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Abstract. This chapter introduces the book. It begins with a historical perspective
on Computational Intelligence (CI), and discusses its relationship with the longer es-
tablished term “Artificial Intelligence” (AI). The chapter then gives a brief overview
of the main CI techniques, and concludes with short summaries of all the chapters
in the book.

1 Introduction

In the early days of information technology computers were large, expensive and the
property of the few government organizations, academic institutions and big busi-
nesses who could afford them. Centralized operating systems were developed and
two classes of computer systems evolved: one for scientific computing and engi-
neering, specializing in “number crunching” and the other for business computing
focussing on data processing activities such as stock control and computerized cus-
tomer accounts. Today computing devices are small and cheap, and pervade our
every day lives. It is therefore not surprising that the style of software required for
the twenty-first century is very different from that needed to run operations on the
large mainframe computers of the past. It is in this climate that the field of “Artificial
Intelligence” (AI) has given way to the newer study of “Computational Intelligence”
(CI)1. AI grew out of attempts to emulate the human brain on mainframe computers,
while CI is more pragmatic and relies on distributed computation, communication
and emergence. CI is well suited to today’s modern ubiquitous computing devices.

This book is about practical computational intelligence. It covers many tech-
niques and applications, and focuses on novel ways of combining different CI
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techniques together, or hybridizing CI techniques with traditional computational
techniques. Recognizing the need for pragmatism, authors in this collection propose
some new and exciting problem-solving frameworks. The key themes emphasized
in the book title are collaboration, fusion and emergence. Fusion refers to the amal-
gamation of CI techniques with each other or with more traditional computational
methods. Collaboration involves effective communication and is essential, if the
above mentioned “fused” techniques are to work harmoniously together. Finally,
emergence can be viewed as a central goal of CI, asserting that complex behaviour
can emerge from collaboration between simple processing elements. An essential
ingredient of a CI system exhibiting emergent behaviour is synergy in which the
whole is greater than the sum of the parts.

The remainder of this chapter is structured as follows. It will begin with some
discussion on the origins of Computational Intelligence, and examine its relation-
ships with Artificial Intelligence. This will be followed by a brief survey of some of
the key CI paradigms. The chapter will conclude with a brief overview of the rest of
the book.

2 The Birth of Computational Intelligence

The origin of the term “Computational Intelligence” (CI) has been widely attributed
to Bezdek [1, 2]. Defining a new field devoted to computer-based intelligence can
be viewed as a timely attempt to escape from some of the difficult issues and bad
publicity associated with the longer established field of Artificial Intelligence (AI).
Although AI and CI have much in common, the emphasis is subtly different. CI
concentrates on practical application, self organization and the emergence of com-
plex behaviour from simple components, while AI aims to build intelligent systems
based on ideas of how the human brain works. John McCarthy originally coined
the term “Artificial Intelligence” in 1955, in advance of a month long brainstorming
conference held in Dartmouth College in the following year. The proposal for the
Dartmouth conference [15] makes interesting reading. The introduction is repro-
duced below.

We propose that a 2 month, 10 man study of artificial intelligence be carried out during
the summer of 1956 at Dartmouth College in Hanover, New Hampshire. The study is
to proceed on the basis of the conjecture that every aspect of learning or any other
feature of intelligence can in principle be so precisely described that a machine can
be made to simulate it. An attempt will be made to find how to make machines use
language, form abstractions and concepts, solve kinds of problems now reserved for
humans, and improve themselves. We think that a significant advance can be made in
one or more of these problems if a carefully selected group of scientists work on it
together for a summer.

The document goes on to discuss the “various aspects of the artificial intelligence
problem” in more detail, including computers and computer programming, natural
language processing, neural networks, the theory of computation, the need for au-
tomatic self-improvement, and aspects of abstraction and creativity. Most of these
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topics remain active research issues to this day. However, the assumption that hu-
man intelligence can be simulated by machine was perhaps a little overoptimistic.
Indeed, it is one of the “big questions” remaining in computer science.

The two decades following the 1956 conference saw many high profile AI re-
search projects, for example, the development of the LISP and PROLOG program-
ming languages, the SHRDLU “microworlds” project, and the first expert systems
(see standard texts on AI, such as [20, 21], for more information). Although few
could argue that these projects had produced some highly successful results, and
useful applications, there was, nevertheless, a general feeling of disappointment at
the time, that the AI community had in some sense “failed to deliver”. This percep-
tion was effectively articulated in a report to the British Science Research Council
by the British academic James Lighthill in 1973 [14]:

In no part of the field have discoveries made so far produced the major impact that was
then promised.

In essence, the so-called “Lighthill Report” stated that AI researchers had failed to
address the issue of the combinatorial explosion, i.e., AI techniques may work on
small problem domains, but the techniques do not scale up well to solve more real-
istic problems. Following this very pessimistic view, the Science Research Council
slashed funding for AI projects in the UK. Although a rather more optimistic view
prevailed in much of the rest of the world, and major new investments continued
throughout the 1980s (e.g., CYC in the USA [13], and the Fifth Generation Com-
puter Systems project in Japan [6]). AI was becoming an increasingly fragmented
study, consisting of many disciplines, such as reasoning, knowledge engineering,
planning, learning, communication, perception, and so on. Despite the many suc-
cesses that had been achieved using expert systems, logic programming, neural net-
works etc., it was blatantly obvious that the dream of properly emulating human
intelligence had never come close to being realized. It was time to perhaps “move
on” and capitalize on the substantial achievements provided by some of the “off-
shoots” of AI, and leave behind the very negative image that had become so closely
associated with the term “AI” itself, not so much because AI had failed per se, but
rather because of the over-inflated expectations that had become intrinsically tied
up with the notion of it.

Bezdek’s view of CI was as a system that exhibited some form of “intelligence”,
yet dealt with numerical (low level) data, as opposed to “knowledge”, and in this
sense differed from traditional Artificial Intelligence. Nevertheless, the view of
Bezdek was very much focussed towards his personal research interests of pattern
recognition and neural networks. In the following years the term “CI” became firmly
established when it was adopted by the IEEE (the Institute of Electrical and Elec-
tronic Engineers), and in 2004 the Computational Intelligence Society (CIS) was
established (as a name change from the Neural Network Society). The slogan of the
IEEE CIS is “mimicking nature for problem solving”, and its scope is stated as:

The Field of Interest of the Society shall be the theory, design, application, and de-
velopment of biologically and linguistically motivated computational paradigms em-
phasizing neural networks, connectionist systems, genetic algorithms, evolutionary
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programming, fuzzy systems, and hybrid intelligent systems in which these paradigms
are contained.

Artificial intelligence brings its connotations of “intelligence”, which can be dis-
tracting. One can get sidetracked into pondering the meaning of intelligence, rather
than asking more useful questions, about self-organization, and emergence of com-
plex systems from simple components, for example. A useful definition taken from
the Computer Science web site of Amsterdam University (http://www.cs.vu.nl/ci/)
emphasizes the “bottom up” nature of CI:

Enclosed in the name computational intelligence is a ‘message’, according to scien-
tific folklore it is chosen to indicate the link to and the difference with artificial intel-
ligence. While some techniques within computational intelligence are often counted
as artificial intelligence techniques (e.g., genetic algorithms, or neural networks) there
is a clear difference between these techniques and traditional, logic based artificial
intelligence techniques. In general, typical artificial intelligence techniques are top-to-
bottom, where the structure of models, solutions, etc. is imposed from above. Com-
putational intelligence techniques are generally bottom-up, where order and structure
emerges from an unstructured beginning.

Some interesting further discussions on the birth of AI and CI, and on some of
the important philosophical issues on the essence of intelligence can be found in
Chapter 2 of this book.

3 The Main CI Techniques

In this section we will look briefly at the following key CI paradigms: Evolutionary
Algorithms, Neural Networks, Fuzzy Systems and Multi-Agent Systems. This will
be followed by a short summary covering some other important techniques included
by various authors in this collection.

3.1 Evolutionary Algorithms

Evolutionary algorithms (EAs) comprise a class of techniques inspired by evolution
and natural selection. The best known EAs are undoubtedly the genetic algorithms
(GAs) developed by John Holland [9] in the 1960’s and 70’s. Contemporaries of
Holland independently developed some similar techniques however, for example of
Rechenberg [19] introduced evolution strategies (ES) and Fogel, Owen and Walsh
[7] developed evolutionary programming (EP). Since these early days, interest in
evolutionary-inspired algorithms has grown extensively, and many new variations
have appeared, often very different from the original models conceived by Holland,
Rechenberg or Fogel. For example, in the early 1990s, John Koza proposed genetic
programming [11]: an evolutionary style technique for evolving effective computer
programs, mostly using the LISP programming language (see also Chapter 6). Other
popular paradigms to have been derived from the more generic approach include
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artificial life [12], evolvable hardware [8], ant systems [4] and particle swarms [10]
(Chapter 20), to name but a few. Artificial Immune Systems (Chapter 16) have also
become a popular topic for research in recent years, drawing analogies with some
of the ingenious problem-solving mechanisms observed in natural immune systems
and applying them to a broad range of real-world problems. In addition, there are
many examples of hybrid (or memetic) approaches where problem specific heuris-
tics, or other techniques such as neural networks, fuzzy systems, or simulated an-
nealing, have been incorporated into a GA framework. Thus, due to the growth
in popularity of search and optimization techniques inspired by natural evolution
during the last few decades, it is now common practice to refer to the field as evo-
lutionary computing and to the various techniques as evolutionary algorithms. In
addition, evolutionary techniques for simultaneously optimizing several objectives
have recently become popular. These approaches, collectively known as multi-
objective evolutionary algorithms [3] are very effective at balancing the frequently
conflicting objectives to produce excellent trade-off solutions, from which a human
decision maker can make an informed choice. Chapters 3 and 5 deal with multi-
objective optimization problems.

Parallel evolutionary algorithms are discussed in Chapter 17. The analogy with
natural population structures and their geographical distributions make parallel im-
plementations highly desirable, to speed up processing and to facilitate complex
emergent behaviour from simple components within the distributed populations.

Given the range of EAs mentioned above, it is not perhaps surprising that there is
no rigorous definition of the term “evolutionary algorithm” that everyone working in
the field would agree on. There are, however, certain elements that the more generic
types of EA tend to have in common:

1. a population of chromosomes encoding candidate solutions to the problem in
hand,

2. a mechanism for reproduction,
3. selection according to a fitness, and
4. genetic operators.

Figure 1 gives an outline of a generic EA. The process is initialized with a starting
population of candidate solutions. The initial population is frequently generated by
some random process, but may be produced by constructive heuristic algorithms, or
by other methods. Once generated, the candidate solutions are evaluated to establish
the quality of each solution, and based on this quantity, a fitness value will be com-
puted, in such a way that better quality solutions will be assigned higher values for
their fitness. Individuals will next be selected from the population to form the par-
ents of the next generation, and these will be duplicated and placed in a mating pool.
The selection process is frequently biased, so that fitter individuals are more likely
to be chosen than their less fit counterparts. Genetic operators are then applied to the
individuals in the mating pool. The idea is to introduce new variation, without which
no improvement is possible. Recombination (also known as crossover) is achieved
by combining elements of two parents to form new offspring. Mutation, on the other
hand, involves very small random changes made to solutions. The final stage in the
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Fig. 1 The Evolutionary Cycle

cycle requires the population is updated with new individuals. Depending on the
style of the EA, this may involve replacing the parent population in its entirety, or
partial replacement is favoured by some researchers - perhaps replacing the poorest
10 % of the population by the best offspring, for example. A good general text on
evolutionary algorithms is Eiben and Smith [5].

3.2 Neural Networks

Artificial Neural Networks (ANNs) are inspired by biological nervous systems,
and emulate a simple “brain”. They consist of large numbers of highly intercon-
nected processing elements (neurons) working together and learning from experi-
ence. ANNs are specially configured for each application, and typical uses include
pattern recognition and data classification. In a biological nervous systems, learn-
ing involves making adjustments to the synaptic connections between the neurons.
In a similar way for ANNs, learning is accomplished through the adjustment of
weights by application of some “learning rule” to the connections between the ar-
tificial neurons or nodes. Learning rules typically attempt to reinforce connections
that contribute to a “correct output”, and penalize connections that produce incor-
rect results. There are three main classes of ANN, distinguished by their different
learning processes: 1) supervised learning, 2) unsupervised learning, and 3) rein-
forcement learning. With supervised learning a training stage uses a set of test data
and a teacher to score the performance of the ANN, then adjusts the connection
weights in an effort to improve the performance to better match the actual output
to the predicted output. The most widely known supervised learning ANNs are the
backpropagation nets. ANNs that use unsupervised learning do not have a training
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Fig. 2 A Neural Network with One Hidden Layer

stage, and these are frequently referred to as “self organizing networks”. Kohonen
nets are the best known example of this type. In reinforcement learning data is not
usually available. Instead the aim is to discover a policy for selecting actions that
minimize some measure of long-term cost. A schematic neural network is illus-
trated in Figure 2. For more details on ANN see Mehrotra, Mohan, and Ranka [16].
Chapters 12, 13 and 22 all utilize neural networks, in one form or another.

3.3 Fuzzy Systems

Fuzzy logic was first proposed by Lotfi A. Zadeh of the University of California
at Berkeley in a 1965 paper [23]. It is a modification of boolean (or crisp) logic
which allows approximate and common sense reasoning in the absence of “true” or
“false” certainty. In crisp logic, set membership is “all or nothing”. In contrast, fuzzy
logic allows partial membership of sets, known as fuzzy sets, and forms the basis of
fuzzy systems. Fuzzy Systems can deal with partial truth and incomplete data, and
are capable of producing accurate models of how systems will behave in the real
world, particulary when appropriate conventional system models are not available.
Instead of supplying equations for a mathematical model, for example, a designer
will need to produce appropriate fuzzy rules to describe the system he/she wishes to
implement. The system operates when inputs are applied to the rules consisting of
the current values of appropriate membership functions. Once activated, each rule
will fire and produce an output, which will also be a partial truth value. In the final
stage, the outputs from all the rules are combined, in some way, and converted into
a single crisp output value. In summary, a fuzzy system consists of the following:
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Fig. 3 A Fuzzy Temperature Control System

• a set of inputs
• a fuzzification system, for transforming the raw inputs into grades of member-

ships of fuzzy sets
• a set of fuzzy rules
• an inference system - to activate the rules and produce their outputs
• a defuzzification system - to produce one or more final crisp outputs

We will now look at a simplistic fuzzy system: a fuzzy controller for room tem-
perature.

The fuzzy set membership diagram in Figure 3 characterizes three functions,
identifiable as subranges of temperature: cold, warm and hot. Suppose we wish to
keep a room at a comfortable temperature (warm) by building a control system to
adjust a room heater. We can see in Figure 3 how each function maps the same tem-
perature value to a truth value in the 0 to 1 range, so that any point on that scale has
three “truth values”, one for each of the three functions. It is these truth values that
are used to determine how the room temperature should be controlled. The vertical
line in the diagram represents a particular temperature, t. At this temperature it is
easy to observe the degree of membership to “hot” (red) is zero, this temperature
may be interpreted as “not hot”. Membership of “warm” is about 0.7, and this may
be described as “fairly warm”. Similarly, examining membership of the “cold” func-
tion gives a value of about 0.15, which may describe it as “slightly cold”. Adjectives
such as “fairly” and “slightly”, used to modify functions are referred to as “hedges”,
and can be a useful way to specify subregions of the functions to which they are
applied.

To operate our fuzzy temperature control system, we require a number of fuzzy
IF-THEN rules, in the form of “IF variable IS property THEN action”. For example,
an extremely simple temperature regulator that uses a heater might look like this:

1. IF temperature IS cold THEN turn heater to high
2. IF temperature IS warm THEN do nothing
3. IF temperature IS hot THEN turn off heater

Notice there is no “ELSE”. All of the rules are evaluated, because the temperature
will belong to all three sets (cold, warm and hot) at the same time, but to different
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degrees. At temperature t in Figure 3, for example, M(cold) = 0.15,M(warm)= 0.7
and M(hot) = 0.

Obviously, the greater the truth value of “cold”, the higher the truth value of “turn
the heater to high”, although this does not necessarily mean that the output itself will
be set to “high”, since this is only one rule among many. In our example, the partial
truth inputs for “cold”, “warm” and “hot” will in turn produce partial truth values
for the outputs “turn the heater to high”, “do nothing” and “turn the heater off”.
The simplest way to produce a single crisp instruction, is to select the output with
the maximum value (which will probably map to “do nothing” in the case of our
temperature t). A more sophisticated method involves finding the centroid of all the
outputs. This methods locates the “centre of mass” of the combined membership
function curves.

More complex rules can be built for fuzzy systems, using AND, OR, and NOT
operators. These are the counterparts of the familiar crisp logic operators, and they
are usually defined (respectively) as the minimum, maximum, and complement. So,
for the fuzzy variables x and y:

NOT x = (1 - truth(x))
x AND y = minimum(truth(x), truth(y))
x OR y = maximum(truth(x), truth(y))

Clearly, the simple temperature controller described above is for illustration only,
and practical fuzzy systems will typically be made up from many more rules - per-
haps hundreds or even thousands. In these more sophisticated systems, it is likely
that the fuzzy rule set will be less “flat”, and form more of a hierarchy, so that the
outputs of some rules provide inputs to others. Systems with large rule sets will
probably require more sophisticated inference systems to ensure the efficient pro-
cessing of the rules, in a reasonable order.

To complete this section, it is worth mentioning a variation of fuzzy sets called
rough sets. Rough Set Theory was introduced in the early 1980s by Zdzislaw Pawlak
[18]. The basic idea is to take concepts and decision values, and create rules for
upper and lower boundary approximations of the set. With these rules, a new object
can easily be classified into one of the regions. Rough sets are especially helpful
in dealing with vagueness and uncertainty in decision situations, and for estimating
missing data. Uses include data mining, stock market prediction and financial data
analysis, machine learning and pattern recognition.

For further reading on fuzzy systems [17] is a good introductory text. Also Chap-
ter 4 in the present book, provides a good background to many of the important
concepts, and chapters 3, 5, 18, and 22 also cover aspects of fuzzy systems.

3.4 Multi-Agent Systems

A multi-agent system (MAS) is a system composed of many interacting intelligent
agents; each one is in itself simple and apparently acts only in its own interest, yet by
collaborating and/or competing with each other agents, an MAS can be used to solve
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problems which would entirely defeat an individual agent or a monolithic system.
MAS can exhibit self-organization and complex behaviour can emerge. Example
applications include financial forecasting and online trading (see Chapter 8) and
disaster response (see Chapter 10).

The agents in a multi-agent system have several important characteristics [22]:

• Autonomy: the agents are at least partially autonomous
• Local views: no agent has a full global view of the system
• Decentralization: there is no one controlling agent
• Typically multi-agent systems research refers to software agents. However, the

agents in a multi-agent system could equally well involve robots, humans or hu-
man teams. A multi-agent system may contain combined human-software agent
teams (see Chapter 8).

Generally, multi-agent systems are flexible and they are easily maintained or
modified without the need for drastic rewriting or restructuring. MAS also tend
to be robust and recover easily from a breakdown, due to built in duplication and
redundancy of components. Chapters 8, 9, 10, 11 and 20 all deal explicitly with
multi-agent systems.

3.5 Other Techniques Covered in the Book

Besides the main methods outlined above, a number of other CI techniques have
been used by various authors in this text, including rule induction (Chapter 19),
Bayesian Learning (Chapter 10), Likelihood Ratios (Chapters 18 and 19), Case-
Based Reasoning (Chapter 21), Collaborative Clustering (Chapter 22), Blackboard
Database Systems (Chapter 9), and Hyper-Heuristics (Chapter 6). Among the “tra-
ditional techniques” used in partnership with the CI methods, statistical methods are
used in Chapters 13 and 21, and computer vision techniques in Chapters 12 and 13.
Effective communications are essential for agent-based systems and all distributed
CI techniques. These important issues are addressed in Chapters 14 and 15.

4 Chapters Included in This Book

This book is divided into nine parts:

Introduction
Fusing evolutionary algorithms and fuzzy logic
Adaptive solution schemes
Multi-agent systems
Computer vision
Communication for CI systems
Artificial immune systems
Parallel evolutionary algorithms
CI for clustering and classification
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4.1 Part I: Introduction

This Part covers some of the history of computational intelligence, and sets the scene
for the rest of the book.

Chapter 1: Synergy in Computational Intelligence

The present chapter, by Christine Mumford, introduces the book and begins Part I.
It begins with a brief history of Artificial Intelligence and discusses the origins of
the term “Computational Intelligence”. Then follows an introduction to the main
Computational Intelligence paradigms used by the various authors in the book; and
finally, the chapter concludes with short summaries of all the individual chapters.

Chapter 2: Computational Intelligence: The Legacy of Alan Turing and John
von Neumann

In this thought-provoking chapter, Heinz Mühlenbein recalls the fundamental re-
search questions of computational intelligence, and explains how many of these
issues remain unresolved to this day. In recent years, it has become fashionable
to subdivide computational intelligence into many fields e.g. evolutionary compu-
tation, neural networks, fuzzy logic. This was not always the case. This chapter
recalls the broader issues and reviews the seminal research of Alan Turing and John
von Neumann in detail. The author discusses the many areas of computational in-
telligence that need to come together, if we are to create automata with human-like
intelligence.

4.2 Part II: Fusing Evolutionary Algorithms and Fuzzy Logic

These three chapters cover some useful ways to combine evolutionary algorithms
with fuzzy systems.

Chapter 3: Multiobjective Evolutionary Algorithms for the Electric Power
Dispatch Problem

The main objective of the electric power dispatch problem is to schedule the avail-
able generating units to meet the load demand at minimum cost, while satisfying all
constraints. However, thermal plants are a major source of atmospheric pollution.
Recently the pollution minimization problem has attracted a lot of attention as the
public demand clean air. Mohammad Abido explores the use of evolutionary multi-
objective optimization to minimize cost and pollution, simultaneously. Furthermore,
he uses fuzzy set theory to select the “best” compromise solution from the trade-off
solution set.
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Chapter 4:Fuzzy Evolutionary Algorithms and Genetic Fuzzy Systems: A
Positive Collaboration Between Evolutionary Algorithms and Fuzzy Systems

Two alternative ways of integrating fuzzy logic and evolutionary algorithms are dis-
cussed in detail by F. Herrera, M. Lozano in this chapter. The first one, called a ge-
netic fuzzy system (GFS) consists of a fuzzy rule based system (FRBS) augmented
by a learning process based on evolutionary algorithms. In the second approach,
fuzzy tools and fuzzy logic-based techniques are used for modeling different evolu-
tionary algorithm components and also for adapting evolutionary algorithm control
parameters, with the goal of improving performance. The evolutionary algorithms
resulting from the second type of integration are called fuzzy evolutionary algo-
rithms. This chapter includes some excellent introductory material on fuzzy logic,
as well as a summary of state-of-the-art with respect to genetic fuzzy systems and
fuzzy evolutionary algorithms. The potential benefits derived from the synergy be-
tween evolutionary algorithms and fuzzy logic are made clear.

Chapter 5: Multiobjective Genetic Fuzzy Systems

Hisao Ishibuchi and Yusuke Nojima describe the two conflicting goals in the design
of fuzzy rule-based systems: one is accuracy maximization, and the other is com-
plexity minimization. Generally, complex rules and large rule sets promote accuracy,
and smaller rule sets with simple rules reduce complexity. The authors discuss the
trade-off relation between these two goals, i.e., that improving the accuracy of a rule
set will simultaneously increase its complexity. This chapter explains how various
studies in multiobjective genetic fuzzy systems have experimented with the provi-
sion of non-dominated trade-off solutions, each solution being a complete candidate
rule set for the decision maker’s consideration. These rule sets will range from the
simplest and least accurate to the most complex and most accurate.

4.3 Part III: Adaptive Solution Schemes

These two chapters describe two different approaches to adaptive problem solving,
involving mechanisms to select from a portfolio of algorithmic alternatives, adapting
to the best choices for particular problems and instances.

Chapter 6: Exploring Hyper-Heuristic Methodologies with Genetic
Programming

Hyper-heuristics represent a novel search methodology that is motivated by the goal
of automating the process of selecting or combining simpler heuristics in order to
solve hard computational search problems. This approach operates on a search space
of heuristics rather than directly on a search space of solutions to the underlying
problem which is the case with most meta-heuristics implementations. In this chap-
ter, Edmund Burke, Mathew Hyde, Graham Kendall, Gabriela Ochoa, Ender Ozcan
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and John Woodward look at the use of Genetic Programming to automatically gen-
erate heuristics for a given problem domain.

Chapter 7: Adaptive Constraint Satisfaction: The Quickest First Principle

James Borrett and Edward Tsang demonstrate the potential of adaptive constraint
satisfaction in this chapter, using a technique known as algorithmic chaining. It is
recognised that some constraint satisfaction instances are much easier to solve than
others, and thus it makes sense to apply a simple and fast algorithm, whenever such
an approach is adequate for solving the instance in question. However, when faced
with exceptionally hard problem instances, a more complex (and slower) approach
may be required. Algorithmic chaining presents a sequence of algorithms, which
are applied to a problem instance in turn, if and when required. Thus, if the first
algorithm is unsuccessful, the second in the sequence will be tried, and then the
third, if required, and so on. The chapter describes the “Reduced Exceptional Be-
haviour Algorithm” (REBA), which is a technique based on algorithmic chaining.
The REBA algorithm makes use of a mechanism for predicting when thrashing type
behaviour is likely to occur, and results presented within the chapter clearly demon-
strate the effectiveness of the approach in reducing susceptibility to exceptionally
hard problem instances.

4.4 Part IV: Multi-Agent Systems

Multi-Agent Systems (MAS) provide increasingly popular paradigms for solving
complex problems, using a distributed system of (simple) individual processing el-
ements. These four chapters offer some novel solutions to difficult design and im-
plementation issues associated with practical MAS.

Chapter 8: Collaborative Computational Intelligence in Economics

This chapter provides a general review of collaborative computational intelligence
(CCI) in economics. Shu-Heng Chen demonstrates the potential of CCI by focussing
on three research paradigms in economics: heterogeneous agent-based economics,
experimental economics, and financial data mining. The essence of agent-based eco-
nomics is a society of heterogeneous agents working together. Experimental eco-
nomics is explored with respect to laboratories comprising both human agents and
software agents. Finally, the chapter concludes with a survey of hybrid CI systems
currently used in financial data mining.

Chapter 9: IMMUNE: A Collaborating Environment for Complex System
Design

To address the dilemma of distributed versus central control in complex system
design, decision support systems that enable robust collaboration amongst many
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design agents from different disciplines are required. The particular characteristics
of such decision support systems must include immunity to catastrophic failures and
sudden collapse that are usually observed in complex systems. This chapter, written
by Mahmoud Efatmaneshnik and Carl Reidsema, lays the conceptual framework
for IMMUNE as a robust collaborating design environment. Agents in IMMUNE
are adaptive and can change their negotiation strategy and in this way can con-
tribute to the overall capability of the design system to maintain its problem solving
complexity.

Chapter 10: Bayesian learning for cooperation in multi-agent systems

Mair Allen-Williams and Nicholas R Jennings consider the problem of agent coor-
dination in uncertain and partially observable systems. They present an approach to
this problem using a Bayesian learning mechanism, and demonstrate its effective-
ness on a cooperative scenario from the disaster response domain.

Chapter 11: Collaborative Agents for Complex Problems Solving

In a multi-agent system (MAS), agents that possess different expertise and re-
sources collaborate together to handle problems which are too complex for indi-
vidual agents. Generally, agent collaborations in a MAS can be classified into two
groups, namely agent cooperation and agent competition. In this chapter Minjie
Zhang, Quan Bai, Fenghui Ren and John Fulcher introduce two main approaches
for complex problem solving via agent cooperation and/or competition, these be-
ing (i) a partner selection strategy among competitive agents, and (ii) dynamic team
forming strategies among cooperative agents.

4.5 Part V: Computer Vision

Computer vision is a key application area for CI techniques. Chapters 12 and 13
discuss two extremely challenging applications: predicting human character traits
from facial appearance and analyzing crowd dynamics, respectively.

Chapter 12: Predicting Trait Impressions of Faces Using Classifier Ensembles

Recent studies in social psychology indicate that people are predisposed to form
impressions of a person’s social status, abilities, dispositions, and character traits
based on nothing more than that person’s facial appearance. In this chapter Sheryl
Brahnam and Loris Nanni present their work on building machine models of hu-
man perception, aimed at recognizing traits (such as dominance, intelligence, matu-
rity, sociality, trustworthiness, and warmth) simply by observing human faces. They
demonstrate that ensembles of classifiers work better than single classifiers, and also
that ensembles composed of 100 Levenberg-Marquardt neural networks (LMNNs)
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seem to be as capable as most individual human beings are in their ability to predict
the social impressions certain faces make on the average human observer.

Chapter 13: The Analysis of Crowd Dynamics: From Observations to
Modelling

B. Zhan, P. Remagnino, D.N. Monekosso and S. Velastin describe how computer
vision techniques, combined with statistical methods and a neural network, can be
used to automatically observe, measure and learn crowd dynamics. New methods
are proposed to measure crowd dynamics, and model the complex movements of a
crowd.

4.6 Part VI: Communication for CI Systems

Distributed CI systems of all kinds need reliable, fast and efficient communications.
These two chapters describe simple, low cost and effective ways to use the lat-
est technology in a discriminatory way. Chapter 14 covers large scale collaborative
sensor networks, and Chapter 15 focusses on opportunist networks.

Chapter 14 :Computational Intelligence for the Collaborative Identification of
Distributed Systems

In this chapter Giorgio Biagetti, Paolo Crippa, Francesco Gianfelici and Claudio
Turchetti suggest a new algorithm for the identification of distributed systems by
large scale collaborative sensor networks. They describe how recent advances in
hardware technologies have made it possible to realize low-power low-cost wireless
devices and sensing units that are able to detect information from the distributed
environment. Even though individual sensors can only perform simple local com-
putation and communicate over a short range at low data rate, when deployed in
large numbers they can form an intelligent collaborative network interacting with
the surrounding environment in a large spatial domain. Sensor networks (SNs) char-
acterized by low computational complexity, great learning capability, and efficient
collaborative technology are highly desirable to discriminate, regulate and decide
actions on real phenomena in many applications such as environmental monitoring,
surveillance, factory instrumentation, defence and so on.

Chapter 15: Collaboration at the Basis of Sharing Focused Information: The
Opportunistic Networks

This chapter is written by Bruno Apolloni, Guglielmo Apolloni, Simone Bassis,
Gian Luca Galliani and Gianpaolo Rossi and discusses opportunistic networks. Op-
portunistic networks provide a communication protocol that is particularly suited
to set up a robust collaboration within a very local community of agents. Like me-
dieval monks who escaped world chaos and violence by taking refuge in small and
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protected communities, the authors point out that modern people may escape the
information avalanche by forming virtual communities without relinquishing most
of the benefits of the latest information and computer technology. A communication
middleware to obtain this result is represented by opportunistic networks.

4.7 Part VII: Artificial Immune Systems

Chapter 16 provides a broad overview of artificial immune systems research, and
focusses particularly on areas of natural immune systems that have been rather ig-
nored by the AIS community in the past.

Chapter 16: Exploiting Collaborations in the Immune System: The Future of
Artificial Immune Systems

This chapter, written by Emma Hart, Chris McEwan and Despina Davoudani, sug-
gests some novel ways in which the natural immune system metaphor could be
exploited to build new types of computational systems capable of meeting some of
the challenges of the 21st Century, including self-configuration, self-maintenance,
self-optimization and self-protection in an ever-changing environment. The authors
focus particularly on aspects of the natural immune system which appear to have
been largely overlooked by the artificial immune systems (AIS) research community
in the past, and place significant emphasis on the design of systems rather than algo-
rithms. The article puts forward some possible reasons why the potential promised
by AIS has not yet been delivered, and suggests how this might be addressed in
the future. The arguments are particularly relevant in light of recent advances in
technology which present a new and challenging range of problems to be solved.
A number of examples of systems in which steps are currently being taken to im-
plement some of the mechanisms are then described. The chapter concludes with
a discussion of an emerging field, that of immuno-engineering which promises a
methodology which will facilitate maximum exploitation of immune mechanisms
in the future.

4.8 Part VIII: Parallel Evolutionary Algorithms

Chapter 17 discusses the variety and importance of spatial interactions of popula-
tions in the natural world and demonstrates the relevance of these issues to parallel
evolutionary algorithms.

Chapter 17: Evolutionary Computation: Centralized, Parallel or
Collaborative

In this second chapter by Heinz Mühlenbein, the author focusses on the nature
and importance of spatial interactions in evolutionary computation, and he also
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investigates cooperation and collaboration in this context. While “competition” is
a fundamental component of Darwin’s theory of natural selection, it can be argued
that cooperation and collaboration also play a large role in evolution and population
dynamics. In this chapter genetic algorithms with several different spacial interac-
tion schemes are tested, and the results are discussed in relation to Darwin’s ideas
on the evolutionary gain achieved if subpopulations of individuals are periodically
isolated from each other or from the main continental population of a species (i.e.,
the continent-island cycle).

4.9 Part IX: CI for Clustering and Classification

The four chapters in this section cover various aspects of pattern recognition, clus-
tering and data mining.

Chapter 18: Fuzzy Clustering of Likelihood Curves for Finding Interesting
Patterns in Expression Profiles

In this chapter Claudia Hundertmark, Lothar Jänsch and Frank Klawonn present a
prototype-based fuzzy clustering approach that allows the automatic detection of
regulatory regions within individual proteins. Cellular processes are mediated by
proteins acting e.g. as enzymes (catalysts) in different metabolic pathways. Modi-
fications are regularly made to specific regions of proteins within a living cell after
that protein has been manufactured. The purpose of these post-translational mod-
ifications is to provide regulatory effects that will control the binding and activity
properties of the modified proteins. In other words, the same protein will behave
differently depending on the specific modifications made to it after its creation. Fol-
lowing the digestion of proteins into fragments (peptides), which is a necessary first
stage of the work, the approach described in this chapter utilises likelihood curves
to summarise the regulatory information of the peptides, based on a noise model
obtained by an analytical process. Since the algorithm for the detection of peptide
clusters is based on fuzzy clustering, their collaborative approach combines proba-
bilistic concepts as well as principles from soft computing. However, fuzzy cluster-
ing is usually based on data points and its application to likelihood curves provided
a considerable challenge for the authors. An interesting feature of this work is its
potential transferability to noisy data from other applications, provided the noise
can be specified by a noise model.

Chapter 19: A Hybrid Rule Induction/Likelihood Ratio-Based Approach for
Predicting Protein-Protein Interactions

Mudassar Iqbal, Alex A. Freitas and Colin G. Johnson propose a new hybrid data
mining method for predicting protein-protein interactions in this chapter. The pur-
pose is to predict unknown protein interactions using relevant genomic informa-
tion currently available. The new technique combines Likelihood-Ratios with rule
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induction algorithms and uses rule induction to discover the rules to partition the
data. The discovered rules are subsequently interpreted as “bins” and used to com-
pute likelihood ratios. In this way a rule induction algorithm learns classification
rules, and these learned rules are used to improve the effectiveness of a likelihood
ratio-based classifier, which is used to predict unknown protein interactions.

Chapter 20: Improvements in Flock-based Collaborative Clustering
Algorithms

Esin Saka and Olfa Nasraoui begin their chapter with a brief survey of swarm in-
telligence clustering algorithms, and point out that since the early 90s, swarm in-
telligence (SI) has been a source of inspiration for clustering problems, and has
been used in many applications ranging from image clustering to social clustering,
and from document clustering to Web session clustering. The chapter then focuses
mainly on a recent development: simultaneous data visualization and clustering us-
ing flocks of agents. The chapter presents some improvements to previous algo-
rithms of this type and proposes a hybrid approach. Experiments on both artificial
and real data confirm the validity of the approach and the advantages of the variants
proposed in this chapter.

Chapter 21: Combining Statistics and Case-Based Reasoning for Medical
Research

Case-based Reasoning (CBR) uses previous experience represented as cases to un-
derstand and solve new problems. A case-based reasoner remembers former cases
similar to the current problem and attempts to modify solutions of former cases to
fit the current problem. In this chapter Rainer Schmidt and Olga Vorobieva present a
system, called ISOR, that helps to explain medical cases that do not fit a theoretical
hypothesis. Indeed, it is often the case that no well-developed theory exists. Further-
more, at the start little knowledge or past experience may be available. This chapter
focusses on the application of the ISOR system to the hypothesis that a specific ex-
ercise program improves the physical condition of dialysis patients. Additionally,
for this application a method to restore missing data is presented.

Chapter 22: Collaborative and Experience-Consistent Schemes of System
Modelling in Computational Intelligence

This study by Witold Pedrycz discusses a number of developments which form a
conceptual and algorithmic framework for collaborative computational intelligence.
First of all, the fundamentals of collaborative clustering are introduced in terms of
information granules, i.e, fuzzy sets which emerge as a result of knowledge sharing.
This is followed by the development of algorithmic definitions, which show the per-
tinent computing details. Hierarchies of clusters are also introduced, and experience-
consistent fuzzy modeling is presented in the context of rule-based fuzzy models and
neural networks.
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