effort to the total
project because the change request has repercussions throughout a larger area of the
project. It is appreciable that if you make a system more independent across use cases
then you will diminish the amount of total time to create the changes across the life of
the software development cycle. This effect is compounded as the project size in-
creases as we know from the previous example.

5 Conclusion

They key to this simulator is not (only) to show the effects of change requests on code,
but to specify the rules governing those changes and distill the parameters and func-
tions that are essential to both model the data and define the data to be collected for
each iteration. We have made the argument that only iteration-based data can support
an accurate data-driven model for comparative studies of models based specifically on
iterations. In this paper, the authors have suggested a number of parameters and func-
tions that need further study for iteration-based projects in order to model a software
process accurately. Only through full understanding can we grasp the additional bene-
fits and difficulties that are involved in off-shoring parts of software projects.

Looking at a sample real-world project developed with off-shoring, it can be seen
that many of the assumed parameters and functions may or may not apply for itera-
tions and small- or medium-sized projects as can be seen in Figure 7. In this particu-
lar project at hand, provided by the fourth author S. Datta, the actual relationship is
quite linear compared to the estimated relationships given by Equations 1 and 5.
Figure 7 depicts the best fit linear function compared to the polynomial from the
literature. Additionally, Figure 7 shows that coding requires most of the effort, fol-
lowed by documentation, test code, code design and User Interface design. Each of

30 K. Berkling et al.

Function Point vs. Effort

0
20
40
60
80

100
120
140
160

0 50 100 150 200 250

Effort (hrs)

F
u

n
ct

io
n

 P
o

in
ts

code

test

GUI

design

documentation

Estimate Code

Estimate Documentation

Linear (code)

Linear (documentation)

Fig. 7. Actual relationship between Function Points and effort for various artifacts compared to
estimated relationship

the progressions seems linear up to the third iteration. This example clearly shows
the need for iteration-based data collection to estimate both the function as well
as the parameters by taking data of preceding iterations for the adaptation process to
increase the prediction ability of the simulator for the next iteration.

Different artifacts are related to function points in a similar manner, for example,
test case and use case documentation efforts exhibit a linear relationship for the same
function point value as depicted in Figure 8.

Test Case vs Use Case Documentation Time

0

1

2

3

4

5

6

7

8

0 2 4 6 8

Use Case Time

T
es

t C
as

e
T

im
e

Test Case, Use Case

Linear (Test Case,
Use Case)

Fig. 8. Experimental data shows that not all artifacts are written at equal speeds

The following are recommendations for collecting the required data.

1. Parameters need to be collected with each iteration
2. Parameters include the following by iteration:

- list of changes per Use Case (add, delete, modify)
- LOC/FP
- LOC/day/person
- Time spent on each Use Case and related code per change

 Timeline Prediction Framework for Iterative Software Engineering Projects 31

- Time spent on each Test Case and related test code per change
- Time spent on each other artifact (SRS, Design, GUI, etc.)
- Pages added or changed for each artifact as function Use Case operation (add,

delete, modify)

3. Information that relates the factor [i,j] between artifacts i and j by describing how
changes within one Use Case affect other Use Cases and their related code and
data-tables.

4. Information about the amount of communication related to each iteration in terms
of time spent with emails, meetings and other forms of communication.

6 Future Work

Future work clearly includes analysis of the collected data including the new vari-
ables. The addition of division of work effort through additional personnel will be
needed along with the communication components. Meeting and communication
equations are essential additions to this model that will support understanding of the
off-shoring component. Therefore, it is very important to collect off-shoring project
data with the iteration-based model. Using the current ISBSG database, it seems pos-
sible to show that off-shoring does not add an element of complexity to the project
[33]. This however seems to run contrary to industrial experience reports, leading us
to the idea that some parameters are still missing. Perhaps, iteration-based data will
illuminate this issue further. We also want to introduce mean and variance into the
predicted schedule. It can be shown that off-shoring may not change the mean predic-
tion time of the project but the variance increases. We would like to show the origin
of this increased variability and show how the variability can be controlled.

Finally, current efforts are underway to move the desktop simulator to a web-based
application in order to serve as a tool and a data-collection instrument at the same
time. It should have the ability to adapt parameters as well as functions automatically
with the incoming data.

References

[1] Abran, A., Robillard, P.N.: Function Points: A Study of Their Measurement Processes
and Scale Transformations. Journal of Systems and Software 25, 171–184 (1994)

[2] Abran, A., Robillard, P.N.: Identification of the structural weakness of Function Point
metrics. In: 3rd Annual Oregon Workshop on Metrics, pp. 1–18 (1991)

[3] Albrecht, A.J.: Measuring application development productivity. In: IBM Corp. (ed.)
IBM Application Develop Symp. (1979)

[4] Albrecht, A.J., Gaffney, J.E.: Software Function, Source Lines of Code, and Develop-
ment Effort Prediction: A Software Science Validation. IEEE Transactions on Software
Engineering SE-9(9), 639 (1983)

[5] Angelis, L., Stamelos, I., Morisio, M.: Building a Software Cost Estimation Model Based
on Categorical Data. In: Pro. of the Seventh International Software Metrics Symposium
METRICS, pp. 4–15 (2001)

[6] Boehm, B., Englewood Cliffs, N. (eds.): Software Engineering Economics. Prentice-Hall,
Englewood Cliffs (1981)

32 K. Berkling et al.

[7] Datta, S.: A Mechanism For Tracking The Effects of Requirement Changes In Enterprise
Software Systems, Master’s thesis, Florida State University (2006)

[8] Datta, S., van Engelen, R.: Effects of Changing Requirements: A Tracking Mechanism
for the Analysis Workflow, pp. 1739–1744 (2006)

[9] Drappa, A., Ludewig, J.: Quantitative modeling for the interactive simulation of software
projects. Journal of Systems and Software 46(2-3), 113–122 (1999)

[10] Fairley, D.: Making Accurate Estimates. IEEE Software, 61–63 (2002)
[11] Fetcke, T.: A Generalized Structure for Function Point Analysis. In: International Work-

shop on Software Measurement, pp. 143–153 (1999)
[12] Freburger, K., Basili, V.: The Software Engineering Laboratoy: Relationship Equations,

Report TR764, Technical report, University of Maryland (1979)
[13] Ho, V.T., Abran, A., Oligny, S.: Using COSMIC -FFP to Quantify Functional Reuse in

Software Development. In: Proc. of the ESCOM-SCOPE, pp. 299–306 (2000)
[14] Huang, J.C., Chang, C.K., Christensen, M.: Event-Based Traceability for Managing Evolu-

tionary Change. IEEE Transactions on Software Engineering Journal 29, 796–810 (2003)
[15] IBM, Rational Unified Process Best Practices for Software Development Teams, Techni-

cal report, IBM (1998)
[16] Jones, C.: Software Estimating Rules of Thumb, 116–119 (2007)
[17] Jones, T.: Program Quality and Programmer Productivity, Technical report, IBM, IBM

TR 02.764 (1977)
[18] Lawrie, R., Radford, P.: Using Function Points in Early Life Cycle estimation. In: Proc.

of the 4th European Conference on Software Measurement and ICT Control, pp. 197–210
(2001)

[19] MacDonell, S.G.: Comparitive review of functional complexity assessment methods for
effort estimation. In: Software Engineering Journal, pp. 107–116 (1994)

[20] Nelson, R.: Software Data Collection and Analysis at RADC, Technical report, Rome Air
Development Center (1978)

[21] Paton, K., Abran, A.: A Formal Notation for the Rules of Function Point Analysis. Re-
search Report 247, University of Quebec, pp. 1–49 (1995)

[22] Ramesh, B.: Process Knowledge Management with Traceability. IEEE Software, 50–52
(2002)

[23] Ramesh, B., Jarke, M.: Toward Reference Models for Requirements Traceability. IEEE
Transanction on Software Engineering Journal 27(1), 58–93 (2001)

[24] Schneider, V.: Prediction of Software Effort and Project Duration: Four New Formulas.
In: ACM SIGPLAN Notices (1978)

[25] Symons, C.: Come Back Function Analysis (Modernised) - All Is Forgiven!. In: Proc. of the
4th European Conference on Software Measurement and ICT Control, pp. 413–426 (2001)

[26] Walston, C., Felix, C.: A Method of Programming Measurement and Estimation(1),
Technical report, IBM System (1977)

[27] Watkins, R., Neal, M.: Why and How of Requirements Tracing. IEEE Software 11, 104–106
(1994)

[28] http://www.isbsg.org
[29] http://www.totalmetrics.com
[30] http://www.engin.umd.umich.edu/CIS/course.des/cis525/js/

f00/harvey/FP_Calc.html
[31] http://www.writersservices.com/wps/p_word_count.htm
[32] http://en.wikipedia.org/wiki/Words_per_minute
[33] SMEF 2005 proceedings,

 http://realcarbonneau.com/Publications/
 Carbonneau2005_SoftDevProd_SMEF.pdf

K. Berkling et al. (Eds.): SEAFOOD 2008, LNBIP 16, pp. 33–45, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Outsourcing-Iterative Improvement Model for
Transforming Challenges to Mutual Benefits

Atanu Bhattacharya

Tata Consultancy Services Ltd.
Tel.: 91 9831517611, 9133 23337500

atanu.bhattacharya@tcs.com, atanu@hitechclub.com

Abstract. The concept of outsourcing though has evolved a lot from an initial
one-time cost-rationalization measure, still has a long way to go. It has to trans-
form the current challenges to opportunities for growth for the customer as well
as the service provider. The success of outsourcing in the coming years will
largely depend on optimizing the processes along with evolution of robust pric-
ing models capable of providing value benefits every year apart from address-
ing the current challenges. This paper proposes the Iterative Improvement
Model, which will be capable of transforming the existing challenges of out-
sourcing to mutual benefits for growth and excellence in a win-win situation
along with a pricing model capable of improving bottom-line every successive
year.

Keywords: Outsourcing, Offshore, Cost reduction, Iterative Improvement
Model, Evolution of outsourcing.

Abbreviations

IT – Information Technology

KT – Knowledge Transition

OMM – Outsourcing Management Maturity

SLA – Service Level Agreement

SME – Subject Matter Expert

UAT – User Acceptance Testing

1 Introduction

Initially, outsourcing and offshoring started as transferring some non-key business
and IT operations by means of person-to-person replacement, often from a developed
to a developing country in order to leverage the cost benefit derived out of low wage
rates and standard of living in the developing nations. However, the scope of out-
sourcing has widened a lot over the last few years. The several challenges inherent
with transitioning of the IT operations to remote locations have been addressed ade-
quately in the last few years, but they keep on posing new dimensions - not as threats
to outsourcing but as opportunities for growth both to the vendor and the customer. In

34 A. Bhattacharya

the next stage of evolution in outsourcing, the IT service providers need to be more
responsive to the needs of their customers by adding substantial values to every ser-
vice provided, accommodating fluctuating demands and finally moving towards
enterprise transformation from process transformation. The existing models of out-
sourcing though proposes movement in that direction, but still the maturity of the
vendors is yet to be raised to level 5[1] of Outsourcing Management Maturity (OMM)
model[2]. The key areas of OMM Level 5 are cost savings, innovation, evolving
management formal processes leading to business cost reduction and quantitative
performance improvement strategies continuously. This paper analyses the current
challenges in software quality and proposes the Iterative Improvement Model capable
of providing cost benefit in successive years along with value acceleration to custom-
ers in the form of a bouquet of benefits and transforming the current challenges to
opportunities.

2 Current Challenges in IT Outsourcing

The challenges in IT outsourcing are evident in all the three levels- strategic, tactical
and operational. Based on a study of outsourcing contracts awarded between 2003 and
2005, sourcing specialist, TPI [3] concluded that cost reduction from such contracts is
in the tune of 15% on an average, within a range of 10 % to 39% as opposed to the
common belief of 60% operational cost reduction. In outsourcing the companies also
lose control on outsourced operations and services. But still outsourcing trends are
moving upwards all around the globe. Thus outsourcing, as a business model, will not
be successful if followed only for cost saving purpose as the cost advantage derived
out of salary difference with the developing countries is gradually waning with time.
On the contrary, outsourcing model can generate long-term benefits for both the cus-
tomer and the vendor, if it is followed with a long-term goal of complementing each
other and fostering the idea of partnership between them.

At the strategic level, finalization of the objectives and purposes of outsourcing
specific to the business goals along with choosing the right outsourcing partner form
the basis of any outsourcing initiative. The outsourcing partner should complement
the organization’s weakness; scale up as per the business needs and innovate to drive
continuous process improvements along with value additions. The outsourcing partner
should also have a proven background in meeting the standard quality and security
requirements by means of different certifications such as CMMI, ISO 27001 etc.
Switching software vendors frequently inside an organization results in wastage of
time on the part of the Subject Matter Experts (SMEs) to transfer and validate the
same knowledge time and again. The SMEs on the other hand can contribute more
meaningfully to meet the business goals and take it to higher levels.

After choosing the right partner, there are several tactical and operational chal-
lenges which need to be addressed in a win-win situation for both the partners. Some
of those challenges, which the Iterative Improvement Model attempts to address, are
as follows:

Project Management Conflicts
It is often seen that the management perspectives of the customer and the vendor don’t
match after the initial year. The target of the customer remains at reducing cost year

 Outsourcing-Iterative Improvement Model for Transforming Challenges 35

after year, whereas the business goal of the vendor is to increase revenue from the exist-
ing customer every year. In the absence of any value-adding partnership model benefit-
ing both the customer and vendor mutually, the benefits of outsourcing are not achieved
in the long term. It becomes just another short-term cost-rationalization initiative.

Improper Requirements Engineering
Requirements management is a great challenge in any outsourced project. It is often
seen that the SMEs who provide the business requirements are not in sync with them-
selves, and also the persons from the vendor company who capture the requirements,
are not qualified enough to understand the business directions of the customer. They
are mostly senior developers who rise up the ladder to become analysts or project
leads, i.e. the low-cost substitutes of the high-end business analysts. They spend most
of their time in understanding how a requirement can be technically implemented or
in managing the execution plan for the project without focusing on the ultimate busi-
ness goal of the customer. This results in investment of a lot of time in consolidating
the requirements from all the business owners on one side, while on the other side due
to lack of complete understanding of the business goals of the customer it leads to the
development of systems which do not perform as envisaged in the beginning. Thus, it
is often found that the business team needs to make compromises and process changes
to suit the limitations and shortcomings of the IT systems in contrary to IT leading
business to higher levels.

Quality of Software
Quality of software remains a concern in all kinds of development and maintenance
activities. In case of an outsourcing initiative, it poses a new dimension in the form of
requirement gaps as the developers and business users are located in geographically
far-off areas and often having different cultural backgrounds. Many defects are caught
only at the fag end of the projects on delivery to end-users. These defects being more
in offshore developments, quality is always a big concern in any new offshore out-
sourcing initiative.

3 Iterative Improvement Model

In an environment of continuous change and adaptability, organizations need to come
up with new models for reducing prices and consistently improving the quality of
products and services. In order to transform the above challenges to opportunities for
mutual growth and provide innovative value additions to customer in an evolving
improvement and cost rationalization cycle, the Iterative Improvement Model is being
proposed.

A brief overview of different phases in a typical IT outsourcing engagement and
the traditional cost models is worth mentioning before describing the new model.

3.1 Phases in IT Outsourcing

Outsourced projects are primarily of two types: Development Project and Mainte-
nance Project. In case of development projects, the phases of requirement analysis,
High Level Design (HLD), Low Level Design (LLD), coding, system testing and

36 A. Bhattacharya

User Acceptance Testing (UAT) remain the same as any other project, except that
some of those phases are executed onsite and some offshore.

In case of a maintenance/enhancement project, the top level phases are as follows:

Knowledge Transfer (KT) Phase
This is the first phase after the necessary formalities and Service Level Agreement
(SLA) are signed-off mutually by the outsourcer and its partner. In this phase, the
employees of the vendor get involved in multiple rounds of discussion with the SMEs
of the customer to gain the system and business knowledge.

Secondary Support Phase
In this phase, the vendor provides passive support under the guidance of the employ-
ees or contractors of the outsourcer organization. The primary responsibility for ad-
dressing the defects or tickets and meeting the SLA still remains with the existing
service providers.

Primary Support Phase
In this phase, the employees of the vendor start providing active support and take
necessary help from the existing service providers only when required. The new ven-
dor gradually becomes responsible for addressing the defects or tickets along with
meeting the necessary SLA.

Steady State Phase
In this phase, the employees of the vendor take over the full responsibility of the sys-
tems for support and enhancements. The existing support staff of the customer is
either moved to other areas or retrenched at this level.

3.2 Traditional Cost Models

The costing model was very simple at the onset, when the concept of outsourcing was
evolving. For every resource of the customer, a resource of the outsourcing vendor
was proposed at a rate fixed as part of the agreement between the two partners. Based
on the initial study of the customer’s business processes, the vendor used to propose
an onsite-offshore ratio of resources depending on the business criticality and support
requirements. This primitive model of resource augmentation from the outsourcing
vendor can be termed as Man-Marking Model due to its close resemblance with the
man-to-man marking in a soccer match. However, this model is very defensive in
approach and derives the immediate cost benefit out of the wage differences between
the two partners only, without much future planning.

With the passage of time, the vendors started coming out of this mode by providing
additional cost benefits in successive years by reducing the number of resources at
onsite and shifting most of the work to offshore with low billing rates. Several models
exploring different levels of offshore leverage factors evolved in the form of “80-20”
or “90-10” in the successive years. These models became popular with the gain in
confidence in the onsite-offshore methodology, improved network connectivity and
secured infrastructure in offshore countries.

 Outsourcing-Iterative Improvement Model for Transforming Challenges 37

In order to step into the next phase of outsourcing and offshoring, the proposed It-
erative Improvement Model provides a robust pricing mechanism capable of recur-
sively reducing operational cost in successive years along with providing several
benefits in the form of “bouquet of benefits” and transforming the current challenges
to opportunities for growth.

3.3 Key Features of Iterative Improvement Model

1. Reduction in Operational Cost with Iterative Improvement

A key component of this model is a robust pricing mechanism, called the Iterative
Value Acceleration Model, which intends to continuously rationalize the operational
cost and move up the value chain in quality and scope of services being provided.

Iterative Value Acceleration Model
This model considers the long-term strategic partnership between the customer and
the outsourcing partner as the basic requirement to be implemented. Though it gives
sufficient cost benefit in the initial years, but focuses more on the long-term vision of
providing more benefits in successive years through optimization of workforce re-
quired to provide the services as per the initial contract and utilization of the remain-
ing manpower to provide additional benefits with better quality of services higher in
the value chain. This model can be best understood by considering an example of
outsourcing three systems (maintenance projects) – Project01, Project02 and Pro-
ject03 as depicted in Fig.1.

Fig. 1. Iterative Value Acceleration Model – Evolution of Resources

38 A. Bhattacharya

These systems with similar technological suite under the same business unit of an
organization are being outsourced to a strategic outsourcing partner who intends to
follow this model in maintaining them, upgrading them and finally driving the busi-
ness towards higher goals providing additional benefits at continuously reducing cost.
In the first iteration, Project01 and Project02 currently being supported by 10 and 15
employees respectively were taken up for outsourcing. In the KT phase, more or less
the same number of resources will be required from the outsourcing partner to under-
stand the systems and processes from the customer, thereby requiring 10 and 15 man-
markers respectively for man to man replacement of the current workforce. These
resources will gain the experience to support and enhance the systems under the guid-
ance of the existing employees in Secondary Support Phase. In the Primary Support
Phase, these 10 and 15 man-markers will become experts in Project01 and Project02
respectively and will be encouraged to take up additional responsibilities in the form
of picking up cross-system knowledge by interfacing with each other in the free time
derived out of increased efficiency and improved processes. Considering 2 resources
with expertise in Project01 and 3 resources with expertise in Project02 picking up
knowledge faster than the others, will be trained in Project02 and Project01 respec-
tively in a more aggressive manner compared to others. These 5 resources will thus
develop the required knowledge and expertise to support both the systems and will
form the pool of mid-fielders as they can move in both the projects as per requirement
just the same way as mid-fielders in a soccer match can move forward and backward
towards both the goals at ease.

It is assumed that Project03 has a different time line and is being outsourced with a
slight time lag compared to Project01 and Project02. In real-life situation, Project03
may also denote a different kind of system with more complexity, thereby requiring
more time for the KT and Secondary support phases and hence, requiring a new itera-
tion to be optimized. In the next iteration, when Project01 and Project02 are in steady
state and Project03 is in Primary Support Phase, 2 more resources from Project02 and
4 resources from Project03 are developed as mid-fielders capable of supporting both
Project02 and Project03 just the same way as carried out in the earlier iteration for
Project01 and Project02.

Optimization of workforce will continue to be performed in this manner by means
of the following process improvements in successive iterations:

• Thorough analysis of defect and change request history will be performed at
periodic intervals starting from the KT phase.

• Known Error Defect Database (KEDB) will be maintained along with the solu-
tions so that it takes less time to fix the production tickets.

• Based on causal analysis of the defects, “80-20” rule will be applied to proac-
tively solve the root cause of the problems occurring most frequently, thereby,
gradually freeing the resources to develop cross system expertise.

• Traceability tools will be used for identifying the program units to be changed
and the test cases to be run from the defect types found. All such tools available
in the market, such as Telelogic DOORS, IBM RequisitePro etc are inadequate
for complex systems. As such new tools can also be developed for maintaining
the complete traceability matrix to save time and effort in future.

 Outsourcing-Iterative Improvement Model for Transforming Challenges 39

• The outsourcing partner will implement various motivational schemes in the form
of appreciation and incentives to encourage more resources taking up cross-
system responsibility in successive iterations.

This approach of continuous improvement in every iteration will lead to a more op-
timized workforce capable of supporting multiple systems at enhanced efficiency.
After the size of mid-fielder pool reaches a critical mass, some resources, as depicted
with grey color in Fig.1 can be released to take up other assignments and a substantial
cost benefit will thus be achieved in successive iterations.

Further optimization of workforce along with processes and methodologies will
lead to evolution of another type of resource from the pool of mid-fielders – called
Strikers. Some of the efficient mid-fielders will gradually develop the necessary busi-
ness and technical skills to take the customer’s business to newer heights in collabora-
tion with their counterparts in the customer’s side. These efficient mid-fielders will
thus enable the customer to march ahead of its competitors in terms of matured busi-
ness models and efficient IT systems aligned with business goals - just the same way
as Strikers win matches in soccer. These Strikers will be responsible for recommend-
ing and implementing the new solutions to suit the business objectives of the cus-
tomer by studying the market trends and the technological advancements along with
the SMEs of the respective business units. They will get more involved in developing
business and technical prototypes in discussion with the customer to raise its business
to higher levels. The accepted prototypes will then be implemented as enhancements
or new systems as per new budget approved by the customer later on. The vendor
may provide smaller enhancements up to a certain limit as part of the continuous
value additions or the bouquet of benefit in successive years also.

This model is thus not only cost optimizing in nature but also focuses more on add-
ing values to the customer in every iteration as depicted in Fig. 2. A key requirement
from the customer’s side in this model is to gradually evolve its workforce from end
users to Subject Matter Experts and finally to Business Champions, who will work
closely with the Strikers of the outsourcing partner to enable the movement from
process transformation to enterprise transformation and scale the new heights of
Business Excellence jointly as two co-operating partners.

Transaction Based Pricing Model
The next evolution from Iterative Value Acceleration Model is the Transaction Based
Pricing Model, wherein the vendor will operate with such an optimized workforce
that most resources will be capable of supporting multiple systems. The vendor will
provide cost benefit derived out of increased efficiency in its operation by charging
the customer on the basis of number of production tickets serviced or change re-
quests/enhancements performed, not on the basis of the number of resources it main-
tains. This model thus overcomes the drawback of under-utilization of resources on
some occasions in the earlier models. On the other hand, the customer agrees to
a minimum contract value based on average ticket volume even if such number of
tickets or change requests are not raised on a specific month or year. This helps the
vendor in maintaining its optimum work force to meet the SLA. On top of it, the cus-
tomer involves the vendor (Strikers and high performing mid-fielders) in evaluating
its business and IT needs for the future and thereby providing new opportunities for

40 A. Bhattacharya

Fig. 2. Iterative Value Acceleration Model – Evolution of Pricing Mechanism

growth to the vendor based on its performance. This model can be followed after a
year or two in the steady state phase, when the relationship between the two partners
attains such a maturity level that each one of them has evolved in its processes and
performs at optimum efficiency the areas it is best in. This model thus creates a win-
win situation for both the partners.

2. Bouquet of Benefits

The additional benefits or value additions that are automatically passed on to the cus-
tomer from a vendor who follows this Iterative Improvement Model are combined
together to design this Bouquet of Benefits. This will vary in different outsourcing
engagements based on the actual requirements of the customer. A representative Bou-
quet of benefits will contain the following add-ons apart from continuous cost benefit
derived year after year (excluding inflation adjustments):

• Better quality of services as cross system experts will be able to think through
multiple systems while fixing any defect and will be able to understand more
clearly the impact of any change in one system on the other.

 Outsourcing-Iterative Improvement Model for Transforming Challenges 41

• More participation and contribution from the outsourcing partner in the form of
pro-active suggestions, both in business and technological spheres, to push the
customer ahead of its competitors.

• Joint product development for different geographies leveraging the multi-market
exposure and expertise levels of both the partners.

3. Transforming challenges to Opportunities

The Iterative Improvement Model addresses the existing challenges in outsourcing by
transforming them to opportunities for growth and mutual benefit as explained below:

Managing Project Management Conflicts
In order to bridge the conflicting management perspectives of the customer and vendor,
this model creates a win-win situation for both the partners with equal opportunities of
growth. Long-term commitment and vision of growth being the primary objectives of
this model, the outsourcing partner gets a multi-year deal with some committed revenue
every year in order to provide its basic service. However, in order to increase its revenue
it has to improve its operational efficiencies and get involved more and more in provid-
ing high-end services in the form of business and technological roadmaps and solutions
to keep the customer ahead of its competitors. The customer on the other hand, can
focus more on improving its business processes with the help of the latest IT solutions
evolved jointly with its outsourcing partner.

Requirements Engineering
A major part of the defects found out in outsourced projects are normally caused due
to gaps in requirements. This model proposes a pool of business experts from both the
sides who will work inter-changeably in different roles in both the organizations from
project to project. Thus a business expert, capturing requirements in one project will
be providing the requirements in some other project along with the existing SME
pool. This will evoke better understanding of the business goals of the customer and
both the partners will jointly work towards achieving them by being involved in all
the phases of the projects in different roles. The returns in the form of more business,
higher in the value chain in the long term, will offset the cost of employing the best
business experts from both the sides. Based on root cause analysis [4] of several sce-
narios with Requirements Engineering challenges, the strategic success factors in
offshore-outsourcing initiatives are shared goal, shared culture, shared process, shared
responsibility and trust. The holistic framework containing the best practices in terms
of people, process and technology to achieve these success factors in Requirements
Engineering, specific to the outsourcer organization, will also be identified and fol-
lowed throughout the life-cycle.

3.4 Improvement in Software Quality

In both development and maintenance projects, the total effort is distributed among
the different phases of analysis, HLD, LLD, coding, system testing and acceptance
testing in various ratios as depicted in Fig.3 based on a study conducted on some
outsourced projects. The trend is more or less the same with the peak effort being
spent in coding.

42 A. Bhattacharya

Fig. 3. Effort distribution across phases

Fig. 4 depicts the defects found out in different phases for a group of outsourced
projects. It is evident that a lot of defects attributed to earlier phases and supposed to
be caught in the respective phases lead to considerable rework in the projects.

Fig. 4. Defect distribution across phases

However, it is known that the cost of defect increases exponentially in the later
phases of the project. The effort spent and the number of defects found in different
phases follow more or less the same pattern [5] as shown in Fig. 5

 Outsourcing-Iterative Improvement Model for Transforming Challenges 43

Fig. 5. Effort and Defect distribution across phases

Thus in order to reduce rework and project cost along with enhancing the product
quality, the effort curve in Fig.3 needs to be gradually moved leftward as shown in
Fig. 6. More “quality” effort, if spent in the earlier phases of the project, will ensure
less rework and defects in the later phases. Higher skilled resources engaged in the
earlier phases will enhance the quality and reduce overall cost of the project.

Fig. 6. Projected Phase-wise effort distribution

This movement, however, needs to be optimized as per the skill level of the re-
sources, expected product quality and project schedule. Increase in development ef-
fort reduces number of defects in the system. At the same time increase in validation
and verification effort increases the chance of finding more defects before the system
goes into production. However, based on the skill level of the resources the amount

44 A. Bhattacharya

of effort required to meet the product quality will vary as depicted in Fig. 7. The
model targets at increasing the number of strikers and mid-fielders from the pool of
resources, thereby ensuring higher productivity and better product quality in a consis-
tent manner.

Fig. 7. Effort vs. Defect distribution for different skill levels

4. Partner Performance Index

Performance metrics as applicable for different types of outsourcing will be deter-
mined as part of the initial contract between the outsourcer and its partner. Starting
with quality of documentations, number of assets or value additions, cost optimization
ratio, response time, defect contentment in earlier phases, post-production defect
count etc, metrics will gradually evolve towards measuring economic value additions,
innovative business solutions leading to growth in business and products for the out-
sourcing organization. The performance metrics can then be combined together with
different weighted factors to arrive at an index. Failure to consistently raise the bar
and meet the quantified targets as mutually agreed will lead to switching of vendors.
However, adequate documentation in all phases being the initial and primary partner
performance criteria, smooth transitioning can be ensured to another vendor.

4 Conclusions

Re-evaluation of business processes and change enablement by means of improved
technology are the basic necessities in order to thrive in the competitive market place.
Strategic partnership to complement each other’s weaknesses and derive the best out
of the strengths can be forged by means of outsourcing partnerships. The proposed
model is such a step towards business excellence and cost rationalization in an evolv-
ing process. However, designing the right performance metrics as applicable for dif-
ferent types of outsourcing contracts in order to arrive at the Partner Performance
Index forms the scope of future work. A lot of work also needs be carried out in de-
veloping requirement modeling tools and traceability tools for complex outsourcing
projects.

 Outsourcing-Iterative Improvement Model for Transforming Challenges 45

Acknowledgements

I am grateful to Mr Pradip Pradhan, SEPG Head, Tata Consultancy Services Ltd. for
sharing his experience and information from his presentation on “Predicting Process,
Product and Performance” which I extrapolated for making the suggested model ro-
bust from quality assurance perspective. Special thanks also to my colleagues - Probal
Chatterjee, Kaustuv Gupta, Subhasis Sanyal, Sanjay Dutta, Arindom Ghosh, Nilanjan
Banerjee, Syamal Basak, Ranjit Sinha, Anand Ujawane, Sougata Banerji and Sarbbot-
tam Bandyopadhyay for helping me with valuable suggestions from time to time.

References

1. Fairchild, A.M.: Information Technology Outsourcing (ITO) Governance: An Examination
of the Outsourcing Management Maturity Model. In: Proc. 37th Hawaii Intl. Conf. System
Sciences (2004),

 http://csdl2.computer.org/comp/proceedings/hicss/2004/2056/
 08/205680232c.pdf

2. Raffoul, W.: The road to outsourcing success. The outsourcing management maturity
model, ZD Net Tech Update, provided by Meta Group, March 4 (2002),

 http://techupdate.zdnet.com/techupdate/stories/main/
 0,14179,2851971-2,00.html

3. Outsourcing: How much is saved? IEEE Spectrum Online (April 2006),
 http://www.spectrum.ieee.org/apr06/comments/1389

4. Bhat, J.M., Gupta, M., Murthy, S.N.: Overcoming Requirements Engineering Challenges:
Lessons from Offshore Outsourcing. IEEE Software,

 http://ieeexplore.ieee.org/Xplore/login.jsp?url=/iel5/52/
 35605/01687859.pdf?tp=&arnumber=1687859&isnumber=35605

5. Pradhan, P.: Predicting Process, Product and Performance. In: 20th NASSCOM Quality Fo-
rum Kolkata (June 2007),

 http://www.nasscom.in/Nasscom/Templates/Events.aspx?id=51629

K. Berkling et al. (Eds.): SEAFOOD 2008, LNBIP 16, pp. 46–58, 2009.
© Springer-Verlag Berlin Heidelberg 2009

A Structure for Management of Requirements Set for
e-Learning Applications

Dumitru Dan Burdescu1, Marian Cristian Mihăescu2, and Bogdan Logofatu3

1 University of Craiova, Software Engineering Department
burdescu@software.ucv.ro

2 University of Craiova, Software Engineering Department
mihaescu@software.ucv.ro

3 University of Bucharest, CREDIS Department
logofatu@credis.ro

Abstract. Extracting and managing requirements is one of the most important
tasks in creating a reliable software product. This step of the overall software en-
gineering process becomes even more critical when the development process is
to become a global one. This paper presents an approach for passing from ad hoc
requirements management to systematic requirements management. This step is
often needed due to the increasing scale of software system and increasing glob-
alization. The study is presented for an e-Learning platform that has been devel-
oped and reached a certain maturity level such that these kind of activities are
needed. The proposed solution in the paper allows centralization of requests
among involved parties (developers and beneficiaries). It is proposed a custom
structure for requests that has at its basis the very specificity of developed appli-
cation. The structuring of requirements is customized for platform’s functionality
such that the process which determines what functionalities may be outsourced is
improved.

1 Introduction

The success of a software system depends on how well it fits the needs of its users and
its environment [1, 2]. Software requirements comprise these needs, and requirements
engineering (RE) is the process by which the requirements are determined. Successful
RE involves understanding the needs of users, customers, and other stakeholders; un-
derstanding the contexts in which the to-be-developed software will be used; modeling,
analyzing, negotiating, and documenting the stakeholders’ requirements; validating
that the documented requirements match the negotiated requirements; and managing
requirements evolution.

Requirements engineering is not an easy task. There are many reasons that for this
situation. Ideas may be ill defined or even conflicting. This situation usually has to
shift towards a single, sound, detailed technical specification of the software system.
The requirements problem space is usually not that strictly defined. In complex sys-
tems there are many too many options to consider. That is why management of large
collections of proposed requirements, prioritization, specification of system bounda-
ries, negotiating resolutions to conflicts, setting objective acceptance criteria [3] are

 A Structure for Management of Requirements Set for e-Learning Applications 47

processes that usually need to be carried out. Reasoning and having conclusions about
the software that is to be designed and developed includes identifying not only as-
sumptions about the general normal behavior of the environment represented by main
scenario use cases, but also about possible threats or hazards that may appear in the
system. The obtained top level requirements have to be understood and usable by all
involved persons: developers and beneficiaries. Thus, requirements notations and
processes must maintain a delicate balance between producing descriptions that are
suitable for beneficiaries which may be represented by non-computing audience and
producing technical documents that are precise enough for domain experts and down-
stream developers.

Due to above presented reasons, requirements engineering activities, in contrast to
other software-engineering activities, may involve many more players who have more
varied backgrounds and expertise, require more extensive analyses of options, and
call for more complicated validations of various components such as software, hard-
ware or even human.

Regarding requirements engineering there are several main activities that need to
be taken into consideration: elicitation, modeling, analysis, validation/verification and
management. Requirements elicitation regards activities that enable the understanding
of the goals, objectives, and motives for building a proposed software system. Elicita-
tion also involves identifying the requirements that the resulting system must satisfy
in order to achieve these goals. This activity rises problems regarding stakeholders
identification [4], contextual and personal requirements engineering techniques [5, 6].
In requirements modeling, a project’s requirements is expressed in terms of one or
more models. Modeling strategies provide guidelines for structuring models. For
example, requirements engineering reference models [7, 8, 9] decompose require-
ments-related descriptions into the stakeholders’ requirements, the specification of the
proposed system, and assumptions made about the system’s environment. Problems
regarding requirements analysis are mainly linked on the techniques employed for
evaluating the quality of gathered requirements. Some analyses look for well-
formedness errors in requirements, where an “error” can be ambiguity [10, 11], incon-
sistency [12, 13], or incompleteness. Other analyses look for anomalies, such as
unknown interactions among requirements [14, 15], possible obstacles to require-
ments satisfaction [16, 17], or missing assumptions [18]. Requirements validation
make sure that obtained models and documentation express as possible as accurate the
needs of involved persons, beneficiaries or developers. Validation usually requires
that beneficiaries and developers to be directly involved in reviewing the require-
ments [19]. Main issues in this area regard improving the information provided to the
involved parties including animations [20] or simulations [21]. Requirements man-
agement is a general activity that regards tasks related to the management of require-
ments, including structuring and evolution over time and across product releases.
Currently there are used specific tools that partially automate different tasks (e.g.
identification, traceability, version control) [22, 23]. There may be also employed
tools that estimate the maturity and stability of elicited requirements, so that the re-
quirements most likely to change can be isolated [24]. Organization and structuring of
large numbers of requirements [25] that are globally distributed [26], and that are at
different phases in development in different product variants [27] are current issues
that appear in complex and large systems.

48 D.D. Burdescu, M.C. Mihăescu, and B. Logofatu

This paper presents advances made within an e-Learning platform called Tesys
[28] regarding requirements engineering. This platform has initially been designed
and implemented only with core functionalities that allowed involved people (learn-
ers, course managers, secretaries) to collaborate in good conditions. The requirements
engineering followed an ad-hoc process that informally followed the classical life-
cycle: elicitation, modeling, analysis, validation, verification and management. The
involved parties were represented by three parties: development team, beneficiaries
and end-users. Firstly, a prototype that implemented main functionalities has been
developed. The requirements were elicited and negotiated between development team
and beneficiary. After prototype has been deployed the e-Learning system has been
populated with data and users. The beneficiary was the one that kept a close relation
with end-users and closely looked the effectiveness of the platform.

The features and functionalities rapidly grow, such that in less than an year the de-
velopment team faced a large scale software system. Under these circumstances there
had to be found specific solutions to encountered problems regarding requirements
engineering. The software system became large in size. The reason for calling it a
large-scale system do not necessarily refer to significant size regarding lines of code.
Scale factors also include business logic implemented complexity or degree of het-
erogeneity among assets. Another important scale factor is variability, as software
system needed to accommodate increasingly larger sets of requirements that vary with
respect to changes in the software’s environment. Requirements started to come from
many different involved persons (secretaries, professors, students), involve multiple
aspects (e.g., need for additional functionality, modify existing functionality, imple-
ment more complex activities). There was discovered the need for increasing the
reliance and self management of the environment. Bringing around new teams of
developers and the need to keep them closer with the beneficiary was the decisive
step in going towards global software development. Global software development is
an emerging paradigm shift towards globally distributed development teams [29]. The
shift is motivated by the desire to exploit a 24- hour work day, capitalize on global
resource pools, decrease costs, and be geographically closer to the end consumer [26].
The downside is increased risk of communication gaps. For example, elicitation and
early modeling are collaborative activities that require the construction of a shared
mental model of the problem and requirements. However, there is an explicit discon-
nect between this need for collaboration and the distance imposed by global develop-
ment. Decisions regarding requirements engineering in this direction are having a
huge impact regarding future possibility of outsourcing. In this context, outsourcing
may be seen as a particular case of globalization.

Globalization raised two main problems for involved people. First, new or ex-
tended requirements engineering techniques are needed to support development tasks,
such as design, coding, or testing. Since geographical distance aggravates the gap
between teams (e.g. development, beneficiaries, requirements, etc.), particularly if the
teams are from different organizations, have different cultures, or have different work
environments. In particular, because geographic distance reduces team communica-
tion [30], ill-defined requirements are at risk of ultimately being misinterpreted, re-
sulting in a system that does not meet the envisioned needs. As a preliminary effort to
narrow communication gaps, Bhat et al. [26] have proposed a framework based on a

 A Structure for Management of Requirements Set for e-Learning Applications 49

people process- technology paradigm that describes best practices for negotiating
goals, culture, processes, and responsibilities across a global organization.

The second problem is to enable effective distributed requirements engineering.
Future requirements activities will be globally distributed, since requirements analysts
will likely be working with geographically distributed stakeholders and distributed
development teams may work with in-house customers. As such, practitioners need
techniques to facilitate and manage distributed requirements elicitation, distributed
modeling, distributed requirements negotiation, and the management of distributed
teams – not just geographically distributed, but distributed in terms of time zone,
culture, and language.

2 Tesys Application Platform

An e-Learning platform that represents is a collaborative environment for students,
professors, secretaries and administrators has been designed and developed. Secretary
users manage sections, professors, disciplines and students. The secretaries have also
the task to set up the structure of study years for all sections. The main task of a profes-
sor is to manage the assigned disciplines. The professor sets up chapters for each as-
signed discipline by specifying the name and the course document, and manages test
and exam questions for each chapter. The platform offers students the possibility to
download course materials, take tests and exams and communicate with other involved
parties like professors and secretaries.

All users must authenticate through username and password. If the username and
password are valid the role of the user is determined and the appropriate page is
presented.

A message board is implemented for professors, secretaries and students to ensure
peer-to-peer communication. This facility is implemented within the platform such
that no other service (e.g. email server) is needed.

From software architecture point of view, the platform is a mixture of data access
code, business logic code, and presentation code. For development of such an applica-
tion we enforced the Model-View-Controller [31] (MVC for short) design pattern for
decoupling data access, business logic, and data presentation. This three-tier model
makes the software development process a little more complicated but the advantages
of having a web application that produces web pages in a dynamic manner is a worthy
accomplishment.

From the software development process point of view we enforced the cyclic soft-
ware development with project planning, requirements definition, software architecture
definition, implementation, test, maintenance and documentation stages. Software
development makes intensive use of content management through a versioning system,
testing and continuous building infrastructure.

3 Software Architecture of Tesys

The e-learning platform consists of a framework on which a web application may be
developed. On server side we choose only open source software that may run on al-
most all platforms. To achieve this goal Java related technologies were employed.

50 D.D. Burdescu, M.C. Mihăescu, and B. Logofatu

The model is represented by DBMS (Data Base Management System) that in our
case is represented by MySQL [32]. The controller, which represents the business
logic of the platform is Java based, being build around Java Servlet Technology [33].
As Servlet container Apache Tomcat 5.0 [34] is used.

This architecture of the platform allows development of the e-learning application
using MVC architecture. The view tier is template based, WebMacro [35] technology
being used. WebMacro is also a Java based technology the link between view and
controller being done at context level. The separation between business logic and
view has great advantages against having them together in the same tier. This decoup-
ling makes development process more productive and safer. One of the biggest advan-
tages of not having business logic and view together is the modularity that avoids
problems in application testing and error checking.

In the figure 2 there are presented the main software components from the MVC
point of view. MainServlet, Action, Manager, Bean, Helper and all Java classes repre-
sent the Controller. The Model is represented by the DBMS itself while the Web-
macro templates represent the View. The model is built without any knowledge about
views and controllers.

Fig. 1. Software architecture of the platform

The business logic of the application uses Java classes. As it can be seen in figure 2,
there are four levels of dependency between classes. The levels are: servlets, actions,
managers and beans. Servlets level has so far two of them: MainServlet and
DownloadServlet.

The MainServlet first job first job is to initialize application’s parameters. For this
purpose the init() method is used. Firstly, there is initialized a pool of database con-
nections. Helper classes like ConnectionPool or ExecuteQuery based on the informa-
tion from database.properties configuration file conduct this process. In the database
configuration file there are set the address of MySQL server and the username and
password of MySQL user that is used.

 A Structure for Management of Requirements Set for e-Learning Applications 51

Fig. 2. Software components of the application from MVC point of view

Another important part of software architecture regarding software development
process is unit testing. For this purpose JUnit [6] is used. Unit tests are created for
running the critical code like creating of a test, computing the result, saving the ques-
tions from the test, saving the test result, computing time for test. To accomplish this
regressive testing is used. For each chain of actions a scenario is defined. If the com-
puted result matches the expected result it means the test passed. Otherwise, it means
something is wrong with the code because it does not behave like it supposed to.
Whenever a method is added, test cases are written trying to have a full coverage of
the code. There are created batch files that build the code experimentally and continu-
ously and run all the tests. Similarly, a scheduled job runs the nightly build of all the
code from the staging area and runs all tests.

The platform is currently in use on Windows 2003 Server machine. This platform
has three sections and at each section four disciplines. Twelve professors are defined
and more than 650 students. At all disciplines there are edited almost 2500 questions.
In the first month of usage almost 500 tests were taken. In the near future, the ex-
pected number of students may be close to 1000.

4 Software Development Process

Software development process and practices have as main goal quality software. Re-
quirements engineering represents the first and the most general step that needs to be
accomplished.

In requirements definition and analysis phase has as final deliverable the functional
specifications document for the system and a requirement analysis report. In this phase
developers will resolve ambiguities, discrepancies and to-be-determined specifications.
From requirements analysis a preliminary design may be derived that defines the soft-
ware system architecture and specifies the major subsystems, input/output (I/O) inter-
faces, and processing modes.

At this step the system architecture defined during the previous phase is elaborated
in detail. The development team fully describes user input, system output, I/O files.

52 D.D. Burdescu, M.C. Mihăescu, and B. Logofatu

This step consists of a set of transformations that attempt to understand the exact
needs of a software system and convert the statement of needs into a complete and
unambiguous description of the requirements, documented according to a specified
standard. This area includes information about the requirements activities of elicita-
tion, analysis, and specification. Requirements elicitation provides knowledge that
supports the systematic development of a complete understanding of the problem
domain. Requirements analysis provides knowledge about the modeling of software
requirements in the information, functional, and behavioral domains of a problem.
Requirements specification is concerned with the representation of software require-
ments that result from requirements elicitation and requirements analysis [8, 9].

During the implementation (coding, unit testing, and integration) phase, the devel-
opment team codes the required modules using the detailed design document. The
system grows as new modules are coded, tested, and integrated. The developers also
revise and test reused modules and integrate them into the evolving system. Imple-
mentation is complete when all code is integrated and when supporting documents
(system test plan and draft user's guide) are written. Software coding and unit testing
are concerned with establishing that a correct solution to a problem has been devel-
oped. Unit testing is one of many testing activities such as performance testing, inte-
gration testing, system testing, and acceptance testing [10, 11].

System testing involves the functional testing of the system’s capabilities accord-
ing to the system test plan. Successful completion of the tests required by the system
test plan marks the end of this phase.

Content management is a technology solution that’s implemented using specific
techniques to ensure wide-scale usability [15] for people involved in the project. Our
discussion will focus on content management for web applications. The entire web
application can be seen as a web property that is composted of various web assets.
Managing content includes the steps to design, create, implement, modify, archive,
review, approve and deploy.

As the size of web operation increases in a web development group, different tech-
niques for managing the web property come into play. The approach has to take into
consideration the of the web operations. For a small web site live editing is the right

Fig. 3. Content management orchestrates the development, testing, review, and development of
web assets

 A Structure for Management of Requirements Set for e-Learning Applications 53

way. As the number of assets grows, and the number of developer increases, it is not
practical to edit the production server directly. A staging server is used and runs a
copy of the production web site. At the next level, development groups retain the
staging server but give each developer an independent area in which to make their
changes. This has the benefit that each developer is able to test changes independ-
ently. When the number of assets or the web team becomes big enough it is necessary
to adopt a content management tool. This will manage the asset in a timely, accurate,
collaborative, iterative and reproducible manner. A content management infrastruc-
ture consists of subsystems that fulfill the following functions: content creation and
editing, content repository and versioning, workflow and routing, deployment and
operations management. The most important one is the repository and versioning
system subsystem since it provides storage, access, retrieval, indexing, versioning and
configuration management of content. The measure of effectiveness of the repository
subsystem is done by its ability to store assets reliably, with scalability and excellent
performance. In figure 3 it is presented how content management orchestrates devel-
opment, testing, review and deployment of web assets.

In an environment with multiple developers usage of a versioning system is com-
pulsory. In the same time a developer makes an HTML change, a web designer and a
graphic designer collaborate on new pages and a developer changes the logic in Java
files to fix a bug. Versioning means that there are earlier versions to refer to, and that
earlier versions are available to fall back to, as an insurance policy. Although mis-
takes always occur, people are more productive, daring and innovative when they
know there is a safety net to rescue them.

The basic collaboration operations are: submit (copy assets from work area to stag-
ing area), compare (compare assets in work area with corresponding assets in staging
area), update (copy assets from staging area to work area), merge (resolve conflict
between staging area and work area) and publish (create edition, which is a snapshot
of entire staging area).

5 Improvements in Requirements Engineering Process for
Globalization

Requirements engineering is the first step in making the development process a global
one. Analysis and changes in this direction may have good implications regarding the
possibility of future outsourcing of specific activities. Proposed solutions are specific
for e-Learning environments in general and to Tesys e-Learning platform in particular.

5.1 Structuring Requirements on User Groups

The first decision is to structure requirements based on user groups. Within Tesys there
were defined three main roles: Secretary, Professor and Student. Each user that ac-
cesses the platform has to have one of these roles. During prototype development
phase the requirements elicitation and negotiations between development team and
beneficiary were always carried out for specific role functionality. This was mainly due
to disjunctive implemented functionalities for these roles.

54 D.D. Burdescu, M.C. Mihăescu, and B. Logofatu

This decoupling is very natural due to employed software architecture presented in
chapter three. The decoupling may be seen at all three MVC levels: view, business
logic and model. The functional requirements are very linked with the view tier. That
is why the templates that represent this tier are grouped in specific folders according
to the user role that will display them.

This decision may have important impact in globalization or even outsourcing
since a new group of developers may start working on adding functionality.

Under these circumstances, a requirement started to become an object with his own
status and life cycle. The status is determined by the set of values of fields. There has
been defined the following set of fields:

Id – uniquely identifies the requirement;
Role – defines the role to which the requirement addresses;
Activity – defines the activity to which the requirement addresses;
Status – there were defined three states: INWORK, SOLVED, VERIFIED;
Solver – person responsible for implementing the requirement;
Memo – text that represents a short summary about the requirement.

Firstly, the requirement has to be signaled from the beneficiary. The beneficiary
may have the requirement either simply as a need for more functionality or as a bug
from a user (secretary, professor or student). The requirement is negotiated with de-
velopment team and a conclusion is reached. At this phase there are identified all
values of fields, which means there is identified the Role and Activity, it is set the
Solver and the Memo, and it is assigned an Id and Status is set to INWORK. Basi-
cally, from this moment the Solver is announced that he has some work to do. As
soon as the Solver accomplishes his job he will signal this by changing the status of
the Requirement to SOLVED. This means that the Quality Assurance people may
start testing the functionality. At this step they will be aware of the exact functionality
it refers from Role, Activity and Memo fields.

At this point there are obvious the advantages of this way of structuring require-
ments. If Quality Assurance people do not agree with implemented solution they may
change the status back to INWORK such that the Solver will be announced that his
solution does not meet the required quality. In this situations there is advisable that
additional communication has to take place between management and Solver.

5.2 Determining the Benefit of Requirements Management

When the problem of globalization appears, the next question is: “What?”. In the next
table [42] it is presented the percentages of outsourced and in house activities.

From the above highlighted percentages it became obvious that in requirements
gathering is not an usual activity that is outsourced. Still, coding is by far the most
outsourced activity. Since coding is the most likely activity to be outsourced it means
specific measures are to be taken regarding structuring of assets. Code, along tem-
plates, data models, data itself, etc. represent the assets of the e-Learning platform.
Requirements gathering and management and coding have to be very well coordi-
nated such that the productivity is maximized. The structure presented in previous
chapter is very well suited for determining groups of activities that belong to a certain
role and may be outsourced.

 A Structure for Management of Requirements Set for e-Learning Applications 55

Table 1. Percentages of outsourced and in house activities

Activity Outsourced In-house
Project Management 30% 90%
Requirements Gathering 17% 89%
Architecture 19% 88%
Research and Development 25% 78%
Business Integration 16% 76%
Design 51% 77%
Systems Integration 35% 76%
Deployment 26% 75%
Testing 74% 71%
Modeling 26% 69%
Maintenance 53% 65%
Code migration 54% 42%
Coding 94% 41%
Internationalization 39% 34%

An obvious scenario is when many requirements appear for the same role and same

or related activities. In this situation there may be decided that the corresponding
piece of software to be outsourced in the effort of globalization.

5.3 Benefits Regarding Verification and Validation

Requirements engineering relies fundamentally on verification and validation as a way
of achieving quality by getting rid of errors, and as a way of identifying requirements.

One benefit from structuring requirements is the use of automation for verification
of requirements. The requirements may be inspected such that verification is per-
formed by using well established checklists. The checklists are applied to the re-
quirements by a well established process.

Modeling requirements in a custom structured form provides the opportunity for
analyzing them. Analysis techniques that have been investigated in requirements
engineering include requirements animation, automated reasoning, consistency, and a
variety of techniques for validation and verification that are further discussed.

Validation is the process of establishing that the requirements and derived struc-
tures provide an common and accurate base for involved persons (developers and
beneficiaries). Explicitly describing the requirements is a necessary precondition not
only for validating requirements, but also for resolving conflicts between developers
and beneficiary.

Difficulty of requirements validation comes from many sources. One reason is the
problem itself is philosophical in nature. This makes the formalizing process hard to
define. On the other hand, there is a big difficulty in reaching agreement among in-
volved persons dew to their conflicting goals. The solution to this problem is re-
quirements negotiation. These will attempt to resolve conflicts between involved
parties without necessarily weakening satisfaction of each person’s goals.

56 D.D. Burdescu, M.C. Mihăescu, and B. Logofatu

Structuring requirements brings a big advantage for validation and verification in
case of changing requirements. As all successful systems, our e-Learning platform
evolves. This means that when a functionality changes because of beneficiary and
developer negotiated such a change, this transition needs to be done with minimum of
effort. For this, requirements have to be traceable and this feature is accomplished by
proposed structuring.

6 Conclusions

In this paper, there were presented the main challenges in requirements engineering.
All of the problems described in introduction (elicitation, modeling, analysis, valida-
tion, verification and management) require substantial effort in order to make progress
towards effective solutions.

In this general context there was presented Tesys e-Learning platform from func-
tional, software architecture and software development point of views. It has been
presented the initial requirements engineering process that was used when the proto-
type has been developed.

Currently, there is a big effort for globalization of software development process
since the application is rapidly growing in size. More than this, the business logic
complexity, degree of heterogeneity among assets are increasing.

From requirements point of view there were adopted two solutions. One regards
the custom and proper structuring of requirements. This was accomplished according
with the nature of the application, in our case represented by an e-Learning platform.

The benefits from this approach are multiple. Centralization and proper structuring
of requirements had a big impact in management activity of the project. Although
managing the effort of centralization is big at beginning, for future development it is
supposed to have a good return of investment.

Other benefit is that there may be created pools of requirements based on function-
ality at role level and even with a higher granularity at activity level. This will have a
big impact on future decisions regarding what parts of software to be outsourced in
the effort of globalization.

Finally, there presented the benefits brought by our structuring to verification and
validation processes. The proposed structure ensures traceability of requirements,
such that as the system evolves the requirements are still properly managed.

References

1. Nuseibeh, B., Easterbrook, S.: Requirements engineering: a roadmap. In: Proc. of the IEEE
Int. Conf. on Soft. Eng. (ICSE), pp. 35–46 (2000)

2. Parnas, D.L.: Software engineering programmes are not computer science programmes.
Ann. Soft. Eng. 6(1), 19–37 (1999)

3. van Lamsweerde, A.: Requirements engineering in the year 2000: a research perspective.
In: Proc. of the IEEE Int. Conf. on Soft. Eng. (ICSE), pp. 5–19 (2000)

4. Sharp, H., Finkelstein, A., Galal, G.: Stakeholder identification in the requirements engi-
neering process. In: Proc. of the 10th Int. Work. on Datab. & Exp. Sys. Appl., pp. 387–391
(1999)

 A Structure for Management of Requirements Set for e-Learning Applications 57

5. Cohene, T., Easterbrook, S.: Contextual risk analysis for interview design. In: Proc. of the
IEEE Int. Req. Eng. Conf. (RE), pp. 95–104 (2005)

6. Sutcliffe, A., Fickas, S., Sohlberg, M.M.: PC-RE a method for personal and context re-
quirements engineering with some experience. Req. Eng. J. 11(3), 1–17 (2006)

7. Gunter, C.A., Gunter, E.L., Jackson, M., Zave, P.: A reference model for requirements and
specifications. IEEE Soft. 17(3), 37–43 (2000)

8. Hall, J., Rapanotti, L.: A reference model for requirements engineering. In: Proc. of the
IEEE Int. Req. Eng. Conf. (RE), pp. 181–187 (2003)

9. Parnas, D.L., Madey, J.: Functional documents for computer systems. Sci. of Comp.
Prog. 25(1), 41–61 (1995)

10. Berry, D., Kamsties, E.: Ambiguity in Requirements Specification. In: Perspectives on
Software Requirements, ch. 2. Kluwer Academic Publishers, Dordrecht (2004)

11. Fantechi, A., Gnesi, S., Lami, G., Maccari, A.: Application of linguistic techniques for use
case analysis. In: Proc. of the IEEE Int. Req. Eng. Conf. (RE), pp. 157–164 (2002)

12. Campbell, L.A., Cheng, B.H.C., McUmber, W.E., Stirewalt, R.E.K.: Automatically detect-
ing and visualizing errors in UML diagrams. Req. Eng. J. 37(10), 74–86 (2002)

13. Engels, G., Küster, J.M., Heckel, R., Groenewegen, L.: A methodology for specifying and
analyzing consistency of object-oriented behavioral models. In: Proc. of ACM SIGSOFT
Found. on Soft. Eng. (FSE), pp. 186–195 (2001)

14. Chan, W., Anderson, R.J., Beame, P., Burns, S., Modugno, F., Notkin, D., Reese, J.D.:
Model checking large software specifications. IEEE Trans. on Soft. Eng. 24(7), 498–520
(1998)

15. Hausmann, J.H., Heckel, R., Taentzer, G.: Detection of conflicting functional requirements
in a use case-driven approach. In: Proc. of the IEEE Int. Conf. on Soft. Eng. (ICSE),
pp. 105–115 (2002)

16. Lutz, R., Patterson-Hine, A., Nelson, S., Frost, C.R., Tal, D., Harris, R.: Using obstacle
analysis to identify contingency requirements on an unpiloted aerial vehicle. Req. Eng.
J. 12(1), 41–54 (2006)

17. van Lamsweerde, A., Letier, E.: Handling obstacles in goal-oriented requirements engi-
neering. IEEE Trans. on Soft. Eng. 26(10), 978–1005 (2000)

18. Baker, P., Bristow, P., Jervis, C., King, D., Thomson, R., Mitchell, B., Burton, S.: Detect-
ing and resolving semantic pathologies in UML sequence diagrams. In: Proc. of ACM
SIGSOFT Found. on Soft. Eng. (FSE), pp. 50–59 (2005)

19. Ryan, K.: The role of natural language in requirements engineering. In: Proceedings of the
IEEE International Symposium on Requirements Engineering, pp. 240–242. IEEE Com-
puter Society Press, Los Alamitos (1993)

20. Heitmeyer, C.L., Jeffords, R.D., Labaw, B.G.: Automated consistency checking of re-
quirements specifications. ACM Trans. on Soft. Eng. & Meth. 5(3), 231–261 (1996)

21. Thompson, J.M., Heimdahl, M.P.E., Miller, S.P.: Specification-based prototyping for em-
bedded systems. In: Proc. of ACM SIGSOFT Found. on Soft. Eng. (FSE), pp. 163–179
(1999)

22. Cleland-Huang, J., Zemont, G., Lukasik, W.: A heterogeneous solution for improving the
return on investment of requirements traceability. In: Proc. of the IEEE Int. Req. Eng.
Conf. (RE), pp. 230–239 (2004)

23. Hayes, J.H., Dekhtyar, A., Sundaram, S.K.: Advancing candidate link generation for re-
quirements tracing: The study of methods. IEEE Trans. on Soft. Eng. 32(1), 4–19 (2006)

24. Bush, D., Finkelstein, A.: Requirements stability assessment using scenarios. In: Proc. of
the IEEE Int. Req. Eng. Conf. (RE), pp. 23–32 (2003)

58 D.D. Burdescu, M.C. Mihăescu, and B. Logofatu

25. Alspaugh, T.A., Antón, A.I.: Scenario networks for software specification and scenario
management. Technical Report TR-2001-12, North Carolina State University at Raleigh
(2001)

26. Damian, D., Moitra, D. (eds.): Global software development. IEEE Soft. special is-
sue 23(5) (2006)

27. Weber, M., Weisbrod, J.: Requirements engineering in automotive development experi-
ences and challenges. In: Proc. of the IEEE Int. Req. Eng. Conf. (RE), pp. 331–340 (2002)

28. Burdescu, D.D., Mihăescu, C.M.: Tesys: e-Learning Application Built on a Web Platform.
In: Proceedings of International Joint Conference on e-Business and Tele-communications,
Setubal, Portugal, pp. 315–318 (2006)

29. Herbsleb, J.D.: Global software engineering: The future of socio-technical coordination.
In: Future of Software Engineering. IEEE-CS Press, Los Alamitos (2007)

30. Herbsleb, J., Mockus, A.: An empirical study of speed and communication in globally dis-
tributed software development. IEEE Trans. on Soft. Eng. 29(6), 481–494 (2003)

31. Krasner, G.E., Pope, S.T.: A cookbook for using the model-view-controller user interface
paradigm in smalltalk-80. In: JOOP (August/September 1988)

32. Yarger, R.J., Reese, G., King, T.: Managing & Using MySQL, 2nd edn. O’Reilly, Sebas-
topol (2002)

33. Hunter, J.: Java Servlet Programming, 2nd edn. O’Reilly, Sebastopol (2001)
34. Wiggers, C.: Professional Apache Tomcat. Wiley Publishing, Chichester (2003)
35. Faulk, S.: Software Requirements: A Tutorial, Software Engineering. IEEE Computer So-

ciety Press, Los Alamitos (1996)
36. Link, J.: Unit Testing in Java: How Tests Drive the Code. Morgan Kaufmann, San Fran-

cisco (2002)
37. Davis, A.: Software Requirements: Objects, Functions & States. Prentice-Hall, Englewood

Cliffs (1993)
38. Faulk, S.: Software Requirements: A Tutorial, Software Engineering. IEEE Computer So-

ciety Press, Los Alamitos (1996)
39. Budgen, D.: Software Design. Addison-Wesley, Reading (1994)
40. Pigoski, T.M.: Practical Software Maintenance. John Wiley, New York (1997)
41. Beck, K.: Extreme Programming Explained: Embrace Change. Addison-Wesley, Reading

(2003)
42. Software Development survey of 414 engineers and development managers working on

U.S.-based projects that were partially or completely outsourced offshore (October 2003),
 http://www.sdmagazine.com/documents/s=9001/sdm0401a/

K. Berkling et al. (Eds.): SEAFOOD 2008, LNBIP 16, pp. 59–72, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Evaluation of Software Process Improvement in Small
Organizations

Pedro E. Colla1 and Jorge Marcelo Montagna2

1 EDS ASFO – Av. Voz del Interior 7050 -- EDS Argentina
pedro.colla@eds.com

Facultad Regional Santa Fé – Universidad Tecnológica Nacional
pcolla@frsf.utn.edu.ar

2 INGAR - Avellaneda 3657 -- CIDISI – FRSF – UTN
mmontagna@santafe-conicet.gov.ar

Abstract. At the domestic and regional level most organizations willing to
participate in software development projects at international off-shore markets
operates at small or medium organizational sizes and therefore isn’t included
by the organizational scales referred at the typical SPI bibliography. A sys-
temic model is then implemented aiming to get an initial understanding over
the behavior of the different variables involved, their contribution to the im-
provement effort, outcome sensibility to model parameters, the systemic rela-
tions at large and the limits derived from the holistic interaction of all.

Keywords: Software Process Improvement, SPI, CMMI, Simulation, Dynamic
Models. Small Organizations, Software Engineering Economics. Net Present
Value.

1 Introduction

When software development is performed at Small and Medium Enterprises (SME)
organizations the management dilemma is how to justify the investments required to
undertake Software Process Improvement (SPI) [1,8] initiatives. This organization size
segment operates in a business context where bigger competitors, quite of a global
scale, can perform similar actions leveraging much larger structures and therefore
being able to better absorb the investment impacts produced by the SPI initiatives.

The consideration of this problem bears relevance after the fact that SME sized or-
ganizations seems to be the largest proportion of the companies providing off-shore
development services to the demanding technology markets at US and Europe. In
these markets the buyers routinely ask provider organizations to present objective
proof of their Software Engineering capabilities thru the adherence to some formal
quality model, and in many cases specifically to concrete SEI-CMMI maturity levels.

At the same time an SME organization must consider competitors of similar scale
which not introducing significant improvements on their core processes enjoy a short
term competitive advantage and less margin erosion.

Most scenarios and results captured by the bibliography [2,3,15,16,17,20,23,24,28,38]
reflects the experiences of large scale organizations leaving smaller ones wondering

60 P.E. Colla and J.M. Montagna

whether an SPI approach is realistic for them, frequently leading to the a-priori estima-
tion that formal SPI initiatives are simply outside their realm of possibilities.

Even though SPI efforts attempted at SME sized companies has been documented
previously [4,9,21,25] the focus is often placed at qualitative or methodological fac-
tors rather than quantitative ones; it seems the implicit assumption is for SPI efforts to
be unconditionally a good initiative no matter what the business context where the
company operates really is.

This notion has been challenged by several authors [14,18] where the actual af-
fordability and suitability of formal CMMI oriented SPI initiatives for SME is ques-
tioned from different perspectives.

Previous work from the authors [11,12,13] outlined a comprehensive framework
which helps in the modeling of organizations attempting to implement SPI initiatives
and allows understanding the different organizational parameters involved in the
business decision, the outcome that might be expected and the level of risk associated
with it.

This paper proposes a contribution by focusing on the specific group of small
companies (less than 25 persons) trying to understand the dynamic behavior of the
different variables associated with the SPI effort outcome in order to evaluate possible
strategies to address the initiative and the likelihood of it results.

The model is built by identifying the main factors defined at the organization level,
the external context and the intrinsic components of the SPI effort as reflected in the
available bibliography, specially some concrete references to small organizations (see
Investment Modeling)..

In order to handle the dispersion of the parameters reported by the bibliography a
Monte Carlo simulation technique is used where the system variables, the uncertainty
of the results, the sensibility to different investment strategies and the limits for a
reasonable return can be explored (see Model Execution).

Finally some limits of the approach and conclusions are explored (see Conclusions).

1.1 CMMI as the Reference Model

The SEI CMMI v1.2 reference model seems to be the choice to guide the deployment
of SPI efforts through the formulation of a framework to help develop a comprehen-
sive process that unveils the organization’s technologic potential at delivering soft-
ware products. Positive correlation between the maturity level and better performance
is backed up by many industry and academic references [1,2,3,8,15,17,20,23,24,28,
36,38].

The SEI-CMMI model specifies what generic and specific goals must be satisfied
at Process Areas through the usage of generic and specific practices [36], actual de-
tails of the defined process is left to each organization to decide.

Although other reference models can equally be eligible for this purpose, the SEI-
CMMI model receives significant industry acceptance at a global scale, a long standing
record of application and some metrics for the results obtained by different organiza-
tions [20]. The assumption in this paper is SEI-CMMI v1.2 to be the reference guiding
the SPI effort.

 Evaluation of Software Process Improvement in Small Organizations 61

1.2 SPI at Small and Medium Enterprises

The importance of the Small and Medium Enterprises (SME) has largely been recog-
nized as one of the main drives beneath the global provision of off-shore services.

Laporte [27] identifies that 70% of the organizations providing off-shore services
from a number of emerging economies have 25 or less persons with some extreme
segments having 60% of the organizations with less than 5 persons.

Staples [37] discussing a cross-section survey on CMMI trends reports 38% of the
companies to have less than 20 persons while 23% were in the range 20 to 200 persons.

CESSI [6] in their 2005-06 survey reports for Argentina, a growing player in the
offshore market, 75% of the technology companies has a staff of 25 persons or less.

SME needs SPI
SME needs to address SPI efforts for a variety of reasons. Conradi [14] elaborates on
the reduction of the Procurer Risk as an incentive for smaller companies to provide
convincing evidence of their capability to deliver large projects in front of the compa-
nies requiring their services.

Garcia [19] identifies as reasons the need to deal with a partner company, to fulfill
subcontracting requirements or to follow corporate mandates.

Coleman [10] cites the ability to demonstrate the capability to fulfill deliveries
where complex requirements are involved at large and mission critical environments.
A number of other sources [2,15,16,17,23,24,28] identify the quest for operational
efficiency improvements associated with SPI as the reason to take over such efforts.

McFall [30] justify the importance of CMMI based maturity level evaluations as
one of the reasons beneath the strategic direction took by Indian companies towards
converging to high maturity levels in order to compete in the global landscape; Indian
companies now accounts for more than 55% of the total number of CMMI Level 5
organizations worldwide.

SME are reluctant to adopt SPI
Beyond the good reasons and the consistent drive for a SME to initiate and sustain SPI
efforts still this segment is reluctant to adopt these initiatives in significant numbers.

Staples [37] cites on a work investigating the reasons why CMMI isn’t adopted
that SME considers SPI initiatives as plain infeasible to adopt because of cost, appli-
cability and time to implement reasons. Further elaboration on the reasons for this
segment of organizations not to embrace SPI initiatives is to have a business context
more variable than larger companies. The smaller companies seems to place higher
focus on Product Quality than Product Quality Assurance, therefore shifting their
focus to engineering practices such as agile methodologies rather than process prac-
tices such as CMMI.

Coleman [10] also mentions resistance from top management and key staff as one
of the main reasons for SPI efforts not taking place at SME.

Conradi [14] elaborates on the underlying tension between disciplines vs. agility
operating at SME organizations as one of the main roadblocks for such efforts to
occur. They speculate that ideally SPI initiatives should take 6-12 months for imple-
mentation in order to be adopted in this segment.

62 P.E. Colla and J.M. Montagna

SME recognizes the value of SPI
Contrary to what the previous sections seems to infer SME organizations under-

stand the value of SPI initiatives and are willing to consider them, especially compa-
nies operating at off-shore software development markets because of recognizing the
value embedded in these initiatives.

McFall [30] reports that 57% of the companies in the segment of smaller organiza-
tional size have some sort of structured development methodology in partial or full
usage, up to 90% of the organizations surveyed are willing to engage in a SPI initiative.

Coleman [10] reports 70% of the SME surveyed to have deployed either Agile de-
velopment processes such as Extreme Programming (XP) or iterative/incremental
methodologies such as Rational Unified Process (RUP) and alike.

CESSI [6] reports in Argentina 22% is considering investment in the quality of
services as a top priority.

Finally Staples [37] report that 82% of the organizations surveyed are willing but
for a variety of reasons not able to engage in SPI although they are considering as
comparable alternatives to address Agile methodologies instead.

2 SPI Business Case

In order to address a SEI-CMMI based SPI initiative the organization will require to
undertake a significant effort into defining and deploying policies, plans, processes,
instruments and metrics associated with the satisfaction of each one of the Process
Areas of each Maturity Level.

A business case needs to be made in order to evaluate the business justification for
the SPI investment to be made and also as an instrument to evaluate the best strategy
to undergo it.

2.1 Benefits of SPI for Small and Medium Enterprises

Different sources consistently reports the benefits of addressing SPI initiatives at
SME as coming from expectations of better Incomes, Operational efficiency im-
provements, reduction of the uncertainty of the organizational delivery and a number
of intangible benefits regarding customer and staff satisfaction, brand recognition and
better fulfillment capabilities in general.

On engaging an SPI initiative a SME seek new business or increased business [41]
derived from the fulfillment of bidding requirements, customer vendor selection poli-
cies or plain competitiveness; few reports exists on the magnitude of such increase
suggesting in most cases would be an strategic reason not easily subject to evaluation,
either the company embraces the SPI effort or moves to compete in a market which
doesn’t require it.

Even having no choice than to perform the SPI effort the organization still needs to
select a deployment strategy that maximize the value of the effort thru the maximiza-
tion of the returns or the minimization of the costs or both.

Operational improvements has been widely reported [3,15,17,20,24,28,30] as to
come from the drastic reduction of the Cost of Poor Quality (Rework). Tvedt [39] also

 Evaluation of Software Process Improvement in Small Organizations 63

captures the cycle time improvement as one of the operational benefits achieved after
completing the SPI initiative.

The preferred view for the purposes of this paper is the one set by Clark [7] where
all operational improvements are summarized as the 4 to 11% reduction of develop-
ment effort to produce similar development sizes as the organization grew each ma-
turity level.

Although not necessarily reporting concrete data the bibliography focused on
smaller companies [4,9,21,25] suggest that SME companies might expect similar or
better operational improvements after SPI efforts than their larger counterparts.

Other critical factors
Some authors [2] highlight the other intangible benefits such as the image improve-
ment, staff motivation, customer satisfaction and corporate culture as strong reasons
to implement SPI.

Small and medium sized organizations in particular will depend critically for their
survival on several other factors [16,32,37,40] such as the quality of the human re-
sources, the establishment of agile organizational relations, the business model flexi-
bility, the legal context, the organizational model adopted and the decision speed as
well as interrelation fabric between areas, the debt taking capability, the critical
adaptability speed and the very low capacity to survive on a restricted cash flows
environment among others.

Although very important the previously enumerated factors are difficult to incorpo-
rate in a model like the one presented by this paper; however all of them can concep-
tually be considered increasing or decreasing the strengths of the organization and
therefore changing the certainty of their results.

As the certainty of the results ultimately drives the risk under which the organization
operates these factors should largely be represented by the risk premium component of
the opportunity cost the organization uses to evaluate their investment decisions. The
model then assumes that incorporating the opportunity cost on the model some of the
critical factors, even partially, can be captured.

2.2 Costs of SPI for Small and Medium Enterprises

Garcia [19] identifies SME to face similar groups of cost factors to embrace SPI ini-
tiatives, especially by adopting a reference model such as SEI-CMMI, these cost
factors would be appraisal definition and deployment costs. While larger companies
can leverage their size into cushion the impact of the first two factors SME has a clear
advantage on having the chance of lower deployment costs because of their smaller
size.

Coleman [10] reports smaller assessment costs on SME per appraisal event with
100 to 200 Staff/Hours of appraisal preparation effort. Reported cycle time for de-
ployment seems to be aligned with numbers reported by larger organizations in the
order of more than 20 months per level with a total of 3 ½ years to achieve CMMI
Level 3.

Garcia [19] reports smaller companies being able under pilot conditions deploy 1
to 2 Process Areas per month getting a deployment cycle time in the order of 10
months per level.

64 P.E. Colla and J.M. Montagna

An SME in Argentina [40] reports 20 Months to achieve CMMI Level 2 which is
aligned with the bibliography of larger companies but much smaller 12 months as the
cycle time to upgrade to CMMI Level 3 once operating at Level 2. Another in the
same market [35] reports 18 months as the total transit to achieve Level 3 and 18
Months additional to achieve Level 5 thereafter. These ranges of values suggest
smaller organizations might have an edge on moving faster on SPI initiatives. The
same source reports the level to sustain the processes as about 0.8% of the total staff.
Available data seems to point to the direction that even cycle time can be reduced the
effort measured as the proportion of the organization devoted to the SPI effort is simi-
lar to what the bibliography reports at to be required by larger companies [10,19,35].

Garcia [19] highlights the need for smaller organizations to adopt packaged
(canned) methodologies with a well defined mapping with CMMI as the way to dras-
tically reduce both the deployment effort and cycle time; this is also backed up by
learned lessons by Argentina’s organizations [35].

The fact that SME organizations looks at iterative/incremental methodologies such
as RUP or Agile development methods in lieu of the satisfaction of their SPI needs
are excellent news after several authors such as Paulk [33] already demonstrated a
good alignment of XP methodologies with the CMMI requirements. This alignment
can be extended even for the highest maturity goals as Maller et al [29] clearly stated.
A similar favorable comparison was made by Reitzig [34] and Cintra [5] among oth-
ers on the good coverage of the different SEI CMMI maturity level requirements by
RUP.

3 Investment Modeling

This paper integrates a previous published effort from the authors [11,12,13] into building
a comprehensive model to be used as a framework to evaluate the SPI effort at or-
ganizations with emphasis on parameters found in Small companies with a staff of 25
persons or less.

The complete framework won’t be described in detail here because of space re-
strictions but a high level overview is provided in the following sections, a summary
of the transfer functions can be seen at the Appendix II and the complete model at the
referred bibliography.

3.1 Model Parameters

The model captures the relation between a number of organizational parameters, as-
sumed to be factors subject to decisions being made by the management such as the
target CMMI Level (CMMI), the Total Organization Staff (N), the expectation of the
length of the investment horizon (tp), the opportunity cost (r) used to discount invest-
ments and the Cost per Engineer (CPE) among others. The outcome of the model will
be the Net Present Value (NPV) of the investment once all cash flows F(t) are consid-
ered and discounted using the continuous opportunity cost (δ) [Ec10].

 Evaluation of Software Process Improvement in Small Organizations 65

Benefit Streams
The modeling approach used the Productivity Income (Iprod) as the return of the SPI
effort to represent the savings achieved compared with operating in a lower level of
maturity; this is considered the source of return and the main financial reason to jus-
tify it. The magnitude of this factor is assumed to be an equivalent fraction (Kprod) of
the Total Organization Size (N) as reflected by [[Ec 6].

Assuming the organization achieves the target maturity level after the assessment a
fraction of the resources would still be required to maintain, adapt and evolve the
implemented process framework in order to ensure a consistent usage and the contin-
ued alignment with the organizational goals, the effort to perform this activity is the
Software Engineering Groups Effort (Esepg) which will be a proportion (Ksepg) of the
Total Organization Staff (N) as shown by [[Ec 5].

The net flow of benefit (Vi) the organization are going to receive as shown by [[Ec7]
will occur since the appraisal is completed at Implementation Time (ti) and as long as
the Investment Horizon (tp) allowed by the organization to collect resources last. This
timeframe is often called the Recovery Time (tr).

Although it would be reasonable to expect organizations to realize benefits as they
move through the implementation of the different practices a conservative approach
taken in this model is to assume all benefits will realize only after the organization is
formally evaluated on the target maturity level.

Even if the nature of the SEI-CMMI improvement process, with several non-rating
instances of appraisal, allows for a comprehensive evaluation of the organization
progress at implementing the different Process Areas the factual data [44] still suggest
the final appraisal success is not guaranteed. A surprisingly high number of appraisal
failures observed [36] requires the consideration of the Appraisal Success Rate (ξ)
corresponding to each maturity level (see Appendix I), the result is to reduce the ex-
pected returns as shown in [[Ec8].

Implementation Costs
The organization will need to invest a significant fraction of the their resources
through the definition of a mature process as a Software Process Improvement Effort
(Espi) which would require a proportion of the Total Organization Staff (N) to be allo-
cated to the SPI activities (Kspi) given by [[Ec 1].

The implementation has to be followed by an deployment effort aiming to ensure
the implemented processes are effectively used by the organization at large thru a
Training Effort (Et). Walden [41] and Gibson [20] provide some data on the magni-
tude of this effort.

The training effort is composed by the Training Preparation Effort assumed to be
related to the number of Process Areas (NPA) to be evaluated on the target maturity
level and the effort to deliver the training which is made by the Training Effort per
Person and Process Area (EPA), the total Training Effort will then be as in [[Ec2] and
assumed to be distributed evenly through the entire SPI initiative.

At the same time the formal assessment of the maturity level will require a Class
“A” appraisal (SCAMPI-A); to prepare for it the Appraisal Preparation Effort (Eap)

66 P.E. Colla and J.M. Montagna

and the Appraisal Delivery Effort (Ead) will be required by the organization to get
ready and perform the appraisal. Also the organization will need to fund the Appraisal
Costs (Ca) for consultancy fees and other event related expenses.[[Ec 3]. The total Ap-
praisal Effort (Ea) is considered to be incurred mostly toward the end of the imple-
mentation period and it is given by [[Ec4].

Opportunity Cost Evolution
As the organization operates with higher maturity levels their delivery will be subject
to less uncertainties and therefore a lower operational risks has to be expected; assum-
ing a rational investment decisions are made this can be factored as the reduction of
the opportunity cost used by the organization. A reduction in the opportunity cost
allows the organization to collect higher returns faster from investment and therefore
can be perceived as a value creation from the SPI effort. At the same time as the or-
ganization can operate with higher certainty many of the intangible benefits men-
tioned in the previous section can, at least partially, be captured by the modeling
effort. Harrison [22] identified the Risk Variation Factor (λ) as the sensitivity of the
opportunity cost to the variation of the uncertainty; the authors [11,12,13] estimated
the magnitude of this variation for different SEI CMMI levels, the model then incor-
porates the variation of the NPV because of this factor thru the [Ec11] and [Ec12] as seen
on Appendix II.

4 Model Execution

In order to be computed the model it is implemented using the GoldSim® platform1
where the variables, relations and typical value distributions are defined as per the
Equations explained in the referred work and shown in Appendix II for further quick
reference.

When computed in this way the NPV evolution can be seen at Figure 1; the expendi-
tures in the deployment of the SPI actions drives the NPV to become more and more
negative; towards the end of the implementation time (ti) the rate of change acceler-
ates as the expenditures reaches a maximum when appraisal related costs are incurred.

Once the new maturity level is obtained at time ti after a successful appraisal the
organization starts to collect productivity gains net of the process maintenance costs
which drives an improvement of the NPV until it eventually, if allowed enough time,
become positive, the moment in time the NPV becomes positive is where the invest-
ment has been fully paid back in financial terms.

The fact most variables can not be assigned with unique values but for ranges or
probabilistic distributions makes the model to be far from being deterministic; the
bibliography reports ranges and in some cases suggest some possible distributions;
this information is used to run the model with an stochastic methodology in order to
evaluate the possible results; a sample outcome for a given run would be, as seen in
Figure 2, where a typical probability distribution of the NPV is shown.

1 GoldSim © ™ Simulation Software (Academic License) http://www.goldsim.com

 Evaluation of Software Process Improvement in Small Organizations 67

ti

Fig. 1. NPV evolution with time on a typical
SPI simulation run

Fig. 2. NPV Probability distribution for a typical
SPI simulation run

By computing the area below the NPV distribution curve for values where a posi-
tive result is obtained the probability of a project success can be assessed; each or-
ganization could then match their own risk acceptance profile with the investment
parameters that yield an acceptable outcome.

Fig. 3. NPV Sensibility to Organizational
Factors

 Fig. 4. Sensitivity of the NPV to variation of
Organizational factors

The results of a run with variations in all major parameters for an organization try-
ing to acquire CMMI Level 3 is shown in Figure 3; the model highlights increases in
NPV as to be sensible mostly to the Organizational Size (N), the Investment Horizon
(tp) and to a lesser degree to the Cost per Engineer (CPE), increases in these factors
also increases the NPV outcome.

The Appraisal Cost (Ca) and the Opportunity Cost (r) increases play against the
NPV results.

Several scenarios are explored where a typical organization is assumed to have a
staff of 25 persons, trying to achieve a CMMI Level 3 maturity in one step, allowing a
total investment horizon of 48 months, operating in the offshore environment with a
typical cost per engineer of USD 30K per year and expecting an opportunity cost to
be effective annual rate of 15%. All scenarios are ran varying one of the parameters
through the range of interest while keeping the rest set at the previous values in order
to be able to evaluate the variation dynamics.

A summary of the results can be seen at the Figure 4 where the outcome variation
is shown as the different model parameters are varied thru the allowed range.

68 P.E. Colla and J.M. Montagna

Organization Size Sensibility
The probability of a positive Net Present Value increases with the organization size as
seen in Figure 5 and become above a 50% chance with organization of 13 members or
higher; for organizations sizes of 25 members or higher the probability is reasonably
high suggesting the organization has good likelihood of achieve the target maturity
level.

Investment Horizon Sensibility
The probability of a positive Net Present Value increases with the investment horizon
accepted by the organization as reasonable to recover the investment; values in the
range of 36 months or higher as seen in Figure 6 yield a higher likelihood of a posi-
tive return. This value is still much greater than the 6-12 months timeframe previously
discussed as being expected by SME.

Fig. 5. Sensitivity to Organizational Size

Appraisal Cost Sensibility
A duplication of the Appraisal Cost varies the probability of a positive NPV by some
17% (see Figure 7) suggesting that the sensitivity for the entire SPI process to this
factor is relatively small; unless the absolute expenditure involved lead to cash flow
problems to the organization the model suggest this value should not be of primary
concern to the organization.

Fig. 6. Dependency from Investment Horizon Fig. 7. Dependency from Maturity Appraisal
Costs

 Evaluation of Software Process Improvement in Small Organizations 69

Cost per Engineer Sensibility
As the Cost per Engineer increases the probability of a positive NPV increases
(see Figure 8); this might be explained by the higher absolute returns obtained after
productivity gains to offset faster the fixed costs the SPI process has.

Opportunity Cost Sensibility
As the opportunity cost used by the organization increases the likelihood of a positive
NPV reduces (see Figure 9); this behavior could be explained after a higher discount
rate to require faster or bigger returns to achieve a similar value. This could explain
organizations working with higher risk to be less inclined to embrace SPI initiatives.

Fig. 8. Dependency from Cost per Engineer Fig. 9. Dependency from Opportunity Cost

4.1 Limitations and Further Work

Many simplifications has been adopted in the formulation of the model, therefore the
results has opportunity for improvement and should be taken as preliminary; the
ranges used for the parameters requires further research and confirmation. Additional
factors are needed to identify supplemental motivations for organizations with lower
Cost per Engineer to embrace SPI efforts often than these with higher costs as the
observation seems to infer.

The assumption of similar results using either the Staged or Continuous representation
of the SEI CMMI model used in the evaluation framework deserves further validation.

Finally, the model also requires incorporating additional factors such as the intan-
gible organization impacts obtained from the SPI effort; a better calibration based on
maturity improvement experiences from organizations at the National or Regional
level would be an important improvement to perform in order to verify the ranges of
results obtained in the bibliography holds.

5 Conclusions

The work suggest the usefulness to enable small organizations facing a SPI invest-
ment decision with the ability to use the model as a tool during the decision process;
the match between the outcome of the model and results reflected by the bibliography

70 P.E. Colla and J.M. Montagna

are encouraging.. For this organizational target to have the possibility to evaluate the
trade-offs between different investment scenarios is one of the benefits of the ap-
proach, even considering further work is required to refine the parameters used and
the need to capture some additional elements to better explain the empirical evidence.

The usage of the NPV as the main evaluation of the investment seems to add flexi-
bility and to better capture the realities of the financial pressure SME have when fac-
ing this type of investment.

The preliminary execution of the model suggest that maturity improvements to up
to CMMI Level 3, which is typically considered the gate to participate in larger inter-
national projects, can be achieved by small organizations with reasonable risk and
organizational sacrifice.

A realistic investment horizon seems to be higher than 36 months, the probability
of a successful investment with smaller horizons although not zero is considerably
smaller. This result strongly suggest the imperative to sponsor smaller companies by
providing fiscal, economic and financial support to help hedge the SPI initiatives
requiring a larger investment cycle than their business context could allow. The need
of placing emphasis in methodologies, best practices and tools to reduce the imple-
mentation time as a gate factor for smaller companies to become enabled to operate as
high maturity organizations is strongly suggested by the results.

The appraisal cost has a lower impact in the overall investment performance than
often assumed by small companies; although in need of being optimized the results
suggest this is not necessarily a priority direction to be taken by the industry.

The organizations operating in highly volatile market segments would have objec-
tive issues on implementing formal projects unless there are incomes or underlying
assets outside the software development projects that gets impacted in their valuation
because of the higher certainty. However if these organizations factors the lower un-
certainty level they will operate at higher maturity levels that this might create finan-
cial incentives to embrace SPI initiatives as well.

References

[1] Bamberger, J.: Essence of the Capability Maturity Model. Computer (June 1997)
[2] Brodman, J., Johnson, D.: ROI from Software Process Improvement as Measured in the

US Industry. Software Process Improvement and Practice 1(1), 35–47
[3] Capell, P.: Benefits of Improvement Efforts, Special Report CMU/SEI-2004-SR-010

(September 2004)
[4] Cater-Steel, A.P.: Proceedings of Process improvement in four small software companies

Software Engineering Conference. 2001 Australian, August 27-28, pp. 262–272 (2001)
[5] Cintra, C.C., Price, R.T.: Experimenting a Requirements Engineering Process based on

RUP reaching CMMI ML3 and considering the use of agile methods practices
[6] CESSI Situación actual y desafíos futuros de las PyME de Software y Servicios infor-

máticos (April 2006) ISBN 9872117
[7] Clark, B.K.: Quantifying the effects of process improvement on effort. IEEE Soft-

ware 17(6), 65–70 (2000)
[8] Clouse, A., Turner, R.: CMMI Distilled. In: Ahern, D.M. (ed.) Carnegie Mellon – SEI

Series in Software Engineering Conference, COMPSAC (2002)
[9] Coleman Dangle, K.C., Larsen, P., Shaw, M., Zelkowitz, M.V.: Software process im-

provement in small organizations: a case study Software. IEEE 22(6), 68–75 (2005)

 Evaluation of Software Process Improvement in Small Organizations 71

[10] Coleman, G.: An Empirical Study of Software Processs in Practice. In: Proceedings of
the 38th Hawaii ICSS 2005. IEEE, Los Alamitos (2005)

[11] Colla, P.: Marco extendido para la evaluación de iniciativas de mejora en procesos en Ing
de SW. In: JIISIC 2006, Puebla, México (2006)

[12] Colla, P., Montagna, M.: Modelado de Mejora de Procesos de Software en Pequeñas Or-
ganizaciones. In: JIISIC 2008, Guayaquil, Ecuador (2008)

[13] Colla, P., Montagna, M.: Framework to Evaluate Software Process Improvement in
Small Organizations. In: Wang, Q., Pfahl, D., Raffo, D.M. (eds.) ICSP 2008. LNCS,
vol. 5007, pp. 36–50. Springer, Heidelberg (2008)

[14] Conradi, H., Fuggetta, A.: Improving Software Process Improvement. IEEE Soft-
ware 19(4), 92–99 (2002)

[15] Diaz, M., King, J.: How CMM Impacts Quality, Productivity, Rework, and the Bottom
Line. CrossTalk 15(3), 9–14 (2002)

[16] Dyba, T.: An empirical investigation of the key factors for success in software process
improvement. IEEE Transactions on Software Engineering 31(5), 410–424 (2005)

[17] El Emam, K., Briand, L.: Cost and Benefits of SPI Int’l SE Research Network. Technical
Report ISERN-97-12 (1997)

[18] Galin, D., Avrahami, M.: Are CMM Program Investment Beneficial? In: Analysis of Past
Studies – IEEE Software, November/December 2006, pp. 81–87 (2006)

[19] Garcia, S.: Thoughts on applying CMMI on small settings US DoD, Carnegie Mellon (2005)
[20] Gibson, D., Goldenson, D., Kost, K.: Performance Results of CMMI based Process Im-

provement, CMU/SEI-2006-TR-004 (2006)
[21] Guerrero, F.: Adopting the SW-CMMI in Small IT Organizations – IEEE Software,

pp. 29–35 (January/February 2004)
[22] Harrison, W., et al.: Making a business case for software process improvement. Software

Quality Journal 8(2) (November)
[23] Hayes, W., Zubrow, D.: Moving On Data and Experience Doing CMM Based Process

Improvement, CMU/SEI-95-TR-008 (1995)
[24] Herbsleb, J.D., Goldenson, D.R.: A systematic survey of CMM experience and results.

In: Proceedings of the 18th International Conference on Software Engineering, March
25-30, pp. 323–330 (1996)

[25] Kelly, D.P., Culleton, B.: Process improvement for small organizations. Com-
puter 32(10), 41–47 (1999)

[26] Koc, T.: Organizational determinants of innovation capacity in software companies.
Computers & Industrial Engineering – Elsevier Science Direct 53, 373–385 (2007)

[27] Laporte, C.Y., April, A.: Applying SWE Standards in Small Settings. IRWPISS, SEI
(October 19-20, 2005)

[28] Lawlis, P.K., Flowe, R.M., Thordahl, J.B.: A Correlational Study of the CMM and Soft-
ware Development Performance, Crosstalk, pp. 21–25 (September 1995)

[29] Maller, P., et al.: Agilizando el Proceso de Producción de SW en un entorno CMM de
Nivel 5 CICYT TIC 01/2705

[30] McFall, D., et al.: Software An evaluation of CMMI process areas for small- to medium-
sized software development organizations. Software Process: Improvement and Prac-
tice 10 (2), 189–201

[31] McGarry, F., Decker, B.: Attaining Level 5 in CMM process maturity. IEEE Software,
87–96 (November/December 2002)

[32] McLain: Impact of CMM based Software Process Improvement MSIS Thesis, Univ. of
Hawaii (2001)

[33] Paulk, M.C.: Extreme Programming from a CMM Perspective. IEEE Software (Novem-
ber/December 2001)

72 P.E. Colla and J.M. Montagna

[34] Reitzig, R.W.: Using Rational Software Solutions to Achieve CMMI L2,
 http://www.therationaledge.com/content

[35] Ruiz de Mendarozqueta, A., et al.: Integración de CMMI, ISO9001 y 6σ en el GSG de
Motorota, CESSI-UADE (2007)

[36] SEI-CMU CMMI, http://www.sei.cmu.edu
[37] Staples, M., Niazi, M., Jeffery, R., Abrahams, A., Byatt, P., Murphy, R.: An Exploratory

study on why organizations do not adopt CMMI. Journal of Systems and Software 80,
883–895 (2007)

[38] Statz, J., Solon, B.: Benchmarking the ROI for SPI Gartner-Teraquest Report (2002)
[39] Tvedt, J.: A modular model for predicting the Impacts of SPI on Development Cycle

Time. Ph.D Thesis dissertation
[40] Vates, SPI data supplied thru e-mail by Delgado, J. (jdelgado@vates.com)
[41] Walden, D.: Overview of a Business Case: CMMI Process Improvement. NDIA/SEI

CMMI Presentation, Proceedings 2nd Annual CMMI Technology Conference and User
Group (2002)

Appendix. I-Model Parameters

Small Organization Software Process Improvement Modelling

Parameters to achieve an initial formal maturity increase to SEI-CMMI Level 3 thru an SPI process.
Parm Name UM Min Med Max Reference

Ksepg % Organization to SEPG %Org 0,8% 0,8% 0,8% [15,20,30,35]
Kprod Productivity Gain after SPI %Org 8,0% 22,0% 48,0% [07]
Kspi % Organization to SPI %Org 0,8% 0,8% 2,3% [15,20,35]
Ca Assessment Costs FTE 8,0 12,0 16,0 Based on $20K-$30K-$40K range
Eae Appraisal Execution Effort FTE 2,7 2,7 6,5 [09,20],10Persx2Wks+3Persx2Wks
Eap Appraisal Preparation Effort FTE 0,6 0,9 1,3 [09,10,20]
ti Time to Implement Months 18,0 20,0 32,0 [10,15,18,20,35,37]
Etp Training Preparation Effort Hrs 12,0 18,0 24,0 [Authors estimation]
Epa Training Effort per PA-Person Hrs 4,0 6,0 8,0 [20,41]

λ(∗∗)λ(∗∗)λ(∗∗)λ(∗∗) Npa ξ (*)
0,633 21 94%

(*) McGibbon [44] and SEI Assessment Data Base [50] / (**) Colla & Montagna [11,12,13]

CMMI Level
Level 3

Appendix. II-Modeled Relations and Equations

[Ec 1] NKE spispi ×=
[Ec2]

()[] PAtpPAt NENEE ×+×= [Ec 3] ⎟
⎠
⎞⎜

⎝
⎛=

PE

a
ca C

CE

[Ec4]

caadapa EEEE ++=
[Ec 5] NKE sepgsepg ×= [Ec 6] NKI prodprod ×=

[Ec7]

() NKKV sepgprodi ×−=

[Ec8]

() NKKV sepgprodi ×−×= ξ [Ec 9] ∑
= +

=
n

t
t

t

r

F
NPV

0)1(

[Ec10]

)'1(

)(
0

rLn

dtetFNPV t

+=

×= ∫
∞

−

δ

δ
 [Ec 11]

o

o

i

i

μ
σ

σ
μλ =

[Ec12]

)(' ff rrrr −×+= λ

An Examination of the Effects of Offshore and
Outsourced Development on the Delegation of

Responsibilities to Software Components

Subhajit Datta� and Robert van Engelen

Department of Computer Science and School of Computational Science, Florida State
University, Tallahassee, FL 32306, USA

sd05@fsu.edu

Abstract. Offshore and outsourced development are the latest facts of
life of professional software building. The easily identifiable advantages
of these trends – such as cost benefits, continuous delivery and sup-
port – have already been explored to considerable extent. But how does
offshore and outsourced development affect the delegation of responsi-
bilities to components of a software system? In this paper we investigate
this question by applying the RESP-DIST technique on a set of real
life case studies. Our RESP-DIST technique uses metrics and a linear
programming based method to recommend the reorganization of com-
ponents towards an expedient distribution of responsibilities. The case
studies embody varying degrees of offshore and outsourced development.
Results from the case studies lead to some interesting observations on
whether and how offshore and outsourced development influences soft-
ware design characteristics.

1 Introduction

The paradigm of offshore and outsourced software development involves distribu-
tion of life cycle activities and stakeholder interests across geographical, political,
and cultural boundaries. In this paper we will use the phrase dispersed develop-
ment to refer to offshore and outsourced software development. We use the term
“dispersed” in the sense of distribution of software development resources and
concerns across different directions and wide area.

We seek to examine whether dispersed development has any impact on how
responsibilities are delegated to components in a software system. Towards this
end, we will apply the RESP-DIST technique across a spectrum of software
development projects and analyze the results. RESP-DIST is a mechanism to
guide RESPonsibility DISTribution in components of a software system such
that they are best able to collectively deliver the system’s functionality. RESP-
DIST uses the metrics Mutation Index [6], Aptitude Index, and Concordance
Index [7] and a linear programming (LP) based algorithm [7] to recommend the
merging or splitting (as defined in more detail in the next section) of components
� Corresponding author.

K. Berkling et al. (Eds.): SEAFOOD 2008, LNBIP 16, pp. 73–89, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

74 S. Datta and R. van Engelen

to lead to an even distribution of responsibilities and resilience to requirement
changes. As discussed in a later section, aptitude and concordance are the design
characteristics which RESP-DIST considers while making its recommendations.
By applying RESP-DIST across a set of software projects of varying disper-
sion in their development, we expect to discern whether and how offshore and
outsourced development affects the responsibility delegation aspect of software
design.

The remainder of this paper is organized as follows: In the next section we
describe a model for the software development space which will serve as a foun-
dation for applying RESP-DIST. The following section informally reviews some
key concerns of software design, followed by the introduction of the ideas of ap-
titude and concordance. We then define the metrics and specify the RESP-DIST
technique. Subsequently, results from applying RESP-DIST on five real life soft-
ware projects are presented. The paper ends with a discussion of related work,
open issues and planned future work, and conclusions.

2 A Model for the Software Development Space

The discussion of this paper is based on the following connotations of certain
definitions:

– A requirement is described as “... a design feature, property, or behaviour of
a system” by Booch, Rumbaugh, and Jacobson [2]. These authors refer to
the statement of a system’s requirements as the assertion of a contract on
what the system is expected to do; how the system does that is essentially
for the designer to decide.

– A component carries out specific responsibilities and interacts with other
components through its interfaces to collectively deliver the system’s func-
tionality (within acceptable non-functional parameters).

– A collaboration is described in the Unified Modelling Language Reference
Manual, Second Edition as a “... society of cooperating objects assembled
to carry out some purpose” [18]. Components collaborate via messages to
fulfil their tasks. In this paper “collaboration” and “interaction” will be used
interchangeably.

– Merging of a particular component will be taken to mean distributing its
responsibilities to other components in the system and removing the com-
ponent from the set of components fulfilling a given set of requirements. So
after merging, a set of components will be reduced in number, but will be
fulfilling the same set of requirements as before.

– Splitting of a particular component will be taken to mean distributing some
its responsibilities to a new component in the system which will interact on
its own with other components to collectively deliver the system’s function-
ality. So after splitting, a set of components will be increased in number,
but will be fulfilling the same set of requirements as before.

We now present an abstraction of how requirements are fulfilled by components.

An Examination of the Effects of Offshore and Outsourced Development 75

In order to examine the dynamics of software systems through a set of metrics,
a model is needed to abstract the essential elements of interest [7].

Let the development space of a software system consist of the set requirements
Req = {R1, ..., Rx} of the system, which are fulfilled by the set of components
Comp = {C1, ..., Cy}.

We take fulfilment to be the satisfaction of any user defined criteria to judge
whether a requirement has been implemented. Fulfilment involves delivering the
functionality represented by a requirement. A set of mapping exists between
requirements and components, we will call these relationships. At one end of a
relationship is a requirement, at the other ends are all the components needed
to fulfil it. Requirements also mesh with one another – some requirements are
linked to other requirements, as all of them belong to the same system, and
collectively specify the overall scope of the system’s functionality. The links
between requirements are referred to as connections. From the designer’s point
of view, of most interest is the interplay of components. To fulfil requirements,
components need to collaborate in some useful ways, these are referred to as the
interactions of components.

Based on this model, an important goal of software design can be stated as:
Given a set of connected requirements, how to devise a set of interacting compo-
nents, such that the requirements and components are able to forge relationships
that best deliver the system’s functionality within given constraints?

3 Key Concerns of Software Design

To examine whether and how distributed development affects software design,
we discuss the act of design in some detail.

We may say that the conception of a particular system’s design is instantiated
by allocating particular tasks to components and specifying their interaction with
other components such that the set of components collectively fulfil the system’s
requirements within acceptable non-functional parameters such as performance
etc. In this paper, we focus entirely on the functional aspect of design. How does
one decide on allocating tasks and specifying interactions?

Larman has called the ability to assign responsibilities as a “desert-island
skill” [16], to underline its criticality in the design process. Indeed, deciding
which component does what remains a key challenge for the software designer.
Ideally, each component should perform a specialized task and cooperate with
other components to deliver the system’s overall functionality. Whenever a new
functionality comes to light by analyzing (new or modified) requirements, the
designer’s instinct is to spawn a new component and assign it the task for de-
livering that functionality. This new component acts as something of an initial
placeholder for the new functionality; to be reconsidered later if necessary. With
increasing accretion of functionality a system usually ends up having a large
number of fine grained components. Why does the designer instinctively spawn
a new component for a new functionality, and not just commandeer an existing
component to deliver that functionality?

76 S. Datta and R. van Engelen

The instinct perhaps is inspired by one of the lasting credos of effective and el-
egant software design: shunning large, bloated units of code (the so called “Swiss
army knife” or “do-it-all” components) in preference to smaller, more coherent,
and closely collaborative ones. However, recognizing the inherently iterative na-
ture of software design, there is always scope – sometimes a pressing need –
for deciding to merge some components while splitting others as development
proceeds. Merging helps consolidate related responsibilities, thereby decreasing
redundant and sometimes costly method calls across components. It is a natural
way to refine components and their interactions after new components had been
spawned (often indiscriminately) earlier to address new functionalities. But of-
ten, splitting a component is an useful way to isolate the implementation of a
piece of functionality that is undergoing frequent modifications due to changing
requirements. Such isolation helps insulate other components and their interac-
tions from the effects of requirements that change often.

Thus the design of a software system in terms of its components – their in-
dividual responsibilities and collective interaction – matures iteratively through
merging and splitting. Over such repeated reorganizations, design objectives of
expediently fulfilling requirements as well as being resilient to some of their
changes, are progressively met. But how does one decide on which component
to merge and which to split? This is one the most important concerns of the
software designer, usually addressed through experience or intuition or nameless
“gut-feelings”. RESP-DIST brings in a degree of discipline and sensitivity into
such decisions – the technique seeks to complement the best of designers’ judg-
ment, and constrict their worst. RESP-DIST leverages certain characteristics of
a software system’s design which we discuss next.

4 Delegation of Responsibilities in Software Design

Design is usually an overloaded word, even in the software development context.
There are no universally accepted features of good design, while symptoms of
bad design are easy to discern. In the model for the software development space
presented in an earlier section, we highlighted one aspect of the design problem.
Based on this aspect, we introduce aptitude and concordance [7] as two key
characteristics of design.

Every software component exists to perform specific tasks, which may be
called its responsibilities. Software design canons recommend that each compo-
nent be entrusted with one primary responsibility. In practice, components may
end up being given more than one task, but it is important to try and ensure
they have one primary responsibility. Whether components have one or more re-
sponsibilities, they can not perform their tasks entirely by themselves, without
any interaction with other components. This is specially true for the so-called
business objects – components containing the business logic of an application.
The extent to which a component has to interact with other components to fulfil
its core functionality is an important consideration. If a component’s responsi-
bilities are strongly focused on a particular line of functionality, its interactions

An Examination of the Effects of Offshore and Outsourced Development 77

with other components can be expected to be less disparate. We take aptitude to
denote the quality of a component that reflects how coherent its responsibilities
are. Intuitively, the Aptitude Index measures the extent to which a component
(one among a set fulfilling a system’s requirements) is coherent in terms of the
various tasks it is expected to perform.

The Aptitude Index [7] seeks to measure how coherent a component is in terms
of its responsibilities.

To each component Cm of Comp, we attach the following properties [5]. A
property is a set of zero, one or more components.

– Core - α(m)
– Non-core - β(m)
– Adjunct - γ(m)

α(m) represents the set of component(s) required to fulfil the primary respon-
sibility of the component Cm. As already noted, sound design principles suggest
the component itself should be in charge of its main function. Thus, most often
α(m) = {Cm}.

β(m) represents the set of component(s) required to fulfil the secondary re-
sponsibilities of the component Cm. Such tasks may include utilities for accessing
a database, date or currency calculations, logging, exception handling etc.

γ(m) represents the component(s) that guide any conditional behaviour of the
component Cm. For example, for a component which calculates interest rates for
bank customers with the proviso that rates may vary according to a customer
type (“gold”, “silver” etc.), an Adjunct would be the set of components that help
determine a customer’s type.

Definition 1. The Aptitude Index AI(m) for a component Cm is a relative
measure of how much Cm depends on the interaction with other components for
delivering its core functionality. It is the ratio of the number of components in
α(m) to the sum of the number of components in α(m), β(m), and γ(m).

AI(m) =
|α(m)|

|α(m)| + |β(m)| + |γ(m)| (1)

As reflected upon earlier, the essence of software design lies in the collabora-
tion of components to collectively deliver a system’s functionality within given
constraints. While it is important to consider the responsibility of individual
components, it is also imperative that inter-component interaction be clearly
understood. Software components need to work together in a spirit of harmony
if they have to fulfil requirements through the best utilization of resources. Let us
take concordance to denote such cooperation amongst components. How do we
recognize such cooperation? It is manifested in the ways components share the
different tasks associated with fulfilling a requirement. Some of the symptoms of
less than desirable cooperation are replication of functionality – different compo-
nents doing the same task for different contexts, components not honouring their
interfaces (with other components) in the tasks they perform, one component

78 S. Datta and R. van Engelen

trying to do everything by itself etc. The idea of concordance is an antithesis
to all such undesirable characteristics – it is the quality which delegates the
functionality of a system across its set of components in a way such that it is
evenly distributed, and each task goes to the component most well positioned to
carry it out. Intuitively, the metric Concordance Index [7] measures the extent
to which a component is concordant in relation to its peer components in the
system.

Definition 2. The Concordance Index CI(m) for a component Cm is a relative
measure of the level of concordance between the requirements being fulfilled by
Cm and those being fulfilled by other components of the same system.

The Requirement Set RS(m) for a component Cm is the set of requirements
that need Cm for their fulfilment [7].

For a set of components Comp = {C1,C2,...,Cn,...,Cy−1,Cy} let,
W = RS(1) ∪ RS(2) ∪ ... ∪ RS(y − 1) ∪ RS(y)

For a component Cm (1 ≤ m ≤ y), let us define,
X(m) = (RS(1) ∩ RS(m)) ∪ ... ∪ ((RS(m − 1) ∩ RS(m)) ∪
((RS(m) ∩ (RS(m + 1)) ∪ ... ∪ ((RS(m) ∩ (RS(y))

Thus X(m) denotes the set of requirements that are not only being fulfilled
by Cm but also by some other component(s).

Expressed as a ratio, the Concordance Index CI(m) for component Cm is:

CI(m) =
|X(m)|
|W | (2)

How do the ideas of aptitude and concordance relate to cohesion and cou-
pling? Cohesion is variously defined as “... software property that binds together
the various statements and other smaller modules comprising the module” [8]
and “... attribute of a software unit or module that refers to the relatedness of
module components” [1]. (In the latter quote, “component” has been used in
the sense of part of a whole, rather than a unit of software as is its usual mean-
ing in this paper.) Thus cohesion is predominantly an intra-component idea –
pointing to some feature of a module that closely relates its constituents to one
another. But as discussed above, concordance carries the notion of concord or
harmony, signifying the spirit of successful collaboration amongst components
towards collective fulfilment of a system’s requirements. Concordance is an inter-
component idea; the concordance of a component can only be seen in the light
of its interaction with other components.

Coupling has been defined as “... a measure of the interdependence between
two software modules. It is an intermodule property” [8]. Thus coupling does not
take into account the reasons for the so called “interdependence” – that modules
(or components) need to cooperate with one another as they must together fulfil
a set of connected requirements. Aptitude is an intra-component idea, which
reflects on a component’s need to rely on other components to fulfil its primary
responsibility/responsibilities.

An Examination of the Effects of Offshore and Outsourced Development 79

Cohesion and coupling are legacy ideas from the time when software systems
were predominantly monolithic. In the age of distributed systems, successful soft-
ware is built by carefully regulating the interaction of components, each of which
are entrusted with clearly defined responsibilities. The perspectives of aptitude,
and concordance complement cohesion and coupling in helping recognize, isolate,
and guide design choices that will lead to the development of usable, reliable, and
evolvable software systems.

As mentioned earlier, one of the main drivers of design change is changing
requirements. Let us take the term mutation to mean any change in a particular
requirement that would require a modification in one or more components ful-
filling either one or a combination of the display, processing, or storage aspects
of the requirement. In keeping with the principle of separation of concerns, it
is usually taken to be good design practice to assign specific components to de-
liver each of the display, processing, and storage aspects. Components (or sets
of components) delegated to fulfil the display, processing, and storage aspects
of requirement(s) map to the stereotypes of analysis classes: boundary, control,
and entity [13]. Intuitively, the metric Mutation Index [6] measures the extent
to which a requirement has changed from one iteration to another, in terms of
its display, processing, and storage aspects.

For a system let Req = {R1, R2, ..., Rm..., Rx} denote the set of requirements.
Between iterations Iz−1 and Iz each requirement is annotated with its Mutation
V alue; a combination of the symbols D, P and S. The symbols stand for:

D ≡ Display(1)
P ≡ Processing(3)
S ≡ Storage(2)

The parenthesized numbers denote the Weights attached to each symbol. The
combination of more than one symbol signifies the addition of their respective
Weights, thus:

PD ≡ DP ≡ 1 + 3 = 4
SD ≡ DS ≡ 1 + 2 = 3
SP ≡ PS ≡ 3 + 2 = 5
SPD ≡ ... ≡ DPS ≡ 1 + 3 + 2 = 6

The Weight assigned to each category of components – Display, Processing
and Storage – is a relative measure of their complexities. (Complexity here refers
to how intense the design, implementation, and maintenance of a component
are in terms of development effort.) Processing components usually embody
application logic and are most design and implementation intensive. Storage
components encapsulate the access and updating of application data stores; their
level of complexity is usually lower than that of the Processing components but
higher than Display ones. Accordingly, Display, Processing and Storage have
been assigned the Weights 1, 3 and 2 respectively. Exact values of Weights
may be varied from one project to another; the essential idea is to introduce a
quantitative differentiation between the types of components.

80 S. Datta and R. van Engelen

Definition 3. The Mutation Index MI(m) for a requirement Rm is a relative
measure of the extent to which the requirement has changed from one iteration
to another in terms of the components needed to fulfil it.

Expressed as a ratio, the MI(m) for requirement Rm :

MI(n) =
The Mutation V alue for Rm

The maximum Mutation V alue
(3)

In the next section, we present how the RES-DIST technique uses the metrics
Aptitude Index, Concordance Index, and Mutation Index to recommend merging
or splitting of components.

5 The RESP-DIST Technique

Software design is about striking a balance (often a very delicate one!) between
diverse factors that influence the functioning of a system. The ideas of aptitude,
concordance, and mutation as outlined earlier are such factors we will consider
now. The RESP-DIST technique builds on a LP formulation to maximize the
Concordance Index across all components, for a given set of requirements, in a
particular iteration of development, within the constraints of not increasing the
number of components currently participating in the fulfilment of each require-
ment. Results from the LP solution are then examined in the light of the metric
values and suggestions for merging or splitting components arrived at. (RESP-
DIST is the enhanced version of the COMP-REF technique we proposed in [7]
– the latter only guided merging of components without addressing situations
where components may require to be split.)

A new variable an (an ∈ [0, 1]) is introduced corresponding to each component
Cn, 1 ≤ n ≤ N , where N = the total number of components in the system. The
values of an are arrived at from the LP solution. Intuitively, an for a component
Cn can be taken to indicate the extent to which Cn contributes to maximizing
the Concordance Index across all components. As we shall see later, the an values
will help us decide which components to merge.

The LP formulation can be represented as:

Maximize
y∑

n=1

CI(n)an

Subject to: ∀Rm ∈ Req,
y∑

n=1

an ≤ pm/N , an such that Cn ∈ CS(m). pm =

|CS(m)|. (As defined in [6], the Component Set CS(m) for a requirement Rm is
the set of components required to fulfil Rm.)

So, for a system with x requirements and y components, the objective function
will have y terms and there will be x linear constraints.

The COMP-REF technique is summarized as: Given a set of requirements
Req = {R1, ..., Rx} and a set of components Comp = {C1, ..., Cy} fulfilling it in
iteration Iz of development,

An Examination of the Effects of Offshore and Outsourced Development 81

– STEP 0: Review Req and Comp for new or modified requirements and/or
components compared to previous iteration.

– STEP 1: Calculate the Aptitude Index for each component.
– STEP 2: Calculate the Requirement Set for each component.
– STEP 3: Calculate the Concordance Index for each component.
– STEP 4: Formulate the objective function and the set of linear constraints.
– STEP 5: Solve the LP formulation for the values of an.
– STEP 6: For each component Cn, check:

• Condition 6.1: an has a low value compared to that of other components?
(If yes, implies Cn is not contributing significantly to maximizing the
concordance across the components.)

• Condition 6.2: AI(n) has a low value compared to that of other compo-
nents? (If yes, implies Cn has to rely heavily on other components for
delivering its core functionality.)

– STEP 7: If both conditions 6.1 and 6.2 hold TRUE, proceed to next step,
else GO TO STEP 10

– STEP 8: For Cn, check:
• Condition 8.1: Upon merging Cn with other components, in the resulting

set C̃omp of q components (say), CI(q) �= 0 for all q? (If yes, implies
resulting set of q components has more than one component).

– STEP 9: If condition 8.1 is TRUE, Cn is a candidate for being merged.
– STEP 10: Let Comp′ denote the resulting set of components after above

steps have been performed. For each component Cn′ in Comp′:
• 10.1 Calculate the average MI(m) across all requirements in RS(n′).

Let us call this M̄I(m).
• 10.2 Identify the requirement Rm with the highest MI(m) in RS(n′).

Let us call this MI(m)highest.
– STEP 11: For each component Cn′ , check:

• Condition 11.1: AI(n′) has a high value compared to that of other com-
ponents? (If yes, implies component relies relatively less on other com-
ponents for carrying out its primary responsibilities.)

• Condition 11.2: CI(n′) has a low value compared to that of other compo-
nents? (If yes, implies component collaborates relatively less with other
components for collectively delivering the system’s functionality.)

– STEP 12: If both conditions 11.1 and 11.2 hold TRUE for component Cn′ , it
is tending to be monolithic, doing all its activities by itself and collaborating
less with other components. Thus the Cn′ is a candidate for being split;
proceed to next step, else GO TO STEP 14.

– STEP 13: Repeat STEPs 10 to 12 for all components of Comp′. For the
component for which conditions 11.1 and 11.2 hold TRUE, choose the ones
with the highest M̄I(m) and split each into two components, one with the
requirement corresponding to the respective MI(m)highest and the other
with remaining requirements (if any) of the respective Requirement Set. If the
component was fulfilling only one requirement, the responsibility for fulfilling
the requirement’s functionality may now be delegated to two components.

– STEP 14: Wait for the next iteration of development.

82 S. Datta and R. van Engelen

6 Experimental Validation

6.1 Validation Strategy

To explore whether or how dispersed development affects the distribution of re-
sponsibilities amongst software components, we have studied a number software
projects, which vary significantly in their degrees of dispersion. The projects
range from a single developer team, to an open source system being developed
through a team whose members are located in different continents, a software
system built by an in-house team of a large financial organization, and stan-
dalone utility systems built through remote collaboration. We discuss results
from 5 such projects in the following subsections.

6.2 Presentation of the Results

Due to space constraints, we limit the detailed illustration of the application of
RESP-DIST to one project in detail. The summary of all the validation scenarios
are presented in Table 1.

Table 2 gives metrics values and the LP solution for an iteration of Project
A. Note: The project had 8 requirements: R1, R2, R3, R4, R6, R7, R8, R9 with
requirement R5 having been de-scoped in an earlier iteration of development. In
the table Avg MI(m) denotes M̄I(m) and Rm

h denotes the requirement Rm

with the highest MI(m) in RS(n′). MI(m) and Rm
h values are not applicable

(NA) for C4 since RESP-DIST recommends it to be merged as explained later.
From the design artefacts, we noted that R1 needs components C3, C5, C6 (p1

= 3), R2 needs C5, C7 (p2 = 2), R3 needs C1, C3, C4 (p3 = 3), R4 needs C2, C3
(p4 = 2), R6 needs C1, C2, C6 (p6 = 3), R7 needs C2, C6 (p7 = 2), R8 needs C7
(p8 = 1), and R9 needs C8 (p9 = 1) for their respective fulfilments. Evidently,
in this case |W |= N = 8.

Based on the above, the objective function and the set of linear constraints
was formulated as:
Maximize
0.25 ∗ a1 + 0.25 ∗ a2 + 0.5 ∗ a3 + 0.13 ∗ a4 + 0.25 ∗ a5 + 0.25 ∗ a6 + 0.13 ∗ a7 + 0.a8
Subject to
a3 + a5 + a6 ≤ 0.38
a1 + a3 + a4 ≤ 0.38
a2 + a3 ≤ 0.25
a1 + a2 + a6 ≤ 0.38
a7 ≤ 0.13
a8 ≤ 0.13

The linprog LP solver of MATLAB 1 was used to arrive at the values of an in
the Table 2. Let us examine how RESP-DIST can recommend the merging or
splitting of components. Based on the an values in Table 2, evidently components
C2, C4, C6 have the least contribution to maximizing the objective function. So
1 http://www.mathworks.com/

An Examination of the Effects of Offshore and Outsourced Development 83

Table 1. Experimental Validation: A Snapshot

System Scope and Technology Salient Features Findings

Project A A 5 member team dispersed de-
velopment project – with 1 mem-
ber interfacing with the customer
and other members located in an-
other continent – to build an auto-
mated metrics driven tool to guide
the software development life cycle
activities. The system was released
as an open source product.

8 requirements, 8 compo-
nents; system developed
using Java.

RESP-DIST recommended
1 component be merged, 1
component be split. Detailed
calculations are given later
in this section.

Project B A 2 member team dispersed de-
velopment project – with virtual
collaboration between the team
members – to build a stan-
dalone utility to execute stan-
dard text classification algorithms
against bodies of text, allowing
for different algorithm implementa-
tions to be added, configured and
used. Among other uses, a spam de-
tection application can use this util-
ity to try out different detection al-
gorithms.

8 requirements, 7 compo-
nents; system developed
using Java. The system
was selected from a com-
petition and integrated
in a broader application
framework. The develop-
ers had financial incen-
tives.

RESP-DIST did not recom-
mended merging of any com-
ponents, but 2 components
could be split.

Project C A 2 member team dispersed de-
velopment project – with virtual
collaboration between the team
members – to define, read, and
build an object representation of an
XML driven business work flow, al-
lowing manipulation and execution
of the workflow through a rich API
interface for the easy addition of
workflow operations.

11 requirements, 13 com-
ponents; system devel-
oped using the .NET
platform. The system
was selected from a com-
petition and integrated
in a broader application
framework. The develop-
ers had financial incen-
tives.

RESP-DIST recommended
merging of 3 components,
and splitting of 2 compo-
nents.

Project D A 6 member team dispersed devel-
opment project – with the devel-
opers and customers spread across
two cities of the same country – to
develop an email response manage-
ment system for a very large finan-
cial company. The system allows for
emails from users across six prod-
uct segments to be processed and
placed in designated queues for cus-
tomer associates to respond, and
deliver the responded back to the
users within prescribed time limits.

5 requirements; 10
components; system
developed using Java,
Netscape Application
Server (NAS), and Lo-
tus Notes. Developers
worked on the system
as a part of their job
responsibilities. The
system has been running
for several years, with
around 100,000 users.

RESP-DIST recommended
merging of 1 component,
and splitting of 4 compo-
nents.

Project E A 1 member team project to build
a Web based banking application
which allowed users to check their
profile and account information,
send messages to the bank; and
administrators to manage user ac-
counts, transactions, and messages.

12 requirements, 28
components; system de-
veloped according to the
Model-View-Controller
(MVC) architectural
pattern with J2EE and
a Cloudscape database.

Result from applying RESP-
DIST was inconclusive.

84 S. Datta and R. van Engelen

Table 2. Details for Project A

Cm RS(n) Avg MI(m) Rm
h α(n) β(n) γ(n) AI(n) |X(n)| CI(n) an

C1 R3, R6 0 - C1 C3, C5, C7 - 0.25 2 0.25 0.21
C2 R4, R7 0 - C2 C3, C7 C6 0.2 2 0.25 0.08
C3 R1, R3, R4, R6 0.17 R1 C3 C1, C5, C7 - 0.25 4 0.5 0.17
C4 R3 NA NA C4 C3, C5 - 0.33 1 0.13 0
C5 R1, R2 0.5 R1 C5 C1 - 0.5 2 0.25 0.12
C6 R1, R7 0.34 R1 C6 C2, C7 - 0.33 2 0.25 0.09
C7 R2, R8 0.5 R8 C7 - - 1 1 0.13 0.13
C8 R9 1 R9 C8 - - 1 0 0 0.105

the tasks performed by these components may be delegated to other compo-
nents. However, as mandated by RESP-DIST, another factor needs be taken
into account before merging. How self-sufficient are the components that are
sought to be merged? We thus turn to the AI(n) values for the components in
Table 2. We notice, AI(2) = 0.2, AI(4) = 0.33, AI(6) = 0.33. Out of these, C4 is
contributing nothing to maximizing concordance (a4 = 0), and its AI(n) value
is not very high either (0.33 on a scale of 1). So a4 can be merged with other
components. Now we check for the highest M̄I(m), which corresponds to C8. C8
also has a high AI(8) value of 1 and a low CI(8) value of 0. Thus C8 is trying
to do all its task by itself, without collaborating with other components – this
is indeed a candidate for splitting. The Rm with the highest MI(m) in RS(8)
is R9 – in fact R9 is the only requirement in this particular case fulfilled by C8.
So RESP-DIST recommends C8 be split into two components, each fulfilling a
part of R9. Relating the recommendations to the actual components and require-
ments, we find that C4 is an utility component in charge of carrying out some
numerical calculations; whose tasks can very well be re-assigned to components
which contain the business logic behind the calculations. On the other hand, R9
is a requirement for extracting data from design artefacts. This is certainly a
requirement of very large sweep and one likely to change frequently, as the data
needs of the users change. Thus it is justifiable to have R9 fulfilled by more than
one component, to be able to better localize the effects of potential changes in
this requirement. Figure 1 summarizes these discussions, indicating merging for
C4 and splitting for C8.

6.3 Interpretation of the Results

We examined the factors of dispersed development that could potentially affect
the outcome of applying the RESP-DIST technique on these projects.

The Agile Manifesto lists the principles behind agile software development
– methodologies being increasingly adopted for delivering quality software in
large and small projects in the industry, including those utilizing dispersed de-
velopment [15]. The Manifesto mentions the following among a set of credos:
“The most efficient and effective method of conveying information to and within
a development team is face-to-face conversation”, and “Business people and

An Examination of the Effects of Offshore and Outsourced Development 85

Fig. 1. Values of an, AI(n), M̄I(m) and CI(n) corresponding to the components
C1,...,C8 for Project A. The RESP-DIST technique suggests merging for C4 and split-
ting for C8 – detailed discussion in section 6.3.

developers must work together daily throughout the project” 2. Evidently, the
very nature of dispersed development precludes this kind of interaction between
those who commission and use a software system (these two groups may be iden-
tical or different, they are often clubbed together as customers) and those who
develop it, that is, the developers.

We identify the key drivers of the effects of dispersed development on software
design as locational asynchrony (LA), and perceptional asynchrony (PA). LA
and PA may exist between customers and developers or within the development
team. Locational asynchrony arises from factors like differences in geography
and time zones. An example of LA would be the difficulty in explaining a simple
architectural block diagram over email or telephone conversation, which can be
easily accomplished with a white board and markers in a room of people (some-
thing similar to the consequence of distance highlighted in [10]). Perceptional
asynchrony tends to be more subtle, and is caused by the complex interplay of
stakeholder interests that dispersed development essentially entails. For example,
in dispersed development scenarios, developers who have no direct interaction
with the customer often find it hard to visualize the relevance of the module
they are working on in the overall business context of the application – this is
a manifestation of PA. With reference to Table 1, Project A has high LA but
moderate PA; Projects B and C have moderate LA but high PA; Project D has
moderate LA and low PA, while Project E has low LA and PA.

Apparently, there is no clear trend in the recommendations from RESP-DIST
by way of merging or splitting components in Table 1 that suggests locational
asynchrony or perceptional asynchrony have noticeable impact on how responsi-
bilities are delegated. However, Projects B and C have a higher requirement to
component ratio compared to others. This not only influences the way RESP-
DIST runs on these projects but also indicates that moderate to high percep-
tional asynchrony may lead to a more defensive analysis of requirements – being

2 http://agilemanifesto.org/principles.html

86 S. Datta and R. van Engelen

relatively unsure of the customers’ intents developers are more comfortable deal-
ing with finer grained requirements. The inconclusiveness of RESP-DIST’s rec-
ommendation for Project E is also interesting. Project E’s scenario represents by
far the most controlled conditions of development amongst all the projects stud-
ied. It was developed by a single developer – a software engineer with more than
5+ years of industry experience – who had the mandate to refine the respon-
sibility delegations amongst components repeatedly until the system delivered
as expected. So naturally, RESP-DIST did not have much scope for suggesting
merging or splitting of components. Also, compared to other projects Project E
had a relatively unrelated set of requirements and relatively high number compo-
nents with uniformly distributed responsibilities. Thus from the results related
to Project A to D, RESP-DIST is seen to work best on a small set of closely
related requirements and components. For a system with many requirements
and components, it can be applied separately on subsystems that constitute the
whole system.

7 Related Work

Freeman’s paper, Automating Software Design, is one of the earliest expositions
of the ideas and issues relating to design automation [9]. Karimi et al. [14] report
their experiences with the implementation of an automated software design as-
sistant tool. Ciupke presents a tool based technique for analyzing legacy code to
detect design problems [3]. Jackson’s Alloy Analyzer tool employs “automated
reasoning techniques that treat a software design problem as a giant puzzle to
be solved” [12].

Collaboration platforms for offshore software development are evaluated in
[17]. Shami et al. simulate dispersed development scenarios [20] and a research
agenda for this new way of software building is presented in [19].

Herbsleb and Grinter in their papers [10], [11] have taken a more social view
of distributed software development. In terms of Conway’s Law – organizations
which design systems are constrained to produce designs which are copies of the
communication structures of these organizations [4] – Herbsleb and Grinter seek
to establish the importance of the match between how software components
collaborate and how the members of the teams that develop the software com-
ponents collaborate.

8 Open Issues and Future Work

From the interpretation of the case study results, it is apparent the recommen-
dations of merging or splitting components from applying the RESP-DIST tech-
nique are not significantly influenced by the degree of dispersion in a project’s
development scenario in terms of their location or perceptional asynchronies.
However, factors other than locational or perceptional asynchrony may also

An Examination of the Effects of Offshore and Outsourced Development 87

stand to affect the delegation of responsibilities in some dispersed development
projects. In future work we plan to develop mechanisms to investigate such
situations.

The case studies we presented in this paper range from 1 member to 6 member
development teams, 5 to 12 requirements, and 7 to 28 components. Evidently,
these are small to medium projects. We expect the execution of the RESP-
DIST technique to scale smoothly to larger systems – more requirements and
components will only mean more terms and linear constraints, which can be
handled easily by automated LP solvers. However, the ramifications of larger
systems on the dynamics of dispersed development is something which can only
be understood by further case studies, some of which are ongoing.

We also plan to fine-tune the RESP-DIST technique by studying more projects
across a diverse range of technology and functional area. The applicability of
techniques like RESP-DIST are highly enhanced with tool support. We are work-
ing on an automated tool that will take in design artefacts and/or code as input,
apply RESP-DIST and suggest the merging or splitting of relevant component.

9 Conclusion

In this paper, we examined whether and how offshore and outsourced develop-
ment influences the delegation of responsibilities to software components. We
applied the RESP-DIST technique – which uses the metrics Aptitude Index,
Mutation Index and Dependency Index, and a linear programming based algo-
rithm to recommend reorganization of the responsibilities of a software system’s
components through merging or splitting – on a range of software projects that
embody varying degrees of offshore and outsourced development. It appears that
two aspects of offshore and outsourced development – what we call as locational
asynchrony and perceptional asynchrony – do not have significant effect on how
responsibilities are distributed in the projects studied. However these factors may
influence the way requirements are abstracted by the development team, which
in turn can influences the application of the RESP-DIST technique. We plan
to extend our work in refining the RESP-DIST technique by conducting further
case studies. We are also working on developing a software tool to automate the
application of the RESP-DIST technique.

Acknowledgements

We wish to thank Sean Campion, Project Manager at TopCoder Inc.; Dr Ani-
mikh Sen, Executive Director of Strategic Planning and Program Development at
Boca Raton Community Hospital; Kshitiz Goel, Pooja Mantri, Prerna Gandhi,
and Sidharth Malhotra, graduate students at Symbiosis Center for Information
Technology for their help with acquiring and analyzing some of the case study
information. We would also like to thank the anonymous reviewers for their
helpful comments and criticism.

88 S. Datta and R. van Engelen

References

1. Bieman, J.M., Ott, L.M.: Measuring functional cohesion. IEEE Trans. Softw.
Eng. 20(8), 644–657 (1994)

2. Booch, G., Rumbaugh, J., Jacobson, I.: The Unified Modeling Language User
Guide, 2nd edn. Addison-Wesley, Reading (2005)

3. Ciupke, O.: Automatic detection of design problems in object-oriented reengineer-
ing. In: TOOLS 1999: Proceedings of the Technology of Object-Oriented Languages
and Systems, Washington, DC, USA, p. 18. IEEE Computer Society, Los Alamitos
(1999)

4. Conway, M.: How do committees invent? Datamation Journal, 28–31 (April 1968)
5. Datta, S.: Agility measurement index: a metric for the crossroads of software devel-

opment methodologies. In: ACM-SE 44: Proceedings of the 44th annual southeast
regional conference, pp. 271–273. ACM Press, New York (2006)

6. Datta, S., van Engelen, R.: Effects of changing requirements: a tracking mechanism
for the analysis workflow. In: SAC 2006: Proceedings of the 2006 ACM symposium
on Applied computing, pp. 1739–1744. ACM Press, New York (2007)

7. Datta, S., van Engelen, R.: Comp-ref: A technique to guide the delegation of re-
sponsibilities to components in software systems. In: Fiadeiro, J.L., Inverardi, P.
(eds.) FASE 2008. LNCS, vol. 4961, pp. 332–346. Springer, Heidelberg (2008)

8. Dhama, H.: Quantitative models of cohesion and coupling in software. In: Selected
papers of the sixth annual Oregon workshop on Software metrics, pp. 65–74. Else-
vier Science Inc., Amsterdam (1995)

9. Freeman, P.: Automating software design. In: DAC 1973: Proceedings of the 10th
workshop on Design automation, Piscataway, NJ, USA, pp. 62–67. IEEE Press,
Los Alamitos (1973)

10. Herbsleb, J.D., Grinter, R.E.: Architectures, coordination, and distance: Conway’s
law and beyond. IEEE Softw. 16(5), 63–70 (1999)

11. Herbsleb, J.D., Grinter, R.E.: Splitting the organization and integrating the code:
Conway’s law revisited. In: ICSE 1999: Proceedings of the 21st international con-
ference on Software engineering, pp. 85–95. IEEE Computer Society Press, Los
Alamitos (1999)

12. Jackson, D.: Software Abstractions: Logic, Language and Analysis. MIT Press,
Cambridge (2006)

13. Jacobson, I., Booch, G., Rumbaugh, J.: The Unified Software Development Process.
Addison-Wesley, Reading (1999)

14. Karimi, J., Konsynski, B.R.: An automated software design assistant. IEEE Trans.
Softw. Eng. 14(2), 194–210 (1988)

15. Kornstadt, A., Sauer, J.: Mastering dual-shore development - the tools and ma-
terials approach adapted to agile offshoring. In: Meyer, B., Joseph, M. (eds.)
SEAFOOD 2007. LNCS, vol. 4716, pp. 83–95. Springer, Heidelberg (2007)

16. Larman, C.: Applying UML and Patterns. Prentice Hall, Englewood Cliffs
(1997)

17. Rodriguez, F., Geisser, M., Berkling, K., Hildenbrand, T.: Evaluating collabora-
tion platforms for offshore software development scenarios. In: Meyer, B., Joseph,
M. (eds.) SEAFOOD 2007. LNCS, vol. 4716, pp. 96–108. Springer, Heidelberg
(2007)

An Examination of the Effects of Offshore and Outsourced Development 89

18. Rumbaugh, J., Jacobson, I., Booch, G.: The Unified Modeling Language Reference
Manual, 2nd edn. Addison-Wesley, Reading (2005)

19. Sengupta, B., Chandra, S., Sinha, V.: A research agenda for distributed software
development. In: ICSE 2006: Proceeding of the 28th international conference on
Software engineering, pp. 731–740. ACM, New York (2006)

20. Shami, N.S., Bos, N., Wright, Z., Hoch, S., Kuan, K.Y., Olson, J., Olson, G.: An
experimental simulation of multi-site software development. In: CASCON 2004:
Proceedings of the 2004 conference of the Centre for Advanced Studies on Collab-
orative research, pp. 255–266. IBM Press (2004)

K. Berkling et al. (Eds.): SEAFOOD 2008, LNBIP 16, pp. 90–106, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Students as Partners and Students as Mentors:
An Educational Model for Quality Assurance

in Global Software Development

Olly Gotel1, Vidya Kulkarni2, Christelle Scharff1, and Longchrea Neak3

1 Pace University, Seidenberg School of Computer Science and Information Systems,
New York, NY, USA

{ogotel,cscharff}@pace.edu
2 University of Delhi, Computer Science Department, Delhi, India

vkulkarni@cs.du.ac.in
3 Institute of Technology of Cambodia, Computer Science Department,

Phnom Penh, Cambodia
longchrea.neak@itc.edu.kh

Abstract. Since 2005, Pace University in New York City has been collaborat-
ing with the Institute of Technology of Cambodia and the University of Delhi in
India to bring students together to work on globally distributed software devel-
opment projects. Over this period, we have been exploring models through
which graduates and undergraduates from the three countries can work together,
with pedagogical value to all sides. In 2007, we converged on using Software
Quality Assurance as a focal point around which to establish a partnering and
mentoring relationship. We included seven graduate students, as internal men-
tors and external auditors, to help assure the quality of what was to be a single
distributed project involving twenty-seven students from across the three global
locations. To focus further on quality, requirements and testing activities were
emphasized. The motivation, logistics and experiences from this project are re-
ported in this paper, and lessons of wider applicability are provided.

Keywords: Auditing, Global Software Development, Mentoring, Require-
ments, Software Engineering Education, Software Quality Assurance, Testing.

1 Introduction

It has become common to set up a Global Software Development (GSD) experience
for students as part of their Software Engineering training in an undergraduate Com-
puter Science degree [5, 12, 16]. There are many outstanding research challenges with
global settings that such educational experiences can contribute towards understand-
ing [13]. The initial time a student project of this nature is undertaken, there is a steep
learning curve for those involved, and a number of constraints and logistical steps can
be overlooked as assumptions are made about locales and educational practices [10].
The first year is about discovering a model for working that fits all parties, spanning
time zones, place and cultures. Such experiences can help provide for a smoother

 Students as Partners and Students as Mentors 91

second year, in turn allowing for the exploration of particular Software Engineering
concerns, practices or working arrangements. For example, outsourcing the develop-
ment of a well-defined software component and then integrating it into an evolving
software system [8].

Having undertaken GSD projects for two years, we made the observation that it
becomes common to focus time and effort on the logistics of the project, meaning that
the timely completion of some form of software product by the end of the project be-
comes more central than the quality of what is produced. It can be expedient for busy
instructors, as well as rewarding for overwhelmed students, to see something demon-
strable, whatever the quality. Engineered for a snapshot in time to achieve a grade,
little consideration gets given to actual deployment and longevity.

Quality has been defined in numerous ways in the literature. Two of the more pre-
vailing definitions are those of Crosby and Juran: “conformance to requirements” [4]
and “fitness for use” [15], as reflected in the ISO 9000 family of standards for quality
management systems [14]. In the context of software development, quality is generally
measured in terms of the specified requirements that are satisfied. According to the pro-
ponents of Software Process Improvement, it has long been argued that one of the most
effective ways to achieve software quality is to adopt and follow a suitably mature soft-
ware process [1]. Software Quality Assurance (SQA) is, at a fundamental level, all those
process-related activities that are undertaken in the pursuit of achieving quality. SQA
involves requirements, design and code reviews, requirements and defect tracking, test-
ing (both validation and verification), and more. Such activities are undertaken to con-
trol the process and its products to help ensure problems are addressed early on.

Given that undergraduate Software Engineering is typically a student’s first expo-
sure to software development processes, practices and principles, concepts are fre-
quently taught in the classroom just as they need to be applied to the project at hand.
This affords little opportunity for students to step back and examine their work from
the broader perspective that is required for SQA. It also prevents them from having
the requisite oversight at the onset to plan for SQA. As a consequence, SQA is an
activity that we have found difficult to prepare our undergraduate students for, par-
ticularly since it can be perceived to get in the way of the ‘real’ task of developing
demonstrable code.

For our third year of collaboration, we deemed it essential to focus on injecting a
concern for quality into the GSD project. We decided to engage Software Design and
Engineering graduate students in both internal and external SQA capacities. The in-
ternal role was to help undergraduates focus on the quality practices related to re-
quirements and testing, and the external role was to monitor and provide feedback on
the end-to-end process and its deliverables. Moreover, by getting the students to work
together on a single project to be deployed, we expected the need for quality to be
recognized.

This paper describes the third year project experience. In Section 2, we provide the
background and objectives for this work, also summarizing the institutional collabora-
tion to date. We give details of the project arrangements in Section 3. In Sections 4
through 6, we describe the emphasis that was placed on requirements and testing,
mentoring and auditing. Our findings are presented in Section 7 and wider lessons are
drawn with respect to the role of partners and mentors in software development en-
deavors in Section 8. We finish the paper with conclusions and a synopsis of our on-
going work.

92 O. Gotel et al.

2 Background and Objectives

Undergraduate Computer Science students at Pace University in the US have been
collaborating with undergraduate Computer Science students from the Institute of
Technology of Cambodia (ITC) for three years. This collaboration takes the form of
an annual GSD project. Within these projects, the Cambodian students act as clients
and testers, while the US students act as developers. This permits the students to ex-
perience a reversal of traditional offshore outsourcing roles. Over the past two years,
this arrangement has also involved graduate Computer Science students from the
University of Delhi in India playing the role of offshore third-party service providers.
Throughout the three years, we have been exploring the processes and communication
models that are useful to employ in this context, along with the tools that can support
them [8, 9, 10].

This current paper describes the spring 2007 GSD project where students from the
three countries worked together on a single project with the intention of developing a
software system to be deployed into operation within Cambodia. The focus was on
scaling up and so on the true need for both local and global integration, along with an
emphasis on requirements and testing for quality. This project incorporated a com-
petitive bidding process for an outsourced component of the work to future maximize
quality efforts, and made use of US graduate students who were specializing in Soft-
ware Engineering to help assure the quality of the distributed global project. The web-
site of the project is available at http://atlantis.seidenberg.pace.edu/wiki/gsd2007.

2.1 Research and Teaching Objectives

The two specific objectives for this study were: (1) To provide a ‘real’ project that
would require students to take software through to production quality. This was to en-
able students to learn about ‘whole-life’ software development and the ‘total cost of
ownership’. In addition, we wanted to start to reinforce longevity in our institutional
relationships and so provide the potential for future student teams to play a role main-
taining a legacy system. (2) To investigate how to incorporate students with specialist
skills into the educational model so as to: (a) relieve the instructors of some of the day-
to-day work spent on managing the quality of work; and (b) address questions and pro-
vide timely advice to the undergraduate students outside of the classroom setting.

3 Project Context

This section provides information about the participating institutions, the students, the
project and the team set-up. It also clarifies the logistics and technologies involved.

3.1 Collaborators and Courses

The Institute of Technology of Cambodia (ITC) (http://www.itc.edu.kh): The Soft-
ware Engineering course for fourth year Computer Science undergraduate students.

Pace University (http://www.pace.edu): The capstone undergraduate Software Engi-
neering course taken by Computer Science students. It also involved students from the

 Students as Partners and Students as Mentors 93

Masters Program in Software Design and Engineering who were concurrently taking a
Software Reliability and Quality Assurance course. Approximately half of the gradu-
ate students had a professional career in the New York City area software industry.

The University of Delhi (http://www.du.ac.in): The second year Master of Computer
Applications students studying a Database Applications course.

3.2 Student Roles and Responsibilities

Cambodian Students are Clients and Testers. Their responsibilities were to work
with the US undergraduate students to describe the software they wanted to be built
and the context in which it was to operate. They had to review and give feedback on
the requirements, design and testing documents, test the software system and submit
bug reports. At the end of the semester, the Cambodian students had to assess the
software system developed by the US students (with Indian sub-contracting) and to
compare this with the software system developed solely by the Indian students (see
Indian roles later).

US Undergraduate Students are Developers and Lead Contractors. Their responsibili-
ties were to elicit the requirements and produce an agreed requirements specification,
propose design options that subcontract part of the design and development, prepare a
Request For Proposal (RFP), receive and evaluate responses to the RFP, implement the
software system and test it, while handling requirements changes, integration of the
outsourced component and managing the end-to-end contract. At the end of the semes-
ter, they had to deliver the software system to their clients.

US Graduate Students are Internal SQA Mentors and External SQA Auditors. The
mentoring role was designed to help ensure that the US undergraduate students were
doing what they needed to do to assure a quality result, and so graduate students were
charged to help them perfect the techniques and practices introduced in the classroom,
especially with respect to writing requirements, tracing them through to design and
code, document versioning, change management techniques, integration, and test plan-
ning and execution. Mentors were to act as internal eyes for the project and to issue
periodic reports to the instructors (as partners). The auditing responsibility was to re-
view the artifacts delivered by the undergraduates and the processes used to deliver
them. This involved checking for conformance to documented processes, verifying
whether the specified requirements were satisfied in design and code, and determining
the quality of the testing activities. Auditors were to act as the quality gatekeepers on
the project and deliver periodic audit reports to the instructors and to the SQA mentors
(as partners).

Indian Students are Third-party Suppliers. Their responsibilities were to submit
separate bids for the outsourced component and then to collaborate on the selected
bid. In addition, and outside the initial intent of the project, the Indian students de-
cided to develop their own variant of the software from the requirements specification
in competition with the US undergraduates. This effort was undertaken with visibility
of the requirements on a shared wiki, but without direct communication with the
clients.

94 O. Gotel et al.

3.3 Project MultiLIB Description

The internal library of the Department of Computer Science at ITC provides many re-
sources to its students, such as books in English and French, student internship reports,
CD-ROMs, DVDs and e-books. To date, the library management tasks and other related
transactions have not been computerized. The departmental secretary, acting as the li-
brarian and using an Excel spreadsheet, currently manages the records of all the re-
sources. In order to make the students aware of the available resources there is a paper
list pasted in front of the office of the department. Not only is this unwieldy as the re-
sources increase, it is never clear what is currently available for loan and what is not.
The objective of this project, called MultiLIB, was to develop a multi-purpose web-
based library management system to be used by students, professors and the librarian.

The development effort was to be partitioned in the following way:

• Librarian / Administrator Side – To focus on that part of MultiLIB that will be
used by the librarian and administrator for managing the library policies, all the
resources, the accounts in the system and all the issue / return transactions.

• Guest / Student / Professor Side – To focus on that part of MultiLIB that will be
used by guests, students and professors to view the information on the available
and new resources, to reserve, rate and recommend the resources, and to consult
the status of their personal accounts (for students and professors only).

• Innovation Side – To focus on that part of MultiLIB that will be used by students to
view the electronic resources, such as e-books, audio and video. Moreover, this side
was intended to be forward looking and so to consider future innovative features.

The innovation side of MultiLIB was not intended for the initial release, so the other
two sides needed to be engineered to account for future anticipated extensions.

3.4 Teams

Students were to work in global sub-teams on separate components of a larger project
that would demand integration. In addition, the project was to incorporate a competi-
tive bidding process for a well-defined component of the work in an attempt to en-
hance quality through design diversity. Software Engineering and Design graduate
students were recruited as ‘specialists’ and given loose guidelines to mentor and audit
the US undergraduates. In summary, the global extended teams are detailed in Table 1.

Table 1. Team Set-up on Project MultiLIB

Sub-team Roles Location Additional Members
Librarian Side 5 Clients ITC, Cambodia
 4 Developers Pace Undergraduates, NYC
 1 Mentor Pace Graduate and Industry Professional, NYC
 2 Auditors Pace Graduates, NYC
Student Side 4 Clients ITC, Cambodia
 4 Developers Pace Undergraduates, NYC
 1 Mentor Pace Graduate and Industry Professional, NYC
 2 Auditors Pace Graduates, New York

1 Integration Mentor -
Pace Graduate and
Industry Professional,
NYC

6 Sub-contractors
(Developers) –
University of Delhi
Graduates, India

Innovation Side 4 Clients ITC, Cambodia

 Students as Partners and Students as Mentors 95

3.5 Logistics: Process, Technology and Communication Tools

The project milestones were organized around one week for initialization and team
bonding, five weeks for requirements, three weeks for design, three weeks for coding
/ construction and two weeks for testing. The Software Engineering process model
that was used was a loose waterfall model with iteration and feedback, for instructor
control and visibility. The technologies that were used are discussed in a companion
paper [9].

4 Requirements and Testing for SQA

Central to any definition of ‘quality’ is the term ‘requirements’. Our Software Engi-
neering courses therefore pay attention to techniques that can be used for gathering
stakeholder requirements, particularly across distances, and for communicating this
understanding across languages and cultures. Requirements are also the basis for test-
ing, without which assessments as to the attained quality cannot be determined. A sec-
ond emphasis in our courses is therefore on bringing testing activities forward and so
more consciously to work toward their satisfaction. This section describes the efforts
undertaken in these two areas to stress a discipline for SQA in the MultiLIB project.

4.1 Requirements Process

At the beginning of the project, the US undergraduate students received a two-page
description of MultiLIB and a PowerPoint presentation describing its context and fea-
tures, as prepared by the Cambodian instructor. They also received samples of the
current Excel spreadsheets used by the librarian to deal with library loans and the
management of available resources. Students used these documents as a starting point
to determine the requirements. They then refined and added requirements gathered
through questionnaires sent to the Cambodian students, followed-up with chat ses-
sions, and gathered during a face-to-face session with the Cambodian instructor when
he visited the US. Diversity in the channels for gathering requirements were important
due to the difficulties students had to understand each other, mainly due to language
and terminology (English is the third language of the Cambodian students, after
Khmer and French). The requirements were specified using a simple template for
consistency that articulated the users, the source of the requirements, priority and how
to test the requirement. Validation took place via chat sessions using a checklist.

4.2 Testing Process

Most of the testing that took place was system-level and user acceptance testing, as
these activities were emphasized before delivery. The US developers prepared a test-
ing document for the Cambodian testing team. This contained all the data necessary to
access the software system, along with details of sample books stored within the data-
base, the list of implemented requirements with the name of the developer responsi-
ble, and the testing scenarios used for manual testing of each requirement. The Indian
students prepared a sixteen-page user manual for their software system. This included
descriptions of the functionality included, along with the unique features provided,

96 O. Gotel et al.

and also user-ids and passwords for testing. The same set of Cambodian students per-
formed system testing and user acceptance testing on this version.

4.3 Bug Reporting and Issue Tracking

The Cambodian clients and US developers used the Issue Tracker facility of java.net
to report, fix and manage bugs throughout the project. During the testing phase, each
issue submitted by the Cambodian testing team was assigned to the US team member
in charge and broadcast to the whole team. Java.net was used by the client mostly to
report bugs in the software rather than by the developers to eliminate them.

The Indian students did not use a specific tool for their testing. Each and every
page in their developed web-based system was separately tested with test data during
the development and then the complete system was tested with the test data. When the
Cambodian students tested the whole system, they sent emails to one of the Indian
students who manually undertook issue tracking and resolution.

At the end of the semester, the Cambodian students provided one testing summary
of the software developed by the US team and by the Indian team, comprising the
number of issues identified in each, along with a description of the main issues dis-
covered. The Cambodian students used this as a basis to compare the two delivered
software systems.

5 Mentoring for SQA

Mentoring is: “The offering of advice, information, or guidance by a person with use-
ful experience, skills, or expertise for another individual’s personal and professional
development” [11]. A ‘mentor’ is: “A wise and trusted counselor or teacher” [6]. In
this project, US graduate students who were specializing in Software Engineering and
working in the software industry were tasked with mentoring local US undergraduates.

The role of internal SQA mentor was established to provide a point of contact and
support structure for the two undergraduate sub-teams based in New York. The two
components of MultiLIB (the student side and the librarian side) were to be developed
independently by the sub-teams, but needed to fit together. Accordingly, one graduate
student was assigned to each sub-team, while a third was assigned to an integration
role.

The intention of the mentoring role was not for graduates to do the work for the
undergraduate students, but to help ensure that the students were doing what they
needed to do to assure a quality result. Also, to help the students perfect some of the
techniques introduced in class, especially with respect to writing requirements, tracing
them through to design and code, document versioning and change management, and
test planning. Specifically, they were to work directly with the project leaders of the
sub-teams to help them with their management tasks and in resolving some of the
typical difficulties faced with team working. The mentors were to act as internal eyes
for the project.

The mentors were tasked with preparing an SQA plan describing what they were
proposing to do. This included details of the activities, processes, methods, standards,
etc. they considered relevant, along with a timeline and communication strategy to

 Students as Partners and Students as Mentors 97

engage with the undergraduates. Each mentor was to maintain an individual log of
what they did with the students and why, along with the outcome of any advice pro-
vided or sessions they ran. The mentoring team produced a final report summarizing
their experience, lessons and recommendations for future projects.

6 Auditing for SQA

Auditing is an important and regulatory activity undertaken in many domains
(e.g., financial audit). It is an activity undertaken both internally by organizations and
externally by independent third parties. It is not solely about compliance, checking that
an organization is doing what it is supposed to be doing, and so offering reassurance to
customers, but also about alerting to any required intervention before it is too late.

The role of external SQA auditor on this project was to take a more objective look
at the quality of the US undergraduate students’ contributions to the global project.
Since the undergraduates were to be preparing documents (in draft and final form) at
certain key dates, the auditors’ responsibilities were to review everything that the stu-
dents were doing (both the products they were delivering and the processes they were
using to deliver them) and to provide a periodic audit report. This was to involve
checking for conformance to documented processes, verifying whether the specified
requirements had been satisfied in design and code, and determining the quality of the
testing. They were encouraged to do most of their work face-to-face. The audit report
was to be provided to the instructors (as their clients and partners) and to the SQA
mentors (as their partners). The latter was to enable their peers to deliver feedback
and to determine what activities they may need to focus on going forwards. The audi-
tors were to work together as the quality gatekeepers for the project, and they were
required to maintain their objectivity.

The auditors were tasked with preparing an SQA audit plan describing what they
were proposing to do. This was to include details of all the activities they were to un-
dertake, how they proposed to undertake them, along with a timeline and forms / tem-
plates they considered useful. Each auditor was to keep an individual log of what they
did with the undergraduate students and why. The team was to provide a final report
on the quality of the completed work (process and product) and to justify their con-
clusions.

7 Findings

In this section, we summarize the key observations with respect to an emphasis on
quality-related activities on our project. These relate to the quality that was obtained,
the impact of a focus on requirements and testing, and the value of mentoring and
auditing.

7.1 Overall Quality Level

The final version of the requirements specification included thirty-four functional
requirements and eleven non-functional requirements. The US students implemented
eighteen functional and three non-functional requirements in the delivered software

98 O. Gotel et al.

system. In contrast, the Indian students implemented twenty-eight functional require-
ments and four non-functional requirements. Based on java.net Issue Tracker, thirty-
nine issues were submitted by the Cambodian students for the US software system
and forty-seven issues were submitted for the Indian software system, half of these
issues being defects and half of them being requests for enhancement. The Cambo-
dian students rejected both of the software systems that were developed for them.

While the Indian version of the software implemented more features (i.e., satisfied
more of the requirements), it was also delivered with more outstanding issues. How-
ever, it was considered to have a “more attractive user interface” and to be more se-
cure, which led to perceptions of higher quality, and hence the Cambodian students
preferred the Indian version. Note that the Indian students had no contact with the
clients and were working directly from the requirements specification that was devel-
oped and continuously evolved by the US students. This is an interesting finding as it
provides some evidence that a well-written requirements document can communicate
across many dimensions of distance. The Indian students reported that the main prob-
lem they faced, other than a lack of time to complete the work, was that many times
they did not get replies to their queries from the US students. They understood that
this was because the US students could not get their queries resolved by the Cambo-
dian students in a timely fashion also. Time delays got perpetuated along the commu-
nications chain.

The main issues with the US students’ software were due to time constraints, so
they only implemented a very simplified version of the software to speed up imple-
mentation and deliver something of value. They eased their task by making assump-
tions, such as a book can have only one author and cannot contain subtitles. Moreover,
features that were specified as high priority by the clients did not gain sufficient atten-
tion, which frustrated the clients. The US students spent lots of their time improving
the quality of the requirements and design documents, and keeping them up to date on
the wiki, diligence and effort that the Indian students benefited from. Focusing on re-
quirements meant that development and testing time for their own implementation was
squeezed.

It should also be noted that the Indian students regarded the development of this
software as a professional challenge -- they were competing with the US students and
dedicated all their time to the development and continued to do so for up to two
months after their classes had ended, whereas the US students focused more on the
practices they were learning and their application, and ceased activities when the se-
mester ended.

7.2 Requirements and Testing Focus

All students were new to the type of tool used in this project for bug reporting and is-
sue tracking. The Cambodian students found java.net a difficult tool to use, but very
powerful in terms of describing issues in detail. The US and Indian students both rec-
ognized the importance of the tool, especially for facilitating communication between
the development and testing teams, though the Indian students preferred a non-tool-
oriented approach. A recurrent problem was that the bugs reported by the clients were
not always perceived as bugs by the developers. In some cases, the identified bugs in
the Indian software were rectified, but in most cases the Indian students replied that the

 Students as Partners and Students as Mentors 99

issue raised was not a part of the requirements document. They often felt that the cli-
ents were asking for new features after the testing activity and raising these requests as
issues. The perception of the Indian students was that the clients only realized they
should have asked for additional features when they started testing the software.

The Cambodian students were not satisfied with the usability of either the US or
the Indian software. For instance, they found that the web interface was not easy to
navigate and not uniform from one page to the next. Trying to defend the software
they developed, both the US and Indian students felt that the Cambodian students
gave “too much attention on little things instead of the main functionalities”. By ‘little
things’ they meant usability issues, one of the issues known to contribute to software
failure [7, 17]. Other common problems, cited in [3], were directly experienced by
students and are generally attributed to communication challenges. Working with a
client made students eventually realize the need to satisfy non-functional require-
ments like usability.

7.3 Mentoring Activities

The mentors ran bi-weekly and then weekly meetings with the US undergraduates.
These meetings were mostly conducted face-to-face with the sub-team project leaders,
the maximum attendance only ever being nine out of a possible eleven US students.
These meetings focused on the following activities:

• Requirements Engineering – Validation of the template used to gather require-
ments and suggestions as to additional information to capture to facilitate trace-
ability; checking the techniques used for gathering and validating requirements;
ensuring that traceability is established; examining the version control method
used; and suggesting methods to help ease the identification of changes made to
requirements.

• Project Scheduling – Assistance in developing a project plan for the entire pro-
ject; ensuring the milestones are aggressive enough to meet deadlines; and inter-
nally auditing the execution of the project plan to verify if milestones are
achieved.

• Technical Approach – Suggesting design standards and guidelines to follow; ini-
tiating brainstorming sessions to develop designs; and preparing for integration.

• Construction – Suggesting test-driven development techniques and tools; verify-
ing that the software component version control strategy; and encouraging the
team to include a maintenance and deployment strategy for their product early on.

In the words of the mentors: “At one meeting we went over the requirements docu-
ments for each team, page by page, and offered suggestions.”

The mentors reported that the technical ability of the undergraduates was always
lagging behind where it needed to be to complete the project. By adding more interac-
tion into the equation, via mentors and auditors, this had the perception of slowing
them down further. As one graduate reported: “By the time we evaluated the problem
and made suggestions, too much time had gone by and they had had to figure it out
without our help.” This is a direct consequence of the frequent need to teach Software
Engineering theory concurrently with its practice for the first time.

100 O. Gotel et al.

While they made themselves available to the undergraduates, the mentors felt that
the undergraduates didn’t really always know they needed help or were too busy to
seek it. They reported, in retrospect, that the most valuable thing they offered may
have been simply: “giving the undergraduates a pat on the back when needed, a gen-
tle push towards the goal, and a vision of where to go and what to do to achieve it”.
Also, sharing experiences from their various workplaces about what can go wrong if
they don’t do some of the things they have been asked to do on the project was con-
sidered valuable. From the undergraduate perspective they reported that: “it was nice
to have these mentors there just in case everything decided to fall apart.”

7.4 Auditing Activities

The two audit teams created and shared a template to run face-to-face interviews with
the undergraduates. The audit template implemented a ‘traffic light’ system where a list
of criteria were provided and the result of the audit would be categorized as either red
(non-compliant), green (compliant) or amber (issues). Each team reviewed milestone
documents and undertook four audits. Typical checklist items in the audits included:

• Team and Communications – Are they organized? Do they communicate well
with the Cambodian team? Is there a defined purpose and scope for the project?
Does the team know its roles? Any foreseeable problems? Solutions?

• Requirements – Is there a template or standard being used? Is it being properly
implemented? Is there a unique identifier for each requirement? Are the require-
ments prioritized? Do they list constraints and assumptions? Have they walked
through their requirements document? What validation techniques were used?
Are the requirements acceptable to the client? Is there any versioning control?

• Design, Code and Test – Does the design correlate with the requirements? Is the
code following a standard? Is the code well commented? Is there a bug report /
tracking procedure implemented? Do the tests make sense? Do they adequately
test the requirements? Are they being carried out?

Given the fact that it took time for the auditors to receive and then review the pro-
ject artifacts, schedule interviews with undergraduates and subsequently write their
audit reports, it would be a number of weeks before the feedback got back to the in-
structors, mentors and students. This was not as effective as it should have been. Au-
diting, without the ability to receive and respond to the audit feedback in a timely
fashion, is of little constructive value. This is another consequence of the reduced
cycle times of student projects. However, some issues were identified, allowing miti-
gating actions to be taken, and open issues could be tracked. The auditors provided a
valuable set of external eyes.

From a technical perspective, the auditors uncovered unrealistic prioritizations, as-
sumptions and missing test cases in the requirements when reviewing the documents.
From a social perspective, they noticed when the teams were fragmenting and losing
spirit. Sample technical issues from their audit reports include: (i) “NFR5 doesn’t
have a test case, we have recommended that they look at it and try to do something
with it.” (ii) “The code isn’t really following a template but it seems to be relatively
well organized. We did try to emphasize the need for better commenting of the code

 Students as Partners and Students as Mentors 101

because there is difficulty in understanding what it does without it.” Sample commu-
nication issues include: (i) “There is a problem stemming from an idea that the
Student’s software won’t be implemented, either through miscommunication or a mis-
understanding this has lead to a huge blow to the motivation/morale of the team as a
whole. The project has become a chore to them because its relevance has been de-
stroyed.” (ii) “The team seems to have improved, the communication between mem-
bers and between international teams has become more consistent, although there is a
bit of lag in terms of some paper updates.”

Despite some of the issues with timeliness in the implementation of this model,
show-stopping crises were avoided and the other students participating in the project
were keen to have their work audited also. Notably, and in the spirit of learning and
improvement, the Indian students requested an audit. The auditors themselves gained
a valuable learning experience: “The GSD project gave me a chance to approach a
process that was rarely shined upon in my undergraduate studies. It gave me a
chance to develop a procedure that I believe is very successful in garnering informa-
tion from my auditees.”

8 Lessons and Recommendations

The original objectives were to find a way to emphasize the need for quality in a stu-
dent GSD project and to seek a way to share responsibilities for accomplishing this.
We attempted to achieve the former by instigating a real project to be integrated, de-
ployed and maintained and to achieve the latter by setting up a network of mentors
and auditors.

We believe we developed an innovative working relationship between instructors,
graduates and undergraduates in this project, and satisfied the second objective
through a model that we are now refining in our latest GSD work. Although the soft-
ware system was not completed and not accepted, we do not believe this negates the
benefits that all parties obtained from mentoring and auditing. The lack of client ac-
ceptance of MultiLIB was not due to a failure in the concept per se, but more an issue
associated with its implementation for the first time. This outcome does mean that we
did not fully succeed in realizing the first objective. While quality was improved with
respect to requirements and designs, in the opinion of all the instructors when com-
paring with previous efforts, this was not the case for the final software system. The
project schedule was perhaps too heavily biased towards the upstream software de-
velopment activities. Our lessons and recommendations for others are hence provided
below.

8.1 Focus on the Partnerships in GSD

A ‘partner’ is defined as: “One that is united or associated with another or others in
an activity or a sphere of common interest” [6]. In this study, students from across the
globe and across degree levels partnered with each other, and graduate students also
partnered with instructors. These are rare partnerships to foster in student-based pro-
ject settings, but are models of working that we recommend others to explore.

102 O. Gotel et al.

8.1.1 Establish Student Partnerships
Undergraduate and graduate students partnered to work on one project. The advan-
tages of this model of education include:

• Reciprocal Learning – Each party in the global project had distinct backgrounds,
skills and perspectives, allowing them to learn from each other. For example, the
US undergraduates learned about Cambodia and its technology situation. Con-
versely, the US students exchanged information on the role and use of wiki tech-
nology in American society and in professional business settings, a technology
that was new to the Cambodians. In addition, the US undergraduates and gradu-
ates got to know each other, the former gaining a support network and benefiting
from experience-based explanations that contextualized theory, and the latter be-
coming empowered from the ability to practice Software Engineering activities at
a different level.

• Accountability – Both the US and Indian students felt accountable to the Cambo-
dians for delivering a working software system. This motivated their efforts. Real
Projects for Real Clients Courses (RPRCC) is a growing movement in academic
settings and we suggest that GSD projects are the ultimate way for students to
experience these [2]. When rumors spread that the software would not be used
(see Section 7.4), this had devastating effects on morale until remedied. Creating
a self-styled competitive situation motivated the Indian students further.

Some outstanding issues were identified and need to be addressed with such models:

• Contribution Disparity – Working in a team setting can present more difficulties
than working with new processes and technologies. It can often result in some
students carrying the burden of the work, individuals overriding team decisions
and in loosing friends. Given the work demanded on a global project, all these is-
sues are more prominent and were all experienced. While equally experienced in
industrial settings, student project leaders have little option to make firing and
hiring decisions. Perhaps a closer simulation of industrial settings needs to be ex-
plored as a way to remedy this, else individual assessment structures need more
attention.

• Global Team Unity – Due to the project set-up, the Indian students never felt part
of the global team; they were service providers. This led to a competitive streak
and the request to be audited. Where the requirements custodians are in competi-
tion with those developing the requirements this makes for an imbalance in the
incentive for cooperation. While no negative repercussions were experienced dur-
ing the project, this is an area to pay attention to. Competing student teams need
to be on a level-playing field, just as one would expect in industrial competitive
arrangements.

• Coordination – Shared awareness and the exchange of project artifacts were fa-
cilitated through the use of a wiki. However, when the wiki was not updated in a
timely manner, or when students became too focused on development to look at
the wiki, coordination problems resulted. For instance, it was not until the Indian
students were about to release their software for testing that they realized that the
requirements document they were working to was out of date. Expecting belea-
guered students to poll for important change information is unrealistic. As in an

 Students as Partners and Students as Mentors 103

industrial setting, such information needs to be pushed to relevant parties and
change control processes need to be established and institutionalized.

8.1.2 Establish Partnerships between Instructors and Students
Pace University graduate students partnered with instructors. This peer relationship is
recommended as a model for education for the following reasons:

• Delegation and Oversight – Broader visibility of the project, facilitated by re-
ports from mentors and auditors, provided a different perspective on the work.
Managing a global project is often the ‘hidden’ cost in GSD arrangements and
something that can easily detract instructors from venturing down this educa-
tional path. We suggest that a carefully constructed partnership model, engaging
students who are ready to put some of their skills into practice, is one way to al-
leviate this burden.

• Timely Intervention – The mentors helped to uncover technical training needs
and team management skills that were required but not supplied in the curricu-
lum, and were able to directly address many such day-to-day issues. The auditors
provided wider alerts to systemic project issues, giving the opportunity to inter-
vene where necessary, including issues that influence team spirit and jeopardize
the project.

• Improved Quality of the Requirements and Design – With the intense focus on
the writing and reviewing of the requirements, and of the participation of the
mentors in helping the undergraduates to architect the system and the auditors in
providing feedback, the quality of both the requirements and design improved.
The graduates helped to convey the importance of quality to student outside of
the classroom.

Some issues still deserve careful attention when instituting such an arrangement:
• Insufficient Audit Planning and Expectations – The audit planning started too

late in the project to allow for adequate review cycles, as time was needed to pre-
pare audit checklists. This meant that audits were often undertaken too late. Au-
dits need to be planned early, sufficient time needs to be factored in for reporting
and responding, and contingency is necessary to accommodate delays. Even
though graduate students were undertaking this role, most had never played such
a role before and needed more guidance than expected to extrapolate from their
own project experiences to create checklists. It would help to share such check-
lists with others.

• Inadequate Cycle Time for Feedback – The feedback to instructors, and so to the
undergraduate students, was not always timely. Working by day, taking classes
by night and meeting in class once a week does not put the project at the top of a
graduate’s priority list. Every lost week is critical. Such issues could be addressed
by building the students’ contributions more significantly into the grading
scheme.

• Sustaining a Quality Focus – The quality of the US software system was not as
high as had been expected following on from their requirements and design work.
While the Indian students were able to leverage this improvement in quality, the
US students ran out of time and energy. A far greater proportion of the time

104 O. Gotel et al.

needs to be scheduled to accomplish closure in efforts – quality is not guaranteed
from improved requirements alone and attention to SQA must be sustained.

8.2 Institute Mentoring Networks in GSD

In the words of the final report from the mentors: “Mentoring is not intended to develop
a narrow set of skills, but instead to develop the whole person toward advancement in
his/her career. Mentoring supports individual development through both career and
psychosocial functions.” In many organizations, mentoring is undertaken to develop
assets, help retention and transfer knowledge [11]. We suggest that the complexity and
sensitivity of GSD projects should leverage this approach to institutional learning and
development to assist new participants in the following ways:

• Goal Setting – Breaking down and planning tasks is a fundamental project activ-
ity, yet it is difficult for instructors to sit down and create detailed plans for all
students. This is an ideal role for graduate students who should have been
through the process many times and equally an opportunity for them to develop
their professional skills.

• Provide Technical Training – It is not possible for instructors to cover every
topic that students may need on a software development project. A network of
‘experts’ can augment the learning experience and customize specialist training
to needs.

• Confidante for Team Leaders – Learning the realities of working as a team,
whilst learning about software development, can be stressful. Students acting as
team leaders are often placed in unfamiliar situations and they need to know there
is someone other than the instructor they can turn to for advice when stress builds.

• Provide Rationale and Explain Consequences – By sharing corporate experi-
ences, graduates were able to motivate and reinforce the information provided in
class, contextualizing many things. In all projects endeavors, unless activities are
perceived to add value there can be resistance to their implementation. Taking
time to explain, especially by non-judgmental external parties, pays off.

• Professional Development – The students undertaking the mentoring gain the op-
portunity to play reciprocal and new roles. “And it was interesting for me to be in-
volved with a project at a high level rather than doing the coding myself. I think if I
had this opportunity again, I could do a better job as mentor to a group of develop-
ers.” All parties engaged in software development have personal training needs and
these can potentially be fulfilled through project support roles of this type.

There are a few issues that need to be considered when creating a network of support:

• Even Participation – Mentoring needs to be for everyone on the project, else stu-
dents feel alienated. On MultiLIB, there was the observation that the mentoring
mainly benefited the team leaders, and this impacted team cohesion. Mentoring
needs to be set up in a more balanced manner so that all students gain direct value.

• Undergraduates were Uncomfortable being Proactive – The mentors in this pro-
ject initiated all communications: “If the students did not, in the end, need us,
then we cannot fault them for not asking for help. If they did need us, but did not
know they did, then we did not do a good enough job at setting up our relation-
ship vis-à-vis the requirements for the course.” There is a need to explain the role
of a mentor.

 Students as Partners and Students as Mentors 105

8.3 Summary

While the result of having introduced mentoring and auditing was not as profound as
anticipated, we certainly saw evidence as to the benefits of orchestrating multiple lev-
els of partnership amongst students and instructors. The structure provided via men-
tors is a model that extends the reach of the classroom and serves to augment the
skills and knowledge base of those directly engaged in the project work. The activities
undertaken through auditing can improve quality if executed in a timely fashion and
sustained throughout. Mentoring and auditing is one way to actively spotlight the re-
quirements and testing activities that are so central to software quality, and are highly
recommended to other educators initiating GSD projects, as well as a model for wider
industry practice.

9 Conclusions and Ongoing Work

This paper reported on a continuing GSD educational initiative between the US, Cam-
bodia and India. In the words of one of the students in the post project survey: “From
the interaction with Pace University students, I learnt that the basic thought process of
students from anywhere is same. This project was a true example of globalization.”
The Indian students, more directly touched by GSD in their daily lives than the Cam-
bodian students, asked for certificates of their participation to give to their future em-
ployers; they all secured a job one year before graduation. In the post project survey,
one of these students qualified the experience as a “golden opportunity” and a US stu-
dent stated a “great learning experience that consumed [her] life this semester”.

During this third year of the collaboration, we created a model through which in-
ternational undergraduate and graduate students could work together as partners and
mentors. We also revealed how this model that promotes internal and external SQA
led to improved quality in the written requirements and design, the latter somewhat
due to the ability to leverage the variability in three Indian design bids. Our work in
2008 is focusing on some of the outstanding issues with this model, notably ensuring
that sufficient time is spent on realizing the requirements in a working system, deliv-
ering quality in software and not just in documentation, whilst involving all the stu-
dents from across the globe in the mentoring and auditing arrangement.

Acknowledgments. This work is kindly supported by an NCIIA grant (#3465-06).
We are thankful to all the institutions and students who were involved in this project.

References

1. Ahern, D.M., Clouse, A., Turner, R.: CMMI Distilled: A Practical Introduction to
Integrated Process Improvement, 2nd edn. Addison-Wesley, Reading (2003)

2. Almstrum, V., Condly, S., Johnson, A., Klappholz, D., Modesitt, K., Owen, C.: A
Framework for Success in Real Projects for Real Clients Courses. In: Ellis, H., Demurjian,
S., Naveda, F. (eds.) Software Engineering: Effective Teaching and Learning Approaches
and Practices. IGI Global, Hershey (2008)

106 O. Gotel et al.

3. Aloi, M., Fortin, W.: Utilizing IBM Rational Tools to Successfully Outsource in a
Globally Distributed Development Environment. In: IBM Rational Software Development
Conference, Orlando, Florida, June 10-14 (2007)

4. Crosby, P.B.: Quality is Free. Signet (1980)
5. Damian, D., Hadwin, A., Al-Ani, B.: Instructional Design and Assessment Strategies for

Teaching Global Software Development: A Framework. In: Proceedings of the 28th
International Conference on Software Engineering (ICSE 2006), Shanghai, China, May
20-28, pp. 685–690 (2006)

6. Farlex, Inc.: The Free Dictionary (2008), http://www.thefreedictionary.com/
7. Foraker Design.: Usability First: Your Online Guide to Usability Resources (2002-2006),

 http://www.usabilityfirst.com/intro/index.txl
8. Gotel, O., Kulkarni, V., Neak, L., Scharff, C., Seng, S.: Introducing Global Supply Chains

into Software Engineering Education. In: Meyer, B., Joseph, M. (eds.) SEAFOOD 2007.
LNCS, vol. 4716, pp. 44–58. Springer, Heidelberg (2007)

9. Gotel, O., Kulkarni, V., Neak, L., Scharff, C.: Working Across Borders: Overcoming
Culturally-Based Technology Challenges in Student Global Software Development. In:
Proceedings of the 21st Conference on Software Engineering Education and Training
(CSEET 2008), Charleston, South Carolina, USA, April 14-17 (2008)

10. Gotel, O., Scharff, C., Seng, S.: Preparing Computer Science Students for Global Software
Development. In: Proceedings of the 36th ASEE/IEEE Frontiers in Education Conference
(FIE 2006), San Diego, California, USA, October 2006, pp. 9–14 (2006)

11. Harvard Business School Press.: Coaching and Mentoring: How to Develop Top Talent
and Achieve Stronger Performance, p. 76 (September 2004)

12. Hawthorne, M.J., Perry, D.E.: Software Engineering Education in the Era of Outsourcing,
Distributed Development and Open Source Software: Challenges and Opportunities. In:
Inverardi, P., Jazayeri, M. (eds.) ICSE 2005. LNCS, vol. 4309, pp. 166–185. Springer,
Heidelberg (2006)

13. Herbsleb, J.D.: Global Software Engineering: The Future of Socio-technical Coordination.
In: Proceedings of the 29th International Conference on Software Engineering – The
Future of Software Engineering (ICSE-FASE 2007), Minneapolis, Minnesota, USA, May
20-26, pp. 188–198 (2007)

14. The International Organization for Standardization: ISO 9000 - Quality Management. The
ISO Standards Collection, ISBN 978-92-67-10455-3 (2007)

15. Juran, J.M.: Juran’s Quality Control Handbook. In: Gryna, F.M. (ed.), 4th edn. McGraw-
Hill, New York (1988)

16. Richardson, I., Milewski, E., Keil, P., Mullick, N.: Distributed Development – an
Education Perspective on the Global Studio Project. In: Proceedings of the 28th
International Conference on Software Engineering (ICSE 2006), Shanghai, China, May
20-28, pp. 679–684 (2006)

17. Rideout, T.B., Uyeda, K.M., Williams, E.L.: Evolving the software usability engineering
process at Hewlett-Packard. In: Proceedings of IEEE International Conference on Systems,
Man and Cybernetics, Cambridge, MA, USA, November 14-17, vol. 1, pp. 229–234
(1989)

K. Berkling et al. (Eds.): SEAFOOD 2008, LNBIP 16, pp. 107–125, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Problems and Solutions in Distributed Software
Development: A Systematic Review

Miguel Jiménez1 and Mario Piattini2

1 Alhambra-Eidos
Technological Innovation Center

Paseo de la Innovación 1, 02006, Albacete, Spain
Miguel.Jimenez@a-e.es

2 University of Castilla-La Mancha
Alarcos Research Group

Institute of Information Technologies & Systems
Escuela Superior de Informática

Paseo de la Universidad 4, 13071, Ciudad Real, Spain
Mario.Piattini@uclm.es

Abstract. Nowadays software development activity tends to be decentralized,
thus expanding greater development efforts towards more attractive zones for
organizations. The type of development in which the team members are distrib-
uted in remote sites is called Distributed Software Development (DSD). A vari-
ant of the DSD is Global Software Development (GSD), where the team is
distributed beyond the borders of a nation. The main advantage of this practice
is mainly that of having a greater availability of human resources in decentral-
ized zones with less cost. On the other hand, some disadvantages appear due to
the distance that separates the development teams. This article presents a sys-
tematic review of the literature related to the problems and the solutions pro-
posed up to the present day in DSD and GSD with the purpose of obtaining a
vision of the state-of-the-art which will allow us to identify possible new re-
search lines.

Keywords: Distributed Software Development, DSD, Global Software Devel-
opment, GSD, Offshore, Outsource, Nearshore, Systematic Review.

1 Introduction

Nowadays, many organizations, especially those dedicated to Information Technol-
ogy (IT), and concretely the software industry, are tending to relocate their production
units, mainly to take advantage of the greater availability of qualified labor in decen-
tralized zones. The objective consists of optimizing resources in order to develop
higher quality products at a lower cost. With the same purpose, "software factories"
[1] attempt to imitate industrial processes originally linked to more traditional sectors
such as those of the automobile and aviation, by decentralizing production units, and
promoting the reusability of architectures, knowledge and components.

108 M. Jiménez and M. Piattini

Distributed Software Development (DSD) allows the team members to be located
in various remote sites, thus making up a network of distant sub-teams. In this context
the traditional face-to-face meetings are no longer common and interaction between
members requires the use of technology to facilitate communication and coordination.

The distance between the different teams can vary from a few meters (when the
teams work in adjacent buildings) to different continents. The special situation in
which the teams are distributed beyond the limits of a nation is called Global Software
Development (GSD). This kind of scenario is interesting for several reasons [2],
mainly because it enables organizations to abstract themselves from geographical dis-
tance, whilst having qualified human resources and minimizing cost [3], increasing
their market area by producing software for remote clients and obtaining a longer
workday by taking advantage of time differences [4]. On the other hand we must con-
front a number of problems [5], caused mainly by distance and time and cultural dif-
ferences [6], which depend largely on the specific characteristics of each organization.

In this context, GSD is experiencing a boom thanks to offshoring and nearshoring.
Offshoring involves the transfer of an organizational function to another country,
usually where human resources are cheaper. We refer to nearshoring when jobs are
transferred to geographically closer countries, thus avoiding cultural and time differ-
ences between members and saving travel and communication costs.

The aforementioned development practices have as a common factor the problems
arising from distance that directly affect the processes of communication as well as
coordination and control activities [7]. In these environments, communication is less
fluid than in colocalized development groups, as a consequence, problems related to
coordination, collaboration or group awareness appear which negatively affect pro-
ductivity and, consequently, software quality. All these factors influence the way in
which software is defined, built, tested and delivered to customers, thus affecting the
corresponding stages of the software life cycle.

In order to mitigate these effects and with the aim of achieving higher levels of
productivity, companies need to incorporate new technologies, processes and methods
[8], and research into this field is therefore necessary.

This article presents a systematic review of the literature dealing with efforts re-
lated to DSD with the purpose of discovering the aspects upon which researchers have
focused until this moment. The objective is to identify, evaluate, interpret and synthe-
size most of the important studies on the subject, by conducting a rigorous and objec-
tive review of literature which will allow us to analyze the issues and the solutions
contributed up to the present in the fields of DSD and GSD with the aim of obtaining
information with a high scientific and practical value through a rigorous systematic
method.

2 The Importance of Systematic Reviews

A systematic review of literature [9] permits the identification, evaluation and inter-
pretation of all the available relevant studies related to a particular research question,
topic area or phenomenon, providing results with a high scientific value by classifying
studies between primary studies and secondary or relevant studies, by means of
synthesizing existing work according to a predefined strategy.

 Problems and Solutions in Distributed Software Development 109

This systematic review has been carried out within the context of the FABRUM
project, whose main objective is the development of a process with which to manage
the relationships between a planning and design center and a software production
factory, serving this work as a starting point to focus on future research to be done
about DSD.

In order to carry out this study we have followed the systematic search procedure
proposed by [9], and the selection of primary studies method followed in [10].

2.1 Question Formularization

The research question is: What are the initiatives carried out in relation to the im-
provement of DSD processes?

The keywords that guided the search to answer the research question were: distrib-
uted, software, development, global, enterprise, organization, company, team, off-
shore, offshoring, outsource, outsourcing, nearshore, nearshoring, model, strategy
and technique.

During a first iteration, we also included the keywords CMM, CMMI, COBIT and
ITIL in an attempt to obtain studies based on these standards, but due to the scarcity
of good results these words were misestimated in subsequent iterations.

The ultimate goal of this systematic review consists of identifying the best proce-
dures, models and strategies employed, and to determine the most important im-
provement factors for the main problems found. The population will be composed of
publications found in the selected sources which apply procedures or strategies related
to DSD.

2.2 Sources Selection

By combining the keyword list from the previous section through the logical connec-
tors "AND" and "OR", we established the search strings shown in Table 1.

The studies were obtained from the search sources: Science@Direct, Wiley Inter-
science, IEEE Digital Library, ACM Digital Library and EBSCO Host. The quality of
these sources guarantees the quality of the studies. The basic search chains had to be
adapted to the search engines of each source.

Table 1. Basic search strings

Basic search strings

1
(“distributed software development” OR “global software development”) AND
((enterprise OR organization OR company OR team) AND (offshore OR
offshoring OR outsource OR outsourcing OR nearshore OR nearshoring))

2
(“distributed software development” OR “global software development”) AND
(model OR strategy OR technique)

2.3 Studies Selection

The inclusion criteria for determining if a study should be considered relevant (poten-
tial candidate to become a primary study) was based on analyzing the title, abstract

110 M. Jiménez and M. Piattini

and keywords from the studies retrieved by the search to determine whether they dealt
with the DSD subject orientated towards process improvement, quality, coordination,
collaboration, communication and related issues that carry on any improvement about
the subject.

Upon analyzing the results of the first iteration of the systematic review, we de-
cided to exclude those studies which, despite addressing the issue of DSD, did not
contribute to any significant improvement method, and we also dismissed those stud-
ies which focused solely upon social issues, cultural or time differences or focused
solely upon free software, although we have taken into account other articles that
address these topics in a secondary manner.

To obtain the primary studies we have followed the iterative and incremental
model proposed by [10]. It is iterative because the search, retrieval and information
visualization of results is carried out entirely through an initial search source and then
repeats the same process on the rest. It is incremental because the document evolves
incrementally, including new studies to complete the final version.

By applying the procedure to obtain the primary studies, 2224 initial studies were
found, of which 518 were not repeated. From these, we selected 200 as relevant and
69 as primary studies (the complete list of primary studies is shown in Appendix A).
Table 2 shows the distribution of studies found according to the sources employed.

Table 2. Distribution of studies found

2.4 Information Extraction

The process of extracting information from the primary studies followed an inclusion
criterion based on obtaining information about the key success factors, improvement
strategies employed, processes improved and the most important ideas in each study,
thus establishing a categorization between objective and subjective results. All arti-
cles were categorized by attending to the methodology study followed according to
the models presented in [11]. We used the following categories: case studies, litera-
ture review, experiment, simulation and survey. The nonexperimental model for
studies which makes a proposal without testing it or performing experiments was
also applied.

 Studies
Sources Search date Found Not repeated Relevant Primaries %

Science@Direct 07/11/2007 160 132 51 18 26,1
Wiley InterScience 08/11/2007 22 15 12 9 13,0

IEEE Digital Library 19/11/2007 60 30 30 21 30,4
ACM Digital Library 19/11/2007 1898 273 88 15 21,7

EBSCO Host 19/11/2007 84 68 19 6 8,7
 Total 2224 518 200 69 100,0

 Problems and Solutions in Distributed Software Development 111

3 Trends in Distributed Software Development Research

This section analyzes and discusses proposals and success factors in order to extract
relevant information from the information provided by the primary studies.

Figure 1 (left) shows that most of the primary studies analyzed are case studies and
nonexperimental articles. Surveys also have a significant representation, in which mem-
bers involved in the distributed development take part in outlining their difficulties.

On the other hand, as is shown in Figure 1 (right), the majority of primary studies
are focused upon the enterprise field, but studies in the university environment also
appear, in which groups of students carried out developments in different locations.
Near the half of the studies did not indicate their field of work or their characteriza-
tion did not proceed, while 10% were from organizations which did not specify their
corporate or university environment.

Enterprise
35%

University
8%

Not
applicable

48%

Environments of study development

Organization (without specifying)
9%

Case studies
47%

Literature
review
11%

Experiment
13%

Simulation
3%

Survey
10%

Non-
experimental

16%

Type of articles analyzed

Fig. 1. Type of articles analyzed (left) and environments of study development (right)

3.1 Publications Tendency

After attending to the number of relevant studies found through the systematic search
carried out, it can be concluded that the subject of DSD is evidently an area which
was not widely studied until a few years ago, and it is only recently that a greater
number of publications have appeared; thus in Figure 2 we can see that 2006 is by far
the year in which most studies were published, bearing in mind that the data shown
for 2007 only reflects the studies found before the middle of November.

3.2 Improved or Analyzed Processes

Taking the primary studies analyzed as a reference, we carried out a classification in
terms of processes in the software life cycle to which improvements were proposed or
success factors or areas to be improved related to DSD were discussed. Primary stud-
ies were classified according to the improved or studied processes, in each case based
on the ISO/IEC 12207 standard [12], with the aim of obtaining a vision of the proc-
esses life cycle that requires special attention when working in a distributed environ-
ment and discovering the improvement efforts carried out until that moment.

112 M. Jiménez and M. Piattini

0

10

20

30

40

50

60

2000 2001 2002 2003 2004 2005 2006 2007

N
um

b
er

 o
f s

tu
d

ie
s

Years

Publications by year

Fig. 2. Trends in publications about DSD

0 3 6 9 12 15

Fig. 3. Improved or analyzed processes by the primary studies adjusted to ISO 12207

 Problems and Solutions in Distributed Software Development 113

The ISO 12207 standard establishes the activities that may be carried out during
the software life cycle, which are grouped into main processes, support processes and
general processes. The results are presented graphically in Figure 3 where for every
process, its frequency in function of the number of studies that address it is indicated.

The results obtained indicate that greater efforts are focused on human resources,
infrastructure, software construction and management and project organization proc-
esses. From these data we can infer that communication between team members is a
critical factor. On the other hand, other processes, such as software installation or
usability are not mentioned in any study. This information will be useful in the focus-
ing of future research efforts.

3.3 Employed Standards

Figure 4 presents the standards that the analyzed articles address. Based on the avail-
able data, it may be inferred that few studies indicate the use of specific standards. In
part, this is attributable to the fact that the great majority of studies deal with issues
such as communication difficulties in which the standard used does not matter. The
standards supported by most primary studies are CMM and ISO 9001, it being com-
mon to jointly apply both. All applications of CMM and CMMI studied employed a
maturity level 2 with the exception of one which was certified at CMM level 5. No
studies relative to ITIL or COBIT models were obtained.

Standards employed

0 2 4 6 8 10

COPC

ISO 15504

ISO 9001

ISO 12207

Other ISO

CMM

CMMI

S
ta

n
d

ar
d

s

Number of articles

Fig. 4. Standards employed in the studies

3.4 Contents of the Studies

Table 3 shows in a schematic way the lines towards which the primary studies have
focused. Most of the works study tools or models designed specifically for DSD
which attempt to improve certain aspects related to development and coordination.
Another large part of the studies are related to communication processes and integra-
tion of collaborative tools, combining tools such as e-mail or instant messaging, and
studying their application by means of different strategies. Most of the studies address

114 M. Jiménez and M. Piattini

the subject of communication difficulties in at least a secondary manner, presenting
this aspect as being one of the most important in relation to the problematic nature of
DSD.

On the other hand, 62% of the studies analyze or provide strategies, procedures or
frameworks related to DSD. The remaining 38% study tools were designed specifi-
cally for distributed environments. As an example, tools such as FASTDash [13],
Augur [14] or MILOS [15] may be of particular interest.

Table 3. Thematic areas dealt with in the primary studies

Thematic areas Studies (%)
Collaborative tools, techniques and frameworks orientated
towards communication and integration of existing tools

41,8

Process control, task scheduling and project coordination 34,2

Configuration management 6,3

Multi-agent systems 6,3

Knowledgement management 5,1

Test management 3,8

Defects detection 2,5

4 Problems and Solutions

In this section, we synthesize the problems and solutions identified through the sys-
tematic review, discussing the main subjects.

4.1 Communication

The software life cycle, especially in its early stages, requires a great deal of communi-
cation between members involved in the development who exchange a large number of
messages through different tools and different formats without following communica-
tion standards and facing misunderstandings and high response times. These draw-
backs, combined with the great size of personal networks which change over time, are
summarized in a decrease in communication frequency and quality which directly
affects productivity. To decrease these effects, both methodologies and processes must
be supported by collaborative tools as a means of avoiding face-to-face meetings with-
out comprising the quality of the results, as is proposed by M.A. Babar et al. [PS3]. K.
Mohan and B. Ramesh [PS29] discuss the need for user-friendly tools, integrating
collaborative tools and agents to improve knowledge integration. M.R. Thissen et al.
[PS55] examine communication tools and describe collaboration processes, dealing
with techniques such as conference calls and email.

Cultural differences imply different terminologies which cause mistakes in mes-
sages and translation errors. Different levels of understanding the problem domain
exist, as do different levels of knowledge, skills and training between teams. The use
of translation processes, and codification guidelines is therefore useful [PS10, PS65].

 Problems and Solutions in Distributed Software Development 115

4.2 Group Awareness

Members who are part of a virtual team tend to be less productive due to feelings of
isolation and indifference. They have little informal conversation across sites, and
their trust is reduced. Developers need to know the full status of the project and past
history which will allow them to create realistic assumptions about how work is done
on other sites. Frequent changes in processes, lack of continuity in communications
and lack of collaborative tool integration cause the remote groups to be unaware of
what is important because they do not know what other people are working on. As a
consequence, they cannot find the right person and/or timely information which will
enable them to work together efficiently, resulting in misalignment, rework and other
coordination problems.

M.A.S. Mangan et al. [PS35] present Odyssey, a middleware for collaborative ap-
plications that increases group and workspace awareness information available to
developers, helping them to reuse existing applications. On the other hand, J. Froeh-
lich and P. Dourish [PS17] describe Augur, a visualization tool that supports DSD
processes by creating visual representations of both software artifacts and software
development activities, thus allowing developers to explore relationships between
them. In the same context, S. Dustdar and H. Gall [PS15] study current technologies
such as peer-to-peer, workflow management and groupware systems.

J.D. Herbsleb et al. [PS26] present a tool that provides a visualization of the
change management system, making it easy to discover who has experience in work-
ing on which parts of the code, and to obtain contact information for that person. In
this line C. Gutwin et al. [PS22] propose using social networks to discover the experts
in a specific area and project documentation to provide direct information about ac-
tivities and areas of work that must be kept up to date.

4.3 Source Control

Distributed environments present problems derived from conflicts caused by editing
files simultaneously. Coordination and synchronization become more complex as the
degree of distribution of the team grows. Source control systems must support access
through internet, confronting its unreliable and insecure nature and the higher re-
sponse times.

To reduce these drawbacks, S.E. Dossick and G.E. Kaiser [PS14] propose CHIME,
an internet and intranet based application which allows users to be placed in a 3D
virtual world representing the software system. Users interact with project artifacts by
“walking around” the virtual world, in which they collaborate with other users
through a feasible architecture. With the same purpose, J.T. Biehl et al. [PS6] present
FASTDash as a user-friendly tool that uses a spatial representation of the shared code
base which highlights team members’ current activities, allowing a developer to de-
termine rapidly which team members have source files checked out, which files are
being viewed, and what methods and classes are currently being changed, providing
immediate awareness of potential conflict situations, such as two programmers editing
the same source file.

116 M. Jiménez and M. Piattini

4.4 Knowledge Flow Management

The team members’ experiences, methods, decisions, and skills must be accumulated
during the development process, so that each team member can use the experience of
his/her predecessor and the experience of the team accumulated during development,
saving cost and time by avoiding redundant work. For this purpose, documentation
must always be updated to prevent assumptions and ambiguity, therefore facilitating
the maintainability of the software developed. Distributed environments must facili-
tate knowledge sharing by maintaining a product/process repository focused on well
understood functionality by linking content from sources such as e-mail and online
discussions and sharing metadata information among several tools.

To solve the drawbacks caused by distribution, H. Zhuge [PS60] presents an ap-
proach that works with a knowledge repository in which information related to every
project is saved, using internet-based communication tools and thus enabling a new
team member to become quickly experienced by learning the knowledge stored.

K. Mohan and B. Ramesh [PS29] present an approach based on a traceability
framework that identifies the key knowledge elements which are to be integrated, and a
prototype system that supports the acquisition, integration, and use of knowledge ele-
ments, allowing knowledge fragments stored in diverse environments to be integrated
and used by various stakeholders in order to facilitate a common understanding.

4.5 Coordination

Coordination can be interpreted as the management of the right information, the right
people and the right time to develop an activity. Coordination in multi-site develop-
ments becomes more difficult in terms of articulation work, as problems derived from
communication, lack of group awareness and the complexity of the organization ap-
pear which influence the way in which the work must be managed. In this sense, more
progress reports, project reviews, conference calls and regular meetings to take correc-
tive action are needed, thus minimizing task dependencies with other locations. Col-
laborative tools must support analysis, design and development, allowing monitoring
activities and managing dependencies, notifications and implementation of corrective
measures [PS5]. We shall deal with many of these issues in the following sections.

P. Ovaska et al. [PS39] study the coordination of interdependencies between activi-
ties including the figure of a chief architect to coordinate the work and maintain the
conceptual integrity of the system.

S.S. Vibha et al. [PS66] propose a framework that enables a common understand-
ing of the information from different tools and supports loose coupling between them.
S. Setamanit et al. [PS50] describe a simulation model to study different ways in
which to configure global software development processes. Such models based on
empirical data, allow research into and calculation of the impact of coordination
efficiency and its effects on productivity.

J.D. Herbsleb et al. [PS26] suggest that multi-site communication and coordination
requires more people to participate, which causes a delay. Large changes involve
multiple sites and greater implementation times. Changes in multiple distributed sites
involve a large number of people.

 Problems and Solutions in Distributed Software Development 117

4.6 Collaboration

Concurrent edition of models and processes requires synchronous collaboration
between architects and developers who cannot be physically present at a common
location. Software modelling requires concurrency control in real time, enabling geo-
graphically dispersed developers to edit and discuss the same diagrams, and improv-
ing productivity by providing a means through which to easily capture and model
difficult concepts through virtual workspaces and the collaborative edition of artifacts
by means of tools which permit synchronized interactions.

A. De Lucia [PS62] proposes STEVE, a collaborative tool that supports distributed
modelling of software systems which, provides a communication infrastructure to
enable concurrent edition of the same diagram at the same time by several distributed
developers.

A further approach is presented by J. Suzuki and Y. Yamamoto [PS51] with the
SoftDock framework which solves the issues related to software component model-
ling and their relationships, describing and sharing component models information,
and ensuring the integrity of these models. Developers can therefore work analyzing,
designing, and developing software from component models and transfer them using
an exchange format, thus enabling communication between team members.

In another direction, X. WenPeng et al. [PS69] study Galaxy Wiki, an on-line col-
laborative tool based on the wiki concept which enables a collaborative authoring
system for documentation and coordination purposes, allowing developers to compile,
execute and debug programs in wiki pages.

4.7 Project and Process Management

Due to high organizational complexity, scheduling and task assignment becomes
more problematic in distributed environments because of volatile requirements,
changing specifications, and the lack of informal communication and synchronization.
Managers must control the overall development process, improving it during the en-
actment and minimizing the factors that may decrease productivity, taking into ac-
count the possible impacts of diverse cultures and attitudes.

In this context, S. Goldmann et al. [PS19] and S. Bowen and F. Maurer [PS7] ex-
plain the main ideas of MILOS, a system orientated towards planning and scheduling
which supports process modeling and enactment.

N. Ramasubbu et al. [PS43] propose a process maturity framework with 24 key
process areas which are essential for managing distributed software development and
capabilities for a continuously improving product management applicable to the
CMM framework.

The maturity of the process becomes a key factor for success. In this sense, M.
Passivaara and C. Lassenius [PS36] propose incremental integration and frequent
deliveries by following informing and monitoring practices. In the same mindset J.
Cusick and A. Prasad [PS12] include a set of recommendations based on experience,
such as limiting phase durations to maintain control by breaking large projects into
medium-size bundles, requiring interim deliverables to ensure quality or enforcing
quality through coding standards and verification.

118 M. Jiménez and M. Piattini

4.8 Process Support

Processes should reflect the direct responsibilities and dependencies between tasks,
notifying the people involved of the changes that concern them, thus avoiding infor-
mation overload of team members. Process modeling and enactment should support
inter-site coordination and cooperation of the working teams, offering automated
support to distributed project management. Problems derived from process evolution,
mobility and tool integration appear within this context. Process engines have to sup-
port changes during enactment. Furthermore, distributed environments usually in-
volve a large network of heterogeneous, autonomous and distributed models and
process engines, which requires the provision of a framework for process system
interoperability.

In relation to these problems, A. Fernández et al. [PS2] present the process model-
ling environment SPEARMINT, which supports extensive capabilities for multi-view
modelling and analysis, and XCHIPS for web-based process support which allows
enactment and simulation functionalities. Y. Yang and P. Wojcieszak [PS58] propose
a web-based visual environment to support process modelling for software project
managers and process enactment for software developers in an asynchronous and/or
synchronous manner.

S. Setamanit et al. [PS50] describe a hybrid computer simulation model of software
development processes to study alternative ways to configure GSD projects in order
to confront communication problems, control and coordination problems, process
management and time and cultural differences.

N. Glasser and J-C. Derniane [PS18] analyse CoMoMAS, a multi-agent engineering
approach that describes different view points in a software process, permitting the trans-
formation of conceptual models into executable programs. In this context, the agents
will be able to cover with the high mobility of the members involved in the development
process, taking charge of the management of information and permitting artifacts to
communicate both with each other and with human users.

4.9 Quality and Measurement

Quality of products is highly influenced by the quality of the processes that support
them. Organizations need to introduce new models and metrics to obtain information
adapted to the distributed scenarios that could be useful in improving products and
processes. With this aim, K.V. Siakas and B. Balstrup [PS30] propose the capability
model eSCM-SP, which has many similarities with other capability-assessment mod-
els such as CMMI, Bootstrap or SPICE and the SQM-CODE model, which considers
the factors that influence software quality management systems from a cultural and
organizational perspective.

J.D. Herbsleb et al. [PS25] work with several interesting measures, such as the in-
terdependence measure which allows the determination of the degree of dispersion of
work among sites by looking up the locations of all the individuals. In this sense, F.
Lanubile et al. [PS16] propose metrics associated with products and processes orien-
tated towards software defects such as: discovery effort, reported defects, defects
density, fixed defects or unfixed defects. D.B. Simmons [PS48] presents PAMPA 2
Knowledge Base to measure the effectiveness of virtual teams by gathering informa-
tion from completed projects.

 Problems and Solutions in Distributed Software Development 119

Furthermore, software architecture evaluation usually involves a large number of
stakeholders, who need face-to-face evaluation meetings, and for this reason adequate
collaborative tools are needed, such as propose M.A. Babar et al. [PS3].

4.10 Defects Detection

In distributed environments it is necessary to specify requisites with a higher level of
detail. Software defects become more frequent due to the added complexity, and in
most cases, this is related to communication problems and lack of group awareness.
Defects control must be adapted by making a greater effort in relation to risk man-
agement activities.

To minimize these problems, F. Lanubile et al. [PS16] define a process, specifying
roles, guidelines, forms and templates, and describe a web-based tool that adopts a
reengineered inspection process to minimize synchronous activities and coordination
problems to support geographically dispersed teams.

An adequate model cycle must allow the localization and recognition of defect-
sensitive areas in complex product development. In this line, Jv. Moll et al. [PS37]
indicate that transitions between constituent sub-projects are particularly defect-
sensitive. By means of an appropriate modelling of the overall project lifecycle and
by applying adequate defect detection measures, the occurrence of defects can be
reduced. The goal is to minimize the amount of defects that spread to the subsequent
phases early in the software life cycle, and reuse existing components or the applica-
tion of third-party components, thus minimizing product quality risks by using tested
components.

5 Success Factors

From the experimental studies analyzed, we have extracted the following success
factors of DSD, in which the primary studies referenced are listed in the Appendix A:

- Intervention of human resources by participating in surveys [PS3], [PS25].
- Carrying out the improvement based on the needs of the company, taking into

account the technologies and methodologies used [PS1]. The tools employed at
the present must be adapted and integrated [PS15].

- Training of human resources in the tools and processes introduced [PS26].
- Registration of activities with information on pending issues, errors and people in

charge [PS6].
- Establishment of an efficient communication mechanism between the members of

the organization, allowing a developer to discover the status and changes made
within each project [PS4], [PS6].

- Using a version control tool in order to control conflictive situations [PS40].
- There must be a way to allow the planning and scheduling of distributed tasks,

taking into account dependencies between projects, application of corrective
measures and notifications [PS17].

- Application of maturity models [PS43] and agile methodologies [PS33] based on
incremental integration and frequent deliveries.

- Systematic use of metrics tailored to the organization [PS26].

120 M. Jiménez and M. Piattini

6 Conclusions and Future Work

In this article we have applied a systematic review method in order to analyze the
literature related to the topic of DSD within the FABRUM project context, this work
serving as a starting point from which to establish the issues upon which subsequent
research will be focused.

Results obtained from this systematic review have allowed us to obtain a global vi-
sion of a relatively new topic which should be investigated in detail. However, every
organization has concrete needs which basically depend on its distribution character-
istics, its activity and the tools it employs. These are the factors that make this such a
wide subject, and lead to the necessity of adapting both the technical and organiza-
tional procedures, according to each organization’s specific needs.

Generally, the proposals found in the analyzed studies were mainly concerned with
improvements related to the use of collaborative tools, integration of existing tools,
source code control or use of collaborative agents. Moreover, it should be considered
that the evaluation of the results obtained from the proposed improvements are often
based on studies in a single organization, and sometimes only takes into account the
subjective perception of developers.

On the other hand, it should be noted that maturity models such as CMM, CMMI
or ISO, which would be of particular relevance to the present investigation, represent
only 27,5% of all analyzed works. The fact that almost all experimental studies that
employed CMMI and CMM applied a maturity level 2 suggests that the cost of
implementing higher maturity levels under distributed environments might be too
high. The application of agile methodologies based on incremental integration and
frequent deliveries, and frequent reviews of problems to adjust the process become
important success factors.

Finally, we must emphasize that the search excluded studies which addressed the
subject of DSD but did not contribute any significant method or improvement in this
research context. However, since this is such a wide area, some of these works present
interesting parallel subjects for the development of this investigation, which is why
their study would be important in a future work.

Acknowledgments. We acknowledge the assistance of MELISA project (PAC08-
0142-3315), financiered by the “Junta de Comunidades de Castilla-La Mancha”
of Spain. This work is part of FABRUM project (PPT-430000-2008-63), financiered
by “Ministerio de Ciencia e Innovación” of Spain and by Alhambra-Eidos
(http:// www. alhambra-eidos.es/).

References

1. Greenfield, J., Short, K., Cook, S., Kent, S., Crupi, J.: Software Factories: Assembling Ap-
plications with Patterns, Models, Frameworks and Tools. John Wiley & Sons, Chichester
(2004)

2. Herbsleb, J.D., Moitra, D.: Guest editor’s introduction: Global software development.
IEEE Software 18(2), 16–20 (2001)

 Problems and Solutions in Distributed Software Development 121

3. Werner, K., Rombach, D., Feldmann, R.: Outsourcing in India. IEEE Software, 78–86
(2001)

4. Christof Ebert, P.D.N.: Surviving Global Software Development. IEEE Software 18(2),
62–69 (2001)

5. Layman, L., Williams, L., Damian, D., Bures, H.: Essential communication practices for
Extreme Programming in a global software development team. Information & Software
Technology 48(9), 781–794 (2006)

6. Krishna, S., Sundeep, S., Geoff, W.: Managing cross-cultural issues in global software out-
sourcing. Commun. ACM 47(4), 62–66 (2004)

7. Damian, D., Lanubile, F., Oppenheimer, H.: Addressing the Challenges of Software Indus-
try Globalization: The Workshop on Global Software Development. In: ICSE 2003,
pp. 793–794 (2003)

8. Damian, D., Lanubile, F.: The 3rd International Workshop on Global Software Develop-
ment. ICSE 2004, pp. 756–757 (2004)

9. Kitchenham, B.: Procedures for performing systematic reviews (Joint Technical Report).
Software Engineering Group, Department of Computer Science, Keele University and
Empirical Software Engineering National ICT Australia Ltd. (2004)

10. Pino, F.J., García, F., Piattini, M.: Software Process Improvement in Small and Medium
Software Enterprises: A Systematic Review. Software Quality Journal (in press, 2007)

11. Marvin, V.Z., Dolores, R.W.: Experimental Models for Validating Technology, pp. 23–31
(1998)

12. ISO/IEC 12207: 2002/FDAM 2. Information technology - Software life cycle processes.
Geneva: International Organization for Standardization (2004)

13. Biehl, J.T., Czerwinski, M., Smith, G., Robertson, G.G.: FASTDash: a visual dashboard
for fostering awareness in software teams. In: Proceedings of the SIGCHI conference on
Human factors in computing systems, San Jose, California, USA, pp. 28–35. ACM Press,
New York (2007)

14. Froehlich, J., Dourish, P.: Unifying Artifacts and Activities in a Visual Tool for Distrib-
uted Software Development Teams, pp. 387–396 (2004)

15. Goldmann, S., Münch, J., Holz, H.: A Meta-Model for Distributed Software Development,
pp. 48–53 (1999)

Appendix A: Primary Studies Selected

In this section the selected primary studies in the systematic review are presented.

Table 4. Primary studies selected in the systematic review

List of primary studies selected in the systematic review

PS1
Strategies for global information systems development. Information & Management
42(1). Published in 2004. Pages: 45-59. Akmanligil M, Palvia PC.

PS2
Guided support for collaborative modeling, enactment and simulation of software
development processes. Software Process: Improvement and Practice 9(2). Published in
2004. Pages: 95-106. Fernández A, Garzaldeen B, Grützner I, Münch J.

PS3
An empirical study of groupware support for distributed software architecture
evaluation process. Journal of Systems and Software 79(7). Published in 2006. Pages:
912-925. Babar MA, Kitchenham B, Zhu L, Gorton I, Jeffery R.

122 M. Jiménez and M. Piattini

PS4
WebMake: Integrating distributed software development in a structure-enhanced
Web. Computer Networks and ISDN Systems 27(6). Published in 1995. Pages: 789-800.
Baentsch M, Molter G, Sturm P.

PS5 Coordinating Management Activities in Distributed Software Development
Projects. Published in 1998. Pages: 33-38. Bendeck F, Goldmann S, Kötting B.

PS6
FASTDash: a visual dashboard for fostering awareness in software teams.
Proceedings of the SIGCHI conference on Human factors in computing systems.
Published in 2007. Pages: 28-35. Biehl JT, Czerwinski M, Smith G, Robertson GG.

PS7 Designing a Distributed Software Development Support System Using a Peer-to-
Peer Architecture. Published in 2002. Pages: 1087-1092. Bowen S, Maurer F.

PS8 Supporting Agent-Based Distributed Software Development through Modeling and
Simulation. Published in 2003. Pages: 56-59. Cai L, Chang CK, Cleland-Huang J.

PS9
How distribution affects the success of pair programming. International Journal of
Software Engineering & Knowledge Engineering 16(2). Published in 2006. Pages: 293-
313. Canfora G, Cimitile A, Lucca GAD, Visaggio CA.

PS10
Creating global software: A conspectus and review. Interacting with Computers 9(4).
Published in 1998. Pages: 449-465. Carey JM.

PS11
Self-organization of teams for free/libre open source software development.
Information and Software Technology 49(6). Published in 2007. Pages: 564-575.
Crowston K, Li Q, Wei K, Eseryel UY, Howison J.

PS12 A Practical Management and Engineering Approach to Offshore Collaboration.
IEEE Software 23(5). Published in 2006. Pages: 20-29. Cusick J, Prasad A.

PS13
Global software development projects in one of the biggest companies in Latvia: is
geographical distribution a problem? Software Process: Improvement and Practice
11(1). Published in 2006. Pages: 61-76. Darja m.

PS14

CHIME: a metadata-based distributed software development environment.
Proceedings of the 7th European software engineering conference held jointly with the
7th ACM SIGSOFT international symposium on Foundations of software engineering.
Published in 1999. Pages: 464-475. Dossick SE, Kaiser GE.

PS15 Process Awareness for Distributed Software Development in Virtual Teams.
Published in 2002. Pages: 244-251. Dustdar S, Gall H.

PS16
Tool support for geographically dispersed inspection teams. Software Process:
Improvement and Practice 8(4). Published in 2003. Pages: 217-231. Lanubile, F,
Mallardo T, Calefato F.

PS17 Unifying Artifacts and Activities in a Visual Tool for Distributed Software
Development Teams. Published in 2004. Pages: 387-396. Froehlich J, Dourish P.

PS18 Software Agents: Process Models and User Profiles in Distributed Software
Development. Published in 1998. Pages: 45-50. Glaser N, Derniame J-C.

PS19
A Meta-Model for Distributed Software Development. Published in 1999. Pages: 48-
53. Goldmann S, Münch J, Holz H.

PS20
Issues in co-operative software engineering using globally distributed teams.
Information and Software Technology 38(10). Published in 1996. Pages: 647-655. Gor-
ton I, Motwani S.

PS21
Coordinating Distributed Software Development Projects with Integrated Process
Modelling and Enactment Environments. Published in 1998. Pages: 39-44. Grundy J,
Hosking J, Mugridge R.

PS22
Group awareness in distributed software development. Proceedings of the 2004
ACM conference on Computer supported cooperative work. Published in 2004. Pages:
72-81. Gutwin C, Penner R, Schneider K.

 Problems and Solutions in Distributed Software Development 123

PS23

Designing task visualizations to support the coordination of work in software
development. Proceedings of the 2006 20th anniversary conference on Computer sup-
ported cooperative work. Published in 2006. Pages: 39-48. Halverson CA, Ellis JB,
Danis C, Kellogg WA.

PS24
An Empirical Study of Speed and Communication in Globally Distributed Software
Development. IEEE Transactions on Software Engineering 29(6). Published in 2003.
Pages: 481-492. Herbsleb JD, Mockus A.

PS25
Distance, dependencies, and delay in a global collaboration. Proceedings of the 2000
ACM conference on Computer supported cooperative work. Published in 2000. Pages:
319-328. Herbsleb JD, Mockus A, Finholt TA, Grinter RE.

PS26
An empirical study of global software development: distance and speed. Proceedings
of the 23rd International Conference on Software Engineering. Published in 2001. Pages:
81-90. Herbsleb JD, Mockus A, Finholt TA, Grinter RE.

PS27
Global software development at siemens: experience from nine projects.
Proceedings of the 27th international conference on Software engineering. Published in
2005. Pages: 524-533. Herbsleb JD, Paulish DJ, Bass M.

PS28 Working Group Report on Coordinating Distributed Software Development
Projects. Published in 1998. Pages: 69-72. Holz H, Goldmann S, Maurer F.

PS29
Traceability-based knowledge integration in group decision and negotiation
activities. Decision Support Systems 43(3). Published in 2007. Pages: 968-989. Mohan
K., Ramesh B.

PS30
Software outsourcing quality achieved by global virtual collaboration. Software
Process: Improvement and Practice 11(3). Published in 2006. Pages: 319-328. Siakas
K.V., Balstrup B.

PS31
Global software development: technical, organizational, and social challenges.
SIGSOFT Softw Eng Notes 28(6). Published in 2003. Pages: 2-2. Lanubile F, Damian
D, Oppenheimer HL.

PS32
Essential communication practices for Extreme Programming in a global software
development team. Information and Software Technology 48(9). Published in 2006.
Pages: 781-794. Layman L, Williams L, Damian D, Bures H.

PS33
Ambidextroux coping strategies in globally distributed software development
projects. Communications of the ACM 49(10). Published in 2006. Pages: 35-40. Lee G,
Delone W, Espinosa JA.

PS34

Distributed development in an intra-national, intra-organisational context: an
experience report. Proceedings of the 2006 international workshop on Global software
development for the practitioner. Published in 2006. Pages: 80-86. Lindqvist E, Lundelll
B, Lings B.

PS35
A Middleware to Increase Awareness in Distributed Software Development
Workspaces. Published in 2004. Pages: 62-64. Mangan MAS, Borges MRS, Werner
CML.

PS36
Collaboration practices in global inter-organizational software development
projects. Software Process: Improvement and Practice 8(4). Published in 2003. Pages:
183-199. Paasivaara, M, Lassenius C.

PS37
Defect detection oriented lifecycle modeling in complex product development.
Information and Software Technology 46(10). Published in 2004. Pages: 665-675. Moll
Jv, Jacobs J, Kusters R, Trienekens J.

PS38
Process and technology challenges in swift-starting virtual teams. Information &
Management 44(3). Published in 2007. Pages: 287-299. Munkvold BE, Zigurs I.

PS39
Architecture as a coordination tool in multi-site software development. Software
Process: Improvement and Practice 8(4). Published in 2003. Pages: 233-247. Ovaska, P,
Rossi M, Marttiin P.

124 M. Jiménez and M. Piattini

PS40

Software configuration management over a global software development
environment: lessons learned from a case study. Proceedings of the 2006 international
workshop on Global software development for the practitioner. Published in 2006.
Pages: 45-50. Pilatti L, Audy JLN, Prikladnicki R.

PS41 Virtual teams: a review of current literature and directions for future research.
SIGMIS Database 35(1). Published in 2004. Pages: 6-36. Powell A, Piccoli G, Ives B.

PS42
Global software development in practice lessons learned. Software Process:
Improvement and Practice 8(4). Published in 2003. Pages: 267-281. Prikladnicki, R,
Audy JLN, Evaristo R.

PS43
Leveraging Global Resources: A Process Maturity Framework for Managing
Distributed Development. IEEE Software 22(3). Published in 2005. Pages: 80-86.
Ramasubbu N, M. S. Krishnan, Kompalli P.

PS44
Can distributed software development be agile? Communications of the ACM 49(10).
Published in 2006. Pages: 41-46. Ramesh B, Cao LAN, Mohan K, Peng XU.

PS45
The role of collaborative support to promote participation and commitment in
software development teams. Software Process: Improvement and Practice 12(3).
Published in 2007. Pages: 229-246. Renata Mendes de Araujo MRSB.

PS46
Virtual workgroups in offshore systems development. Information and Software
Technology 47(5). Published in 2005. Pages: 305-318. Sakthivel S.

PS47

An experimental simulation of multi-site software development. Proceedings of the
2004 conference of the Centre for Advanced Studies on Collaborative research.
Published in 2004. Pages: 255-266. Shami NS, Bos N, Wright Z, Hoch S, Kuan KY,
Olson J, Olson G.

PS48
Measuring and Tracking Distributed Software Development Projects. Published in
2003. Pages: 63-69. Simmons DB.

PS49
A research agenda for distributed software development. Published in 2006. Pages:
731-740. Sinha V, Chandra S, Sengupta B.

PS50
Using simulation to evaluate global software development task allocation strategies.
Software Process: Improvement and Practice. Published in 2007. Pages: n/a. Setamanit,
S, Wakeland W, Raffo D.

PS51
Leveraging Distributed Software Development. 32(9). Published in 1999. Pages: 59-
64. Suzuki J, Yamamoto Y.

PS52
A flexible framework for cooperative distributed software development. Journal of
Systems and Software 16(2). Published in 1991. Pages: 97-105. Narayanaswamy. K,
Goldman, NM.

PS53
A reliability assessment tool for distributed software development environment
based on Java and J/Link. European Journal of Operational Research 175(1). Pub-
lished in 2006. Pages: 435-445. Tamura Y, Yamada S, Kimura M.

PS54
An integration centric approach for the coordination of distributed software
development projects. Information and Software Technology 48(9). Published in 2006.
Pages: 767-780. Taxen L.

PS55

Communication tools for distributed software development teams. Proceedings
of the 2007 ACM SIGMIS CPR conference on 2007 computer personnel doctoral
consortium and research conference: The global information technology workforce.
Published in 2007. Pages: 28-35. Thissen MR, Page JM, Bharathi MC, Austin TL.

PS56
Ontology-based multi-agent system to multi-site software development. Proceedings
of the 2004 workshop on Quantitative techniques for software agile process. Published in
2004. Pages: 66-75. Wongthongtham P, Chang E, Dillon TS.

PS57
Ontology-based multi-site software development methodology and tools. Journal of
Systems Architecture 52(11). Published in 2006. Pages: 640-653. Wongthongtham P,
Chang E, Dillon TS, Sommerville I.

 Problems and Solutions in Distributed Software Development 125

PS58 Supporting Distributed Software Development Processes in a Web-Based
Environment. Published in 1999. Pages: 292-295. Yang Y, Wojcieszak P.

PS59
Project Management Model: Proposal for Performance in a Physically Distributed
Software Development Environment. Engineering Management Journal 16(2).
Published in 2004. Pages: 28-34. Zanoni R, Audy JLN.

PS60 Knowledge flow management for distributed team software development.
Knowledge-Based Systems 15(8). Published in 2002. Pages: 465-471. Zhuge H.

PS61
Empirical evaluation of distributed pair programming. International Journal of
Human-Computer Studies, In Press. Accepted Manuscript 2007. Hanks B.

PS62
Enhancing collaborative synchronous UML modelling with fine-grained versioning
of software artefacts. Journal of Visual Languages & Computing 2007 18(5). Published
in 2007. Pages: 492-503. De Lucia A., Fasano F., Scanniello G., Tortora G.

PS63

An Evaluation Method for Requirements Engineering Approaches in Distributed
Software Development Projects. International Conference on Software Engineering
Advances (ICSEA 2007). Published in 2007. Pages: 39-45. Michael G., Tobias H.,
Franz R., Colin A.

PS64

1st International Workshop on Tools for Managing Globally Distributed Software
Development (TOMAG 2007). International Conference on Software Engineering
Advances (ICSEA 2007). Published in 2007. Pages: 278-279. Chintan A., Jos van H.,
Frank H.

PS65
Distributed Software Development: Practices and challenges in different business
strategies of offshoring and onshoring. Published in 2007. Pages: 262-274. Rafael P.,
Jorge Luis N. A., Daniela D., Toacy C. d. O.

PS66
An Adaptive Tool Integration Framework to Enable Coordination in Distributed
Software Development. International Conference on Software Engineering Advances
(ICSEA 2007). Published in 2007. Pages: 151-155. Vibha S. S., Bikram S., Sugata G.

PS67
Coordination Practices in Distributed Software Development of Small Enterprises.
International Conference on Software Engineering Advances (ICSEA 2007). Published
in 2007. Pages: 235-246. Alexander B., Bernhard N., Volker W.

PS68

Globally distributed software development project performance: an empirical
analysis. Proceedings of the 6th joint meeting of the European software engineering
conference and the ACM SIGSOFT symposium on The foundations of software
engineering 2007. Published in 2007. Pages: 125-134. Narayan R., Rajesh Krishna B.

PS69
On-line collaborative software development via wiki. Proceedings of the 2007
international symposium on Wikis 2007. Published in 2007. Pages: 177-183. WenPeng
X., ChangYan C., Min Y.

K. Berkling et al. (Eds.): SEAFOOD 2008, LNBIP 16, pp. 126–133, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Design and Code Reviews in the Age of the Internet

Bertrand Meyer

ETH Zurich and Eiffel Software
Bertrand.Meyer@inf.ethz.ch

http://se.ethz.ch, http://eiffel.com

Code reviews are one of the standard practices of software engineering. Or let’s say
that they are a standard practice of the software engineering literature. They are
widely recommended; how widely practiced, I am not sure.

Eiffel Software has applied code reviews to the recent developments of EiffelStu-
dio, a large IDE (interactive development environment) whose developers are spread
over three continents. This distributed setup forced us to depart from the standard
scheme as described in the literature and led to a fresh look at the concept; some of
what appeared initially as constraints (preventing us from ever having all the people
involved at the same time in the same room) turned out to be beneficial in the end,
encouraging us in particular to emphasize the written medium over verbal discus-
sions, to conduct a large part of the process prior to the actual review meeting, and to
take advantage of communication tools to allow several threads of discussion to pro-
ceed in parallel during the meeting itself. Our reviews are not just about code, but
encompass design and specification as well. The process relies on modern, widely
available communication and collaboration tools, most of them fairly recent and with
considerable room for improvement. This article describes some of the lessons that
we have learned, which may also be useful to others.

1 Code Review Concepts

Michael Fagan from IBM introduced “code inspections”, the original name, in a 1976
article1. Inspection or review, the general idea is to examine some element of code in
a meeting of (typically) around eight people, with the aim of finding flaws or ele-
ments that should be improved. This is the only goal:

• The review is not intended to assess the programmer — although in practice
this is not so easy to avoid, especially if the manager is present.

• The review is not intended to correct deficiencies, only to uncover them.

The code and any associated elements are circulated a few days in advance. The
meeting typically lasts a few hours; it includes the author, a number of other developer

1 M.E. Fagan, Design and Code inspections to reduce errors in program development, IBM

Systems Journal, Vol. 15, No 3, 1976, pages 182-211; at www.research.ibm.com/ journal/sj/
153/ibmsj1503C.pdf.

 Design and Code Reviews in the Age of the Internet 127

competent to assess the code, a meeting chair who moderates the discussion (and
should not be the manager), and a secretary who records it, producing a report with
specific recommendations. Some time later, the author should respond to the report by
describing whether and how the recommendations have been carried out.

Such is the basic idea of traditional reviews. It is often criticized on various
grounds. Advocates of Extreme Programming point out that reviews may be superflu-
ous if the project is already practicing pair programming. Others note that when it
comes to finding code flaws — a looming buffer overflow, for example — static
analysis tools are more effective than human inspection. In any case, the process is
highly time-consuming; most teams that apply it perform reviews not on the entire
code but on samples. Still, code reviews remain one of the tools in a battery of ac-
cepted “best practices” for improving software quality.

We have found that the exercise is indeed useful if adapted to the modern world of
software development. The first extension is to include design and specification.
Many of the recent references on code reviews focus on detecting low-level code
flaws, especially security risks. This is important but increasingly a task for tools
rather than humans. We feel that API (abstract program interface) design, architecture
choices and other specification and design issues are just as worth the reviewers’
time; in our reviews these aspects have come to play an increasingly important part in
the discussions.

Among the traditional review principles that should in our view be retained is the
rule that the review should only identify deficiencies, not attempt to correct them.
With the advent of better software technology it may be tempting to couple review
activities with actual changes to the software repositories; one tool that supports web-
based review, Code Collaborator2, allows this through coupling with a configuration
management system. We feel that this is risky. Updating software — even for simple
code changes, not touching specification and design — is a delicate matter and should
be performed carefully, outside of the time pressures inherent in a review.

2 A Distributed Review?

All the descriptions of code reviews I have seen in the literature talk of a review as a
physical meeting with people sitting in the same room. This is hardly applicable to the
model of software development that is increasingly dominant today: distributed
teams, split over many locations and time zones. At Eiffel Software we were curious
to see whether we could apply the model in such a setup; our first experience — still
fresh and subject to refinement — suggest that thanks to the Internet and modern
communication mechanisms this setup is less a hindrance than a benefit, and that to-
day’s technology actually provides a strong incentive to revive and expand the idea of
the review.

2 http://www.smartbear.com/

128 B. Meyer

The EiffelStudio development team has members in California, Western Europe,
Russia and China. In spite of this we manage to have a weekly technical meeting,
with some members of the team agreeing to stay up late. (In the winter 8 to 9 AM
California means 5 to 6 PM in Western Europe, 7 to 8 PM in Moscow, and midnight
to 1 AM in Shanghai.) We are now devoting one out of three such meetings to a code
review.

3 Constraints and Technology

Although many of the lessons should be valid for any other team, here are some of the
specifics of our reviews, which may influence our practice and conclusions.

Our meetings, whether ordinary ones or for code reviews, last one hour. We are
strict on the time limit, obviously because it’s late at night for some of the partici-
pants, but also because it makes no sense to waste the time of a whole group of highly
competent developers. This schedule constraint is an example of limitation that has
turned out to be an advantage, forcing us to organize the reviews and other meetings
seriously and professionally.

Almost all of our development is done in Eiffel; one aspect that influences the re-
view process is that Eiffel applies the “seamless development” principle which treats
specification, design and analysis as a continuum, rather than a sequence of separate
steps (using, for example, first UML then a programming language); the Eiffel lan-
guage serves as the single notation throughout. This has naturally caused the exten-
sion to design reviews, although we think that this extension is desirable for teams
using any other development language and a less seamless process. Another aspect
that influences our process is that, since IDEs are our business, the tool we produce is
also the tool we use (this is known as the “eat your own dog food” principle); but
again we feel the results would not fundamentally change for another kind of software
development.

 Design and Code Reviews in the Age of the Internet 129

Distributed reviews need support from communication and collaboration tools. At
the moment we essentially rely on four tools:

• The reviews require voice communication, similar to a conference call. We
started with Skype but now use it only as a backup since we found too many
problems in intensive use. Another Voice over IP solution (X-Lite) is the
current voice tool.

• In parallel, we use written communication. For this we retain Skype’s chat
mechanism. A chat window involving all the participants remains active
throughout the review.

• For shared documents, we use Google Docs, which provides a primitive Mi-
crosoft-Word-like editing framework, but on the Web so that several people
can update a given document at the same time. The conflict resolution is
fine-grained: most of the time changes are accepted even if someone else is
also modifying the document; only if two people are changing exactly the
same words does the tool reject the requests. While not perfect, Google Docs
provides a remarkable tool for collaborative editing, with the advantage that
texts can be pasted to and from Microsoft Word documents with approxi-
mate preservation of formats.

• It is also important to be able to share a screen, for example to run a demo of
a new proposal for a GUI (graphical user interface) idea or other element that
a developer has just put together on his or her workstation. For this we use
the WebEx sharing tool.

• Wiki pages, especially the developer site at http://dev.eiffel.com, are also
useful, but less convenient than Google Docs to edit during a meeting.

Clearly the choice of tools is the part of this article that is most clearly dependent
on the time of writing. The technology is evolving quickly enough that a year or two
from now the solutions might be fairly different. What is remarkable in the current
setup is that we have not so far found a need for specialized reviewing software but
been content enough with general-purpose communication and collaboration tools.

4 Reviews for the 21st Century

Here are some of the lessons we have learned.
First, scripta manent: prefer the written word. We have found that a review works

much better if it is organized around a document. For any meeting we produce a
shared document (currently Google Docs); the whole meeting revolves around it. The
document is prepared ahead of the meeting, and updated in real time during the meet-
ing (while, as noted, the software itself is not).

The unit of review is a class, or sometimes a small number of closely related
classes. A week in advance of the review the code author prepares the shared docu-
ment with links to the actual code. It follows a standard structure described below.

One of the differences with a traditional review is a practice which we hadn’t
planned, but which quickly imposed itself through experience: most of the work oc-
curs off-line, before the meeting. Our original intuition was to limit the amount of
advance work and delay written comments to a couple of days before the meeting, to

130 B. Meyer

avoid reviewers influencing each other too much. This was a mistake; interaction be-
tween reviewers, before, during and after the meeting, has turned out to be one of the
most effective aspects of the process.

The reviewers provide their comments on the review page (the shared document);
the code author can then respond at the same place. The benefit of this approach is
that it saves considerable time. Before we systematized it we were spending time, in
the actual meeting, on non-controversial issues; in fact, our experience suggests that
with a competent group most of the comments and criticisms will be readily accepted
by the code’s author. We should instead spend the meeting on the remaining points of
disagreement. Otherwise we end up replaying the typical company board meeting as
described in the opening chapter of C. Northcote Parkinson’s Parkinson’s Law.
(There are two items on the agenda: the color of bicycles for the mail messengers; and
whether to build a nuclear plant. Everyone has an opinion on colors, so the first item
takes 59 minutes ending with the decision to form a committee; the next decision is
taken in one minute, with a resolution to let the CEO handle the matter.) Unlike with
this all too common pattern, the verbal exchanges can target the issues that truly war-
rant discussion.

For an actual example of a document produced before and during one of our code
reviews, see

 http://dev.eiffel.com/reviews/2008-02-sample.html

which gives a good idea of the process. For a complete picture you would need to see
the full discussion in the chat window and hear a recording of the discussion.

5 Review Scope

The standard review page structure consists of 8 sections, dividing the set of aspects
to be examined:

1. Choice of abstractions
2. Other aspects of API design
3. Other aspects of architecture, e.g. choice of client links and inheritance hierarchies
4. Implementation, in particular choice of data structures and algorithms
5. Programming style
6. Comments and documentation (including indexing/note clauses)
7. Global comments
8. Coding practices

This goes from more high-level to more implementation-oriented. Note in particu-

lar sections 1 to 3, making it clear that we are talking not just about code but about
reviewing architecture and design:

• The choice of abstractions (1) is the key issue of object-oriented design. De-
velopers will discuss whether a certain class is really justified or should have
its functionalities merged with another's; or, conversely, whether an impor-
tant potential class has been missed.

 Design and Code Reviews in the Age of the Internet 131

• API design (2) is essential to the usability of software elements by others,
and in particular to reuse. We enforce systematic API design conventions,
with a strong emphasis on consistency across the entire code base. This as-
pect is particularly suitable for review.

• Other architectural issues (3) are also essential to good object-oriented de-
velopment; the review process is useful, both during the preparatory phase
and during the meeting itself, to discuss such questions as whether a class
should really inherit from another or instead be a client.

Algorithm design (4) is also a good item for discussion.
In our process the lower-level aspects, 5 to 8, are increasingly handled before the

review meeting, in writing, enabling us to devote the meeting time to the deeper and
more delicate issues.

6 Making the Process Effective

We have identified the following benefits of the choices described.

• The group saves time. Precious personal interaction time is reserved for top-
ics that require it.

• Discussing issues in writing makes it possible to have more thoughtful com-
ments. Participants can take care to express their observations — criticism of
design and implementation decisions, and the corresponding responses —
properly. This is easier than in a verbal conversation.

• The written support allows editing and revision.
• There is a record. Indeed the review no longer needs a secretary or the tedi-

ous process of writing minutes: the review page in its final stage, after joint
editing, is the minutes.

• The verbal discussion time is much more interesting since it addresses issues
of real substance. The dirty secret of traditional code reviews is that most of
the proceedings are boring to most of the participants, each of whom is typi-
cally interested in only a subset of the items discussed. With an electronic
meeting each group member can take care of issues of specific concern in
advance and in writing; the verbal discussion is then devoted to the contro-
versial and hence interesting stuff.

• In a group with contentious personalities, one may expect that expressing
comments in writing will help defuse tension. (I am writing “may expect”
because I don’t know from experience — our group is not contentious.)

Through our electronic meetings — not just code reviews — another example has
emerged of how constraints can become benefits. Individually, most of us apart from
piano players may be most effective when doing one thing at a time, but collectively a
group of humans is pretty good at multiplexing. When was the last time you spent a
one-hour meeting willingly focused at every minute on the issue then under discus-
sion? Even the most attentive, careful not to let their minds wander off topic, react at
different speeds from others: you may be thinking deeper about the previous item even
when the agenda has moved on; you may be ahead of the game; or you may have

132 B. Meyer

something to say that complements the comments of the current speaker, whom you
don’t want to interrupt. But this requires multithreading and a traditional meeting is
sequential. In our code reviews and other meetings we have quickly learned to practice
a kind of organic multithreading: someone is talking; someone is writing a comment in
the chat window (e.g. a program extract that illustrates a point under discussion, or a
qualification of what is being said); a couple of people are updating the common
document; someone else is preparing next week’s document, or a Wiki page at
http://dev.eiffel.com. It is amazing to see the dynamics of such meetings, with the
threads progressing in parallel while everyone remains on target, and not bored.

7 An Academic Endeavor

Team distribution is a fact of life in today’s software development, and as well as a
challenge it can be a great opportunity to improve the engineering of software. I am
also practicing it in an academic environment. ETH Zurich offers a course specifically
devoted to studying, in the controlled environment of an academic environment, the
issues and techniques of distributed development: DOSE (Distributed and Outsourced
Software Engineering). It involved in 2007, for the first time, a cooperative project
performed in common by several universities. This was a trial run, and we are now
expanding the experience; for details see

 http://se.ethz.ch/dose/

Participation is open to any interested university. The goal is to let students dis-
cover and confront the challenges of distributed development in the controlled envi-
ronment of a university course.

8 Distributed and Collaborative Development

Not all of our experience, as noted, may be transposable to other contexts. Our group
is small, we know each other well and have been working together for quite a while;
we developed these techniques together, learning from our mistakes and benefiting
from the advances of technology in the past years. But whatever the reservations I
believe this is the way of the future. Even more so considering that the supporting
technology is still in its infancy. Two years ago most of the communication tools we
use did not exist; five years ago none did. (Funny to think of all the talks I heard over
the years about “Computer-Supported Cooperative Work”, fascinating but remote
from anything we could use. Suddenly come the Web, Voice Over IP solutions for the
common folk, shared editing tools and a few other commercial offerings, and the
gates open without fanfare.)

The tools are still fragile; we waste too much time on meta-communication (“Can
you hear me? Did Peter just disconnect? Bill, remember to mute your microphone!”),
calls get cut off, we don’t have a really good equivalent of the shared whiteboard.
Other aspects of the process still need improvement; for example we have not yet
found a good way to make our review results seamlessly available as part of the open-
source development site, which is based on Wiki pages. All this will be corrected in

 Design and Code Reviews in the Age of the Internet 133

the next few years. I hope that courses such as DOSE and other academic efforts will
enable us to understand better what makes collaborative development succeed or fail.

But this is not just an academic issue. Eiffel Software’s still recent experience of
collaborative development — every meeting brings new insights — suggests that
something fundamental has changed, mostly for the better, in the software develop-
ment process. As regards code reviews I do not, for myself, expect ever again to get
stuck for three hours in a windowless room with half a dozen other programmers por-
ing over some boring printouts.

Acknowledgment. I am grateful to the EiffelStudio development team for their creativ-
ity and team spirit, which enabled the team collectively to uncover and apply the
techniques described here. An earlier version of this article appeared as a column in
the EiffelWorld newsletter, and a slightly different version in Communications of the
ACM, September 2008.

K. Berkling et al. (Eds.): SEAFOOD 2008, LNBIP 16, pp. 134–148, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Preliminary Analysis for Risk Finding in Offshore
Software Outsourcing from Vendor's Viewpoint

Zhongqi Sheng1,2, Hiroshi Tsuji1 , Akito Sakurai3, Ken'ichi Yoshida4,
and Takako Nakatani4

1 Osaka Prefecture University, Graduate School of Engineering,
1-1 Gakuencho, Nakaku, Sakai, Japan, 599-8531

Sheng@mis.cs.osakafu-u.ac.jp, Tsuji@cs.osakafu-u.ac.jp
2 Northeastern University, School of Mechanical Engineering,

3-11 Wenhua Road, Shenyang, Liaoning, China, 110004
3 Keio University, Graduate School of Science and Engineering,

4-1-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, Japan, 223-8521
sakurai@ae.keio.ac.jp

4 University of Tsukuba, Graduate School of Business Science,
3-29-1 Otsuka, Bunkyo, Tokyo, Japan, 112-0012

{yoshida,nakatani}@gssm.otsuka.tsukuba.ac.jp

Abstract. It is meaningful to investigate the know-how of experienced project
managers on the side of vendors about the risk in offshore software outsourcing.
A survey is conducted to find out the main risk factors from the vendor's view-
point. The questions asked include background information of vendor and re-
spondent, suggestions to the client, and evaluations on experienced offshore
projects. In all, 131 respondents from 77 vendors evaluate 241 offshore soft-
ware outsourcing projects upon 30 items. The background information about
the respondents and the vendors is summarized first. The preliminary analysis
on the characters and the achievements of experienced offshore projects is re-
ported in this paper. Some conclusions are drawn at last.

1 Introduction

Offshore software outsourcing is defined as a situation where a company (client) con-
tracts out all or part of its software development activities to another company (vendor)
which locates in foreign country and provides agreed productions or services [1]. In the
era of globalization and specialization, companies are continuously forced to reduce
production costs so as to keep sustainable competitive strength. Outsourcing non-core
activities to the third parties has become a universal tool, which helps companies to
concentrate on their profit-generating activities [2-5]. The primary motivation of off-
shore software outsourcing is the low cost of software development work in develop-
ing countries such as India, China. The benefits of offshore software outsourcing also
include compression of project development time, easy access to resource pool of
highly experienced IT professionals, and so on [6,7]. The trend towards offshore soft-
ware outsourcing has been growing steadily since the 1990s and now offshore software

 Preliminary Analysis for Risk Finding in Offshore Software Outsourcing 135

outsourcing is playing an increasingly important role in the information technology
strategies of major corporations.

However, particular countries tend to have distinct working ways, which can prove
problematic when attempting cross border collaboration. It is well known that there
are inevitable risks in offshore software outsourcing due to the existence of cultural
difference, opacity of software developments at the offshore site, insufficiency of con-
trol over development team, and so on. It becomes very important to take good use of
offshore software outsourcing practitioners’ knowledge and estimate the risk for off-
shore software outsourcing decision-makings [8-9].

We designed one kind of questionnaire delivered to experienced project managers
on the side of clients to extract tacit know-how knowledge in 2006, applied conjoint
analysis method on data of virtual projects to analyze the partial utilities and impor-
tance of risk factors, and carried out structural equation modeling method on data of
real projects to detect the relations among risk factors. Based on the research results,
we proposed an experimental risk estimation method and designed a risk diagnosis
tool named RASOD for offshore software outsourcing [10-12].

It is also meaningful to investigate the risk factors and analyze their relations with
development result of offshore software outsourcing project from the vendor’s view-
point. In 2007, we delivered another questionnaire to experienced project managers
on the side of vendors to find out the risk knowledge about offshore software out-
sourcing, by which we hope to know the main risk factors together with their influ-
ence degree as preceding research. The remaining contents of this paper are organized
as follows. The survey content is described in section 2. The background information
about the respondents and the vendors is summarized in section 3. The preliminary
analysis on the characters and achievements of experienced offshore projects is re-
ported in section 4. Some discussions and conclusions are given at last.

Table 1. Background information and suggestions to the client

Part 1: Background Information about company (vendor)

Q11 Name of the company
Q12 URL
Q13 Location of the company
Q14 Size of the company
Q15 Foundation years of the company
Q16 Business location of the company in Japan
Q17 Type of software the company is good at
Q18 Experience of orders from clients in countries other than Japan
Q19 Difference strategies of the company
Part 2: Background information about respondent
Q21 Number of years of IT experience
Q22 Number of years of experience in current company
Q23 Number of involved offshore projects
Q24 Current position/role
Q25 Type of software projects being in charge of
Part 3: Suggestions to the client

Q31
Q32
Q33

136 Z. Sheng et al.

2 Survey Content

In order to find out tacit knowledge about risks in offshore software outsourcing, we
design the questionnaire delivered to experienced project managers of vendors on the
base of academy-industry collaboration [10]. The questionnaire consists of five parts.

Table 2. Evaluation items for experienced offshore project

Part X: Evaluation of experienced offshore software outsourcing project (X=4,5)

ID Characters of developed system

QX01 Type of software(Customer application, Middleware, Embedded software)

QX02 Period of development

QX03 Order size

QX04 Times of receiving orders

QX05 Difficulty level of required technology

QX06 Type of development model required and of that desired in your view

QX07 Main appeal of your company to the client

QX08 Share of development between client and vendor

 Problems encountered in development

QX09 Was technology level of client higher than necessary, lower, or appropriate ?

QX10 How did you solve them when incomplete specifications or doubtful points existed ?

QX11 What was the biggest problem concerning miscommunication?

QX12 What was the biggest problem encountered during brief meetings?

QX13 Whether did you and the client expect long-term relationship?

QX14 What was the biggest geographic constraint?

QX15 Did you experience problems about development environment?

 Quality requirements for development work

QX16 Function requirements

QX17 Performance requirements

QX18 Efficiency requirements

 Development achievements and risks

QX19 Company image (including reliability) was improved

QX20 Company technology level (including specialist education) was improved

QX21 New technology was acquired

QX22 Sale was increased

QX23 Profit was improved

QX24 Business knowledge (not technology knowledge) was acquired

QX25 Influenced by the change of exchange rate

QX26 Was the client concerned by brain drain in the vendor

QX27 Did brain drain happen in developing period

QX28 How much was the change of the specification

QX29 How much was the change of schedule/period

 Development result of the project

QX30 Please evaluate the development result of the project

 Preliminary Analysis for Risk Finding in Offshore Software Outsourcing 137

Table 3. Inquiring items about sharing of development between client and vendor

No. Development Stage Development Process

1 Business Planning or Product Planning

2 Requirements Analysis

3 Development of Requirements Specification

4

Requirements

Analysis

Requirements Specification Review

5 Architecture Design

6 Architecture Design Review

7 Architecture Implementation

8

Architecture

Design

Architecture Implementation Inspection

9 Framework Design

10 Framework Design Review

11 Framework Implementation

12

Framework

Design

Framework Implementation Inspection

13 Component/Module Design

14 Component/Module Implementation/Construction

15

Component/Module

Design
Component/Module Implementation Inspection

16 Test Case Development

17 Component/Module Unit Testing

18 Integration Testing

19 Functional Testing

20 System Testing

21

Testing

Design

Acceptance Testing (Validation)

The first three parts are used to inquire background information about the respon-

dents and their companies, the contents of which are listed in Table 1. The first part is
about the background information of the vendor. Nine questions are prepared in this
part. The questions, company size, foundation years and company difference strate-
gies, are asked aiming at finding out whether there is relationship between the matura-
tion degree of vendor and the development result of offshore projects. The second
part is for the background information of the respondent. Five questions are asked in
this part, which are used to check whether there is bias among the respondents in sub-
sequent research. In the third part, the respondent is asked to put forward three sug-
gestions to the client according to his experience, which may indicate his discontent
toward the client.

The other two parts are for the evaluations of experienced offshore software out-
sourcing projects, which are the main parts of this survey. In the fourth part and the
fifth part, the respondents are urged to think of two offshore software development
projects they experienced and to evaluate a set of pre-defined items upon those pro-
jects. The same questions are asked in these two parts. If the respondent experienced
only one offshore project, he/she could evaluate just that project. The inquiring items
are divided into six sections roughly as shown in Table 2, which include Characteris-
tics of developed system, Share of development between client and vendor, Problems

138 Z. Sheng et al.

encountered in development, Quality requirements for development work, Develop-
ment achievements and risks, and Development result of the project. In this paper, the
inquired items in these two parts are analyzed together, so those items are expressed
by the IDs with prefixed QX. To investigate how the client and the vendor share the
development processes, twenty-one processes are selected to describe the software
development activities as listed in Table 3. These twenty-one processes belong to five
development stages including Requirements Analysis, Architecture Design, Frame-
work Design, Component/Module Design and Testing Design. The respondent is
asked to select the share status from Actively participating, Occasionally participating
and Un-participating for the client and the vendor respectively. The maintenance
process is not included here because this research concentrates on the development
processes but not on the whole software cycles though the maintenance process also
requires the joint activities between vendor and client.

3 Basic Survey Results

In April 2007, we carried out this survey with the support of the members of SSR
(Joint Forum for Strategic Software Research). We adopt intentional sampling in or-
der to assure the return rate though random sampling does not include bias. The ques-
tionnaire is written in three languages respectively, which are Japanese, Chinese and
English. The answer sheet is designed in the form of EXCEL file and sent to the com-
panies on the side of vendors by the members of SSR. The respondent can fill the
electrical form directly and send it back by e-mail, or do it on printed sheet and send it
back by FAX or mail. In nearly two months, 131 questionnaires sent back by email
were received in total, which are from 77 companies on the side of vendors. The off-
shore software outsourcing projects in which the development result (QX30) was not
evaluated are ignored. In the responses, there are 128 projects in the fourth part and
113 projects in the fifth part evaluated by the respondents. In all, 241 offshore soft-
ware outsourcing projects are evaluated completely. The number and percentage of
responses divided by country are listed in Table 4. Eighty-five percent of the respon-
dents are from China. Only three respondents in India sent back the questionnaires. In
the following part of this paper, an evaluated project is called a sample. That is to say,
there are 241 samples for the risk analysis in the vendor's viewpoint in this research.

Table 4. Number of respondents, companies, and projects divided by countries

Respondent Company Project
Country

Number Percentage Number Percentage Number Percentage
India 3 2 3 4 5 2
China 112 85 59 77 208 86

Vietnam 8 6 8 10 15 6
Other 8 6 7 9 13 5
Total 131 100 77 100 241 100

 Preliminary Analysis for Risk Finding in Offshore Software Outsourcing 139

Firstly, let us describe the statistics of background information of 77 vendors. 54
vendors have staff in excess of 100. The foundation time of 54 vendors is over five
years. 64 vendors have set up business locations in Japan. For 68 vendors, type of
software that the vendor is good at is customer application software. 46 vendors have
accepted orders from clients of countries other than Japan. For company difference
strategies, the respondent is asked to sort four items according to their importance,
which are low price, high quality, technology level and communication ability. It is
shown that 45 vendors select high quality as the most important item and 44 vendors
select low price as the last item. The detailed result is shown in Fig.1. It can be de-
duced that most clients use high quality as main standard for selecting the vendors.

Fig. 1. Statistics for company difference strategies

Secondly, let us describe the statistics of background information of 131 respon-
dents. 95 respondents have the IT experience of over 5 years. 88 respondents have
worked in current company for over 3 years. There are 69 respondents who have
taken part in over 10 offshore software outsourcing projects. 51 respondents are pro-
ject managers and 30 respondents are project members. 108 respondents are in being
charge of the development of customer application software. Among 131 respondents,
112 persons are from the companies of China.

As a response to the third part of questionnaire, 298 suggestions toward the clients
are received from 111 respondents. 52 suggestions are about communications, which
reflects that communication is both important and difficult. 42 are about the descrip-
tion of specification files and 31 suggestions are about requirement analysis.

4 Evaluations on Offshore Projects

4.1 Development Result of the Project

In the question QX30, the respondent is asked to evaluate the development result by
selecting one from five choices including Great Success, Success, Ordinary, Failure
and Dead Failure. Statistics of evaluations divided by country of vendors is shown in
Table 5. The percentage of Success exceeds 70 percent and the percentage of Ordi-
nary is 20 percent. Most of the answers are Success and Ordinary as expect that suc-
cess rate would be very high. So the development achievements (QX19-QX24) are
considered in order to evaluate the development project comprehensively.

140 Z. Sheng et al.

Table 5. Statistics of development result divided by country

Total China India Development
result Number Percentage Number Percentage Number Percentage

Great Success 9 4 5 2 1 20
Success 175 73 158 76 3 60

Ordinary 49 20 41 20 0 0
Failure 5 2 3 1 1 20

Dead Failure 3 1 1 0 0 0
Total 241 100 208 100 5 100

Table 6. Statistics of software types

Total China India
Software Type

Number Percentage Number Percentage Number Percentage

Customer Application 194 80 172 83 2 40
Middleware 16 7 12 6 1 20

Embedded Software 22 9 17 8 2 40
Other 9 4 7 3 0 0
Total 241 100 208 100 5 100

Table 7. Statistics of development result divided by software types

Customer application Middleware Embedded software Development
result Number Percentage Number Percentage Number Percentage

Great Success 7 4 2 13 0 0
Success 150 77 5 31 17 77
Ordinary 31 16 8 50 5 23
Failure 3 2 1 6 0 0

Dead Failure 3 2 0 0 0 0

Total 194 100 16 100 22 100

4.2 Characters of Developed System

Statistics of software type of the developed system is shown in Table 6. Eighty percent
of the developed software systems belong to customer application software, which may
be due to that a majority of questionnaires are from China. The development result di-
vided by software types is shown in Table 7. Statistics of period and order size of de-
velopment is shown in Fig.2 and Fig.3 respectively. The cross tables of development
period/size and development results are shown in Table 8. For 134 projects the vendors
have three or more contracts with the clients. For 86 projects, the respondents think
that their companies have ability enough to accomplish the development though the
technology level required is a little high. For 108 projects, the respondents think that
technology level required is medium and company can finish the development easily.

 Preliminary Analysis for Risk Finding in Offshore Software Outsourcing 141

Statistics of development models required and that adopted is shown in Fig.4. For the
characters appealed by the client, the appreciated order of four items is Quality, Tech-
nology level, Communication skill and Price, which is the same as the order about the
difference strategy of company.

0

10

20

30

40

50

60

70

80

Less than 3

months

Less than 6

months

Less than 1

year

Over 1 year

N
u
m
b
e
r
o
f
P
ro
je
c
ts

Fig. 2. Period of the development

P·Ms: Person-Months

0

10

20

30

40

50

60

70

Less than 10

P·Ms

Less than 20

P·Ms

Less than 50

P·Ms

Less than

100 P·Ms

Over 100

P·Ms

N
u
m
b
e
r
o
f
P
ro
je
c
ts

Fig. 3. Order size of the development

Table 8. Cross tables of period/size of projects and evaluation of the projects

Period of development Great Success Success Ordinary Failure Dead Failure

1 Less than 3 months 3 57 11 2 0

2 Less than 6 months 1 43 23 0 2

3 Less than 1 year 2 31 7 2 1

4 Over 1 year 3 44 8 1 0

Size of order Great Success Success Ordinary Failure Dead Failure

1 Less than 10 person-months 2 19 13 0 1

2 Less than 20 person-months 1 45 6 1 0

3 Less than 50 person-months 1 46 13 2 1

4 Less than 100 person-months 2 27 9 0 0

5 Over 100 person-months 3 38 8 2 1

142 Z. Sheng et al.

Fig. 4. Type of development models adopted and that desired

4.3 Share of Development Processes by Client and Vendor

The software development activities are divided into and described by twenty-one
development processes. The respondents are asked how the vendor and the client par-
ticipate in these process and to select one status from Actively participating, Occa-
sionally participating and Un-participating. By the responses, we hope to know the
effect of share of development processes on the development achievements. The
number of projects in which the vendors and the clients think they are actively or oc-
casionally participating in each of the processes is shown in Fig.5 and Fig.6 respec-
tively. It is shown that the vendors actively participate in 7 processes from No.13
(Component/Module design) to No.19 (Functional Testing) and the clients actively
participate in the other 14 processes.

Fig. 5. Actively participated processes

 Preliminary Analysis for Risk Finding in Offshore Software Outsourcing 143

Fig. 6. Occasionally participated processes

4.4 Problems Encountered in Development

For the technology level of the client, in 77 samples the respondents think that there
are problems in brief meetings though the level of client is high, and in 99 samples the
respondents think that there are no problems. 173 samples show that those problems
can be solved by brief meetings when specification is not complete or there are doubt-
ful points. For issues not understood by each other, the respondents of 117 samples
think that it takes much time on the documents with large amount and the respondents
of 103 samples think that the problems occur because the statement of client is am-
biguous, which is shown in Table 9. The respondents of 198 samples think that both
client and vendor expect to keep long-term relationship, which is the same as the ex-
pectations. In 102 samples the respondents urge that face-to-face communicating be-
sides that by telephone is necessary about physical environment, though in 95 samples
it is reported that there are few problems. For issues about development environment
it is shown that there are no problems.

Table 9. Main problems in understanding and brief meeting

Issue not understood by each other Number

1 Requiring high level of foreign language to treat documents 41

2 Taking much time to treat documents with a large mount 117

3 Having different level in security and information management 34

4 Having difference in understanding of intellectual rights 11

Issue about brief meetings Number

1 Having problems due to ambiguous statement of client 103

2 Having problems due to un-polite statement of client 3

3 Taking more time for collocutor having no power of decision 61

4 Can't confirm the right content for collocutors are often different 16

144 Z. Sheng et al.

4.5 Requirements for Development Work

Responses to three questions concerning requirements for development work are sum-
marized in Table 10. In 148 samples, the respondents report that there are no problems
about the function requirements. In 150 samples, the respondents show that the per-
formance requirements can be realized. In 182 samples, the respondents report that
there are no problems about the efficiency requirements.

Table 10. Requirements for the development work

Item Content Number
Having detailed specification 93 Function Re-

quirements Having no special questions 148
Difficult to realize 14
Possible to realize 150 Performance

Requirements Having no special problems 76
Having detailed specification in resource
utilizing 58 Efficiency Re-

quirements Having no special problems 183

4.6 Development Achievements and Risks

Six questions are asked about the development achievements. The statistics is listed in
Table 11. It is shown that the respondents are very conservative in the evaluation on
the technology aspect and sale aspect. On the other hand, most of them agree that off-
shore development can improve company image remarkably.

Five questions are inquired about the development risks. In 177 samples, the re-
spondents think that the change of exchange rate has some influence on the offshore
development projects. By QX26 and QX27, it is checked whether the more the brain
drain is, the higher the risk is for many Japanese client companies think that too rapid
or too much brain drain will delay the development, which is a risk factor. In 156
samples, the respondents report that the clients concern about the brain drain of ven-
dor, and in 151 samples the respondents report that there is some brain drain during
developing period. The cross statistics of the change of specification and the change
of schedule/period with the development result is shown in Fig.7.

Table 11. Evaluation of development achievements

ID Item Having remarkably General Not having
QX19 Improving of company image 160 75 6
QX20 Improving of technology level 125 112 4
QX21 Acquiring of new technology 108 120 13
QX22 Improving of sale 88 138 11
QX23 Improving of profit 64 153 20
QX24 Acquiring of business knowledge 99 126 15

 Preliminary Analysis for Risk Finding in Offshore Software Outsourcing 145

0

20

40

60

80

100

120

140

160

180

200

Having beyond

expectation

Having as expectation Not having

N
u
m
b
e
r
o
f
P
ro
je
c
ts

Change of Specification Change of Schedule or Period

Fig. 7. Change of specification and schedule/period

Fig. 8. Cross statistics of consistency of difference strategy of vendor and appeal to client with
the development achievements

5 Discussions

5.1 Difference Strategy of Vendor and Appeal to Client

In the first part of questionnaire for background information of vendor, the difference
strategy of vendor is asked. The respondent is urged to sort four items including
Price, Quality, Communication skill and Technology level according to the difference
strategy of his company. In the fourth/fifth part of questionnaire, the appeal of vendor
to client is asked and the respondent is urged to select one item from Price, Quality,
Communication skill and Technology level. It is investigated whether the consistency
of difference strategy of vendor and appeal to client has influence over the develop-
ment achievements and development result. Fig.8 and Fig.9 show the cross statistics
of the consistency of difference strategy of vendor and appeal to client with the de-
velopment achievements and development result respectively. For every development
achievement (QX19,QX20,…,QX24), the amounts of samples for three choices (Hav-
ing remarkably effect, General effect and Not having effect) are listed from left to
right in order in Fig.8. The same analysis is done for the influence of the consistency
of software type that the vendor is good at and software type of the offshore project

146 Z. Sheng et al.

over the development result and the cross statistics is shown in Fig.10. According to
the statistics, there is no obvious effect on the development achievements and result
whether it is consistent.

Fig. 9. Cross statistics of consistency of difference strategy of vendor and appeal to client with
the development result

Fig. 10. Cross statistics of consistency of software type with the development achievements

5.2 Factor Analysis of Development Achievement

In order to evaluate offshore development project comprehensively, six items about
the development achievements (QX19-QX24) are used besides the development result
(QX30). Factor analysis is applied so as to reduce the number of variables for subse-
quent analysis. Principal components method is selected to extract component and
varimax method is used to rotate the component matrix. Three components are ex-
tracted according to the scree plot and the rotated component matrix is shown in Ta-
ble 12. All the Initial EigenValues of these three components are bigger than 1. The
first component mainly expresses the information of QX20, QX21 and QX24, which
are all about technology aspect. The second component mainly stands for the informa-
tion of QX22 and QX23, which are about sale aspect. The third component reflects
the information of QX19 and QX30.

 Preliminary Analysis for Risk Finding in Offshore Software Outsourcing 147

Table 12. Rotated component matrix

Component

1 2 3
QX19 0.330 0.277 0.755

QX20 0.861 0.046 0.244

QX21 0.849 0.173 0.155

QX22 0.120 0.862 0.218

QX23 0.220 0.863 0.125

QX24 0.618 0.410 0.020

QX30 0.072 0.097 0.911

5.3 Future Research Work

As the preceding research, a questionnaire is designed and delivered to experienced
project managers on the side of vendors to find out the risk knowledge about offshore
software outsourcing. The preliminary analysis on the characters and achievements of
experienced offshore projects is reported in this paper. As the future research, whether
there is relation between the development share status and the development result will
be investigated and the research on the share of development process between the cli-
ent and the vendor in the whole cycle will also be expected. Further analysis will be
done to find out the difference between the projects evaluated as success and the pro-
jects evaluated as failure, and to examine the root causes for the projects evaluated as
failure and dead failure.

6 Conclusions

A survey is conducted to find out the main risk items from the vendor's viewpoint in
order to support decision-making for offshore software outsourcing projects. The
questionnaire includes background information of vendor, background information of
respondent, suggestions to the client, and evaluations on experienced offshore pro-
jects. 131 respondents from 77 vendors sent back answer sheets and 241 offshore
software outsourcing projects are evaluated. This paper reported the primary analysis
on the received samples. Some main conclusions are drawn as follows:

1) Japan clients-oriented vendors are mature in both the company scale and the de-
velopment experience. The vendors give first rank to High Quality in the differ-
ence strategy of company, which reflects the starting point of Japan clients while
selecting offshore outsourcing vendors.

2) Requirement analysis and specification design are still main issues in offshore
outsourcing development. Because of the existent difference of culture between
clients and vendors, farther communication and mutual understanding are neces-
sary. The technology level is not the main issue affecting the success of offshore
development projects.

3) The evaluation on the achievements of technology and revenue is low though it is
thought that company image is improved.

148 Z. Sheng et al.

4) Changes of specification and schedule/period are problems beset the vendors. The
brain drain in vendors has little influence on the development work.

Acknowledgments. The authors would like to give sincere thanks to the members of
Joint Forum for Strategic Software Research (SSR) who contributed to collect re-
sponses of questionnaire and all the respondents who answered the questionnaire
carefully. The authors would also like to thank all the reviewers who kindly gave
many important recommendations.

References

1. Babar, M.A., Verner, J.M., Nguyen, P.T.: Establishing and Maintaining Trust in Software
Outsourcing Relationships: An Empirical Investigation. The Journal of Systems and Soft-
ware 80(9), 1438–1449 (2007)

2. Gold, T.: Outsourcing Software Development Offshore: Making It Work. Auerbach Publi-
cations (2004)

3. Mayer, B.: The Unspoken Revolution in Software Engineering. Computer 39(1), 121–123,
124 (2005)

4. Aspray, W., Mayadas, F., Vardi, M.Y. (eds.): Globalization and Offshoring of Software: A
Report of the ACM Job Migration Task Force. Association for Computing Machinery
(2006)

5. Software Business Committee. Report on Software Development Resource. Japan Elec-
tronics and Information Technology Industries Association, No. 06-P-9 (2006)

6. Chua, A.L., Pan, S.L.: Knowledge Transfer and Organizational Learning in IS Offshore
Sourcing. Omega 36(2), 267–281 (2008)

7. Nicholson, B., Sahay, S.: Embedded Knowledge and Offshore Software Development. In-
formation and Organization 14(4), 329–365 (2004)

8. Krishna, S., Sahay, S., Walsham, G.: Managing Cross-cultural Issues in Global Software
Outsourcing. Communications of the ACM 47(4), 62–66 (2004)

9. Ellram, L.M., Tate, W.L., Billington, C.: Offshore Outsourcing of Professional Services: A
Transaction Cost Economics Perspective. Journal of Operations Management 26(2), 148–163
(2008)

10. Tsuji, H., Sakurai, A., Yoshida, K., Tiwana, A., Bush, A.: Questionnaire-based Risk As-
sessment Scheme for Japanese Offshore Software Outsourcing. In: Meyer, B., Joseph, M.
(eds.) SEAFOOD 2007. LNCS, vol. 4716, pp. 114–127. Springer, Heidelberg (2007)

11. Wada, Y., Nakahigashi, D., Tsuji, H.: An Evaluation Method for Offshore Software De-
velopment by Structural Equation Modeling. In: Meyer, B., Joseph, M. (eds.) SEAFOOD
2007. LNCS, vol. 4716, pp. 128–140. Springer, Heidelberg (2007)

12. Sheng, Z., Nakano, M., Kubo, S., Tsuji, H.: Risk Bias Externalization for Offshore Soft-
ware Outsourcing by Conjoint Analysis. In: Satoh, K., Inokuchi, A., Nagao, K., Kawa-
mura, T. (eds.) JSAI 2007. LNCS, vol. 4914, pp. 255–268. Springer, Heidelberg (2008)

K. Berkling et al. (Eds.): SEAFOOD 2008, LNBIP 16, pp. 149–165, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Evidence-Based Management of Outsourced Software
Projects

Fadrian Sudaman and Christine Mingins

Faculty of IT, Monash University, Australia
fadrian.sudaman@infotech.monash.edu.au
christine.mingins@infotech.monash.edu.au

Abstract. Outsourcing magnifies many of the risks inherent in large scale soft-
ware development. In our view the central problem of outsourcing and other
forms of distributed development is that of project management and project
control. Distributed development exacerbates the gap between the clients’ needs
as expressed in the requirements, and the software product developed to meet
those needs. Because of its intangible, dynamic nature, there currently exists no
effective automated method of bi-directional mapping from requirements, or
even functional specifications to working software, especially as the system
evolves and grows over time. Software Engineering standards such as CMMI
allow development teams to demonstrate adherence to standards and repeatable
processes, but do not necessarily guarantee that an acceptable product will drop
off the end of the production line. We believe that the injection of an independ-
ent reviewing process, equipped with appropriate tools, into the project will
stimulate a culture change at the very least, and perhaps revolutionize out-
sourced software development, by placing more timely information in the hands
of the outsourcing organization, thus allowing them to better manage their pro-
ject risk while at the same time establishing clear accountability policies and
reporting guidelines for the service providers. This paper describes an infra-
structure that we have developed to support continuous reporting on evolving
software, and sketches a case study, demonstrating its application in an out-
sourcing context.

1 Introduction

For decades, software practitioners have referenced good engineering approaches
used in manufacturing and attempted to apply them to software development with the
aim of producing high quality software. We have heard of many success stories of
clothing, electronic and automobile manufacturing companies offshoring their manu-
facturing to China or outsourcing part of their manufacturing to allow them to focus
on their core business and achieve operational and economic efficiency to remain
competitive in the global economy [12]. Over the past few years, the software indus-
try has followed the same path with statistics showing that a phenomenal one third of
US companies IT budgets ($100 billion) were spent in off-shoring and outsourcing in
2005 [2] and big technology companies such as IBM, Microsoft, Hewlett-Packard and
Oracle setting up R&D centers in India and recruiting thousands of IT professionals

150 F. Sudaman and C. Mingins

with these numbers are continuing to rise. Conversely, many organizations have felt
dissatisfied and also failed to effectively achieve the expected benefits and cost sav-
ings, and decided to take their IT outsourcing back internally in the recent few years1.

Fundamentally, software practitioners are fully aware that managing software prod-
uct development has some unique issues when compared to manufacturing products
due to the fact that software is by nature intangible, dynamic, and often involves com-
plex abstractions, thus requiring analysis and design decisions to be made throughout
its development life cycle. The annals of software project management show that pro-
ject tracking, communication and regular reporting play vital roles in the success of
real life software projects [7][13][21]. Distributed development environments exacer-
bate project management problems where project teams may be located across the
globe in different time zones and possibly with language and cultural differences [20].
Now if we look at outsourcing and offshoring, the challenges are even more immense.
Besides crossing geographical boundaries, outsourcing requires teams from different
organizations which often have different core businesses, interests and organizational
cultures, to work together towards the same project goals. Existing software engineer-
ing principles and tools may help in managing the distributed software development
such as those offered by software configuration management (SCM) and software
metrics modeling [18][17]. However, they do not offer support to establish cross-
organizational partnerships due to the lack of a coherent approach for realistic tracking,
reporting and quantitatively managing the project evolution within the outsourcing
model. Figure 1 below shows a simple IT outsourcing partnership model. The client is
responsible for requirements, feedback and financial payment to the service provider
who provides staff, reports and software products/services. Both the client and the ser-
vice provider are responsible for the mutually agreed contractual agreement and estab-
lishing and maintaining an effective working relationship.

Fig. 1. A Simple IT Outsourcing Partnership Model

The evaluation phase of the outsourcing process is unquestionably important to as-
sessing the project progress; managing the project economics and even uncovering
risks associated with the project development, and it directly impacts on the relation-
ship between the outsourcing partners [15]. Conventional reporting whereby the ser-
vice provider prepares a quantitative report to the client in an outsource environment
faces a major risk of diverging interpretations because of differing viewpoints. The

1 http://www.rttsweb.com/outsourcing/statistics/

 Evidence-Based Management of Outsourced Software Projects 151

service provider’s interpretation of project size, number of changes, conformance to
design integrity or percentage complete may diverge from the client’s understanding
[17]. Typically, clients also have limited access to the actual work done [20] to vali-
date the contractor’s reports which further complicates the divergence and may poten-
tially lead to damaging trust in the relationship. The authors observe that establishing
realistic reporting and reviewing of the outsourced project implementation is very
much in line with the objectives of the Software Evolution Management (SEM) field
of study [3][16].

This study approaches outsourcing progress reporting and evaluation through the
use of a semantically rich SEM infrastructure and aims to establish realistic transpar-
ent progress reporting between the client and the service provider. This paper also
describes the additional functionality offered by our infrastructure such as the use of
custom metadata and extensible policy plug-ins to better manage software evolution
in the outsourcing context. The authors believe that applying an effective SEM prac-
tice for outsourcing can help to elevate the level of project progress communication,
reduce the risks of diverging visions, offer better project control and support im-
proved relationships. This in turn elevates the trust relationships in the partnership be-
tween the client and the service provider based on a common viewpoint.

Despite the organizational differences between offshoring and outsourcing, their
needs for establishing effective partnerships through realistic reporting and evaluation
between clients and external service providers are very similar if not identical, thus in
the context of this paper we use the term outsourcing and offshoring to refer to the both
activities. This paper is structured as follows. Section 2 presents an example to high-
light the reporting dilemma in a typical outsourcing environment. Section 3 briefly dis-
cusses SEM and how it facilitates outsourcing. Section 4 discusses the technical
implementation of our SEM infrastructure. Section 5 discusses how our toolset bridges
the communication and trust gap in outsourced software development. Sections 6 and 7
briefly discusses some related work, explores future work and conclusions.

2 The Reporting Dilemma

An example is used here to demonstrate the reporting dilemma in a typical software
developing outsourcing environment. GetRich (client) is a medium sized Australian
financial company employing about 50 IT staff. GetRich has completed the analysis
and design of its new customer profile management software and decided to out-
source its development to and Indian company ACE (service provider) six months
ago. The project commenced shortly afterwards and will be running for 12 months.
The first phase of the system will go into user acceptance testing by GetRich after six
months. The reporting and feedback process follows the model listed in Figure 2.

Besides the informal exchange of information, every month the project manager in
ACE will be preparing a detailed progress report for GetRich. Amongst other items,
the report contains the current project size in term of number of packages (NOP),
number of classes (NOC) and number of methods (NOM); growth rate of the system
since the last report; development efficiency and unit test progress. Most of these sta-
tistics are based on the object-oriented model; software tools need to be used for ex-
tracting this information from the source code. A number of automated tools are used,

152 F. Sudaman and C. Mingins

combined with subjective interpretation of the results, the project manager produces
and stores the results in an excel spreadsheet. The reporting process is time consum-
ing and requires extensive effort to prepare, thus more regular reporting was not sug-
gested. Upon receiving the report, there is no easy way for the project manager at
GetRich to validate the report even though the evolving code base is accessible.
He/she will need to reapply the same reporting preparation process used by ACE to
obtain the same results, supposing that they were reported accurately and all the de-
pendent information is accessible. This process is expensive and yet does not provide
deeper value or insight into the development artifacts reported, or their implications
for overall project progress.

Fig. 2. Process of Report and Feedback

More importantly, the information supplied by ACE is bound to a technical context,
while GetRich would prefer the information to be couched in more appropriate lan-
guage, based on abstractions familiar to a project manager. For example, the project
size and change heuristics referred to above could be used to answer the following
questions: Is the ratio of test cases to production code within agreed limits? What areas
of accepted code have been subject to redevelopment since the last report and by how
much? List the top ten classes in terms of volatility, compared with the last report. In
terms of auditing the development effort, the ability to view the system in terms of dif-
ferent code categories such as code generated, library code, unit test and custom devel-
oped code, define higher level abstractions or artifacts that can deliver a more realistic
insight into the resource usage and efficiency. However with conventional reporting
used by ACE, there is no easy way for GetRich to obtain that information.

As the project progresses, GetRich would like to be able to ensure that the concep-
tual integrity of the design is maintained during implementation. A conformance
statement from ACE project manager may not be sufficient as it should be capable of
independent verification. The fortnightly report supplied by ACE does not have
enough information either. To accomplish this task, the software architect will need
access to almost all the artifacts in the development code. Data extraction, analysis
and transformation processes need to be carried out to derive the information [10].

 Evidence-Based Management of Outsourced Software Projects 153

These processes are time consuming and not easily repeatable. If a more coherent
approach is available for defining, accessing and analyzing such software artifacts
without much effort, this process can be performed more regularly, thus any design
erosion or deviation in implementation can be detected as early as possible.

Another major challenge faced by GetRich in the outsourced development process
is how to ensure that all changes to code-base that have been user acceptance tested
are reported accurately by ACE. Any changes will require impact analysis and retest-
ing to minimize the risk of breaking changes. Although this is clearly specified in the
contractual agreement, there is no way of enforcing it or even revealing it, especially
if ACE intends to hide the activity. GetRich is fully aware of this risk and to mitigate
it, has allocated extra resources to regression testing and a complete retest of the
whole system post-delivery. The same challenges exist in software maintenance out-
sourcing where the client may not want the service provider who has very little
knowledge about the business domain code base to make any changes in these highly
sensitive areas, such as those relating to licensing, security or high risk business trans-
actions. This highlights the need for a mechanism to guide and police the software
evolution through a set of user defined policies We believe this is crucial for SEM in
general but particularly for risk mitigation in outsourced development.

3 SEM and Outsourcing

Outsourced software development by nature involves distributed teams hence the use
of Software Configuration Management (SCM) is obvious and necessary for the pro-
ject to run effectively [9][23][17]. The field of SCM provides a wealth of evolution-
ary history and change reasoning about software systems. It offers a wide range of
tools for managing and controlling the development and evolution of software sys-
tems. In many respects, SCM can be seen as the underpinning infrastructure for
Software Evolution Management (SEM) [9]. SEM is a discipline primarily focused on
extracting and analyzing evolutionary information about software systems with the
aim of better understanding and tracking the software changes over time. The effec-
tive use of SEM enables understanding of the status of the current system and the
construction of predictive and retrospective analysis models [16]. Progress reporting
in outsourcing projects is by nature reporting about evolution of the system by com-
paring the current snapshot of the system against the metrics gathered and reported in
the last progress report, or some baseline. Therefore it inherently practices some as-
pects of SEM [10]. It is clear that unification of the wealth of information available in
SCM and a systematic SEM approach for extracting and analyzing this information is
appealing for use in outsourced development to establish realistic reporting that is
evidence based, traceable and verifiable. A SEM environment that allows policy to be
specified and used to guide the software evolution will facilitate the client’s more ef-
fective control of the outsourced development. All these in turn help to elevate project
understanding, reduce risks of diverging visions; aid better overall risk management
and finally leads to improved relationships built on mutual trust [22].

As it currently stands, SCM is considered to have reached a mature level [14] but
more progress is still considered necessary to better support SEM [9][20]. The cur-
rent approach to SCM is strongly based on files and source code while evolutionary

154 F. Sudaman and C. Mingins

information, versioning and differentiation are limited to file units. This does not
match up with the logical abstractions (such as in the object-oriented context) that
software practitioners are familiar with, nor with commonly used software architec-
ture or design models such as UML [26][27]. Versioning based only on files and
lines of code do not capture the deeper meaning of the evolutionary changes and thus
can only provide a very restrictive view, limited control, modeling and reporting of
the evolving system [9][25]. Conventional approaches for deriving object oriented
metrics for reporting require extensive development effort to extract the information,
dealing with language dependent parsing, storing and mining of the extracted infor-
mation. This is time consuming, requiring extensive effort and processing resources,
therefore it is generally performed only periodically.

To overcome the shortcomings of mainstream SCM, we have introduced a pro-
gramming language neutral SEM infrastructure where semantic artifacts (defined in
the next section) of an evolving system can be defined, continuously and systemati-
cally managed, interpreted, browsed and made accessible at all times for performing
software evolution analytics through a well-defined data model and standardized ac-
cess mechanism. This enables metric models to be precisely defined and once defined
consistently applied to quantitatively manage the project evolution. Another major
merit of our infrastructure is that it offers an extensible environment to allow policies
to be applied to semantic artifacts. These attributes can be continuously monitored
and executed in parallel with the system evolution. The policies can be used to guide
the evolution process and also to maintain the conceptual integrity of the system. We
present more technical detail about this infrastructure in the next section.

4 Our Solution: OSSEM

OSSEM stands for Object-oriented Software Semantic Evolution Management. We
refer to semantic artifacts in this paper as the logical structure of the software in terms
of the object-oriented programming model (such as class, method, field and inheri-
tance) and any other artifacts of interest to the actor-user that can be modeled and
extrapolated from the underlying model. These artifacts can be defined explicitly via
declarative metadata on the underlying software, or may relate to implicitly available
metadata such as product information.

OSSEM is a system developed to work in partnership with Subversion (SVN) [1] as
its SCM tool to offer a systematic approach for managing object-oriented software
evolution. It provides automatic monitoring of software systems; defines and extracts
information about evolving semantic software artifacts from the file-based source code
stored in the SCM into a well-defined data model and stores the information away in a
relational database. This information is then accessible at any time for applying soft-
ware evolution analysis and reporting. Another OSSEM facility is the policy checking
process whereby any changes on semantic artifacts that have preconfigured policies
will activate the policy verification process, which will trigger policy violation notifi-
cations. Policies are implemented as plug-in modules in OSSEM. On the whole,
OSSEM offers an infrastructure that is integral for modeling, guiding and managing

 Evidence-Based Management of Outsourced Software Projects 155

software evolution while retaining the entire functionality provided by SVN to con-
tinue providing rich and robust functionality for controlling and recording file-based
software evolution. Figure 3 shows the high level information flow of OSSEM, where
V1, V2, V3 and Vn denote the evolving project versioning in the SCM repository and
S1, S2, S3 and Sn denote the evolving project snapshots captured.

It goes without saying that OSSEM needs to be built with performance and storage
optimization in mind in order to be practical for use in a real life evolving system. To
date we have adopted strategies such as using sandboxes to effectively load and
unload data, parallel processing, smart pre-fetching and caching of data and batching
of database operations in our implementation.

Fig. 3. OSSEM Overview

Table 1 shows the physical bytecode size, OSSEM database storage size and execu-
tion time for the first cycle to collect the semantic artifacts for three different sized pro-
jects. Putting the bytecode size into perspective, at the time of the experiment, the
compiled bytecode size of the OSSEM SIA module is 541 KB, a result of compiling
127 source code files that contain 181 abstract data types with approximately 47000
lines of code. OSSEM takes approximately 4 to 5 times the storage space over and
above the physical bytecode size and is capable of processing approximately 400 KB
of bytecode per minute. Subsequent execution of OSSEM system on the project will
perform the incremental change analysis and versioning. Our experiments show that
subsequent execution of OSSEM on projects with < 10% changes on the artifacts,
takes approximately 24% of the base execution time (about 0.21 minutes for OSSEM
SIA module to execute with the storage space usage growing consistently to the above
statistics to capture the incremental changes. Because OSSEM only stores the changed
artifacts, our experiments of applying OSSEM on the rapidly evolving OSSEM project
itself repeatedly shows that the storage usage and growth are manageable.

156 F. Sudaman and C. Mingins

Table 1. Projects Storage and Execution Statistics

 OSSEM
SIA Module

Ms. WCF2 Ms. .NET3

Bytecode Size 0.53 MB 7.46 MB 44.5 MB
Storage Size 2.82 MB 38.61 MB 193.56 MB
Exec Time 1.12 mins 19.83 mins 126.4 mins
ADT Count 181 4963 23676

Currently OSSEM is developed in the C# language targeting the Microsoft .NET plat-
form. The architecture of OSSEM consists of three core elements: the Semantic In-
strumentation Agent, the Repository Access Library and the OSSEM Studio.

4.1 Semantic Instrumentation Agent (SIA)

The SIA is implemented to deal with software artifacts in the form of bytecode. Its
purpose includes extracting, interpreting, collecting and storing semantic evolution in-
formation about changes made to the software product controlled by the SCM.
Figure 4 provides an overview of the systematic process performed by the SIA. Basi-
cally, this agent performs four tasks in sequential order: continuous build, software
semantic analysis, policy verification and change semantics persistence of the evolv-
ing software products. Current implementation of SIA targets the Microsoft .NET
runtime and deals with bytecode in the form of common intermediate code. In devel-
oping the module for performing the continuous build, OSSEM drew on proven tools:

Byte Code

Auto Build

Semantic
Repository

Repository
Access
Layer

Change Monitor Establish
Baseline

Acquire Source &
Configuration

Metadata
Extractor and
Introspector

Semantic
Analyser and
Versioning

SCM
Versioning
Repostory

Policy
Verification

Fig. 4. Semantic Instrumentation Agent Process

2 Windows Communication Framework Assemblies (WCF is part of Microsoft .NET 3.0

Framework).
3 Microsoft .NET 2.0 Framework Assemblies.

 Evidence-Based Management of Outsourced Software Projects 157

CruiseControl4 and Ant5 as the underlying technologies. The design of the software
change semantic analysis and policy checking module is very much inspired by the
work of FxCop6 which allows for rich customization and extensibility. We also based
some of our work on ReflectionDiff7 for the purpose of performing semantic change
detection and persistency.

SIA works just like an integrated build server and is capable of running on a server
machine co-located with the SVN server or on a separate machine. The instrumenta-
tion process is triggered either explicitly or by an automated process that continuously
monitors the SVN repository. Ideally, every time a new change set is committed, the
SIA will immediately launch and perform the processes described above. In practice,
such an approach may cause a large build queue in an active or large development
team environment and put high pressure on system resources. To solve this problem,
the implementation of the SIA adopts the periodic monitoring technique employed by
CruiseControl4 whereby the SVN repository is continually being monitored for com-
mitted changes at defined intervals. Once a change is detected, the agent will then
determine if the last committed change set to SVN is longer ago than a user defined
period of x minutes. This determines if the committed changes are considered stable
and it is appropriate for SIA to launch the auto build process. Each project managed
by OSSEM must have an accompanying build configuration setting that is automati-
cally used by the build process. The build configuration setting can be supplied
through the user interface provided by OSSEM Studio (see 4.3).

Fig. 5. Semantic Artifacts Versioning Metamodel

The integrated build process produces a snapshot of the evolving system in byte-
code form that will then be inspected, analyzed and stored away. When analyzing the
semantic artifacts, SIA will make default interpretations of known declarative meta-
data, applying the policy checking mechanism. If a policy is configured for the current
semantic artifact, it will activate the appropriate policy verification. Policy verification
modules are implemented as plug-ins to the SIA by conforming to the predefined inter-
face contract. The extracted semantic artifacts will be compared and analyzed against

4 http://cruisecontrol.sourceforge.net/
5 http://ant.apache.org/
6 http://blogs.msdn.com/fxcop/
7 Internal project developed by C. Mingins (co-author) in 2004 for identifying changes in .NET

assembly versions.

158 F. Sudaman and C. Mingins

the latest version of the semantic artifacts in the repository using a predefined algo-
rithm. Detected differences will trigger new versions of the entities to be created and
stored in the repository guided by the OSSEM versioning policy. Figure 5 shows the
high level logical model of our semantic artifact versioning data store. Each evolving
system in OSSEM has one or more histories (for branching support) that capture one or
more project versions. The logical program structure (such as Namespace, Type and
Method) is modeled as entities with each entity have a corresponding versioning entity.
Each entity may have declarative attributes and their associated fields attached to it.
Each version entity points to its previous version for easy navigation and forms the en-
tity version history.

4.2 Repository Access Library (RAL)

At the core of the OSSEM implementation is the RAL component. The RAL serves
as the entry point for all data access to the OSSEM data store as one virtual repository
that is made up of a physical SVN file versioning repository and a change semantics
repository (CSR) that contains the associated bytecode and extracted metadata of the
evolving systems managed by OSSEM. All semantic evolutionary information gath-
ered by OSSEM is stored in the CSR implemented as a MySQL relational database.
Data stored in the CSR can be retrieved using RAL programming interfaces provided
by a standard query language or other means provided by standard database manage-
ment systems. Both the SIA and RAL integrate with the SVN repository through the
SVN client library API and the hook extension mechanism provided by SVN. This
separation allows a high level modularization of OSSEM and SVN hence allowing
OSSEM to evolve independently from SVN and target other SCM tools in the future.
RAL contains all the intelligence for managing semantic artifacts about the evolving
system and exposes a rich set of interfaces necessary for client applications to access
all configuration settings, the evolutionary information captured and all other aggre-
gated evolutionary information exposed by OSSEM.

4.3 OSSEM Studio

The OSSEM Studio is a rich client application built on top of RAL to demonstrate the
richness, capability and usability of OSSEM in collecting, storing and retrieving se-
mantic artifacts of interest about evolving object-oriented systems. Basic functionality
includes browsing the evolution tree of the semantic artifacts, performing a diff of
two different snapshots of a semantic artifact and drilling down into its children.
OSSEM Studio also provides an interface for configuring OSSEM projects, evolution
policies on specific semantic artifacts and adding custom metadata for a specific arti-
fact such as [OSSEMLabel (“Stage1”)], which in some instances is more suitable than
embedding the metadata in the source code.

Because all intelligent logic is centralized in the RAL, it is possible to build differ-
ent types of client applications (console application or plug-in components) with simi-
lar capabilities to OSSEM Studio with minimal effort. IDE plug-ins to Visual Studio
or Eclipse can also be built with ease to integrate OSSEM to development environ-
ments in the future by taking advantage of the rich interface offered by the RAL.

 Evidence-Based Management of Outsourced Software Projects 159

5 Quantitative Artifacts and Policies

OSSEM is an ideal platform for defining and collecting quantitative information
about the evolving product, as all the hard work of collecting, ‘diff’ing and analyzing
the changes over time is already done. Standard object-oriented size and coupling
metrics [3][21] and design heuristics such as those defined by FxCop can be easily
captured and reported on by OSSEM.

Our approach emphasizes the linking of high level concerns of the outsourcing pro-
ject manager, through policies, to quantifiable artifacts that are either innate or
broader abstractions that can be defined over a set of innate artifacts. We briefly de-
scribe below a number of abstractions that represent concerns of the outsourcer and
that can be defined as OSSEM artifacts and tracked in an outsourcing environment.

Stability: A stability measure has been agreed between the two parties. It is under-
stood that as a system evolves, it may be necessary to revisit and modify completed
code. However code that is continuously revisited as the system evolves could denote
a design that is inherently unstable, or requirements that are not properly understood.
Application of the stability measure will activate reporting over a pre-determined time
span of all completed classes whose definition changes by a predefined percentage.
‘Completed code’ is an artifact that can be quite simply defined by tagging classes,
namespaces or even entire assemblies via OSSEM Studio.

Not Invented Here: During contract negotiations the contractor stated that all the
software would have to be developed from scratch, as there were no libraries or exter-
nal components available to fit the specification. The outsourcer agreed to pay for the
bespoke development but is wary of being charged for large amounts of pre-existing
code that might be introduced unbeknownst to him. Therefore a measure has been es-
tablished to monitor the evolving size of the system. The system is partitioned or
tagged so that all pre-existing code and libraries are outside the visibility boundary.
Artifacts that are designed to auto generate code are identified, and the report is de-
signed to quantify classes and methods that were introduced in a certain time span
within the visibility boundary only and assess it against agreed size and growth limits.

Change impact: OSSEM can easily collect data that illustrates the impact of imple-
menting a requirements change in an otherwise stable system. It can also be used to
re-capture and examine a prior change impact for a similar requirement to assist with
cost estimation. To take a more interesting example, the outsourcing organization can
also establish and enforce policies concerning the relationship between new or sig-
nificantly modified functionality and unit tests. For instance the change impact meas-
ure could set an acceptable ratio between application code change and unit test
change. OSSEM automatically collects custom metadata such as [TestClass] and
[TestMethod] annotations on unit test classes and methods (required for the Ms. NET
Unit Test Framework). Therefore this ratio can be easily derived.

Artifacts may have policies associated with them. A policy is defined as an agree-
ment between the outsourcer and the contractor with respect to some aspect of the
evolving system. The policy includes a general description of its intention, identifies
the artifacts associated with the policy, the normal state of the artifacts, and abnormal

160 F. Sudaman and C. Mingins

conditions that would trigger policy violation reporting. Below we briefly describe a
number of OSSEM policies that would be useful in an outsourcing environment.

Frozen: Certain sets of classes are tagged as Frozen. The Frozen policy dictates that
the attached entity is critical or core functionality that must not be modified without
prior agreement with the outsourcer. Modifying the entity will trigger an alert or re-
port to the outsourcer. The policy could be applied on any entity such as a method, a
class, or entire class library or framework.

Loose Coupling: Tools such as FxCop are able to police coupling (e.g. methods
should have less than seven parameters) based on absolute heuristics deriving from a
single snapshot. OSSEM is able to enforce such coupling trends over time by dictat-
ing that changes on any methods within a designated area must, for example, add no
more than three parameters and three non system type local variables from the desig-
nated baseline. Any method that violates this policy would trigger an alert or report to
the outsourcer /auditor with details on the method name, list of parameters, the class
and namespace where the method is to be found. This is an example of using policy to
preserve the design integrity of the system.

The abstractions above show some effective applications of OSSEM for outsourced
software development or maintenance. Reporting dilemmas described in section 2 can
be overcome with OSSEM by querying the collected semantic artifacts stored in
OSSEM database for project status reporting; constructing reports by aggregating sets
of artifacts into higher level abstractions relevant to the project manager; applying
policies that facilitate monitoring the accepted code-base and design heuristics of the
system during its on-going development. To further emphasize the advantages of ap-
plying our infrastructure in an outsourcing context, in the following sections we briefly
review some of the other major benefits of OSSEM.

5.1 Systematic Monitoring

Our approach embraces the concept of continuous integration and constant feedback
based on the Agile philosophies whereby the semantic instrumentation agent is auto-
mated to build and collect the semantic artifacts of the system as often as possible
when changes to the system are detected in the source artifacts. To register a project
to be monitored by OSSEM, a one-off setup process is required to prepare and set the
project build configuration, with minimal effort required. Once this is in place,
OSSEM automatically ensures evolutionary information of the evolving system is
collected regularly and is available at all times. In an outsourcing context where pro-
ject teams are distributed geographically, this is crucial to guarantee that up to date in-
formation is always available and accessible without regard for location, time zone or
having to rely on the diligence of any particular individual.

5.2 Language Neutrality

Modern virtual machines (VM) offer programming language neutrality by providing a
source-language independent instruction set and metadata support beyond primitive
ASCII source or binary image files [6]. Today, at least 20-30 programming languages
target the .NET platform by producing bytecode consumable by the virtual machine.

 Evidence-Based Management of Outsourced Software Projects 161

Compared to using bytecode for static software analysis to elicit program structure,
source code analysis would require analysis tools for each programming language with
parser capabilities similar to the language compiler. Worse still, language specific
parsers will need to be developed for each programming language [6]. By leveraging
the use of bytecode analysis and modern virtual machines, OSSEM immediately offers
an SEM infrastructure that is language neutral therefore allowing it to have a broader
acceptance and not imposing language specific development environment on the out-
sourcing and service providers.

5.3 Semantically Rich Artifacts

The availability of semantic rich artifacts besides making quantitative management of
outsourced project easier also aligns the implementation with software architecture and
design model developed based on object-oriented methodology and UML notations.
This narrows the design-implementation gap and enables easier detection of architec-
ture drifts and design erosion issues [3][25][26]. The support for custom metadata also
essentially enables extensions to the underlying type system and provides an enriched
semantic model to seamlessly incorporate user-defined semantic artifacts representing
new, project-oriented perspectives into software evolution analysis and modeling. De-
spite all the strong arguments for needing to use a logical data models in SCM,
OSSEM did not ignore the fact that most mainstream SCM tools (such as CVS and
Subversion) use a file-based model [1]. This also applies to mainstream IDEs such as
Visual Studio and Eclipse. OSSEM does not replace existing file-based models in
SCM; instead it enriches the model with a parallel logical data model to provide richer
views to suit users in different roles.

5.4 Data Model and Access

The use of the relational data model and database allows uniform data storage and
data access. This enables metric models to be precisely defined and once defined they
can be consistently applied to quantitatively manage the project evolution. Today,
most if not all data analysis, reporting and programming software packages will have
well defined interfaces to access relational databases, hence reporting and data analy-
sis are also facilitated. This also clearly opens up opportunities for automated report-
ing and auditing toolsets to be developed for more effective outsourced software
project management.

5.5 Preserving Conceptual Integrity

The ability to apply policy in OSSEM allows the conceptual integrity of the software
product to be preserved throughout its development lifecycle and any violations to be
signaled. Relationships between outsourcing partners is strongly driven by the level of
trust and trust is closely interrelated with project risk [11][15][22]. The higher the
perceived project risk, the more uncertainty there is, hence a higher level of trust is
required. The ability for the outsourcing company to gain more direct control through
their ability to establish clear policies to guide and monitor the software project
changes reduces project risk and uncertainty. We believe it will actually increase the

162 F. Sudaman and C. Mingins

confidence and level of trust between outsourcer and service provider. It will certainly
encourage more transparent reporting by the contractor.

6 Related and Future Work

With the distributed nature of outsourced software development the use of SCM, and
the need or regular progress reporting, the application of SEM based on SCM seems
rather obvious to quantitatively managed outsourced software development. Research
work in the area of managing outsourced software development has predominantly
focused on partnerships and leans towards project governance, contract management
and process modeling [2][11][15][22]. Although reporting framework, collaboration
and methodology for outsourcing project have been explored in several research
works [18][23][17], we are not aware of any research work that focuses specifically
on the use of an SEM infrastructure as the common basis for evidence-based report-
ing, validation and applying policies for guiding the software development. In this re-
spect, our perspective of applying OSSEM in outsourced software development is
novel. This infrastructure can be seen as a technology specific toolset with well de-
fined interactions that can facilitate process improvement aligning with the CMMI
(Capability Maturity Model Integration) process model [4].

In terms of our SEM infrastructure, there are number of related works that are
worth mentioning. OSSEM shares the core idea of Molhado [25] of capturing evolu-
tionary information at the logical abstraction level, but OSSEM retains the file-based
SCM which is widely used in the industry and offers additional benefits such as pro-
gramming language neutrality and the use of declarative metadata. We perceive di-
vergence from the widely used file-based model to be high risk at this present time.
While the meta-model of OSSEM is analogous to HISMO [24], OSSEM focuses on
the entire systematic process of modeling, obtaining and capturing the data rather than
just modeling the data as in HISMO. Fact extractor type research projects such as
JDevAn [26][27], Bloof [5], CollabDev [23] and Kenyon [8] are closest to the
OSSEM approach. Although they share many motivations, design ideas and goals,
they differ considerably in their approaches and applications. JDevAn is implemented
as plugin to Eclipse, hence the availability of snapshots relies on how regularly the
analysis operation is performed by the developer and the data only reflects the local
code base. Bloof and CollabDev extracts their historical information based on file and
line changes; and other commit metadata (such as date, author and comment) and is
therefore clearly lacking in support for object-oriented SEM. Although Kenyon offers
more flexibility with custom fact extractors and a well defined data model and data
store, it also still focuses on file and code changes, commit and configuration meta-
data. There is no evidence to suggest that it supports fact extraction at the logical
abstraction level, or modeling and versioning similar to OSSEM. Another desirable
feature of OSSEM that sets itself apart from other related work is the policy verifica-
tion support, which is in a way similar to the work done by Madhavji and Tasse [19],
but OSSEM can operate at a much more fine grained level for targeting specific se-
mantic artifacts and our extensibility model based on plugin architecture allows the
leveraging of programming language features and flexibility.

 Evidence-Based Management of Outsourced Software Projects 163

OSSEM is currently in its implementation phase; a working system has been de-
veloped and tested with a limited set of test data. Further development and refinement
of the model and policy verification mechanism are still required. The OSSEM Studio
currently is still at the prototype stage. More performance tuning is currently under-
way to ensure OSSEM performs optimally on medium to large size projects. The ar-
chitectural design, components, meta-model and data store are designed or chosen for
OSSEM to allow it to work independently of any specific platform and not limited to
Ms .NET implementation only. Future work may also extend the semantic instrumen-
tation agent to support Java bytecode targeting the JVM.

7 Conclusion

OSSEM facilitates the application of the CMMI process model in organizations to ac-
quire capability and maturity 4 Level 2 (Repeatable) where a systematic process is in
place for continuously identifying and analyzing semantic artifacts; Level 3 (Defined)
where data models and access mechanisms to the semantic artifacts are standardized;
Level 4 (Quantitatively Managed) where metric models can be precisely defined
based on OSSEM semantic artifacts. The metrics once defined can be consistently ap-
plied for reporting, managing software developing effort or developing predictive
models for future development tasks.

We believe the introduction of infrastructure such as OSSEM to support evidence-
based reporting and qualitative management will stimulate a culture change at the
very least, and perhaps revolutionize outsourced software development, by placing
more timely information in the hands of the outsourcing organization, thus allowing
them to better manage their project risk while at the same time establishing clear ac-
countability policies and reporting guidelines for the service providers. We also see an
emerging need for a new category of software audit professional, filling much the
same role as a financial auditor in the accounting field and also bearing similarities to
the role of a quantity surveyor, managing the economics of software development.
The software audit professionals would equip with OSSEM-like tools to facilitate ex-
ploration, analysis and reporting on the evolving software product. The information
extracted would then be interpreted in the context of guidelines and policies that have
been agreed upon in the initial project contract. Software audit professionals must be
technically skilled in software engineering, just as auditors are qualified accountants.
In addition they must be able to interpret and translate the information in a business
context to communicate effectively with their clients, the outsourcing organization.

References

1. Sussman, B.C., Fitzpatrick, B.W., Pilato, C.M.: Version Control with Subversion, 1st edn.
(June 2004) ISBN 10: 0-596-00448-6

2. Meyer, B.: The Unspoken Revolution in Software Engineering. IEEE Computer 39(1)
(January 2006)

164 F. Sudaman and C. Mingins

3. Kemerer, C.F., Slaughter, S.: An Empirical Approach to Studying Software Evolution.
IEEE Transactions on Software Engineering 25(4) (July/August 1999)

4. CMMI® for Development Version 1.2, Improving Processes for Better Products.
CMU/SEI-2006-TR-008, Carnegie Mellon, Software Engineering Institute (August 2006)

5. Draheim, D., Pekacki, L.: Process-Centric Analytical Processing of Version Control Data.
In: Proceedings of the Sixth International Workshop on Principles of Software Evolution,
IWPSE 2003 (2002)

6. Lance, D., Unteh, R.H., Wahl, N.J.: Bytecode-based Java Program Analysis. In: Proceed-
ings of the 37th annual southeast regional conference (1999)

7. Brooks, F.P.: The Mythical Man-Month: Essay on Software Engineering. Addison-
Wesley, Reading (1995)

8. Bevan, J., et al.: Facilitating Software Evolution Research with Kenyon. In: Proceedings of
the 10th European Software Engineering Conference, Lisbon, Portugal, September 5-6
(2005)

9. Estublier, J., et al.: Impact of Software Engineering Research on the Practice of Software
Configuration Management. In: IEEE TOSEM (2005)

10. Girard, J.F., Verlage, M., Ganesan, D.: Monitoring the Evolution of an OO System with
Metrics: an Experience from the Stock Market Software Domain. In: Proceedings of the
20th IEEE International Conference on Software Maintenance, ICSM 2004 (2004)

11. Goo, J., Nam, K.: Contract as a Source of Trust – Commitment in Succesful IT Out-
sourcing Relationship: An Emprical Study. In: Proceedings of the 40th Annual Hawaii In-
ternational Conferences on System Sciences, HICSS 2007 (2007)

12. Chakraborty, K., Remington, W.: Offshoring of IT Services: The Impact on US Economy.
Journal of Computing Sciences in Colleges 20(4) (April 2005)

13. Schwalbe, K.: Information Technology Project Management, Course Technology, 5th edn.
(July 2007)

14. Bendix, L.: Widening the Configuration Management Perspective. In: Proceedings of
Metainformatics Symposium 2002, Esbjerg, Denmark, August 7-10 (2002)

15. Kinulla, M., et al.: The Formation and Management of a Software Outsourcing Partner-
ship. In: Proceedings of the 40th Annual Hawaii International Conferences on System Sci-
ences, HICSS 2007 (2007)

16. Lehman, M.M.: Laws of Software Evolution Revisited. In: Proceedings of the 5th Euro-
pean Workshop on Software Process Technology, pp. 108–124 (1996)

17. Simons, M.: Distributed Agile Development and the Death of Distance. Sourcing and
Vendor Relationships 5(4) Cutter Consortium

18. Chapin, N.: Usefulness of Metrics and Models in Software Maintenance and Evolution.
In: WESS 2000 Position Paper (2000)

19. Madhavji, N.H., Tasse, T.: Policy-guided Software Evolution. In: 19th IEEE International
Conference on Software Maintenance, ICSM 2003 (2003)

20. Prikladnicki, R., et al.: Distributed Software Development: Practices and Challenges in
Different Business Strategies of Offshoring and Onshoring. In: International Conference
on Global Software Engineering, ICGSE (2007)

21. Pressman, R.S.: Software Engineering a Practitioner’s Approach, Mc Graw Hill Interna-
tional Editions, 5th edn. (2001)

22. Sakthivel, S.: Managing Risk in Offshore Systems Development. Communication of the
ACM 50(4) (April 2007)

23. Sarkar, S., Sindhgatta, R., Pooloth, K.: A Collaborative Platform for Application Knowl-
edge Management in Software Maintenance Projects. In: Proceedings of the 1st Bangalore
Annual Compute Conference (2008)

 Evidence-Based Management of Outsourced Software Projects 165

24. Girba, T., Ducasse, S.: Modeling History to Analyze Software Evolution. International
Journal on Software Maintenance and Evolution: Research and Practice, JSME (2006)

25. Nguyen, T.N., Munson, E.V., Boyland, J.T.: An Infrastructure for Development of Object
Oriented, Multilevel Configuration Management Services. In: Proceedings of the 27th In-
ternational Conference on Software Engineering (2005)

26. Xing, Z., Stroulia, E.: Analyzing the Evolutionary History of the Logical Design of Object-
Oriented Software. IEEE Transactions on Software Engineering 31(10) (October 2005)

27. Xing, Z., Stroulia, E.: Understanding Class Evolution in Object-Oriented Software. In:
Proceeding of the 12th IEEE International Workshop on Program Comprehension, WPC
2004 (2004)

K. Berkling et al. (Eds.): SEAFOOD 2008, LNBIP 16, pp. 166–180, 2009.
© Springer-Verlag Berlin Heidelberg 2009

A Closer Look at Extreme Programming (XP)
with an Onsite-Offshore Model to Develop
Software Projects Using XP Methodology

Ponmurugarajan S. Thiyagarajan and Sachal Verma

Tata Consultancy Services
Rajan.st@tcs.com

Sachal.Verma@tcs.com

Abstract. The business world of today is highly competitive. Business users
demand IT organizations to adapt quickly to changes and provide on-time, cost-
effective solutions. This compels companies to look closely at their software
development processes, to improve them and remain cost-effective. Offshoring
is a well-known cost-effective solution for projects that follow waterfall and
other traditional software development life cycles (SDLC). Waterfall SDLC
may not be ideal when requirements are changing rapidly. Achieving rapidness
in software development along with offshoring will enable companies to pro-
vide quick and cost effective IT solutions. To manage rapidly changing re-
quirements, a large telecommunications company moved out of traditional
waterfall model and adopted Extreme programming (XP) software development
methodology. This paper discusses, in detail, a Telecommunication software
project case study along with the customized XP onsite-offshore model that was
successfully used in developing the project. This paper also share the lessons
learnt from this XP onsite-offshore model.

Keywords: Extreme Programming, XP, Offshore, Model, Telecommunication.

1 Introduction

In today’s world, business changes are very rapid due to intense competition and
frequent introduction of new products to the market. These changes to business re-
quirements trigger changes to traceable IT requirements. Managing rapidly changing
business and IT requirements and developing durable and adaptable software may be
challenging and costly. Traditional models like waterfall software development meth-
odology may not even fit or be efficient in such situations. A move towards agile
software development techniques may be necessary. Agile software development
techniques, like Extreme Programming or XP (Kent Beck, 2000), can adjust to rapidly
changing requirements and help refactor the software accordingly. Extreme Pro-
gramming an agile software development methodology, is a predictable way to de-
velop high quality software with minimal risk in the short term and the long term,
which the customers will like. A reason for this liking is customer presence and close
contact with the team through out the tenure of the project.

 A Closer Look at Extreme Programming (XP) with an Onsite-Offshore Model 167

Offshoring has now become a common option for many organizations to develop and
maintain their cost effective software. Extreme Programming, developed by Kent Beck,
is born out of the desire to apply best in class software practices in a disciplined and
reproducible way. To perform disciplined software development using XP methodology
involving onsite and offshore teams may require suitable customization of XP method-
ology. There are efforts by researchers (Samantha Butler et. al., 2003), but not complete
study, to investigate the effectiveness of global software development using XP.

This paper is mainly organized as follows: Section 2 provides an overview of XP
and compares it with other traditional models. Section 3 details a case study with an
onsite-offshore model developed and successfully completed for a large Telecommu-
nication company based in the United States. Here, the authors also compare tradi-
tional and customized onsite-offshore XP practices. Lessons learnt from this project
are also listed. Section 4 describes conclusions.

2 Overview of XP

XP is a deliberate and disciplined approach of software development. It enables users
to get reliable, working software quickly and continue development at a rapid, confi-
dent, and predictable pace with ever-increasing quality. It is designed to suite environ-
ments where requirements are rapidly changing and scope is unclear. It emphasizes on
customer satisfaction and teamwork. The following sub-sections discuss some of the
important XP concepts.

2.1 XP Values

Key XP values (Chromatic, 2003) are simplicity, communication, testing and courage.
XP requires communication to be simple with involvement of onsite business customer
during all software development phases. XP encourages good communication so that
business people do not promise the unachievable and technical people do not achieve
the unwarranted. It involves starting with simple solutions so that more complex func-
tionalities shall be added later. Requirements are tweaked into simple and clear user
stories for better understanding. Feedback is another key value of XP. Feedback from
customers, teams and systems are ensured in all phases of development. Unit tests
ensure feedback from systems. Regular presence of customers ensures continuous
feedback from them. Daily stand-up calls and pair-programming ensures continuous
feedback from teams. Feedback from customers is obtained at all phases to perform
necessary refactoring. Courage is another key XP value. XP lets customer drive the
project courageously. XP based software development is in small and regular cycles
involving frequent evaluations. It practices pair-programming and encourages team to
sit together so that everybody could see what each one is capable of doing.

2.2 XP and Traditional Models Compared

Traditional way to software development usually have these:

i. Months of meetings with customers before and during the project startup
phase

ii. Generate requirements, specification documents, use cases etc.

168 P.S. Thiyagarajan and S. Verma

iii. Customers negotiate a release date
iv. Developers design, code and test
v. Customer performs User Acceptance Testing (UAT)
vi. Often pieces and requirements are missed
vii. Often whole process takes longer than expected

In an XP way,

i. Customer interacts with XP team regularly during development
ii. Customer writes requirements which are broken down into clear and crisp

user stories
iii. Developer estimate user stories
iv. Stories are grouped into releases comprising of various iterations
v. Customer provides feedback during development and reviews outputs at

the end of each iteration
vi. Customer writes acceptance tests
vii. Developers test, code and refactor
viii. Customer controls team’s direction

Following diagram (Figure 1) compares traditional methods like Waterfall and Itera-
tive development with XP. You can see that XP takes small and simple steps to
achieve the target whereas Waterfall and Iterative development progresses in rela-
tively large steps and in phases. In a waterfall model, any change or issue discovered
at a later point of the project will badly impact project completion and cost.

Fig. 1. XP and Traditional Methods – Compared

The following diagram (Figure 2) compare the development phases in Waterfall
mapped to XP. You may note that a release of software in XP methodology consist of
several iterations.

 A Closer Look at Extreme Programming (XP) with an Onsite-Offshore Model 169

Fig. 2. XP and Waterfall - Compare Releases

2.3 Typical XP Process

The following diagram (Figure 3) illustrates the End-to-End XP Process (Donovan
Wells, 1999).

Fig. 3. XP Process

170 P.S. Thiyagarajan and S. Verma

An XP project consists of a series of releases, approximately 1 to 3 months long,
each providing some business value. A release consists of number of iterations that
are approximately 1 to 3 weeks long. Each iteration consists of stories, which, in turn,
are made up of tasks. A task is executed in test and functional code. During release
planning, the customer chooses the stories the customer wants in that release. Stories
are selected for each iteration based on the customer preference and available user
velocity. Stories are spiked or split based on its complexity. Developers estimate
effort for each user story. Velocity is a measure of capacity or the effort each team
member can put for the iteration. Task assignments are based on available velocity of
the team member. Unit tests are written to completely test the user story. Coding and
testing take place as pair programming. Once coding and testing is completed, auto-
mated integrations tests are run to ensure correctness and completeness of the devel-
opment planned for that iteration. At the end of each iteration, customer performs user
acceptance tests and once signed-off is implemented in production through a release.

In the next section, the authors explain a case study and discuss a successfully im-
plemented onsite-offshore model for an XP based development project for a Tele-
communications company.

3 A Case Study

3.1 The Telco Project

A major Telecommunications provider wanted to consolidate its three legacy cus-
tomer account management (CAM) applications into a single regional Java based
application. Due to mergers and acquisitions, which happened years before, this tele-
communication provider had to maintain 3 different legacy applications to perform
customer account management functions. These 3 legacy applications ran in main-
frame environment. Software enhancement and maintenance of these legacy applica-
tions were costly and time consuming, and, demanded consolidation.

The team members of these legacy mainframe applications were located in various
locations involving onsite and offshore. Onsite teams were located in Denver, Seattle
and Omaha whereas offshore team was in Chennai, India. Onsite teams comprised of
business subject matter experts and technical leads which included Telco’s employees
and onsite consultants. Onsite consultants, from a contracting company, reporting to
the onsite Project Manager, interacted and shared work with their offshore consultants
(of the same contracting company). Offshore teams primarily consisted of a Project
Manager, programmers and testers.

This was the time, when the Telco made the decision to move out of Waterfall
SDLC to XP based software development. With well-known benefits of XP (Gittins
et. al., 2001 and 2002), management was committed to propagate and adhere to the
new XP methodology and use it for the new CAM project. To avail the best benefits
of XP, the team should follow its defined, deliberate and disciplined process.

The proposed consolidated CAM application was designed to be based on J2EE ar-
chitecture. The new Java based application was planned to be developed using an
open source based integrated development environment (IDE), Eclipse (Eclipse Plat-
form Review, 2003). Following is the comparison (Table 1) of the different technolo-
gies involved with legacy and new CAM applications.

 A Closer Look at Extreme Programming (XP) with an Onsite-Offshore Model 171

Table 1. Technologies Compared

 Legacy CAM applications New Consolidated CAM application
(XP)

Operating
System

z/OS mainframe, MVS Linux

Programming
Languages

COBOL, Assembler, JCL Java

Configuration
management

Endevor PVCS Dimensions

Database DB2, IMS-DB Oracle
Other Software Viasoft, Rexx J2EE Technologies, Hibernate, TIBCO

3.2 Onsite-Offshore Model

3.2.1 Challenges
XP is ideal for teams working at a single location that can ensure face to face com-
munication. With the current team distribution (3 onsite location and 1 offshore loca-
tion), it was impossible to bring the team in one location. These factors triggered
customization of the XP methodology and practices for the project and the need to
enhance the existing onsite-offshore model. The main challenges were to manage
teams located in several geographical locations and working in different time zones.
Adding to these challenges, lack of Java skilled programmers was another issue.
Telco’s legacy applications SMEs (Subject Matter Experts) were experts in main-
frame and did not possess necessary Java/J2EE skills.

3.2.2 Planning and Solutions
Offshore consultant team was ready to ramp up trained and skilled Java programmers.
Telco’s legacy SMEs were trained in Java technologies for a month’s time period
before the project startup. This, to some extent, solved the issue of shortage of Java
skilled programmers. Next challenge was to address the team distribution at onsite
and offshore. Onsite teams were scattered at various US locations - Denver, Omaha
and Seattle. Offshore team was located in Chennai. XP process, ideally, demand
teams to sitting face to face at the same location (as shown below in Figure 4). Fol-
lowing diagram is an illustration of a typical XP ‘pod’, XP development area.

Pods were created or modified, as necessary, at all 3 onsite locations so that respec-
tive teams can ensure face-to-face communication at that location. Team members
have to perform XP development work only from their pods. Pods were equipped
with telephones, personal computers with web conferencing facilities and whiteboards
to ensure effective communication as demanded by XP. Now that infrastructure and
other set-up are planned and ready, let us discuss the onsite-offshore XP model to
develop the software project.

172 P.S. Thiyagarajan and S. Verma

Fig. 4. XP Pod

3.2.3 The Model
The following diagram (Figure 5) represents the onsite-offshore model customized to
work in XP methodology.

Fig. 5. Onsite-Offshore XP Model

 A Closer Look at Extreme Programming (XP) with an Onsite-Offshore Model 173

Onsite and Offshore Project Managers: Effective Communication is ensured be-
tween onsite and offshore teams. For this, the onsite consultant Project Manager (PM)
interacts with offshore consultant PM on a daily basis. Onsite PM provide necessary
clarifications on user stories and work with the offshore PM to identify the stories for
onsite and offshore developers. Onsite and Offshore PMs participate in daily stand-up
calls and identify the user stories based on the velocity of onsite and offshore consult-
ant teams.

Proxy Customer: Offshore PM acts as a proxy customer, during the offshore day, for
offshore team members. The offshore PM, the proxy customer, provides clarifications
to questions raised by offshore team. Questions unanswerable by the offshore PM are
discussed in the next day stand-up call with onsite.

The following diagram (Figure 6) explains the XP based software development
workflow.

Fig. 6. Onsite-Offshore workflow

Offshore Representation: Offshore consultants work with their corresponding onsite
team. To avoid confusion and reduce ambiguity, onsite consultant teams regularly
discuss during onsite meetings about the user story tasks, for both onsite and offshore
teams, to be performed that day. They discuss the questions and concerns rose, if any,
by offshore team and obtain necessary clarifications from customer and functional
experts.

Overlapping Work Hours: Onsite team then pairs up with offshore team during the
planned overlapping work hours between onsite and offshore. Overlapping hours are

174 P.S. Thiyagarajan and S. Verma

defined well ahead. These overlap hours can change on a weekly basis based on the
availability and requirement of onsite and offshore consultants. After the overlapping
work window, onsite team pair up with onsite Telco teams and continue work on user
stories.

Pair-Programming: Communication, via email, is sent to offshore asking them to
continue with the user story tasks. Offshore team, then, pair up with other offshore
team members to continue working on the user story. At the end of their days, onsite
and offshore team check-in code into PVCS Dimensions and ensure that they did not
break each others code.

Collective Ownership: Onsite and offshore team work together on each user story.
During the day, onsite team works on the user story and sends the code to offshore at
the end of the day. Both onsite and offshore teams follow test first and develop meth-
odology. They emphasize on continuous integration testing to ensure that a change
does not break any other part of the code. If, in case, either onsite or offshore breaks
the code at the end of the day, the work done for the day is scrapped and the same
details are communicated via emails.

Documentation: XP encourages minimum documentation. With onsite-offshore
model, documentation effort is higher than what is normally required in an XP pro-
ject. For the CAM project, Javadocs were created and this served as a reference
document for the code. Automated tests and JUNITs reports served as test documen-
tation. Transition documents were created to train new team members.

3.2.4 Distributed Onsite-Onsite Communication
It was a minor challenge to manage onsite-onsite communication as the teams were
located in different geographical locations and time zones within the United States –
Omaha, Seattle and Denver. Onsite time zone difference across regions was 1 or 2
hours depending on the location. Team members were asked to adjust their work
hours such that varying time zone issue can be minimized. This had a slight impact on
pair programming involving pairs from 2 different locations. During necessary situa-
tions, the start and end of the day, pairs were formed from single location. Daily
stand-up calls were conducted in the morning time when team members from all 3
locations were available.

The following sub-section discusses about the customization of XP practices in this
onsite-offshore model context.

3.3 Customized XP Practices

Below sub-sections describe and compare the traditional XP practices with custom-
ized onsite-offshore XP practices for CAM project.

 A Closer Look at Extreme Programming (XP) with an Onsite-Offshore Model 175

3.3.1 Practices That Regulate Planning

Table 2. Compare XP Practices that regulate planning

XP Practices Traditional XP Customized
Onsite-Offshore XP

Release Planning

The team plans the content of the
release. A release comprises of
one or more iterations.

The team plans the content
of the release that is 90 days
in length. A release com-
prises of one or more itera-
tions with 2 weeks iterations.

Iterations

The team plans and periodically
releases software. Iterations con-
sist of completed stories.

The team plans and releases
software internally on a 2
weeks cycle. Iterations mainly
consist of completed stories. If
bugs exist or customer not
happy, then incomplete stories
will be carried over to future
iterations

Small Releases Releases are implemented as soon
as there is enough system func-
tionality to add business value to
the customer.

Releases, that are 90 days
long, are implemented as
soon as there is enough sys-
tem functionality to add busi-
ness value to the customer.

3.3.2 Practices That Regulate Social and Technical Relationships in the
Technical Team

Table 3. Compare XP Practices that regulate social and technical relationships

XP Practices Traditional XP Customized Onsite-
Offshore XP

Collective Ownership

Any pair can improve any line
of code, anywhere in the sys-
tem, at any time.

Offshore PM or another
representative, participates in
the daily stand-up calls for
discussions. Pair program-
ming involve combinations
of onsite and offshore pairs.
Code is checked into a com-
mon software configuration
management tool, PVCS
Dimensions, which can be
accessed from onsite as well
as offshore.

176 P.S. Thiyagarajan and S. Verma

Table 3. (Continued)

Simple Design

The simplest thing that could
possible work to make the unit
test pass, in the context of an
overall system architecture that
supports the requirements.
Refactor as necessary.

Design is kept simple with
agreement between onsite and
offshore teams. Design infor-
mation is accessible at a com-
mon folder location and can be
accessed through a configura-
tion management tool.

Coding Standards

Developers and testers write all
code in accordance to prede-
fined rules that enhance com-
munication through the code

Java coding standards are
devised and shared with on-
site-offshore teams and the
same is ensured during pair
programming involving onsite
and offshore pairs. A Java
based IDE; Eclipse is used
by both onsite and offshore
teams. Software packages,
components conventions and
standards are followed across
the board.

Refactoring

Design changes, no matter how
sweeping, take place in small,
safe steps

Pair programming involving
onsite and offshore ensure
necessary refactoring for
simplification of code and
design.

3.3.3 Practices That Help to Assure Quality Software

Table 4. Compare XP Practices that assure quality

XP Practices Traditional XP Customized Onsite-
Offshore XP

Pair Programming

All code is written (includ-
ing acceptance tests) with
two people at one machine

Pair programming involving
onsite and offshore team
member combinations is
achieved through web con-
ferencing (for example,
Microsoft Net Meeting) and
telephone conferencing. Pair
programming also happen at
‘pods’ at respective offshore
and onsite locations. In few
scenarios, triplets of pro-
grammers (combinations of
onsite and offshore) were

 A Closer Look at Extreme Programming (XP) with an Onsite-Offshore Model 177

Table 4. (Continued)

 present during programming
for better understanding
of business and technology.
Triplets, for example, were
formed between an onsite
Subject Matter Expert,
onsite Technical Lead and
offshre programmer. A
common overlapping work
period is devised and fol-
lowed for onsite-offshore
pair programming.

Test-first Develop-
ment

New code is written or existing
code is refactored only after a
unit test has been created and
verified to pass/fail

Unit tests are written and
stored in PVCS Dimension
which could be accessed via
the Eclipse IDE by both
onsite and offshore teams.
JUNITs are written for per-
forming unit tests. Tests are
automated to the best possi-
ble extent.

Continuous
Integration

Code is checked into a central
repository and the entire system
is checked out and built from
scratch AND passes all unit tests
100%. Unit tests automated

A common configuration
management tool (PVCS
Dimensions) is used for
software and document
management. This tool is
accessible by both onsite an
offshore. This helped in
version control. Unit tests
are also checked into the
configuration management
tool. Daily builds were en-
sured at the end of the re-
spective end of the days by
the onsite and offshore PMs.

Acceptance Tests

A test is defined by the cus-
tomer to accept the story

Acceptance tests are only
performed by customer with
support from onsite team.

3.4 Lessons Learnt

Listed below are some of the key lessons learnt from this project, which were experi-
enced in the customized XP onsite-offshore model based project.

178 P.S. Thiyagarajan and S. Verma

• Offshore suitability should be evaluated. Following types of projects are sug-
gested to best suitable:
 Projects with longer/more iterations. Projects that have longer duration are

ideal.
 Projects to be developed from scratch. Brand new development projects.
 Projects previously developed projects from offshore. Repetitive or stream-

line type of projects are best suited to work on the onsite-offshore model.
 Project with minimal dependencies with other applications. More number of

interfacing applications makes the project complex and possibility of missing
functions and requirements related to interfaces.

• Functional Experts must be identified at offshore; who understand business and
can provide clarification to offshore developers. Before project startup, offshore
functional experts must travel to onsite and obtain a mandatory to provide
knowledge transition about the project. Large XP projects often start with a lock-
down session. Functional experts should ensure mandatory participation in these
lockdown planning sessions.

• Communication must be effective and efficient. Use of Teleconference, WebEx
and NetMeeting tools must be encouraged. Must have overlapping hours between
Onsite/Offshore teams. Frequent and structured meetings between customers and
development teams must be arranged. Onsite coordinators must remain in con-
stant touch with customers for any clarifications, validations and suggestions.

• Configuration & Change Management processes must be effective. Should
have centralized check-in and checkout along with coordinated code integration
between onsite and offshore teams. End of the day checks should be in place to
ensure that components which are checked-out are checked back in.

• Coding Standards should be clearly defined and followed. As documentation is
relatively less in XP, usage of inline comments should be encouraged.

• Issue Resolution and Escalation must be done at the earliest possible. Identify
issues, clarify them, understand them, and resolve them. Ensure everyone under-
stands the resolutions and preventive actions, if any.

• Entry & Exit Criteria for each task must be explicitly defined. Offshore should
understand these in order to avoid schedule slippage.

• Documentation should be minimal as per project requirements. In an onsite-
offshore model, minimum documentation is mandatory. This documentation en-
sures knowledge transition and help for training new team members.

• Client Review must be detailed and thorough - not just “sign-offs”. Distance
factor (onsite-offshore) should be taken in to account and “sign-offs”, most often,
determine the exit criteria for an iteration or release.

• Productivity Increase can be achieved by having triplets of developers with one
onsite and two offshore. This is something innovative and when tried in an on-
site-offshore model can be effective. Having combination of a technical expert
and a subject matter expert, at offshore, added more value to pair programming.
Here, the subject matter expert gets an opportunity to improve his technical skills
and vice versa.

• Based on the type of project and needs, Work Timings shall be adjusted such
that both onsite and offshore teams work during same timings. This can be
achieved by making one of the teams work in night shift timings (or equivalent

 A Closer Look at Extreme Programming (XP) with an Onsite-Offshore Model 179

matching timings). This type of timing adjustments are needed when either sub-
ject matter experts or technical experts are not available at onsite or offshore. In
these situations, pairs must be formed with 1 onsite and 1 offshore team member.
In cases where there work timings can not be matched, overlapping work hours
should be ensured, ideally, at the start or the end of a work day.

• At offshore, Work environment for XP could not be made exactly like a ‘pod’,
as demanded by XP, due to floor space and infrastructure issues. So, teams had to
assemble in a meeting room for stand-up calls. Work spaces were organized, to
the best possible extent, such that project team members were located close to one
another.

• Training new team members in XP project was a challenge. With minimum
documentation available, team members had to learn from fellow pairs. Due to
this, interestingly, the learning curve of new team members was quick and
seemed to be very effective.

• Managing maintenance projects in XP mode was another challenge. In reality,
many XP practices could not be applied to maintenance projects.

• Usage of agile Test Tools like JUNIT, Eclipse etc., are mandatory for executing
any XP project in an onsite-offshore model. These tools will help minimize effort
overrun and schedule slippages, as XP methodology require significant amount
of testing effort.

4 Conclusions

XP is a proven software development methodology to produce high quality software
products. There are challenges to customize XP in an onsite-offshore software devel-
opment situation. This paper is an attempt to share the experiences of a Telco’s appli-
cation consolidation project developed in XP methodology and successfully completed
using an onsite-offshore model. This consolidation project was very complex to con-
solidate 3 legacy systems with unclear understanding of the to-be-developed applica-
tion. Using traditional models like Waterfall, it could have taken a long duration to
complete the project. By adopting XP, there were opportunities for the client to adjust
the scope and requirement of the project until a clear understanding of the consolidated
application was available. Ability to adjust and proceed further is a good feature of XP
and this helped in successful completion of the project within the planned duration of
the project.

References

Chromatic: Extreme Programming Pocket Guide. O’Reilly, Sebastopol (2003)
Donovan Wells (1999),
 http://www.extremeprogramming.org/map/project.html
Eclipse Platform Technical Overview, Object Technology International, Inc. (2003),
 http://www.eclipse.org/
Gittins, R.G., Hope, S., Williams, I.: Qualitative Studies of XP in a Medium Sized, Business.

UPGRADE The European Online Magazine for the IT Professional III(2) (2002),
 http://www.upgrade-cepis.org

180 P.S. Thiyagarajan and S. Verma

Gittins, R.: Qualitative Studies of XP in a Medium Sized Business. In: Proceedings of the 2nd
International Conference on Extreme Programming and Flexible Processes in Software Engi-
neering, Sardinia, Italy, pp. 20–23 (2001)

Beck, K.: Extreme Programming Explained: Embrace Change. Addison-Wesley Longman
Publishing Co., Boston (2000)

Butler, S.J., Hope, S.: Evaluating Effectiveness of Global Software Development Using the
eXtreme Programming Development Framework (XPDF). In: ICSE 2003, Global Software
Development Workshop. IEEE, Los Alamitos (2003)

K. Berkling et al. (Eds.): SEAFOOD 2008, LNBIP 16, pp. 181–195, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Measuring and Monitoring Task Couplings
of Developers and Development Sites

in Global Software Development

Yunwen Ye1,3, Kumiyo Nakakoji1,2, and Yasuhiro Yamamoto2

1 SRA Key Technology Laboratory, Inc., 3-12 Yotsuya, Shinjuku, Tokyo 160-0004, Japan
2 RCAST, University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo, 153-8904, Japan

3 L3D Center, University of Colorado, Boulder, CO80309-0430, USA
ye@sra.co.jp, kumiyo@kid.rcast.u-tokyo.ac.jp,

yxy@kid.rcast.u-tokyo.ac.jp

Abstract. During the development of a large software system, the dependencies
between the tasks of developers beget the needs of communication and coordi-
nation among developers. As an analytical instrument to manage and control
the cost of communication and coordination in software development, this pa-
per introduces the concept of developer coupling to measure the task dependen-
cies between developers. In particular, to deal with the greatly increased cost of
communication and coordination in offshore and outsourcing development due
to barriers of stretched distances and cultural differences, this paper further in-
troduces the concept of site coupling to measure the task dependencies between
geographically distributed development sites. Methods of computing developer
coupling and site coupling are illustrated with examples, and their potential us-
ages for controlling and managing communication and coordination in global
software development are described.

Keywords: developer coupling, site coupling, software metrics, cost of com-
munication and coordination, global software development.

1 Introduction

It has long been recognized that communication and coordination breakdowns are one
of the major problems for the development of complex software systems by a large
group of software developers [2, 6]. Over the last several decades, software engineer-
ing researchers have proposed many design principles and mechanisms such as modu-
larization, encapsulation, information hiding, object-orientation, aspect-orientation to
divide system into smaller units that are relatively independent of each other. Such
small units, or modules, are then assigned as tasks to individual developers in the
hope of reducing the needs and cost of communication and coordination among soft-
ware developers.

The cost and difficulty of communication and coordination are exacerbated in dis-
tributed software development when developers are widely distributed in different geo-
graphical sites. Researchers on work cooperation have found that increased distance

182 Y. Ye, K. Nakakoji, and Y. Yamamoto

poses extra challenges for communication and coordination [10, 14]. The situation gets
worse in offshore and outsourcing development because in addition to the extended
distance, developers have also to deal with differences in culture, language, and time
zones. Managing and reducing the needs of communication and coordination, especially
those that take place across different development sites, is one of the major challenges
faced by offshore and outsourcing software projects.

Coordination between developers is required when their development tasks depend
on each other. Many empirical studies have concluded that the needs and cost of
communication and coordination are heavily affected by task dependencies and there-
fore identifying task dependencies among developers can provide means to predicate
the needs of coordination and communication [7, 13, 18], and controlling task de-
pendencies leads to the controlling of coordination and communication.

A tendency in software engineering research is to equate task dependency with sys-
tem unit dependency. Dependency of system units is reduced through the efforts of
system modularization. System modularization, however, does not lead to the elimi-
nation of task dependencies among developers. First, the initial design of system
architecture that divides system into smaller modules is difficult to be maintained in
practice throughout the whole lifecycle of the software system due to the rapid change
of requirements and technology. Studies have found that even minor changes in archi-
tecture can lead to substantial changes in task dependencies among developers [3, 9].
Second, modules cannot simply be equated to task assignments of developers. A de-
veloper often works on multiple modules simultaneously, and a single module is often
worked by multiple developers. A study has found that over 90% of the changes made
in the Eclipse and Mozilla systems involves more than one file [12].

Dependencies among software developers, therefore, are not fully captured in the
structural dependency of system units. Another approach to uncover the dependencies
between developers is to examine their real work assignments. When two developers
modify the same unit, it creates a potential conflict and dependency between those
two developers, and therefore may lead to the needs of coordination [18]. This paper
introduces the term developer coupling to refer to task dependency caused by the co-
modification of a system unit by multiple developers. Reducing and managing devel-
oper coupling is necessary for all large software projects. Global software development
such as offshore and outsourcing projects, however, pose an additional challenge. Be-
cause development is conducted by teams distributed in different geographical sites,
and communication across distant sites is more difficult and costly, the focus for those
projects needs to be shift to cross-site communication. We therefore introduce the
concept site coupling to describe the task dependency between different development
sites and argue that measuring and managing site coupling is necessary to predict and
managing the needs and cost of coordination and communication.

The paper is organized as follows. Section 2 discusses related work that inspires,
and underlies the foundations of, the research. The concepts of developer coupling
and site coupling are defined in Section 3. Section 4 illustrates mechanisms of com-
puting metrics derived from the basic concepts, and the practical usages of the metrics
and concepts in controlling and managing the cost of communication and coordina-
tion for globally distributed software development. Section 5 concludes the paper and
discusses future work.

 Measuring and Monitoring Task Couplings of Developers 183

2 Related Work

Software dependency analysis has been an important research field in software engi-
neering. Most of the traditional research has focused on the structural dependency of
system units at different levels of granularities: from statements to functions, classes
and architecture [8, 16, 17]. Structure dependency describes the interaction of system
units that compose the architecture of the software system, and, as we have pointed
out, it does not necessary reflect completely the task dependency among developers.

Software engineering researchers have used the cohesion and coupling metrics to
measure the interdependency among system units [4]. A system unit P (e.g. proce-
dure, class) is coupled with another system unit Q if P calls or uses Q. Based on this
relation, metrics like CBO (Coupling between object classes) that is the count of the
number of other classes to which it is coupled are defined and used to measure the
complexity of the system to be developed.

The above dependency and metrics are all technical. They are used to describe the
attributes and complexity of the system that is produced, but says little about the
complexity of the process that produces the system, and the organization of the team
that produces the system.

In 1968, Melvin Conway pointed out that the structure of a designed system is
generally the same as the structure of the organization that generated the design. This
structural homomorphism is necessary because it greatly reduce the needs of commu-
nication and coordination [5]. This principle is since known as Conway’s law [11].
Herbsleb and Grinter have set to explore whether geographically distributed software
development follows this Conway’s law [11]. They found that architecture-based
coordination and communication if not sufficient, and software developers often en-
gage in ad hoc communications to coordinate their task dependency not contained by
the modularization of the system architecture, and thus engage in cross-team and
cross-site communication and coordination activities that are very hard to manage .

Morelli et al [13] compared predicted and actual communication linkages in a
product development project at a manufacturer of electrical interconnect technologies.
Through interviews, they develop a matrix that represents the task dependency among
project members. The task dependency is transformed into a predicated communica-
tion matrix. Actual communication is measured through weekly questionnaires, and
represented in actual-communication matrix. By comparing the two matrices, they
conclude that 81% of all coordination-type communication can be predicted in ad-
vance based merely on the task dependency of the team members.

Cataldo et al [3] have studied the relationship between coordination requirements
and actual coordination activities in the development of a commercial software sys-
tem, and concluded that high congruence between the requirements and activities
contributes to the reduction of development time. To compute the coordination re-
quirements, they first compute a task assignment (TA) matrix. A cell TA(i,j) repre-
sents developer i has made changes to file j over the lifecycle of the history. A second
matrix, task dependency (TD) is computed. A cell TD(i, j) represents that file i and
file j have been changed simultaneously at some time. The coordination requirements
matrix (CR), whose cell CR(i,j) represent the needs of coordination between two
developers i and j, is the product of TA, TD and the transpose of TA, meaning that
developer i and j needs coordination if some files changed by i and some files

184 Y. Ye, K. Nakakoji, and Y. Yamamoto

changed by j have been changed at the same time by some developers (can be devel-
oper i or developer j or any other developer) for the whole life cycle of the system.

The concept of developer coupling is most closely related to the method used by
Wagstrom and Herbsleb in producing a networked view of task dependencies among
developers for a specified period of time [18].

Another study examines the task dependency among developers based on module
dependency [7]. The Ariadne system first computes the module dependency by ana-
lyzing the control flow. It then mines development history log to determine those
developers who have worked on a particular module. By integrating those two rela-
tions, it produces a sociogram that displays the modules that a particular developer is
depending on, as well as other developers whose work may have impact on, or may
be impacted by, the particular developer. The sociogram is meant to create awareness
among developers in terms of their dependency and impacts on other developers. In
Ariadne, this kind of dependency is called sociotechnical dependency.

3 Definitions of Concepts

This section describes the concept of developer coupling that reflects the task depend-
encies among software developers and the concept of site coupling that reflects the
task dependencies among different development sites. Several metrics derived from
the two concepts are also defined. The concepts and metrics are based on the actual
practices of software development, and therefore they provide retrospective analysis
of how things have been. They differ from those dependency measurements based on
the designed architecture of the system and the formal assignment of tasks that reflect
how things should be and that often does not match actual practices of software de-
velopers. The main purpose of the concepts and metrics is to provide a means for
project managers and developers to understand what the state of development practice
is, to discover the presence of problems, and to devise intervention mechanisms to
change practices if the current state is not satisfactory.

3.1 Concepts of Developer and Site Coupling

The concept of developer coupling tries to capture how a developer is dependent on
another developer based on their development history in the same project; and it is
derived from the modification history of the system, represented by a series of modifi-
cation act: modify(d, f, t), which indicates that a developer d modifies a system unit f at
time t. The system unit can be of any granularity; it can be a file, a class, or a function.

Definition 1: Developer Coupling. Two developers d1 and d2 are coupled if there
exists modify(d1, f, t1) and modify(d2, f, t2), and |t1 – t2| < ts, where ts is a pre-
defined time slider.

The variable time slider ts is used to control the precision of analysis, and it should be
determined based on the nature of each project, and the purpose of using the concepts
and metrics. The longer the time slider ts is, the lower of the intensity of the coupling

 Measuring and Monitoring Task Couplings of Developers 185

between the developers. In most projects, the modification history is mined from
version control systems and is known only when developers commit their changes. If
the project convention is that developers commit their changes only after their own
modification has reach a relative stable state, the frequency of commit would be rela-
tively low and the time slider ts used for determining developer coupling should be
set to a bigger value. If the project convention has frequent commit acts, ts should
consequently be set to a smaller number. If some projects employ awareness tools that
monitor team members uncommitted modifications to files in their own working
space [15], it is also possible to compute developer coupling in real time with a rather
small ts to monitor and control developer coupling in real time.

Definition 2: Site Coupling. Two development sites s1 and s2 are coupled if any
developer d1 from site s1 has developer coupling with any developer d2 from site s2.

As developer coupling can be used to predicate the needs of coordination between
two developers, site coupling is used to predicate the needs of coordination between
two sites. For offshore and outsourcing development, due to the much higher cost of
coordination across sites, recognizing and reducing site coupling has a higher priority.

Definition 3: Developer-Site Coupling. A developer d is coupled with site s if d has
developer coupling with any developer from site s. If d is from site s, d will have in-
site coupling; if d is not from s, d has out-site coupling.

The concept of developer site coupling is useful to understand how a particular devel-
oper’s task is coupled with developers from other sites. If a developer’s in-site cou-
pling is much lower than his or her out-site coupling with another site, then it raises
the question whether some task assignments should be adjusted or the developer
should be relocated to the other site.

3.2 Metrics of Measuring Couplings among Developers and Sites

Based on the concepts defined above, we now define the following metrics that give
quantitative measurements of couplings among developers and sites:

DeveloperCoupling(d1, d2)
SiteCoupling(s1, s2)
DeveloperSiteCoupling(d, s),
 InSiteCoupling(d),
OutSiteCoupling(d)

The metric DeveloperCoupling(d1, d2) denotes the count of the number of couplings
that d1 and d2 has over any unit of the system. For example, Fig. 1 shows the modi-
fication history of four developers on two system units. If we set ts to 4, the thin gray
line shows that the time window during which modifications by other developers
will create one count of developer coupling. The DeveloperCoupling(d1, d2) in Fig.
1 is 3, and the details for computing this value are as follows. For system unit f1,

186 Y. Ye, K. Nakakoji, and Y. Yamamoto

Fig. 1. Computing couplings from modification history. Each cell in the ‘time’ axis represents
one time unit, and the time slider is set to 4 units. The gray box indicates the developer made
changes to the system unit at the specified time. Thin light grey lines indicate the time slider
before and after the modification; modifications made by other developers that fall in the range
of the thin grey line indicates a coupling. Thick lines represent cross-site couplings between
developers; dotted thick lines represent in-site couplings.

modify(d1, f1, t1) and modify(d2, f1, t4) couple, modify(d2, f1, t7) and modify(d1, f1,
t10) couple. For system unit f2, modify(d2, f2, t4) and modify(d1, f2, t5) couple.

Special attention is needed for the coupling between modify(d2, f2, t4) and mod-
ify(d1, f2, t7). The two modifications are within the time slider ts=4, but because
modify(d1, f2, t5) is also within the same time slider, any conflict that d1 and d2 has
probably would have been solved and discussed during the conflict between t4 and t5,
and the modification by d1 at time t7 is more related to the one made at time t5 by d1
himself or herself than to what d2 has done at time t4. Therefore, we count only the
one caused by modify(d1, f2, t5) in DeveloperCoupling(d1, d2), and ignore the cou-
pling between modify(d2, f2, t4) and modify(d1, f2, t7).

A contrasting situation exists between d1 and d4 regarding system unit f2. At time
t5, d1 modifies f2; this creates a coupling with the modification made to f2 by d4 at
time t6, resulting in one count of DeveloperCoupling(d1, d4). At time t7, d1 modifies
f2 again, but in this case, we would count this coupling and set DeveloperCou-
pling(d1, d4) to 2. The reason behind it is any conflict between d1 and d4 caused by
modification at t5 and t6 would have been settled around t6, and a new modification
by t7 indicates d1 is making further changes to what have been done by d4, leading to
new probabilities of needs for coordinations.

Table 1 summarizes the values of developer couplings that exist among developers
based on the modification history shown in Fig. 1.

 Measuring and Monitoring Task Couplings of Developers 187

Table 1. Values of DeveloperCoupling(di, dj) among developers shown in Fig. 1. Cells with
gray shade indicate cross-site couplings.

 d1 d2 d3
d2 3
d3 1 2
d4 2 3 1

The metric SiteCoupling(s1, s2) is the sum of the number of couplings that all de-

velopers in site s1 has with all developers in site s2. In other words

SiteCoupling(s1,s2) = DeveloperCoupling(di,dj)
dj ∈s2

∑
di∈s1

∑

In Fig. 1, SiteCoupling(s1, s2) is 8.
The metric DeveloperSiteCoupling(d, s) measures the number of couplings that

developer d has with all developers from site s. In Fig. 1, DeveloperSiteCoupling(d1,
s2) is 3.

The metric InSiteCoupling(d) measures the number of couplings that developer d
has with all developers from the same site. In Fig. 1, InSiteCoupling(d1) is 3.

The metric OutSiteCoupling(d) measures the number of couplings that developer d
has with all members from other sites; it is the sum of DeveloperSiteCoupling(d, s)
for all s that is different from the site where d is stationed. In Fig. 1, OutSiteCou-
pling(d1) is also 3 because there is only one other site.

4 Measuring and Monitoring Couplings

In this section, we will use examples to show how the metrics are computed from
development history data and how such metrics can be used to help monitor and con-
trol the needs of coordination and communication in distributed software projects. For
the purpose of illustration, we will use the modification history of the Apache HTTP
server.

4.1 Data Set

The Apache HTTP server project is currently using Subversion as its version control
system. We collect all commit logs made to the version control system from Jan 1,
2000 to Jan 31, 2008. For this period, 80 developers made 15,582 commits that made
changes to 3,658 files. The system unit of analysis is set to be a file.

4.2 Computing Metrics of Developer Coupling and Site Coupling

A program was written to analyze each commit log entry and extract its committing
developer, timestamp, list of files that are changed. From the commit log, we created,

188 Y. Ye, K. Nakakoji, and Y. Yamamoto

for each file, a list of modification history that consists of a tuple of two elements: the
developer and the timestamp of commit. The list of modification history is ordered
according to the time. From the list of modification history for each file, we determine
all the couplings that developers have about the file within the predetermined time
slider. Couplings for each file are then aggregated to produce the final count for each
pair of developers.

Fig. 2 shows historical data of developer couplings for the Apache HTTP server.
We divide the time into periods of two months and counted developer couplings for
each period. The number shown is the sum of developer couplings between each pair
of developers. During the analysis, the time slider for determining couplings among
modifications was set to 10 days. Namely, if two developers commit changes of the
same file within 10 days, the two developers have a count 1 of developer coupling.

Fig. 2. Values of DeveloperCouplings of the Apache HTTP server for each two-month period
with time slider set to 10 days

Imposing the information of site location of each developer on the developer cou-
pling, we are able to compute the site coupling. We divide the developers who con-
tributed code to the Apache HTTP server system based on their physical locations.
Because a large number of the developers come from US, we divide US developers
based on their states, and non-US developers by their countries. The physical loca-
tions of developers are obtained from the Apache Web site. For those developers
whose locations cannot be ascertained, we lump them into the “Unknown” site.

 Measuring and Monitoring Task Couplings of Developers 189

Fig. 3. Values of DeveloperCoupling and SiteCoupling for the Apache HTTP server

We are fully aware that this division of sites is rather arbitrary because developers
from the same state or country are still widely distanced and should not be considered
as co-located. In fact, each developer in most Open Source Software systems should be
counted as one site. The goal of using this data set is to illustrate how to compute and
use site coupling metrics rather than analyzing the cost of cross-site communication
and coordination of the Apache HTTP server project. For this project, developer cou-
pling is more important. Fig. 3 shows both the values of DeveloperCoupling and Site-
Coupling. As the figure shows, the site coupling is almost the same as the developer
coupling, reflecting well the nature of Open Source Software systems in which each
developer works in relative isolation, relying on computer-supported communication
mechanisms rather than face-to-face communications enabled by co-location. For a
proprietary software project, a figure like Figure 3 may raise concerns because the
lower cost of communications among co-located developers are not well leveraged.

4.2 Scenarios of Usage

Figs 2 and 3 give a historical overview of the couplings among developers and devel-
opment sites, and provide a means for project managers and developers to monitor the
task dependencies that beget needs of communication and coordination. The figures
indicate that there are several peaks of value increase but most of the increased cou-
pling reduced immediately, so these peaks may not be a huge concern. The more

190 Y. Ye, K. Nakakoji, and Y. Yamamoto

troublesome spot may be on the right side of the figures where we can see that the
project has been currently experiencing increase of couplings since May 2007, and the
pace of increase picks up since Nov. 2007. This makes one wonder what has hap-
pened since Nov. 2007, and a more detailed exploration of the couplings from Nov
2007 and Jan 2008 is called for. Using this period as an example, this subsection de-
scribes scenarios of using the coupling metrics to explore the reasons that cause such
couplings so that appropriate adjustments can be applied to deal with unwanted cou-
plings to reduce the cost of communication and coordination.

4.3.1 Visualizing the Couplings
The first scenario is to examine the details of couplings among developers with visu-
alization support. Fig. 4 visualizes the couplings between developers for the interested
period: between Nov. 2007 and Jan. 2008, and Fig. 5 visualizes the couplings between
development sites for the same period. From the two figures, it is easy to find that two
developers contribute most to the couplings: rpluem and minfrin. Comparing the two
figures, we can find that most of the couplings are across development sites. These
two visualizations give a snapshot of the state of the practice regarding coupling
among developers and sites.

Fig. 4. Couplings among developers from 2007-11 to 2008-1. Labels indicate the value of
DeveloperCoupling between the two linked developers.

4.3.2 Redesigning to Reduce Couplings
If the visualizations reveal that the current state of coupling is not ideal and the pro-
ject manager or the developers want to take measures to reduce the coupling. One of
the things to look at is which files cause the couplings. This leads to the needs of

 Measuring and Monitoring Task Couplings of Developers 191

Fig. 5. Couplings among sites from 2007-11 to 2008-1. Labels indicate the value of Develop-
erCoupling between the two linked developers.

computing DeveloperCoupling and SiteCoupling for each file. The table in Fig. 6 lists
all files that cause couplings during the period between 2007-11 and 2008-1. From the
list, we can see that two files: modules/http/http_filters.c and include/ap_mmn.h need
special attention and they may be candidates to be considered for redesign.

4.3.3 Task Reassignment
Another possibility of reducing site coupling is to change the task assignments or
developer locations.

Examining the details of DeveloperCoupling in Fig. 4, we can see that three devel-
opers—rpluem, jim and niq—have relatively complicated coupling relationship, with
following values of DeveloperCoupling:

DeveloperCoupling(rpluem, jim) = 4
DeveloperCoupling(rpluem, niq) = 6
DeveloperCoupling(jim, niq) = 2

Some development tasks may need to be reassigned to reduce the couplings among
those developers. Managers or developers can examine the details of files that caused
the couplings among those developers (Fig. 7). From the output shown in Fig. 7, we
can see that the file modules/http/http_filters.c causes multiple couplings. With this
information, managers and developers can review task assignments to the three de-
velopers in terms of their relationship with those files and make appropriate adjust-
ments to reduce coupling.

192 Y. Ye, K. Nakakoji, and Y. Yamamoto

Fig. 6. DeveloperCoupling and SiteCoupling for each file

Fig. 7. Details of couplings among interested developers

The visualizations in Figs. 4 and 5 also clearly show that rpluem and minfrin are at
the center of many developer couplings, with each coupled with 9 and 7 other develop-
ers respectively, and each having a total coupling value of 21 and 11 respectively. If this
is not what originally designed, then it suggests a need of closer examination of these
two developers’ task assignments and their impacts on couplings and communications.

4.3.4 Developer Relocation
In offshore and outsourcing development, there are times when managers consider the
relocation of developers. Many factors affect this decision-making process. One fac-
tor that should be considered is how the developer’s task is coupled with developers

 Measuring and Monitoring Task Couplings of Developers 193

of other sites. This brings the needs of computing InSiteCoupling and OutSiteCou-
pling for each developer, and DeveloperSiteCoupling for each pair of developer and
site. Fig. 8 shows the values of those couplings for the period between 2007-11 and
2008-1. If a developer whose InSiteCoupling value is high is relocated to another site,
the InSiteCoupling would become OutSiteCoupling and may lead to increased cost of
communication and difficulty of coordination. On the other hand, if a developer’s
DeveloperSiteCoupling value with a particular site is higher than his or her InSite-
Coupling, then relocating the developer to that site may help reduce the cost of com-
munication and coordination. For example, the data in Fig. 8 suggests that relocating
niq from United Kindom to Germany will reduce cross-site couplings between the
two sites. If all other conditions are similar, and the project has to move one developer
from the site in United Kingdom to the site in Germany, then relocating niq is a better
choice than relocating pctony because it would reduce site coupling.

Fig. 8. Couplings between developer and sites

5 Summary and Future Work

The complex inter-dependencies of development tasks are one of the major reasons
that make large-scale software development difficult and costly. Task dependencies
are the root cause of the well-known Brook’s law: “Adding manpower to a late soft-
ware project makes it later” because the increase of communication and coordination
cost is often higher than the productive gain by the newly added manpower due to
inter-dependencies of work [1]. The concepts of developer coupling and site coupling
introduced in this paper attempt to reveal and represent the task dependencies among
software developers and development sites that are manifest in actual practices. They
differ from existing approaches of task dependency analysis that are mostly based on

194 Y. Ye, K. Nakakoji, and Y. Yamamoto

the structural dependencies of modules, that often generates too many couplings to be
useful and miss latent couplings at the same time. Developer coupling and site cou-
pling focus on couplings that are actually happening and that matter most in the pro-
ject context.

Several metrics were derived from the two concepts. The computation, visualiza-
tion and exploration of such metrics afford intuitive as well as quantitative monitoring
and reasoning of task dependencies among developers and development sites. Using
the metrics, project managers and developers can discover potential coordination
problems and address such problems with appropriate measures.

The paper illustrated the metrics with data from an Open Source Software system,
and hence the analytical utility of site coupling is not fully demonstrated. Our near
future work includes applying those metrics to proprietary offshore or outsourcing
development projects and verify further the practical implications of the concepts and
metrics. We are also currently developing an integrated tool that dynamically com-
putes and visualizes the metrics with flexible controls at granularities, times, and
topics.

References

1. Brooks, F.P.J.: No Silver Bullet: Essence and Accidents of Software Engineering. IEEE
Computer 20, 10–19 (1987)

2. Brooks, F.P.J.: The Mythical Man-Month: Essays on Software Engineering, 20th Anniver-
sary edn. Addison-Wesley, Reading (1995)

3. Cataldo, M., Wagstrom, P.A., Herbsleb, J.D., Carley, K.M.: Identification of Coordination
Requirements: Implications for the Design of Collaboration and Awareness Tools. In: Pro-
ceedings of CSCW 2006, pp. 353–362. ACM Press, Banff (2006)

4. Chidamber, S.R., Kemerer, C.F.: A Metrics Suite for Object Oriented Design. IEEE Trans.
on Software Engineering 20, 476–493 (1994)

5. Conway, M.E.: How Do Committees Invent? Datamation 14, 28–31 (1968)
6. Curtis, B., Krasner, H., Iscoe, N.: A Field Study of the Software Design Process for Large

Systems. Communications of ACM 31, 1268–1287 (1988)
7. de Souza, C.R.B., Quirk, S., Trainer, E., Redmiles, D.: Supporting Collaborative Software

Development through the Visualization of Socio-Technical Dependencies. In: GROUP
2007, Sanibel Island, FL, pp. 147–156 (2007)

8. Ferrante, J., Ottenstein, K.J., Warren, J.D.: The Program Dependence Graph and Its Use in
Optimization. ACM Transactions on Programming Languages and Systems 9, 319–349
(1987)

9. Henderson, R.M., Clark, K.B.: Architectural Innovation: The Reconfiguration of Existing
Product Technologies and the Failure of Established Firms. Administrative Science Quar-
terly 35, 9–30 (1990)

10. Herbsleb, J., Mockus, A., Finholt, T., Grinter, R.E.: Distance, Dependencies, and Delay in
a Global Collaboration. In: Proceedings of CSCW 2000, pp. 319–327 (2000)

11. Herbsleb, J.D., Grinter, R.E.: Architectures, Coordination, and Distance: Conway’s Law
and Beyond. IEEE Software, 63–70 (1999)

12. Kersten, M., Murphy, G.C.: Using Task Context to Improve Programmer Productivity.
In: Proceedings of FSE 2006, pp. 1–11 (2006)

 Measuring and Monitoring Task Couplings of Developers 195

13. Morelli, M.D., Eppinger, S.D., Gulati, R.K.: Predicting Technical Communication in
Product Development Organizations. IEEE Transactions on Engineering Management 42,
215–222 (1995)

14. Olson, G.M., Malone, T.W., Smith, J.B. (eds.): Coordination Theory and Collaboration
Technology. Lawrence Erlbaum Associates, Mahwah (2001)

15. Sarma, A., Noroozi, Z., van der Hoek, A.: Palantir: Raising Awareness among Configura-
tion Management Workspace. In: Proceedings of 2003 International Conference on Soft-
ware Engineering, pp. 444–454 (2003)

16. Stafford, J.A., Richardson, D.J., Wolf, A.L.: Architecture-Level Dependence Analysis for
Software Systems. International Journal of Software Engineering and Knowledge Engi-
neering 11, 431–451 (2001)

17. Vieira, M., Dias, M., Richardson, D.J.: Describing Dependencies in Component Access
Points. In: Proceedings of 4th ICSE Workshop on Component-Based Software Engineer-
ing (2001)

18. Wagstrom, P., Herbsleb, J.: Dependency Forecasting in the Distributed Agile Organiza-
tion. Communications of ACM 49, 55–56 (2006)

Automated Process Quality Assurance for
Distributed Software Development�

Jian Zhai1,3, Qiusong Yang1,3, Ye Yang1, Junchao Xiao1, Qing Wang1,
and Mingshu Li1,2

1 Laboratory for Internet Software Technologies, Institute of Software
The Chinese Academy of Sciences, Beijing, China, 100190

2 The State Key Laboratory of Computer Science, Institute of Software
The Chinese Academy of Sciences, Beijing, China, 100190

3 Graduate University of Chinese Academy of Sciences
Beijing, China, 100049

{zhaijian,qiusong yang,ye,xiaojunchao,wq,mingshu}@itechs.iscas.ac.cn

Abstract. As required or implicated in many process improvement or
assessment models, Process Quality Assurance (PQA) is introduced to
objectively evaluate actual software processes against applicable pro-
cesses descriptions, standards, and procedures and to identify potential
noncompliance. In a Distributed Software Development (DSD) environ-
ment, PQA is also an absolute necessity to ensure that each development
site behaves as expected and high quality software is collaboratively de-
veloped. However, several problems brought by the distribution nature of
DSD, such as different interpretations of standard processes among de-
velopment sites, inconsistent criteria for identifying noncompliance, vis-
ibility into development activities of all sites being challenging, hidden
conflicts or noncompliance for political issues within a site, substantial
investment in setting up PQA teams in each site etc., can undermine
the objectivity and effectiveness of PQA activities. To alleviate these
problems, we introduce an approach in this paper that automates PQA
activities for some routine checking tasks in a DSD environment. In the
approach, a process model describing the actual software process is auto-
matically built from each site’s repository and, then, the model is checked
against logic formulae derived from a common checklist to detect non-
compliance. Experiment results show that the approach is helpful to
ensure that PQA activities in each site can be conducted according to
the same guideline and the objectivity of PQA results is guaranteed.

Keywords: distributed software development, process quality assur-
ance, process modeling, model checking.

� Supported by the National Natural Science Foundation of China under grant Nos.
60573082, 60473060, 90718042 and the Hi-Tech Research and Development Program
(863 Program) of China under grant No.2006AA01Z185, 2007AA010303, as well
as the National Basic Research Program (973 Program) of China under grant No.
2007CB310802.

K. Berkling et al. (Eds.): SEAFOOD 2008, LNBIP 16, pp. 196–210, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Automated Process Quality Assurance for DSD 197

1 Introduction

It is widely accepted that the quality of software is highly related to the pro-
duction process that is carried out and can not be ensured simply by inspecting
the products. A software process of good quality leads to good software in most
cases. To make sure of the high quality of software production processes, there
are more and more software enterprises employing the process improvement and
assessment models, such as Capability Maturity Model� Integration (CMMI)[1],
ISO9000[2] and so on. In such models, those practices and methodologies of PQA
have been widely used. The goal of PQA is to objectively evaluate an actual soft-
ware process against applicable process descriptions, standards, and procedures,
such that noncompliance issues are identified and feedback is provided to project
staff and managers. Here the Actual Software Process denotes a sequence that
encompasses the actual activities conducted by human agents and non-human
agents in the course of software development. This process can be stored in and
recovered from the development repository.

In most co-located development environments, to operate PQA activities,
PQA staff have to dig into the development repository to recover the actual
process and decide if each item in a checklist is satisfied in the actual process.
A checklist usually consists of a regular set of checking items, and each checking
item is a binary valued proposition, which actually describes one potential source
of noncompliance issues between the actual software process and the successful
experience or standard software process. A proposition of a checking item is sat-
isfied means that there is no noncompliance in the actual process for this item,
and vice versa. For example, a checking item may focus on the temporal order of
several process activities, the existence of certain process activities, properties
or statements about a process fragment and so on. If all of the checking items
are satisfied, it implies that there is no noticeable noncompliance in the actual
software process, and the process can be recognized as a process of good quality.

Distributed software development has become pervasive in modern enterprise
environments. DSD means that the software development is disperse throughout
several software development sites that could be located in different locations,
i.e. different cities, different countries or even different continents. This way
of software development has been greatly benefiting the software enterprises.
With DSD, an enterprise may evidently reduce their whole development cost
and strengthen their development capability. At the same time, an enterprise
can have direct access to a broader set of skilled workers.

On the other hand, DSD is fraught with a number of issues and pain points
to distributed PQA. These issues may weaken the benefits that are brought to
enterprises brought by DSD. Firstly PQA staff in distributed development sites
may have a different interpretation or understanding towards standard processes
because of their differences in training, experience, creativity and ability, which
may result in inconsistent criteria that the PQA staff follows in identifying non-
compliance. Because of the manual manner of PQA, the judgement whether a
checking item is satisfied by an actual software process highly depends on the
criteria and the PQA staff’s characteristics. Since the subjective factors of PQA

198 J. Zhai et al.

are hardly to be uniform, the comparison, measurement and evaluation of actual
software processes of each distributed site based on such manual PQA results
are not believable enough. Secondly because an autonomous distributed devel-
opment site has its own private interest, which may be not the same as the
whole project’s interest completely. Based on the “Rationalist Assumption” in
economics, the PQA staff who work for a site tends to conceal the noncompli-
ance issues that have been discovered from the manager for the local interest.
Since there is lack of visibility into development activities of all sites for a project
manager in a DSD environment, the manager is hardly to ensure the authen-
ticity of a PQA report coming from a distributed development site. It causes
the evaluation of an actual software process out of control. Thirdly DSD causes
substantial investment in setting up PQA teams in each site compared to that
in co-located software development.

To address such problems of PQA in a DSD environment, we introduce an ap-
proach in this paper that can help to automatically operate PQA in a distributed
development site objectively, efficiently with a standardized criteria. Because of
the automated actual software process modeling, checking and PQA results re-
porting, the effects of the distributed site’s PQA staff are reduced to a certain
extent, and lots of cost on setting up PQA teams for all sites are saved. In our
approach, a formal process model describing the actual software process of a dis-
tributed development site is automatically built from its development repository
without the intervention of local staff. On the other hand, with a certain logic,
μ-calculus [3] in this paper, the items in checklists used by an organization are
expressed as logic formulae. Since the translation of checking items is an one-off
activity, this step can be ignored in the repeated PQA once the formulae are ac-
quired. Being input with the obtained actual process model and logic formulae,
model checking tools are then used for automatically deciding if a checking item
is satisfied in an actual process to judge the quality of an actual process, and
automatically report the result to the project manager who is located outside of
the development site. Experiment results show that the approach is helpful to
ensure that PQA activities in each site can be conducted according to the same
guideline and the objectivity of PQA results is guaranteed.

The rest of this paper is organized as the following: in Section 2, the related
work is presented. In Section 3, TRISO/ML, the process modeling language used
for describing an actual process, is presented. Section 4 introduces the actual
process modeling approach, and Section 5 describes how an item in a checklist
is formulated in μ-calculus. A case study and the conclusion of this research are
presented in Section 6 and Section 7, respectively.

2 Related Work

There are, two streams of related work that are directly related to this study.
One is the studies on quality assurance in co-located and distributed software
development, and the other is the studies on the modeling and verification of
actual software processes.

Automated Process Quality Assurance for DSD 199

2.1 Quality Assurance in Software Development

The concept of quality assurance has been widely accepted and implemented
in the field of software development. As a result, the quality of software has
been improved significantly over the past two decades. Apart from the usage of
new development techniques, there has been a greater awareness of the impor-
tance of software quality management and the adoption of quality management
techniques from manufacturing in software industry [4]. As for the researches
on software quality assurance, a brief survey is given in [5]. Previous researchs
of distributed software quality assurance is mainly focused on the tools and
approaches for distributed testing [6], empirical analysis [7,8], and some global
projects related technical reports, such as Mozilla [9]. Zhao and Elbaum [10] give
a survey on quality related activities in open source software development, which
is a typical distributed software development environment. As for the software
process in distributed software development, S. Becker et al. [11] introduce an
approach in which a client can delegate parts of net-based process models to a
contractor, and the client can monitor the progress from the feedback informa-
tion provided by the contractor. M. Vanzin et al. [12] present their practices for
defining a global software process in a distributed environment and the factors
that have a major impact on process definitions. Though the ultimate goal of
those researches is to improve the quality of software, they do not tell how to
ensure that those successful experience or well-defined processes are complied in
the actual software process, especially in a DSD environment.

2.2 Modeling and Verification of Actual Software Processes

As for the modeling of actual processes, Cook and Wolf provide an investigation
on different approaches in this field [13], and they also introduce their solutions
to model an actual process in [14,15]. Aalst et al. carry out a series of researches
in this field too [16,17]. In the papers, the authors introduce several variants of
the α-algorithm. They reveal that this type of algorithms can be used in a large
class of processes. The work mentioned previously mainly focuses on modeling
an actual process from the perspective of repeated activity steams, and the tem-
poral relationships among activities in a model are discovered through statistical
methods. The granularity of activities in these approaches is too low to fit for
PQA in general. As for process checking, the work of Cook et al. [18] is closely
related to this paper. In the paper, the concept of process validation is intro-
duced, but the validation mentioned there is based on the comparison between
the supposed data stream generated from model and the actual activity streams
collected from actual processes instead of checking the potential noncompliance
issues of the actual processes, which is just the requirement of PQA. Aalst et
al. also study process checking in [19,20]. They introduce the fitness and appro-
priateness dimensions of process conformance. Though both of the two concepts
are related to PQA, they focus on the classification of the process conformances
instead of checking actual processes for the potential noncompliance issues.

200 J. Zhai et al.

In addition, there are some papers on verifying abstract model systems, such
as real-time systems, against specific system properties, such as safety properties
[21,22]. These works are related to our work, and they fall into different research
domains.

3 TRISO/ML Process Modeling Language

In our approach, TRISO/ML (TRidimensional Integrated SOftware development
model/Modelling Language) [23] is used to model actual software development
processes. It is a graphical modeling language but with rigorous operational se-
mantics in polyadic π-calculus, which is proposed to support the TRISO Model
advocated in [24] and [25]. The primary element of the language is process activ-
ities, which are connected by temporal relation operators to construct a process
model. The language describes a process as an activity hierarchy and it provides
powerful abstractions of control flow, data dependency, and resource usage in
software processes. Most importantly, this language provides a group of mapping
rules to transform a graphical process model into a series of polyadic π-calculus
expressions in a mechanical way. The mapping rules assure that the semantics
of the graphical model and the polyadic π-calculus expressions are fully coin-
cident, and each TRISO/ML graphical model can be transformed into a set of
polyadic π-calculus expressions. Thus, TRISO/ML has a rigorous semantics that
is helpful to precisely describe a process and it can be a good basis for further
analysis.

Sequential

||

Parallel

+

Choice Activity

Fig. 1. Structural notations of TRISO/ML graph

The structural notations of TRISO/ML are listed in Fig. 1. The rectangle
stands for a process activity and the diamonds stand for the temporal relation-
ship operators. The notations “‖”, “→” and “+” inside the diamonds indicate
that the temporal relationship among activities is parallel, sequential or choice
respectively. Furthermore, the choice operator is used to describe the uncertainty
of process models. In TRISO/ML, a software process is defined as a tri-tuple:
(V , E , δ), where V is a set of nodes, as the union of C∪A. C represents the set of
nodes controlling the sequencing of activities. Each node in C is in type of either
parallel, sequential, or choice. A denotes the set of activities that are carried out
in a software process. E ⊆ (C ×A ∪A× C) is a set of directed edges connecting
the nodes, and δ : (A∪C ×A) → Attr maps each element in A∪ C ×A to a set
of attributes. Further details about mapping a graphical process in TRISO/ML
into a set of π-calculus expressions can be found in [23].

Automated Process Quality Assurance for DSD 201

4 Modeling the Actual Software Processes

In practice, the accumulated information of actual software processes can be
recorded and organized in various forms. Gantt chart is a commonly used and
convenient tool to organize and present the information of an actual process,
such as the duration, agents, work hours, and involved artifacts of every activity,
as well as the planned process. Without loss of generality, we use Gantt chart
as the representing form of actual processes and the results in this paper are
also applicable to other forms as long as the information of actual processes is
recorded and it can be obtained.

Fig. 2. The sketch map of the framework

Starting from a Gantt chart of a distributed development site’s actual pro-
cesses, we build a TRISO/ML process model with rigorous semantics in
π-calculus that is amenable to further analysis. At the same time, in one-off
manner, the pre-defined and regular checking items in a checklist will be de-
scribed by formulae in a certain logic, μ-calculus in this paper. With the input
of generated π-calculus process model and μ-calculus formulae, model checking
tools are used for automatically deciding if a checking item is satisfied in an
actual process. And the result can be provided back to the site itself and re-
ported to the project manager who is located outside of the site or the other
sites that need the information. The sketch map of the framework is shown in
Fig. 2. In the figure, the dashed line separates the inside and the outside area
of a development site. In most conditions, project manager is located outside of

202 J. Zhai et al.

the site, and the development site can communicate with the project manager
as well as the other distributed sites. Inside of the development site, the upper
row of the figure describes how an actual software process in the form of Gantt
chart is automatically transformed into an abstract model in π-calculus, which
is described in this section, while the lower one describes the process that a
checking item is formulated in μ-calculus, which will be presented in the next
section. To input the two sets of calculus formulae into model checking tools, the
results that whether checking items are satisfied in the actual software process
can be automatically determined and the results can be automatically output
to the project manager who is located outside of the site.

Though the Gantt chart of an actual process brings various and abundant
information about the process, the arrangement of process events in a raw chart
does not ensure that the earlier the starting time of an activity is, the higher
the activity is located in the chart or the one with a later ending time is located
higher if their ending times are the same. As a result, some pretreatment is
needed to arrange the activities in a process to be a standard form such that the
procedure of transforming a Gantt chart to TRISO/ML model will be greatly
simplified. A Gantt chart in a standard form is called arranged Gantt chart in
the following part of this paper. For example, Fig. 3(a) is a raw Gantt chart
of an actual process, and the attributes of the activities do not matter at this
point. For the figure, a pretreatment is needed to swap activity A and activity
B. That is because the two activities have the same starting time and activity
A is ended earlier, so that activity A should be located under activity B. The
arranged Gantt chart is shown in Fig. 3(b).

ssecorP

||

B 1v

A 2v

||

D E

C

A

B
C

D

E

A

B

C
D

E

A

B

C
D

E

ov

ov

ssecorP

||

B 1v

A 2v

||

D E

C

}ov:hcv{

}ov:hcv{

)a()c(

)e(

)b(

)d(

Fig. 3. An example of modeling an actual process with TRISO/ML graph

Since the chart represents the start and end time of an activity’s execution,
the temporal relationship, in terms of parallel or sequential, between any two
activities can be decided by the concrete starting and ending time of the activ-
ities. For two activities with different starting time, if the ending time of the
earlier started activity is not later than the starting time of another activity, the

Automated Process Quality Assurance for DSD 203

two activities are sequential ; otherwise, they are parallel. Besides, the activities
who have the same starting time are parallel as well. Based on the determined
temporal relationship among activities, the following rules are set to realize the
transformation from an arranged Gantt chart to the TRISO/ML model of an
actual process.

1. The root of a TRISO/ML model should be a newly added virtual node, and
other activities or virtual nodes are all children nodes of the virtual one.

2. If the temporal relationships between every two adjacent activities in a group
of activities are accordant (sequential or parallel), these activities are ar-
ranged as nodes in the same floor in the TRISO/ML model, and the nodes
are labeled by the operator and name of the activities. These nodes are all
controlled by a uniform temporal relationship operator (sequential or paral-
lel). Besides, the input and output of the activities should be labeled in the
TRISO/ML model.

3. For a group of adjacent activities in Gantt chart, if their temporal relation-
ship is accordant, they can be processed according to rule 2. If the temporal
relationship between the last two activities e1 and e2 of a group of activities
is different from the relationship t among e1 and the activities above e1, then
add a virtual activity v between e1 and e2, making the temporal relationship
among v and the activities above e1 to be t. Then, the activities above e1
(includes v, and does not include e1) can be processed according to rule 2;
the activities under e1 (includes e1) can be processed with rule 3, and the
activities can be treated as children nodes of v.

For example, Fig. 3(b) is an arranged Gantt chart, which can be trans-
formed into a TRISO/ML model with the above rules. With the first rule, the
TRISO/ML model roots at a virtual node named “Process”. As shown in the
chart, activity B and activity A are parallel, and activity A and activity C are
sequential. With the third rule, it needs to add a virtual node v1 between activity
B and activity A, and make activity B and v1 are parallel just as the temporal
relationship between activity B and activity A. Those events that follow A are
children nodes of v1. With the second rule, activity B and v1 are the two parallel
branches of the root node “Process”. The following activities A, C and D are
sequential, and activity D and activity E are parallel. Similarly, a virtual node
v2 is added above activity D, then activity A, C and v2 are located under v1 with
the controlling of a sequential temporal operator. Event D and activity E are
parallel. So that they are located under v2, and controlled by a parallel operator.
Then, the Gantt chart is transformed into a TRISO/ML model, which is shown
in Fig. 3(d).

From the TRISO/ML model shown in Fig. 3(d), most of the temporal re-
lationship among activities can be determined. Activity D and activity E are
parallel, and activity A, C and virtual node v1 are sequential. Since v1 is divided
into activity D and E, activity C and activity D or E are all sequential. Activity
B and activity A, C, D are parallel as well. The temporal relationships among
those activities in the TRISO/ML model are the same as what they are in the

204 J. Zhai et al.

Gantt chart. But the temporal relationship between activity B and E is con-
flicting between the information shown in the Gantt chart and the TRISO/ML
model. In Gantt chart, it is clear that activity B and activity E are sequential,
but in TRISO/ML model, the two activities are parallel. Since there is an in-
consistence after the transformation, the TRISO/ML model may cannot reflect
the temporal relationship among the activities in the actual process, which con-
strains further analyzes. To avoid such inconsistences, virtual input and output
of activities should be added to a Gantt chart before the transformation. These
virtual communication is only used to indicate the temporal relationship of activ-
ities, and do not imply any dependent relationship between activities. If activity
B has a virtual output when it is finished, and the virtual output performs as a
virtual input of activity E when activity E is starting, the sequential relationship
between activity B and activity E will not be lost in the transformation. For an
activity, we inspect each activity who locates above it in the order from bottom
to the up. Assume that ai is the focused activity, and aj is the activity who is
located above ai. If the following conditions are all satisfied by aj, there is an
potential inconsistence between ai and aj , and a virtual communication should
be added between them.

– The activities aj and ai are sequential and nonadjacent.
– The outputs of aj are not the input of ai.
– No activities between ai and aj are sequential with aj .

With the conditions, it can be determined that there is an potential inconsis-
tence between activity B and E, and a virtual output should be added to activity
B to perform as the virtual input of activity E. The Gantt chart with virtual
communication is shown in Fig. 3(c), and the TRISO/ML model with added vir-
tual communication is shown in Fig. 3(e) accordingly. In the TRISO/ML model
shown in Fig. 3(e), all of the temporal relationships among activities that can
be determined from the Gantt chart are remained. In the model, vch stands for
a virtual output channel, and vo stands for a virtual output artifact. Another
example illustrating how to use the above rules to model an actual process, will
be presented in the following case study section.

5 Formulating the Checking Items

To audit an actual software process, a clearly stated criteria should be built
as required in CMMI or other process improvement and assessment models. In
most organizations, the criteria is often deployed in the form of checklists, which
usually consists of a set of checking items where each item actually describes
one potential source of noncompliance issues. In a checklist, majority of items
focus on the temporal order of some specific process activities, the existence of
certain process activity, or properties and statements about a process fragment.
Checking items that focus on the first two types of issues can be well described
by temporal logical formulae. Those focus on the third type of issues can be
partially described only. The checking items that cannot be described mainly

Automated Process Quality Assurance for DSD 205

focus on quantity issues, e.g. “The project members’ working time is not too
much or too little.”, ability issues, e.g. “The project members have the required
ability to operate the assignments.” and so on.

Since the μ-calculus, supported by many powerful verification tools, is one of
the most popular temporal logics for concurrent systems, it is used in this paper
to describe the checking items. The easist and most important statements as
described by μ-calculus are that “an action is eventually carried out (TP)” and
“an action will never happen in a process (TN)”. The corresponding μ-calculus
formulae are listed in the following:

μX.[action]tt ∧ 〈−〉tt ∧ [−action]X

νX.[action]ff ∧ 〈−〉tt ∧ [−action]X

Most of the temporal statements that need to be described can be generated
by the composition of the above two expressions. For example, we focus an state-
ment saying “Whenever action a happens, action b eventually happens (T1)”, in
which, action b should be executed after action a is finished. The μ-calculus
formula corresponding to this statement can be described as:

μX.[a](μY.[b]tt ∧ 〈−〉tt ∧ [−b]Y) ∧ 〈−〉tt ∧ [−a]X

As for a more complex statement, for example, “Action a must be executed
before action b (T2)”. With the description, action b can be executed after action
a; in addition, if action a is not finished, action b will not happen. The μ-calculus
formula corresponding to this statement can be described as:

μX.[a](μY.[b]tt ∧ 〈−〉tt ∧ [−b]Y) ∧ 〈−〉tt ∧ [b]ff ∧ [−(a, b)]X

As for other statements, the corresponding μ-calculus formulae can be gener-
ated similarly. Further details about μ-calculus can be found in [3].

The formulae stated above can be treated as templates for formulating check-
ing items. To substitute the uniform notations, such as action, a, b in the above
formulae, with the name of practical activities that checking items mentioned,
the items in checklists are formulated by μ-calculus formulae. For the items fo-
cusing on the temporal order of process activities and the existence of certain
process activities, the uniform notations can be directly substituted to formu-
late. As for the properties or statements about a process fragment, they need to
be analyzed and divided into one or more simpler statements to be formulated.

We take the checking item “The process data is measured” for instance. This
proposition means the activity for measuring process data should happen in
the actual software process, so that the template TP can be used here, and the
notation action should be substituted. If the notation dm stands for this activity,
the μ-calculus formula corresponding to this checking item is as following:

μX.[dm]tt ∧ 〈−〉tt ∧ [−dm]X

206 J. Zhai et al.

Furthermore, we take a more complex item for example. For the item “ The
defects are confirmed before the conclusion is generated”. It is an instance for the
template T2, more specifically, the activity of defects confirming is the instance
for a and the activity of conclusion generating is the instance for b in T2. If
dc stands for defects confirmation and cg stands for conclusion generation, the
μ-calculus formula corresponding to this checking item is as following:

μX.[dc](μY.[cg]tt ∧ 〈−〉tt ∧ [−cg]Y) ∧ 〈−〉tt ∧ [cg]ff ∧ [−(dc, cg)]X

With the model of the actual processes and the checking items formulae, many
existing model checking tools can be used for further analysis.

6 Case Study

To show the usability and practicability of the approach described previously, we
take an actual distributed software development process fragment in Institute of
Software, Chinese Academy of Sciences (ISCAS) for example. ISCAS is a soft-
ware development organization that has achieved CMMI ML4, and the checklists
that ISCAS uses for PQA are generated from CMMI as well. All the distributed
development sites of ISCAS are controlled by the same software process model,
which leads to the same checklists.

In the previous distributed projects of ISCAS, the PQA reports from the
distributed development sites are usually found too inaccurate for the manager
to complete monitor and control the project. It is partly because of the local
employee of PQA staff, and their turn over. The criteria of PQA and the ability
of PQA staff are hardly to be uniform, though the training is often held and costs
much. Besides, the project managers are often complaining that they are hardly
to ensure the authenticity of the report, to completely depend on the report
getting from the distributed PQA staff leads to potential risks, even makes the
project fall in trouble. In addition, the cost to build two PQA teams and to train
the PQA staff is much higher than that in co-located development environments,
which arises to be a cost that cannot be ignored in a project. To address such
problems, the automated approach presented in this paper is employed in a new
project named SoftPM [26] for experiment.

The SoftPM project is a main part of a multi-year, large-scale, research project
to develop new tools and technologies for supporting the software development
in high-level maturity software organizations. This project has two distributed
development sites totally, which are located in Beijing Laboratory and Wuxi
Branch Laboratory of ISCAS separately, and the manager is located in Beijing
Laboratory in most time.

The fragment is a review process of SoftPM in Wuxi branch laboratory, and
the quality of the actual software process should be clearly and promptly re-
ported to the project manager in Beijing. The process includes 7 project mem-
bers and 11 activities. This process lasted from 27th, May, 2007 to 11st, June,
2007. We start from the Gantt chart of the actual process fragment recorded in
Wuxi branch laboratory’s repository.

Automated Process Quality Assurance for DSD 207

1

5

3

4

2

7

6

-50-7002
82

-60-7002
70

-60-7002
60

-60-7002
50

-60-7002
40

-60-7002
30

-60-7002
20

-60-7002
10

-50-7002
13

-50-7002
03

-50-7002
92

-60-7002
80

RP :1pO
DR 1RRP

RP :2pO
DR 2RRP

RP :4pO
DR 4RRP

RP :3pO
DR 3RRP

MD :1pO
DR

RP :5pO
DR 5RRP

CD :5--0pO1RRP
2RRP
3RRP
4RRP

DP

PR:0pO
DR

RCD
GC :0pO

RCD
BP :6pO

PMRCD
RR :0pO

PM

-50-7002
72

-60-7002
90

-60-7002
01

-60-7002
11

8

01

9

11

Fig. 4. The arranged Gantt chart with the attributes added

The arranged Gantt chart of the actual process is shown in Fig. 4. In the
figure, the labels locate to the left, in the middle and to the right of activities
refer to the input artifacts, the operator and the name, and the output artifacts
of activities. Op0 to Op6 stand for 7 different project members, in which Op0 is a
review manager, Op6 is a developer, and the rest are reviewers. As for the name
of activities, RP is short for review preparing, PR is short for peer review, DM
is short for data measurement, DC is short for defects confirmation, CG is short
for conclusion generation, PB is short for products betterment, and RR is short
for re-review ; for the input and output artifacts, PD is short for process data,
RD is short for review documents, PRR is short for peer review report, DCR is
short for defects confirmation report, and MP is short for mended products.

Events, such as the 5th, 9th, and 11th activity, do not have output artifacts.
Also, it is possible that there are some activities that do not contain input
artifacts. The lack of input and/or output artifacts is legal in a chart, and it
depends on the practical process record.

Then, to maintain the sequential relationship in the obtained process model,
virtual communications should be added. With the conditions described in Sec-
tion 4, it is easy to determine that the 2nd activity should have a virtual output
to perform as the inputs of the 4th, 5th and 6th activity. The 5th activity should
have a virtual output to perform as the input of the 7th activity, whose virtual
output should be the 11th activity’s input. As for the rest activities, there are
no virtual input and/or output needed to be added. To transform the virtual
communications added Gantt chart, the corresponding TRISO/ML model can
be generated, and it is shown in Fig. 5. In the model, we use ch, vo and vch plus
the activity ID to express the actual output channel, virtual outputs and virtual
output channel of activities.

On the other hand, the checking items in a checklist would be described
by formulae in μ-calculus. Totally, there are 15 checking items in the ISCAS’s
checklist of the review process. Except 4 inapplicable items, 1 ability-related item
and 1 concrete time-related item, the rest 9 items can be described by μ-calculus
formulae. The following is the details of the checking items.

208 J. Zhai et al.

Process

||

Op1: PR v2

Op2: PR v3

||

Op3: PR v4

{ch2: PRR1, vch2:vo2}
{ch1: RD}

{ch1: RD} {ch3: PRR2}

Op4: PR

{ch1: RD, vch2: vo2}
{ch4: PRR4} {ch5: PRR3, vch5:vo5}

Op1: DM v5

||

Op5: PR

{ch1: RD, vch5: vo5}
{ch7: PRR5, vch7:vo7}

Op1 5: DC

{ch2: PRR1, ch4: PRR4,
ch5: PRR3, ch3: PRR2}

{ch1: RD, vch2: vo2}

{ch0: PD, vch2: vo2}

Op0: RP v1

{ch1: RD} {ch0: PD}

v6

Op0:CG Op6:PB Op0:RR

{ch8: DCR}
{ch8: DCR}

{ch8: DCR}

{ch10: MP}

{ch10:MP, vch7:vo7 }

Fig. 5. The TRISO/ML model transforming from the Gantt chart

1. The preparations of review is prepared before the peer review.
2. The peer review outputs an peer review report.
3. Before generating a conclusion, every reviewer finishes his peer review.
4. Each defect is confirmed before the conclusion is generated.
5. A document is output after each defect is confirmed.
6. The betterment of products starts after each defect is confirmed.
7. The review manager re-reviews the mended artifacts after the products

betterment.
8. The process data is measured.
9. A document is output after the conclusion is generated.

To input the acquired model of actual process in π-calculus expressions and
the checking items described by μ-calculus formulae into CWB-NC and SPIN
model checking tools in their own format of input, the decision that if a checking
item is satisfied in the actual process can be determined automatically. The
checking result is that except for the 3rd and the 9th formulae, all of the rest
formulae are satisfied in the model of actual process. The result means that there
are two noncompliance issues identified, and they are related to the activities
that the 3rd and the 9th checking items mentioned, which are the activities
of peer review and the activity of conclusion document output. And all of the
other checking items are satisfied in the process fragment. This result is identical
with the manually checking result generated by PQA team. This result is then
reported to the project manager in the outside development site of Beijing, and
also the development site of Wuxi as a feedback. This result clearly shows the
correctness and practicability of the approach.

7 Conclusion

PQA in DSD environment suffers new problems compared to that in co-located
development environments. The manual decision and report process of tradi-
tional PQA tends to be time consuming and error prone, and the results highly

Automated Process Quality Assurance for DSD 209

depend on the PQA staff’s ability, experience, creativity and understanding of
standard processes, which are hardly to be uniform among distributed devel-
opment sites. Furthermore, it is difficult to obtain an objective and accurate
evaluation to the quality of software process for the project manager located
outside of the development sites, since the authenticity of the PQA report is
hardly to be ensured. Besides, the cost of the distributed PQA would be much
higher than that of co-located development.

In this paper, an automated approach is introduced to objectively operate
PQA activities. The first step of the approach is to transform the activities
related development record in the form of Gantt chart into TRISO/ML process
model. At the same time, in one-off manner, the pre-defined and regular checking
items in a checklist will be described by formulae in a certain logic, μ-calculus in
this paper. Then, we check the process model against the formulae with various
model checking tools to decide if a checking item is satisfied in the actual process
of the site and automatically report the result to the project manager who is
located outside of the development site. This approach improves PQA in DSD by
substituting the pure manual operating way with an automatic manner, avoids
most of the effect of PQA staff, ensures an uniform criteria, and reduces the
cost on labor of a project. As a result, this approach makes the PQA in DSD
environment much more objective and efficient.

References

1. Chrissis, M.B., Konrad, M., Shrum, S.: CMMI�: Guidelines for Process Integration
and Product Improvement. Addison Wesley Professional, Reading (2003)

2. Schmauch, C.H.: ISO 9000 for Software Developers. ASQC Quality Press (1994)
3. Bradfield, J., Stirling, C.: Modal logics and μ-calculi: an introduction. In: Bergstra,

J., Ponse, A., Smolka, S. (eds.) Handbook of Process Algebra, pp. 293–330. Elsevier,
Amsterdam (2001)

4. Sommerville, I.: Software Engineering, 7th edn. Addison Wesley, Reading (2004)
5. Rai, A., Song, H., Troutt, M.: Software quality assurance: An analytical survey

and research prioritization. Journal of Systems and Software 40, 67–83 (1998)
6. Memon, A., Porter, A., Yilmaz, C., Nagarajan, A., Schmidt, D., Natarajan, B.:

Skoll: Distributed continuous quality assurance. In: The 26th IEEE/ACM Interna-
tional Conference on Software Engineering, pp. 459–468 (2004)

7. Ramasubbu, N., Balan, R.K.: Globally distributed software development project
performance: an empirical analysis. In: The 6th joint meeting of the European
software engineering conference and the ACM SIGSOFT symposium on The foun-
dations of software engineering, pp. 125–134. ACM, New York (2007)

8. Gopal, A., Mukhopadhyay, T., Krishnan, M.S.: The role of software processes and
communication in offshore software development. Communications of the ACM 45,
193–200 (2002)

9. Reis, C.R., de Mattos Fortes, R.P.: An overview of the software engineering pro-
cess and tools in the mozilla project. In: The Open Source Software Development
Workshop, pp. 155–175 (2002)

10. Zhao, L., Elbaum, S.: A survey on quality related activities in open source. ACM
SIGSOFT Software Engineering Notes 25, 54–57 (2000)

210 J. Zhai et al.

11. Becker, S., Jäger, D., Schleicher, A., Westfechtel, B.: A delegation based model for
distributed software process management. In: Ambriola, V. (ed.) EWSPT 2001.
LNCS, vol. 2077, pp. 130–144. Springer, Heidelberg (2001)

12. Vanzin, M., Ribeiro, M.B., Prikladnicki, R., Ceccato, I., Antunes, D.: Global soft-
ware processes definition in a distributed environment. In: SEW 2005: Proceedings
of the 29th Annual IEEE/NASA on Software Engineering Workshop, Washington,
DC, USA, pp. 57–65. IEEE Computer Society, Los Alamitos (2005)

13. Cook, J., Wolf, A.: Discovering models of software processes from event-based data.
ACM Transactions on Software Engineering and Methodology 7, 215–249 (1998)

14. Cook, J.E., Du, Z.: Discovering thread interactions in a concurrent system. Journal
of Systems and Software 77, 285–297 (2005)

15. Cook, J.E., Du, Z., Liu, C., Wolf, A.L.: Discovering models of behavior for concur-
rent workflows. Computers in Industry 53, 297–319 (2004)

16. van der Aalst, W., Weijters, A., Maruster, L.: Workflow mining: Discovering process
models from event logs. IEEE Transactions on Knowledge and Data Engineering 16,
1128–1142 (2004)

17. Weijters, A., van der Aalst, W.: Rediscovering workflow models from event-based
data using little thumb. Integrated Computer-Aided Engineering 10, 151–162
(2003)

18. Cook, J., Wolf, A.: Software process validation: Quantitatively measuring the cor-
respondence of a process to a model. ACM Transactions on Software Engineering
and Methodology 8, 147–176 (1999)

19. Rozinat, A., van der Aalst, W.: Conformance testing: Measuring the fit and ap-
propriateness of event logs and process models. In: Bussler, C.J., Haller, A. (eds.)
BPM 2005. LNCS, vol. 3812, pp. 163–176. Springer, Heidelberg (2006)

20. van der Aalst, W., de Beer, H., van Dongen, B.: Process mining and verification of
properties: An approach based on temporal logic. In: Meersman, R., Tari, Z. (eds.)
OTM 2005. LNCS, vol. 3760, pp. 130–147. Springer, Heidelberg (2005)

21. Cheung, S.C., Kramer, J.: Checking safety properties using compositional reach-
ability analysis. ACM Transactions on Software Engineering and Methodology 8,
49–78 (1999)

22. Pezze, M., Taylor, R., Young, M.: Graph models for reachability analysis of concur-
rent programs. ACM Transactions on Software Engineering and Methodology 4,
171–213 (1995)

23. Yang, Q., Li, M., Wang, Q., Yang, G., Zhai, J., Li, J., Hou, L., Yang, Y.: An alge-
braic approach for managing inconsistencies in software processes. In: Wang, Q.,
Pfahl, D., Raffo, D.M. (eds.) ICSP 2007. LNCS, vol. 4470, pp. 121–133. Springer,
Heidelberg (2007)

24. Li, M.: Expanding the horizons of software development processes: A 3-D integrated
methodology. In: Li, M., Boehm, B., Osterweil, L.J. (eds.) SPW 2005. LNCS,
vol. 3840, pp. 54–67. Springer, Heidelberg (2006)

25. Li, M.: Assessing 3-D integrated software development processes: A new bench-
mark. In: Wang, Q., Pfahl, D., Raffo, D.M., Wernick, P. (eds.) SPW 2006 and
ProSim 2006. LNCS, vol. 3966, pp. 15–38. Springer, Heidelberg (2006)

26. Wang, Q., Li, M.: Measuring and improving software process in china. In: Pro-
ceedings of the 4th International Symposium on Empirical Software Engineering,
pp. 183–192 (2005)

Author Index

Ahonen, Jarmo J. 1

Berkling, Kay 15
Bhattacharya, Atanu 33
Burdescu, Dumitru Dan 46

Colla, Pedro E. 59

Datta, Subhajit 15, 73

Gotel, Olly 90

Jiménez, Miguel 107

Kiragiannis, Georgios 15
Kontio, Mikko 1
Kulkarni, Vidya 90

Li, Mingshu 196
Logofatu, Bogdan 46

Meyer, Bertrand 126
Mihăescu, Marian Cristian 46
Mingins, Christine 149
Montagna, Jorge Marcelo 59

Nakakoji, Kumiyo 181
Nakatani, Takako 134
Neak, Longchrea 90

Piattini, Mario 107

Sakurai, Akito 134
Savolainen, Paula 1
Schalkowski, Timo 1
Scharff, Christelle 90
Sheng, Zhongqi 134
Sudaman, Fadrian 149

Thiyagarajan, Ponmurugarajan S. 166
Tsuji, Hiroshi 134

Valtanen, Anu 1
van Engelen, Robert 73
Verma, Sachal 166

Wang, Qing 196

Xiao, Junchao 196

Yamamoto, Yasuhiro 181
Yang, Qiusong 196
Yang, Ye 196
Ye, Yunwen 181
Yoshida, Ken’ichi 134

Zhai, Jian 196
Zundel, Armin 15

	Title Page
	Preface
	Organization
	Table of Contents
	Outsourcing through Combining Software Departmentsof Several Companies
	Introduction
	The Research Problem
	Research Methods
	How the Company Was Created
	Analysis and Recommendations
	Work Management
	ProjectManagers and Projects
	Communication Problems
	Timetable Problems
	Infrastructure Problems
	Documentation Problems

	Effects of Recommendations and the Suitablity of the Outsourcing Solution
	The Effects of the Recommendations
	The Suitability of the Outsourcing Solution

	Discussion
	References

	Timeline Prediction Framework for Iterative Software Engineering Projects with Changes
	Introduction and Background
	Foundations
	Methodology
	Function Points
	Traceability

	Implementation
	Model
	Documentation Time
	Coding Time
	Assumptions

	Simulation
	Conclusion
	Future Work
	References

	Outsourcing-Iterative Improvement Model for Transforming Challenges to Mutual Benefits
	Introduction
	Current Challenges in IT Outsourcing
	Iterative Improvement Model
	Phases in IT Outsourcing
	Traditional Cost Models
	Key Features of Iterative Improvement Model
	Improvement in Software Quality

	Conclusions
	References

	A Structure for Management of Requirements Set for e-Learning Applications
	Introduction
	Tesys Application Platform
	Software Architecture of Tesys
	Software Development Process
	Improvements in Requirements Engineering Process for Globalization
	Structuring Requirements on User Groups
	Determining the Benefit of Requirements Management
	Benefits Regarding Verification and Validation

	Conclusions
	References

	Evaluation of Software Process Improvement in Small Organizations
	Introduction
	CMMI as the Reference Model
	SPI at Small and Medium Enterprises

	SPI Business Case
	Benefits of SPI for Small and Medium Enterprises
	Costs of SPI for Small and Medium Enterprises

	Investment Modeling
	Model Parameters

	Model Execution
	Limitations and Further Work

	Conclusions
	References
	Appendix. I-Model Parameters
	Appendix. II-Modeled Relations and Equations

	An Examination of the Effects of Offshore and Outsourced Development on the Delegation of Responsibilities to Software Components
	Introduction
	A Model for the Software Development Space
	Key Concerns of Software Design
	Delegation of Responsibilities in Software Design
	The RESP-DIST Technique
	Experimental Validation
	Validation Strategy
	Presentation of the Results
	Interpretation of the Results

	Related Work
	Open Issues and Future Work
	Conclusion
	References

	Students as Partners and Students as Mentors: An Educational Model for Quality Assurance in Global Software Development
	Introduction
	Background and Objectives
	Research and Teaching Objectives

	Project Context
	Collaborators and Courses
	Student Roles and Responsibilities
	Project MultiLIB Description
	Teams
	Logistics: Process, Technology and Communication Tools

	Requirements and Testing for SQA
	Requirements Process
	Testing Process
	Bug Reporting and Issue Tracking

	Mentoring for SQA
	Auditing for SQA
	Findings
	Overall Quality Level
	Requirements and Testing Focus
	Mentoring Activities
	Auditing Activities

	Lessons and Recommendations
	Focus on the Partnerships in GSD
	Institute Mentoring Networks in GSD
	Summary

	Conclusions and Ongoing Work
	References

	Problems and Solutions in Distributed Software Development: A Systematic Review
	Introduction
	The Importance of Systematic Reviews
	Question Formularization
	Sources Selection
	Studies Selection
	Information Extraction

	Trends in Distributed Software Development Research
	Publications Tendency
	Improved or Analyzed Processes
	Employed Standards
	Contents of the Studies

	Problems and Solutions
	Communication
	Group Awareness
	Source Control
	Knowledge Flow Management
	Coordination
	Collaboration
	Project and Process Management
	Process Support
	Quality and Measurement
	Defects Detection

	Success Factors
	Conclusions and Future Work
	References
	Appendix A: Primary Studies Selected

	Design and Code Reviews in the Age of the Internet
	Code Review Concepts
	A Distributed Review?
	Constraints and Technology
	Reviews for the 21st Century
	Review Scope
	Making the Process Effective
	An Academic Endeavor
	Distributed and Collaborative Development

	Preliminary Analysis for Risk Finding in Offshore Software Outsourcing from Vendor's Viewpoint
	Introduction
	Survey Content
	Basic Survey Results
	Evaluations on Offshore Projects
	Development Result of the Project
	Characters of Developed System
	Share of Development Processes by Client and Vendor
	Problems Encountered in Development
	Requirements for Development Work
	Development Achievements and Risks

	Discussions
	Difference Strategy of Vendor and Appeal to Client
	Factor Analysis of Development Achievement
	Future Research Work

	Conclusions
	References

	Evidence-Based Management of Outsourced Software Projects
	Introduction
	The Reporting Dilemma
	SEM and Outsourcing
	Our Solution: OSSEM
	Semantic Instrumentation Agent (SIA)
	Repository Access Library (RAL)
	OSSEM Studio

	Quantitative Artifacts and Policies
	Systematic Monitoring
	Language Neutrality
	Semantically Rich Artifacts
	Data Model and Access
	Preserving Conceptual Integrity

	Related and Future Work
	Conclusion
	References

	A Closer Look at Extreme Programming (XP) with an Onsite-Offshore Model to Develop Software Projects Using XP Methodology
	Introduction
	Overview of XP
	XP Values
	XP and Traditional Models Compared
	Typical XP Process

	A Case Study
	The Telco Project
	Onsite-Offshore Model
	Customized XP Practices
	Lessons Learnt

	Conclusions
	References

	Measuring and Monitoring Task Couplings of Developers and Development Sites in Global Software Development
	Introduction
	Related Work
	Definitions of Concepts
	Concepts of Developer and Site Coupling
	Metrics of Measuring Couplings among Developers and Sites

	Measuring and Monitoring Couplings
	Data Set
	Computing Metrics of Developer Coupling and Site Coupling
	Scenarios of Usage

	Summary and Future Work
	References

	Automated Process Quality Assurance for Distributed Software Development
	Introduction
	Related Work
	Quality Assurance in Software Development
	Modeling and Verification of Actual Software Processes

	TRISO/ML Process Modeling Language
	Modeling the Actual Software Processes
	Formulating the Checking Items
	Case Study
	Conclusion
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

