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Abstract. Multi-Agent Systems (MAS) are particularly well suited to complex
problem solving, whether the MAS comprises cooperative or competitive (self-
interested) agents. In this context we discuss both dynamic team formation among
the former, as well as partner selection strategies with the latter type of agent.
One-shot, long-term, and (fuzzy-based) flexible formation strategies are compared
and contrasted, and experiments described which compare these strategies along
dimensions of Agent Search Time and Award Distribution Situation. We find that the
flexible formation strategy is best suited to self-interested agents in open, dynamic
environments. Agent negotiation among competitive agents is also discussed, in
the context of collaborative problem solving. We present a modification to Zhang’s
Dual Concern Model which enables agents to make reasonable estimates of poten-
tial partner behavior during negotiation. Lastly, we introduce a Quadratic Regres-
sion approach to partner behavior analysis/estimation, which overcomes some of
the limitations of Machine Learning-based approaches.

1 Introduction

Complex problem solving typically requires diverse expertise and multiple tech-
niques. Over the last few years, Multi-Agent Systems (MASs) have come to be
perceived as a crucial technology, not only for effectively exploiting the increasing
availability of diverse, heterogeneous, and distributed on-line information resources,
but also as a framework for building large, complex, and robust distributed infor-
mation processing systems which exploit the efficiencies of organized behaviour.
MAS technology is particularly applicable to complex problem solving in many ap-
plication domains, such as distributed information retrieval [22], traffic monitoring
systems [32], and Grid computing [35], etc.
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A MAS comprises a group of agents, which can collaborate when dealing with
complex problems, or alternatively perform tasks individually with high autonomy.
In a MAS, agents can be characterised as either ‘self-interested’ or ‘cooperative’
[21] [34]. When different types of agents work together, management of their inter-
actions is a very important and challenging issue for the success of MASs.

This chapter introduces two main approaches for complex problem solving via
agent cooperation and/or competition, these being (i) a partner selection strat-
egy among competitive agents, and (ii) dynamic team forming strategies among
cooperative agents.

This chapter is organised as follows. Section 2 provides some background knowl-
edge and definitions relevant to agents and MASs. In Section 3, a dynamic team-
forming approach for MASs in open environments is introduced, which can be
used among both cooperative and self-interested agents. In Section 4, a fuzzy logic
approach for partner selection among self-interested agents via agent competi-
tion is discussed in detail. The chapter concludes and further research outlined in
Section 5.

2 Self-interested and Cooperative Multi-Agent Systems

2.1 Traditional Classification

Agent activities are driven by their goal(s), and according to the properties of these
goal(s), can be classified as either ‘self-interested’ (competitive) or ‘cooperative’
(benevolent) agents [20] [21]. These two types of MAS can be defined as follows:

Definition 1. A MAS that contains agents with distinct or even competitive individ-
ual goals is defined as a self-interested MAS.

Generally, an agent of a self-interested MAS collaborates with other agents to realise
or maximise their local utilities.

Definition 2. A MAS that contains agents with common goals is defined as a coop-
erative MAS.

Normally, agents of a cooperative MAS work together toward maximising the real-
ization of their common goal(s).

An example of a cooperative MAS application is RoboCup [4] [5] [18]. In a robot
soccer team, all robot players (agents) collaborate to achieve their common goal,
i.e., winning the game. A typical example of a self-interested MAS is an agent-
based e-Commerce system in an electronic marketplace [15] [23] [39] [40]. In an
electronic marketplace, different agents work in the same environment toward non-
cooperative individual goals. However, agents still need to collaborate with others in
order to maximise their individual utilities, i.e. purchase/sell items collaboratively
in order to obtain the best price(s).
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2.2 The Blurred Boundary

As the sophistication of MASs increases, the traditional classification of ‘self-
interested’ versus ‘cooperative’ MAS becomes impractical and unreasonable in
many domains [42]. In many MAS applications, a MAS can neither be a simple
market system nor an agent colony. The boundary between self-interested and co-
operative MASs thus becomes blurred [20] [42]. This is mainly due to the following
reasons:

1. In many current MAS applications, agents can come from different organisa-
tional entities. These agents work together because the organisations they belong
to have some cooperative relationships [27]. Therefore the terms and conditions
of this cooperation between individual agents mainly depend on the higher-
level relationship between the organisations. This kind of MAS is not purely
self-interested because of the existence of common goal(s) among the agents.
However such MASs can neither be classified as typically cooperative because
cooperation between agent members are facile and depend not only on the sys-
tem’s overall utility but also on many outside factors.

2. In many MAS applications, self-interested agents are also required to take care
of the global system utility via temporal cooperation in order to maintain and im-
prove their working environments. As the social welfare of the system increases,
all system members, including self-interested agents, will benefit.

3. A MAS can include agents from different organisational entities. This leads to an
agent in the MAS having different attitudes toward different targets. An agent can
be cooperative with agents from the same organisation as itself, yet act in a self-
interested manner with agents of other organisations. Therefore, a MAS could be
a system comprising both self-interested and cooperative agents. In this situation,
it is difficult to identify whether the MAS is cooperative or self-interested.

4. Even within the same organisation, cooperative agents may also behave in a self-
interested way due to their limited local view [16] [42].

2.3 Two Scenarios

In Sections 3 and 4, we introduce first a team-forming mechanism for cooperative
problem solving via agent cooperation, followed by a partner section approach for
collaboration via agent competition, in various types of agent systems.

The following two scenarios will be used in Section 3 and Section 4, respec-
tively, to demonstrate the application of our proposed approaches supporting by
experimental results.

Scenario 1
In a general service composition system, a number of services need to be combined
together to execute a task in the system. For instance, if we want to transport goods
overseas, we have to combine several kinds of services together, which might in-
clude packing service, road transport service, custom elated service and shipping
service. An agent in a service composition system is normally used to represent a
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particular service, and the resource of the agent is the service that the agent can
provide. In such a system, agents must work with each other like a team in order to
achieve the desired goal i.e. to execute tasks cooperatively because each task must
be accomplished by more than one services.

Scenario 2
A car buyer wants to purchase a car. However, there are several prospective sell-
ers. To avoid extensive negotiation with each seller, the buyer should filter out some
‘impossible’ car sellers. For example, if a car seller’s bid is much higher than the
buyer’s expectation or the seller’s reputation cannot be trusted by the buyer, then the
buyer will filter out such car sellers by employing the partner selection approach be-
fore the negotiation starts. During the negotiation, in order to maximise self’s profit,
the car buyer can predict its negotiation partner’s behaviors and make corresponding
responses. For example, for a car buyer in a hurry, if he estimates that a car seller
cannot make further concession, then he will not spend more time on the current
bargaining but looks for another possible seller. On the other hand, for a patient car
buyer, if he estimates that a car seller still has scope to make future concessions, then
the car buyer will make more effort on the bargaining. Therefore, by employing the
behaviours prediction approach, the agent can get some advantages in bargaining.

In distributed and complex problem solving, many MAS applications face a
similar situation as Scenario 1, such as Web-based grid computing, distributed
information gathering, distributed monitoring systems, automated design and
production lines. Scenario 2 is a typical example for self-interested MASs in the
domain of e-commerce and frequently happens in wide agent-based e-trading and
e-market places. Section 3 and Section 4 introduce the detail definitions and princi-
ples about two proposed approaches for agent collaboration, and also demonstrate
experimental results about how to achieve agent collaboration through dynamic
team formation in Scenario 1, and how to achieve agent collaboration by using a
partner selection strategy in Scenario 2, respectively.

3 Collaborative Problem Solving through Agent Cooperation

As introduced in the previous section, MASs can be classified as either self-
interested or cooperative, according to the features of agent goals. However, cooper-
ation is unavoidable in most MASs regardless of whether or not they are cooperative
or self-interested. Due to the distributed nature of the problem to be solved, and be-
cause of limitations in agent abilities, in many cases agents need to work together
on some tasks (i.e. via cooperation).

Agent abilities are limited. To perform tasks beyond its inherent ability, an agent
needs to collaborate with other agents through joining or forming a particular organ-
isation. The organisation of a group of agents is the collection of roles, relationships
and authority structures which govern agent behaviours [14]. All MASs possess
some form of organisation to support agent interactions. The form of organisation
guides how the agent members interact with each other. An agent team is a kind of
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organisational structure that supports agent cooperation. Generally speaking, each
agent team is composed of a team leader and several team members. After an agent
joins a team, it will cooperate with other team members towards a common goal.

In current MAS research, MAS team formation is faced with a number of chal-
lenges, especially with regard to the following two aspects:

• Many current multi-agent systems (MASs) are required to work in open and dy-
namic environments [1] [13] [37] [38]. Uncertainties of dynamic environments
obstruct coherent teamwork and bring difficulties for agent cooperation. In dy-
namic environments, system constraints, resource availability, agent goals, etc.
are all changeable. Changing any of these factors may directly require a MAS to
deal with different situations. In a new situation, retaining outdated cooperative
relationships may obstruct agents in achieving their individual goals.

• Compared with cooperative agents, cooperation among self-interested agents
is more complicated and dynamic, due to their selfish features. Self-interested
agents are impelled to cooperate with others by their individual goals (due to
limited individual abilities). In an agent team composed of self-interested agents,
temporary cooperation among agents might conflict with the selfish goals of in-
dividual agents as the environment changes. In open and dynamic environments,
if factors such as agent goals, task requirements and resources change, a selfish
agent may need to modify or even terminate the cooperative relationships with
its colleagues, otherwise the cooperation would be in conflict or even be harm-
ful to the individual agent goal. Considering this point, some researchers suggest
using dynamic agent cooperation strategies in this kind of application. However,
how long cooperation should be maintained among particular agents is always a
problem.

In many MAS applications, a dynamic team-formation mechanism is needed to
enable agents to automatically form and reform groups/teams to avoid profit con-
flicts between agents in line with changes in the environment. Toward this objective,
a number of researchers try to find an optimal mechanism for dynamic team forma-
tion and member selection [30] [36] [37] [38]. Generally, in current MAS research,
there are two kinds of team-formation mechanisms in widespread use, these be-
ing one-shot team formation and long-term team formation. These team-formation
mechanisms are described below:

• One-shot team-formation mechanism (for temporal cooperation)
In self-interested MASs, an individual agent’s willingness and goals are impor-
tant factors that need to be considered during team formation. Research on team
formation for self-interested agents generally focuses on forming one-shot teams,
also called short-term teams, for individual tasks. In this kind of mechanism,
agents come together when they need to handle some tasks, and their relation-
ships will be terminated after the tasks have been accomplished.

• Long-term team-formation mechanism (for long-term cooperation)
Obviously, one-shot teams can experience frequent grouping and regrouping
among agents. Each grouping/regrouping consumes some communication and
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computation resources. To overcome the weakness of one-shot team formation,
Rathod and desJardins proposed several stable-team formation strategies for self-
interested MASs [30]. These strategies allow self-interested agents to form long-
term relationships in order to reduce team formation overhead. However, for
many self-interested MASs, agent goals or willingness are changeable and re-
main uncertain. A long-term relationship is very difficult to maintain after the
goals of team member agents change.

Both one-shot team formation and long-term team-formation mechanisms have
some weaknesses. One-shot team formation may bring high communication and
computation overhead to a MAS. However, long-term team formation strategies are
not suitable for the dynamic features of open environments and the selfish features
of self-interested agents.

In this section, we introduce and compare the features of the one-shot and
long-term team-formation mechanisms. In addition, to cover some shortcomings of
one-shot and long-term team formations, a flexible team-formation mechanism that
enables both cooperative and self-interested agents to flexibly choose team mem-
bership and duration is proposed. Factors such as historical agent performance, task
requirements and resource constraints are considered in the mechanism. Especially
for open environments, flexible team formation and member selection mechanisms
are more suitable for agent applications. This flexible team-formation mechanism
enables more dynamic and reasonable cooperation between agents and reduces un-
necessary overhead and utility conflicts brought about by team formation. Due to
the high uncertainty inherent in most open environments, analysis and evaluation
of dynamic factors is not very straightforward. More specifically, a fixed standard
for agent evaluations does not exist (e.g. how good an agent’s performance is). Re-
garding this point, fuzzy rules are used in our flexible team-formation mechanism
to evaluate the performance and importance of agents. This will enable an agent
to dynamically select cooperation durations and objectives based on the results of
fuzzy evaluations, and to choose cooperation mechanisms more flexibly.

3.1 Agent Cooperation in Agent Teams: The Scenario

Various MAS applications may have different system structures. In this chapter, an
MAS environment is set up to demonstrate and analyse team formation and member
selection mechanisms. Hence, the system structure is set up toward assisting agent
communication and task allocation. Some simplifying assumptions and definitions,
which can avoid adding to the scheduling and task decomposition problems, are
also made, and only elementary agents and task models are included in the MAS.
However, these models are sufficiently generic to be practical and applicable to a
wide range of real-world applications.

Figure 1 shows the general structure of team organisation. To simplify the prob-
lem, we assume that all agents are aiming to achieve rewards through accomplishing
tasks sent by outside users. New tasks are published on the system Task Board, and
will be removed from the Task Board after being taken by an agent or agent team.
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Fig. 1 The System Architecture

Published tasks are accessible to all individual agents and agent teams within the
system. The number of agents in the system can be dynamic; agents can enter and
leave the system at will. However, agents need to publish and remove their regis-
tration information on the system Agent Board before they so enter (leave). The
registration information records the skills and status of an agent (see Definition 4).

Agent abilities are limited. To perform tasks beyond their individual ability, an
agent needs to collaborate with other agents through joining or forming a team.
Each agent team is composed of one (and only one) team leader and several team
members. After an agent joins an agent team, it can receive payments from the agent
team. At the same time it needs to work for the agent team for a certain period. The
payment and serving term are described in the contract (see Definition 5) between
the team member and the team leader.

Before presenting the team-formation mechanism, some important definitions
and assumptions are given.

Definition 3. A task is defined formally as ti = 〈wi,R′
i〉, where wi is the reward

gained by an agent/agent team if task ti is accomplished by that agent/agent team;
Ri is the set of resources or skills, which are possessed by agents, required by task
ti. A task can only be assigned to one agent or agent team.

Definition 4. An agent is formally defined as ai = 〈gi,Ri,si〉, where gi is a set
of individual goals of agent ai; Ri is the skills and resources possessed by agent
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Table 1 Status of An Agent

si value Status of agent ai

(0, 0, 0) Performing no task; has no agent team.
(1, 0, 0) Performing a task; has no agent team.
(0, 1, 0) Has a one-shot contract as a team member; performing no task currently.
(1, 1, 0) Has a one-shot contract as a team member; performing a task currently.
(0, 1, t) Team member of an agent team for period t; performing no task currently.
(1, 1, t) Team member of an agent team for period t, performing a task currently.
(0, 2, 0) The team leader of an agent team; performing no task currently.

(It is assumed that the team leader cannot quit from its agent team and let
t value of a team leader equal to 0.)

(1, 2, 0) The team leader of an agent team; performing a task currently.

ai; and si is the status of ai, where si = (va,vp,t). si represents whether agent ai is
performing a task and participating in an agent team. The meanings of different si

values are listed in Table 1. The names and meanings of va, vp and t are as follows:

Availability va: represents whether an agent is performing a task. va = 0 when
the agent has no task (available); va = 1 when the agent is performing a task (not
available);
Position Parameter vp: represents whether an agent is an individual agent, team
leader or team member. vp = 0 when the agent is an individual agent; vp = 1
when the agent is a team member; vp = 2 when the agent is a team leader.
Contract Completion Time t: t is the contract completion time of an agent (also
see Definition 5).

Definition 5. A contract ci j is an agreement between team leader ai and team mem-
ber a j. It can be defined as ci j = 〈ti j, pi j,Si j〉, where ti j is the contract completion
time; pi j is the penalty that the team leader or team member has to pay (to the other
parties of the contract) if it breaks the contract and terminates the cooperation re-
lationship before ti j; Si j is a set of payments that a j can gain through serving the
agent team. Si j can be described as a tuple 〈sci j,sdi j〉. For contracts between the
team leader and team members of a one-shot team, ti j, pi j, and sdi j are equal to 0.
sci j is the payment that a j can gain for each task completed by the agent team when
a j directly participates in the task. sdi j is the dividend (or reward) that a j can share
for each task completed by the agent team, when a j does not actually participate in
that task.

Definition 6. An agent team is a set of agents. It can be formally defined as
ATi = 〈MSi,T Ri〉, where MSi is the set of agents (including the team leader) that
are currently team members of ATi; TRi is the total resources of the entire agent
team. Here it is assumed that T Ri = ∑ j|a j∈MSi

( j)+ ri, where Ri and R j are resources
possessed by the team leader and team members, respectively. In other words, the
capability of an agent team is the sum of its team members’ capabilities and the
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team leader’s capability. We further define ∀i �= j : MSi ∩MS j = ∅, which means
that an agent can only participate in a single agent team.

Definition 7. A Contributor Set CSi j(CSi j ⊂ MSi) of agent team ATi is the set
of agents that participate in performing task t j, where t j is a task of ATi. For
a one-shot team, the Contributor Set is equal to MSi of the team (also refer to
Definition 6).

Definition 8. For agent team ATi, a Member Contribution mci jk is the contribution
of agent ak, where ak ∈ CSi j, in performing task t j (ti = 〈w,R′

i〉). mci jk equals w/N,
where N is the size of Contributor Set and w is the task reward.

3.2 One-Shot and Long-Term Team-Formation Mechanisms

After presenting the system architecture and some important definitions, concepts
and comparisons of the one-shot and long-term team-formation mechanisms are
presented in this subsection.

3.2.1 One-Shot Team-Formation Mechanism

One-shot team-formation mechanisms are widely applied in many MAS applica-
tions. In this mechanism, agents do not initially have a team. When a task ti is pub-
lished in the Task Board, agents start to bid on the new task. The system facilitator
will choose (or randomly select) a bidder to assign the task. After the agent success-
fully bids for the task, it becomes a team leader and starts to look for collaborators
according to the task requirement R′

i. Finally, the agent team will disband after the
task (ti) is accomplished.

Generally, the one-shot team strategy includes the following processes. (Here, it
is assumed that the agents cannot achieve the task individually.)

1. The system facilitator of the MAS publishes a new task ti = 〈wi,R′
i〉 on the Task

Board, where wi and R′
i are the reward and required resources of the task;

2. Agents, whose g < wi and s=(0, 0, 0) bid on ti;
3. The system facilitator awards ti to agent a j(a j =< g j,R j,s j >). At the same

time, a j becomes the team leader of agent team ATj and modifies its s j to (0, 2,
0). At this movement, TR j = R j;

4. a j searches the Agent Board to look for agents with status (0, 0, 0), which can
provide the lacking resources R, where R ⊆ (R′

i −R′
i∩T R j);

5. a j finds a required agent ap, where Rp ⊆ (R′
i −R′

i ∩TR j);
6. a j sends a contract c jp to ap, where sc jp ≤ (wi −g j) · sizeO f (Rp)/sizeO f (R′

i −
Ri) ;

7. ap accepts c jp if sc jp ≥ gp or rejects c jp if sc j p ≤ gp;
8. If c jp is accepted by ap, T R j = T R j ∪Rp, and ap modifies its status to (0, 1, 0);
9. Goes to Process (4) until TR j = R′

i;
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10. ATj starts to perform ti; the team leader and the team members of ATj modi-
fies/modify its/their statuses to (1, 1, 0) and (1, 2, 0), respectively;

11. ATj accomplishes ti; agents of ATj modify their statuses to (0, 0, 0) and are
released from the team.

3.2.2 Long-Term Team-Formation Mechanism

In the long-term team-formation mechanism, the agent team will not be dissolved
after performing tasks. On the contrary, the team leader gives the team members
some payment to maintain the cooperative relationship, even if the team member
does not contribute to accomplishing the task.

The long-term team strategy normally includes the following processes [30]:

1. Team leader ai finds several free agents, whose status values are (0, 0, 0), from
the Agent Board and sends them contracts in order to form a team with them.
Agents modify their status to (0, 1, ti j) if they accept the contracts. In this case,
agent team ATi is formed successfully;

2. Team leader ai searches the Task Board for a suitable task and bids on task
tk(tk = 〈wk,R′

k〉), where R′
k ⊆ T Ri and wk ≥ ∑ j|a j∈MSi

(Si j + gi) (also refer to
Definitions 3 through 6).

3. If tk is successfully bid by team leader ai, ai assigns tk to team member
ap,aq...an, where Rp ∪Rq, ...,∪Rn is the minimum set that satisfies R′

k ⊆ Rp ∪
Rq, ...,∪Rn. At the same time, ap,aq, ...,an modify their status to (1,1, tip),
(1,1,tiq), ...,(1,1,tin). Also, for this task performance, the Contributor Set CSik

(refer to Definition 7) should be {ap,aq, ...,an};
4. ap,aq, ...,an modify their status to (0,1, tip),(0,1, tiq), ...,(0,1, tin) after tk is ac-

complished;
5. team leader ai awards team member am (am ∈ ATi) with (scim + sdim) if am ∈

CSik, or sdim if am is not in CSik;

In addition, if the team leader ai or team member ap wants to terminate the con-
tract before the contract completion time tip, they may process the following two
steps:

1. ai/ap terminates cip with ap/ai, and pays pip to ap/ai;
2. ap is released from ATi, and its status modified to (0, 0, 0).

3.2.3 Advantages and Disadvantages of Long-Term and One-Shot
Team-Formation Mechanisms

One-shot teams are suitable for dynamic MAS application domains. They always
maintain loosely-coupled relationships among agents by default. However, agents in
dynamic applications may also need to keep stable organisations in some situations.
For example, the tasks may have some similarity, and their requirements might be
similar (which means they may just need similar agent teams). In this case, frequent
grouping and regrouping is not necessary, since each such grouping consumes some
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Table 2 Features of One-Shot Teams and Long-Term Teams

One-Shot Teams Long-Term Teams
Communication Overhead High Low
Suitable Domains Highly dynamic Stable environments

environments
Suitable MASs Self-interested MAS Cooperative MAS
Relationships among Loosely coupled Tightly coupled
Team Members

system resources. In contrast with one-shot teams, long-term teams can greatly re-
duce the system overhead caused by grouping and regrouping. However, most cur-
rent long-term team formation strategies cannot figure out when agents should form
long-term teams, which agents should be included, and how long the relationships
should be maintained. For self-interested MAS applications, keeping unnecessary
long-term cooperative relationships could be dangerous and harmful for the overall
system performance. Features of one-shot and long-term teams are summarised and
compared in Table 2.

3.3 Flexible Team-Formation Mechanism

From the description of short-term and long-term team formation in the previous
section, it can be seen that both long-term and one-shot teams have some advan-
tages and disadvantages. One-shot teams are suitable for dynamic tasks, where
the requirements of various new tasks are totally different. By contrast, long-term
teams possess advantages when tasks are ‘stable’ or similar. For most self-interested
agents, the team duration should not be fixed. Taking human society as an example,
a company may sign different contracts (with different durations and conditions)
with different employees. According to the performance of employees and changes
in the job market, the company will typically want to make changes to these con-
tracts in the future. For a MAS, it is also necessary to have a flexible team-formation
mechanism which can enable team leaders to choose different cooperation durations
with agents, according to the changing trends of task-requirements and agent per-
formance. In this section, a flexible team-formation mechanism is introduced. In
this mechanism, agent value and availability are evaluated. Team leaders will then
determine the required members and choose proper cooperation durations and cost
according to these evaluation results.

3.3.1 Team Member Performance Evaluation

In general, agents that always contribute to performing tasks and can bring more
benefits to the team are the most valuable members of an agent team. These agents
should be kept on the team for a long time. By contrast, an agent team should not
include agents that bring little contribution to the team. In this mechanism, two
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factors, namely Utilisation Ratio (ur) and Contribution Ratio (cr), are used to eval-
uate the value of a team member.

Definition 9. Utilisation Ratio urMk (urMk ∈ [0,1]) is the frequency with which a
team member ak has participated in the most recent M tasks of the agent team ATi.
It can be calculated using Equation 1. The value of the parameter M is chosen by
team leaders or assigned by users. Team leaders can also adjust M values according
to environmental situations and team performance.

urMk =
M

∑
j=1

1
M

( k|ak ∈CSi j) (1)

Definition 10. Contribution Ratio crMk (crMk ∈ [0,1]) is the ratio that team mem-
ber ak has contributed to the agent team ATi in the most recent M tasks. It can be
calculated using Equation 2 (also refer to Definition 8).

crMk =
∑M

j=1 mci jk ( k|ak ∈CSi j)

∑M
j=1 wj

(2)

The following example shows how to evaluate team members through Utilisa-
tion Ratio and Contribution Ratio. Suppose t1 =< 40,R′

1 >,t2 =< 50,R′
2 > and

t3 =< 60,R′
3 > are the three most recent tasks accomplished by agent team ATi.

ap,aq,ar and as are the team members of ATi. Team members that participate in the
three tasks are {ap,aq},{ap,ar} and {ap,aq}, respectively. According to Equations
1 and 2 , the Utilisation Ratio and Contribution Ratio values of ap,aq,ar and as are:

ap: ur3p = 1, cr3p = (40/2+50/2+60/3)
(40+50+60) = 0.5

aq: ur3q = 0.67, cr3q = (40/2+60/3)
(40+50+60) = 0.33

ar: ur3r = 0.33, cr3r = 50/2
(40+50+60) = 0.17

as: ur3s = 0, cr3p = 0

Comparing Utilisation Ratio and Contribution Ratio values of the four team
members of ATi, it can be seen that ap is the most important member of ATi, since it
frequently participated in recent tasks and contributed the most benefit to the team.
On the other hand, as did not participate in recent tasks and contributes nothing
to ATi.

3.3.2 System Agent Resource Evaluation

With Utilisation Ratio and Contribution Ratio, a team leader can evaluate contri-
butions of team members. However, to make reasonable contracts with team mem-
bers, a team leader also needs to evaluate whether it is easy to find similar agents
(which possess similar resources and skills) in the MAS. In this mechanism, Agent
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Resource Availability is the parameter defined to evaluate agent resource availability
in the MAS.

Definition 11. Agent Resource Availability arak: arak is the ratio of available
agents (which do not have a team/task) that possess the same or more resources
than team member ak. It can be calculated using Equation 3 (Note: Nav here is the
available agent number of the MAS).

arak =
Rk⊆Ri

∑
si=(0,0,0)

1
Nav

(3)

For example, suppose that ak is a team member of ATi. Currently, there are ten
out of twenty available agents in the MAS, which possess the same or more re-
sources than ak. Hence, the Agent Resource Availability value of team member ak is:
arak = 0.5.

3.3.3 Flexible Member Selection Using Fuzzy Rules

According to the values of Utilisation Ratio, Contribution Ratio and Agent Resource
Availability, in this mechanism, team leaders use a fuzzy method to determine co-
operation durations and cost with their team members.
Input and Output Parameters:

In the fuzzy method, Utilisation Ratio, Contribution Ratio and Agent Resource
Availability are input parameters. The output parameters are Contract Term ct and
Commission Amount ca. These parameters are defined in Definitions 12 and 13.

Definition 12. Contract Term ctk is the parameter which denotes the duration that
agent ak should be kept in the agent team. It is an output parameter that needs to
be identified through the fuzzy method. The working range of Contract Term is
[0, MAXTERM]. MAXTERM, which is a constant that is defined in the MAS, and
denotes the maximum time period that an agent can be kept in an agent team.

Definition 13. Commission Amount cak is the parameter that denotes the maximum
commission that the agent team should pay to agent ak in order to keep it in the
team. It is an output parameter that needs to be identified through the fuzzy method.
The working range of Commission Amount is [0, MAXPAY], where the parameter
MAXPAY is decided by the team leader. MAXPAY denotes the maximum payment
that an agent team can afford to keep a single agent as a team member.

Membership Functions for Input Parameters:
For Utilisation Ratio, the following four linguistic states [17] are selected and

expressed by appropriate fuzzy sets: Never (N), Seldom (S), Medium, (M) and Fre-
quent (F). Another input parameter Contribution Ratio also has four linguistic states,
these being None (N), Little (L), Medium (M) and Huge (H). The trapezoidal [17]
fuzzy membership function is adopted here to define fuzzy memberships of these



374 M. Zhang et al.

Fig. 2 Fuzzy Membership Function for ur/cr

four fuzzy sets. The membership functions for these four fuzzy sets are defined in
Equations 4 through 7, respectively. They are also depicted in Figure 2.

FNever(x)/FNone(x) =

{
1−5x x ∈ [0,0.2]
0 x �∈ [0,0.2]

(4)

FSeldom(x)/FLittle(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

10x−1 x ∈ [0.1,0.2]
1 x ∈ (0.2,0.3)
4−10x x ∈ [0.3,0.4]
0 x �∈ [0.1,0.4]

(5)

FMedium(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

10x−3 x ∈ [0.3,0.4]
1 x ∈ (0.4,0.6)
7−10x x ∈ [0.6,0.7]
0 x �∈ [0.3,0.7]

(6)

FFrequent(x)/FHuge(x) =

⎧⎪⎨
⎪⎩

10x−6 x ∈ [0.6,0.7]
1 x ∈ (0.7,1]
0 x �∈ [0.6,1]

(7)

For ara, three linguistic states are selected, namely Rare (R), Some (S), and Many
(M). The membership functions for ara are defined in Equations 8 through 10, and
depicted in Figure 3.

FRare(x) =

{
1−4x x ∈ [0,0.4]
0 x �∈ [0,0.4]

(8)
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Fig. 3 Fuzzy Membership Function for ara

Fig. 4 Fuzzy Membership Function for ct/cl

FSome(x) =

⎧⎪⎨
⎪⎩

5x−1 x ∈ [0.2,0.4]
3−5x x ∈ (0.4,0.6]
0 x �∈ [0.2,0.6]

(9)

FMany(x) =

⎧⎪⎨
⎪⎩

5x−2 x ∈ [0.4,0.6]
1 x ∈ (0.6,1]
0 x �∈ [0.4,1]

(10)

Membership Functions for Output Parameters:
There are two output parameters – Contract Term (ct) and Commission Level (cl)

– in the fuzzy method. For ct, the following four linguistic states are selected: Long
(L), Medium (M), Short (S) and No (N). For cl, High (H), Medium (M), Low (L)
and No (N) are chosen as the four linguistic states. Fuzzy membership functions of
these fuzzy sets are defined in Equations 11 through 14, and described in Figure 4.
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FNo(x) =

{
1−10x x ∈ [0,0.1]
0 x �∈ [0,0.1]

(11)

FShort(x)/FLow(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

10x x ∈ [0,0.1]
1 x ∈ (0.1,0.3)
4−10x x ∈ [0.3,0.4]
0 x �∈ [0,0.4]

(12)

FMedium(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

10x−3 x ∈ [0.3,0.4]
1 x ∈ (0.4,0.6)
4−10x x ∈ [0.6,0.7]
0 x �∈ [0.3,0.7]

(13)

FLong(x)/FHigh(x) =

⎧⎪⎨
⎪⎩

10x−6 x ∈ [0.6,0.7]
1 x ∈ (0.7,1]
0 x �∈ [0.6,1]

(14)

Fuzzy Rule Base:
A fuzzy rule base is a matrix of combinations of each of the input linguistic

parameters and their corresponding output parameters. The rule base in this mecha-
nism is described in Table 3.

Table 3 Fuzzy Rule Base Matrix

Agent Resource Availability R S M
Utilisation Ratio Contribution Ratio Output Parameters: ct, cl

N N ct=N, cl=N ct=N, cl=N ct=N, cl=N
N L ct=M, cl=L ct=N, cl=N ct=N, cl=N
N M n/a n/a n/a
N H n/a n/a n/a
S N ct=M, cl=L ct=N, cl=N ct=N, cl=N
S L ct=L, cl=L ct=S, cl=L ct=N, cl=N
S M ct=L, cl=L ct=M, cl=M ct=S, cl=M
S H ct=L, cl=M ct=S, cl=M ct=N, cl=M
M N n/a n/a n/a
M L ct=L, cl=M ct=M, cl=L ct=S, cl=L
M M ct=L, cl=M ct=M, cl=M ct=M, cl=L
M H ct=L, cl=H ct=L, cl=M ct=M, cl=M
F N n/a n/a n/a
F L ct=L, cl=M ct=M, cl=M ct=L, cl=L
F M ct=L, cl=H ct=L, cl=M ct=L, cl=L
F H ct=L, cl=H ct=L, cl=H ct=L, cl=M
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Determination of Output Membership Values and Defuzzification
Each entry of the rule base is a rule, which is defined by ANDing two linguistic

input parameters to produce an output combination, in the form of: IF(F(ur) = α
AND F(cr) = β AND F(ara) = γ) THEN (F(ct) = δ ) AND F(cl) = eta), where
α ∈ {Never, Seldom, Medium, Frequent}, β ∈ {None, Little, Medium, Large}, γ ∈
{Rare, Some, Many}, δ ∈ {Long, Medium, Short, No}, and η ∈ {High, Medium,
Low, No}. In this mechanism, the AND/MIN operator is used to combine the mem-
bership values, i.e. the weakest membership determines the degree of membership in
the intersection of fuzzy sets [8] [17]. Hence, the output membership value μδ/η(v)
can be calculated using Equation 15.

μδ/η(v) = MIN(μα (ur),μβ (cr),μγ (ara)) (15)

With regard to output membership, the output values can be determined by tracing
the membership values for each rule back through the output membership functions.
Finally, the centroid defuzzification method [8] [17] is used to determine the output
value. In centroid defuzzification, the output value is calculated using Equation 16,
where membership of vi is represented as μ(vi), and k is the number of fuzzy rules
which are activated.

DF = ∑k
i=1(vi ·μ(vi))

∑k
i=1 μ(vi)

(16)

3.4 Experiments

To analyse the performance of the flexible team-formation mechanism, some exper-
iments are conducted to compare it with the one-shot and long-term team-formation
mechanisms. The experimental environment is set up to simulate the scenario intro-
duced in Subsection 3.1. Each agent possesses one (or more) kind of resource(s),
and needs to contribute its resource(s) to achieve rewards through accomplishing
tasks in the system. However in most cases an agent cannot accomplish a task due
to its limited resource(s). Hence, agents need to cooperate with others in order to
realise their goals. This experiment simulates some real world applications. For ex-
ample, in a Web service system [24], each peer can only provide a limited number
of services (i.e. possesses limited resources). To execute a complex task, we need to
aggregate or combine small services in different peers into larger services (i.e. form
a team to perform the task).

In the experiment, a set of tasks is sent to the agents, and they perform these tasks
using one-shot, long-term and flexible team-formation mechanisms, respectively. In
order to avoid agent teams including too many agents for too long a time (especially
for long-term teams), we set a maximum team size to limit the number of long-
term team members. In this experiment, the maximum team size equals five, which
means an agent team can at most keep five long-term members. Two factors are
compared in the experiment, namely Agent Searching Time and Reward Distribution
Situation.
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Fig. 5 Agent Search Comparison (no. of searches vs. no. of tasks)

Agent Searching Time represents the time that a team leader needs to search for
required agents from the agent board to accomplish the tasks. In general, the higher
the Agent Searching Time, the more communication cost the team leader needs to
spend on searching agents.

According to the experimental result, it can be seen that the Agent Search-
ing Time of one-shot team formation is much higher than both long-term and
flexible team formation (See Figure 5). This is because team leaders in one-shot
teams need to keep searching suitable team members for each task and disband
them after a task is accomplished. With long-term and flexible team formation,
the whole team (or part thereof) is retained after a task is completed. Thus these
two latter strategies will have less communication overhead. The experimental re-
sult shows that long-term teams have higher Agent Searching Time than flexible
teams. This is because, in the experiment, a long-term team can at most keep a
limited number of members for a long period. Hence, after a team accomplishes
several tasks, the number of long-term members will reach the limit, and the
team will start to search and disband new members in subsequent tasks. The re-
sult shows that the Agent Searching Time of using flexible team formation is the
lowest, which means it has the lowest communication overhead among the three
mechanisms.

Reward Distribution Situation is the second comparison factor. It represents the
rationality of agent team organisation. Without considering communication over-
head, a one-shot team has an ideal organisational structure because all its team
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Fig. 6 Reward Distribution Situation (no. of reward units per agent)

members contribute to task executions. Hence the Reward Distribution Situation
of one-shot teams can be considered as the benchmark for team organisation ra-
tionality. Throughout this experiment, it can be seen that the Reward Distribution
Situation of flexible teams is closer to one-shot teams than long-term teams (See
Figure 6). Therefore, flexible teams have more reasonable organisations than long-
term teams.

From the experimental results, it can be seen that the flexible team-formation
mechanism is more suitable for self-interested agents and open environments. In
cooperative domains, agents do not care whether the reward is distributed ratio-
nally, the most important thing that cooperative agents consider is the overall ben-
efit to the team. However, self-interested agents do consider rationality of reward
distribution, and do not want to keep “less valuable” members in the team for a
long period. The flexible mechanism can enable agent teams to keep valuable team
members according to their performance and changing environments. Furthermore,
agent teams can adjust their long-term member selection criteria through modify-
ing the member evaluation parameters. This feature can make team formation more
flexible and suitable for open environments. Therefore, compared with one-shot and
long-term team-formation mechanisms, the flexible team-formation mechanism can
enable self-interested agents to form more reasonable teams in an open environment
with less communication overhead.
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3.5 Summary

As a social entity, an intelligent agent needs to cooperate with others in most multi-
agent environments. At the same time, unreasonable team-formation mechanisms
could prevent agents from achieving local benefits, or lead to unnecessary system
overhead. Focusing on challenges inherent in dynamic application domains, many
researchers have suggested using long-term or one-shot team-formation mecha-
nisms in MASs. However, both of these mechanisms have some advantages and
disadvantages, as discussed earlier. A flexible team-formation mechanism can avoid
some of the limitations of the one-shot and long-term team-formation mechanisms.
It can enable agents to automatically evaluate the performance of other agents in
the system, and select team members with reasonable terms and costs according
to the evaluation result. In flexible team-formation, factors related to agent perfor-
mance and task requirements are considered as evaluation factors. Through eval-
uating these factors, team compositions are more reasonable and can avoid some
potential benefit conflicts among team members.

4 Collaborative Problem Solving through Agent Competition

In some application domains, agent competition can also be involved in collabo-
rative problems. Suppose a set of autonomous agents has a global goal it wants to
achieve, where this goal is too complex to be achieved by any single agent. There-
fore, the global goal must be divided into several local goals and distributed to agents
by considering their individual ability, requirement, restriction etc. Now each agent
wants to minimize its costs, that is, prefers to do as little as possible. Therefore, even
though the agents have a common goal, there is actually a conflict of interest here.
Agents may argue and compete with each other in order to maximize their individ-
ual benefits and also ensure that the global goal be achieved in a timely manner. This
kind of competition within a collaborative problem may pertain in applications such
as resource allocation, task distribution, emergencies etc. Agent negotiation can be
employed to solve competition problems.

4.1 Traditional Agent Negotiation

Motivations and aims determine agent behavior in negotiation. Therefore, it is nec-
essary to discuss the kinds of agent behavior which can take place during negotia-
tions. In general, agents may compete or cooperate with each other in order to reach
their own goals or a common goal within a MAS. Final agreements about how to
compete or cooperate are achieved through negotiation. Therefore, negotiations can
be classified into competitive and cooperative according to the behaviors of its par-
ticipants. In a competitive negotiation, participants perform the role of challengers,
while in a cooperative negotiation, participants act as cooperators. However, both
kinds of negotiation contain the following four components in general [33] :

1. The negotiation protocol,
2. The negotiation strategies,
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3. The information state of agents,
4. The negotiation equilibrium.

The negotiation protocol specifies the rules of engagement in agent negotiation.
It defines what kinds of (i) interaction between agents can be taken in different
circumstances; (ii) sequences are allowed and (iii) deals can be made in the negotia-
tion. For example, Rubinstein’s alternating offers protocol is a very commonly used
negotiation protocol. In this protocol, one of the negotiation participants makes an
offer, then the other responds by either accepting the offer, rejecting it, or opting out
of the negotiation. The negotiation will be finished only when all negotiation par-
ticipants accept an offer, or one or more negotiation participants opt out. In general,
agents should make an agreement on the negotiation protocol before the negotiation
proper starts. The negotiation protocol will be designed differently by considering
the following factors: (a) numbers of negotiation participants (e.g. sellers and buy-
ers), (b) numbers of negotiation issues (e.g. a car’s price, color, model and etc.), and
(c) negotiation environment (buyers’ market or sellers’ market).

The negotiation strategy specifies the sequence of actions that the negotiation par-
ticipants plan to make during the negotiation. In competition problem negotiation,
agents try to maximize their own local interests during the negotiation, and also have
to ensure the global goal of the negotiation. Therefore, agents may employ differ-
ent negotiation strategies by considering self and/or other information. For example,
an agent could bargain very hard throughout the negotiation in order to maximize
its benefit or give some kind of concession under time restrictions. Also, it should
be clear that a strategy which performs well with certain protocols may not nec-
essarily do so with others. Therefore, both the negotiation scenario and protocol
in use should be considered when the negotiation participant chooses a negotiation
strategy.

The agents’ information state describes information about the negotiation, which
can be classified as ‘private’ and ‘public’ [9]. Private information describes an
agent’s self situation, such as the negotiation strategy, which is only possessed by
that particular agent. Unless the negotiation participant agrees to share its private
information with others, it is not reachable by other negotiation participants. Public
information describes the negotiation environment, such as the number of nego-
tiation participants, number of negotiation issues, negotiation protocols etc. This
public information is available to all negotiation participants. In the negotiation, if
all negotiation participants would like to share all their private information, then the
negotiation is referred to as ‘negotiation with complete information’. Otherwise, if
the negotiation participant does not want to share their private information, then the
negotiation is termed ‘negotiation with incomplete information’. An agent’s infor-
mation state will impact the agent’s choice of negotiation strategy.

When agents choose negotiation protocols and negotiation strategies, agents cre-
ate negotiation mechanisms. During the negotiation, the negotiation mechanism
must be stable, i.e. a strategy profile must constitute an equilibrium. The Nash equi-
librium [26] is a commonly used concept. Two strategies are in Nash equilibrium if
each negotiation participant’s strategy is the best response to its opponent’s strategy.
The equilibrium is a very important and necessary condition for negotiation system
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stability. For different negotiation protocols, the equilibrium strategy may differ.
However, it is required that each negotiation participant should select an equilib-
rium strategy in the negotiation.

In this subsection, we provide an example of negotiation between two agents.
In our example, the negotiation is performed between two agents, i.e. the ‘buyer’
agent and the ‘seller’ agent. Both agents are bargaining over the price, therefore it
is a single-issue negotiation. In the following, we will show the four components in
our example negotiation and introduce how the negotiation is processed.

The negotiation protocol. We simply adopt the basic alternating offers protocol
[28]. Let b denote the buyer agent, and s the seller agent. The negotiation starts
when the first offer is made by an agent (b or s). The agent who makes the initial
offer is selected randomly at the beginning of the negotiation. When an agent
receives an offer from its opponent, it will evaluate it. According to this evalua-
tion, the agent will take one of the following actions: (i) Accept: when the value
of the offer received from the opponent is equal to or greater than the value of
the counter-offer it is going to send in the next negotiation cycle. Once the agent
accepts this offer, the negotiation ends successfully in an agreement; (ii) Reject:
when the value of the offer received from the opponent is less than the value of
the counter-offer it is going to send in the next negotiation cycle. Once the agent
rejects this offer, providing the negotiation deadline has not been reached, the
agent sends out a counter-offer to its opponent and the negotiation proceeds to
the next cycle; (iii) Quit: when the negotiation deadline falls due and no agree-
ment has been reached, then the agent has to quit and the negotiation fails.

The negotiation strategies. In our example, two agents are bargaining over price,
therefore each agent should have some idea about its acceptability. Let [IPa,RPa]
denote the range of price values which are acceptable to agent a, where a∈ {b,s}.
IPa denotes the initial price and RPa the reserve price of agent a. In general, when
a = b, IPb ≤ RPb, and when a = s IPb ≥ RPb. Let â denote agent a’s opponent,
where â∈ {b,s}. Then the offer made by agent a to agent â at time t (0≤ t ≤ τa),
where τa is the deadline for agent a, is modeled as a function Φa depending on
time as follows:

pt
a→â =

{
IPa + Φa(t)(RPa − IPa) a = b

RPa +(1−Φa(t))(IPa −RPa) a = s
(17)

where function Φa(t) (0 ≤ Φa(t) ≤ 1) is called the negotiation decision function
(NDF) [12]. The common way to define Φa(t) is:

Φa(t) = ka +(1− ka)(
t

τa )1/λ (18)

where ka (0 ≤ ka ≤ 1) is the parameter which controls the initial offer. For ex-
ample, when ka = 0, the initial offer is IPa, and when ka = 1, the initial offer
is RPa; λ is the parameter which controls the agent behavior. Depending on the
value of λ , three extreme cases show different patterns of behavior for the agent
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Fig. 7 Negotiation decision function for the buyer

b in Figure 7 [9]: (i) Conceder: when λ > 1, agent b gives more concession in
the beginning of the negotiation, and less concession closer to the deadline; (ii)
Linear: when λ = 1, agent b gives constant concession throughout the negotia-
tion; and (iii) Boulware: when 0 ≤ λ ≤ 1, agent b gives less concession initially,
and more concession when the deadline is looming.

Finally, agent utility functions at time t are defined as per Equation 19.

Ua(pt
a→â) =

{
RPa − pt

a→â a = b

pt
a→â −RPa a = s

(19)

Ua(t) is the agent a’s evaluation result of its opponent’s offer at negotiation cycle
t; based on this evaluation result, agent a can make a decision about its action.

The information state of agents. The sample negotiation is a negotiation with
incomplete information, i.e. both agents s and b do not share their private infor-
mation with each other.

The negotiation equilibrium. The Nash equilibrium is employed in our sample
negotiation. The action, Aa, of agent a at time t is defined as follows:

Aa(pt
a→â) =

⎧⎪⎨
⎪⎩

Quit i f t > τa,

Accept i fUa(pt
â→a) ≥Ua(pt′

a→â),
Re ject i fUa(pt

â→a) < Ua(pt′
a→â).

(20)

where t ′ is the time of the next negotiation cycle. Therefore, the equilibrium
strategy employed in this negotiation indicates that the agent will only accept the
offer which can maximize self’s benefit given the time constraint.
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4.2 Partner Selection in Agent Negotiation

In the previous subsection, we briefly introduced agent negotiation and also indi-
cated that it can be employed by agents to solve competition problems. However,
due to the rapid development of autonomous agents and Internet techniques, most
MAS work environments have become uncertain and dynamic. In such open and
dynamic environments, when the number of potential partners is huge, performing
complicated traditional negotiations with all potential partners may be expensive in
terms of computational time and resources – indeed even impractical. Thus, we in-
troduce an approach which can be employed by agents to choose partners from a
large pool of potential partners with a high chance of reaching a good agreement in
subsequent negotiations.

Agents may have different criteria on partner selection based on the purpose of
their negotiation. Generally, in cooperative negotiation, agents will select a partner
which will increase global benefits; while in competitive negotiation, agents pre-
fer some partners which can supply the highest benefit to themselves. However, re-
searchers have found that it is not always beneficial for agents to only cooperate with
others about global tasks in cooperative negotiation [16] [42]. Also, in a competi-
tive negotiation, agents should consider the global tasks. Furthermore, when agent
behaviors are in between these two extreme cases, the existing partners selection
approach is no longer suitable.

Zhang et al. proposed a dual concern model which provides an outline about the
degrees of concern of an agent for its own and other’s outcomes [43]. However, this
model only briefly mentions the main trend of these degrees, without offering any
calculation or comparison method. To address these problems, we further extended
this dual concern model to allow agents to make reasonable decisions on their be-
haviors during partner selection based on these degrees. The extended dual concern
model is shown in Figure 8.

In Figure 8, the x-axis indicates the percentage of self-concern of an agent
while the y-axis is the percentage of other-concern from the agent. θ represents a
ReliantDegree (i.e. reflection of the collaboration degree), where θ ∈ [0◦,90◦]. We
use selfishness to represent the percentage of self-concern of an agent, which can be
calculated by cos(θ ), and selflessness to represent the percentage of other-concern,
which can be evaluated by sin(θ ). A ReliantDegree can illustrate the level of col-
laboration between the agent and its potential partner. From the extended model,
we find that there are two extreme cases: (i) when the agent only emphasizes its
own outcome, its negotiation attitude is completely selfish (θ = 0◦); and (ii) when
the agent only cares about its partner’s outcome, its attitude is completely selfless
(θ = 90◦). From this model, it is clear that there are many other cases between
completely selfish and completely selfless behaviors.

Suppose that there are n potential partners for an agent IDx in a MAS. If we use
a four-tuple px

i to represent the ith potential partner of agent IDx, px
i can be formally

defined by Equation 21:

px
i =< IDi,GainRatiox

i ,ContributionRatiox
i ,ReliantDegreex

i > (21)
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Fig. 8 The extended dual concern model

where IDi is the unique identification of the ith potential partner, and GainRatiox
i ,

ContributionRatiox
i and ReliantDegreex

i are factors used to evaluate the potential
partner IDi to be selected in the negotiation. These three factors are defined in Def-
initions 14 through 16, respectively.

Definition 14. GainRatiox
i is the percentage benefit that agent IDx obtains out of

the global benefit upon completion of the task. GainRatiox
i can be calculated as

GainRatiox
i = S

L ×100%, GainRatiox
i ∈ [0,100%], where S denotes the benefit that

agent IDx gains by selecting partner agent IDi as its partner, and L denotes the global
benefit by completing the task.

Definition 15. ContributionRatiox
i is the percentage benefit that agent IDi obtains

out of the global benefit upon completion of the task. ContributionRatiox
i can be cal-

culated as ContributionRatiox
i = I

L ×100%, ContributionRatiox
i ∈ [0,100%], where

I denotes the benefit that partner agent IDi gains by cooperating with agent IDx, and
L denotes the global benefit by completing the task.

Definition 16. ReliantDegreex
i represents agent IDx’s attitude to the negotiation,

and also indicates the dynamic behavior of the agent, such as selfishness, selfless-

ness, or other. ReliantDegreex
i can be calculated as ReliantDegreex

i = arctan(Cri
x

Crx
i
),

ReliantDegree ∈ [0◦,90◦], where Cri
x indicates how much agent IDx trusts partner

agent IDi, which can be defined as the trading success ratio from partner agent IDx

to IDi, or can be assigned by the system based on the performance record of partner
agent IDi, and Cri

x indicates how much partner agent IDi trusts agent IDx, which
can be defined in the similar way as Cri

x.
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Then an agent IDx’s evaluation of its potential partner IDi is represented by
CollaborateDegreex

i , which is defined as follows:

CollaborateDegreex
i = Ψ(px

i ) (22)

where CollaborateDegreex
i ∈ [0,1]. This indicates the tendency that agent IDi will

be selected as a partner in subsequent negotiations by agent IDx. The bigger the
CollaborateDegreex

i , the higher the likelihood that agent IDi will be selected. The
function Ψ specifies how to evaluate a potential partner. The interested reader can
refer to [31] for a (non-linear) fuzzy approach to Ψ . In this chapter, we only consider
a linear approach to Ψ .

In order to cover all potential cases in partner selection, we need to consider not
only both GainRatio and ContributionRatio, but also the preference of the agent
on these two criteria. It is proposed that the agent’s preference on GainRatio and
ContributionRatio can be represented by a normalized weight. Let wg stand for the
weight on GainRatio, wc stand for the weight on ContributionRatio, and wc +wg =
1. Then the CollaborationDegree between agent IDx and its potential partner IDi is
defined as follows:

CollaborateDegreex
i = GainRatiox

i × wg + ContributionRatiox
i × wc (23)

The collaborationDegree (∈ [0,1]) indicates the degree for which the potential
partner should be selected by the agent. The bigger the collaborationDegree, the
more chance that the potential partner will be selected by the agent. In general,
there are three extreme cases on different combinations of wc and wg, namely:

• When wg = 0 and wc = 1, CollaborateDegree is calculated based only on Con-
tributionRatio, i. e. agent IDx’s attitude to negotiation is fully selfless.

• When wg = 1 and wc = 0, CollaborateDegree is calculated based only on
GainRatio, i. e. agent IDx’s attitude to negotiation is fully selfish.

• When wg = wc = 0.5, CollaborateDegree is calculated based equally on Gain-
Ratio and ContributionRatio, i. e. agent IDx’s attitude to negotiation is equitable.

• Besides the above three cases, the restriction of wg +wc = 1 can also reflect agent
IDx’s attitude to GainRatio and ContributionRatio in other cases.

The weights wg and wc can be calculated by employing the value of ReliantDe-
gree, which are defined by Equation 24 and Equation 25, respectively.

wg = cos2(ReliantDegree) (24)

wc = sin2(ReliantDegree) (25)

Finally, by combining Equations 23 through 25, the potential partners are evaluated
by considering the factors of GainRatio, ContributionRatio and ReliantDegree. The
collaborationDegree between the agent IDx and its potential partner IDi is:
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CollaborateDegreex
i = GainRatiox

i × cos2(ReliantDegreex
i )

+ContributionRatiox
i × sin2(ReliantDegreex

i ) (26)

where CollaborateDegreex
i ∈ [0,1]. Then the collaboration degrees set (Collaborat-

eDegreex) between the agent IDx and all its potential partners are generated accord-
ing to Equation 27.

CollaborateDegreex = {CollaborateDegreex
i}, i ∈ [1,n] (27)

Finally, any sorting algorithm can be employed to select favorable partners or ex-
clude unsuitable partners from the collaboration degree set CollaborateDegreex for
the agent IDx.

In this chapter, three examples are demonstrated. In each example, agent g is
going to select the most suitable partner from three potential partners (agents ga, gb

and gc). These examples will illustrate how the proposed approach selects the most
suitable partner for the agent.

Table 4 Example 1

Agent Gain Contribution Reliant Collaborate
Ratio Ratio Degree Degree

ga 80% 20% 0◦ 0.8
gb 50% 50% 0◦ 0.5
gc 20% 80% 0◦ 0.2

In Example 1 (Table 4), as the agent IDx performs as a fully selfish agent
(wg = cos2(0◦) = 1 and wc = sin2(0◦) = 0), the potential partner who can offer
the biggest GainRatio will be selected as the most suitable partner. From Table 4,
agent ga should be selected as the most suitable partner because it can contribute
the highest GainRatio to agent IDx among the three potential partners. By using our
proposed Equation 26, agent ga is also chosen as the most suitable partner because
the CollaborateDegree for agent ga is the largest among the three potential partners.

In Example 2 (Table 5), as the agent IDx performs as a fully selfless agent
(wg = cos2(90◦) = 0 and wc = sin2(90◦) = 1), agent gc should be selected as the
most suitable partner because it has the largest ContributionRatio. According to
Equation 26, agent gc is also selected as the most suitable partner because the Col-
laborateDegree for agent gc is the largest among the three potential partners.

Table 5 Example 2

Agent Gain Contribution Reliant Collaborate
Ratio Ratio Degree Degree

ga 80% 20% 90◦ 0.2
gb 50% 50% 90◦ 0.5
gc 20% 80% 90◦ 0.8
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Table 6 Example 3

Agent Gain Contribution Reliant Collaborate
Ratio Ratio Degree Degree

ga 80% 20% 0◦ 0.8
gb 80% 20% 45◦ 0.5
gc 80% 20% 90◦ 0.2

In Example 3 (Table 6), the agent IDx has different attitudes to its potential part-
ners. For potential partner ga, agent IDx performs as a selfish agent so that only
the GainRatio (80%) will be used to select the most suitable partner. For potential
partner gb, agent IDx performs as an equitable agent so that both GainRatio (80%)
and ContributionRatio (20%) will be used to evaluate whether gb could be chosen
as a suitable partner. Therefore, the final benefit by considering both GainRatio and
ContributionRatio for gb should be between 20% and 80%. For potential partner gc,
agent IDx performs as a selfless agent so that only the benefit of ContributionRa-
tio (20%) will be used for the selection of gc as a partner. By comparing the three
cases, agent ga should be selected as the most suitable partner because agent IDx

would gain the largest benefit(80%) when collaborating with agent ga. According
to Equation 26, agent ga is also selected as the most suitable partner because the
CollaborateDegree for agent ga is the largest among the three potential partners.

Therefore, from the examples, it can be seen that by considering the factors of
GainRatio, ContributionRatio and ReliantDegree between the agent and its poten-
tial partners, a partner selection mechanism can be generated dynamically to allow
agents to adapt to their individual behaviors in negotiation. The selection result is
also accurate and reasonable.

4.3 Behavior Prediction in Agent Negotiation

Negotiation is a means for agents to communicate and compromise to reach mu-
tually beneficial agreements [10] [19]. However, in most situations, agents do not
possess complete information about their partners’ negotiation strategies, and may
have difficulty in making a decision on future negotiation, such as how to select
suitable partners [3] [25], or how to generate a suitable offer in the next negotiation
cycle [29]. Therefore estimation approaches which can predict uncertain situations
and possible changes in the future are required to help agents to generate good and
efficient negotiation strategies. Research on partners’ behavior estimation has been
a very active area in recent years. Several estimation strategies have been proposed
[6] [7] [41]. However, as these estimation strategies are used in real applications,
some limitations begin to emerge, such as inaccurately estimated results or substan-
tial time cost.

Machine Learning is a popular mechanism adopted by researchers in agent be-
havior estimation. In general, this kind of approach comprises two steps in order to
estimate an agents’ behavior. In the first step, the proposed estimation function is
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required to be well trained using the available training data. Therefore, in a way, the
performance of the estimation function is virtually determined by the training result.
In this step, as much data as possible is employed by designers to train a system.
The training data could be synthetic and/or collected from the real world. Usually,
synthetic data is helpful in training a function to enhance its problem solving ability
for some particular issues, while real world data can help the function to improve its
ability in complex problem solving. After the system has been trained, the second
step is to employ the estimation function to predict partner behavior in the future.
However, no matter which and how many data are employed by designers to train
the proposed function, the training data will never be sufficiently comprehensive to
cover all situations in reality. Therefore, even though an estimation function is well
trained, it is also quite possible that some estimation results do not make sense at
all for some kind of agents whose behavior records are not included in the train-
ing data. Currently, as negotiation environments become more open and dynamic,
agents with different kinds of purpose, preference and negotiation strategy can enter
and leave the negotiation dynamically. This Machine Learning-based agent behavior
estimation function may not work well in some more flexible application domains,
for reasons of (i) lack of sufficient data to train the system, and (ii) requiring too
many resources during each training process.

In order to address the aforementioned issues, in this subsection we introduce
a quadratic regression approach for analysis and estimation of partner behaviors
during negotiation. The proposed quadratic regression function is:

u = a× t2 + b× t + c (28)

where u is the expected utility gained from a partner, t (0 ≤ t ≤ τ) is the negotiation
cycle and a, b and c are parameters which are independent of t. It is noticed that the
three types of agents’ behaviors in Figure 7 can be represented by this function as
follows:

• a > 0 (Boulware): the rate of change in the slope is increasing, corresponding to
smaller concession in the early cycles but large concession in later cycles.

• a = 0 and b �= 0 (Linear): the rate of change in the slope is zero, corresponding
to making constant concession throughout the negotiation.

• a < 0 (Conceder): the rate of change in the slope is decreasing, corresponding to
large concession in early cycles, but smaller concession in later cycles.

We firstly transfer the proposed quadratic function 28 to a linear function, as
follows. Let {

x = t2

y = t
(29)

Then Equation 29 can be rewritten as:

u = a× x + b× y + c (30)
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where both a and b are independent of variables x and y. Let pairs (t0, û0), . . .,
(tn, ûn) be instances from each negotiation cycle. The distance (ε) between the real
utility value (ûi) and the expected value (ui) should obey the Gaussian distribution
ε ∼ N(0,σ2), where ε = ûi −a× xi −b× yi − c. Now since each ûi = a× xi + b×
yi + c+ εi, εi ∼ N(0,σ2), ûi is distinctive, and the joint probability density function
for ûi is:

L =
n

∏
i=1

1

σ
√

2π
exp[− 1

2σ2 (ûi −axi−byi− c)2] (31)

= (
1

σ
√

2π
)n exp[− 1

2σ2

n

∑
i=1

(ûi −axi−byi− c)2]

where L indicates the probability that a particular ûi may occur. Because each ûi

comes from the historical record, we should use their probabilities as L’s maximum
value. Obviously, in order to make L achieve its maximum, ∑n

i=1(ûi−axi−byi−c)2

should achieve its minimum value. Let

Q(a,b,c) =
n

∑
i=1

(ûi −axi−byi− c)2 (32)

We calculate the first-order partial derivative for Q(a,b,c) on a, b and c respectively,
and let their results equal zero, as follows:

⎧⎪⎨
⎪⎩

∂Q
∂a = −2∑n

i=1(ûi −axi−byi− c)xi = 0
∂Q
∂b = −2∑n

i=1(ûi −axi−byi− c)yi = 0
∂Q
∂c = −2∑n

i=1(ûi −axi−byi− c) = 0

(33)

Then the Equations 33 can be expanded to:⎧⎪⎨
⎪⎩

(∑n
i=1 x2

i )a +(∑n
i=1 xiyi)b +(∑n

i=1 xi)c = ∑n
i=1 xiûi

(∑n
i=1 xiyi)a +(∑n

i=1 y2
i )b +(∑n

i=1 yi)c = ∑n
i=1 yiûi

(∑n
i=1 xi)a +(∑n

i=1 yi)b + nc = ∑n
i=1 ûi

(34)

Let PU , PA, PB and PC be the coefficient matrices as follows:

PU =

∣∣∣∣∣∣
∑n

i=1 x2
i ∑n

i=1 xiyi ∑n
i=1 xi

∑n
i=1 xiyi ∑n

i=1 y2
i ∑n

i=1 yi

∑n
i=1 xi ∑n

i=1 yi n

∣∣∣∣∣∣ (35)

PA =

∣∣∣∣∣∣
∑n

i=1 xiûi ∑n
i=1 xiyi ∑n

i=1 xi

∑n
i=1 yiûi ∑n

i=1 y2
i ∑n

i=1 yi

∑n
i=1 ûi ∑n

i=1 yi n

∣∣∣∣∣∣ (36)
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PB =

∣∣∣∣∣∣
∑n

i=1 x2
i ∑n

i=1 xiûi ∑n
i=1 xi

∑n
i=1 xiyi ∑n

i=1 yiûi ∑n
i=1 yi

∑n
i=1 xi ∑n

i=1 ûi n

∣∣∣∣∣∣ (37)

PC =

∣∣∣∣∣∣
∑n

i=1 x2
i ∑n

i=1 xiyi ∑n
i=1 xiûi

∑n
i=1 xiyi ∑n

i=1 y2
i ∑n

i=1 yiûi

∑n
i=1 xi ∑n

i=1 yi ∑n
i=1 ûi

∣∣∣∣∣∣ (38)

Because PU �= 0, the parameters a, b and c have a unique solution, which is⎧⎪⎨
⎪⎩

a = PA
PU

b = PB
PU

c = PC
PU

(39)

Previously, we proposed a quadratic regression function to predict partners’ behav-
ior, and also specified how to determine parameters a, b and c. However, it should be
mentioned that the proposed quadratic regression function can only provide an esti-
mation on possible partner behaviors, which might not exactly accord with the part-
ners’ real behaviors. In practice, agents’ estimated behaviors should be close to their
real actions. The closer the estimated behaviors to the real actions, the higher the
probability that the estimated behaviors will occur. Thus we can deem that the differ-
ences (ε) between the estimation behaviors and the real behaviors obey the Gaussian
distribution N(ε,σ2). Thus, if the deviation σ2 can be calculated, we can make a
precise decision on partner behaviors. It is known that there is more than 68% prob-
ability that partners’ expected behaviors are located in the interval [u−σ ,u + σ ],
more than 95% that partners’ expected behaviors lie in [u− 2σ ,u + 2σ ], and more
than 99% in the interval [u−3σ ,u + 3σ ].

In order to calculate the deviation σ , we firstly calculate the distance between the
estimation results (ui) and the real results on partners’ behaviors (ûi) as follows:

di = ûi −ui (40)

It is known that all di (i ∈ [1,n]) obey the Gaussian distribution N(0,σ2). Then σ
can be calculated as follows:

σ =

√
∑n

i=1(di −d)2

n
(41)

where,

d =
1
n

n

∑
i=1

di (42)

Now by employing the Chebyshev inequality, we can calculate (1) the interval of
partners’ behaviors according to any accuracy requirements; and (2) the probability
that any particular behavior may occur in potential partners in the future.
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The Chebyshev’s inequality is:

P(|ûi −ui| ≥ ε) ≤ σ2

ε2 (43)

where ûi is an instance, ui is the mathematical expectation, σ is the deviation and
ε is the accuracy requirement. This function indicates that based on a particular
accuracy requirement ε , the possibility that the real behavior ûi is included in the
interval [ui −σ ,ui + σ ] is greater than 1− σ 2

ε2 .
In this chapter, we demonstrate three scenarios to indicate the agent behaviors

prediction approach. Also, we compare the proposed quadratic regression approach
with the Tit-For-Tat [9] and random approaches. The experimental results illustrate
the outstanding performance of our proposed approach. In order to simplify the
implemented process, all agents in our experiment employ the NDF [11] negotiation
strategy. The partners’ behaviors cover all possible situations in reality, which are
conceder, linear and boulware. In experiments, we use the average error (EA) to
evaluate the experimental results. Let ui be the predicted result in cycle i and ûi be
the real instance in cycle i, then AEi is defined as follows:

AEi =
∑i

k=1 |ûi −ui|
i

(44)

The AEi indicates the difference between the estimated results and the real value.
The smaller the value of AEi, the better the prediction result.

In the first scenario, a buyer wants to purchase a mouse pad from a seller. The
acceptable price for the buyer is in [$0,$1.4]. The deadline for the buyer to finish
this purchasing process is 11 cycles. In this experiment, the buyer adopts conceder
behavior in the negotiation, and the seller employs the proposed approach to esti-
mate the buyer’s possible price in the next negotiation cycle. The estimated results
are displayed in Figure 9(a) and the regression function is:

u = −0.002 ∗ t2 + 0.055 ∗ t + 0.948

It can be seen that in the 8th negotiation cycle, the proposed approach estimates
a price of $1.26 from the buyer in the next cycle. Then according to the historical
record in the 8th cycle, the real price given by the buyer in this cycle is $1.26, which
is exactly same as the estimation price. Furthermore, it can be seen that in cycles 4,
6, 9 and 10, the estimated prices are also the same as the real value. The estimation
prices for the 2nd, 3rd and 7th cycles are $1.05, $1.10 and $1.25, respectively, and
the real prices given by the buyer in these cycles are $1.07, $1.13, and 1.26, which
differ only slightly between the estimated prices and real prices. According to Figure
9(a), all real prices are located in the interval of [μ − 2σ ,μ + 2σ ], where μ is the
estimated price and σ is the changing span. The AE10 = 0.015, which is only 1% of
buyer’s reserve price. Therefore, the prediction results by employing the proposed
approach are very reliable.
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(a) Prediction results for scenario 1

(b) Prediction results comparison for scenario 1

Fig. 9 Scenario 1

In Figure 9(b), we compare results between the proposed approach and two
other estimation approaches (Tit-For-Tat and random). It can be seen that even
though the Tit-For-Tat approach can follow the trend of changes in the buyer’s
price, AE10 = 0.078 which is five times our proposed approach. For the random
approach, it cannot even catch the main trend. The AE10 for the random approach
is 0.11, which is ten times our proposed approach. The experimental results con-
vince us that the proposed approach outperforms both the Tit-For-Tat and random
approaches when a buyer adopts conceder negotiation behavior.

In the second scenario, a buyer wants to buy a keyboard from a seller. The desired
price for the buyer is in the interval of [$0,$14]. We let the buyer employ the linear
negotiation strategy, and still set the deadline to 11 cycles. The seller will employ



394 M. Zhang et al.

(a) Prediction results for scenario 2

(b) Prediction results comparison for scenario 2

Fig. 10 Scenario 2

our proposed prediction function to estimate the buyer’s offer. The estimated results
are illustrated in Figure 10(a) and the estimated quadratic regression function is:

u = −0.015 ∗ t2 + 1.178 ∗ t−0.439

It can be seen that in the 3rd, 5th and 8th cycles, the estimated prices are exactly
the same as the real offers made by the buyer. The biggest difference between the
estimated price and the real value is just 0.4, which happens in the 9th cycle. The
average error in this experiment is only AE10 = 0.24, which is no more the 2% of
the buyer’s reserve price. The estimated quadratic regression function fits the real
prices very well.
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(a) Prediction results for scenario 3

(b) Prediction results comparison for scenario 3

Fig. 11 Scenario 3

Figure 10(b) compares results for the Tit-For-Tat approach, random approach and
our proposed approach. It can be seen that the proposed approach is much closer to
the real price than the other two approaches. The average error for the Tit-For-Tat
approach is AE10 = 2.52, which is 18% of the buyer’s reserve price. The average
error for the random approach is very high – AE10 = 4.82 (34% of the buyer’s re-
serve price). A second experimental result is that when partners perform with linear
behaviors, the proposed approach also outperforms the other two approaches.

In the third scenario, a buyer wants to purchase a monitor from a seller. The
suitable price for the buyer is in [$0,$250]. In this experiment, the buyer employs a
boulware strategy in the negotiation. The deadline is still 11 cycles. The estimated
quadratic function is:
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u = 3.038 ∗ t2−12.568 ∗ t+ 15.632

The estimated results are shown in Figure 11(a), it can be seen that the proposed
quadratic regression approach predicted buyer’s prices successfully and accurately.
Except for the 4th and 8th cycles, other estimated prices differ very little from the
buyer’s real offers. The average error in this experiment is AE10 = 4.07, which is
only 1.6% of the buyer’s reserve price. Therefore, we can say with confidence that
from these estimation results, the seller can make accurate judgement about the
buyer’s negotiation strategy, and make reasonable responses in order to maximize
its own benefit.

Finally, Figure 11(b) shows comparison results with two other estimation func-
tions for the same scenario. For the Tit-For-Tat approach, the average error is
AE10 = 57.74, which is 23% of the buyer’s reserve price. For the random approach,
the average error is AE10 = 83.12, which is 33% of the buyer’s reserve price. There-
fore, it can be seen that when the agent performs a boulware behavior, the proposed
approach significantly outperforms the other two approaches.

From these experimental results, we can conclude that the estimated quadratic
function regression approach can successfully estimate partners’ potential behav-
iors. Moreover, the estimation results are accurate and sufficiently reasonable to be
adopted by agents to modify their strategies in negotiation. The comparison results
among the three types of agent behavior estimation also demonstrate the outstanding
performance of our proposed approach.

In this section, we introduced agent negotiation for solving complex problems
between collaborative agents. Firstly, we pointed out that agent competition can
also be involved in collaborative problems. Then we introduced some basic knowl-
edge about agent negotiation for conflict resolution. Furthermore, we introduced a
partner selection approach and agents’ behavior prediction approach for complex
negotiation environments and illustrated some experimental results to show the im-
provements. In conclusion, we can say that agent negotiation is a very significant
mechanism for agents to solve conflicts which may occur during complex problem
solving procedures.

5 Conclusion

Complex problem solving requires diverse expertise and multiple techniques. MAS
is a particularly applicable technology for complex problem solving applications.
In a MAS, agents that possess different expertise and resources collaborate together
to handle problems which are too complex for individual agents. Generally, agent
collaborations in a MAS can be classified into two groups, namely agent coop-
eration and agent competition. These two kinds of collaborations are unavoidable
for most MAS applications, but both present challenges. In addition, two main ap-
proaches for complex problem solving via agent cooperation and agent competition
have been introduced – these being a dynamic team formation mechanism for co-
operative agents, and a partner selection strategy for competitive agents. These two
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approaches can be applied to coordinate utility conflicts among agents, and make a
MAS more suitable for open dynamic working environments.

Research into dynamic team formation can be extended in the following two
directions. Currently, team formation research is based on a simple agent organi-
sation. However, in many current MAS applications, more complex organisational
structures, such as congregation [2], are adopted. Building a mechanism to support
complex organisational formation is one research direction for the future. Further-
more, different organisational structures are suitable for different circumstances. In
a complex dynamic working environment, agents may need to choose different or-
ganisational structures due to a changing environment. To develop mechanisms that
enable agents to not only select cooperation partners but also dynamically choose
organisational structures is another avenue for future research.

Further work on agent negotiation can proceed in two directions, as (i) Currently,
most agent negotiation strategies and protocols can only handle the negotiation with
single issue. However, with expansion of application domains, negotiating multiple
issues will become a significant trend. Therefore, research on multi-issue negoti-
ation will become a future direction. (ii) Most negotiation environments currently
mainly focus on the static situations, but fail to take into account where a negoti-
ation environment becomes open and dynamic. In an open and dynamic environ-
ment, agents can perform more flexibly to enhance their benefits. Also an open and
dynamic negotiation environment is much more efficient in handling real world ap-
plications. Therefore, changing the negotiation environment from static to open and
dynamic is another significant research direction on the topic of agent negotiation
for the future.

Another potential direction is to extend our current research to complex domains
in which agents can show semi-competitive behaviours or temporary collaborative
behaviours in different situations.
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