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Abstract. Matrix decomposition methods provide representations of an
object-variable data matrix by a product of two different matrices, one
describing relationship between objects and hidden variables or factors,
and the other describing relationship between the factors and the origi-
nal variables. We present a novel approach to decomposition and factor
analysis of matrices with incidence data. The matrix entries are grades
to which objects represented by rows satisfy attributes represented by
columns, e.g. grades to which an image is red or a person performs well
in a test. We assume that the grades belong to a scale bounded by 0
and 1 which is equipped with certain aggregation operators and forms a
complete residuated lattice. We present an approximation algorithm for
the problem of decomposition of such matrices with grades into prod-
ucts of two matrices with grades with the number of factors as small
as possible. Decomposition of binary matrices into Boolean products of
binary matrices is a special case of this problem in which 0 and 1 are
the only grades. Our algorithm is based on a geometric insight provided
by a theorem identifying particular rectangular-shaped submatrices as
optimal factors for the decompositions. These factors correspond to for-
mal concepts of the input data and allow for an easy interpretation of
the decomposition. We present the problem formulation, basic geometric
insight, algorithm, illustrative example, experimental evaluation.

1 Introduction

1.1 Problem Description

Reducing data dimensionality by mapping the data from the space of directly
observable variables into a lower dimensional space of new variables is of fun-
damental importance for understanding and management of data. Traditional
approaches achieve dimensionality reduction via matrix decomposition. In factor
analysis, a decomposition of an object-variable matrix is sought into an object-
factor matrix and a factor-variable matrix with the number of factors reasonably
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small. This way, objects can be represented in a lower dimensional space of fac-
tors from which their representation in the space of original variables can be
retrieved by a linear combination.

Recently, new methods of matrix decomposition and dimensionality reduction
have been developed. One aim is to have methods which are capable of discov-
ering possibly non-linear relationships between the original space and the lower
dimensional space [26,32]. Another is driven by the need to take into account con-
straints imposed by the semantics of the data. An example is Boolean factor anal-
ysis in which a decomposition of a binary matrix is sought into two binary matrices
[10,21,25].

In this paper, we consider decompositions of matrices I with a particular type
of ordinal data. Entries Iij of I are grades to which the object corresponding to
i-th row has, or is incident with, the attribute corresponding to the j-th row,
e.g. to which a hotel is rated as a good hotel. Typical examples of such data
are results of questionnaires where respondents (rows) rate services, products,
etc. according to various criteria (columns); results of performance evaluation of
people or machines (rows) by various tests (columns); or binary data in which
case there are only two grades, 0 (no, failure) and 1 (yes, success). Our goal is
to decompose an n×m object-attribute matrix I into a product

I = A ◦B

of an n× k object-factor matrix A and a k ×m factor-attribute matrix B with
a reasonably small number k of factors.

The scenario is thus similar to that of ordinary factor analysis but there are im-
portant differences. First, we assume that the entries of I, i.e. the grades, as well as
the entries of A and B are taken from a bounded scale L of grades. Examples of such
scales are the unit interval L = [0, 1], the Likert scale L = {1, . . . , 5} of degrees of
satisfaction, or other scales used in mathematical psychology and psychophysics
[18]. Second, the matrix composition operation ◦ used in our decompositions is not
the usual matrix product. Instead, we use a so-called t-norm-based product where
a t-norm is a function which we use for aggregation of grades, cf. also [9]. A Boolean
matrix product is a particular case of this product in which the scale has 0 and 1 as
the only grades. It is to be emphasized that we attempt to treat graded incidence
data in a way which is compatible with its semantics. This need has been recog-
nized long ago in mathematical psychology, in particular in measurement theory
[18]. For example, even if we represent the grades by numbers such as 0 ∼ strongly
disagree, 1

4 ∼ disagree, . . . , 1 ∼ strongly agree, addition, multiplication by real
numbers, and linear combination of graded incidence data may not have natural
meaning. Likewise, decomposition of graded incidence matrix I into the ordinary
matrix product of arbitrary real-valued matrices A and B suffers from a difficulty
to interpret A and B, as well as to interpret the way I is reconstructed from, or
explained by, A and B. This is not to say that the usual matrix decompositions of
incidence data I are not useful. [22,31] report that decompositions of binary matri-
ces into real-valued matrices may yield better reconstruction accuracies. Hence, as
far as the dimensionality reduction aspect (the technical aspect) is concerned, or-
dinary decompositions may be favorable. However, when the knowledge discovery
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aspect plays a role, attention needs to be paid to the semantics of decomposition,
and to the appropriate mathematical structure and geometry of the space of at-
tributes, the space of factors, and the transformations between them.

Our paper is organized as follows. Section 1.2 provides and overview of re-
lated work. In Section 2, we define the decomposition problem and explain the
factors we use for the decomposition and their role. Section 3 contains an illus-
trative example. An algorithm for decompositions of incidence matrices and its
experimental evaluation is presented in Section 4.

1.2 Related Work

In case of matrices with real numbers as entries (sometimes referred to as con-
tinuous data), various methods for matrix decompositions have been developed.
The best known include, in particular, factor analysis (FA), principal component
analysis (PCA), and singular value decomposition (SVD) [2,13]. Results regarding
optimality of such decompositions are available. However, these methods decom-
pose a real-valued matrix into a product of matrices with possibly negative values
which are generally difficult to interpret [22]. Non-negative matrix factorization
[19] overcomes this problem at the expense of not minimizing the global reconstruc-
tion error. The advantage is that the decomposition describes the original data as
additively composed of its easily interpretable parts. Restriction to certain values
(non-negative ones) and the resulting gain in interpretability is related to our work.

There are several papers on decomposing binary matrices into non-binary
matrices such as [20,27,28,30,36], see also [31] for further references.

Decompositions of binary matrices into binary matrices have been studied in
a number of papers. Early work was done by Markowsky et al., see e.g. [24,25,29]
which already include complexity results showing the hardness of problems related
to such decompositions. Decompositions of binary matrices into a Boolean prod-
uct of binary matrices using Hopfield-like associative neural networks have been
studied, e.g., by Frolov et al., see [10]. This approach is a heuristic in which the fac-
tors correspond to attractors of the neural network. Other heuristic approaches to
Boolean factor analysis include [15,16]. [6] shows that the decomposition of a bi-
nary matrix I to a Boolean product of binary matrices is equivalent to covering
the matrix by rectangular submatrices which contain 1s and shows that formal
concepts of I [11] are optimal factors for such decomposition. The problem of cov-
ering binary matrices with their submatrices containing 1s was studied in [12]. [22]
presents an algorithm for finding approximate decompositions of binary matrices
into Boolean product of binary matrices which is based on associations between
columns of I. [33] looks at the relationship between several problems related to
decomposition of binary matrices.

2 Decomposition and Factors

2.1 Decomposition

Consider an n×m object-attribute matrix I with entries Iij expressing grades
to which object i has attribute j. We assume that the grades are taken from a
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bounded scale L. In general, we assume that L is equipped with a partial order
≤, is bounded from below and above by elements denoted 0 and 1, and conforms
to the structure of a complete lattice, i.e. infima and suprema of subsets of L
exist. We do not assume the scale to be linearly ordered although in practical
applications this is usually the case. Grades of ordinal scales are conveniently
represented by numbers, such as the Likert scale {1, . . . , 5}. In such a case we
assume these numbers are normalized and taken from the unit interval [0, 1].
As an example, the Likert scale is represented by L = {0, 1

4 , 1
2 , 3

4 , 1}. Due to
the well-known Miller’s 7± 2 phenomenon [23], one might argue that we should
restrict ourselves to small scales but we consider arbitrary ones, including thus
the unit interval L = [0, 1] as well.

We want to decompose I into an n × k object-factor matrix A and a k ×m
factor-attribute matrix B which again have entries from the scale L. Entries Ail

and Blj are interpreted as degrees to which factor l applies to object i and to
which attribute j is a manifestation of factor l, respectively. We assume that the
object-attribute relationship is explained using the (hidden) factors as follows:
object i has attribute j if there is a factor l which applies to i and for which j
is one of its manifestations. Now, for a factor l there is a degree Ail to which
l applies to i and a degree Blj to which j is a manifestation of l. To obtain a
degree a to which “l applies to i and j is a manifestation of l”, we aggregate Ail

and Blj using an aggregation function ⊗ : L × L → L and put a = Ail ⊗ Blj ,
cf. [9]. This way, we obtain k degrees Ail⊗Blj, one for every factor l = 1, . . . , k.
Finally, we take the supremum

∨
of degrees Ail⊗Blj (such supremum coincides

with maximum if L is linearly ordered) as a result. That is, our composition
operation for I = A ◦B is defined by

(A ◦B)ij =
∨k

l=1 Ail ⊗Blj . (1)

Notice that if L = {0, 1} and ⊗ is the truth function of conjunction, A ◦ B is
the Boolean matrix product. We use t-norms for aggregation functions ⊗. T-
norms originated in K. Menger’s work on statistical metric spaces [17] and are
used as truth functions of conjunctions in fuzzy logic [14]. Their properties make
them good candidates for aggregating graded data [8,9,17]. Note that with ⊗
being a t-norm, (1) is used in fuzzy set theory to define compositions of fuzzy
relations [35]. Examples of ⊗ include the �Lukasiewicz t-norm on L = [0, 1] or on
an equidistant subchain of [0, 1] defined by a⊗b = max(0, a+b−1), the minimum
t-norm on L = [0, 1] or on a subset of [0, 1] defined by a ⊗ b = min(a, b), and
the product t-norm a⊗ b = a · b on L = [0, 1]. Using a decomposition I = A ◦B
with (1), attributes are expressed by means of factors in a non-linear manner:

Example 1. With �Lukasiewicz t-norm, let I = A ◦B be
(

0.3 0.0 0.1
0.3 0.7 0.5
0.5 0.8 0.6

)

=

(
0.2 0.8
0.9 0.8
1.0 1.0

)

◦
( 0.4 0.8 0.6

0.5 0.2 0.3

)
.

Then for Q1 = (0.6 0.2) and Q2 = (0.4 0.3) we have (Q1+Q2)◦B = (1.0 0.5)◦B =
(0.4 0.8 0.6) �= (0.0 0.6 0.2) = (0.0 0.4 0.2)+(0.0 0.2 0.0) = Q1 ◦B +Q2 ◦B. This
demonstrates non-linearity of the relationship between factors and attributes.
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2.2 Factors for Decomposition

Next, we describe the factors we use for decomposition of I. For this purpose, we
make use of a so-called residuum induced by the t-norm ⊗ [14,17], i.e. a binary
function → on L defined by

a→ b = max{c ∈ L | a⊗ c ≤ b}.
Residuum satisfies an important technical condition called adjointness, namely,

a⊗ b ≤ c iff a ≤ b→ c.

L together with ⊗ and → forms a complete residuated lattice [34]. We leave
out technical details including the properties of residuated lattices and refer to
[14]. The residuum induced by the �Lukasiewicz t-norm is defined by a → b =
min(1, 1− a + b).

We are going to use formal concepts associated to I as factors for a decomposi-
tion of I. Formal concepts are particular pairs 〈C, D〉 of graded sets (fuzzy sets) C
of objects and D of attributes, see [4]. That is, C : {1, . . . , n} → L assigns to every
object i a degree C(i) ∈ L to which C applies to i. Likewise, D : {1, . . . , m} → L
assigns to every attribute j a degree to which D applies to j. Denote by LU the set
of all graded (fuzzy) sets in a set U , i.e. the set of all mappings from U to L, and
put X = {1, . . . , n} (objects) and Y = {1, . . . , m} (attributes).

Definition 1. [4] A formal concept of I is any pair 〈C, D〉 for which C↑ = D
and D↓ = C where ↑ : LX → LY and ↓ : LY → LX are operators defined by

C↑(j) =
∧

i∈X(C(i)→ Iij),

D↓(i) =
∧

j∈Y (D(j)→ Iij).

In the definition,
∧

is the infimum in L (in our case, since X and Y are finite,
infimum coincides with minimum if L is linearly ordered). The set B(X, Y, I) of
all formal concepts of I is called the concept lattice of I. Formal concepts are
simple models of concepts in the sense of traditional, Port-Royal logic. If I is (a
characteristic function of) an ordinary binary relation (i.e. L = {0, 1}), formal
concepts of I coincide with the ordinary formal concepts of Wille [11]. C and
D are called the extent and the intent of a formal concept 〈C, D〉 and represent
the objects and the attributes which fall under the concept. The graded setting
takes into account that empirical concepts are graded rather than clear-cut. The
concept lattice equipped with a subconcept-superconcept ordering ≤ defined by

〈C1, D1〉 ≤ 〈C2, D2〉 iff C1(i) ≤ C2(i) for all i ∈ X,

which is equivalent to D2(j) ≤ D1(j) for all j ∈ Y , is indeed a complete lattice
[4]. Note that since → can be interpreted as a truth function of implication, a
formal concept 〈C, D〉 can be seen as a pair of graded sets C and D such that
D(j) is the degree to which j is shared by all objects to which C applies, and
C(i) is the degree to which i shares all attributes to which D applies [4].
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We are going to use formal concepts of I in the following way. For a set

F = {〈C1, D1〉, . . . , 〈Ck, Dk〉}
of formal concepts of I, we denote by AF an n × k matrix in which the l-th
column consists of grades assigned to objects by Cl. Likewise, we denote by BF
a k ×m matrix in which the l-th row consists of grades assigned to attributes
by Dl. That is,

(AF )il = (Cl)(i) and (BF )lj = (Dl)(j).

If I = AF ◦BF , F can be seen as a set of factors which fully explain the data. In
such a case, we call the formal concepts from F factor concepts. Given I, our aim
is to find a small set F of factor concepts. Using formal concepts of I as factors
is intuitively appealing because, as mentioned above, the formal concepts are in
fact, simple models of human concepts according to traditional logic approach. In
fact, factors are often called “(hidden) concepts” in the ordinary factor analysis.
In addition, the extents and intents of the concepts, i.e. columns and rows of
AF and BF , have a straightforward interpretation: they represent the grades to
which the factor concept applies to particular objects and particular attributes.

Before we turn to an illustrative example, we provide a geometric interpre-
tation of A ◦ B. Let I = A ◦ B. Denote by Jl the n × m matrix defined by
(Jl)ij = Ail ⊗ Blj , l = 1 . . . , k. That is, Jl = A l ◦ Bl is the ◦-product of the
l-th column of A and the l-th row of B. (1) then yields that I = J1 ∨ · · · ∨ Jk,
i.e. I is the

∨
-superposition of J1, . . . , Jk. Matrices Jl are rectangular (rectan-

gles) in that they result as the Cartesian products of graded sets. If L = {0, 1},
rectangular matrices are just matrices where the entries containing 1s form a
submatrix, i.e. tiles in the sense of [12]. We thus have:

Theorem 1. I = A ◦ B for an n × k matrix A and a k ×m matrix B if and
only if I is a

∨
-superposition of rectangular matrices A l ◦Bl , l = 1, . . . , k.

Remark 1. (1) Note that due to Theorem 1, tiling databases [12] means decom-
posing I into A ◦ B where columns of A and rows of B are the characteristic
vectors of the sets of objects and attributes covered by the tiles.

(2) This remains true even for arbitrary scales L: Finding a decomposition
of I is equivalent to covering I by rectangular submatrices, i.e. “graded tiles”,
which result by the Cartesian products of graded sets of objects and attributes,
and are contained in I.

(3) Let F be a set of factor concepts, i.e. I = AF ◦ BF . Due to Theorem 1,
for any subset F ′ of F we have (AF ′ ◦BF ′)ij ≤ Iij . That is, for any subset F ′ of
F , AF ′ ◦ BF ′ approximates I from below. We will see in Sections 3 and 4 that
it is usually the case that even for a small subset F ′ ⊆ F , matrix AF ′ ◦ BF ′ is
a good approximation of I.

2.3 Optimality of Formal Concepts as Factors

In this section we recall two important results from [5]. The first one says that
formal concepts of I are universal factors.
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Theorem 2. For every I there is F ⊆ B(X, Y, I) such that I = AF ◦BF .

The second one says that, as far as exact decompositions of I are concerned,
formal concepts are optimal factors in that they provide us with decompositions
of I with the least number k of factors.

Theorem 3. If I = A ◦B for n× k and k×m binary matrices A and B, there
exists a set F ⊆ B(X, Y, I) of formal concepts of I with |F| ≤ k such that for
the n× |F| and |F| ×m matrices AF and BF we have I = AF ◦BF .

This means that in looking for decompositions of I, one can restrict the search
to the set of formal concepts instead of the set of all possible decompositions.

3 Illustrative Example

Tab. 1 (top) contains the results of top five athletes in 2004 Olympic Games
decathlon in points which are obtained using the IAAF Scoring Tables for Com-
bined Events. Note that the IAAF Scoring Tables provide us with an ordinal
scale and a ranking function assigning the scale values to athletes. We are going
to look at whether this data can be explained using formal concepts as factors.
We first transform the data to a five-element scale

L = {0.00, 0.25, 0.50, 0.75, 1.00}
by a natural transformation and rounding. As a consequence, the factors then
have a simple reading. Namely, the grades to which a factor applies to an athlete

Table 1. 2004 Olympic Games Decathlon

Scores of Top 5 Athletes

10 lj sp hj 40 11 di pv ja 15

Sebrle 894 1020 873 915 892 968 844 910 897 680

Clay 989 1050 804 859 852 958 873 880 885 668

Karpov 975 1012 847 887 968 978 905 790 671 692

Macey 885 927 835 944 863 903 836 731 715 775

Warners 947 995 758 776 911 973 741 880 669 693

Incidence Data Table with Graded Attributes
10 lj sp hj 40 11 di pv ja 15

Sebrle 0.50 1.00 1.00 1.00 0.75 1.00 0.75 0.75 1.00 0.75

Clay 1.00 1.00 0.75 0.75 0.50 1.00 0.75 0.50 1.00 0.50

Karpov 1.00 1.00 0.75 0.75 1.00 1.00 1.00 0.25 0.25 0.75

Macey 0.50 0.50 0.75 1.00 0.75 0.50 0.75 0.25 0.50 1.00

Warners 0.75 0.75 0.50 0.50 0.75 1.00 0.25 0.50 0.25 0.75

Legend: 10—100 meters sprint race; lj—long jump; sp—shot put; hj—high jump;
40—400 meters sprint race; 11—110 meters hurdles; di—discus throw; pv—pole
vault; ja—javelin throw; 15—1500 meters run.



90 R. Belohlavek and V. Vychodil

Table 2. Factor Concepts

Fi Extent Intent

F1 {.5/Sebrle, Clay, Karpov, .5/Macey, .75/Warners} {10, lj, .75/sp, .75/hj, .5/40, 11, .5/di, .25/pv, .25/ja, .5/15}
F2 {Sebrle, .75/Clay, .25/Karpov, .5/Macey, .25/Warners} {.5/10, lj, sp, hj, .75/40, 11, .75/di, .75/pv, ja, .75/15}
F3 {.75/Sebrle, .5/Clay, .75/Karpov, Macey, .5/Warners} {.5/10, .5/lj, .75/sp, hj, .75/40, .5/11, .75/di, .25/pv, .5/ja, 15}
F4 {Sebrle, .75/Clay, .75/Karpov, .5/Macey, Warners} {.5/10, .75/lj, .5/sp, .5/hj, .75/40, 11, .25/di, .5/pv, .25/ja, .75/15}
F5 {.75/Sebrle, .75/Clay, Karpov, .75/Macey, .25/Warners} {.75/10, .75/lj, .75/sp, .75/hj, .75/40, .75/11, di, .25/pv, .25/ja, .75/15}
F6 {.75/Sebrle, .5/Clay, Karpov, .75/Macey, .75/Warners} {.75/10, .75/lj, .75/sp, .75/hj, 40, .75/11, .5/di, .25/pv, .25/ja, .75/15}
F7 {Sebrle, Clay, .25/Karpov, .5/Macey, .25/Warners} {.5/10, lj, .75/sp, .75/hj, .5/40, 11, .75/di, .5/pv, ja, .5/15}〉

can be described in natural language as “not at all”, “little bit”, “half”, “quite”,
“fully”, or the like. Tab. 1 (bottom) describes the athletes’ performance using
the five-element scale. In addition, we use the �Lukasiewicz t-norm on L.

Using shades of gray to represent grades from the five-element scale L, the
matrix I corresponding to Tab. 1 (bottom) can be visualized in the following
array (rows correspond to athletes, columns correspond to disciplines, the darker
the array entry, the higher the score):

The algorithm described in Section 4 found a set F of 7 formal concepts which
factorize I, i.e. for which I = AF ◦BF . These factor concepts are shown in Fig. 1
in the order in which they were produced by the algorithm. For example, factor
concept F1 applies to Sebrle to degree 0.5, to both Clay and Karpov to degree 1,
to Macey to degree 0.5, and to Warners to degree 0.75. Furthermore, this factor
concept applies to attribute 10 (100 m) to degree 1, to attribute lj (long jump) to
degree 1, to attribute sp (shot put) to degree 0.75, etc. This means that an excellent
performance (degree 1) in 100 m, an excellent performance in long jump, a very
good performance (degree 0.75) in shot put, etc. are particular manifestations of
this factor concept. On the other hand, only a relatively weak performance (degree
0.25) in javelin throw and pole vault are manifestations of this factor.

Therefore, a decomposition I = AF ◦BF exists with 7 factors where:

AF =

⎛

⎜
⎝

0.50 1.00 0.75 1.00 0.75 0.75 1.00
1.00 0.75 0.50 0.75 0.75 0.50 1.00
1.00 0.25 0.75 0.75 1.00 1.00 0.25
0.50 0.50 1.00 0.50 0.75 0.75 0.50
0.75 0.25 0.50 1.00 0.25 0.75 0.25

⎞

⎟
⎠,

BF =

⎛

⎜
⎜
⎜
⎜
⎝

1.00 1.00 0.75 0.75 0.50 1.00 0.50 0.25 0.25 0.50
0.50 1.00 1.00 1.00 0.75 1.00 0.75 0.75 1.00 0.75
0.50 0.50 0.75 1.00 0.75 0.50 0.75 0.25 0.50 1.00
0.50 0.75 0.50 0.50 0.75 1.00 0.25 0.50 0.25 0.75
0.75 0.75 0.75 0.75 0.75 0.75 1.00 0.25 0.25 0.75
0.75 0.75 0.75 0.75 1.00 0.75 0.50 0.25 0.25 0.75
0.50 1.00 0.75 0.75 0.50 1.00 0.75 0.50 1.00 0.50

⎞

⎟
⎟
⎟
⎟
⎠

.
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Again, using shades of gray, this decomposition can be depicted as:

= ◦

Fig. 1 shows the rectangular patterns corresponding to the factor concepts, cf.
Theorem 1.

F1 F2 F3

F4 F5 F6 F7

Fig. 1. Factor Concepts as Rectangular Patterns

Fig. 2 demonstrates what portion of the data matrix I is explained using just
some of the factor concepts from F . The first matrix labeled by 46% shows
AF1 ◦BF1 for F1 consisting of the first factor F1 only. That is, the matrix is just
the rectangular pattern corresponding to F1, cf. Fig. 1. As we can see, this matrix
is contained in I, i.e. approximates I from below, in that (AF1 ◦ BF1)ij ≤ Iij

for all entries (row i, column j). Note that Theorem 1 implies that this always
needs to be the case, cf. Remark 1 (3). Label 46% indicates that 46% of the
entries of AF1 ◦BF1 and I are equal. In this sense, the first factor explains 46%
of the data. Note however, that several of the 54% = 100%− 46% of the other
entries of AF1 ◦BF1 are close to the corresponding entries of I, so a measure of
closeness of AF1 ◦BF1 and I which takes into account also close entries, rather
than exactly equal ones only, would yield a number larger than 46%.

The second matrix in Fig. 2, with label 72%, shows AF2 ◦BF2 for F2 consisting
of F1 and F2. That is, the matrix demonstrates what portion of the data matrix I
is explained by the first two factors. Again, AF2 ◦BF2 approximates I from below
and 72% of the entries of AF2 ◦BF2 and I coincide now. Note again that even for
the remaining 28% of entries, AF2 ◦BF2 provides a reasonable approximation of
I, as can be seen by comparing the matrices representing AF2 ◦ BF2 and I, i.e.
the one labeled by 72% and the one labelled by 100%.

Similarly, the matrices labeled by 84%, 92%, 96%, 98%, and 100% represent
AFl
◦BFl

for l = 3, 4, 5, 6, 7, for sets Fl of factor concepts consisting of F1, . . . , Fl.
We can conclude from the visual inspection of the matrices that already the two
or three first factors explain the data reasonably well.

Let us now focus on the interpretation of the factors. Fig. 1 is helpful as it
shows the clusters corresponding to the factor concepts which draw together the
athletes and their performances in the events.
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46% 72% 84%

92% 96% 98% 100%

Fig. 2.
∨

-superposition of Factor Concepts

Factor F1: Manifestations of this factor with grade 1 are 100 m, long jump,
110 m hurdles. This factor can be interpreted as the ability to run fast for short
distances. Note that this factor applies particularly to Clay and Karpov which
is well known in the world of decathlon. Factor F2: Manifestations of this factor
with grade 1 are long jump, shot put, high jump, 110 m hurdles, javelin. F2

can be interpreted as the ability to apply very high force in a very short term
(explosiveness). F2 applies particularly to Sebrle, and then to Clay, who are
known for this ability. Factor F3: Manifestations with grade 1 are high jump
and 1500 m. This factor is typical for lighter, not very muscular athletes (too
much muscles prevent jumping high and running long distances). Macey, who is
evidently that type among decathletes (196 cm and 98 kg) is the athlete to whom
the factor applies to degree 1. These are the most important factors behind data
matrix I.

4 Algorithm and Experiments

In this section, we present a greedy approximation algorithm which takes a data
matrix representing I as its input and produces a set F of formal concepts of I
for which I = AF ◦BF . Due to Theorem 1, finding such F which is minimal in
terms of the number of its elements is equivalent to finding a minimal subset of
{C ⊗ D | 〈C, D〉 ∈ B(X, Y, I)} which covers I. Note that this can be seen as a
graded version of a set covering problem which apparently has not been studied
before. A further study of this problem including various versions of approximate
coverings may yield useful results for processing of graded data. Now, a particular
case of this problem for L = {0, 1} is just the problem of covering a binary matrix
with the smallest possible set of rectangles. This problem is known to be NP-
hard, see [24,25,29] for early references, and also [6,12,33]. This indicates that we
need an approximation algorithm for the problem of finding small F for which
I = AF ◦BF .

An obvious approach to the design of such algorithm is to take an approxima-
tion algorithm for the (binary) set covering problem, such as the one described
in [7], and modify it for the graded case. Such an algorithm would require us
to compute first the set B(X, Y, I) of all formal concepts of I and then select
candidates for factors from B(X, Y, I) using a greedy approach [7]. This would
be time-demanding because B(X, Y, I) can be quite large.
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Instead, we propose a different greedy algorithm. The algorithm generates
maximal rectangles by looking for “promising columns”. A technical property
which we utilize is the fact that for each formal concept 〈C, D〉,

D =
⋃

j∈Y {D(j)/j}↓↑,
i.e. each intent D is a union of intents {D(j)/j}↓↑. Moreover, C = D↓. Here,
{D(j)/j} denotes a graded singleton, i.e. the grade of j in {D(j)/j} is D(j). As
a consequence, we may construct any formal concept by adding sequentially
{a/j}↓↑ to the empty set of attributes. Our algorithm follows a greedy approach
that makes us select j ∈ Y and degree a ∈ L which maximize the size of

D ⊕a j = {〈k, l〉∈ U |D+↓(k)⊗D+↓↑(l) ≥ Ikl}, (2)

where D+ = D ∪ {a/j} and U denotes the set of 〈i, j〉 of I (row i, column j)
for which the corresponding entry Iij is not covered yet. Note that the size of
D ⊕a j is just the number of entries of I which are covered by formal concept
〈D↓, D〉. Therefore, instead of going through all possible formal concepts and
selecting a factor from them, we just go through columns and degrees which
maximize the value of the factor, i.e. the area covered by the factor, which is
being constructed. The algorithm is summarized below.

Find-Factors(I)
1 U ← {〈i, j〉 | Iij �= 0}
2 F ← ∅
3 while U �= ∅
4 do D ← ∅
5 V ← 0
6 select 〈j, a〉 that maximizes |D ⊕a j|
7 while |D ⊕a j| > V
8 do V ← |D ⊕a j|
9 D ← (D ∪ {a/j})↓↑

10 select 〈j, a〉 that maximizes |D ⊕a j|
11 C ← D↓

12 F ← F ∪ {〈C, D〉}
13 for 〈i, j〉 ∈ U
14 do if Iij ≤ C(i)⊗D(j)
15 then
16 U ← U \{〈i, j〉}
17 return F

The main loop of the algorithm (lines 3–16) is executed until all the nonzero
entries of I are covered by at least one factor in F . The code between lines 4
and 10 constructs an intent by adding the most promising columns. After such
an intent D is found, we construct the corresponding factor concept and add it
to F . The loop between lines 13 and 16 ensures that all matrix entries covered
by the last factor are removed from U . Obviously, the algorithm is sound and
finishes after finitely many steps with a set F of factor concepts.
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Table 3. Exact Factorizability

�Lukasiewicz ⊗ minimum ⊗
k no. of factors no. of factors

5 5.205± 0.460 6.202± 1.037
7 7.717± 0.878 10.050 ± 1.444
9 10.644± 1.316 13.379 ± 1.676

11 13.640± 1.615 15.698 ± 1.753
13 16.423± 1.879 17.477 ± 1.787
15 18.601± 2.016 18.721 ± 1.863

Experimental Evaluation. We now present experiments with exact and approx-
imate factorization of randomly generated matrices and their evaluation. First,
we observed how close is the number of factors found by the algorithm Find-
Factors to a known number of factors in artificially created matrices. In this
experiment, we were generating 20 × 20 matrices according to various distri-
butions of 5 grades. These matrices were generated by multiplying m × k and
k× n matrices. Therefore, the resulting matrices were factorizable with at most
k factors. Then, we executed the algorithm to find F and observed how close
is the number |F| of factors to k. The results are depicted in Tab. 3. We have
observed that in the average case, the choice of a t-norm is not essential and
all t-norms give approximately the same results. In particular, Tab. 3 describes
results for �Lukasiewicz and minimum t-norms which can be seen as two limit
cases of t-norms [17]. Rows of Tab. 3 correspond to numbers k = 5, 6, . . . , 15
denoting the known number of factors. For each k, we computed the average
number of factors produced by our algorithm in 2000 k-factorizable matrices.
The average values are written in the form of “average number of factors ±
standard deviation”.

As mentioned above, factorization and factor analysis of binary data is a spe-
cial of our setting with L = {0, 1}, i.e. with the scale containing just two grades.
Then, the matrix product ◦ given by (1) coincides with the Boolean matrix mul-
tiplication and the problem of decomposition of graded matrices coincides with
the problem of decomposition of binary matrices into the Boolean product of
binary matrices. We performed experiments with our algorithm in this particu-
lar case with three large binary data sets (binary matrices) from the Frequent
Itemset Mining Dataset Repository, see http://fimi.cs.helsinki.fi/data/.
In particular, we considered the CHESS, CONNECT, and MUSHROOM data
sets. The results are shown in Tab. 4. The columns labeled by n and m show the
numbers of rows and columns of the matrices (e.g., MUSHROOM is a 8124×119
binary matrix). The column labeled by 50% says the following: The first num-
ber is the number of factors sufficient to explain 50% of the data entries. For
example, the first 5 factors explain 50% of data for CHESS data, i.e. AF ◦ BF
covers 50% of entries of matrix I with |F| = 4. The second number is the ratio

number of attributes/number of factors
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Table 4. Factorization of Boolean Matrices

Input Dimensions Portion of data explained
Database n m 50% 70% 90%

CHESS 3196 75 5 15.00 13 5.77 33 2.27
CONNECT 67557 129 4 32.25 10 12.90 39 3.31
MUSHROOM 8124 119 7 17.00 19 6.26 46 2.59

which can be regarded as the coefficient of reduction of dimensionality. For
example, for the MUSHROOM data set, the first 7 factors produced by our
algorithm explain 50% of data and the corresponding coefficient of reduction is
119/7 = 17.00. The columns labeled by 70% and 90% have analogous meaning.

5 Conclusions and Future Work

We presented a novel approach to factor analysis of matrices with ordinal data.
The factors in this approach correspond to formal concepts in the data matrix
and the relationship between the factors and original attributes is a non-linear
one. One feature of the model is a transparent way of treating the grades which
results in good interpretability of factors. Another feature is its feasibility regard-
ing theoretical analysis. As an example, the factors we use are optimal in terms
of their number. Furthermore, we proposed a greedy approximation algorithm
for the problem of finding a small set of factors and provided results of exper-
iments demonstrating its behavior. Future research will include the following
topics:

– Comparison, both theoretical and experimental, to other methods of matrix
decompositions.

– Approaches to the problem of approximate factorization of I, continuing our
experiments with approximate factorization presented in this paper.

– Development of further theoretical insight focusing particularly on reducing
further the space of factors to which the search for factors can be restricted.
Note that decompositions of a matrix with grades into a binary matrix and a
matrix with grades was studied in [3].

– Study the computational complexity aspects of the problem of approximate
factorization, in particular the approximability of the problem of finding de-
compositions of matrix I [1].

– Explore the applications of the decompositions studied in this paper. One ap-
plication area is factor analysis. The usefulness of the decompositions in this
area was illustrated by the example in Section 3. Another topic which needs to
be explored is the possible utilization of the dimensionality reduction provided
by the decompositions.
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