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Preface

The discipline of formal concept analysis (FCA) is concerned with the formal-
ization of concepts and conceptual thinking. Built on the solid foundation of
lattice and order theory, FCA is first and foremost a mathematical discipline.
However, its motivation and guiding principles are based on strong philosophical
underpinnings. In practice, FCA provides a powerful framework for the quali-
tative, formal analysis of data, as demonstrated by numerous applications in
diverse areas. Likewise, it emphasizes the aspect of human-centered information
processing by employing visualization techniques capable of revealing inherent
structure in data in an intuitively graspable way. FCA thereby contributes to
structuring and navigating the ever-growing amount of information available in
our evolving information society and supports the process of turning data into
information and ultimately into knowledge.

In response to an expanding FCA community, the International Conference
on Formal Concept Analysis (ICFCA) was established to provide an annual
opportunity for the exchange of ideas. Previous ICFCA conferences were held
in Darmstadt (2003), Sydney (2004), Lens (2005), Dresden (2006), Clermont-
Ferrand (2007), as well as Montreal (2008) and are evidence of vivid ongoing
interest and activities in FCA theory and applications.

ICFCA 2009 took place during May 21–24 at the University of Applied Sci-
ences in Darmstadt. Beyond serving as a host of the very first ICFCA in 2003,
Darmstadt can be seen as the birthplace of FCA itself, where this discipline
was introduced in the early 1980s and elaborated over the subsequent decades.
On this occasion, we were very delighted to include a reprint of Rudolf Wille’s
seminal paper on formal concept analysis to make it easily available for our
community.

Out of 29 submitted papers, 15 were accepted for publication in this volume
amounting to an acceptance rate of 52%. Less mature works which were still
considered valuable contributions for discussion were collected in a supplemen-
tary volume, published as “Contributions to ICFCA 2009” by Verlag Allgemeine
Wissenschaft (ISBN 3-935924-08-9).

Clearly, the overall process of assembling a high-quality conference program
would not have been possible without the much-appreciated help of the Program
Committee members, external reviewers, and members of the Editorial Board.
Finally, but most notably, we wish to thank the Conference Chair, Karl Erich
Wolff. In collaboration with the Local Chair, Urs Andelfinger, and the local
organization team, he realized a smoothly-run conference with a pleasant and
friendly atmosphere. Our warmest thanks for our hosts’ hospitality.

May 2009 Sébastien Ferré
Sebastian Rudolph
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Aurélie Bertaux, Florence Le Ber, Agnès Braud, and
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Usability Issues in
Description Logic Knowledge Base Completion

Franz Baader and Barış Sertkaya�

TU Dresden, Germany
{baader,sertkaya}@tcs.inf.tu-dresden.de

Abstract. In a previous paper, we have introduced an approach for ex-
tending both the terminological and the assertional part of a Description
Logic knowledge base by using information provided by the assertional
part and by a domain expert. This approach, called knowledge base com-
pletion, was based on an extension of attribute exploration to the case
of partial contexts. The present paper recalls this approach, and then
addresses usability issues that came up during first experiments with
a preliminary implementation of the completion algorithm. It turns out
that these issues can be addressed by extending the exploration algorithm
for partial contexts such that it can deal with implicational background
knowledge.

1 Introduction

Description Logics (DLs) [1] are a successful family of logic-based knowledge
representation formalisms, which can be used to represent the conceptual knowl-
edge of an application domain in a structured and formally well-understood way.
They are employed in various application domains, such as natural language
processing, configuration, databases, and bio-medical ontologies, but their most
notable success so far is due to the fact that DLs provide the logical under-
pinning of OWL, the standard ontology language for the semantic web [20]. As
a consequence of this standardization, several ontology editors support OWL
[19,22,23,27], and ontologies written in OWL are employed in more and more
applications. As the size of these ontologies grows, tools that support improv-
ing their quality become more important. The tools available until now use DL
reasoning to detect inconsistencies and to infer consequences, i.e., implicit knowl-
edge that can be deduced from the explicitly represented knowledge. There are
also promising approaches that allow to pinpoint the reasons for inconsistencies
and for certain consequences, and that help the ontology engineer to resolve
inconsistencies and to remove unwanted consequences [6,7,21,24,32]. These ap-
proaches address the quality dimension of soundness of an ontology, both within
itself (consistency) and w.r.t. the intended application domain (no unwanted con-
sequences). Here, we are concerned with a different quality dimension, namely
completeness of the ontology w.r.t. to the intended application domain. In [5],

� Supported by the German Research Foundation (DFG) under grant BA 1122/12-1.

S. Ferré and S. Rudolph (Eds.): ICFCA 2009, LNAI 5548, pp. 1–21, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



2 F. Baader and B. Sertkaya

we have provided a basis for formally well-founded techniques and tools that
support the ontology engineer in checking whether an ontology contains all the
relevant information about the application domain, and in extending the on-
tology appropriately if this is not the case. In the present paper, we give an
overview over this approach, and then describe how the general framework must
be extended such that it becomes easier to use for a domain expert. But first,
let us introduce the problem of knowledge base completion, and our approach
for solving it, in a bit more detail.

A DL knowledge base (nowadays often called ontology) usually consists of two
parts, the terminological part (TBox), which defines concepts and also states
additional constraints (so-called general concept inclusions, GCIs) on the inter-
pretation of these concepts, and the assertional part (ABox), which describes
individuals and their relationship to each other and to concepts. Given an appli-
cation domain and a DL knowledge base (KB) describing it, we can ask whether
the KB contains all the “relevant” information1 about the domain:

– Are all the relevant constraints that hold between concepts in the domain
captured by the TBox?

– Are all the relevant individuals existing in the domain represented in the
ABox?

As an example, consider the OWL ontology for human protein phosphatases
that has been described and used in [37]. This ontology was developed based on
information from peer-reviewed publications. The human protein phosphatase
family has been well characterized experimentally, and detailed knowledge about
different classes of such proteins is available. This knowledge is represented in the
terminological part of the ontology. Moreover, a large set of human phosphatases
has been identified and documented by expert biologists. These are described as
individuals in the assertional part of the ontology. One can now ask whether the
information about protein phosphatases contained in this ontology is complete.
Are all the relationships that hold among the introduced classes of phosphatases
captured by the constraints in the TBox, or are there relationships that hold
in the domain, but do not follow from the TBox? Are all possible kinds of
human protein phosphatases represented by individuals in the ABox, or are
there phosphatases that have not yet been included in the ontology or even not
yet been identified?

Such questions cannot be answered by an automated tool alone. Clearly, to
check whether a given relationship between concepts—which does not follow
from the TBox—holds in the domain, one needs to ask a domain expert, and
the same is true for questions regarding the existence of individuals not described
in the ABox. The rôle of the automated tool is to ensure that the expert is asked
as few questions as possible; in particular, she should not be asked trivial ques-
tions, i.e., questions that could actually be answered based on the represented
knowledge. In the above example, answering a non-trivial question regarding

1 The notion of “relevant information” must, of course, be formalized appropriately
for this problem to be addressed algorithmically.
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human protein phosphatases may require the biologist to study the relevant lit-
erature, query existing protein databases, or even to carry out new experiments.
Thus, the expert may be prompted to acquire new biological knowledge.

Attribute exploration [11] is an approach developed in Formal Concept Anal-
ysis (FCA) [14] that can be used to acquire knowledge about an application
domain by querying an expert. One of the earliest applications of this approach
is described in [29,36], where the domain is lattice theory, and the goal of the
exploration process is to find, on the one hand, all valid relationships between
properties of lattices (like being distributive), and, on the other hand, to find
counterexamples to all the relationships that do not hold. To answer a query
whether a certain relationship holds, the lattice theory expert must either con-
firm the relationship (by using results from the literature or carrying out a new
proof for this fact), or give a counterexample (again, by either finding one in the
literature or constructing a new one).

Although this sounds very similar to what is needed in our context, we could
not directly use this approach in [5]. The main reason for this is the open-world
semantics of description logic knowledge bases. Consider an individual i from an
ABox A and a concept C occurring in a TBox T . If we cannot deduce from the
TBox T and A that i is an instance of C, then we do not assume that i does
not belong to C. Instead, we only accept this as a consequence if T and A imply
that i is an instance of ¬C. Thus, our knowledge about the relationships between
individuals and concepts is incomplete: if T and A imply neither C(i) nor ¬C(i),
then we do not know the relationship between i and C. In contrast, classical
FCA and attribute exploration assume that the knowledge about individuals is
complete: the basic datastructure is that of a formal context, i.e., a crosstable
between individuals and properties. A cross says that the property holds, and
the absence of a cross is interpreted as saying that the property does not hold.
In contrast, in a partial context, a property may be known to hold or not to hold
for an individual, but there is also the third possibility that nothing is known
about the relationship between the individual and this property.

There has been some work on how to extend FCA and attribute exploration
from complete knowledge to the case of such partial knowledge [9,10,17,18,28].
However, this work is based on assumptions that are different from ours. In
particular, it assumes that the expert cannot answer all queries and, as a conse-
quence, the knowledge obtained after the exploration process may still be incom-
plete and the relationships between concepts that are produced in the end fall
into two categories: relationships that are valid no matter how the incomplete
part of the knowledge is completed, and relationships that are valid only in some
completions of the incomplete part of the knowledge. In contrast, our intention
is to complete the KB, i.e., in the end we want to have complete knowledge
about these relationships. What may be incomplete is the description of individ-
uals used during the exploration process. From the FCA point of view, the main
new result in [5] is the extension of attribute exploration to the case of partial
contexts. This approach is then used to derive an algorithm for completing DL
knowledge bases.
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Before publishing [5], we had implemented a first experimental version of a
tool for completing DL knowledge bases as an extension of the ontology editor
Swoop [22], using the system Pellet as underlying reasoner [33]. A first evaluation
of this tool on the OWL ontology for human protein phosphatases mentioned in
the introduction, with biologists as experts, was quite promising, but also showed
that the tool must be improved in order to be useful in practice. In particular, we
have observed that the experts sometimes make errors when answering queries.
Thus, the tool should support the expert in detecting such errors, and also make
it possible to correct errors without having to restart the exploration process
from scratch. Another usability issue on the wish list of our experts was to allow
the postponement of answering certain queries, while continuing the exploration
process with other queries.

The present paper is a follow-up work to [5], which addresses these usability
issues. In the next section, we give a brief introduction to DLs, and then recall, in
Section 3, the completion approach developed in [5]. For more details, we refer
the reader to that paper as well as to the technical report [4] accompanying
it. In Section 4, we address the usability issues mentioned above. From the
FCA point of view, our solution to these problems requires an extension of the
results in [5] to the case of attribute exploration w.r.t. background knowledge and
partial contexts. In Section 5, we describe our implementation of the improved
approach, which is now realized as an OWL plugin to Protégé 4 [19], and uses
the incremental reasoning facilities of Pellet [16].

2 Description Logics

In order to represent knowledge about an application domain using Description
Logics (DLs) one usually first defines the relevant concepts of this domain, and
then describes relationships between concepts and relationships between indi-
viduals and concepts in the knowledge base. To construct concepts, one starts
with a set NC of concept names (unary predicates) and a set NR of role names
(binary predicates), and builds complex concept descriptions out of them by
using the concept constructors provided by the particular description language
being used. In addition, a set NI of individual names is used to refer to domain
elements. Table 1 displays commonly used concept constructors. In this table C
and D stand for concept descriptions, r for a role name, and a, b, a1, . . . , an for
individual names. In the current paper, we do not fix a specific set of constructors
since our results apply to arbitrary DLs as long as they allow for the constructors
conjunction and negation (see the upper part of Table 1). For our purposes, a
TBox is a finite set of general concept inclusions (GCIs), and an ABox is a finite
set of concept and role assertions (see the lower part of Table 1). A knowledge
base (KB) consists of a TBox together with an ABox. As usual, we use C ≡ D
as an abbreviation for the two GCIs C � D and D � C.

The semantics of concept descriptions, TBoxes, and ABoxes is given in terms
of an interpretation I = (ΔI , ·I), where ΔI (the domain) is a non-empty set,
and ·I (the interpretation function) maps each concept name A ∈ NC to a set
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Table 1. Syntax and semantics of commonly used constructors

Constructor name Syntax Semantics
negation ¬C ΔI \ CI

conjunction C � D CI ∩ DI

disjunction C � D CI ∪ DI

existential restriction ∃r.C {x ∈ ΔI | ∃y : (x, y) ∈ rI ∧ y ∈ CI}
one-of {a1, . . . , an} {aI

1 , . . . , aI
n}

general concept inclusion C 	 D CI ⊆ DI

concept assertion C(a) aI ∈ CI

role assertion r(a, b) (aI , bI) ∈ rI

AI ⊆ ΔI , each role name r ∈ NR to a binary relation rI ⊆ ΔI × ΔI , and
each individual name a ∈ NI to an element aI ∈ ΔI . Concept descriptions C
are also interpreted as sets CI ⊆ ΔI , which are defined inductively, as seen in
the semantics column of Table 1. An interpretation I is a model of the TBox T
(the ABox A) if it satisfies all its GCIs (assertions) in the sense shown in the
semantics column of the table. In case I is a model of both T and A, it is called
a model of the knowledge base (T ,A).

Given a KB (T ,A), concept descriptions C, D, and an individual name a,
the inference problems subsumption, instance, and consistency are defined as
follows:

– Subsumption: C is subsumed by D w.r.t. T (written C �T D) if CI ⊆ DI

holds for all models I of T
– Instance: a is an instance of C w.r.t. T and A (written T ,A |= C(a)) if

aI ∈ CI holds for all models of (T ,A).
– Consistency: the knowledge base (T ,A) is consistent if it has a model.

For most DLs, these problems are decidable, and there exist highly optimized
DL reasoners such as FaCT++ [35], RacerPro [15], Pellet [33], KAON2 [25],
and HermiT [26], which can solve these problems for very expressive DLs on
large knowledge bases from practical applications.

The following example demonstrates how a DL that has the constructors
conjunction, disjunction, existential restriction, and one-of can be used to model
some simple properties of countries.

Example 1. Assume that our set of concept names NC contains the concepts
Country, Ocean, and Sea; the set of role names NR contains the roles hasBor-
derTo, isMemberOf, and hasOfficialLanguage; and the set of individual names NI

contains the individuals German, EU, MediterraneanSea, Italy, and Germany. Us-
ing these names, the following TBox defines a coastal country as a country that
has a border to a sea or an ocean; a Mediterranean country as a country that
has border to the MediterraneanSea; a German-speaking country as a country
that has the language German as an official language; and an EU member as a
country that is a member of the EU.
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Tcountries := { Coastal ≡ Country � ∃hasBorderTo.(Ocean � Sea)
EUmember ≡ Country � ∃isMemberOf.{EU}

Mediterranean ≡ Country � ∃hasBorderTo.{MediterraneanSea}
GermanSpeaking ≡ Country � ∃hasOfficialLanguage.{German} }

The following ABox states facts about the countries Italy and Germany, and
about the Mediterranean Sea:

Acountries := {GermanSpeaking(Germany), EUmember(Germany),
Coastal(Germany), Mediterranean(Italy), Sea(MediterraneanSea)}

3 Partial Contexts, Attribute Exploration, and
Completion of DL Knowledge Bases

In [5], we have extended the classical approach to FCA to the case of objects
that have only a partial description in the sense that, for some attributes, it is
not known whether they are satisfied by the object or not. This was needed due
to the open-world semantics of DL knowledge bases. If an assertion C(a) does
not follow from a knowledge base, then one does not assume that its negation
holds. Thus, if neither C(a) nor ¬C(a) follows, then we do not know whether
a has the property C or not. In this section, we first give the basic definitions
for extending FCA to the case of partially described objects, and then introduce
a version of attribute exploration that works in this setting. More details can
be found in [5,4]. In the following, we assume that we have a finite set M of
attributes and a (possibly infinite) set of objects.

Definition 1. A partial object description (pod) is a tuple (A, S) where A, S ⊆
M are such that A ∩ S = ∅. We call such a pod a full object description (fod)
if A ∪ S = M . A set of pods is called a partial context and a set of fods a full
context.

Intuitively, the pod (A, S) says that the object it describes satisfies all attributes
from A and does not satisfy any attribute from S. For the attributes not con-
tained in A ∪ S, nothing is known w.r.t. this object. A partial context can be
extended by either adding new pods or by extending existing pods.

Definition 2. We say that the pod (A′, S′) extends the pod (A, S), and write
this as (A, S) ≤ (A′, S′), if A ⊆ A′ and S ⊆ S′. Similarly, we say that the partial
context K′ extends the partial context K, and write this as K ≤ K′, if every pod
in K is extended by some pod in K′. If K is a full context and K ≤ K, then K
is called a realizer of K. If (A, S) is a fod and (A, S) ≤ (A, S), then we also say
that (A, S) realizes (A, S).

Next, we introduce the notion of an implication between attributes, which for-
malizes the informal notion “relationship between properties” used in the intro-
duction.
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Definition 3. An implication is of the form L → R where L, R ⊆ M . This
implication is refuted by the pod (A, S) if L ⊆ A and R ∩ S 
= ∅. It is refuted
by the partial context K if it is refuted by at least one element of K. The set
of implications that are not refuted by a given partial context K is denoted by
Imp(K). The set of all fods that do not refute a given set of implications L is
denoted by Mod(L).

Obviously, K ≤ K′ implies that every implication refuted by K is also refuted
by K′. For a set of implications L and a set P ⊆ M , the implicational closure of
P with respect to L, denoted by L(P ), is the smallest subset Q of M such that

– P ⊆ Q, and
– L → R ∈ L and L ⊆ Q imply R ⊆ Q.

A set P ⊆ M is called L-closed if L(P ) = P .

Definition 4. The implication L → R is said to follow from a set J of impli-
cations if R ⊆ J (L). The set of implications J is called complete for a set of
implications L if every implication in L follows from J . It is called sound for L
if every implication that follows from J is contained in L. A set of implications
J is called a base for a set of implications L if it is both sound and complete
for L, and no strict subset of J satisfies this property.

The following fact is trivial, but turns out to be crucial for our attribute explo-
ration algorithm.

Proposition 1. For a given set P ⊆ M and a partial context K, K(P ) :=
M \
⋃
{S | (A, S) ∈ K, P ⊆ A} is the largest subset of M such that P → K(P )

is not refuted by K.

Attribute Exploration with Partial Contexts

The classical attribute exploration algorithm of FCA [11,14] assumes that there is
a domain expert that can answer questions regarding the validity of implications
in the application domain. Accordingly, our approach requires an expert that can
decide whether an implication is refuted in the application domain or not. In
contrast to existing work on extending FCA to the case of partial knowledge
[9,17,18,10], we do not assume that the expert has only partial knowledge and
thus cannot answer all implication questions.

To be more precise, we consider the following setting. We are given an initial
(possibly empty) partial context K, an initially empty set of implications L, and
a full context K that is a realizer of K. The expert answers implication questions
“L → R?” w.r.t. the full context K. More precisely, if the answer is “yes,” then K
does not refute L → R. The implication L → R is then added to L. Otherwise,
the expert extends the current context K such that the extended context refutes
L → R and still has K as a realizer. Consequently, the following invariant will
be satisfied by K,K,L: K ≤ K ⊆ Mod(L).

Since K ⊆ Mod(L) implies L ⊆ Imp(K), this invariant ensures that L is sound
for Imp(K). Our aim is to enrich K and L such that eventually L is also complete
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for Imp(K), and K refutes all other implications (i.e., all the implications refuted
by K). As in the classical case, we want to do this by asking as few as possible
questions to the expert.

Definition 5. Let L be a set of implications and K a partial context. An im-
plication is called undecided w.r.t. K and L if it neither follows from L nor is
refuted by K. It is decided w.r.t. K and L if it is not undecided w.r.t. K and L.

In principle, our attribute exploration algorithm tries to decide each undecided
implication by either adding it to L or extending K such that it refutes the
implication. If all implications are decided, then our goal is achieved [4].

Proposition 2. Assume that K ≤ K ⊆ Mod(L) and that all implications are
decided w.r.t. K and L. Then L is complete for Imp(K) and K refutes all impli-
cations not belonging to Imp(K).

How can we find—and let the expert decide—all undecided implications without
naively considering all implications? The following proposition motivates why it
is sufficient to consider implications whose left-hand sides are L-closed. It is
an immediate consequence of the fact that L(·) is a closure operator, and thus
idempotent.

Proposition 3. Let L be a set of implications and L → R an implication. Then,
L → R follows from L iff L(L) → R follows from L.

Concerning right-hand sides, Proposition 1 says that the largest right-hand side
R such that L → R is not refuted by K is R = K(L). Putting these two obser-
vations together, we only need to consider implications of the form L → K(L)
where L is L-closed. In order to enumerate all left-hand sides, we can thus use
the well-known approach from FCA for enumerating closed sets in the lectic or-
der [14]. In this approach, the elements of M are assumed to have a fixed order
that imposes a linear order on the power set of M , called the lectic order. An
algorithm that, given L and an L-closed set P , computes in polynomial time the
lectically next L-closed set that comes after P , is described in [11].

If an implication is added because the expert has stated that it holds in K,
then we can extend the current context K by closing the first component of every
pod in K w.r.t. the new set of implications L. In fact, L ⊆ Imp(K) makes sure
that the extended context is still realized by K. To allow for this and possible
other ways of extending the partial context, the formulation of the algorithm
just says that, in case an implication is added, the partial context can also be
extended. Whenever an implication is not accepted by the expert, K will be
extended to a context that refutes the implication and still has K as a realizer.

Based on these considerations, an attribute exploration algorithm for partial
contexts was introduced in [5], and is here recalled as Algorithm 1.

The following theorem states that this algorithm always terminates, and in
which sense it is correct.

Theorem 1. Let M be a finite set of attributes, and K and K0 respectively a
full and a partial context over the attributes in M such that K0 ≤ K. Then
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Algorithm 1. Attribute exploration for partial contexts
1: Input: M = {m1, . . . , mn},K0 {attribute set and

partial context, realized by full context K.}
2: K := K0 {initialize partial context.}
3: L := ∅ {initial empty set of implications.}
4: P := ∅ {lectically smallest L-closed set.}
5: while P �= M do
6: Compute K(P )
7: if P �= K(P ) then {P → K(P ) is undecided.}
8: Ask the expert if P → K(P ) is refuted by K
9: if no then {P → K(P ) not refuted.}

10: K := K′ where K′ is a partial context such that
K ≤ K′ ≤ K {optionally extend K.}

11: L := L ∪ {P → K(P ) \ P}
12: Pnew := lectically next L-closed set after P
13: else {P → K(P ) refuted.}
14: Get a partial context K′ from the expert such that K ≤ K′ ≤ K and

P → K(P ) is refuted by K′

15: K := K′

16: Pnew := P {P not changed.}
17: end if
18: else {trivial implication.}
19: Pnew := lectically next L-closed set after P
20: end if
21: P := Pnew

22: end while

Algorithm 1 terminates and, upon termination, it outputs a partial context K
and a set of implications L such that

1. L is a base for Imp(K), and
2. K refutes every implication that is refuted by K.

DLs and Partial Contexts

Let (T ,A) be a consistent DL knowledge base, and M be a finite set of concept
descriptions. An individual name a occurring in A gives rise to the partial object
description podT ,A(a, M) := (A, S) where

A := {C ∈M | T ,A |= C(a)} and S := {C ∈ M | T ,A |= ¬C(a)}.

The whole ABox induces the partial context

KT ,A(M) := {podT ,A(a, M) | a an individual name in A}.

Similarly, any element d ∈ ΔI of an interpretation I gives rise to the full object
description fodI(d, M) := (A, S) where

A := {C ∈ M | d ∈ CI} and S := {C ∈ M | d ∈ (¬C)I}.
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The whole interpretation induces the full context

KI(M) := {fodI(d, M) | d ∈ ΔI}.

Proposition 4. Let (T ,A), (T ′,A′) be DL knowledge bases such that T ⊆ T ′

and A ⊆ A′, M a set of concept descriptions, and I a model of (T ′,A′). Then
KT ,A(M) ≤ KT ′,A′(M) ≤ KI(M).

We can straightforwardly transfer the notion of refutation of an implication from
partial (full) contexts to knowledge bases (interpretations).

Definition 6. The implication L → R over the attributes M is refuted by the
knowledge base (T ,A) if it is refuted by KT ,A(M), and it is refuted by the
interpretation I if it is refuted by KI(M). If an implication is not refuted by I,
then we say that it holds in I. In addition, we say that L → R follows from T if
�L �T �R, where �L and �R respectively stand for the conjunctions

�
C∈L C

and
�

D∈R D.

Obviously, the implication L → R holds in I iff (�L)I ⊆ (�R)I . As an immediate
consequence of this fact, we obtain:

Proposition 5. Let T be a TBox and I be a model of T . If L → R follows
from T , then it holds in I.

Completion of DL KBs: Formal Definition and Algorithm

We are now ready to define what we mean by a completion of a DL knowledge
base. Intuitively, the knowledge base is supposed to describe an intended model.
For a fixed set M of “interesting” concepts, the knowledge base is complete if it
contains all the relevant knowledge about implications between these concepts.
Based on the notions introduced above, this is formalized as follows.

Definition 7. Let (T ,A) be a consistent DL knowledge base, M a finite set of
concept descriptions, and I a model of (T ,A). Then (T ,A) is M -complete (or
complete if M is clear from the context) w.r.t. I if the following three statements
are equivalent for all implications L → R over M :

1. L → R holds in I;
2. L → R follows from T ;
3. L → R is not refuted by (T ,A).

Let (T0,A0) be a DL knowledge base and I a model of (T0,A0). Then (T ,A)
is an M-completion of (T0,A0) w.r.t. I if it is M-complete w.r.t. I and extends
(T0,A0), i.e., T0 ⊆ T and A0 ⊆ A.

An adaptation of the attribute exploration algorithm for partial contexts pre-
sented above can be used to compute a completion of a given knowledge base
(T0,A0) w.r.t. a fixed model I of this knowledge base. It is assumed that the
expert has or can obtain enough information about this model to be able to
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answer questions of the form “Is L → R refuted by I?”. If the answer is “no,”
then L → R holds according to the expert’s opinion, and is thus added to the
implication base computed by the algorithm. In addition, the GCI �L � �R is
added to the TBox. Since L → R is not refuted by I, the interpretation I is
still a model of the new TBox obtained this way. If the answer is “yes,” then the
expert is asked to extend the current ABox (by adding appropriate assertions on
either old or new individual names) such that the extended ABox refutes L → R
and I is still a model of this ABox.

It is possible to optimize this algorithm by employing DL reasoning. Because of
Proposition 5, before actually asking the expert whether the implication L → R
is refuted by I, we can first check whether �L � �R already follows from the
current TBox. If this is the case, then we know that L → R cannot be refuted
by I, and we tacitly accept and add this implication to the current set of impli-
cations L. Similarly, there are also cases where an implication can be rejected
without asking the expert because accepting it would make the knowledge base
inconsistent. However, in this case the expert still needs to extend the ABox such
that the implication is refuted. The following example illustrates this case, which
was not taken into account in the original version of the completion algorithm
in [5].

Example 2. Consider the knowledge base (T ,A) with the empty TBox T = ∅,
and the ABox A = {(∃r.A � ∀r.¬B)(a)}. Clearly, the implication {A} → {B}
does not follow from T . Moreover, it is not refuted by A because this ABox does
not explicitly contain a named individual that is an instance of both A and ¬B.
That is, the implication {A}→ {B} is undecided. However, if the user accepted
this implication, and thus the GCI A � B were added to T , the knowledge base
would become inconsistent since the assertion in A enforces the existence of an
implicit individual that belongs to both A and ¬B. This shows that this GCI
cannot hold in the underlying model I of (T ,A), and thus it is refuted in the
full context KI(M).

The improved completion algorithm for DL knowledge bases obtained from these
considerations is described in Algorithm 2. Note that Algorithm 2, applied to T0,
A0, M with the underlying model I of (T0,A0), is an instance of Algorithm 1, ap-
plied to the partial contextKT0,A0(M) with the underlying full contextKI(M) as
realizer. For this reason, the next theorem is an easy consequence of Theorem 1.

Theorem 2. Let (T0,A0) be a consistent knowledge base, M a finite set of con-
cept descriptions, and I a model of (T0,A0), and let (T ,A) be the knowledge
base computed by Algorithm 2. Then (T ,A) is a completion of (T0,A0).

Let us demonstrate the execution of Algorithm 2 on an extension of the knowl-
edge base constructed in Example 1, where M consists of the concepts Coastal,
Mediterranean, EUmember, and GermanSpeaking, the ABox contains additional
information on some countries, and I is the “real world.”

Example 3. Let the partial context derived from the initial ABox be the one de-
picted in Table 2. Given this ABox, and the TBox in Example 1, the first implica-
tion question posed to the expert is {GermanSpeaking}→ {EUmember, Coastal}.
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Algorithm 2. Completion of DL knowledge bases
1: Input: M = {m1, . . . , mn}, (T0,A0) {attribute set; KB with model I.}
2: T := T0, A := A0

3: L := ∅ {initial empty set of implications.}
4: P := ∅ {lectically smallest L-closed subset of M .}
5: while P �= M do
6: Compute KT ,A(P )
7: if P �= KT ,A(P ) then {check whether the implication follows from T .}
8: if �P 	T �KT ,A(P ) then
9: L := L ∪ {P → KT ,A(P ) \ P}

10: Pnew := lectically next L-closed set after P
11: else
12: if (T ∪ {�P 	 �KT ,A(P )},A) is inconsistent then
13: Get an ABox A′ from the expert such that A ⊆ A′, I is a model of A′,

and P → KT ,A(P ) is refuted by A′

14: A := A′ {extend the ABox.}
15: else
16: Ask expert if P → KT ,A(P ) is refuted by I.
17: if no then {�P 	 �KT ,A(P ) is satisfied in I.}
18: L := L ∪ {P → KT ,A(P ) \ P}
19: Pnew := lectically next L-closed set after P
20: T := T ∪ {�P 	 �(KT ,A(P ) \ P )}
21: else
22: Get an ABox A′ from the expert such that A ⊆ A′,

I is a model of A′, and P → KT ,A(P ) is refuted by A′

23: A := A′ {extend the ABox.}
24: end if
25: end if
26: end if
27: else {trivial implication.}
28: Pnew := lectically next L-closed set after P
29: end if
30: P := Pnew

31: end while

The answer is “no,” since Austria is German-speaking, but it is not a coastal
country. Assume that the expert turns Austria into a counterexample by asserting
that it is German-speaking. The second question is then whether the implica-
tion {GermanSpeaking} → {EUmember} holds. The answer is again “no” since
Switzerland is a German-speaking country, but not an EU member. Assume
that the expert adds the new individual Switzerland to the ABox, and asserts
that it is an instance of GermanSpeaking and ¬EUmember. The next question
is {Mediterranean} → {EUmember, Coastal}. The answer is again “no” because
Turkey is a Mediterranean country, but it is not an EU member. Assume that
the expert adds the individual Turkey to the ABox, and asserts that it is an in-
stance of ¬EUmember. The next question {Mediterranean} → {Coastal} follows
from the TBox. Thus, it is not posed to the expert, and the algorithm continues
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Table 2. The partial context before completion

Coastal Mediterranean EUmember GermanSpeaking

Italy + + + −
India + − − −

Germany + − + +
Austria − − + ?

Table 3. The partial context after completion

Coastal Mediterranean EUmember GermanSpeaking

Italy + + + −
India + − − −

Germany + − + +
Austria − − + +

Switzerland − − − +
Turkey + + − −

with the last question {Coastal, GermanSpeaking} → {EUmember}. The answer
to this question is “yes” because the only countries that are both coastal and
German-speaking (Germany and Belgium) are also EU members. Thus the GCI
Coastal � GermanSpeaking � EUmember is added to the TBox, and the com-
pletion process is finished. The completion yields the final context displayed in
Table 3.

4 Improving the Usability of the Completion Procedure

Based on on the approach described in the previous section, we had implemented
a first experimental version of a DL knowledge base completion tool. Our ex-
periments with this tool showed that during completion the expert sometimes
makes errors. For better usability of the completion procedure, it is important to
support the expert in detecting and correcting these errors. Moreover, although
we assume that the expert is omniscient (i.e., is potentially able to answer all
implication questions), we have observed that it is convenient to be able to
defer a question and answer it later. In the following, we discuss these prob-
lems in more detail and show how we address them in our improved completion
tool.

Detecting Errors

We say that the expert makes an error if he extends the knowledge base such
that it no longer has the underlying model I as its model. Since the procedure
has no direct access to I, in general it cannot detect such errors without help
from the expert. The only case were the procedure can automatically detect
that an error has occurred is when the knowledge base becomes inconsistent.
Obviously, the underlying model I cannot be a model of an inconsistent KB.
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However, when an inconsistency is detected by DL reasoning, then it is not
clear at which stage the actual error was made. In fact, although only the last
extension of the knowledge base has made it inconsistent, the deviation from
what holds in I may have occurred in a previous step. Pinpointing [6,7,21,24,32]
can be used to compute all minimal subsets of the knowledge base that are
already inconsistent, and thus help the expert to find the place where the error
was made. But in the end, the expert needs to tell the completion tool which
are the erroneous assertions and/or GCIs.

The expert may also be alerted by DL reasoning to errors in cases where the
knowledge base is not inconsistent. In fact, after each extension of the KB, the
DL reasoner re-classifies it, i.e., computes the implied subsumption and instance
relationships. If one of them contradicts the experts knowledge about I, she
also knows that an error has occurred. Again, pinpointing can show all minimal
subsets of the knowledge base from which this unintended consequence already
follows.

Recovery from Errors

Once the sources of the error are found, the next task is to correct it without
producing unnecessary extra work for the expert. Of course, one can just go back
to the step where the first error was made, and continue the completion process
from there, this time with a correct answer. The problem with this simple ap-
proach is that it throws away all the information about I that the expert has
added (by answering implication queries) after the first error had occurred. Con-
sequently, the completion procedure may again pose implication queries whose
answer actually follows from this information. On the DL side, it is no prob-
lem to keep those assertions and GCIs that really hold in I. More precisely, the
completion procedure can keep the GCIs and assertions for which the expert has
stated that they are not erroneous. In fact, our completion procedure allows for
arbitrary extensions of the KB as long as the KB stays a model of I.

On the FCA side, it is less clear whether one can keep the implications that
have been added after the first error had been made. In fact, since the new (cor-
rect) answer differs from the previous incorrect one, the completion procedure
may actually produce different implication questions. The proof of correctness
of the procedure, as given in [4], strongly depends on the fact that implications
are enumerated according to the lectic ordering of their left-hand sides. Thus,
having implications in the implication set for which the left-hand side is actually
larger than the left-hand side of the implication currently under consideration
may potentially cause problems. However, not using these implications may lead
to more implication questions being generated. Fortunately, this problem can be
solved by using these implications as background knowledge [34] rather than as
part of the implication base to be generated. Thus, when correcting an error,
we move implications generated after the error had occurred, but marked by the
expert as correct, to the background knowledge. Correctness then follows from
the fact that Stumme’s extension of attribute exploration to the case of impli-
cational background knowledge [34] can further be extended to partial contexts
(see the corresponding subsection below).
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Deferring Questions

Although we assume that the expert is omniscient in the sense that she is poten-
tially able to answer all implication questions, it is convenient to be able to defer
answering certain questions. For example, in the biology application mentioned
in the introduction, answering an implication question may necessitate search-
ing the literature on human protein phosphatases, querying gene and protein
databases, or even making new experiments. This research may take quite some
time, and can possibly be delegated to other researchers. It would thus be good
if the expert could in parallel continue with the completion process.

Our approach for achieving this is that we allow the expert to stop the com-
pletion process and change the linear order on the set M of interesting concepts.
This results in a different lectic order, and thus other implication questions may
be asked before the problematic one.2 To ensure that correctness is not com-
promised by this approach, we leave the knowledge base as it is, but move all
the implications collected so far to the background knowledge. The completion
procedure is then restarted with the first set that is closed w.r.t. the background
implications, i.e., the closure of ∅.

Attribute Exploration with Background Knowledge for Partial
Contexts

Our approaches for recovering from errors and for allowing the expert to defer an-
swering a question depend on the use of implications as background knowledge.
Attribute exploration in the presence of implicational background knowledge
[34] and also non-implicational background knowledge [12,13] has already been
considered in the literature for full contexts. For partial context, it has been con-
sidered in [17]. However, as mentioned before, this work is based on assumptions
that are different from ours, and thus cannot directly be used.

In [4] we have shown termination and correctness of Algorithm 1 under the
condition that the initial set of implications L0 is empty (line 3). In the following
we show that Algorithm 1 stays correct and terminating if we modify it such
that

1. the initial set of implications L0 already contains background implications
that are not refuted by K, i.e., satisfies K ⊆ Mod(L0) (line 3); and

2. the variable P is initialized with the lectically smallest L0-closed set, i.e.,
with L0(∅) rather than with ∅ (line 4).

Theorem 3. Let M be a finite set of attributes, K and K0 respectively a full and
a partial context over the attributes in M such that K0 ≤ K, L0 an initial set of
background implications such that K ⊆ Mod(L0), and P0 the lectically smallest
L0-closed set L0(∅). Then the modified Algorithm 1 terminates on this input and
upon termination it outputs a partial context K and a set of implications L such
that
2 Note, however, that this need not always be the case, i.e., it could be that also with

the changed order the problematic question is the next one.
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1. L is a base for Imp(K), and
2. K refutes every implication that is refuted by K.

Since the proof of this theorem is almost identical to the one of Theorem 1, we
only give a sketch (see the proof of Theorem 1 given in [4] for details).

Termination is based on the following observation: in every iteration of the
algorithm, one

(a) either considers as left-hand side of the current implication a new set P that
is lectically larger than the previous one,

(b) or stays with the same left-hand side P , but decreases the cardinality of the
right-hand side.

Thus, both iterations of the form (a) and (b) cannot occur infinitely often. This
argument applies unchanged to the modified algorithm.

To show correctness, we must show 1. and 2. in the statement of the theorem.
Thus, we must show that L is both sound and complete for Imp(K), and that K
refutes every implication that is refuted by K. Soundness of L is an immediate
consequence of the fact that the invariantK ≤ K ⊆ Mod(L) holds throughout the
run of the algorithm. The only difference between the original and the modified
algorithm is that the former starts with the empty set of implications whereas
the latter starts with a possibly non-empty set L0 of implications. However, since
L0 is assumed to satisfy K ⊆ Mod(L0), the invariant is still satisfied at the start
of the modified algorithm.

Because the invariant is satisfied, completeness of L for Imp(K) as well as the
fact that K refutes every implication refuted by K follow by Proposition 2 as
soon as we have shown that every implication is decided w.r.t. K and L. Thus,
assume that L → R is undecided w.r.t. K and L, i.e., it does not follow from L
and is not refuted by K. By Proposition 3, L(L) → R also does not follow from
L. In addition, since L ⊆ L(L), it is also not refuted by K.

We claim that L(L) is equal to one of the sets Pi considered during the run of
the algorithm. In fact, since the final set Pn = M is the lectically largest subset
of M and since the lectic order < is total, there is a unique smallest i such that
L(L) < Pi. First, assume that i = 0. Then L(L) < P0 = L0(∅). However, L0 ⊆ L
implies that L(L) is as also L0-closed, which contradicts the fact that L0(∅) is
the smallest L0-closed set. If i > 0, then Pi−1 < L < Pi, and we can analogously
derive a contradiction to the fact the Pi is the lectically next Li-closed set after
Pi−1.

Thus, let i be such that L(L) = Pi. Then the implication Pi → Ki(Pi) is
considered during iteration i of the algorithm. If this implication is not refuted
by K, then one can show that R ⊆ Ki(Pi), and use this fact to show that Pi → R
follows from L, which contradicts our assumption that L → R is undecided (see
[4] for details).

If Pi → Ki(Pi) is refuted by K, then Ki is extended to a partial context Ki+1
that refutes this implication. If Ki+1 also refutes Pi → R, then this implies that
K refutes L → R, which is again a contradiction (see [4] for details). Otherwise,
note that Pi+1 = Pi and Li+1 = Li, and thus in the next iteration the expert
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gets the implication Pi → Ki+1(Pi). By our assumption, Pi → R is not refuted
by Ki+1, and thus R ⊆ Ki+1(Pi). In addition, we have Ki+1(Pi) � Ki(Pi) due
to the fact that Ki+1 refutes Pi → Ki(Pi).

If Pi → Ki+1(Pi) is not refuted by K, then we can continue as in the first case
above, and derive that Pi → R follows from L. Otherwise, we can continue as in
the second case. However, because in this case the size of the right-hand side of
the implication given to the expert strictly decreases, we cannot indefinitely get
the second case. This completes our sketch of the proof of Theorem 3.

Termination and correctness of the accordingly modified Algorithm 2 is a
trivial consequence of this theorem, i.e., we can also start this algorithm with a
non-empty set of background implications L0 provided that all implications in
L0 are not refuted by I.

5 OntoComP: Ontology Completion Plugin for Protégé

Based on the usability considerations sketched in the previous sections, we have
implemented an improved version of our completion algorithm as an open-source
tool called OntoComP,3 which stands for Ontology Completion Plugin. It is
written in Java as a plugin for the Protégé 4 ontology editor [19]. It commu-
nicates with the underlying DL reasoner over the OWL API [8].

OntoComP can easily be integrated into an existing Protégé 4 installation.
After installing this plugin, it appears in the Protégé 4 window as a new tab.
For completing a knowledge base loaded into Protégé 4, one first needs to
classify it with one of the DL reasoners supported by Protégé 4 (e.g., FaCT++
[35] or Pellet [33]). Then one can go to the OntoComP tab to start completion,
and create the set M of interesting concepts by dragging and dropping the
concept names that are supposed to be in this set from the class hierarchy
displayed in the OntoComP tab. Figure 5 displays the OntoComP window
during completion of the knowledge base of Example 3.

Counterexample Generation. OntoComP has a counterexample editor for
supporting the user during counterexample generation. When the user rejects
an implication, OntoComP opens a counterexample editor in a new tab, and
displays those individuals from the ABox that can potentially be turned into a
counterexample by adding assertions for them. Alternatively, the user can intro-
duce a new individual together with assertions that make it a counterexample.
During counterexample generation, OntoComP guides the user and notifies her
once she has created a valid counterexample to the implication question.

Error Recovery. At any point during knowledge base completion, if the user
notices that he has made a mistake in one of the previous steps, he can stop the
completion and can request to see the history of all answers he has given. Onto-

ComP displays all the questions asked in previous steps, the answers that were

3 available under http://code.google.com/p/ontocomp

http://code.google.com/p/ontocomp
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Fig. 1. OntoComP window during completion

given to these questions, and the counterexamples accompanying negative an-
swers. The user can browse the answering history, correct the wrong answers he
has given in the previous steps, and can then continue completion. OntoComP

then keeps all GCIs and counterexamples that were not marked as incorrect in
the knowledge base, and moves all implications to the background knowledge.
Pinpointing reasons for consequences (such as inconsistency or unintended sub-
sumption or instance relationships) is not directly integrated into the current
version of OntoComP. However, the user could use the pinpointing facilities
provided by Protégé 4.

Deferring Questions. OntoComP allows the user to defer a question at any
point during completion. It achieves this by the approach described in Section 4,
i.e., it tries to change the order on M such that a different question is generated as
the next question. As alreadymentioned in Section 4, this need not always succeed.

6 Future Work

In addition to further improving and evaluating our completion tool Onto-

ComP, the main topic for future research in this direction will be to look at
extensions of our definition of a complete KB. As a formalization of what “all
relationships between interesting concepts” really means, we have used subsump-
tion relationships between conjunctions of elements of a finite set of interesting
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concepts M . One could also consider more complex relationships by fixing a spe-
cific DL D, and then taking, as attributes, all the D-concept descriptions that
can be built using a finite set of interesting concept and role names. This would
result in a notion of completeness where each GCIs that can be built using D
and the given finite set of concept and role names either follows from the TBox
(in case it holds in the underlying model) or is refuted by the ABox (in case it
does not hold in the underlying model).

The obvious problem caused by this extension is that, in general, the set of
attributes becomes infinite, and thus termination of the exploration process is
no longer a priori guaranteed. Different extensions of classical attribute explo-
ration (i.e., for full contexts) in this direction are described in [30,31] for the DL
FLE , and in [2,3] for the DL EL and its extension by cyclic concept definitions
with greatest fixpoint semantics, ELgfp. In both approaches, variants of classi-
cal attribute exploration are introduced that consider as attributes all concept
descriptions built using the given DL and a given finite set of concept and role
names. It is shown that the introduced exploration algorithms terminate if the
underlying model is finite. We will investigate whether these approaches can be
adapted to knowledge base completion.
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Concept Lattice Orbifolds – First Steps
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Abstract. Concept lattices with symmetries may be simplified by “fold-
ing” them along the orbits of their automorphism group. The resulting
diagram is often more intuitive than the full lattice diagram, but well
defined annotations are required to make the folded diagram as informa-
tive as the original one. The folding procedure can be extended to formal
contexts.

A typical situation where such lattice foldings are useful is when hi-
erarchies of structures are considered “up to isomorphisms”.

1 Introduction

Much effort has been made to develop techniques for handling large and complex
concept lattices. For lattices built from real-word data, methods allowing for
aspects and views of the lattice are often a good choice. In more mathematical
situations, a different strategy is promising: using symmetry. The lattice of, say,
all quasi-orders on a fixed base set, or the lattice of all subgroups of a given
group, are structures with rich automorphism groups, and it is advisable to use
these for simplification.

The basic elements of theory for such investigations do already exist. They
were invented in Monika Zickwolff’s thesis of 1991 [8], and were tailored for
applications in rule exploration, a generalisation of attribute exploration to first
order predicate logic. First algorithmic results were also obtained at that time [5].
Since then, little progress has been made, presumably because the methods tend
to be difficult.

In recent years we have often met situations in which the application of sym-
metry techniques would have been appropriate. We see a growing demand for a
solid and intuitive theory. In the present paper, we give an introduction to the
basic ideas, mainly by means of an example. Most of the results presented here
are already contained in Zickwolff’s work, but in a very condensed form. Our
aim is to make them better accessible to the FCA community.

Any lattice or ordered set with automorphisms (in fact, any relational struc-
ture) can be “folded” in such a manner that the orbits of the group become the
elements of a new structure. However, in order not to loose information, this
“orbifold” needs to be carefully annotated, so that the original structure can be
reconstructed.

Formal contexts can be folded as well, and it is possible to compute concept
lattice orbifolds from context orbifolds. Such computations require a combination
of lattice and group algorithms and are not easy to handle.

S. Ferré and S. Rudolph (Eds.): ICFCA 2009, LNAI 5548, pp. 22–37, 2009.
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The present paper concentrates on folding orders and lattices. In Section 5
we sketch a first example of a context orbifold. The details are to be treated in
a subsequent paper.

2 Group Annotated Ordered Sets

Definition 1. (Group annotated ordered set): Let P := (P,≤) be an ordered
set and let G := (G, ◦) be some group. A mapping

λ : P × P → P(G)

is called a G-annotation of P iff

1. λ(a, b) 
= ∅ if and only if a ≤ b in P ,
2. each set λ(a, a), a ∈ P , is a subgroup Ga of G, and
3. λ(a, b) ◦ λ(b, c) ⊆ λ(a, c) for all a ≤ b ≤ c in P .

(P,≤, λ) is then called a G-annotated ordered set. ♦

The following example, though small, seems complicated at first. In the sequel we
shall introduce techniques easing readability. Moreover, it will be shown where
the example comes from.

a b c

d e

f

Fig. 1. A small ordered set

Example 1. Let P := ({a, b, c, d, e, f},≤) be the six-element ordered set de-
picted in Figure 1. Let G be the alternating group on the four element set
{1, 2, 3, 4}, i.e., the group of all even permutations of these elements. Table 1
gives an annotation map.

Giving an annotation for an ordered set by means of a full table, as it was
done in Table 1, is informative but unpleasant to read. We therefore introduce
a simplified notation based on double cosets of subgroups.
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Table 1. An A4-annotation of the ordered set in Figure 1

λ(a, a)= {id, (12)(34)}
λ(b, b) = {id, (12)(34)}
λ(c, c) = {id, (234), (243)}
λ(d, d)= {id, (12)(34), (13)(24), (14)(23)}
λ(e, e) = {id}
λ(f, f)= {id, (13)(24)}
λ(a, d)= {(124), (132), (143), (234)}
λ(a, e)= {(132), (143)}
λ(a, f)= {(234), (243), (123), (132), (124), (143)}
λ(b, d) = {id, (12)(34), (13)(24), (14)(23)}
λ(b, e) = {(134), (142)}
λ(b, f)={id, (12)(34), (13)(24), (14)(23), (123), (243)}
λ(c, e) = {(12)(34), (132), (142)}
λ(c, f)= {id, (243), (234), (123), (13)(24), (143)}
λ(d, f)= {id, (12)(34), (13)(24), (14)(23)}
λ(e, f)= {(12)(34), (14)(23), (124), (132)}

It is immediate from the definition that for each pair a ≤ b in an annotated
ordered set the set λ(a, b) is a union of double cosets of the “stabiliser” subgroups
Ga := λ(a, a) and Gb := λ(b, b), i.e., that

λ(a, a) ◦ λ(a, b) ◦ λ(b, b) = λ(a, b).

Since the double cosets of any subgroup pair partition the group, it suffices to
give a system of representatives of these double cosets. Moreover, since

λ(a, c) ◦ λ(c, b)

also is a union of double cosets, we may simplify further and and define as follows:

Definition 2. Let λ be a G-annotation of an ordered set P . A simplified an-
notation λ• corresponding to λ gives for every pair a ≤ b in P a set of double
coset representatives of

λ(a, b) \
⋃

a<c<b

λ(a, c) ◦ λ(c, b).

♦

Note that λ•(a, b) may be empty. As a convention, such pairs will be omitted
in our listings of λ•. Similarly, we shall not list neighbouring pairs a ≺ b for
which λ•(a, b) consists only of the neutral element of G. Following this, Table 1
simplifies to, e.g., the data displayed in Table 2.

The ordered set in Figure 1 can be interpreted as a set of graphs on four
vertices {1, 2, 3, 4}, ordered by embeddability, see Figure 2. Each connected graph
with four vertices, with the exception of the complete graph, occurs exactly once
up to even isomorphism, which means that each such graph occurs exactly once,
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Table 2. The simplified annotation to Table 1

λ•(a, a)= {id, (12)(34)}
λ•(b, b) = {id, (12)(34)}
λ•(c, c) = {id, (234), (243)}
λ•(d, d)={id, (12)(34), (13)(24), (14)(23)}
λ•(e, e) = {id}
λ•(f, f)= {id, (13)(24)}
λ•(a, d)= {(234)}
λ•(a, e)= {(132)}
λ•(b, e) = {(134)}
λ•(c, e) = {(12)(34)}
λ•(e, f)= {(12)(34), (124)}

12

3 4

Fig. 2. The ordered set from Figure 1, labelled by graphs

except for the path, which occurs twice. The four-element path has only even
automorphisms and is for this reason listed with two copies.

The small graphs in Figure 2 are all labelled in the manner indicated for
the top element: counterclockwise, starting with the upper right vertex. The
annotation listed in Table 1 can now be read off from this diagram. Then recall
that the group under consideration is the alternating group, acting on these
vertices. The annotation is obtained as follows:

1. For each p ∈ P , the annotation λ(p, p) is simply the automorphism group of
the labelling graph, allowing only permutations from the alternating group,
i.e., only even permutations.

2. For p < q in P , the set λ(p, q) consists of all even permutations γ for which
γ−1 is an embedding from p into q. (In other words: for which p is a subset
of γq.)

Note that the second condition includes the first one if we allow p = q.
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12

3 4

(234)

(132)

(134)

(12)(34)

(124)
(12)(34),

Fig. 3. Simplified annotation of the diagram. The labels are double coset represen-
tatives. The stabiliser λ(p, p) is the automorphism group of the graph labelling p,
restricted to the alternating group A4. Non-neighbouring pairs are not drawn because
their simplified labels are empty (in this example).

In small examples the simplified annotation can be written directly to the
diagram, in particular when the stabiliser groups λ(p, p) can be read off from
the labelling. This is shown in Figure 3.

On the example of the pair c ≺ e we explain how to read the diagram in
Figure 3:

– Point c is labelled by the graph , point e by .
– The graph at c is embeddable into the graph at e, but the given diagram is

not a subdiagram. The graph at c is a subgraph of several isomorphic copies
of the graph at e.

– There are precisely three isomorphic copies (all obtained by even permu-
tations) of the graph at e that contain the diagram at point c, these are:

, , and .
– These copies are obtained from the original label by the even permutations

(12)(34), (132), and (142). These constitute the annotation λ(c, e), cf. Ta-
ble 1.

– The simplified annotation lists only (12)(34), because the other two permuta-
tions can be obtained from (12)(34) using automorphisms from the stabiliser
groups. For example

(132) = (234) ◦ (12)(34) ◦ id,

where (132) ∈ λ(c, c), (12)(34) ∈ λ•(c, e), and id ∈ λ(e, e).
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3 Folding Orders and Lattices

Figure 3 gives a clue what annotation maps are used for. The six-element ordered
set shown there represents a much larger order, having 37 elements. These are
the connected graphs on {1, 2, 3, 4} (K4 omitted). The smaller ordered set is
obtained through folding the larger one: Isomorphic graphs are identified. The
induced folding of the order relation is expressed by the annotation map. A
general formulation is provided by the next definition.

Definition 3. Let P := (P,≤P ) be an ordered set and let Γ ≤ Aut(P ) be a
subgroup of its automorphism group. A Γ -orbifold of P (also called an order
transversal) is a triple

(P \\ Γ,≤, λ),

where

– P \\ Γ := {pΓ | p ∈ P} is the set of orbits of Γ on P ,
– ≤ is the order relation defined on P \\ Γ by

pΓ ≤ qΓ : ⇐⇒ ∃γ∈Γ p ≤P γq,

– and the mapping
λ : (P \\ Γ )× (P \\ Γ ) → P(Γ )

is defined using some fixed system Y of representatives of P \\ Γ by

λ(aΓ , bΓ ) := {γ ∈ Γ | a ≤p γb},
where a, b ∈ Y .

If P is a lattice, we speak of a lattice orbifold. ♦
Some details of this definition require justification. For example, it must be
argued that ≤ is well defined and indeed an order. We include this in the proof
of the following lemma.

Lemma 1. Let P := (P,≤P ) be an ordered set and let Γ ≤ Aut(P ) be a
subgroup of its automorphism group. Then every orbifold of P is a Γ -annotated
ordered set.

Proof. We first show that ≤, defined by

pΓ ≤ qΓ : ⇐⇒ ∃γ∈Γ p ≤P γq,

is well defined, i.e., independent of the choice of the representatives p, q. For
representatives

p1 ∈ pΓ , q1 ∈ qΓ

of the same orbits we find automorphisms α, β ∈ Γ such that p1 = αp and
q1 = βq. Then

p ≤P γq ⇐⇒ αp ≤P αγq

⇐⇒ αp ≤P αγβ−1βq

⇐⇒ p1 ≤P γ1q1, where γ1 = αγβ−1.

Thus ∃γ p ≤P γq ⇐⇒ ∃γ1 p1 ≤P q1, as desired.
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The rest of the proof is straightforward: ≤ obviously is an order on P \\ Γ
and λ is an annotation map. That λ(a, b) is nonempty for a ≤ b is immediate
from the definition of ≤. Clearly

λ(a, a) = {γ | a ≤ γa} = {γ | a = γa}
is a subgroup of Γ , it is the stabiliser Γa of a in Γ . For the third condition we
obtain

λ(a, b) ◦ λ(b, c) = {α | a ≤P αb} ◦ {β | b ≤P βc}
= {α ◦ β | a ≤P αb, b ≤P βc}
⊆ {γ | a ≤P γc}
= λ(a, c).

�

Now that we are able to fold ordered sets we also would like to unfold them in a
way that reconstructs the original order. This is provided by the next definition.

Definition 4. Let (P,≤, λ) be a G-annotated ordered set, and let Gp := λ(p, p)
for all p ∈ P . The unfolding (or reconstruction) of (P,≤, λ) is defined as

rec(P,≤, λ) := (∪̇p∈P G/Gp,≤r),

with
gGp ≤r hGq : ⇐⇒ g−1h ∈ λ(p, q).

♦
Proposition 1. The unfolding rec(P,≤, λ) of a G-annotated ordered set
(P,≤, λ) is an ordered set having a group of automorphisms isomorphic to G.

Proof. Let
N :=∪̇p∈P G/Gp =∪̇ {gGp | g ∈ G}

be the set of all stabiliser cosets. Proving that ≤r is an order on N is easy:
Clearly ≤r is reflexive, since id ∈ λ(p, p). Antisymmetry follows from the fact
that for p 
= q at least one of the sets λ(p, q) must be empty, and transitivity
follows from the multiplicativity condition for annotation maps.

G operates on its power set as a permutation group Γ of left multiplications.
Let φ : G → Γ denote the canonical isomorphism. Each φ(h) ∈ Γ maps N to N
by

gGp
φ(h)�→ hgGp,

and

g1Gp ≤r g2Gq ⇐⇒ g−1
1 g2 ∈ λ(p, q)

⇐⇒ g−1
1 h−1hg2 ∈ λ(p, q)

⇐⇒ (hg1)−1hg2 ∈ λ(p, q)
⇐⇒ hg1Gp ≤r hg2Gq.

Therefore each φ(h) ∈ Γ acts as an automorphism on (N,≤r), and Γ is a
subgroup of Aut(N,≤r). �
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4 Isomorphisms of Annotated Ordered Sets

The annotation we have studied above depends on the choice of representatives
for the isomorphism classes of graphs. If we choose other representatives, we
obtain another annotation map. If we are lucky, the new annotation may be
considerably simpler. An example is shown in Figure 4.

12

3 4

(243)

id, (243)

Fig. 4. An alternative simplified annotation obtained by using isomorphic graph dia-
grams.

The two diagrams in Figures 3 and 4 represent the same situation, and should
be called isomorphic. They however differ considerably. It is not surprising that
a rather complicated notion of isomorphy is needed.

Definition 5 (Isomorphy of group-annotated ordered sets).
Let Γ1 and Γ2 be groups, and let P 1 = (P1,≤1, λ1) be a Γ1-annotated ordered
set and P 2 = (P2,≤2, λ2) a Γ2-annotated ordered set. Then P 1 and P 2 are said
to be isomorphic if the following conditions hold:

– there exists an order isomorphism α : (P1,≤1) −→ (P2,≤2) and
– there exists a group isomorphism δ : Γ1 −→ Γ2 and
– there exists a mapping φ : P1 −→ Γ2

such that
δ[λ1(a, b)] = φ(a)−1λ2(αa, αb)φ(b)

holds for all a ≤ b in P1. ♦

The two annotations in Figures 3 and 4 are indeed isomorphic according to
this definition. The two groups are identical, so that we may choose δ to be
the identity map. Two orders are canonically isomorphic and isomorphic to the
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order in Figure 1, so that we can omit α and simply use the letters from Figure 1
as element names for both. It remains to find a mapping φ : P → A4 such that

λ1(a, b) = φ(a)−1λ2(a, b)φ(b)

holds for all a ≤ b in P . For this, we may take

x a b c d e f
φ(x) (132) id id id (142) id

.

For example, according to Table 1 we have λ1(c, e) = {(12)(34), (132), (142)},
and from Figure 4 we read off that

λ2(c, e) = λ2(c, c) ◦ {id} ◦ λ2(e, e)

(recall that a missing edge label stand for {id}). We conclude that

λ2(c, e) = λ2(c, c) ◦ {id} ◦ λ2(e, e)
= {id, (234), (243)} ◦ {id}
= {id, (234), (243)}.

Therefore

φ(c)−1 ◦ λ2(c, e) ◦ φ(e) = id ◦ λ2(c, e) ◦ (142)
= {id, (234), (243)} ◦ (142)
= {(142), (12)(34), (132)},

which is indeed λ1(c, e), as can be seen from Table 1.
Our first theorem states that the two structure necessarily are isomorphic.

Theorem 1. Any two Γ -orbifolds of an ordered set P are isomorphic. More
generally, if P1 and P2 are isomorphic ordered sets, α : P1 → P2 is an isomor-
phism and Γ1 ≤ Aut(P1) and Γ2 ≤ Aut(P2) are groups of automorphisms such
that

Γ2 = α ◦ Γ1 ◦ α−1,

then each Γ1-orbifold of P1 is isomorphic to each Γ2-orbifold of P2.

Proof. We only prove the special case. A proof of the general statement can be
found in [8]. Let

(P \\ Γ,≤, λ1) and (P \\ Γ,≤, λ2)

be two Γ -orbifolds of P and let Y1 and Y2 be the two orbit transversals used
to define the annotation maps λ1 and λ2. For each y ∈ Y1 there exists an
automorphism φy ∈ Γ such that

φy(y) ∈ Y2.
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We get for a, b ∈ Y1 that

λ1(a, b) = {γ | a ≤ γb}
= {γ | φ−1

a φaa ≤ γφ−1
b φbb}

= {γ | φaa ≤ φaγφ−1
b φbb}

= {γ | φaγφ−1
b ∈ λ2(a, b)}

= φ−1
a λ2(a, b)φb.

The mapping y �→ φy therefore has the properties required by Definition 5. �

5 An Example of a Concept Lattice Orbifold

The ordered set in Figures 1–4 is part of a lattice orbifold. The lattice to be folded
is the boolean lattice of all graphs with vertex set V := {1, 2, 3, 4}. There are 64
such graphs, and 11 up to isomorphism. This lattice can naturally be written as
the concept lattice of the ×6–formal context (

(
V
2

)
,
(
V
2

)
, 
=), see Figure 5.

× × × × ×

× × × × ×

× × × × ×

× × × × ×

× × × × ×

× × × × ×

Fig. 5. The standard context for the lattice of all graphs on four points

(A, B) is a formal concept of this context iff A is (the edge set of) some graph
on V and B is (the edge set of) its complement.

When folding this lattice, we have several groups to choose between. The full
automorphism group is, of course, isomorphic to the symmetric group S6. The
S6-orbifold of this lattice is simply a chain of length four, with trivial annotation.
Two formal concepts are in the same orbit iff their extents have equal cardinality.

More interesting in the sense of graph theory is the subgroup Γ4 isomorphic
to S4, that is induced by the action of the vertex permutation on the edges. Two
concepts are in the same orbit of this group iff their extents are isomorphic as
graphs.

In Figures 1–4 the group Γ of our choice was the alternating group A4, con-
sisting of the 12 even permutations of V , in its induced action on the two-element
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(124) id, (124)

id, (243)

(234)

(243)

(12)(34)

Fig. 6. An A4– orbifold of the lattice of all graphs on four points
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(243)

(23)

(243)

Fig. 7. An S4– orbifold of the lattice of all graphs on four points
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subsets. The Γ -orbifold of the lattice of all graphs on V is shown in Figure 6.
Obviously, it is not a lattice. The orbifold diagram has a dual automorphism
because the lattice it was generated from has one.

Since Γ is a subgroup of the group S4, the Γ -orbifold in Figure 6 can itself
be folded to obtain the diagram in Figure 7.

6 Context Orbifolds and a Lattice of Lattices

The symmetry group Γ may also be used to fold the formal context. The resulting
context orbifold is

(G \\ Γ, M \\ Γ, λ),

where
λ : (G \\ Γ )× (M \\ Γ ) → P(Γ )

is the mapping defined by

λ(gΓ , mΓ ) := {γ ∈ Γ | g I γm}.

In practical computations we use the group structure for simplification. The
orbits are replaced by orbit representatives, and since the values of the λ-mapping
are unions of double cosets of the respective stabiliser groups (of g and m), they
may be given by double coset representatives. However, a context orbifold may
have many different such representations, and a theorem similar to Theorem 1
is required (and can be given) to guarantee representation invariance.

In the case of our example (in Figure 5) the context orbifold is a 1× 1–table,
since Γ is transitive both on objects and on attributes. The annotation gives the
set A4 \ {id, (12)(34)}.

As a more instructive example we give an orbifold representation of the “lat-
tice of all concept lattices” with attribute set {a, b, c}. Recall that a closure
system on a set M is a set C ⊆ P(M) of subsets of M which contains M and
is closed under arbitrary intersections. The family of concept intents of any for-
mal context is a closure system (as well as the family of concept extents). Any
closure system is the system of intents of some formal context, and this context
is determined by its intents up to clarifying, reducing and renaming objects.

The intersection of closure systems on M yields a closure system. The family
of all closure systems on M therefore is itself a closure system, on the power set
P(M) of M , and therefore forms a complete lattice. The mathematical properties
of these lattices have been studied by Caspard and Monjardet [2]. It is well known
that this is encoded by the formal context

(P(M), Imp(M), |=),

where P(M) is the set of all subsets of M , Imp(M) is the set of all implications
on M , and the relation |= is defined as

S |= A → B : ⇐⇒ A 
⊆ S or B ⊆ S.
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∅
→
a

∅
→
b

∅
→
c

a
→
b

a
→
c

b
→
a

b
→
c

c
→
a

c
→
b

a, b
→
c

a, c
→
b

b, c
→
a

∅ × × × × × × × × ×
{a} × × × × × × × ×
{b} × × × × × × × ×
{a, b} × × × × × × × ×
{c} × × × × × × × ×
{a, c} × × × × × × × ×
{b, c} × × × × × × × ×

.

Fig. 8. The reduced formal context for the lattice of closure systems on {a, b, c}. Each
permutation of {a, b, c, } induces an automorphism.

∅ → c a → c a, b → c

∅ ∅ id id

{a} id (ab), (abc) id, (abc)
{a, b} id id, (acb) (bc)

Fig. 9. An orbifold of the formal context in Figure 8. Objects and attributes are given
by coset representatives. The cells of the table contain sets of double coset representa-
tives, in analogy to Definition 2.

The extents of this formal context are precisely the closure systems on M , and the
intents are the corresponding implicational theories. The extent lattice therefore
is indeed the lattice of all closure systems on M .

The formal context given above is not reduced, and for computations it is
convenient to use the standard context

(P(M) \ {M}, Impr(M), |=),

where
Impr(M) := {A → {b} | A ⊆ M, b /∈ A}.

For M := {a, b, c} this yields the formal context in Figure 8. This formal context
has 61 concepts, corresponding to the 61 closure systems on {a, b, c}. The car-
dinalities of these lattices are known up to |M | = 6 (see Habib and Nourine[3]).
The values can be verified using the standard algorithm for generating concept
lattices. Note, however, that the numbers grow rapidly. For n = 1, . . . , 6 the
numbers of closure systems on an n-element set are 2, 7, 61, 2480, 1385552,
75973751474 [7]. Up to isomorphism, there are 1, 2, 5, 19, 184, 14664, 108295846
closure systems. Note that there is a misprint in the sixth term of Sloane’s se-
quence A108799 [7], as was noticed by Mike Behrisch [1].

The formal context in Figure 8 obviously has six automorphisms induced
by the permutations of {a, b, c}. Folding the context by the induced action Γ
of this symmetric group yield the context orbifold displayed in Figure 9. The
concept lattice of the formal context in Figure 8 has 61 elements. Its lattice
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a b c

× × ×

× ×
×

× ×

×

× ×
× ×

× ×
×

× ×
×

×
×

× ×
× ×

× ×
×

×

× ×
×

×

×
×

×

× ×
× ×

×

× ×
×

×
×

× ×
× ×

×
×

× ×
× ×

× ×

(ac)

(bc)

(bc)

Fig. 10. The lattice orbifold for the lattice of the 61 closure systems on the set {a, b, c}.
Each closure system is the system of intents of a unique row-reduced formal context
with attribute set {a, b, c}. These contexts are given up to permutations of {a, b, c}.
The context at the least element has empty object set.
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orbifold has 19 elements. It is displayed in Figure 10. Note that the diagram
in Figure 10 is very intuitive, because it represents the closure systems “up to
isomorphism”. However, the containment order “up to isomorphism” does not
give a lattice, it is actually not a mathematically precise notion right away. The
annotated diagram, together with the definitions on which the annotation is
built, make the idea of a hierarchy of structures “up to isomorphism” precise
and mathematically accessible.

7 Outlook

A detailed theoretical framework and a good algorithmic basis are needed to
make context and lattice orbifolds applicable. Algorithms must be given to com-
pute the lattice orbifold directly from the context orbifold, and, even more in-
terestingly, to compute the folded stem base. A package based on the GAP
system [4] has been implemented and is available upon request. Some of these
questions will be treated in a subsequent paper, but many are still open.

8 Conclusion

The interplay between concept lattice orbifolds and context orbifolds offers a
powerful technique for the investigation of lattices with symmetries. Although
the necessary foundations were provided by Zickwolff [8] in a very general setting,
it requires some effort to adapt them to the case of contexts and lattices. We have
shown here how this can be done and that interesting results can be obtained.
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The Advent of Formal Diagrammatic Reasoning
Systems

Frithjof Dau

SAP Research CEC Dresden

Abstract. In knowledge representation and reasoning systems,
diagrams have many practical applications and are used in numerous
settings. Indeed, it is widely accepted that diagrams are a valuable aid to
intuition and help to convey ideas and information in a clear way. On the
other side, logicians have viewed diagrams as informal tools, but which
cannot be used in the manner of formal argumentation. Instead, logicians
focused on symbolic representations of logics. Recently, this perception
was overturned in the mid 1990s, first with seminal work by Shin on an
extended version of Venn diagrams. Since then, certainly a growth in the
research field of formal reasoning with diagrams can be witnessed. This
paper discusses the evolution of formal diagrammatic logics, focusing on
those systems which are based on Euler and Venn-Peirce diagrams, and
Peirces existential graphs. Also discussed are some challenges faced in
the area, some of which are specifically related to diagrams.

1 Introduction

Formal Concept Analysis (FCA) is a mathematical theory applied successfully in
a wide range. The impact and success of FCA and the large number of applica-
tions in the real world cannot be explained solely with the mathematical results
and the mathematical power of FCA. The driving force behind FCA lies in the
understanding of mathematics as a science which encompasses the philosophical
basis and the social consequences of this discipline as well, and a main goal of
FCA from its very beginning has been the support of rational communication
and the representation and processing of knowledge. Lattice theory is reworked
in order to integrate and to rationalize origins, connections to and interpretations
in the real world. As Wille says in [78]:

The aim is to reach a structured theory which unfolds the formal
thoughts according to meaningful interpretations allowing a broad com-
munication and critical discussion of the content.

Wille, 1996

Thus the results of lattice theory had in FCA to be presented in a way which
makes them understandable, learnable, available and criticizable, particularly for
non-mathematicians. One means to achieve this goal is the diagrammatic repre-
sentations in form of their Hasse diagrams. FCA, being is a mathematical theory

S. Ferré and S. Rudolph (Eds.): ICFCA 2009, LNAI 5548, pp. 38–56, 2009.
� Springer-Verlag Berlin Heidelberg 2009
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formalizing the philosophical notion of concepts, has been later extended to con-
textual logic in order to revitalize the traditional philosophical understanding
of logic which is based the the doctrines of concepts, judgments and conclu-
sions. Again, an important aspect of contextual logic is that its core notions, i.e.
both judgments and conclusions, can be diagrammatically represented (for this
purpose, Sowa’s conceptual graphs [70] are utilized).

It is widely accepted that diagrams play an important role for representing
information in accessible and intuitive ways. In mathematics, however, there
does still exist a long-standing prejudice against non-symbolic representation,
particularly in mathematical logic. Without doubt diagrams are often used in
mathematical reasoning, but usually only as illustrations or thought aids. Dia-
grams, many mathematicians say, are not rigorous enough to be used in a proof,
or may even mislead us in a proof. Thus diagrams have been excluded from
formal proof techniques and were considered only as a heuristic aid.

Interestingly, most of the ancient systems which can be considered as prede-
cessors of formal logic are diagrammatic systems. We name Euler circles, Venn
diagrams and Venn-Peirce diagrams, Frege’s Begriffsschrift and Peirce’s existen-
tial graphs. It was not until the end of the 19th century that symbolic notations
took over in mathematical logic.

After more than a century of an absolute dominance of symbolic notations for
logic, the last two decades show an increasing interest in formal elaborations of
diagrammatic reasoning systems (DRSs), that is, formal logic systems with a pre-
cise syntax, semantics, and (diagrammatic) reasoning facilities. In this paper, we
investigate this advent of diagrammatic reasoning systems from various perspec-
tives. In order to do so and to motivate the use of DRSs, we first discuss in Sec. 2
possible applications of DRSs in software engineering and knowledge representa-
tion. An introduction into the Euler-Venn-Peirce family of diagrams as well as into
existential graphs is provided in Sec. 3. Seminal work in the field of DRSs which
present and elaborate these historical system is presented in section 4. Although
that this seminal work laid the path towards a mathematically precise develop-
ment of DRSs, it can be argued that they still do not fulfill the requirements of a
rigorous mathematical system. Sec. 5 presents methodologies for developing DRSs
in a precise manner. Contemporary systems which follow these methodologies are
then presented in Sec. 6. Finally, we conclude with a discussion of the area.

2 Examples of Application Areas

In order to motivate the development of DRSs, we present in this section two
different application areas of DRSs in the fields of software engineering and
knowledge representation in the Semantic Web.

2.1 Software Engineering

In Software Engineering, we observe an increasing demand and development of
diagrammatic languages which are used for describing, specifying and
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Fig. 1. A UML class diagram and a UML state chart

communicating a wide range of modeling aspects. In software engineering, dif-
ferent kinds of stakeholders are involved in the modeling process. Besides IT
professionals like programmers and developers, this includes people like man-
agers and customers, which often do not have a dedicated technical expertise.
As there is a need of software specifications being accessible to all stakeholders,
symbolic languages and formalizations are not suited for modeling purposes,
and various diagrammatic languages like UML (unified modeling language)1 or
BPMN (business process modeling notation)2 have been developed.

UML is in fact a whole suite of (mostly) diagrammatic notations, including
class diagrams, state charts and various others. In Fig. 1, a UML class diagram
and a UML state chart are depicted. Both of them refer to a scenario for describ-
ing a library lending system. The class diagram expresses relationship between
the classes Person, Library and Book : persons can borrow books, persons can
join libraries, and libraries have collection of books. Books can be in two dif-
ferent states, namely onShelf or onLoan, as it is expressed by the state chart.
Initially (expressed by the bold dot and arrow), books are on the shelf. If a book
is borrowed, its state changes to being on loan, and vice versa, a book on loan
becomes being on shelf if it is returned.

There does exist a part of the UML which is non-diagrammatic: This is the
Object Constraint Language (OCL) which has been developed to describe formal
constraints on software models. As a very simple example of a constraint we
might wish to enforce on a library lending system is that people can only borrow
books that are in the collections of libraries they have joined. Using the OCL,
this is achieved as follows:

Context Person inv:((self.joined.collection–>asSet)–>includesAll(self.canBorrow))

Being a symbolic notation, OCL does not follow the general diagrammatic ap-
proach of UML and is for this reason probably not as easily understandable dia-
grammatic parts of UML. Thus it is reasonable to develop a diagrammatic vari-
ant of OCL. A groundbreaking approach towards this aim has been undertaken by
Kent, who introduced in [41] the class of constraint diagrams. An example for such
a diagram is provided in Fig. 2. This diagrams expresses the same constraint as its
symbolic counterpart we have just given, but compared to the symbolic notation,
the diagram fits better in the general visual theme of OCL.
1 http://www.uml.org
2 http://www.bpmn.org

http://www.uml.org
http://www.bpmn.org
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Fig. 2. A constraint diagram

Mainly driven by the Visual Modeling Group (VMG) in Brighton, UK3, con-
straint diagrams are developed as a formal DRS, including a formal syntax,
FOL-based, semantics, and diagrammatic reasoning facilities.

2.2 Knowledge Representation and the Semantic Web

Is has long been argued that diagrams are particularly useful for knowledge
representation systems [56,28,48]. In this section, we focus on knowledge repre-
sentation within the Semantic Web, particularly on RDF(S) and OWL.

The underlying layer for knowledge representation within the Semantic Web
is the Resource Description Framework (RDF) and its extension RDF Schema
(RDFS). The essential idea of RDF is that each atomic piece of information can
be represented as a triple (subject predicate object), and an RDF Knowl-
edge Base is a set of RDF triples. There are different representations of RDF
KBs. First of all, there exists a machine processable XML serialization of RDF.
Secondly, we have the notion of an RDF KB as a set of RDF triples. Thirdly,
we can represent an RDF KB by means of an labeled graph, where a triple (s
p o) is modeled by two vertices labeled with s and o, respectively, and which
are connected by an edge labeled with o.

Tim-Berners Lee, inventor of the WWW and the driving force behind the
semantic web, recently reformulated his vision of the Semantic Web as a “Giant
Global Graph”.4 This understanding lead to a significant change in the architec-
ture of the WWW: Now the W3C considers RDF graphs as basic data structures
for representing information.5 This paradigmatic shift clearly hints to the im-
portance of graph-based logics within the Semantic Web framework.

A more sophisticated level in the W3C stack (the hierarchy of W3C description
languages) is the level of ontologies. The W3C recommendation is OWL (Web
Ontology Language), which has recently been extended to OWL 2.0. The formal
background of OWL and OWL 2.0 is the family of Description Logics (DLs, see
[1]). DLs are a common family of knowledge representation formalisms tailored to
express knowledge about concepts and concept hierarchies. They include sound
and complete decision procedures for reasoning about such knowledge.

The formal notation of DLs has the flavor of a variable-free first order logic. In
fact, DLs correspond to (decidable) fragments of first order logic, and they have

3 http://www.cmis.brighton.ac.uk/research/vmg
4 http://dig.csail.mit.edu/breadcrumbs/node/215 created 2007/11
5 http://www.w3.org/Consortium/technology, created 2008/01

http://www.cmis.brighton.ac.uk/research/vmg
http://dig.csail.mit.edu/breadcrumbs/node/215
http://www.w3.org/Consortium/technology
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a well-defined, formal syntax, a semantics in the form of Tarski-style models, and
sound and complete calculi (e.g. based on Tableaux-algorithms). It is often em-
phasized that DLs offer, in contrast to other knowledge representation languages,
sound, complete and (empirically) practically useful reasoning services.

The fact that the notation of DLs is variable-free makes them easier to com-
prehend than the common first order logic formulas which include variables.
Nonetheless, for untrained users, the symbolic notation of DLs can be hard to
learn and comprehend. A main alternative to the symbolic notation is the de-
velopment of a diagrammatic representation of DLs. In [55], the introduction to
the Description Logic Handbook, Nardi and Brachman write a “major alternative
for increasing the usability of Description Logics as a modeling language” is to
“implement interfaces where the user can specify the representation structures
through graphical operations.”

For RDF, mathematical elaborations based on graph theory have been devel-
oped. They include Tarski-style semantics as well as sound and complete calculi,
latter either based on “projections” (see [4,5]) or on diagrammatic rules (see [19]).
That is, RDF is developed as a fully-fledged diagrammatic logic. A first attempt
at a diagrammatic representation for DL is can be found in [28], where Gaines
elaborates a graph-based representation for the textual DL CLASSIC. More re-
cently, the focus has shifted from the development of proprietary diagrammatic
representations to representations within the framework of UML (Unified Model-
ing Language). In 2003, the Object Management Group requested a metamodel
for the purpose of defining ontologies. Following this proposal, [7] provides a
UML-based, diagrammatic representation for OWL DL. In these approaches,
the focus is on a graphical representation of DL, however, as often emphasized,
reasoning is seen as a distinguishing feature of DL and such reasoning is not
supported diagrammatically by that treatment. A first step towards developing
DLs as fully fledged diagrammatic logics, based on Peirce’s Existential Graphs,
has been carried out for the DL ALC (the smallest propositionally closed DL)
in [27]. Research is in progress to extend this approach to more expressive DLs.

3 Historical Systems

In this section, we shortly discuss the historical background of DRSs, namely
Euler circles (a.k.a. Euler diagrams) [24], Venn diagrams [77], Venn-Peirce dia-
grams [59] and Peirce’s existential graphs [31,33,60].

An Euler diagram is a finite collection of closed curves drawn in the plane. For
example, in Fig 3, d1 is an Euler diagram which expresses that nothing is both
a car and a van. Venn diagrams differ from Euler circles in the respect that the
curves are drawn in a way that all possible set combinations are shown in the
diagram, and shadings are used to show that certain set combinations must be
empty. So the Venn diagram d2 expresses the same information as d1. Finally, in
Venn-Peirce diagrams, o-signs are utilized to assert the emptiness of a set. More
importantly, Peirce also introduced ⊗-signs which denote elements so that –in
contrast to Euler Circles or Venn-diagrams– now the non-emptiness of sets can
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VansCars

Bikes

d1 d3d2

Cars

Bikes

Vans Cars

Bikes

Vans

Fig. 3. An Euler diagram, a Venn diagram, and a Venn-Peirce diagram

be explicitely expressed. These signs can be assembled with lines to sequences,
and the lines are read in a disjunctive manner. If we consider the diagram d3,
the outer spider asserts that the set cars ∩ V ans is non-empty (denoted by the
two ⊗-signs) or that the set Cars ∩ V ans ∩ Bikes is empty (denoted by the
o-sign). So the d3 is a diagrammatic representation of the formula

(Cars ∩ V ans 
= ∅ ∨Cars ∩ V ans ∩Bikes = ∅) ∧
(Cars ∩ V ans 
= ∅ ∨Cars ∩ V ans ∩Bikes = ∅).

which expresses that either Cars ∩ V ans = ∅ or Cars ∩ V ans 
= ∅.
Existential graphs (existential graphs) are a different diagrammatic system

with a focus on representing and reasoning with relations. The system of ex-
istential graphs is divided into three parts: Alpha, Beta and Gamma, which
presuppose and are built upon each other. Alpha corresponds to propositional
logic, Beta corresponds to first order logic, and Gamma encompasses features of
higher order logic, including modal logic, self-reference and more. In contrast to
Alpha and Beta, Gamma was never finished by Peirce, and even now, only frag-
ments of Gamma (mainly the modal logic part) are elaborated to contemporary
mathematical standards. In this paper, only Alpha and Beta are introduced.

The existential graphs of Alpha consist only of two different syntactical en-
tities: (atomic) propositions, and so-called cuts which are represented by fine-
drawn, closed, doublepoint-free curves. Essentially, writing different graphs on
the plane expresses their conjunction, and enclosing a graph by a cut denotes
its negation. Below, two examples of Alpha graphs are given. In the left graph,
the propositions ‘it rains’, ‘it is stormy’ and ‘it is cold‘ are written side by side,
thus the graph means ‘it rains and it is stormy and it is cold‘. The right graph
has the meaning ‘it is not true that it rains and it is stormy and that it is not
cold’, i.e. ‘if it rains and if its stormy, then it is cold’.

If we go from the Alpha part of existential graphs to the Beta part, predicate
names of arbitrary arity may be used, and a new sign, the line of identity, is

it rains

it is stormy

it is cold

it is cold
it is stormy

it rains

Fig. 4. Two Alpha graphs
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male
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human will dieman

cat
pet

ownedby

lonely

21

Fig. 5. Three Beta graphs

introduced. Lines of identity are used to denote both the existence of objects and
the identity between objects. They can be connected to networks. The meaning
of the Beta graphs in Fig. 5 are ‘there exists a male, human african’, ‘there exists
a man who will not die’, and ‘it is not true that there is a pet cat such that it
is not true that it is not lonely and owned by somebody’, i.e., ‘every pet cat is
owned by someone and is not lonely’.

4 Seminal Work on Historical Systems

In this section, we provide an overview on important seminal work which aims
at elaborating the historical systems of the last section.

4.1 Shin’s Extended Venn Diagrams

Certainly a landmark work on diagrammatic reasoning is Shin’s elaboration of
Venn-Peirce-diagrams in [67]. In fact, the main point of [67] is to argue that
developing a diagrammatic reasoning system which possesses the rigor of formal
mathematical logic is possible; the elaboration of Venn-Peirce-diagrams can be
seen as a proof of concept for her approach.

We shorty discuss Shin’s so called Venn-II system. Essentially, Venn-II is based
on Venn diagrams where Peirce’s⊗-sequences are added and where diagrams can
be taken in disjunction. The Venn-II diagram in Fig. 6 expresses the same as the
Venn-Peirce diagram d3 in Fig. 3; the line connecting the two boxes represents
disjunction (similar to the lines in ⊗-sequences).

The semantics are formalized in much the same way as traditional approaches.
Shin defines set assignments which are analogous to structures and then specifies
conditions under which a set assignment satisfies a diagram; see [67] for more
details. In [67], ten reasoning rules are defined for Venn-II and shown to form a
sound and complete set.

� � � �� � � �

� 	 
 � �

� � � �� � � �

� 	 
 � �

Fig. 6. A Venn-II diagram
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Shin shows that Venn-II is equivalent in expressive power to Monadic First
Order Logic (MFOL) without equality. This is a noteworthy result: Though it is
straightforward to convert Venn-II diagrams into MFOL sentences; the converse
requires some effort as there is not a natural mapping from arbitrary MFOL
sentences to Venn-II diagrams.

Shin claims that her system is formally rigorous, but a closer observation
reveals that this claim cannot be sustained. The main reason is that Shin defined
the syntax of Venn-II at the concrete (drawn) diagram level. This resulted in a
lack of mathematical preciseness in her work, leading to unclear definitions and
errors in proofs (see [23]). Of course, this lack of rigor should not detract from
the importance of Shin’s work because she laid the essential foundations for the
acceptance of diagrams as formal tools.

4.2 Seminal Work on Existential Graphs

The main treatises on existential graphs are probably the books of Zeman [80],
Roberts [65] and Shin [68]). Each of this books focuses on different aspects of
existential graphs.

Probably the most prominent book on existential graphs is D. Robert’s ‘The
Existential Graphs of Charles S. Peirce’. This book offers the most comprehensive
description of the whole system of existential graphs –Alpha, Beta and Gamma–
and its genesis. Particularly, Gamma is described to a large degree. Robert’s
treatise is definitely an outstanding work. However, from a mathematical point of
view, this book is clearly insufficient. Roberts does not provide any (technical or
mathematical) definitions for existential graphs, neither their syntax, semantic,
nor inference rules, and he relies solely on the graphical representations of graphs.

In contrast to Roberts, J. J. Zeman’s book ‘The Graphical Logic of C. S.
Peirce’ is, from a mathematical point of view, the best of the books which are
here discussed. Zeman provides a mathematical elaboration of Alpha, Beta, and
the part Gamma which extend Beta by adding the broken cut. Whereas Roberts
solely relies on the graphical representations of graphs, Zeman defines existen-
tial graphs inductively as abstract structures, i.e. in fact as sequences of signs.
Like in the other treatises, Zeman does not provide a mathematical, extensional
semantics for Peirce’s graphs. Instead of that, he defines mappings between the
systems Alpha, Beta, Gamma and appropriate systems of propositional, first
order, and modal logic. These translations from graphs to symbolic are correct,
but they are arguably very technical and clumsy. Even quite simple existential
graphs are translated to rather complex first order logic-formulas.

Sun Joo Shin’s book ‘The Iconic Logic of Peirce’s Graphs’ discusses only Al-
pha and Beta. Her interest in existential graphs is philosophically driven, and she
uses existential graphs as a case study for her goal to provide a formal approach to
diagrammatic reasoning. As the title of her book suggests, she focuses on the dia-
grammatic aspects, particularly the iconicity, of existential graphs. She compares
symbolic and diagrammatic approaches to mathematical logic and works out that
the long-standing prejudice against non-symbolic representation in logic, mathe-
matics, and computer science is due to the fact that diagrammatic systems are
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evaluated in terms of symbolic systems. Then, based on her arguments, she recon-
siders Alpha and Beta from iconic aspects and rewrites the reading algorithms,
that is, the translations from graphs to symbolic logic, and the transformation
rules in order to improve their iconicity and naturalness. mathematical precise-
ness. Similar to her approach for Venn diagrams, Shin only uses the graphical
representation of existential graphs (which is quite surprising, as Shin elaborates
carefully the semiotic aspects of existential graphs), which again results in a lack of
mathematical preciseness. Particularly, Shin’s definitions (and later on, theorems
and proofs) cannot be considered to be mathematical. This leads to a mistake in
her reading algorithm, and –even worse– some of her newly implemented trans-
formation rules are not sound [18]. Finally, Shin does not provide an extensional
semantics for Peirce’s graphs: her reading algorithms are translations to symbolic
logic, thus translations from one formal system to another.

5 Methodologies for Formalizing Diagrams

In the previous sections on seminal work on the historical systems, we already
addressed that from a mathematical point of view, the elaborations of the his-
torical systems are not sufficient due to a lack of formal preciseness. The formal
shortcomings of the seminal works are mainly due to the fact that a general
methodology for a formal elaboration of diagrammatic logics was missing. To
put it more precisely: A thorough scrutiny on how to deal with diagrams (in-
stead of symbolic notations like formulas) was not carried out.

In order to elaborate diagrammatic logics in a solid formal manner, it is cru-
cial to note that we deal with two different entities: A mathematical structure
and its diagrammatic representation. In any diagrammatic representation of a
mathematical structure, we have to disregard certain graphical properties of the
diagrams, while other properties are important. This shall be exemplified with
the following diagrams of Alpha existential graphs in Fig. 7.

The shape of the cuts (negation ovals) or the place of propositional variables
and other cuts in the area of a given cut has no significance, thus all diagrams
convey the same meaning. They can be read as ‘it is not true that A and B, but
not C hold’, i.e., ‘A and B imply C’. Peirce did not understand EGs as graphical
entities at all. For him, the three diagrams are not different graphs with the same
meaning, but different representations, i.e., diagrams, of the same graph. This
is a crucial distinction, which obviously corresponds to the distinction between
types (graphs) and tokens (graph replicas), as it is known from philosophy. The
type-token issue if far from being settled; nonetheless, this important distinc-
tion helps us to draw the following conclusion: In any elaboration of a DRS, the

CBA C B
A

C
B

A

Fig. 7. Three diagrams of one Alpha graph
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diagrams should not be defined as graphical entities. Instead, we need a defi-
nition of mathematical structures which encompass exactly the facts which are
represented in the diagrams, and the diagrams should be understood as (mere)
representations of these structures.

Two thorough discussions on the type-token-issue for DRSs can be found in
[34,17]. Both papers argue that it is essential to provide mathematical defini-
tions for the type-level (called abstract syntax in [34]). For the token-level (called
concrete syntax in [34]), the papers come to different conclusions: Whereas [34]
argues that the token-level as well as the relationship between these two levels
has to be formally captured as well, [17] argues that this is in fact not needed.
For the purpose of this paper, this difference has no significance. The crucial
point here is the following: In symbolic approaches to formal logic, once we have
chosen a formula –i.e. a sequence of signs– is chosen, the representation of the
formula is uniquely given. So in symbolic logic, we have only one level of repre-
sentation to deal with. In graph-based DRSs on the other hand, a given graph
can have very different diagrammatic representations. For example, in Fig. 7 we
have different representations of the same Alpha graph. So, for representing in-
formation, symbolic and linear notions of logic have a one layer architecture,
and diagrammatic logic systems have a two layer architecture.

The general advantages of this two layer structure for the pragmatics of dia-
grams is already discussed to a large extent [49,66,6,68,57]. It is usually argued
that the additional diagrammatic layer, often referred to as ‘secondary notation’,
provides the essential means to improve the pragmatics of a representation sys-
tem. As Oberlander writes in [57]: “secondary notation is the very stuff of graph-
ical pragmatics–meaningful structures which go beyond the plain semantics of
the system.”

6 Contemporary Systems

The last two decades witness the rise of formal diagrammatic reasoning systems
in two respects: First, more expressive diagrammatic reasoning systems have
emerged and, more importantly, are formalized in a mathematical precise man-
ner. Second, for some of these logics, computer programs have been developed
and applied to various settings. This section summarizes some recent advances
in the field.

6.1 Spider and Constraint Diagrams

Spider diagrams (SDs) and constraint diagrams (CDs) are a DRS based on Euler
circles and Venn-Peirce diagrams. They are elaborated as abstract mathematical
structures, including extensional semantics and inference rules. Their develop-
ment is mainly driven by the Visual Modeling Group in Brighton.

Spider Diagrams. Spider diagrams combine features of Venn diagrams and the
more user friendly Euler diagrams. They can be thought of as extending Venn-II
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BA BA C

Fig. 8. Two spider diagrams

BA BA C
BA

D

Fig. 9. A compound spider diagram

diagrams. Various different systems exist today, for example [35,36,38,40,74]. In
Fig.8, two examples of so-called unary SDs are depicted.

The left diagram contains two existential spiders. Each spider denotes a
uniquely given object (i.e., different spiders necessarily denote different objects).
In contrast to Venn-Peirce diagrams, shading a region does not necessarily mean
the corresponding set is empty. Instead, a region does not contain more elements
than the elements represented by some spiders. So the SDs reads as follows: there
are two sets A and B, the set A − B contains exactly one element, and the set
B contains at least one element. In the right diagram, a third contour represent-
ing a set C is involved. This diagram uses the notions of Euler circles: as the
contour labeled C does not overlap with the A and B-contours, C and A ∪ B
are disjoint6. Moreover, there are three elements u, v and w (represented by the
three spiders) such that u, v ∈ A and w /∈ A − B. Further, due to its shading,
the set A−B must not contain any other elements than u and v, i.e. it contains
exactly two elements, and A ∩ B must not contain any other elements than w,
i.e., it contains no element or at most one element.

Unary SDs can be propositionally combined with the logical operators �
(‘and’) and � (‘or’). In Fig. 9 an SD which uses these conjunctors is shown.
It has been shown that SDs are equivalent in expressive power to MFOL with
equality [72]; thus they have a higher expressiveness than Venn-II.

Constraint Diagrams. SDs only allow reasoning about sets, namely unary
predicates, and provide no possibility to represent or reason about any sort of
relations. Moreover, as already mentioned, the spiders in SDs are ‘existential

6 The usage of disjoint features in Euler circles has a drawback: not all abstract SDs
are drawable (see [75]).
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Fig. 10. A constraint diagram with a reading tree

spiders’ as they can be read as existentially quantified objects. Constraint

diagrams are essentially an extension of SDs with universal spiders (quan-
tifiers) and arrows which represent binary relations. A full constraint notation
was introduced by Kent [42] in an informal manner. Since then, several papers
attempt to elaborate a full mathematical treatment of Kent’s vision, including
syntax, semantics, and a sound and complete calculus for constraint diagrams.
For example, in [26], the syntax and semantics of full constraint diagrams is
developed but a sound and complete calculus is elusive. The first ever constraint
reasoning system (i.e., including a sound and complete calculus) was developed
by Stapleton [73] but compared to Kent’s approach it has several limitations.

An example for a constraint diagram was already given in Fig. 2. In the formal
approach to constraint diagrams, we have both existential and universal spiders,
which renders the formalization of the diagrams difficult, as there is no natural
order placed on the quantifiers. This difficulty is overcome by augmenting each
diagram with a reading tree; the formalization of constraint diagrams can be
found in [25]. An example can be seen in Fig. 10. This diagram expresses that
Book, T itle and Author are pairwise disjoint, Fiction and NonFiction form a
partition of Book, and finally every book x has a unique name which is its title
and x has at least one main author.

Applications. For Euler diagrams, the Visual Modelling Group has developed
a diagrammatic theorem prover called Edith.7 Edith automates the search for
Euler diagram proofs using a variety of reasoning rule sets and heuristics [71]. For
a given rule set, Edith finds a shortest proof. In Edith, users can create diagrams,
apply rules to write a proof and ask Edith to seek a proof from one diagram to
another. With regard to applications, SDs have been used to detect component
failures in safety critical hardware [12] and (slight variations of them) to represent
non-hierarchical file systems [21] and for viewing clusters which contain concepts
from multiple ontologies [32].

As mentioned in section 2, one area that could benefit from the develop-
ment of diagrammatic logics is software engineering. Constraint diagrams were
designed with this application area in mind and extend the spider diagram lan-
guage. Constraint diagrams have been used in a variety of areas including formal

7 http://www.cmis.brighton.ac.uk/research/vmg/autoreas.htm

http://www.cmis.brighton.ac.uk/research/vmg/autoreas.htm
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object oriented specification [37,44] and a visual semantic web editing environ-
ment [51,81]. Prototype tools to support their use are available from [64].

6.2 Conceptual Graphs

John Sowa’s conceptual graphs (CGs) are based on Peirce’s existential graphs.
Sowa writes that they are an extension of existential graphs with features adopted
from linguistics and AI. The purpose of the system is to express meaning in a
form that is logically precise, humanly readable, and computationally tractable.
CGs are designed to be used in fields like software specification and modeling,
knowledge representation, natural language generation and information extrac-
tion, and these fields have to cope with problems of implementational, mathemat-
ical, linguistic and even philosophical nature. In CGs, we can diagrammatically
represent various entities and logical constructors, like concepts and relations,
individuals, quantifiers, conjunction, different levels of negations, contexts, etc.

In Fig. 11, three well-known examples of CGs are provided. The graph d1 has
the meaning that Yoyo is a cat and Yoyo is on some (unnamed) mat. In d2,
so-called contexts are used. The meaning of this graph it that the person Tom
believes the proposition that the person Mary wants the situation that Mary
marries a sailor. In short: The person Tom believes that the person Mary wants
to marry a sailor. Finally, in d3, special contexts denoting negation are used. The
device of two nested negation contexts can be understood as an implication. So
the meaning of the graph is ‘if a farmer owns a donkey, then he beats it’.

Due to the complexity of the system of CGs, it is nearly impossible and
perhaps not even desirable to consider the overall system as an approach to
formal logic. In fact, the whole system of CGs, as described by Sowa, goes beyond
FOL. It can be argued that Sowa’s original system does not fully meet the
requirements of a formal logic system [20], but several fragments of CGs have
been elaborated in a mathematically rigorous manner.

The most prominent fragment are simple CGs, where no sort of context or
negation is used. For this fragment, there does exist a variety of different for-
malizations with different notations which only differ in details. A comprehen-
sive comparison of the different approaches can be found in [39]. For all these

*on MAT:
1

CAT: Yoyo
2

d1

* *FARMER: own DONKEY:

: * beat : *

d3

: *

SITUATION:

marry SAILOR: *

PERSON: Tom believe

PROPOSITION:

PERSON: Mary want

d2

Fig. 11. Three conceptual graphs
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approaches, a formal syntax, semantics (either via a translation of CGs to FOL
or via direct model-theoretic approach) and reasoning facilities are provided. Ex-
amples are the works of Prediger and Dau, where the reasoning facilities come in
form of graph transformation rules [9,15,52,61,62], works of Chein/Mugnier et al,
where the entailment between CGs are described by meaning-preserving graph
homomorphisms called projections [8,11,52], or works where so-called standard-
models are considered [15,61,62]. One can even express “if-then”-statements with
simple CGs, at is has been discussed in [2,3,52].

Simple CGs with contexts go beyond FOL. For these graphs, there exist dif-
ferent formalizations as well. We want to mention the work of Prediger [61,63],
where the semantics for the graphs is based on triadic Formal Concept Analysis.
Prediger provides a sound and complete set of rules for these graphs. A differ-
ent approach has been taken by Simonet in [69,10] by translating the graphs to
FOL-formulas, where the contexts are modeled by assigning to each concept box
an additional argument which models the nesting of the box. In this approach,
the notion of projections is accordingly extended.

For CG without contexts, different kinds of negation have been added. First we
have to mention approaches where only relations, but not whole subgraphs, can
be negated. A first step has been taken bay Kerdiles in [43]. Kerdiles extends the
projections of simple CGs to simple CGs with atomic negation. This approach has
been extended in [54,50], where for this framework, different logical approaches –
classical logic, intuitionistic logic, logic with a closed-world semantics– are elabo-
rated and compared. Finally, Klinger provides in [45,46,47] a different FCA-based
approach which extends Predigers work to atomic negation.

Finally, we can consider CGs with full negation, where whole subgraphs can
be negated. Kerdiles considers in [43] full negation as well. A comprehensive ap-
proach to add full negation to CGs is provided by Dau in [13,14,16]. In [13], Dau
argues that to express full negation to CGs, a new syntactical entity to express
negation has to be added, and he suggests to use the negation ovals of Peirce’s
existential graphs. These CGs with cuts are equivalent to full FOL with equality
and it is equipped with a sound and complete set of graph transformation rules.

CGs have been implemented in a variety of computer programs. Two com-
prehensive frameworks are provided by Amine8 and Cogitant9. Amine is a java
open source platform for the development of intelligent systems and multi-agent
systems covering several topics of the theory of CGs and AI. Cogitant is a set
of C++-classes enabling to easily handle CGs as well as other objects of the
CG-framework like the taxonomies of concepts and relations as well as rules.

7 Discussion

Steps like realizing the importance of the distinction between abstract and con-
crete syntax, the development of sound and complete diagrammatic reasoning

8 http://amine-platform.sourceforge.net
9 http://cogitant.sourceforge.net

http://amine-platform.sourceforge.net
http://cogitant.sourceforge.net


52 F. Dau

systems or the development of DRS applications show that the research field of
DRSs has made significant progress in the last decade, but there is still much
more to be done.

Diagrammatic representations of information is investigated from various per-
spectives to a large extent, and their usability is sustained both by empirical and
theoretical research. Anyhow, for the particular field of DRSs, this research has
to be conducted to investigate the claim that the diagrams of DRSs are from a
usability point of view superior to symbolic notations. This research must not
be restricted to the diagrams: A distinguishing feature of DRSs is the provi-
sion of diagrammatic reasoning facilities, which thus have to be investigated as
well.

It might be doubted that diagrams are generally easier to understand than
symbolic notations. Instead, though diagrams certainly provide very effective
means of displaying some information (like subset relationships), for other kinds
of statements symbolic notations might turn out to be better suited. For this
reason, developing heterogeneous or hybrid notations that incorporate both sym-
bolic and diagrammatic parts is a promising approach. There has already some
research been conducted in this direction, e.g. [30,76]. In fact, when a formal lan-
guage is developed with the goal of a high usability, the design of the language
depends on the requirements of intended application areas. This might render
finding the right language difficult.

The syntax, semantics and reasoning facilities for DRSs take place on the ab-
stract level. In symbolic notations, there does not exist a distinction between the
abstract and concrete level, which leads to straightforward ways of representing
statements in these notations. For DRSs, the situation is different. For a given
statement on the abstract level, we have to find a convenient concrete represen-
tation. In other words: The automatic drawing of diagrams is a core research
challenge for developing DRSs applications.

Finally, research on theorem provers for DRSs is in its infancy. There is cer-
tainly a need for sophisticated theorem provers which both work in an efficient
way (though it is not a goal to outperform existing theorem provers for symbolic
notations) and which produce proofs where the steps of the proofs are easily
understood by users. Again, such theorem provers are needed to support the
usability claim of diagrams.

The research questions can only be addressed by a joint effort of researchers
from different fields like mathematicians, computer scientists, (cognitive) psy-
chologists, or even designers. Thus it will be challenging to find appropriate an-
swers. Anyhow, as the rise of diagrammatic representations in several computer
science areas like software engineering, knowledge representation or semantic
web shows, solving these questions is of highly practical interest.

Acknowledgment. The author wants to thank Gem Stapleton from the Visual
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Abstract. I use the term logical and relational learning (LRL) to re-
fer to the subfield of machine learning and data mining that is con-
cerned with learning in expressive logical or relational representations.
It is the union of inductive logic programming, (statistical) relational
learning and multi-relational data mining and constitutes a general class
of techniques and methodology for learning from structured data (such
as graphs, networks, relational databases) and background knowledge.
During the course of its existence, logical and relational learning has
changed dramatically. Whereas early work was mainly concerned with
logical issues (and even program synthesis from examples), in the 90s
its focus was on the discovery of new and interpretable knowledge from
structured data, often in the form of rules or patterns. Since then the
range of tasks to which logical and relational learning has been applied
has significantly broadened and now covers almost all machine learning
problems and settings. Today, there exist logical and relational learn-
ing methods for reinforcement learning, statistical learning, distance-
and kernel-based learning in addition to traditional symbolic machine
learning approaches. At the same time, logical and relational learning
problems are appearing everywhere. Advances in intelligent systems are
enabling the generation of high-level symbolic and structured data in a
wide variety of domains, including the semantic web, robotics, vision,
social networks, and the life sciences, which in turn raises new challenges
and opportunities for logical and relational learning.

In this talk, I will start by providing a gentle introduction to the field
of logical and relational learning and then continue with an overview of
the logical foundations for learning, which are concerned with various
settings for learning (such as learning from entailment, from interpreta-
tions and from proofs), with the logical inference rules and generality
relationships used, and the effects they have on the properties of the
search-space. More details can be found in
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Abstract. Formal concept analysis (FCA) has been successfully used
in several Computer Science fields such as databases, software engineer-
ing, and information retrieval, and in many domains like medicine, psy-
chology, linguistics and ecology. In data warehouses, users exploit data
hypercubes (i.e., multi-way tables) mainly through online analytical pro-
cessing (OLAP) techniques to extract useful information from data for
decision support purposes.

Many topics have attracted researchers in the area of data warehous-
ing: data warehouse design and multidimensional modeling, efficient cube
materialization (pre-computation), physical data organization, query op-
timization and approximation, discovery-driven data exploration as well
as cube compression and mining. Recently, there has been an increasing
interest to apply or adapt data mining approaches and advanced sta-
tistical analysis techniques for extracting knowledge (e.g., outliers, clus-
ters, rules, closed n-sets) from multidimensional data. Such approaches
or techniques cover (but are not limited to) FCA, cluster analysis, prin-
cipal component analysis, log-linear modeling, and non-negative multi-
way array factorization. Since data cubes are generally large and highly
dimensional, and since cells contain consolidated (e.g., mean value), mul-
tidimensional and temporal data, such facts lead to challenging research
issues in mining data cubes. In this presentation, we will give an overview
of related work and show how FCA theory (with possible extensions) can
be used to extract valuable and actionable knowledge from data ware-
houses.

1 Introduction

A data warehouse (DW) is an integration of consolidated and non volatile data
from multiple and possibly heterogeneous data sources for the purpose of decision
support making. It contains a collection of data cubes which can be exploited
via online analytical processing (OLAP) operations such as roll-up (increase in
the aggregation level) and drill-down (decrease in the aggregation level) accord-
ing to one or more dimension hierarchies, slice (selection), dice (projection), and
� Partially supported by the Natural Sciences and Engineering Research Council of
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Table 1. A data cube

Product
City=Montreal City=Ottawa

Year 2005 2006 2007 2005 2006 2007
P1 10 30 25 10 35 40
P2 15 16 15.5 40 20 35
P3 99 44 66 60 77 44

pivot (rotation) [12]. In a multidimensional context with a set of dimensions, a
dimension (e.g., product, location, time) is a descriptive axis for data presen-
tation under several perspectives. A dimension hierarchy contains levels, which
organize data into a logical structure (e.g., country, state and city for the loca-
tion dimension). A member (modality) of a dimension is one of the data values
for a given hierarchy level of that dimension. A fact table contains numerical
measures and keys relating facts to dimension tables. A cube X = 〈D, M〉 is a
visual representation of a fact table, where D is a set of n dimensions of the cube
(with associated hierarchies) and M its corresponding measures. The following
table gives the total sales according to product, location and time.

The presentation will be organized as follows. First, we give an overview of
the main issues in data warehousing applications and related advancements. We
then see how some of these issues have been tackled using FCA. Finally, we
discuss the coupling of FCA with Statistics so that some highlighted issues in
data warehousing technology could benefit from suggested couplings.

2 Main Issues in DW

Many topics have attracted researchers in the area of data warehousing: data
warehouse design and multidimensional modeling [1], data integration and clean-
ing, cube decomposition and summarization, materialized view selection, efficient
OLAP query optimization, discovery-driven exploration of cubes, cube reorgani-
zation, data mining in cubes, and so on. In order to avoid computing a whole data
cube, many studies have focused on iceberg cube calculation [37], partial mate-
rialization of data cubes [16], semantic summarization of cubes (e.g., quotient
cubes [22] and closed cubes [7]), and approximation of cube computation [30].
Recently, there has been an increasing interest for applying/adapting data min-
ing techniques and advanced statistical analysis (e.g., cluster analysis, principal
component analysis, log-linear modeling) for knowledge discovery [25,26,29] and
data compression purposes in data cubes [2,3,4,27].

In this presentation, we will focus on physical data organization as well as
materialization, approximation/compression, summarization and mining of data
cubes.

2.1 Optimal Physical Data Organization

Given a query workload on a database or data warehouse and a use-defined
storage constraint, the objective of “optimal” physical data organization is to
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identify the “best” physical data organization (e.g., data indexing and cluster-
ing), i.e. the one that ensures a global optimization of the workload [11]. When
the physical organization relies mainly on indexing techniques, the optimization
problem consists to identify the optimal set of indices (on table attributes) that
need to be implemented to speed up query execution. Indices reduce significantly
the cost of processing complex queries, but induce an overhead in terms of index
storage and maintenance. To optimize star join queries (i.e., joins between a fact
table and multiple dimension tables), bitmap and join indices (or a combination
of the two types) are commonly used. However, selecting these indices is a diffi-
cult task due to the exponential number of candidate attributes to be indexed.
Most of approaches for index selection follow two main steps: (i) pruning the
search space (i.e., reducing the number of candidate attributes) and (ii) select-
ing indices from the pruned search space using a cost model and statistics about
data. In [5], the first step of index selection exploits alternatively two existing
algorithms for closed itemset generation to identify candidate attributes to be
indexed while the second step relies on a greedy algorithm to select bitmap join
indices that minimize processing and storage costs. A related topic is the (hori-
zontal and vertical) fragmentation of data across a network in distributed data
warehouses.

2.2 Cube Materialization

From a data cube of n dimensions one can generate a lattice of 2n cuboids where
the 0-D cuboid (or apex cuboid) represents the highest summarization while the
p −D cuboids represent the possible combinations of p out of n dimensions. If
each dimension Di has a corresponding hierarchy with Li levels, then the num-
ber of possible cuboids of a data cube of n dimensions is Πi=1,n(Li + 1). Since
the number of cuboids exponentially grows according to the number of dimen-
sions and the size of dimension hierarchies, partial materialization of cuboids is
requested rather than a full one. However, the identification of the “optimal” set
of cuboids to materialize is an NP-hard problem similar to the problem of index
selection and hence most of the proposed techniques rely in part on heuristics
and pruning techniques. The question is the following: can FCA be exploited to
select the cuboids to be materialized by considering concept intents (itemsets) as
combinations of dimensions with some specific features (e.g., frequency, cost)?

Besides cube materialization, one is faced with the following related issues: (i)
how the materialized cuboids can be exploited for efficiently process queries? (ii)
how and when the set of materialized cuboids should be revised when the initial
query workload changes over time? and (iii) how to propagate data changes to
materialized cuboids?

2.3 Cube Approximation and Compression

Approximate query answering in data warehouses has been used in order to
accelerate aggregate computation and query execution at the expense of some
information loss. Existing work has been conducted based mainly on sampling
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[2], clustering [38], wavelets [10] or maximum entropy principle [28]. Palpanas et
al. [28] propose an approach based on information entropy to (i) detect devia-
tions, and (ii) estimate the original multidimensional data from aggregates for
approximate query answering purposes. A wavelet-based approach is used in [10]
to approximate query answering, and proves to be more effective than sampling
techniques. In a similar spirit, [30] uses the probability density distribution of
data in order to propose a compressed representation of data cubes which reduces
data storage and leads to approximate answers to aggregate queries. In [29], an
approach based on log-linear modeling is used to identify exceptions in data
cubes by comparing anticipated cell values against actual values. In [3,4], log-
linear modeling is used for data compression. In [27], two kinds of probabilistic
models, namely log-linear models and non negative multi-way array factoriza-
tion are used for data approximation through parsimonious model selection,
data mining through component (cluster), outlier and association extraction,
and approximate query answering.

2.4 Cube Mining

Substantial work has been conducted for data mining in data warehouses [15].
This includes (but is not limited to) outlier detection in multidimensional data
[21], cubegrade generation [17], constrained gradient analysis [13], association
rule mining, and discovery-driven examination of cubes [29]. To the best of our
knowledge, Kamber et al. [20] were the first who addressed the issue of mining
association rules from multidimensional data. They introduced the concept of
metarule-guided mining which consists in using rule templates defined by users
in order to guide the mining process. Cubegrades are a generalization of asso-
ciation rules and express the significant changes that affect measures when a
cube is modified through specialization (drill-down), generalization (roll-up) or
mutation (switch). Tjioe and Taniar [32] propose a method for extracting asso-
ciations from multiple dimensions at multiple levels of abstraction by focusing
on summarized data according to the COUNT measure. In order to do so, they
prepare multidimensional data for the mining process according to a set of al-
gorithms which prune all rows in the fact table which have an aggregate value
less than a predefined one.

3 FCA and Data Warehousing Technology

To date, FCA has been used to mainly handle the following topics of the data
warehousing technology:

– Cube visualization using nested line diagrams [31]
– Cube summarization [8,24]
– computation of closed patterns in 3-D [18,19] and n−ary relations [9]

In [31], the design of conceptual information systems is described and the
utilization of visualization techniques for their exploration is discussed with an
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application to OLAP-based systems. In order to handle the problem of data cube
computation and manage data storage and query processing in an efficient way,
Lakshmanan et al. [22] have introduced the notion of quotient cube as a succinct
summary of a data cube that saves the roll-up/drill-down semantics. Such a cube
is produced through a partitioning method (not related to FCA) that groups
cube cells into equivalent classes. To propagate data changes to a pre-computed
quotient cube, incremental algorithms based on concept lattice construction are
proposed in [24]. Recently, Casali et al. [8] have proposed a lattice-based ap-
proach which computes the cube closure over a multidimensional search space
(a cube lattice), and define the notion of closed cube lattice which is isomorphic to
both the concept lattice and the quotient cube. The latter can be derived from
the closed cube given a closure-based characterization. In [18,19], approaches
towards generating closed sets from 3-D relations are proposed. Based on the
theory of trilattices [23] as concept lattices constructed from triadic contexts,
the work in [18] proposes an algorithm called Trias which extracts tri-concepts
from ternary relations. With the same objective in mind, Ji et al. [19] propose
CubeMiner as an algorithm for generating closed ternary patterns from ternary
tables by splitting the data collection into smaller groups and frequently check-
ing the unicity of generated closed patterns. In [9], a constrained-based mining
procedure named Data-Peeler extracts from n−ary (multidimensional) tables
all closed n−sets that satisfy piece-wise (anti)-monotonic constraints.

4 What Can Statistics Do for Data Warehouses and
Formal Concept Analysis

In large data collections in general and in data warehouses in particular, one
complex task is to reduce the dimensionality of data before conducting any
data analysis and mining task. This is necessary to help the user get a human
readable knowledge from the data. For this purpose, statistical and machine
learning methods have been proposed based either on feature selection (e.g.,
fractals) or data extraction (e.g., principal component analysis). The challenge
is to reduce the dimensionality without significant loss in data. The questions
to be raised are as follows: what can these methods bring to FCA? Can they be
combined with the FCA methods? The approach from the FCA side for multi-
dimensional data analysis consists to use trilattices [23] or in general polyadic
FCA [34].

In [36], Wolff compares some methods of graphical data analysis. These are
factor analysis, principal component analysis, correspondence analysis, cluster
analysis, multidimensional scaling, partial order scalogram analysis and FCA
(line diagrams). All these methods, except FCA, use a projection in the plane
that leads to some loss of information. In [14], the authors focus on a comparison
between correspondence analysis and FCA and notice that the exact representa-
tion of data obviously has the drawback that even small many-valued contexts
may have large concept lattices. However, nested line diagrams and atlas decom-
positions are useful to display concept lattices of a reasonable size. For large size



What Can Formal Concept Analysis Do for Data Warehouses? 63

collections, a preprocessing step is needed to prune or combine some attributes
or objects to get “generalized” ones even before dimension reduction.

The combinatorial explosion of the size of concept and implication (or asso-
ciation rule) sets is not the only limitation of FCA. Another weak point from
exact representation is its vulnerability to even small changes on the data. To-
wards settling this problem, there are many attempts: association rules have
been introduced, based on some statistical measures, as an alternative to exact
rules (implications); Iceberg concepts or frequent closed itemsets are proposed to
prune the concept set; Alpha Galois concepts [33] and fault-tolerant patterns [6]
are proposed as replacement for concepts.

From these observations, we expect that combining FCA and statistics might
be a good compromise and will be useful to data warehousing technology as
well as FCA. In [35] the author shows how Formal Concept Analysis and Statis-
tics can benefit from each other strengths. Now, how can we combine FCA and
Statistics? One approach could be to analyze statistical methods and develop
their FCA counterparts, or to develop conceptual foundations of Statistics. This
includes the study of how data analysis techniques such as biplot, principal
component and correspondence analysis can be coupled with FCA techniques to
produce concept lattices of factors where a factor is a combination of attributes.
Concerning conceptual foundations of Statistics, the efforts will be put on inves-
tigating how the carrier set in measure theory (σ-algebras) can be replaced by
complete lattices (carrier set of concepts). This should be intimately related to
valuations on lattices.
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3. Barbará, D., Wu, X.: Using loglinear models to compress datacubes. In: Lu, H.,
Zhou, A. (eds.) WAIM 2000. LNCS, vol. 1846, pp. 311–323. Springer, Heidelberg
(2000)

4. Barbara, D., Wu, X.: Loglinear-based quasi cubes. J. Intell. Inf. Syst. 16(3), 255–
276 (2001)

5. Bellatreche, L., Missaoui, R., Necir, H., Drias, H.: A data mining approach for
selecting bitmap join indices. Journal of Computing Science and Engineering 1(2),
177–194 (2007)

6. Besson, J., Robardet, C., Boulicaut, J.-F.: Mining a new fault-tolerant pattern type
as an alternative to formal concept discovery. In: Schärfe, H., Hitzler, P., Øhrstrøm,
P. (eds.) ICCS 2006. LNCS, vol. 4068, pp. 144–157. Springer, Heidelberg (2006)

7. Casali, A., Nedjar, S., Cicchetti, R., Lakhal, L.: Convex cube: Towards a unified
structure for multidimensional databases. In: Wagner, R., Revell, N., Pernul, G.
(eds.) DEXA 2007. LNCS, vol. 4653, pp. 572–581. Springer, Heidelberg (2007)



64 R. Missaoui and L. Kwuida

8. Casali, A., Nedjar, S., Cicchetti, R., Lakhal, L.: Closed Cube Lattices. In: New
Trends in Data Warehousing and Data Analysis. Annals of Information Systems,
vol. 3, pp. 1–20. Springer, Heidelberg (2009)

9. Cerf, L., Besson, J., Robardet, C., Boulicaut, J.-F.: Data peeler: Constraint-based
closed pattern mining in n-ary relations. In: SDM, pp. 37–48. SIAM, Philadelphia
(2008)

10. Chakrabarti, K., Garofalakis, M.N., Rastogi, R., Shim, K.: Approximate query
processing using wavelets. VLDB J. 10(2-3), 199–223 (2001)

11. Chaudhuri, S., Datar, M., Narasayya, V.: Index selection for databases: A hardness
study and a principled heuristic solution. IEEE Transactions on Knowledge and
Data Engineering 16(11), 1313–1323 (2004)

12. Chaudhuri, S., Dayal, U.: An overview of data warehousing and olap technology.
SIGMOD Rec. 26(1), 65–74 (1997)

13. Dong, G., Han, J., Lam, J.M.W., Pei, J., Wang, K.: Mining multi-dimensional
constrained gradients in data cubes. In: VLDB 2001: Proceedings of the 27th In-
ternational Conference on Very Large Data Bases, pp. 321–330. Morgan Kaufmann
Publishers Inc., San Francisco (2001)

14. Gabler, S., Wolff, K.E.: Comparison of visualizations in formal concept analysis
and correspondence analysis. In: Greenacre, M., Blasius, J. (eds.) Visualization of
Categorical Data, pp. 85–97. Academic Press, San Diego (1998)

15. Han, J., Kamber, M.: Data mining: concepts and techniques. Morgan Kaufmann
Publishers Inc., San Francisco (2000)

16. Harinarayan, V., Rajaraman, A., Ullman, J.D.: Implementing data cubes efficiently.
In: SIGMOD 1996: Proceedings of the 1996 ACM SIGMOD international confer-
ence on Management of data, pp. 205–216. ACM Press, New York (1996)

17. Imielinski, T., Khachiyan, L., Abdulghani, A.: Cubegrades: Generalizing associa-
tion rules. Data Min. Knowl. Discov. 6(3), 219–257 (2002)

18. Jaeschke, R., Hotho, A., Schmitz, C., Ganter, B., Stumme, G.: Trias - an algorithm
for mining iceberg tri-lattices. In: Proceedings of the 6th IEEE International Con-
ference on Data Mining (ICDM 2006), Hong Kong, December 2006, pp. 907–911.
IEEE Computer Society Press, Los Alamitos (2006)

19. Ji, L., Tan, K.-L., Tung, A.K.H.: Mining frequent closed cubes in 3d datasets. In:
VLDB 2006: Proceedings of the 32nd international conference on Very large data
bases, pp. 811–822. VLDB Endowment (2006)

20. Kamber, M., Han, J., Chiang, J.: Metarule-Guided Mining of Multi-Dimensional
Association Rules Using Data Cubes. In: Proceedings of the 3rd International Con-
ference on Knowledge Discovery and Data Mining (KDD 1997), Newport Beach,
CA, USA, August 1997, pp. 207–210. The AAAI Press, Menlo Park (1997)

21. Knorr, E.M., Ng, R.T., Tucakov, V.: Distance-based outliers: algorithms and ap-
plications. The VLDB Journal 8(3-4), 237–253 (2000)

22. Lakshmanan, L.V.S., Pei, J., Zhao, Y.: Quotient cube: How to summarize the
semantics of a data cube. In: Proceedings of the 28th International Conference on
Very Large Databases, VLDB, pp. 778–789 (2002)

23. Lehmann, F., Wille, R.: A triadic approach to formal concept analysis. In: Ellis, G.,
Rich, W., Levinson, R., Sowa, J.F. (eds.) ICCS 1995. LNCS, vol. 954, pp. 32–43.
Springer, Heidelberg (1995)

24. Li, C.-P., Tung, K.-H., Wang, S.: Incremental maintenance of quotient cube based
on galois lattice. J. Comput. Sci. Technol. 19(3), 302–308 (2004)

25. Lu, H., Feng, L., Han, J.: Beyond intratransaction association analysis: mining
multidimensional intertransaction association rules. ACM Trans. Inf. Syst. 18(4),
423–454 (2000)



What Can Formal Concept Analysis Do for Data Warehouses? 65

26. Messaoud, R.B., Boussaid, O., Rabaséda, S.: A new olap aggregation based on
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Abstract. This paper deals with A.N. Prior’s analysis of the concepts of  
dynamic and static time, i.e., McTaggart’s so-called A- and B-concepts. The re-
lations and mutual dependencies between these temporal concepts are investi-
gated, and Prior’s response to McTaggart’s views is discussed. Furthermore, 
Prior’s notion of branching time is analysed. It is argued that Prior can be criti-
cized for identifying ‘plain future’ with ‘necessary future’. Finally, Prior’s four 
grades of tense-logical involvement are introduced and discussed. It is argued 
that the third grade is the most attractive from a philosophical point of view.  

Keywords: Temporal logic, dynamic and static time, A- and B-concepts, tense 
logic, A.N. Prior. 

1   Introduction 

The 20th century has seen a very important revival of the formal studies of temporal 
concepts. The most important contribution to the modern logic of time was made in 
the 1950s and 1960s by A. N. Prior (1914–1969). In his endeavours, Prior was greatly 
inspired by ancient and medieval thinkers and especially their work on time and logic. 
In fact, his introduction of modern temporal logic may be conceived as a rediscovery 
and a reformulation of the ancient and medieval logic of time. Following this long 
tradition, Prior held that logic should include the study of temporal reasoning. 

Prior pointed out that when discussing the temporal aspects of reality we use two 
different conceptual frameworks, the A-concepts (corresponding to dynamic time) 
and the B-concepts (corresponding to static time). These two sets of concepts had 
been introduced by J.M.E. McTaggart (1866-1925). In his temporal logic, Prior logi-
cally analysed the tension between McTaggart’s A-concepts and B-concepts. In addi-
tion, Prior introduced an elaborated notion of branching time, and using this notion, 
he demonstrated that there are four different ways to answer the fundamental ques-
tions about the tension between A- and B-concepts. 

It turns out that this discussion of temporal logic is closely related to the ancient 
and medieval debates on the fundamental problems in philosophy regarding human 
freedom and (in)determinism. Using the idea of branching time Prior demonstrated 
that there are in fact models of time which are logically consistent with his ideas of 
free choice and indeterminism.  

After Prior’s founding work in temporal logic, a number of important concepts 
have been studied within this framework. It has turned out that Prior’s temporal logic 
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is essential for the formal and logical analysis of important philosophical ideas such 
as ‘free choice’, ethical responsibility, indeterminism, and ‘the passage of time’. The 
introduction of time into logic has also led to the development of formal systems 
which are particularly well suited to representing and studying temporal phenomena 
in computer science such as temporal aspects of program execution, temporal data-
bases, and time in natural language processing. 

In section 2 of this paper McTaggart’s ideas on dynamic and static time will be in-
troduced. Prior’s response to these ideas will be discussed in section 3. The various 
ideas of branching time will be discussed in section 4, and in section 5 I intend to 
discuss Prior’s use of these ideas of branching time in his formal formulation of the 
four grades of tense-logical involvement. It will be argued that Prior’s analysis of 
McTaggart’s ideas on time, as well as his further elaboration of the ideas constitutes 
an interesting framework which can be useful within the philosophical study of time 
as well as within the formal studies of temporal relationships and processes.  

2   McTaggart’s Ideas on Dynamic and Static Time 

In his famous paper, “The Unreality of Time” [1908], J.M.E. McTaggart offered an 
early discussion of tensions between dynamic and static time and of the relations 
between time and tense. He also offered a paradox which in fact gave rise to an argu-
ment in favour of the unreality of time. However, McTaggart’s ideas had no signifi-
cant role to play in relation to temporal logic before Prior published his analysis of the 
paradox, and it would be misleading to see these early ideas as a proper theory of 
tenses. McTaggart’s ideas were carefully discussed in C.D. Broad’s “Examination of 
McTaggart’s Philosophy” published in [1938], and the analysis of McTaggart’s so-
called paradox became very important in the philosophical debate about time in the 
1970s and later mainly because of Prior’s analysis, which was in fact partly influ-
enced by Broad’s work. In particular, the debate has turned out to be crucial when it 
comes to an understanding of the relations between time and tense. 

The distinction between the logic of tenses and the logic of earlier and later (in 
terms of instants or in terms of durations) is essential for the understanding of modern 
temporal logic. This distinction was introduced by McTaggart in his famous paper 
mentioned above [1908], which was restated in his book The Nature of Existence 
[1927]. In this paper McTaggart suggested the distinction between the so-called A- 
and B-series conceptions of time. According to the A-series conception, the tenses 
(past, present, and future) are the key notions for a proper understanding of time, 
whereas the earlier-later calculus is secondary. According to the B-series conception 
time is understood as a set of instants organized by the earlier-later relation, whereas 
the tenses are secondary. McTaggart explicitly identified and discussed this basic 
dichotomy between the A-series and the B-series. 

McTaggart himself arrived at the conclusion that A-concepts are more fundamental 
than B-concepts. He did not, however, use this analysis as an argument in favour of 
A-theory. On the contrary, he used it for a refutation of the reality of time. He argued 
that A-concepts give rise to a contradiction - which has become known as 
‘McTaggart’s Paradox’. Due to this putative contradiction within the fundamental 
conceptualisation of time, he went on to claim that time is not real, since the idea of 
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time understood in terms of the A-concepts on his view turns out to lead to a contra-
diction. 

The core of McTaggart’s argument is that the notions of ‘past’, ‘present’ and ‘fu-
ture’ are incompatible predicates which are nevertheless applicable to all events. In 
his own words: 

Past, present, and future are incompatible determinations… But every event 
has them all. If M is past, it has been present and future. If it is future, it will be 
present and past. If it is present, it has been future and will be past. Thus all 
three characteristics belong to each event. How is this consistent with their be-
ing incompatible? [McTaggart 1927, in Poidevin and MacBeath p.32] 

McTaggrt’s argument is based on the following three assumptions: 

(1) The A-concepts (‘past’, ‘present’, and ‘future’) are real.  
(2) The three predicates (‘past’, ‘present’, and ‘future’) are supposed to be 

mutually exclusive – given that any concrete event happens just once 
(even though a type of event may be repeated).  

(3) Any of the three predicates can be applied to any event.  

In a book on history, it makes sense to speak of ‘the death of Queen Anne’ as a 
past event - call it e1. However, according to (3) e1 can also be future. This could be 
the case if the event is discussed in a document written in the lifetime of Queen Anne. 
In such a document it could certainly well make sense to speak about her death as a 
future event. Apparently, according to (2) this gives rise to an inconsistency, since 
how can e1 be both past and future – and present as well, by a similar argument? The 
answer must be that there is another event e2, relative to which for instance e1 has 
been present and future, and is going to be past. Now, the same kind of apparent in-
consistency can be established with respect to e2, and the problem can only be solved 
by introducing a new event e3, for which a new apparent inconsistency will arise etc. - 
which seems to mean that we have to go on ad infinitum in order to solve the incon-
sistency. The consequence appears to be that the inconsistency can never be resolved. 
McTaggart concludes that it must be a mistake to use of the A-concepts as describing 
something real about the events.   

3   Prior’s Response to McTaggart’s Ideas 

At first Prior did not consider the writings of McTaggart to be relevant in relation to 
the ideas of temporal logic. However, later he clearly realised the importance of 
McTaggart’s distinctions in relation to the basic ideas in temporal logic. Since then, 
the notions and arguments in McTaggart’s paper have become an important ingredi-
ent, of all major treatments of the philosophical problems related to the various kinds 
of temporal logic and their mutual relations. 

It was Peter Geach who sometime in the early 1960s made Prior aware of the  
importance and relevance of McTaggart’s distinction between the so-called A- and B-
series conceptions of time [Prior 1967, p. vi]. Prior’s interest in McTaggart’s observa-
tions was first aroused when he realised that McTaggart had offered an argument to 
the effect that the B-series presupposes the A-series rather than vice versa [1967, p.2]. 
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Prior was particularly concerned with McTaggart’s argument against the reality of 
tenses. He pointed out that the argument is in fact based on one crucial assumption, 
which can certainly be questioned. In his own words: “McTaggart’s underlying as-
sumption, which generates each of the moves that lead us to a contradiction, appears 
to be that ‘has been’, ‘will be’, and the strictly present-tense ‘is’ must be explicated in 
terms of a non-temporal ‘is’ attaching either an event or a ‘moment’ to a ‘moment’. 
McTaggart himself observes, however, that ‘propositions which deal with the place of 
anything in the A-series such as ‘The battle of Waterloo is in the past’, and ‘It is now 
raining’, are of a kind which can be ‘sometimes true and sometimes false’. The ‘is’ 
that occurs in such propositions therefore cannot be non-temporal.” [1967, p.6]  In 
this way Prior’s analysis clearly demonstrates that McTaggart’s assumption is in fact 
very controversial. Nevertheless, Prior’s studies brought renewed fame to 
McTaggart’s argument.  

Prior clearly agreed with McTaggart in rejecting the static view of time, i.e., the 
view based on the B-concepts. In Prior’s opinion, the reality of everything including 
our own existence in the world should definitely not be conceived as “a timeless tap-
estry”. In his view the static view of time is mistaken. In his own words: 

I believe that what we see as a progress of events is a progress of events, a 
coming to pass of one thing after another, and not just a timeless tapestry with 
everything stuck there for good and all... This belief of mine... is bound up 
with a belief in real freedom. One of the big differences between the past and 
the future is that once something has become past, it is, as it were, out of our 
reach - once a thing has happened, nothing we can do can make it not to have 
happened. But the future is to some extent, even though it is only to a very 
small extent, something we can make for ourselves.... if something is the work 
of a free agent, then it wasn’t going to be the case until that agent decided that 
it was. [Copeland 1996, p. 47-8] 

During the 20th century there has been much debate concerning A- and B-series 
conceptions of time and concerning the validity of McTaggart’s argument and the 
various reformulations of it. Some authors like David Mellor have maintained that 
there is a valid version of the argument, which should in fact force us to reject the 
tense-logical view of time, i.e., the A-series conception. According to Mellor, nothing 
in reality has tenses and “the A-series is disproved by a contradiction inherent in the 
idea that tenses change” [Mellor 1981, p.89]. Others have followed Prior in holding 
that all versions of McTaggart’s argument are flawed. In his careful analysis of 
McTaggart’s paradox, William Lane Craig [2000a, p.169 ff.] has argued that no con-
tradiction need be involved in a proper formalization of the A-series, and it may be 
concluded that McTaggart’s argument is simply misdirected as a refutation of the 
tensed theory of time [Craig 2000a, p.207]. McTaggart’s paradox can be solved if 
iterated tenses like PF and FP are introduced. It may be seen as part of McTaggart’s 
argument that in this way we shall need still longer iterated tenses (like PPF, FFPF, 
PPFFP, …) in order to solve the apparent contradiction, and we thereby have to deal 
with the problems of an infinite regress of this kind. It is, however, not obvious that 
any serious logical problem would follow from such an infinite regress. In addition, as 
Richard Sylvan [1996, p.122] has argued, the construction of iterated tenses in  
response to McTaggart’s argument will probably not give rise to a proper infinite 
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regress since “expressivewise the regress stops” as a consequence of the logical prop-
erties of the tense logic in question. The point is, that it is likely to be the case in all 
relevant tense-logical systems that the number of non-equivalent (iterated) tenses is 
finite. This statement may be seen as a generalisation of Hamblin’s famous fifteen-
theorem for dense time (see [Øhrstrøm and Hasle 1995 p.176 ff.]).  

McTaggart’s paradox is clearly related to the problem of truth in temporal logic. 
What makes a statement like, ‘It is now four o’clock’, true or false? As Poidevin and 
MacBeath [1993, p.2] have clearly described in their account of modern philosophy 
of time, this question can be answered in two different ways. The A-theorists say that 
the statement “It is now four o’clock” is true if and only if the time we have given the 
name “four o’clock”, is in fact present. The B-theorists, on the other hand, claim that 
there are no tensed facts. According to their view the statement “It is now four 
o’clock” is true if and only if the utterance is made at four o’clock. Similarly, the A-
theorists claim that the statement “Julius Caesar was killed” is true because Julius 
Caesar was in fact killed, whereas the B-theorists say that this statement is true  
because the time of utterance is after the killing of Julius Caesar. In this way the A-
theorists hold that tensed statements have tensed truth-conditions, while the  
B-theorists find that tensed sentences are made true or false by tenseless truth-
conditions. In their book Poidevin and MacBeath [1993] have presented A.N. Prior 
and D.H. Mellor as prominent representatives of respectively the A- and the B-view.  

It may be useful to consider the formal aspects of the A- and B-notions a little 
closer. In order to do so we first of all have to deal with the general features of the 
tense-logical formulae which are essential for the formulation of the A-series concep-
tion. These formulae can be introduced inductively by the following rules of well 
formed formulae (wff): 

 

(i)     any propositional variable is a wff 
(ii)   if φ is a wff, then ~φ is also a wff 

    (iii)   if φ and φ are wffs, then (φ ∧ φ) is also a wff 
(iv)  if φ is a wff, then Fφ is also a wff 
(v)   if φ is a wff, then Pφ is also a wff 
(vi)  nothing else is a wff. 

 

As we shall see in the following, an A-theorist would probably at this point like to 
add a formalism of instant propositions. The B-theorists, on the other hand, would 
probably emphasise the need for truth-conditions established in terms of a model M = 
(TIME,<,ν), where TIME is a set of temporal elements like instants or durations, < is 
a binary relation on TIME (corresponding to ‘before’), and ν is a valuation function 
from TIME and the set of propositional variables to {0,1}. The expression ν(t,p) is 
said to be the truth-value of the propositional variable p at t. Given such a model, the 
notion of truth for any tense-logical formula can be given by the following inductive 
definition: 

 

M, t╞ p if ν(t,p) = 1 
M, t╞ ~φ if not M, t╞ φ 
M, t╞ (φ ∧ φ) if M, t ╞ φ and M, t ╞  φ 
M, t╞ Fφ if M,t’╞ φ for some t’ with t<t’ 
M, t╞ Pφ if M,t’╞ φ for some t’ with t’<t. 
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If M,t╞ φ the proposition φ is true at t according to the model M. The B-theorist 
will emphasise that in this way, truth of the tense-logical formulae of the object lan-
guage is defined in terms of a tenseless metalanguage. For this reason, the B-theorist 
will point out that the A-language clearly depends on the B-language. Obviously, the 
A-theorist has to follow another line of argumentation. It seems that at least two op-
tions are open for him.  

The first possibility for the A-theorist when he wants to respond to the criticism 
from the B-theorist was explicitly formulated by A.N. Prior, according to whom there 
is no sharp distinction between an object language and a metalanguage. Using what is 
now called a hybrid logic (see Braüner [2002a]), in which the instants are just a spe-
cial kind of propositions, Prior was able to define T(t,φ) (standing for ‘φ is true at t’) 
for any tense-logical formula, φ, in terms of the tense-logical language itself. Such 
instant-propositions describe the world uniquely at any given instant, and are for this 
reason also called world-state propositions. Like Prior we shall use a, b, c, ... as in-
stant-propositions instead of t1, t2, ... In fact, Prior assumed that such propositions are 
what ought to be meant by ‘instants’: 

 

A world-state proposition in the tense-logical sense is simply an index of an 
instant; indeed, I would like to say that it is an instant, in the only sense in 
which 'instants' are not highly fictitious entities. [Prior 1967, p.188-89] 

 

The traditional distinction between the description of the content and the indication 
of time for an event is thereby dissolved. Prior listed the following three axioms for 
instant propositions: 

 

(I1) ∃ a: a 
(I2) ~□~a 
(I3) □(a ⊃ p) ∨ □(a ⊃ ~p)  

 

Formally, this means that the symbolic language has to be extended with standard 
quantification theory and with a necessity operator □ (its dual possibility operator ◊ 
defined as ~□~). 

Intuitively, an instant proposition may be conceived as a conjunction of all propo-
sitions belonging to a maximal consistent set of well formed formulae. 

Prior argued that there is a basic flaw in McTaggart’s argument. According to his 
view, the contradictions arise from an attempt at forcing the A-series notions into a B-
series framework [1967, p.6]. Prior argued that events may be described in terms of 
instant-propositions, of which it also holds that they ‘happen’, i.e. are true, exactly 
once. Using a as an arbitrary instant proposition, McTaggart’s claim that the three 
tense-logical predicates are mutually exclusive can be formulated as: 

 

a ⊃ (~Pa ∧ ~Fa) 
Pa ⊃ (~a ∧ ~Fa) 
Fa ⊃ (~a ∧ ~Pa) 

 

Here Pa stands for ‘it has been the case that a’, whereas Fa stands for ‘it will be 
the case that a’. McTaggart’s other claim that any event can be past, present, and 
future, can be expressed in the following way, where the I-operator stands for ‘the 
present’: 
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Ia ⊃ (PFa ∧ FPa) 
Pa ⊃ (PIa ∧ PFa) 
Fa ⊃ (FPa ∧ FIa) 

 

But no contradiction follows from these 6 theses above. It is thus revealed that 
McTaggart’s paradox is in no way a cogent argument against the A-series notions, let 
alone the reality of time. Prior concluded that McTaggart’s argument could not shake 
his fundamental belief in the ontological status of the tenses. Prior maintained that 
tense logic embodied a crucial ontological and epistemological point of view accord-
ing to which “the tenses (it will be, it was the case) are primitive; only present objects 
exist” [Prior & Fine, 1977, p.116]. To Prior, the present and the real were one and the 
same concept. Shortly before he died, he formulated his view in the following way: 
“...the present simply is the real considered in relation to two particular species of 
unreality, namely past and future.” [Prior 1972, p.320] 

The second possibility for the A-theorist when he wants to respond to the criticism 
from the B-theorist is the use of so-called homophonic theories of truth in which the 
constructions of the object language are interpreted in terms of analogous construc-
tions of the metalanguage. Torben Braüner [2002a] has demonstrated that tense logics 
permit the existence of such a homophonic theory of truth, provided that they are 
stronger than the rather basic tense-logical system Kb. It seems that Prior never at-
tempted to work out the details of a homophonic theory of truth. However, as pointed 
out by Torben Braüner [2002b], Prior was clearly aware of the possibility of a homo-
phonic theory of truth as it is evident from the following quotation: 

 

The function of the operator F, in short, is that of forming a future-tense state-
ment from the corresponding present-tense one, and the future-tense statement 
is not about the present tense one, but is about whatever the present tense 
statement is about. . . . But although the statement ‘It will be the case that Pro-
fessor Carnap is flying to the moon’, that is, ‘Professor Carnap will be flying to 
the moon’, is not exactly a statement about the statement ‘Professor Carnap is 
flying to the moon’, we may say that the future-tense statement is true if and 
only if the present-tense statement will be true. [Prior, 1957, pp. 8–9] 

 

It seems clear from the extensive debate that a valid version of McTaggart’s argu-
ment can only be established if some additional philosophical assumptions are made. 
None of them represent a priori impossible positions. On the other hand, they can all 
be questioned. For this reason, it may be concluded that it is still logically possible to 
hold any of the two main positions, the A-theory and the B-theory. In fact, as we shall 
see in section 5, Prior demonstrated that various relevant variations of the positions 
should be taken into consideration. 

4   The Ideas of Branching Time 

The idea of branching time had not yet been formulated in Prior’s Time and Modality 
[1957], which otherwise marked the major breakthrough of the new logic of time. As 
an explicit (or formalised) idea, branching time was first suggested to Prior in a letter 
from Saul Kripke in September 1958 [now kept at The Prior collection, Bodleian 
Library, Oxford]. This letter contains an initial version of the idea and a system of 
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branching time, although it was of course not worked out in detail. Kripke suggested 
that we may consider the present as a point of ‘rank 0’, and possible ‘events’ or 
‘states’ at the next moment as points of ‘rank 1’; for every such possible state in turn, 
there would be various possible future states at the next moment from ‘rank1’, the set 
of which could be labelled ‘rank2’, and so forth. In this way it is possible to form a 
tree structure representing the entire set of possible futures expanding from the pre-
sent (rank 0) - indeed a set of possible futures can be said to be identified for any 
state, or node in the tree. In this structure every point determines a subtree consisting 
of its own present and future.  

 Rank 0           Rank 1              Rank  
Fig. 1. Branching time according to Saul Kripke, 1958 

 
Prior clearly found this view of time highly interesting, and in the following years 

he substantially developed it. He worked out the formal details of several different 
systems, which constitute different and even competing interpretations of this idea, as 
we shall see below. Eventually, he incorporated the idea of branching into the concept 
of time itself. In his Past, Present and Future [1967] he made extensive use of the 
idea in the presentation of his tempo-modal systems. 

In order to describe the semantics for these systems, Prior [1967, p.126 ff.] needs a 
notion of ‘chronicles’ or ‘histories’, i.e., maximal and  linear subsets in (TIME,<).  

It is important to point out that the branching time systems which Prior developed 
formally are all backwards linear. This means that there is a unique past relative to 
any moment in the branching time system. There are no ‘alternative pasts’. In this 
way the asymmetry between past and future is introduced in a very clear manner. 

Given Prior’s notion of instant-propositions, the interpretation of the branching 
time models becomes rather interesting. On this view, every point (or moment) corre-
sponds to an instant-proposition which is in fact maximal in the sense that it implies 
everything which is true i.e. everything which is, has been, will be or could have been 
the case. In this sense, every point of the diagram reflects (or includes) the totality of 
the branching time diagram. 

Prior discussed two models of branching time, the Ockhamistic and the Peircean. 
Prior introduced these names because the Ockhamistic logic is very similar to the  
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Now

 

Fig. 2. An Ockhamistic model of branching time. At every branching point there will be one 
possible future which is the “true future”. 

Now

 

Fig. 3. A Peircean model of branching time. There is no difference between the status 
of the possible futures at any branching point. 

logic suggested by the medieval philosopher William of Ockham (ca. 1285-1349), 
and because the Peircean logic is based on some ideas of indeterminism which can be 
found in the writings of C.S. Peirce (1839-1914). Graphically, the two kinds of 
branching time models can be presented in the following way: 

The semantics corresponding to these branching time models can be established in 
the following way: An operator Ock is an Ockhamistic valuation operator in a given 
Ockhamistic structure, if for any temporal instant t in any chronicle c (i.e. t ∈ c) and 
any tense-logical statement p, Ock(t,c,p) is a meta-statement which can be read ‘p is 
true at t in the chronicle c’ 
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(a) Ock(t,c, p ∧ q) iff both Ock(t,c,p) and Ock(t,c,q) 
(b) Ock(t,c,~p) iff not Ock(t,c,p)  
(c) Ock(t,c,Fp) iff Ock(t’,c,p) for some t’ ∈ c with t < t’ 
(d) Ock(t,c,Pp) iff Ock(t’,c,p) for some t’ ∈ c with t’ < t 
(e) Ock(t,c, □p) iff Ock(t,c’,p) for all c’ with t ∈ c’ 
 

If these conditions hold (TIME,<,Ock) is said to be an Ockhamistic structure. – A 
formula p is said to be Ockham-valid if and only if Ock(t,c,p) for any t and c (with t ∈ 
c) and any Ockhamistic structure.  

As we shall see, it may be doubted whether Prior’s Ockhamistic system is in fact 
an adequate representation of the tense logical ideas propagated by William of Ock-
ham. At least Ockham’s notion of truth seems to differ from the idea used in the pres-
entation of Prior’s Ockhamistic system. On the other hand, it should be noted that 
Prior’s Ockhamistic system appears to comprehend at least all the theorems which 
should be accepted according to Ockham’s original ideas. Let us, for instance, con-
sider one tense logical formula: 

 

q ⊃ HFq  
 

where H is defined as ~P~. A straightforward reading of this formula would be: “if 
something is the case now, then it has always been going to be the case”. It is obvious 
from the above definitions that Ock(t,c,q ⊃ HFq) for any t and any c with t ∈ c. 
Therefore q ⊃ HFq is a theorem in Prior’s Ockhamistic system.  

Likewise Pq ⊃ □Pq (where F does not occur in q) is obviously a theorem, whereas 
the formula PFq ⊃ □PFq is not a theorem in the system. This difference corresponds 
exactly to the difference between proper past (i.e. a proposition like Pq about the past 
which q does not depend on the future) and pseudo-past (i.e. a propostion like PFq 
which may depend on the future). 

The Peircean structure can be defined in a manner very similar to Prior’s Ock-
hamistic definition. Only the semantics of F would differ. According to Prior’s defini-
tion of Peircean truth: 

 

Peirce(t,c,Fp) if and only if for all c’ with t ∈ c’ 
 Peirce(t’,c’,p) holds for some t’ ∈ c’ with t < t’  

 

This definition appears to be in very good accordance with the ideas of C.S. Peirce, 
who rejected the very idea that statements regarding the contingent future could be 
true. In fact, it is evident that the Peircean system can be seen as a fragment of the 
Ockhamistic system. It is obvious that the Peircean F corresponds to the Ockhamistic 
□F. This means that according to the Peircean model “tomorrow” is identified with 
“necessarily tomorrow”. As seen from natural language as well as from a common 
sense point of view this is rather problematic. A number of important statements in 
everyday discourse simply cannot be precisely represented in terms of the Peircean 
theory. 

On the basis of the Ockhamistic view, on the other hand, it is straight forward to 
construct a model according to which “tomorrow”, “possibly tomorrow”, and “neces-
sarily tomorrow” will be three different notions. In such a model we may not only 
refer what happens in some possible future, ◊Fq, and to what happens in all possible 
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futures, □Fq, but we may also refer what is going to happen in the future, Fq, as 
something conceptually different from the possible as well as the necessary future. 

The great achievement of the Ockhamistic system could arguably be said to be its 
property of making a genuine distinction between the following three types of statement: 

 

(i)  Necessarily, there will be a sea battle tomorrow. 
(ii)  Possibly, there will be a sea battle tomorrow. 
(iii)  There will be a sea battle tomorrow. 

 

However, in the Peirce-system the type of future statement seen in (iii) will have to 
be interpreted as equivalent with (i). There is no ‘plain future’ in this system. Of 
course, that is not a consequence of sloppiness on Peirce’s side, but rather it is a de-
liberate and philosophically motivated choice. This is also in good accordance with 
the fact that the formula q ⊃ HFq is not a theorem in Prior’s Peircean system. 

It may be doubted, however, whether Prior’s Ockhamistic system is in fact an ade-
quate representation of the tense logical ideas propagated by William of Ockham. 
According to Ockham, God knows the contingent future, so it seems that he would 
accept an idea of absolute truth, also when regarding a statement Fq about the contin-
gent future - and not only what Prior has called ”prima-facie assignments” [1967, 
p.126] like Ock(t,c,Fq). That is, according to Prior’s model such a proposition can be 
made true ‘by fiat’ simply by constructing a concrete structure which satisfies it. But 
Ockham would accept that Fq could be true at t without being relativised to any 
chronicle. This view could be called the true futurist theory. In order to represent this 
idea satisfactorily we need a function TRL, which gives the true future for any mo-
ment of time, t, in the branching time system. This means that TRL can not only be 
used to find the true future relative to any moment which has been, is, or will be pre-
sent. The function should in fact work for any moment in the branching time system. 
More precisely, TRL(t) yields the chronicle corresponding to linear past as well as the 
true future of t; Belnap and Green call it “the thin red line” [1994]. But how can 
TRL(t) be specified? Belnap and Green have argued that: 

(TRL1)   t ∈ TRL(t)  

should hold in general. Moreover, they have also maintained that: 

(TRL2)   t1 < t2 ⊃ TRL(t1) = TRL(t2)  

should hold for the TRL-function. On the other hand, they have argued that the com-
bination of (TRL1) and (TRL2) is inconsistent with the very idea of branching time. 
The reason is that if (TRL1) and (TRL2) are both accepted, it follows from t1 < t2 that 

t2 ∈ TRL(t1), i.e. that all moments of time after t1 would have to belong to the thin red 
line through t1, which means that there will in fact be no branching at all. However, it 
is very hard to see why a true futurist would have to accept (TRL2), which seems to 
be too strong a requirement. Rather than (TRL2), the weaker condition (TRL2′) can 
be employed: 

(TRL2′)   (t1 < t2 ∧ t2 ∈ TRL(t1)) ⊃ TRL(t1) = TRL(t2)  

This seems to be much more natural in relation to the notion of a true futurist branch-
ing time logic. Belnap has later accepted that (TRL2′) is a relevant alternative to 
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(TRL2) (see [Belnap et al. 2001 p.169]). I have argued elsewhere [2009] that the 
theory based on (TRL1) and (TRL2′) can be defended against any attack formulated 
against it so far. It is also interesting to note that the true futurist theory may, as ar-
gued by Craig [1988, p.175], be understood as a formal version of the theory sug-
gested by the Jesuit Luis Molina (1535-1600). 

One interesting application of the Ockhamistic approach relevant within the study 
of user interaction with computer systems should be mentioned: A model based on 
Prior’s Ockhamistic temporal logic may be interpreted as including a dynamic plan 
i.e. a plan including alternative plans corresponding to any possible choice made by 
the person(s) in question. This means that the model should at least include a default 
choice or a suggested choice (i.e. an advice to the user) whenever there are alternative 
futures. This plan is supposed to lead the user to the best possible outcome given the 
choices of the user.  

5   Four Grades of Tense-Logical Involvement 

Prior suggested a distinction between four possible grades of tense-logical involve-
ment corresponding to four different views of how to relate the A-notions (past, pre-
sent and future) to the B-notions (‘earlier than’, ‘later than’, ‘simultaneous with’): 

 

1.  The B-notions are more fundamental than the A-notions. Therefore, in princi-
ple the A-notions have to be defined in terms of the B-notions. 

2.  The B-notions are just as fundamental as the A-notions. The A-notions cannot 
be defined in a satisfactory manner in terms of the B-notions (and vice versa). 
The two sets of notions have to be treated on a par. 

3.  The A-notions are more fundamental than the B-notions. There is also a primi-
tive and fundamental notion of (temporal) possibility. In principle the B-
notions have to be defined in terms of the A-notions and the primitive notion of 
temporal possibility. 

4.  The A-notions are more fundamental than the B-notions. In principle the B-
notions have to be defined in terms of the A-notions. Even the notion of tempo-
ral possibility can be defined on terms of the A-notions. 

 

Understood in this way, it is obvious that Prior’s four grades of tense-logical in-
volvement (see [Øhrstrøm and Hasle 1995 p.176 ff.]) represent four different views of 
time and also four different foundations of temporal logic. 

The first grade defines tenses entirely in terms of objective instants and an earlier-
later relation. For instance, a sentence such as Fp, ‘it will be the case that p’, is de-
fined as a short-hand for ‘there exists some instant t which is later than now, and p is 
true at t’, and similarly for the past tense; these definitions are, of course: 

 

(DF) T(t,Fp) ≡def ∃t1 : t<t1 ∧ T(t1,p) 
(DP) T(t,Pp) ≡ def ∃t1: t1<t ∧ T(t1,p) 

 

Tenses, then, can be considered as mere meta-linguistic abbreviations, so this is the 
lowest grade of tense logical involvement. That is, it is the least A-like and the most 
B-like theory. Prior succinctly described the first grade as follows: 

 



78 P. Øhrstrøm 

…there is a nice economy about it ... it reduces the minimal tense logic to a 
by-product of the introduction of four definitions into an ordinary first-order 
theory, and richer [tense logical] systems to byproducts of conditions imposed 
on a relation in that theory. [Prior 2003, p.119-20] 

 

In the first grade, tense operators are simply a handy way of summarizing the 
properties of the before-after relations, which constitute the B-theory. Hence, in the 
first grade, B-theory concepts are seen to be determining for a proper understanding 
of time and reality. On this view, instants acquire an independent ontological status 
whereas tenses are deemed to have no independent epistemological status. As we 
have seen, Prior rejected the idea of temporal instants as something primitive and 
objective. He claimed:  

 

Time is not an object, but whatever is real exists and acts in time... But this 
earlier-later calculus is only a convenient but indirect way of expressing truths 
that are not really about ‘events’ but about things ... [Copeland 1996, p.45] 

 

From Prior’s point of view, the first grade is a reduction of reality. First of all the 
notion of the present, the Now, disappears. This means that the first grade represents a 
serious conceptual loss in expressibility in our theoretical approach to reality. This 
was clearly not acceptable to Prior. On the other hand, he also maintained that the 
conceptual construction of instants and dates is a very useful one. After a lecture, 
which was in fact just one in a series of lectures on temporal logic, probably held 
somewhere in USA, Prior wrote the following addition to the paper which he was 
going to read at the next lecture in the series: 

 

A wants me to relativise my tenses to dates. It seems to me that behind this re-
quest there is a metaphysics. Behind this request there is the idea that the 
whole of time is absolutely there with all these dates, and all events and proc-
esses just are, located in various parts of this giant fixed frame. I do not believe 
this. I think this way is to treat all time as if it were already past. I don't believe 
this. I don't believe that events and processes are; rather events happen (and 
then come to have happened) and processes go on (and then come to have 
gone on), and even this is an abstraction - the basic reality is things acting. But 
even in this flux there is a pattern, and this pattern I try to trace with my tense-
logic; and it is because this pattern exists that men have been able to construct 
their seemingly timeless frame of dates. Dates, like classes, are a wonderful 
and tremendously useful invention, but they are an invention; the reality is 
things acting. [Bodleian Library, MS in box 6, 1 sheet, no title.]  

 

In the second grade of tense logical involvement, tenses are not reduced into B-
series notions. Rather, they are treated on a par with the earlier-later relation. This 
means that this grade represents something between a B-theory and a A-theory, 
whereas the first grade clearly is a B-theory. Specifically, a bare proposition p is 
treated as a syntactically full-fledged proposition, on a par with propositions such as 
T(t,p) (‘it is true at time t that p’). The point of the second grade is that a bare proposi-
tion with no explicit temporal reference is not to be viewed as an incomplete proposi-
tion. One consequence of this is that an expression such as T(t,T(t’,p)) is also  
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well-formed, and of the same type as T(t,p) and p. Prior showed how such a system 
leads to a number of theses, which relates tense logic to the earlier-later calculus and 
vice versa [Prior 2003, p.121]. According to Prior’s view, however, this grade can 
like the first grade be criticized for giving the instants an unacceptable ontological 
status. 

The third grade is A-theory. The notion of instant-propositions is introduced, and 
the formal language is extended with a primitive possibility operator, ◊, and its dual 
necessity operator, □, defined as ~◊~. In addition, standard quantification theory is 
assumed. As we have seen, the instant-propositions are maximal propositions with 
properties as stated in (I1-3) and corresponding to what the B-theory would call in-
stants. Given the formal apparatus of the third grade it becomes possible to define 
T(a,p) as well as the before-after relation, <: 

 

(DT) T(a, p) ≡def □(a ⊃ p) 
(DB) a < b ≡ def □(a ⊃ Fb) 

 

Here a and b are arbitrary instant-propositions. Prior was able to prove that given 
the most basic tense-logic system Kt everything that one would expect to hold for T 
and < in a B-theory would also hold for T and < as defined in (DT) and (DB). This 
certainly makes the third grade a very attractive system as seen from an A-theoretical 
point of view. 

Prior has thus shown how we can in fact interpret B-logic within A-logic, namely 
in a given modal context in which we can interpret instants as propositions and quan-
tify over them. In this sense B-logical semantics is absorbed within an entirely A-
logical axiomatics. In Prior’s own words, this means “to treat the first order theory of 
the earlier-later relation as a mere by-product of tense logic” [Prior 2003, p.273]. He 
developed this view even further in his fourth grade, in which he suggested a tense 
logical definition of the necessity-operator such that the only primitive operators in 
the theory are the two tense logical ones: P and F. Prior himself favoured this fourth 
grade. It appears that his reasons for wanting to reduce modality to tenses were 
mainly metaphysical, since they have to do with his rejection of the concept of  
the (one) true (but still from a human point of view unknown) future. If one accepts 
the fourth grade of tense-logical involvement, it will turn out that something like the 
Peirce solution will be natural, and that we have to reject solutions, which involve the 
idea of a true or simple future - like the Ockhamistic theory. In all obvious models 
constructed in accordance with the fourth grade, “tomorrow” is identified either with 
“possibly tomorrow” or with “necessarily tomorrow”. On the basis of Ockhamistic 
theory, on the other hand, it is straight forward to construct a model according to 
which “tomorrow”, “possibly tomorrow”, and “necessarily tomorrow” will be three 
different notions. In such a model we may not only refer what happens in some possi-
ble future, ◊Fq, and to what happens in all possible futures, □Fq, but we may also 
refer what is going to happen in the future, Fq, as something different from the possi-
ble as well as the necessary future. It seems that anyone who wants to maintain the 
Ockhamistic view has to reject the fourth grade. From this point of view the third 
grade becomes the obvious choice. 
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6   Conclusion 

We have seen that we have no convincing reasons for accepting arguments for the 
unreality of time based on McTaggart’s paradox. The tenses appear to be crucial for a 
proper understanding of temporal reality. The fundamental asymmetry between past 
and future can be represented in a clarifying manner in terms of the models of branch-
ing time. We have also argued that the three notions of ‘future’ (necessary, possible, 
and plain) should be integrated in a branching time model. This can be done using an 
Ockhamistic model and even better with a true futurist theory. Finally, we have pre-
sented Prior’s four grades of tense-logical involvement, and we have argued in favour 
of the third grade, which seems to follow given that the A-concepts are more concep-
tually basic than the B-concepts and that the Ockhamistic approach is more adequate 
than the Peircean view.  
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Traditionally, since it was coined in the early 17th century by German school-
philosophy, the word “ontology” has been used to name a field of metaphysics as well 
as distinct metaphysical doctrines. Since the 1990s, the word “ontology” appears in-
creasingly in information sciences, and likewise in fields that have been subjected to 
‘informatisation’ such as biology, geography, and medicine. In all these fields, how-
ever, the word “ontology” is being used with different meanings, and for the most part 
with meanings that are distant from its philosophical roots. 

Given the obvious centrality and significance of the word “ontology” in the con-
temporary information sciences, both the terminological indeterminateness and the 
apparent semantic change are issues warranting investigation. A particular motivation 
for an inquiry derives from the context at hand, since the theoretical foundations of 
Formal Concept Analysis have already been subjected to ontological considerations, 
and methods of Formal Concept Analysis have been applied to the development of 
ontologies in the information sciences. 

Starting from etymological considerations, significant developments in ontological 
thought in the history of occidental philosophy are summarised. Special attention is 
given to the separation of ontology from classical metaphysics, the emancipation of 
the sciences from philosophy, and the concurrent reconfiguration of the relation be-
tween science and philosophy. These developments in western knowledge constitute 
the condition of the possibility for the appropriation of modes of ontological thought 
by the information sciences and beyond. 

Subsequently, a range of meanings of the word “ontology” in the information sci-
ences is identified. It is conjectured that the multiplicity of meanings can be explained 
by associating selected connotations of “ontology” with the corresponding problems 
information scientists try to solve. This exercise discloses semantic changes of the 
word “ontology,” which resulted from the transformation of a philosophical term into 
a scientific-practical term. These semantic changes characterise the relationship be-
tween philosophy and information sciences with respect to ontology as a problem — 
whether (philosophical) ontology can or actually does inform the notions of ontology 
in the information sciences. 

Concluding, some brief reflections on the relation between Formal Concept Analy-
sis and ontology — with reference to Rudolf Wille’s proposal of a Semantology — 
are offered. 
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Abstract. Matrix decomposition methods provide representations of an
object-variable data matrix by a product of two different matrices, one
describing relationship between objects and hidden variables or factors,
and the other describing relationship between the factors and the origi-
nal variables. We present a novel approach to decomposition and factor
analysis of matrices with incidence data. The matrix entries are grades
to which objects represented by rows satisfy attributes represented by
columns, e.g. grades to which an image is red or a person performs well
in a test. We assume that the grades belong to a scale bounded by 0
and 1 which is equipped with certain aggregation operators and forms a
complete residuated lattice. We present an approximation algorithm for
the problem of decomposition of such matrices with grades into prod-
ucts of two matrices with grades with the number of factors as small
as possible. Decomposition of binary matrices into Boolean products of
binary matrices is a special case of this problem in which 0 and 1 are
the only grades. Our algorithm is based on a geometric insight provided
by a theorem identifying particular rectangular-shaped submatrices as
optimal factors for the decompositions. These factors correspond to for-
mal concepts of the input data and allow for an easy interpretation of
the decomposition. We present the problem formulation, basic geometric
insight, algorithm, illustrative example, experimental evaluation.

1 Introduction

1.1 Problem Description

Reducing data dimensionality by mapping the data from the space of directly
observable variables into a lower dimensional space of new variables is of fun-
damental importance for understanding and management of data. Traditional
approaches achieve dimensionality reduction via matrix decomposition. In factor
analysis, a decomposition of an object-variable matrix is sought into an object-
factor matrix and a factor-variable matrix with the number of factors reasonably
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small. This way, objects can be represented in a lower dimensional space of fac-
tors from which their representation in the space of original variables can be
retrieved by a linear combination.

Recently, new methods of matrix decomposition and dimensionality reduction
have been developed. One aim is to have methods which are capable of discov-
ering possibly non-linear relationships between the original space and the lower
dimensional space [26,32]. Another is driven by the need to take into account con-
straints imposed by the semantics of the data. An example is Boolean factor anal-
ysis in which a decomposition of a binary matrix is sought into two binary matrices
[10,21,25].

In this paper, we consider decompositions of matrices I with a particular type
of ordinal data. Entries Iij of I are grades to which the object corresponding to
i-th row has, or is incident with, the attribute corresponding to the j-th row,
e.g. to which a hotel is rated as a good hotel. Typical examples of such data
are results of questionnaires where respondents (rows) rate services, products,
etc. according to various criteria (columns); results of performance evaluation of
people or machines (rows) by various tests (columns); or binary data in which
case there are only two grades, 0 (no, failure) and 1 (yes, success). Our goal is
to decompose an n×m object-attribute matrix I into a product

I = A ◦B

of an n× k object-factor matrix A and a k ×m factor-attribute matrix B with
a reasonably small number k of factors.

The scenario is thus similar to that of ordinary factor analysis but there are im-
portant differences. First, we assume that the entries of I, i.e. the grades, as well as
the entries ofA and B are taken fromabounded scaleL of grades.Examples of such
scales are the unit interval L = [0, 1], the Likert scale L = {1, . . . , 5} of degrees of
satisfaction, or other scales used in mathematical psychology and psychophysics
[18]. Second, the matrix composition operation ◦ used in our decompositions is not
the usual matrix product. Instead, we use a so-called t-norm-based product where
a t-norm is a function which we use for aggregationof grades, cf. also [9]. A Boolean
matrix product is a particular case of this product in which the scale has 0 and 1 as
the only grades. It is to be emphasized that we attempt to treat graded incidence
data in a way which is compatible with its semantics. This need has been recog-
nized long ago in mathematical psychology, in particular in measurement theory
[18]. For example, even if we represent the grades by numbers such as 0 ∼ strongly
disagree, 1

4 ∼ disagree, . . . , 1 ∼ strongly agree, addition, multiplication by real
numbers, and linear combination of graded incidence data may not have natural
meaning. Likewise, decomposition of graded incidence matrix I into the ordinary
matrix product of arbitrary real-valued matrices A and B suffers from a difficulty
to interpret A and B, as well as to interpret the way I is reconstructed from, or
explained by, A and B. This is not to say that the usual matrix decompositions of
incidence data I are not useful. [22,31] report that decompositions of binary matri-
ces into real-valued matrices may yield better reconstruction accuracies. Hence, as
far as the dimensionality reduction aspect (the technical aspect) is concerned, or-
dinary decompositions may be favorable. However, when the knowledge discovery
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aspect plays a role, attention needs to be paid to the semantics of decomposition,
and to the appropriate mathematical structure and geometry of the space of at-
tributes, the space of factors, and the transformations between them.

Our paper is organized as follows. Section 1.2 provides and overview of re-
lated work. In Section 2, we define the decomposition problem and explain the
factors we use for the decomposition and their role. Section 3 contains an illus-
trative example. An algorithm for decompositions of incidence matrices and its
experimental evaluation is presented in Section 4.

1.2 Related Work

In case of matrices with real numbers as entries (sometimes referred to as con-
tinuous data), various methods for matrix decompositions have been developed.
The best known include, in particular, factor analysis (FA), principal component
analysis (PCA), and singular value decomposition (SVD) [2,13]. Results regarding
optimality of such decompositions are available. However, these methods decom-
pose a real-valued matrix into a product of matrices with possibly negative values
which are generally difficult to interpret [22]. Non-negative matrix factorization
[19] overcomes this problem at the expense ofnotminimizing the global reconstruc-
tion error. The advantage is that the decomposition describes the original data as
additively composed of its easily interpretable parts. Restriction to certain values
(non-negative ones) and the resulting gain in interpretability is related to ourwork.

There are several papers on decomposing binary matrices into non-binary
matrices such as [20,27,28,30,36], see also [31] for further references.

Decompositions of binary matrices into binary matrices have been studied in
a number of papers. Early work was done by Markowsky et al., see e.g. [24,25,29]
which already include complexity results showing the hardness of problems related
to such decompositions. Decompositions of binary matrices into a Boolean prod-
uct of binary matrices using Hopfield-like associative neural networks have been
studied, e.g., by Frolov et al., see [10]. This approach is a heuristic in which the fac-
tors correspond to attractors of the neural network. Other heuristic approaches to
Boolean factor analysis include [15,16]. [6] shows that the decomposition of a bi-
nary matrix I to a Boolean product of binary matrices is equivalent to covering
the matrix by rectangular submatrices which contain 1s and shows that formal
concepts of I [11] are optimal factors for such decomposition. The problem of cov-
ering binary matrices with their submatrices containing 1s was studied in [12]. [22]
presents an algorithm for finding approximate decompositions of binary matrices
into Boolean product of binary matrices which is based on associations between
columns of I. [33] looks at the relationship between several problems related to
decomposition of binary matrices.

2 Decomposition and Factors

2.1 Decomposition

Consider an n×m object-attribute matrix I with entries Iij expressing grades
to which object i has attribute j. We assume that the grades are taken from a
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bounded scale L. In general, we assume that L is equipped with a partial order
≤, is bounded from below and above by elements denoted 0 and 1, and conforms
to the structure of a complete lattice, i.e. infima and suprema of subsets of L
exist. We do not assume the scale to be linearly ordered although in practical
applications this is usually the case. Grades of ordinal scales are conveniently
represented by numbers, such as the Likert scale {1, . . . , 5}. In such a case we
assume these numbers are normalized and taken from the unit interval [0, 1].
As an example, the Likert scale is represented by L = {0, 1

4 , 1
2 , 3

4 , 1}. Due to
the well-known Miller’s 7± 2 phenomenon [23], one might argue that we should
restrict ourselves to small scales but we consider arbitrary ones, including thus
the unit interval L = [0, 1] as well.

We want to decompose I into an n × k object-factor matrix A and a k ×m
factor-attribute matrix B which again have entries from the scale L. Entries Ail

and Blj are interpreted as degrees to which factor l applies to object i and to
which attribute j is a manifestation of factor l, respectively. We assume that the
object-attribute relationship is explained using the (hidden) factors as follows:
object i has attribute j if there is a factor l which applies to i and for which j
is one of its manifestations. Now, for a factor l there is a degree Ail to which
l applies to i and a degree Blj to which j is a manifestation of l. To obtain a
degree a to which “l applies to i and j is a manifestation of l”, we aggregate Ail

and Blj using an aggregation function ⊗ : L × L → L and put a = Ail ⊗ Blj ,
cf. [9]. This way, we obtain k degrees Ail⊗Blj, one for every factor l = 1, . . . , k.
Finally, we take the supremum

∨
of degrees Ail⊗Blj (such supremum coincides

with maximum if L is linearly ordered) as a result. That is, our composition
operation for I = A ◦B is defined by

(A ◦B)ij =
∨k

l=1 Ail ⊗Blj . (1)

Notice that if L = {0, 1} and ⊗ is the truth function of conjunction, A ◦ B is
the Boolean matrix product. We use t-norms for aggregation functions ⊗. T-
norms originated in K. Menger’s work on statistical metric spaces [17] and are
used as truth functions of conjunctions in fuzzy logic [14]. Their properties make
them good candidates for aggregating graded data [8,9,17]. Note that with ⊗
being a t-norm, (1) is used in fuzzy set theory to define compositions of fuzzy
relations [35]. Examples of ⊗ include the �Lukasiewicz t-norm on L = [0, 1] or on
an equidistant subchain of [0, 1] defined by a⊗b = max(0, a+b−1), the minimum
t-norm on L = [0, 1] or on a subset of [0, 1] defined by a ⊗ b = min(a, b), and
the product t-norm a⊗ b = a · b on L = [0, 1]. Using a decomposition I = A ◦B
with (1), attributes are expressed by means of factors in a non-linear manner:

Example 1. With �Lukasiewicz t-norm, let I = A ◦B be(
0.3 0.0 0.1
0.3 0.7 0.5
0.5 0.8 0.6

)
=

(
0.2 0.8
0.9 0.8
1.0 1.0

)
◦
( 0.4 0.8 0.6

0.5 0.2 0.3

)
.

Then for Q1 = (0.6 0.2) and Q2 = (0.4 0.3) we have (Q1+Q2)◦B = (1.0 0.5)◦B =
(0.4 0.8 0.6) 
= (0.0 0.6 0.2) = (0.0 0.4 0.2)+(0.0 0.2 0.0) = Q1 ◦B+Q2 ◦B. This
demonstrates non-linearity of the relationship between factors and attributes.
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2.2 Factors for Decomposition

Next, we describe the factors we use for decomposition of I. For this purpose, we
make use of a so-called residuum induced by the t-norm ⊗ [14,17], i.e. a binary
function → on L defined by

a → b = max{c ∈ L | a⊗ c ≤ b}.

Residuum satisfies an important technical condition called adjointness, namely,

a⊗ b ≤ c iff a ≤ b → c.

L together with ⊗ and → forms a complete residuated lattice [34]. We leave
out technical details including the properties of residuated lattices and refer to
[14]. The residuum induced by the �Lukasiewicz t-norm is defined by a → b =
min(1, 1− a + b).

We are going to use formal concepts associated to I as factors for a decomposi-
tion of I. Formal concepts are particular pairs 〈C, D〉 of graded sets (fuzzy sets) C
of objects and D of attributes, see [4]. That is, C : {1, . . . , n}→ L assigns to every
object i a degree C(i) ∈ L to which C applies to i. Likewise, D : {1, . . . , m}→ L
assigns to every attribute j a degree to which D applies to j. Denote by LU the set
of all graded (fuzzy) sets in a set U , i.e. the set of all mappings from U to L, and
put X = {1, . . . , n} (objects) and Y = {1, . . . , m} (attributes).

Definition 1. [4] A formal concept of I is any pair 〈C, D〉 for which C↑ = D
and D↓ = C where ↑ : LX → LY and ↓ : LY → LX are operators defined by

C↑(j) =
∧

i∈X(C(i) → Iij),

D↓(i) =
∧

j∈Y (D(j) → Iij).

In the definition,
∧

is the infimum in L (in our case, since X and Y are finite,
infimum coincides with minimum if L is linearly ordered). The set B(X, Y, I) of
all formal concepts of I is called the concept lattice of I. Formal concepts are
simple models of concepts in the sense of traditional, Port-Royal logic. If I is (a
characteristic function of) an ordinary binary relation (i.e. L = {0, 1}), formal
concepts of I coincide with the ordinary formal concepts of Wille [11]. C and
D are called the extent and the intent of a formal concept 〈C, D〉 and represent
the objects and the attributes which fall under the concept. The graded setting
takes into account that empirical concepts are graded rather than clear-cut. The
concept lattice equipped with a subconcept-superconcept ordering ≤ defined by

〈C1, D1〉 ≤ 〈C2, D2〉 iff C1(i) ≤ C2(i) for all i ∈ X,

which is equivalent to D2(j) ≤ D1(j) for all j ∈ Y , is indeed a complete lattice
[4]. Note that since → can be interpreted as a truth function of implication, a
formal concept 〈C, D〉 can be seen as a pair of graded sets C and D such that
D(j) is the degree to which j is shared by all objects to which C applies, and
C(i) is the degree to which i shares all attributes to which D applies [4].
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We are going to use formal concepts of I in the following way. For a set

F = {〈C1, D1〉, . . . , 〈Ck, Dk〉}

of formal concepts of I, we denote by AF an n × k matrix in which the l-th
column consists of grades assigned to objects by Cl. Likewise, we denote by BF
a k ×m matrix in which the l-th row consists of grades assigned to attributes
by Dl. That is,

(AF )il = (Cl)(i) and (BF )lj = (Dl)(j).

If I = AF ◦BF , F can be seen as a set of factors which fully explain the data. In
such a case, we call the formal concepts from F factor concepts. Given I, our aim
is to find a small set F of factor concepts. Using formal concepts of I as factors
is intuitively appealing because, as mentioned above, the formal concepts are in
fact, simple models of human concepts according to traditional logic approach. In
fact, factors are often called “(hidden) concepts” in the ordinary factor analysis.
In addition, the extents and intents of the concepts, i.e. columns and rows of
AF and BF , have a straightforward interpretation: they represent the grades to
which the factor concept applies to particular objects and particular attributes.

Before we turn to an illustrative example, we provide a geometric interpre-
tation of A ◦ B. Let I = A ◦ B. Denote by Jl the n × m matrix defined by
(Jl)ij = Ail ⊗ Blj , l = 1 . . . , k. That is, Jl = A l ◦ Bl is the ◦-product of the
l-th column of A and the l-th row of B. (1) then yields that I = J1 ∨ · · · ∨ Jk,
i.e. I is the

∨
-superposition of J1, . . . , Jk. Matrices Jl are rectangular (rectan-

gles) in that they result as the Cartesian products of graded sets. If L = {0, 1},
rectangular matrices are just matrices where the entries containing 1s form a
submatrix, i.e. tiles in the sense of [12]. We thus have:

Theorem 1. I = A ◦ B for an n × k matrix A and a k ×m matrix B if and
only if I is a

∨
-superposition of rectangular matrices A l ◦Bl , l = 1, . . . , k.

Remark 1. (1) Note that due to Theorem 1, tiling databases [12] means decom-
posing I into A ◦ B where columns of A and rows of B are the characteristic
vectors of the sets of objects and attributes covered by the tiles.

(2) This remains true even for arbitrary scales L: Finding a decomposition
of I is equivalent to covering I by rectangular submatrices, i.e. “graded tiles”,
which result by the Cartesian products of graded sets of objects and attributes,
and are contained in I.

(3) Let F be a set of factor concepts, i.e. I = AF ◦ BF . Due to Theorem 1,
for any subset F ′ of F we have (AF ′ ◦BF ′)ij ≤ Iij . That is, for any subset F ′ of
F , AF ′ ◦ BF ′ approximates I from below. We will see in Sections 3 and 4 that
it is usually the case that even for a small subset F ′ ⊆ F , matrix AF ′ ◦ BF ′ is
a good approximation of I.

2.3 Optimality of Formal Concepts as Factors

In this section we recall two important results from [5]. The first one says that
formal concepts of I are universal factors.
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Theorem 2. For every I there is F ⊆ B(X, Y, I) such that I = AF ◦BF .

The second one says that, as far as exact decompositions of I are concerned,
formal concepts are optimal factors in that they provide us with decompositions
of I with the least number k of factors.

Theorem 3. If I = A ◦B for n× k and k×m binary matrices A and B, there
exists a set F ⊆ B(X, Y, I) of formal concepts of I with |F| ≤ k such that for
the n× |F| and |F| ×m matrices AF and BF we have I = AF ◦BF .

This means that in looking for decompositions of I, one can restrict the search
to the set of formal concepts instead of the set of all possible decompositions.

3 Illustrative Example

Tab. 1 (top) contains the results of top five athletes in 2004 Olympic Games
decathlon in points which are obtained using the IAAF Scoring Tables for Com-
bined Events. Note that the IAAF Scoring Tables provide us with an ordinal
scale and a ranking function assigning the scale values to athletes. We are going
to look at whether this data can be explained using formal concepts as factors.
We first transform the data to a five-element scale

L = {0.00, 0.25, 0.50, 0.75, 1.00}

by a natural transformation and rounding. As a consequence, the factors then
have a simple reading. Namely, the grades to which a factor applies to an athlete

Table 1. 2004 Olympic Games Decathlon

Scores of Top 5 Athletes

10 lj sp hj 40 11 di pv ja 15

Sebrle 894 1020 873 915 892 968 844 910 897 680
Clay 989 1050 804 859 852 958 873 880 885 668

Karpov 975 1012 847 887 968 978 905 790 671 692
Macey 885 927 835 944 863 903 836 731 715 775

Warners 947 995 758 776 911 973 741 880 669 693

Incidence Data Table with Graded Attributes
10 lj sp hj 40 11 di pv ja 15

Sebrle 0.50 1.00 1.00 1.00 0.75 1.00 0.75 0.75 1.00 0.75
Clay 1.00 1.00 0.75 0.75 0.50 1.00 0.75 0.50 1.00 0.50

Karpov 1.00 1.00 0.75 0.75 1.00 1.00 1.00 0.25 0.25 0.75
Macey 0.50 0.50 0.75 1.00 0.75 0.50 0.75 0.25 0.50 1.00

Warners 0.75 0.75 0.50 0.50 0.75 1.00 0.25 0.50 0.25 0.75

Legend: 10—100 meters sprint race; lj—long jump; sp—shot put; hj—high jump;
40—400 meters sprint race; 11—110 meters hurdles; di—discus throw; pv—pole
vault; ja—javelin throw; 15—1500 meters run.
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Table 2. Factor Concepts

Fi Extent Intent

F1 {.5/Sebrle, Clay, Karpov, .5/Macey, .75/Warners} {10, lj, .75/sp, .75/hj, .5/40, 11, .5/di, .25/pv, .25/ja, .5/15}
F2 {Sebrle, .75/Clay, .25/Karpov, .5/Macey, .25/Warners} {.5/10, lj, sp, hj, .75/40, 11, .75/di, .75/pv, ja, .75/15}
F3 {.75/Sebrle, .5/Clay, .75/Karpov, Macey, .5/Warners} {.5/10, .5/lj, .75/sp, hj, .75/40, .5/11, .75/di, .25/pv, .5/ja, 15}
F4 {Sebrle, .75/Clay, .75/Karpov, .5/Macey, Warners} {.5/10, .75/lj, .5/sp, .5/hj, .75/40, 11, .25/di, .5/pv, .25/ja, .75/15}
F5 {.75/Sebrle, .75/Clay, Karpov, .75/Macey, .25/Warners} {.75/10, .75/lj, .75/sp, .75/hj, .75/40, .75/11, di, .25/pv, .25/ja, .75/15}
F6 {.75/Sebrle, .5/Clay, Karpov, .75/Macey, .75/Warners} {.75/10, .75/lj, .75/sp, .75/hj, 40, .75/11, .5/di, .25/pv, .25/ja, .75/15}
F7 {Sebrle, Clay, .25/Karpov, .5/Macey, .25/Warners} {.5/10, lj, .75/sp, .75/hj, .5/40, 11, .75/di, .5/pv, ja, .5/15}〉

can be described in natural language as “not at all”, “little bit”, “half”, “quite”,
“fully”, or the like. Tab. 1 (bottom) describes the athletes’ performance using
the five-element scale. In addition, we use the �Lukasiewicz t-norm on L.

Using shades of gray to represent grades from the five-element scale L, the
matrix I corresponding to Tab. 1 (bottom) can be visualized in the following
array (rows correspond to athletes, columns correspond to disciplines, the darker
the array entry, the higher the score):

The algorithm described in Section 4 found a set F of 7 formal concepts which
factorize I, i.e. for which I = AF ◦BF . These factor concepts are shown in Fig. 1
in the order in which they were produced by the algorithm. For example, factor
concept F1 applies to Sebrle to degree 0.5, to both Clay and Karpov to degree 1,
to Macey to degree 0.5, and to Warners to degree 0.75. Furthermore, this factor
concept applies to attribute 10 (100m) to degree 1, to attribute lj (long jump) to
degree 1, to attribute sp (shot put) to degree 0.75, etc. This means that an excellent
performance (degree 1) in 100m, an excellent performance in long jump, a very
good performance (degree 0.75) in shot put, etc. are particular manifestations of
this factor concept. On the other hand, only a relatively weak performance (degree
0.25) in javelin throw and pole vault are manifestations of this factor.

Therefore, a decomposition I = AF ◦BF exists with 7 factors where:

AF =

⎛
⎜⎝

0.50 1.00 0.75 1.00 0.75 0.75 1.00
1.00 0.75 0.50 0.75 0.75 0.50 1.00
1.00 0.25 0.75 0.75 1.00 1.00 0.25
0.50 0.50 1.00 0.50 0.75 0.75 0.50
0.75 0.25 0.50 1.00 0.25 0.75 0.25

⎞
⎟⎠,

BF =

⎛
⎜⎜⎜⎜⎝

1.00 1.00 0.75 0.75 0.50 1.00 0.50 0.25 0.25 0.50
0.50 1.00 1.00 1.00 0.75 1.00 0.75 0.75 1.00 0.75
0.50 0.50 0.75 1.00 0.75 0.50 0.75 0.25 0.50 1.00
0.50 0.75 0.50 0.50 0.75 1.00 0.25 0.50 0.25 0.75
0.75 0.75 0.75 0.75 0.75 0.75 1.00 0.25 0.25 0.75
0.75 0.75 0.75 0.75 1.00 0.75 0.50 0.25 0.25 0.75
0.50 1.00 0.75 0.75 0.50 1.00 0.75 0.50 1.00 0.50

⎞
⎟⎟⎟⎟⎠.
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Again, using shades of gray, this decomposition can be depicted as:

= ◦

Fig. 1 shows the rectangular patterns corresponding to the factor concepts, cf.
Theorem 1.

F1 F2 F3

F4 F5 F6 F7

Fig. 1. Factor Concepts as Rectangular Patterns

Fig. 2 demonstrates what portion of the data matrix I is explained using just
some of the factor concepts from F . The first matrix labeled by 46% shows
AF1 ◦BF1 for F1 consisting of the first factor F1 only. That is, the matrix is just
the rectangular pattern corresponding to F1, cf. Fig. 1. As we can see, this matrix
is contained in I, i.e. approximates I from below, in that (AF1 ◦ BF1)ij ≤ Iij

for all entries (row i, column j). Note that Theorem 1 implies that this always
needs to be the case, cf. Remark 1 (3). Label 46% indicates that 46% of the
entries of AF1 ◦BF1 and I are equal. In this sense, the first factor explains 46%
of the data. Note however, that several of the 54% = 100%− 46% of the other
entries of AF1 ◦BF1 are close to the corresponding entries of I, so a measure of
closeness of AF1 ◦BF1 and I which takes into account also close entries, rather
than exactly equal ones only, would yield a number larger than 46%.

The second matrix in Fig. 2, with label 72%, shows AF2 ◦BF2 for F2 consisting
of F1 and F2. That is, the matrix demonstrates what portion of the data matrix I
is explained by the first two factors. Again, AF2 ◦BF2 approximates I from below
and 72% of the entries of AF2 ◦BF2 and I coincide now. Note again that even for
the remaining 28% of entries, AF2 ◦BF2 provides a reasonable approximation of
I, as can be seen by comparing the matrices representing AF2 ◦ BF2 and I, i.e.
the one labeled by 72% and the one labelled by 100%.

Similarly, the matrices labeled by 84%, 92%, 96%, 98%, and 100% represent
AFl

◦BFl
for l = 3, 4, 5, 6, 7, for sets Fl of factor concepts consisting of F1, . . . , Fl.

We can conclude from the visual inspection of the matrices that already the two
or three first factors explain the data reasonably well.

Let us now focus on the interpretation of the factors. Fig. 1 is helpful as it
shows the clusters corresponding to the factor concepts which draw together the
athletes and their performances in the events.
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46% 72% 84%

92% 96% 98% 100%

Fig. 2.
∨

-superposition of Factor Concepts

Factor F1: Manifestations of this factor with grade 1 are 100m, long jump,
110m hurdles. This factor can be interpreted as the ability to run fast for short
distances. Note that this factor applies particularly to Clay and Karpov which
is well known in the world of decathlon. Factor F2: Manifestations of this factor
with grade 1 are long jump, shot put, high jump, 110m hurdles, javelin. F2
can be interpreted as the ability to apply very high force in a very short term
(explosiveness). F2 applies particularly to Sebrle, and then to Clay, who are
known for this ability. Factor F3: Manifestations with grade 1 are high jump
and 1500m. This factor is typical for lighter, not very muscular athletes (too
much muscles prevent jumping high and running long distances). Macey, who is
evidently that type among decathletes (196 cm and 98 kg) is the athlete to whom
the factor applies to degree 1. These are the most important factors behind data
matrix I.

4 Algorithm and Experiments

In this section, we present a greedy approximation algorithm which takes a data
matrix representing I as its input and produces a set F of formal concepts of I
for which I = AF ◦BF . Due to Theorem 1, finding such F which is minimal in
terms of the number of its elements is equivalent to finding a minimal subset of
{C ⊗ D | 〈C, D〉 ∈ B(X, Y, I)} which covers I. Note that this can be seen as a
graded version of a set covering problem which apparently has not been studied
before. A further study of this problem including various versions of approximate
coverings may yield useful results for processing of graded data. Now, a particular
case of this problem for L = {0, 1} is just the problem of covering a binary matrix
with the smallest possible set of rectangles. This problem is known to be NP-
hard, see [24,25,29] for early references, and also [6,12,33]. This indicates that we
need an approximation algorithm for the problem of finding small F for which
I = AF ◦BF .

An obvious approach to the design of such algorithm is to take an approxima-
tion algorithm for the (binary) set covering problem, such as the one described
in [7], and modify it for the graded case. Such an algorithm would require us
to compute first the set B(X, Y, I) of all formal concepts of I and then select
candidates for factors from B(X, Y, I) using a greedy approach [7]. This would
be time-demanding because B(X, Y, I) can be quite large.
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Instead, we propose a different greedy algorithm. The algorithm generates
maximal rectangles by looking for “promising columns”. A technical property
which we utilize is the fact that for each formal concept 〈C, D〉,

D =
⋃

j∈Y {D(j)/j}↓↑,

i.e. each intent D is a union of intents {D(j)/j}↓↑. Moreover, C = D↓. Here,
{D(j)/j} denotes a graded singleton, i.e. the grade of j in {D(j)/j} is D(j). As
a consequence, we may construct any formal concept by adding sequentially
{a/j}↓↑ to the empty set of attributes. Our algorithm follows a greedy approach
that makes us select j ∈ Y and degree a ∈ L which maximize the size of

D ⊕a j = {〈k, l〉∈ U |D+↓(k)⊗D+↓↑(l) ≥ Ikl}, (2)

where D+ = D ∪ {a/j} and U denotes the set of 〈i, j〉 of I (row i, column j)
for which the corresponding entry Iij is not covered yet. Note that the size of
D ⊕a j is just the number of entries of I which are covered by formal concept
〈D↓, D〉. Therefore, instead of going through all possible formal concepts and
selecting a factor from them, we just go through columns and degrees which
maximize the value of the factor, i.e. the area covered by the factor, which is
being constructed. The algorithm is summarized below.

Find-Factors(I)
1 U ← {〈i, j〉 | Iij 
= 0}
2 F ← ∅
3 while U 
= ∅
4 do D ← ∅
5 V ← 0
6 select 〈j, a〉 that maximizes |D ⊕a j|
7 while |D ⊕a j| > V
8 do V ← |D ⊕a j|
9 D ← (D ∪ {a/j})↓↑

10 select 〈j, a〉 that maximizes |D ⊕a j|
11 C ← D↓

12 F ← F ∪ {〈C, D〉}
13 for 〈i, j〉 ∈ U
14 do if Iij ≤ C(i)⊗D(j)
15 then
16 U ← U \{〈i, j〉}
17 return F

The main loop of the algorithm (lines 3–16) is executed until all the nonzero
entries of I are covered by at least one factor in F . The code between lines 4
and 10 constructs an intent by adding the most promising columns. After such
an intent D is found, we construct the corresponding factor concept and add it
to F . The loop between lines 13 and 16 ensures that all matrix entries covered
by the last factor are removed from U . Obviously, the algorithm is sound and
finishes after finitely many steps with a set F of factor concepts.
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Table 3. Exact Factorizability

�Lukasiewicz ⊗ minimum ⊗
k no. of factors no. of factors

5 5.205± 0.460 6.202± 1.037
7 7.717± 0.878 10.050± 1.444
9 10.644± 1.316 13.379± 1.676

11 13.640± 1.615 15.698± 1.753
13 16.423± 1.879 17.477± 1.787
15 18.601± 2.016 18.721± 1.863

Experimental Evaluation. We now present experiments with exact and approx-
imate factorization of randomly generated matrices and their evaluation. First,
we observed how close is the number of factors found by the algorithm Find-

Factors to a known number of factors in artificially created matrices. In this
experiment, we were generating 20 × 20 matrices according to various distri-
butions of 5 grades. These matrices were generated by multiplying m × k and
k× n matrices. Therefore, the resulting matrices were factorizable with at most
k factors. Then, we executed the algorithm to find F and observed how close
is the number |F| of factors to k. The results are depicted in Tab. 3. We have
observed that in the average case, the choice of a t-norm is not essential and
all t-norms give approximately the same results. In particular, Tab. 3 describes
results for �Lukasiewicz and minimum t-norms which can be seen as two limit
cases of t-norms [17]. Rows of Tab. 3 correspond to numbers k = 5, 6, . . . , 15
denoting the known number of factors. For each k, we computed the average
number of factors produced by our algorithm in 2000 k-factorizable matrices.
The average values are written in the form of “average number of factors ±
standard deviation”.

As mentioned above, factorization and factor analysis of binary data is a spe-
cial of our setting with L = {0, 1}, i.e. with the scale containing just two grades.
Then, the matrix product ◦ given by (1) coincides with the Boolean matrix mul-
tiplication and the problem of decomposition of graded matrices coincides with
the problem of decomposition of binary matrices into the Boolean product of
binary matrices. We performed experiments with our algorithm in this particu-
lar case with three large binary data sets (binary matrices) from the Frequent
Itemset Mining Dataset Repository, see http://fimi.cs.helsinki.fi/data/.
In particular, we considered the CHESS, CONNECT, and MUSHROOM data
sets. The results are shown in Tab. 4. The columns labeled by n and m show the
numbers of rows and columns of the matrices (e.g., MUSHROOM is a 8124×119
binary matrix). The column labeled by 50% says the following: The first num-
ber is the number of factors sufficient to explain 50% of the data entries. For
example, the first 5 factors explain 50% of data for CHESS data, i.e. AF ◦ BF
covers 50% of entries of matrix I with |F| = 4. The second number is the ratio

number of attributes/number of factors
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Table 4. Factorization of Boolean Matrices

Input Dimensions Portion of data explained
Database n m 50% 70% 90%

CHESS 3196 75 5 15.00 13 5.77 33 2.27
CONNECT 67557 129 4 32.25 10 12.90 39 3.31
MUSHROOM 8124 119 7 17.00 19 6.26 46 2.59

which can be regarded as the coefficient of reduction of dimensionality. For
example, for the MUSHROOM data set, the first 7 factors produced by our
algorithm explain 50% of data and the corresponding coefficient of reduction is
119/7 = 17.00. The columns labeled by 70% and 90% have analogous meaning.

5 Conclusions and Future Work

We presented a novel approach to factor analysis of matrices with ordinal data.
The factors in this approach correspond to formal concepts in the data matrix
and the relationship between the factors and original attributes is a non-linear
one. One feature of the model is a transparent way of treating the grades which
results in good interpretability of factors. Another feature is its feasibility regard-
ing theoretical analysis. As an example, the factors we use are optimal in terms
of their number. Furthermore, we proposed a greedy approximation algorithm
for the problem of finding a small set of factors and provided results of exper-
iments demonstrating its behavior. Future research will include the following
topics:

– Comparison, both theoretical and experimental, to other methods of matrix
decompositions.

– Approaches to the problem of approximate factorization of I, continuing our
experiments with approximate factorization presented in this paper.

– Development of further theoretical insight focusing particularly on reducing
further the space of factors to which the search for factors can be restricted.
Note that decompositions of a matrix with grades into a binary matrix and a
matrix with grades was studied in [3].

– Study the computational complexity aspects of the problem of approximate
factorization, in particular the approximability of the problem of finding de-
compositions of matrix I [1].

– Explore the applications of the decompositions studied in this paper. One ap-
plication area is factor analysis. The usefulness of the decompositions in this
area was illustrated by the example in Section 3. Another topic which needs to
be explored is the possible utilization of the dimensionality reduction provided
by the decompositions.
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Abstract. Conditional Functional Dependencies (CFDs) are Functional
Dependencies (FDs) that hold on a fragment relation of the original re-
lation. In this paper, we show the hierarchy between FDs, CFDs and
Association Rules (ARs): FDs are the union of CFDs while CFDs are
the union of ARs. We also show the link between Approximate Func-
tional Dependencies (AFDs) and approximate ARs. In this paper, we
show that all those dependencies are indeed structurally the same and
can be unified into a single hierarchy of dependencies. A benefit of this hi-
erarchy is that existing algorithms which discover ARs could be adapted
to discover any kind of dependencies and, moreover, generate a reduced
set of dependencies. We also establish the link between the problem of
finding equivalent pattern tableaux of a CFD and the problem of finding
keys of a relation.

1 Introduction

Dependency theory is one of the major subjects of database theory and has been
traditionally used to optimize queries, prevent invalid updates and to normalize
databases. Originally, dependency theory has been developed for uninterpreted
data and served mainly database conception purposes [10]. The Functional De-
pendencies introduced by Codd were generalized to Equality Generating De-
pendencies (EGD) [3]. In [2], dependencies over interpreted data (i.e. equality
requirements are replaced by constraints of an interpreted domain) were in-
troduced and generalized the EGDs into Constraint-Generating-Dependencies
(CGD). In [6], the authors present a particular case of CGDs: Conditional Func-
tional Dependencies (CFDs), for data cleaning purposes. CFDs are dependencies
which holds on instances of the relations. Constraint used in CFDs is the equal-
ity and allows to fix particular constant values for attributes. Basically, CFDs
can be viewed as FDs which holds on a fragment relation of the original in-
stance relation, this fragment relation being characterized by the constraints
to be applied on the attributes. Those constraints represent a selection opera-
tion on the relation. All these works focused mainly on implication analysis and
axiomatizability.
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Discovery of dependencies existing in an instance of a relation received consid-
erable interest as it allowed automatic database analysis. Knowledge discovery
and data mining [1], database management ([5],[9]), reverse engineering [18] and
query optimization [19] are among the main applications benefiting from efficient
dependencies discovery algorithms. New dependencies on instances of relations
were defined. We cite (among others): Association Rules (AR) [1] which are
dependencies holding on particular values of attributes, and Approximate Func-
tional Dependencies (AFD) [15] which are FDs which almost hold on a given
relation. Note that AFDs have also applications in database design [11]. For
those latter dependencies, several measures of approximateness were defined,
expressing the interest of the dependency. Numerous algorithms have been pro-
posed for such dependencies discovery, usually ad-hoc algorithms discovering a
particular type of dependency. Among the most famous algorithms we can cite:
A priori [1] (a level-wise frequent itemsets discovery approach) for ARs mining,
Tane [15] (similar approach as A priori but for FDs and AFDs discovery), Close
[17] (discovery of closed frequent itemsets). Usually, algorithms used to discover
FDs can be adapted to discover ARs and reciprocally.

Recently, some algorithms have been proposed to discover CFDs: [8] and [13].
With no surprise (as our paper will show), those algorithms are adaptations of
well-known algorithms for ARs or FDs discovery.
Contributions: As stated above, many dependencies have been studied and
are actually used in different applications. In this paper, we show that all those
dependencies are indeed structurally the same and can be unified into a single
hierarchy of dependencies. A benefit of this hierarchy is that existing algorithms
which discover ARs could be adapted to discover any kind of dependencies and,
moreover, generate a reduced set of dependencies.

2 Background, Definitions and Preliminary Results

2.1 Definitions

Let R be a relation schema defined over a set of attributes Attr(R). The domain
of each attribute A ∈ Attr(R) is denoted by Dom(A). For an instance r of R, a
tuple t ∈ r and X a sequence of attributes, we use t[X ] to denote the projection
of t onto X .

An FD X → Y , where X, Y ⊆ Attr(r), is satisfied by r, denoted by r �
X → Y , if for all pairs of tuples t1, t2 ∈ r we have: if t1[X ] = t2[X ] then
t1[Y ] = t2[Y ]. In other words, all pairs of tuples agreeing on attributes X will
agree on attributes Y .

A CFD ϕ defined on R is a pair (X → Y, Tp), where (1) X → Y is a standard
FD, referred to as the FD embedded in ϕ; and (2) Tp is a tableau with attributes
in R, referred to as the pattern tableau of ϕ, where for each A ∈ Attr(R) and
each pattern tuple tp ∈ Tp, tp[A] is either:

– a constant ’a’ in Dom(A),
– an unnamed variable � that draws values from Dom(A),
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– or an empty variable⊥ which indicates that the attribute does not contribute
to the pattern (i.e. A 
∈ X ∪ Y ).1

For any constant a of an attribute we have: ⊥ ≤ a ≤ � . We define the
pattern intersection operator � of two tuples as:

t1 � t2 = tp such that ∀A ∈ Attr(r),

⎧⎪⎨
⎪⎩

tp[A] = t1[A], if t1[A] ≤ t2[A]
tp[A] = t2[A], if t1[A] > t2[A]
tp[A] = ⊥ , otherwise.

We define the pattern restriction to attributes X of a tuple t, denoted by t(X)
as:

t(X) = tp such that ∀A ∈ Attr(r),

{
tp[A] = t[A], if A ∈ X

tp[A] = ⊥ , otherwise.

We define a subsumption operator � over pattern tuples t1 and t2:

t1 � t2 if and only if ∀A ∈ Attr(R), t1[A] ≤ t2[A].

In other words, t1 � t2 if and only if t1 � t2 = t1. We define the special tuple
Top as the tuple with value � on all attributes, i.e. tp � Top for any pattern
tuple tp.

An instance r of R satisfies the CFD ϕ, denoted by r � ϕ, if for each tuple
tp in the pattern tableau Tp of ϕ, and for each pair of tuples t1, t2 in r, if
t1(X) = t2(X) � tp(X), then t1(Y ) = t2(Y ) � tp(Y ). In other words, a CFD is
an FD satisfied by a fragment relation.

A pattern tuple tp defines a fragment relation of r:

rtp = {t ∈ r | tp � t}.

We will denote by rTp the fragment relation containing all tuples of r satisfying at
least one of the patterns in Tp. Note that given a CFD (X → Y, Tp), we thus have
rTp � X → Y and r−rTp 
� X → Y . For this reason, we will denote: rX→Y = rTp

and rX �→Y = r − rTp . To ease the reading, given a CFD ϕ = (X → A, TP ), we
will sometimes denote by rϕ the relation defined by rTp , i.e. rϕ = rTp = rX→A.

A pattern tableau can thus be seen as a selection query on a relation returning
a fragment of the relation. Two patterns tableaux will be said equivalent if and
only if they return the same fragment relation.

Lemma 1. For any pattern tableau TP there exists an equivalent pattern tableau
TPConst such that pattern tuples in TPConst contains either constant or empty
variables.

Proof. It is straightforward since in the worst case patterns in TPConst are exactly
the tuples of the fragment relation. ��
1 In [12], empty variables are not present in the pattern tableau.
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r A B C D E F
t1 a1 b1 c1 d1 e1 f1

t2 a1 b1 c1 d1 e2 f1

t3 a2 b1 c2 d2 e2 f1

t4 a2 b1 c2 d2 e3 f1

t5 a2 b2 c2 d2 e1 f2

t6 a2 b2 c2 d1 e1 f2

t7 a2 b2 c1 d1 e1 f2

t8 a2 b2 c1 d2 e1 f2

t9 a1 b2 c2 d1 e2 f2

t10 a1 b2 c2 d1 e1 f2

Fig. 1. An instance relation r of the schema R

Consequence of previous lemma is that, without loss of generality, we will first
focus on CFDs which tableaux contain only constant or empty attributes. In
Section 5 we will show how to find equivalent tableaux containing the unnamed
variable � .

In the same way, to simplify the discussion without losing generality, we con-
sider, as in [12], CFDs of the form (X → A, Tp) where A is a single attribute.

Example 1 (CFDs definition)
The CFD ϕ1 = (AB → C, {(� , b2,� ,⊥ ,⊥ ,⊥ )}) is not satisfied by the

relation in figure 1 because of tuples t6 and t7.
However, the CFDs:

– ϕ2 = (AB → C, {(a1, b1, c1,⊥ ,⊥ ,⊥ ), (a2, b1, c2,⊥ ,⊥ ,⊥ ),
(a1, b2, c2,⊥ ,⊥ ,⊥ )})

– ϕ3 = (AB → C, {(a1,� ,� ,⊥ ,⊥ ,⊥ ), (� , b1,� ,⊥ ,⊥ ,⊥ )})

are satisfied by the relation. Note that ϕ2 and ϕ3 are equivalent in the relation.
Indeed, the FD AB → C is satisfied in the fragment relation rϕ2 = rϕ3 =
{t1, t2, t3, t4, t9, t10} while it does not hold on the fragment relation r − rϕ2 .

There are no CFDs of the form (AD → C, Tp) in the relation.
The FDs of the relation are {B → F, F → B, ACDE → BF, ACE → BF}.

2.2 X-Complete Relations

Using the intersection operator over tuples we could build the tuples lattice of a
relation. A closed tuple will thus subsume all tuples agreeing on the same values,
i.e. the values of non empty variables in the closed tuple. This notion of set of
tuples agreeing on the same values for a given set of attributes X has already
been defined in database theory for horizontal decomposition purposes [11] or
for FDs discovery [15]. We thus use their definition to define the different closure
operators we use in this paper.

Definition 1 (X-complete property [11]). The relation r is said to be X-
complete if and only if ∀ t1, t2 ∈ r we have t1[X ] = t2[X ].
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In other words, a relation is X-complete if all tuples agree on the attributes X .
Note that they might also agree on other attributes: this constitutes the pattern
of r.

Definition 2 (X-complete-pattern). We call X-complete-pattern of an X-
complete relation r, denoted by γ(X, r), the pattern tuple on which tuples of r
agree. More formally: γ(X, r) = � {t ∈ r}.

Note that since r is X-complete, its X-complete-pattern defines at least the
attributes in X (i.e. those attributes do not have the ⊥ value). Given a relation
r and a set of attributes it is always possible to horizontally decompose r in
fragment relations which are X-complete.

Definition 3 (X-complete horizontal decomposition). We denote by
RX(r) the set of all X-complete fragment relations of r. More formally: RX(r) =
{r′ ⊆ r | r′ is X-complete}.

In each fragment relations, tuples agree at least on the attributes X .

Definition 4 (Set of X-patterns). We denote by Γ (X, r) the set of all X-
complete-patterns of an X-complete decomposition. More formally: Γ (X, r) =
{γ(X, r′) | r′ ∈ RX(r)}.

Attributes X are defined in all X-complete-patterns. Some other attributes
might also be defined.

Definition 5 (Closure operator). We call closure of X in r, denoted by
θ(X, r), the set of all attributes defined in all X-complete-patterns of the re-
lation. More formally:

θ(X, r) = {A ∈ Attr(r) | ∀tp ∈ Γ (X, r), tp[A] 
= ⊥ }.

Using the closure operator θ(X, r) , we can trivially characterize FDs2.

Property 1. Let A 
∈ X . We have r � X → A (i.e. X → A is an FD of r) if and
only if A ∈ θ(X, r).

Proof. ⇒: Let X → A be an FD of r. Consider the X-complete horizontal
decomposition of r. For any r′ ∈ RX(r) and ∀t, t′ ∈ r′, we have t[X ] = t′[X ].
Since X → A is an FD, t[A] = t′[A]. Thus, γ(X, r′)[A] 
= ⊥ . Hence, A ∈ θ(X, r).

⇐: Consider A ∈ θ(X, A). Thus, ∀t, t′ ∈ r such that t[X ] = t′[X ], we have
t[A] = t′[A] (since γ(X, rt)[A] 
= ⊥ ). As a consequence, r � X → A. ��

Note that the closure operator θ(X, r) is equivalent to the closure of a set of
attributes X using FD of r.

Proposition 1. Let r′ ⊆ r. Then r′ is X-complete if and only if r′ is θ(X, r)-
complete.
2 Note that this closure operator is the same that the one obtained using the agree

sets [4].
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Ra1b1(r) A B C D E F
t1 a1 b1 c1 d1 e1 f1

t2 a1 b1 c1 d1 e2 f1

Ra2b1(r) A B C D E F
t3 a2 b1 c2 d2 e2 f1

t4 a2 b1 c2 d2 e3 f1

γ(AB,Ra1b1(r)) = (a1, b1, c1, d1,⊥ , f1) γ(AB, Ra2b1(r)) = (a2, b1, c2, d2,⊥ , f1)

Ra2b2(r) A B C D E F
t5 a2 b2 c2 d2 e1 f2

t6 a2 b2 c2 d1 e1 f2

t7 a2 b2 c1 d1 e1 f2

t8 a2 b2 c1 d2 e1 f2

Ra1b2(r) A B C D E F
t9 a1 b2 c2 d1 e2 f2

t10 a1 b2 c2 d1 e1 f2

γ(AB,Ra2b2(r)) = (a2, b2,⊥ ,⊥ , e1, f2) γ(AB, Ra2b1(r)) = (a1, b2, c2, d1,⊥ , f2)

Fig. 2. The AB-complete horizontal decomposition of relation r of figure 1 and their
corresponding AB-complete patterns. The closure of AB is θ(AB, r) = {A, B, F}.

Proof. ⇐: trivial since X ⊆ θ(X, r).
⇒: Consider t, t′ ∈ r′ such that t[X ] = t′[X ]. Let us demonstrate that

t[θ(X, r)] = t′[θ(X, r)].
∀A ∈ θ(X, r) −X , r � X → A (i.e. X → A is an FD). Thus, r′ � X → A since
r′ ⊆ r. As a consequence, t[A] = t′[A]. ��

A consequence is that X and θ(X, r) define the same X-complete horizontal
decomposition of r. This leads to the following corollary.

Corollary 1. Γ (X, r) = Γ (θ(X, r), r).

Example 2 (X-complete patterns)
In the relation of figure 1, the fragment relation rAB = {t1, t2} is AB-

complete. The AB-complete horizontal decomposition of r is
RAB(r) = {{t1, t2}, {t3, t4}, {t5, t6, t7, t8}, {t9, t10}}. This decomposition is
shown on figure 2.

The set of AB-complete patterns is Γ (AB, r) = {(a1, b1, c1, d1,⊥ , f1),
(a2, b1, c2, d2,⊥ , f1), (a2, b2,⊥ ,⊥ , e1, f2), (a1, b2, c2, d1,⊥ , f2)}.

The closure of AB is θ(AB, r) = {A, B, F}. Note that this is coherent with
the FD B → F .

3 Link between CFDs, FDs and ARs

Here we show the relation between CFDs and other usual dependencies.

FDs: An FD X → A can be seen as a CFD (X → A, tp) where tp is a single
tuple with no constants, i.e. tp = Top(X ∪ {A}). In other words, r � X → A if
and only if rX→A = r (and thus rX �→A = ∅).
ARs: An AR is a dependency (X1 = b1)∧ · · · ∧ (Xk = bk) → (A = a) meaning
that for any tuple t ∈ r, if t[X1] = b1 and · · · and t[Xk] = bk then t[A] = a. Note
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that for this kind of dependency, contrary to FDs and CFDs, no agreement is
needed among tuples. The support of an AR is the number of tuples of the relation
satisfying the dependency. An AR can be expressed using a CFDs which tableau
consists in a single pattern tuple containing only constant or empty values.

Example 3. In the relation of figure 1, the AR (A = a1, B = b2 → C = c2) could
be rewritten as the CFD (AB → C, (a1, b2, c2,⊥ ,⊥ ,⊥ )). The support of this
AR is 2 corresponding to the size of the fragment relation obtained using the
pattern tuple (a1, b2, c2,⊥ ,⊥ ,⊥ ).

Lemma 2. Let r be a relation, X ⊆ Attr(r), such that r is X-complete. Then
the following assertions are equivalent:

1. (X → A, γ(X, r)) is a CFD of r
2. X → A is an FD of r
3. (X → A, γ(X, r)) is an AR of r

Proof. If | r |= 1, the lemma trivially holds. We thus consider that r contains
at least two tuples t, t′. Since r is X-complete, we have r is θ(X, r)-complete,
RX(r) = {r}, and Γ (X, r) = {γ(X, r)}. If A 
∈ θ(X, r), all assertions are false
(and thus equivalent). Suppose that A ∈ θ(X, r). Thus, ∀t, t′ ∈ r, we have
t(X ∪ {A}) = t′(X ∪ {A}). ��

Lemma 2 states that when a relation is X-complete, FDs, CFDs and ARs of the
form X → A are equivalent. The next theorem characterizes the link between
FDs, CFDs and ARs when the relation is not X-complete.

Theorem 1. Let r be a relation, X ⊆ Attr(r), A ∈ Attr(r) \X and Tp = {tp ∈
Γ (X, r) | tp[A] 
= ⊥ }. The following assertions are equivalent:

1. (X → A, Tp) is a CFD of r
2. X → A is an FD of rTp

3. For any r′ ∈ RX(rTp), (X → A, γ(X, r′)) is an AR of r

Proof. 1 ⇒ 2: We suppose that (X → A, Tp) is a CFD of r. Thus, ∀tp ∈ Tp, we
have rtp � X → A. Since rTp =

⋃
tp∈Tp

rtp , we have rTp � X → A.
2 ⇒ 3: We suppose that rTp � X → A. We thus have ∀r′ ∈ RX(rTp), r′ is X-

complete. Since r′ � X → A, r′ is X ∪ {A}-complete. Hence, (X → A, γ(X, r′))
is an AR of r′. Since for any t′ 
∈ r′ we have t′(X) 
= γ(X, r′)(X) we conclude
that (X → A, γ(X, r′)) is a CFD of r.

3 ⇒ 1: We suppose that ∀r′ ∈ RX(rTp), X → A is an AR of r. From Lemma 2
we conclude that r′ � X → A. Since rTp =

⋃
r′∈RX (rTp) r′, we have rTp � X → A.

Moreover, ∀t′p ∈ Γ (X, r) such that t′p 
∈ Tp, we have t′p[A] = ⊥ . Thus, rt′p 
�
X → A. And thus r − rTp 
� X → A. Therefore, we conclude that (X → A, Tp)
is a CFD of r. ��

Theorem 1 is quite important for understanding the link between ARs, CFDs
and FDs. Indeed, it leads to a hierarchy among those dependencies:
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– an AR (X → A, tp) is a dependency that holds on at least one fragment
relation of r which is X-complete. In other words, there exists at least one
fragment relation which is X-complete and such that tuples agree on at-
tributes X and A.

– a CFD (X → A, Tp) is a dependency that holds on some fragment relations of
r which are X-complete. It can thus be viewed as the union of ARs holding on
those fragment relations. In other words, on each of those fragment relations
where tuples agree on X, they also agree on A.

– an FD is a dependency that holds on all fragment relations of r which are
X-complete. It can thus be viewed as the union of ARs holding on all those
fragment relations. In other words, in any fragment relation which is X-
complete, tuples agree on attribute A.

Agreement or not on an attribute A for tuples in an X-complete fragment
relation is thus the core condition for a dependency X → A to hold or not in
this fragment relation.

Definition 6 (A-Valid and A-Invalid X-complete pattern tuples). An
X-complete pattern tuple tp is said to be A-valid towards A if and only if attribute
A is defined in tp.

We denote by Ψ(X → A) the set of all A-valid X-complete pattern tuples.
More formally: Ψ(X → A) = {tp ∈ Γ (X, r) | tp[A] 
= ⊥ }.

Dually, we denote by Ψ(X 
→ A) the set of all A-invalid X-complete pattern
tuples: Ψ(X 
→ A) = Γ (X, r)− Ψ(X → A).

In other words, an X-complete pattern tuple is said A-valid if in its corresponding
X-complete relation all tuples agree on A. Given a set of attributes X we can thus
decompose the global relation in two subsets of fragment relations: those agreeing
on A (represented by the set of their X-complete pattern tuples Ψ(X → A)) and
those that do not agree on A (represented by the set of their X-complete pattern
tuples Ψ(X 
→ A)).

Thus, for any dependency X → A, the set Ψ(X → A) can be interpreted as the
pattern tableau selecting the fragment relation of r on which the dependency
holds. In other words, any CFD (X → A, Tp) could be rewritten as (X →
A, Ψ(X → A)) (the CFDs are equivalent).

If Ψ(X → A) is empty, the dependency does not hold in any fragment relation
(denoted by X 
→ A). We will say that X → A is a pure AR if it holds exactly on
one X-complete fragment relation (i.e. Ψ(X → A) contains only one pattern tu-
ple). We will say that a CFD is a pure CFD if it holds on at least two X-complete
fragment relations and does not hold on at least one X-complete fragment re-
lations (i.e. Ψ(X → A) contains at least two pattern tuples and Ψ(X 
→ A) is
not empty). In other words, a pure AR does not generalize into a CFD, while a
pure CFD does not generalize into an FD. This hierarchy is summarized in the
following table.
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Dependency Type Ψ(X → A) ? Ψ(X 
→ A) ?
X 
→ A Ψ(X → A) = ∅
X → A Pure AR | Ψ(X → A) |= 1 | Ψ(X 
→ A) |≥ 1

Pure CFD | Ψ(X → A) |≥ 2 | Ψ(X 
→ A) |≥ 1
FD Ψ(X 
→ A) = ∅

The main consequence of this hierarchy is that any algorithm which computes
ARs could be adapted in order to compute CFDs and FDs. Another interesting
consequence is that, when mining ARs in a relation, one could reduce the number
of generated ARs: indeed some of those ARs are in fact CFDs or FDs and
thus could be regrouped into a single dependency! Algorithms could reduce the
amount of generated dependency by generating only the pure ARs, the pure
CFDs and FDs. Moreover, such generation could ease the expertise work since
some extra information is present: a pure AR is a dependency which holds only
for one precise combination of values of attributes X while, on the opposite, an
FD holds for any combination of values of attributes X .

Example 4 (Link between FDs, CFDs and ARs)
The CFD ϕ4 = (E → A, {(a2,⊥ ,⊥ ,⊥ , e3,⊥ , }) is a pure AR of the relation

of figure 1.
ϕ2 = (AB → C, {(a1, b1, c1,⊥ ,⊥ ,⊥ ), (a2, b1, c2,⊥ ,⊥ ,⊥ ),
(a1, b2, c2,⊥ ,⊥ ,⊥ )}) is a pure CFD of the same relation. Indeed, we can
note that AB → C is an AR in the fragment relations Ra1b1(r), Ra2b1(r) and
Ra1b2(r) (see figure 2). In the same way, AB → C is an FD for the fragment
relation rϕ2 = Ra1b1(r) ∪ Ra2b1(r) ∪ Ra1b2(r). Thus | Ψ(AB → C) |= 3 and
| Ψ(AB 
→ C) |= 1: AB → C is a pure CFD or r.

Now consider attributes AD of the relation in figure 1.
Γ (AD, r) = { (a1,⊥ ,⊥ , d1,⊥ ,⊥ ), (a2, b2,⊥ , d1, e1, f2),

(a2,⊥ ,⊥ , d2,⊥ ,⊥ )}.
From this, we see that Ψ(AD → C) = ∅. As consequence, there are no CFDs in
r of the form (AD → C, Tp).

Now consider the attributes ACE.
Γ (ACE, r) = { (a1, b1, c1, d1, e1, f1), (a1, b1, c1, d2, e2, f1),

(a1, b2, c2, d1, e1, f2), (a1, b2, c2, d1, e2, f2),
(a2, b2, c1,⊥ , e1, f2), (a2, b2, c2,⊥ , e1, f2),
(a2, b1, c2, d2, e2, f1), (a2, b1, c2, d2, e3, f1)}

Hence we have Ψ(ACE 
→ B) = ∅. Thus, ACE → B is an FD of the relation.

4 Extending the Hierarchy to Approximate FDs and
Approximate ARs

An AFD [15] is an FD that almost holds: some tuples of r invalidate the FD,
representing errors or exceptions to the rule. Several ways of defining the approx-
imateness of a dependency X → A have been used. The most common accepted
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measure is the g3 error, representing the fraction of rows that should be removed
from r in order to have r � X → A. :

g3(X → A) = 1− (max{| s | s.t. s ⊆ r ∧ s � X → A})
| r |

We call support of an AFD X → A, denoted by Support(X → A), the size
of the maximal fragment relation smax such that smax � X → A. The g3 error
could thus be rewritten:

g3(X → A) = 1− Support(X → A)
| r |

An approximate AR is, in the same way, an AR which almost holds on r: some
tuples of r invalidate the AR. Measure of approximateness of an AR (X → A, tp)
is the confidence conf((X → A, tp)), expressing the conditional probability for
a tuple t ∈ r of having t[X ∪ {A}] = tp[X ∪ {A}] knowing that t[X ] = tp[X ].

conf((X → A, tp)) =
| rtp(X∪{A}) |
| rtp(X) |

Obviously, given a pure CFD (X → A, Tp), X → A is an AFD. Moreover,
rX→A ⊆ smax. Thus we have | rTp |=| rX→A |≤ Support(X → A). Missing
tuples might be found in rX �→A.

For any pattern tuple tp in Ψ(X 
→ A), rtp 
� X → A by definition. However,
if we consider RA(rtp), the A-complete horizontal decomposition of rtp , we have:
∀r′ ∈ RA(rtp), r′ � X → A. Thus, rTp ∪ r′ � X → A. If we take r′ ∈ RA(rtp)
such that | r′ | is maximal, then rTp ∪ r′ ⊆ smax.

Proposition 2. Given a CFD (X → A, Tp):

Support(X → A) =| rTp | +
∑

tp∈Ψ(X �→A)

max({| r′ | s.t. r′ ∈ RA(rtp)})

Proof. ∀tp ∈ Ψ(X 
→ A) and ∀r′ ∈ RA(rtp) we have r′ � X → A. Thus,
rTp ∪ r′ � X → A. Let rmax =

⋃
tp∈Ψ(X �→A) r′ such that r′ ∈ RA(rtp) and | r′ |

is maximal. We thus have rTp ∪ rmax � X → A and for all t ∈ (r− (rTp ∪ rmax))
we have (r − (rTp ∪ rmax)) 
� X → A.

As a consequence, Support(X → A) =| rTp ∪ rmax |. ��

Given a CFD (X → A, Tp) and a pattern tuple tp in Ψ(X 
→ A) we have seen
that ∀r′ ∈ RA(rtp), r′ � X → A. In other words, X → A is an AR of r′. It is also
an approximate AR of r which confidence is | r′ | / | rtp |. Thus, approximate
ARs with maximal confidence in each of the X-complete fragment relations of r
define a fragment relation that participates in the support of the AFD.

Theorem 2
Support(X → A) =

∑
r′∈RX(r)

| r′tp
|

with r′tp
∈ RA(r′) and (X → A, tp) is an AR of r’ with maximal confidence.
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Proof. ∀r′ ∈ RX(r) and ∀r′′ ∈ RA(r′) we have r′′ � X → A. Thus X → A is an
AR of r′′ since r′′ is X ∪ {A}-complete.
If r′ = r′′ then X → A is an AR of r′ with confidence 1.
If r′′ ⊂ r′ then X → A is an approximate AR of r′ with confidence < 1.
If | r′′ | is maximal in RA(r′), then the confidence of the approximate AR X → A
is maximal in r′′. We conclude using previous proposition. ��

In other words, an AFD can be seen as the union of ARs (one per X-complete
fragment relation of the relation) with maximal confidence: this includes exact
ARs and approximate ARs, while an FD is the union of all exact ARs. A conse-
quence is that any algorithm which computes both exact and approximate ARs
could be used to discover AFD and their support.

Example 5 (Link between AFDs, ARs and approximate ARs)
Consider the CFD:

ϕ2 = (AB → C, {(a1, b1, c1,⊥ ,⊥ ,⊥ ), (a2, b1, c2,⊥ ,⊥ ,⊥ ),
(a1, b2, c2,⊥ ,⊥ ,⊥ )}) of the relation in figure 1. The fragment relation satisfying
the CFD ϕ2 is rAB→C = Ra1b1(r) ∪ Ra2b1(r) ∪ Ra1b2(r). Thus | rAB→C |= 6.
(see figure 2).

If we consider rAB �→C = Ra2b2(r), we could decompose it in ABC-complete
fragment relations: Ra2b2c1(r) = {t5, t6} and Ra2b2c2(r) = {t7, t8}. Each ABC-
complete fragment relation satisfies the implication AB → C. We can thus add
one of the fragment relation to rAB→C without invalidating AB → C. Both
fragment relations have the same number of tuples: 2. Thus, the support of the
AFD AB → C is 8.

5 Constraint Satisfaction for Pattern Tableau Generation

We have seen that any CFD admits an equivalent CFD such that the pattern
tableau consists only of pattern tuples with constant or empty tuples (lemma
1. Moreover, we have seen that any CFD can be rewritten into the equivalent
CFD (X → A, Ψ(X → A)). The set Ψ(X → A) can be viewed as a selection
query which returns the fragment relation satisfying X → A. Any selection query
returning a fragment relation satisfying X → A could thus be a valid pattern
tableau for the CFD. The objective of this section is to study how to compute
equivalent tableaux of a CFD of the form (X → A, Ψ(X → A)). We suppose
that both Ψ(X → A) and Ψ(X 
→ A) are known.

5.1 Generating All CFDs

The tableaux Ψ(X 
→ A) is the query returning the fragment relation where
X → A is not satisfied. We can thus view Ψ(X 
→ A) as a set of constraints that
should be satisfied in order not to have X → A:

C(X 
→ A) =
∨

t∈Ψ(X �→A)

( ∧
B∈X

B = t[B]
)
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If we take the complementary constraint, we thus obtain the set of constraints
that should be satisfied in order to have X → A satisfied.

C(X 
→ A) =
∧

t∈Ψ(X �→A)

( ∨
B∈X

B 
= t[B]
)

Theorem 3. Given r a relation and (X → A, Ψ(X → A)) a CFD of r then for
any model m of C(X 
→ A), the pair (X → A, m) defines a CFD of r.

Proof. Consider m a model of C(X 
→ A)
⇒ ∀tp ∈ Ψ(X 
→ A), m 
� tp
⇒ ∀t ∈ rX �→A, m 
� t
⇒ rm ⊆ rX→A

⇒ rm � X → A
(Note that rm might be empty). ��

Any model of C(X 
→ A) defines a selection query such that the resulting frag-
ment relation satisfies X → A. Note that rm ⊆ rX→A. Thus (X → A, m) and
(X → A, Ψ(X → A)) might not be equivalent. In other words, (X → A, m) is a
CFD of the relation that could be generalized into (X → A, Ψ(X → A)). Note
also that any set M of models of C(X 
→ A) defines a CFD (X → A, M) of
the relation. Thus, the problem of finding the CFDs of a relation can thus be
expressed as finding the models of a particular constraint.

Problem 1 (All models).
Input : C(X 
→ A)
Output : MALL = {m | m is a model of C(X 
→ A)}.

Note that the fragment relation selected by the model might be empty. In this
case the CFD trivially holds. However, in order to be meaningful, it would be
preferable to find models which do return a non empty fragment relation.

Problem 2 (All models in r).
Input : C(X 
→ A), relation r
Output : MALL(r) = {m ∈ MALL | ∃t ∈ r, m � t}.

5.2 Generating CFDs Equivalent to (X → A, Ψ(X → A))

To define a model of C(X 
→ A) in the relation r, a pattern tuple tp has to
subsume at least one tuple of the relation and not subsume any A-invalid pattern
tuples in Ψ(X 
→ A). This condition can be simplified using pattern tuples in
Ψ(X → A).

Proposition 3. Given a relation r, Ψ(X → A) and Ψ(X 
→ A), a pattern
tuple m is a model of C(X 
→ A) in r if and only if ∃tp ∈ Ψ(X → A) and
∀t′p ∈ Ψ(X 
→ A) we have t′p 
� m and m � tp.
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Proof. A pattern tuple m is a model of C(X 
→ A)
⇔ ∀tp ∈ Ψ(X 
→ A), m 
� tp (by definition).
We consider Y ⊆ X the attributes of m which are not equal to ⊥ .
m is of a model in r if and only if m is a model and rm 
= ∅.
⇔ ∃t ∈ rX→A, m ⊆ t
⇔ ∃t ∈ rX→A, m[Y ] = t[Y ]
⇔ ∃t ∈ rX→A, ∃tp ∈ Ψ(X → A), tp � t and m[Y ] = t[Y ]
⇔ ∃t ∈ rX→A, ∃tp ∈ Ψ(X → A), tp[X ] = t[X ] and m[Y ] = t[Y ]
⇔ ∃t ∈ rX→A, ∃tp ∈ Ψ(X → A), tp[Y ] = t[Y ] = m[Y ] (since Y ⊆ X)
⇔ ∃t ∈ rX→A, ∃tp ∈ Ψ(X → A), m � tp � t
⇔ ∃tp ∈ Ψ(X → A), m � tp ��

Thus, any pattern tuple tp in Ψ(X → A) defines a sub-constraint of C(X 
→ A),
denoted by C(X 
→ A)tp

: only constant values in tp are allowed for the models.
It is easy to check that any model m of this sub-constraint is also a model of
the global constraint. Moreover, all tuples subsumed by tp are also subsumed by
m. And m does not subsume tuples subsumed by pattern tuples in Ψ(X 
→ A).
Thus, if we pick a model m for each tp in Ψ(X → A) we obtain a set of models
M such that (X → A, M) is equivalent to (X → A, Ψ(X → A)). Note that
the set of tuples subsumed by two models in M might overlap and thus some
models of M might be redundant (i.e. the corresponding pattern tableau might
be reduced).

While we are interested here in generating all equivalent tableaux of a CFD,
authors in [14] are interested in finding the equivalent tableau of a CFD such
that this tableau is optimal: the number of pattern tuples in the tableau is the
smallest possible. They show that this problem is NP-complete.

5.3 Equivalence to the Problem of Keys Generation

We now show that finding models of C(X 
→ A) is equivalent to the problem of
finding keys in a relation.

Definition 7 (Relations of models in r). Given tp ∈ Ψ(X → A), we define
the relation rtp(Ψ(X 
→ A)) = {tp(X) � t′p(X) | t′p ∈ Ψ(X 
→ A)} ∪ {tp(X)}.

Any pattern m which subsumes tp(X) while not subsuming other tuples in the
relation rtp(Ψ(X 
→ A)) is thus a model. In other words, keys of rtp(Ψ(X 
→ A))
are models of C(X 
→ A). This is formalized by next theorem.

Theorem 4. The pattern tuple mp defines a model of C(X 
→ A) in r if and
only if there exists tp ∈ Ψ(X → A) such that γ(mp, rtp(Ψ(X 
→ A))) = tp(X).

Proof. mp model in r
⇔ ∀t′p ∈ Ψ(X 
→ A), mp 
� t′p and rm 
= ∅
⇔ ∀t ∈ rtp(Ψ(X 
→ A)) such that t 
= tp(X), mp 
� t and rm 
= ∅
⇔ γ(mp, rtp(Ψ(X 
→ A))) = tp(X) and rm 
= ∅
And since ∃t ∈ r such that tp(X) � t:
⇔ γ(mp, rtp(Ψ(X 
→ A))) = tp(X) ��
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Thus, to find models of C(X 
→ A), one could use any algorithm which finds
keys of a relation. Finding just minimal keys could be more interesting since all
keys could be inferred from minimal keys.

Problem 3 (All minimal models in r).
Input : C(X 
→ A), relation r
Output : MMIN = {m ∈ MALL(r) | ∀m′ ∈ MALL(r), m′ 
⊆ m}.

Finding all minimal models is equivalent to finding all minimal keys of the rela-
tions rtp(Ψ(X 
→ A)), for any tp ∈ Ψ(X → A). Note that such minimal models
define minimal generators of the pattern tuples in Ψ(X → A) and could thus be
computed directly during the generation of the CFDs and FDs.

Example 6 (Constraint satisfaction for pattern tableaux)
Consider attributes ABC in the relation of figure 1.
Γ (ABC, r) = { (a1, b1, c1, d1,⊥ , f1), (a1, b2, c2, d1,⊥ , f2),

(a2, b1, c2, d2,⊥ , f1), (a2, b2, c1,⊥ , e1, f2),
(a2, b2, c2,⊥ , e1, f2)}

We have:
Ψ(ABC → D) = { (a1, b1, c1, d1,⊥ , f1), (a1, b2, c2, d1,⊥ , f2),

(a2, b1, c2, d2,⊥ , f1)}
and Ψ(ABC 
→ D) = { (a2, b2, c1,⊥ , e1, f2), (a2, b2, c2,⊥ , e1, f2)}.

We thus obtain the following constraints:
C(ABC 
→ D) = (A 
= a2 ∨B 
= b2 ∨ C 
= c1)

∧ (A 
= a2 ∨B 
= b2 ∨ C 
= c2)
Consider tp = (a1, b1, c1, d1,⊥ , f1). We have tp(X) = (a1, b1, c1,⊥ ,⊥ ,⊥ )
rtp(Ψ(ABC 
→ D)) = { (⊥ ,⊥ , c1,⊥ ,⊥ ,⊥ ),

(⊥ ,⊥ ,⊥ ,⊥ ,⊥ ,⊥ ),
(a1, b1, c1,⊥ ,⊥ ,⊥ )}.

Minimal keys are (a1,⊥ ,⊥ ,⊥ ,⊥ ,⊥ ) and (⊥ , b1,⊥ ,⊥ ,⊥ ,⊥ ). If we
consider all pattern tuples in Ψ(ABC → D), we finally obtain the following
CFD:
ϕ5 = (ABC → D, {{(a1,� ,� , d1,⊥ ,⊥ ), (� , b1,� ,� ,⊥ ,⊥ )}).

Note that ϕ5 could be simplified since (A → D, {{(a1,⊥ ,⊥ , d1,⊥ ,⊥ )}) is
a CFD of r.

6 Discussion and Conclusion

The notion of CFD was originally introduced in [6]. Authors focused on im-
plication inference and consistency. In their conclusion, they pointed out that
discovering CFDs in a sample relation might be interesting for their purpose:
this remark was the starting point of our work presented here. The CFDs were
extended in a sequel paper [7], leading to a more expressive class of dependencies
(eCFDs) which allow the use of disjonctions and inequalities in the expression
of patterns. However, eCFDs are just a particular case of CGDs [2]. The notion
of X-complete relation is defined in [11] and largely inspired us in our results.
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In [15], the algorithm Tane uses partitions to discover FDs and AFDs. Their
partitions are exactly X-complete relations. Their approach is similar to the A
priori algorithm in the sense that the search space is the powerset lattice. One
could easily improve the Tane algorithm by reducing the search space to the
closed set lattice (in the same way as Close improves A priori). As a matter of
fact, it is exactly what authors in [13] did to discover CFDs. In the same way,
any algorithm which searches the closed set lattice could be used (as it has been
done in [13]). Concerning efficient algorithms to discover closed sets or ARs,
there are too many in the literature to put forward one. In the paper, we give
link to some of them which inspired the others. The important result being that
those algorithms can easily be adapted to find FDs, pure CFDs and pure ARs
(exact and approximate).

The link between ARs and DFs was never (to our knowledge) formally estab-
lished. It is well known however that algorithms which find ARs could be used to
find FDs of a relation: such ARs discovery algorithm could simply be applied on
the agree sets of the original relation [16]. In the same way, algorithms used to
discover FDs could be easily adapted to discover ARs (either by a discretization
of the relation or by slightly changing the comparison operator [15]). The formal
link between ARs, FDs and (of course) CFDs is thus one of the main contribu-
tion of the present paper. FDs are the union of CFDs which in turn are the union
of ARs, establishing a hierarchy among those dependencies. Using this hierarchy
we can thus define a minimal non redundant cover of dependencies containing
FDs, pure CFDs and pure ARs. In the same way, AFDs are union of ARs and
approximate ARs with maximal confidence (one per horizontal decomposition
of a relation according to a set of attributes).

We also establish the link between the problem of finding equivalent pattern
tableaux of a CFD and the problem of finding keys of a relation.

The immediate next step to this paper is to implement our method in order to
compare the number and the pertinence of the generated dependencies against
the ARs generated by traditional data mining algorithms. Because of the hierar-
chy existing among FDs, CFDs and ARs, the number of dependencies generated
should be drastically lesser. In the same way, by using different pattern tableaux
for a same CFD, the work of interpreting the dependencies should be eased.
Those assumptions should be validated through some experiments on real life
applications.

We also intend to extend our study to eCFDs. Is there a link between ARs
(or particular types of ARs) and eCFDs ? Establishing such a link would lead
to an immediate application of the same approach to discover eCFDs. More
challenging work is to show that any CGD could be inferred from ARs.
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Abstract. In [3] the classical rough set approach was generalized in the
manner that lower and upper approximations were replaced by arbitrary
kernel and closure operators respectively. Furthermore, the resulting lat-
tices of rough set abstractions were described as P -products. This ap-
proach, though promising, needs additional research to become part of
a unifying theory of Rough Set Theory and Formal Concept Analysis.
For example, the role of robust elements and the possible existence of
suitable negation operators were not addressed. We present results in
these directions and on the structure of these lattices.

1 Introduction

In recent years there has been a mutual interest of bringing together Formal
Concept Analysis and Rough Set Theory. Several authors made respective con-
tributions. Many of them handle a topic they call Rough Concept Analysis. In
[3] Ganter chose another approach. He proposed a way to generalize the classical
rough set setting and described the resulting rough set abstractions with tools
from Formal Concept Analysis.

The classical approach of Rough Set Theory [6] starts with an equivalence
relation ∼ on a universe U . The pair (U,∼) is usually called an approximation
space. Thereby x ∼ y is interpreted as x and y being indistinguishable. Given
such an indiscernibility relation ∼ on U one defines

X∗ := {u ∈ U | [u]∼ ⊆ X},
X∗ := {u ∈ U | [u]∼ ∩X 
= ∅},

and calls these two sets the lower and the upper approximation of X ⊆ U .
Furthermore, the pair (X∗, X

∗) is said to be the rough set approximation of X .
A subset X is called rough if X∗ � X∗ holds. Otherwise X is called crisp. Hence,
a subset of the universe is crisp if and only if it is the union of equivalence classes.

Ordering all approximations (X∗, X
∗) by componentwise set inclusion (i.e. the

canonical order of P(U)×P(U)) leads to a complete lattice. These lattices are
very similar to Boolean lattices, since they are direct products of chains having
the length one or two. Here singleton equivalence classes correspond to chains of
length one, whereas non-singleton classes correspond to chains of length two. As
� Supported by the DFG research grant no. GA 216/10-1.

S. Ferré and S. Rudolph (Eds.): ICFCA 2009, LNAI 5548, pp. 114–129, 2009.
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an example take the identity on U as the indiscernibility relation. In this case all
equivalence classes are singletons. Thus, the lower and upper approximations of
a set equal the set itself. Hence, the lattice of all approximations is isomorphic to
the power set lattice P(U) which obviously is a direct product of chains having
length one.

Obviously the mapping X �→ X∗ is an interior operator and X �→ X∗ is
a closure operator. Ganter used this fact to generalize the notion of rough set
approximations starting with so-called kernel-closure-pairs consisting of an ar-
bitrary kernel and an arbitrary closure operator on U . In the underlying article
we want to pick up this train of thoughts and examine properties of the resulting
lattices. As proposed in [3], certain elements of the universe play a special role.
We will call them robust elements. They generalize the elements having singleton
equivalence classes in the classical setting. The robust elements are not the ex-
clusive topic of this article. Anyhow we believe it increases their understanding.
That is why the robust elements made it into the title.

We investigate basic structural properties of the lattices of rough set ab-
stractions. With Proposition 1 we propose a perspicuous characterization of the
rough set abstractions. Furthermore, we propose a simple sufficient condition un-
der which all abstractions are generated by subsets of the universe, and propose
possible negations of abstractions and their properties.

2 Rough Set Abstractions

Throughout this article K denotes a kernel system and C denotes a closure system
on the universe U . The corresponding interior and closure operators are denoted
by �·� and �·� respectively. Hence, for every subset X of the universe �X� is the
largest kernel out of K which is contained in X , whereas �X� is the smallest
closure from C that contains X . The complement U \X of X is denoted by X�.

The question is how to generalize the notion of rough set approximations start-
ing with such an arbitrary kernel-closure pair (�·�, �·�). An obvious approach is
to investigate all pairs (�X�, �X�) with X ⊆ U . But this leads to unwanted dif-
ferences to the classical setting of rough set theory. Firstly, the pairs (�X�, �X�),
ordered by componentwise set inclusion, do not necessarily form a lattice1. Sec-
ondly, even if these pairs form a lattice, infimum and supremum need not be
the componentwise infimum and supremum induced by the corresponding oper-
ations in K (first component) and C (second component). In [3] these problems
were solved in the following way:

Since K and C, each ordered by ⊆, are complete lattices, their direct product
K × C also is a complete lattice with

∨
t∈T

(Kt, Ct) =

(⋃
t∈T

Kt ,
⌈⋃

t∈T

Ct

⌉)
and

∧
t∈T

(Kt, Ct) =

(⌊⋂
t∈T

Kt

⌋
,
⋂
t∈T

Ct

)

for (Kt, Ct) ∈ K × C (t ∈ T ). By Γ := ΓK,C we denote the complete sublat-
tice of K × C that is generated by all the pairs (�X�, �X�) with X ⊆ U . The
1 See for instance Example 1 on page 127.
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pairs (K, C) from Γ are called rough set abstractions (just abstractions for
short). Furthermore, we say that X ⊆ U generates the abstraction (�X�, �X�).
Abstractions that are generated by a subset of U are called set-generated.
We shall see in Proposition 1 that this notion of a rough set abstraction is a
very natural generalization of the rough set approximations in classical rough
set theory. For that we need the notion of robust elements.

We put R〈K〉 := {x ∈ U | {x} ∈ K} and R〈C〉 := {x ∈ U | U \ {x} ∈ C}.
Elements from R〈K〉 are called kernel robust. Dually, the elements from R〈C〉

are called closure robust. The elements from R := R〈K〉 ∩ R〈C〉 are simply
called robust. Furthermore, for ρ = (K, C) ∈ Γ

– we call K the positive region of ρ,
– we call U \ C the negative region of ρ,
– we call C \K the boundary of ρ, or the uncertain region of ρ,
– we call U \K the nonpositive region of ρ, and
– we call C the nonnegative region of ρ.

Proposition 1. A pair (K, C) consisting of a kernel K ∈ K and a closure C ∈ C
is a rough set abstraction from ΓK,C if and only if K ⊆ C holds and C \K does
not contain a robust element.

Proof. We begin this proof with showing that any abstraction (K, C) fulfills the
properties C ⊆ K and (C\K)∩R = ∅. Therefore, we have to show that every set-
generated abstraction fulfills the two properties. Furthermore we have to show
that the two properties are preserved by suprema and infima in K×C. Obviously,
for any A ⊆ U it holds that �A� ⊆ �A�. Furthermore, for any x ∈ �A� \ �A� the
premise x ∈ R implies x ∈ A and x /∈ A. Let R = {(Kj , Cj) | j ∈ J} ⊆ K × C
be a set of pairs fulfilling the two aforesaid properties, i.e. it holds that Kj ⊆ Cj

and ∅ = R ∩ (Cj \Kj). We define

∨
R =

⎛
⎝⋃

j∈J

Kj ,
⌈⋃

j∈J

Cj

⌉⎞⎠ =: (Ksup , Csup) and

∧
R =

⎛
⎝⌊⋂

j∈J

Kj

⌋
,
⋂
j∈J

Cj

⎞
⎠ =: (Kinf , Cinf).

It is easy to see that Ksup ⊆ Csup and Kinf ⊆ Cinf hold. Let us assume x ∈
Csup \Ksup is robust. This implies x ∈

⋃
j∈J Cj and therefore there is a ι ∈ J

with x ∈ Cι. Since x is robust and (Kι , Hι) fulfills the two properties from
above it follows x ∈ Kι. But this contradicts x /∈ Ksup. Suppose there is a
robust element x ∈ Cinf \Kinf. This implies x /∈

⋂
j∈J Kj. Hence there is a ι ∈ J

with x /∈ Kι. Analogous to things shown above it follows x /∈ Cι and therefore
x /∈ Cinf . A contradiction.

We now have to show that any pair (K, C) from K × C fulfilling the two
properties from above really is an abstraction, i.e. there are pairs of the form
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(�X�, �X�) that generate (K, C). We therefore put A := C∩R〈K〉 and B := A\K.
Since B does not contain a closure robust element it follows that∧

y∈B

(�U \ {y}�, �U \ {y}�) = (�U \B�, U) = (�A� ∪K�, U)

is an abstraction. Furthermore, it holds that

(A, C) =
∨

x∈C

(�{x}�, �{x}�),

which implies that also

(A ∪K, C) = (�K�, �K�) ∨ (A, C)

is an abstraction. Thus,

(K, C) = (A ∪K, C) ∧ (�A� ∪K�, U)

is an abstraction as well. ��

In the remaining part of this section we analyze the basic structure of lattices of
rough set abstractions. If one chooses the trivial kernel system {∅}, one obtains
ΓK,C ∼= C. Similarly, C = {U} implies ΓK,C ∼= K. Hence, the reader should
not expect that lattices of the form ΓK,C do have any special lattice theoretic
properties. It is more advisable to investigate how the interaction of K and C
mirrors the structure of ΓK,C .

Corollary 1. For every subset X of U the following holds:

(i) X ⊆ R〈K〉 ⇒ X ∈ K,

(ii) X ⊆ R〈C〉 ⇒ X� ∈ C,
(iii) X ⊆ R ⇒ X ∈ K and X� ∈ C,
(iv) X ∪R� is the greatest closure C, for which (�X�, C) is an abstraction,

(v) X ∩R is the smallest kernel K, for which (K, �X�) is an abstraction,

(vi) (X ∩R, X ∪R�) is a rough set abstraction with the boundary R�.

Proof. The first three items are trivial. From (iii) follows that X∪R� = (X�∩R)�

is a closure. Furthermore, (X ∪R�)\�X� = (X \�X�)∪ (R� \�X�) ⊆ R� implies
that (�X�, X ∪ R�) is an abstraction. For (K, C) ∈ Γ with K = �X� it holds
that C = K ∪ (C \K) ⊆ �X� ∪R� ⊆ X ∪R�. The fifth statement can be shown
analogously, whereas (vi) holds because of (X ∪R�) \ (X ∩R) = R�. ��

Corollary 2. K as well as C are isomorphic to subintervals of ΓK,C. Corre-
sponding isomorphisms are given via:

(i) ϕ : C → ((∅, �∅�), (R, U)) with C �→ (C ∩R, C),
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(ii) ψ : K→ ((∅, R�), (�U�, U)) with K �→ (K, K ∪R�).

(iii) The intersection ((∅, R�), (R, U)) of the two intervals from (i) and (ii) is
again a nonempty subinterval of Γ . It is isomorphic to the powerset lattice
P(R).

Proof. It follows directly from the previous Corollary 1 that ϕ and ψ are well
defined. Since ϕ (ψ) equals the identity map regarding the second (first) com-
ponent it is an order embedding. Hence, it remains to show that both mappings
are onto. For every (K, C) ∈ Γ it holds that C ∩ R ⊆ K. Thus, with the ad-
ditional assumption K ⊆ R it follows C ∩ R = K. Analogously it always holds
C ⊆ K ∪R�, and thus the assumption R� ⊆ C implies C = K ∪R�. Statement
(iii) holds, since the interval in question consists exactly of all the rough set
abstractions (T, R� ∪ T ) with T ⊆ R. ��
Let K� be the described subinterval of Γ that is isomorphic to K, and let C� be
the subintervall isomorphic to C. We call K� ∪C� the spine of Γ . We call Γ slim
if it equals its spine. Furthermore, the interval C� ∩K� might be interpreted as
the middle of Γ . Statement (iii) in connection with Proposition 1 says that the
rough set abstractions from the middle are exactly the rough set abstractions
that have the largest occurring boundary, namely R�. It is possible to generalize
statement (iii) in the way that the set

Γ |B := {(K, C) ∈ Γ | (C \K) ⊇ B}

of all abstractions with a boundary containing a fixed minimum boundary B is
empty or is an intervall in Γ . It is easy to see that Γ |B is nonempty if and only
if B ⊆ R� holds.

Lemma 1. Let ∂(ρ) denote the boundary of a given ρ ∈ Γ . For ρ1, ρ2 ∈ Γ it
holds that

∂(ρ1 ∧ ρ2) ⊇ ∂(ρ1) ∩ ∂(ρ2) ⊆ ∂(ρ1 ∨ ρ2).

Proof. For (K1, C1) := γ1 and (K2, C2) := γ2 it holds that

∂(ρ1 ∧ ρ2) = (C1 ∩ C2) \ �K1 ∩K2�
⊇ (C1 ∩ C2) \ (K1 ∩K2)
⊇ (C1 \K1) ∩ (C2 \K2) and

∂(ρ1 ∨ ρ2) = �C1 ∪ C2� \ (K1 ∪K2)
= (�C1 ∪ C2� \K1) ∩ (�C1 ∪ C2� \K2)
⊇ (C1 \K1) ∩ (C2 \K2).

��

Proposition 2. For every B ⊆ R� the set Γ |B is a nonempty subintervall of
Γ . It holds that Γ |B = ΓKB ,CB where

KB := {K ∈ K | K ⊆ B�} and CB := {C ∈ C | B ⊆ C}.
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Proof. By Corollary 1 (iv) and (v) we get that (∅, �B�) and (�B��, U) are ab-
stractions. For (K, C) ∈ Γ it holds that

(∅, �B�) � (K, C) � (�B��, U) ⇐⇒ K ⊆ �B�� and �B� ⊆ C

⇐⇒ K ⊆ B� and B ⊆ C

⇐⇒ C \K ⊇ B

⇐⇒ (K, C) ∈ Γ |B.

Hence, Γ |B indeed is a nonempty subintervall of Γ . For proving that it can be
considered as the system of rough set abstractions ΓKB ,CB we just have to show
that in both cases (K & C vs. KB & CB) the same robust elements occur. Thus,
we have to show

{r} ∈ K and U \ {r} ∈ C ⇐⇒ {r} ∈ KB and U \ {r} ∈ CB.

If {r} ∈ K and U \ {r} ∈ C holds, both statements {r} /∈ KB and U \ {r} /∈ CB

each are equivalent to r ∈ B. Hence, the premise B ⊆ R� directly yields the
contradiction that r is not robust (regarding to K and C). The backward direction
is trivial. ��

An abstraction (K, C) is contained in the spine of Γ if and only if K = C ∩R or
C = K ∪ R� holds. These are exactly the abstractions with a boundary that is
already maximal, or that can be extended in at most one direction: either into
the positive region, or into the negative region.

Corollary 3. The spine is a complete sublattice of Γ .

Proof. The spine K�∪C� is a sublattice of Γ since it is the union of an order filter
and an order ideal. Furthermore, the spine contains the least and the greatest
abstractions. Since one can split up the supremum of R ⊆ K� ∪ C� into the
supremum (R∩K�) ∨ (R∩ C�) of at most two elements from the spine, we get
that it is closed under arbitrary suprema. Analogously one shows that

∧
R also

belongs to the spine. ��

3 Contextual Representation

The main result of [3] was describing the lattice Γ as a P -product of K and C.
The P -product of complete lattices is a subdirect product. It can be described via
formal contexts called P -fusions; see [4]. The mentioned approach starts with
describing �·� and �·� via formal contexts. Since every closure system can be
described as the set of extents of a formal context, there is a formal context C =
(U, M, J) such that C = Ext(C). Dually, the kernel system K can be represented
as the set of complements of extents of a context K = (U, M, I). Thus, for every
X ⊆ U it holds that �X� = X�II� and �X� = XJJ . If one has chosen such two
representing contexts, K and C the system ΓK,C of all rough set abstractions will
also be denoted with ΓK,C. For technical reasons we have to assume U∩(M∪N) =
∅. If this is not the case, one clearly can enforce it by replacing M , N or U by
disjoint copies.
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M Id

U

U J

N

⊥

∗

Fig. 1. The representing context of Γ

Definition 1 (see [3]). We define G to be the context displayed in Figure 1,
whereas Id denotes the dual relation of I,

⊥ := {(m, n) ∈ M ×N | mI ∪ nJ = U}, and
∗ := (U × U) \ {(r, r) | r ∈ R}.

In cases where confusion about the underlying kernel and closure systems might
appear, we also write GK,C or GK,C for the shorter G. The incidence relation of
G will be denoted by �, i.e. G = (M ∪ U, U ∪N, �).

Remark 1. It is well known that �X� = XJJ is the intersection of all columns
from C that contain X . Dually, it holds that

�X� = X�II� =
⋃
{mI� | m ∈ M with mI� ⊆ X}.

Since the kernels are exactly the unions of complements of columns from K,
it holds that r is robust if and only if U \ {r} is a column in both contexts K
and C. Furthermore, all rough set abstractions are of the form (SI�, T J) with
S ⊆M and T ⊆ N . The equivalences

K a b c d

1 × × ×
2 × × ×
3 × ×
4 × ×
5 × × × ×
6 × × ×

G 1 2 3 4 5 6 e f g h i

a × × × × × × × ×
b × × × × × ×
c × × × × ×
d × × × × × × ×
1 × × × × × × × × ×
2 × × × × × × × × × ×
3 × × × × × × × ×
4 × × × × × × × × × ×
5 × × × × × × × × ×
6 × × × × × ×

C e f g h i

1 × × ×
2 × × × ×
3 × × ×
4 × × × ×
5 × × ×
6 ×

Fig. 2. An example for contexts K, C and the corresponding G = GK,C
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2 4

1 5 3, a

d

c 6, b

f
g

h, 3 4

i, 6 1, 2

5

Fig. 3. The concept lattice B(G) to the context G from Figure 2

S × T ⊆⊥ ⇐⇒ ∀s ∈ S∀t ∈ T : sI ∪ tJ = U

⇐⇒ ∀s ∈ S∀t ∈ T : sI� ⊆ tJ

⇐⇒
⋃
s∈S

sI� ⊆
⋂
t∈T

tJ

⇐⇒ SIC ⊆ T J .

show us that the job of ⊥ is to enforce the first characteristic property of abstrac-
tions from Proposition 1. Similarly,∗ ensures that the second of these properties
is getting fulfilled. The following Proposition 3 and the two subsequent corollar-
ies demonstrate a possible way to show Γ ∼= B(G) without using the notion of a
P -Fusion. Proofs were omited since the principle result is known from [3].
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Proposition 3. Kd = (M, U, Id) and C = (U, N, J) are both compatible subcon-
texts of G.

In the next corollary we use the following notation: for two sets X and Y we
define XY := X ∩ Y . This unusual notation just has the purpose of increasing
the readability.

Corollary 4. For A ⊆ M ∪ U and B ⊆ U ∪ N the following statements are
equivalent:

(a) (A, B) ∈ B(G),

(b) (BU , AM ) ∈ B(K), (AU , BN ) ∈ B(C), B�
U ⊆ AU and (AU \B�

U ) ∩R = ∅.

Corollary 5. The mapping ϕ : ΓK,C → B(G) with (K, C) �→ (C∪K�I , K�∪CJ)
is an isomorphism.

One can interpret the concepts (A, B) of G in the following way. Let Gin :=
{mI� | m ∈ M} and Gout := {nJ� | n ∈ N} be the set of so-called inner and
outer granules respectively (see [3]). Then AU (the closure) is the complement of
the union of all outer granules disjoint from AU , which are exactly the granules
nJ� with n ∈ BN . Dually, B�

U (the kernel) is the union of the mI� with m ∈ AM ,
which are exactly the inner granules contained in B�

U . Hence, we are not only
able to read the corresponding abstraction from (A, B), but the concept also
tells us from which inner and outer granules the kernel and the closure were
built.

In the case that R and ⊥ both are empty the context G is of the form

Kd | ∅
× | C

,

and hence Γ is isomorphic to the vertical sum of C ∼= B(C) and K ∼= B(Kd).
Thus, in this case Γ is slim in the sense of page 118. The following proposition
shows how to read from the P -Fusion G if Γ is slim, or not.

Proposition 4. Γ is slim if and only if for all m ∈M and n ∈ N from m ⊥ n
it follows that mI� ⊆ R or nJ� ⊆ R holds.

Before proving this proposition we want to state one corollary.

Corollary 6. If K and C are both attribute reduced2, Γ is slim if and only if for
all m ∈M and n ∈ N from m ⊥ n it follows that mI = U \ {x} or nJ = U \ {x}
for some robust x. Thus, R = ∅ implies that Γ is slim if and only if ⊥ is empty.

Proof (of Proposition 4). For (m, n) ∈⊥ we put A := mI ∩ nJ ∩ R. Hence, A is
the set of all robust elements that are contained in the closure nJ but that are not
2 This is (under reasonable finiteness conditions) no restriction to the choice of K and
C. It is just an restriction to the choice of the representing contexts K and C.
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|

| 2 | 4

| 1, 2

| 2, 4 | 4, 5 3 | 4

| 1, 2, 4, 5 3 | 2, 4
3 | 4, 5 3, 4 |

1, 2, 4 | 5 6 | 1, 2, 4, 5
3 | 1, 2, 4, 5 3, 4 | 2

3, 4 | 5

1, 2, 4, 6 | 5
3, 6 | 1, 2, 4, 5

3, 4 | 1, 2, 5

1, 2, 3, 4 | 5 3, 4, 6 | 1, 2, 5

1, 2, 3, 4, 6 | 5

Fig. 4. The lattice ΓK,C of rough set abstractions given through context G in Figure 2.
In the diagram the node belonging to an abstraction (K, C) is denoted by K | (H \K)
where set brackets and empty sets are omitted. Hence, we write just | 2 instead of
(∅, {2}) and 3, 4 | 5 instead of ({3, 4}, {3, 4, 5}). The grey nodes correspond to the
abstractions from the middle.

contained in the kernel mI�. Furthermore it holds mI� ⊆ nJ . Thus, (mI�, nJ \A)
is an abstraction. If Γ is slim, it holds that nJ \A = mI�∪R� (iff nJ�∪A = mI∩R)
or mI� = (nJ \A) ∩R. Therefore, nI� or nJ� is a subset of R.

Let (K, C) be an abstraction not belonging to the spine of Γ . Thus, the
positive region K contains a non-robust element x and the negative region C�

contains a non-robust element y. Since K� and C are extents from K and C
respectively, there is a m ∈M and a n ∈ N with K� ⊆ mI 
! x and C ⊆ nJ 
! y.
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Thus, mI� ⊆ K ⊆ C ⊆ nJ holds which implies m ⊥ n. But it also holds that
x ∈ mI� � R and y ∈ nJ� � R. ��

We conclude this section with the remark that switching the roles of K and C
yields dually isomorphic systems ΓK,C and ΓC,K of rough set abstractions. This is
easy to see if one convinces oneself that this switching corresponds to transposing
G.

4 Set-Generated Abstractions

As already mentioned Γ might contain abstractions that are not generated by
a subset of U . On the first sight this seems a kind of irritating. Hence, the
conditions under which all abstractions are set-generated abstractions should be
investigated. We are not able to give a complete characterization, but propose a
sufficient condition instead.

Lemma 2. Let (K, C) be an abstraction. If for every element x from the bound-
ary C \K there is some y ∈ U with x 
= y, xI = yI, and xJ = yJ , the abstraction
(K, C) is set-generated.

Proof. Let B := C \K be the boundary and let θ be the equivalence relation on
U defined through xθy iff xI = yI and xJ = yJ . As explained in the introduction,
we call a subset of U θ-crisp if it is the union of θ-equivalence classes. All closures
and all kernels are θ-crisp. Hence, all regions of all abstractions are θ-crisp. Let
S be a system of distinct representatives. Furthermore, let SB := S ∩B be the
representatives from the equivalence classes contained in the boundary B. The
premise implies that SB does not contain a complete equivalence class. Thus,
for every m ∈ M mI� ⊆ K holds if and only if mI� ⊆ K ∪ SB holds. Hence, it
follows

�K ∪ SB� =
⋃
{mI� | m ∈ M with mI� ⊆ K ∪ SB} = �K� = K.

Analogously �K ∪ SB� = H can be shown. Thus, K ∪ SB generates (K, C). ��

As a direct consequence we get the following. Doubling all objects of U that
occur in boundaries induces an isomorphic lattice of abstractions in which every
abstraction is set-generated. Let (O, A, Y ) be a formal context and let T ⊆ O
be a collection of objects. We call the context ((O \ T )∪ ({1, 2}×T ), A, YT ) the
T -doubled context to (O, A, Y ). Thereby, YT is defined via

gYT m :⇐⇒
{

gY m, for g ∈ O \ T,

xY m, for g = (i, x) ∈ T .

Corollary 7. Let K̄ and C̄ be the R�-doubled contexts to K and C. It holds that
the lattices ΓK,C and Γ̄ := Γ

K̄,C̄ are isomorphic. Furthermore, every abstraction
from Γ̄ is set-generated.
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We finish this section with the remark that the doubling of a robust element of
course has an impact on the structure of Γ . The reason is: the robust element
will not be robust any longer. As an example take K = C = (U, U, 
=). The lattice
of rough set abstractions is isomorphic to the powerset lattice of U , hence it is
a direct product of chains having length one. After doubling all elements, the
lattice is the direct product of chains having length two.

5 The Selfdual Case

In the special case that the two representing contexts K and C are equal it holds
that a subset of U is a kernel if and only if its complement is a closure. If K and
C fulfill this property we call it the selfdual case. It is equivalent to �A�� = �A��
for every A ⊆ U . The selfdual case is well known from topology where it holds
for the open and the closed sets. Furthermore, it includes a lot of applications
involving the classical rough set setting. As we will see it allows us to define the
complement of an abstraction. For the rest of this section we assume K = C.

5.1 Standard Complementation

The premise K = C allows us to define (K, C)� := (C�, K�) to be the stan-
dard complementation (short: the complement) of (K, C) ∈ Γ . Obviously,
applying the complement switches the positive and the negative region of an
abstraction, whereas the boundary remains fixed. The statements (i) and (ii)
of the following lemma tell us, that the standard complementation is an order
involution on the self dual lattice Γ = ΓK,K.

Lemma 3. For ρ, γ ∈ ΓK,K the following statements hold:

(i) ρ�� = ρ,

(ii) ρ � γ ⇔ ρ� " γ�,

(iii) (ρ ∨ γ)� = ρ� ∧ γ�,

(iv) (ρ ∧ γ)� = ρ� ∨ γ�,

(v) ρ ∧ ρ� � γ ∨ γ�.

Proof. A similar proposition can be found in [2]. The proof has been ommitted
since it is elementary. ��

Let us take a detailed look at statement (v). For every (K, C) ∈ Γ and B := C\K
it holds that

(K, C) ∧ (K, C)� = (∅, B) and (K, C) ∨ (K, C)� = (B�, U)

are the least and the greatest element of Γ |B (see page 2). Hence, ρ ∧ ρ� is the
abstraction having the same uncertain region as ρ (and as ρ�) and having an
empty positive region. Dually ρ ∨ ρ� is the abstraction having empty negative
region but the same boundary as ρ.
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Corollary 8. Under the premise ∅ ∈ C the following statements are equivalent:

(a) every subset of U is a kernel and a closure,

(b) R = U ,

(c) K = C for all (K, C) ∈ Γ ,

(d) the law of the excluded middle holds, i.e. ρ ∨ ρ� = 1 for every ρ ∈ Γ ,

(e) the non-contradiction law holds, i.e. ρ ∧ ρ� = 0 for every ρ ∈ Γ .

Thereby 0 := (∅, ∅) and 1 := (U, U) denote the least and the greatest rough set
abstraction from Γ .

Proof. The first three statements are always equivalent (for arbitrary K and C).
The rest directly follows from the argumentation above. ��

≈ 1 2 3 4 5
1 × ×
2 × × ×
3 × × ×
4 × × ×
5 × ×

Fig. 5. A context (U, U,≈) where ≈ is a tolerance relation on U = {1, . . . , 5}

5.2 Tolerance Indiscernibility

In [2] Cattaneo and Ciucci among other things presented generalized rough sets
starting with so-called preclusive spaces. They call a pair (U, #) a preclusive space
if # is an irreflexive, symmetric relation on U . Obviously, preclusive relations are
exactly the complements of tolerance relations. Furthermore, the authors of [2]
studied the approximations of the form3 (X�##�, X##) where ·# is the deriva-
tion operator of the formal context (U, U, #). They investigated the structures
formed by these pairs as so-called quasi-BZ-distributive lattices. However, as we
shall see in Example 1, these pairs in general do not form a lattice. And even if
they do, this lattice need not be distributive. This problem does not occur in [3]
since Γ is the lattice that is generated by these pairs.

The mentioned structures from [2] are basically bounded lattices with two
additional unary operations, playing the role of negations. The first one matches
our standard complementation. For the second one we will have to specialize
our settings to K = C = (U, U, 
≈), where 
≈ is the complement of a tolerance
relation≈ on U . As we have seen above, the standard complement does not fulfill
the non-contradiction law ρ ∧ ρ� = 0. Under these circumstances the canonical

3 Strictly speaking they took the pairs (X�##� , X##�), but the second component
was ordered by ⊇, what makes this approach similar to that from [3].
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choice of a meaningful self mapping fulfilling non-contradiction law is the so-
called Brouwer complement (see [2])

(K, C)�≈ := (�C �≈�, C �≈) = (C �≈� �≈�≈�, C �≈)

(for (K, C) ∈ Γ ). Obviously, (K, C)�≈ is the greatest abstraction having C �≈ as
the nonpositive region.

Lemma 4 ([2]). For ρ, γ ∈ Γ the following statements hold:

(i) ρ � ρ �≈�≈,

(ii) (ρ ∨ γ)�≈ = ρ �≈ ∧ γ �≈,

(iii) ρ ∧ ρ �≈ = 0 := (∅, ∅), and

(iv) ρ �≈ � ρ�.

Example 1. We examine the tolerance relation ≈ given in Figure 5. The under-
lying universe is U = {1, . . . , 5}. The corresponding lattice of rough set abstrac-
tions ΓK,K with K = (U, U, 
≈) is displayed in Figure 6. The first thing we want
to point out is that not all abstractions are set-generated. Take for instance
ρ := ({1, 2}, {1, 2, 3}). If there was a subset generating ρ, it has to be {1, 2} or
{1, 2, 3}. But both of these are closed and open. Hence λ1 := ({1, 2}, {1, 2}) and
ω1 := ({1, 2, 3}, {1, 2, 3}) are a lower and an upper neighbor of ρ. As Figure 6
shows λ2 := (∅, {1, 2, 3}) is another lower and ω2 := ({1, 2}, U) is another upper
neighbor of ρ. They are both generated by subsets of U (for instance by {1, 3}
and by {1, 2, 4} respectively).

We now take a look at the partially ordered set of the set-generated abstrac-
tions (�X�, �X�) with X ⊆ U . We see that it does not form a lattice, since
{ω1, ω2} is the set of minimal upper bounds of {λ1, λ2}. Hence there is no supre-
mum of λ1 and λ2. In this example the set R of robust elements is empty. Hence,
(∅, U) is the only element from the middle. Furthermore, R = ∅makes it easier to
identify the abstractions from the spine. These are the ones that have an empty
positive or an empty negative region. Thus, we can read from Figure 6 that λ1,
ρ and ω1 and their three complements are the only abstractions not belonging
to the spine.

In the classical setting of Rough Set Theory, i.e. when ≈ is an equivalence re-
lation, it holds that (K, C)�≈ = (C�, C�). Thus, it holds that (K, C)�≈ is the
largest abstraction having C� as the nonnegative region. Hence, it follows the
well known fact that in the classical setting (K, C)�≈ is the pseudocomplement4
of (K, C). Unfortunately this does not hold for arbitrary tolerance relations ≈,
as one can see in Example 1.
4 See [1]. Let a be an element of a bounded lattice L. The element a∗ is called the

pseudocomplement of a if for all b ∈ L

a ∧ b = 0 ⇐⇒ b ≤ a∗

holds.
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Fig. 6. The lattice ΓK,K of rough set abstractions with K = (U, U, �≈) where ≈ is the tol-
erance relation from Figure 5. The notations are as follows. For the elements 1, 2, 3, 4, 5
from U we write five little boxes. If i is an element of the positive/uncertain/negative
region, the i-th box is �/�/�. For instance ����� denotes the rough set abstraction
({4, 5}, {3, 4, 5}). The abstractions λ1, λ2, ω1 and ω2 are set-generated, ρ is not.
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6 Conclusion

Our investigations provided a clear characterization of the rough set abstractions
from [3]. Furthermore, we believe this article improved the understanding of the
robust elements and the lattices of abstractions. Last but not least we proposed
suitable negation operators.

Future investigations could handle the following problems. What are the con-
ditions under which the P -fusion from [3] is a tensor product? And related to
this question: What are the conditions under which Γ is isomorphic to the order
relation of a complete lattice? What role plays the distributivity for answering
the two previous questions? Furthermore, our experience showed us that the ab-
stractions which are not set-generated are pretty rare, even when K and C are
clarified. Thus, our sufficient condition from Corollary 7 is far away from being
a necessary one. Hence, there still is the open question of charaterizing the cases
where all abstractions are set-generated.
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Abstract. We investigate the computational complexity of several deci-
sion, enumeration and counting problems related to pseudo-intents. We
show that given a formal context and a subset of its set of pseudo-intents,
checking whether this context has an additional pseudo-intent is in conp,
and it is at least as hard as checking whether a given simple hypergraph is
not saturated. We also show that recognizing the set of pseudo-intents is
also in conp, and it is at least as hard as identifying the minimal transver-
sals of a given hypergraph. Moreover, we show that if any of these two
problems turns out to be conp-hard, then unless p = np, pseudo-intents
cannot be enumerated in output polynomial time. We also investigate
the complexity of finding subsets of a given Duquenne-Guigues Base from
which a given implication follows. We show that checking the existence
of such a subset within a specified cardinality bound is np-complete, and
counting all such minimal subsets is #p-complete.

1 Introduction

Pseudo-intents play an important rôle in Formal Concept Analysis (FCA) [8].
They form the premises of the Duquenne-Guigues Base [10], which is a mini-
mum cardinality base for the set of implications that hold in a formal context.
Computational complexity of problems related to pseudo-intents have been of
major interest to the FCA community since their introduction.

One central computational problem related to pseudo-intents is determining
whether a given set is a pseudo-intent of a given formal context. It has been
shown in [15,16] that this problem is in conp. However, the lower complexity
bound for this problem is still open. One other natural problem is enumerating
the pseudo-intents of a given formal context. The most well-known algorithm
for this purpose is the next-closure algorithm [7]. Recently, an algorithm that
computes the pseudo-intents by processing a single attribute at a single step,
namely attribute-incremental algorithm, has been introduced in [18]. In [19],
an algorithm for checking whether a set is pseudo-intent, has been presented.
Another problem related to pseudo-intents is given a formal context, determining
the number of its pseudo-intents. In [14], it has been shown that this counting
problem is #p-hard. In addition to this, there it has also been shown that the
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number of pseudo-intents of a formal context can be exponential in the size of
the incidence relation of this formal context. Given this fact, it is clearly not
possible to enumerate all pseudo-intents of a formal context in time polynomial
in the size of this context. In complexity theory, for analyzing the performance
of enumeration algorithms where the number of solutions can be exponential
in the size of the input, one considers other measures. One such measure is to
take into account not only the size of the input, but also the size of the output.
An algorithm is said to run in output polynomial time [13] if it enumerates
the solutions in time polynomial in the size of the input and the output. One
advantage of an output polynomial algorithm is that it runs in polynomial time
(in the size of the input) when there are only polynomially many solutions.

In the present work we investigate whether pseudo-intents can be enumerated
in output polynomial time. We start with the observation that next-closure and
attribute-incremental algorithms do not run in output polynomial time since
their running times depend not only on the number of pseudo-intents, but also
on the number of intents. We formulate two decision problems that are of sig-
nificant importance for the existence of an output polynomial time algorithm.
In Section 3 we work on the first problem, which is given a formal context K
and a subset P of its set of pseudo-intents, the problem of checking whether
K has an additional pseudo-intent, i.e., a pseudo-intent that does not already
appear in P . We show that this problem is in conp, and it is at least as hard
as the complement problem of checking whether a given simple hypergraph is
saturated [3], which is a prominent open problem in hypergraph theory [2]. In
Section 4 we work on the second problem, which is given a formal context K
and a set P of subsets of its attribute set, the problem of checking whether P
is precisely the set of pseudo-intents of K. We show that this problem is also
in conp, and it is at least as hard as identifying the minimal transversals of a
given hypergraph [3], which is also an open problem. Moreover, we show that
if any of these two problems turns out to be conp-hard, then unless p = np,
pseudo-intents cannot be enumerated in output polynomial time. In Section 5
we investigate the complexity of finding subsets of a given Duquenne-Guigues
Base from which a given implication follows. We show that checking the exis-
tence of such a subset within a specified cardinality bound is np-complete, and
counting all such minimal subsets is #p-complete.

2 Preliminaries

We briefly introduce basic notions of Formal Concept Analysis [8]. Given a formal
context K = (G, M, I) with the derivation operator (·)′, and an implication
P → Q, where P, Q ⊆M , we say that P → Q holds in K if the objects that have
the attributes in P also have the attributes in Q, i.e., P ′ ⊆ Q′. A set A ⊆ M
respects an implication P → Q if P 
⊆ A or Q ⊆ A. An implication P → Q
follows semantically from a set of implications L (written L |= P → Q) if each
subset of M respecting the implications in L also respects P → Q. We denote
the implicational theory of L, i.e, the set of all implications that follow from L,
with Imp(L).
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In [10], a minimum cardinality base, which is called the Duquenne-Guigues
Base, of a given formal context has been characterized, and it has been shown
that there cannot be another base with fewer implications. The premises of the
implications in a Duquenne-Guigues Base are called the pseudo-intents of the
underlying formal context. A set P ⊆ M is a pseudo-intent if P 
= P ′′ and
Q′′ � P holds for every pseudo-intent Q � P . Equivalently, a set P ⊆ M is a
pseudo-intent if P 
= P ′′, it is a quasi-intent, and for every quasi-intent Q � P ,
Q′′ � P holds, where a quasi-intent is defined as a set Q ⊆ M that satisfies
R′′ ⊆ Q or R′′ = Q′′ for any R ⊆ Q.

2.1 Hypergraphs and Related Problems

A hypergraph [2] H = (V, E) consists of a set of vertices V = {vi | 1 ≤ i ≤ n},
and a set of nonempty (hyper)edges E = {Ej | 1 ≤ j ≤ m} where Ej ⊆ V .
A set W ⊆ V is called a transversal of H if it intersects all edges of H, i.e.,
∀E ∈ E . E ∩ W 
= ∅. A transversal is called minimal if no proper subset of
it is a transversal. The set of all minimal transversals of H constitute another
hypergraph on V called the transversal hypergraph of H, which is denoted by
Tr(H). Generating Tr(H) is an important problem which has applications in
many fields of computer science. It is defined as follows:

Problem: transversal enumeration (trans-enum)

Input: A hypergraph H = (V, E) on a finite set V .
Output: The edges of the transversal hypergraph Tr(H).

The well-known decision problem associated to this computation problem is
defined as follows:

Problem: transversal hypergraph (trans-hyp)

Input: Two hypergraphs H = (V, EH) and G = (V, EG).
Question: Is G the transversal hypergraph of H, i.e., does Tr(H) = G hold?

Computational complexity of these problems have now been extensively studied
[3,5,6] and many important applications of these problems have been identified
in logic and artificial intelligence [4], databases [17] and data mining [11]. trans-

hyp is known to be in conp, but so far neither a polynomial time algorithm has
been found, nor has it been proved to be conp-complete. Similarly, it is an open
problem whether trans-enum can be solved in output polynomial time. We
say that a decision problem Π is trans-hyp-hard if trans-hyp can be reduced
to Π by a standard polynomial transformation. We say that Π is trans-hyp-
complete if it is trans-hyp-hard and Π can be reduced to trans-hyp by a
polynomial transformation.

3 Complexity of Enumerating Pseudo-intents

For enumerating pseudo-intents, unfortunately no output polynomial algorithm
is known currently. The most well-known algorithm next-closure [7] for enumer-
ating the pseudo-intents always enumerates the concept intents as well, i.e, its
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running time depends not only on the number of pseudo-intents but also on the
number of concept intents. Since the number of concept intents can be expo-
nential in the number of pseudo-intents, this algorithm in general does not run
in output polynomial time. Similarly, the attribute-incremental algorithm in [18]
has also time complexity depending on both the number of pseudo-intents and
the number of concept intents. In the light of our current knowledge, it is not
even clear whether there can be an algorithm at all that enumerates pseudo-
intents in output polynomial time. In order to investigate this further, let us
first formally define the problem.

Problem: pseudo-intent enumeration (pie)

Input: A formal context K.
Output: The set of pseudo-intents of K.

For solving this enumeration problem, the following decision problem has crucial
importance:

Problem: additional pseudo-intent (api)

Input: A formal context K = (G, M, I), and a set P of pseudo-intents of K, i.e.,
P ⊆ {P | P ⊆M, P pseudo-intent of K}.
Question: Is there an additional pseudo-intent, i.e., Q ⊆ M s.t. Q is a pseudo-
intent of K and Q 
∈ P?

Because, as Proposition 1 below shows, if this problem cannot be decided in
polynomial time, then unless p = np, pie cannot be solved in output polynomial
time.

Proposition 1. If api cannot be decided in polynomial time, then unless p =
np, pie cannot be solved in output-polynomial time.

Proof. Assume that we have an algorithmA that solves pie in output-polynomial
time. Let its runtime be bounded by a polynomial p(IS, OS) where IS denotes
the size of the input context and OS denotes the size of the output, i.e., the set
of all pseudo-intents of the input context.

In order to decide api for an instance given by the context K and a set
P of pseudo-intents of K, we construct another algorithm A′ that works as
follows: It runs A on K for at most p(|K|, |P|)-many steps. If A terminates
within p(|K|, |P|)-many steps, it means that P contains all pseudo-intents of
K, i.e., there is no additional pseudo-intent. So A′ returns no. If A does not
terminate after p(|K|, |P|)-many steps, this implies that there is an additional
pseudo-intent that is not contained in P , so A′ returns yes. It is easy to see that
the runtime of A′ is bounded by a polynomial in |K| and |P|, that is A′ decides
api in time polynomial in the size of the input. �

The proposition shows that determining the complexity of api is indeed crucial
for determining the complexity of pie. In the following we show that api is in
conp, and it is at least as hard as the complement of a prominent open problem
on hypergraphs. However, whether api is conp-hard remains unfortunately open.
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Proposition 2. api is in conp.

Proof. Given an instance of api with the input K and P , construct the set of
implications L = {P → P ′′ | P ∈ P} and nondeterministically guess a set
Q ⊆ M . We can verify in polynomial time that Q → Q′′ does not follow from
L, i.e., the complement of the problem is in np, thus api is in conp. �

Before we can continue with the proof of lower bound, we need to introduce some
more notions from hypergraphs. A hypergraph H = (V, E) is called saturated [3]
if every subset of V is contained in at least one of the edges of H, or it contains
at least one edge of H, i.e., for every W ⊆ V , W ⊆ E holds, or E ⊆ W holds
for some E ∈ E . It has been shown in [3] that checking whether a hypergraph is
saturated is conp-complete. There, a special case of the problem where the given
hypergraph is restricted to be simple, has also been considered. A hypergraph is
called simple if no edge contains another edge.

Problem: simple hypergraph saturation (simple-h-sat)

Input: A simple hypergraph H = (V, E), i.e., ∀E, E′ ∈ E .E ⊆ E′ ⇒ E = E′.
Question: Is H saturated, i.e., is it true that for every W ⊆ V , W ⊆ E holds or
E ⊆ W holds for some E ∈ E?

It is not difficult to see that this problem is in conp. However, up to now there
has neither been a proof that it is conp-hard, nor a proof that it is in p. It has
been shown in [3] that this problem is under polynomial transformations compu-
tationally equivalent to trans-hyp, which as mentioned before is a prominent
open problem in hypergraph theory. In the following we show that our problem
api is at least as hard as the complement of simple-h-sat:

Theorem 1. api is cosimple-h-sat-hard.

Proof. Let an instance of simple-h-sat be given with the simple hypergraph
H = (V, E) where E = {E1, . . . , En}. From H we construct the formal context
KH = (G, M, I) where M = V , and G and I are defined as follows: For every
Ei, 1 ≤ i ≤ n, we create the following objects: For every D � Ei such that
|D| = |Ei| − 1, we create an object with the intent D. Ei has |Ei|-many such
subsets. We name these objects as gij where 1 ≤ i ≤ n and 1 ≤ j ≤ |Ei|. In
total, G contains

∑n
i=1 |Ei| objects. We construct P by just taking the edges of

H, i.e, P = {E1, . . . , En}. Obviously, both KH and P can be constructed in time
polynomial in the size of H.

Note that KH has the following property: Since H is simple, no edge is con-
tained in another edge, and obviously not in strict subsets of any other edge.
Then, for every i such that 1 ≤ i ≤ n, E′

i = ∅ and E′′
i = M . That is Ei is

not closed. Moreover all its strict subsets are closed. Because for every D � Ei

either there is an object whose intent is D, or there is a set of objects such
that the intersection of their intents is D. This is due to the objects gij , where
1 ≤ j ≤ |Ei|, whose intents are strict subsets of Ei with cardinality |Ei| − 1.
Thus, the edges Ei are pseudo-intents of KH, which means that KH and P in-
deed form an instance of api. We claim that H is not saturated if and only if
KH has an additional pseudo-intent.
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(⇒) Assume H is not saturated. Then, there exists a W ⊆ V such that for
every i such that 1 ≤ i ≤ n, W 
⊆ Ei holds and Ei 
⊆ W holds. Assume without
loss of generality that W is minimal with respect to property W 
⊆ Ei for every
1 ≤ i ≤ n. Since W is not contained in any Ei, and obviously not contained
in any strict subset of any Ei, W ′ = ∅ and W ′′ = M . That is W is not closed.
Take any X � W . Since W is minimal, X ⊆ Ei holds for some 1 ≤ i ≤ n. We
know that Ei 
⊆ W , then X = Ei cannot hold, thus X satisfies X � Ei. Since
all strict subsets of Ei are closed, X is closed. We have shown that W is not
closed but all its strict subsets are closed, thus W is a pseudo-intent. Moreover,
it is an additional pseudo-intent since W 
= Ej , for all 1 ≤ j ≤ n.

(⇐) Assume KH has an additional pseudo-intent, i.e., a pseudo-intent Q such
that Q 
= Ei for every 1 ≤ i ≤ n. Since strict subsets of Ei are closed, Q cannot
be a strict subset of any Ei. Thus Q 
⊆ Ei for every 1 ≤ i ≤ n. Moreover, by
definition Q contains the closure of strictly smaller pseudo-intents. We know
that for every 1 ≤ i ≤ n, Ei is a pseudo-intent, and E′′

i = M . Since Q does
not strictly contain M , it cannot strictly contain any Ei either. Together with
Q 
= Ei, this implies that Ei 
⊆ Q. We have shown that there exists a Q ⊆ V
such that Q 
⊆ Ei and Ei 
⊆ Q for every 1 ≤ i ≤ n, thus H is not saturated. �

The following is an immediate consequence of Theorem 1 above and Theorem
4.12 in [3]:

Corollary 1. api is cotrans-hyp-hard.

Theorem 1 has some interesting consequences. The formal context we have con-
structed in the proof has a special property; namely, subsets of object intents are
closed in this formal context. The proof suggests that for the formal contexts of
this form, the problem api and the complement problem of simple-h-sat are
computationally equivalent problems, i.e., api is cosimple-h-sat-complete. For
such formal contexts, in addition to the reduction given in the proof, one can
also easily reduce api to the complement of simple-h-sat, i.e, take an instance
of api given with such a context and a set of pseudo-intents of this context,
construct an instance of simple-h-sat and show that there is an additional
pseudo-intent if and only if the constructed simple hypergraph is not saturated.
It would definitely be interesting to investigate whether formal contexts of this
form are natural in some application domains.

One other point that should be noted here is that simple-h-sat lies at
the boundary of intractability. As mentioned before, for arbitrary graphs it is
conp-complete [3]. The proof of Theorem 1 depends on the fact that the given
hypergraph is simple. Whether this restriction can be eliminated and thus the
intractability result carries over to api for arbitrary formal contexts, is definitely
an interesting question that should be investigated.

4 Complexity of Recognizing the Set of Pseudo-intents

Next we consider another problem about pseudo-intents, namely recognizing the
set of pseudo-intents. More precisely, given a formal context K = (G, M, I) and
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a set P ⊆ P(M) it is the problem of deciding whether P is precisely the set
of pseudo-intents of K. Clearly, this problem can also be formulated as: Given a
formal context K and a set of implications L, decide whether L is the Duquenne-
Guigues Base of K. In the following we are going to investigate its computational
complexity. We start with defining the problem formally:

Problem: pseudo-intents (pis)

Input: A formal context K = (G, M, I), and a set P ⊆P(M).
Question: Is P precisely the set of pseudo-intents of K?

The following proposition shows that like computational complexity of api, the
complexity of pis has also crucial importance for the solvability of pie in output
polynomial time.

Proposition 3. If pis cannot be decided in polynomial time, then unless p =
np, pie cannot be solved in output-polynomial time.

Proof. The proof is almost the same as the proof of Proposition 1. Again we
assume that we have an algorithm A that solves pie in output-polynomial time
and construct another algorithm A′ that runs A for at most p(|K|, |P|)-many
steps. The only difference is that, if A terminates within p(|K|, |P|)-many steps,
then A′ first compares the output of A with P and then returns yes if and only
if they are equal. If they are not equal, or if A has not yet terminated, then
A′ returns no. Thus if pie can be solved in output polynomial time, pis can be
decided in polynomial time. �

In the following we show that just like in the case of api, pis is also in conp,
and it is at least as hard as trans-hyp. However, whether pis is polynomial, or
it is conp-hard also remains open.

Proposition 4. pis is in conp.

Proof. Given an instance with the input K = (G, M, I) and P , an algorithm that
decides pis for this instance first checks whether the elements of P are pseudo-
intents of K. If it encounters an element that is not a pseudo-intent, it terminates
and returns no. If every P ∈ P is a pseudo-intent, then it continues with the
second step. This step is the same as the algorithm in the proof of Proposition
2. The algorithm constructs the set of implications L = {P → P ′′|P ∈ P} and
non-deterministically guesses a set Q ⊆ M . Obviously the implication Q → Q′′

holds in K, thus if L is a base for K then Q → Q′′ follows from L. Then the
algorithm verifies that this is not the case.

It is not difficult to see that this is a conp algorithm. In the first step the
algorithm performs polynomially-many checks each of which can be done in
conp by using the algorithm in [15]. In the second step the algorithm non-
deterministically guesses a Q and in polynomial time verifies that Q → Q′′ does
not follow from L, which means that L is not a base, which implies that P is
not the set of all pseudo-intents of K. This step can be performed in conp as
well, thus the whole algorithm is a conp algorithm. �
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Theorem 2. pis is trans-hyp-hard.

Proof. Let an instance of trans-hyp be given by the hypergraphs H = (V, EH)
and G = (V, EG), where EH = {hi | 1 ≤ i ≤ n} and EG = {gi | 1 ≤ i ≤ m}.
From H we construct the context KH = (G, M, I) where M = V , and G and
I are defined as follows: For every edge hi ∈ EH, create an object whose intent
is the complement of hi, i.e., M \ hi. Let us denote this with hi. Moreover, for
each set f � hi such that |f | = |hi| − 1, create an object with the intent f . hi

has |hi|-many such subsets. That is, for every edge hi ∈ EH we create |hi| + 1
objects, which means that KH contains

∑n
i=1 |hi|+n objects in total. From G we

construct PG by simply defining PG = EG . It is easy to see that this construction
indeed creates an instance of pis and the context KH as well as the set PG can
be constructed in time polynomial in the sizes of H and G. Note that KH has the
following property: (∗) If B ⊆ M is an object intent, then any A ⊆ B is closed
since every such A can be expressed as the intersection of some object intents.
We claim that G is the transversal hypergraph of H if and only if PG is precisely
the set of pseudo-intents of KH.

(⇒) Assume G is the transversal hypergraph of H. Take an edge of G, say
g. g is a minimal transversal of H. By definition, for every hi ∈ EH, g satisfies
g ∩ hi 
= ∅, which is equivalent to g 
⊆ hi. This means that g is not closed in
KH. Because g is not contained in any object intent, hence g′′ = M . Now take
any f � g. Since g is a minimal transversal, f will not be a transversal. That
is, for some hi ∈ EH, f ∩ hi = ∅, which is equivalent to f ⊆ hi. Due to Property
(∗), such f are closed. This means that g is not closed in KH, but its all proper
subsets f are closed, which implies that g is a pseudo-intent of KH. Thus we
have shown that if G is the transversal hypergraph of H, then PG is precisely
the set of pseudo-intents of KH.

(⇐) Assume PG is precisely the set of pseudo-intents of KH. Take any pseudo-
intent p ∈ PG . By definition, p is not closed. Due to Property (∗), p is not
contained in any object intent, i.e., p 
⊆ hi, and thus p′′ = M . This means that p
satisfies p∩hi 
= ∅ for every edge hi ∈ EH, i.e., p is a transversal ofH. Moreover, p
is minimal. Assume it were not. Then there would be another transversal q � p,
and q would satisfy q 
⊆ hi for every hi ∈ EH as well. This would mean that q
is not closed in KH and has the same closure as p which is M . This contradicts
the fact that p is a pseudo-intent. Thus, p is indeed a minimal transversal of H.
We have shown that if PG is precisely the set of pseudo-intents of KH, then G is
the transversal hypergraph of H, which completes the proof of our claim. �

Theorem 2 has the following consequences: For the type of formal contexts used
in the reduction, i.e., where subsets of object intents are also closed sets, pis and
trans-hyp are computationally equivalent with respect to polynomial transfor-
mations, that is pis is trans-hyp-complete. One can take an instance of pis

given with such a formal context and easily reduce it to trans-hyp. In this
case, enumerating pseudo-intents (pie) and enumerating hypergraph transver-
sals (trans-enum) also become computationally equivalent problems. In order
to solve an instance of pie, one can construct the corresponding hypergraph and
solve trans-enum on this hypergraph for instance by using the algorithm in [6]
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by Fredman and Khachiyan. The minimal transversals of this hypergraph will
be the pseudo-intents of the original formal context.

5 Finding Explanations in the Duquenne-Guigues Base

In the present section, we investigate the problem of finding explanations in a
Duquenne-Guigues Base, in other words, finding subsets of a given Duquenne-
Guigues Base that has a given implication as consequence. In logic, for an ar-
bitrary set of axioms, this problem is known as axiom pinpointing. In [1] it
has been shown that in propositional Horn logic a given consequence can have
exponentially many minimal explanations, and finding a minimum cardinality
explanation is np-complete.

From a logical point of view, our implications in FCA are also propositional
Horn clauses. However, here we consider the above problem when the given set
of implications is not an arbitrary set of implications, but it is the Duquenne-
Guigues Base of a formal context. Our motivation for considering the problem
under this restriction can be explained with the following scenario: Consider
a domain expert that explores a context with attribute exploration and works
with the resulting Duquenne-Guigues Base as a compact representation of the
implications holding in her formal context. She notices that from this base, an
implication that actually is not true in her application domain follows. That
is, during attribute exploration she has wrongly confirmed some implication
questions. In this scenario, finding explanations for the unwanted consequences
would help the domain expert to solve the problem. We start with the formal
definition of an explanation in a Duquenne-Guigues Base:

Definition 1. Let L be the Duquenne-Guigues Base of a formal context on the
set of attributes M , and P → Q be an implication such that L |= P → Q. We
say that a subset J ⊆ L explains P → Q if J |= P → Q is satisfied. In this case
we call J an explanation of P → Q. We say that J is a minimal explanation
of P → Q if no proper subset of J explains P → Q.

In the following for a set of implications L we will sometimes abuse the terminol-
ogy and say “the Duquenne-Guigues Base of Imp(L)” for the Duquenne-Guigues
Base of the set of all implications that follow from L. The following lemma gives
a syntactic characterization of the Duquenne-Guigues Base that will later help
us to recognize whether a given set of implications is a Duquenne-Guigues Base.
For a set X , L(X) denotes the implicational closure of X under the implication
set L.

Lemma 1. Let L = {Pi → Qi | 1 ≤ i ≤ n} be a set of implications such that
Pi, Qi ⊆ M and Qi 
⊆ Pi. L is the Duquenne-Guigues Base of Imp(L) if and
only if for every 1 ≤ i ≤ n the following two conditions are satisfied:

– Pi is closed under L \ {Pi → Qi}, and
– Pi ∪Qi is closed under L \ {Pi → Qi}.
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Proof. (⇒) If L is the Duquenne-Guigues Base of Imp(L), then P1, . . . , Pn are
pseudo-closed sets of the closure system induced by Imp(L). Take any Pi . By
definition Pi contains the closure of all Pj such that Pj � Pi. Thus Pi is closed
under L \ {Pi → Qi}. By the definition of Duquenne-Guigues Base, Pi ∪ Qi is
also closed under L \ {Pi → Qi}.

(⇐) Assume L is a set of implications that satisfies the two conditions. We
claim that it is the Duquenne-Guigues Base of Imp(L). In order to prove this
we need to show:

i) Pi are the pseudo-closed sets of the closure system induced by Imp(L), where
1 ≤ i ≤ n, and

ii) for every 1 ≤ i ≤ n, (Imp(L))(Pi) = Pi ∪Qi holds.

Since for any X ⊆ M , L(X) = (Imp(L))(X) holds, we are going to show these
for L.

We start with ii): Take any Pi → Qi and let L′ = L \ {Pi → Qi}. We know
that Pi ∪Qi is closed under L′, i.e., L′(Pi ∪Qi) = Pi ∪Qi. Then Pi ∪Qi is also
closed under L, i.e., L(Pi ∪Qi) = Pi ∪Qi. Obviously L(Pi) = L(Pi ∪Qi) holds
for every Pi → Qi ∈ L. Then L(Pi) = Pi ∪Qi holds. Thus we have shown ii.

In order to show i we need to show that:

1. Pi is not closed, i.e., Pi 
= L(Pi),
2. Pi is quasi-closed, i.e., for every R ⊆ Pi, L(R) ⊆ Pi holds or L(R) = L(Pi)

holds,
3. Pi strictly contains the closure of every strictly contained quasi-closed set,

i.e., for every quasi-closed set R � Pi, L(R) � Pi holds.

We start with 1: We are given that for every 1 ≤ i ≤ n, Qi 
⊆ Pi. Then
Pi 
= L(Pi) holds trivially. For showing 2, take any Pi and some R ⊆ Pi. Let
L′ = L \ {Pi → Qi}. Since implicational closure is monotone, L′(R) ⊆ L′(Pi).
We are given that Pi is closed under L′, i.e., L′(Pi) = Pi hence L′(R) ⊆ Pi. If
L′(R) = Pi, then L(R) = L(Pi) and we are done. If L′(R) � Pi, then L′(R) =
L(R) � Pi and we are done. Thus we have shown that Pi is quasi-closed.

Now we are going to show 3: Take any Pi and some quasi-closed set R � Pi.
Since implicational closure is extensive, R ⊆ L(R) holds. If L(R) = R then
L(R) � Pi and we are done. If R � L(R), then there exists an implication
Pj → Qj , where 1 ≤ j ≤ n, such that Pj ⊆ R and Qj 
⊆ R. Together with
R � Pi, this implies Pj � Pi.

We know that Pi is closed under L \ {Pi → Qi}. Since Pj � Pi, this implies
Qj ⊆ Pi, hence Pj ∪ Qj ⊆ Pi. Since Qi 
⊆ Pi, Qi 
⊆ Pj ∪ Qj . We know that
Pj ∪ Qj is closed under L \ {Pj → Qj}. If Pj ∪ Qj = Pi were satisfied, then
Pj ∪ Qj would not be closed under L \ {Pj → Qj} since Qi 
⊆ Pj ∪ Qj. Thus,
Pj ∪Qj � Pi. By using ii, we can rewrite it as L(Pj) � Pi.

We know that R is quasi-closed. Since Pj ⊆ R, L(Pj) ⊆ R holds or L(Pj) =
L(R) holds. By ii we know that L(Pj) = Pj ∪ Qj . Since Qj 
⊆ R, L(Pj) ⊆ R
cannot hold. Thus, L(Pj) = L(R) holds. Together with L(Pj) � Pi from above,
this implies that L(R) � Pi. Thus we have shown 3, which completes the proof
of i, which in turn completes the proof of our claim. �
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Using Lemma 1, we can show that in the worst case, a given implication can have
exponentially many minimal explanations in a given Duquenne-Guigues Base.
The following example demonstrates this situation:

Example 1. Consider the set of implications

L :=
⋃

1≤i≤n

{{x, bi−1}→ {pi, qi}, {y, pi}→ {bi}, {y, qi}→ {bi}}

on the set of attributes M = {b0, x, y, } ∪ {bi, pi, qi | 1 ≤ i ≤ n}. Note that none
of the left handsides is contained in another left handside or in the union of left
and right handsides of another implication, i.e., L satisfies the two conditions
stated in Lemma 1 thus, L is the Duquenne-Guigues Base of Imp(L).

Consider the implication {b0, x, y} → {bn} that follows from L. A minimal
explanation of this implication is either of the form {{b0, x}→ {p1, q1}, {y, p1}→
{b1}, . . .} or, {{b0, x} → {p1, q1}, {y, q1} → {b1}, . . .}. That is at each step i,
where 1 ≤ i ≤ n, we have two choices since the attribute bi can be generated
either by the implication {y, pi} → {bi}, or by the implication {y, qi} → {bi}.
This means that there are 2n minimal explanations. Since the size of L is linear in
n, the example shows that there can be exponentially many minimal explanations
in a given Duquenne-Guigues Base.

5.1 Minimum Cardinality Explanation

Although there can be exponentially minimal explanations, given a Duquenne-
Guigues Base L and an implication ψ that follows from it, it is not difficult
to find one minimal explanation of ψ in L. We can just start with L, iterate
over the implications in L and remove an implication if ψ still follows from the
remaining set of implications. Clearly, this algorithm terminates since L is finite.
It is correct since ψ still follows from the remaining set of implications and none
of the implications in the remaining set can be removed without destroying this
property.

However, if we want an explanation that is not only minimal w.r.t. set inclu-
sion, but also minimal w.r.t. cardinality, the problem becomes harder. In [1] it
has been shown that for an arbitrary set of implications (there called proposi-
tional Horn axioms) finding an explanation within a specified cardinality bound
is np-complete. Here we consider this problem for the case when the given set
of implications is not arbitrary, but it is the Duquenne-Guigues Base of impli-
cations holding in a closure system. It turns out that under this restriction the
problem does not become easier, i.e., it remains np-complete.

Problem: minimum cardinality explanation (mce)

Input: A Duquenne-Guigues Base L, an implication L → R s.t. L |= L → R
and a natural number n.
Question: Is there an explanation of L → R in L with cardinality less than or
equal to n, i.e., is there an L′ ⊆ L such that L′ |= L → R and |L′| ≤ n?
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Theorem 3. mce is np-complete.

Proof. The problem is in np. We can nondeterministically guess a subset L′ of
L with cardinality n, and in polynomial time check whether L′ |= L → R. This
test can indeed be done in polynomial time by checking whether R ⊆ L′(L).

In order to show np-hardness, we are going to give a reduction from the np-
complete problem vertex cover [9]. Recall that a vertex cover of the graph
G = (V, E) is a set W ⊆ V such that for every edge {u, v} ∈ E, u ∈W holds, or
v ∈ W holds. The problem vertex cover is defined as follows:

Problem: vertex cover

Input: Graph G = (V, E), a natural number n.
Question: Is there a vertex cover of G of size less than or equal to n?

Consider an instance of the vertex cover problem given by G = (V, E), where
V = {v1, . . . , vl}, E = {e1, . . . , ek}, and edge ei = {vi1, vi2}. We construct an
instance of the mce in the following way: For every vertex v ∈ V we introduce
an attribute mv, for every edge ej , 1 ≤ j ≤ k, we introduce an attribute mej ,
and finally two more additional attributes ma and mb. Using these attributes
we construct the following set of implications:

L :={{mv}→{mej |v ∈ ej, 1≤j≤k} | v ∈ V } ∪ {{ma, me1 , . . . , mek
}→{mb}}.

Note that none of the implications in L contains the left handside of another
implication in its left handside or in the union of its left and right handsides.
Thus, due to Lemma 1, L is indeed the Duquenne-Guigues Base of Imp(L). In
addition to L, we construct the following implication ψ that follows from L:
ψ : {ma} ∪ {mv | v ∈ V } → {mb}. It is not difficult to see that both L and
ψ can be constructed in time polynomial in the size of G, and that ψ follows
from L. We claim that G has a vertex cover of size less than or equal to n, where
n ≤ |V |, if and only if L has a subset L′ that explains ψ, and the size of L′ is
polynomial in n.

(⇒) Assume W ⊆ V is a vertex cover of G. Then the following set L′ ⊆ L
constructed by using W is an explanation of ψ:

L′ := {{mw}→ {mej | w ∈ ej, 1 ≤ j ≤ k} | w ∈ W} ∪
{{ma, me1 , . . . , mek

}→ {mb}}.

Since W is a vertex cover, it contains at least one vertex from every edge ej ,
1 ≤ j ≤ k. Thus, {me1 , . . .mek

} ⊆ L′({mw | w ∈ W}). Since {mw | w ∈ W} ⊆
{mv | v ∈ V }, this implies that {me1 , . . .mek

} ⊆ L′({mv | v ∈ V }), which in
turn implies that {mb} ⊆ L′({ma} ∪ {mv | v ∈ V }). Thus we have shown that
L′ is indeed an explanation of ψ, and that it contains exactly n+1 implications.

(⇐) Now assume that L has a subset L′ of size m that is an explanation of ψ.
L′ should contain the implication {ma, me1 , . . . , mek

} → {mb}, since otherwise
the attribute mb cannot be generated. Moreover, since the premise of this impli-
cation contains the attributes me1 , . . . , mek

, L′ should also contain implications
of type {mw} → {mej | w ∈ ej} such that every mej , 1 ≤ j ≤ k, is generated.
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This means that the set W of such w is indeed a vertex cover since it intersects
every edge ej, 1 ≤ j ≤ k. Thus we have shown that W is a vertex cover of G and
it has size m− 1. This finishes the proof of the claim that G has a vertex cover
of size n if and only if L has a subset of size n + 1 that explains ψ. �

5.2 Counting Minimal Explanations

In applications where one is interested in all explanations that are minimal w.r.t.
set inclusion, it might be useful to know in advance how many of them exist.
Next we consider this counting problem. It turns out that it is hard for the
counting complexity class #p [20], i.e., it is intractable.

Problem: #minimal explanation (#me)

Input: A Duquenne-Guigues Base L, and an implication L → R s.t. L |= L → R.
Output: The number of all minimal explanations of L → R, i.e., |{L′ ⊆ L | L′ |=
L → R and ∀L′′ � L′.L′′ 
|= L → R}|.

Theorem 4. #me is #p-complete.

Proof. The problem is in #p. Given a Duquenne-Guigues Base L, an implication
L → R that follows from L, and a set L′ ⊆ L we can in polynomial time verify
whether L′ |= L → R just by checking whether R ⊆ L′(L) holds.

In order to show #p-hardness, we are going to give a parsimonious reduction
from the #p-complete problem #minimal vertex cover, which is the problem
of counting the minimal vertex covers of a graph. It has been shown to be #p-
complete in [21]. In our reduction we are going to use the same construction as
in the proof of Theorem 3, i.e., from a given graph G we construct the same
Duquenne-Guigues Base L, and the same implication ψ as in Theorem 3. What
we additionally need to show here is that this construction establishes a bijection
between minimal vertex covers of G and minimal explanations of ψ in L.

First we show that the construction in the proof of Theorem 3 establishes an
injection: Assume W ⊆ V is a minimal vertex cover of G, then the following set
of implications is a minimal explanation of ψ in L:

L′ := {{mw}→ {mej | w ∈ ej, 1 ≤ j ≤ k} | w ∈ W} ∪
{{ma, me1 , . . . , mek

}→ {mb}}.

In the proof of Theorem 3 we have already shown that L′ is an explanation.
Here we need to show that it is minimal as well. If W is minimal, then removal
of any vertex w from W will result in a Y � W such that vj1 
∈ Y and vj2 
∈ Y
for some edge ej . This implies that removal of the corresponding implication
{mw}→ {mej | w ∈ ej} from L′ will result in a L′′ such that the attribute mej

does not appear on the right handside of any of the implications in L′′, which
means that L′′ cannot explain ψ, i.e., L′ is minimal.

Now we show that it establishes a surjection: Assume L′ is a minimal expla-
nation. Then every mej , 1 ≤ j ≤ k, occurs at least once on the right handside of
some implication of the form {mw} → {mej | w ∈ ej}, where w ∈ W , because



Some Computational Problems Related to Pseudo-intents 143

otherwise L′ cannot explain ψ. We have already shown in the proof of Theorem
Theorem 3 that such a W is a vertex cover. Moreover, removal of any implication
of this form from L′ results in a set of implications that is not an explanation.
This is because L′ is a minimal explanation. That is, removal of any w from W
results in a Y � W such that vj1 
∈ Y and vj2 
∈ Y for some 1 ≤ j ≤ k, i.e.,
W is minimal. Thus we have shown that our construction establishes a bijection
between minimal vertex covers and minimal explanations. �

5.3 Computing All Minimal Explanations

In Example 1 we have demonstrated that a given implication can have expo-
nentially many minimal explanations in a given Duquenne-Guigues Base. Given
this fact, it is clearly not possible to enumerate all minimal explanations in time
polynomial in the size of the input. In this case one can investigate the existence
of an output polynomial algorithm for this problem:

Problem: minimal explanation enumeration (mee)

Input: A Duquenne-Guigues Base L and an implication L → R s.t. L |= L → R.
Output: The set of all minimal explanations of L → R in L, i.e., {L′ ⊆ L | L′ |=
L → R and ∀L′′ � L′. L′′ 
|= L → R}.

In order to investigate the complexity of this enumeration problem, we need to
investigate the following decision problem:

Problem: additional minimal explanation (ame)

Input: A Duquenne-Guigues Base L, an implication L → R s.t. L |= L → R,
and a set of minimal explanations of L → R in L, i.e, J = {Ji | Ji ⊆ L,Ji |=
L → R and ∀J ′ � Ji. J ′ 
|= L → R}
Question: Is there a minimal explanation that is not already listed in J , i.e.,
J ⊆ L such that J |= L → R, ∀J ′ � J . J ′ 
|= L → R and J 
∈J ?

Because if ame is not in p, there cannot be an algorithm that solves mee in
output polynomial time (unless p = np). We can show it by the same argument
used in the proofs of Propositions 1 and 3. It is not difficult to see that ame

is in conp. Given an instance of ame with the Duquenne-Guigues Base L, the
implication ψ and a set of minimal explanations J , we can nondeterministically
guess a minimal subset of L that is not already contained in J and in polynomial
time verify that this subset does not explain ψ. Unfortunately we do not know
the lower bound of this problem at the moment. It is definitely an interesting
question whether this problem, like api and pis, is also related to the decision
problems simple-h-sat and trans-hyp from hypergraph theory.

6 Concluding Remarks and Future Work

We have considered several decision, enumeration and counting problems related
to pseudo-intents. Among them, pie, the problem of enumerating pseudo-intents
has been the central point of our interest. The question whether this problem
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can be solved in output polynomial time or not remains unfortunately open.
However we have formulated two decision questions, namely api and pis, that
are crucial in determining the complexity of pie. Some interesting consequences
of our results can be summed up as follows:

– If any of the problems api, or pis turns out to be conp-hard, then unless p

= np, there cannot be an algorithm that solves pie in output polynomial
time (Proposition 1, Proposition 3).

– Showing that any of the problems api or pis is polynomial implies that the
open problems trans-hyp and simple-h-sat are also polynomial (Theorem
1, Theorem 2, [3]).

– Even if trans-hyp and simple-h-sat turn out to be polynomial, api and
pis can still be conp-hard, thus it can still be the case that pie is not solvable
in output polynomial time.

– Even if api and pis turn out to be polynomial, it can still be the case that
pie is not solvable in output polynomial time.

We have also investigated the complexity of finding explanations, i.e., subsets
from which a given implication follows, in a given Duquenne-Guigues Base. We
have shown that finding a minimum cardinality one is np-complete, and counting
minimal explanations is #p-complete.

As future work, we are going to work on determining the exact complexity
of the problems api and pis. For api, we are going to investigate whether the
hardness result [3] on hypergraph saturation for arbitrary graphs carries over to
api on arbitrary formal contexts. For pis, we are going to investigate the types
of formal context where pis and trans-hyp (and thus pie and trans-enum)
become computationally equivalent problems, and find out whether this type
of formal contexts are natural in some applications, and how often they occur
in practice. One other interesting question is of course the lower complexity
bound for checking whether a set is a pseudo-intent. We are going to investigate
whether this problem is also related to some hypergraph problem. In addition
to this, we are going to work on determining the exact complexity of counting
pseudo-intents.Note that in [15,16] it has been mentioned that this problem is
in #p, but this is not true. The results there only imply that this problem is in
#·conp [12], which contains #p. On the explanations side, we are going to work
on determining the exact complexity of ame.

Acknowledgments. Thanks to Felix Distel for proof-reading a preliminary
version of this work.
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Abstract. In a previous ICFCA paper we have shown that, in the De-
scription Logics EL and ELgfp, the set of general concept inclusions hold-
ing in a finite model always has a finite basis. In this paper, we address
the problem of how to compute this basis efficiently, by adapting methods
from formal concept analysis.

1 Introduction

Description Logics (DLs) [3] are a well-investigated family of logic-based
knowledge representation formalisms, which are employed in various applica-
tion domains, such as natural language processing, configuration, databases, and
bio-medical ontologies, but their most notable success so far is the adoption of
the DL-based language OWL [11] as standard ontology language for the seman-
tic web. From the Description Logic point of view, an ontology is a finite set of
general concept inclusion axioms (GCIs) of the form C � D, where C, D are con-
cepts defined using an appropriate concept description language. Such a concept
description language allows one to construct complex concepts out of concept
names (unary predicates, interpreted as sets) and roles (binary predicates, inter-
preted as binary relations) using certain concept constructors. Complex concepts
are again interpreted as sets. To be more precise, given an interpretation of the
concept and role names, the semantics of the concept constructors determines,
for every complex concept, a unique set as the extension of this concept. The
GCI C � D states that, in a model of the ontology, the extension of the concept
C must be a subset of the extension of the concept D.

When defining a DL-based ontology, one must first decide on which vocabulary
(i.e., concept and role names) to use, and then define appropriate constraints on
the interpretation of this vocabulary using GCIs. The work described in this
paper is motivated by the fact that coming up with the right GCIs by hand is
usually not an easy task. Instead, we propose an approach where the knowledge
engineer is required to provide us with a finite model, which should be seen as
an abstraction or approximation of the application domain to be modeled. We
then automatically generate a finite basis of the GCIs holding in the model, i.e.,
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a finite set of GCIs that hold in this model and from which all GCIs holding in
the model and expressible in the employed concept description language follow.
The knowledge engineer can use the computed basis as a starting point for the
definition of the ontology. She may want to weaken or even remove some of the
GCIs if the chosen model was too restricted, and thus satisfies GCIs that actually
do not hold in all intended models. As an example, assume that we want to
define a family ontology, using the concept names Male, Father, Female, Mother,
and the role name child. Consider a finite model with two families. The first
family consists of John, Michelle, and Mackenzie, where John is male and a
father (i.e., John belongs to the interpretation of the concept names Male and
Father), Michelle is female and a mother, and Mackenzie is female and a child of
both John and Michelle. The second family consists of Paul, Linda, and James,
where Paul is male and a father, Linda is female and a mother, and James is
male and a child of both Paul and Linda. In this model, the GCIs

Father � Male � ∃child.� and Mother � Female � ∃child.�

hold. The first one says that every father is male and has a child, and the second
one says that every mother is female and has a child. If we had used a model
consisting of only the first family, then we would have obtained the too specific
GCIs Father � Male�∃child.Female and Mother � Female�∃child.Female, where
mothers and fathers always have female children.

For the approach sketched above to work, the set of GCIs holding in a finite
model and expressible in the employed concept description language must have
a finite basis. Using methods from formal concept analysis (FCA), we have
shown in [5] that this is the case for the language EL, which allows for the
concept constructors � (top concept), C�D (conjunction), and ∃r.C (existential
restriction). Though being quite inexpressive, EL has turned out to be very
useful for representing biomedical ontologies such as SNOMED [14] and the Gene
Ontology [16]. A major advantage of using an inexpressive DL like EL is that
it allows for efficient reasoning procedures [2,7]. Because of the nice algorithmic
properties of EL, the new OWL standard will contain a profile, called OWL 2 EL,
that is based on EL.

In [5], the existence of a finite basis is actually first shown for ELgfp, which
extends EL with cyclic concept definitions interpreted with greatest fixpoint
semantics. The advantage of using ELgfp rather than EL is that, in ELgfp, every
set of objects (i.e., elements of the domain of a given finite model) always has
a most specific concept describing these objects. Going from a set of objects
to its most specific concept corresponds to the ·′ operator in FCA, which goes
from a set of objects in a formal context to the set of all attributes that these
objects have in common. The existence of most specific concepts in ELgfp thus
allowed us to employ methods from FCA. In a second step, we have shown in [5]
that the ELgfp-basis can be turned into an EL-basis by unraveling cyclic concept
definitions up to a level determined by the cardinality of the given finite model.

In [5], we concentrated on showing the existence of a finite basis for ELgfp
and EL. Of course, if the approach for automatically generating GCIs sketched
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above is to be used in practice, we also need to find efficient algorithms for
computing such bases. This is the topic of the present paper. First, we show
that the algorithm for computing an implication basis of a given formal context
known from classical FCA can be adapted to our purposes. In contrast to the
classical case, we cannot assume that all attributes of the context are known
from the beginning. Instead, the set of attribute can be extended during the run
of the algorithm. This is vital for obtaining an efficient algorithm. In a second
step, we then extend this algorithm to an exploration algorithm. The advantage
of this second algorithm is that it no longer requires the finite model to be
completely represented in the computer from the beginning. As in the case of
classical attribute exploration [9], the model is assumed to be “known” by an
expert, who during the exploration process extends the represented part of the
model in order to provide counterexamples to implication questions.

We concentrate on computing a finite ELgfp-basis since this basis can be
turned into an EL-basis as described in [5]. Due to the space limitation, we
cannot give complete proofs of our results. They can be found in [4]. We also
assume that the reader is familiar with the basic notion and results of formal
concept analysis (FCA).

2 A Finite Implication Basis for ELgfp

We start by defining EL, and show how it can be extended to ELgfp. Then we
define most specific concepts in ELgfp, and show how they can be used to obtain
a finite basis of the ELgfp-GCIs holding in a finite model.

The DLs EL and ELgfp

Because of the space restriction, we can only give a very compact introduction
into these DLs (see [1] for more details). Concept descriptions of EL are built
from a setNc of concept names and a setNr of role names, using the constructors
top concept, conjunction, and existential restriction:

– concept names and the top concept � are EL-concept descriptions;
– if C, D are EL-concept descriptions and r is a role name, then C � D and
∃r.C are EL-concept descriptions.

In the following, we assume that the sets Nc and Nr are finite. This assumption
is reasonable since a finite ontology can contain only finitely many concept and
role names.

Models of EL are pairs (Δi, ·i), where Δi is a non-empty set, and ·i maps role
names r to binary relations ri ⊆ Δi×Δi and EL-concept descriptions C to their
extensions Ci ⊆ Δi such that

�i = Δi, (C1 �C2)i = Ci
1 ∩ Ci

2, and

(∃r.D)i = {d ∈ Δi | ∃e ∈ Di such that (d, e) ∈ ri}.
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Subsumption and equivalence between EL-concept descriptions is defined in the
usual way, i.e., C is subsumed by D (written C � D) iff Ci ⊆ Di for all models
i, and C is equivalent to D (written C ≡ D) iff C � D and D � C.
ELgfp is the extension of EL by cyclic concept definitions interpreted with

greatest fixpoint (gfp) semantics. In ELgfp, we assume that the set of concept
names is partitioned into the set Nprim of primitive concepts and the set Ndef of
defined concepts. A concept definition is of the form

B0 ≡ P1 � . . . � Pm � ∃r1.B1 � . . . � ∃rn.Bn

where B0, B1, . . . , Bn ∈ Ndef , P1, . . . , Pm ∈ Nprim, and r1, . . . , rn ∈ Nr. The
empty conjunction (i.e., m = 0 = n) stands for �. A TBox is a finite set of
concept definitions such that every defined concept occurs at most once as a
left-hand side of a concept definition.

Definition 1 (ELgfp-concept description). An ELgfp-concept description is
a tuple (A, T ) where T is a TBox and A is a defined concept occurring on the
left-hand side of a definition in T .

Models of ELgfp are of the form i = (Δi, ·i) where Δi is a non-empty set, and ·i
maps role names r to binary relations ri ⊆ Δi ×Δi and primitive concepts to
subsets of Δi. The mapping ·i is extended to ELgfp-concept descriptions (A, T )
by interpreting the TBox T with gfp-semantics: consider all extensions of i to
the defined concepts that satisfy the concept definitions in T , i.e., assign the
same extension to the left-hand side and the right-hand side of each definition.
Among these extensions of i, the gfp-model of T based on i is the one that assigns
the largest sets to the defined concepts (see [1] for a more detailed definition of
gfp-semantics). The extension (A, T )i of (A, T ) in i is the set assigned to A by
the gfp-model of T based on i.

Subsumption and equivalence between ELgfp-concept descriptions is defined
as in the case of EL-concept descriptions. It is easy to see that acyclic ELgfp-
concept descriptions (i.e., ones where the TBox component is acyclic) correspond
exactly to EL-concept descriptions. This shows that EL can indeed be seen as a
sublanguage of ELgfp. In the following, we will not distinguish an acyclic ELgfp-
concept description from its equivalent EL-concept description.

Most Specific Concepts in ELgfp

In FCA, the prime operators ·′ play an important rôle. Given a set of attributes
B, the set B′ consists of the objects of the given context satisfying all these
attributes. In DL, the operator ·i plays a similar rôle: given a concept description
C, the set Ci consists of all objects in the model i (i.e., elements of Δi) satisfying
C, i.e., belonging to the extension of C. In FCA, the prime operator can also
be applied in the other direction: given a set of objects A, it yields the set A′ of
attributes common to the objects in A. This is equivalent to defining A′ = Bmax,
where Bmax is the greatest subset of M such that A ⊆ B′

max. In DL, the most
specific concept plays the rôle of this ·′ operator.
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Definition 2 (Most specific concept). Let i be a finite ELgfp-model and X ⊆
Δi. The ELgfp-concept description C is the most specific ELgfp-concept of X
in i if it is the least ELgfp-concept description such that X ⊆ Ci. By least
ELgfp-concept description we mean that every other ELgfp-concept description
C̄ satisfying X ⊆ C̄i also satisfies C � C̄.

Calling an ELgfp-concept description satisfying the above definition the most
specific ELgfp-concept of X in i is justified by the fact that most specific concepts
are obviously unique up to equivalence. In [5] it is shown that, for ELgfp, the
most specific concept always exists.1

Theorem 1. For any finite ELgfp-model i and any set X ⊆ Δi, the most specific
ELgfp-concept of X in i exists and can be computed effectively.

In the following, we denote the most specific ELgfp-concept of X in i by X i. This
overloading of the notation ·i corresponds to the one employed in FCA for ·′.
The following lemma (taken from [5]) shows that the operators ·i indeed behave
similarly to the ·′ operators.

Lemma 1. Let L be a language for which X i exists for every X ⊆ Δi and
every i ∈ I. Let i ∈ I be an interpretation, X, Y ∈ Δi sets of objects and C, D
be concept descriptions. Then the following statements hold

1. X ⊆ Y ⇒ X i � Y i

2. C � D ⇒ Ci ⊆ Di

3. X ⊆ X ii

4. Cii � C
5. X i ≡ X iii

6. Ci = Ciii

7. X ⊆ Ci ⇔ X i � C.

The Set of GCIs Holding in a Finite Model and a Basis for this Set

An expression of the form C → D, where C, D are ELgfp-concept descriptions,
is called an ELgfp-GCI (or simply GCI).2 We say that an GCI C → D holds in
the model i iff Ci ⊆ Di. Given a set of GCIs B, we say that the GCI C → D
follows from B iff C → D holds in all models in which all implications from B
hold.

Definition 3 (Basis). For a given finite model i we say that a set of ELgfp-
GCIs B is a basis for the ELgfp-GCIs holding in i if B is

– sound for i, i.e., it contains only ELgfp-GCIs holding in i, and
– complete for i, i.e., any ELgfp-GCI that holds in i follows from B.

The following lemma, taken from [5], shows that GCIs of the form C → Cii play
a special rôle.
1 Note that this is not true if we use EL instead of ELgfp (see [5] for an example).
2 GCI is an abbreviation for “general concept inclusion.” In DL, GCIs are usually writ-

ten as C 	 D. Here, we prefer to use the arrow notation to emphasize the connection
to implications in FCA and to avoid confusion with subsumption statements.
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Lemma 2. Let C, D be ELgfp-concept descriptions and i a finite ELgfp-model.
Then

– C → Cii holds in i, and
– if C → D holds in i, then C → D follows from {C → Cii}.

This lemma reinforces the similarity between the ·′ operators from FCA and
our ·i operators. In fact, in FCA a basis of all implications holding in a finite
context can be obtained by taking all implications P → P ′′ where P is a so-
called pseudo-intent of the context (see Section 3 below). Following the lead of
FCA, we thus need to determine which ELgfp-concept descriptions can play the
rôle of pseudo-intents, i.e., we want to find a finite set Λi of left-hand sides for
GCI such that the set of GCIs C → Cii for C ∈ Λi is a basis for the ELgfp-GCIs
holding in i.

Before we can define such a set, we need to introduce one more notation.
Given a finite set U of ELgfp-concept descriptions,

�
U :=

�
C∈U C denotes

their conjunction. The set Λi will be obtained as the set of all such conjunctions
for subsets of a basic set Mi.

Definition 4. Let i be a finite ELgfp-model. The sets Mi, Λi are defined as

Mi := Nprim ∪ {∃r.X i | r ∈ Nr and X ⊆ Δi} and Λi := {
�

U | U ⊆Mi}.

Since Nprim, Nr, and Δi are finite, Mi and Λi are finite as well. Thus, the basis
introduced in the next theorem is finite as well.

Theorem 2. The set of GCIs Bi := {C → Cii | C ∈ Λi} is a finite basis for
the ELgfp-GCIs holding in i.

This basis actually differs from the one defined in [5]. However, the proof that
this is indeed a basis for the ELgfp-GCIs holding in i is very similar to the one
given in [5] for the basis introduced there.

The definition of Bi also provides us with a brute-force method for computing
this basis. To compute Mi, all we have to do is consider the (finitely many)
subsets X of Δi, and compute their most specific concepts. The set Λi is then
obtained by considering all subsets of Mi, and Bi is obtained from the elements
C of Λi by first computing their extensions in i, and then building the most
specific concepts of these extensions.

This brute-force approach has two disadvantages. First, up to equivalence of
ELgfp-concept descriptions, the set {X i | X ⊆ Δi} may be considerably smaller
than the powerset of Δi. In fact, not every subset of Δi needs to be an extension
of an ELgfp-concept description, and thus different subsets of Δi may have the
same most specific concept. Second, we also want to be able to deal with a
situation where the model i is not explicitly given, but rather “known” to an
expert. Similar to the case of attribute exploration in FCA, we then want to elicit
enough information about i from the expert to be able to compute a basis, but
without having to ask too many questions. In this situation, neither all subsets
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of Δi nor their most specific concepts can be assumed to be known/computable
at the beginning of the exploration process.

In order to obtain a more practical algorithm for computing a basis, we will
view the set Mi as the set of attributes in a classical formal context induced
by the model i. In the next section, we define this induced context and state
some interesting connections between the ·′ operations in this context and the
·i operations defined in the present section. Basically, we want to apply to the
induced context the classical FCA algorithm for computing an implication basis.
However, there are two differences compared to the classical case. First, we can-
not assume that all the attributes (i.e., all the elements of Mi) are known from
the beginning. Second, since our attributes are ELgfp-concept descriptions, we
can use the known subsumption algorithm for this DL [1] to obtain background
knowledge about relationships between these attributes. Thus, we use an algo-
rithm for computing an implication basis that can handle background knowledge
[15], and extend it such that it can deal with a growing set of attributes.

3 Formal Concept Analysis

Because of space constraints, we cannot give an introduction into FCA here.
We thus assume that the reader is familiar with basic notions such as formal
contexts; attributes and objects; the ·′ operators; intents, extents, and pseudo-
intents; and implications and implication bases (see, e.g., [10]). At several points
in this paper we use the so-called Next-Closure Algorithm, which can also be
found in [10]. Recall that a total order on a finite set of attributes M induces
the so-called lectic order, which is a total order on the powerset of M . Given
a set of attributes U and a set of implications B, the Next-Closure Algorithm
computes the lectically smallest set of attributes V that is closed with respect
to B (i.e., respects all implications in B) and lectically greater than U .

Background Knowledge and Growing Sets of Attributes

We adopt Stumme’s approach for handling background knowledge [15], where
the background knowledge is given by a set of implications holding in the context
under consideration. We say that a set of implications B is an implication basis
for the context K w.r.t. the set of background implications S if B∪S is a sound and
complete set of implications for K. As in the case without background knowledge,
pseudo-intents provide us with the left-hand sides of such a basis. Given a set S
of background implications, the notion of a pseudo-intent is extended as follows.

Definition 5. Let (G, M, I) be a formal context and S a set of implications
holding in (G, M, I). The set P ⊆ M is called S-pseudo-intent if P respects all
implications in S and Q′′ ⊆ P holds for every S-pseudo-intent Q � P .

Stumme shows that this notion of pseudo-intents yields a minimal implication
basis w.r.t. the background knowledge. To be more precise, he proves that the
following holds for the set of implications

BS := {P → P ′′ | P is S-pseudo-intent in K}
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Algorithm 1. Construction of an implication basis w.r.t. background knowledge
for the case of a growing set of attributes
1: Input: K0 = (G, M0, I0), S0

2: Π0 := ∅, P0 := ∅, k := 0
3: while Pk �= null do
4: Πk+1 := Πk ∪ {Pk}
5: k := k + 1
6: Input: Kk = (G, Mk, Ik), Sk

7: if Mk = Mk−1 = Pk then
8: Pk := null
9: else

10: Pk := lectically smallest set of attributes that is
– closed with respect to {Pj → P ′′k

j | Pj ∈ Πk} and Sk, and
– lectically larger than Pk−1.

11: end if
12: end while

– BS is an implication basis for K w.r.t. S, and
– BS has minimal cardinality among all implication bases for K w.r.t. S.

Algorithm 1 looks at a setting where the set of objects is fixed, while the
set of attributes as well as the background knowledge can grow. It starts with
a context K0 = (G, M0, I0) and a set of background implications S0 that hold
in K0. In each step, new attributes and new background implications may be
added by the user, thus yielding a new context Kk = (G, Mk, Ik) and an new
implication set Sk. We require for all k ≥ 1 that (i) Mk−1 ⊆ Mk; (ii) Ik agrees
with Ik−1 on Mk−1, i.e., for all g ∈ G and for all m ∈Mk−1 we have (g, m) ∈ Ik

iff (g, m) ∈ Ik−1; (iii) Sk−1 ⊆ Sk; (iv) the implications of Sk hold in Kk. The
Next-Closure Algorithm used in line 10 of the algorithm requires a total order
on the set of attributes. We assume that the total order on Mk extends the one
on Mk−1 such that a < b for all a ∈ Mk−1 and b ∈ Mk \Mk−1. To make clear
which context we are referring to when using the prime operators, we add the
index of the context; e.g., A′′k is used to denote the set obtained from A by
applying the prime operator of the context Kk twice.

It is easy to see that Algorithm 1 terminates if, and only if, from some point
on the set of attributes is no longer extended. Now, assume that the algorithm
has terminated after the n-th step. We want to show that the set of implications

B(n)
Sn

:= {Pj → P ′′n
j | Pj ∈ Πn}

is an implication basis for the final context Kn w.r.t. the final set of background
implications Sn. To prove this, we first need to show that the set of left-hand
sides Πn “covers” all the quasi-closed sets of attributes for Kn. A set of attributes
U is called quasi-closed for a context K iff, for all subsets V ⊆ U , it holds that
either V ′′ ⊆ U or V ′′ = U ′′.
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Lemma 3. If Q is a set of attributes that is quasi-closed for Kn and respects all
the background implications in Sn, then there is some P ∈ Πn such that P ⊆ Q
and P ′′n = Q′′n .

It is a well-known fact that all pseudo-intents are quasi-closed [8]. Likewise, we
can show that all Sn-pseudo-intents are quasi-closed for Kn [4]. In addition,
Sn-pseudo-intents by definition respect all implications of Sn. Thus, Stumme’s
result implies completeness of {Q → Q′′n | Q is quasi-closed in Kn

and respects all implications of S} ∪ S. Obviously, if P ⊆ Q and P ′′n = Q′′n ,
then the implication P → P ′′n has the implication Q → Q′′n as a consequence.
Thus, Lemma 3 yields completeness of {P → P ′′n | P ∈ Πn} ∪ S.3

Theorem 3. Assume that Algorithm 1 has terminated after the n-th step. Then
B(n)
Sn

is an implication basis for Kn w.r.t. Sn.

Note that, in contrast to the case of fixed set of attributes, in step k we must
add Pk to the set of left-hand sides even if Pk is an intent of Kk, i.e., Pk = P ′′k

k .
This is so because it might happen that Pk = P ′′k

k , but Pk 
= P ′′n
k because the

attributes in P ′′n
k \ P ′′k

k have only been added at a later point.

The Induced Context

What we call induced contexts in this work are formal contexts whose attributes
are concept descriptions and whose set of objects is the domain of a finite model
i. In such a context, an object x has an attribute C if x is in the extension of
the concept C in the model i. Similar contexts have been introduced in [12,13].
In the following, we examine the connection between the ·′-operators in the
induced context and the ·i-operators in the model i. Induced contexts establish
the connection between the DL world and the FCA world which we need for the
algorithms introduced in the next section. But let us first give a more formal
definition of the induced context for the cases of ELgfp.4

Definition 6 (induced context). Let i be a finite ELgfp-model and M a finite
set of ELgfp-concept descriptions. The context induced by M and i is the formal
context K = (G, M, I), where G = Δi and I = {(x, C) | C ∈ M and x ∈ Ci}.

In FCA, an object is in the extension of a set of attributes U iff it has all the
attributes from U . In DL terms, this means that x is in the extension of the con-
junction over all elements of U . Thus, the set of attributes U ⊆ M corresponds
to the concept

�
C∈U C. In the other direction, we can approximate an arbitrary

concept description C by the set of all attributes D ∈M that subsume C. Since
M in general contains only a small number of concept descriptions, this is really
3 Note that soundness is trivial since it is well-known that implications P → P ′′ hold

in the context that defines the prime operators used.
4 Note, however, that the definitions and results given here do not really depend on
ELgfp. They hold for any concept description language in which the most specific
concept exists.
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just an approximation, i.e., the conjunction of these concepts D may strictly
subsume C.

Definition 7. Let K be the context induced by M and i, C an ELgfp-concept
description and U ⊆ M . We define pr

K
(C) := {D ∈ M | C � D}, and call this

the projection of C to K. Conversely, we define
�

U :=
�

D∈U D, and call this
the concept defined by U . We say that C can be expressed in terms of M iff
there is some V ⊆M such that C ≡

�
V.

As an immediate consequence of this definition we obtain that the mappings
C �→ pr

K
(C) and U �→

�
U are antitonic:

– C � D implies pr
K

(D) ⊆ pr
K

(C),
– U ⊆ V implies

�
V �

�
U .

In general, not all ELgfp-concept descriptions can be expressed in terms of
M . Therefore, it is quite obvious that information is lost when we make the
transformation from a concept description to the corresponding attribute set and
back. This is the reason why, in the following lemma, we only have subsumption
and subset relationships rather than equivalence and equality relationships.

Lemma 4. Let K be the context induced by M and i, C an ELgfp-concept de-
scription, and U ⊆ M . Then the following statements hold:

1. C �
�

pr
K

(C)
2. pr

K
(C)′′ ⊆ pr

K

(
Cii
) 3. U ⊆ pr

K
(
�

U)
4. (

�
U)ii �

�
U ′′

If a concept description is expressible in terms of M , then no information is
lost by the conversion to the corresponding attribute set. This is the reason
why, under additional expressibility conditions, the subsumption and subset re-
lationships of the above lemma can be turned into equivalence and equality
relationships.

Lemma 5. Let C be an ELgfp-concept description and U ⊆ M a set of attributes
such that both C and (

�
U)ii can be expressed in terms of M . Then the following

statements hold:

1. C ≡
�

pr
K

(C) 2. pr
K

(
Cii
)

= pr
K

(C)′′ 3.
�

U ′′ ≡ (
�

U)ii

4 Computing a Basis for the ELgfp-GCIs Holding in a
Finite ELgfp-Model

First, we consider the case where the finite model i is given right from the
beginning. In this case, we basically apply Algorithm 1 to the context induced
by Mi (see Definition 4) and i. In a second step, we extend the algorithm obtained
this way to a model exploration algorithm, which can deal with the case where
the model i is not explicitly given, but rather “known” to an expert.
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Algorithm 2. Computing a basis for an a priori given model i

1: Input: finite model i = (Δi, ·i)
2: M0 := Nprim, K0 := the context induced by M0 and i, S0 := ∅
3: Π0 := ∅, P0 := ∅, k := 0
4: while Pk �= null do
5: Πk+1 := Πk ∪ {Pk}
6: Mk+1 := Mk ∪ {∃r.(

�
Pk)ii | r ∈ Nr}

7: Sk+1 := {{C} → {D} | C, D ∈ Mk, C 	 D}
8: k := k + 1
9: if Mk = Mk−1 = Pk then

10: Pk := null
11: else
12: Pk := lectically next set of attributes that respects all implications in

{Pj → P ′′k
j | 1 ≤ j < k} and Sk

13: end if
14: end while

The Case of an A Priori Given Model

Let i be a finite ELgfp-model. Recall that the basis Bi introduced in Section 2 is
the set of all implications C → Cii where the left-hand sides C are of the form
C =

�
U for some subset U of

Mi = Nprim ∪ {∃r.X i | r ∈ Nr and X ⊆ Δi}.

Therefore, it is natural to look at the induced context for the attribute set
Mi. The elements of Mi are ELgfp-concept descriptions, and thus there may
be subsumption relationships between them, which can be computed using the
known polynomial-time subsumption algorithm for ELgfp [1]. We will use these
subsumption relationships as background knowledge. Obviously, if C � D for
ELgfp-concept descriptions C, D ∈ Mi, then the GCI C → D holds in i, and
thus the implication {C}→ {D} holds in the context induced by Mi and i.

Since Algorithm 1 allows for a growing set of attributes, we do not start with
the whole set Mi. Instead, we start with the set Nprim of primitive concepts, and
then extend the current set of attributes by adding ELgfp-concept descriptions
of the form ∃r.X i whenever a new set of objects X is obtained as the extension
of a concept

�
P for an already computed left-hand side P . Algorithm 2 shows

the instance of Algorithm 1 obtained this way.
Algorithm 2 always terminates since there are only finitely many attributes

that can be added. In fact, every attribute that is added is an element of Mi,
and we have already shown in Section 2 that Mi is finite. Now, assume that
Algorithm 2 has terminated after the nth step. Then the algorithm has generated
a set Πn of subsets of Mn ⊆ Mi. This set Πn gives rise to the following set of
GCIs:

Bn := {
�

Pk → (
�

Pk)ii | Pk ∈ Πn}.

Theorem 4. Assume that Algorithm 2 terminates after the n-th step. Then Bn

is a finite basis for the ELgfp-GCIs holding in i.
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Outline of the proof: Obviously, Bn is finite. In addition, since Bn is a subset
of Bi, we know that it is sound. Thus, to show that Bn is a finite basis for the
ELgfp-GCIs holding in i, it is enough to show completeness, i.e., any ELgfp-GCI
that holds in i follows from Bn. Completeness can be proved in two steps. The
first step is to show that, up to equivalence, Mn contains all attributes of the
form ∃r.X i for X ⊆ Δi. The second step then uses this fact to actually prove
completeness of Bn. Step 1 is again divided into two parts.

(a) For a set of attributes U ⊆ Mn, we consider its closure U ′′n under the
double-prime operator ·′′n of the context Kn. As an intent of Kn, U ′′n is closed
under ·′′n , and it respects any implication that holds in Kn. Hence it is quasi-
closed and respects all the implications of Sn. Therefore, Lemma 3 ensures that
there is some Pk ∈ Πn such that Pk ⊆ U ′′n and P ′′n

k = U ′′n . After the k-th step
of the algorithm, all attributes of the form ∃r.(

�
Pl)ii, where 0 ≤ l ≤ k, have

been added to the set of attributes. Using Lemma 4 and 5, it is possible to prove
that (

�
Pk)ii ≡ (

�
U)ii (see [4] for details). This shows that, up to equivalence,

for every set U ⊆Mn the descriptions ∃r.(
�

U)ii must be in Mn.
(b) The fact that Mn contains all attributes of the form ∃r.X i for X ⊆ Δi can

now be proved by induction on the depth of X i, where we say that X i has depth
d iff d is the least role depth of EL-concept descriptions D such that X i = Dii.
In [5] it is shown that this notion of a depth is indeed well-defined. The base
case is easy. In fact, if X i has depth 0, then it can be written as conjunction of
primitive concepts, i.e., X i = (

�
U)ii for U ⊆ M0 ⊆ Mn. But then it follows

from (a) that Mn contains an attribute that is equivalent to ∃r.(
�

U)ii = ∃r.X i.
The step case is very similar, except that one has to show that every X i of
role depth d can be written as the conjunction of primitive concept names and
concept descriptions of the form ∃r.Y i where Y i has depth less than d (details
can be found in [4]).

Step 2. By Theorem 3, we know that the set S ∪ {P → P ′′n | P ∈ Πn} is a
basis for the implications in Kn. Let L ∈ Λi be a premise of some implication
from the basis Bi that is not an intent w.r.t. i, i.e., L 
≡ Lii. We can show that
not only L, but also Lii belongs to Λi, and thus both can be expressed in terms of
Mn, as shown in Step 1. Lemma 4 can be used to derive pr

Kn
(L) 
= pr

Kn

(
Lii
)

=
pr

Kn
(L)′′n . Consequently, pr

Kn
(L) is not an intent of Kn, and hence there must

be an implication Pk → P ′′n
k for Pk ∈ Πn that pr

Kn
(L) does not respect, i.e.,

Pk ⊆ pr
Kn

(L), but P ′′n
k 
⊆ pr

Kn
(L). But then Lemma 4 implies that L �

�
Pk,

but L 
� (
�

Pk)ii.
Thus, for every concept description L ∈ Λi that is not an intent w.r.t. i, there

is some Pk ∈ Πn such that L �
�

Pk, but L 
� (
�

Pk)ii. Since
�

Pk → (
�

Pk)ii

belongs to Bn, the GCI L → L � (
�

Pk)ii follows from Bn. Since L 
� (
�

Pk)ii,
the concept description L � (

�
Pk)ii is strictly subsumed by L, and it can be

shown that L�(
�

Pk)ii ∈ Λi. If L�(
�

Pk)ii is not an intent, then we can use the
same argument, and find Pl ∈ Πn such that L�(

�
Pk)ii → L�(

�
Pk)ii�(

�
Pl)ii

follows from Bn and L�(
�

Pk)ii�(
�

Pl)ii belongs to Λi and is strictly subsumed
by L � (

�
Pk)ii, etc. Since Λi is finite, this cannot go on forever, and thus we

must reach an intent, which can actually be shown to be equal to Lii (see [4] for
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more details). The whole chain of implications thus implies the single implication
L → Lii. This proves that all implications from Bi follow from Bn. Because Bi

is complete, Bn is also complete. ��

The Exploration Algorithm

Now, we extend Algorithm 2 to a model exploration algorithm, which can deal
with the case where the finite model i (called background model in the following)
is not explicitly given, but rather “known” to an expert. We assume that, at the
beginning of the exploration process, only some “parts” of the model i are given
to the exploration algorithm as working model i0. In the following, we assume
that the model i0 as well as its extensions ij generated during the exploration
process are connected submodels of i, i.e., we have Δi0 ⊆ Δi, x ∈ Ai0 iff x ∈ Ai

for all A ∈ Nprim and all x ∈ Δi0 , and Δi0 is closed under i-role successors: if
x ∈ Δi0 and (x, y) ∈ ri for a role r, then y ∈ Δi0 and (x, y) ∈ ri0 . It is easy to
see that this implies x ∈ Ci0 iff x ∈ Ci for all ELgfp-concept descriptions C and
all x ∈ Δi0 .

Algorithm 3 describes our model exploration algorithm. The modification with
respect to Algorithm 2 merely consists of adding a second while-loop to the algo-
rithm. Intuitively, this loop is used to determine the proper conclusion (

�
Pk)ii

for a given premise
�

Pk. Since i is not explicitly given, (
�

Pk)ii cannot be
computed directly, but only by interacting with the expert. This is done in the
following way. The implication

�
Pk → (

�
Pk)ij ij is presented to the expert. If

the expert refutes the implication (i.e., says that it does not hold) then she is
required to provide a counter-example, i.e., a connected submodel ij+1 of i that
extends ij (i.e., satisfies Δij ⊆ Δij+1 ). This is repeated until the expert states
that

�
Pk → (

�
Pk)ij ij holds in i.

Since the set Mi is finite, only finitely many attributes can be added by
Algorithm 3. Therefore, the outer while-loop can only be entered a finite number
of times. With every pass of the inner while-loop, the working model is extended.
Since the working models are submodels of the finite background model, this can
only happen a finite number of times. This shows that Algorithm 3 terminates
after a finite number of steps. Soundness and completeness of Algorithm 3 are
easy consequences of soundness and completeness of Algorithm 2.

Theorem 5. Assume that Algorithm 3 terminates after the n-th iteration of
the outer while loop and that i	 is the actual working model. Then {

�
Pk →

(
�

Pk)i�i� | Pk ∈ Πn} is a finite basis for the ELgfp-GCIs holding in i.

An Example

We illustrate Algorithm 2 using the example from the introduction. The domain
of the background model thus consists of six persons: John, Michelle and their
daughter Mackenzie, as well as Paul, Linda and their son James.5 As primitive
5 Since this is a very simple model, it satisfies GCIs not holding in the “real world.”
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Algorithm 3. The model exploration algorithm
1: Input: working model i0 (connected submodel of the finite background model i)
2: M0 := Nprim, K0 := the context induced by M0 and i0, S0 := ∅
3: Π0 := ∅, P0 := ∅, k := 0, j := 0
4: while Pk �= null do
5: while expert refutes

�
Pk → (

�
Pk)ijij do

6: j := j + 1
7: Ask the expert for a new working model ij that extends ij−1, is a connected

submodel of i, and contains a counterexample for
�

Pk → (
�

Pk)ij−1ij−1

8: end while
9: Πk+1 := Πk ∪ {Pk}

10: Mk+1 := Mk ∪ {∃r.(
�

Pk)ijij | r ∈ Nr}
11: Sk+1 := {{C} → {D} | C, D ∈ Mk, C 	 D}
12: k := k + 1
13: if Mk = Mk−1 = Pk then
14: Pk := null
15: else
16: Pk := lectically next set of attributes that respects all implications in

{Pl → P
′′k
l | 1 ≤ l < k} and Sk

17: end if
18: end while

concepts we use Male (M), Female (F ), Father (Ft) and Mother (Mt), and as
role child (c). Let us assume that the initial working model i0 contains only the
first family, i.e., Δi0 consists of John, Michelle, and Mackenzie, and we have

M i0 = Fti0 = {John}, Mti0 = {Michelle},
F i0 ={Michelle, Mackenzie}, ci0 ={(Michelle, Mackenzie), (John, Mackenzie)}.

1st Iteration: The algorithm starts with P0 = ∅. We have
�

P0 = � and
�i0i0 = �, and thus the expert is asked whether the GCI � → � holds in i.
Obviously, the answer must be “yes,” and we continue by computing the new
set of attributes M1 by adding ∃c.� to M0 = Nprim. The induced context K1
obtained this way is

Ft M Mt F ∃c.�
John X X X
Michelle X X X
Mackenzie X

where we assume that the elements of M1 are ordered as listed in the table.
2nd Iteration: The lectically next set that is closed with respect to {∅→ ∅′′1} =

{∅→ ∅} is {Ft}. We have Fti0i0 = {John}i0 = Ft�M �∃c.F , which gives rise to
the GCI Ft → Ft�M �∃c.F . Thus, the expert is presented with the question: “Is
it true that every father is male and has a child that is female?”. This is not true in
the background model i since Paul is a father without daughter. The expert refutes
the GCI by adding Paul as a counterexample. Note that she must also add James,
because the new working model i1 must be a connected submodel of i. Based on
this model, the algorithm computes a new right-hand-side for the GCI: Fti1i1 =
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Ft�M �∃c.�. The new GCI Ft → Ft�M �∃c.� is presented to the expert, who
accepts it. Consequently, the new attribute ∃c.(Ft �M � ∃c.�) is added.

We do not look at the next iterations in as much detail as for the first two.
The following GCIs are found:

1. Mt → Mt � F � ∃c.F (Refuted, Linda added as counterexample)
2. Mt → Mt � F � ∃c.� (Accepted)
3. F �M → Aa (Accepted)
4. ∃c.� �M → Ft �M � ∃c.� (Accepted)
5. ∃c.� � F → Mt � F � ∃c.� (Accepted)
6. ∃c.M � ∃c.F → Aa (Accepted)
7. ∃c.∃c.�→ Aa (Accepted)

Here Aa (“all attributes”) stands for the cyclic ELgfp-concept description (T , A)
where T = {A ≡ M � F �Mt � Ft � ∃c.A}. Note that Aa is subsumed by any
ELgfp-concept description that can be formulated using the primitive concepts
M , F , Ft, Mt and the role c. As such, it is the best approximation of the bottom
concept that ELgfp can come up with.

Interestingly, all the GCIs accepted during the exploration process, except for
the last two (6. and 7.), hold in the “real world.” The GCIs 6. and 7. are artefacts
of the simple model i used for the exploration. They are due to the fact that, in
i, there are no grandparents, and no one has both a son and a daughter.

5 Related and Future Work

The context induced by a finite model and a finite set of concept descriptions
as attributes has been considered before (e.g., in [12,13]). However, since this
previous work did not make use of the most specific concept, the authors could
not show and utilize the connections between the ·i operators in the model and
the ·′ operators in the induced context. The work whose objectives is closest to
ours is [13],6 where Rudolph considers attributes defined in the DL FLE , which
is more expressive than EL. Given a finite FLE-model, he considers an infinite
family of induced contexts Kn, where the finite attribute sets are obtained by
considering all FLE-concept descriptions (modulo equivalence) up to role depth
n. He then applies classical attribute exploration to these induced contexts,
in each step increasing the role depths until a certain termination condition
applies. Rudolph shows that the implication bases of the contexts considered up
to the last step contain enough information to decide, for any GCI between FLE-
concept descriptions, whether this GCI holds in the given model or not. However,
these implication bases do not appear to yield a basis for all the GCIs holding in
the given finite model, though it might be possible to modify Rudolph’s approach
such that it produces a basis in our sense. The main problem with this approach
is, however, that the number of attributes grows very fast when the role depth
grows (this number increases at least by one exponential in each step). In contrast

6 see http://relexo.ontoware.org/ for a tool that realizes this approach.

http://relexo.ontoware.org/
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to considering all concept descriptions up to a certain role depth, our approach
only adds an attribute of the form ∃r.(

�
P )ii if P has been generated as the

left-hand side of a GCI in our basis.
The main topic for future research is to show that the approach for using

attribute exploration to complete DL knowledge bases introduced in [6] can be
extended to the model exploration algorithm introduced in this paper.
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Abstract. Formal concept analysis (FCA) is increasingly applied to
data mining problems, essentially as a formal framework for mining re-
duced representations (bases) of target pattern families. Yet most of the
FCA-based miners, closed pattern miners, would only extract the pat-
terns themselves out of a dataset, whereas the generality order among
patterns would be required for many bases. As a contribution to the
topic of the (precedence) order computation on top of the set of closed
patterns, we present a novel method that borrows its overall incremental
approach from two algorithms in the literature. The claimed innova-
tion consists of splitting the update of the precedence links into a large
number of lower-cover list computations (as opposed to a single upper-
cover list computation) that unfold simultaneously. The resulting method
shows a good improvement with respect to its counterpart both on its
theoretical complexity and on its practical performance. It is therefore
a good starting point for the design of efficient and scalable precedence
miners.

1 Introduction

Formal concept analysis (FCA) extracts knowledge from datasets represented as
objects× attributes tables [4]. Concepts are key knowledge chunks that represent
meaningful abstractions in the underlying domain. They are particularly useful
when hierarchically ordered into the concept lattice as the structure can support
various types of reasoning such as classification, clustering, implication discovery,
etc. Yet the construction of the concept lattice is not a trivial problem, especially
with large datasets. Indeed, the size of the lattice could grow exponentially
with the number of data items, hence the need to design efficient algorithms for
the task (see [3]). The existing ones may roughly be split into three categories
with respect to the structure that is effectively output. Historically, the first
algorithms looked at the set of all concepts [1] which was not provided with any
particular structure. Later on, methods constructing the Hasse diagram of the
lattice, i.e., the concept set plus the precedence relation of the lattice, have been
designed [2,5]. Quite recently, the problem of ordering the set of concepts, i.e.,
extracting the set of precedence links out of them, has been tackled [17].

S. Ferré and S. Rudolph (Eds.): ICFCA 2009, LNAI 5548, pp. 162–177, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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The question is of both theoretical and practical significance. Indeed, on the
one hand, efficient algorithms for the computation of the concept set exist which,
if appropriately completed, could yield a good overall method for lattice con-
struction. In particular, such methods can be easily crafted from the various
frequent closure miners abounding in the data mining literature [9,10,12]. Yet
some miners, while very efficient, are particularly hard to adapt to the simulta-
neous computation of the Hasse diagram. We tend to see this fact as a sufficient
motivation for the design of algorithms dedicated to the latter task. On the other
hand, FCA is increasingly used within the data mining community as a formal
framework for the numerous reduced representations of patterns and associa-
tions. Hence the interest for the construction of the iceberg concept lattice, i.e.,
the ordered structure of all frequent intents. Once again, the existing closure
miners only output the intents and could therefore benefit from a complemen-
tary procedure deriving precedence out of the intent set. Yet to be efficient, the
target procedure should not perform operations that depend on the size of the
object set.

Our current study is motivated by the need for efficient computation of the
precedence links among intents without looking on the respective extents. It is a
follow-up to a previous work of the third author [17] and a response to [7]. Both
algorithms basically work in the same way, i.e., they use the same intuition and
very similar supporting data structures. The initial approach, which boils down
to an incremental top-down construction of the lattice/iceberg diagram, has
been revisited and substantially improved, both on its theoretical and practical
aspects. In particular, given a concept, the basic test is on its being a lower
cover of specific concepts already integrated in the diagram (instead of looking
for its upper covers among previously processed concepts). Moreover, a deeper
insight into the concept neighborhoods within the lattice (which builds upon a
property from [18]) is exploited to speedup the computation of precedence links.
The overall precedence link discovery process thus unfolds gradually: at each
iteration the lower cover lists of concepts already in the diagram are tentatively
updated.

Our method is a clear improvement of the state of the art as it outperforms
the reference algorithms. Indeed, the new approach of precedence calculations
results in a lower worst-case complexity (a multiplicative factor drops out). This
is empirically confirmed by the results of an experimental study involving a
straightforward implementation of the method and a large set of typical datasets
used in the pattern mining literature.

All in all, the contributions of the paper are three-fold. First, a handy property
of neighborhoods in the Hasse diagram is proven which can be used in the design
of further algorithms targeting the precedence links among concepts. Next, a
concrete method exploiting that property is devised whose complexity shows
a substantial improvement with respect to the reference method. Finally, an
extensive empirical study on the practical performances of the new method as
opposed to its counterpart is reported.
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The paper is organized as follows. After a short overview of the relevant FCA
notions and notations, we recall the reference method from [17] (Section 2). The
structural results behind our approach are provided next (Section 3), followed
by the presentation of the new method called iPred (Section 4). Experimental
evaluations are also provided (Section 5). Finally, conclusion and future work
directions are given (Section 6).

2 Previous Work

2.1 Notation

We depart from the usual FCA notation, in which we have a formal context
K(G, M, I) plus the associated concept lattice. In this paper we focus on the
lattice formed by the set of intents of a formal context, let this set be C ⊆ ℘(M).
The lattice is this set plus an order on that set, this is: L = 〈C,≤L〉, where
≤L ⊆ C ×C.

Since we are just focusing in the intents of the concept lattice, we have that
the bottom of the lattice is M whereas the top is ∅, if we assume that the formal
context is reduced. The precedence relation % between c, c̃ ∈ C is such that
c % c̃ if and only if c̃ ⊆ c. This relation works inverted w.r.t. the inclusion relation
because of the orientation of the intents in the concept lattice.

Given two elements c, c̃ ⊆ C, the relation ≺ is that of being the immediate
predecessor, this is, if c ≺ c̃ we say that c is the immediate predecessor of c̃.

Property 1. If c ≺ c̃, then |c| > |c̃|.

We also define the following metrics on the lattice L: ω(L) is the width of L,
whereas d(L) is the maximal degree of all the elements in L.

For our convenience, we flatten the set notation when dealing with sets. There-
fore, { a, b, c } becomes abc and { { a, b }, { b, c } } becomes { ab, bc }.

2.2 Methods Computing the Precedence Order

The historically first algorithm to compute the set of concepts of a context,
Next-Closure [1], does not provide the precedence of the elements in that
context. Later algorithms, such as those due to Godin [5] and to Bordat [2],
compute both concepts and precedence yet the two tasks are interleaved hence
difficult to separate. This does not make good candidates to complete a frequent
closed itemset (FCI) miner out of them.

The first algorithm dedicated to the computing of the precedence was pub-
lished in [8] as a distinct and separable part of a complete algorithm for the
construction of a family of open sets and its semi-lattice. Yet the corresponding
method does not qualify for an efficient precedence miner either. Indeed, the
core operation which, in FCA terms, corresponds to the computing of the up-
per covers of a concept, boils down to intersecting the concept intent with all
intents of object that are not in the concept extent. Performing an operation a
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number of times that depends on the size of the object set in a context clearly
hurts the scalability of a method and hence limits its data mining potential as
in realistic settings the number of the objects is orders of magnitude higher than
the number of attributes. Nothewortily, transposing the context matrix would
not help here as the cost of the algoritm in [8] depends on both dimensions of
the context. Thus, whenever one of these is huge, its computation performances
will invariably suffer.

The method in [17] is, to the best of our knowledge, the first attempt to address
the precedence computation problem with data mining concerns in mind. In fact,
the method only considers the set of all (frequent) intents and organizes them
into a graph representing the Hasse diagram of the (iceberg) lattice. To that
end, the intents are processed sizewise while at each step, the current intent is
integrated into the already constructed part of the lattice graph (an upper set
thereof for that matters) by recognizing its upper covers among the vertices of
that partial graph. More precisely, the target concepts are pinpointed among a
larger set of candidates, themselves generated by intersecting the current concept
intent with the intents of all the current minimal concepts of the partial graph
(see next subsection). The method has been recently rediscovered (see [7]) yet
this new version shows greatly improved practical performance.

The idea of computing the order among frequent closed itemsets (FCI, alias
frequent concept intents) has made its way into the data mining literature. For
instance, the Charm-L algorithm [13] tackles that composite problem and its
performance is very satisfactory (see [16]). Yet Charm-L, like the aforemen-
tioned lattice algorithms mixes concept computing with precedence detection,
hence it is not a good choice for a mere precedence miner to adjoin to an existing
FCI miner.

Recently, an approach for computing the precedence link out of FCIs and
frequent generators has been proposed (see [14]). The corresponding method,
Snow, fully qualifies for the task of completing existing FCI miners in a generic
way. This has been extensively argued on in [16]. Yet Snow comes with a price:
the minimal generators of frequent intents must be known as well as their re-
spective closures (among the frequent intents). Although this is often the case
that FCI miners output frequent minimal generators as byproduct, such practice
is not a must in the field, so an overhead for computing the generators and for
associating them to their closures must be provided for.

In our current study, we push further the ideas from [17], i.e., computing the
precedence incrementally by incorporating the current intent into the already
constructed subgraph. The novelty is a completely reshuffled procedure for es-
tablishing the links among concepts. In what follows, we first present the original
algorithm and then the new one. Their respective worst-case complexity func-
tions are established to theoretically ground the claimed improvement: Here a
whole factor from the original formula vanishes. This is experimentally confirmed
by the results of our comparative study on the practical performances of both
methods.
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2.3 The BorderAlg Algorithm

We depart from the algorithms in [17] and in [7], which we generically call
BorderAlg. In general terms, the approach of those algorithms is to find the
upper cover of the elements that are in the lattice. In order to achieve that,
the algorithm sorts all the elements in the lattice sizewise and then, it proceeds
to process each element one by one. At a given point of the algorithm, the
element that is to be processed is intersected with all the elements in the border.
The border set is the set of maximal elements of the set of already processed
elements. Those intersections form the candidate set of upper covers for the
current element. It is clear that those elements in the candidate set exist in
the lattice, because it is closed under intersection. However, not all of them
may necessarily be immediate predecessors. In order to find those predecessors,
the maximal elements of this candidate set must be found, which we call the
cover set. This is the set of upper covers for the current element. The algorithm
proceeds to add the connections between the current element and all the elements
in the cover set, updates the border set and proceeds with the next element.

Intuitively, we can see that for each element, we are sure that all those elements
in the lattice that are of size strictly smaller (Property 1), have been processed.
Since an element can only be in the upper cover if the size is strictly minor,
we know that all the elements that potentially are immediate predecessors have
already been processed. Some of them are in the border set, and the rest will
result from the intersection with all the elements in cover.

Input: C = { c1, c2, . . . , cl }
Output: L = 〈C,≤L〉
Sort(C);1

Border ← { c1 };2

foreach i ∈ { 2, l } do3

Candidate ← { ci ∩ c̃ | c̃ ∈ Border };4

Cover ← Maxima(Candidate);5

≤L ← ≤L ∪{ (ci, c̃) | c̃ ∈ Cover };6

Border ← (Border − Cover) ∪ ci;7

end8

Algorithm 1. The BorderAlg algorithm

To illustrate the BorderAlg algorithm, we have a formal context with its
associate concept lattice (where only the intents are shown) in Figure 1. Let us
assume that this algorithm has sorted the sets in the concept lattice (line 1) in
the following way:

{ ∅, c, d, a, bc, cd, de, abc, bcd, ade, cde }
and that, at a certain point, all the elements up to de have been processed.
Therefore, we have that the lattice has been constructed up to the iceberg in
Figure 2.
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Fig. 1. Formal context and its concept lattice, in which only the intents are present
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Fig. 2. Iceberg of the already processed elements

And that the next element to be processed is abc. The border set will therefore
contain the elements a, bc, cd, de, and the candidate set computed in line 4 will
yield the following set: { a, bc, c, ∅ }, which is the intersection of abc with the
border set. As it can be seen, the candidate set contains the elements of the
upper cover of abc (i.e. { a, bc }) that are the immediate predecessors of abc, as
well as other sets which are not in that upper cover: (i.e { c, ∅ }). Precisely, the
function Maxima in line 5 computes the Cover set from the Candidate set.
The resulting set is { a, bc }, and then, the connections (a, abc) and (bc, abc) are
added to ≤L in line 6, the sets a and bc are removed from the Border set, and
abc is added to that same set, so that the final Border set after this iteration of
the algorithm is cd, de, abc.

The complexity of BorderAlg is ([17]):

| C | × ω(L)× |M |2

More detailed information on the complexity analysis of BorderAlg can be
found in Appendix A.

3 Theoretical Background of iPred

We have seen that the dominant factors in the complexity of Algorithm Bor-
derAlg are the size of the input set | C | and the computation of the maximal
elements of Candidate (the set Cover) which is ω(L)×|M |×d(L). Since the first
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factor can’t be avoided, the efforts to reduce the complexity of this algorithm
should be directed towards the reduction of the computation of the Cover set.
In this paper we present our new algorithm, called iPred, which improves the
second factor by assuming a new strategy.

If we focus on the second factor of complexity in Algorithm 1, we see that for
any given element ci we test which elements of the Candidate set also belong to
the Cover set. This computation is performed by choosing the maximal elements
of the Candidate set, since the following condition is met:

Property 2. An element c̃ is in the Candidate set of an element ci ∈ C if and
only if ci % c̃.

That means that all potential elements that can be immediate predecessors of
ci are all in the Candidate set. Therefore, the algorithm only needs to choose
among the Candidate set all those elements that are immediate predecessors
of ci, i.e:

{ c̃ ∈ Candidate(ci) | ci ≺ c̃ }

This is what the function Maxima in line 5 of Algorithm 1 does, since it chooses
the maximal elements of the Candidate set.

The algorithm iPred that we propose in this paper takes a different strategy:
instead of checking if an element c̃ of the Candidate set is in the upper cover
of the element ci which is currently being processed, we check if the element ci

belongs to the lower cover of c̃. Although in principle, it may seem that both
strategies should yield a similar (not to say the same) complexity, we prove in
this paper that iPred improves in a factor of d(L) the complexity of previous
algorithms. Since |M | is an upper bound of d(L), the improvement, in the best
of the cases, is that of |M |.

In this section we present the mathematical background on which iPred is
based. We define an enumeration of C:

Definition 1. An enumeration of C is the set:

enum(C) = { c1, c2, . . . , cn }

such that ∀i, j ≤ n : i ≤ j =⇒ |ci| ≤ |cj |.

An enumeration is simply a sizewise sorting of the elements of a set. We now
define the face ([11]) and the set of faces of an element:

Definition 2. The face of an element c ∈ C w.r.t. an immediate successor c̃ is
the difference between those two sets. The set of faces is:

faces(c) = { c̃− c | c̃ ≺ c }

For instance, according to the concept lattice in Figure 1, the face of a w.r.t. abc
is bc, and faces(a) = { bc, de }. We now define a partial union of the faces of an
element of the lattice:
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Definition 3. We define the accumulation of faces of an element c ∈ C
w.r.t. an enumeration enum(C) as:

Δi
c =
⋃
{ cj − c | cj ∈ enum(C) and cj ≺ c and j < i }

The accumulation of faces of c ⊆M up to i is simply the faces of c in the iceberg
lattice formed by the elements of the enumeration enum(C) up to i. Following
Figure 1, we have that if the enumeration of the lattice is

{ ∅, c, d, a, bc, cd, de, abc, bcd, ade, cde }

then, Δ9
a = bc and Δ11

a = bcde. This accumulation of faces is a handy way to
test whether an element of the lattice is in the lower cover of another element of
the lattice, as the next proposition shows:

Proposition 1. ci ≺ c if and only if ci ∩Δi
c = ∅ and ci % c.

Proof. ⇒ ci∩Δi
c = ∅ and ci % c implies that ci ≺ c. By the way of contradiction,

let us assume that ci ⊀ c. Since ci % c, there is a c̃ such that ci % c̃ ≺ c.
Therefore, by Definition 1 of sequence, and by Definition 3 of accumulation of
faces, c̃− c ⊆ Δi

c, and since ci % c̃, then, ci ∩Δi
c 
= ∅, which is a contradiction.

⇐ ci ≺ c implies that ci ∩ Δi
c = ∅ and ci % c. If ci ≺ c, by Definition 1 of

sequence, all the immediate predecessors of c of size smaller or equal than |ci|
are incomparable with ci, meaning that ci ∩Δi

c = ∅. �

This proposition basically states that, given an enumeration of the elements of
a lattice, in order to know if between two elements c, c̃ of the lattice we have
that c ≺ c̃, we only need to test if the accumulation of faces of c̃ has an empty
intersection with c.

In order to compute the connections in a lattice according to Proposition 1,
the following must be performed:

1. Sort the elements of the lattice into an enumeration.
2. For each element in the lattice, the candidate set must be computed.
3. It must be checked if the element currently being processed belongs to the

lower set of all the elements of the candidate set.

The first two steps are as in BorderAlg, and the difference appears in the
third step. In order to test if the current element is in the lower cover of an
element of the candidate set, we must compute the accumulation of faces of the
latter. This step will reduce the complexity of BorderAlg in a factor of |M | as
we will see in the next section.

4 The iPred Algorithm

In this section we present our new algorithm called iPred, we examine its cor-
rectness and complexity, and we also provide a running example.
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4.1 The Algorithm

The algorithm is based on Proposition 1, and it computes the sets Border,
Candidate as in Algorithm 1, but the set Cover is not needed any more. There
is an extra structure, Δ, in which we store the accumulation of faces for all the
elements of the lattice, and we choose the notation Δ[c] to show the access to
the accumulated faces of the set of attributes c. In terms of complexity, if this
structure is implemented with a trie, the access to an element would be linear
on the number of attributes: |M |. The iPred algorithm is as follows:

Input: C = { c1, c2, . . . , cl }
Output: L = 〈C,≤L〉
Sort(C);1

foreach i ∈ { 2, l } do2

Δ[ci] ← ∅;3

end4

Border ← { c1 };5

foreach i ∈ { 2, l } do6

Candidate ← { ci ∩ c̃ | c̃ ∈ Border };7

foreach c̃ ∈ Candidate do8

if Δ[c̃] ∩ ci = ∅ then9

≤L ← ≤L ∪(ci, c̃);10

Δ[c̃] = Δ[c̃] ∪ (ci − c̃);11

Border ← Border − c̃;12

end13

end14

Border ← Border ∪ ci;15

end16

Algorithm 2. The iPred algorithm

The algorithm works as follows:

1. It sorts the elements of the lattice by size (line 1). This sequence is now an
enumeration as in Definition 1.

2. All the Δ[ci] in each element of the input set is initialized to the empty set.
This Δ[ci] will contain the accumulation of faces for each element (lines 2–4).

3. The first element in the border is the first element in the sequence (line 5).
4. All remaining elements in the input sequence are processed in the order in

which they appear in the enumeration (lines 6–16).
5. The candidate set is computed by intersecting the current element ci with

all the elements in the border (line 7).
6. We check if the current element belongs to the upper set of the elements that

are in the candidate set (lines 8–14). This is done by checking Proposition 1
(line 9).
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7. If the test result is positive, by Proposition 1 we know that ci ≺ c̃, so we
can add this connection to the output set (line 10), then we add that face
to the set of accumulated faces of c̃ (line 11) and finally, we remove c̃ from
the Border (line 12).

8. Before the next element is processed, we make sure that ci is added to the
border (line 15).

The correctness of this algorithm follows from the following facts:

1. C is a valid enumeration, according to Definition 1.
2. Δ[c̃] has at each step of the algorithm the accumulation of faces Δi

c̃. At the
beginning of the algorithm, for any element c̃ of the lattice, its accumulation
is the empty set, this is Δ0

c̃ . Every time a new element ˜̃c such that ˜̃c ≺ c̃ is
found, Δi

c̃ is updated conveniently in line 11, which guarantees that at the
loop i of the algorithm, Δ[c̃] = Δi

c̃.
3. A connection is added if and only if the test in Proposition 1 is positive.

It should be noted that since all the elements of the Candidate set are the
intersection of ci with the elements of the Border set, we are sure that, for
each element c ∈ Candidate, c ⊆ ci (i.e. ci % c) holds, which is one of the
conditions in Proposition 1.

4. Border always contains the maximal elements of the set of processed ele-
ments. This border is updated in line 12, where the element c̃ is removed.
This is valid since we are sure that this can be done because ci will be added
to the border (line 15) and, at the same time, we know that ci ≺ c̃ since we
are in the positive case of the test in line 9. If the test is negative, ci is also
added to the border, but no elements are removed.

Therefore, we conclude that Algorithm 2 finishes (since we assume that the
set | C | is finite), and correctly computes the connections in the lattice set, since
it correctly tests the condition in Proposition 1.

4.2 Complexity Analysis

The complexity of the previous algorithm is based on the following factors:

1. The sort in line 1 can be performed in linear time w.r.t. the size of the set,
this is, | C |× |M | (as in Algorithm 1). The cost of line 2 is exactly the same.

2. The loop in lines 6–16 is done | C | times (as in Algorithm 1).
3. The complexity of the computation of the candidate set in line 7 is ω(L)×|M |

(as in Algorithm 1).
4. The loop in lines 8–14 is performed ω(L) times (as in Algorithm 1).
5. The cost of checking the condition in line 9 is |M | if Δ is a trie.
6. The cost of line 10 is |M | since it consists in adding a pair of size M to ≤L.
7. The cost of line 11 is |M | because it consists in updating an element in a

trie.
8. As for line 12, it consists in removing an element from a set. If this set is

also implemented with a trie, then the cost is also |M |.
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We condense the costs of lines 9, 10, 11 and 12 into |M | and, therefore, the
total cost of this algorithm is:

| C | × |M |︸ ︷︷ ︸ + | C |︸︷︷︸ ×
(

ω(L)× |M |︸ ︷︷ ︸ + ω(L)︸ ︷︷ ︸ × |M |︸︷︷︸
)

line: 1–2 6–16 7 8–14 9–12

Since the cost of line 7 (ω(L)×|M |) subsumes the cost of lines 8–14 and 9–12
(it is just the same), and since the factor in lines 1–2 is subsumed by the rest of
the formula, the complexity of Algorithm 2 is finally of order:

| C | × ω(L)× |M |

Compared with the complexity of BorderAlg, we can see that the factor
|M |2 is now |M |, which means that we should expect an improvement of the
performance of the algorithm by a factor linear on the size of the attribute set.

4.3 Running Example

Let us see how the algorithm would perform according to Figure 1. We list the
following variables:

1. The element currently being processed (line 6).
2. The candidate set (line 7).
3. The output ≤L (line 10).
4. The accumulation of faces, only for those that are changed (line 11).
5. The border (line 12).

At the beginning of the algorithm, the elements of the input set are sorted
sizewise, let us assume that one of the possible orderings is:

{ ∅, c, d, a, bc, cd, de, abc, bcd, ade, cde }
All the accumulation of faces are set to the empty set (lines 2 - 4) and Border

has the first element of the sorted input sequence, this is ∅. We now list how the
precedent sets change according to each loop in the algorithm.

1 Current element := c 7 Current element := abc
Candidate set := { ∅ } Candidate set := { ∅, a, c, bc }
≤L: added (∅, c) ≤L: added (a, abc), (bc, abc)
Δ[∅] = c Δ[a] := bc, Δ[bc] = a
Border := { c } Border := { cd, de, abc }

2 Current element := d 8 Current element := bcd
Candidate set := { ∅ } Candidate set := { ∅, d, bc, cd }
≤L: added (∅, d) ≤L: added (bc, bcd), (cd, bcd)
Δ[∅] = cd Δ[bc] = ad,Δ[cd] = b
Border := { c, d } Border := { de, abc, bcd }
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3 Current element := a 9 Current element := ade
Candidate set := { ∅ } Candidate set := { ∅, a, d, de }
≤L: added (∅, a) ≤L: added (a, ade), (de, ade)
Δ[∅] = acd Δ[a] = bcde,Δ[de] = a
Border := { a, c, d } Border := { abc, bcd, ade }

4 Current element := bc 9 Current element := cde
Candidate set := { ∅, c } Candidate set := { ∅, c, cd, de }
≤L: added (c, bc), ≤L: added (cd, cde), (de, cde)
Δ[c] = b Δ[cd] = be,Δ[de] = ac
Border := { a, bc, d } Border := { abc, bcd, ade, cde }

5 Current element := cd 10 Current element := abcde
Candidate set := { ∅, c, d } Candidate set := { abc, bcd, ade, cde }
≤L: added (c, cd), (d, cd) ≤L: added (abc, abcde),(bcd, abcde)
Δ[c] := bd, Δ[d] := c (ade, abcde),(cde, abcde)
Border := { a, bc, cd } Δ[abc] = de,Δ[bcd] = ae

Δ[ade] = bc,Δ[cde] = ab
6 Current element := {d, e} Border := { abcde }

Candidate set := { ∅, d }
≤L: added (d, de)
Δ[d] := ce
Border := { a, bc, cd, de }

As an example, let us see what happens in step 7. We add the element abc. The
Candidate set is { ∅, a, c, bc }, which results from the intersection with the Border
set, which is { a, bc, cd, de }. We point out the fact that the Candidate set contains
the upper set of abc in the lattice L. The accumulated faces of the elements of the
Candidate set are then tested one by one with abc (line 9). The first intersection
is with the accumulated face of ∅, which is acd according to its last update
in loop 3. Since the intersection is not void, then, ∅ is not considered as an
immediate predecessor of abc. As it has been previously explained, the reason is
that the pairs (∅, a) and (∅, bc) have already been added to ≤L and, therefore,
the differences between those sets and ∅ is in Δ7

∅. The next element to be checked
is the accumulated faces of a, which is void and, hence, the intersection is also
void. It means that abc ≺ a, and the following operations are performed in
lines 10–12: the pair (a, abc) is added to ≤L, and a is removed from the Border
set. The accumulated faces of a is updated accordingly, and we have now that
Δ[a] := bc. We now check the intersection of accumulated faces of the next
element, this is elementΔ[c], which is bd, and abc. The intersection is not void,
and therefore, c is not a predecessor of abc. The reason is that the element bc has
already been processed and Δ[c] contains, at least, the attribute b, meaning that
c is the predecessor of an element that is contained by abc. The final checking is
between Δ[bc], which is empty, and abc. The intersection is obviously void, and
the algorithm adds (bc, abc) to ≤L, deletes bc from the border and updates Δ[bc]
which now is a.
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Table 1. Top: database characteristics. Bottom: response times of iPred.

database # records # non-empty # attributes largest
name attributes (in average) attribute

T20I6D100K 100,000 893 20 1,000
T25I10D10K 10,000 929 25 1,000

chess 3,196 75 37 75
connect 67,557 129 43 129
pumsb 49,046 2,113 74 7,116

Mushrooms 8,416 119 23 128
C20D10K 10,000 192 20 385
C73D10K 10,000 1,592 73 2,177

min supp # concepts BorderAlg iPred
(including top)

T20I6D100K
0.75% 4,711 2.29 2.07
0.50% 26,209 74.92 51.88
0.25% 149,218 2,930.29 1,941.07

T25I10D10K
0.40% 83,063 978.58 707.75
0.30% 122,582 2,207.86 1,763.42
0.20% 184,301 5,155.20 4,740.87
chess
65% 49,241 974.23 87.60
60% 98,393 4,320.81 374.26
55% 192,864 21,550.23 1,905.60

connect
65% 49,707 1,331.96 78.15
60% 68,350 2,634.35 140.50
55% 94,917 5,349.14 262.15

min supp # concepts BorderAlg iPred
(including top)

pumsb
84% 11,443 614.85 57.80
82% 19,942 2,043.31 173.31
80% 33,296 6,270.42 471.66

Mushrooms

20% 1,169 0.71 0.17
10% 4,850 7.31 1.31
5% 12,789 53.35 7.87

C20D10K
0.60% 119,734 10,847.59 993.29
0.50% 132,952 13,784.71 1,328.33
0.40% 151,394 19,013.53 1,858.34

C73D10K
70% 19,501 414.94 37.29
65% 47,491 2,864.02 226.80
60% 108,428 18,323.78 1,296.40

5 Experimental Results

The original BorderAlg and the improved iPred algorithms were implemented
in Java in the Coron data mining platform [15].1 The experiments were carried
out on a bi-processor Intel Quad Core Xeon 2.33 GHz machine with 4 GB RAM
running under Ubuntu GNU/Linux. All times reported are real, wall clock times.

For the experiments, we used several real and synthetic dataset benchmarks.
Database characteristics are shown in Table 1 (top). The chess and connect
datasets are derived from their respective game steps. The Mushrooms database
describes mushrooms characteristics. These three datasets can be found in the
UC Irvine Machine Learning Database Repository. The pumsb, C20D10K, and
C73D10K datasets contain census data from the PUMS sample file. The synthetic
datasets T20I6D100K and T25I10D10K, using the IBM Almaden generator, are
constructed according to the properties of market basket data.

Table 1 (bottom left and right) provides a summary of the experimental re-
sults. The first column specifies the various minimum support values for each of
the datasets (low for the sparse dataset, higher for dense ones), while the second
column comprises the number of FCIs. The third and fourth columns compare
the execution times of BorderAlg and iPred (given in seconds). The CPU
time does not include the cost of computing FCIs since it is assumed as given.

1 http://coron.loria.fr

http://coron.loria.fr
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As can be seen, the improved algorithm outperforms the original BorderAlg
algorithm in all cases. In the case of sparse datasets (T20 and T25), the differ-
ence is not that spectacular. However, in the case of dense datasets, there is a
significant difference between the two algorithms, especially at lower minimum
support thresholds. This is due to the fact that iPred reduces the complexity of
BorderAlg by a factor linear on the size of the attribute set (see Section 4.2).
The experimental results prove that the practical performance of iPred reflects
its better theoretical complexity.

6 Conclusion

We presented a novel method for computing the precedence order among con-
cepts that only manipulates their intents and is therefore suitable for data mining
applications. The method explores the basic fact that the faces of all lower covers
of a given concept in the Hasse diagram are pair-wise disjoint. Hence, the incre-
mental incorporation of concepts into the current diagram could be organized
as a set of gradually unfolding lower-cover list completions. A completion step
is executed upon the incorporation of a new intent into the diagram and boils
down to testing its disjointness with the already recognized faces.

The new method has been shown to outperform the reference one both on
its worst-case complexity (smaller by a multiplicative factor) and practical per-
formances (speedup from 30 to 3 000 %, depending on dataset profile). The
advantages of the new method are only starting to unravel as no particular
speedup techniques have been employed in the current implementation. Thus,
the next step would be to study the benefits of indexing on the border set to
avoid unnecessary intersections with the current intent.

Another promising track seems to reside in the batch processing of the levels in
the diagram, i.e., the set of intents of identical size. Another intriguing question
is the performance of a modern FCI miner, such as Charm or Closet, completed
with our method.
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A Complexity of the Border Algorithm

We analyze now the complexity of Algorithm 1, which is based on the following
costs:

1. The sizewise sorting of the input set (line 1). This can be done in linear
time w.r.t. the size of the set: | C | × |M |, since we can first scan the list and
compute the amount of elements for each size, allocate the corresponding
slot memory, and in a second scan, we can store each element according to
its size.

2. The number of loops in lines 3-8 depends on the amount of elements to be
processed, which is the size of the input set: | C |.
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3. The cost of computing the Candidate set depends on the size of the border,
since each element of L will be intersected with that set (line 4). This size
is, in the worst of the cases, the width of the lattice, and each intersection,
in the worst case, can be done in time linear on |M |. The total cost for
computing the Candidate set is ω(L)× |M |.

4. The computation of the maxima of the set resulting from the intersection,
this is, the Cover set in line 5,Δ[bc] = a is performed in |M | × ω(L)× d(L).
Details of this function and its cost can be found in [17].

5. The update of ≤L with the new connections in line 6 depends on the maximal
number of connections that any element may have, which is the maximal
degree: d(L).

6. The update of the border in line 7 can be neglected since it only consists in
adding a pair in a set.

The total complexity of this algorithm is, therefore:

| C | × |M |︸ ︷︷ ︸ + | C |︸︷︷︸ ×
(

ω(L)× |M |︸ ︷︷ ︸ + |M | × ω(L)× d(L)︸ ︷︷ ︸ + d(L)︸︷︷︸
)

line: 1 3-8 4 5 6

Some factors are subsumed by others: the cost of computing the Candidate
set ω(L) × |M | in line 4 and the cost d(L) of updating ≤L in line 6 are both
subsumed by the factor |M | × ω(L) × d(L) in line 5, and the additive factor
| C | × |M | in line 1 is also subsumed by the rest of the formula. Therefore, we
have that the final complexity is:

| C | × ω(L)× |M | × d(L)

Since in the worst of the cases we have that d(L) = |M |, then, we have:

| C | × ω(L)× |M |2.
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Abstract. The article introduces a representation of a formal context by
an undirected graph called a context graph with the formal objects being
the nodes of the graph. We use as a defining property for this graph that
it contains every concept extent as a connected subgraph. The graph is
not uniquely defined by this property — we focus on those graphs that
are edge-minimal and present a result with respect to the number of
their edges. We then study how the structure of an edge-minimal con-
text graph can be updated to adjust to the subsequent addition of an
object to the context. This leads to an incremental construction algo-
rithm that does not require the explicit computation of formal concepts.
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Information Retrieval, Navigation.

1 Introduction

Overview. A context graph is a structural representation of a formal context
that can be seen as an analog of a concept lattice. The basic elements of this
model are not formal concepts, but the objects of the context themselves. The
correspondence between the two models is quite natural, as the edges of the
graph provide a structure that allows the identification of formal concepts in
the context graph. The subconcept relation on concept lattices carries over to
a subgraph relation on context graphs. The model produced by this approach
could be considered a map in some semantic space, where similarity of objects in
the concept lattice corresponds to proximity of their nodes in the context graph.

In Sect. 5 we motivate context graphs by their potential use in information
retrieval (IR). The focus of this paper is, however, a thorough theoretical under-
pinning of this model. To this end, the characterization of a context graph by
compliant paths (Sect. 2.3) establishes a graph theoretical framework in which
context graphs can be described and analyzed without explicit reference to the
theory of lattices. On this basis, we can then develop an algorithm which al-
lows the generation of (edge-minimal) context graphs without falling back on
the computation of formal concepts and compare its complexity with algorithms
for lattice generation.

We will start by giving a short account of the mathematical background and
notations that we are going to utilize.
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Formal Concept Analysis (FCA). The theory of Formal Concept Analysis[1]
provides a mathematical framework for the analysis, structuring and/or visual-
ization of the kind of data that is shown in Fig. 1. We have objects (here animals
and plants) and binary attributes. A further example is shown in Fig. 2.
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Leech × × ×
Bream × × × ×
Frog × × × × ×
Dog × × × × ×
Spike–weed × × × ×
Reed × × × × ×
Bean × × × ×
Maize × × × ×

Fig. 1. Formal Context: Living Beings and Water (source from [1])

Each table can be formally expressed as a formal context : a triple (G, M, I)
consisting of a set G of objects, a set M of attributes, and a relation I ⊆ G×M .
The elements (g, m) ∈ I correspond to the crosses in the table.

For an object g ∈ G, we define the set of its attributes by

att(g) := {m ∈M | (g, m) ∈ I} . (1)

We can extend the definition to sets of objects. For a set A ⊆ G, the attributes
shared by all g ∈ A are collected in the set

att(A) :=
⋂
g∈A

att(g) . (2)

For a set B ⊆ M , those objects that have all attributes m ∈ B are collected in
the set

obj(B) := {g ∈ G | B ⊆ att(g)} . (3)

Consider a set B ⊆ M . The attributes in B can be seen as a description of
the subset obj(B) of G. The set att(obj(B)) contains all attributes in B plus
those attributes that come along with the attributes in B (i.e., every object of
the context that is described by B has all attributes in att(obj(B))). Therefore,
att(obj(B)) is another (complete) description of obj(B):

obj(att(obj(B))) = obj(B) . (4)
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Tea Ladies 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Evelyn × × × × × × × ×
Laura × × × × × × ×
Theresa × × × × × × × ×
Brenda × × × × × × ×
Charlotte × × × ×
Frances × × × ×
Eleanor × × × ×
Pearl × × ×
Ruth × × × ×
Verne × × × ×
Myra × × × ×
Katherine × × × × × ×
Sylvia × × × × × × ×
Nora × × × × × × × ×
Helen × × × × ×
Dorothy × ×
Olivia × ×
Flora × ×

Fig. 2. Formal Context: Tea Ladies (sourced from [2], original [3]). A cross in the table
indicates that a lady attended one of 14 tea parties.

A formal concept is a pair (A, B) with A ⊆ G, B ⊆M , A = obj(B) and B =
att(A). Every formal concept can be represented as a pair (obj(B), att(obj(B))):

(A, B) = (obj(B), att(A)) = (obj(B), att(obj(B))) . (5)

Conversely, it follows from (4) that every pair (obj(B), att(obj(B))) is a formal
concept. The sets A and B are called the extent and the intent of the formal
concept, respectively.

Now consider a set A ⊆ G of objects. The set obj(att(A)) contains all objects
in A plus further objects that are “like those in A” in that they have all attributes
shared by the objects of A. We can see analogously that the formal concepts are
exactly the pairs (obj(att(A)), att(A)) with A ⊆ G.

The concepts can be ordered by a subconcept relation: Given two concepts
(A, B) and (C, D), we call (A, B) a subconcept of (C, D) if A ⊆ C or, equivalently,
if B ⊇ D. The set of formal concepts, together with the subconcept relation, is
called a concept lattice and can be depicted by a line diagram. See Fig. 3 for the
concept lattice of the ‘Living Beings and Water’ context.

Graph Theory. In this section we provide some graph theoretical terminology.
An undirected graph is a pair G = (NG, EG) consisting of a set NG of nodes and
a set EG of edges, which are two-element subsets of NG. The induced subgraph
on a set S ⊆ NG is the graph G[S] = (S, EG ∩ P(S)), where P(S) denotes the
power set of S. A graph G is called edge-minimal with respect to some property
of graphs if the property is satisfied by G but not by any of the graphs (NG, E)
with E ⊂ EG.
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Fig. 3. Concept Lattice: Living Beings and Water (sourced from [1])

A walk from x ∈ NG to y ∈ NG is a sequence of nodes (x1, . . . , xn) with
x = x1, y = xn and {xi, xi+1} ∈ EG for 1 ≤ i < n. The walk is called a
path from x to y if no two nodes are identical, except possibly the first and
the last one. A path where the first and the last nodes are identical is called
a circle. A graph is connected if there is a path from x to y for all x, y ∈ NG.
A connected induced subgraph G[S] is called a component of G if there is no
connected induced subgraph G[T ] with S ⊂ T .

2 Context Graphs

2.1 Definition

Definition 1 (Context Graph). A context graph of a formal context (G, M, I)
is a triple (G, E, f) such that

(CG1) (G, E) is an undirected graph,
(CG2) f : G → P(M) is a labeling function with f(g) = att(g) for all nodes

g ∈ G,
(CG3) For all B ⊆ M , the subgraph induced on (G, E) by {g ∈ G | B ⊆ f(g)}

is connected.

A few remarks on the definition:

1. First of all, we will not formally distinguish between a context graph and
the undirected graph in (CG1) where the subject of consideration does not
require this. In particular, we will use all terminology from Sect. 1 for context
graphs alike.

2. The sets {g ∈ G | B ⊆ f(g)} are precisely the concept extents of (G, M, I)
(cf. (3) and (5)). We can replace (CG3) by the following equivalent condition
(using K := (G, E, f) to denote the context graph):
(CG3′) The subgraph K[A] is connected for every concept extent A of

(G, M, I).
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The conditions (CG2) and (CG3′) can be used to check if a context graph is
correctly implemented (i.e., that a search on the graph returns the correct
result set for every query B), provided that the concept extents are available.

3. The context graph of a given context is not unique. Adding any number of
edges to a given context graph will result in another context graph of the
same context, as (CG3) will still hold. The fully connected graph on a set G
is a trivial context graph of any context (G, M, I), provided that the labeling
function f is defined according to (CG2).

Figure 4 shows an edge-minimal context graph for the ‘Living Beings and Water’
context (cf. Figs. 1 and 3).

Fig. 4. Context Graph: Living Beings and Water

2.2 A Theorem on Minimality

Theorem 2. Let K := (G, M, I) be a formal context. For every formal concept
(A, B) there is a number tK(A) such that every minimal context graph of K has
exactly tK(A) edges {x, y} with f(x) ∩ f(y) = B.

Proof. 1. Let K be a context graph of (G, M, I). For a given concept (A, B),
consider the graph

C(A) := (A,
⋃

(X,Y )<(A,B)

EK[X]) . (6)

If C(A) has c ≥ 1 components, then there must be at least tK(A) := c − 1
further edges in EK[A] \ EC(A) that run between these components, since
K[A] is connected.
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2. Let x, y ∈ A. There is a path from x to y in C(A) iff there are extents
X1, . . . , Xn ⊂ A with x ∈ X1, y ∈ Xn and Xi∩Xi+1 
= ∅ for i = 1, . . . , n−1.
Thus the components of C(A) depend on the concept extents, but not on
the edges in K. In particular, tK(A) is the same for all context graphs of K.

3. We show that EK[A] \EC(A) = {{x, y} ∈ EK | f(x) ∩ f(y) = B}. If {x, y} ∈
EK[A] \ EC(A), then {x, y} /∈ EK[X] for all concepts (X, Y ) < (A, B). This
means (A, B) is the smallest concept that contains {x, y}, and therefore
f(x)∩f(y) = att({x, y}) = B. The converse implication follows by the same
argument.

4. Now suppose the c components are connected to each other by c or more
edges. Then the components are connected to each other as a tree by c−1 of
these edges already. That is, if we remove one of the other edges of EK[A] \
EC(A), then K[A] will still be connected. Suppose there is an extent D such
that K[D] is not connected after the edge is removed. We can choose D to be
minimal with respect to this property, i.e. K[X ] is connected for all extents
X ⊂ D. Then the edge was removed from EK[D] \EC(D) and we obtain from
3. that D = A, contradiction! We conclude that (CG3′) still holds after the
edge is removed, so K was not minimal. ��

2.3 Paths in a Context Graph

A path (x1, . . . , xn) in a context graph is called

– compliant, if f(x1) ∩ f(xn) ⊆ f(xi) for i = 1, . . . , n,
– nonincreasing, if f(xi) ∩ f(xn) ⊆ f(xi+1) ∩ f(xn) for i = 1, . . . , n− 1.

Every nonincreasing path is also compliant.

Lemma 3. Let K be a triple (G, E, f) such that (CG1) and (CG2) hold with
respect to a given context (G, M, I). The following statements are equivalent:

1. K is a context graph.
2. K[A] is connected for every concept extent A of (G, M, I).
3. For all x, y ∈ G there is a compliant path from x to y.
4. For all x, y ∈ G there is a nonincreasing path from x to y.

Proof. We have already seen that “1.⇔2.” and “3.⇐4.” hold.
1.⇔3.: We observe that a path from x to y is compliant iff it lies in obj(f(x)∩

f(y)). Such a path would connect x and y in every subgraph K[obj(B)] that
contains both x and y, since B ⊆ f(x)∩f(y) ⊆ f(z) holds for every z on the path.
Hence we have that “3.⇒1.”. Conversely, if (CG3) holds then K[obj(f(x)∩f(y))]
is connected and we have a compliant path from x to y.

3.⇒4.: Let x, y ∈ G. By assumption there exists a compliant path p1 :=
(x1, . . . , xn) with x1 = x and xn = y. Let z1 := x1. Then f(z1) ∩ f(y) ⊆
f(xi)∩f(y) holds for all i = 1, . . . , n. Either all sets f(xi)∩f(y) are equal and p1
is nonincreasing, or there is a smallest index i such that f(z1)∩f(y) ⊂ f(xi)∩f(y)
and we set xi =: z2.
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By hypothesis there exists a compliant path p2 := (z2, . . . , y). As with p1, we
either have that p2 is nonincreasing or we obtain p3 := (z3, . . . , y), and so on.
Because the sequence f(z1)∩f(y) ⊂ f(z2)∩f(y) ⊂ . . . is bounded by f(y), which
is finite, there must eventually be a k ∈ N such that pk is nonincreasing. We
obtain a nonincreasing path from z1 to y by concatenating the initial segments
(zi, . . . , zi+1) of the paths pi, where i ≤ k and zk+1 := y. ��

3 Incremental Context Changes

In this section we will examine how a new object can be integrated into an exist-
ing minimal context graph. The question is therefore, given a minimal context
graph K of a context (G, M, I) and another context (G+, M, I+) with

G+ = G ∪ {g} for some g /∈ G , (7)

I = I+ ∩ (G×M) , (8)

how can a minimal context graph of (G+, M, I+) be obtained from K?
Let us first introduce an equivalence relation on the set G of objects:

x ∼g y :⇔ f(x) ∩ f(g) = f(y) ∩ f(g) . (9)

The class of an object x ∈ G will be denoted by [x]g, and the following defines
a partial order on the set of classes:

[x]g ≤ [y]g :⇔ f(x) ∩ f(g) ⊇ f(y) ∩ f(g) . (10)

3.1 Connecting a New Object

Theorem 4. Let [x1]g, . . . , [xn]g be the minimal classes w.r.t. the order in (10).

1. We obtain a context graph of (G+, M, I+) if we add the edges {g, x1}, . . . , {g, xn}
to the edge set of K.

2. Let K+ be a context graph of (G+, M, I+). For all i = 1, . . . , n, there is an edge
{g, yi} of K+ with yi ∈ [xi]g.

Proof. 1. We will show that there is a compliant path between all x, y ∈ G+.
For x, y ∈ G there is a compliant path in K already. Otherwise, without
loss of generality (WLOG) we have x = g and y ∈ G. There exist an edge
{g, z} such that [z]g ≤ [y]g and a compliant path (z, . . . , y). From [z]g ≤
[y]g we obtain that f(g) ∩ f(y) ⊆ f(z), and we can further conclude that
f(g) ∩ f(y) ⊆ f(z) ∩ f(y) ⊆ f(w) for all w on the path (z, . . . , y). That
means (g, z, . . . , y) is a compliant path from g to y.

2. Let i ∈ {1, . . . , n}. Since K+ is a context graph, there must be a nonincreas-
ing path (xi, . . . , yi, g) from xi to g. Then {g, yi} is an edge with [yi]g = [xi]g.

��
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3.2 Restoring Minimality

Lemma 5. Let (G, E) be a context graph and k := {x, y} ∈ E. If there is a
compliant path (x, . . . , y) 
= (x, y), then (G, E \ {k}) is also a context graph.

We call a compliant path (x1, . . . , xn) a g-step if [x1]g > [xn]g and [x1]g = [xi]g
for all i = 1, . . . , n − 1. Lemma 6 phrases a connection between g-steps and
redundant edges in accordance with what we need in Sect. 4.3.

Lemma 6. Let {x, y} be an edge of a context graph (G+, E+) of (G+, M, I+). If
we have [x]g, [y]g > [g]g, and if g lies on every compliant path (x, . . . , y) 
= (x, y),
then the following statements are equivalent:

1. (G+, E+ \ {{x, y}}) is a context graph.
2. We have f(x) ∩ f(y) ⊆ f(g), and there exist two g-steps (x, x2, . . . , xk) and

(y, y2, . . . , y	) with x2 
= y and y2 
= x.

Proof. 1.⇒2.: If (G+, E+\{{x, y}}) is a context graph, there must be a compliant
path (x, . . . , y). By the assumption, g lies on the path and therefore f(x)∩f(y) ⊆
f(g). Moreover, for all z on the path we have f(x)∩ f(g) = f(x)∩ f(y)∩ f(g) ⊆
f(z)∩ f(g), which can be written as [x]g ≥ [z]g. Because of [x]g > [g]g, the path
has an initial segment (x, x2, . . . , xk) which is a g-step with x2 
= y. By analogy,
we see that there is also a g-step (y, y2, . . . , y	) with y2 
= x.

2.⇒1.: The g-steps can be continued into nonincreasing paths (x1,. . ., xm−1, g)
and (y1, . . . , yn−1, g), where x = x1, y = y1, m ≥ k and n ≥ �. The two paths
can be combined into a walk p = (x1, . . . , xm−1, g, yn−1, . . . , y1). We can see that
if p is a path, then p is also compliant: f(x) ∩ f(y) ⊆ f(x) ∩ f(g) ⊆ f(xi) holds
for all i = 1, . . . , m, and similarly f(x) ∩ f(y) ⊆ f(yj) for all j = 1, . . . , n.

Now if p was not a path, there would be a smallest index i such that xi = yj

holds for some j. Then p̂ := (x1, . . . , xi−1, yj , . . . , y1) would be a compliant path
without g. Moreover p̂ 
= (x, y), which follows from x2 
= y (if j = 1) or y2 
= x (if
j 
= 1). This would contradict our precondition. So p is a path and by Lemma 5,
(G+, E+ \ {{x, y}}) is a context graph. ��

4 Algorithm

In this section we present an incremental construction algorithm for context
graphs that is based on Theorem 4.1 and Lemma 6. Every time a new object g
is to be added, the existing context graph is traversed three times. During the
first traversal, the ∼g-classes [x]g and [y]g are compared for each edge {x, y} of
the graph, and the result of that comparison (greater, less, equal, incomparable)
is stored as a label of that edge (Sect. 4.1). In the second and third traversal, the
edge labels are used to connect g to the graph and to remove redundant edges,
respectively (Sects. 4.2 and 4.3). In Sect. 4.4, we will address the complexity of
the overall algorithm.
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4.1 Step 1: Computing Edge Labels

The computation of the edge labels is triggered by calling the function
procNode() in Fig. 5 on an arbitrary node x of the graph (passing g as a sec-
ond parameter). Starting in x, the graph will be traversed by recursively calling
procNode(y, g) for all neighbors y of the current node x (lines 2+5). The vari-
able state(x) initially has the value ‘new’, and it is set to ‘entered’ when x is
entered for the first time (line 1). The value is set to ‘finished’ when the node
is completely processed (line 7). The variable state(y) in line 3 holds the value
‘entered’ iff, during the traversal of the graph, y has been entered before x. This
way, the label of each edge is computed exactly once (lines 3+4).

procNode(x,g)

1 state(x):=‘entered’;

2 for all y ∈ neighbors(y)

3 if( state(y)=‘entered’ )

4 computeLabel();

5 else if( state(x)=‘new’ )

6 procNode(y,g);

7 state(x):=‘finished’;

Fig. 5. Step 1: Computing Edge Labels

The function computeLabel() is not given explicitly. The computation could
be achieved by testing for f(x)∩f(g) ⊆ f(y)∩f(g) and f(y)∩f(g) ⊆ f(x)∩f(g),
assigning an edge label based on the four possible outcomes. We will assume
that the edge labels can then be accessed by a function label(x, y), that returns
a symbolical representation as follows:

label(x, y) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
↓ if [x]g > [y]g ,

= if [x]g = [y]g ,

↑ if [x]g < [y]g ,

<> otherwise .

(11)

Note that the edge labels are only used for the purpose of adapting the context
graph to a new object g and are not required afterwards.

We will use the “Tea Ladies” context from Fig. 2 to illustrate the steps of our
algorithm. Figure 6 shows a minimal context graph of the formal context that is
obtained from the one in Fig. 2 by removing the row for “Theresa”. That is, if
we add the object “Theresa” following the three steps of our algorithm, we will
obtain a minimal context graph for the “Tea Ladies” example. As the result of
the first step, we obtain edge labels as shown in Fig. 6.

4.2 Step 2: Connecting the Object

By Theorem 4.1, we have to connect g to exactly one object taken from each
minimal ∼g-class. Let x be an object in the graph. If there exists a g-step starting
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Fig. 6. Context graph for the ‘Tea Ladies’ context before adding ‘Theresa’ as the last
object. Objects of minimal classes [x]g, where g =‘Theresa’, have been shaded. An
edge is directed from x to y if label(x, y) =‘↓’. Edges with property (12) have been
highlighted.

in x, then obviously [x]g is not minimal. To see that the converse is also true,
consider that by Lemma 3.4 there will be a nonincreasing path (x, . . . , y, g) in
the graph that we are going to construct (and we know that this graph exists).
Furthermore, [y]g is minimal and [x]g is assumed to be not, so we have [x]g > [y]g
and the path starts with some g-step that is also contained in the current graph.
To sum up, [x]g is not minimal iff there is some g-step starting in x.

A g-step can be identified using the label() function defined in Sect. 4.1: A g-
step is a path (x1, . . . , xn) with label(xn−1, xn) =‘↓’, and label(xi, xi+1) =‘=’ for
i < n− 1. An algorithm for connecting the new object might work like this: We
start in an arbitrary node of the graph and recursively follow all edges labeled
by ‘=’. In every node, we check the labels of all outgoing edges and remember
if any is labeled by ‘↓’, but do nothing else. If we are back in the starting node
and there was no ↓-edge, the starting node is connected with g. We repeat this
with a new starting node as long as the graph contains unvisited nodes.

Executing Step 2 on our context graph from Fig. 6 gives us the five minimal
elements “Laura”, “Brenda”, “Ruth”, “Evelyn” and “Nora”, which are all in
their own equivalence class. At this point, we create a new node for the object
Theresa” and connect it to these nodes.

4.3 Step 3: Removing Edges

Assumptions. An edge {x, y} in a context graph can be removed iff x and y
are connected by a compliant path other than (x, y) (Lemma 5). As a result of
the previous step, the end nodes of an edge {x, y} may have become connected
by a new compliant path through g. Assume that the context graph was minimal
before g was added. Then there is no compliant path from x to y that does not
contain g. This amounts to one of the prerequisites in Lemma 6.

The other prerequisite, namely [x]g, [y]g > [g]g, does not generally hold. How-
ever, if it does not hold then WLOG we have [x]g = [g]g, which means that [x]g
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is the unique minimal class with respect to the order in (10). Then g has only
one neighbor and can not lie on a path between x, y 
= g. So in this case, Step 3
can be skipped because the context graph is already minimal.

Conditions for Removal. To sum up, we can remove an edge {x, y} of the
graph iff there are g-steps (x, x2, . . . , xk), x2 
= y, and (y, y2, . . . , y	), y2 
= x, and

f(x) ∩ f(y) ⊆ f(g) (12)

also holds. By Lemma 3.4, g-steps starting in x and y do always exist (provided
that [x]g , [y]g > [g]g). The crucial point is that x2 
= y and y2 
= x hold, because
this means that the g-steps can be continued into different paths to g. This is
necessarily the case whenever label(x, y) =‘<>’. Similarly, if label(x, y) =‘↓’, we
don’t need to check that y2 
= x. Only for an edge with label(x, y) =‘=’, the test
can not be further simplified. The three cases are illustrated in Fig. 7.

Fig. 7. Patterns indicating that {x, y} is a candidate for removal

We could now use the algorithm described in the following section to remove
redundant edges from the graph in Fig. 6. However, this case is simple if we
have a look at the ten highlighted edges in Fig. 6: The right pattern in Fig. 7
obviously matches the four edges labeled with ’<>’, so these edges can be removed.
The other patterns do not match. To sum up, five edges have been added, four
removed and we obtain the context graph for the “Tea Ladies” context.

Implementation. The function minimize() in Fig. 8 shows how the idea can
be implemented. It is instructive to first consider the hypothetical case that
no edges with label ‘=’ occur in the graph. As you can guess from Fig. 7, the
algorithm could be simplified considerably. Those lines in Fig. 8 that are marked
with an asterisk can be left out in this case, and we assume that minimize() is
a nonrecursive function that is called separately for every node x.

For every node x, we check the labels of all outgoing edges {x, y} (line 3).
If label(x, y) =‘<>’ and the edge satisfies (12), then the edge can be removed
immediately (lines 7-9). We only need to check for (12) if the other node has
not been processed already (line 8). The case label(x, y) =‘↓’ requires a bit more
effort. We can remove all edges with label(x, y) =‘↓’ and (12) as long as one edge
with label(x, y) =‘↓’ remains (cf. Fig. 7 middle).

We use the local variable exit to keep track of the edges with label(x, y) =‘↓’.
The variable is initialized with 0, which signifies that no ↓-edges have been found



Context Graphs — Representing Formal Concepts by Connected Subgraphs 189

minimize(x,g)

1 state(x) := ‘entered’;

2 exit := 0;

3 forall y ∈ neighbors(x)

4* if(label(x,y) = ‘↑’)
5* if(¬ state(y)=‘entered’)

6* minimize(y,g);

7 else if(label(x,y) = ‘<>’)

8 if(¬ state(y)=‘entered’ ∧ f(x) ∩ f(y) ⊆ f(g))

9 remove {x,y};
10* else if(label(x,y) = ‘=’ ∧ f(x) ∩ f(y) ⊆ f(g))

11* if(minimize(y,g) �= 0)

12* remove {x,y};
13 else

14 if(label(x,y) = ‘↓’)
15 if(f(x) ∩ f(y) ⊆ f(g))

16 outedge = {x,y};
17 else

18 outedge = �;

19* else

20* if(¬ state(y)=‘entered’)

21* outedge = minimize(y,g);

22 exit=evaluate(exit,outedge);

23* return exit;

Fig. 8. Step 3: Removing Edges

exit outedge exit remove

0 0 0 -
0 k k -
0 � � -
k 0 k -
k k2 k k2

k � � k
� 0 � -
� k � k
� � � -

Fig. 9. Specification of the evaluate() function

so far. The variable will be assigned the value � as soon as we find a ↓-edge which
doesn’t satisfy (12); this will signify that all subsequent ↓-edges that do satisfy
(12) can be removed. If we find a ↓-edge with (12) and we have exit 
= �, then
the edge itself will be assigned to exit so we can remove it later. Figure 9 shows
how the value of exit is updated when a new ↓-edge is found, where the value of
outedge is assigned as in lines 14-18. It also shows which edges can be removed
in the same process. The function evaluate() implements the table in Fig. 9,
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including the removal of edges (line 22). Note that in the case label(x, y) =‘↑’
nothing needs to be done, because the edge is dealt with when y is processed.

Now let us include lines 19-21 and 23. Line 19 is executed whenever there is
an =-edge for which (12) does not hold. Assume that the case in line 10 does
not occur. What has changed is that we now recursively follow along paths of
=-edges and return any ↓-edges that we find to the calling instance (line 23).
If a ↓-edge can be reached from x via a path of =-edges, we will treat it as
if it were directly connected to x (line 21). It is now possible that outedge=0;
Fig. 9 shows that the function evaluate() does nothing in this case, as we would
expect.

We can also include lines 4-6. This does not interfere with the current com-
putation because subsequently, only ↑-edges and =-edges are followed (and the
return value of minimize(y, g) will also be ignored). We will now assume that
we call minimize(x, g) only once for x = g, assuming that we have correctly set
label(g, z) =‘↑’ for all neighbors z of g. From every node of the graph there is a
nonincreasing path to g, so conversely this means that every node of the graph
is reached by minimize(g, g).

Finally, we include lines 10-12. If a =-edge {x, y} satisfies (12), every path
between x and y consisting of =-edges is a compliant path. So by our assump-
tions there is no path of =-edges from x to y other than (x, y). This means
that we can treat the nodes on both sides of the edge separately and remove
{x, y} iff the situation depicted in Fig. 7 (left) occurs. This can be decided after
minimize(y, g) returns in line 11: There is at least one ↓-edge on the side of x
because we have come from g, and whether or not there is a ↓-edge on the side
of y will be returned by the exit parameter.

4.4 Complexity

We can obtain the time complexity of our construction algorithm from the pseu-
docode in Figs. 5 and 8. G, M , E and L denote the sets of objects, attributes,
edges and concepts, respectively. We analyze each step separately.

Step 1: The code inside the for-loop is executed twice for every edge {x, y} of
the graph, once each for the processing of x and y. The function computeLabel()
computes f(x) ∩ f(g) ⊆ f(y) ∩ f(g) and f(y) ∩ f(g) ⊆ f(x) ∩ f(g), which can
be done in O(|M |). So we have a total complexity of O(|E| · |M |) for Step 1.

Step 2: This step involves only a traversal of the graph. All operations are
constant time, resulting in O(|E|) for this step.

Step 3: As in Step 1, the for-loop is executed O(|E|) times. All operations are
constant time, except f(x) ∩ f(y) ⊆ f(g), which takes O(|M |) time.

In order to construct a context graph from a formal context, the three steps
have to be executed once for each object in G. The time complexity of the overall
algorithm is therefore O(|G| · |E| · |M |). An overview of lattice construction algo-
rithms is given in [4]. The paper gives O(|G| · |L| · (|G|+ |M |)) as the best known
worst case complexity of a lattice construction algorithm. It seems reasonable to
assume that |E| = O(|L|) as we had |E| < |L| for the contexts we examined so
far, but we have no proof of this.
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5 Applications

FCA has been applied to a wide variety of problem domains, including informa-
tion retrieval [5,6], ontology construction from RDF descriptions [7], behavioural
genetics [8], and software reuse [9]. Here we focus on IR, where the objects G are
typically text documents, and the attributes M are the terms that occur in them.
The number of terms used is usually restricted via some selection criterion, such
as a threshold based on the frequency-based weights used in traditional IR [10].
The query process corresponds to finding the concept (and its neighbors) that
contains the query, where the query is treated as a new object.

It has long been known that it is difficult for a user to formulate an effec-
tive query for a large corpus of objects when he/she is unfamiliar with its con-
tents [11]. Fixed, pre-computed indices are also often unsatisfactory, providing
very limited ways of exploring the corpus [12]. Graph or lattice-based corpus
models provide a possible solution to this query formulation problem: they facil-
itate navigational search, which may be thought of as a combination of querying
and browsing. Users can navigate the model by following edges. This is a form
of browsing, but it is directed (hence navigational), as edge labels provide in-
formation about attributes that are added or removed from the (implicit) query
when the edge is followed. The very large number of possible paths through
the structure enables much more flexible browsing than is possible via linear
indices.

The context graph provides a structure that can support navigational search.
For small contexts, such as that shown in Fig. 4, the context graph may be used
directly to visualize all or part of the context. Edge labels aid navigation. For
example, a user viewing the node ‘Frog’ can see that traversing the edge towards
node ‘Reed’ will add attributes d (‘needs chlorophyll’) and f (‘one seed leaf’), and
remove attributes g (‘can move’) and h (‘has limbs’). For large contexts, where
direct visualization of all the objects and attributes is impractical, the context
graph can provide an internal representation that supports a more sophisticated
user interface for navigational search, such as that in [12].

6 Related Work

In this article, we have motivated context graphs as potential models for IR.
The examples we have given, and other examples we have computed so far, in-
dicate that context graphs use relatively few edges to represent a hierarchy of
formal concepts. We believe that this means that navigation in a concept lattice
can be efficiently simulated using a context graph as an underlying structure,
instead of the lattice itself. Obviously, the size of the graph is at most quadratic
in the number of objects, whereas the lattice can grow exponentially. Comput-
ing the context graph would thus be a clear advantage compared to computing
the concept lattice if the context has a large number of objects. Another option
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in this case is to compute the lattice as it is traversed. In the context of IR we
refer to a paper of Ferré who combines this approach with dynamic taxonomies,
which are presented to a user as a local view reflecting their current position
in the lattice [12]. In [13], a simple algorithm is presented which can efficiently
compute all upper (or lower) neighbors of a concept.

In [2], Wille uses the “Tea Ladies” example to compare FCA with methods
of social network analysis. In particular, a graph is shown which results from
a method presented in [14]. The objects of the graph are the tea ladies of the
formal context, and the basic idea of the graph is that an edge exists between
two ladies iff they have been together at one of the meetings (i.e., if they share an
attribute). To reduce the number of edges, not all meetings have been taken into
account. In the context graph, two ladies who have attended the same meeting
are connected by a compliant path, but not necessarily by an edge, which reduces
the number of edges significantly.

Finally, we contrast context graphs with Conceptual Graphs [15]. Conceptual
Graphs are used to symbolically express meaning. The value of context graphs,
at least in the scope of this paper, lies in the organization of data objects which is
realized by their structure. The structuring principle is similarity, and this means
that some kind of meaning could be reflected in the structure, but context graphs
are not devised and probably not suited for expressing meaning.

7 Conclusion

The contribution of this paper is the introduction and thorough study of con-
text graphs, a relatively compact representation of formal contexts in which
objects are vertices and formal concepts occur as certain subgraphs. We char-
acterized context graphs and their relationship to FCA by several theorems.
These led to an algorithm for the incremental construction of context graphs.
We analyzed the complexity of this algorithm and compared it with the best
known worst-case complexity for the incremental construction of a formal con-
cept lattice. We reasoned that context graphs are a promising basis for navi-
gational search in domains with massive and frequently changing numbers of
objects. Such domains are ever more abundant, e.g. social networking sites such
as Facebook, the semantic web, large-scale enterprise architecture, and data
warehousing.

Formal contexts hold the promise of enabling and facilitating such exploration
and navigational searches without the need for a complex lattice-theoretic or
algebraic query language other than in advanced searches. A full evaluation
of this claim is out of the scope of this paper, which instead uses small and
well-known examples to illustrate the formal theory of context graphs and their
relationship to FCA. Some of these examples have been computed with an initial
implementation of context graphs using Java servlets and a facility to upload
and analyze moderately sized formal contexts.
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Abstract. This paper presents Binary Decision Diagrams (BDDs) applied to 
Formal Concept Analysis (FCA). The aim is to increase the FCA capability to 
handle large formal contexts. The main idea is to represent formal context using 
BDDs for later extraction of the set of all formal concepts from this implicit 
representation. BDDs have been evaluated based on several types of randomly 
generated synthetic contexts and on density variations in two distinct occasions: 
(1) computational resources required to build the formal contexts in BDD; and 
(2) to extract all concepts from it. Although BDDs have had fewer advantages 
in terms of memory consumption for representing formal contexts, it has true 
potential when all concepts are extracted. In this work, it is shown that BDDs 
could be used to deal with large formal contexts especially when those have few 
attributes and many objects. To overcome the limitations of having contexts 
with fewer attributes, one could consider vertical partitions of the context to be 
used with distributed FCA algorithms based on BDDs.  

Keywords: Formal Concept Analysis, Formal Context, Formal Concept, Binary 
Decision Diagrams. 

1   Introduction 

At the International Conference on Formal Concept Analysis in Dresden (ICFCA 
2006) an open problem of "Handling large contexts" was pointed out and as an exam-
ple was cited the challenge of "how to calculate/generate all concepts of a large  
context" (e.g. 120,000 x 70,000 objects attributes). In these cases, traditional FCA 
algorithms have high computational cost and demand high execution times, making 
the extraction of all concepts infeasible for larger contexts. 

One possible solution to deal with the problem of handling large formal contexts is 
to apply a distributed solution for the processing of contexts. Partial concepts are 
obtained for later merging through a specific operator to find the final set of concepts. 
Several authors have presented formal proposals and mathematical formalisms for 
distributed application of FCA, as can be seen in [1-3]. However, these contributions 
do not analyze the performance aspects of the distributed version concerning the den-
sity impact on the context. 

It is clear the potential of FCA to represent and extract knowledge from a set of ob-
jects and attributes and it is even more clear the problem of dealing with databases of 
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high dimensionality. Application in real problems often suffers from this common 
fact. In this work, an approach to meet the challenge mentioned above consists in 
applying Binary Decision Diagrams [4] to obtain a symbolic representation of a cross 
table (formal context) that allows a more efficient extraction of the set of all concepts. 
It will be shown that this approach is promising and that it can handle more efficiently 
with large contexts when compared with the conventional implementation of algo-
rithms that handles tables. Although BDD suffers from limitations of handling con-
texts with many attributes, a common problem faced by FCA, it can handle huge 
amount of objects, making it thus reliable for some set of problems. Also, in these 
conditions, the BDD representation presents computational improvements. In some 
cases it can even save days of processing, as it will be later addressed.  

BDD has already been used earlier in FCA. In [5], using previously obtained con-
cepts, a concept lattice is built based on ZBDDs (Zero-Suppressed BDDs) [6], a type 
of BDD. In this paper, BDD have been applied with a different aim, to represent for-
mal contexts in order to improve concepts computation. This article presents an 
analysis of this new representation, both in its impact in memory consumption as the 
computational time required to execute an algorithm to extract all concepts. 

This article is organized in five sections. In the second section, the main concepts 
of the FCA and BDD are reviewed. In the third section, examining the representation 
of formal contexts through BDD is discussed. In the fourth section, the principles and 
algorithm for extraction of formal concepts from BDD are presented. In the last sec-
tion, the conclusions and future works are pointed out. 

2   Formal Context 

2.1   Formal Concept Analysis 

Formal Context. Formal contexts have the notation K:=(G, M, I), where G is a set of 
objects (rows headers), M is a set of attributes (columns headers) and I is an incidence 
relation (I ⊆ G × M). If an object g ∈ G and an attribute m ∈ M are in the relation I, it 
is represented by (g, m) ∈ I or gIm and is read as “the object g has the attribute m”. 

Given a set of objects A ⊆ G from a formal context K:=(G, M, I), it could be asked 
which attributes from M are common to all those objects. Similarly, it could be asked, 
for a set B ⊆ M, which objects have the attributes from B. These questions define the 
derivation operators, which are formally defined as:  

A’:= {m ∈ M | gIm ∀ g ∈ A} (1) 

B’:= {g ∈ G | gIm ∀ m ∈ B} (2) 

A special case of derivate sets occurs when empty sets of objects or attribute are 
considered to be derivate: 

A ⊆ G = Ø ⇒  A’:=M ; B ⊆ M = Ø⇒  B’:=G (3) 

Formal Concept. Formal concepts are pairs (A, B), where A ⊆ G (called extent) and 
B ⊆ M (called intent). Each element of the extent (object) has all the elements of the 
intent (attributes) and, consequently, each element of the intent is an attribute of all 
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objects of the extent. The set of all formal concepts in a formal context has the nota-
tion B(G, M, I). From a cross table representing a formal context, algorithms can be 
applied in order to determine its formal concepts and its line diagram [7]. 

2.2   Binary Decision Diagrams 

Binary decision diagrams are a canonical representation of boolean formulas [4].  The 
BDD is obtained from a binary decision tree by merging identical subtrees and elimi-
nating nodes with identical left and right siblings. The resulting structure is a graph 
rather than a tree in which nodes and substructures are shared. 

Formally, a BDD is a directed acyclic graph with two types of vertex: non-terminal 
and terminal. Each non-terminal vertex v is labeled by var(v), a distinct variable of the 
corresponding boolean formula. Each v has at least one incident arc (except the root 
vertex). Also, each v has two outgoing arcs directed toward two children: left(v), cor-
responding to the case where var(v)=0, and right(v) to the case where var(v)=1.  

A BDD has two terminal vertices labeled by 0 and 1, representing the truth-value 
of the formula false and true, respectively.  For every truth assignment to the boolean 
variables of the formula, there is a corresponding path in the BDD from root to a 
terminal vertex. Figure 1 illustrates a BDD for the boolean formula (a ∧ b) ∨  (c ∧ d) 
compared to a Binary Decision Tree for this same formula. 

BDDs are an efficient way to represent boolean formulas. Often, they provide a 
much more concise representation compared to the traditional representations, such as 
conjunctive and disjunctive normal forms. BDDs are also a canonical representation 
for boolean formulas. This means that two boolean formulas are logically equivalent 
if and only if its BDDs are isomorphic. This property simplifies the execution of fre-
quent operations, like checking the equivalence of two formulas. 

However, BDD has drawbacks. The most significant is related to the order in 
which variables appear. Given a boolean formula, the size of the corresponding BDD 
is highly dependent on the variable ordering. It can grow from linear to exponential 
according to the number of variables of the formula. In addition, the problem of 
choosing a variable order that minimize the BDD size is NP-complete [4]. There are 
heuristics to order the BDD variables; some of them are based on the knowledge over 
the problem. A review of some heuristics can be found in [8]. 

   

Fig. 1. Binary decision tree and a correspondent BDD for the formula (a ∧ b) ∨ (c ∧ d) 
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3   Formal Contexts Represented in BDD 

3.1   BDD Construction from Formal Contexts 

As mentioned, BDD is able to represent logical expressions through simplified 
graphs. In this way, a context can be converted into an equivalent logic formula to be 
used in the creation of the BDD representation. Table 1 shows an example of a formal 
context and its possible representation through a logic function. 

Table 1. Formal Context Example 

 a1 a2 a3 
o1 X  X 
o2 X X  
o3  X  

321321321321 ),,( aaaaaaaaaaaaf ++=  (4) 

 
Note that each object is represented by a logic equation, according to the presence 

or not of its attributes. The function f(a1, a2, a3) results in a positive state (1) when an 
object is present on the context. This function returns the negative state (0) for objects 
not present in the context. Thus, any context can be represented by a logic function. 

 
Algorithm 1. BDD construction based on the context. 

in:  List<Object> list 
out: BDD context 
 1: context = bddfalse 
 2: while !list.empty( ) do 
 3:   obj = list.removeFirstObject( ); 
 4:   BDD tmp = bddtrue 
 5:   for i=0; i<obj.attributes; i++ do 
 6:     if obj.hasAttribute(i) then 
 7:       tmp &= bdd_ithvar(i) 
 8:     else 
 9:       tmp &= bdd_nithvar(i) 
10:     endif 
11:   done 
12:   context |= tmp 
13: done 

 
Algorithm 1 allows the construction of BDD based on the objects presented in the 

formal context. Note that this algorithm maintains the same attribute order of the 
formal context in order to build the context in BDD. The internal functions 
bdd_ithvar and bdd_nithvar are specific to the BuDDy [9] library and are used to 
define the presence or not of an attribute in the BDD, respectively. Once the conjunc-
tion of attributes is made, forming the objects (lines 7 and 9), then a disjunction of 
those objects is realized (line 12). 

It is important to emphasize that the main objective of this work is to show the fea-
sibility of BDD to represent formal contexts, and from that representation extract the 
formal concepts. The feasibility is shown through the manipulation of large formal 
contexts. In most cases the BDD representation is less memory efficient when com-
pared to a bit table representation of the contexts, as will be seen in the next section. 
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But the memory consumption is not significant enough to invalidate its representation 
in BDD. So the BDD can be used to extract concepts more efficiently than the algo-
rithms that work directly in the tabular representation. 

3.2   BDD Representativeness Analysis 

To achieve a more reliable simulation environment, all context used in this work were 
built by the SCGaz tool (available at http://www.inf.pucminas.br/projetos/licap) to 
evaluate the BDD performance. This tool can randomly generate formal contexts with 
user-defined densities while avoiding the existence of some type of redundant attrib-
utes and objects. The use of partially clarified contexts was considered in this work to 
guarantee that the final size of the BDD representation is not influenced by the exis-
tence of repeated objects and attributes, since this representation can internally sim-
plify these redundancies. This is an important step to ensure fairness of the represen-
tation that could otherwise be used to mask the true performance of BDD. Note that 
the BDD representation is not restricted to clarified contexts and can be applied to any 
type of context, regardless of its information redundancy.  

To construct and operate the BDD, the BuDDy library was used in which each 
node of its graph is represented by 20 bytes. Thus, the number of nodes in the graph 
was the parameter used to quantify the representation memory consumption. In order 
to compare the BDD representativeness, a relationship between the bit table memory 
consumption was stipulated. Where Stable and Sbdd correspond respectively to the table 
and BDD memory sizes. This metric calculates the gain (Gain) of a representation in 
relation to another.  Thus, when the BDD consumes less memory than the bit table, 
equation (5) is then used. When the bit table is more efficient, the expression of equa-
tion (6) is therefore used. The negative sign indicates the loss of the BDD compared 
to the bit table memory consumption.  
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⎝
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table
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table

bdd

S

S
Gain

 

(6) 

 
Note that the number of nodes in the BDD is not related to the number of filled 

cells of the context. Contexts with the same density and filled cells can present BDDs 
with more or less nodes. 

To assess the representativeness of contexts through BDD, it is considered their 
behavior over different types of context: |G|=|M|, |G|<|M|, |G|>|M| and many-
valued. For each type of context considered, a pair (attribute, object) was simulated 
for 10 cases of density, ranging from its minimum to its maximum value. For the 
types of contexts with unique densities (many-valued and contexts |G|>|M| with 
|G|=2|M| - 2), a single simulation was performed. The implementations were made in 
C++ and the simulations were realized on a Pentium IV 3.06Ghz HT with 2GB of 
RAM running Slackware Linux 12.0. 



 Handling Large Formal Context Using BDD – Perspectives and Limitations 199 

Contexts |G| = |M|. Table 2 and Figure 2 correspond to the representation of contexts 
through BDD, where the number of objects is equal to the number of attributes. Table 
2 shows the minimum, maximum, and the median values for the BDD memory 
consumption (Sbdd), as well as the required time to build the BDD (Tbdd) and the 
representativeness gain compared to the bit table. Figure 2 shows the gains obtained 
for the cases (100, 100), (1000, 1000) and (5000, 5000) in function of the density. 
 

 
Fig. 2. BDD gain for contexts |G| = |M| 

Table 2. BDD simulation for contexts |G| = |M| 

Sbdd (Kb) Tbdd (s) Gain 
|G| |M| 

Stable 
(Kb) Min Median Max Min Median Max Min Median Max 

50 50 0 2 36 39 0.01 0.02 0.03 -128.21 -117.18 -6.35 
100 100 1 4 163 172 0.08 0.22 0.25 -140.64 -133.51 -3.18 
300 300 11 12 1636 1669 3.27 9.06 9.18 -151.87 -148.94 -1.06 
500 500 31 20 4660 4718 18.19 47.53 49.93 -154.60 -152.69 1.56 

1000 1000 122 39 19038 19163 362.66 661.04 786.00 -156.98 -155.96 3.13 
1500 1500 275 59 43157 43357 1217.48 2435.05 2585.38 -157.86 -157.13 4.69 
2000 2000 488 78 77029 77310 3013.76 5959.37 6059.72 -158.33 -157.76 6.25 
2500 2500 763 98 120662 121019 5728.60 11723.10 12051.70 -158.62 -158.15 7.81 
3000 3000 1099 117 174050 174493 7252.94 14696.80 14829.50 -158.83 -158.42 9.38 
3500 3500 1495 137 237203 237718 11450.90 23694.70 23907.90 -158.97 -158.63 10.94 
4000 4000 1953 156 310110 310708 17159.50 35908.95 36225.80 -159.08 -158.78 12.50 
4500 4500 2472 176 392771 393462 24577.30 52143.25 52561.80 -159.17 -158.89 14.06 
5000 5000 3052 195 485201 485977 34321.40 73011.15 73679.80 -159.25 -158.99 15.63 

 
As expected, BDD obtained a better performance in low and high densities (ap-

proximately below 10% and above 90%) when compared to intermediate densities. 
This occurs because with few or many incidences in the context table, there are sev-
eral similarities in the BDD graph that allow simplifications of sub-expressions. The 
BDD is therefore represented with fewer nodes. Meanwhile, in the intermediate densi-
ties, the BDD had a constant behaviour. This happens because the BDD is using few 
objects compared to the total universe of objects (2|M|), making no influence in the 
representation size. The BDD is unable to find enough objects similarities that could 
allow significant simplification. So, the intermediate density has no effect over the 
BDD representative size. 

It is noteworthy that, although the BDD has had a lower performance than the bits 
table, the representation of formal contexts in BDD is computationally feasible. 
Through data collected by the simulations, it is pointed out that, for a context with 



200 A. Rimsa, L.E. Zárate, and M.A.J. Song 

5,000 attributes and 5,000 objects, the BDD required expressively more memory than 
the bit table representation and was able to build it in a viable computational time of 
about 20 hours. 

 

Fig. 3. BDD gain for contexts |G| = |M| 

Table 3. BDD simulation for contexts |G| < |M| 

Sbdd (Kb) Tbdd (s) Gain 
|G| |M| 

Stable 
(Kb) Min Median Max Min Median Max Min Median Max 

100 1000 12 42 1921 1929 25.19 27.68 28.03 -158.05 -157.40 -3.43 
600 1000 73 390 11444 11515 151.76 253.24 255.87 -157.22 -156.24 -5.33 
900 1000 110 860 17140 17251 237.00 419.00 423.23 -157.02 -156.02 -7.83 
200 2000 49 82 7739 7757 211.45 286.26 289.19 -158.87 -158.49 -1.67 

1200 2000 293 1612 46263 46419 1318.07 2475.16 2498.55 -158.44 -157.91 -5.50 
1800 2000 439 3664 69342 69589 2099.88 3783.11 3819.29 -158.35 -157.79 -8.34 
300 3000 110 117 17457 17489 725.02 1267.96 1276.93 -159.19 -158.90 -1.06 

1800 3000 659 3179 104497 104745 4678.94 8663.08 8734.99 -158.90 -158.53 -4.82 
2700 3000 989 8648 156663 157054 9454.73 13168.50 13297.90 -158.84 -158.44 -8.75 
400 4000 195 213 31079 31124 1725.56 3227.89 3258.88 -159.36 -159.12 -1.09 

2400 4000 1172 4969 186152 186497 11886.00 20967.85 21207.00 -159.15 -158.85 -4.24 
3600 4000 1758 15518 279119 279660 26804.10 32140.80 32479.40 -159.10 -158.79 -8.83 
500 5000 305 273 48605 48664 3403.50 6507.70 6564.56 -159.46 -159.27 1.12 

3000 5000 1831 9071 291238 291674 30512.60 42217.25 42495.30 -159.29 -159.06 -4.95 
4500 5000 2747 23234 436726 437409 55495.90 64979.45 65884.40 -159.26 -159.01 -8.46 

 
Contexts |G| < |M|. Table 3 presents the data collected in simulations to settings 
where the number of objects is less than the number of attributes. This is considered 
the worst situation for the BDD, since there is a small amount of objects, resulting in 
a low probability of finding objects with similar characteristics. Thus, the BDD is 
unable to simplify enough its representation to overcome the performance of the bits 
table. The representation of the bits table is still very compact in order to verify a 
representativeness gain of the BDD version. A similar behavior of Figure 2 can be 
observed in Figure 3. In extreme values of densities, the BDD performance had a 
slightly improvement over intermediate densities. However, the gains were not 
enough for the memory space consumed by the BDD representation suppress the bits 
table representation. Again, the bit table representation was extremely compact. The 
expressive number of attributes increases the BDD graph depth and requires more 
nodes to be represented. 



 Handling Large Formal Context Using BDD – Perspectives and Limitations 201 

 

Fig. 4. BDD gain for contexts |G| = |M| 

Table 4. BDD simulation for contexts |G| > |M| 

Ebdd (Kb) Tbdd (s) Gain 
|G| |M| 

Stable 

(Kb) Min Median Max Min Median Max Min Media Max 
102 10 0 1 2 3 0.00 0.00 0.00 -22.52 -20.08 -10.87 
613 10 1 2 4 5 0.01 0.01 0.01 -6.16 -5.56 -2.27 
920 10 1 1 3 3 0.01 0.01 0.01 -2.42 -2.23 -1.15 
409 12 1 3 8 8 0.00 0.01 0.01 -14.03 -12.85 -5.55 

2457 12 4 3 13 14 0.03 0.03 0.03 -3.88 -3.66 1.08 
3685 12 5 4 8 8 0.04 0.04 0.04 -1.53 -1.41 1.53 
1638 14 3 7 24 27 0.02 0.02 0.03 -9.57 -8.73 -2.46 
9829 14 17 6 42 45 0.13 0.13 0.14 -2.66 -2.52 2.82 

14744 14 25 7 24 27 0.19 0.20 0.21 -1.05 1.04 3.49 
6553 16 13 13 80 88 0.10 0.12 0.13 -6.90 -6.25 -1.01 

39321 16 77 10 145 160 0.77 0.78 0.92 -2.08 -1.89 7.90 
58981 16 115 13 80 88 1.19 1.21 1.22 1.31 1.44 8.96 
26214 18 58 66 271 298 0.61 0.71 0.77 -5.18 -4.70 -1.14 

157285 18 346 55 515 582 4.70 4.97 5.01 -1.68 -1.49 6.25 
235928 18 518 65 270 298 7.32 7.37 7.39 1.74 1.92 7.93 
104857 20 256 248 938 1033 3.71 4.54 4.79 -4.03 -3.66 1.03 
629145 20 1536 225 1759 1962 28.09 30.13 43.25 -1.28 -1.15 6.84 
943717 20 2304 267 936 1034 39.58 40.26 40.33 2.23 2.46 8.62 

Contexts |G| > |M|. The data shown in Table 4 reflects the simulations realized with a 
wider number of objects than attributes. For each type of context, the selected amount 
of objects was 10%, 60% and 90% of the maximum number of objects possible (2|M|). 

It is noticed by Figure 4 that the gains and losses were not significant when a large 
amount of objects are used. The more the number of objects cover the total objects 
universe of possibilities (2|M|), better will be the BDD representativeness. This is the 
case when 90% of the maximum number of objects is used. Also, BDD presented a 
stable behavior with fewer variations in the minimum, median and maximum gain for 
this type of context. With fewer attributes and many objects, BDD may become an 
attractive alternative to express data contained in cross tables. Also, the computational 
time required to assemble the BDD graph is not a limiting factor, allowing the con-
struction of a BDD with 943,717 objects in times around 40 seconds. However, this 
situation is only reflected in context with few attributes. Increase the amount of at-
tributes in the BDD has serious consequences in its size. 
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Many-Valued Contexts. Table 5 shows the data collected for many-valued contexts 
concerning attributes ranging from 1 to 5, where each attribute was simulated with 5, 
10 and 15 intervals of discretization. All contexts used in these simulations have only 
one incidence per attribute, i.e. only one attribute-value by attribute. The amount of 
objects considered in the simulations is shown in Figure 5 along with the considered 
density. As it can be seen through Table 5, is possible to assemble a BDD context 
with more than 700,000 objects in approximately 13 minutes. The gains obtained in 
the data presented in Table 5 show that BDD has a satisfactory memory performance 
for this type of context. The density of this type of context is naturally lower, allowing 
the BDD representation to find more simplifications and be represented in a more 
compact form. 

 

Fig. 5. BDD gain for many-valued contexts 

Table 5. BDD simulation for many-valued contexts 

|G| = |V||M| |M| |V| |M||V| Den Stabela (Kb) Sbdd (Kb) Tbdd (s) Gain 
5 1 5 5 20% 0 0 0.00 -60.00 

25 2 5 10 20% 0 0 0.00 -11.61 
125 3 5 15 20% 0 0 0.00 -2.31 
625 4 5 20 20% 1 0 0.01 2.17 

3125 5 5 25 20% 10 0 0.08 10.85 
10 1 10 10 10% 0 0 0.00 -31.67 

100 2 10 20 10% 0 0 0.00 -3.04 
1000 3 10 30 10% 4 1 0.04 3.29 

10000 4 10 40 10% 49 1 0.72 32.89 
100000 5 10 50 10% 610 2 24.86 328.95 

15 1 15 15 6% 0 0 0.00 -20.71 
225 2 15 30 6% 0 1 0.01 -1.38 

3375 3 15 45 6% 19 2 0.26 10.91 
50625 4 15 60 6% 371 2 17.54 163.66 

759375 5 15 75 6% 6952 3 759.04 2454.88 

 
This section presented the assessment of BDD as a representation of formal con-

texts. It was observed that the BDD has a satisfactory performance only on context 
with fewer attributes and a large amount of objects, i.e., when the number of objects 
covers much of the maximum number of objects possible (2|M|). Unfortunately, to 
achieve this exorbitant amount of objects, the number of attributes must be very 
small. Moreover, as mentioned, the performance of BDD deteriorates as the number 
of attributes increases. As the level of depth in the BDD graph increases, less  
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simplification are found to reduce its size. The construction of the BDD is also 
affected when the time for its assembly grows exponentially when more attributes 
are expressed in the context. In addition, better results can be obtained in contexts 
with densities closer to the minimum and maximum values than in intermediate 
values. 

It is important to emphasize that the FCA derivation operator, necessary to obtain 
the formal concepts, is applied on the context expressed in BDD. Therefore, the more 
satisfactory is the performance of BDD, smaller will be the computational time re-
quired to operate it. For this reason, the concepts extraction should take advantage of 
this situation. 

4   Formal Concepts Extraction Using BDD 

4.1   Concept Extraction Algorithm Implementation Using BDD 

In order to use a BDD representation of formal context, algorithms to extract concepts 
and/or to construct the concept lattice available in the literature must be adapted to 
handle this new form of representation. To demonstrate the feasibility of BDD, the 
adapted algorithm was the Attribute Intersections [10]. Note that the purpose of this 
paper is to evaluate the feasibility of BDD and not its most efficient implementation 
over several others algorithms. 

The implementation of the Attribute Intersection algorithm in BDD was divided in 
three primary stages (Fig. 6). In the first stage, the construction of the formal context 
in BDD is made (Algorithm 1). The second stage is responsible to extract the set of all 
concepts from the BDD context. In the final stage, it is necessary to identify the at-
tributes and objects from the concepts represented in BDD. 

 

Fig. 6. Steps to implement the Attribute Intersection algorithm in BDD 

Extracting the Set of All Concepts in BDD. Algorithm 2 is the kernel of the Attrib-
ute Intersection algorithm, but slightly modified to work with BDD. This implementa-
tion in BDD takes advantage of two distinct moments when the derivation operator is 
used (Line 4) and the intersection between two concepts is made (Line 8). The deriva-
tion operator is easily implemented through the implicit bdd_ithvar operator, which 
obtains a BDD representation of all objects that has an attribute. The intersection 
between two concepts is also implemented through an implicit BDD operation. In this 
case, the conjunction operator is represented in the algorithm as “&” but implemented 
as bdd_and. Moreover, the concepts list in this algorithm was implemented as a Hash 
to achieve a faster verification of concepts duplicity. 
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Algorithm 2. BDD construction based on the context. 

in:  BDD context 
out: List<BDD> concepts 
 1: concepts = new List<BDD> 
 2: concepts.addConcept(context) 
 3: for i=0; i<attributes; i++ do 
 4:   BDD tmp1 = context & bdd_ithvar(i) 
 5:   size = concepts.size() 
 6:   for j=0; j<size; j++ do 
 7:     BDD tmp2 = concepts.getConcept(j) 
 8:     BDD intersection = tmp1 & tmp2 
 9:     if !concepts.exist(intersection) then 
10:       concepts.add(intersection) 
11:     endif 
12:   done 
13: done 

 
Unfortunately, storing all the concepts as BDD in the list reflects a very expressive 

memory consumption. The algorithm was slightly modified to save the concept intent 
(Bi) rather than the concept (Ai, Bi) in BDD. From the intent set (Bi), one can rebuild 
the concept in BDD through the formal context, thereby maintaining the essence of 
the proposed Algorithm 2.  

Finding the Set of Intent and Extent in Concepts Represented in BDD. This 
section shows how to obtain the extent and intent of these concepts represented in 
BDD. Algorithm 3 is used to check if all objects represented by the BDD share a 
common attribute. Algorithm 4 is used to verify whether or not an object is present in 
the BDD. 
 

Algorithm 3. Verify the presence of an attribute in a 
concept represented in BDD. 

in:  BDD concept, attr 
out: presence 
 1: BDD tmp = concept & bdd_ithvar(attr) 
 2: if tmp == concept then 
 3:   present = true 
 4: else 
 5:   present = false 
 6: endif 

 
For the extraction of all objects (extent) of the concept, Algorithm 4 can be used to 

verify if each object that exists in the formal context is present in the concept. The 
same can be applied to the set of attributes (intent), through Algorithm 3, covering all 
formal context attributes checking whether or not they are present in the concept rep-
resented in BDD. 
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Algorithm 4. Verify the presence of an object in a concept 
represented in BDD. 

in:  BDD concept, objc 
out: presence 
 1: BDD tmp = concept 
 2: for i=0; i<objc.attributes; i++ do 
 3:   if tmp == bddtrue then 
 4:     presence = true 
 5:     return 
 6:   else if tmp == bddfalse then 
 7:     presence = false 
 8:     return 
 9:   endif 
10:   if bdd_varlevel(tmp) == i then 
11:     if obj.hasAttribute(i) then 
12:       tmp = bdd_high(tmp) 
13:     else 
14:       tmp = bdd_low(tmp) 
15:     endif 
16:   endif 
17: done 
18: presence =(tmp == bddtrue) 

4.2   Feasibility Analysis of BDD to Extract Concepts 

One of the requirements to assess the representativeness of BDD to extract concepts 
was to compare its performance under the same conditions as its tabular version. For 
this reason, it was decided to implement a unique algorithm for both situations: con-
texts represented by BDD and by a table. As previously mentioned, the algorithm 
selected was the Attribute Intersections. This algorithm choice was driven by its in-
herent characteristics that allow a more effectively concepts extraction from contexts 
where the number of objects is superior to the attributes. 

To create a more reliable simulation environment, both versions of the algorithm 
were constructed sharing the same types of strategies. The BDD version was con-
structed according to the diagram in Figure 6, while the tabular version was con-
structed with several optimizations. Both of them uses a list that holds concepts intent 
as a hash-table and shares the same hash function. The BDD version has an intrinsi-
cally feature that, when there is an intersection between two other concepts, the result 
is already a concept; while in the tabular version it is necessary to further use deriva-
tion operators to acquire the concept. To overcome this problem, the concept is ob-
tained only after the verification of if its intent is not present in the list yet. Thus, the 
tabular version of the algorithm avoids unnecessary derivation operations and main-
tains similarity to the BDD version. Another feature was the implementation in the 
conventional version of the algorithm: the derivation operator uses a data structure 
similar to a BitSet. The efficiency of the operators becomes superior by decreasing the 
amount of comparisons between two sub-sets of concept extents. In this sense, vari-
ous enhancements aimed at a more rapid extraction of concepts in order to achieve a 
more effective comparison of the BDD viability. 
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(a) Contexts with |G|=10000 (b) Contexts with |G|=20000 

(c) Contexts with |G|=30000 (d) Contexts with |G|=40000 

(e) Contexts with |G|=50000 (f) Contexts with |G|=60000  

Fig. 7. Evaluation of Attribute Intersections implemented as a table and BDD 

Another difference between the two versions evaluated is related to how each of 
them carries out their intersections. The BDD version performs the intersection be-
tween concepts represented in BDD through the implicit bdd_and operator, while the 
tabular version performs the intersection between the previously computed concepts 
extents. After that step, both algorithms must identify the concepts intent. The BDD 
version takes advantage of this situation because of its extremely efficient bdd_ithvar 
operator, but looses in performance in stage 3 of the diagram in Figure 6. The table 
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version is not affected by this problem since it obtains the concept intent and extent 
through the derivation operators. Thus, several simulation scenarios are necessary to 
evaluate the algorithm behavior over different conditions.  

Figure 7 shows the behavior of the Attribute Intersections algorithm for the BDD 
and tabular version for contexts with fewer attributes (20 to 100) and many objects 
(10,000 to 60,000). This algorithm has better performance for contexts |G|>|M|. To 
ensure that the BDD graph would not be extremely compact, the used density for all 
contexts was the minimum plus 10% of it. Moreover, lower density values result into 
smaller amounts of concepts, thus making the simulations consume less time to exe-
cute. All simulations were realized on a Pentium Dual Core 2.66Ghz with 2Gb of 
RAM running Linux Slackware Linux 12.0. The implementations for both versions of 
the Attribute Intersections algorithm were implemented in C++. 

As it can be seen in Figure 7, the implementation of the algorithm in BDD had an 
exponential performance in all the simulations, while the tabular version has pre-
sented an irregular decreasing behavior. For the table version, the density can explain 
the decreasing behavior, since lower attributes value had higher density for these 
considered simulations. In addition to that, how the incidences are spread into the 
context can explain its irregular behavior. Different contexts with the same density 
may have different execution performance. On the other hand, the BDD version pre-
sented a stable exponential behavior. Increasing the quantity of attributes in the con-
text, more nodes will be required to construct the BDD. Therefore, as more nodes are 
used by the BDD, less efficient will be the operations in this representation. Thus, 
explaining this uniform behavior. Also, as can be seen by simulations of 20 and 30 
attributes, while the tabular version had worst time performance, this BDD main-
tained a very low execution time, despite of the higher density. So, the BDD size is 
extremely relevant in the computation of all concepts. 

Through simulation, it is demonstrated that BDD has a better overall performance 
than the table version for a number of attributes lower than or equal to 70. Above this 
threshold, the BDD graph becomes complex and begins to turn into an unattractive 
solution. Also, as the amount of objects increases, greatest has become the difference 
between the execution times of both implementations, considering attributes up to 70. 
Thus, the implicit representation of concepts in BDD becomes an alternative to a 
more efficient extraction of concepts in these conditions. 

Considering now a threshold of 70 attributes, another simulation scenario was cre-
ated. This time, the number of objects chosen was based on the ICFCA’06 challenge. 
A many-valued context was simulated with 7 attributes, a fixed number of 10 attrib-
ute-values per attribute and 120,000 objects. The context had a density of 10% and 
generated 1,172,960 concepts. Table 6 presents the spent time consumed by both 
algorithm implementations, in BDD and in table. 

Table 6. Execution time for many-valued context with 70 attributes and 120000 objects 

 
Construction of 
the Context (s) 

Concepts 
Extraction (s) 

Intent and Extent 
Identification (s) 

Total (s) Total 

Table - - - 251283 2d 21:48:03 
BDD 128 18345 33289 51762 0d 14:22:42 
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As it can be seen in Table 6, the BDD version obtained the set of all concepts in 
less than 15 hours, while the tabular version demanded almost three days for its com-
plete execution. Applicability to process larger contexts could be achieved with the 
use of a distributed version of an algorithm implemented in BDD. If we consider that 
a context with 70,000 attributes and 120,000 objects can be divided into sub-contexts 
of 70 attributes and 120,000 objects, still maintaining a low density, then it would be 
necessary, in general, 15 thousands of execution hours. Considering that all sub-
contexts were executed in execution times around 15 hours. If a cluster of 50 com-
puters were used, then it would be required around 300 execution hours, about 15 
days. It will be still necessary to join the sub-concepts to form the concepts final set, 
but the BDD opens a possibility to process this large contexts. 

Note that the required time to identify the set of extents from the concepts repre-
sented in BDD was very significant, as seen by Table 6. This happens because of the 
used algorithm quadratic complexity relative to the number of objects. If more effi-
cient algorithms were used, lower computational times may be achieved to process 
contexts. Instead of a brute force strategy to check objects presence in a concept, 
another strategy could be visiting BDD nodes identifying the objects, inverted form. 

5   Conclusions 

The present work is related to a challenge raised at the ICFCA’06 conference, which 
refers to the manipulation of large formal contexts. Through the use of an implicit 
representation of formal context in BDD, it has been demonstrated that this new rep-
resentation became computationally feasible for handling large contexts, when com-
pared to the conventional manipulation of a table.  

In this work, the representation of the formal contexts in BDD were evaluated in 
two distinct aspects, as the memory consumption in relation to a bit table and as the 
computational time spent in its construction. It was later assessed the performance of 
the algorithm Attribute Intersection adapted to be used with BDD compared to the 
conventional implementation as a table. It has been verified that the BDD can be 
applied to the FCA algorithms to improve the execution time required to complete the 
extraction of all concepts. Although this representation allows the manipulation of 
contexts with a large number of objects, it is restricted to contexts with few attributes 
(up to 70 attributes, as experimentally verified). This is due to the fact that BDD tends 
to improve their representation with a larger number of objects, allowing further sim-
plifications on its graph and thus making the operations on it more efficient. It has 
been also realized that the lower the number of attributes in the context the higher will 
be the BDD performance when compared to the conventional implementation of the 
algorithm, as verified in Figure 7. Thus, if the context meets this feature, a significant 
efficiency can be achieved with the application of this new alternative. This can also 
be verified for many-valued contexts in Table 6, in which the difference between both 
execution times was approximately of 2 days of uninterrupted processing. 

The context density is an aspect that is intimately related to the number of concepts 
obtained. The concepts extraction using a BDD representation is still conditioned to 
this characteristic. Therefore, all simulations were limited to low densities. 
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Several future works may be pointed out: Evaluating new libraries for BDDs con-
struction and manipulation, like CUDD [11]; measuring the behavior over different 
BDD technologies, like ZBDDs; evaluate different orders for attributes (statically or 
dynamically chosen) to construct the BDD; and adapting others FCA algorithms that 
could be used with BDD. ZBDD have already proven to be satisfactory for spare 
contexts [5], but in some type of contexts, in our preliminary results, the standard 
BDD was able to beat the ZBDD performance. Further analysis is therefore required. 
Also, in order to adapt others FCA algorithms a study must be conducted to verify 
whenever the BDD can be applied. In other words, which algorithm operations can be 
similarly replaced by a BDD operation in order to increase the algorithms capabilities. 
For example, in this work, the intersection of concepts in the Attribute Intersection 
was implemented by replacing this function with a correlated BDD conjunction op-
erator that enabled performance improvements. 

Although the results presented in this paper have been shown to be satisfactory for 
many objects (120,000) and a few attributes (in the order of 70), it is possible to use 
the BDD approach in conjunction with distributed FCA algorithms. Thus increasing 
processing power of contexts with larger number of attributes while still maintaining 
its inherent capability of processing huge amounts of objects. 
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Abstract. We present an approach to the cell formation problem,
known from group technology, which is inspired by formal concept anal-
ysis. The cell formation problem consists in allocating parts (objects)
to machines (attributes), based on the machine-part matrix. This can
be viewed as forming groups consisting of a set of parts and a set of
machines. Such groups resemble formal concepts in the input data. Due
to the specific nature of the performance assessment in the cell forma-
tion problem, good groups can be thought of as rectangles which, unlike
those corresponding to formal concepts, contain a few blanks, i.e. which
are not full of crosses in terms of formal concept analysis. Moreover,
such groups need to be disjoint both in terms of objects and attributes.
In this paper, we present an algorithm for the cell formation problem,
experimental results, and a comparison to some methods proposed in the
literature.

1 Introduction

Group technology (GT) is an approach to manufacturing management which
capitalizes on grouping of products with similar manufacturing characteristics.
Conceived originally in the 1940s in the Soviet Union, it has since been developed
and used in numerous countries [10,15]. There are several benefits from applying
GT and they are discussed in e.g. [3,15,18].

One particular application of GT is cellular manufacturing (CM) [2,12,18].
CM involves grouping of machines or processes into manufacturing cells and
operation of manufacturing cells. Such grouping is based on parts or part fam-
ilies processed by the machines. This makes CM different from a traditional
jobshop environment in which machines are grouped according to their func-
tional similarities [8]. The companies surveyed in [17] reported several benefits
from implementing CM, including setup time reduction, material handling cost
reduction, equipment cost and labor cost reduction, improvement in quality, im-
provement in material flow, machine and space utilization, and improvement in
employee morale.
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One of the first problems encountered in implementing CM is the cell forma-
tion (CF) problem which consists in grouping of machines into cells, grouping of
parts into families, and assignment of the part families to machine cells, so that
machine utilization is high and inter-cellular movement is low. Several other con-
straints need often be considered, such as safety and technological requirements
regarding the location of machines, maximum size of cells and maximum num-
ber of cells specified by a user, requirements regarding the capacity of machines,
or the need for designing flexible cells, but the principal concern is machine
utilization and inter-cellular movement [8,9,18].

Several approaches to the CF problem were proposed in the literature.
[2,18,12,9,16] provide overviews of these approaches. [13] identifies numerous ap-
proaches and classifies them according to their methodology into the following
classes:

– descriptive procedures (they include informal methods based on rules of
thumb or visual inspection, as well as formal methods based on part coding
and classification),

– methods based on cluster analysis (both hierarchical and non-hierarchical
clustering algorithms are utilized in these methods),

– methods based on graph partitioning,
– methods based on artificial intelligence techniques (a variety of techniques

underlies these approaches, such as rule-based knowledge systems, pattern
recognition, and artificial neural networks),

– methods based on mathematical programming (particularly, linear and
quadratic programming, and dynamic programming).

The evaluations available in the literature, see e.g. [10,13] suggest that there
is no clear winner among the proposed approaches to the CF problem, as the
approaches perform differently on different types of datasets.

In this paper, we present a novel approach to the CF problem. The approach
is inspired by formal concept analysis (FCA) [5,7]. FCA identifies particular
clusters, called formal concepts, in the input data which consists of objects, at-
tributes, and an incidence relation between them. The main idea of our approach
consists in linking the conceptual framework of CF to the notions of FCA in a
way in which parts correspond to objects, machines correspond to attributes,
and the part-machine relationship, indicating which parts need to be processed
on which machines, is represented by the incidence relation. Doing so, the formal
concepts in the input data obtained using such link can naturally be interpreted
as cells whose machines correspond to the attributes of the concept intent and
whose parts correspond to the object of the concept extent. In terms of CF, the
original methods of FCA can recognize only cells with full machine utilization
and allow for overlapping cells. In order to fit the requirements of CF, we thus
modify the notions of FCA and develop an algorithm that extracts a set of formal
concepts from the part-machine data which can be interpreted as a set of cells
provided as a solution to the CF problem. We demonstrate by comparison to
other methods described in the literature on several benchmark datasets that our
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algorithm performs well both in terms of machine utilization and inter-cellular
movement.

The paper is organized as follows. In Section 2.1, we define the cell formation
problem. Section 2.2 reviews basic notions from formal concept analysis and
links them to the conceptual framework of cell formation. Our method for cell
formation based on formal concept analysis is presented in Section 3. Section 4
presents an experimental evaluation of the proposed method including a compari-
son to other methods proposed in the literature. Section 5 contains conclusions
and directions for future research.

2 Cell Formation Problem and Formal Concept Analysis

2.1 Cell Formation Problem

Let

X = {M1, . . . , Mn}
be a set of machines,

Y = {P1, . . . , Pm}
be a set of parts,

I ⊆ X × Y

be a machine-part incidence relation with the following interpretation:

〈M, P 〉 ∈ I iff part P needs to be processed on machine M .

The triplet 〈X, Y, I〉 can be depicted by a table in which rows correspond to
machines, columns correspond to parts, and a table entry is black or white
depending on whether 〈M, P 〉 ∈ I or 〈M, P 〉 
∈ I. Such table is called a part-
machine matrix in the cell formation problem.

A cell in 〈X, Y, I〉 is a pair 〈A, B〉 of a set A ⊆ X of machines and a set B ⊆ Y
of parts. The cell formation problem (CF problem) can be described as follows.

Definition 1. A solution to the CF problem is a set

S = {〈A1, B1〉, . . . , 〈Ak, Bk〉} (1)

of cells for which
1. {A1, . . . , Ak} forms a partition of the set X of machines,
2. {B1, . . . , Bk} forms a partition of the set Y of parts.

That is, (1) is a solution if

1. for each l = 1, . . . , k: Al 
= ∅ and Bl 
= ∅,
2. for i, j = 1, . . . , k, i 
= j: Ai ∩Aj = ∅ and Bi ∩Bj = ∅,
3. A1 ∪ · · · ∪Ak = X and B1 ∪ · · · ∪Bk = Y .

Given 〈X, Y, I〉, the following two objectives need to be achieved by any so-
lution S which is considered to be a “good solution”:
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1. high machine utilization within cells, which means that for each cell 〈Al,Bl〉∈
S, the number of machine-part pairs 〈Mi, Pj〉 in this cell (i.e. pairs 〈Mi, Pj〉 ∈
Al × Bl) for which Pj needs to be processed on Mi (i.e. 〈Mi, Pj〉 ∈ I) is
(relatively) high;

2. low percentage of exceptional elements, which means that the number of pairs
〈Mi, Pj〉 ∈ I for which Mi belongs to a different cell than Pj (i.e. for each
l = 1, . . . , k: 〈Mi, Pj〉 
∈ Al ×Bl) is (relatively) low.

Evaluations of goodness of a solution are usually based on some variants of
the following functions.

Definition 2. Given a part-machine matrix represented by 〈X, Y, I〉 and a so-
lution (1), we define

1. the machine utilization MU(S) of S by

MU(S) =
1
k

k∑
l=1

|(Al ×Bl) ∩ I|
|Al| · |Bl|

, (2)

2. the percentage of exceptional elements PE(S) of S by

PE(S) =
|I −
⋃k

l=1 Al ×Bl|
m · n . (3)

Given a weight w ∈ [0, 1], the grouping efficiency GE(S, w) of S is defined by

GE(S, w) = w ·MU(S)− (1 − w) · PE(S). (4)

Instead of (3), one sometimes uses

PE(S) =
|I −
⋃k

l=1 Al ×Bl|
m · n−

∑k
l=1 |Al| · |Bl|

. (5)

Note that MU(S) is the average machine utilization per cell, given that a ma-
chine utilization of a cell is the percentage of entries in a cell which are black.
PE(S) given by (3) is the percentage of black entries in the collection of entries
which do not belong to any cell.

2.2 Formal Concept Analysis

We refer to [7] and [5] for information on formal concept analysis (FCA). We
denote a formal context by 〈X, Y, I〉, i.e. I ⊆ X × Y (object-attribute data
table, objects x ∈ X , attributes y ∈ Y ); the concept-forming operators by ↑

and ↓, i.e. for A ⊆ X , A↑ = {y ∈ Y | for each x ∈ A : 〈x, y〉 ∈ I} and dually
for ↓; a concept lattice of 〈X, Y, I〉 by B(X, Y, I), i.e. B(X, Y, I) = {〈A, B〉 ∈
2X × 2Y |A↑ = B, B↓ = A}.

3 Proposed Method

This section describes our approach to find a solution of a given cell-formation
problem which meets certain quality criteria. The criteria are formulated using
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suitable measures. The basic idea of our approach can be summarized as follows:
(1) Define a function f which measures quality of a cell in a given context; (2)
take a formal context I ⊆ X×Y representing the part-machine relationship; (3)
take sets A ⊆ X and B ⊆ Y which maximize f ; (4) output 〈A, B〉 and repeat
step (3) until all objects and attributes are covered. Thus, we follow a greedy
approach utilizing the measure f .

The greedy approach sketched above may end up in a situation where all
machines (parts) are covered by the discovered cells and some of the parts (ma-
chines) are not. In such a case, we are not able to form a solution from the
discovered cells because one of the conditions 1. and 2. of Definition 1 is not
satisfied. We therefore relax the notion of a solution as follows.

Definition 3. A cell 〈A, B〉 where exactly one of the sets A and B is empty is
called a degenerate cell. An admissible solution to the CF problem is any
set S = {〈A1, B1〉, . . . , 〈Ak, Bk〉} of cells such that
1. S contains at most one degenerate cell,
2. for i, j = 1, . . . , k, i 
= j: Ai ∩Aj = ∅ and Bi ∩Bj = ∅, and
3. A1 ∪ · · · ∪Ak = X and B1 ∪ · · · ∪Bk = Y .

The algorithm can be formalized as follows:
FindCells(I, f)
1 U ← X ; V ← Y ; C ← ∅
2 while U 
= ∅ and V 
= ∅
3 do 〈A, B〉← FindBestCell(I, U, V, f)
4 C ← C ∪ {〈A, B〉}; U ← U −A; V ← V −B
5 if U 
= ∅ or V 
= ∅
6 then
7 C ← C ∪ {〈U, V 〉};
8 return C

The algorithm FindCells(I, f) first initializes sets U and V denoting the
remaining objects and attributes which can be used to form cells. FindBest-

Cell(I, U, V, f) at line 3 returns a new cell 〈A, B〉, i.e. A ⊆ U , B ⊆ V , which
has a high value of f (preferably the highest one) among all possible cells formed
from U and V in I. Obviously, FindBestCell(I, U, V, f) can be defined in many
ways; some of them will be discussed later. Once a suitable cell 〈A, B〉 is found
by calling FindBestCell(I, U, V, f), objects from A and attributes from B are
removed from U and V (see line 4) which ensures that the next cell will not
have an overlap with the cells computed in the previous steps. If if-then clause
between lines 5–7 adds to C a degenerate cell 〈U, V 〉 consisting of remanining
machines U and parts V provided that U 
= ∅ or V 
= ∅. At the end of the
computation, C contains an admissible solution.

Brute-Force Algorithm. We now focus on FindBestCell(I, U, V, f) which is the
core of our algorithm. Since FindBestCell is supposed to find a cell which, in
the ideal case, maximizes f , the best cell can be obtained by going through all
possible subsets of U and V :
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FindBestCell1(I, U, V, f)
1 s ← −∞
2 for C ∈ 2U

3 do for D ∈ 2V

4 do if s < f(I, U, V, C, D)
5 then
6 s ← f(I, U, V, C, D); 〈A, B〉← 〈C, D〉
7 return 〈A, B〉

Needless to say, such an algorithm has an exponential time complexity. How-
ever, it can be applied to some of the small real-world problems presented in the
literature.

In what follows we focus on variants of FindBestCell1 which do not go
through the space of all possible subsets of U and V but only through a smaller
portion which contains promising cells (i.e., cells with high values of f).

Algorithm Using Formal Concepts. The number of cells which are calculated
during a single call of FindBestCell1(I, U, V, f) can be reduced if we use formal
concepts as cells. This is based on the idea that any cell 〈A, B〉 which is a formal
concept has a full machine utilization and it is a maximal cell containing 〈A, B〉
with this property. This is due to the fact that formal concepts in I correspond
to maximal rectangles in I containing black entries only. The corresponding
modification of FindBestCell1 can be formalized as follows:

FindBestCell2(I, U, V, f)
1 s ← −∞
2 for 〈C, D〉∈ B(X, Y, I)
3 do C ← C ∩ U ; D ← D ∩ V
4 if s < f(I, U, V, C, D)
5 then
6 s ← f(I, U, V, C, D); 〈A, B〉← 〈C, D〉
7 return 〈A, B〉

Note that after obtaining a formal concept 〈C, D〉 ∈ B(X, Y, I) at line 2,
the sets C and D are restricted to the objects and attributes from the sets of
remaining objects U and attributes V only. (See line 3.) As we demonstrate in
the next section, in several cases this method can deliver results which are nearly
as good as the results obtained by the brute-force algorithm. In addition to that,
if the best possible solution to the cell-formation problem exists, solution S for
which MU(S) = 1 and PE(S) = 0, it will be always found:

Theorem 1. If the cell-formation problem for I ⊆ X × Y has a solution such
that MU(S) = 1 and PE(S) = 0, this solution can be found by FindCells

combined with FindBestCell2.

Proof. Let f be a function such that f(I, U, V, C, D) = 1 if (i) (C×D)∩I = C×D
(i.e., if 〈C, D〉 is a rectangle full of black entries) and (ii) ((U−C)×D)∩I = ∅ and
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(C×(V−D))∩I = ∅ (i.e., both (U−C)×D and C×(V−D) are empty rectangles),
and f(I, U, V, C, D) < 1 otherwise. (Such assumptions can be considered natural
requirements for f .) It is easily seen that if MU(S) = 1 and PE(S) = 0,
then for each cell 〈C, D〉 in the solution of the cell-formation problem, we have
f(I, X, Y, C, D) = 1 and 〈C, D〉 needs to be a maximal rectangle. Therefore, the
first cell generated by the algorithm is one the cells contained in the solution.
The rest follows directly by induction. ��

Algorithm Using Dense Rectangles. If the best possible solution does not exist,
i.e., if there is no admissible solution for a cell-formation problem such that
MU(S) = 1 and PE(S) = 0, the method based on formal concepts may not yield
optimal results. Intuitively, there may be interesting cells which have almost full
machine utilization (i.e., MU(S) is close to 1) and low percentage of exceptional
elements. Such cell may be more useful than a cell with full machine utilization
but a higher percentage of exceptional elements.

Therefore, we modify the “cells as concepts” approach to include cells formed
of rectangles almost full of 1’s. We find such rectangles by finding formal concepts
first and then adding promising objects and attributes as long as the quality
measure of the particular rectangle increases. This leads to a modified version
of the algorithm described in the previous paragraph:

FindBestCell3(I, U, V, f)
1 s ← −∞
2 for 〈E, F 〉∈ B(X, Y, I)
3 do E ← E ∩ U ; F ← F ∩ V
4 repeat
5 C ← E; D ← F ; r ← f(I, U, V, C, D)
6 select M ∈ U − C that maximizes f(I, U, V, C ∪ {M}, D)
7 select P ∈ V −D that maximizes f(I, U, V, C, D ∪ {P})
8 if f(I, U, V, C ∪ {M}, D) ≤ f(I, U, V, C, D ∪ {P})
9 then q ← f(I, U, V, C, D ∪ {P}); F ← D ∪ {P};

10 else q ← f(I, U, V, C ∪ {M}, D); E ← C ∪ {M};
11 until q < r
12 if s < f(I, U, V, C, D)
13 then
14 s ← f(I, U, V, C, D); 〈A, B〉← 〈C, D〉
15 return 〈A, B〉

Compared to the previous algorithm, a new repeat∼until loop is added. The
loop searches for remaining objects and attributes which can be added to the
current rectangle (originally, a formal concept) and which increase (or do not
decrease) the quality measure.

Quality Measures. The quality of solution found by FindCells combined with
any of the variants of FindBestCell depends on our choice of the quality
measure f . For given I, U , V , and A ⊆ U and B ⊆ V , f(I, U, V, A, B) is the
measure of goodness of 〈A, B〉 in I. We consider quality measures which assign
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higher values to better cells. Although the notion of a “better cell” is subjective,
we can agree that in certain situations there are “best cells” with full machine
utilization (in the cell) and no exceptional elements (in the cell).

All the quality measures proposed below use percentages of machine utiliza-
tion and exceptional elements in a single cell to compute the resulting value of
f . We introduce functions g(I, U, V, A, B) ∈ [0, 1] and h(I, U, V, A, B) ∈ [0, 1] as
follows:

g(I, U, V, A, B) =
|(A×B) ∩ I|
|A| · |B| , (6)

h(I, U, V, A, B) = 1−
|((A × (V −B)) ∪ ((U −A)×B)) ∩ I|

|A| · |V −B|+ |U −A| · |B| . (7)

Clearly, g(I, U, V, A, B) is the machine utilization of 〈A, B〉, i.e. the fraction of
black entries in the rectangle 〈A, B〉. Analogously, h(I, U, V, A, B) is the fraction
of non-exceptional elements, i.e. the fraction of white entries in the rectangles
〈A, V − B〉 and 〈U − A, B〉. Obviously, if 〈A, B〉 is a cell with full machine uti-
lization and no exceptional elements then g(I, U, V, A, B) = h(I, U, V, A, B) = 1.

Remark 1. In the rest of this section, we fix I, U, V and simplify the notation: For
brevity, we write just f(A, B), g(A, B), h(A, B), . . . instead of f(I, U, V, A, B),
g(I, U, V, A, B), h(I, U, V, A, B), . . .

We can introduce two families of quality measures which are based on weighted
arithmetic and geometric averages of g(A, B) and h(A, B). Namely, we define
fw
1 and fw

2 as follows:

fw
1 (A, B) = w · g(A, B) + (1− w) · h(A, B), (8)

fw
2 (A, B) = g(A, B)w · h(A, B)

1
w . (9)

These measures will be used in the next section.

4 Experimental Evaluation

In this section we present examples of solutions to sample cell-formation prob-
lems which we identified in the literature and provide a comparison with other
approaches. First, let us note that qualifying a solution as “good” among admis-
sible solutions is highly subjective. Usually, an expert judgment or additional
knowledge is needed to select the best solution among several ones. Second, de-
spite the computational complexity of the method we propose, the results are
obtained with acceptable response times because the data sets that appear in the
cell-formation problem domain are usually small (with |Y | around 30 or less).
In this section we focus on the effect of selecting various quality measures and
variants of the FindBestCell algorithm.

Results Obtained by Variants of FindBestCell Algorithm. As discussed in the
previous section, the algorithm can deliver the best solution possible if it exists.
If not, the algorithm varies based on the choice of f and FindBestCelli. If one
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Fig. 1. Various quality measures used to solve the same cell-formation problem

uses FindBestCell2 using formal concepts as cells, we usually get an acceptable
solution which however might not be natural for a user. For instance, in Fig. 1
we have the input data matrix (left), a brute-force admissible solution (second
from left), and a solution found by taking “formal concepts as cells” (third from
left) with f1

2 as the quality measure. Note that the cells in Fig. 1 are depicted
by thick rectangles drawn in data tables with permuted rows and columns. For
example, the first cell in the second diagram consists of machines 0 and 11 and
parts 7, 8, and 9.

For an industrial engineer, the second solution may seem not natural because
it has more exceptional elements and it contains an “empty cell” with no ma-
chine utilization. Interestingly, if we use FindBestCell3 which uses “dense
rectangles”, we obtain an admissible solution which is the same is in case of
the brute-force algorithms (first from right). We have tested the algorithms on
various artificial as well as real-world machine-part datasets and we have ob-
served that the admissible solution using “dense rectangles” produces the same
or almost as good results as the brute-force algorithm with considerable smaller
demands.

Choice of Quality Measures. The choice of a quality measure, i.e. function f ,
seems to be crucial for finding a satisfactory solution. There seems to be no
single measure which works well for all datasets because the problem of finding
a “good solution” is subjective. In general, good choices seem to be f0.5

1 (equal
emphasis is put on utilization and exceptions) and fw

2 with lower values of w
(tends to suppress exceptions). Sample results corresponding to various measures
are depicted in Fig. 2.

In Fig. 2, we have used the “dense rectangles” to form the cells. Notice that
f0
1 is trivial because all emphasis is put on no exceptional elements with no

emphasis on the utilization, i.e. a trivial solution is to have one cell covering the
entire part-machine dataset. In a similar sense, f1

1 produces degenerate solution
as well because the high demand of utilization leaves large amount of exceptional
elements and 4 machines are not contained in any cell. In case of this dataset,
f0.01
2 seems to produce the best solution.

Illustrative Examples. We now show examples of (admissible) solutions to the
cell-formation problem with datasets which we identified in the literature [1,6,14].
The solutions have been found using “dense rectangles” as cells and fw

2 taken
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Fig. 2. Various quality measures used to solve the same cell-formation problem

input data f0.2
2 f1

2 f∗

Fig. 3. Various quality measures used to solve the same cell-formation problem

as the quality measure. In addition to that, we have used a quality measure
which takes into account the size of cells. The motivation is the following: an
engineer often follows not only the utilization but also the numbers of cells. As an
extreme example, it does not make much sense to have as much cells as machines
in the system, making each machine a separate cell. Therefore, we introduce the
following measure:

f∗(A, B) = g(A, B) · h(A, B)2 · ln
(
1 +
√
|A| · |B|

)
, (10)

which is similar to fw
2 except for it multiplies the result by the size of a possible

cell, putting more emphasis on large cells. In order to avoid another extreme
(having all machines in one or just a few cells), we adjusted the quality measure
by the logarithm of the size of the edge of a possible cell. Fig. 3 contains results
for two datasets using various quality measures.
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Table 1. Comparing results from [14] with the proposed method for the 8× 20 matrix
from Fig. 3 (top)

Method Cells Cell 1 Cell 2 Cell 3 Exceptional Voids
Utilization Utilization Utilization Elements

[14] 3 1 1 1 9 0
f0.2
2 3 1 1 1 9 0
f1
2 3 1 1 1 9 0

f∗ 3 1 1 1 9 0

Table 2. Comparing results from [1] with the proposed method for 12 × 10 matrix
from Fig. 1

Method Cells Cell 1 Cell 2 Cell 3 Cell 4 Exceptional Voids
Utilization Utilization Utilization Utilization Elements

[1] 3 0.8125 0.8667 0.8889 - 5 6
Brute Force 3 1 1 0.7083 - 7 7

Formal Concepts 4 1 1 1 0 12 0
Dense Rectangles 3 1 1 0.7083 - 7 7

In the first example, the measures produce practically the same solution which
can be seen as satisfactory solutions. In the second case, f0.2

2 and f∗ produce
similar solutions which have lower machine utilization than the solution obtained
using f1

2 (which has full machine utilization). On the contrary, f1
2 has a large

number of small cells and larger amount of exceptional elements. Which of the
solutions is actually the best one depends on particular application and prefer-
ences of users. This example demonstrates that by tuning parameters of quality
functions, one can influence the solutions based on user-specified requests (i.e.,
larger utilization, smaller number of cells, etc.).

Comparison With Other Approaches. The aim of this section is to compare the
quality results obtained by other authors to the results obtained by the method
proposed in this paper. For this purpose, we use some of the datasets which we
identified in the literature. We present the comparisons by means of uniform
tables which contain the characteristics of solutions available in the literature.

The data sets used for comparisons are benchmark data problems and are
obtained from [1,6,14]. We use the comparison criteria for which the results are
available in those papers. The papers use different approaches to solve the cell
formation problem. [1] proposes a two-phase approach. The first phase makes
use of principal component analysis to identify machine cells; the second phase
uses an integer programming model to assign parts to these identified machine
cells. [6] uses a particular iterative clustering algorithm to find cells. [14] utilizes
a similarity matrix assessing similarity between machines and uses this matrix
in an assignment procedure which solves a particular maximization problem to
form cells.
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Table 3. Comparing results from [14] with the proposed method for 14 × 24 matrix
from Fig. 2 (bottom)

Method Cells Cell 1 Cell 2 Cell 3 Cell 4 Cell 5 Cell 6
Utilization Utilization Utilization Utilization Utilization Utilization

[14] 4 1 0.5 0.625 0.639 - -
f0.2
2 4 0.6875 0.6 0.8333 0.6667 - -
f1
2 7 1 1 1 1 1 1

f∗ 4 0.9333 0.6389 0.6875 0.6667 - -

Method Cell 7 Exceptional Voids
Utilization Elements

[14] - 4 29
f0.2
2 - 2 28
f1
2 1 20 0

f∗ - 4 23

Table 4. Comparing results from [6] with the proposed method for 15 × 10 matrix
from Fig. 2

Method Cells Cell 1 Cell 2 Cell 3 Cell 4 Exceptional Voids
Utilization Utilization Utilization Utilization Elements

[6] 3 0.8125 1 0.9333 - 0 4
f0.01
2 3 1 0.9333 0.85 - 0 4
f1
2 4 1 0.9333 1 1 6 1

f1
2 3 1 1 0.85 - 2 3

Table 1, Table 2, Table 3, and Table 4 contain the comparisons. For every
table, we provide a reference to the paper from which we got the dataset and
the characteristics of the solutions obtained by the authors in the respective
paper. For every solution listed, we provide the number of cells in the solution,
machine utilization for every cell, the number of exceptional elements (black
entries in the data matrix which are not covered by any cell), and the number
of voids (white entries in the cells).

5 Conclusions

We presented a new method for the cell-formation problem known from the group
technology. The method is inspired by formal concept analysis. We provided
results of experiments and a basic comparison with other methods presented in
the literature. One advantage of our method is that it is transparent in that
it does not use any preprocessing method (such as the principal component
analysis) which some of the methods in the literature use. Another advantage
is the fact that our method is parameterizable and yields solutions based on
user’s preference regarding the importance of machine utilization and exceptional
elements, as well as the overall number of cells.
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Future research will include more comprehensive comparison with existing
approaches; exploring the possibility to add interactivity to the method via a
visual inspection of the concept lattice associated to the input data (the user
might give some initial information to the algorithm based on such inspection);
and extending our method to be able to take into account in a natural way the
user’s expert knowledge and preferences. In addition, we plan to explore other
approaches to dense rectangles which appeared in the literature (suggested by
an anonymous reviewer).
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17. Wemmerlöv, U., Hyer, N.L.: Cellular manufacturing in the U.S. industry: A survey
of users. Int. Journal of Production Research 27(9), 1511–1530 (1989)

18. Yasuda, K., Yin, Y.: A dissimilarity measure for solving the cell formation problem
in cellular manufacturing. Computers & Industrial Engineering 39, 1–17 (2001)



Identifying Ecological Traits: A Concrete
FCA-Based Approach

Aurélie Bertaux1,2, Florence Le Ber1,3, Agnès Braud2,
and Michèle Trémolières1

1 LHyGeS UMR 7517,
ENGEES, 1 quai Koch BP 61039 F 67070 Strasbourg cedex
{aurelie.bertaux,florence.leber}@engees.u-strasbg.fr,

michele.tremolieres@bota-ulp.u-strasbg.fr
http://engees-web.u-strasbg.fr/site/

2 LSIIT UMR 7005,
Bd Sébastien Brant BP 10413 F 67412 Illkirch cedex

agnes.braud@unistra.fr
https://lsiit.u-strasbg.fr/fdbt-fr/index.php/Accueil

3 LORIA UMR 7503,
BP 35 F 54506 Vandœuvre-ls-Nancy cedex

Abstract. This paper describes a method to identify so-called ecological
traits of species based on the analysis of their biological characteristics.
This biological dataset has a complex structure that can be formalized
as a fuzzy many-valued context and transformed into a binary context
through histogram scaling. The core of the method relied on the con-
struction and interpretation of formal concepts and was used on a 50
species × 124 histogram attributes table. The concepts were analyzed
with the help of an hydrobiologist, leading to a set of ecological traits
which were inserted in the original context for validation.

Keywords: Galois lattice, fuzzy many-valued context, histogram scal-
ing, hydrobiological data.

1 Introduction

Water quality is an important problem in Europe that has been highlighted
by the recent European Water Framework Directive [1]. An important issue is
the evaluation of the quality of the whole ecosystem wrt pressures it endures
(chemical pollution, buildings, lack of water...). In France, for example, running
waters are qualified with physico-chemical and biological tools. Contrarily to
physico-chemical tools, biological tools give global informations on the ecosystem
and keep signs of fugitive pressures such as punctual pollutions. However their
results are difficult to compare because they are based on compartmented and
regionalized expertises. A particular problem is that biological tools are based
on species (plants, fishes ...) living in different areas, which prevents from a large
comparison of the existing tools. Thus, biological as well as physico-chemical
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tools seem not to be sufficient and new tools are needed to evaluate the whole
ecological system [1].

The work presented in this article is part of a wider project that aims at com-
paring biological answers concerning various pressures endured by water bodies
[2]. We are exploring a promising approach that is to build sets of ecological
traits which characterize the functioning of the species within their environment
and can be used instead of the species themselves [3]. Several ecological traits
have been described [4] and the main problem is to select the suitable traits for
characterizing water quality. The goal of this paper is to present a full approach
- based on FCA - to identify those traits from the analysis of biological data
(namely biological traits) about species [5].

We explored these data with Formal Concept Analysis [6], [7], [8]. We have
chosen to use Galois lattices because they are useful tools for extracting knowl-
edge [9] and allow to interact with an expert. The goal is to find concepts, i.e.
sets of biological traits shared by a group of species, which can be interpreted
according to the ecosystem, and so lead to ecological traits. The whole method
to identify ecological traits from species and their biological traits is illustrated
on Fig. 1.

Fig. 1. Identification method for ecological traits
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The method is divided in 3 steps: context conversion, concept analysis and
validation. For the purpose of context conversion, we will introduce the defini-
tions of fuzzy many-valued context, which represents a formal setting for hydro-
biological data, and that of histogram scaling which is used to transform these
data to get a binary context. From this binary context a lattice is built. In the
second step, concepts potentially interesting for an expert interpretation are se-
lected. The expert interprets them by associating their species with ecological
traits according to the knowledge of the species environments. Then starts the
third step that aims at validating the ecological traits highlighted. They are
thus added to the initial context and a new lattice is built. Concepts are se-
lected from the enlarged lattice to find those with an extent matching the extent
of the concepts selected at the previous step. The selected ecological traits are
validated by comparing the intents of the concepts of the lattice based on bi-
ological traits with the intents of the lattice based on biological and ecological
traits.

This article describes the whole process for the identification of ecological
traits and is organized according to the successive steps of the method. The
first part presents the dataset of biological traits and its conversion into a bi-
nary context. The second part is about concept analysis with a selection of the
appropriate concepts and their interpretation. The third part presents the vali-
dation step of the method and the last part gives some conclusions.

2 Framework and Context Conversion

This part presents the first step of the method. First, we introduce the hydrobio-
logical dataset. Then we recall some definitions to introduce two new definitions:
fuzzy many-valued context, and histogram scaling. Finally we present the lattice
obtained.

2.1 Dataset

The dataset concerns macrophytes (or hydrophytes) i.e. macroscopic plant
species living in water bodies. These data have been collected from the liter-
ature [5], [4] and correspond to species living in the Alsace plain. There are 50
species and each of them has 10 characteristics called traits. For example, Tab. 1
shows the vegetative reproduction trait for a 25 species subset of the dataset.

Each trait is divided into several modalities : the modality bulb or tubercle
is one of the four modalities of the vegetative reproduction trait. There are 35
modalities for the 10 traits. For each m modality of a trait and each s specie, there
is an affinity corresponding to the percentage of plants of s potentially having
the m value. For example, Tab. 1 shows that individuals of GROD (Groenlandia
densa) have a vegetative reproduction mainly through a bulb, a tubercle, a
rhizome or a stolon, but none have a bulbil, a turion or a dormant apex and
some have non specialized fragments.
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Table 1. Vegetative reproduction trait of half the dataset

Traits Vegetative reproduction
Modalities bulb or Rhizome bulbil, turion non specialized

tubercle or stolon or dormant apex fragments
ALIP 0 100 0 0
BERE 0 66 0 33
CALO 0 0 0 100
CALP 0 0 0 100
CARA 0 100 0 0
CERD 0 0 50 50
ELEA 0 100 0 0
ELOC 0 0 50 50
ELON 0 0 33 66
GROD 40 40 0 20
HIPV 0 66 0 33
HOTP 0 50 0 50
HYDM 0 50 50 0
IRIP 25 25 0 50
JUNA 0 100 0 0
LEMM 0 0 100 0
LEMT 0 0 100 0
MENA 0 100 0 0
PHAA 0 100 0 0
PTCR 0 40 40 20
PTLU 0 66 0 33
PTNA 0 50 25 25
SEFC 0 100 0 0
TYPL 0 100 0 0
UTRV 0 0 50 50

2.2 Fuzzy Many-Valued Contexts

The structure of the previous dataset can be considered as a fuzzy context or
as a many-valued context. We introduce thus the notion of fuzzy many-valued
context, which is defined in the following. Let us first recall the definition of a
formal context [8].

Definition 1. A formal context K := (O, T, I) 1 is composed of two sets O and
T and a relation I between O and T . The elements of O are called the objects
and the elements of T are called the traits (or attributes). In order to express
that an object o is in relation I with a trait t, we write oIt or (o, t) ∈ I and read
it as "the o ∈ O object has the t ∈ T trait".

This notion has been extended in [10] to deal with fuzzy data. Fuzzy data al-
low to represent a fuzzy relation between an object and a trait, or said in a

1 We use OTI instead of GMI , OTMI instead of GMWI to recall the Traits and
Modalities sets used.
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different way, the affinity of an object towards a trait. The underlying context
is then called a fuzzy context.

Definition 2. Let A be a set of truth degrees. Then a fuzzy context is a triplet
K := (O, T, I) where O and T are sets of objects and traits respectively, and
I : O × T → A is a fuzzy relation between O and T . A degree I(o, t) ∈ A is
interpreted as the degree to which the o object has the t trait.

The definition 1 of a formal context is a specific case of the definition 2 where
I : O × T → {0, 1}. The notion of formal context has also been extended in
another way in [8] to deal with multi-valued data. Such contexts are called
many-valued contexts.

Definition 3. A many-valued context K is defined as a quadruple (O, T, M, I),
where O is a set of objects, T is a set of many-valued attributes called traits, M is
a set of trait values called modalities, and I is a ternary relation, I ⊆ O×T ×M
such that: (o, t, m) ∈ I and (o, t, n) ∈ I always implies m = n. The notation
(o, t, m) ∈ I (or t(o) = m) means that the t attribute has the m value for the o
object.

Nevertheless some data exhibit both aspects. This is the case for our dataset
so that we have defined fuzzy many-valued contexts, which extend many-valued
contexts to the case where (o, t, m) ∈ I and (o, t, n) ∈ I do not imply m = n: the
m and n modalities of the t trait belong to the o object with different degrees. In
our dataset, for example, the ’non specialized fragments’ and ’rhizome or stolon’
modalities of the ’vegetative reproduction’ traits both belong to the GROD
object with (respectively) a 20% and a 40% affinity.

Definition 4. A fuzzy many-valued context K is a quintuplet (O, T, M, A, I)
where O, T, M and I are defined as for the many-valued context, A is a set of
affinities and corresponds to a set of truth degrees as for a fuzzy context. The
notation I(o, t, m) ∈ A or I(o, t, m) = a means the o object has the a affinity for
the m modality of the t trait.

2.3 Histogram Scaling

Conceptual scales [11], [12] have been defined in order to deal with increasing
amounts of data and many-valued contexts. They consist in grouping related
attributes. [13] defines a conceptual scale for a t many-valued attribute as a one-
valued context which has the attribute values of t among its objects. A scale
may be associated to each t many-valued attribute, and t is replaced by the set
of its scale attributes. Each value of t is substituted by the corresponding row
of the scale.

The aim of our work is to build a Galois lattice from the hydrobiological
dataset in order to extract valuable concepts describing groups of species with
common properties. For that purpose we need to put the data in a suitable format
corresponding to the definition of a binary context. In a previous work [14], the
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Fig. 2. Examples of histograms for the Vegetative reproduction trait

nominal scaling was tested, but the results were not satisfying for the biologists,
because the modalities of a same trait were scattered into several attributes. We
also tested another approach which took into account the biological meaning of
the data, and which turned out to be relevant. The various modalities of a trait
were therefore merged into a single multi-valued attribute and a (non-fuzzy)
many-valued context was built, to which a nominal scaling was applied. The
whole conversion we named histogram scaling.

Definition 5. Let K := (O, T, M, A, I) be a fuzzy many-valued context. For
each t ∈ T trait having mt modalities, we associate a Ht

2 set of histogram-traits
(called histograms). An ht ∈ Ht histogram is such that ht = {a1, . . . , ai, . . . , amt}
where ai ∈ A. Let H = ∪t∈T Ht be the set of all histograms. The K fuzzy many-
valued context can be represented as a (O, H, IH) binary context. For an o ∈ O
object and an ht ∈ H histogram, (o, ht) ∈ IH ⇔ I(o, t, mi) = ai for all i ∈ [1, mt].

An ht ∈ H histogram is composed of a letter to qualify the considered t trait (by
example V for Vegetative reproduction), and of the mt affinities of the consid-
ered object for the mt modalities of t. Fig. 2 illustrates Vegetative reproduction
modalities for GROD and PTNA (Potamogeton natans) species. For the bulb
or tubercle modality, GROD has 40% affinity and PTNA 0%, for the Rhizome
or stolon modality, GROD has 40% affinity and PTNA 50%, for the bulbil, tu-
rion or dormant apex modality, GROD has 0% affinity and PTNA 25% and
for the non specialized fragments modality, GROD has 20% affinity and PTNA
25%. So their Vegetative reproduction histogram are V40-40-0-20 for GROD and
V0-50-25-25 for PTNA.

2 |Ht| ≤ |A|mt .
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2.4 The Galois Lattice of Histograms

The context resulting from the histogram scaling relies on an IH binary relation,
which associates a unique ht ∈ Ht to each specie since the histograms mutually
exclude each other. So each specie has 10 histograms, i.e. one per trait. Tab. 2
shows the Vegetative reproduction trait of the new context obtained by histogram
scaling for a 25 species subset. The whole converted dataset is composed of 124
histograms. On average, this means that an histogram is shared by 4 species. A
× indicates that a specie fits the characteristics represented by the corresponding
histogram.

Fig.3 shows the lattice obtained with the ordinary Galois connexion [8] from
the (O, H, IH) context of histograms (25 macrophytes x 10 traits).

Table 2. Vegetative reproduction histogram of the converted dataset for 25 species
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Fig. 3. Galois lattice for the 25 macrophytes subset

Fig. 4. Second part of the method : analysis of the formal concepts

3 Analysis of the Formal Concepts

Our aim is to interpret concepts with respect to expert knowledge on species
environment in order to highlight ecological traits which link the species and
the characteristics of the environment where they live. Such information exist
in the literature but hydrobiologists look for the most appropriated traits to
evaluate water quality. Thus they need to know the relations between species
and their biological traits to associate them to ecological traits. In this section
we present the method to determine these traits as shown on Fig. 4: the choice
of the interesting concepts, their analysis and the conclusions obtained in terms
of ecological traits.

3.1 Concept Selection

The Galois lattice gives all possible concepts for sets of species and their com-
mon biological descriptions. The concepts in the middle of the lattice are more
meaningful for biologists, i.e. those containing between 3 and 5 histograms, which
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usually corresponds to a number of species between 3 and 7. Concepts with more
species are too general and cannot be linked to specific environmental conditions
whereas concepts with less species are too specific and give no information. Let
us describe two of the ’middle’ concepts:

� Concept 1: (JUNA SEFC TYPL, L100-0 H0-100 P100-0-0 V0-100-0-0 D100-
0-0), illustrated in Fig. 3. The species considered are Juncus articulatus,
Sparganium emersum, Typha latifolia. The traits they share are an annual
flowering (L100-0), a phenology during the vegetative period only (H0-100),
perennial organs (aerial or underground) (P100-0-0), a vegetative reproduc-
tion by rhizomes or by stolons (V0-100-0-0) and a high dispersion (with small
flying seeds) (D100-0-0).

� Concept 2: (CERD PHAA PTCR PTLU PTNA UTRV, H0-100 F0-0-0-100
P100-0-0). This concept concerns Ceratophyllum demersum, Phalaris arun-
dinacea, Potamogeton crispus, Potamogeton lucens, Potamogeton natans,
Utricularia vulgaris macrophytes. Their common properties are a phenol-
ogy during the vegetative period only (H0-100), an high flexibility (> 300◦)
(F0-0-0-100) and perennial organs (aerial or underground) (P100-0-0).

3.2 Expert Interpretation: From Biological to Ecological Traits

On the one hand, the Galois lattice gives us concepts, i.e. relations between
biological traits and species. On the other hand, the hydrobiologist gives us
knowledge on the relation between species and ecological traits which are infor-
mation on the environment where they live. Based on the species sets extracted
from the lattice, the expert analysis determines the common characteristics of
the ecosystems where the species live. For example :

� Concept 1: these species live in mesotrophic to eutrophic water.

� Concept 2: these species live in calm water surfaces.

These conclusions reveal the need for ecological traits describing the tolerance
of species to trophic status and flow.

Actually, from the common characteristics found in the concepts, five ecolog-
ical traits and their modalities are determined that are potentially useful for
water quality evaluation:

� water level stability: stable, fluctuations, occasionally

� resistance to flow: no tolerance, weak, medium, strong

� tolerance to organic matter: <10%, 10-40%, >40%

� tolerance to sedimentation (deposition or accumulation of mineral or organic
matter): suffocated plant, medium root, strong root

� trophic status (pertaining to nutrition): oligotrophic, mesotrophic, eutrophic,
hypertrophic.
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Fig. 5. Last part of the method : validation

4 Validation

In the biological literature, many ecological traits exist. The approach provides
a selection of the most suitable ecological traits (and modalities) to describe
alsacian species. The steps of the method already described lead us to five eco-
logical traits. We present a validation approach of these choices with the three
last steps of the method shown in Fig. 5.

4.1 Dataset Upgrading

Actually every specie is concerned by the ecological traits (with its own affinity),
not only the ones belonging to the concept(s) which pointed out the ecological
trait. So the ecological traits identified and their modalities are added to the
dataset, based on [4]. Until now, 46 species are fully completed.

The lattice built from the enlarged context (biological and ecological traits)
is shown on Fig. 6 and corresponds to the 25 species subset. The highlighted
concept corresponds to concept 2 presented in section 3.1.

4.2 Validation of the Method

We have two pieces of information. The first comes from the lattice and con-
cerns the relations between species and biological traits. The second comes from
the expert and concerns the relations between the species and ecological traits.
According to these informations, we should obtain relations between the biolog-
ical and ecological traits of species, thus eliminating the species. For the two
examples:

� Concept 1: we should put into relations annual flowering, phenology during
the vegetative period only, perennial organs, vegetative reproduction by rhi-
zomes or by stolons and high dispersion (biological traits) with mesotrophic
to eutrophic water (ecological traits)
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Fig. 6. Galois lattice for the 25 macrophytes subset, 10 biological and 6 ecological traits

� Concept 2: we should put into relations phenology during the vegetative
period only, high flexibility and perennial organs (biological traits) with calm
water surfaces (ecological traits)

In order to validate our process, we need to verify this reasoning. So we analyze
the concepts from the lattice of biological and ecological traits to check the rela-
tions between them. Besides, we can verify the expert knowledge about species
and their ecological traits.

4.3 Application

We will illustrate this step with the two concepts:

� Concept 1: The intent of the corresponding concept in the enlarged lattice
includes new histogram attributes that confirm expertise exactly: I0-50-50-0
and E0-0-100.
• I0-50-50-0 attribute means that the individuals of each of these species

are fairly spread between mesotrophic and eutrophic waters.

• The lattice indicates that these species share the E0-0-100 histogram
too, which means they have a constant implanting. This information is
revealed by the lattice.

� Concept 2: The 6 species of the concept do not share the same ecological
traits. Only 4 species share the attributes A66-33-0 and U100-0-0-0, as illus-
trated in Fig. 6.
• The A66-33-0 attribute means that each of these species have 66% of

their plants living in stable water, 33% live in water having fluctuations.
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This trait fits the expertise, which states that species live in calm water,
for the 4 following species : CERD, PTCR, PTLU and UTRV. PTNA
has the A40-40-20 attribute, indicating it lives mainly in calm water too
for 80% of its plants, which is close to the expertise. On the contrary,
PHAA has the A0-50-50 attribute which disagrees with the expert.

• The U100-0-0-0 attribute indicates the 4 species (CERD, PTCR, PTLU
and UTRV) dislike variations of water level. PTNA still quite agrees (U0-
100-0-0) : it bears small variations contrarily to PHAA which endures
easily important variations (U0-0-0-100).

These examples illustrate that the lattice not only confirms expert indications
(biological and ecological traits are associated such as indicated by the expert)
but brings some accuracy such as for the PHAA specie. It also reveals more
relations between species and ecological traits. Actually the expert gave general
ecological trait for groups of species. When the data were collected from [4],
specific values were given for all traits and all species, which were pointed out
by the lattice. Finally, the results proved to be valuable and we obtained sets of
ecological and biological traits that can be further analyzed.

5 Conclusion and Future Work

This article presents an approach to bypass the problem of biological tools used
to qualify water quality, which depend on species which do not live in every place
where water quality is measured. The purpose is to identify sets of ecological and
biological traits to be used instead of the species.

The method consisted in analyzing first biological traits of species. The dataset
was converted by histogram scaling for building a Galois lattice. This tool was
chosen because it provided us with concepts of species and their common traits.
These concepts were analyzed by an expert to reveal relations between species of
the selected concepts and ecological traits (from their environment). Then these
ecological traits were added to the database and filled according to biological
literature and expert knowledge. The concepts from the enlarged lattice were
examined to validate the process and to reveal sets of biological and ecological
traits. Actually we found again the information given by the expert. Furthermore,
the lattice gave more accurate and larger information because it was based on
several expertises.

Finally this method appeared to be reliable for the hydrobiologists. The future
works are to extract association rules between biological and ecological traits,
and to apply this method to other biological data used to qualify water quality,
such as the invertebrate compartment. This will be a more complex operation
because the invertebrate species are considered with several taxonomical degrees,
contrarily to the macrophytes. Furthermore, we intend to develop specific Galois
connections, such as proposed in [15], to deal with the histogram format and thus
better handle fuzzy many-valued contexts within the FCA framework.
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Abstract. Standard Support Vector Machines (SVM) text classifica-
tion relies on bag-of-words kernel to express the similarity between doc-
uments. We show that a document lattice can be used to define a valid
kernel function that takes into account the relations between different
terms. Such a kernel is based on the notion of conceptual proximity be-
tween pairs of terms, as encoded in the document lattice. We describe
a method to perform SVM text classification with concept lattice-based
kernel, which consists of text pre-processing, feature selection, lattice
construction, computation of pairwise term similarity and kernel matrix,
and SVM classification in the transformed feature space. We tested the
accuracy of the proposed method on the 20NewsGroup database: the
results show an improvement over the standard SVM when very little
training data are available.

1 Introduction

Kernel-based learning methods are being actively investigated because they per-
mit to decouple the problem of choosing a suitable feature space from the design
of an effective learning algorithm. The idea is to use a linear algorithm to solve
a non-linear problem by mapping the original features into a higher-dimensional
space where the linear algorithm is subsequently used. A key enabling factor is
that kernel methods exploit inner products between all pairs of data items and
that such products can be often computed without explicitly representing the
transformed, high-dimensional feature space.

Support Vector Machines (SVM) is probably the best known learning algo-
rithm based on kernel, with text classification being one of its most natural
applications because retrieval techniques are based just on the inner-products
between vectors. While SVMs with bag-of-words kernel have shown to perform
well ([10], [12]), they are limited by their inability to consider relations between
different terms. If, due to the vocabulary problem, two documents refer to the
same issue using different terms, such documents would be mapped to distant
regions of the transformed feature space.

The question is whether it is possible to define a semantically-enriched docu-
ment similarity measure and to embed it in a kernel-defined feature space. This
issue has been addressed in a few earlier works, mainly using latent semantic
indexing [6] and WordNet [16] as knowledge sources. Our work is in the same
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c© Springer-Verlag Berlin Heidelberg 2009



238 C. Carpineto, C. Michini, and R. Nicolussi

research line, with the difference that we take an approach based on formal
concept analysis.

We use a document lattice (i.e., the concept lattice associated with the train-
ing documents) to discover relations between the terms in the documents. The
relation between two terms is determined using the shortest path (topological
distance) between the corresponding attribute concepts in the document lattice;
the closer the two attributes are to each other, the greater their semantic rela-
tion. Such relations between terms can then be easily incorporated into a valid
document similarity kernel function, i.e., such that it can be rewritten as an
inner product K(x, y) = 〈φ(x), φ(y)〉 for some φ : X → F defining a feature
space.

Note that although document lattices have been used in several information
retrieval tasks, this is the first attempt, to the best of our knowledge, to in-
vestigate the potentials of a concept lattice-based kernel for text. Likewise, the
exploitation of structural interdocument similarities to expand the document
representation is a novel approach to defining semantic kernels for text.

Following this idea, we have implemented a full SVM text classification system
with concept lattice-based kernel. It consists of several steps, namely text pre-
processing, feature selection, lattice construction, computation of pairwise term
proximity and kernel matrix, and finally SVM classification in the transformed
feature space. Each step is described in detail in the paper.

The proposed method has been evaluated by comparing its accuracy to that
of SVM with standard kernel. We used the 20 NewsGroup dataset and simu-
lated critical learning conditions with little training data. We found that in this
situation the concept lattice-based kernel was more effective.

The remaining of the paper has the following organization. We first introduce
SVM and kernels for text, showing the general formulation of a document sim-
ilarity function used as a kernel. Then we present our specific kernel function
based on pairwise term proximities extracted from a document lattice, and we
describe the full SVM text classification system in which it has been been em-
bodied. The next sections are about experimental results and related work. We
finally offer some conclusions and future research directions.

2 SVM and Kernels for Text

Let us define {(di, ci), i = 1...l} the training set for a binary classification prob-
lem, where each di is a document described by a set of terms and ci is either
1 or -1, indicating the class to which the document di belongs. Support Vector
Machines construct the separating hyperplane that maximizes the margin be-
tween the two sets of document vectors, i.e., such that it hat has the largest
distance to the neighboring documents of both classes. From the definition of
Support Vector Machines and the kernel theory ([17], [15]), the decision function
is defined as:

f(d) = sgn(
l∑

i=1

αi ci K(d, di) + b) (1)
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where d is the document to be classified, the vector α and the scalar b are the
parameters of the maximum margin hyperplane, and K is a document similarity
function that satisfies the Mercer’s condition. The Mercer’s condition states that
the Gram matrix G = K(di, dj), ∀i, j = 1...l, must be symmetric and positive
definite. Under this condition, the function K is a valid kernel.

One of the most popular (Mercer) kernels is the linear kernel, which corre-
sponds to the mapping φ(d) = d. Using the bag-of-words model, the feature
space is defined by the terms used to index the documents, and the linear kernel
is given by the inner product between the document feature vectors, i.e.

K(d1, d2) = 〈d1, d2〉 = dT
1 d2 (2)

where TD = [d1..dl] is the classic term by document matrix, whose columns are
the documents and whose rows are the terms. Each element TD(i, j) is equal to
the number of occurrences of term i in document j, or to a term weight which best
reflects the importance of each term in each document. In general, the matrix
TD is sparse, as the fraction of elements for which TD(i, j) = 0, meaning that
term i is not contained in document j, is very high. With this model, the Gram
matrix is just the document by document matrix G = TDT TD.

Another classical kernel is the Gaussian kernel, which is given by:

K(d1, d2) = exp (− γ ||d1 − d2||2) (3)

It can be shown that a Gaussian kernel performs a mapping into an infinite
dimensional space, which can better handle the case when both classes are not
linearly separable in the input space and often yields better performance than
the linear kernel.

Instead of using the bag-of-words model with the original input features, it
is possible to consider a linear mapping of the document vectors φ(d) = Pd,
where P is any appropriately shaped matrix. In this case, a valid (linear) kernel
is given by:

K(d1, d2) = dT
1 PT P d2 (4)

because the corresponding Gram matrix is symmetric and positive definite
[6]. The matrix P typically encodes pairwise term similarities, thus implying
that the mapping φ(d) = P d allows to represent each document not only by
its original terms but also by the terms that are related to each of them. For
example, if a document is indexed with only the first element of the term index,
and the second term of the index is highly related to the first one, then the
second component in the mapped document vector will be increased from zero
to a positive value. In a sense, this amounts to performing a semantic smoothing
of the original features via document expansion.

Note also [16] that the the linear transformation expressed by the mapping
φ(d) = Pd can be used to redefine a gaussian kernel according to the semantic
smoothing, i.e.:

K(d1, d2) = exp (− γ ||(d1 − d2)T PT P (d1 − d2)||2) (5)
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By varying the matrix P one can obtain different transformations of the docu-
ment feature space, which can be traced back to various document representation
models. In the next section we describe a term similarity matrix based on the
conceptual proximity between terms in a document lattice.

3 A Kernel Based on Document Lattice

Let D be the set of (training) documents, T the set of terms describing the
documents, and TD the term by document matrix. Consider the ordered set
(C(D, T, TD); (≺) formed by the set of concepts of the context (D, T, TD)
along with the nearest neighbour relation ((≺), i.e., for x, y ∈ C(D, T, TD),
x (≺ y if x ( y or y ( x. Define the concept distance between concepts x and
y as the least n ∈ N for which the following condition holds:

∃z0, z1, . . . , zn ∈ C(D, T, I); (≺) such that x = z0 (≺ z1 . . . (≺ zn = y.

Consider now two terms (t1, t2), ti ∈ T . The term distance between t1 and t2 is
given by the concept distance (as defined above) between the two corresponding
term concepts (t′1, t

′′
1) and (t′2, t

′′
2), expressed by the standard prime and double

prime operators.
Note that we remove the top and the bottom elements of the document lat-

tice before computing the pairwise term proximities, because such concepts do
not have a real meaning (even when the intent of the top concept is not empty
it does not bear any information) and they may short-circuit conceptually dis-
tant concepts. The top element of the lattice is especially critical because term
concepts are typically co-atoms.

The found relations have an intuitive meaning in terms of the properties of
near concepts on the document lattice. A zero term distance means that the
two terms always occur together in the documents (i.e., their mutual informa-
tion is maximum). Distance equal to 1 means that there is a term a in the pair
that always co-occurs with the other term b (i.e., the conditional probability
of a given b is equal to 1). Distance 2 means that either term a always co-
occurs with term b and there is some other term c that co-occurs with b more
frequently than a (i.e., when a is a nephew of b), or (when they have a child
in common) that a and b co-occur in one or more documents and there is no
other term that co-occurs with either a or b in a superset of such documents.
And so on.

The proximity between two terms is inversely related to their distance. In or-
der to find the proximity matrix P , we normalize the distance values by dividing
by their maximum and then we subtract the normalized values from 1.

As an illustration, consider the simple context for vertebrate animals in Ta-
ble 1; each row can be seen as a document and each column as an indexing term
(possibly formed by multiple words). We first show in Table 2 the bag-of-word
kernel matrix, computed with equation 2. The kernel values shown in Table 2
have been normalized to take into account the different length of documents,
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Table 1. A context for vertebrate animals

breathes can has has has lives in vivipar- produces

in water fly beak hands wings water ous light

(a) (b) (c) (d) (e) (f) (g) (h)
1 Bat x x x
2 Eagle x x x
3 Monkey x x
4 Parrot fish x x x
5 Penguin x x x
6 Shark x x
7 Lantern fish x x x

Table 2. Bag-of-words kernel matrix for the context in Table 1 (the matrix is sym-
metric)

1 2 3 4 5 6 7

1 1 0,666667 0,408248 0 0,333333 0 0
2 1 0 0,333333 0,666667 0 0
3 1 0 0 0 0
4 1 0,666667 0,816497 0,666667
5 1 0,408248 0,333333
6 1 0,816497
7 1

by using: K(d1, d2) = dT
1 d2

||d1|| ||d2|| . Note that when two animals do not have any
property in common their kernel value is always equal to 0.

We now turn to the illustration of the concept lattice-based kernel. We show
in Figure 1 the concept lattice built from the context in Table 1, and we report in
Table 3 the pairwise term distances derived from the concept lattice in Figure 1
after the removal of its top and bottom element. For instance, the distance
between terms (g) and (e) is equal to 3, because the shortest connecting path is:
(1 3, g) (≺ (1, b e g) (≺ (1 2, b e) (≺ (1 2 5, e).

The proximity matrix is shown in Table 4. The found conceptual proximities
are meaningful. For instance, the most related terms are: (e) and (b) (i.e., ‘has
wings’ and ‘can fly’), (f) and (a) (i.e., ‘lives in water’ and ‘breathes in water’),
(g) and (d) (i.e., ‘viviparous’ and ‘has hands’), (h) and (a) (i.e., ‘produces light’
and ‘breathes in water’); note that the last relation is due to the fact that the
only animal in the given context who produces light is a fish. The most unrelated
terms are: (d) and (a) (i.e., ‘has hands’ and ‘breathes in water’), and (h) and
(g) (i.e., ‘produces light’ and ‘viviparous’).

Turning to pairwise document similarity, the concept lattice-based kernel ma-
trix for the animal context can be computed with equation 4 using the proximity
matrix in Table 4. The normalized kernel values are shown in Table 5.

Due to the implicit relationships between terms, two documents may have a
varying degree of similarity even when they share the same number of terms
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lives
in water

has
beak

breathes
In water
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viviparous
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wings

5

produces
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can
fly

6

7 3

has
hands

Fig. 1. Concept lattice for the context of Table 1, with minimal labelling

Table 3. Distances between pairs of the attributes in Table 1, derived from the concept
lattice in Figure 1 (the matrix is symmetric)

a b c d e f g h

a 0 6 3 9 5 1 8 1
b 0 3 3 1 5 2 7
c 0 6 2 2 5 4
d 0 4 8 1 10
e 0 4 3 6
f 0 7 2
g 0 9
h 0

(e.g., according to Table 5, ‘bat’ is more similar to ‘eagle’ than to ‘penguin’,
although ‘bat’ has two terms in common with both ‘eagle’ and ‘penguin’), or
if they do not share any term (e.g., ‘eagle’ is more similar to ‘monkey’ than to
‘shark’).

A less obvious result is that the pairwise similarities in Table 5 may be rel-
atively high even when the two documents are apparently very different (such
as with ‘eagle’ and ‘lantern fish’) and that most values are distributed in the
upper part of the range. This is probably due to the characteristics of this par-
ticular context, because each animal does not neatly fit in one class and shares
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Table 4. Pairwise term proximities derived from corresponding distances in Table 3
(the matrix is symmetric)

a b c d e f g h

a 1 0.4 0.7 0.1 0.5 0.9 0.2 0.9
b 1 0.7 0.7 0.9 0.5 0.8 0.3
c 1 0.4 0.8 0.8 0.5 0.6
d 1 0.6 0.2 0.9 0
e 1 0.6 0.7 0.4
f 1 0.3 0.8
g 1 0.1
h 1

Table 5. Concept lattice-based kernel matrix for the context in Table 1 (the matrix is
symmetric)

1 2 3 4 5 6 7

1 1 0,978114 0,95642 0,809072 0,914123 0,740581 0,704969
2 1 0,878241 0,908368 0,976945 0,855411 0,827088
3 1 0,627978 0,769209 0,545051 0,502219
4 1 0,976284 0,993071 0,98505
5 1 0,944986 0,92595
6 1 0,998065
7 1

resemblances to animals in other classes. Indeed, this example was originally
given to illustrate the fact that several reasonable clusters can be formed out
of a set of vertebrates in addition to the standard vertebrates groups, and thus
it is probably not the best choice as an example for a classification task. On
the other hand, this observation suggests that more analysis is needed to check
whether the high similarity values may also be attributed to the specific notion
of proximity used in our approach, which may be overly unconstrained. This
issue deserves more attention and is left for future work, as alternative criteria
are available to measure the distance between concepts in a concept lattice (see
Section 6.2).

Before concluding this section we would like to point out that a different ap-
proach to finding a concept lattice-based kernel is conceivable. The key idea is that
a document lattice can be used to find a conceptual similarity exactly at the doc-
ument level, thus ignoring the similarities between the single terms describing the
documents. One could merge the document to be classified on the concept lattice
of training documents, and then compute the distance between the found concept
and each training document concept. This approach is appealing since, unlike the
concept lattice-based kernel illustrated above, it allows to compute the similar-
ity between documents directly in the transformed space, without performing the
linear transformation φ(d) = Pd. In addition, it would have a nice interpreta-
tion from the point of view of document similarity, because the distance in the
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document lattice can be thought of as the minimal number of admissible intent
changes – with respect to the collection at hand – that lead from the description
of one document to the description of another document (see [3]).

The main disadvantage of such a similarity measure is that it is not guaranteed
that the kernel is valid. On the other hand, its properties (e.g., it is symmetric,
has zero diagonal, is nonnegative, obeys the triangle inequality) do not allow us
to rule out such a possibility. Note also that good classification is possible despite
indefinite kernel matrices, because it has been proved [9] that SVMs still solve a
data separation problem (although the solution may be only a local optimum).
Experimenting with this approach is an avenue for future research.

4 Full Method Description

In this section we describe the main steps involved in our implementation of a
full SVM text classification system with concept lattice-based kernel.

4.1 Text Pre-processing

The aim of text pre-processing is to transform each document into a sequence of
features that will be used in subsequent steps. The input documents go through
text segmentation, punctuation removal, conversion of upper to lower case, and
stop-word removal. We use strict single-word indexing and do not not perform
any stemming.

4.2 Selection of Input Features

The features extracted from each document are reduced through an explicit
feature selection phase. Working with a restricted set of features improves the
overall system efficiency and it may also be useful for increasing classification
accuracy, because index terms with low predictive power usually add noise. The
selection criterion used in our system is mutual information. Both the text pre-
processing and feature selection steps were performed using the Bow (or libbow)
toolkit, available at: www.cs.cmu.edu/~mccallum/bow/.

4.3 Construction of Document Lattice

Once each document has been represented with a set of predictive features, we
partition the entire dataset in training and test sets, and construct the concept
lattice associated with the training set. To build the document lattice, we use
the NextNeighbors algorithm, described in [4] on page 35.

4.4 Pairwise Term Proximity

To compute the proximity matrix P we need to find the pairwise term distances.
This problem is solved by using a free package based on Dijkstra’s algorithm

www.cs.cmu.edu/~mccallum/bow/
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to find the shortest path between two nodes in a graph. We apply Dijkstra’s
algorithm to any pair of term concepts in the document lattice, after removing
the top and the bottom elements. If the term concept corresponding to a given
term becomes disconnected (which rarely happened in our experiments), then
this is signaled by the program and we assign a zero proximity value to all
the pairs in which the disconnected term is involved. The computation of the
pairwise term distances is the most critical step from a computational point
of view, because the running time of Dijkstra algorithm for any pair of term
concepts is O(n logn), where n is the number of concepts in the lattice, and this
operation must be repeated for k(k−1)

2 times, where k is the number of attributes.

4.5 Kernel Matrix

Using the proximity matrix found in the earlier step, the kernel matrix is computed
with equation 4 (or equation 5 for the gaussian kernel). To take into account the
relative importance of terms in the documents, we represent the two document
vectors d1 and d2 as vectors of weighted terms, using the classical tf-idf scheme
(i.e., term frequency times inverse document frequency) to assign a weight to each
term in each document. The same weights were also used, in the experiments de-
scribed below, to find the bag-of-words kernels using equations 2 and 3.

4.6 SVM Classification

To perform the SVM classification with the various kernels, we used the LIBSVM
package, available at www.csie.ntu.edu.tw/~cjlin/libsvm/.

5 Experiments

The aim was to compare the concept lattice-based kernel (CL) to the traditional
bag-of-words (BOW) kernel, when used within a SVM learning algorithm. The
complexity of our method does not allow us to use high-dimensional data, on
which the standard SVM has proved to perform well. So we decided to focus on
small datasets, containing little training data.

We hypothesized that the reliance of the standard SVM on the input feature
vectors can be questioned when there are not sufficient training data, because
there is a higher chance that the terms in the test documents will not be matched,
and thus it may be more difficult to identify the regions of the feature space
that belong to each class. We ran two experiments. In the first, we considered
datasets of varying content and size, but with the same proportion of test and
training documents; in the second we kept the test set fixed and let the training
set decrease until its size became a small fraction of the test set size. We now
describe each experiment in detail.

For the first experiment we used the 20 NewsGroup (20NG) collection, available
at http://people.csail.mit.edu/jrennie/20Newsgroups/, which contains
20,000 Usenet articles partitioned in 20 thematic categories. After selecting the

www.csie.ntu.edu.tw/~cjlin/libsvm/
http://people.csail.mit.edu/jrennie/20Newsgroups/
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Table 6. Accuracy on small subsets of the 20NG collection with two random split of
the data

40 docs 80 docs 120 docs 160 docs 200 docs

linear BOW-SVM 69.23 63.75 67.27 68.57 69.56
linear CL-SVM 71.79 65.00 69.09 76.42 72.28
gaussian BOW-SVM 69.23 66.25 67.27 70.00 70.65
gaussian CL-SVM 71.79 66.25 70.00 77.14 72.28

eight most different categories (i.e., Atheism, Computer Graphics, Misc Forsale,
Autos, Sport Baseball, Medicine, Talk Religions, and Talk Politics), we randomly
chose four samples of different size (i.e., 5, 10, 15, 20, 25) from each category and
merged the documents of each category contained in the corresponding samples.
We thus produced five datasets of varying content and size, each containing the
same number of documents for each category.

We evaluated the performance of the two document similarity metrics on each
dataset. We randomly split each dataset in two halves , each with a proportional
number of documents per category. We used one half for training and the other
half for testing, measuring the accuracy of each method (i.e., the percentage of
test documents that were correctly classified). All runs were performed with a
restricted term index containing the 200 words with the highest mutual infor-
mation value. We experimented with both linear kernels (equations 2 and 4) and
gaussian kernels (equations 3 and 5, with γ = 0.001), so we tested four methods
in all, denoted by linear CL-SVM, linear BOW-SVM, gaussian CL-SVM, and
gaussian BOW-SVM. The results are shown in Table 6.

The main finding is that CL-SVM outperformed BOW-SVM for any com-
parable pairs of data points, i.e., the superiority of CL-SVM over BOW-SVM
held for both the linear and the gaussian versions and across all five datasets.
The results in Table 6 also show that the accuracy of the gaussian kernel was
only slightly greater or more often just equal to that of the corresponding linear
kernel.

To take into account the effect of the feature selection step on performance,
we varied the value of the threshold used to select the terms with the highest
mutual information scores. We repeated the tests over the same datasets with
indexes ranging from few tens to several hundreds of words. We did not notice a
significant change in performance, provided that the index size did not become
very small. Even the relative performance of the methods was substantially stable
across indexes of various size.

For the second experiment, we used the mini 20 NewsGroup collection, which is
a reduced version of the full 20NG dataset. It consists of the same set of 20NG cat-
egories, but each category contains only 100 articles. To simulate critical learning
conditions, we were interested in evaluating what happens when the set of docu-
ments used to learn the classifier becomes increasingly smaller. After selecting the
same eight categories as in the first experiment, we randomly chose 80 documents
from each category and merged the documents of each category, thus forming a
dataset with 640 documents. This was the test set, kept constant throughout the
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Table 7. Accuracy on a test set of 640 documents of the mini 20NG collection with
increasingly smaller training sets

160 training 80 training 40 training

docs docs docs

linear BOW-SVM 58,516 59,8651 58,516
linear CL-SVM 68,1282 65,43 64,5868
gaussian BOW-SVM 61,8887 59,1906 58,516
gaussian CL-SVM 62,3946 62,3946 60,7083

experiment. The 20 remaining documents of each category were used to form sev-
eral training sets. The largest had just all the 160 documents; then we created a
smaller training set by randomly removing from it half of the documents in each
category, thus producing a set with 80 documents (i.e., 10 per category). We iter-
ated the same procedure two times, thus producing in all three training sets such
that they could be fordered according to the set inclusion relation.

We then evaluated the performance of the two document similarity metrics
on the three datasets formed by merging each training set with the same test
set containing 640 documents. The results are shown in Table 7.

The main result is that the conceptual method performed better than the
standard method across all kernels and datasets. This is consistent with the
findings of the first experiment. The benefits of the conceptual method over the
standard method are more evident with a linear kernel, although even with a
gaussian kernel the conceptual method always achieved higher accuracy. As the
size of the training set decreased, the performance of each method decreased
very gently, while the gain in performance due to the use of the conceptual
method did not grow. One possible explanation for the latter phenomenon is
that with very few training documents there is less chance to recover from bad
document expansion, which may more easily result in topic drift. Also, the use
of the gaussian kernel together with the conceptual document similarity metric
seemed to hurt performance. Here one should consider that a combination of
these techniques may not work well, because both ultimately produce the same
effect, namely an expansion of the terms describing each document.

6 Related Work

There are three main areas related to this work, which are described in turn
below.

6.1 Semantic Kernels

One of the first semantic kernels for SVM text classification was proposed in
[16]. A term similarity function based on WordNet was used, with the similarity
between two terms being inversely proportional to the length of the path linking
the two nodes. Such similarities were used to perform a semantic smoothing of
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the input feature vectors, similar to our approach. More recently [1], WordNet
has been used to compute a similarity function between terms based on the
sub-hierarchy rooted in their lowest common hypernym. The similarity function
between two documents was then defined as the sum of the similarities of all pairs
of terms in common to the documents. WordNet is a valuable source of seman-
tic information that can improve text representation, but its use for document
expansion is made difficult by several reasons, including its limited coverage, the
need for sense disambiguation, and the lack of proper nouns. Another issue is
the computational complexity of these algorithms. They require the evaluation
of all the term pairs, for each of which it is necessary to navigate the WordNet
hierarchy. Our method suffers from similar computational limitations.

Another approach to semantic kernels for text is described in [6]. Inspired
by latent semantic indexing [7], which consists of projecting the data into a
subspace through a singular value decomposition of the term by document ma-
trix, Cristianini et al. showed that it is possible to apply the same technique to
any kernel defined feature space. This approach is, by nature, more similar to
ours because it exploits interdocument relationships, but the similarity between
documents is based on extracting a subset of invariant features from the input
data, rather than expanding the original feature vectors. The main limitations of
latent semantic kernels are its high time complexity (i.e., to compute the eigen-
value decomposition of the kernel matrix) and the high number of dimensions
required to draw relevant features from the training data. Also, the resulting
features might be difficult to interpret.

6.2 Concept Similarity

In this paper we have adopted a simple term similarity measure based on edge
counting, i.e, the shorter the path between two term concepts, the more related the
terms associated with them. Belohlavek [2] used a similar, more restricted notion
in which two attributes are similar if the distance between their corresponding
attribute concepts is equal to zero. The edge counting approach takes into account
the structural relationships between the subsets of attributes in the collection, but
it has the disadvantage that it ignores the specific description of the nodes.

The similarity between formal concepts has been studied in a few recent papers
from other perspectives. Formica [8] presents a more comprehensive method
where the similarity between the intents of the concepts is explicitly considered.
The overall concept similarity is obtained by combining the cardinality of the
intersection of the concept extents with the similarity of the information content
[11] of the two concept intents. The information content of a concept intent int
is given by − log p(int), and the information content similarity of two concept
intents is computed as the ratio of the information content of the least upper
bound of the two concepts to the sum of the information content of each concept
intent. Another recent method that combines structural and featural information
is given in [18]. It is based on the rough set theory and considers only the join-
irreducible and meet-irreducible elements of the lattice to express the similarity
between concepts.
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6.3 Applications of Document Lattices

In the last years, a number of information retrieval applications based on doc-
ument lattices have been proposed. A detailed account of the issues involved in
developing concept lattice-based information retrieval applications along with
a survey of approaches and systems are given in [4], spanning integration of
thesauri, query refinement, text ranking, and search results clustering. Other
notable applications include faceted browsing [5], and query elicitation [13]. Uta
Priss [14] offers a somewhat complementary view, showing the applications of
concept lattices to several subfields of information science including information
retrieval.

The most similar earlier approach is [3], in which a user query is mapped on
the concept lattice built from the collection being searched, and then a document
ranking is automatically computed based on the topological distance between
the query concept and the document concepts. This paper takes a step forward
by further expanding the technical and practical scope of this research line to
text classification.

7 Conclusions and Future Work

There are several ongoing attempts to extend kernel learning methods with se-
mantic information. In this paper we have defined a concept lattice-based kernel
for SVM text classification that makes use of term relations encoded in the doc-
ument lattice associated with the training documents. The proposed method is
formally sound and it has an intuitive meaning. Furthermore, in an experimental
evaluation performed on small datasets, it achieved higher classification accu-
racy than the standard SVM. Our main conclusion is that the exploitation of
hidden, structural document relationships beyond the input description of each
document may help build a better classifier, at least when little training data
are available.

We plan to extend this research in several direction: (a) using the concept
lattice-based document similarity metric within other learning algorithms (e.g.,
K-nearest neighbors), (b) experimenting with other collections, larger datasets,
and more difficult learning conditions (e.g., imbalanced data), (c) using differ-
ent criteria to measure the distance between concepts in the document lattice,
(d) investigating the potentials of the method based on measuring the distance
between documents (rather than terms) directly in the document lattice.
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Abstract. Gene expression data are numerical and describe the level
of expression of genes in different situations, thus featuring behaviour of
the genes. Two methods based on FCA (Formal Concept Analysis) are
considered for clustering gene expression data. The first one is based on
interordinal scaling and can be realized using standard FCA algorithms.
The second method is based on pattern structures and needs adapta-
tions of standard algorithms to computing with interval algebra. The
two methods are described in details and discussed. The second method
is shown to be more computationally efficient and providing more read-
able results. Experiments with gene expression data are discussed.

1 Introduction

Gene expression data (GED) consist of numerical tables with thousands of
genes in rows and dozens of biological environments or situations (different cells,
times,. . . ) in columns (See Table 1). Each table entry is called an expression
value and reflects the behaviour of the gene in a row in the situation in column.
A whole line is a numerical vector called the expression profile of the gene. Genes
having similar expression profiles are said to be co-expressed. GED analysis is of
high interest mainly for the identification of groups of co-expressed genes that
are known to possibly interact together within a same biological process [1].
GED analysis is an active area of research involving mainly data-mining meth-
ods: many clustering [2], biclustering [3,4] and FCA-based [5,6,7] methods have
been recently designed and applied in this domain.

Clustering methods group genes into clusters w.r.t. a global similarity, e.g.
based on Euclidean distance, of their expression profiles. Clustering may fail
to detect biological processes common only to some columns of a dataset [1,3].
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To overcome this difficulty, biclustering algorithms have been suggested [3,8].
Biclusters in GED are defined as groups of genes that have similar expression
values in a same group of situations, but not necessarily all. However, we know
that most of the genes are involved in several processes [1]: extracted biclusters
should overlap. Then extracting “homogeneous” biclusters is difficult as the num-
ber of possible groups may grow exponentially. Biclustering algorithms generally
extract k best biclusters w.r.t. an evaluation function that relies on heuristics:
Their complete enumeration is generally not possible, interesting patterns may
also be missed [3,5].

This problem is limited when considering binary GED, i.e. binary relations
between the set of genes and the set of situations [4,9]. A numerical GED is scaled
before binary biclusters are extracted. Intuitively, a bicluster is a rectangle in
a binary table (modulo line and column permutations)“completely or mostly”
filled with crosses, e.g. like in Table 4. Then a complete enumeration respecting
some constraints like closure and minimal frequency is possible [4,5,10]. In [4]
the authors have proposed the Bi-Max bi-clustering algorithm, which extracts
inclusion-maximal biclusters defined as follows: Given m genes, n situations and
a binary table e such that eij = 1 or eij = 0 for all i ∈ [1, m] and j ∈ [1, n],
the pair (G, C) ∈ 2{1,...,n} × 2{1,...,m} is called an inclusion-maximal bicluster if
and only if (1) ∀i ∈ G, j ∈ C : eij = 1 and (2) �(G′, C′) ∈ 2{1,...,n} × 2{1,...,m}

with (a) ∀i′ ∈ G, ∀j′ ∈ C: ei′j′ = 1 and (b) G ⊆ G′ ∧ C ⊆ C′ ∧ (G′, C′) 
=
(G, C). Note that an inclusion-maximal bicluster is nothing else than a formal
concept as defined in [11]. Formal Concept Analysis (FCA) can be viewed as
a binary biclustering method: It provides means for extracting local patterns
from a binary relation, namely formal concepts. In application to GED analysis
concept extents are maximal sets of genes related to a common maximal set of
situations (not necessarily all) [5,6,7].

However to apply either binary biclustering or FCA-based methods, one needs
to scale numerical data. Scaling introduces biases and may result in loss of infor-
mation [4,5,6,7,12]. Our goal here is to try to avoid these problems by designing
an FCA-based method that does not need a scaling, but would benefit from
formal and computational framework of FCA.

We propose two mathematically equivalent FCA-based methods for extracting
groups of co-expressed genes in numerical GED. Co-expression, or similarity
is considered by using interval values in initial data. The first approach uses
interordinal scaling. This scaling is able to reflect all possible value intervals
arising from a numerical dataset by a binary relation without loss of information.
However it produces large and dense binary data, which are hard to analyse with
existing FCA algorithms. This is probably the reason why it has never been
used for GED analysis. The second method relies on pattern structures [13] by
extending interval algebra in real numbers [13,14] and does not need any scaling.

We have experimented with both methods, trying to compare the quality of
their results and their computational efficiency. We show that both methods
extract equivalent sets of patterns, but the method based on pattern structures
is more efficient than that based on interordinal scaling, and provides with more
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readable and interpretable results. Processing pattern structures needs slight
adaptations of the FCA framework and well-known efficient algorithms (see [15]
for survey).

In Sections 2-3, we present gene expression data and related work. In Sec-
tions 4-5, we introduce and discuss both methods and an interestingness measure
that allows one to prune uninteresting groups of genes. In Sections 6-7 we discuss
computation and experimental results, and conclusion draws further researches.

2 Gene Expression Data

Gene expression is the mechanism that produces a protein from a gene in two
steps. First the transcription builds a copy of a gene called an mRNA. Then the
mRNA is translated into a protein. This mechanism differs in different biological
situations: for each gene the concentration, i.e. the relative quantity, of mRNA
and proteins depends on the current cell, time, etc. and reflects the behaviour
of the gene. Indeed, biological processes of a living cell are based on chemical
reactions and interactions mainly between proteins and mRNA. Thus, it is a
major interest to measure and analyse mRNA and protein concentration to
understand biological processes activated in a cell.

Microarray biotechnology is able to measure the concentration of mRNA of a
gene into a numerical value called gene expression value. This value characterizes
the behaviour of a gene in a particular cell. Microarray can monitor simultane-
ously the expression of a large number of genes, possibly the complete coding
space of a genome. When several microarrays are considered, the expression
value of a gene is measured in multiple situations or environments, e.g. differ-
ent cells, time points, cells responding to particular environmental stresses, etc.
This characterizes the behaviour of the gene w.r.t. all these situations and is
represented by a vector of expression values called a gene expression profile.

A gene expression dataset (GED) consists of a table with n rows corresponding
to genes and m columns corresponding to situations. A table entry is called an
expression value. A table line is called an expression profile. For example, in
Table 1, the expression value of g1 in the situation s1 is 5 and the expression
profile for the gene g1 is 〈5, 7, 6〉. In this paper, we consider the NimbleGen
Systems Oligonucleotide Arrays technology1: expression values are ranged from
0 (not expressed) to 65535 (highly expressed).

3 Related Work

In this paper we discuss methods of extracting co-expressed groups of genes, i.e.
sharing similar numerical values in some or all situations. Methods of these kind
allow discovering and describing biological processes in living cells [1].

For most of the binary biclustering methods, an l-cut scaling is operated by
using a single threshold l on expression values determined for each object (see

1 Details on this biotechnology can be found at http://www.nimblegen.com/
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[4,7,16] for threshold definitions). Expression values greater than this threshold
are said to be over-expressed and encoded by 1, otherwise by 0. Then strong
relations are extracted from the binary table representing genes simultaneously
over-expressed. In [6], we proposed a kind of generalization2 with an interval-
based scaling of numerical data, where interval number and size were chosen by
experts. Given a set of genes G, a set of situations S and a set of ordered intervals
T , (g, (s, t)) ∈ I, where g ∈ G, s ∈ S, t ∈ T and I and binary relation, means
that the expression value of the gene g is the interval of index t for the situation
s. Formal concepts of the context (G, S × T, I) represent groups of genes whose
expression values are in same intervals for a subset of situations (may be for all
situations), however these intervals are hard to determine a priori.

In [17], the authors present an FCA-based method to mine numerical data
that does not need any scaling procedure. This is a similar approach of the two
equivalent methods presented in this paper as extracted patterns are composed
of intervals arising from the data whose size is less than a given parameter
(see Section 6). However, in [17], no algorithm for dealing with large data was
proposed and no link to interordinal scaling was made. A similar approach for
the case of logical formulas was realized in [18] and [19].

4 Mining GED by Means of Interordinal Scaling

4.1 FCA: Main Definitions

Here we use standard definitions from [11]. Let G and M be arbitrary sets
and I ⊆ G ×M be an arbitrary binary relation between G and M . The triple
(G, M, I) is called a formal context. Each g ∈ G is interpreted as an object, each
m ∈ M is interpreted as an attribute. The fact (g, m) ∈ I is interpreted as “g
has attribute m”. The two following derivation operators (·)′ are considered:

A′ = {m ∈M | ∀g ∈ A : gIm} for A ⊆ G,

B′ = {g ∈ G | ∀m ∈ B : gIm} for B ⊆M

which define a Galois connection between the powersets of G and M . For A ⊆ G,
B ⊆ M , a pair (A, B) such that A′ = B and B′ = A, is called a (formal) concept.
Concepts are partially ordered by (A1, B1) ≤ (A2, B2) ⇔ A1 ⊆ A2 (⇔ B2 ⊆
B1). With respect to this partial order, the set of all formal concepts forms a
complete lattice called the concept lattice of the formal context (G, M, I). For
a concept (A, B) the set A is called the extent and the set B the intent of the
concept. Certain data are not given directly by binary relations, they require
transformation to contexts, called conceptual scaling. The choice of a scale is
done w.r.t. data and goals and directly affects the size and interpretation of
resulting concept lattice.
2 Using a threshold θ is equivalent to considering the interval [θ, maxi-

mum attribute value].
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Table 1. A gene expression data (GED)

s1 s2 s3

g1 5 7 6
g2 6 8 4
g3 4 8 5
g4 4 9 8
g5 5 8 5

Table 2. Scale IN := (N, N,≤)|(N, N,≥)
for s1, N = {4, 5, 6}

s1 ≤ 4 s1 ≤ 5 s1 ≤ 6 s1 ≥ 4 s1 ≥ 5 s1 ≥ 6
4 × × × ×
5 × × × ×
6 × × × ×

4.2 Interordinal Scaling for GED

Let G be a set of genes, S a set of situations, W ⊂ R a set of expression values
and I1 a ternary relation defined on the Cartesian product G × S × W , then
K1 = (G, S, W, I1) is the many-valued context representing a GED. (g, s, w) ∈ I1
or simply g(s) = w means that the gene g has an expression value w for the
situation s. In the example of Table 1, G = {g1, g2, g3, g4, g5}, S = {s1, s2, s3},
and I1 is illustrated, for example, by g1(s1) = 5, i.e. (g1, s1, 5) ∈ I1. Here the
objective is to extract formal concepts (A, B) from K1, where A ⊆ G is a subset
of genes that share “similar values” of W , i.e. lying in a same interval with
borders arising from the data in the situations of B ⊆ S. To this end, we use an
appropriate scale to build the derived formal context K2 = (G, S2, I2).

A scale is a formal context (cross-table) taking original attributes of K1 with
the derived ones of K2, i.e. a “plan” to construct K2. As attributes do not take
necessarily same values, each of them is scaled separately. Ws ⊆ W is the set of
values for the attribute s and is defined for each s ∈ S as follows: Ws ⊆ W and
(g, s, w) ∈ I1 =⇒ w ∈ Ws, ∀g ∈ G.The following interordinal scale (see pp. 42 in
[11]) can be used to represent all possible intervals of attribute values:

IWs = (Ws, Ws,≤)|(Ws, Ws,≥)

Indeed, the extents of this scale are value intervals. IWs is given for the many-
valued attributes s1 in Table 2, where Ws1 = {4, 5, 6}.

Once a scale is chosen, conceptual scaling consists in replacing each many-
valued attribute of K1 by a certain number of attributes to construct K2 w.r.t.
the chosen scale. Here each many-valued attribute s is replaced by 2 · |Ws| one-
valued attributes with names “s ≤ w” and “s ≥ w”, for all w ∈Ws. For example,
many-valued attribute s1 is replaced by the following attributes {s1 ≤ 4, s1 ≤
5, s1 ≤ 6, s1 ≥ 4, s1 ≥ 5, s1 ≥ 6}. Derived context K2 = (G, S2, I2) is given in
Table 3 for the attribute s1 only. Note that this transformation is without loss
of information: the many-valued context can easily be reconstructed from the
formal context. For example, derived attributes for (g1, s1, 5) are s1 ≤ 5, s1 ≤ 6,
s1 ≥ 4, s1 ≥ 5. The only value in Ws1 respecting these predicates is 5 which is
the original value.

Density of a formal context (G, M, I) is defined as the proportion of ele-
ments of I w.r.t. the size of the Cartesian product G × M , i.e. density d =
|I|/(|G|.|S|). In the case of interordinal scaling, density of derived context K2 is
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Table 3. K2 = (G, S, I2) for the attribute s1

s1 ≤ 4 s1 ≤ 5 s1 ≤ 6 s1 ≥ 4 s1 ≥ 5 s1 ≥ 6
g1 × × × ×
g2 × × × ×
g3 × × × ×
g4 × × × ×
g5 × × × ×

Fig. 1. Concept lattice of formal context K2 = (G, S, I2)

d =
∑ i≤p

i=1 |Wi|+1
2·
∑ i≤p

i=1 |Wi|
. When |W | grows, d tends towards 50%. Moreover, the number

of derived attributes is 2 ·
∑i≤p

i=1 |Wi| and |g′| = |W |+1 for all g ∈ G. This makes
the derived contexts dense, large and difficult to process. For comparison, den-
sity of binary data in [4] never exceeds 6% and the number of derived attributes
remains the same after scaling.

Then the concept lattice of K2 is given in Figure 1. Concept extents near
Bottom concept contain few genes, since the corresponding intents are related
to the smallest intervals. Top concept extent is composed of all genes as its
intent correspond to intervals of maximal length. The higher a concept lies in
the diagram, the larger is the interval corresponding to its intent. Concepts near
Top are not interesting: they allow for almost all possible values of attributes.
In Section 5.3 we discuss how to select most interesting concepts.

5 Mining a GED with Interval Pattern Structures

Now we suggest how to equivalently mine a gene expression data as a pattern
structure avoiding scaling. First we give a general intuition of interval pattern
structures that are formally defined and illustrated latter.

For a many-valued context (G, S, W, I), an object g ∈ G admits a unique
description 〈[a1, b1], . . . , [ai, bi], . . . , [ap, bp]〉, where p = |S|. Each attribute (or
situation in gene expression analysis) value is an interval (may be consisting of
one point) given by its left and right limits. In our example, description of the
object g1 is 〈[5, 5], [7, 7], [6, 6]〉. A set of objects also admits a description of the
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form 〈[a1, b1], . . . , [ai, bi], . . . , [ap, bp]〉, where for all objects of the set, the values
of all attributes lie within respective intervals. For our example, description of
the set {g1, g2} is 〈[5, 6], [7, 8], [4, 6]〉. This description is shared by all objects
having attribute values in respective intervals, in our example by objects of the
set {g1, g2, g5}. The object g3 is not contained in this set, because g3(s1) = 4
and 4 /∈ [5, 6]. The whole set of object sharing a description is closed w.r.t. a
closure operator. To formalize this construction one starts from interval algebra
on numbers and respective partial order on intervals. Two descriptions are com-
parable if all intervals of one description are contained in those of the other one,
incomparable otherwise.

5.1 General Definition of Pattern Structures

Formally, let G be a set (interpreted as a set of objects), let (D,�) be a meet-
semilattice (of potential object descriptions) and let δ : G −→ D be a mapping.
Then (G, D, δ) with D = (D,�) is called a pattern structure, and the set δ(G) :=
{δ(g) | g ∈ G} generates a complete subsemilattice (Dδ,�), of (D,�). Thus each
X ⊆ δ(G) has an infimum �X in (D,�) and (Dδ,�) is the set of these infima.
Each (Dδ,�) has both lower and upper bounds, resp. 0 and 1. Elements of D
are called patterns and are ordered by subsumption relation �: given c, d ∈ D
one has c � d ⇐⇒ c � d = c.

A pattern structure (G, D, δ) gives rise to the following derivation operators
(·)�:

A� =
�

g∈A

δ(g) for A ⊆ G,

d� = {g ∈ G|d � δ(g)} for d ⊆ D.

These operators form a Galois connection between the powerset of G and (D,�).
Pattern concepts of (G, D, δ) are pairs of the form (A, d), A ⊆ G, d ∈ D, such
that A� = d and A = d�. For a pattern concept (A, d) the component d is called
a pattern intent and is a description of all objects in A, called pattern extent.
Intuitively, (A, d) is a pattern concept if adding any element to A changes d
through (·)� operator and equivalently taking e ⊃ d changes A. Like in case of
formal contexts, for a pattern structure (G, D, δ) a pattern d ∈ D is called closed
if d�� = d and a set of objects A ⊆ G is called closed if A�� = A. Obviously,
pattern extents and intents are closed.

5.2 Interval Patterns

In a pattern structure, objects have descriptions from a complete semilattice
(D,�), where the operation � is idempotent, commutative and associative and
returns “similarity” of its arguments. Here we consider a similarity operation
� based on an interval algebra on real numbers. For two intervals [a, b] and
[c, d], with a, b, c, d ∈ R and a ≤ c, we define their meet [a, b] � [c, d] as
[min(a, c), max(b, d)]. Then
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[a, b] � [c, d] ⇐⇒ [a, b] � [c, d] = [a, b]
⇐⇒ [min(a, c), max(b, d)] = [a, b] ⇐⇒ a ≤ c and b ≥ d.

Note that in contrast to usual intuition, this definition means that smaller in-
tervals subsume larger intervals.

An interval pattern structure (G, (D,�), δ) for a many-valued context (G, M,
W, I) with W ⊆ R is composed of a set of objects G, a meet semilattice (D,�)
and δ : G −→ D a mapping that associates a description to a set of genes. The
elements of D, called interval patterns, are vectors of p intervals, each interval
staying for an attribute or situation. The order on elements of D is given by the
natural subsumption order. For interval pattern descriptions c = 〈[ai, bi]〉i∈[1,p]
and d = 〈[ci, di]〉i∈[1,p]:

c � d ⇐⇒ c � d = c

⇐⇒ ai ≤ ci and bi ≥ di, ∀i ∈ [1, p]

The first operator of the Galois connection takes a set of objects (genes in our
application) to their common description, which is a vector of intervals (of gene
expression values). Consider two objects g1 and g2 with δ(g1) = 〈[ai, bi]〉i∈[1,p]
and δ(g2) = 〈[ci, di]〉i∈[1,p], then

{g1, g2}� =
�

δ({g1, g2}) = δ(g1) � δ(g2)

{g1, g2}� = 〈[min(ai, ci), max(bi, di)]〉i∈[1,p]

The second derivation operator takes a description (vector of intervals of gene
expression values) to the set of all objects sharing this description (set of genes
whose expression values are within intervals of the description for each attribute).
Consider d ∈ D, a pattern such that d = 〈[ai, bi]〉i∈[1,p], then

d� = {g ∈ G | d � δ(g)}
d� = {g ∈ G | d � δ(g) = d}

d� = {g ∈ G | δ(g) = 〈[ci, di]〉i∈[1,p], ai ≤ ci and bi ≥ di, ∀i ∈ [1, p]}

For a many-valued context (G, M, W, I) with W ⊂ R consider the re-
spective pattern structure (G, (D,�), δ) on intervals, the interordinal scaling
IWs = (Ws, Ws,≤) | (Ws, Ws,≥) from the previous Section, and the context KI

resulting from applying interordinal scaling IWs to (G, M, W, I). Consider usual
derivation operators (·)′ in context KI . Then the following obvious proposition
establishes an isomorphism between the concept lattice of KI and the pattern
concept lattice of (G, (D,�), δ).

Proposition. Let A ⊆ G. Subset A is an extent of the interval pattern struc-
ture (G, (D,�), δ) iff A ⊆ G is a concept extent of the context KI . Moreover,
A� = 〈[mi, mi]〉i∈[1,p] iff for all i ∈ [1, p] mi is the largest number n such that the
attribute ≥ n is in A′ and mi is the smallest number n such that the attribute
≤ n is in A′.
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Consider an example of pattern concept: ({g1, g2, g5}, 〈[5, 6], [7, 8], [4, 6]〉), the
equivalent concept of the interordinally scaled context is ({g1, g2, g5}, {s1 ≤
6, s1 ≥ 4, s1 ≥ 5, s2 ≥ 7, s2 ≤ 8, s2 ≤ 9, s3 ≤ 6, s3 ≤ 8, s3 ≥ 4}). The top
pattern concept is (G, 〈[4, 6], [7, 9], [4, 8]〉). The higher is a concept in the lat-
tice diagram, the larger are the intervals of its pattern intent, in particular, the
top pattern concept has maximal intervals. In the next section we consider the
problem of selecting most interesting concepts given by small intervals.

5.3 Interestingness of a Pattern Concept

The main goal of GED analysis is extracting homogeneous groups of genes, i.e.
groups of genes having similar expression values. Descriptions of homogeneous
groups should be composed of intervals with “small” sizes. This can be easily
expressed in terms of interval-based patterns. Consider parameter maxsize that
specifies the maximal length of an interval to allow for the whole description rep-
resent a homogeneous group of genes. Then in our experiments we may restrict
only to pattern concepts with pattern intents c = 〈[ai, bi]〉i∈[1,p] ∈ D satisfying
the constraint: ∃i ∈ [1, p] (bi − ai) ≤ maxsize. A stricter constraint would be
∀i ∈ [1, p] (bi − ai) ≤ maxsize.

Since both constraints are monotone (if an extent does not satisfy it, than a
larger intent does not satisfy it too), the subsets of patterns satisfying any of
these constraints make an order ideal of the lattice of pattern intents. In terms
of computation, using any of these constraints means that only some lower part
of the pattern lattice is computed, with patterns satisfying the constraints.

Another possibility is to consider additional ∗-values of interval descriptions
replacing intervals, whose lengths exceed threshold maxsize. So, if we choose
maxsize = 1 in our example, then {g1, g2}� = 〈[5, 6], [7, 8], ∗〉 and {g1, g4}� =
〈[4, 5], ∗, ∗〉.

6 Computation

Many algorithms for generating formal concepts from a formal context are
known, see e.g. a performance comparative [15]. Two families of algorithms are
distinguished: incremental and batch ones. At the ith step an incremental algo-
rithm builds the set of concepts for i first objects. Batch algorithms generate sets
of concepts from scratch, in a top-down way (resp. bottom up) or from maximal
to minimal intents (resp. from minimal to maximal intents). Experimental re-
sults of [15] highlight Norris (incremental), CloseByOne and NextClosure (both
bottom up) algorithms as best algorithms when the context is dense and large,
which is the case of interordinal derived formal contexts.

To compute pattern concepts, one needs generating infima of subsets of Dδ.
To this end we have chosen the standard FCA algorithms Norris, CloseByOne,
and NextClosure, which need only slight modifications for computing in pattern
structures [13]. Computing A� for a set A ⊆ G is realized by taking min (resp.
max) of all left (resp. right) limits of the intervals of each object description.
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For a pattern d ∈ D, d� is computed by testing for each object g ∈ G if each
interval of its description is included in the corresponding interval of d.

Worst-case upper bound time complexity of the three highlighted algorithms
for computing in a formal context (G, M, I) is O(|G|2 · |M | · |L|) with G the set
of genes, M the set of attributes and L the set of generated concepts [15]. The
worst-case time complexity of computing the set of interval pattern structures is
O(|G|2 · p · |L|), where p is the number of components in a description. In both
cases, the sets G and L are the same, thus relative efficiency of processing both
data representations depends on the number of different attribute values. For a
large number of values the time for computing concepts for the interordinally
scaled context may be too large. A projection should reduce the number of differ-
ent attribute values, and also the number of concepts. A simple way is to round
real attribute values to n digits after the comma or to a multiple of 10. A direct
consequence of this transformation is uncontrolled loss of information which we
would like to avoid. However, in this case we just loss precision on attribute
values that has limited consequences compared to the binary transformations
presented in Related work.

7 Experiments and Results

7.1 Data

Biologists at the UMR IAM (INRA) study interactions between fungi and trees.
They recently published the complete genome sequence of the fungus Laccaria
bicolor [20]. This fungus lives in symbiosis with many trees of boreal, montane
and temperate forests. The fungus forms a mixt organ on tree roots and is able to
exchange nutrients with its host in a specific symbiotic structure called ectomy-
corrhiza, contributing to a better tree growth and enhancing forest productivity.
On the other hand, the plant retributes its symbiotic partner by providing car-
bohydrates, allowing the fungus to complete its biological cycle by producing
fruit-bodies (e.g. mushrooms). It is thus a major interest to understand how
the symbiosis performs at the cellular level. The genome sequence of Laccaria
bicolor contains more than 20,000 genes [20]. It remains now to study their
expression in various biological situations in order to help to understand their
roles and functions in the biology of the fungus. Microarray-based gene expres-
sion study of different situations is a solution of choice. For example, it enables
to compare expression values of all the genes between contrasted situations like
free-living cells of the fungus (i.e. mycelium), cells engaged in the symbiotic
association (i.e. ectomycorrhiza), and specialized cells forming the fruit-body
structure (i.e. mushroom). A Laccaria bicolor gene expression dataset is avail-
able at the Gene Expression Omnibus of the National Center for Biotechnology
Information (NCBI)3. It is composed of 22,294 genes in lines and 5 various bio-
logical situations in columns, reflecting cells of the organism in various stages of
its biological cycle, i.e. free living mycelium (situation FLM), symbiotic tissues
(situations MP and MD) or fruiting bodies (situations FBe and FBl).
3 http://www.ncbi.nlm.nih.gov/geo/ as series GSE9784

http://www.ncbi.nlm.nih.gov/geo/
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7.2 Biological Experiments

First, a selection from the 22,294 genes is processed. It consists by removing genes
having no significant difference of expression across all situations. For each couple
of situation, a t-test is performed and a p-value is attributed. If the p-value > 0.05
(cut-off classically applied in biology) for all couples of situations then the current
gene is removed from the dataset. Indeed, a gene that shows similar expression
values in all situations presents less interest to the biologist than a gene with high
differences of expression. Significant changes in gene expression may reflect a role
in a biological process and such genes can help the biologist to draw hypotheses.
The CyberT tool, available at http://cybert.microarray.ics.uci.edu/, was used
to filter the dataset and obtain 10,225 genes.

Another classical processing in GED analysis is to turn values into log2. In-
deed, it allows to capture small expression values into intervals that should be
larger for high expression values. Finally, the projection consists in rounding log2
expression values to one digit after the comma.

We ran the CloseByOne algorithm on the obtained interval pattern structure.
In this settings, we set maxsize = 0.35. We choose to retain a concept iff its
minimal support is greater than 10. Indeed, let us recall that concepts near
Bottom, i.e. in the lowest levels of the concept lattice, are composed of a few
genes. We also choose to retain a concept iff its description d has a size |d| ≥ 4:
its extent is composed of genes having similar values in at least four situations.
Processing lengths 4.2 hours and returns 91, 681 concepts.

Here we present two extracted patterns that group genes with high expression
levels in the fruit-bodies situations, whereas their expression remains similar
between the mycelium and symbiosis situations (Figure 2). In both patterns,
the levels measured are about twice higher in the fruit-body compared to the
other situations indicating that these genes correspond to biological functions of
importance at this stage.

The first pattern contains 7 genes, of which only 3 possess a putative cel-
lular function assignment based on similarity in international gene databases
at NCBI. Interestingly, these genes all encode enzymes involved in distinct
metabolic pathways. A gene encodes a 1-pyrroline-5-carboxylate dehydrogenase

Fig. 2. Graphical visualisation of two extracted concepts. X-axis is composed of situ-
ations, Y-axis is the expression values axis. Each line denotes the expression profile of
a gene in the concept extent. Values are taken before the logarithmic transformation.
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which is involved in amino-acid metabolism, another correspond to an acyl-coA
dehydrogenase, involved in fatty acid metabolism and a last gene encodes a
transketolase, an enzyme involved in the pentose phosphate pathway of carbo-
hydrate metabolism. All these metabolic functions are essential for the fungus
and reflect that the fruit-body is a highly active tissue. The fruit-body is a spe-
cific fungal organ that differentiate in order to produce spores and that further
ensure spore dispersal in nature [21]. Previous gene expression analyses of the
fruit-body development conducted in the ectomycorrhizal fungus Tuber borchii
also reported the strong induction of several genes involved in carbon and ni-
trogen metabolisms [22] as well as in lipid metabolism [23]. The present results
are consistent with these observations and supports an important mobilization
of nutrient sources from the mycelium to the fruit-body. It seems obvious that
the primary metabolism requires to be adapted to use these sources in order to
properly build spores and provide spore-forming cells with nutrients [21].

The second pattern also contains 7 genes, of which only 3 possess a putative bi-
ological function. Interestingly, one of these genes encodes a pseudouridylate syn-
thase, an enzyme involved in nucleotide metabolism that might also be involved
in remobilization of fungal components from the mycelium to spore-forming cells
and spores. The 2 other genes encode a cytoskeleton protein (actin) and a pro-
tein related to autophagy (autophagy-related 10 protein), a process that can
contribute to the recycling of cellular material in developing tissues. Both func-
tions participate to reconstruction cellular processes [21], which is consistent with
involvement of metabolic enzymes in remobilization of fungal resources towards
the new organ in development.

Analysis of these two patterns that present a high expression level in the
fruit-body situation is highly informative, comforts existing knowledge in the
field and highlights the importance of remobilization in the developing organ.
These co-expressed genes share related roles in a particular process. This could
indicate that they are under the control of common regulators of gene expression.
Interestingly, these patterns also contained a total of 8 genes of unknown func-
tions, i.e. for which no functional assignment was possible in international gene
databases. There were 4 genes encoding hypothetical proteins with an homol-
ogy in databases but no detailed function and 4 genes not previously described
in fungi or other organism and which are considered specific to Laccaria bi-
color. There are about 30% of such genes specific to this fungus and these may
play specific roles in the biology of this soil fungus [20]. All these genes show
consistent profiles with those encoding metabolic functions. Thus, these genes
are interesting investigation leads as they may contain new enzymes not pre-
viously described of the pathways or eventual regulator of the cellular process.
Altogether, these results contribute to a better understanding of the molecular
processes underlying the fruit-body development.

7.3 Computer Experiments

Now we compare time performance and memory usage of three algorithms to
equivalently mine interordinal formal contexts (Section 4) and interval pattern
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structures (Section 5). We have implemented the Norris, NextClosure, and Close-
ByOne algorithms, for both processing formal contexts and pattern structures.
We have added the Charm algorithm [24] that extracts closed itemsets, i.e. con-
cept intents, in a formal context. FCA algorithms have been implemented in
original versions, plus the stack optimization for NextClosure and CloseByOne
as described in [15]. For interval pattern structures, we operate sligth modifica-
tions. Charm algorithm is run with the Coron Toolkit [25]. All implementations
are in Java: sets of objects and binary attributes are described with the BitSet
class and interval descriptions with standard double arrays. Computation was
run on Ubuntu 8.10 OS with Intel Core2 Quad CPU 2.40 Ghz and 4 Go RAM.

We tried to compare algorithms on the data presented in biological experi-
ments, i.e. an interval pattern structure from a many-valued context (G, S, W, I1)
where |G| = 10, 225 and |S| = 5. Even with projections, computation is infeasi-
ble. Indeed we do not consider here constraints like the maximal interval size: we
compute all infima of subsets of Dδ. Then we randomly selected samples of the
data, by increasing the number of objects. As attribute values are real numbers
with about five digits after the comma, the size of W is large. In worst case,
|W | = |G| × |S|, i.e. each attribute value is different in the dataset. This implies
very large formal contexts to process and a large number of concepts. We com-
pare time usage for this case, see Table 4. Norris algorithm draws best results
in formal contexts, which meets conclusions of [15] for large and dense contexts.
However, CloseByOne in pattern structures is better, and most importantly is
the only one that enables computation of very large collection of concepts.

When strongly reducing the size of W by rounding attribute values to the
integer, i.e. |W | << |G| × |S|, the Charm algorithm outperforms the others.
The Norris algorithms is still the best FCA-algorithms in formal contexts and
CloseByOne the best in pattern structures (see Table 5).

Table 4. Generation time in both data representations (no projection)

Datasets
|G| 10 20 30 40 50 75 100
|W | 50 100 150 199 249 374 252

density 51.00% 50.50% 50.33% 50.25% 50.20% 50.13% 50.20%
Generation time in formal contexts (in milliseconds)

Charm 60 916 16,469 N/A N/A N/A N/A
Next Closure 5 145 1,299 12,569 68,969 N/A N/A

Norris 2 90 609 5,180 28,831 N/A N/A
Close By One 3 106 906 7944 41,238 N/A N/A

Generation time in pattern structures (in milliseconds)
Next Closure 6 100 763 5,821 35,197 N/A N/A

Norris 6 172 1982 15,522 83,837 N/A N/A
Close By One 2 85 585 3,094 18,320 1,004,073 2,288,200

Concept set L
|L| 280 9,587 78,173 455,008 1,857,725 40,325,176 64,571,385
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Table 5. Generation time in both data representations. Attribute values are rounded.

Datasets
|G| 25 50 75 100 125 150 200
|W | 34 37 44 53 58 62 66

Generation time for formal contexts (in milliseconds)
density 51.47% 51.35% 51.14% 50.94% 50.86% 50.81% 50.76%
Charm 55 154 184 243 394 936 1856

Next Closure 100 933 3,333 22,973 30,854 78,790 593,416
Norris 38 320 861 2,697 5,954 15,359 46,719

Close By One 84 483 2,424 8,452 22,173 59,070 227,432
Generation time for pattern structures (in milliseconds)

Next Closure 59 372 1,924 6,215 15,417 42,209 143,501
Norris 44 479 2,602 7,243 16,257 40,991 109,814

Close By One 40 220 1,084 3,832 9,289 23,989 89,804

Concept set L
|L| 1,165 5,928 23,962 48,176 73,463 163,316 252,515

Then, when the number of attribute values w.r.t. |G| × |S| is low, computing
concepts in formal contexts is more efficient. For large datasets with many dif-
ferent attribute values, it is more efficient to compute with pattern structures.
The explanation is that for formal concepts the object intent representation is
a bit string whose length increases with the growth of |W |. Object descriptions
in pattern structure are arrays of constant size w.r.t. |W |. Therefore, processing
them uses less memory for datasets with high number of attribute values.

8 Conclusion

In this paper we discussed FCA-based methods for mining complex data like gene
expression data. We compared two mathematically equivalent methods for pro-
cessing numerical intervals: the first one using interordinal scaling and classical
FCA algorithms, and the second one which relies on interval pattern structures.
Pattern structures offer more concise representation, better scalability, and bet-
ter readability of the (pattern) concept lattice. Experiments show that when the
number of distinct attribute values is large, adaptation of ClosebyOne to pattern
structures is most efficient. We also confirmed a general conclusion of [15] for
the case of interordinal scaled contexts of our dataset, stating that the Norris
algorithm is more efficient than NextClosure and CloseByOne when only the set
of concepts needs to be generated, not the covering relation of the lattice.

We have shown how algorithms for processing interval pattern structures can
be adapted for particular data and goals. Indeed, the first introduced order of
description elements generates all possible descriptions w.r.t. the similarity op-
eration. For GED analysis we have made some propositions to retain “best”
concepts. Many other possibilities should be investigated. Another direction of
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further research may be models accounting for domain knowledge. The semi-
lattice of descriptions (D,�) may be viewed as an attribute hierarchy, where
domain knowledge (e.g. known functions of genes) may be encoded.
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Abstract. Following the advent of information technology and the rapid growth 
of its application in the medical field, the picture archiving and communication 
system (PACS) became very popular in mid- to large-scale hospitals. This study 
aimed to compare the concept lattice of radiology report content before and  
after the adoption of PACS. This study proposes a formal concept analysis 
process to produce different levels of ontological concepts from the radiology 
report. Ontology concept lattice diagrams are presented along with the correla-
tion of concepts and their corresponding significance. The conceptual clustering 
method is applied to obtain a reasonable number of concepts. To find differ-
ences, the structure of ontology is compared in different phases by using a  
distance measurement. The study results showed a delicate change in radiology 
report terms before and after the adoption of the system. Given the quantitative 
analysis results, a qualitative-focused ethnography will be further conducted 
with several radiologists. 

Keywords: Formal concept analysis, radiology report, medical imaging system, 
PACS. 

1   Introduction 

Following the advent of information technology and the rapid growth of its applica-
tion in the medical field, the picture archiving and communication system (PACS) 
gradually gained popularity in mid- to large-scale hospitals.  Medical image storage, 
management, transmission, and even diagnosis now heavily rely on computer and 
network technology. Yet, given the vigorous development of medical information 
technology, there may be an impact on the medical behavior and treatment of physi-
cians or other medical experts when they diagnose. 

One of the main activities of a hospital radiology department is to provide reports 
of radiology opinions and interpretations of medical images to physicians.  Several 
studies [1-4] have investigated the effect of the reporting process, but most of these 
studies focused on the impact of the computerized radiography reporting system at its 
initial adoption. The call for understanding the impact not only on the radiology re-
porting process but also on the diagnosis of physicians has become loud and clear. 
Some studies [5-8] have addressed the impact of voice-entry radiology reporting  
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systems, but the effect of PACS in is not clear.  Balassy et al. [6] found that Liquid 
Crystal Display (LCD) is significantly superior to Cathode Ray Tube (CRT) for lung 
images; however, some studies [8-11] found no significant difference. These studies 
showed mixed results and were mainly focused on report time. Thus, explicit knowl-
edge about the content variation of radiology reports and diagnosis behavior differ-
ences after the adoption of PACS has yet to be developed. 

On the basis of the assumption that the conceptual knowledge of radiologists’ re-
porting is original from his/her network model, an analysis with a network model can 
reveal the characteristics of cognition for each individual.  Semantic structure or con-
ceptual knowledge can be obtained by elaborating on conceptual structures inherent in 
the text data given by radiologists.  Such conceptual structures can be determined by 
mathematical methods using Formal Concept Analysis (FCA) [22]. 

    This study aimed to build ontology from the radiology report text in a different 
time phase through FCA and the ontology comparison method.  It strives to identify 
the variations and factors arising after the adoption of PACS in a hospital.  In this 
study, we will lay the groundwork for understanding how PACS affects radiology 
diagnosis and reporting. 

1.1   PACS Technology 

With the exception of face-to-face diagnosis, the radiology image and report is one of 
the primary means of communication, as reported by radiologists, between the pa-
tients and the referring physician.  Significant resources are devoted to the radiology 
reporting service and the quality of medical image. Computers have been used in 
various ways to assist in radiology [4], including image digitalization, report entry, 
and image quality control. In this situation, PACS offers a solution to the problems of 
image and information management. 

Essentially, PACS handles medical images from various imaging modalities 
(machines), including X-ray, ultrasound, endoscopy, computerized tomography (CT), 
magnetic resonance imaging (MRI), and positron emission tomography (PET).  PACS 
replaces hard copies of images with their digital forms, for example, film archives not 
only provide a new way to manage medical images but also expand the possibilities 
of off-site viewing, reporting, tele-diagnosis, and distance discussion. Given the sharp 
drop in the price of digital equipment and storage, PACS undoubtedly provides 
effective cost and space advantages as compared to conventional file archives. 

The major objective of PACS is to clearly and definitively present patients’ health 
situations, which could involve improving image diagnosis accuracy and reducing 
patients’ radiation exposure.  From the viewpoint of strategy, PACS has been recog-
nized as a way to improve a hospital’s competitiveness. Up to 2008, an increasing 
number of medical centers and regional hospitals in Taiwan have adopted PACS. 

The actual influence of PACS on medical behavior, as given by physicians when 
they implemented PACS, is still unclear. Jean et al. [1] and Choplin et al. [3] consid-
ered the impact of a computerized radiography reporting system on film reporting, 
turnaround time, costs, and understanding of work patterns. Leaming et al. [13] as-
sessed the impact of voice-entry radiology reporting systems on the accuracy of ra-
diologic reports. From a technological perspective, several studies reviewed different 
computer methods designed to assist in the production of radiology reports [13, 14]. 
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Several other studies have investigated users’ views of the quality of radiology ser-
vices and the impact of PACS. Bryan et al. [15] evaluated a hospital-wide PACS by a 
“before and after” comparison. They pointed out that PACS greatly reduced the per-
ceived problem of image non-availability but did not increase the availability of ra-
diological reports. Moreover, the time junior doctors spent in image searching was 
dramatically reduced by the introduction of PACS. In two studies on radiologists, 
Franken et al. [16] indicated that radiologists spent twice as long interpreting PACS 
images as they did interpreting film images, but there was no significant difference in 
the time spent for both approaches; furthermore, Wilcox et al. [18] surveyed radiolo-
gists to assess their perception of the value of access to images and found the impact 
of PACS is positive. 

Occasionally, the radiology report is the only means of communication between 
radiologists and referring physicians. It must clearly describe the nature of the exami-
nation, pertinent findings, considerations of likely diagnoses and their relative possi-
bilities, and suggestions for further diagnostic evaluation if indicated [17]. In fact, the 
way in which radiologists perceive radiology reports is generally unclear. 

1.2   Ontology and Domain Knowledge Concept Representation 

In the field of computer science, ontology is the description of the concepts and rela-
tionships that play the role of an agent or a community of agents [36].  In general, any 
content of formally represented knowledge is based on a conceptualization: the ob-
jects, concepts, and other entities that are presumed to explicitly or implicitly exist in 
some area of interest and the relationships that hold them [21], and ontology is an 
explicit specification of a conceptualization [22].  Kahn et al. [19] suggested that 
ontology could represent radiological and clinical knowledge in order to integrate 
PACS to support radiology interpretation. 

Some studies [37-39] attempted to build further on domain ontology using the FCA 
method. A number of studies [24-25] and related technologies in other fields apply 
the benefits of domain ontology construction and computation for knowledge repre-
sentation and applications, including the comparison of different ontologies. [26-27]. 

There are two main approaches for domain ontology construction [38]. One facili-
tates manual ontology engineering by providing natural language processing, such as 
lexical entry. This method has its limitations and is ineffective in large text mining 
[28-31]. The other approach relies on machine learning and automated language-
processing techniques [7]. There are text clustering, association rules and knowledge 
base. Text clustering dealing with a large number of dimensions and a large amount 
of data can be problematic because of time complexity [32]. The use of association 
rules or knowledge base methods as construction methods for ontology still causes 
several restrictions, especially in combinations of different conceptual relationships 
[33], and the prior construction of knowledge bases in related domain and human 
effort is required [34]. 

As the meaning of words and the cognition of concepts differ in different times and 
environments, a variation might appear in the same domain (same category of radiol-
ogy reports). Because of different factors, the same radiologist might use different 
words for the same object or use the same word for different objects, or radiologists 
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might have different perceptions about specific concepts. Such potential for heteroge-
neity causes problems in a critical medical environment in which consistency and 
quality are pursued. Differences in ontology can be established from radiology report 
text in different time phases of a hospital—that is, before and after the adoption of a 
specific system, which in this study is PACS. 

2   Research Process and Pilot Analysis 

In this section, we will describe the goals of this study in more detail. Figure 1 shows 
an overview of the process of this study. At the beginning, a pilot study was con-
ducted to enhance the knowledge of environmental changes after the adoption of 
PACS. Following this and after a term parsing process, a formal concept analysis, will 
deal mainly with radiology report text in different time periods (before and after the 
adoption of PACS). Term frequency and many-valued contexts will be considered. 
On the basis of the ontology lattice acquired from a formal context, comparison 
among different ontologies associated with different conditions will be performed 
using a distance measurement method. Concepts will be clustered to minimize the 
number of concepts for interpretation and discussion purposes. 

 

Fig. 1. Research process of this study 

2.1   Settings and Data Collection 

Research data were derived from the Radiology Information System (RIS) of a teach-
ing hospital in central Taiwan.  This hospital adopted PACS technology on May 16, 
2006.  It was implemented on radiology modalities, including projection (plain)  
radiography, fluoroscopy, CT scanning, and MRI.  Because of function and cost con-
siderations, some modalities, such as mammography, DXA (dual energy X-ray ab-
sorptiometry), and some ultrasound machines are still not connected to PACS. 

There are about 7000 radiology-related diagnoses made each month at this teaching 
hospital. The analysis data of this study covered data from March 16, 2005 to March 
15, 2007 and was split into two portions. The first portion of the data covers the first  
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year and is called the traditional film phase. The portion covers the second year and is 
called the PACS phase. Figure 2 presents an example of the content of an abdomen 
CT scan radiology report. The content of the report was mainly given by one of the 
radiologists from the radiology department according to his personal judgment of the 
medical images. 

The related attributes of record data for every radiology diagnosis in the RIS data-
base are shown in Table 1, along with attribute names and descriptions. These include 
report text, examination item code, examination area, date, the International Classifi-
cation of Diseases 9th revision code (ICD9) for diagnosis expression, and the PACS 
ID number. 

Table 1. Related attributes of radiology data 

Attribute Name
(Abbreviation)

Description

Report text
(REP_TEXT)

Content of the radiology diagnosis report.

Examination item code
(ITEM_CODE)

Code of the radiology examination item.

Examination area
(AREA)

Examination area of patient’s body.

Examination date
(PHO_DATE)

Examination date of patient.

Radiologist code
(REP_DOC_NO)

Code of the radiologist in the department of radiology.

ICD9 codes of diagnosis
(ICDH_CODE)

Diagnostic disease ICD9 code from attending physician, maximum 5 
different ICD9 codes (from ICDH_CODE1 to ICDH_CODE5).  These codes 
are provided by attending physicians and referenced only by radiologists.

PACS ID number
(ORDERNO)

Only when this attribute has the ID number to show this record has PACS 
image.  

2.2   Pilot Study 

In order to enhance knowledge about the possible variations in diagnosis quantity and 
modification on radiology examination and report after the adoption of PACS, a pilot 
study was conducted using the same data that is used in this proposed research. There 
are three main steps in the pilot study. First, for comparison, based on the time of 
adoption of PACS, some statistic analyses were performed between the two phase 
groups; the results are presented in Table 2. There are over 150 different radiology 
examination items in this teaching hospital, and here, we list only few, including the 
code, examination quantity, and variations between the two phases. 

We further combine these radiology diagnosis items by the type of modalities 
shown in Table 3. With regard to the modality type, there has been a significant re-
duction in non-PACS modalities in the PACS phase group (–3.94% for Fluoroscopy 
and –12.45% for DXA). On the basis of these statistical results, a qualitative study is 
required in order to obtain more details. One radiographer and a radiology physician 
were interviewed and asked questions on the decrease in the examination number for 
non-PACS modalities after the adoption of PACS. Furthermore, possible reasons for 
this decrease were investigated. 
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Table 2. Example of statistical data for the two phase groups 

Item  
Item Code 

Examination 
Item 

2005-2006 
Film Phase 

2006-2007 
PACS Phase 

Difference 

70001 Chest View  29,411  28,431 –3.33% 
700011 Clavicle  11   –100.00% 
70003 Sternum  6   –100.00% 
70040 Abdomen  1,166  934  
70055 K.U.B Ex-

amination 
 10,384  10,930 5.26% 

700601 Foot  1,178  1,379 17.06% 
700602 Ankle  1,324  1,531 15.3% 
700603 Tibia & 

Fibula 
 969  990 2.17% 

... … … … … … … 

 
The qualitative interview results for the first step of the pilot study are as follows: 

(1) The examination quantity for every modality should be increased to coincide with 
the volume of business for this hospital; thus, the main reason for the decrease in 
examination numbers for non-PACS modalities is clearly connected to PACS. (2) 
PACS’ influence on the convenience and quality of medical images and on the will-
ingness of physician to use specific radiology examinations is self-evident. (3) The 
decrease in non-PACS modalities examination numbers has no relationship with 
medical demands. 

Table 3. Statistical data for modality types in the two phase groups 

Diagnosis Type Film Phase PACS Phase Difference Non-PACS 
Projection  

Radiography 
67289 67595 0.45%  

Mammography 1978 2514 27.10%  
Fluoroscopy 2183 2097 -3.94% * 

DXA 795 696 -12.45% * 
CT 3494 4048 15.86%  

MRI 392 943 140.56%  

 
On the basis of the primary results of the first step of the pilot study, we further 

analyze whether there are variations in disease diagnosis code (ICD9) for each attend-
ing physician.  Because there are complex and numerous variables that influence a 
physician, we limited all inspections to the same order physician, same modality 
(CT), same examination code (70500, CT scan for no developer), same examination 
area (brain), and same radiology reporter. The statistical results are shown in Table 4. 
The unknown status for the diagnosis code increased after the adoption of PACS. 
According to the decrease in the ICD9 code ending with 9, the indeterminate diagno-
ses clearly reduce. 
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Table 4. Counting of diagnosis category 

Distinct 
diagnosis 
categories 

Diagnosis I Diagnosis II Diagnosis III Diagnosis IV Diagnosis V 

Film Phase 24 24 23 13 6 
Unknown 0 9 18 31 41 
PACS Phase 27 22 19 13 3 
Unknown 2 17 27 38 46 

(‘Unknown’ implies that no disease diagnosis code was designated before radiology examina-
tion.) 

 
At the last step of the pilot study, the diagnosis code was revised after the radiol-

ogy examination was inspected 
The pilot study had some influence on the medical behavior related to the adoption 

of PACS in this teaching hospital. Physicians’ reliance on radiology examination 
increased, the indeterminate disease codes decreased, and revisions of the diagnosis 
code increased. These results stimulated our strong motivation to carry on the analysis 
of the content of radiology texts from a cognitive point of view. 

3   Radiology Report Content Analysis 

The next process is the formal concept analysis, used to construct conceptual maps for 
radiology reports. The lattice structures of these conceptual maps are actually a form 
of ontology, which reflects the characteristics of radiology reports before and after the 
adoption of PACS. Differences between ontologies can then be investigated by com-
paring their corresponding lattices according to distance-based algorithms. The re-
search process is introduced as follows. 

3.1   Term Parsing 

Different radiologists prepare radiology report documents; these reports must pass 
through different preprocessing methods in order to fulfill subsequent requirements. 
Yet, the complexity and time consumption of the term parsing process are indispensa-
ble and may influence the analysis results. In order to address these concerns, Delphi 
is used to develop the necessary parsing tools and lexical databases for related  
processes. 

Document layout elimination process: Disregard all irrelevant information, includ-
ing typesetting format, annotation, signature, Chinese characters, and other informa-
tion.  The output of this phase is a data stream of characters. Figure 4 is an example of 
an original report text, while the result of the term parsing process is shown in  
Figure 5. 

Stop words elimination process: The stop words referred to here are generally titles, 
prepositions, conjunctions, and other terms that do not constitute the main idea or 
concept of the document.  For examples, words such as “is,” “a,” “and,” “at,” “in,” 
“the,” and “of” are eliminated from the report text. 
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Fig. 2. Report text of abdomen CT scan 

 

Fig. 3. Term parse result 

Stemming words elimination process: Different radiologists use different writing 
styles.  Hence, there is inevitably a chance that slight variations in the context will occur, 
depending on the ways in which a particular term is used. Plurality, verbal nouns, and 
tenses can alter the basic form of a word. The standard form of the word or root word is 
used to replace its different forms. For example, the word “appear” has variations that 
include “appearing,” “appearance,” “appearances,” etc. The principle of eliminating the 
stemming word is using the root word to replace all other variations of the same word. 

Lexical analysis: Lexical analysis in the process of converting a sequence of charac-
ters into a sequence of strings.  A string is a categorized block of text, usually consist-
ing of indivisible terms. This is the last but most important step in the term parsing 
process, because lexical analysis will decide what words or terms will enter the fol-
low-up analysis. 

3.2   Conceptual Relationships and Hierarchy Construction 

This study uses FCA to establish a set of conceptual relationships and a hierarchy of 
terms. Three kinds of relationships exist among concepts: independence, intersection, 
and inheritance. In order to establish the concept relationships and hierarchy of the 
different terms, the following steps are designed. 
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First, produce a binary relationship matrix between reports and terms. In every ra-
diology report, a term that will best represent the main concept of the report must be 
obtained in the term retrieval. This can be done by referring to the document set and 
the term set. If a term appears in a document, the corresponding entries of the matrix 
are labeled “X” and generate the binary relationship matrix between reports and 
terms. The starting point in FCA is the setup of a context. 

A context is a triple X = (D,T , I )  (1) 

In this study, the context of the ontology is identified as L, the related report set of  
the ontology is represented by D, the related terms set of the ontology is marked as T, 
and I is a binary relationship between D and T: 

I ⊆ D × T  (2) 

Secondly, one must generate the concept set C. 
Let X be the partial set of D, and Y as the partial set of T, that is, 

X ⊆ D,Y ⊆ T  (3) 

The mappings: 

  σ ( X ) = {t ∈T | ∀d ∈ X : (t, d ) ∈ I}  (4) 

the common terms of X, and 

τ(Y ) = {d ∈ D | ∀t ∈Y : (t, d ) ∈ I}  (5) 

the common reports of Y.  On the basis of the above definitions, a concept is defined.  
A concept is a pair of sets: a set of reports and a set of terms (X, Y): 

Y = σ(X ) and X = τ(Y )  (6) 

A concept is a maximal collection of documents sharing common terms. Thus, taking 
concept c as an example, the biggest report set that contains the common terms is in 
the maximal rectangle by all the relationships I in the binary relation matrix. The set 
of all the concepts of c is represented by C. 

The third step is to calculate the hierarchical relationship of concepts. The set of all 
of the concepts of a given context forms a complete partial order. Thus, we define that 
a concept (X0, Y0) is a subconcept of concept (X1, Y1), denoted by 

(X 0,Y 0) ∈ (X1,Y 1)  (7) 

In the event that the document set X1 of a term set Y1 is contained in the document 

set X2 of another term set Y2, denoted by X1⊆X2, (X1, Y1) becomes the subconcept 

of (X2, Y2), denoted by (X1, Y1)⊆ (X2, Y2).  For concept C, it means C1(X1, Y1) be-
comes the subconcept of C2(X2, Y2). 

The last step in the conceptual construction is generating the entire hierarchy of 
concepts. It is possible for concept c to have various father concepts as well as sub-
concepts. Hence, the computation of various hierarchy relationships for different 
concepts is required in order to obtain the entire hierarchy of concepts. Each node in 
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the hierarchy represents a concept. Given two elements (D1, T1) and (D2, T2) in the 
concept hierarchy, their supremum or join is defined as: 

(D1,T 1) ∪ (D2,T 2) = (τ (T 1 ∩ T 2),T 1 ∩ T 2)  (8) 

Let c1(X1, Y2) and c2(X2, Y2) be two concepts, the supreme of the two concepts is com-
puted in order to determine their respective positions in the concept hierarchy. 

3.3   Many-Valued Contexts 

In Figure 3, the perception term, such as “well,” “small,” “now,” “right,” and “have” 
do have values. We call these perception terms “many-valued attributes,” in contrast 
to “one-valued attributes.” 

A many-valued context (G, M, W, I) consists of sets G, M and W and a ternary rela-
tion I between G, M and W [22]. 

(g, m, w) ∈ I  and (g, m, v) ∈ I  always imply w = v  (9) 

The elements of G are called objects, those of M (many-valued) attributes and 
those of W attribute values. 

(G, M, W, I) is called an n-valued context, if W has n elements. The many-valued 
attributes can be regarded as partial maps from G in W.  Thus, one must write m(g) = 

w instead of (g, m, w) ∈ I.  The domain of an attribute m is defined as: 

dom(m) := {g ∈G | (g, m, w) ∈ I  for some w ∈W }  (10) 

This study transforms a many-valued context into a one-valued context in accor-
dance with certain rules, which will be explained below.  This interpretation process 
is called conceptual scaling. 

In the process of scaling, each attribute of a many-valued context is first interpreted 
by means of a conceptual scale.  A scale for the attribute m of a many-valued context 
is a (one-valued) context Sm := (Gm, Mm, Im) with m(G) ⊆ Gm .  The objects of scale 
are called scale values; the attributes, scale attributes. 

In actuality, the choice of scale for the attribute m is not a mathematical process, 
but a matter of interpretation, and will thus be based on the opinion of the domain 
expert.  In a lexical process, terms with perception status will be treated as a many-
valued context and transformed into a one-valued context.  We explain the transfor-
mation rule with the example that follows. 

In Figure 3, two perception terms are observed: “well visualize” and “mile midline.” 
Searching for the report text and discussing it with the domain expert define scales of 
many-valued attributes for these perception terms. One example is shown in Figure 4. 

 

Fig. 4. Transformation of many-valued contexts 
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3.4   Interrelationship and Degree of Concepts 

After constructing the hierarchy of relationships among concepts, the next step is to 
identify the interrelationships of these concepts.  Let c1(X1, Y1) and c2(X2, Y2) be two 
concepts; if Y 1 ⊂ Y 2 andY 2 ⊂ Y1 , since the two concepts are partially contained by 
one another, it allows us to identify the interrelationship between c1 and c2. 

It is obvious that a repeated concept will be more important than a singly appearing 
concept in a single report. We can express this characteristic by using the concept of 
TF-IDF (term frequency-inverse document frequency) [35]. The formula and related 
variables are as follows: 

r(Cj,Ck) =
tfi

ijk

i =1

n

∑

tfi
ij

i =1

n

∑
× WF(Ck)  (11) 

tfiijk = tfijk × log 10

N

dfjk

× wj

⎛
⎝⎜

⎞
⎠⎟

 (12) 

N is the total number of keywords, tfijk is the co-occurrence of term j, k in docu-
ment I, w is weight for inverse document frequency, and dfjk is document frequency 
of term j, k. 

tfiij = tfij × log 10

N

dfj

× wj

⎛
⎝⎜

⎞
⎠⎟

 (13) 

tfij is frequency of term j in document i, and dfj is document frequency of term j. 

WF(Ck) =
log 10

N

dfk

log 10 N
 

(14) 

Formula (11) describes the degree of relevancy between the two concepts.  All 
degrees of relevancy have a corresponding direction. In formula (11), the central 
point of the calculation is Cj as the correlation between Ck and Cj is being estab-
lished. In formula (12), dijk is decided by the frequency that Ck and Cj both appear 
and inverse the frequency of report. tfijk represents the frequency that Cj and Ck both 
appear in document i, dfjk represents the total document number that Cj and Ck ap-
pear together. When both concepts have a higher relevance, the frequency with 
which Ck and Cj appear in the same report should also be high and is centralized in 
some specific reports. In formula (14), WF(Ck) corresponds to the specificity of Ck 
against the reports. As the concept Ck becomes more general, the value of WF (Ck) 
decreases. 
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3.5   Ontological Concept Lattice Building 

After the process consisting of the above methods, a matrix table denoting the fre-
quency of terms that appear in radiology reports can be completed, as in Figure 5, in 
which the conceptual hierarchies generated by the FCA constitute the ontology lat-
tices. Figure 6 is an example result of ontology lattices that comes from the matrix 
table of Figure 5. 

 

Fig. 5. Formal context produced from lexical attributes of a radiology report 

The upper part of the concept lattice of Figure 6 expresses the most common con-
cept to appear in different reports, while in the lower part the change will be more 
sensitive in different reports. The ontology concept lattice of radiology reports will be 
constructed according to different conditions, physicians, phases, and examination 
items for further comparison analysis. 

 

Fig. 6. Ontological concept lattice generated from formal context of Figure 5 
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4   Radiology Report Difference Evaluation 

In order to evaluate our approach, we need to access the way in which differences 
exist in different phases of a radiology report as reflected by its ontology. There are 
many ways to measure the difference between two given objects. In this study, all 
concepts were normalized by the FCA method. We can treat any different concept as 
a different node in the ontology lattice, meaning that the ontology similarity will be-
come a weighted graphic matching problem. 

Given two ontology Oj and Ok, the formula to measure the similarities can be de-
fined as follows:  

Comp(Oj,Ok) = (Con(Cij,Cik)
i =1

N

∑ × (RCj + RCk))  (15) 

N is the concept number of ontology with fewer concepts, RCj and RCk are degree 
of relevancy and Con(Cij,Cik) defined as: 

Con(Cj,Ck) = (Rtij − Rtik)
i =1

n

∑  (16) 

If we compare different ontology lattices in different conditions, we can find the on-
tology with the most obvious difference. Figures 7 and 8 are the preliminary results of a 
chest examination performed by a radiologist before and after PACS implementation. 

In a traditional concept lattice, the concept lattice generated by FCA is sometimes 
quite complicated due to the large number of formal concepts generated.  Since the 
formal concepts are generated mathematically, objects that have small differences in 
terms of attribute values are classified into distinct formal concepts.  At a higher level, 
such objects should belong to the same concept when a domain expert interprets them. 

 
Fig. 7. Preliminary results of a chest radiology report after the adoption of PACS 
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On the basis of this observation, this study simplified formal concepts into concep-
tual clusters by using the conceptual clustering method.  Each conceptual cluster is a 
sub-lattice extracted from the concept lattice.  A formal concept must belong to at least 
one conceptual cluster, but it can also belong to more than one conceptual cluster. 

We can use a similarity confidence threshold to determine whether two concepts 
are similar. Figure 9 shows the cluster result of Figure 7, which is more concise and 
easier to interpret. Outliers can also be detected in a cluster analysis. 

 
Fig. 8. Preliminary results of a chest radiology report before the adoption of PACS 

 

Fig. 9. A cluster result of an ontological concept lattice 
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5   Discussion and Conclusion 

This study analyzes radiology report text in different time phases through the methods 
of term parsing, formal concept analysis, and cluster analysis. The important varia-
tions in radiology report content in different time phases and conditions are elucidated 
through the comparison of ontologies. In the results shown in Figures 7 and 8, ontolo-
gies were constructed from the analysis of this study. These ontologies represent the 
knowledge characteristics of the content of a radiological chest examination report 
prepared by a radiologist before and after the adoption of the PACS system. Figure 8, 
before the adoption of PACS, contains more terms (labels in the lattice chart) than 
Figure 7, after the adoption of PACS.  Nevertheless, the actual concept number in the 
ontology before the adoption of PACS is 23, and is fewer than after the adoption of 
PACS - 29. 

The interpretation of the study results shows that the radiologist used more con-
cepts in the composing of radiology report. Observing the cluster analysis result from 
Figure 7 that show in Figure 9, the variant concepts include “suspicious,” “some,” and 
“mild.” From the level of semantics, these concepts express the fact that the radiolo-
gists have more details and uncertainty when composing radiology reports. Our find-
ings suggest that PACS usage may have an impact on radiologist physicians in the 
composition of radiology reports and the addition of more detailed concepts to  
the content. This is consistent with the broad concept that the adoption of PACS has 
the potential to improve the quality of medical images and enhance diagnoses. 

The limitation of this study is that our result depends upon a single examination 
item and a single radiologist. Ontology construction and quantified comparison for 
different examination items and radiologists are still being conducted; variations in 
these concepts will be more complete in future studies. Future FCA analysis results 
will combine a focus on ethnography qualitative study hope to achieve a richer mean-
ing from the point of view of clinic. 

The adoption of PACS in hospitals changed the content of radiology reports. This 
study suggests that such a system may improve radiologists’ clinical decisions and 
reflected in the radiology report. Future studies that construct and compare the ontol-
ogy of different examination items from more radiologists are needed. Combining the 
results of FCA analysis with qualitative research on clinical radiologists will make the 
results more significant at the clinical level. 
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Abstract. This paper revisits the lattice-based thesaurus models which Margaret
Masterman used for machine translation in the 1950’s and 60’s. Masterman’s no-
tions are mapped onto modern, Formal Concept Analysis (FCA) terminology and
three of her thesaurus algorithms are formalised with FCA methods. The impact
of the historical and social situatedness of Roget’s Thesaurus on such algorithms
is considered. The paper concludes by discussing connections between Master-
man’s research and modern research.

1 Introduction

In the 1950’s and 60’s Margaret Masterman, a pioneer in natural language process-
ing and AI, conducted research using a thesaurus for machine translation. Her paper
“Potentialities of a Mechanical Thesaurus” describes a lattice-based model of Roget’s
Thesaurus (Masterman, 1956). Since lattice-based models of Roget’s Thesaurus have
also been described in recent Formal Concept Analysis (FCA) research (Priss & Old,
2004, 2005, 2006, 2007, 2008), the idea for this paper is to revisit Masterman’s ideas, to
formalise her algorithms in FCA notation and to compare her ideas to modern research.

Until recently, it was quite difficult to access Masterman’s research because many
of her ideas were published in technical reports which were never widely distributed.
Furthermore, her writing is influenced by the 1950’s intellectual background, and is
sometimes difficult to comprehend from a modern perspective. In 2005, however, an
edition of her work was published by Wilks (Masterman, 2005) and supplemented with
editorial comments and explanations which now make it possible to revisit Masterman’s
ideas.

Masterman was not a mathematician. Therefore her lattice-theoretical thesaurus no-
tions are described mostly in prose and exemplified by descriptions of computer algo-
rithms. Because the 1950’s computers were quite different from modern technology,
even the algorithms are sometimes obscure from a modern perspective. An example of
the changes in computational technology is demonstrated by the fact that Masterman’s
group (the Cambridge Language Research Unit, CLRU) believed that “no computer
could hold a coded thesaurus” (Masterman, 2005, p.105) because of the storage space
required.

Instead of storing a coded thesaurus on a computer, the raw and uncoded thesaurus
data was stored on punched cards. It is not clear, however, how much of the data was
stored and in what format. Furthermore, it is not clear how much human invention was
required in order to execute any of the thesaurus-based calculations. Perhaps the com-
puter was only used to compare thesaurus categories, but the initial processing of the
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input data was done by hand? Masterman (2005, p.156) mentions that the “person oper-
ating the thesaurus must use his or her own judgement”. Masterman’s early experiments
were only simulations of punched card programs because “the experiments could not be
carried out automatically, as the CLRU had no computer” (ibid. p.159). But the lattice
program, which was coded by A. F. Parker-Rhodes, “will in the near future actually go
through a computer” (ibid. p.86). Wilks (1998) explains that Masterman later “had the
thesaurus card punched (twice for error checking), which then formed the basis for a
range of experiments ... performed on Hollerith sorting machines”.

Another difficulty is the difference between editions of Roget’s Thesaurus. If one
had an exact copy of the thesaurus used by Masterman, one could approximate her
algorithms by running them on the same data and comparing the results. Masterman
mentions that “Roget’s Thesaurus with additions was used” (Masterman et al., 1959)
indicating that her thesaurus was amplified with further terms and edited for the pur-
poses of her research. In some cases, the additions may have been ad hoc in response
to a particular translation task (Masterman, 2005, p.153). Wilks (1998) comments that
Masterman “had the whole of Roget’s Thesaurus compacted from a thousand or more
heads to eight hundred”. He further states that Masterman’s experiments “were not very
successful because the heads were too sparse to give sufficient repetition.” Thus, using a
modern edition of Roget’s Thesaurus is a disadvantage for the purpose of understanding
Masterman’s work, but it is actually an advantage with respect to examining the general
validity of her work because the modern editions contain more words.

The next section1 provides an overview of Masterman’s work of using thesauri in
machine translation. Section 3 describes Masterman’s thesaurus model. Section 4 pro-
vides an FCA formalisation of three of her thesaurus algorithms. Section 5 discusses the
changes between different editions of Roget’s Thesaurus. Section 6 reconstructs one of
Masterman’s examples using a modern edition of the thesaurus and modern software.
Section 7 traces the connections between Masterman’s work and modern research.

2 Lattices and Thesauri in Mechanical Translation

In 1956, at the International Conference on Mechanical Translation at MIT, four re-
searchers from the CLRU (Masterman (1956), Richens (1956), Parker-Rhodes (1956),
Halliday (1956)) reported on their research of using a thesaurus as an interlingua in “me-
chanical translation” (MT), the term then used for “machine translation”. The group’s
founder, Masterman, envisioned using mathematical lattice theory for building a the-
saurus, i.e. a hierarchical structure with groupings of synonyms or near synonyms. She
thought that a “multilingual MT dictionary is analogous, in various respects, to a the-
saurus” and that “the entries form, not trees, but algebraic lattices, with translation points
at the meets of the sublattices” (Masterman, 1956). The advantage of this approach is
that instead of having to consider different pairs of languages separately, each language
needs to be translated only once (into the thesaurus). Adding a new language, then, does
not require any changes to the previously added languages. Masterman stated that “the

1 A draft version of Sections 2 and 7 is contained in: Priss & Old (2008). “Lattice-based Mod-
elling of Thesauri.” Lattice-Based Modeling Workshop, Palacky University, Czech Republic.
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complexity of the entries need not increase greatly with the number of languages, since
translation points can, and do, fall on one another” (ibid. p.36).

Of course, computational research in the 50s and 60s was influenced by the limi-
tations of computers at that time. Considerations about computational speed and stor-
age problems determined the algorithms. Parker-Rhodes (1956) extended Masterman’s
ideas by describing a mechanical translation program for interlingual thesauri using
Boolean operations that “can be performed with very great speed”. The storage prob-
lem would be solved by storing “all the relevant information ... in the input and output
dictionaries”. Richens (1956) described the algebraic interlingua, NUDE, its code and
an overview of its translation operations.

MT algorithms at that time often started with a chunk-by-chunk literal translation
(Masterman et al., 1959). Every word stem and every grammatical indicator was trans-
lated from the input language to the output language using a dictionary and some
rules. This was also referred to as “pidgin translation” (Masterman, 2005, p.161). Mas-
terman’s use of lattices was novel because other linguists at that time (for example
Lehmann (1978)) saw translation as a mapping between trees. A sentence from the in-
put language was parsed into a tree structure. Each branch of the input language was
mapped onto a branch of the output language. The branches in the output language
formed another tree which had the output sentence as their root. Masterman argued that
from a semantic viewpoint, lattices are a better model than trees. In a lattice, pairs of
elements can have different numbers of parents and children, instead of having only
one parent each in a tree structure. Thus, combinations of meanings can be represented
more naturally. In 1965, Wilks commented that word-for-word pidgin translation was
too limited because phrases, not words, are the semantic units of a sentence (Master-
man, 2005, p.186). But this does not contradict the idea of using a thesaurus as a means
of translating the semantic units.

In particular, Masterman (1957) was interested in Roget’s Thesaurus (RT). Her idea
was that each of the 1000 categories in RT could be used as a “head” which described
the core meaning of a word. Because words that have more than one sense occur more
than once in RT, a word can have several heads. This leads naturally to a lattice, not
tree structure. Of course, this implies that the meets and joins need to be calculated;
without meets and joins, a thesaurus would be just a partially ordered set, not a lattice.
Multiple occurrences of a word in the thesaurus might correspond to different meanings
of the word or even homographs (such as “lead” the verb and “lead” the metal). If one
determines the heads of all the words of a sentence, the heads provide an indication of
what the sentence is about. Individual words can be disambiguated by comparing their
heads to the other heads in the sentence. If a word has two different heads and only one
of these also occurs for other words in the same sentence, then it is quite likely that that
head corresponds to the meaning of the word in this sentence.

Masterman et al. (1959) saw a relationship between MT and information retrieval be-
cause in both cases a thesaurus could be used: either for retrieval, or as an interlingua.
Even grammar and syntax were dealt with by the thesaurus (Masterman, 1957) because
grammatical indicators in the “intralinguistic context” relate to structures in the “ex-
tralinguistic context” that are shared across languages. For example, some languages
have no genders (English), others have two (French), three (German) or six (Icelandic).
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But the distinction between “male” and “female” is extralinguistically motivated (ibid.
p.39). Masterman et al. (1959) see an interlingua as consisting of a “logical system giv-
ing the structural principle on which all languages are based”. In modern terminology,
the thesaurus represents the “conceptual structures” that underly information retrieval
and natural languages. Because different languages share conceptual structures, they
could share a thesaurus as a representation of conceptual structures. Thus, Masterman’s
ideas anticipated modern research into semantics, AI, knowledge representation and
formal ontologies. The next section shows how her thesaurus notions can be mapped to
their modern equivalents.

3 Masterman’s Thesaurus Model

Masterman describes a thesaurus in terms of heads, fans and tags. Fig. 1 summarises
her notions. Heads correspond to contexts (Masterman, 2005, p.109) or situations (ibid.
p.194). Different situations are distinguished from each other by similarity and contrast
(idid. p.189). In Roget’s Thesaurus (RT), heads correspond to the approximately 1000
categories. The notion of fan refers to the polysemy of a word. A fan consists of a word
and its different uses or meanings which could be changing over time (ibid. p.39). In RT,
the index at the back of the book (or what Masterman et al. (1959, p.925) call the cross-
reference dictionary) shows a fan for each word. Heads are further subdivided into lists,
which are mutually exclusive, such as “spade, hoe, rake”; and rows which are quasi-
synonymous, but non-exclusive, such as “coward, faint-heart, poltroon” (Masterman,
2005, p.109). Extralinguistically, the elements of a row can denote the same object,
whereas the elements of a list denote different objects. Thus, the elements of a list
“are sub-species of a genus, and not synonyms at all” (Wilks, 1998) or might form
an extension of a natural language concept. In some editions of RT, lists and rows are
visually differentiated because lists are printed in a one-word-per-line format. Rows are
the smallest groupings of the words in RT: each category is subdivided into paragraphs
which contain semicolon-delimited sets of words.

Archeheads or aspects are additional classifications that crosscut the classification
by the heads. Aspects are also distinguished from each other by similarity and con-
trast in the same manner as situations (ibid. p.189). Neither situations, nor aspects are
permanently fixed, but instead both change over time and if different principles are

Masterman’s notion in Roget’s Thesaurus general notion
head (context/situation) category concept

similarity/contrast (implicit) attributes
list list extension
row paragraph or semicolon group synonymy
fan index polysemy

tag (aspect) part of speech etc facet
archeheads (aspect) antonymy (in table of contents) facet/frame/role

Fig. 1. Masterman’s main thesaurus notions
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applied (ibid. p.189). Masterman uses the metaphor of “re-sorting a pack of cards” in
order to illustrate the flexibility of classifications (ibid. p.190). In older versions of RT,
the main archeheads are “pleasing” and “non-pleasing” (ibid. p.110), because the cate-
gories alternate between a positive head followed by its antonymous counterpart. This
is predominantly displayed in the table of contents of older versions of RT. In modern
information science terminology, archeheads are facets. Masterman further uses the no-
tion (semantic) tag to refer to aspects (ibid. p.202). In this case, this seems to include
part of speech tags, which is a facet that is applied to all categories in RT. The other
examples of tags given by Masterman (ibid. p.202 and p.204) appear to be similar to
modern thematic roles, frames or case relations. These do not systematically occur in
any of the printed editions of RT, but must have been manually constructed by Master-
man’s group.

In summary, Masterman’s notions correspond to modern notions and closely relate
to the structures that can be observed in Roget’s Thesaurus. Her notion of double clas-
sification (ibid. p.190) using situations/heads and aspects/tags is similar to the modern
notion of faceted classification. Her notions of heads, similarity/contrast and lists can
be mapped onto FCA terminology. Heads, words and fans provide the basic formal
contexts for an FCA modelling of thesauri as shown in the next section.

4 Three Algorithms

This section describes three of Masterman’s thesaurus algorithms in FCA terminology.
All three algorithms follow the same core structure and are similar to what are called
restricted neighbourhood lattices (Priss & Old, 2004) in modern research. A (modern)
neighbourhood context in Roget’s Thesaurus starts with a word, looks up all the senses
(rows or heads) of this word, and then looks up all the other words that share the same
senses. This process can be started with either words or senses and is stopped after
several iterations. The usual FCA operator for finding all attributes that belong to a set of
objects is the prime operator2. The plus operator3 used for constructing neighbourhood
lattices differs from the prime operator in that it looks for attributes belonging to any
(instead of all) of the objects. Thus, it usually enlarges the sets. This enlargement can
be reduced by requiring that attributes need to be shared by at least two (or any other
number) of objects4. Such neighbourhood lattices are called restricted (Priss & Old,
2004). Applied once to a single object (or single attribute), the prime and plus operators
yield the same result (g′ := G′

1 = G+
1 =: g+ for G1 = {g}).

The first algorithm considered here is a translation of a Latin sentence “Agricola in
curvo terram dimovit aratro” into English5 (Masterman et al. (1957) and Masterman
(2005, p. 149)). It involves the following stages:

1. dictionary matching: for each chunk of the input language a set of English heads is
found representing semantic, syntactic and grammatical elements

2 For a formal context (G, M, I),G1 ⊆ G, M1 ⊆ M , G′
1 := {m ∈ M | gIm for all g ∈ G1}.

M ′
1 := {g ∈ G | gIm for all m ∈ M1}. To avoid ambiguity, G′

1 can also be written as GI
1.

3 G+
1 := {m ∈ M | gIm for one g ∈ G1}. M+

1 := {g ∈ G | gIm for one m ∈ M1}.
4 G

(I,≥n)
1 := {m ∈ M | gIm for at least n elements g ∈ G1}. Thus, G+

1 = G
(I,≥1)
1 .

5 For example: “The farmer parts the earth with his curved plough.”
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2. operations on semantic heads: basic translation
3. operations on syntactic heads: syntactically complete, unparsed output
4. operations on grammatical heads: parsed and ordered output
5. cleaning up operations

Masterman argues that, in principle, grammar and syntax can be dealt with in the
same manner (i.e., at a conceptual level using a thesaurus) as semantics (Masterman,
2005, p201). But in Masterman et al. (1957), only the application of Roget’s Thesaurus
to Stage 2 is shown, which involves operations on semantic heads. Translated into an
FCA notation, a thesaurus contains a formal context (W, H, F ) of words w ∈ W ,
heads h ∈ H and fans, which describe the relationship between a word and its heads.
Masterman’s algorithm starts by calculating SF =

⋃
w∈S wF which contains the heads

wF for each chunk w of the input sentence S ⊆ W . Each head that does not occur
in at least one other set of heads is eliminated: H(S) :=

⋃
w∈S wF/S with wF/S :=⋃

v∈S,w �=v vF ∩ wF . This step eliminates homographic or polysemous senses that do

not relate to the main topic of the sentence. It follows that wF/S = wF ∩ H(S) and
H(S) = S(F,≥2). In modern terminology, Masterman’s algorithm produces a restricted
neighbourhood context (S,H(S), F ∩ S ×H(S)).

If wF ∩ vF = ∅ for all v ∈ S, w 
= v, none of the heads in wF are in H(S). Thus,
in order to determine a translation of w, the next higher grouping above the heads ac-
cording to the table of contents of RT is considered. This can be represented as a formal
context (H, A, C) of heads H , higher level classes A and the classification relation-
ship C. Two plus operators are applied: first, the higher level classes are obtained, then
all other heads that belong to these higher level classes are selected. This can be for-
mally represented6 as w(F◦C,≥1)(C,≥1) = {h ∈ H | ∃a∈A∃i∈H : wFi, iCa, hCa}.
This contains all heads that are in the same higher level classes as the original heads in
wF . Now restriction can again be applied: wF/S∗ is defined as wF/S if this is not ∅ and⋃

v∈S,w �=v vF ∩w(F◦C,≥1)(C,≥1), otherwise. The result is a setH(S)∗ :=
⋃

w∈S wF/S∗

and a restricted neighbourhood context (S,H(S)∗, F ∩ S ×H(S)∗).
Each head in H(S)∗ can now be translated into the target language. The target lan-

guage is represented by a formal context (W1, H, F1) corresponding to the words W1
and fans F1 of the target language and the same heads as in the source language. Possi-
ble translations are elements ofH(S)∗F1 ⊆ W1. More specifically, the translation of a
word w ∈ W with respect to S is provided by T (w) := (wF/S∗)(F1,≥2) = {v ∈ W1 |
vF1h for at least 2 elements h ∈ wF/S∗}. Only those translations are selected that oc-
cur in at least two heads. The whole algorithm resembles the calculation of restricted
neighbourhood lattices, with some modifications.

Some entries in Roget’s Thesaurus contain cross-references. This is not to be con-
fused with Masterman’s “cross-reference dictionary” in the back of the book. Cross-
references in the first half of the book are mostly a space-saving mechanism in RT:
if a group of words occurs in two paragraphs, a cross-reference is used in one of
the categories instead of duplicating the words in both places. In general, the use of
cross-references is inconsistent in RT. Masterman argues that RT is a lattice where the
joins are given by the hierarchy that is contained in the table of contents of the book,

6 F ◦ C denotes the relational composition. w(F◦C,≥1) = {a ∈ A | ∃i∈H : wFi, iCa}.
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and the meets are given by the cross-references (Masterman, 2005, p.210). Thus, for
the purposes of the translation algorithm, Masterman considers both words and cross-
references that are shared between two heads. If a cross-reference is shared, it is added
to its wF/S∗ and included in the computation of T (w) as an iterative process. Master-
man’s reasoning for this is that “the numerical cross-references are to be interpreted ...
as the overlap in meaning between the heads” (ibid. p.204).

In the Latin example sentence, this procedure leads to between one and eight pos-
sible translations for each word of the sentence (ibid. p.157). Similar results can be
obtained with a modern thesaurus (see Section 6). Masterman explains that syntactic
and grammatical operations would need to be applied in order to obtain the full trans-
lation, but these operations are not further explained. Incidentally, we ran the Latin
sentence through a free online InterTran translation website7 yielding the translation:
“farmer upon to bow earth dimovit plowman”. This is significantly worse than Mas-
terman’s head translations: “farm, farmer, bend/crook, ground/soil, plough/till, plough-
man” (ibid. p.157). Unfortunately, we were not able to compare the result to Google’s
and Yahoo’s translations (which yield good translation results in some cases) because
these do not translate from Latin.

The second algorithm is very similar to the first but is applied to the translation of
a whole passage of text instead of just a single sentence. It was originally described in
Masterman (1956), but also appears in a slightly amended version in the appendix of
Masterman et al. (1959). This algorithm consists of four stages:

1. Using a bilingual pidgin dictionary, chunks of the input language are translated into
chunks of the output language.

2. Lattice position indicators are used for identifying the syntactic elements.
3. The thesaurus cross-reference dictionary is used to find the heads for the chunks.
4. The thesaurus procedure is applied.

Unfortunately, stage 2 is not explained in the paper. It is not clear how the syntax
lattice is constructed. The main purpose of stage 2 appears to be to determine which
heads to include in the calculation of wF/S (using the FCA notation from above). When
dealing with a whole paragraph of text, it would not be useful to compare all heads
simultaneously. Instead, only those heads are compared which are equal or subordinate
to each other, based on the syntax lattice. As stated before, this is not completely clear
in the paper, but it probably means that the syntax lattice is similar to a tree-parsed
structure. Heads are compared if they are in a parent-child relationship in the tree. For
example, the head of an adjective is compared with the head of its noun, and so on.

Otherwise, the algorithm is very similar to the previous ones, except that more proce-
dures are added for dealing with cross-references and for adding words to the thesaurus.
Most likely the reason for this is that the thesaurus used by Masterman was fairly sparse
and did not yield any results for some of the head comparisons. Masterman argues that
these procedures are not ad hoc, but instead make use of cross-references and of inter-
preting phrases and metaphors that are implicitly contained in the thesaurus. She asserts
that “all possible chains of meanings are somewhere in Roget’s Thesaurus if they can be

7 www.stars21.com and www.translation-guide.com
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found” (Masterman, 2005, p.93)8. The conclusion of Masterman’s paper is that the al-
gorithm is able to improve the initial pidgin translation by replacing some of the words
with more appropriate choices.

The third algorithm (Masterman, 1961) translates an English sentence into a the-
saurus representation, which serves as an interlingual or conceptual representation.
Even though we argue that Masterman’s algorithms resemble restricted neighbourhood
lattices, she does not represent the results as lattices herself, though her 1961-paper con-
tains a graphical representation of fans which are quite similar to our representations
of neighbourhood lattices. Jointed fans (Masterman, 2005, p.207) are partially ordered
sets that have a word at the top, and the different uses or meanings of the word below (as
given in the index of Roget’s Thesaurus). In the diagram, each meaning is indicated by
the number and the name of the head in which this word occurs. The resulting diagrams
strongly resemble our representation of neighbourhood lattices (as in Figure 2). Jointed
fans are trees, not lattices, but the smallest neighbourhood lattices (consisting of a word,
its senses and other words that share these senses) tend to be mostly tree-like. Non-tree
like structures emerge in neighbourhood lattices when the plus operator is applied more
than twice, or when the algorithm starts with more than one word or sense.

The fans are further subdivided by the different parts of speech of the word under
each head. The part of speech indicators are examples of tags. Masterman discusses the
manual addition of further tags (ibid. p.204), which assign aspects to each occurrence of
each word in the thesaurus. Although the words used for the tags are idiosyncratic, the
resulting structure resembles a formal ontology. Masterman (ibid. p.209) argues that
this fan structure, consisting of heads and tags, corresponds to dictionary entries and
that, for translation purposes, dictionaries of different languages can be connected to an
interlingual thesaurus using such fan structures.

The algorithm for translating the English sentence into a thesaurus representation
given by Masterman (1961) is as follows (translated into FCA notation): for the the-
saurus context (W, H, F ) and a sentence S with words w ∈ S, the set SF =

⋃
w∈S wF

contains the sets of heads for each word. For each element in H(S), the translation is
provided as: T (w) := (wF )(F,≥2) = {v ∈ W | vFh for at least 2 elements h ∈ wF }.
This is basically the same procedure as described above (Masterman et al., 1957), again
resembling neighbourhood lattices. In this case, Masterman provides special rules for
the instances where T (w) contains more than one word or wF contains zero or one
head, but these rules rely on other non-thesaurus resources (such as special
dictionaries).

5 Changes between the Different Thesaurus Editions

If Masterman’s experiments are to be replicated, it is of interest to determine how
far they depend on the particular versions of the thesaurus. This section provides an

8 We believe that her assertion is correct. We have conducted experiments with changing the
degree of restriction in neighbourhood lattices (Priss & Old, 2008) and found that it is possible
to use heuristics to enlarge the lattices in cases where not much overlap is found. But, of
course, the implementation of such techniques would have been difficult to imagine with 1950s
computers.
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excursus into the differences between the thesaurus editions in order to highlight the
historical changes of the thesaurus categories.

There are two main versions of Roget’s Thesaurus (RT) publications: the British line,
published by Longman/Penguin from 1852-2002; and the US American line, branch-
ing from the British line in 1911, published by Crowell/Harper Row, and commonly
referred to as the International version (RIT). Both contain the hierarchical classifica-
tion system, the Synopsis of Categories, based on Roget’s 1000 categories, with six to
eight classes at the highest level. By default, the US thesaurus uses American spellings
for common words such as color and jail, while the British version lists colour and
gaol in the index. It is notable that the current International version does not list gaol,
even as a Britishism, while the British version does list jail. This could reflect the in-
fluence of American spelling on British English. Masterman used RT (1953) for her
experiments. Our own experiments are based on an amended version of RIT (1962)9.
Because of copyright reasons, RT (1911) is the most current edition in the public do-
main.

With each new edition of RT, categories may be renamed, added, and sometimes
combined or split (very, very rarely deleted). Among the reasons to change the name of
a category, modernisation is the most usual. For example, Cicuration (RT, 1852-1953;
RIT 1911-1922), meaning the act of taming animals. This was modernised to Animal
Culture (RIT, 1946), then Animal Husbandry (RIT, 1962; RT, 1972). A further example
is Preterition (RT 1852-1972; RIT 1911-1946), meaning passing, or passed. This was
modernised to The Past (RIT, 1962) and Past Time (RT, 1972). Categories may be split
where distinct ideas were obviously combined under one head (John L. Roget, 1933,
Editors Preface); or expanded, for example, from “Earliness” (RIT, 1922) to “Earliness;
Punctuality” (RIT, 1946).

Both versions of RT have in the past borrowed entries from the other, and occa-
sionally, category names: Non-addition; Subduction (RT, 1852-1953; RIT, 1911-1922),
Deduction (RIT,1946); Subduction (RT, 1962), Subtraction (RT, 1982; RIT 1992). Or
perhaps these changes simply reflect the changing face of modern English (a term which
is always current, no matter in which decade it is used).

The pattern of category changes is different from the British version to the American
version. For example the updating of equivalent categories occurs earlier for the Amer-
ican editions. Also, the British version is more tolerant of obsolete (from daily usage)
Latin terms. In recent years the addition of new words has mainly been in the areas of
science and technology. The addition of these terms also differs between the versions.
The British version continues to add new scientific and technical terms to existing Cate-
gories, while the American version has added new categories. For example, electronics
is found under 160 Power in the British version (RT, 2002), along with strength, force
and energy; while the American version has its own category for 342 Electronics (RIT,
1962).

The addition of categories can reflect cultural and political attitudes, just as Ro-
get’s original categories reflected the attitudes of his day. For example, category 986
Pseudo-revelation (original 1852 edition) contrasts the heathen Koran, Buddha, the

9 Which was converted to electronic form by Sedelow & Sedelow (1993) under NSF grants and
later converted to a relational format by the second author.
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Upanishads, and others, with orthodox Judeo-Christian beliefs of the time (category
985 Revelation).

The 1953 British edition was chosen by Masterman and the CLRU at a time when the
paranoia of Macarthyism was rampant in the USA. Not coincidentally, much of their
machine translation research was supported by the US military (National Science Foun-
dation, U.S. Air Force Office of Scientific Research, and the Office of Naval Research
(Washington, D.C), among others.

This had no apparent direct effect on RT, but had a massive influence on the ensuing
US edition (RIT, 1962). That edition was used directly in the machine translation efforts
of the US military to translate Russian military strategy. The following categories were
some of those which were either added, or radically expanded: 277 Aeronautics, 280
Rockets and Flying Missiles, 281 Astronautics, 326 Radiation and Radioactivity, 342
Electronics, 345 Radar and Radiolocators, and 348 Automation. A sample of the type
of words added is:

277 Aeronautics: aircraft hydraulics, jet engineering, kinetics, micrometry,
rocket engineering, supersonics, supersonic aerodynamics; aviation medicine,
Air Force School of Aviation Medicine, Air Force Department of Space
Medicine; aerial navigation, celestial navigation, electronic navigation, auto-
matic electronic navigation, navar, teleran, loran, shoran

348 Automation: robotic control, cybernetics, automatic electronic navigation,
automatic guidance, missile guidance; guided missile, thinking machine,
chess-playing machine; ENIAC UNIVAC, IBM 702

Some of the more cryptic words are acronyms, probably completely unknown to nor-
mal English speakers. For example, loran (Long Range Aid to Navigation) and teleran
(Television Air Radar Navigation).

As this was also the beginning of the space race, many related words were added
to categories such as 374 Universe (to do with astronomy, star systems, constella-
tions, along with some navigational terminology). 279 Aircraft, in the 1946 (post-
war) edition, had extensive lists of Second World War US, British, German, Italian
and Japanese military aircraft. In 1962 these were replaced by terms such as “air-sea
rescue amphibian, anti-submarine patrol; constant-chordrotor helicopter, intermeshing-
rotor helicopter; high-altitude reconnaissance plane, long-range patrol bomber, photo-
reconnaissance plane”.

This excursus demonstrates the historical and social situatedness of thesaurus ver-
sions. Any thesaurus algorithm will be influenced to some degree by these versional
changes. The actual labelling of the heads is not so important for neighbourhood lat-
tices, but the types and numbers of words in the thesaurus and the degree of granularity
in the lowest level groupings are relevant. Because the modern versions are copyrighted
and not freely available in electronic format, it is difficult to conduct experiments that
evaluate the impact of the versional changes. Our experiments have show that RT (1911)
is too sparse compared to RIT (1962). Masterman’s RT (1953) is similarly sparse as RT
(1911).
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Fig. 2. Neighbourhood lattices for the translation of “Agricola in curvo terram dimovit aratro”

6 Revisiting one of Masterman’s Examples

In this section, we revisit Masterman’s treatment of the Latin sentence “Agricola in
curvo terram dimovit aratro” as described in Section 4. We use Masterman’s heads
(H(S)∗), but manually map them to the categories of RIT (1962) instead of RT (1953).
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In most cases, the category names are the same in both thesauri, only the numbers are
different. For example, Agriculture is category 412 in RIT (1962) and category 371 in
RT (1953). We then use our software as described in previous papers (Priss & Old 2004,
2007 and 2008) to calculate neighbourhood lattices for each T (w). The six lattices in
Figure 2 correspond to the translations of the six chunks “AGRI”, “COL”, “INCURV”,
“TERR”, “DIMOV” and “AR”. Most of the objects in these lattices are the words that
Masterman retrieved as well. RIT (1962) retrieves slightly more words, than RT (1953).

This example confirms that even with the differences between thesaurus editions, the
main structures are still similar. Because we started with Masterman’s heads (H(S)∗),
this example only confirms the last part of Masterman’s algorithm. With respect to the
first part (the initial selection of heads), one would need a thesaurus of Latin words.
Masterman conducted this part manually. The second part (the use of higher level
classes and cross-references) is possible with RIT (1962), but so far we have not yet
implemented it. Another confirmation of Masterman’s research is the fact that her algo-
rithms are similar to techniques that were independently developed by other researchers
as discussed in the next section.

7 Modern Descendants

Masterman’s research influenced many people, including Karen Spärck Jones who is
considered to be one of the pioneers in information retrieval and natural language pro-
cessing. Spärck Jones used Roget’s Thesaurus, but as far as we know had not much
interest in lattices. Similarly, Yarowsky (1992) described an implementation of the use
of Roget’s for word-sense disambiguation which was very similar to Masterman’s ideas
(although he does not cite her), but he uses statistical methods instead of lattices.

In 1960s in the US, Sally Yeates Sedelow obtained funding to convert the American
edition of Roget’s (1962) into a machine readable format with the purpose of aiding ma-
chine translation. The initial abstract models that she and her husband, Walter Sedelow
Jr., used did not rely on lattice theory (Dillon (1971), Bryan (1973), Bryan (1974), Tal-
burt & Mooney (1989)). But Bryan’s model describes a binary relation between words
and senses which is very similar to a formal context as used in FCA. Thus, when the
Sedelows met Rudolf Wille, the founder of FCA, in the early 1990s, they were enthu-
siastic about the possibilities that lattice theory had to offer for their research. Their
paper about the concept “concept” (Sedelow & Sedelow, 1993) derives semantic neigh-
bourhoods for words from the thesaurus which are then represented as “neighbourhood
lattices”. Our own research has used and elaborated this technique in a variety of papers
(Priss & Old, 2004) and has recently led to the implementation of an on-line interface10

that allows users to interactively generate such lattices. As explained above, Master-
man’s thesaurus algorithms are a form of “restricted neighbourhood lattices”. Thus,
one can argue that this modern research is an implementation of Masterman’s ideas,
although the thesaurus research (of the Sedelows) was initially separated from lattice
research and was only recombined through FCA.

Another modern instantiation of Masterman’s ideas is Helge Dyvik’s (2004) re-
search, although, as far as we know, he was not directly influenced by, or aware of,

10 http://www.roget.org

http://www.roget.org
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either FCA or Masterman. Dyvik’s lattices are feature lattices in the sense of com-
ponential semantics. Dyvik’s Semantic Mirrors Method extracts semantic information
from bilingual corpora. His assumption is that if the same sentence is expressed in two
different languages, then it should be possible to align words or phrases in one lan-
guage with the corresponding words or phrases in the other language using statistical
processes or semi-automated processes. Once the corpora are aligned the “translational
images” of words in the other language are computed. This process can be repeated
several times. Next, the translational images are algorithmically assigned to separate
senses. The resulting structures can be represented either graphically as lattices, or as a
thesaurus (using a WordNet-style representation). Both structures can be generated in-
teractively through an on-line interface11. Priss & Old (2005) have shown that this pro-
cedure is similar to creating neighbourhood lattices in FCA, though Dyvik’s research
was developed independently of FCA.

It could be argued that Dyvik’s Semantic Mirrors method is a proof of concept for
Masterman’s vision. Masterman’s (1956) statement that a “multilingual MT dictionary
is analogous in various respects, to a thesaurus” and that “the entries form, not trees,
but algebraic lattices, with translation points at the meets of the sublattices” prescribes
exactly what Dyvik has implemented. Of course, it would not have been possible to
implement a system like Dyvik’s in the 1950s or 60s due to the limits of computers at
that time. It seems to us, however, that perhaps not all of Masterman’s ideas have fully
been explored using modern technology. For example, the “Twenty questions method
of analysis” (Masterman et al., 1959) that was used for extracting extralinguistic (or
“semantic”) information via an intralingual analysis, appears to be similar to attribute
exploration in FCA (Ganter & Wille, 1999). But this relationship has not yet been fur-
ther investigated.

8 Conclusion

In summary, Masterman’s theoretical notions can easily be mapped to modern FCA
notions. Her lattice-thesaurus research has been independently rediscovered (Dyvik
(2004) and Sedelow & Sedelow (1993)) and has been implemented in recent FCA re-
search (Priss & Old, 2004, 2005, 2006, 2007, 2008). The core of the algorithms and
graphical representations described by Masterman resembles restricted neighbourhood
lattices, which have been shown to be the most useful lattices for Roget’s Thesaurus
(Priss & Old, 2008). Several of her ideas are novel with respect to neighbourhood lat-
tices of Roget’s Thesaurus and could inspire future research:

– The use of cross-references. In library thesauri, “related term” links are similar
to cross-references in Roget’s Thesaurus. Thus, Masterman’s approach for using
cross-references is relevant for such thesauri.

– The use of an additional aspect classification (or faceted classification). Masterman
suggests to modify the hierarchy of heads that is represented in the table of contents
of Roget’s Thesaurus so that it becomes a lattice structure in order to obtain a more
detailed semantic representation. This can be achieved by adding semantic tags,
and would be quite easy to implement for modern thesauri.

11 http://ling.uib.no/helge/mirrwebguide.html

http://ling.uib.no/helge/mirrwebguide.html
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– Semantic tags for the individual occurrences of the words in the thesaurus. Mas-
terman explains this procedure with a manually constructed example for one head.
Clearly, it would be difficult to implement this for the whole thesaurus. But per-
haps there are modern natural language processing algorithms that could be used
for such purposes. At least the tags that already occur in the thesaurus (mostly part
of speech tags) could be used in the process of constructing neighbourhood lattices.
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Abstract. We propose a concept lattice-based approach to multiple two
dimensional pattern matching problems. It is assumed that a pattern can
be described as a set of vertices (or pixels) and that a small set of ver-
tices around each vertex corresponds to an attribute in a concept lattice.
Typically, an attribute should be a succinct characterisation of domain-
dependent relevant information about the neighbourhood of the vertex.
The set of objects in the lattice is the set of 2D patterns to be matched.
Searching in the 2D image is carried out in reference to the intents of
lattice concepts. Thus, by searching a small region of the text, one can
efficiently identify which sets of pattern objects may potentially be found
in a larger environment of that region. As experimental data, we use 2D
images derived from microchip design layouts and 2D matching patterns
derived from microchip design rules.

Keywords: 2d pattern matching, formal concept analysis, microchip
design layout, microchip design rules.

1 Introduction

In this paper we propose that a concept lattice presents a promising avenue for
two dimensional pattern matching. More specifically, we investigate the idea that
a concept lattice (a data structure developed in the field of Formal Concept Anal-
ysis(FCA) - introduced in [2] ) can be used to generate a highly integrated set
of matching sequence paths to search for positions where multiple pixel matrices
(images) match in a target image. As experimental data, we use two dimensional
images derived from chip design layouts and design rules. The paper describes
important steps of the experimental matching process. This process starts with
the transformation of geometric relationships in microchip design rules to two
dimensional images and ends with the actual matching algorithm that employs
traversal of and operations on lattices built from these design rule pixel matri-
ces. The experimental tools developed and results of this matching approach as
applied to some existing design rules are discussed and some promising findings
on the efficiency of this approach are presented.
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2 Defining the 2D Pattern Matching Domain

For the purpose of this paper we define the domain of research as matching mul-
tiple two dimensional match images in a target image. Specifically we use images
derived from layouts and design rules as used in electronic design automation
(EDA) software.

2.1 Layouts and Design Rules

To simplify pattern matching of design rules in layouts, layouts and design rules
are treated structurally equivalent. For brevity we refer to a layout or design rule
or any subset of a layout or design rule using the collective term vset. A vset is
a set of vertices. We define a vertex v in such a set as the 5-tuple 〈x0, x1, g, h, k〉
where x0 (x1) is a the first (second) dimension displacement in the vertex plane
and g is the index of the polygon to which the vertex belongs; h, the numeric
identifier of the vertex in polygonp; and k, the material identifier (with respect
to some table of materials) of polygonp. We also define utility functions to access
elements of v as follows:

x(v) = x0

y(v) = x1

p(v) = g

n(v) = h

m(v) = k

To understand many of the formal definitions in further sections we briefly
introduce quantifications using the following notation:

(⊕a : R(a) : f(a))

where ⊕ is the associative and commutative quantification operator (with unit
e⊕), a is the dummy variable introduced, R is the range predicate on the dummy,
and f is the quantified expression. By definition, we have:

(⊕a : false : f(a)) = e⊕

The following table lists some of the most commonly quantified operators, their
quantified symbols, and their units:

Operator ∨ ∧ ∪ min max +
Symbol ∃ ∀

⋃
MIN MAX Σ

Unit false true ∅ +∞ −∞ 0

As an example of quantification on set union, we can define the set E of all even
numbers as the following expression:

E = (
⋃

x : x = 2z ∧ z ∈ Z : {x})



FCA-Based Two Dimensional Pattern Matching 301

where Z is the set of all integers. One can thus say that E is the set that is
created by concatenating all the single member sets {x}, where x = 2z and z
is a member of all integers Z. In this example the quantification operator is

⋃
,

the range predicate is x = 2z ∧ z ∈ Z and the quantified expression is {x}. The
dummy variables used are x and z. Further elaboration on quantifications can
be found in [1].

Applying the quantification notation introduced above, we can now define a
vset s as the set of vertices (

⋃
v : v ∈ V : {v}) where V is the set of all vertices.

We define the set S as all vsets. We define a function polygon as a query on a
vset s that gives the sub-vset of s that contains only the vertices from s that
belong to a specific polygon.

polygon : N× S → V satisfying

polygon(a, s) = (
⋃

v : v ∈ s ∧ p(v) = a : {v})

2.2 From Vsets to Vimages

Although the option to match on vsets exists, this research applies matching
to the output of a pre-processing phase that converts vsets to two dimensional
matrices of pixels called vimages. Many existing 2D pattern matching algorithms
can thus be applied for matching on these vimages. Examples of such algorithms
can be found in [3], [4], [5], [6].

We define the vimage i as a set of pixels forming a two dimensional matrix.
A pixel p is defined as the triple 〈i0, i1, u〉, where 〈i0, i1〉 are the coordinates of
a cell of the matrix corresponding to i and u is the value of the pixel defined as
the triple 〈x0, x1, t〉. The element t is a set of material identifiers corresponding
to all polygons that a rectangle r covers geometrically. The coordinates x0 (x1)
correspond to the first (second) dimension displacement in the vertex plane of
the corner of r that is closest to the vertex plane origin. By convention this
is normally the top-left corner of the rectangle. The rectangles corresponding
to the pixels of a vimage form a non-overlapping cover of the rectangular area
bounding all vertices in the vset from which the vimage is derived.

Figure 1 shows an example of the top-left corners of the tiled rectangles and
material identifiers mapped onto a vset containing two polygons.

As with vertices we define utility functions to access elements of a pixel p =
〈i0, i1, u〉 with u = 〈x0, x1, t〉 as follows:

i(p) = i0

j(p) = i1

x(p) = x0

y(p) = x1

z(p) = t

We define P as all pixels. We define I as all vimages. The algorithm that derives
a vimage from a vset (s) utilises the function s2i0 : S → I satisfying
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Fig. 1. Example of an image overlaid on a vset

s2i0(s) = (
⋃

v1, v2 : v1 ∈ s ∧ v2 ∈ s :

{v2p(v1, s)}
⋃

{v2p(v2, s)}
⋃

{v2pr(v1, v2, s)}
⋃

{v2pr(v2, v1, s)})

The function s2i0 gives a set of pixels (vimage) as a union of the following derived
four pixels for every pair of vertices v1 and v2 in an input vset s.

– Two pixels that are directly derived from v1 and v2 using the function v2p :
V × S → P.

– Two pixels that are derived from v1 and v2 using a rotated combination of
their vertex space coordinates, using the function v2pr : V × V × S → S

The functions v2p and v2pr satisfy

v2p(v, s) = 〈x2i(x(v), s), y2j(y(v), s), 〈x(v), y(v), ∅〉〉
v2pr(v1, v2, s) = 〈x2i(x(v1), s), y2j(y(v2), s), 〈x(v1), y(v2), ∅〉〉

Two new functions are introduced here. The function x2i : N → N (y2j : N → N)
takes the vertex plane x (y) ordinate of a vertex v and gives the index if the
first (second) dimension of a vimage matrix derived from the vset s. Further
definition of these functions is out of scope for this paper as they are considered
implementation details of the experimental system that implements s2i0.

Note that pixels in the vimage given by s2i0 have empty lists of material
numbers. This means that for a vset s:

(∀p : p ∈ s2i0(p) : z(p) = ∅)

To achieve the fully defined vimage from a vset s we use the function s2i : S → I,
satisfying
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s2i(s) = imp(s2i0(s), s)

where imp uses information of neighbours of each pixel in the input vimage to
create a new vimage of which the pixels have fully populated material lists.

2.3 The Matching Requirement

The post-condition (Post) of the matching algorithm is to find the output set
O. Post is thus defined as follows:

O = (
⋃

sm, smm : smm ∈ sm ∧ (∃x, y :: matchs(smm, s, x, y)) : {〈smm, x, y〉})

where sm is the set of vsets to match and s is the vset against which to match.
The function matchs has the signature

matchs : S × S × N × N → B

As discussed above we are not matching directly on vsets. Therefore we rewrite
this post-condition in terms of vimages as follows;

O = (
⋃

im, imm : imm ∈ im ∧ (∃x, y :: matchi(imm, i, x, y)) : {〈imm, x, y〉})

This means that the matching system needs to store the triple 〈imm, x, y〉 in the
output set O for each vset imm from the set of vimages im that matches i at
offset 〈x, y〉 in the pixel matrix corresponding to i.
The function matchi : I × I × N × N → B satisfies

matchi(im, i, x, y) = (∀pm : pm ∈ im : (∃pi : pi ∈ i :
i(pm) + x = i(pi) ∧
j(pm) + y = j(pi) ∧
z(pm) = z(pi))).

3 A Context of 2D Patterns

The matching mechanism that achieves the above-mentioned post-condition is
now considered. A näıve approach is to check every vimage imm ∈ im pixel by
pixel and to record matches accordingly. However, since one expects that there
will be some imm that (partially) match each other, intuition would suggest
that such matching subsets of vimages should only be checked once to optimise
the process of matching all imm ∈ im. Put differently, if a partial order exists
amongst the imm, then such an order could suggest a more optimal search order.

The partial order that a lattice of formal concepts exhibits offers a promising
“experimental mechanism” to test the hypothesis that order amongst elements
of im may be exploited to yield more efficient search strategies.
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Fig. 2. An attribute pattern depicted by the shaded area of a vimage

3.1 Mapping the 2D Pattern Matching Domain to Concept Lattices

To apply the matching problem introduced thus far to Formal Concept Analysis
we define the set of objects in the formal context as string identifiers (names) of
the set of vimages to match (im) in some vimage i.

The attributes of the formal context are small rectangular (sub)vimages de-
rived from each imm ∈ im (ie each object in the context. These sub-images are
called attribute patterns. The value of such an attribute is a one-dimensional
string derived as follows:

c = 〈i〉, r = 〈j〉\〈materiallist〉

where 〈i〉 (〈j〉) is an offset in the first (second) dimension of the matrix associated
with the object (vimage). The suffix 〈materiallist〉 is a string derived from the
2D sequence of pixel values (material identifiers) that occur in the attribute
pattern. Each row consists of a sequence of comma-delimited material identifier
lists and rows are delimited by a “\”.

As an example, the attribute pattern c = 0, r = 0\0, 1, 1\1, 1, 1 has been
derived from the shaded section of the vimage in figure 2.

Figure 3 shows a section of a context derived from experimental vimage match-
ing data.

4 Experimental Tools and Initial Results

The above sections provide the formal basis for a system that transforms a set of
vsets (ms) (to match in some target vset (s)) to a corresponding set of vimages
(im) to match on a corresponding target vimage (i). Such a system can then
derive a formal context from the set im using attribute patterns derived from im.



FCA-Based Two Dimensional Pattern Matching 305

Fig. 3. Example of a context of vimages (as objects) and attribute patterns (as at-
tributes)

4.1 Experimental Software Tools

We developed two experimental tools that form part of such a system.
The first tool is a “Design Rule Editor” that provides the following features:

– A graphical vset editor - to create rectilinear polygons that form part of
a microchip design rule with the ability to assign material identifiers to
polygons.

– A vimage creation module that implements an algorithm for the function
s2i defined above.

– A module that creates four orthogonal rotations for two inflections (also
known as “horizontal flips”) of the vset and corresponding vimage created
in the graphical vset editor.

– A module that makes it possible to define attribute patterns
– A module that uses an attribute pattern as a template to create all attribute

patterns of the same dimensions as the template pattern that fits into every
possible position in every inflection and rotation variation of the user defined
vset and vimage.

– A facility to store all inflections / rotation variations and attribute patterns
created during a session of usage of the “Design Rule Editor” in XML format.
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The reason why we created the mechanism to create all the inflection / ro-
tation variations of vimages and their associated attribute patterns is to cre-
ate concept lattices that may suggest inflection / rotation independent “higher
level rules” for use by chip design engineers to refine chip design rule sets. As
will be shown later in the results discussion, it is also possible—under certain
conditions—to stop the search process at such a concept, reducing the number
of steps required by the search process itself.

Figure 4 shows the main user interface of the “Design Rule Editor”.

Fig. 4. Main user interface of the Design Rule Editor

The second tool that we developed is a “Lattice Context Editor” and provides
the following features:

– A rule editor file import mechanism that reads a file created with the “Design
Rule Editor” and (a) adds an attribute for every new attribute pattern in
the file and (b) adds an object for every new vimage in the file.

– A facility to save the context in XML format
– A facility to export the context into the format accepted by the open source

“Concept Explorer” tool.

Figure 5 shows the main user interface of the “Lattice Context Editor”.
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Fig. 5. Main user interface of the Lattice Context Editor

4.2 Initial Results

Experimental Data. The results that we achieved using the experimental
tools mentioned above are discussed here in relation to a specific example data
set. Using the Design Rule Editor we created the vsets associated with some
existing chip design rules as defined by engineers in the industry.

Figure 6 shows the vsets as they were created in the Design Rule Editor.

Figure 7 shows the vsets that are orthogonal rotations and inflections of the
vset “ELD VO”. The vimage of each vset is also shown as an overlay.

Figure 5 shows a section of the formal context derived from this data set.
The concept lattice line diagram associated with this context is extremely

large. A section of this line diagram is shown in figure 8.

Matching Using Concept Exploration. To illustrate how a matching algo-
rithm will use the above-mentioned lattice we try to match all objects (vimages)
of the context in the vimage shown in figure 9.

The bands of sequences that have solid borders show the horizontal and ver-
tical image matrix indices. The values to the left and above the these bands
show indices of potentially matching vimages as identified during the matching
process.
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Fig. 6. Vsets of chip design rules

Fig. 7. Rotations and Inflections of the vimage ELD VO

The matching algorithm repeats the following two high level phases until the
end of the target vimage is reached:

– Match-Top-Level
– Match-Concepts-Below
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Fig. 8. Lattice Diagram of Experimental Context

The Match-Top-Level phase executes the following high level sequence:
For each pixel p (accessed by traversing the target vimage i from left to right

and top to bottom) check for an initial match using the function matchB0 applied
to all top level concepts.

matchB0(B, i, x, y) = (∃b : b ∈ B : isor(b) ∧ matchi(i, ml2i(b), x, y))

where B is the intent of a top level concept, and x = i(p) and y = j(p) are indices
into the vimage i and the function ml2i transforms the 〈materiallist〉 part of
the string associated with attribute b “back” to a vimage. The function isor (“Is
Origin”) simply checks if the attribute string value contains the prefix c = 0, r =
0. This means that the algorithm that implements matchB0 looks for an attribute

Fig. 9. Target image to match
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Fig. 10. Top level concept selected

in the intent of some concept that represents a matching neighbourhood in the
target vimage. Using the the experimental vimage and concept lattice introduced
above, this phase will result in the selection of a top level concept depicted by a
concept with a black circle around it in figure 10.

In figure 9 above, the origin (top-left pixel) of this matching neighbourhood
is shown as a shaded rectangle with a thick border. The Match-Concepts-Below
phase executes the following high level sequence: Starting with the concept c
(with intent B) found in the previous phase, verify that the 〈materiallist〉 part of
the string associated with each attribute b ∈ B transformed to a neighbourhood
vimage in matches the part of vimage i located at the offset coordinate 〈x +
b2i(b), y+b2j(b)〉 where 〈x, y〉 is the origin of the mapping process as determined
in the Match-Top-Level phase and b2i(b) (b2j(b)) is a function that gives the 〈i〉
(〈j〉) part of the c = 〈i〉, r = 〈j〉 prefix of the string value of b. The function
matchB formally satisfies:

matchB(B, i, x, y) = (∀ b, in : b ∈ B ∧ in = ml2i(b) :
matchi(i, in, x + b2i(b), y + b2j(b)))

In a depth-first order, apply this function to all concepts in the downward closure
(ie “below”) c. For all concepts that have own objects and for which matchB

returns true, add the names of all such own objects to the output set O defined
in the post-condition of the matching algorithm as defined above.

Two optimisations have been made on this phase. The first optimisation of
this phase is to not traverse the downward closures of any concepts for which
matchB returns false. The second optimisation of this phase is that only the
set of attributes D that is the difference between the intent of the concept being
processed (B) and the intent of previous (successfully matched) concept (Bp)
needs to be matched.
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Fig. 11. Matching steps in the Match-Concepts-Below phase

To illustrate this phase of the algorithm, we show in figure 11 each matching
step by circling the respective “visited” concept and showing its intent (Bn) (the
intent pertaining to the concept visited in step n) and own objects in a rectangle
linked to the respective concept node with a thick line. The step number (n)
is shown inside a circle to the top-left of the respective rectangle. The set of
attributes (Dn = Bn \ Bn−1) matched on the vimage in figure 9 in step n is
shown in bold italics. Note that for completeness we show the result of the
Match-Top-Level as Step 0. Concepts that do not match and concepts in the
downward closures of such concepts are marked by overlaying a“X” shape on
the respective concept node.

A few promising observations can be made from this example. Firstly, after
finding the first matching concept in the Match-Top-Level phase, the number of
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attempted attribute pattern matches are very close to the number of attribute
patterns of the successfully matched vimage (115.I1R3). This means that very
little “unnecessary” matches were done. The optimisation of eliminating from
the search space the downward closures of concepts that do not match, con-
tributes to the efficient behaviour shown by this approach. Secondly, the second
concept visited during the matching process (highlighted in Step 1 in figure
11) only contains objects in its extent that are variations of the “115” rule. In
the microchip design context, the attributes (attribute patterns) pertaining to
this concept could be transformed to a “generic” new design rule that can be
searched for in future instead of all the objects in its extent or such a new design
rule can be be used in future as a replacement of all the rotations and inversions
(objects) in its extent, thus simplifying the design rule set.

5 Conclusion

In this paper we formally introduce vsets and vimages. We also formally intro-
duce the matching requirement for these domains. Experimental tools have been
used to test the hypothesis that formal concept analysis can be used to create
an index of a set of vimages for very efficient matching in a target vimage. Re-
sults obtained from using this technique on microchip design data show that this
technique leads to a very efficient order in which attribute patterns pertaining
to multiple vimages (to match) are checked at relevant locations in the target
vimage. Further work will include

– Further analysis of the execution complexity of the matching algorithm.
– Comparison of this approach to current research in multiple 2D pattern

matching techniques.
– More experiments to investigate this technique’s efficiency in handling non-

matching cases
– Analysis of the expected size of Concept Lattices created from vimages de-

rived from chip design rules.
– Implementing the matching algorithm in software to test its execution effi-

ciency.
– Comparison of this research into other work that applies FCA to a priori (eg

geometrically) ordered attributes.
– Analysis of the characteristics of a data set that makes this approach more

appropriate.
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