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Preface

This book is about synergy in computational intelligence (CI). It is a col-
lection of chapters that covers a rich and diverse variety of computer-based
techniques, all involving some aspect of computational intelligence, but each
one taking a somewhat pragmatic view. Many complex problems in the real
world require the application of some form of what we loosely call “intelli-
gence” for their solution. Few can be solved by the naive application of a single
technique, however good it is. Authors in this collection recognize the limi-
tations of individual paradigms, and propose some practical and novel ways
in which different CI techniques can be combined with each other, or with
more traditional computational techniques, to produce powerful problem-
solving environments which exhibit synergy, i.e., systems in which the whole
is greater than the sum of the parts1.

Computational intelligence is a relatively new term, and there is some dis-
agreement as to its precise definition. Some practitioners limit its scope to
schemes involving evolutionary algorithms, neural networks, fuzzy logic, or
hybrids of these. For others, the definition is a little more flexible, and will
include paradigms such as Bayesian belief networks, multi-agent systems,
case-based reasoning and so on. Generally, the term has a similar meaning
to the well-known phrase “Artificial Intelligence” (AI), although CI is per-
ceived more as a “bottom up” approach from which intelligent behaviour can
emerge, whereas AI tends to be studied from the “top down”, and derive from
pondering upon the “meaning of intelligence”. (These and other key issues
will be discussed in more detail in Chapter 1.) In this book we will take a
relatively broad view of CI.

Common themes to be found in the various chapters of this collection in-
clude the following: fusion, collaboration and emergence. Fusion describes the
hybridization of two or more techniques, at least one of which will involve
CI. Fused techniques need to Collaborate in order to “work together” har-
moniously on the required application. Distributed CI techniques, such as
1 This phrase is attributed originally to Aristotle.
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neural networks and multi-agent systems are also collaborative in their na-
ture, and all such systems require effective communication. Emergence refers
to the phenomenon that complex behaviour can emerge from collaboration
between simple processing elements - indeed, many would say that this is the
key to success. The twenty two chapters have been grouped into nine parts
(see Table 1):

I. Introduction
II. Fusing evolutionary algorithms and fuzzy logic
III. Adaptive solution schemes
IV. Multi-agent systems
V. Computer vision
VI. Communication for CI systems
VII. Artificial immune systems
VIII. Parallel evolutionary algorithms
IX. CI for clustering and classification

This book is aimed at a broad audience: graduate students, researchers,
engineers, and computer scientists. The idea is to try to motivate the reader
to explore cutting-edge challenges that may sit on the periphery of their
present areas of interest. Most chapters include a gentle introduction to the
topics they address, and thus should prove interesting to the relative beginner
as well as to the more experienced reader. All chapters provide suggestions
for background and further reading.
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Table 1 The chapters and themes of the book

Theme Chapter
Introduction 1: Synergy in Computational Intelligence

2: Computational Intelligence: The Legacy of
Alan Turing and John von Neumann

Evolutionary Algorithms and Fuzzy
Logic

3: Multiobjective Evolutionary Algorithms
for the Electric Power Dispatch Problem
4: Fuzzy Evolutionary Algorithms and Ge-
netic Fuzzy Systems: A Positive Collabora-
tion Between Evolutionary Algorithms and
Fuzzy Systems
5: Multiobjective Genetic Fuzzy Systems

Adaptive Solution Schemes 6: Exploring Hyper-Heuristic Methodologies
with Genetic Programming
7: Adaptive Constraint Satisfaction: The
Quickest First Principle

Multi-Agent Systems 8: Collaborative Computational Intelligence
in Economics
9: IMMUNE: A Collaborating Environment
for Complex System Design
10: Bayesian Learning for Cooperation in
Multi-Agent Systems
11: Collaborative Agents for Complex Prob-
lem Solving

Computer vision 12: Predicting Trait Impressions of Faces Us-
ing Classifier Ensembles
13: The Analysis of Crowd Dynamics: From
Observations to Modelling

Communication for CI 14: Computational Intelligence for the Col-
laborative Identification of Distributed Sys-
tems
15: Collaboration at the Basis of Sharing Fo-
cused Information: The Opportunistic Net-
works

Artificial Immune Systems 16: Exploiting Collaborations in the Immune
System: The Future of Artificial Immune
Systems

Parallel EAs 17: Evolutionary Computation: Centralized,
Parallel or Collaborative

Clustering and Classification 18: Fuzzy Clustering of Likelihood Curves
for Finding Interesting Patterns in Expression
Profiles
19: A Hybrid Rule Induction/Likelihood
Ratio-Based Approach for Predicting
Protein-Protein Interactions
20: Improvements in Flock-based Collabora-
tive Clustering Algorithms
21: Combining Statistics and Case-Based
Reasoning for Medical Research
22: Collaborative and Experience-Consistent
Schemes of System Modelling in Computa-
tional Intelligence
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Synergy in Computational Intelligence

Christine L. Mumford

Abstract. This chapter introduces the book. It begins with a historical perspective
on Computational Intelligence (CI), and discusses its relationship with the longer es-
tablished term “Artificial Intelligence” (AI). The chapter then gives a brief overview
of the main CI techniques, and concludes with short summaries of all the chapters
in the book.

1 Introduction

In the early days of information technology computers were large, expensive and the
property of the few government organizations, academic institutions and big busi-
nesses who could afford them. Centralized operating systems were developed and
two classes of computer systems evolved: one for scientific computing and engi-
neering, specializing in “number crunching” and the other for business computing
focussing on data processing activities such as stock control and computerized cus-
tomer accounts. Today computing devices are small and cheap, and pervade our
every day lives. It is therefore not surprising that the style of software required for
the twenty-first century is very different from that needed to run operations on the
large mainframe computers of the past. It is in this climate that the field of “Artificial
Intelligence” (AI) has given way to the newer study of “Computational Intelligence”
(CI)1. AI grew out of attempts to emulate the human brain on mainframe computers,
while CI is more pragmatic and relies on distributed computation, communication
and emergence. CI is well suited to today’s modern ubiquitous computing devices.

This book is about practical computational intelligence. It covers many tech-
niques and applications, and focuses on novel ways of combining different CI

Christine L. Mumford
Cardiff University, School of Computer Science, 5 The Parade, Cardiff, CF24 3AA,
United Kingdom
e-mail: C.L.Mumford@cs.cardiff.ac.uk

1 Terms with very similar meanings have also emerged in the recent literature, such as “soft
computing” and “natural computing”.

C.L. Mumford and L.C. Jain (Eds.): Computational Intelligence, ISRL 1, pp. 3–21.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009

C.L.Mumford@cs.cardiff.ac.uk
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techniques together, or hybridizing CI techniques with traditional computational
techniques. Recognizing the need for pragmatism, authors in this collection propose
some new and exciting problem-solving frameworks. The key themes emphasized
in the book title are collaboration, fusion and emergence. Fusion refers to the amal-
gamation of CI techniques with each other or with more traditional computational
methods. Collaboration involves effective communication and is essential, if the
above mentioned “fused” techniques are to work harmoniously together. Finally,
emergence can be viewed as a central goal of CI, asserting that complex behaviour
can emerge from collaboration between simple processing elements. An essential
ingredient of a CI system exhibiting emergent behaviour is synergy in which the
whole is greater than the sum of the parts.

The remainder of this chapter is structured as follows. It will begin with some
discussion on the origins of Computational Intelligence, and examine its relation-
ships with Artificial Intelligence. This will be followed by a brief survey of some of
the key CI paradigms. The chapter will conclude with a brief overview of the rest of
the book.

2 The Birth of Computational Intelligence

The origin of the term “Computational Intelligence” (CI) has been widely attributed
to Bezdek [1, 2]. Defining a new field devoted to computer-based intelligence can
be viewed as a timely attempt to escape from some of the difficult issues and bad
publicity associated with the longer established field of Artificial Intelligence (AI).
Although AI and CI have much in common, the emphasis is subtly different. CI
concentrates on practical application, self organization and the emergence of com-
plex behaviour from simple components, while AI aims to build intelligent systems
based on ideas of how the human brain works. John McCarthy originally coined
the term “Artificial Intelligence” in 1955, in advance of a month long brainstorming
conference held in Dartmouth College in the following year. The proposal for the
Dartmouth conference [15] makes interesting reading. The introduction is repro-
duced below.

We propose that a 2 month, 10 man study of artificial intelligence be carried out during
the summer of 1956 at Dartmouth College in Hanover, New Hampshire. The study is
to proceed on the basis of the conjecture that every aspect of learning or any other
feature of intelligence can in principle be so precisely described that a machine can
be made to simulate it. An attempt will be made to find how to make machines use
language, form abstractions and concepts, solve kinds of problems now reserved for
humans, and improve themselves. We think that a significant advance can be made in
one or more of these problems if a carefully selected group of scientists work on it
together for a summer.

The document goes on to discuss the “various aspects of the artificial intelligence
problem” in more detail, including computers and computer programming, natural
language processing, neural networks, the theory of computation, the need for au-
tomatic self-improvement, and aspects of abstraction and creativity. Most of these
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topics remain active research issues to this day. However, the assumption that hu-
man intelligence can be simulated by machine was perhaps a little overoptimistic.
Indeed, it is one of the “big questions” remaining in computer science.

The two decades following the 1956 conference saw many high profile AI re-
search projects, for example, the development of the LISP and PROLOG program-
ming languages, the SHRDLU “microworlds” project, and the first expert systems
(see standard texts on AI, such as [20, 21], for more information). Although few
could argue that these projects had produced some highly successful results, and
useful applications, there was, nevertheless, a general feeling of disappointment at
the time, that the AI community had in some sense “failed to deliver”. This percep-
tion was effectively articulated in a report to the British Science Research Council
by the British academic James Lighthill in 1973 [14]:

In no part of the field have discoveries made so far produced the major impact that was
then promised.

In essence, the so-called “Lighthill Report” stated that AI researchers had failed to
address the issue of the combinatorial explosion, i.e., AI techniques may work on
small problem domains, but the techniques do not scale up well to solve more real-
istic problems. Following this very pessimistic view, the Science Research Council
slashed funding for AI projects in the UK. Although a rather more optimistic view
prevailed in much of the rest of the world, and major new investments continued
throughout the 1980s (e.g., CYC in the USA [13], and the Fifth Generation Com-
puter Systems project in Japan [6]). AI was becoming an increasingly fragmented
study, consisting of many disciplines, such as reasoning, knowledge engineering,
planning, learning, communication, perception, and so on. Despite the many suc-
cesses that had been achieved using expert systems, logic programming, neural net-
works etc., it was blatantly obvious that the dream of properly emulating human
intelligence had never come close to being realized. It was time to perhaps “move
on” and capitalize on the substantial achievements provided by some of the “off-
shoots” of AI, and leave behind the very negative image that had become so closely
associated with the term “AI” itself, not so much because AI had failed per se, but
rather because of the over-inflated expectations that had become intrinsically tied
up with the notion of it.

Bezdek’s view of CI was as a system that exhibited some form of “intelligence”,
yet dealt with numerical (low level) data, as opposed to “knowledge”, and in this
sense differed from traditional Artificial Intelligence. Nevertheless, the view of
Bezdek was very much focussed towards his personal research interests of pattern
recognition and neural networks. In the following years the term “CI” became firmly
established when it was adopted by the IEEE (the Institute of Electrical and Elec-
tronic Engineers), and in 2004 the Computational Intelligence Society (CIS) was
established (as a name change from the Neural Network Society). The slogan of the
IEEE CIS is “mimicking nature for problem solving”, and its scope is stated as:

The Field of Interest of the Society shall be the theory, design, application, and de-
velopment of biologically and linguistically motivated computational paradigms em-
phasizing neural networks, connectionist systems, genetic algorithms, evolutionary
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programming, fuzzy systems, and hybrid intelligent systems in which these paradigms
are contained.

Artificial intelligence brings its connotations of “intelligence”, which can be dis-
tracting. One can get sidetracked into pondering the meaning of intelligence, rather
than asking more useful questions, about self-organization, and emergence of com-
plex systems from simple components, for example. A useful definition taken from
the Computer Science web site of Amsterdam University (http://www.cs.vu.nl/ci/)
emphasizes the “bottom up” nature of CI:

Enclosed in the name computational intelligence is a ‘message’, according to scien-
tific folklore it is chosen to indicate the link to and the difference with artificial intel-
ligence. While some techniques within computational intelligence are often counted
as artificial intelligence techniques (e.g., genetic algorithms, or neural networks) there
is a clear difference between these techniques and traditional, logic based artificial
intelligence techniques. In general, typical artificial intelligence techniques are top-to-
bottom, where the structure of models, solutions, etc. is imposed from above. Com-
putational intelligence techniques are generally bottom-up, where order and structure
emerges from an unstructured beginning.

Some interesting further discussions on the birth of AI and CI, and on some of
the important philosophical issues on the essence of intelligence can be found in
Chapter 2 of this book.

3 The Main CI Techniques

In this section we will look briefly at the following key CI paradigms: Evolutionary
Algorithms, Neural Networks, Fuzzy Systems and Multi-Agent Systems. This will
be followed by a short summary covering some other important techniques included
by various authors in this collection.

3.1 Evolutionary Algorithms

Evolutionary algorithms (EAs) comprise a class of techniques inspired by evolution
and natural selection. The best known EAs are undoubtedly the genetic algorithms
(GAs) developed by John Holland [9] in the 1960’s and 70’s. Contemporaries of
Holland independently developed some similar techniques however, for example of
Rechenberg [19] introduced evolution strategies (ES) and Fogel, Owen and Walsh
[7] developed evolutionary programming (EP). Since these early days, interest in
evolutionary-inspired algorithms has grown extensively, and many new variations
have appeared, often very different from the original models conceived by Holland,
Rechenberg or Fogel. For example, in the early 1990s, John Koza proposed genetic
programming [11]: an evolutionary style technique for evolving effective computer
programs, mostly using the LISP programming language (see also Chapter 6). Other
popular paradigms to have been derived from the more generic approach include
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artificial life [12], evolvable hardware [8], ant systems [4] and particle swarms [10]
(Chapter 20), to name but a few. Artificial Immune Systems (Chapter 16) have also
become a popular topic for research in recent years, drawing analogies with some
of the ingenious problem-solving mechanisms observed in natural immune systems
and applying them to a broad range of real-world problems. In addition, there are
many examples of hybrid (or memetic) approaches where problem specific heuris-
tics, or other techniques such as neural networks, fuzzy systems, or simulated an-
nealing, have been incorporated into a GA framework. Thus, due to the growth
in popularity of search and optimization techniques inspired by natural evolution
during the last few decades, it is now common practice to refer to the field as evo-
lutionary computing and to the various techniques as evolutionary algorithms. In
addition, evolutionary techniques for simultaneously optimizing several objectives
have recently become popular. These approaches, collectively known as multi-
objective evolutionary algorithms [3] are very effective at balancing the frequently
conflicting objectives to produce excellent trade-off solutions, from which a human
decision maker can make an informed choice. Chapters 3 and 5 deal with multi-
objective optimization problems.

Parallel evolutionary algorithms are discussed in Chapter 17. The analogy with
natural population structures and their geographical distributions make parallel im-
plementations highly desirable, to speed up processing and to facilitate complex
emergent behaviour from simple components within the distributed populations.

Given the range of EAs mentioned above, it is not perhaps surprising that there is
no rigorous definition of the term “evolutionary algorithm” that everyone working in
the field would agree on. There are, however, certain elements that the more generic
types of EA tend to have in common:

1. a population of chromosomes encoding candidate solutions to the problem in
hand,

2. a mechanism for reproduction,
3. selection according to a fitness, and
4. genetic operators.

Figure 1 gives an outline of a generic EA. The process is initialized with a starting
population of candidate solutions. The initial population is frequently generated by
some random process, but may be produced by constructive heuristic algorithms, or
by other methods. Once generated, the candidate solutions are evaluated to establish
the quality of each solution, and based on this quantity, a fitness value will be com-
puted, in such a way that better quality solutions will be assigned higher values for
their fitness. Individuals will next be selected from the population to form the par-
ents of the next generation, and these will be duplicated and placed in a mating pool.
The selection process is frequently biased, so that fitter individuals are more likely
to be chosen than their less fit counterparts. Genetic operators are then applied to the
individuals in the mating pool. The idea is to introduce new variation, without which
no improvement is possible. Recombination (also known as crossover) is achieved
by combining elements of two parents to form new offspring. Mutation, on the other
hand, involves very small random changes made to solutions. The final stage in the
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Fig. 1 The Evolutionary Cycle

cycle requires the population is updated with new individuals. Depending on the
style of the EA, this may involve replacing the parent population in its entirety, or
partial replacement is favoured by some researchers - perhaps replacing the poorest
10 % of the population by the best offspring, for example. A good general text on
evolutionary algorithms is Eiben and Smith [5].

3.2 Neural Networks

Artificial Neural Networks (ANNs) are inspired by biological nervous systems,
and emulate a simple “brain”. They consist of large numbers of highly intercon-
nected processing elements (neurons) working together and learning from experi-
ence. ANNs are specially configured for each application, and typical uses include
pattern recognition and data classification. In a biological nervous systems, learn-
ing involves making adjustments to the synaptic connections between the neurons.
In a similar way for ANNs, learning is accomplished through the adjustment of
weights by application of some “learning rule” to the connections between the ar-
tificial neurons or nodes. Learning rules typically attempt to reinforce connections
that contribute to a “correct output”, and penalize connections that produce incor-
rect results. There are three main classes of ANN, distinguished by their different
learning processes: 1) supervised learning, 2) unsupervised learning, and 3) rein-
forcement learning. With supervised learning a training stage uses a set of test data
and a teacher to score the performance of the ANN, then adjusts the connection
weights in an effort to improve the performance to better match the actual output
to the predicted output. The most widely known supervised learning ANNs are the
backpropagation nets. ANNs that use unsupervised learning do not have a training
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Fig. 2 A Neural Network with One Hidden Layer

stage, and these are frequently referred to as “self organizing networks”. Kohonen
nets are the best known example of this type. In reinforcement learning data is not
usually available. Instead the aim is to discover a policy for selecting actions that
minimize some measure of long-term cost. A schematic neural network is illus-
trated in Figure 2. For more details on ANN see Mehrotra, Mohan, and Ranka [16].
Chapters 12, 13 and 22 all utilize neural networks, in one form or another.

3.3 Fuzzy Systems

Fuzzy logic was first proposed by Lotfi A. Zadeh of the University of California
at Berkeley in a 1965 paper [23]. It is a modification of boolean (or crisp) logic
which allows approximate and common sense reasoning in the absence of “true” or
“false” certainty. In crisp logic, set membership is “all or nothing”. In contrast, fuzzy
logic allows partial membership of sets, known as fuzzy sets, and forms the basis of
fuzzy systems. Fuzzy Systems can deal with partial truth and incomplete data, and
are capable of producing accurate models of how systems will behave in the real
world, particulary when appropriate conventional system models are not available.
Instead of supplying equations for a mathematical model, for example, a designer
will need to produce appropriate fuzzy rules to describe the system he/she wishes to
implement. The system operates when inputs are applied to the rules consisting of
the current values of appropriate membership functions. Once activated, each rule
will fire and produce an output, which will also be a partial truth value. In the final
stage, the outputs from all the rules are combined, in some way, and converted into
a single crisp output value. In summary, a fuzzy system consists of the following:
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Fig. 3 A Fuzzy Temperature Control System

• a set of inputs
• a fuzzification system, for transforming the raw inputs into grades of member-

ships of fuzzy sets
• a set of fuzzy rules
• an inference system - to activate the rules and produce their outputs
• a defuzzification system - to produce one or more final crisp outputs

We will now look at a simplistic fuzzy system: a fuzzy controller for room tem-
perature.

The fuzzy set membership diagram in Figure 3 characterizes three functions,
identifiable as subranges of temperature: cold, warm and hot. Suppose we wish to
keep a room at a comfortable temperature (warm) by building a control system to
adjust a room heater. We can see in Figure 3 how each function maps the same tem-
perature value to a truth value in the 0 to 1 range, so that any point on that scale has
three “truth values”, one for each of the three functions. It is these truth values that
are used to determine how the room temperature should be controlled. The vertical
line in the diagram represents a particular temperature, t. At this temperature it is
easy to observe the degree of membership to “hot” (red) is zero, this temperature
may be interpreted as “not hot”. Membership of “warm” is about 0.7, and this may
be described as “fairly warm”. Similarly, examining membership of the “cold” func-
tion gives a value of about 0.15, which may describe it as “slightly cold”. Adjectives
such as “fairly” and “slightly”, used to modify functions are referred to as “hedges”,
and can be a useful way to specify subregions of the functions to which they are
applied.

To operate our fuzzy temperature control system, we require a number of fuzzy
IF-THEN rules, in the form of “IF variable IS property THEN action”. For example,
an extremely simple temperature regulator that uses a heater might look like this:

1. IF temperature IS cold THEN turn heater to high
2. IF temperature IS warm THEN do nothing
3. IF temperature IS hot THEN turn off heater

Notice there is no “ELSE”. All of the rules are evaluated, because the temperature
will belong to all three sets (cold, warm and hot) at the same time, but to different
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degrees. At temperature t in Figure 3, for example, M(cold) = 0.15,M(warm)= 0.7
and M(hot) = 0.

Obviously, the greater the truth value of “cold”, the higher the truth value of “turn
the heater to high”, although this does not necessarily mean that the output itself will
be set to “high”, since this is only one rule among many. In our example, the partial
truth inputs for “cold”, “warm” and “hot” will in turn produce partial truth values
for the outputs “turn the heater to high”, “do nothing” and “turn the heater off”.
The simplest way to produce a single crisp instruction, is to select the output with
the maximum value (which will probably map to “do nothing” in the case of our
temperature t). A more sophisticated method involves finding the centroid of all the
outputs. This methods locates the “centre of mass” of the combined membership
function curves.

More complex rules can be built for fuzzy systems, using AND, OR, and NOT
operators. These are the counterparts of the familiar crisp logic operators, and they
are usually defined (respectively) as the minimum, maximum, and complement. So,
for the fuzzy variables x and y:

NOT x = (1 - truth(x))
x AND y = minimum(truth(x), truth(y))
x OR y = maximum(truth(x), truth(y))

Clearly, the simple temperature controller described above is for illustration only,
and practical fuzzy systems will typically be made up from many more rules - per-
haps hundreds or even thousands. In these more sophisticated systems, it is likely
that the fuzzy rule set will be less “flat”, and form more of a hierarchy, so that the
outputs of some rules provide inputs to others. Systems with large rule sets will
probably require more sophisticated inference systems to ensure the efficient pro-
cessing of the rules, in a reasonable order.

To complete this section, it is worth mentioning a variation of fuzzy sets called
rough sets. Rough Set Theory was introduced in the early 1980s by Zdzislaw Pawlak
[18]. The basic idea is to take concepts and decision values, and create rules for
upper and lower boundary approximations of the set. With these rules, a new object
can easily be classified into one of the regions. Rough sets are especially helpful
in dealing with vagueness and uncertainty in decision situations, and for estimating
missing data. Uses include data mining, stock market prediction and financial data
analysis, machine learning and pattern recognition.

For further reading on fuzzy systems [17] is a good introductory text. Also Chap-
ter 4 in the present book, provides a good background to many of the important
concepts, and chapters 3, 5, 18, and 22 also cover aspects of fuzzy systems.

3.4 Multi-Agent Systems

A multi-agent system (MAS) is a system composed of many interacting intelligent
agents; each one is in itself simple and apparently acts only in its own interest, yet by
collaborating and/or competing with each other agents, an MAS can be used to solve
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problems which would entirely defeat an individual agent or a monolithic system.
MAS can exhibit self-organization and complex behaviour can emerge. Example
applications include financial forecasting and online trading (see Chapter 8) and
disaster response (see Chapter 10).

The agents in a multi-agent system have several important characteristics [22]:

• Autonomy: the agents are at least partially autonomous
• Local views: no agent has a full global view of the system
• Decentralization: there is no one controlling agent
• Typically multi-agent systems research refers to software agents. However, the

agents in a multi-agent system could equally well involve robots, humans or hu-
man teams. A multi-agent system may contain combined human-software agent
teams (see Chapter 8).

Generally, multi-agent systems are flexible and they are easily maintained or
modified without the need for drastic rewriting or restructuring. MAS also tend
to be robust and recover easily from a breakdown, due to built in duplication and
redundancy of components. Chapters 8, 9, 10, 11 and 20 all deal explicitly with
multi-agent systems.

3.5 Other Techniques Covered in the Book

Besides the main methods outlined above, a number of other CI techniques have
been used by various authors in this text, including rule induction (Chapter 19),
Bayesian Learning (Chapter 10), Likelihood Ratios (Chapters 18 and 19), Case-
Based Reasoning (Chapter 21), Collaborative Clustering (Chapter 22), Blackboard
Database Systems (Chapter 9), and Hyper-Heuristics (Chapter 6). Among the “tra-
ditional techniques” used in partnership with the CI methods, statistical methods are
used in Chapters 13 and 21, and computer vision techniques in Chapters 12 and 13.
Effective communications are essential for agent-based systems and all distributed
CI techniques. These important issues are addressed in Chapters 14 and 15.

4 Chapters Included in This Book

This book is divided into nine parts:

Introduction
Fusing evolutionary algorithms and fuzzy logic
Adaptive solution schemes
Multi-agent systems
Computer vision
Communication for CI systems
Artificial immune systems
Parallel evolutionary algorithms
CI for clustering and classification
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4.1 Part I: Introduction

This Part covers some of the history of computational intelligence, and sets the scene
for the rest of the book.

Chapter 1: Synergy in Computational Intelligence

The present chapter, by Christine Mumford, introduces the book and begins Part I.
It begins with a brief history of Artificial Intelligence and discusses the origins of
the term “Computational Intelligence”. Then follows an introduction to the main
Computational Intelligence paradigms used by the various authors in the book; and
finally, the chapter concludes with short summaries of all the individual chapters.

Chapter 2: Computational Intelligence: The Legacy of Alan Turing and John
von Neumann

In this thought-provoking chapter, Heinz Mühlenbein recalls the fundamental re-
search questions of computational intelligence, and explains how many of these
issues remain unresolved to this day. In recent years, it has become fashionable
to subdivide computational intelligence into many fields e.g. evolutionary compu-
tation, neural networks, fuzzy logic. This was not always the case. This chapter
recalls the broader issues and reviews the seminal research of Alan Turing and John
von Neumann in detail. The author discusses the many areas of computational in-
telligence that need to come together, if we are to create automata with human-like
intelligence.

4.2 Part II: Fusing Evolutionary Algorithms and Fuzzy Logic

These three chapters cover some useful ways to combine evolutionary algorithms
with fuzzy systems.

Chapter 3: Multiobjective Evolutionary Algorithms for the Electric Power
Dispatch Problem

The main objective of the electric power dispatch problem is to schedule the avail-
able generating units to meet the load demand at minimum cost, while satisfying all
constraints. However, thermal plants are a major source of atmospheric pollution.
Recently the pollution minimization problem has attracted a lot of attention as the
public demand clean air. Mohammad Abido explores the use of evolutionary multi-
objective optimization to minimize cost and pollution, simultaneously. Furthermore,
he uses fuzzy set theory to select the “best” compromise solution from the trade-off
solution set.
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Chapter 4:Fuzzy Evolutionary Algorithms and Genetic Fuzzy Systems: A
Positive Collaboration Between Evolutionary Algorithms and Fuzzy Systems

Two alternative ways of integrating fuzzy logic and evolutionary algorithms are dis-
cussed in detail by F. Herrera, M. Lozano in this chapter. The first one, called a ge-
netic fuzzy system (GFS) consists of a fuzzy rule based system (FRBS) augmented
by a learning process based on evolutionary algorithms. In the second approach,
fuzzy tools and fuzzy logic-based techniques are used for modeling different evolu-
tionary algorithm components and also for adapting evolutionary algorithm control
parameters, with the goal of improving performance. The evolutionary algorithms
resulting from the second type of integration are called fuzzy evolutionary algo-
rithms. This chapter includes some excellent introductory material on fuzzy logic,
as well as a summary of state-of-the-art with respect to genetic fuzzy systems and
fuzzy evolutionary algorithms. The potential benefits derived from the synergy be-
tween evolutionary algorithms and fuzzy logic are made clear.

Chapter 5: Multiobjective Genetic Fuzzy Systems

Hisao Ishibuchi and Yusuke Nojima describe the two conflicting goals in the design
of fuzzy rule-based systems: one is accuracy maximization, and the other is com-
plexity minimization. Generally, complex rules and large rule sets promote accuracy,
and smaller rule sets with simple rules reduce complexity. The authors discuss the
trade-off relation between these two goals, i.e., that improving the accuracy of a rule
set will simultaneously increase its complexity. This chapter explains how various
studies in multiobjective genetic fuzzy systems have experimented with the provi-
sion of non-dominated trade-off solutions, each solution being a complete candidate
rule set for the decision maker’s consideration. These rule sets will range from the
simplest and least accurate to the most complex and most accurate.

4.3 Part III: Adaptive Solution Schemes

These two chapters describe two different approaches to adaptive problem solving,
involving mechanisms to select from a portfolio of algorithmic alternatives, adapting
to the best choices for particular problems and instances.

Chapter 6: Exploring Hyper-Heuristic Methodologies with Genetic
Programming

Hyper-heuristics represent a novel search methodology that is motivated by the goal
of automating the process of selecting or combining simpler heuristics in order to
solve hard computational search problems. This approach operates on a search space
of heuristics rather than directly on a search space of solutions to the underlying
problem which is the case with most meta-heuristics implementations. In this chap-
ter, Edmund Burke, Mathew Hyde, Graham Kendall, Gabriela Ochoa, Ender Ozcan
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and John Woodward look at the use of Genetic Programming to automatically gen-
erate heuristics for a given problem domain.

Chapter 7: Adaptive Constraint Satisfaction: The Quickest First Principle

James Borrett and Edward Tsang demonstrate the potential of adaptive constraint
satisfaction in this chapter, using a technique known as algorithmic chaining. It is
recognised that some constraint satisfaction instances are much easier to solve than
others, and thus it makes sense to apply a simple and fast algorithm, whenever such
an approach is adequate for solving the instance in question. However, when faced
with exceptionally hard problem instances, a more complex (and slower) approach
may be required. Algorithmic chaining presents a sequence of algorithms, which
are applied to a problem instance in turn, if and when required. Thus, if the first
algorithm is unsuccessful, the second in the sequence will be tried, and then the
third, if required, and so on. The chapter describes the “Reduced Exceptional Be-
haviour Algorithm” (REBA), which is a technique based on algorithmic chaining.
The REBA algorithm makes use of a mechanism for predicting when thrashing type
behaviour is likely to occur, and results presented within the chapter clearly demon-
strate the effectiveness of the approach in reducing susceptibility to exceptionally
hard problem instances.

4.4 Part IV: Multi-Agent Systems

Multi-Agent Systems (MAS) provide increasingly popular paradigms for solving
complex problems, using a distributed system of (simple) individual processing el-
ements. These four chapters offer some novel solutions to difficult design and im-
plementation issues associated with practical MAS.

Chapter 8: Collaborative Computational Intelligence in Economics

This chapter provides a general review of collaborative computational intelligence
(CCI) in economics. Shu-Heng Chen demonstrates the potential of CCI by focussing
on three research paradigms in economics: heterogeneous agent-based economics,
experimental economics, and financial data mining. The essence of agent-based eco-
nomics is a society of heterogeneous agents working together. Experimental eco-
nomics is explored with respect to laboratories comprising both human agents and
software agents. Finally, the chapter concludes with a survey of hybrid CI systems
currently used in financial data mining.

Chapter 9: IMMUNE: A Collaborating Environment for Complex System
Design

To address the dilemma of distributed versus central control in complex system
design, decision support systems that enable robust collaboration amongst many
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design agents from different disciplines are required. The particular characteristics
of such decision support systems must include immunity to catastrophic failures and
sudden collapse that are usually observed in complex systems. This chapter, written
by Mahmoud Efatmaneshnik and Carl Reidsema, lays the conceptual framework
for IMMUNE as a robust collaborating design environment. Agents in IMMUNE
are adaptive and can change their negotiation strategy and in this way can con-
tribute to the overall capability of the design system to maintain its problem solving
complexity.

Chapter 10: Bayesian learning for cooperation in multi-agent systems

Mair Allen-Williams and Nicholas R Jennings consider the problem of agent coor-
dination in uncertain and partially observable systems. They present an approach to
this problem using a Bayesian learning mechanism, and demonstrate its effective-
ness on a cooperative scenario from the disaster response domain.

Chapter 11: Collaborative Agents for Complex Problems Solving

In a multi-agent system (MAS), agents that possess different expertise and re-
sources collaborate together to handle problems which are too complex for indi-
vidual agents. Generally, agent collaborations in a MAS can be classified into two
groups, namely agent cooperation and agent competition. In this chapter Minjie
Zhang, Quan Bai, Fenghui Ren and John Fulcher introduce two main approaches
for complex problem solving via agent cooperation and/or competition, these be-
ing (i) a partner selection strategy among competitive agents, and (ii) dynamic team
forming strategies among cooperative agents.

4.5 Part V: Computer Vision

Computer vision is a key application area for CI techniques. Chapters 12 and 13
discuss two extremely challenging applications: predicting human character traits
from facial appearance and analyzing crowd dynamics, respectively.

Chapter 12: Predicting Trait Impressions of Faces Using Classifier Ensembles

Recent studies in social psychology indicate that people are predisposed to form
impressions of a person’s social status, abilities, dispositions, and character traits
based on nothing more than that person’s facial appearance. In this chapter Sheryl
Brahnam and Loris Nanni present their work on building machine models of hu-
man perception, aimed at recognizing traits (such as dominance, intelligence, matu-
rity, sociality, trustworthiness, and warmth) simply by observing human faces. They
demonstrate that ensembles of classifiers work better than single classifiers, and also
that ensembles composed of 100 Levenberg-Marquardt neural networks (LMNNs)
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seem to be as capable as most individual human beings are in their ability to predict
the social impressions certain faces make on the average human observer.

Chapter 13: The Analysis of Crowd Dynamics: From Observations to
Modelling

B. Zhan, P. Remagnino, D.N. Monekosso and S. Velastin describe how computer
vision techniques, combined with statistical methods and a neural network, can be
used to automatically observe, measure and learn crowd dynamics. New methods
are proposed to measure crowd dynamics, and model the complex movements of a
crowd.

4.6 Part VI: Communication for CI Systems

Distributed CI systems of all kinds need reliable, fast and efficient communications.
These two chapters describe simple, low cost and effective ways to use the lat-
est technology in a discriminatory way. Chapter 14 covers large scale collaborative
sensor networks, and Chapter 15 focusses on opportunist networks.

Chapter 14 :Computational Intelligence for the Collaborative Identification of
Distributed Systems

In this chapter Giorgio Biagetti, Paolo Crippa, Francesco Gianfelici and Claudio
Turchetti suggest a new algorithm for the identification of distributed systems by
large scale collaborative sensor networks. They describe how recent advances in
hardware technologies have made it possible to realize low-power low-cost wireless
devices and sensing units that are able to detect information from the distributed
environment. Even though individual sensors can only perform simple local com-
putation and communicate over a short range at low data rate, when deployed in
large numbers they can form an intelligent collaborative network interacting with
the surrounding environment in a large spatial domain. Sensor networks (SNs) char-
acterized by low computational complexity, great learning capability, and efficient
collaborative technology are highly desirable to discriminate, regulate and decide
actions on real phenomena in many applications such as environmental monitoring,
surveillance, factory instrumentation, defence and so on.

Chapter 15: Collaboration at the Basis of Sharing Focused Information: The
Opportunistic Networks

This chapter is written by Bruno Apolloni, Guglielmo Apolloni, Simone Bassis,
Gian Luca Galliani and Gianpaolo Rossi and discusses opportunistic networks. Op-
portunistic networks provide a communication protocol that is particularly suited
to set up a robust collaboration within a very local community of agents. Like me-
dieval monks who escaped world chaos and violence by taking refuge in small and
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protected communities, the authors point out that modern people may escape the
information avalanche by forming virtual communities without relinquishing most
of the benefits of the latest information and computer technology. A communication
middleware to obtain this result is represented by opportunistic networks.

4.7 Part VII: Artificial Immune Systems

Chapter 16 provides a broad overview of artificial immune systems research, and
focusses particularly on areas of natural immune systems that have been rather ig-
nored by the AIS community in the past.

Chapter 16: Exploiting Collaborations in the Immune System: The Future of
Artificial Immune Systems

This chapter, written by Emma Hart, Chris McEwan and Despina Davoudani, sug-
gests some novel ways in which the natural immune system metaphor could be
exploited to build new types of computational systems capable of meeting some of
the challenges of the 21st Century, including self-configuration, self-maintenance,
self-optimization and self-protection in an ever-changing environment. The authors
focus particularly on aspects of the natural immune system which appear to have
been largely overlooked by the artificial immune systems (AIS) research community
in the past, and place significant emphasis on the design of systems rather than algo-
rithms. The article puts forward some possible reasons why the potential promised
by AIS has not yet been delivered, and suggests how this might be addressed in
the future. The arguments are particularly relevant in light of recent advances in
technology which present a new and challenging range of problems to be solved.
A number of examples of systems in which steps are currently being taken to im-
plement some of the mechanisms are then described. The chapter concludes with
a discussion of an emerging field, that of immuno-engineering which promises a
methodology which will facilitate maximum exploitation of immune mechanisms
in the future.

4.8 Part VIII: Parallel Evolutionary Algorithms

Chapter 17 discusses the variety and importance of spatial interactions of popula-
tions in the natural world and demonstrates the relevance of these issues to parallel
evolutionary algorithms.

Chapter 17: Evolutionary Computation: Centralized, Parallel or
Collaborative

In this second chapter by Heinz Mühlenbein, the author focusses on the nature
and importance of spatial interactions in evolutionary computation, and he also
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investigates cooperation and collaboration in this context. While “competition” is
a fundamental component of Darwin’s theory of natural selection, it can be argued
that cooperation and collaboration also play a large role in evolution and population
dynamics. In this chapter genetic algorithms with several different spacial interac-
tion schemes are tested, and the results are discussed in relation to Darwin’s ideas
on the evolutionary gain achieved if subpopulations of individuals are periodically
isolated from each other or from the main continental population of a species (i.e.,
the continent-island cycle).

4.9 Part IX: CI for Clustering and Classification

The four chapters in this section cover various aspects of pattern recognition, clus-
tering and data mining.

Chapter 18: Fuzzy Clustering of Likelihood Curves for Finding Interesting
Patterns in Expression Profiles

In this chapter Claudia Hundertmark, Lothar Jänsch and Frank Klawonn present a
prototype-based fuzzy clustering approach that allows the automatic detection of
regulatory regions within individual proteins. Cellular processes are mediated by
proteins acting e.g. as enzymes (catalysts) in different metabolic pathways. Modi-
fications are regularly made to specific regions of proteins within a living cell after
that protein has been manufactured. The purpose of these post-translational mod-
ifications is to provide regulatory effects that will control the binding and activity
properties of the modified proteins. In other words, the same protein will behave
differently depending on the specific modifications made to it after its creation. Fol-
lowing the digestion of proteins into fragments (peptides), which is a necessary first
stage of the work, the approach described in this chapter utilises likelihood curves
to summarise the regulatory information of the peptides, based on a noise model
obtained by an analytical process. Since the algorithm for the detection of peptide
clusters is based on fuzzy clustering, their collaborative approach combines proba-
bilistic concepts as well as principles from soft computing. However, fuzzy cluster-
ing is usually based on data points and its application to likelihood curves provided
a considerable challenge for the authors. An interesting feature of this work is its
potential transferability to noisy data from other applications, provided the noise
can be specified by a noise model.

Chapter 19: A Hybrid Rule Induction/Likelihood Ratio-Based Approach for
Predicting Protein-Protein Interactions

Mudassar Iqbal, Alex A. Freitas and Colin G. Johnson propose a new hybrid data
mining method for predicting protein-protein interactions in this chapter. The pur-
pose is to predict unknown protein interactions using relevant genomic informa-
tion currently available. The new technique combines Likelihood-Ratios with rule
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induction algorithms and uses rule induction to discover the rules to partition the
data. The discovered rules are subsequently interpreted as “bins” and used to com-
pute likelihood ratios. In this way a rule induction algorithm learns classification
rules, and these learned rules are used to improve the effectiveness of a likelihood
ratio-based classifier, which is used to predict unknown protein interactions.

Chapter 20: Improvements in Flock-based Collaborative Clustering
Algorithms

Esin Saka and Olfa Nasraoui begin their chapter with a brief survey of swarm in-
telligence clustering algorithms, and point out that since the early 90s, swarm in-
telligence (SI) has been a source of inspiration for clustering problems, and has
been used in many applications ranging from image clustering to social clustering,
and from document clustering to Web session clustering. The chapter then focuses
mainly on a recent development: simultaneous data visualization and clustering us-
ing flocks of agents. The chapter presents some improvements to previous algo-
rithms of this type and proposes a hybrid approach. Experiments on both artificial
and real data confirm the validity of the approach and the advantages of the variants
proposed in this chapter.

Chapter 21: Combining Statistics and Case-Based Reasoning for Medical
Research

Case-based Reasoning (CBR) uses previous experience represented as cases to un-
derstand and solve new problems. A case-based reasoner remembers former cases
similar to the current problem and attempts to modify solutions of former cases to
fit the current problem. In this chapter Rainer Schmidt and Olga Vorobieva present a
system, called ISOR, that helps to explain medical cases that do not fit a theoretical
hypothesis. Indeed, it is often the case that no well-developed theory exists. Further-
more, at the start little knowledge or past experience may be available. This chapter
focusses on the application of the ISOR system to the hypothesis that a specific ex-
ercise program improves the physical condition of dialysis patients. Additionally,
for this application a method to restore missing data is presented.

Chapter 22: Collaborative and Experience-Consistent Schemes of System
Modelling in Computational Intelligence

This study by Witold Pedrycz discusses a number of developments which form a
conceptual and algorithmic framework for collaborative computational intelligence.
First of all, the fundamentals of collaborative clustering are introduced in terms of
information granules, i.e, fuzzy sets which emerge as a result of knowledge sharing.
This is followed by the development of algorithmic definitions, which show the per-
tinent computing details. Hierarchies of clusters are also introduced, and experience-
consistent fuzzy modeling is presented in the context of rule-based fuzzy models and
neural networks.
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Computational Intelligence: The Legacy of Alan
Turing and John von Neumann

Heinz Mühlenbein

Abstract. In this chapter fundamental problems of collaborative computational in-
telligence are discussed. The problems are distilled from the seminal research of
Alan Turing and John von Neumann. For Turing the creation of machines with
human-like intelligence was only a question of programming time. In his research
he identified the most relevant problems concerning evolutionary computation,
learning, and structure of an artificial brain. Many problems are still unsolved,
especially efficient higher learning methods which Turing called initiative. Von Neu-
mann was more cautious. He doubted that human-like intelligent behavior could be
described unambiguously in finite time and finite space. Von Neumann focused on
self-reproducing automata to create more complex systems out of simpler ones. An
early proposal from John Holland is analyzed. It centers on adaptability and pop-
ulation of programs. The early research of Newell, Shaw, and Simon is discussed.
They use the logical calculus to discover proofs in logic. Only a few recent research
projects have the broad perspectives and the ambitious goals of Turing and von
Neumann. As examples the projects Cyc, Cog, and JANUS are discussed.

1 Introduction

Human intelligence can be divided into individual, collaborative, and collective in-
telligence. Individual intelligence is always multi-modal, using many sources of in-
formation. It developed from the interaction of the humans with their environment.
Based on individual intelligence, collaborative intelligence developed. This means
that humans work together with all the available allies to solve problems. On the
next level appears collective intelligence. It describes the phenomenon that fami-
lies, groups, organizations and even entire societies seem to act as a whole living
organism.

Heinz Mühlenbein
Fraunhofer Institut Autonomous intelligent Systems Schloss Birlinghoven 53757
Sankt Augustin, Germany
e-mail: heinz.muehlenbein@online.de

C.L. Mumford and L.C. Jain (Eds.): Computational Intelligence, ISRL 1, pp. 23–43.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009

heinz.muehlenbein@online.de


24 H. Mühlenbein

The importance of interactions between higher animals has been reinforced by
the discovery of mirror neurons. These are neurons which fire both when an animal
acts and when the animal observes the same action performed by another ( especially
conspecific) animal. The neurons have been observed in primates and are believed
to exist also in humans and in some birds. The function of the mirror system is still
a subject of much speculation. To date no plausible neural or computational models
have been developed to explain how mirror neurons support the cognitive functions.

In my opinion the most impressive collaborative computational intelligence ex-
amples developed so far are the search machine Google and Wikipedia. In both
systems the interaction human-computer plays an important role. Google is a gigan-
tic storage system with an impressive fast search engine. It remains the task of the
user to filter out the important information from the search results.

Wikipedia tries to make the dream of the Age of Enlightenment become true, to
develop an encyclopedia describing all human knowledge and making it accessible
to all humans. Both systems use pure text driven search. More intelligent search
methods have been not successful so far. Despite the many efforts no computational
system is approaching the level of human intelligence.

Today computational intelligence is partitioned into many specialized and sep-
arate research areas. This was not always the case. The aim of this chapter is to
recall the broader issues and research goals of computational intelligence. To this
end the seminal research of Alan Turing and John von Neumann is reviewed in de-
tail. Their proposals discuss many areas of computational intelligence necessary to
create automata with human-like intelligence.

Right at the beginning of electronic computers researchers looked into nature for
ideas to solve difficult problems or even create what is called today artificial intelli-
gence. Because of the lack of understanding the functioning of natural systems, the
research had to be largely experimental. This was already pointed out by John von
Neumann [25].

Natural organism are, as a rule, much more complicated and subtle, and there-
fore much less well understood in detail, than are artificial automata. Nevertheless,
some regularities, which we observe in the organization of the former may be quite
instructive in our thinking and planning of the latter; and conversely, a good deal of
our experiences and difficulties with our artificial automata can be to some extend
projected on our interpretations of natural organisms.

In this chapter I will first review the work of Alan Turing, described in his famous
seminal paper “Computing Machinery and Intelligence” [23] and in the not so well
known paper “Intelligent Machinery” [24]. Turing’s thoughts about learning, evo-
lution, and structure of the brain are described.

Then I will discuss the most important paper of John von Neumann concern-
ing our subject “The General and Logical Theory of Automata” [25]. John von
Neumann’s research centers on artificial automata, computability, complexity, and
self-reproduction
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All three papers were written before the first electronic computers became avail-
able. Turing even wrote programs for paper machines. As a third example I will
describe the proposal of John Holland [10]. The simplification of this proposal lead
later to the famous genetic algorithm [11]. The historical part ends with a discussion
of the early research of Newell, Shaw and Simon.

I will first discuss this early research in detail, without reference to today’s knowl-
edge. Then I will try to evaluate the proposals in answering the following questions

• What are the major ideas for creating machine intelligence?
• Did the original proposals lack important components we see as necessary today?
• What are the major research problems of the proposals and do solutions exist

today?

Then two recent large projects are shortly summarized. The goal of the project
Cyc is to specify common sense knowledge in a well-designed language The Cog
project tried to build a humanoid robot that acts like a human. In addition the archi-
tecture of our hand-eye robot JANUS is described. It has a modular structure similar
to the human brain.

This chapter is a tour de force in computational intelligence. It requires that the
reader is willing to contemplate fundamental problems arising in building intel-
ligent machines. Solutions are not given. I hope that the reader finds interesting
research problems worthy of being investigated. This paper extends my research
started in [15].

2 Turing and Machine Intelligence

The first sentences of the paper ”Computing machinery and intelligence” have be-
come famous.

I propose to consider the question “Can machines think?” This should begin with
definitions of the meaning of the terms “machine” and “think”....But this is absurd.
Instead of attempting such a definition I shall replace the question by another, which
is closely related to it and is expressed in relatively unambiguous words. The new
form of the question can be described in terms of a game which we call the imitation
game.

Turing’s definition of the imitation game is more complicated than that normally
used today. Therefore I will describe it shortly. It is played with three actors, a man
(A), a woman (B) and an interrogator (C). The object of the game for the interrogator
is to determine which of the other two is the man and which is the woman. It is
A’s objective in the game to cause C to make the wrong identification. Turing then
continues: “We now ask the question ‘What will happen when a machine takes the
part of A in the game?’” Will the interrogator decide wrongly as often when the
game is played like this as he does when the game is played between a man and a
woman? These questions will replace our original “Can machines think”.
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Why did Turing not define just a game between a human and a machine trying to
imitate a human, as the Turing test is described today? Is there an additional trick
in introducing gender into the game? There has been quite a lot of discussions as to
whether this game characterizes human intelligence at all. Its purely behavioristic
definition leaves out any attempt to identify important components which together
produce human intelligence. I will not enter this discussion here, but just state the
opinion of Turing about the outcome of the imitation game.

I believe that in about fifty years’ time it will be possible to programme computers
with a storage capacity of about 109 bits to make them play the imitation game so
well that an average interrogator will not have more than 70% chance of making
the right identification after five minutes of questioning.

The very detailed prediction is funny: Why a 70% chance, why a duration of five
minutes? In the next section I will discuss what arguments Turing used to support
this prediction.

2.1 Turing’s Construction of an Intelligent Machine

In Sections 2−6 of [23] Turing mainly seeks to refute general philosophical argu-
ments against the possibility of constructing intelligent machines. “The reader will
have anticipated that I have no very convincing argument of a positive nature to
support my views. If I had I should not have taken such pains to point out the falla-
cies in contrary views. Such evidence as I have I shall now give.” What is Turing’s
evidence?

As I have explained, the problem is mainly one of programming. Advances in
engineering will have to be made too, but it seems unlikely that these will not be
adequate for the requirements. Estimates of the storage capacity of the brain vary
from 1010 to 1015 binary digits.1 I incline to the lower values and believe that only a
small fraction is used for the higher types of thinking. Most of it is probably used for
the retention of visual impressions. I should be surprised if more than 109 was re-
quired for satisfactory playing of the imitation game. Our problem then is to find out
how to programme these machines to play the game. At my present rate of working
I produce about a thousand digits of programme a day, so that about sixty workers,
working steadily through fifty years might accomplish the job, if nothing went into
the wastepaper basket.

The time to construct a machine which passes the imitation game is derived from
an estimate of the storage capacity of the brain2 and the speed of programming.

1 At this time the number of neurons was estimated as being between 1010 to 1015. This
agrees with the estimates using today’s knowledge.

2 It was of course a mistake to set the storage capacity equal to the number of neurons! Von
Neumann estimated the storage capacity of the brain to be about 1020. But this affects in
no way the logic of Turing’s argument.
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Turing did not see any problems in creating machine intelligence purely by pro-
gramming, he just found it too time consuming. So he investigated if there exist
more expeditious methods. He observed:

“In the process of trying to imitate an adult human mind we are bound to think
a good deal about the process which has brought it to the state that it is in. We may
notice three components.

1. The initial state of the brain, say at birth.
2. The education to which it has been subjected.
3. Other experience, not to be described as education, to which it has been been

subjected.

Instead of trying to produce a programme to simulate an adult mind, why not
rather try to produce one which simulates the child’s...Presumably the child brain is
something like a notebook. Rather little mechanism, and lots of blank sheets. Our
hope is that there is so little mechanism in the child brain that something like it can
easily be programmed. The amount of work in the education we can assume, as a
first approximation, to be much the same as for the human child.”

2.2 Turing on Learning and Evolution

In order to achieve a greater efficiency in constructing a machine with human like
intelligence, Turing divided the problem into two parts

• The construction of a child brain
• The development of effective learning methods

Turing notes that the two parts remain very closely related. He proposes to use
experiments: teaching a child machine and seeing how well it learns. One should
then try another and see if it learns better or worse. “There is an obvious connection
between this process and evolution, by the identifications

• structure of the machine = hereditary material
• changes of the machine = mutations
• Natural selection = judgment of the experimenter

Survival of the fittest is a slow process of measuring advantages. The experimenter,
by the exercise of intelligence, should be able to speed it up.”

Turing then discusses learning methods. He notes ([23], p.454): “We normally
associate the use of punishments and rewards with the teaching process...The ma-
chine has to be so constructed that events which shortly proceeded the occurrence of
a punishment signal are unlikely to be repeated, whereas a reward signal increases
the probability of repetition of the events which lead to it.”

But Turing observes the major drawback of this method: “The use of punish-
ments and rewards can at best be part of the teaching process. Roughly speaking,
if the teacher has no other means of communicating to the people, the amount of
information which can reach him does not exceed the total number of rewards and
punishments applied.”
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In order to speed up learning Turing demanded that the child machine should un-
derstand some language. In the final pages of the paper Turing discusses the problem
of the complexity the child machine should have. He proposes to try two alterna-
tives: either to make it as simple as possible to allow learning or to include a com-
plete system of logical inference. He ends his paper with the remarks: “Again I do
not know the answer, but I think both approaches should be tried. We can see only
a short distance ahead, but we can see plenty there that needs to be done.”

2.3 Turing and Neural Networks

In the posthumously published paper Intelligent Machinery [24] Turing describes
additional details how to create an intelligent machine. First he discusses possible
components of a child machine. He introduces unorganized machines of type A, B,
and P. A and B are artificial neural networks with random connections. They are
made up from a rather large number N of similar units, which can be seen as binary
neurons. Each unit has two input terminals and one output terminal which can be
connected to the input terminals of 0 (or more) other units. The connections are cho-
sen at random. All units are connected to a central synchronizing unit from which
synchronizing pulses are emitted. Each unit has two states. The dynamics is defined
by the following rule:

The states from the units from which the input comes are taken from the previous
moment, multiplied together and the result is subtracted from 1.

Thus a neuron is nothing else than a NAND gate. The state of the network is
defined by the states of the units. Note that the network might have lots of loops,
it continually goes through a number of states until a period begins. The period
cannot exceed 2N cycles. In order to allow learning the machine is connected with
some input device which can alter its behavior. This might be a dramatic change of
the structure, or changing the state of the network.

Maybe Turing had the intuitive feeling that the basic transition of the type A
machine is not enough, therefore he introduced the more complex B-type machine.
I will not describe this machine here, because neither for the A or the B machine did
Turing define precisely how learning can be done.

A learning mechanism is introduced with the third machine, called a P-type ma-
chine. The machine is an automaton with a number of N configurations. There exists
a table where, for each configuration, the action the machine has to take is specified.
The action may be either

1. To do some externally visible act A1, . . .Ak

2. To set a memory unit Mi

The reader should have noticed that the next configuration is not yet specified.
Turing surprisingly defines: If the current configuration is s, then the next configura-
tion is the remainder of 2s or 2s+ 1 on division by N. These two configurations are



Computational Intelligence: The Legacy of Alan Turing and John von Neumann 29

called the alternatives 0 and 1. The reason for this definition is the learning mech-
anism Turing defines. At the start the description of the machine is largely incom-
plete. The entries for each configuration might be in five states, either U (uncertain),
or T0 (try alternative 0), T1 (try alternative 1), D0 (definite 0) or D1 (definite 1).

Learning changes the entries as follows: If the entry is U, the alternative is chosen
at random, and the entry is changed to either T0 or T1 according to whether 0 or
1 was chosen. For the other four states, the corresponding alternatives are chosen.
When a pleasure stimulus occurs, state T is changed to state D, when a pain stimu-
lus occurs, T is changed to U. Note that state D cannot be changed. The proposed
learning method sounds very simple, but Turing surprisingly remarked:

I have succeeded in organizing such a (paper) machine into a universal machine.

Today the universal machine is called the Turing Machine. Turing even gave
some details of this particular P-type machine. Each instruction consisted of 128
digits, forming four sets of 32 digits, each of which describes one place in the main
memory.

2.4 Discipline and Initiative

We now turn to the next important observation of Turing. Turing notes that punish-
ment and reward are very slow learning techniques. So he requires:

If the untrained infant’s mind is to become an intelligent one, it must acquire both
discipline and initiative.

Discipline means strictly obeying the punishment and reward. But what is initia-
tive? The definition of initiative is typical of Turing’s behavioristic attitude. “Disci-
pline is certainly not enough in itself to produce intelligence. That which is required
in addition we call initiative. This statement will have to serve as a definition. Our
task is to discover the nature of this residue as it occurs in man, and to try and copy
it in machines.”

With only a paper computer available Turing was not able to investigate the sub-
ject initiative further. Nevertheless he made the bold statement [24]: “A great posi-
tive reason for believing in the possibility of making thinking machinery is the fact
that it is possible to make machinery to imitate any small part of a man. One way
of setting about our task of building a thinking machine would be to take a man
as a whole and to try to replace all parts of him by machinery...Thus although this
method is probably the ‘sure’ way of producing a thinking machine it seems to be
altogether too slow and impracticable. Instead we propose to try and see what can be
done with a ‘brain’ which is more or less without a body providing, at most organs
of sight, speech, and hearing. We are then faced with the problem of finding suitable
branches of thought for the machine to exercise its powers in.”
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Turing mentions the following fields as promising:

• Various games, e.g. chess, bridge
• The learning of languages
• Translation of languages
• Cryptography
• Mathematics

Turing remarks: “The learning of languages would be the most impressive, since
it is the most human of these activities. This field seems however to depend rather
too much on sense organs and locomotion to be feasible.” Turing seems here to have
forgotten that language learning is necessary for his imitation game!

3 Von Neumann’s Logical Theory of Automata

In 1938 Alan Turing was assistant to John von Neumann. But later they worked
completely independently from each other, not knowing the thoughts the other had
concerning the possible applications of the newly designed electronic computers. A
condensed summary of the research of John von Neumann concerning machine in-
telligence is contained in his paper “The General and Logical Theory of Automata”
[25]. This paper was presented in 1948 at the Hixon symposium on: Cerebral mech-
anism of behavior. Von Neumann was the only computer scientist at this sympo-
sium. The reason was that von Neumann closely observed the theoretical research
aimed to understand the brain in order to use the results for artificial automata.

Von Neumann notices three major limitations of the present size of artificial
automata

• The size of componentry
• The limited reliability
• The lack of a logical theory of automata

There have been tremendous achievements in the first two areas. Therefore I will
concentrate on the theory problem. Here von Neumann predicted:

The logic of automata will differ from the present system of formal logic in two
relevant respects.

1. The actual length of “chains of reasoning”, that is, of the chains of operations,
will have to be considered.

2. The operations of logic will all have to be treated by procedures which allow
exceptions with low but non-zero probabilities.

...This new system of formal logic will move closer to another discipline which has
been little linked in the past with logic. This is thermodynamics, primarily in the
form it was received from Boltzmann, and is that part of theoretical physics which
comes nearest in some of its aspects to manipulating and measuring information.
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Von Neumann tried later to formalize probabilistic logic. His results appeared
in [26]. But this research was more or less a dead end, because von Neumann did
not abstract from the hardware components. They are unreliable and have a certain
probability of failure. In addition, von Neumann included time in his model, making
a mathematical analysis of a given system difficult. Probabilistic reasoning is now
heavily used in artificial intelligence [17]. The chains of operations are investigated
in a branch of theoretical computer science called computational complexity [8].

3.1 McCulloch-Pitts Theory of Formal Neural Networks

In 1943 McCulloch and Pitts [13] had described the brain by a formal neural net-
work, consisting of interconnected binary neurons. Von Neumann summarizes their
major result follows:

“The ‘functioning’ of such a network may be defined by singling out some of the
inputs of the entire system and some of its outputs, and then describing what original
stimuli on the former are to cause what ultimate stimuli of the latter. McCulloch and
Pitts’ important result is that any functioning in this sense which can be defined
at all logical, strictly, and unambiguously in a finite number of words can also be
realized by such a formal system.”

In modern terms: Any computable function can be realized by a sufficiently large
McCulloch and Pitts network.
McCulloch and Pitts had derived this result by showing that their formal neural
network connected to an infinite tape is equivalent to a Turing machine. But even
given this result, von Neumann observes that at least two problems remain

1. Can the network be realized within a practical size?
2. Can every existing mode of behavior really be put completely and unambigu-

ously into words?

Von Neumann informally discusses the second problem, using the problem of
analogy. He remarks prophetically:

There is no doubt that any special phase of any conceivable form of behavior can be
described “completely and unambiguously” in words.... It is, however an important
limitation, that this applies only to every element separately, and it is far from clear
how it will apply to the entire syndrome of behavior.

This severe problem has not been noticed by Turing. Using the example visual
analogy von Neumann argues: “One can start describing to identify any two rec-
tilinear triangles. These could be extended to triangles which are curved, whose
sides are only partially drawn etc... We may have a vague and uncomfortable feel-
ing that a complete catalogue along such lines would not only be exceedingly long,
but also unavoidably indefinite at its boundaries. All of this, however, constitutes
only a small fragment of the more general concept of identification of analogous
geometrical objects. This, in turn, is only a microscopic piece of the general con-
cept of visual analogy.” Thus von Neumann comes to the conclusion:
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Now it is perfectly possible that the simplest and only practical way to say what
constitutes a visual analogy consists in giving a description of the connections of
the visual brain....It is not at all certain that in this domain a real object might not
constitute the simplest description of itself.

Von Neumann ends the section with the sentence: “The foregoing analysis shows
that one of the relevant things we can do at this moment is to point out the directions
in which the real problem does not lie.” In order to understand and investigate the
fundamental problem, von Neumann identified an important subproblem. In nature
it is obvious that more complex beings have been developed from less complex ones.
Is this also possible using automata? How much complexity is needed for automata
to create more complex ones?

3.2 Complication and Self-reproduction

Von Neumann starts the discussion of complexity with the observation that if an
automaton has the ability to construct another one, there must be a decrease in com-
plication. In contrast, natural organisms reproduce themselves, that is, they produce
new organisms with no decrease in complexity. So von Neumann tries to construct
a general artificial automata which could reproduce itself. The famous construction
consists of the following automata:

1. A general constructive machine, A, which can read a descriptionΦ(X) of another
machine, X, and build a copy of X from this description:

A +Φ(X) � X

2. A general copying machine, B. which can copy the instruction tape:

B +Φ(X) � Φ(X)

3. A control machine, C, which when combined with A and B, will first activate B,
then A, link X to Φ(X) and cut them loose from A+B+C

A + B +C+Φ(X) � X +Φ(X)

Now choose X to be A+B+C

A + B +C+Φ(A + B +C) � A + B +C+Φ(A + B +C)

4. It is possible to add the description of any automaton D

A + B +C+Φ(A + B +C+ D) � A + B +C+ D

+Φ(A + B +C+ D)

Now allow mutation on the description Φ(A + B +C+ D)
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A + B +C+Φ(A + B +C+ D′) � A + B +C+ D′

+Φ(A + B +C+ D′)

Mutation at the D description will lead to a different self-reproducing automaton.
This might allow the system to simulate some kind of evolution as seen in natural
organisms.

Von Neumann later constructed a self-reproducing automata which consisted of
29 states [27]. This convinced von Neumann that complication can also be found in
artificial automata. Von Neumann ends the paper with the remark:

This fact, that complication, as well as organization, below a critical level is degen-
erative, and beyond that level can become self-supporting and even increasing, will
clearly play an important role in any future theory of the subject.

Von Neumann was well aware of the other two important evolutionary processes
besides replication - namely variation and selection. He decided that knowledge
about these two processes was not yet sufficient to incorporate them in his the-
ory of automaton. “Conflicts between independent organisms lead to consequences
which, according to the theory of natural selection, are believed to furnish an im-
portant mechanism of evolution. Our models lead to such conflict situations. The
conditions under which this motive for evolution can be effective here may be quite
complicated ones, but they deserve study.”

Cellular automata have lead to great theoretical research. They can easily be ex-
tended to have the power of Turing machines. Nevertheless, the central problem
of this approach remains unsolved: How can the automata evolve complex prob-
lem solving programs starting with fairly simple initial programs? This happened
in biological evolution. Starting with small self-reproducing units complex problem
solving capabilities have evolved, culminating in the human brain.

4 Holland’s Logical Theory of Adaptive Systems

In the paper “Outline for a Logical Theory of Adaptive Systems” [10] John Holland
tried to continue the scientific endeavor initiated by von Neumann. He wrote:

The theory should enable to formulate key hypotheses and problems particularly
from molecular control and neurophysiology. The work in theoretical genetics
should find a natural place in the theory. At the same time, rigorous methods of
automata theory, particularly those parts concerned with growing automata should
be used.

Holland’s proposal is a very early attempt to work on a constructive theory of the
evolution of automata. It tries to combine being, acting, developing, and evolving
(see Chapter 17 for more details). This proposal is so important that I will describe
it in detail. Holland’s emphasis (like von Neumann‘s) is foremost on theories and
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systems, he does not claim to solve grand challenge applications with the proposed
methods. This can be tried after the theories have been formulated and verified.

“Unrestricted adaptability (assuming nothing is known of the environment) re-
quires that the adaptive system be able initially to generate any of the programs of
some universal computer . . . With each generation procedure we associate the pop-
ulation of programs it generates;. . . In the same vein we can treat the environment as
a population of problems.”

Now let us have a closer look at Holland’s model. First, there is a finite set of gen-
erators (programs) (g1, . . . ,gk). The generation procedure is defined in terms of this
set and a graph called a generation tree. Each permissible combination of generators
is represented by a vertex in the generation tree. Holland now distinguishes between
auxiliary vertices and main vertices. Each auxiliary vertex will be labeled with two
numbers, called the connection and disconnection probabilities. This technique en-
ables to create new connections or to delete existing connections. Each main vertex
is labeled with a variable referred to as density. The interested reader is urged to
read the original paper [10].

Holland claims that from the generation tree and the transition equations of any
particular generation procedure, one can calculate the expected values of the den-
sities of the main vertices as a function of time. Holland writes: “From the general
form of the transition equations one can determine such things as conditions under
which the resulting generation procedures are stationary processes.” Thus Holland
already tried to formulate a stochastic theory of program generation! This is an idea
still waiting to be explored.

Holland’s next extension of the system is similar in spirit to von Neumann’s self-
reproducing automata. Holland introduces supervisory programs which can con-
struct templates which alter the probabilities of connections. Templates play the
role of catalysts or enzymes. Thus program construction is also influenced by some
kind of “chemical reactions.”

The above process is not yet adaptive. Adaptation needs an environment posing
problems. Therefore Holland proposes that the environment is treated as a popula-
tion of problems. These problems are presented by means of a finite set of initial
statements and an algorithm for checking whether a purported solution of the prob-
lem is in fact a solution. Holland then observes the problems of partial solutions and
subgoals. “When we consider the interaction of an adaptive system with its environ-
ment we come very soon to questions of partial solutions, subgoals etc. The simplest
cases occur when there is an a priori estimate of the nature of the partial solution
and a measure of the closeness of its approach to the final solution.”

Holland then observes that a rich environment is crucial for the adaptation.
“Mathematical characterization of classes of rich environments relative to a given
class of adaptive systems constitutes one of the major questions in the study of adap-
tive systems. . . . An adaptive system could enhance its rate of adaptation by some-
how enriching the environment. Such enrichment occurs if the adaptive system can
generate subproblems or subgoals whose solution will contribute to the solution of
the given problems of the environment.”
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It is very interesting to note that Holland distinguished three kinds of programs
– supervisory programs, templates, and programs for the problem solution. The su-
pervisory programs use a probabilistic generation tree to generate programs, the
templates are used as catalyst to “skew” the generation process. Holland perceived
a hierarchy of programs [9]:

1. productive systems – the generator system is able to produce other generators
2. autocatalytic systems – the generator system produces generators which are used

in the construction
3. self-duplicating systems – the generator system produces duplicates of itself
4. general adaptive systems – has still to be defined

“The beginning of such a definition (of adaptive systems) lies in the following
consideration: with the help of concepts such as autocatalytic and self-duplicating
generator systems it is possible to define such concepts as steady-state equilibria and
homeostasis for embedded automata. . . If the generator system for such an automa-
ton has a hierarchical structure, then a small change in structure produces a small
change in proportion to the “position” of the change in the hierarchy. . . By making
changes first at the highest level and then at progressively lower levels of the hier-
archy, it should be possible to narrow down rather quickly to any automaton in this
category having some initially prescribed behavior.”

I believe that Holland’s proposal is a very good starting point for future research.
It puts forward many ideas not yet contained in current research. After working for
several years on this theory Holland turned to a much simpler evolution model. The
environment is hidden in a fitness function. Evolution then reduces to an optimiza-
tion problem. This research lead to the famous genetic algorithm.

5 The Beginning of Artificial Intelligence - The Logic Theorist

The term artificial intelligence was coined in the mid fifties. One of the first achieve-
ments was the logic theory machine, also called the Logic Theorist LT by Newell,
Shaw and Simon [16]. LT proved theorems in elementary symbolic logic, more pre-
cisely the sentential calculus. It consists of expressions built from combinations of
basic symbols. Principia Mathematica from Russell and Whitehead lists five ex-
pressions as axioms for the sentential calculus. The first three are

(p or q) → p

p → (p or q)
(p or q) → (q or p)

p and q are binary variables. Given any variable p we can form (not p) Given any
two variables we can form the expression (p or q) or p → q. From these axioms
theorems can be derived.

When the LT found a simpler proof of proposition 2.85 of Principia Mathematica,
Simon wrote to Russell: “We have accumulated some interesting experience about
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the effects of simple learning programs superimposed on the basic performance
program. For example we obtain rather striking improvements in problem-solving
ability by inducing the machine to remember and use the fact that particular the-
orems have proved in the past useful to it in the connection with particular proof
methods.....In general, the machine’s problem solving is much more elegant when it
works with a selected list of strategic theorems than when it tries to remember and
use all the previous theorems” ([20] ,p.208).

Russell answered: “I am delighted by your example of superiority of your ma-
chine to Whitehead and me...I am also delighted by your exact demonstration of the
old saw that wisdom is not the same thing as erudition” ([20], p. 208).

Simon made serious attempts to interpret LT as a psychological theory of problem
solving. But after analyzing thinking-aloud protocols he realized that LT did not yet
fit at all the detail of human problem-solving revealed by the protocols. Newell and
Simon identified the subjects principal problem solving tool. They called it means-
ends analysis.

Means-ends analysis is accomplished by comparing the problem goal with the
present situation and noticing one or more differences between them. The observed
difference jogs memory for an action that might reduce or eliminate the differences.
The action is taken, a new situation is observed, and if the goal has still not been
reached, the whole process is repeated. Means-ends analysis is used today in many
problem solving tools. In principle backpropagation in artificial neural networks can
also be seen as means-ends analysis.

Means-ends analysis is the central component of the next AI system Newell,
Shaw, and Simon developed. It was named the General Problem Solver GPS. It is
an impressive system incorporating many important problem solving techniques,
but difficult applications have not been reported.

The success of LT lead Simon and Newell in 1958 to their famous prediction : “I
do not want to shock you, but there are now in the world machines that think, that
learn, and that create. Moreover, their ability to do these things is going to increase
rapidly until - in a visible future - the range of problems they can handle will be
coextensive with the range to which the human mind has been applied [19].”

6 Discussion of the Early Proposals to Create Artificial
Intelligence by Simulating Evolution

I have reviewed only four of the early proposals which simulate natural systems
to create machine intelligence. One observation strikes immediately: all the re-
searchers investigated the problem of machine intelligence on a very broad scale.
The main emphasis of Turing was the design of efficient learning schemes. For Tur-
ing it was obvious that only by efficient learning of something like a child machine
an intelligent machine could be developed. The attitude of Turing was purely that
of a computer scientist. He firmly believed that machine intelligence equal to or
surpassing human intelligence could eventually be created.
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Von Neumann’s approach was more interdisciplinary, using also results from the
analysis of the brain. He had a similar goal, but he was much more cautious con-
cerning the possibility of creating an automaton with intelligence. He identified im-
portant problems which blocked the road to machine intelligence.

Both von Neumann and Turing investigated formal neural networks as a basic
component of an artificial brain. This component was not necessary for the design,
it was used only to show that the artificial automata could have a similar organization
as the human brain. Both researchers ruled out that a universal theory of intelligence
could be found, which would make it possible to program a computer according
to this theory. So Turing proposed to use learning as the basic mechanism, von
Neumann self-reproducing automata.

Von Neumann was sceptical about the creation of machine intelligence. He was
convinced that learning leads to the curse of infinite enumeration. While every sin-
gle behavior can be unambiguously described, there is obviously an infinite number
of different behaviors. Turing also saw the limitations of teacher based learning by
reward and punishment, therefore he required that the machine needs initiative in
addition. Turing had no idea how learning techniques for initiative could be im-
plemented. He correctly observed that it was necessary for creating machine intelli-
gence by learning. Higher-level learning methods are still an open research problem.

The designs of Turing and von Neumann contain all components considered nec-
essary today for creating machine intelligence. Turing ended his investigation with
the problem of learning by initiative. Von Neumann invented as a first step self-
reproducing cellular automata.

There is no major flaw in their designs. Von Neumann’s question - can visual
analogy be described in finite time and limited space, is still unsolved.

In order to make the above problem clear, let me formulate a conjecture: The
computational universe can be divided into three sectors: computable problems;
non-computable problems (that can be given a finite, exact description but have no
effective procedure to deliver a definite result); and, finally, problems whose indi-
vidual behaviors are, in principle, computable, but that, in practice, we are unable to
formulate in an unambiguous language understandable for a Turing machine. Many
non-computable problems are successfully approached by heuristics, but it seems
very likely that the problem of visual analogy belongs to the third class.

Holland proposed a general scheme for breeding intelligent programs using the
mechanisms of evolution. This was the most ambitious proposal using program gen-
eration by evolutionary principles to create intelligent machines. This proposal tried
to circumvent Turing’s problem to code all the necessary knowledge.

Let us try to contrast the approach of Turing with those of von Neumann and
Holland. Turing proposed to programme the knowledge the humans have. In order
to speed up the implementation he suggested to programme an automaton with only
child like intelligence. The automaton child is then taught to become more intelligent.

Von Neumann was skeptical if all the components necessary for human like in-
telligence could be programmed in finite time and finite space. Therefore von Neu-
mann started with the idea to automatically evolve automata. This idea was extended
by Holland proposing an environment of problems to evolve the automata. On first
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sight this seems to solve the programming problem. Instead of copying human like
intelligence, an environment of problems was used. But Holland overlooked the
complexity of programming the problems. This would seem to be no easier than
programming the knowledge humans have about the environment.

Holland’s proposal to use stochastic systems, their steady-state equilibria and
homeostasis is in my opinion still a very promising approach for a constructive evo-
lution theory of automata. Holland himself never implemented his general model. It
is still a theoretical design.

Later von Neumann’s proposal has been extended insofar as both, the problem
solving programs and the problems evolve together [14]. This obviously happened
in natural evolution. In a new research discipline called artificial life several attempts
have been made to evolve automata and the environment together, but the evolution
always stopped very early.

Newell, Shaw and Simon concentrated on the higher level problem solving capa-
bilities of humans. Evolutionary principles or lower level structures like the human
brain are not considered to be relevant. Instead a theory of problem solving by hu-
mans is used. Their research lead to cognitive science and to artificial intelligence
research based on theories of intelligence. Despite their great optimism, no convinc-
ing artificial intelligence system has been created so far using this approach.

7 Cyc and Cog: Two Large Projects in the Legacy of Alan
Turing

Only very few big projects have been pursued in the spirit of Alan Turing. Two
recent examples are the projects Cyc and Cog. Cyc is an attempt to assemble a
comprehensive ontology and data base of everyday knowledge, with the goal of
enabling the system human-like reasoning. The goal of the Cog project was to create
a humanoid robot.

7.1 The Cyc Project

The Cyc project was started in 1984 with the goal to specify common sense knowl-
edge in a well designed language [12, 6]. Cyc attempts to assemble a comprehensive
ontology and database of everyday common sense knowledge, with the goal of en-
abling AI applications to perform human-like reasoning. The original knowledge
base is proprietary, but a smaller version of the knowledge base, intended to estab-
lish a common vocabulary for automatic reasoning, was released 2005 as OpenCyc
under an open source license.

Typical pieces of knowledge represented in the database are “Every tree is a
plant” and “Plants die eventually”. When asked whether trees die, the inference
engine can draw the obvious conclusion and answer the question correctly. The
Knowledge Base (KB) contains over a million human-defined assertions, rules or
common sense ideas. These are formulated in the language CycL, which is based
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on predicate calculus and has a syntax similar to that of the Lisp programming
language.

Much of the current work on the Cyc project continues to be knowledge en-
gineering, representing facts about the world by hand, and implementing efficient
inference mechanisms on that knowledge. Increasingly, however, work at Cycorp
involves giving the Cyc system the ability to communicate with end users in natural
language, and to assist with the knowledge formation process via machine learning.

Currently (2007) the knowledge base consists of

• 3.2 million assertions (facts and rules)
• 280,000 concepts
• 12,000 concept-interrelating predicates

Cyc runs now for 32 years, it is the longest running project in the history of AI.
But despite its huge effort its success is still uncertain. Up to now Cyc has not been
successfully used for any broad AI application. The system is far away from being
used for a Turing test.

We remind the reader, that the coding of knowledge was considered by Turing as
too inefficient. Von Neumann even doubted if the necessary knowledge for visual
analogy could be specified in finite time. Today Cyc seems to be more a confirmation
of von Neumann’s doubt than a refutation.

7.2 The Cog Project

The Cog project was started in 1993 with extreme publicity. The goal was to under-
stand human cognitive abilities well enough to build a humanoid robot that develops
and acts similar to a person [3, 4]. One of the key ideas of the project was to build
a robot with capabilities similar to a human infant. We have encountered this idea
already in Turing’s proposal.

“By exploiting a gradual increase in complexity both internal and external, while
reusing structures and information gained from previously learned behaviors, we
hope to be able to learn increasingly sophisticated behavior [4].” Cog was designed
bottom-up [3]. This lead to reasonable success in the beginning. The big problems
appeared later.

Brooks et al. wrote prophetically: To date (1999), the major missing piece of our
endeavor is demonstrating coherent global behavior from existing subsystems and
sub-behaviors. If all of these systems were active at once, competition for actua-
tors and unintended couplings through the world would result in incoherence and
interference among the subsystems [4].

During the course of the project a lot of interesting research has been done. But
the problem of coherent or even intelligent behavior could not be solved. Therefore
the project was stopped in 2002 without even entering the learning or development
phase.
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8 The JANUS Hand-Eye Robot and the Pandemonium
Architecture

With my research group I have also tried two larger research projects in the spirit of
Alan Turing and John von Neumann. The most spectacular was our hand-eye robot
JANUS. With JANUS we bridged the gap between small-scale neural networks and
real-world applicability. The robot had two eyes and two arms with which it ob-
served and manipulated its environment. The robot learned from experience and
self-supervision, initialized only with a few essential properties. JANUS also incor-
porated structural and functional medical knowledge of the brain.

The JANUS architecture was directly influenced by the top-level structure of the
human brain and its hemispherical functional lateralization [7, 22]. However the
similarities end at that level and a great deal of freedom is permitted in lower-level
neural networks. The name JANUS was chosen after the Roman god for a specific
reason: The brain not only looks out and observes and weighs up its environment,
but it also looks inwardly and is aware of its own processes. It has a reflective archi-
tecture.

The JANUS brain controls a physical robot that may exist in a changing environ-
ment. The robot can be affected by the environment either directly, through physical
contact with objects, or indirectly by the thought and learning processes. The highest
level description of the JANUS architecture is illustrated in Figure 1.

The brain is divided in two halves laterally and two blocks vertically. All sensory
signals from the left side of the robot pass directly to the right half of the brain,
while those from the right side pass directly to the left half of the brain. The left
half of the brain controls the motor outputs affecting the right side of the robot,
and similarly the right half controls the left motor side. There exist an important
connection between the two hemispheres (the corpus callosum) where information
is exchanged.

The central concept of the JANUS architecture is the notion of self-assessment or
self-supervision, within a hierarchy of adaptable network modules. The modules can
modify themselves, and higher levels can act on other levels. In order that this might
be possible, each module tries to estimate its limitations through self-assessment
measures like confidence and reliability.

The JANUS project run from 1991 till 1997. It had to be abandoned because of
lack of funding. The research progress was promising, but in 1997 JANUS was still
far away to be used in a real application.The research has been published in the
series GMD reports. The reports are out of print. The easiest access is via the WEB
(http://citeseer.ist.psu.edu) or www.iais.fraunhofer.de/muehlenbein.html.

The low-level neural network architecture of JANUS has been investigated sep-
arately. We called it the PANDEMONIUM or MINOS architecture. Pandemonium
had been originally proposed in 1958 by Selfridge [18]. The idea is to divide adap-
tively a complex domain, through the use of specialized agents, working in parallel.
All these agents, or daemons in Selfridge’s words, process the same signal in par-
allel, and each provides an answer with a certain confidence. The daemon with the
largest confidence will be chosen for classification.
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Fig. 1 The architecture of the JANUS brain

Thus for a letter classification problem we might have 26 agents, each of which
is specialized in recognizing a particular letter in all distortions. Each agent uses a
number of filters. The learning method used by Selfridge was gradient descent for
adapting the weights for each filter used.

We have taken this general idea and extended it to a modular system of neural net-
works. The central new idea is self-assessment by reflection. Each module observes
its own behavior and produces information relating to the quality of its classifica-
tion. The architecture was very successful in a number of classification tasks, but in
the course of developing it more and more refinements had to be implemented. The
interested reader is referred to [21, 1, 2].

9 Conclusion

Today computational intelligence is divided into many fields e.g. evolutionary com-
putation, neural networks, fuzzy logic. These are further separated in a myriad of
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specialized techniques. In this paper I have recalled the fundamental research issues
of machine intelligence by discussing the research of Alan Turing and John von
Neumann. They represent two positions popular till today. For Turing the creation
of machines with human-like intelligence was just a question of programming time.
He estimated that sixty programmers had to work for fifty years. John von Neumann
was more cautious. Using the example of visual analogy he doubted that human-like
intelligent machines could be programmed in finite time and space. This lead him
to the question if intelligent programs could automatically evolve by simulating
evolution. While von Neumann solved the problem of self-reproducing automata,
automata solving complex problems could not be yet obtained. I have identified the
major problem of this approach: the programming of the environment seems to be
as difficult as programming the human problem solving capabilities.

In my opinion it is not yet clear if Turing will be ultimately right that automata
with human like intelligence could be programmed. Up to now computational intel-
ligence was successful in specialized applications only, automata passing the Turing
test or understanding languages are not yet in sight.
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Multiobjective Evolutionary Algorithms for
Electric Power Dispatch Problem

Mohammad A. Abido

Abstract. The potential of Multiobjective Evolutionary Algorithms (MOEA) for
solving a real-world power system multiobjective nonlinear optimization problem
is comprehensively presented and discussed. In this work, the Non-dominated Sort-
ing Genetic Algorithm (NSGA), Niched Pareto Genetic Algorithm (NPGA), and
Strength Pareto Evolutionary Algorithm (SPEA) have been developed and success-
fully applied to the Environmental/Economic electric power Dispatch (EED) prob-
lem. These multiobjective evolutionary algorithms have been individually examined
and applied to a standard test system. A hierarchical clustering algorithm is imposed
to provide the power system operator with a representative and manageable Pareto
set. Moreover, a fuzzy set theory based approach is developed to extract one of the
Pareto-optimal solutions as the best compromise solution. Several optimization runs
have been carried out on different cases of problem complexity. The results of the
MOEA have been compared to those reported in the literature. The results confirm
the potential and effectiveness of MOEA compared to the traditional multiobjective
optimization techniques. In addition, the performance of MOEA have been assessed
and evaluated using different measures of diversity, distribution, and quality of the
obtained non-dominated solutions.

1 Introduction

Generally, the basic objective of the traditional economic dispatch (ED) of electric
power generation is to schedule the committed generating unit outputs so as to meet
the load demand at minimum operating cost while satisfying all generator and sys-
tem equality and inequality constraints. This makes the ED problem a large-scale
highly constrained nonlinear optimization problem.
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However, thermal power plants are major causes of atmospheric pollution be-
cause of the high concentration of pollutants they cause such as sulphur oxides SOx

and nitrogen oxides NOx. Nowadays, the pollution minimization problem has at-
tracted a lot of attention due to the public demand for clean air. In addition, the
increasing public awareness of the environmental protection and the passage of the
U.S. Clean Air Act Amendments of 1990 have forced the power utilities to modify
their design or operational strategies to reduce pollution and atmospheric emissions
of the thermal power plants [17, 24, 43].

Several strategies to reduce the atmospheric emissions have been proposed and
discussed in the literature [43]. These include

• Installation of pollutant cleaning equipment such as gas scrubbers and electro-
static precipitators;

• Switching to low emission fuels;
• Replacement of the aged fuel-burners and generator units with cleaner and more

efficient ones;
• Emission dispatching.

The first three options require installation of new equipment and/or modification
of the existing ones that involve considerable capital outlay and, hence, they can
be considered as long-term options. The emission dispatching option is an attrac-
tive short-term alternative in which the emission, in addition to the fuel cost objec-
tive, is to be minimized. In recent years, this option has received much attention
[8, 10, 16, 18, 23] since it requires only a small modification of the basic economic
dispatch to include emissions. Thus, the power dispatch problem can be handled as
a multiobjective optimization problem with non-commensurable and contradictory
objectives, since the optimum solution of the economic power dispatch problem is
not environmentally the best solution.

Generally speaking, there are three approaches to solve the environmen-
tal/economic dispatch (EED) problem. The first approach treats the emission as a
constraint with a permissible limit. The second approach treats the emission as an-
other objective in addition to the usual cost objective, and the problem is converted
to a single objective problem either by linear combination of both objectives or by
considering one objective at a time for optimization. The third and the most re-
cent approach handles both fuel cost and emission simultaneously as competing
objectives.

In [8, 23] the problem has been reduced to a single objective problem by treating
the emission as a constraint with a permissible limit. This formulation, however, has
severe difficulty in getting the trade-off relations between cost and emission.

Alternatively, minimizing the emission has been handled as another objective in
addition to the usual cost objective. A linear programming based optimization pro-
cedures in which the objectives are considered one at a time was presented in [18].
Unfortunately, this approach does not give any information regarding the trade-offs
involved. In another research direction, the multiobjective EED problem was con-
verted to a single objective problem by linear combination of the different objectives
as a weighted sum [9, 10, 16]. The important aspect of this weighted sum method
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is that a set of non-inferior solutions can be obtained by varying the weights. Un-
fortunately, this requires multiple runs. Furthermore, this method cannot be used
to find Pareto-optimal solutions in problems having a non-convex Pareto-optimal
front. To avoid this difficulty, the ε-constraint method for multiobjective optimiza-
tion was presented in [7, 45]. This method is based on optimization of the most
preferred objective and considering the other objectives as constraints bounded by
some allowable levels ε . The obvious weaknesses of this approach are that it is
time-consuming and tends to find weakly non-dominated solutions.

The recent direction is to handle both objectives simultaneously as competing ob-
jectives. A fuzzy multiobjective optimization technique for the EED problem was
proposed [41]. However, the solutions produced are sub-optimal and the algorithm
does not provide a systematic framework for directing the search towards the Pareto-
optimal front. A fuzzy satisfaction-maximizing decision approach was successfully
applied to solve the bi-objective EED problem [27, 42]. However, extension of the
approach to include more objectives such as security and reliability is a very in-
volved question. A multiobjective stochastic search technique for the multiobjective
EED problem was proposed in [14]. However, the technique is computationally in-
volved and time-consuming. In addition, the genetic drift and search bias are severe
problems that result in premature convergence. Therefore, additional efforts should
be made to preserve the diversity of the non-dominated solutions.

In dealing with multiobjective optimization problems, classical search and opti-
mization methods are not efficient for the following reasons.

• Most of them cannot find multiple solutions in a single run, thereby requiring
them to be applied as many times as the number of desired Pareto-optimal solu-
tions.

• Multiple applications of these methods do not guarantee finding widely different
Pareto-optimal solutions.

• Most of them cannot efficiently handle problems with discrete variables and
problems having multiple optimal solutions.

• Some algorithms are sensitive to the shape of the trade-off curve and cannot be
used in problems having a non-convex Pareto-optimal front.

On the contrary, the studies on evolutionary algorithms have shown that these meth-
ods can be efficiently used to solve multiobjective optimization problems and elim-
inate most of the above difficulties of classical methods [11, 12, 13, 15, 20, 22, 26,
29, 31, 33, 34, 37, 39, 40, 44, 47, 49]. Since they use a population of solutions in
their search, multiple Pareto trade-off solutions can be found in a single run.

Recently, different multiobjective evolutionary algorithms (MOEA) have been
implemented and applied to the EED problem with impressive success [1, 2, 3, 4, 5].
In this chapter, implementations of different MOEA techniques to solve the
real-world multiobjective EED problem have been carried out to assess their poten-
tial and effectiveness. Specifically speaking, Non-dominated Sorting Genetic Algo-
rithm (NSGA) [40], Niched Pareto Genetic Algorithm (NPGA) [26], and Strength
Pareto Evolutionary Algorithm (SPEA) [49] have been developed and implemented.
It is worth mentioning that this work presents an exploratory study, aiming to
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demonstrate the potential of MOEA for solving the problem under consideration.
The EED problem is formulated as a nonlinear constrained multiobjective optimiza-
tion problem where fuel cost and environmental impact are treated as competing
objectives. The potential of MOEA to handle this problem is investigated and dis-
cussed. A hierarchical clustering technique is implemented to provide the system
operator with a representative and manageable Pareto trade-off set. In addition, a
fuzzy-based mechanism is employed to extract the best compromise solution. Dif-
ferent cases with different complexities have been considered in this study. The
MOEA techniques have been applied to the standard IEEE 30-bus 6-generator test
system. These techniques were compared to each other and to classical multiob-
jective optimization techniques as well. The effectiveness of MOEA to solve the
EED problem is demonstrated. The quality and diversity of the non-dominated so-
lutions obtained by different MOEA techniques have been measured and assessed
quantitatively.

2 EED Problem Formulation

The environmental/economic dispatch problem is to minimize two competing ob-
jective functions, fuel cost and emission, while satisfying several equality and in-
equality constraints. Generally the problem is formulated as follows [28].

2.1 Problem Objectives

Minimization of Fuel Cost: The generator cost curves are represented by quadratic
functions and the total fuel cost F(PG) in ($/h) can be expressed as

F(PG) =
N

∑
i=1

ai + biPGi + ciP
2
Gi

, (1)

where N is the number of generators, ai, bi, and ci are the cost coefficients of the
ith generator, and PGi is the real power output of theith generator. PG is the vector of
real power outputs of generators and is defined as

PG = [PG1 ,PG2 , ...,PGN ]T . (2)

Minimization of Emission: The total emission E(PG) in (ton/h) of atmospheric pol-
lutants such as sulphur oxides SOx and nitrogen oxides NOx caused by the operation
of fossil-fueled thermal generation can be expressed as

E(PG) =
N

∑
i=1

10−2(αi +βiPGi + γiP
2
Gi

)+ ζi exp(λiPGi), (3)

whereα i,β i, γ i,ζ i,andλ i are coefficients of the ith generator emission characteristics.
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2.2 Problem Constraints

Generation capacity constraint: For stable operation, the real power output of each
generator is restricted by lower and upper limits as follows:

Pmin
Gi
≤ PGi ≤ Pmax

Gi
, i = 1, ...,N. (4)

Power balance constraint: the total electric power generation must cover the total
electric power demand PD and the real power loss in transmission lines Ploss. Hence,

N

∑
i=1

PGi −PD−Ploss = 0. (5)

Calculation of Ploss implies solving the load flow problem which has equality con-
straints on real and reactive power at each bus as follows

PGi−PDi−Vi

NB

∑
j=1

Vj[Gi j cos(δi− δ j)+ Bi j sin(δi− δ j)] = 0, (6)

QGi −QDi−Vi

NB

∑
j=1

Vj[Gi j sin(δi− δ j)−Bi j cos(δi− δ j)] = 0, (7)

where i =1,2,. . . ,NB; NB is the number of buses; QGi is the reactive power gener-
ated atith bus; PDi and QDi are the ith bus load real and reactive power respectively;
Gi j and Bi j are the transfer conductance and susceptance between bus i and bus j
respectively; Vi and Vj are the voltage magnitudes at bus i and bus j respectively;
δ i and δ j are the voltage angles at bus i and bus j respectively. The equality con-
straints in Equations (6) and (7) are nonlinear equations that can be solved using the
Newton-Raphson method to generate a solution of the load flow problem. During
the course of solution, the real power output of one generator, called the slack gen-
erator, is left to cover the real power loss and satisfy the equality constraint in (5).
The load flow solution gives all bus voltage magnitudes and angles. Then, the real
power loss in transmission lines can be calculated as

Ploss =
NL

∑
k=1

gk
[
V 2

i +V 2
j −2ViVj cos(δi− δ j)

]
, (8)

where NL is the number of transmission lines; gk is the conductance of the kth line
that connects bus i to bus j.

Security constraints: for secure operation, the apparent power flow through the
transmission line Sl is restricted by its upper limit as follows:

Slk ≤ Smax
lk

, k = 1, ...,NL. (9)
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It is worth mentioning that the kth transmission line flow connecting bus i to bus j
can be calculated as

Slk = (Vi∠δi) I∗i j, (10)

where Ii j is the current flow from bus i to bus j and it can be calculated as

Ii j = (Vi∠δi)×
[
(Vi∠δi−Vj∠δ j)× yi j +(Vi∠δi)× j

y
2

]
, (11)

where yi j is the line admittance while y is the shunt susceptance of the line.

2.3 Problem Formulation

Aggregating the objectives and constraints, the problem can be mathematically for-
mulated as a multiobjective optimization problem as follows.

Minimize
PG

[F(PG),E(PG)], (12)

Subject to:
g(PG) = 0, (13)

h(PG)≤ 0, (14)

where g is the equality constraint representing the power balance while h are the in-
equality constraints representing the generation capacity and power system security.

3 Multiobjective Optimization

3.1 Principles and Definitions

Many real-world problems involve the simultaneous optimization of several objec-
tive functions. Generally, these functions are non-commensurable and often conflict-
ing objectives. Multiobjective optimization with such conflicting objective functions
gives rise to a set of optimal solutions, instead of a single optimum. The reason why
many optimal solutions are obtained is that no one can be considered to be better
than any other with respect to all objective functions. These optimal solutions are
known as Pareto-optimal solutions.

A general multiobjective optimization problem consists of a number of objectives
to be optimized simultaneously and is associated with a number of equality and
inequality constraints. It can be formulated as follows:

Minimize fi(x) i = 1, ...,Nob j, (15)
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Subject to :

{
g j(x) = 0 j = 1, ...,M,
hk(x)≤ 0 k = 1, ...,K,

(16)

where fi is the ith objective function, x is a candidate solution, and Nob j is the number
of objectives.

For a multiobjective optimization problem, any two solutions x1 and x2 can have
one of two relationships - one dominates the other or none dominates the other. In a
minimization problem, without loss of generality, a solution x1 dominates x2 iff the
following two conditions are satisfied:

1. ∀i ∈ {1,2, ...,Nob j} : fi(x1)≤ fi(x2), (17)

2. ∃ j ∈ {1,2, ...,Nob j} : f j(x1) < f j(x2). (18)

If any of the above conditions is violated, the solution x1 does not dominate
the solution x2. If x1 dominates the solution x2, x1 is called the non-dominated
solution within the set {x1, x2}. The solutions that are non-dominated within the
entire search space are denoted as Pareto-optimal and constitute the Pareto-optimal
set. The objective function values associated with the non-dominated solutions in
Pareto-optimal set comprise the Pareto-optimal front.

3.2 Fitness Assignment

Fonseca and Fleming [22] categorized several MOEAs and compared different fit-
ness assignment approaches. They classified these approaches as aggregating ap-
proaches, non-Pareto-based approaches, and Pareto-based approaches.

Aggregating approaches combine the problem objectives into a single function
that is used for fitness calculation. Although these approaches have the advan-
tage of producing one single solution, they require well-known domain knowledge
that is often not available. In addition, multiple runs are required to find a family
of non-dominated solutions and to identify the a Pareto trade-off front. The most
popular aggregating approaches are the weighted-sum, goal programming, and ε-
constrained methods [11].

To overcome the difficulties involved in the aggregating approaches, alternative
techniques based on population policies, selection criteria, or special handling of the
objectives have been developed. These approaches are known as non-Pareto-based
approaches. The advantage of these approaches is that multiple non-dominated
solutions can be simultaneously evolved in a single run. These approaches, how-
ever, are often sensitive to the non-convexity of Pareto-optimal sets. The most
popular non-Pareto-based approaches are the Vector Evaluated Genetic Algo-
rithm (VEGA) [37], multi-sexual genetic algorithm [33], and weighted Min-Max
approach [12].
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The basic idea of the Pareto-based fitness assignment is to find a set of solutions
in the population that are non-dominated by the rest of the population. These so-
lutions are then assigned the highest rank and eliminated from further contention.
Generally, all approaches of this class explicitly use Pareto dominance in order to
determine the reproduction probability of each individual. Some Pareto-based ap-
proaches are NSGA, NPGA, and SPEA.

3.3 Diversity Preservation

In general, the goal of a multiobjective optimization algorithm is not only to guide
the search towards the Pareto-optimal front but also to maintain population diver-
sity in the trade-off front. Unfortunately, a simple evolutionary algorithm tends to
converge towards a single solution due to selection pressure, selection noise, and
operator disruption [34]. Several approaches have been developed in order to over-
come this problem, preserve the diversity in the population, and prevent premature
convergence. These approaches are classified as niching techniques and non-niching
techniques. Niching algorithms are characterized by their capabilities of maintain-
ing stable subpopulations (niches).

Fitness sharing is the most frequently used niching technique. The basic idea be-
hind this technique is: the more individuals are located in the neighborhood of a
certain individual, the more its fitness value is degraded. The neighborhood is de-
fined in terms of a distance measure di j and specified by the niche radius σshare.

Restricted mating is the most frequently used non-niching technique. In this tech-
nique, two individuals are allowed to mate only if they are within a certain distance.
This mechanism may avoid the formation of lethal individuals and therefore im-
prove the online performance. However, it does not appear to be widely used in the
field of multiobjective evolutionary algorithms [22].

4 Multiobjective Evolutionary Algorithms

The recent studies on evolutionary algorithms have shown that these methods can
be efficiently used to eliminate most of the difficulties of the classical optimization
methods. In this study, the basic Pareto-based MOEA have been developed and
implemented. Specifically speaking, NSGA [40], NPGA [26], and SPEA [49] have
been considered in this work.

4.1 Non-dominated Sorted Genetic Algorithm (NSGA)

Srinivas and Deb [40] developed NSGA in which a ranking selection method is
used to emphasize current non-dominated solutions and a niching method is used
to maintain diversity in the population. Before the selection is performed, the
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population is first ranked in several steps. At first, the non-dominated solutions
in the population are identified. These non-dominated solutions constitute the first
non-dominated front and are assigned the same dummy fitness value. To maintain
diversity in the population, these non-dominated solutions are then shared with their
dummy fitness values. Phenotypic sharing on the decision space is used in this tech-
nique. After sharing, these non-dominated individuals are ignored temporarily to
process the rest of population members. The above procedure is repeated to find the
second level of non-dominated solutions in the population. Once they are identified,
a dummy fitness value, which is a little smaller than the worst shared fitness value
observed in solutions of first non-dominated set, is assigned. Thereafter, the shar-
ing procedure is performed among the solutions of the second non-domination level
and the shared fitness values are found as before. This process is continued until
all population members are assigned a shared fitness value. The population is then
reproduced with the shared fitness values. A stochastic remainder selection is used
in this study.

In the first generation, the non-dominated solutions of the first front are stored
in an external set. After ranking in the subsequent generations, this external set
is extended by adding the solutions from the new first fronts, and removing any
dominated solutions. Generally, NSGA includes two main steps: fitness assignment
and fitness sharing.

Fitness assignment: the basic idea of this approach is to find a set of solutions in
the population that are non-dominated by the rest of the population. Consider a set
of N population members, each having Nob j objective function values, the following
procedure is used to find the nondominated set of solutions:-

Step 1: Initiate the individual counter i with i = 1.
Step 2: For all j = 1, . . .,N and j 	= i, compare solutions xi and x j for domina-

tion using the conditions of domination.
Step 3: If for any j, xi is dominated by x j, mark xi as dominated.
Step 4: If all individuals in the population are considered, Go to Step 5, else

set i = i+ 1 and go to Step 2.
Step 5: All solutions that are not marked dominated are non-dominated

solutions.

These solutions represent the first front and are eliminated from further contention.
This process continues until the population is properly ranked.

Fitness sharing: the basic idea behind sharing is: the more individuals are located
in the neighborhood of a certain individual, the more its fitness value is degraded.
The neighborhood is defined in terms of a distance measure d and specified by the
niche radius σ share. Given a set of nk solutions in the kth front each having a dummy
fitness value fk , the sharing procedure is performed in the following way [26] for
each solution i = 1,. . . ,nk:-
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Step 1: Compute a normalized Euclidean distance measure with another solu-
tion j in the kth nondominated front, as follows:

di j =

√√√√ P

∑
k=1

(
xi

k− x j
k

xu
k − xl

k

)2

(19)

where P is the number of variables in the problem. xu
k and xl

k are the
upper and lower bounds of variable xk.

Step 2: This distance di j is compared with a prespecified parameter σ share and
the following sharing function value is computed:

Sh(di j) =

{
1−

(
di j

σshare

)2
, if di j ≤ σshare

0, otherwise
(20)

Step 3: Increment j. If j ≤ nk, go to Step 1 else calculate niche count for ith
solution as follows:

mi =
nk

∑
j=1

Sh(di j) (21)

Step 4: Degrade the dummy fitness fk of ith solution in the kth nondomination
front to calculate the shared fitness, f ∗i , as follows:

f ∗i =
fk

mi
(22)

This procedure is continued for all i = 1,. . . ,nk and a corresponding f ∗i is found.
Thereafter, the smallest value f min

k of all f ∗i in the kth nondominated front is found
for further processing. The dummy fitness of the next non-dominated front is as-
signed to be fk+1 = f min

k − εk, where εk is a small positive number.

4.2 Niched Pareto Genetic Algorithm (NPGA)

Horn et al [26] proposed a tournament selection scheme based on Pareto dominance.
Two competing individuals and a comparison set of other individuals are picked at
random from the population. The number of individuals in the comparison set is
given by the parameter tdom. Generally, the tournament selection is carried out as
follows. If one candidate is dominated by one or more members of the comparison
set while the other is not, then the later will be selected for reproduction. If neither
or both candidates are dominated by any members of the comparison set, then the
winner will be decided by sharing. The phenotypic sharing on the attribute space is
used in this technique. Generally, the tournament selection and sharing procedure
are carried out as follows.

Pareto domination tournaments: Consider a set of N population members, each
having Nob j objective function values. The following procedure can be used to find
the non-dominated set of solutions:
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Step 1: Begin with i = 1.
Step 2: Randomly pick two candidates for selection x1 and x2.
Step 3: Randomly pick a comparison set of individuals from the population.
Step 4: Compare each candidate, x1 and x2, against each individual in the com-

parison set for domination using the conditions for domination.
Step 5: If one candidate is dominated by the comparison set while the other

is not, then select the latter for reproduction and go to Step 7, else
proceed to Step 6.

Step 6: If neither or both candidates are dominated by the comparison set, then
use sharing to choose the winner.

Step 7: If i = N is reached, stop selection procedure, else set i = i+ 1 and Go
to Step 2.

Sharing procedure: To prevent the genetic drift problem, a form of sharing should
be carried out when there is no preference between two candidates. This form of
sharing maintains the genetic diversity along the population fronts and allows the
GA to develop a reasonable representation of the Pareto-optimal front. Generally,
the basic idea behind sharing is: the more individuals are located in the neighbor-
hood of a certain individual, the more its fitness value is degraded. The sharing
procedure is performed in the following way for the candidate i:-

Step 1: Begin with j = 1.
Step 2: Compute a normalized Euclidean distance measure with another

individual j in the current population, as follows:

di j =

√√√√Nob j

∑
k=1

(
Ji

k− J j
k

Ju
k − Jl

k

)2

(23)

where Nob j is the number of problem objectives. The parameters Ju
k

and Jl
k are the upper and lower values of the k-th objective function Jk.

Step 3: This distance di j is compared with a prespecified niche radius σ share

and the following sharing function value is computed as:

Sh(di j) =

⎧⎪⎨
⎪⎩

1−
(

di j
σshare

)2
, if di j ≤ σshare

0, otherwise

(24)

Step 4: Set j = j+1. If j ≤ N, go to Step 2, else calculate niche count for the
candidate i as follows:

mi =
N

∑
j=1

Sh(di j) (25)

Step 5: Repeat the above steps for the second candidate.
Step 6: Compare m1 and m2. If m1 < m2, then choose the first candidate, else

choose the second candidate.
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4.3 Strength Pareto Evolutionary Algorithm (SPEA)

Zitzler and Thiele [49] presented SPEA as a potential algorithm for multiobjective
optimization. This technique stores externally the individuals that represent a non-
dominated front among all solutions considered so far. All individuals in the external
set participate in selection. SPEA uses the concept of Pareto dominance in order to
assign scalar fitness values to individuals in the current population. The procedure
starts with assigning a real value s in [0,1) called the strength for each individual
in the external set. The strength of an individual is proportional to the number of
individuals covered by it. The strength of a Pareto solution is at the same time its
fitness. Subsequently, the fitness of each individual in the population is the sum
of the strengths of all external Pareto solutions by which it is covered. In order to
guarantee that Pareto solutions are most likely to be produced, one is added to the
resulting value. This fitness assignment ensures that the search is directed towards
the non-dominated solutions and, in the same time, the diversity among dominated
and non-dominated solutions is maintained.

The basic elements of the SPEA technique are briefly stated and defined as
follows:-

• External set: - It is a set of non-dominated solutions. These solutions are stored
externally and updated continuously. Ultimately, the solutions stored in this set
represent the Pareto optimal front.

• Strength of an individual: - It is an assigned real value s [0,1) for each individual
in the external set. The strength of an individual is proportional to the number of
individuals covered by it.

• Fitness of population individuals: - The fitness of each individual in the popula-
tion is the sum of the strengths of all external solutions by which it is covered. It
is worth mentioning that, unlike the technique presented in [14], the fitness of a
population member is determined only in relation to the individuals stored in the
external set. This significantly reduces the computational burden of the fitness
assignment process. In fact, the strength of an individual in the external set is at
the same time its fitness.

Generally, SPEA can be described in the following steps.

Step 1 (Initialization): Generate an initial population and create the empty
external set.

Step 2 (External set updating): The external set is updated as follows.

(a) Search the population for the non-dominated individuals and copy
them to the external Pareto set.

(b) Search the external Pareto set for the non-dominated individuals
and remove all dominated solutions from the set.

(c) If the number of the individuals externally stored in the Pareto set
exceeds a prespecified maximum size, reduce the set by means of
clustering.
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Step 3 (Fitness assignment): Calculate the fitness values of individuals in
both external Pareto set and the population as follows.

(a) Assign a strength s to each individual in the external set. The
strength is proportional to the number of individuals covered by
that individual.

(b) The fitness of each individual in the population is the sum of the
strengths of all external Pareto solutions which dominate that in-
dividual. A small positive number is added to the resulting sum to
guarantee that Pareto solutions are most likely to be produced.

Step 4 (Selection): Combine the population and the external set individuals.
Select two individuals at random and compare their fitness. Select the
better one and copy it to the mating pool. Repeat the selection process
N times to fill the mating pool

Step 5 (Crossover and Mutation): Perform the crossover and mutation oper-
ations according to their probabilities to generate the new population.

Step 7 (Termination): Check for stopping criteria. If any one is satisfied then
stop else copy new population to old population and go to Step 2. In
this study, the search will be stopped if the generation counter exceeds
its maximum number.

It is worth mentioning that new and revised versions of MOEA have been presented
such as NSGA-II [15, 29], SPEA2 [47], and multiobjective particle swarm optimiza-
tion MOPSO [13]. Recently, different studies in analysis, test cases, and applications
of MOEA have also been discussed [20, 31, 39].

5 MOEA Implementation

5.1 Reducing the Pareto Set by Clustering

The Pareto-optimal set can be extremely large or even contain an infinite number of
solutions. In this case, reducing the set of non-dominated solutions without destroy-
ing the characteristics of the trade-off front is desirable from the decision maker’s
point of view. An average linkage based hierarchical clustering algorithm [35] used
by SPEA [49] is employed to reduce the Pareto set to a manageable size. It works
iteratively by joining the adjacent clusters until the required number of groups is
obtained. It can be described as:

Given a set P for which its size exceeds the maximum allowable size N, it is required
to form a subset P∗ with the size N

The algorithm is illustrated in the following steps.

Step 1: Initialize cluster set C; each individual i ∈ P constitutes a distinct
cluster.

Step 2: If the number of clusters ≤ N, then go to Step 5, else go to Step 3.
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Step 3: Calculate the distance of all possible pairs of clusters. The distance dc

of two clusters c1 and c2 ∈C is given as the average distance between
pairs of individuals across the two clusters

dc =
1

n1.n2
∑

i1∈c1,i2∈c2

d(i1, i2) (26)

where n1 and n2 are the number of individuals in the clusters c1 and c2

respectively. The function d reflects the distance in the objective space
between individuals i1 and i2.

Step 4: Determine two clusters with minimal distance dc. Combine these clus-
ters into a larger one. Go to Step 2.

Step 5: Find the centroid of each cluster. Select the nearest individual in this
cluster to the centroid as a representative individual and remove all
other individuals from the cluster.

Step 6: Compute the reduced non-dominated set P∗ by uniting the representa-
tives of the clusters.

5.2 Best Compromise Solution

Fuzzy set theory has been implemented to efficiently derive a candidate trade-off
solution for the decision makers [19, 21, 36]. Upon having the final non-dominated
set, the proposed approach presents a fuzzy-based mechanism to extract a single
non-dominated solution from the trade-off front as the best compromise solution.
Due to the imprecise nature of the decision maker’s judgment, the ith objective
function of a solution in the non-dominated set, Fi, is represented by a membership
function μ i defined as [36]

μi =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1, Fi ≤ Fmin
i ,

Fmax
i −Fi

Fmax
i −Fmin

i
, Fmin

i < Fi < Fmax
i ,

0, Fi ≥ Fmax
i .

(27)

where Fmax
i and Fmin

i are the maximum and minimum values of the ith objective
function respectively. For each non-dominated solution k, the normalized member-
ship function μk is calculated as

μk =

Nob j

∑
i=1

μk
i

M
∑
j=1

Nob j

∑
i=1

μ j
i

, (28)
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where M is the number of non-dominated solutions. The best compromise solution
is the one having the maximum of μk. As a matter of fact, arranging all solutions in
the trade-off front in descending order according to their membership function will
provide the decision maker with a priority list of non-dominated solutions. This will
guide the decision maker in view of the current operating conditions.

5.3 Real-Coded Genetic Algorithm

Due to the difficulties of binary representation when dealing with a continuous
search space of large dimensions, a real-coded genetic algorithm (RCGA) [25] has
been implemented in this study. A decision variable xi is represented by a real num-
ber which lies between a lower limit ai and upper limit bi, i.e. xi ∈ [ai,bi]. The
RCGA crossover and mutation operators are described as follows:-

Crossover: A blend crossover operator (BLX-α) has been employed in this study.
This operator starts by choosing randomly a number from the interval [xi−α(yi−
xi),yi +α(yi−xi)], where xi andyi are the ith parameter values of the parent solutions
andxi < yi. In order to ensure the balance between exploitation and exploration of
the search space, α = 0.5 is selected. This operator can be depicted as shown in
Figure 1.

Mutation: The non-uniform mutation has been employed in this study. In this oper-
ator, the new value x′i of the parameter xi after mutation at generation t is given as

x′i =
{

xi +Δ(t,bi− xi), if τ = 0,
xi−Δ(t,xi−ai), if τ = 1,

(29)

and;

Δ(t,y) = y(1− r(1− t
gmax

)β ), (30)

where τ is a binary random number, r is a random number r ∈ [0,1], gmax is the
maximum number of generations, and β is a positive constant chosen arbitrarily. In

Fig. 1 Blend crossover
operator (BLX-α)
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this study, β = 5 was selected. This operator gives a value xi ∈ [ai,bi] such that the
probability of returning a value close to xi increases as the algorithm advances. This
encourages uniform search in the initial stages when t is small, and local search in
the later stages.

5.4 The Computational Flow

In this study, the basic MOEAs have been developed in order to make them suitable
for solving real-world nonlinear constrained optimization problems. The following
modifications have been incorporated in the basic algorithms.

(a) The constraint-handling approach adopted in this work is to restrict the search
within the feasible region. Therefore, a procedure is imposed to check the feasi-
bility of the initial population individuals and the children generated through GA
operations. This ensures the feasibility of the non-dominated solutions.

(b) A procedure for updating the non-dominated archive set is developed. In every
generation, the non-dominated solutions in the first front are combined with the
existing archive set. The augmented set is processed to extract the non-dominated
solutions that represent the updated non-dominated archive.

(c) A fuzzy-based mechanism is employed to extract the best compromise solution
over the trade-off curve and assist the power system operator to adjust the gener-
ation levels efficiently.

The solution procedure starts with generating the initial population at random. A
feasibility check procedure has been developed and superimposed on the MOEA to
restrict the search to the feasible region. The objective functions are evaluated for
each individual. The GA operations are applied and a new population is generated.
This process is repeated until the maximum number of generations is reached. All
techniques used in this study were implemented along with the above modifications
using the FORTRAN language. The computational flow charts of the developed
NSGA, NPGA, and SPEA are shown in Figures 2, 3, and 4 respectively.

5.5 Settings of the Proposed Approach

For all optimization runs, the population size was set at 200. The size of the ex-
ternal set was chosen as 25. If the number of the non-dominated archive exceeds
this bound, the hierarchical clustering technique is called. Since the population in
SPEA is augmented to include the externally stored set for selection process, the
population size in SPEA was reduced to 175 individuals only. Crossover and muta-
tion probabilities were chosen as 0.9 and 0.01 respectively in all optimization runs.
Several runs have been carried out to set the parameters of each technique in order
to get the best results for fair comparison.
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Fig. 2 Computational flow of the developed NSGA
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Fig. 3 Computational flow of the developed NPGA
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Fig. 4 Computational flow of the developed SPEA

6 Results and Discussions

In this study, the standard IEEE 6-generator 30-bus test system is considered to
assess the potential of MOEAs for solving the EED problem. The power system
considered has 30 buses or electrical nodes interconnected with each other with 41
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Table 1 Generator Cost and Emission Coefficients

G1 G2 G3 G4 G5 G6

Cost
a 10 10 20 10 20 10
b 200 150 180 100 180 150
c 100 120 40 60 40 100

Emission

α 4.091 2.543 4.258 5.326 4.258 6.131
β -5.554 -6.047 -5.094 -3.550 -5.094 -5.555
γ 6.490 5.638 4.586 3.380 4.586 5.151
ζ 2.0E-4 5.0E-4 1.0E-6 2.0E-3 1.0E-6 1.0E-5
λ 2.857 3.333 8.000 2.000 8.000 6.667

Table 2 Problem complexity for the cases considered

Equality Constraints Inequality Constraints
Case 1 1 6
Case 2 60 6
Case 3 60 47

transmission lines. The system has also 6 generation plants to supply 23 electrical
loads. The single-line diagram of this system is shown in Figure 5. The line data and
bus data are given in the Appendix. The values of fuel cost and emission coefficients
are given in Table 1.

To demonstrate the effectiveness of the MOEA, three different cases have been
considered as follows:

Case 1: For the purpose of comparison with the reported results, the system is
considered as lossless and the security constraint is released. Therefore, the prob-
lem constraints are the power balance constraint without Ploss and the generation
capacity constraint.

Case 2: Ploss is considered in the power balance constraint and the generation
capacity constraint is also considered.

Case 3: All constraints are considered.

For fair comparison among the developed techniques, 10 different optimization runs
have been carried out in all cases considered. Table 2 shows the problem complexity
with all cases in terms of the number of equality and inequality constraints.

At first, the fuel cost objective and emission objective are optimized individu-
ally to explore the extreme points of the trade-off surface in all cases. In this case,
the standard GA has been implemented as the problem becomes a single objective
optimization problem. The best results of cost and emission when optimized indi-
vidually for all cases are given in Table 3.

Case 1: NSGA, NPGA, and SPEA have been applied to the problem and both ob-
jectives were treated simultaneously as competing objectives. For NPGA, the niche
radius was chosen based on the guidelines in [26] and the size of the comparison set
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Table 3 Best solutions for cost and emission optimized

Case 1 Case 2 Case 3
Cost Emission Cost Emission Cost Emission

PG1 0.1095 0.4058 0.1152 0.4101 0.1475 0.4693
PG2 0.2997 0.4592 0.3055 0.4631 0.3340 0.5223
PG3 0.5245 0.5380 0.5972 0.5435 0.7864 0.6479
PG4 1.0160 0.3830 0.9809 0.3895 1.0096 0.4734
PG5 0.5247 0.5379 0.5142 0.5439 0.1072 0.1784
PG6 0.3596 0.5101 0.3542 0.5150 0.4806 0.5761
Cost 600.11 638.26 607.78 645.22 618.50 654.14
Emission 0.2221 0.1942 0.2199 0.1942 0.2302 0.2016

Fig. 5 Single-line diagram of the test system
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Fig. 6 NPGA with different settings of tdom parameter

tdom was determined experimentally. The algorithm was tested several times with
different values for tdom starting from 5% to 50% of the population size with a step
of 5%. Only a part of the results is shown in Figure 6 for the purpose of clarity.
Experimental results have shown a favorable value of tdom at 10% for our prob-
lem instance, whereas the performance degrades for values tdom greater than 20%.
Therefore, tdom is set at 10% of the population size.

The non-dominated fronts of all techniques for the best optimization runs are
shown in Figure 7. It is clear that the non-dominated solutions have good diversity
characteristics. It is quite clear that the problem is efficiently solved by these tech-
niques. The results also show that SPEA has better diversity characteristics. The best
cost and best emission solutions obtained out of 10 runs by different techniques are
given in Table 4. It is clear that SPEA gives best cost and best emission compared
to others.

The best results of the MOEAs were compared to those reported using linear
programming (LP) [18] and a multiobjective stochastic search technique (MOSST)
[14]. The comparison is shown in Table 5. It is quite evident that the MOEAs give
better fuel cost results than the traditional methods, as a reduction more than 5 $/h
is observed with less level of emission in case of SPEA. The results also confirm
the potential of multiobjective evolutionary algorithms to solve real-world highly
nonlinear constrained multiobjective optimization problems.
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Fig. 7 Comparison of trade-off fronts, Case 1

Table 4 The best solutions out of 10 runs for cost and emission of MOEA, Case 1

NSGA NPGA SPEA
Cost Emission Cost Emission Cost Emission

PG1 0.1038 0.4072 0.1116 0.4146 0.1009 0.4240
PG2 0.3228 0.4536 0.3153 0.4419 0.3186 0.4577
PG3 0.5123 0.4888 0.5419 0.5411 0.5400 0.5301
PG4 1.0387 0.4302 1.0415 0.4067 0.9903 0.3721
PG5 0.5324 0.5836 0.4726 0.5318 0.5336 0.5311
PG6 0.3241 0.4707 0.3512 0.4979 0.3507 0.5190
Cost 600.34 633.83 600.31 636.04 600.22 640.42
Emission 0.2241 0.1946 0.2238 0.1943 0.2206 0.1942

Table 5 The best fuel cost and emission out of 10 runs of MOEA compared to traditional
algorithms

LP [18] MOSST[14] NSGA NPGA SPEA
Best Cost 606.31 605.89 600.34 600.31 600.22
Emission 0.2233 0.2222 0.2241 0.2238 0.2206
Best Emission 0.1942 0.1942 0.1946 0.1943 0.1942
Cost 639.60 644.11 633.83 636.04 640.42
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Table 6 The best solutions out of 10 runs for cost and emission of MOEA, Case 2

NSGA NPGA SPEA
Cost Emission Cost Emission Cost Emission

PG1 0.1447 0.3929 0.1425 0.4064 0.1279 0.4145
PG2 0.3066 0.3937 0.2693 0.4876 0.3163 0.4450
PG3 0.5493 0.5818 0.5908 0.5251 0.5803 0.5799
PG4 0.9894 0.4316 0.9944 0.4085 0.9580 0.3847
PG5 0.5244 0.5445 0.5315 0.5386 0.5258 0.5348
PG6 0.3542 0.5192 0.3392 0.4992 0.3589 0.5051
Cost 607.98 638.98 608.06 644.23 607.86 644.77
Emission 0.2191 0.1947 0.2207 0.1943 0.2176 0.1943

Case 2: With the problem complexity shown in Table 2, MOEA techniques have
been implemented and compared. Figure 8 shows the trade-off fronts of differ-
ent techniques for the best optimization runs. It is evident that the non-dominated
solutions obtained have good diversity characteristics. The closeness of the non-
dominated solutions of different techniques demonstrates good performance char-
acteristics of MOEAs. The best solutions obtained out of 10 runs by different tech-
niques are given in Table 6.

Fig. 8 Comparison of trade-off fronts, Case 2
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Table 7 The best solutions out of 10 runs for cost and emission of MOEA, Case 3

NSGA NPGA SPEA
Cost Emission Cost Emission Cost Emission

PG1 0.1358 0.4403 0.1127 0.4753 0.1319 0.4419
PG2 0.3151 0.4940 0.3747 0.5162 0.3654 0.4598
PG3 0.8418 0.7509 0.8057 0.6513 0.7791 0.6944
PG4 1.0431 0.5060 0.9031 0.4363 0.9282 0.4616
PG5 0.0631 0.1375 0.1347 0.1896 0.1308 0.1952
PG6 0.4664 0.5364 0.5331 0.5988 0.5292 0.6131
Cost 620.87 649.24 620.46 657.59 619.60 651.71
Emission 0.2368 0.2048 0.2243 0.2017 0.2244 0.2019

Table 8 The best compromise solutions of NSGA

Case 1 Case 2 Case 3
PG1 0.2252 0.2935 0.2712
PG2 0.3622 0.3645 0.3670
PG3 0.5222 0.5833 0.8099
PG4 0.7660 0.6763 0.7550
PG5 0.5397 0.5383 0.1357
PG6 0.4187 0.4076 0.5239
Cost 606.03 617.80 625.71
Emission 0.2041 0.2002 0.2136

Table 9 The best compromise solutions of NPGA

Case 1 Case 2 Case 3
PG1 0.2663 0.2976 0.2998
PG2 0.3700 0.3956 0.4325
PG3 0.5222 0.5673 0.7342
PG4 0.7202 0.6928 0.6852
PG5 0.5256 0.5201 0.1560
PG6 0.4296 0.3904 0.5561
Cost 608.90 617.79 630.06
Emission 0.2015 0.2004 0.2079

Case 3: MOEA techniques have been implemented and the trade-off fronts of
different techniques for the best optimization runs are shown in Figure 9. In this
case, the performance of NSGA is degraded with increasing the problem complex-
ity. The best cost and best emission solutions obtained out of 10 runs are given in
Table 7.



72 M.A. Abido

Table 10 The best compromise solutions of SPEA

Case 1 Case 2 Case 3
PG1 0.2623 0.2752 0.3052
PG2 0.3765 0.3752 0.4389
PG3 0.5428 0.5796 0.7163
PG4 0.6838 0.6770 0.6978
PG5 0.5381 0.5283 0.1552
PG6 0.4305 0.4282 0.5507
Cost 610.30 617.57 629.59
Emission 0.2004 0.2001 0.2079

Fig. 9 Comparison of trade-off fronts, Case 3

Best compromise solution: - The membership functions given in Equation (27) and
Equation (28) are used to evaluate each member of the non-dominated set for each
technique. Then, the best compromise solution that has the maximum value of mem-
bership function was extracted. This procedure is applied in all cases and the best
compromise solutions are given in Tables 8, 9, and 10 for NSGA, NPGA, and SPEA
respectively. The best compromise solutions are also shown in Figures 8, 9, and 10.
It is clear that there is good agreement between SPEA and NPGA.
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7 A Comparative Study

Generally, the definition of quality in the case of multiobjective optimization is sub-
stantially more complex than for single objective optimization problems. This is
because the optimization goal itself consists of the following multiple objectives
[46, 48, 50]: -

1. The distance of the resulting non-dominated set to the Pareto-optimal front
should be minimized.

2. A good distribution of the solutions found is desirable.
3. The spread of the obtained non-dominated solutions should be maximized.

In this section, the above results for the different techniques have been compiled and
compared in view of the above objectives. In order to assess the diversity character-
istics of the proposed techniques, the best fuel cost and the best emission solutions
among the obtained non-dominated solutions for each technique given in Tables 4,
6, and 7 are compared to those of individual optimization of each objective given in
Table 3. This indicates of how far the extreme solutions are from the single objec-
tive case. The agreement and closeness of the results given in these tables are quite
evident as the best solutions of different techniques are almost identical. It can be
concluded that the developed techniques have satisfactory diversity characteristics
for the problem under consideration as the best solutions for individual optimization
are obtained along with other non-dominated solutions in a single run.

A performance measure of the spread of the non-dominated solutions is presented
in [46]. The measure estimates the range to which the fronts spread out. In other
words, it measures the normalized distance of the two outer solutions, i.e. the best
cost solution and the best emission solution. The average values of the normalized
distance measure over 10 different optimization runs are given in Table 11. The
results show that NPGA has the largest spread of the non-dominated solutions in
Case 1 while SPEA has the largest spread in Case 2. In Case 3, NSGA has the
largest spread.

On the other hand, the set coverage metric measure [50] for comparing the per-
formance of different MOEAs has been examined in this study. The average values
of this measure over 10 different optimization runs are given in Table 12. It can be
shown that the non-dominated solutions of NSGA do not cover any SPEA solutions
in Case 3 while those of NSGA are approximately covered by SPEA. In addition,
NPGA non-dominated solutions barely cover SPEA solutions with a maximum cov-
erage of 14.4% while SPEA solutions cover relatively higher percentages of NPGA
solutions.

The quality measure [6] of the non-dominated solutions obtained by different
MOEAs is applied. This quality measure starts with combining all individual non-
dominated sets of all techniques to form a pool. An index to each solution is added
to refer to the associated technique. Then, the dominance conditions are applied to
all solutions in the pool. The non-dominated solutions are extracted from the pool to
form an elite set of solutions obtained by all techniques. From their indices, the non-
dominated solutions in the elite set can be classified according to their associated
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Table 11 Normalized distance measure of different techniques

NSGA NPGA SPEA
Case 1 0.93757 0.95001 0.93809
Case 2 0.92211 0.93747 0.94509
Case 3 0.85539 0.81312 0.85363

Table 12 Percentage of non-dominated solutions of set b covered by those in set a

Set A Set B Case 1 Case 2 Case 3

NSGA
NPGA 27.6 24.0 2.0
SPEA 3.6 2.4 0.0

NPGA
NSGA 25.2 29.2 82.4
SPEA 2.0 5.6 14.4

SPEA
NSGA 52.8 53.2 97.4
NPGA 58.8 55.6 46.0

Table 13 Number of “Pareto-optimal” solutions of different techniques in elite set of non-
dominated solutions

NSGA NPGA SPEA Elite Set
Size

Case 1 36 16 129 181
Case 2 19 17 129 165
Case 3 1 35 81 117

Table 14 Normalized distance measure of different techniques on elite set of non-dominated
solutions

NSGA NPGA SPEA
Case 1 0.82937 0.73043 1.00000
Case 2 0.63184 0.93501 1.00000
Case 3 0.00000 0.53827 1.00000

technique. The quality measure has been applied to the non-dominated solutions
obtained in each case. For 10 different optimization runs with 25 non-dominated
solutions obtained by each technique per run, the created pool contains 750 solu-
tions. For each case, the non-dominated solutions are extracted out of the pool and
the elite set is formed. The elite set consists of 181, 165, and 117 for Cases 1, 2,
and 3 respectively. The results of the proposed quality measure are given in Table
13. It can be observed that SPEA has the majority of the elite set members in all
cases. It can be concluded that the non-dominated solutions obtained by SPEA are
the best since approximately 71%, 78%, and 69% of the elite set size is contributed
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Fig. 10 The trade-off front of elite set of non-dominated solutions, Case 1

Fig. 11 The trade-off front of elite set of non-dominated solutions, Case 2

by SPEA in cases 1, 2, and 3 respectively. Also, it can be seen that only one non-
dominated solution obtained by NSGA in case 3 is a member in the elite set. The
trade-off represented by the non-dominated solutions in the elite set for all cases 1,
2, and 3 are shown in Figures 10, 11, and 12 respectively.
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Fig. 12 The trade-off front of elite set of non-dominated solutions, Case 3

Table 15 Run time of Different Algorithms

NSGA NPGA SPEA
Run time (s) 0.727 0.750 0.671

Table 16 Robustness of MOEA for different initial populations

NSGA NPGA SPEA
Cost Emission Cost Emission Cost Emission

Min 600.34 0.1946 600.31 0.1943 600.22 0.1942
Max 600.77 0.1949 600.78 0.1944 600.60 0.1943
Ave 600.43 0.1947 600.48 0.1943 600.33 0.1943

The average value of the normalized distance results of the proposed measure
over 10 different optimization runs are given in Table 14. It is worth mentioning
that the distance obtained with the proposed measure is that between the outer non-
dominated solutions of each technique represented in the elite set. It can be seen that
the non-dominated solutions obtained by SPEA span over the entire Pareto front in
all cases. In general, it can be concluded that SPEA has the best distribution of the
non-dominated solutions for the problem under consideration.

With the proposed approach of extracting an elite set from the combined non-
dominated solutions of all techniques, it can be seen that the proposed measure and
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Table 17 IEEE 30-bus test system line data

Line
#

From
Bus

To
Bus

Resistance
(pu)

Reactance
(pu)

Susceptance
(pu)

Rating
(MVA)

1 1 2 0.0192 0.0575 0.0264 130
2 1 3 0.0452 0.1852 0.0204 130
3 2 4 0.0570 0.1737 0.0184 65
4 3 4 0.0132 0.0379 0.0042 130
5 2 5 0.0472 0.1983 0.0209 130
6 2 6 0.0581 0.1763 0.0187 65
7 4 6 0.0119 0.0414 0.0045 90
8 5 7 0.0460 0.1160 0.0102 70
9 6 7 0.0267 0.0820 0.0085 130

10 6 8 0.0120 0.0420 0.0045 32
11 6 9 0.0000 0.2080 0.0000 65
12 6 10 0.0000 0.5560 0.0000 32
13 9 11 0.0000 0.2080 0.0000 65
14 9 10 0.0000 0.1100 0.0000 65
15 4 12 0.0000 0.2560 0.0000 65
16 12 13 0.0000 0.1400 0.0000 65
17 12 14 0.1231 0.2559 0.0000 32
18 12 15 0.0662 0.1304 0.0000 32
19 12 16 0.0945 0.1987 0.0000 32
20 14 15 0.2210 0.1997 0.0000 16
21 16 17 0.0824 0.1923 0.0000 16
22 15 18 0.1070 0.2185 0.0000 16
23 18 19 0.0639 0.1292 0.0000 16
24 19 20 0.0340 0.0680 0.0000 32
25 10 20 0.0936 0.2090 0.0000 32
26 10 17 0.0324 0.0845 0.0000 32
27 10 21 0.0348 0.0749 0.0000 32
28 10 22 0.0727 0.1499 0.0000 32
29 21 22 0.0116 0.0236 0.0000 32
30 15 23 0.1000 0.2020 0.0000 16
31 22 24 0.1150 0.1790 0.0000 16
32 23 24 0.1320 0.2700 0.0000 16
33 24 25 0.1885 0.3292 0.0000 16
34 25 26 0.2544 0.3800 0.0000 16
35 25 27 0.1093 0.2087 0.0000 16
36 28 27 0.0000 0.3960 0.0000 65
37 27 29 0.2198 0.4153 0.0000 16
38 27 30 0.3202 0.6027 0.0000 16
39 29 30 0.2399 0.4533 0.0000 16
40 8 28 0.0636 0.2000 0.0214 32
41 6 28 0.0169 0.0599 0.0065 32



78 M.A. Abido

Table 18 IEEE 30-bus test system bus data

Bus PD (MW) QD (MVAR)
1 0.00 0.00
2 21.70 12.70
3 2.40 1.20
4 7.60 1.60
5 94.20 19.00
6 0.00 0.00
7 22.80 10.90
8 30.00 30.00
9 0.00 0.00
10 5.80 2.00
11 0.00 0.00
12 11.20 7.50
13 0.00 0.00
14 6.20 1.60
15 8.20 2.50
16 3.50 1.80
17 9.00 5.80
18 3.20 0.90
19 9.50 3.40
20 2.20 0.70
21 17.50 11.20
22 0.00 0.00
23 3.20 1.60
24 8.70 6.70
25 0.00 0.00
26 3.50 2.30
27 0.00 0.00
28 0.00 0.00
29 2.40 0.90
30 10.60 1.90

the normalized distance measure are consistent and their results have a satisfactory
agreement with the simulation results. Also, the proposed measure reflects properly
the quality of the non-dominated solutions produced by each algorithm. In addition,
several techniques can be compared in a single run rather than on a one-to-one basis.

The comparison of the average value of the run time over 10 different optimiza-
tion runs per generation per “Pareto-optimal solution” of MOEA techniques with
case 1 is given in Table 15. It is quite evident that the run time of SPEA is less than
that of the other techniques.

The robustness of MOEA techniques with respect to different initial populations
has been examined in all cases considered. Due to space limitations, only results for
Case 1 are given in Table 16, which shows the minimum, the maximum, and the
average values of the best cost and the best emission. It is clear that all techniques
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exhibit satisfactory degree of robustness to initial populations. In addition, SPEA
gives better average results.

Based on the above comparisons and discussions, it can be concluded that SPEA
is better than other techniques for the environmental/economic power dispatch op-
timization problem since elite solutions with satisfactory diversity characteristics
have been produced in this study.

8 Future Work

Since this work represents an exploratory study aiming to demonstrate the potential
of MOEA for solving EED problem, the fuel cost function given in Equation (1) is
a smooth and simple quadratic one. However, more complicated formulations with
non-smooth and non-convex fuel cost functions [30, 38, 51] can be considered in
future work. Additionally, different objective functions, such as heat dispatch ,in
addition to the fuel cost and emission objective functions [32] can be considered
and incorporated in problem formulation in future studies.

On the other hand, new and revised versions of MOEA have been presented
such as NSGA-II, NPGA 2, SPEA2, and multiobjective particle swarm optimiza-
tion MOPSO. These techniques can be examined in future studies. This will en-
hance the potential of MOEA to solve more complex multiobjective power system
optimization problems.

9 Conclusions

In this chapter, three multiobjective evolutionary algorithms have been compared
and successfully applied to the environmental/economic power dispatch problem.
The problem has been formulated as a multiobjective optimization problem with
competing economic and environmental impact objectives. MOEAs have been com-
pared to each other and to those reported in the literature. In addition, a new and
efficient procedure for quality measure is proposed and compared to some measures
reported in the literature. The optimization runs indicate MOEAs outperform the
traditional techniques. Moreover, SPEA has better diversity characteristics and is
more efficient when compared to other MOEAs. The results show that evolution-
ary algorithms are effective tools for handling multiobjective optimization where
multiple trade-off solutions can be found in one simulation run.

In addition, the diversity of the non-dominated solutions is preserved. It is also
demonstrated that SPEA has the best computational time. It can be concluded that
MOEA has potential to solve different multiobjective power systems optimization
problems.

Acknowledgements. The author acknowledges the support of King Fahd University of
Petroleum & Minerals.
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Appendix

The line and bus data of the IEEE 30-bus 6-generator system are given in Table 17
and Table 18 respectively.
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Fuzzy Evolutionary Algorithms and Genetic
Fuzzy Systems: A Positive Collaboration
between Evolutionary Algorithms and Fuzzy
Systems

F. Herrera and M. Lozano

Abstract. There are two possible ways for integrating fuzzy logic and evolution-
ary algorithms. The first one involves the application of evolutionary algorithms
for solving optimization and search problems related with fuzzy systems, obtaining
genetic fuzzy systems. The second one concerns the use of fuzzy tools and fuzzy
logic-based techniques for modelling different evolutionary algorithm components
and adapting evolutionary algorithm control parameters, with the goal of improv-
ing performance. The evolutionary algorithms resulting from this integration are
called fuzzy evolutionary algorithms. In this chapter, we shortly introduce genetic
fuzzy systems and fuzzy evolutionary algorithms, giving a short state of the art, and
sketch our vision of some hot current trends and prospects. In essence, we paint a
complete picture of these two lines of research with the aim of showing the benefits
derived from the synergy between evolutionary algorithms and fuzzy logic.

1 Introduction

Computational intelligence techniques such as artificial neural networks [157],
fuzzy logic [204], and genetic algorithms (GAs) [87, 63] are popular research sub-
jects, since they can deal with complex engineering problems which are difficult to
solve by classical methods [109].

Hybrid approaches have attracted considerable attention in the computational in-
telligence community. One of the most popular approaches is the hybridization be-
tween fuzzy logic and GAs leading to genetic fuzzy systems (GFSs) [38] and fuzzy
evolutionary algorithms [79, 149, 183]. Both are well known examples of a positive
collaboration between soft computing techniques.

A GFS is basically a fuzzy rule based system (FRBS) augmented by a learning
process based on evolutionary computation, which includes GAs, genetic program-
ming, and evolution strategies, among other evolutionary algorithms (EAs) [56].
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The automatic definition of a FRBS can be seen as an optimization or search prob-
lem, and GAs are a well known and widely used global search technique with the
ability to explore a large search space for suitable solutions only requiring a perfor-
mance measure. In addition to their ability to find near optimal solutions in complex
search spaces, the generic code structure and independent performance features of
GAs make them suitable candidates to incorporate a priori knowledge. In the case
of FRBSs, this a priori knowledge may be in the form of linguistic variables, fuzzy
membership function parameters, fuzzy rules, etc. These capabilities extended the
use of GAs in the development of a wide range of approaches for designing FRBSs
over the last few years.

The behaviour of the EAs in general, and GAs in particular, is strongly determined
by the balance between exploration (to investigate new and unknown areas in a search
space) and exploitation (to make use of knowledge acquired by exploration to reach
better positions on the search space). The GA control parameter settings, such as mu-
tation probability, crossover probability, and population size, are key factors in the
determination of the exploitation versus exploration tradeoff. It has long been ac-
knowledged that they have a significant impact on GA performance. If poor settings
are used, the exploration/exploitationbalance may not be reached in a profitable way;
the GA performance shall be severely affected due to the possibility of premature con-
vergence. Finding robust control parameter settings is not a trivial task, since their
interaction with GA performance is a complex relationship and the optimal ones are
problem-dependent. Furthermore, different control parameter values may be neces-
sary during the course of a run to induce an optimal exploration/exploitationbalance.
For these reasons, adaptive GAs have been built that dynamically adjust selected
control parameters or genetic operators during the course of evolving a problem so-
lution. Their objective is to offer the most appropriate exploration and exploitation
behaviour. FRBSs provide a tool which can convert the linguistic control strategy
based on expert knowledge into an automatic control strategy. They are particularly
suited to model the relationship between variables in environments that are either
ill-defined or very complex. The adaptation of GA parameters is one such complex
problem that may benefit from the use of FRBS, producing the so-called fuzzy adap-
tive GAs. If we consider any kind of EA that can be improved by means of fuzzy
logic based techniques, then we can use the name of fuzzy EAs.

In this chapter we shortly introduce GFSs and fuzzy EAs, giving a short state of
the art, and sketch our vision of some hot current trends and prospects.

The remainder of this article is organized as follows. In Section 2, we provide an
overview of FRBSs. In Section 3, we focus our attention to GFSs. In Section 4, we
tackle fuzzy EAs. Finally, in Section 5, we provide some concluding remarks of this
work.

2 Fuzzy Rule Based Systems

FRBSs constitute one of the main contributions of fuzzy logic. The basic con-
cepts which underlie these fuzzy systems are those of linguistic variables and fuzzy
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IF-THEN rules. A linguistic variable, as its name suggests, is a variable whose val-
ues are words rather than numbers, e.g., small, young, very hot and quite slow.
Fuzzy IF-THEN rules are of the general form: if antecedent(s) then consequent(s),
where antecedent and consequent are fuzzy propositions that contain linguistic vari-
ables. A fuzzy IF-THEN rule is exemplified by “if the temperature is high then the
fan-speed should be high”. With the objective of modelling complex and dynamic
systems, FRBSs handle fuzzy rules by mimicking human reasoning (much of which
is approximate rather than exact), reaching a high level of robustness with respect
to variations in the system’s parameters, disturbances, etc. The set of fuzzy rules of
an FRBS can be derived from subject matter experts or extracted from data through
a rule induction process.

In this section, we present a brief overview of the foundations of FRBSs, with the
aim of illustrating the way they behave. In particular, in Section 2.1, we introduce
the important concepts of fuzzy sets and linguistic variables. In Section 2.2, we deal
with the basic elements of FRBSs. Finally, in Section 2.3, we describe a simple
instance of FRBS, a fuzzy logic controller for the inverted pendulum.

2.1 Preliminaries: Fuzzy Set and Linguistic Variable

A fuzzy set is distinct from a crisp set in that it allows its elements to have a degree
of membership. The core of a fuzzy set is its membership function: a surface or line
that defines the relationship between a value in the set’s domain and its degree of
membership. In particular, according to the original ideal of Zadeh [208], member-
ship of an element x to a fuzzy set A, denoted as μA(x) or simply A(x), can vary
from 0 (full non-membership) to 1 (full membership), i.e., it can assume all values
in the interval [0,1]. Clearly, a fuzzy set is a generalization of the concept of a set
whose membership function takes on only two values {0,1}.

The value of A(x) describes a degree of membership of x in A. For example,
consider the concept of high temperature in an environmental context with temper-
atures distributed in the interval [0, 50] defined in degree centigrade. Clearly 0oC is
not understood as a high temperature value, and we may assign a null value to ex-
press its degree of compatibility with the high temperature concept. In other words,
the membership degree of 0oC in the class of high temperatures is zero. Likewise,
30oC and over are certainly high temperatures, and we may assign a value of 1 to ex-
press a full degree of compatibility with the concept. Therefore, temperature values
in the range [30, 50] have a membership value of 1 in the class of high tempera-
tures. From 0oC to 30oC, the degree of membership in the fuzzy set high tempera-
ture gradually increases, as exemplified in Figure 1, which actually is a membership
function A : T → [0,1] characterizing the fuzzy set of high temperatures in the uni-
verse T = [0,50]. In this case, as temperature values increase they become more and
more compatible with the idea of high temperature.

Linguistic variables are variables whose values are not numbers but words or
sentences in a natural or artificial language. This concept has clearly been developed
as a counterpart to the concept of a numerical variable. More precisely, a linguistic
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Fig. 2 Example of linguistic variable Temperature with three linguistic terms

variable L is defined as a quintuple [107]: L = (x,A,X ,g,m), where x is the base
variable, A = {A1,A2, . . . ,AN} is the set of linguistic terms of L (called term-set), X
is the domain (universe of discourse) of the base variable, g is a syntactic rule for
generating linguistic terms and m is a semantic rule that assigns to each linguistic
term its meaning (a fuzzy set in X). Figure 2 shows an example of a linguistic
variable Temperature with three linguistic terms “Low, Medium, and High”. The
base variable is the temperature given in appropriate physical units.

Each underlying fuzzy set defines a portion of the variable’s domain; but this
portion is not uniquely defined. Fuzzy sets overlap as a natural consequence of their
elastic boundaries. Such an overlap not only implements a realistic and functional
semantic mechanism for defining the nature of a variable when it assumes various
data values but provides a smooth and coherent transition from one state to another.
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2.2 Basic Elements of FRBSs

The essential part of FRBSs is a set of IF-THEN linguistic rules, whose antecedents
and consequents are composed of fuzzy statements, related by the dual concepts of
fuzzy implication and the compositional rule of inference.

An FRBS is composed of a knowledge base (KB), that includes the information
in the form of IF-THEN fuzzy rules;

IF a set of conditions are satisfied
THEN a set of consequents can be inferred

and an inference engine module that includes:

• A fuzzification interface, which has the effect of transforming crisp data into
fuzzy sets.

• An inference system, that uses them together with the KB to make inference by
means of a reasoning method.

• A defuzzification interface, that translates the fuzzy rule action thus obtained to
a real action using a defuzzification method.

FRBSs can be broadly categorized into different families:

• The first includes linguistic models based on collections of IF-THEN rules,
whose antecedents are linguistic values, and the system behaviour can be de-
scribed in natural terms. The consequent is an output action or class to be applied.
For example, we can denote them as:
Ri : If Xi1 is Ai1 and · · · and Xin is Ain then Y is Bi

or
Ri : If Xi1 is Ai1 and · · · and Xin is Ain then Ck with wik

with i = 1 to M, and with Xi1 to Xin and Y being the input and output variables
for regression respectively, and Ck the output class associated to the rule for clas-
sification, with Ai1 to Ain and Bi being the involved antecedents and consequent
labels, respectively, and wik the certain factor associated to the class. They are
usually called linguistic FRBSs or Mamdani FRBSs [134].

• The second category is based on a rule structure that has fuzzy antecedent and
functional consequent parts. This can be viewed as the expansion of piece-wise
linear partition represented as
Ri : If Xi1 is Ai1 and · · · and Xin is Ain then Y = p(Xi1, · · · ,Xin),
with p(·) being a polynomial function, usually a linear expression, Y = p0 +
p1 · Xi1 + · · ·+ pn ·Xin. The approach approximates a nonlinear system with a
combination of several linear systems. They are called Takagi and Sugeno’s type
fuzzy systems [177] (TS-type fuzzy systems).

• Other kinds of fuzzy models are the approximate or scatter partition FRBSs,
which differ from the linguistic ones in the direct use of fuzzy variables [4].
Each fuzzy rule thus presents its own semantic, i.e., the variables take different
fuzzy sets as values (and not linguistic terms from a global term set). The fuzzy
rule structure is then as follow:
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Ri : If Xi1 is Âi1 and · · · and Xin is Âin then Y is Ĝi

with Âi j to Âin and Ĝi being fuzzy sets. The major difference with respect to
the rule structure considered in linguistic FRBSs is that rules of an approximate
nature are semantics free, whereas descriptive rules operate in the context formu-
lated by means of the linguistic semantics.

In linguistic FRBSs, the KB is composed of two components, a data base (DB)
and a rule base (RB).

• A DB, containing the linguistic term sets considered in the linguistic rules and
the membership functions defining the semantics of the linguistic labels.
Each linguistic variable involved in the problem will have an associated fuzzy
partition of its domain representing the fuzzy set associated with each of its
linguistic terms. Figure 5 shows an example of a fuzzy partition with five la-
bels. This can be considered as a discretization approach for continuous domains
where we establish a membership degree to the items (labels), we have an over-
lapping between them, and the inference engine manages the matching between
the patterns and the rules, providing an output according to the rule consequents
with a positive matching. The determination of the fuzzy partitions is crucial in
fuzzy modelling [11], and the granularity of the fuzzy partition plays an impor-
tant role for the FRBS behaviour [39].

If we manage approximate FRBSs, then we do not have a DB due to the fact
that rules have associated the fuzzy values.

• An RB, comprises a collection of linguistic rules that are joined by a rule con-
nective (”also” operator). In other words, multiple rules can fire simultaneously
for the same input.

The inference engine of FRBSs acts in a different way depending on the kind of
problem (classification or regression) and the kind of fuzzy rules (linguistic ones,
TS-ones, etc). It always includes a fuzzification interface that serves as the input
to the fuzzy reasoning process, an inference system that infers from the input to
several resulting output (fuzzy set, class, etc) and the defuzzification interface or
output interface that converts the fuzzy sets obtained from the inference process into
a crisp action that constitutes the global output of the FRBS, in the case of regression
problems, or provide the final class associated to the input pattern according to the
inference model.

The generic structure of an FRBS is shown in Figure 3.
For more information about fuzzy systems the following books may be consulted

[204, 113, 38, 94]. For different issues associated with the trade-off between the
interpretability and accuracy of FRBSs, the two following edited books present a
collection of contributions on the topic [25, 26].

Finally, we must point out that we can find a lot of applications of FRBSs in all
areas of engineering, sciences, medicine, etc. At present it is very easy to search
for these applications using the publisher web search tools focusing the search in
journals of different application areas.
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Fig. 3 Structure of an FRBS

2.3 Example of FRBS: Fuzzy Logic Control of an Inverted
Pendulum

Fuzzy logic controllers [53] are a particular model of FRBS that provide a tool
which can convert the linguistic control strategy based on expert knowledge into
an automatic control strategy. In these controllers, the domain knowledge is repre-
sented by a set of fuzzy IF-THEN rules that approximate a mapping from a state
space X to an output space Y. They have been used in many practical applications,
especially industrial ones in Japan and Europe. Industrial success stories of fuzzy
control include portable video cameras, automatic transmission of automobiles, fur-
nace temperature, robotics, urban underground railway, and banking.

The example of the inverted pendulum given in [205] is selected to illustrate
elementary fuzzy control principles. Consider the problem of keeping an inverted
pendulum (which is fixed) articulated at a fixed point on a mobile cart. The cart
can move forward and backward, and the controller decides on the direction and
acceleration of the cart (Figure 4).

To balance an upright pendulum, we know from naive physics that the control
force F should be chosen according to the magnitudes of the input variables θ and
ω that measure the angle from the upright position and the angular velocity, respec-
tively. The relation between these variables is linguistic, a much weaker form than
differential equations. That is exactly what happens in a human mind that processes
information qualitatively. Humans choose F using common sense knowledge in the
form of rules such as “if the pendulum is in a balanced position, then hold very still,
that is, do not apply any force”. By taking all such rules into account, the inverted
pendulum can be successfully controlled.
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Fig. 4 Inverted pendulum

A sensor measures θ and ω (state variables) and a fuzzy logic controller may
adjust F (output or control space) via a real time feedback loop with the objec-
tive of taking the pendulum to the vertical position. While the classical equations
of motion of this system are extremely complicated and depend upon the specific
characteristics of the pendulum (mass distribution, length), Yamakawa [205] found
a set of linguistic fuzzy rules providing a stable fuzzy control of the pendulum in-
dependently of its characteristics. They are the following:

Rule 1. IF θ is PM AND ω is ZR THEN F is PM.
Rule 2. IF θ is PS AND ω is PS THEN F is PS.
Rule 3. IF θ is PS AND ω is NS THEN F is ZR.
Rule 4. IF θ is NM AND ω is ZR THEN F is NM.
Rule 5. IF θ is NS AND ω is NS THEN F is NS.
Rule 6. IF θ is NS AND ω is PS THEN F is ZR.
Rule 7. IF θ is ZR AND ω is ZR THEN F is ZR.

The linguistic term set for θ , ω , and F is {Negative Large (NL), Negative
Medium (NM), Negative Small (NS), Zero (ZR), Positive Small (PS), Positive
Medium (PM), Positive Large (PL)}, which has associated the fuzzy partition of
their corresponding domains shown in Figure 5.

Given a sensor measured state (θ , ω), the inference obtained from the fuzzy con-
troller is the result of interpolating among the response of these linguistic fuzzy
rules. The inference’s outcome is a membership function defined on the output
space, which is then aggregated (defuzzified) to produce a crisp output.

The fuzzy logic controller described above is an example of linguistic FRBS.
However, the problem of controlling the inverted pendulum may be tackled as well
by means of a fuzzy logic controller based on the TS-type fuzzy system model. In
this case, possible TS-type rules may include:

If θ is ZR and ω is ZR then F = 0.
If θ is PS and ω is ZR then F = 0.5×θ .
If θ is PS and ω is NS then F = 0.4×θ + 0.6×ω .
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Fig. 5 Membership functions of the linguistic variables (where y stands for θ , ω , and F)

3 Genetic Fuzzy Systems

FRBSs constitute an extension to classical rule-based systems, because they deal
with ”IF-THEN” rules, whose antecedents and consequents are composed of fuzzy
logic statements, instead of classical ones. They have demonstrated their ability for
control problems [146], modelling [148], classification or data mining [113, 94] in
a huge number of applications.

A GFS is basically a fuzzy system augmented by a learning process based on
evolutionary computation, which includes GAs, genetic programming, and evolu-
tion strategies, among other EAs. Figure 6 illustrates this idea, where the genetic
process learns or tunes different components of an FRBS.

The central aspect of the use of a GA for automatic learning of an FRBS is that
the KB design process can be analyzed as an optimization problem.

From the optimization point of view, to find an appropriate KB is equivalent to
coding it as a parameter structure and then finding the parameter values that give
us the optimum for a fitness function. The KB parameters provide the search space
that is transformed according to a genetic representation. Therefore, the first step in
designing a GFS is to decide which parts of the KB are subject to optimization by
the GA.

In the last few years we observe an increase of published papers in the topic due
to the high potential of GFSs. In contrast to neural networks, clustering, rule induc-
tion and many other machine learning approaches, GAs provide a means to encode
and evolve rule antecedent aggregation operators, different rule semantics, rule base
aggregation operators and defuzzification methods. Therefore, GAs remain today
as one of the few knowledge acquisition schemes available to design and, in some
sense, optimize FRBSs with respect to the design decisions, allowing decision mak-
ers to decide what components are fixed and which ones evolve according to the
performance measures.

The predominant type of GFS is that focused on FRBSs. However other kinds
of GFSs have been developed, with successful results. They include genetic fuzzy
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Fig. 6 Genetic fuzzy systems

neural networks and genetic fuzzy clustering algorithms. We will not analyze
them in this papers. Readers can find an extended introduction to them in [38]
(chapter 10).

In this section, we propose a taxonomy of GFSs focused on the FRBS compo-
nents and sketch our vision of some hot current trends of GFSs [73].

3.1 Taxonomy of Genetic Fuzzy Systems

The central aspect on the use of GAs for automatic learning of FRBSs is that the
design process can be analyzed as a search problem in the space of models, such as
the space of rule sets, by means of the coding of the model in a chromosome.

From the optimization point of view, to find an appropriate fuzzy model is equiva-
lent to code it as a parameter structure and then to find the parameter values that give
us the optimum for a concrete fitness function. Therefore, the first step in designing
a GFS is to decide which parts of the fuzzy system are subjected to optimization by
the GA coding them into chromosomes.

We divide the GFS approaches into two processes, tuning and learning. It is diffi-
cult to make a clear distinction between tuning and learning processes, since estab-
lishing a precise borderline becomes as difficult as defining the concept of learning
itself. The first fact that we have to take into consideration is the existence or not
of a previous KB, including DB and RB. In the framework of GFSs we can briefly
introduce the following distinction.

• Genetic tuning. If there exists a KB, we apply a genetic tuning process for
improving the FRBS performance but without changing the existing RB. That
is, to adjust FRBS parameters for improving its performance, maintaining the
same RB.
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Fig. 7 GFSs Taxonomy

• Genetic learning. The second possibility is to learn KB components (where we
can even include an adaptive inference engine). That is, to involve the learning
of KB components among other FRBS components.

We classify the proposals according to these two processes and according to the
FRBS components involved in the genetic learning process. In this way, we consider
the taxonomy shown in Figure 7 [73].

There are three main areas in the taxonomy that we can observe in the first tree:
genetic tuning, genetic KB learning, and genetic learning of KB components and
inference engine parameters.

In the following, we briefly analyze the three areas. We will provide some refer-
ences as examples for every approach, but we do not present an exhaustive list of
papers, this is far from the chapter’s objective.
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Fig. 8 Genetic tuning pro-
cess

Genetic tuning

With the aim of making the FRBS perform better, some approaches try to improve
the preliminary DB definition or the inference engine parameters once the RB has
been derived. A graphical representation of this kind of tuning is shown in Figure 8.

The following three tuning possibilities can be considered (see the sub-tree under
“genetic tuning”).

1. Genetic tuning of KB parameters. In order to do so, a tuning process considering
the whole KB obtained (the preliminary DB and the derived RB) is used a pos-
teriori to adjust the membership function parameters. Nevertheless, the tuning
process only adjusts the shapes of the membership functions and not the number
of linguistic terms in each fuzzy partition, which remains fixed from the begin-
ning of the design process. In [100], we can find a first and classic proposal on
tuning. We can also find recent proposals that introduce linguistic modifiers for
tuning the membership functions, see [24]. This latter approach is close to the
inference engine adaptation.

2. Genetic adaptive inference systems. The main aim of this approach is the use
of parameterized expressions in the Inference System, sometimes called Adap-
tive Inference Systems, for getting higher cooperation among the fuzzy rules and
therefore more accurate fuzzy models without loosing the linguistic rule inter-
pretability. In [8, 42, 43], we can find proposals in this area focused in regression
and classification.

3. Genetic adaptive defuzzification methods. The most popular technique in prac-
tice, due to its good performance, efficiency and easier implementation, is to
apply the defuzzification function to every inferred rule fuzzy set (getting a
characteristic value) and to compute them by a weighted average operator. This
method introduces the possibility of using parameter based average functions,
and the use of GAs can allow us to adapt the defuzzification methods. In [105],
we can find a proposal in this area.

Genetic KB learning

As a second big area we find the learning of KB components. We will now describe
the four approaches that can be found within the genetic learning of a KB (see the
second tree under “genetic KB learning”).
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Fig. 9 Genetic rule learning
process

1. Genetic rule learning. Most of the approaches proposed to automatically learn
the KB from numerical information have focused on the RB learning, using a
predefined DB. The usual way to define this DB involves choosing a number of
linguistic terms for each linguistic variable (an odd number between 3 and 9,
which is usually the same for all the variables) and setting the values of the sys-
tem parameters by an uniform distribution of the linguistic terms into the variable
universe of discourse. Figure 9 shows this type of RB learning graphically. The
pioneer proposal for this approach can be found in [180].

On the other hand, we also find approaches that are focused on the extraction
of some descriptive rules for data mining problems (association rules, subgroup
discovery, etc.) [102, 48].

2. Genetic rule selection. Sometimes we have a large number of rules extracted
via a data mining method that subsequently provide us with a large number of
rules associated with our problem. A big RB and an excessive number of rules
makes it difficult to understand the FRBS behaviour. Thus we can find different
kinds of rules in a fuzzy rule set: irrelevant rules, redundant rules, erroneous rules
and conflictive rules, which perturb the FRBS performance when they coexist
with others. To face this problem we can use a genetic rule selection process for
obtaining an optimized subset of rules from a previous fuzzy rule set, by selecting
some of them. Figure 10 illustrates this idea graphically. In [95] we can find the
most classic and first contribution in this area and in [92] we can find the first
journal paper on multiobjective genetic rule selection.

We must point out that rule selection can be combined with tuning approaches,
to try to get a good rule set together with a tuned set of parameters. In [24, 5], we
can find two recent proposal that combines genetic tuning with rule selection.

3. Genetic DB learning. There is another way to generate the whole KB that con-
siders two different processes to derive each component, DB and RB. A DB
generation process allows us to learn the shape or the membership functions and
other DB components such as the scaling functions, the granularity of the fuzzy
partitions, etc. This DB generation process can use a measure for evaluating the
quality of the DB, we can call it “a priori genetic DB learning”. The second
possibility is to consider an embedded genetic learning process where the DB
generation process wraps an RB learning one working as follows: each time a
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Fig. 10 Genetic rule selection process

Fig. 11 Genetic DB learning (embedded and a priori)

DB has been obtained by the DB definition process, the RB generation method
is used to derive the rules, and some type of error measure is used to validate the
whole KB obtained. We should note this operation mode involves a partitioning
of the KB learning problem. These two kinds of learning models are represented
in Figure 11. In [41], we can find a proposal following the embedded genetic DB
learning.

4. Simultaneous genetic learning of KB components. Other approaches try to learn
the two components of the KB simultaneously. This kind of learning is depicted
in Figure 12. Working in this way, they have the possibility of generating better
definitions but there is a need to deal with a larger search space that makes the
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Fig. 12 Genetic KB learn-
ing process

learning process more difficult and slow. In [85], we can find a contribution that
uses the simultaneous genetic KB learning process.

Genetic learning of KB components and inference engine parameters

This is the last area of GFSs taxonomy,belonging to a hybrid model between an adap-
tive inference engine and KB components learning. We can find novel approaches
that try to find high cooperation between the inference engine via parameter adapta-
tion and the learning of KB components, including both in a simultaneous learning
process. In [135], we can find a recent proposal to learn a linguistic RB and the para-
metric aggregation connectors of the inference and defuzzification in a single step.
Figure 13 presents the coding scheme of the model proposed in this paper.

3.2 Genetic Learning: Rule Coding and Cooperation/Competition
Evolutionary Process

Although GAs were not specifically designed for learning, but rather as global
search algorithms, they offer a set of advantages for machine learning. Many
methodologies for machine learning are based on the search for a good model inside
the space of possible models. In this sense, they are very flexible because the same
GA can be used with different representations. Genetic learning processes cover

Fig. 13 Example of the coding scheme for learning an RB and the inference connective
parameters
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different levels of complexity according to the structural changes produced by the
algorithm, from the simplest case of parameter optimization to the highest level of
complexity for learning the rule set of a rule-based system, via the coding approach
and the cooperation or competition between chromosomes.

When considering the task of learning rules in a rule based system, a wider range
of possibilities is open. When considering a rule based system and focusing on learn-
ing rules, the different genetic learning methods follow two approaches in order to
encode rules within a population of individuals:

• The “Chromosome = Set of rules”, also called the Pittsburgh approach, in which
each individual represents a rule set (Smith 1980). In this case, a chromosome
evolves a complete RB and they compete among them along the evolutionary
process. GABIL is a proposal that follows this approach [47].

• The “Chromosome = Rule” approach, in which each individual codifies a sin-
gle rule, and the whole rule set is provided by combining several individuals in
a population (rule cooperation) or via different evolutionary runs (rule competi-
tion). In turn, within the “Chromosome = Rule” approach, there are three generic
proposals:

– The Michigan approach, in which each individual encodes a single rule. These
kinds of systems are usually called learning classifier systems [88]. They are
rule-based, message-passing systems that employ reinforcement learning and
a GA to learn rules that guide their performance in a given environment. The
GA is used for detecting new rules that replace the bad ones via the compe-
tition between the chromosomes in the evolutionary process. An interesting
study on the topic can be found in [110].

– The IRL (Iterative Rule Learning) approach, in which each chromosome rep-
resents a rule. Chromosomes compete in every GA run, choosing the best rule
per run. The global solution is formed by the best rules obtained when the algo-
rithm is run multiple times. SIA [188] is a proposal that follows this approach.

– The GCCL (genetic cooperative-competitive learning) approach, in which the
complete population or a subset of it encodes the RB. In this model the chro-
mosomes compete and cooperate simultaneously. COGIN [67], REGAL [62]
and LOGENPRO [200] are examples with this kind of representation.

These four genetic learning approaches (Pittsburgh, Michigan, IRL and GCCL) have
been considered for learning KB components, and we can find different examples
of them in the literature. Two of the pioneer GFS proposals were focused on the
Pittsburgh [180] and Michigan [186] approaches. MOGUL [37, 83, 35] and SLAVE
[64] are two proposals that follow the IRL approach in the framework of GFSs. In
[93, 97], we find two proposals following the GCCL approach.

3.3 Some GFS Milestones: Books and Special Issues

For beginners, in the following we present the GFS milestones associated to the
books and special issues published in the specialized literature.
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We can find two authored books and three edited ones:

• A, Geyer-Schulz. Fuzzy Rule-Based Expert Systems and Genetic Machine
Learning. Physica-Verlag, 1995. This is the first GFS book. It is a very specific
book focused on fuzzy classifier systems (Michigan approach) and RB learning
with genetic programming.

• O. Cordón, F. Herrera, F. Hoffmann and L. Magdalena. Genetic Fuzzy Systems.
Evolutionary Tuning and Learning of Fuzzy Knowledge Bases, World Scientific,
2001. This is the first general GFS book. It covers the overall state of the art of
GFSs at that time.

These three following books compile an important number of contributions that
gave maturity to the topic.

• F. Herrera and J.L. Verdegay (Eds.). Genetic Algorithms and Soft Computing.
Physica-Verlag, 1996.

• E. Sanchez, Shibata and L. Zadeh (Eds.). Genetic Algorithms and Fuzzy Logic
Systems. Soft Computing Perspectives. World Scientific, 1997.

• W. Pedrycz (Ed.). Fuzzy Evolutionary Computation. Kluwer Academic Publish-
ers, 1997.

In the following we provide a list of the journal special issues devoted to GFSs,
including important contributions to all topics of GFSs.

• F. Herrera. Special Issue on Genetic Fuzzy Systems for Control and Robotics. In-
ternational Journal of Approximate Reasoning, Volume 17, Number 4, November
1997.

• F. Herrera and L. Magdalena. Special Issue on Genetic Fuzzy Systems. Inter-
national Journal of Intelligent Systems, Volume 13, Numbers 10-11, Oct.-Nov.
1998.

• O. Cordón, F. Herrera, F. Hoffmann and L. Magdalena. Special Issue on Recent
Advances in Genetic Fuzzy System. Information Sciences, Volume 136, Num-
bers 1-4 , August 2001.

• O. Cordón, F. Gomide, F. Herrera, F. Hoffmann, L. Magdalena. Special Issue
on Genetic Fuzzy Systems. Fuzzy Sets and Systems, Volume 141, Number 1,
January 2004.

• J. Casillas, M.J. del Jesus, F. Herrera, R. Pérez, P. Villar. Special Issue on Genetic
Fuzzy Systems and the Interpretability-Accuracy Trade-off. International Journal
of Approximate Reasoning. Volume 44, Number 1, February 2007.

• O. Cordón, R. Alcalá, J. Alcalá-Fdez, I. Rojas. Genetic Fuzzy Systems. Special
Section on Genetic Fuzzy Systems: What’s Next?. IEEE Transactions on Fuzzy
Systems. Volume 15, Number 4, August 2007.

• B. Carse, A.G. Pipe. Special Issue on Genetic Fuzzy Systems. International Jour-
nal of Intelligent Systems. Volume 22, Number 9, September 2007.

• J. Casillas, B. Carse. Special Issue on Genetic Fuzzy Systems: Recent De-
velopments and Future Directions. Soft-Computing Volume 13, Number 5,
March 2009.
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The collection of papers that we could find on these special issues give us
a historical tour on the different stages we can find in the evolution of GFSs
research:

• The two first special issues (1997, 1998) contain contributions devoted to learn-
ing KB components using the different learning approaches (Michigan, IRL,
Pittsburgh) together with some applications. We can find representative ap-
proaches of different areas of the taxonomy.

• In the next two special issues (2001, 2004) we can find contributions that exploit
the mentioned genetic learning approaches together with contributions that stress
new branches such as genetic rule selection, multiobjective genetic algorithms
for rule selection, the use of genetic programming for learning fuzzy systems,
hierarchical genetic fuzzy systems, coevolutionary genetic fuzzy systems, the
combination of boosting and evolutionary fuzzy systems learning, embedded ge-
netic DB learning, and first studies for dealing with high dimensional problems,
among others. We would like to point out the review paper that was published
in the last issue [36] that was the first review in the topic, briefly introducing
GFS models and applications, trends and open questions. Another short review
was presented in [72]. The present chapter can be considered as a continuation
of those, with the novelty of the taxonomy, the GFSs outlook based on the pio-
neer papers, the ISI Web of Science based visibility and the milestones along the
GFSs history and new trends and prospects.

• The next three special issues, published in 2007, emphasize three different di-
rections. Carse and Pipe’s special issue collect papers focused in the mentioned
areas (multiobjective evolutionary learning, boosting and evolutionary learning,
etc) and stress some new ones such as evolutionary adaptive inference systems.
Casillas et al.’s special issue is focused on the trade-off between interpretabil-
ity and accuracy, collecting four papers that proposed different GFSs for tackling
this problem. Cordón et al.’s special issue focuses its attention on novel GFS pro-
posals under the title “What’s Next?”, collecting highly innovative GFS propos-
als that can mark new research trends. The four collected papers are focused on:
a new Michigan approach for learning RBs based on XCS [22], GFSs for impre-
cisely observed data (low quality data) [162], incremental evolutionary learning
of TS-fuzzy systems [86], and evolutionary fuzzy rule induction for subgroup
discovery [48].

• The last special issue, co-edited by J. Casillas and B. Carse, is devoted to new
developments, paying attention to multiobjective genetic extraction of linguistic
fuzzy rule based systems from imprecise data [163], multiobjetive genetic rule
selection and tuning [60], parallel distributed genetic fuzzy rule selection [144],
context adaptation of fuzzy systems [17], compact fuzzy systems [28], neuro-
coevolutionary GFSs [153], evolutionary learning of TSK rules with variable
structure [140] and genetic fuzzy association rules extraction [29].
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3.4 Current Research Trends in GFSs

In this subsection, from the abundant GFSs literature published, we focus our atten-
tion into six current trends that are of high interest at the present and show consid-
erable potential in the near future.

Evolutionary Multiobjective learning of FRBSs: interpretability-precision
trade-off

Multiobjective evolutionary algorithms (MOEAs) are one of the most active re-
search areas in the field of evolutionary computation, due to population-based al-
gorithms being capable of capturing a set of non-dominated solutions in a single
run of the algorithm. A large number of algorithms have been proposed in the liter-
ature [45, 34]. Among them, NSGA-II [46] and SPEA2 [209] are well known and
frequently-used MOEAs.

Obtaining high degrees of interpretability and accuracy is a contradictory aim,
and, in practice, one of the two properties prevails over the other. Nevertheless, a
new tendency in the fuzzy modelling scientific community that looks for a good
balance between interpretability and accuracy is increasing in importance. The im-
provement of the interpretability of rule based systems is a central issue in recent
research, where not only the accuracy is receiving attention but also the compacting
and the interpretability of the obtained rules [114, 138].

In multiobjective GFSs it is desirable to design genetic learning algorithms in
which the learning mechanism itself finds an appropriate balance between inter-
pretability and accuracy. We consider objectives based on accuracy and objectives
that include different complexity/interpretability measures. Figure 14 from [91] il-
lustrates this idea where each ellipsoid denotes a fuzzy system. There exists a large
number of non-dominated fuzzy systems along the accuracy-complexity trade-off
curve.

S i m p l e
&  I n a c c u r a t e

L o w

C o m p l i c a t e d
&  A c c u r a t e

C o m p l e x i t y H i g h

S m a l l

E r r o r

L a r g e

Fig. 14 Non-dominated fuzzy systems
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There exists an important number of contributions focused on this topic, in fact,
Chapter 5 of this book is devoted to this topic. Therefore, we will not extend our
description on the topic.

GA-based techniques for mining fuzzy association rules and novel data
mining approaches

Fayyad et al. defined knowledge discovery (KD) as the nontrivial process of identi-
fying valid, novel, potentially useful, and ultimately understandable patterns in data
[57]. KD may not be viewed as synonymous with DM, but they are intimately re-
lated. KD is a wide ranging process which covers distinct stages: the comprehension
of the problem, the comprehension of the data, pre-processing (or preparation) of
the data, DM and post-processing (assessment and interpretation of the models).
The DM stage is responsible for automatic KD at a high level, and from informa-
tion obtained from real data. Some of the important problems that DM and KD deal
with are: rule extraction, identification of associations, feature analysis, linguistic
summarization, clustering, classifier design and novelty/anomaly detection.

The interpretability of knowledge is crucial in the field of DM/KD where knowl-
edge should be extracted from data bases and represented in a comprehensible form,
or for decision support systems where the reasoning process should be transparent
to the user. In fact, the use of linguistic variables and linguistic terms in a discovered
process has been explored by different authors.

Frequent pattern mining has been a focused theme in DM research for over a
decade. Association analysis is a methodology that is useful for the discovery of
interesting relationships hidden in large data sets. The uncovered relationships can
be represented in the form of association rules or sets of frequent items. Abundant
literature can be found presenting tremendous progress in the topic [179, 71].

As claimed in [54], the use of fuzzy sets to describe associations between data
extends the types of relationships that may be represented, facilitates the interpreta-
tion of rules in linguistic terms, and avoids unnatural boundaries in the partitioning
of the attribute domains.

Linguistic variables with linguistic terms can contribute in a substantial way to
the advance in the design of association rules and the analysis of data to establish
relationships and identify patterns, in general [90]. On the other hand, GAs in par-
ticular, and EAs in general, are widely used for evolving rule extraction and patterns
association in DM/KD [59]. The conjunction in the GFS field provides novel and
useful tools for pattern analysis and for extracting new kinds of useful information
with a distinct advantage over other techniques: its interpretability in terms of fuzzy
IF-THEN rules. We find interesting recent contributions focused on the genetic ex-
traction of fuzzy association rules in [102, 89, 101, 184].

We would like to pay attention to a subdivision of descriptive induction algo-
rithms which has recently received attention from researchers, called subgroup dis-
covery. It is a form of supervised inductive learning of subgroup descriptions in
which, given a set of data and having a property of interest to the user, attempts to
locate subgroups which are statistically “most interesting” for the user. Subgroup
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discovery has the objective of discovering interesting properties of subgroups ob-
taining simple rules (i.e. with an understandable structure and with few variables),
highly significant and with high support (i.e. covering many of the instances of the
target class). The concept was initially formulated by Klösgen in his rule learning al-
gorithm EXPLORA [108] and by Wrobel in the algorithm MIDOS [201]. Both use a
rule-extraction model based on decision trees, in order to obtain the best subgroups
among the population. In order to evaluate the subgroups, evaluation measurements
are defined which determine the interest of an expression through a combination of
unusualness and size. MIDOS tackles, within this same approach, the problem of
discovery in multi-relational databases. A recent study on the topic can be found in
[118]. In [48] we find a first approach to the use of GFSs for subgroup discovery.

The use of GFSs for association analysis is a topic that would provide interesting
future contributions focusing attention on the different research problems that we
can find in the frequent pattern mining area [71].

Learning genetic models based on low quality data (noise data and vague data)

There are many practical problems requiring learning models from uncertain data.
The experimental designs of GFSs learning from data observed in an imprecise way
are not being actively studied by researchers. However, according to the point of
view of fuzzy statistics, the primary use of fuzzy sets in classification and mod-
elling problems is for the treatment of vague data. Using vague data to train and test
GFSs we could analyze the performance of these classifiers on the type of problems
for which fuzzy systems are expected to be superior. Preliminary results in this area
involve the proposals of different formalizations for the definition of fuzzy classi-
fiers, based on the relationships between random sets and fuzzy sets [161] and the
study of fitness functions (with fuzzy values) defined in the context of GFSs [162].

This is a novel area that is worth being explored in the near future, which may
provide interesting results.

Genetic learning of fuzzy partitions and context adaptation

The DB learning comprises the specification of the universes of discourse, the num-
ber of labels for each linguistic variable, as well as the definition of the fuzzy mem-
bership functions associated with each label. In [39] the influence of fuzzy partition
granularity in the FRBS performance was studied. Showing that using an appropri-
ate number of terms for each linguistic variable, the FRBS accuracy can be signifi-
cantly improved without the need of a complex RB learning method.

On the other hand, the idea of introducing the notion of context into fuzzy sys-
tems comes from the observation that, in real life, the same basic concept can be
perceived differently in different situations. In some cases, this information is re-
lated to the physical properties or dimensions of the system or process, including
restrictions imposed due to the measurement acquisition or actuators. In the litera-
ture, context adaptation in fuzzy systems has been mainly approached as the scaling
of fuzzy sets from one universe of discourse to another by means of non-linear scal-
ing functions whose parameters are identified from data.
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Different approaches have been proposed to deal with the learning of membership
functions, granularity, non-linear contexts using GAs, etc. [133, 69, 40, 41, 15, 16, 6].

Although there is a large number of contributions in the area of DB Learning,
we think that this remains a promising research area, due to the importance of using
adequate membership functions and an appropriate context. The use of GFSs has
much potential due to its flexibility for encoding DB components together with other
fuzzy system components.

Genetic adaptation of inference engine components

We know that it is possible to use parametric aggregation operators in the design
of the inference system and the defuzzification method, in an attempt to get the
most appropriate parameter configuration in any application. The tuning of these
components can be considered to get more accurate fuzzy models. We have come
across different GFS approaches for finding the most appropriate parameters [42, 8].

This is an interesting research area that can provide us with the opportunity to
adapt the inference parameters to an FRBS and to design learning models that can
coevolve the inference engine parameters together with the KB components.

Revisiting the Michigan-style GFSs

The first description of a Michigan-style GFS was given in [186]. All the initial ap-
proaches in this area were based on the concept of“rule strength” in the sense that a
rule (classifier) gains “strength” during interactions with the environment (through
rewards and /or penalties). This strength can then be used for two purposes: resolv-
ing conflicts between simultaneously matched rules during learning episodes; and
as the basis of fitness for the GAs.

A completely different approach can be considered in which a rule’s fitness, from
the point of view of the GA, is based on its “accuracy”, i.e., how well a rule predicts
payoff whenever it fires. Notice that the concept of accuracy used here is differ-
ent from that traditionally used in fuzzy modelling (i.e., the capability of the fuzzy
model to faithfully represent the modelled system). This accuracy-based approach
offers a number of advantages, such as avoiding overgeneral rules, obtaining opti-
mally general rules, and learning a complete covering map. The first accuracy-based
evolutionary algorithm, called XCS, was proposed in [199] and it is currently of ma-
jor interest to the research community in this field.

Casillas et al. proposed in [22] a new approach to achieve accuracy-based
Michigan-style GFSs. The proposal, Fuzzy-XCS, is based on XCS but properly
adapted to fuzzy systems, with promising results for function approximation prob-
lems and for robot simulation online learning. In [145], an extension of the UCS
algorithm is proposed, a recent Michigan-style genetic learning algorithm for clas-
sification [14].

These approaches build a bridge between the Michigan-style genetic learning
studies and the fuzzy systems models. This is a promising research line that can
provide interesting results in the near future.
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4 Fuzzy Evolutionary Algorithms

Nowadays, there exists an increasing interest in the use of fuzzy tools and fuzzy logic-
based techniques for modelling different EA components or adapting EA control
parameters, with the aim of enhancing the performance of these search algorithms
[79, 149, 183]. Generally, EAs resulting from this integration are called fuzzy EAs.

This section focuses on fuzzy EAs. We give an overview of the existing research
on this topic, describing several instances grouped into three categories that were
identified after revising specialized literature. The first one involves the adaptation
of GA control parameters by means of FRBSs (in particular, fuzzy logic controllers)
and, at present, it has a consolidated background of knowledge (Section 4.1). The
second one includes those EA models whose components (genetic operators, repre-
sentation, stop criterion, etc.) are designed using fuzzy tools (Section 4.2). The third
one consists of different innovative EA models (particle swarm optimization algo-
rithms, ant colony optimization algorithms, differential evolution, etc.) that make
use of fuzzy logic as way to improve their performance (Section 4.3). In addition,
we attempt to identify some open issues and summarize a few new promising re-
search directions for fuzzy EAs (Section 4.4).

4.1 Fuzzy Adaptive GAs

Adaptive GAs dynamically adjust their parameters during the course of evolving a
solution with the aim of inducing exploitation/exploration relationships that avoid
the premature convergence problem and improve the final results [185, 55]. How-
ever, the design of this type of GA is very difficult, because the interaction of GA
control parameter settings and GA performance is generally acknowledged as a
complex relationship which is not completely understood. Although there are ways
to understand this relationship (for instance, in terms of stochastic behavior), this
kind of understanding does not necessarily result in a normative theory.

Fuzzy logic controllers (FLCs) [53] are a particular model of FRBS (Section 2)
that provide a tool which can convert the linguistic control strategy based on expert
knowledge into an automatic control strategy. They are particularly suited to model
the relationship between variables in environments that are either ill-defined or very
complex.

The adaptation of GA parameters is one such complex problem that may ben-
efit from the use of FLCs, producing the so-called fuzzy adaptive GAs (FAGAs)
[78, 123]. The rule-bases of FLCs facilitate the capture and representation of a broad
range of adaptive strategies for GAs (for example, they may provide the support for
the automatic learning of such strategies). The main idea of FAGAs is to use an FLC
whose inputs are any combination of GA performance measures or current con-
trol parameters and whose outputs are GA control parameters. Current performance
measures of the GA are sent to the FLC, which computes new control parameter
values that shall be used by the GA. Figure 15 shows this process.
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Fig. 15 FAGA model

4.1.1 Designing FAGAs

In this section, we briefly describe the issues that should be tackled in order to
build the FLC used by an FAGA. They include the choice of inputs and outputs,
the definition of the data base associated with them, and the specification of the
rule-base:

Inputs, Outputs, and Data Base

• Inputs. They should be robust measures that describe GA behaviour and the
effects of the genetic setting parameters and genetic operators. Some possible
inputs may be: diversity measures, maximum, average, and minimum fitness,
etc. The current control parameters may also be considered as inputs.

• Outputs. They indicate values of control parameters or changes in these pa-
rameters. In [182], the following outputs were reported: mutation probability,
crossover probability, population size, selective pressure, the time the controller
must spend in a target state in order to be considered successful, the degree to
which a satisfactory solution has been obtained, etc.

• Data Base. Each input and output should have an associated set of linguistic
labels. The meaning of these labels is specified through membership functions of
fuzzy sets, the fuzzy partition, contained in the Data Base. Thus, it is necessary
that every input and output have a bounded range of values in order to define
these membership functions over it.

Rule-Base

After selecting the inputs and outputs and defining the Data Base, the fuzzy rules
describing the relations between them should be defined. They facilitate the capture
and representation of a broad range of adaptive strategies for GAs.

Although, the experience and the knowledge of GA experts may be used to derive
rule-bases, many authors have found difficulties in doing this. In this sense, the
following three reflections were quoted by different authors:

“Although much literature on the subject of GA control has appeared, our initial at-
tempts at using this information to manually construct a fuzzy system for genetic con-
trol were unfruitful.” [120].
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“Statistics and parameters are in part universal to any evolutionary algorithm and
in part specific to a particular application. Therefore it is hard to state general fuzzy
rules to control the evolutionary process.” [182].

“The behaviour of GAs and the interrelations between the genetic operators are very
complex. Although there are many possible inputs and outputs for the FLCs, frequently
fuzzy rule-bases are not easily available: finding good fuzzy rule bases is not an easy
task.” [74].

Automatic learning mechanisms to obtain rule-bases have been introduced to
avoid this problem. By using these mechanisms, relevant relations and membership
functions may be automatically determined and may offer insight to understand the
complex interaction between GA control parameters and GA performance [120].
Two types of rule-base learning techniques have been presented: the offline learning
technique [120, 121] and the online learning technique [77]:

• The offline learning mechanism is an evolutionary algorithm that is executed
once, before the operation of the FAGA, however it has associated with it a
high computational cost. It works by considering a fixed set of test functions,
following the same idea as the meta-GA of Grefenstette [68]. Unfortunately, the
test functions may have nothing to do with the particular problem to be solved,
which may limit the robustness of the rule-bases returned.

• In the online learning technique, the rule-bases used by the FLCs come from an
evolutionary process that interacts concurrently with the GA to be adapted. The
learning technique underlying this approach only takes into account the prob-
lem to be solved (in contrast to the previous one, which never considers it). In
this way, the rule-bases obtained will specify adaptation strategies particularly
appropriate for this problem.

4.1.2 A Taxonomy for FAGAs

In this section, we present a taxonomy for FAGAs, focussing on the combination of
two aspects:

• The way in which the rule-bases are derived:

– Through the expertise, experience, and knowledge of GAs, which have be-
come available as a result of empirical studies conducted over a number of
years.

– Using an offline learning mechanism, which finds rule-bases that induce a
suitable FAGA behaviour on a fixed set of test functions. It is executed before
the application of the FAGA on any real problem.

– By means of an online learning mechanism, which learns rule-bases during
the run of the FAGA on a real problem.

• The level where the adaptation takes place in FAGAs:

– Population-level adaptations adjust control parameters that apply for the entire
population.
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– Individual-level adaptations tune control parameters that have an effect on the
individual members of the population.

Table 1 outlines the main features of several FAGA instances presented in the liter-
ature. It includes the inputs and outputs of the FLCs, the adaptation level, and the
method considered to derive the rule-base. A visual inspection of Table 1 allows one
to conclude that:

1. The study of FAGAs has been an active line of research in the evolutionary com-
putation community that has produced a significant amount of work during the
last fifteen years.

2. Most FAGAs presented in the literature involve population-level adaptation.
However, adaptive mechanisms at the individual level based on FLCs may be in-
teresting to adjust control parameters associated with genetic operators [210, 77].
In this case, the control parameters will be defined on individuals instead of on
the whole population. Inputs to the FLCs may be central measures and/or mea-
sures associated with particular chromosomes or sets of them, and outputs may
be control parameters associated with genetic operators that are applied to those
chromosomes. A justification for this approach is that it allows for the applica-
tion of different search strategies in different parts of the search space. This is
based on the reasonable assumption that, in general, the search space will not be
homogeneous, and that different strategies will be better suited to different kinds
of sublandscapes.

3. Most instances use rule-bases derived from GA experts. The use of an online
learning mechanism has been less explored, though nowadays it is becoming
one of the most prospective alternatives (see Section 4.4.1). An example of is
approach was proposed in [77], which was called coevolution with fuzzy be-
haviours. Its main ideas are:

• It incorporates genetic operator adaptation at an individual-level based on
FLCs. Control parameter values for a genetic operator are computed for each
set of parents that undergo it, using an FLC that considers particular features
associated with the parents as inputs.

• The rule-bases of the FLCs applied are learnt implicitly throughout the run by
means of a separate GA that coevolves with the one that applies the genetic
operator to be controlled. The goal of this GA is to obtain the rule-bases that
produce suitable control parameter values to allow the genetic operator to
show an adequate performance on the particular problem to be solved.

Since the learning technique underlying this approach only takes into account
the problem to be solved (in contrast to the approaches based on offline learning
mechanisms), the rule-bases obtained shall specify adaptation strategies particu-
larly appropriate for this problem.
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4.2 EA Components Based on Fuzzy Tools

In this section, we review different EA components built using fuzzy tools that have
appeared in the literature.

Fuzzy Genetic Operators

Fuzzy connectives and triangular probability distributions have been considered for
designing powerful real-parameter crossover operators that establish adequate pop-
ulation diversity levels and thus help to avoid premature convergence:

• FCB-crossovers [82]. These are crossover operators for real-coded GAs based
on the use of fuzzy connectives: t-norms, t-conorms and average functions. They
were designed to offer different exploration and exploitation degrees.

• Heuristic FCB-crossovers [75]. These produce a child each whose components
are closer to the corresponding component of its fitter parent.

• Dynamic FCB-crossovers [81]. These are crossover operators based on the use
of parameterized fuzzy connectives. These operators keep a suitable sequence
between the exploration and the exploitation along the GA run: “to protect the
exploration in the initial stages and the exploitation later”.

• Dynamic Heuristic FCB-crossovers [81]. These operators put together the heuris-
tic properties and the features of the Dynamic FCB-crossover operators. They
showed very good results as compared with other crossover operators proposed
for RCGAs, even better than the FCB-crossover operators and the dynamic ones.

• Soft Genetic Operators. In [192, 193, 195], crossover and mutation operators
were presented, which are based on the use of triangular probability distributions.
These operators, called soft modal crossover and mutation, are a generalization
of the discrete crossover operator and the BGA mutation, respectively, proposed
for the Breeder GA [141]. The term soft is gleaned from fuzzy set theory only to
help grasp the main idea, since probability distributions are considered instead of
membership functions.

Fuzzy Representations

Classical EAs, such as GAs and evolution strategies, do not take into account the
development of an individual or organism from the gene level to the mature pheno-
type. There are no one-gene, one-trait relationships in natural evolved systems. The
phenotype varies as a complex, non-linear function of the interaction between un-
derlying genetic structures and current environmental conditions. Nature follows the
universal effects of pleiotropy and polygeny. Pleiotropy is the fact that a single gene
may simultaneously affect several phenotype traits. Polygeny is the effect when a
single phenotypic characteristic may be determined by the simultaneous interaction
of many genes [58]. An attempt to deal with more complex genotype/phenotype re-
lations in EAs was presented in [191, 194]. A fuzzy representation is proposed for
the case of tackling optimization problems of parameters with variables on contin-
uous domains. Each problem parameter has associated a number (m) fuzzy decision
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variables belonging to the interval [0,1]. The chromosomes are formed by linking
together the values of the decision variables for each parameter. For each parameter,
the decoding process is carried out using a function g : [0,1]m → [0,1], and a linear
transformation from the interval [0,1] to the corresponding parameter domain. As
an example of such a function the authors presented the following:

∀d = (d1, ...,dm) ∈ [0,1]m, g(d) =
1

2m−1−1

m

∑
j=1

d j2 j−1.

When m > 1, this coding type breaks the one-to-one correspondence between
genotype and phenotype (assumed by classical EAs), since two different genotypes
may induce the same phenotype. So, it is impossible to find inferences from pheno-
type to genotype, i.e., the mapping from genotype to phenotype is not isomorphic.
Different experiments carried out in [194] with m = 1 and m = 2 showed that the
use of a fuzzy representation allows robust behavior to be obtained. In some cases, a
better performance than the Breeder GA was achieved. Furthermore, another impor-
tant conclusion was stated: for a small population size the performance for m = 2 is
slightly better than for m = 1, whereas the opposite is true for large population sizes.

Sharma and Irwin [167], addressed the use of appropriate fuzzy sets to represent a
parameter depending upon its contribution within a problem domain. They proposed
a chromosome encoding method, named fuzzy coding, for representing real number
parameters in a GA. Fuzzy coding is an indirect method for representing a chro-
mosome, where each parameter is represented by two sections. In the first section,
the fuzzy sets associated with each parameter are encoded in binary bits with a “1”
representing the corresponding set selected. In the second section, each parameter
contains degrees of membership corresponding to each fuzzy set. These are encoded
as real numbers and represent the degrees of firing. The actual parameter value of
interest is obtained through the information contained in the chromosome by means
of a defuzzification method. This coding method represents the knowledge asso-
ciated with each parameter and is an indirect method of encoding compared with
the alternatives in which the parameters are directly represented in the encoding.
Two test examples, along with neural identification of a nonlinear pH (measure of
acidity or alkalinity of water) process from experimental data, were studied. It was
shown that fuzzy coding is better than the conventional methods (binary, gray, and
floating-point coding) and is effective for parameter optimization in problems where
the search space is complicated. In addition, the authors claim that this new tech-
nique also has the flexibility to embed prior knowledge from the problem domain
which is not possible in the regular coding methods. We should point out that an ad-
ditional investigation was carried out by Pedycz [149] into the exploitation of fuzzy
sets as a basis for encoding an original search space.

Finally, in [174], an algorithm for adaptively controlling GA parameter coding
using fuzzy rules is presented, which was called fuzzy GAP. This uses an inter-
mediate mapping between the genetic strings and the search space parameters. In
particular, each search parameter is specified by the following equation:
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ps = (
pg

2l−1
) ·R + O,

where ps is the search parameter, pg is the genetic parameter, l is the number of bits
in the genetic parameter, R is a specified parameter range, and O is a specified offset.
By controlling the offset and range, more accurate solutions are obtained using the
same number of binary bits.

Fuzzy GAP performs a standard genetic search until the population of strings has
converged. Convergence was measured by evaluating the average number of bits
which differ between all the genetic strings. Each string is compared to every other
string and the number of different bits is counted. If the average number of differing
bits per string pair is less than a threshold, the GA has converged. After the genetic
strings have converged, a new range and offset for the search parameters are deter-
mined by means of an FLC with an input that measures the distance between the
centre of the current range and the best solution found in the search. After applying
the FLC, the GA is executed again with the new values for the range and offset.
The performance of fuzzy GAP on a hydraulic brake emulator parameter identifica-
tion problem was investigated. It was shown to be more reliable than other dynamic
coding algorithms (such as the dynamic parameter encoding algorithm), providing
more accurate solutions in fewer generations.

Fuzzy Stopping Criteria

Due to the possibility of premature convergence, GAs do not guarantee that the op-
timal solution shall be found. Therefore, if the optimal solution is not known, GA
performance is difficult to measure accurately. In [137], a fuzzy stopping criterion
mechanism (FSCM) is developed to provide a useful evaluation of the GA’s real
time performance. FSCM is based on achieving a user-defined level of performance
for the given problem. In order to do so, it includes a predicting process based on
statistics for estimating the value of the GA optimal solution, then it compares the
current solution to this optimal one by checking if an acceptable percentage (spec-
ified by the user) of the latter is reached. If so, the GA stops and returns belief and
uncertainty measures that provide reliability measure for the GA chosen solution.
The acceptable percentage optimal solution defined by the user represents a fuzzy
stopping criterion for halting GA if an appropriate solution is reached. The predict-
ing process is invoked every 40 iterations and uses performance values such as the
minimum solution value, average solution value and belief and plausibility values,
all obtained during these iterations. The underlying idea for the FSCM is that the
user does not need to find the global solution, but rather an approximate solution that
is close to the optimal one, i.e., the GA is used for solving a fuzzy goal instead of a
crisp one because of the vagueness of the term approximate. This term is quantita-
tively measured by the user through the acceptable percentage of the optimal solu-
tion that he requires in the final solution. Results obtained on a 25-city TSP problem
indicate this approach is preferable to a simple GA, in term of cost/performance and
in decreasing the amount of time the GA searches for acceptable solutions.
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4.3 Other Fuzzy EA Models

Different fuzzy logic tools have been employed to improve the behavior of other EA
models, such as EAs for multiobjective problems, parallel EAs, genetic program-
ming, differential evolution, particle swarm optimization algorithms, ant colony op-
timization algorithms, and cultural algorithms. Next, we briefly explain the way
these EA approaches benefited from fuzzy logic.

Fuzzy EAs for Multiobjective Optimization Problems

In [189], a FAGA is presented for multiobjective optimization problems. In each
generation, an FLC decides what transformation of the cost components into a one-
dimensional fitness function is taken. In this vein, [152], Rachmawati and Srinivasan
present an algorithm that employs a fuzzy inference system to model and aggregate
different objectives. They are represented as fuzzy variables, which act as inputs to
a fuzzy inference system evaluating the fitness of the associated candidate solution.
The fuzzy system captures preferences of the decision maker in the compromise
between various objectives, thereby guiding the search to interesting regions in the
objective space. In [190], a more complex method, called a fuzzy reduction GA,
is proposed. It attempts to enable a uniform approximation of the Pareto optimal
solutions (those that cannot be improved with respect to any cost function without
making the value of some other worse). The authors started by explicitly formulating
desirable goals for the evolution of the population towards the target Pareto optimal
solutions (which could be expressed in vague terms only). Then, they defined devi-
ation measures for a population from these goals, which were the inputs to an FLC.
Later, they fixed a set of possible actions that could serve as countermeasures to
decrease the deviations. These actions are different selection mechanisms based on
classical ones proposed to tackle multiobjective optimisation problems. The FLC
determines activation rates for the actions. The action that should actually be taken
is decided according to the activation rates found. As an application, a timetable
optimisation problem is presented where the method was used to derive cost-benefit
curves for the investment into railway nets. The results showed that the fuzzy adap-
tive approach avoids most of the empirical shortcomings of other multiobjective
GAs by the adaptive nature of the procedure. Other models of multiobjective GA
based on the fuzzy logic tools are found in [44, 52, 98, 119].

Fuzzy Parallel EAs

The availability, over the last few years, of fast and cheap parallel hardware has
favoured research into possible ways for implementing parallel versions of EAs
[20]. EAs are good candidates for effective parallelization, since they are inspired
on the principles of parallel evolution, for a population of individuals. Among the
many types of parallel EAs, distributed and cellular algorithms are two popular op-
timization tools. The basic idea of the distributed EAs lies in the partition of the
population into several subpopulations, each one of them being processed by an
EA, independently from the others. Furthermore, a migration process produces a
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chromosome exchange between the subpopulations. An important control param-
eter that determines the operation of this process is the migration rate, which
controls how many chromosomes migrate. Maeda et al. [131, 132] propose an adap-
tive search method for distributed EAs. Its main characteristic feature is the fuzzy
adaptive control of the migration rate by evaluating the evolutionary degree for each
subpopulation. Simulations were performed to confirm the efficiency of this method,
which was shown to be superior to both ordinary and parallel EAs. In a cellular EA,
the concept of (small) neighbourhood is intensively used; this means that an individ-
ual may only interact with its nearby neighbours in the breeding loop [3]. In [156],
the fuzzy adaptive mechanism proposed by Shi et al. [168] was considered to adapt
parameters associated with cellular EAs, obtaining a fuzzy cellular EA model.

Fuzzy Genetic Programming

Genetic Programming’s [111] basic distinction from GAs is the evolution of
dynamic tree structures, often interpreted as programs, rather than fixed-length vec-
tors. In [10], it is claimed that genetic programming requires human supervision
during their routine use as practical tools for the following reasons: 1) to detect
the emergence of a solution, 2) to tune algorithm parameters and 3) to monitor the
evolution process in order to avoid undesirable behaviour such as premature con-
vergence. It is also advised that any attempt to develop artificial intelligence tools
based on genetic programming should take these issues into account. The authors
proposed FLCs for this task. They called the collection of fuzzy rules and routines
in charge of controlling the evolution of the GA population “fuzzy government”.
Fuzzy government was applied to the symbolic inference of the formulae problem.
Genetic programming was used to solve the problem along with different FLCs,
which dynamically adjusted the maximum length for genotypes, acted on the muta-
tion probability, detected the emergence of a solution, and stopped the process. The
results showed that the performance of the fuzzy governed GA was almost impos-
sible to distinguish from the performance of the same algorithm operated directly
with human supervision. Other work on fuzzy adaptive search methods for genetic
programming is [130].

Fuzzy Cultural Algorithms

Cultural algorithms (CAs) [154] are dual inheritance systems that consist of a
social population and a belief space. The problem solving experience of individ-
uals selected from the population space by an acceptance function is used to gen-
erate problem solving knowledge that resides in the belief space. This knowledge
can be viewed as a set of beacons that can control the evolution of the popula-
tion component by means of an influence function. The influence function can use
the knowledge in the belief space to modify any aspect of the population compo-
nent. Various evolutionary models have been used for the population component of
CAs, including GAs, genetic programming, evolution strategies, and evolutionary
programming. In [155], a fuzzy approach to CAs is presented in which an FLC reg-
ulates the amount of information to be transferred to the belief space used by the CA
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over time. In particular, the FLC determines the number of individuals which shall
impact the current beliefs. Its inputs are the individual success ratio (ratio of the
number of successes to the total number of mutations) and the current generation.
A comparison was made between the fuzzy version of a CA (that used evolution-
ary programming as the population component) and its non fuzzy version on 34
optimization functions. The conclusions were: 1) the fuzzy interface between the
population and belief space outperformed the non fuzzy version in general, and 2)
the use of a fuzzy acceptance function significantly improved the success ratio and
reduced CPU time.

Fuzzy Ant System

Ant Colony Optimization (ACO) [51] is a population-based metaheuristic approach
for solving hard combinatorial optimization problems. The inspiring source of ACO
is the foraging behavior of real ants which enables them to find shortest paths be-
tween a food source and their nest. They are based on a colony of artificial ants, that
is, simple computational agents that work cooperatively and communicate through
artificial pheromone trails. ACO algorithms are essentially construction algorithms:
every ant constructs a solution to the problem by travelling on a construction graph.
The edges of the graph, representing the possible steps the ant can make, have two
kinds of associated information (heuristic information and artificial pheromone trail
information), which are used to define transition probabilities of moving from one
node to other, guiding ant movement. This information is modified during the al-
gorithm run, depending on the solutions found by the ants. In [181], a fuzzy ACO
approach is presented, which uses fuzzy logic to calculate an ant’s utility to visit the
next node. In particular, transition probabilities (usually given in a classical ACO
in closed form) are computed by a fuzzy rule-based system. Their authors claim
that when using fuzzy logic as a separate module within the ACO, it is possible to
handle the uncertainty that sometimes exists in some complex combinatorial opti-
mization problems. The control strategies of an ant can also be formulated in terms
of descriptive fuzzy rules. Other ACO models based on fuzzy logic are presented in
[104, 142].

Fuzzy Particle Swarm Optimization

Particle Swarm Optimization (PSO) algorithm [103] is inspired by social behaviour
patterns of organisms that live and interact within large groups. In particular, PSO
incorporates swarming behaviours observed in flocks of birds, schools of fish, or
swarms of bees, and even human social behaviour. The standard PSO model con-
sists of a swarm of particles, which are initialized with a population of random can-
didate solutions. Each particle has a position represented by a position-vector, and
a velocity represented by a velocity vector. The particles move iteratively through
the d-dimension problem space to search new solutions, where the fitness can be
calculated as a quality measure. A particle decides where to move next, considering
its own experience, which is the memory of its best past position, and the experience
of the most successful particle in the swarm. It has been shown that the trajectories
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of the particles oscillate in different sinusoidal waves and converge quickly, some-
times prematurely. Liu and Abraham [124] proposed an adaptive mechanism based
on FLCs to control the velocity of particles in order to avoid premature convergence
in PSO. Empirical results demonstrated that the performance of standard PSO de-
grades remarkably with the increase in the dimension of the problem, while the
influence is very little in the fuzzy PSO approach. Another instance of a PSO model
tuned by FLCs may be found in [99]. Finally, we should point out that a fuzzy ver-
sion of PSO specifically designed to tackle the quadratic assignment problem was
presented in [125].

Fuzzy Differential Evolution

The differential evolution algorithm (DE) is one of the most recent EAs for solving
real-parameter optimization problems [151]. Like other EAs, DE is a population-
based, stochastic global optimizer capable of working reliably in nonlinear and
multimodal environments. DE has few control parameters. However, choosing the
best parameter setting for a particular problem is not easy [129]. Liu and Lampinen
[127, 128, 129] present the fuzzy adaptive differential evolution algorithm, which
uses FLCs controllers to adapt the search parameters for the DE mutation opera-
tion and crossover operation. These two parameters were adapted individually for
each generation. Parameter vector change and function value change over the whole
population members between the last two generations were nonlinearly depressed
and then used as the inputs for both FLCs. Experimental results, provided by the
proposed algorithm for a set of standard test functions, outperformed those of the
standard differential evolution algorithm for optimization problems with higher di-
mensionality.

4.4 Future Work on Fuzzy EAs

Despite the recent activity and the associated progress in fuzzy EAs research, there
remain many directions in which the work may be improved or extended. Next, we
report on some of these.

4.4.1 Improvements for FAGAs

Future research may take into account the following issues in order to produce ef-
fective FAGAs.

Relevant Inputs for the FLCs

Research on determining relevant input variables for the FLCs controlling GA be-
haviour should be studied in greater depth. These variables should describe either
states of the population or features of the chromosomes, so that control parameters
may be adapted on the basis thereof to introduce real performance improvements.
In this vein, Boulif and Karim [18] claimed recently that previous researches on
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FAGAs allowed building FAGA systems that outperform significantly conventional
GAs. However, these works, albeit interesting, do not consider the causes that pro-
pel the GA in its search for good solutions but rather their effects. Indeed, the fuzzy
models use as input either convergence speed, the population diversity or its av-
erage fitness (see Table 1). These authors think that it will be more interesting to
deal with cause inputs first, admitting that nothing forbids complementing them by
effect inputs. This perspective may prove useful for detecting relevant inputs and
determining how to exploit them to adequately tune GA parameters.

Adaptation by Coevolution with Fuzzy Behaviors

The adaptation of GA parameters by coevolution with fuzzy behaviours (FBs) be-
comes a prospective way for future FAGA works, mainly for two reasons: 1) The use
of online learning techniques to derive rule-bases for FAGA has been little explored
(see Table 1) and 2) Adaptation of EAs by means of the coevolutionary model is,
nowadays, a topic of high interest [171].

Different types of parameter settings were associated with genetic operators,
which could be adapted by means of coevolution with FBs. These include the fol-
lowing:

• Operator probabilities. There is a type of GA that does not apply both crossover
and mutation to the selected solutions. Instead, a set of operators is available,
each with a probability of being used, and only one of these is selected to pro-
duce offspring. Many adaptive GAs have been designed starting from this GA
approach, which adjust the operator probabilities throughout the run [185].

• Operator parameters. These parameters determine the way in which genetic op-
erators work. Examples include: 1) the step size of mutation operators for real-
coded GAs, which determines the strength in which real genes are mutated, 2)
parameters associated with crossover operators for real-coded GAs (see [84]) and
dynamic FCB-crossovers [81], 3) the number of parents involved in multi-parent
recombination operators, and 4) parameters associated with crossover operators
for binary-coded GAs, such as n-point crossover and uniform crossover.

The adaptation at individual-level of operator probabilities and operator pa-
rameters by coevolution with FBs may be carried out by considering these vari-
ables as a consequence of the fuzzy rules represented in the FBs. Furthermore,
appropriate features of the parents should be chosen, as a basis oo which the ad-
justment of these variable is expressed. On the other hand, hybrid models may
be built, in such a way that FBs include information for both the adaptation of
operator probabilities and operator parameters. In this case, the model shall de-
tect the operators that should be applied more frequently, along with favourable
operator parameter values for them.

• Mate selection parameters. In mate selection mechanisms [158], chromosomes
carry out the choice of mates for crossover on the basis of their own preferences
(which are formulated in terms of different chromosome characteristics, such as
the phenotypical distance between individuals).
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Mate selection strategies may be expressed by means of FBs. In particular,
given two chromosomes, an FB may induce a probability of mating depending on
their characteristics. This probability determines whether or not they are crossed.
Then, the process of coevolution with FBs shall discover FBs containing mate se-
lection strategies that encourage recombination between chromosomes that have
useful information (characteristics) to exchange.

The adaptive mechanism by coevolution with FBs may also be used for problems
where we intuit that particular features of the parents may be taken into account to
allow the crossover operator behaviour to be more effective, but we do not know the
precise fuzzy rules determining the relation between these features and the appropri-
ate control actions for the operator. In this fashion, this approach allows particular
knowledge about the problem to be integrated in the EA in order to improve its
behaviour.

4.4.2 Applications and Extensions of Fuzzy EAs

Fuzzy EAs may be defined to tackle particular problems such as multimodal opti-
misation problems. In addition, fuzzy logic may help modern hybrid metaheuristics
to improve their behaviour, obtaining fuzzy hybrid metaheuristics.

Multimodal Optimisation Problems

Given a problem with multiple solutions, a simple EA will tend to converge to a sin-
gle solution. As a result, various mechanisms have been proposed to stably maintain
a diverse population throughout the search, thereby allowing EAs to identify mul-
tiple optima reliably. Many of these methods work by encouraging artificial niche
formation through sharing and crowding [169], but these methods introduce one or
more parameters that affect algorithm performance, parameters such as the shar-
ing radius in fitness sharing or the crowding factor in crowding. In many problems,
the uniform specification of niche size is inadequate to capture solutions of varying
location and extent without also increasing the population size beyond reasonable
bounds. Therefore, there remains a need to develop niching methods that stably and
economically find the best niches, regardless of their spacing and extent. FLCs may
be useful for the adaptation of parameters associated with sharing and crowding
methods. Possible inputs may be: diversity measures, the number of niches that are
currently in the population, etc.

Application of Fuzzy Tools to Improve Hybrid Metaheuristics

Over the last years, a large number of search algorithms were reported that do not
purely follow the concepts of one single classical metaheuristic, but they attempt
to obtain the best from a set of metaheuristics (and even other kinds of optimiza-
tion methods) that perform together and complement each other to produce a prof-
itable synergy from their combination. These approaches are commonly referred to
as hybrid metaheuristics [178]. Memetic algorithms (MAs) [112] are well-known
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instances of this class of algorithms. They combine an EA in charge of the global
search with a local search (LS) procedure, which is executed within the EA run,
looking for a synergy that takes benefits from both. The classic scheme of MAs ap-
plies the local search procedure on the solutions obtained by the EA with the aim of
improving the accuracy of the population members. An important aspect in MAs is
the number of fitness function evaluations required by the LS algorithm during their
operation (LS intensity). It is fundamental to identify a proper intensity for the LS,
because a LS that is too short may be unsuccessful at exploring the neighbourhood
of the solution and therefore unsuccessful at improving the search quality. On the
other hand, too long LS may backfire by consuming additional fitness evaluations
unnecessarily.

A great part of the experience acquired about the application of fuzzy logic to
improve EAs may be reused to enhance the behaviour of these innovative search
algorithms. For example, FLCs may be designed with the aim of coordinating the
different components in a hybrid metaheuristic, assigning different fitness function
evaluations to them depending on their specific exploration and/or exploitation fea-
tures. In particular, for the case of MAs, the adaptation of the LS intensity by FLCs
becomes a prospective line of research for obtaining effective MAs.

5 Concluding Remarks

In this chapter, we painted a complete picture of GFSs and fuzzy EAs. In particular,
we overviewed important design principles for these algorithms, cited existing liter-
ature whenever relevant, provided a taxonomy for each one of them, and discussed
future directions and some challenges for these two lines of research. Mainly, this
work reveals that GFSs and fuzzy EAs have consolidated backgrounds of knowl-
edge, and therefore, they are two outstanding examples of positive collaboration
between soft computing technologies. In addition, it shows that there still remain
many exciting research issues connected with these two topics.
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5. Alcalá, R., Alcalá-Fdez, J., Herrera, F.: A proposal for the genetic lateral tuning of
linguistic fuzzy systems and its interaction with rule selection. IEEE Transactions on
Fuzzy Systems 15(4), 616–635 (2007)
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Multiobjective Genetic Fuzzy Systems

Hisao Ishibuchi and Yusuke Nojima

Abstract. In the design of fuzzy rule-based systems, we have two conflicting goals:
One is accuracy maximization, and the other is complexity minimization (i.e., in-
terpretability maximization). There exists a tradeoff relation between these two
goals. That is, we cannot simultaneously achieve accuracy maximization and com-
plexity minimization. Various approaches have been proposed to find accurate and
interpretable fuzzy rule-based systems. In some approaches, these two goals are
integrated into a single objective function which can be optimized by standard
single-objective optimization techniques. In other approaches, accuracy maximiza-
tion and complexity minimization are handled as different objectives in the frame-
work of multiobjective optimization. Recently, multiobjective genetic algorithms
have been used to search for a large number of non-dominated fuzzy rule-based sys-
tems along the accuracy-complexity tradeoff surface in some studies. These studies
are often referred to as multiobjective genetic fuzzy systems. In this chapter, we
first briefly explain the concept of accuracy-complexity tradeoff in the design of
fuzzy rule-based systems. Next we explain various studies in multiobjective genetic
fuzzy systems. Two basic ideas are explained in detail through computational ex-
periments. Then we review a wide range of studies related to multiobjective genetic
fuzzy systems. Finally we point out future research directions.

1 Introduction

One advantage of fuzzy rule-based systems over other nonlinear systems such as
neural networks is their linguistic interpretability. That is, each fuzzy rule is lin-
guistically interpretable when fuzzy rule-based systems are designed from linguis-
tic knowledge of human experts. Linguistic knowledge, however, is not always
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available. Thus various approaches have been proposed for extracting fuzzy rules
from numerical data in the literature (e.g., Takagi and Sugeno [136], and Wang and
Mendel [142]). Learning techniques of neural networks (e.g., the back-propagation
algorithm [131]) have been applied to fuzzy rule-based systems for their param-
eter tuning [3, 66, 92, 115]. Fuzzy rule-based systems with learning capability
are often called neuro-fuzzy systems [115]. ANFIS of Jang [92] is the most well-
known and frequently-used neuro-fuzzy system. Whereas only continuous parame-
ters are adjusted in neuro-fuzzy systems, evolutionary optimization techniques can
be used not only for parameter tuning but also for discrete optimization such as
input selection, rule generation and rule selection. Genetic algorithms [53] have
been frequently used for the design of fuzzy rule-based systems from numerical
data under the name of genetic fuzzy systems [36, 37, 63] since the early 1990s
[46, 101, 102, 123, 137, 139].

Fuzzy rule-based systems are universal approximators of nonlinear functions
[106, 111, 143] in a similar way to neural networks [50, 67, 68]. Theoretically we
can improve their approximation accuracy on training data to an arbitrarily spec-
ified level by increasing their complexity. Neuro-fuzzy systems and genetic fuzzy
systems have been successfully used for such an accuracy improvement task. Accu-
racy improvement can be viewed as the following optimization problem:

Maximize Accuracy(S), (1)

where S is a fuzzy rule-based system, and Accuracy(S) is an accuracy measure (e.g.,
classification rate). This formulation can be also rewritten as

Minimize Error(S), (2)

where Error(S) is an error measure (e.g., misclassification rate).
Accuracy improvement of fuzzy rule-based systems usually leads to the increase

in their complexity (i.e., the deterioration in their interpretability) because there is
a tradeoff relation between accuracy maximization and complexity minimization.
Such an accuracy-complexity tradeoff relation is illustrated in Figure 1 where the
horizontal and vertical axes show a complexity measure and an error measure, re-
spectively. Both measures are to be minimized in the design of fuzzy rule-based
systems.

When we try to minimize the error measure in Figure 1, the complexity mea-
sure will be increased. This means that we may obtain an accurate fuzzy rule-based
system with high complexity (i.e., with poor interpretability) through error min-
imization. On the other hand, the error measure will be increased when we try
to minimize the complexity measure in Figure 1. This means that we may obtain
an interpretable but inaccurate fuzzy rule-based system through complexity mini-
mization. These discussions suggest that we cannot obtain an ideal fuzzy rule-based
system (i.e., a very simple and very accurate system located around the origin of
Figure 1).
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Fig. 1 Illustration of the
tradeoff relation between
accuracy maximization (i.e.,
error minimization) and
complexity minimization
in the design of fuzzy rule-
based systems. Ellipsoids
show non-dominated fuzzy
rule-based systems along
the accuracy-complexity
tradeoff curve
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As we have already explained, an undesirable side-effect of accuracy maximiza-
tion of fuzzy rule-based systems is interpretability deterioration. Another problem
of accuracy maximization is the overfitting of fuzzy rule-based systems to training
data. In genetic fuzzy systems (and also in neuro-fuzzy systems), an accuracy mea-
sure in (1) or an error measure in (2) is usually defined for training data. As is well
known in the field of statistical learning theory [30], the minimization of errors on
training data does not always mean the minimization of errors on unseen test data.
In Figure 2, we illustrate the overfitting to training data. By increasing the com-
plexity of fuzzy rule-based systems, errors on training data are usually improved
monotonically as shown by the solid curve in Figure 2. On the other hand, errors on
unseen test data start to deteriorate by increasing the complexity beyond the optimal
complexity S∗ as shown by the dotted curve in Figure 2. Thus accuracy maximiza-
tion for training data often deteriorates the generalization ability of fuzzy rule-based
systems for unseen test data.

Fig. 2 Illustration of the
overfitting to training data.
The arrow shows the mini-
mization of errors on train-
ing data
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Since the late 1990s, the importance of interpretability maintenance in the design
of fuzzy rule-based systems has been pointed out by many studies [4, 9, 22, 25,
69, 95, 100, 116, 130, 132, 133, 145]. In other words, complexity minimization as
well as accuracy maximization was taken into account in order to design accurate
and interpretable fuzzy rule-based systems. Whereas accuracy maximization and
complexity minimization were simultaneously considered, the design of fuzzy rule-
based systems was handled in the framework of single-objective optimization in
those studies. That is, the two goals were integrated as follows:
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Optimize f (S) = f (Accuracy(S), Complexity(S)), (3)

where f (S) is an integrated objective function (i.e., an integrated fitness function in
genetic fuzzy systems), which combines an accuracy measure Accuracy(S) and a
complexity measure Complexity(S). In some studies, the integrated objective func-
tion in (3) can be more appropriately rewritten as

Optimize f (S) = f (Accuracy(S), Interpretability(S)), (4)

where Interpretability(S) is an interpretability measure.
The following weighted sum objective function for fuzzy classifier design [86] is

a typical example of the integrated objective function f (S) in (3):

Maximize f (S) = w1 ·Accuracy(S)−w2 ·Complexity(S), (5)

where w = (w1,w2) is a non-negative weight vector. The number of correctly classi-
fied training patterns and the number of fuzzy rules were used as an accuracy mea-
sure and a complexity measure, respectively. The weighted sum approach in [86]
is one of the earliest studies where accuracy maximization and complexity mini-
mization were explicitly performed by genetic algorithms in the design of fuzzy
rule-based systems.

One difficulty in the weighted sum-based approach is that the specification of an
appropriate weight vector is not easy and problem-dependent whereas the finally ob-
tained fuzzy rule-based system strongly depends on its specification. For example,
when the accuracy weight w1 is too large in (5), we may obtain a too complicated
fuzzy rule-based system as shown by A in Figure 3. On the other hand, when the
complexity weight w2 is too large, we may obtain a too simple fuzzy rule-based
system as shown by B in Figure 3. Only when the weight vector is appropriately
specified, we will obtain a fuzzy rule-based system with appropriate complexity
(i.e., with high generalization ability for unseen test data). Almost all the above-
mentioned studies with integrated objective functions share similar difficulties (i.e.,
it is not easy to specify an appropriate objective function for integrating accuracy
maximization and complexity minimization).

As we have already explained, a single fuzzy rule-based system is obtained from
an integrated objective function in (3) or (4) in single-objective approaches. On the

Fig. 3 Illustration of the
weighted sum approach in
(5). The circle A shows
a complicated fuzzy rule-
based system obtained when
the accuracy weight is too
large. The circle B shows
a simple fuzzy rule-based
system obtained when the
complexity weight is too
large 0 Complexity
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other hand, a large number of non-dominated fuzzy rule-based systems are obtained
in multiobjective approaches by solving the following multiobjective problem:

Maximize Accuracy(S) and minimize Complexity(S). (6)

For example, a two-objective fuzzy rule selection method was proposed in [76] to
search for non-dominated fuzzy classifiers with respect to the maximization of the
number of correctly classified training patterns and the minimization of the number
of selected fuzzy rules.

In [79], not only the number of fuzzy rules but also the total number of antecedent
conditions (i.e., the total rule length) was minimized. In this case, the multiobjective
problem in (6) can be rewritten as follows:

Maximize Accuracy(S), and minimize Complexity1(S) and Complexity2(S), (7)

where Complexity1(S) and Complexity2(S) are different complexity measures.
The basic idea of multiobjective approaches is to search for a large number of

non-dominated fuzzy rule-based systems with different tradeoffs between accuracy
maximization and complexity minimization. This idea is illustrated in Figure 4
where multiple arrows show search directions for finding various non-dominated
fuzzy rule-based systems with respect to error minimization and complexity mini-
mization. Simple and inaccurate fuzzy rule-based systems are located in the upper
left part of this figure while complicated and accurate ones are in the lower right
part. There exist a large number of non-dominated fuzzy rule-based systems along
the accuracy-complexity tradeoff curve. Multiobjective approaches try to search for
those non-dominated fuzzy rule-based systems as many as possible as shown in
Figure 5. Evolutionary multiobjective optimization (EMO) algorithms [32, 34, 41]
are used for this task. In multiobjective approaches, it is assumed that a single non-
dominated fuzzy rule-based system is chosen from a large number of obtained ones
by human users based on their preference with respect to accuracy and complexity.
Some users may choose a fuzzy rule-based system with the highest test data accu-
racy (i.e., with the optimal complexity S∗ in terms of the generalization ability in
Figure 5). Other users may choose simpler fuzzy rule-based systems with higher
interpretability than S∗.

Fig. 4 Illustration of search
directions for finding var-
ious non-dominated fuzzy
rule-based systems with
respect to accuracy maxi-
mization (i.e., error mini-
mization) and complexity
minimization in multiobjec-
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Fig. 5 A large number
of non-dominated fuzzy
rule-based systems along
the accuracy-complexity
tradeoff curve
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Evolutionary multiobjective optimization (EMO), which has been used in multi-
objective approaches to the design of fuzzy rule-based systems, is one of the most
active research areas in the field of evolutionary computation. A large number of
EMO algorithms have already been proposed in the literature [32, 34, 41]. Among
them, NSGA-II [42], SPEA [147], and SPEA2 [146] are the most well-known
and frequently-used EMO algorithms. Those EMO algorithms share some common
ideas (with different implementation schemes) such as Pareto ranking-based fitness
evaluation, diversity maintenance, and elitism.

The main advantage of EMO algorithms over non-evolutionary techniques in the
field of multi-criteria decision making (MCDM [112]) is that a large number of non-
dominated solutions with a wide range of objective values can be simultaneously
obtained by their single run. On the contrary, multiple runs are required when we
try to find a number of non-dominated solutions using MCDM techniques.

In this chapter, we explain a wide range of studies related to multiobjective ge-
netic fuzzy systems in various research areas. Our explanation is, however, far from
exhaustive because we try to cover broad research fields. See [36, 37, 63] for single-
objective genetic fuzzy systems, [32, 34, 41] for evolutionary multiobjective op-
timization, [23, 24, 80] for interpretability-accuracy tradeoff of fuzzy rule-based
systems, [97] for multiobjective machine learning, and [51] for multiobjective data
mining.

2 Evolutionary Multiobjective Optimization

Before discussing multiobjective genetic fuzzy systems in the next section, we
briefly explain evolutionary multiobjective optimization (EMO) algorithms together
with some basic concepts in multiobjective optimization in this section.

2.1 Some Basic Concepts in Multiobjective Optimization

Let us consider the following k-objective maximization problem:

Maximize f(y) = ( f1(y), f2(y), ..., fk(y)), (8)
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subject to y ∈ Y, (9)

where f(y) is the objective vector, fi(y) is the ith objective to be maximized, y is
the decision vector, and Y is the feasible region in the decision space. Whereas the
decision vector is usually denoted by x in various fields related to optimization, we
use y in this section. This is because x is used to denote a pattern vector in the next
section.

Let y and z be two feasible solutions of the k-objective maximization problem in
(8) - (9). If the following conditions hold, z can be viewed as being better than y:

∀i, fi(y)≤ fi(z) and ∃ j, f j(y) < f j(z). (10)

In this case, we say that z dominates y (equivalently y is dominated by z).
When y is not dominated by any other feasible solutions (i.e., when there exists

no feasible solution z that dominates y), the solution y is referred to as a Pareto-
optimal solution of the k-objective maximization problem in (8) - (9). The set of
all Pareto-optimal solutions is called the Pareto-optimal solution set. The projection
of the Pareto-optimal solution set forms the tradeoff surface in the objective space.
This tradeoff surface is referred to as the Pareto front. Various EMO algorithms
have already been proposed to efficiently find a set of non-dominated solutions that
approximates the entire Pareto front [32, 34, 41, 42, 146, 147].

2.2 Evolutionary Multiobjective Optimization

Recently proposed evolutionary multiobjective optimization (EMO) algorithms such
as NSGA-II [42] and SPEA [147] share the following three features:
(a) Use of Pareto dominance relation in (10) for fitness evaluation: Higher fitness
values are assigned to non-dominated solutions in the current population than dom-
inated ones.
(b) Use of the concept of crowding for fitness evaluation: Higher fitness values
are assigned to solutions in uncrowded regions of the objective space than those
in crowded regions.
(c) Use of non-dominated solutions as elite solutions: Non-dominated solutions in
the current population are handled as elite solutions. That is, they are inherited to the
next population with no modifications (or they are stored in an archive population
separately from the next population).

As a representative algorithm, we explain the most well-known and frequently-
used EMO algorithm in the literature: NSGA-II (elitist non-dominated sorting ge-
netic algorithm) of Deb et al. [42]. Let P and Npop be the current population and the
population size, respectively (i.e., Npop = |P|). Then the outline of NSGA-II can be
written as follows:

Step 1: P := Initialize(P)
Step 2: while a termination condition is not satisfied, do
Step 3: P′ := Selection(P)
Step 4: P′′ := Genetic Operations(P′)
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Step 5: P := Replace(P∪P′′)
Step 6: end while
Step 7: return (non-dominated solutions(P))

First, Npop solutions are randomly generated to form an initial population P in
Step 1 as in standard single-objective genetic algorithms (SOGAs). Next, Npop pairs
of parents are selected from the current population P to form a parent population P′
in Step 3. Binary tournament selection with replacement is used for parent selection.
Then an offspring population P′′ is constructed in Step 4 by generating a single
offspring solution from each pair of parents in P′ by crossover and mutation. Genetic
operations in Step 4 are the same as those in standard SOGAs. The next population is
constructed in Step 5 by choosing the best Npop solutions from the 2 ·Npop solutions
in the current population P and the offspring population P′′. Parent selection in
Step 3 and generation update in Step 5 of NSGA-II are different from standard
SOGAs. Steps 3-5 are iterated until a prespecified termination condition is satisfied.
When the execution of NSGA-II is terminated, non-dominated solutions in the final
population are presented in Step 7.

Each solution in the current population in Step 3 is evaluated by non-dominated
sorting and a crowding distance. Solutions in the current population are sorted by
Pareto dominance relation in (10) in the following manner (see Figure 6). First,
Rank 1 is assigned to non-dominated solutions in the current population. Rank 1
solutions are tentatively removed from the current population. Next, Rank 2 is as-
signed to non-dominated solutions in the remaining population. Rank 2 solutions
are tentatively removed from the remaining population. In this manner, solutions in
the current population are sorted to assign a rank to each solution. The rank of each
solution is used as the primary criterion in fitness evaluation.

Fig. 6 Illustration of
non-dominated sorting in
NSGA-II
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Solutions with the same rank are compared with each other using a secondary
criterion called a crowding distance. In the calculation of the crowding distance for
a solution, all solutions with the same rank are projected to each objective. Then
the distance between its two adjacent solutions in the projected single-dimensional
space is calculated for each objective. The crowding distance is the sum of the calcu-
lated distances over all objectives. When a solution has the maximum or minimum
value of at least one objective among solutions with the same rank, an infinitely large
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Fig. 7 Illustration of the
calculation of the crowding
distance
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value is assigned to that solution as its crowding distance because it has only a sin-
gle adjacent solution for at least one projected single-dimensional objective space.
Figure 7 illustrates the calculation of the crowding distance for the case of two ob-
jectives. In Figure 7, an infinitely large value is assigned to two extreme solutions.
The crowding distance of solution C is calculated as a + b which is the Manhattan
distance between its two adjacent solutions A and B.

In Step 5, each solution in the merged population (i.e., the current and offspring
populations) is evaluated for generation update in the same manner as parent selec-
tion in Step 3 (i.e., by the non-dominated sorting and the crowded distance in the
merged population). The best Npop solutions are chosen from the merged population
with 2 ·Npop solutions to form the next population.

In NSGA-II, Pareto dominance-based fitness assignment is realized through the
non-dominated sorting in Figure 6. Better ranks are assigned to better solutions with
respect to Pareto dominance relation. This fitness assignment scheme generates the
selection pressure toward the Pareto front. On the other hand, the crowding dis-
tance in Figure 7 is used as the secondary criterion to differentiate solutions with
the same rank. The secondary criterion works as a diversity maintenance mecha-
nism in NSGA-II in order to evenly distribute solutions over the entire Pareto front.
Roughly speaking, the crowding distance-based secondary criterion widens the pop-
ulation along the Pareto front while the non-dominated sorting-based primary crite-
rion pushes it toward the Pareto front.

On the other hand, elitism is implemented in the framework of the (μ +λ )-ES
generation update scheme in NSGA-II where μ = λ . That is, the best μ solutions
are chosen from (μ +λ ) solutions in the current and offspring populations in order
to form the next population. It is widely recognized that elitist EMO algorithms
outperform non-elitist EMO algorithms [147]. Elitism usually has positive effects
on both the convergence of solutions toward the Pareto front and the diversity along
the Pareto front in EMO algorithms.

In Figure 8, we illustrate multiobjective evolution by NSGA-II on a two-objective
100-item knapsack problem. Figure 8 shows an initial population, an intermediate
population at the 20th generation, and the final population at the 2000th generation.
We can see from Figure 8 that the population moves toward the Pareto front while
increasing the diversity of solutions. It should be noted that a large number of non-
dominated solutions can be obtained by a single run of NSGA-II. This is the main
advantage of EMO algorithms over other techniques for multiobjective optimization.
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Fig. 8 Experimental results
by a single run of NSGA-II
on a two-objective 100-item
knapsack problem. Param-
eters in NSGA-II were
specified as follows: The
population size was 100, the
crossover probability was
0.8 (uniform crossover), the
mutation probability was
0.05, and the termination
condition was 2000 genera-
tions Total profit (knapsack 1): f1(x)

To
ta

l p
ro

fit
 (k

na
ps

ac
k 

2)
: f

2(x
)

2000th generation
20th generation

1st generation

2800 3200 3600 4000 44002400

2800

3200

3600

4000

 

3 Multiobjective Genetic Fuzzy Systems

In this section, we give a brief overview on multiobjective design of fuzzy rule-based
systems. The use of multiobjective genetic algorithms for the design of fuzzy rule-
based systems was first proposed in the mid-1990s by Ishibuchi et al. [75, 76]. They
applied a two-objective genetic algorithm to a fuzzy rule selection problem where
each fuzzy rule-based classifier S was evaluated by the following two objectives:

f1(S): The number of correctly classified training patterns by S,
f2(S): The number of fuzzy rules in S.

The first objective is an accuracy measure to be maximized while the second ob-
jective is a complexity measure to be minimized. Of course, we can use the average
classification rate as an accuracy measure instead of the number of correctly classi-
fied training patterns. We can also use the average misclassification rate as an error
measure to be minimized. Each solution (i.e., each fuzzy rule-based classifier S) of
the two-objective fuzzy rule selection problem is a subset of a large number of can-
didate rules, which is represented by a binary string. The string length is the same as
the total number of candidate rules. Each bit value shows the inclusion or exclusion
of the corresponding candidate rule.

The two-objective formulation was extended to a three-objective problem [79]
where the following complexity measure was included:

f3(S): The total number of antecedent conditions of fuzzy rules in S.

Fuzzy rules with many don’t care conditions were used in [79] to handle high-
dimensional classification problems. It should be noted that don’t care conditions are
not counted as antecedent conditions in f3(S). For example, the antecedent part “If x1

is don’t care and x2 is small and x3 is don’t care and x4 is large” is viewed as “If x2 is
small and x4 is large” with two antecedent conditions. In [89], a multiobjective genetic
local search algorithm was applied to the three-objective fuzzy rule selection problem
with f1(S), f2(S) and f3(S). In [81], a three-objective genetic algorithm was used for
non-fuzzy rule selection. The same three objectives were also used in multiobjective
fuzzy genetics-based machine learning (GBML) algorithms in [79, 85].
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Recently multiobjective approaches have been used for the design of fuzzy rule-
based systems in many studies. As SOGAs in single-objective genetic fuzzy sys-
tems [36, 37, 63], EMO algorithms can optimize various aspects of fuzzy rule-based
systems (e.g., input selection, rule generation, rule selection, determination of the
number of fuzzy sets for each variable, optimization of the shape of each fuzzy set,
etc.) in multiobjective genetic fuzzy systems. Various criteria for evaluating fuzzy
rule-based systems can be also used as objectives in multiobjective genetic fuzzy
systems.

For example, the number of fuzzy rules and the total number of antecedent con-
ditions were used together with an accuracy measure for multiobjective design of
fuzzy rule-based classifiers in [124, 134, 138] as in [79, 81, 85]. That is, EMO algo-
rithms were applied to three-objective problems where f2(S) and f3(S) were used as
complexity measures. These two complexity measures were often used to avoid the
overfitting to training data in multiobjective design of fuzzy rule-based classifiers.

Multiobjective approaches have been used not only for classification problems
but also for function approximation problems. The above-mentioned two complex-
ity measures were used for classification problems (together with the average mis-
classification rate) and function approximation problems (together with the mean
squared error) in Wang et al. [140]. The total number of fuzzy sets instead of the
total number of antecedent conditions was used together with an accuracy measure
and the number of fuzzy rules in a three-objective formulation for function approx-
imation problems in Xing et al. [144]. On the other hand, Alcala et al. [10] and
Gonzalez et al. [57] used a two-objective formulation with the mean squared error
and the number of fuzzy rules for function approximation problems. Jimenez et al.
[94] and Gomez-Skarmeta [54] used a different two-objective formulation for func-
tion approximation problems. In their two-objective formulation, one objective is
the mean squared error and the other objective is an interpretability measure defined
by the similarity between adjacent fuzzy sets.

In some studies, more than three objectives were used for multiobjective design
of fuzzy rule-based systems. For example, the following five objectives were used in
Wang et al. [141]: accuracy, completeness and distinguishability, non-redundancy,
the number of fuzzy rules, and the total number of fuzzy sets. It should be noted that
“completeness and distinguishability” was used as a single objective (for details, see
Wang et al. [141]).

In all the above-mentioned studies [10, 54, 57, 75, 76, 79, 81, 85, 89, 94, 124, 134,
138, 140, 141, 144] on multiobjective genetic fuzzy systems for classification and
function approximation problems, multiobjective problems were formulated using
both accuracy and complexity measures. That is, EMO algorithms in these studies
were used to search for a number of non-dominated fuzzy rule-based systems with
different accuracy-complexity tradeoffs. On the other hand, in multiobjective ge-
netic fuzzy systems for control problems, multiple performance measures together
with no complexity measures were often used. For example, Stewart et al. [135]
handled the design of fuzzy logic controllers as a three-objective problem where
three objectives were the current tracking error, the velocity tracking error, and the
power consumption. Chen and Chiang [29] formulated a three-objective problem
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using the number of collisions, the distance between the target and lead points of
the new path, and the number of explored actions. Kim and Roschke [105] used
the following two performance measures: the structural acceleration and the base
displacement level.

Whereas both complexity and accuracy have been taken into account in many
studies on multiobjective genetic fuzzy systems for classification and function ap-
proximation problems, only accuracy measures were used for fuzzy control in
[29, 105, 135]. This is partially because multiple performance measures are usually
involved in controllers while the performance of classifiers and function approxima-
tors can be often evaluated by a single accuracy measure. Another possible reason is
that the overfitting to training data is not so critical in control problems if compared
with classification and function approximation problems. Moreover, the number of
input variables is usually much larger in classification and function approximation
problems than in control problems. This is also a possible reason why complexity
minimization (including input selection) has been more widely used in classifica-
tion and function approximation problems than in control problems. Of course, it
is possible to use multiple accuracy measures for classification problems with no
complexity measures (e.g., the false negative rate and the false positive rate). It is
also possible to use complexity measures for control problems together with ac-
curacy measures. In general, multiple accuracy measures and multiple complexity
measures are involved in classification, function approximation and control prob-
lems. The choice of an appropriate set of objective functions is an important future
research issue.

The overview on multiobjective genetic fuzzy systems in this subsection is far
from complete. Our overview is limited to journal papers. For a more complete list
of references including conference papers, see Evolutionary Multiobjective Opti-
mization of Fuzzy Rule-Based Systems Bibliography Page (http://www2.ing.unipi.
it/˜o613499/emofrbss.html).

4 Multiobjective Genetic Fuzzy Rule Selection

As we have already explained, the first study on multiobjective genetic fuzzy sys-
tems was multiobjective genetic fuzzy rule selection [75, 76]. In this section, we
explain how EMO algorithms can be used for multiobjective genetic fuzzy rule se-
lection. Through computational experiments, we demonstrate that a large number of
non-dominated fuzzy rule-based classifiers along the accuracy-complexity tradeoff
surface can be found by a single run of an EMO algorithm.

4.1 Fuzzy Rule-Based Classifiers

Let us assume that we have m training (i.e., labeled) patterns xp = (xp1, ..., xpn),
p = 1, 2, ..., m from M classes in an n-dimensional pattern space where xpi is the
attribute value of the pth pattern for the ith attribute (i = 1, 2, ..., n). For the sim-
plicity of explanation, we assume that all the attribute values have already been
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normalized into real numbers in the unit interval [0, 1]. Thus the pattern space of
our classification problem is an n-dimensional unit-hypercube [0, 1]n.

For our n-dimensional pattern classification problem, we use fuzzy rules of the
following type:

Rule Rq : If x1 is Aq1 and ... and xn is Aqn then Class Cq with CFq, (11)

where Rq is the label of the qth fuzzy rule, x = (x1, ..., xn) is an n-dimensional
pattern vector, Aqi is an antecedent fuzzy set (i = 1, 2, ..., n), Cq is a class label, and
CFq is a rule weight. We denote the antecedent fuzzy sets of Rq as a fuzzy vector
Aq = (Aq1, Aq2, ..., Aqn).

We use 14 fuzzy sets in four fuzzy partitions with different granularities in Figure
9. In addition to those 14 fuzzy sets, we also use the domain interval [0, 1] itself as
an antecedent fuzzy set in order to represent a don’t care condition. Whereas we use
the prespecified membership functions with no further adjustment in this chapter,
we can include a learning mechanism of the membership functions in multiobjective
genetic fuzzy rule selection. The number of antecedent fuzzy sets for each attribute
(i.e., granularity of each attribute) can be also handled as a decision variable in
multiobjective genetic fuzzy rule selection.
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Fig. 9 Fourteen antecedent fuzzy sets used in this chapter

Let S be a set of fuzzy rules of the form in (11). When an input pattern xp is
to be classified by S, first we calculate the compatibility grade of xp with the an-
tecedent part Aq = (Aq1, Aq2, ..., Aqn) of each fuzzy rule Rq in S using the product
operation as

μAq(xp) = μAq1(xp1) · ... ·μAqn(xpn), (12)

where μAqi(·) is the membership function of the antecedent fuzzy set Aqi. Then a
single winner rule Rw is identified using the compatibility grade and the rule weight
of each fuzzy rule as

μAw(xp) ·CFw = max{μAq(xp) ·CFq | Rq ∈ S}. (13)
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The input pattern xp is classified as the consequent class Cw of the winner rule
Rw. When multiple fuzzy rules with different consequent classes have the same
maximum value in (13), the classification of xp is rejected. If there is no compatible
fuzzy rule with xp, its classification is also rejected.

4.2 Candidate Rule Generation

Multiobjective genetic fuzzy rule selection is a two-step method. In the first step, a
prespecified number of promising fuzzy rules are generated from training patterns
as candidate rules. In the second step, an EMO algorithm is used to search for non-
dominated fuzzy rule-based classifiers (i.e., non-dominated subsets of the generated
candidate rules). In this subsection, we explain the first step.

Since we use the 14 antecedent fuzzy sets in Figure 9 and an additional don’t care
fuzzy set [0, 1] for each attribute of our n-dimensional classification problem, the
total number of possible fuzzy rules is 15n. Among these possible rules, we examine
only short fuzzy rules with a small number of antecedent conditions (i.e., short fuzzy
rules with many don’t care conditions) to generate candidate rules. In this chapter,
we examine only short fuzzy rules with three or less antecedent conditions.

The consequent class Cq and the rule weight CFq of each fuzzy rule Rq are spec-
ified from training patterns compatible with its antecedent part Aq = (Aq1, Aq2, ...,
Aqn) in the following heuristic manner [80]. First we calculate the confidence of
each class for the antecedent part Aq as

c(Aq ⇒ Class h) =

∑
xp ∈ Class h

μAq(xp)

m

∑
p=1

μAq(xp)
, h = 1, 2, ..., M. (14)

It should be noted that “Aq ⇒ Class h” means the fuzzy rule with the antecedent
part Aq and the consequent class h. Then the consequent class Cq is specified by
identifying the class with the maximum confidence:

c(Aq ⇒ Class Cq) = max
h=1,2, ...,M

{c(Aq ⇒ Class h)}. (15)

In this manner, we generate the fuzzy rule Rq (i.e., Aq ⇒ Class Cq) with the an-
tecedent part Aq and the consequent class Cq. We do not generate any fuzzy rules
with the antecedent part Aq if there is no compatible training pattern with Aq.

The rule weight CFq of each fuzzy rule Rq has a large effect on the performance
of fuzzy rule-based classifiers. We use the following specification of CFq because
good results were reported in the literature [90]:

CFq = c(Aq ⇒ ClassCq)−
M

∑
h=1

h 	=Cq

c(Aq ⇒ Class h). (16)
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We do not use the fuzzy rule Rq as a candidate rule if the rule weight CFq is not pos-
itive (i.e., if its confidence is not larger than 0.5). Whereas we heuristically specify
the rule weight of each fuzzy rule by (16) in this chapter, we can include a learning
mechanism of the rule weight in multiobjective genetic fuzzy rule selection.

In the above-mentioned heuristic manner, we can generate a large number of
short fuzzy rules as candidate rules in multiobjective fuzzy rule selection. An EMO
algorithm is used to search for non-dominated subsets of the generated candidate
rules. When the number of candidate rules is too large (e.g., tens of thousands), it
is not easy for EMO algorithms to efficiently perform multiobjective fuzzy rule se-
lection. Thus we use a prescreening procedure to decrease the number of candidate
rules. Our prescreening procedure is based on well-known rule evaluation measures
in the field of data mining [7]: support and confidence.

The confidence of a rule evaluates the accuracy of the association from the an-
tecedent part to the consequent part. We have already shown a fuzzy version of
the confidence in (14). On the other hand, the support indicates the percentage of
covered patterns. Its fuzzy version can be written as follows [80]:

s(Rq) = s(Aq ⇒ Class Cq) =

∑
xp ∈ Class Cq

μAq(xp)

m
. (17)

For prescreening candidate rules, we use two threshold values: the minimum support
and the minimum confidence. We exclude fuzzy rules that do not satisfy these two
threshold values. Among short fuzzy rules satisfying these two threshold values, we
choose a prespecified number of candidate rules for each class. As a rule evaluation
criterion, we use the product of the support s(Rq) and the confidence c(Rq). That
is, we choose a prespecified number of the best candidate rules for each class with
respect to s(Rq) · c(Rq).

4.3 Multiobjective Fuzzy Rule Selection

Let us assume that we have N candidate rules (i.e., N/M candidate rules for each
of M classes). Any subset S of the N candidate rules can be represented by a binary
string of length N: S = s1s2...sN where s j = 1 and s j = 0 mean the inclusion and
the exclusion of the jth candidate rule R j in the subset S, respectively ( j = 1, 2,
..., N). Such a binary string S is used as an individual in an EMO algorithm for
multiobjective fuzzy rule selection. It should be noted that S can be viewed as a
fuzzy rule-based classifier.

Each fuzzy rule-based classifier S is evaluated by the three objectives explained in
the previous section (i.e., f1(S): the number of correctly classified training patterns,
f2(S): the number of selected fuzzy rules, and f3(S): the total number of antecedent
conditions). That is, our multiobjective fuzzy rule selection problem is written as

Maximize f1(S), and minimize f2(S) and f3(S). (18)
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We use NSGA-II of Deb et al. [42] to search for non-dominated fuzzy rule-based
classifiers with respect to these three objectives. Of course, we can use other EMO
algorithms. Since each individual is represented by a binary string, we can use stan-
dard genetic operations for binary strings in NSGA-II for multiobjective fuzzy rule
selection. In our computational experiments, uniform crossover and bit-flip mutation
were used in NSGA-II. The execution of NSGA-II was terminated at the prespeci-
fied number of generations.

In order to efficiently decrease the number of fuzzy rules in each rule set S, we
can use two heuristic techniques. One is biased mutation where a larger mutation
probability is assigned to the mutation from 1 to 0 than that from 0 to 1. The other
is the removal of unnecessary fuzzy rules. Since we use the single winner-based
scheme in (13) for classifying each training pattern by a fuzzy rule-based classifier
S, some fuzzy rules in S may classify no training patterns. We can remove those
unnecessary fuzzy rules from S without changing any classification results by S
(i.e., without changing the first objective f1(S)). At the same time, the removal of
those unnecessary fuzzy rules improves the second objective f2(S) and the third
objective f3(S). In our computational experiments, the necessity of each fuzzy rule
in S was checked when f1(S) was calculated. All the unnecessary fuzzy rules were
removed from S before f2(S) and f3(S) were calculated. This heuristic procedure
can be viewed as a kind of local search since f2(S) and f3(S) are improved without
deteriorating f1(S).

4.4 Computational Experiments

In our computational experiments, we used five data sets in Table 1 from the UCI
Machine Learning Repository (http://archive.ics.uci.edu/ml/). Before performing
multiobjective fuzzy rule selection, we normalized all attribute values in the data
sets to real numbers in the unit interval [0, 1].

We divided each data set into two subsets of the same size: training data and test
data. Using the training data, first we extracted fuzzy rules satisfying the minimum
support and the minimum confidence in Table 1.

The upper bound on the number of antecedent conditions of each candidate fuzzy
rule was specified as three for all data sets. Among qualified fuzzy rules satisfying

Table 1 Five data sets used in our computational experiments. Rule extraction criteria (i.e.,
specified values of the minimum support and confidence) are also shown for each data set

Data set Attributes Patterns Classes Support Confidence

Breast W 9 683† 2 0.01 0.6
Glass 9 214 6 0.001 0.6

Heart C 13 297† 5 0.001 0.6
Iris 4 150 3 0.01 0.6

Wine 13 178 3 0.04 0.6

† Incomplete patterns with missing values are not included.
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the minimum confidence, the minimum support and the maximum number of an-
tecedent conditions, we chose the best 300 rules for each class using the product of
support and confidence. Those 300 fuzzy rules for each class were used as candidate
rules in multiobjective fuzzy rule selection.

Then we applied NSGA-II to the candidate rules to search for non-dominated
fuzzy rule-based classifiers with respect to the three objectives in (18). We used the
following parameter specifications in NSGA-II:

Population size: 200 strings,
Crossover probability: 0.9 (uniform crossover),
Mutation probability: 0.05 (1→ 0) and 1/N (0→ 1) where N is the string length,
Termination condition: 5000 generations.

In the following, we report experimental results of multiobjective fuzzy rule
selection on each data set.

Wisconsin Breast Cancer Data Set: First we randomly divided the data set into
342 and 341 patterns for training and testing, respectively. Next we generated 76270
fuzzy rules of length three or less from the 342 training patterns, which satisfied the
minimum support 0.01 and the minimum confidence 0.6. Among those fuzzy rules,
we chose 300 candidate rules for each class using the product of support and con-
fidence as the rule evaluation criterion. Then we applied NSGA-II to the candidate
rules for multiobjective fuzzy rule selection. From its single run, 11 non-dominated
fuzzy classifiers (i.e., 11 non-dominated subsets of the candidate rules) were ob-
tained. Finally each of the obtained fuzzy rule-based classifier was evaluated for the
training patterns and the test patterns.

Training data accuracy and test data accuracy of each fuzzy rule-based classifier
are shown in Figure 10 (a) and Figure 10 (b), respectively. Each circle in Figure 10
shows a fuzzy rule-based classifier. Some of the obtained fuzzy rule-based classi-
fiers (e.g., a fuzzy rule-based classifier with only a single fuzzy rule) are not shown
because their classification rates are out of the range of the vertical axis of each plot
in Figure 10. Since we used not only the number of fuzzy rules but also the total
number of antecedent conditions as complexity measures in multiobjective fuzzy
rule selection, different fuzzy rule-based classifiers with the same number of fuzzy
rules were obtained in Figure 10. For example, fuzzy rule-based classifiers with two
and three fuzzy rules are shown in Figure 11. It should be noted that the horizontal
axis is the average rule length (i.e., the average number of antecedent conditions in
each fuzzy rule) in Figure 11 whereas it is the number of fuzzy rules in Figure 10.

We can observe a clear accuracy-complexity tradeoff relation in Figure 10 (a)
for the training data. The classification rate on the training data increases with the
increase in the number of fuzzy rules in Figure 10 (a). This means that we cannot
simultaneously achieve the accuracy maximization and the complexity minimiza-
tion. A similar tradeoff relation is observed in Figure 10 (b) for the test data. No
clear deterioration in the generalization ability due to the increase in the complexity
of fuzzy rule-based classifiers is observed in Figure 10 (b). That is, we observe no
clear indication of the overfitting of fuzzy rule-based systems to the training data in
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(a) Training data accuracy.
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(b) Test data accuracy.

Fig. 10 Obtained non-dominated fuzzy rule-based classifiers (Breast W)
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(a) Classifiers with two rules.
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(b) Classifiers with three rules.

Fig. 11 Relation between the accuracy and the average rule length (Breast W)

Figure 10 (b). We can also observe a clear tradeoff relation between the accuracy
of fuzzy rule-based classifiers and the average rule length in Figure 11 for both the
training data and the test data. That is, there exists the accuracy-complexity tradeoff
relation when the average rule length is used as a complexity measure in Figure 11.

Two fuzzy rule-based classifies A and B in Figure 10 are shown in Figure 12
and Figure 13, respectively. The classifier A in Figure 12 with two fuzzy rules is
the simplest one with the highest interpretability in Figure 10 whereas the classifier
B with six fuzzy rules is the most complicated one with the highest training data
accuracy. There exist many fuzzy rule-based classifiers between these two extremes.
The classifier B may be chosen by many human users since it also has the highest
generalization ability in Figure 10 (b). Some human users, however, may choose

Fig. 12 The simplest fuzzy
rule-based classifier A in
Figure 10 (Breast W)
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Fig. 13 The most complicated fuzzy rule-based classifier B in Figure 10 (Breast W)
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(a) Class 1.
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(b) Class 2.

Fig. 14 Fuzzy rules in Figure 12 included in the classifier A in Figure 10 (Breast W)

simpler ones than the classifier B in the situation where not only the accuracy but
also the interpretability is an important criterion.

In Figure 14, the two fuzzy rules in Figure 12 are shown in the confidence-support
space together with the other candidate rules. We can see from Figure 14 that these
two fuzzy rules have large support values. This means that they cover many training
patterns. Usually simple fuzzy rule-based classifiers consist of a small number of
general fuzzy rules that cover many training patterns. On the other hand, the six
fuzzy rules in Figure 13 are shown in Figure 15. The most complicated fuzzy rule-
based classifier B includes not only general fuzzy rules with large support values
but also specific fuzzy rules with small support values and high confidence values.

Glass Data Set: Experimental results are shown in Figure 16. Multiobjective fuzzy
rule selection found 34 non-dominated fuzzy rule-based classifiers (some of them
are not shown in Figure 16 due to their low accuracy). We can observe a clear
accuracy-complexity tradeoff relation in Figure 16 (a) for training data. We can also
see that the fuzzy rule-based classifier with the best training data accuracy does not
always have the best test data accuracy (Figure 16 (b)). We examined the two fuzzy
rule-based classifiers A and B in Figure 16 in detail. One interesting observation is
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(b) Class 2.

Fig. 15 Fuzzy rules in Figure 13 included in the classifier B in Figure 10 (Breast W)
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(a) Training data accuracy.
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(b) Test data accuracy.

Fig. 16 Obtained non-dominated fuzzy rule-based classifiers (Glass)

that the classifier A with the highest test data accuracy in Figure 16 (b) has no fuzzy
rule with Class 3 consequent as shown in Figure 17. On the other hand, the classifier
B with the highest training data accuracy in Figure 16 (a) has at least one fuzzy rule
for each class. The test data accuracy of the classifier B is, however, inferior to the
classifier A due to the overfitting to the training data.

Cleveland Heart Disease Data Set: Experimental results are shown in Figure 19.
Multiobjective fuzzy rule selection found 48 non-dominated fuzzy rule-based clas-
sifiers. We can observe a clear accuracy-complexity tradeoff relation in Figure 19
(a) for training data. On the other hand, we can observe a clear indication of the
overfitting of fuzzy rule-based classifiers to training data due to the increase in their
complexity in Figure 19 (b). That is, the test data accuracy decreases with the in-
crease in the number of fuzzy rules in the range with more than five fuzzy rules.

In Figure 20, we show the relation between the accuracy and the average rule
length of the obtained fuzzy rule-based classifiers with three rules (a) and four rules
(b). We can observe a clear deterioration of the test data accuracy due to the increase
in the average rule length in Figure 20. One may notice that Figure 20 (b) includes
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Fig. 17 Fuzzy rule-based classifier A with the highest test data accuracy in Figure 16 (Glass)
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Fig. 18 Fuzzy rule-based classifier B with the highest training data accuracy in Figure 16
(Glass)

more circles (i.e., test data accuracy) than triangles (i.e., training data accuracy).
This is because our multiobjective fuzzy rule selection algorithm found multiple
fuzzy rule-based classifiers with the same training data accuracy and the same com-
plexity (i.e., the same number of fuzzy rules and the same average rule length).
Those fuzzy rule-based classifiers do not always have the same test data accuracy.
Thus the number of circles (i.e., results for test data) is larger than the number of
triangles (i.e., results for the training data) in Figure 20 (b).
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(a) Training data accuracy.
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(b) Test data accuracy.

Fig. 19 Obtained non-dominated fuzzy rule-based classifiers (Heart C)
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(a) Classifiers with three rules.
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(b) Classifiers with four rules.

Fig. 20 Relation between the accuracy and the average rule length (Heart C)

Iris Data Set: Experimental results are shown in Figure 21. All training patterns
were correctly classified by three fuzzy rules in Figure 21 (a). Since a small fuzzy
rule-based classifier had a 100% training data accuracy, many non-dominated fuzzy
rule-based classifiers were not obtained. There exists, however, a clear accuracy-
complexity tradeoff relation for training data in Figure 21 (a).

Wine Data Set: Experimental results are shown in Figure 22. All the training pat-
terns were correctly classified by four fuzzy rules in Figure 22 (a). As in the case of
the iris data set, a small fuzzy rule-based classifier had a 100% training data accu-
racy in Figure 22 (a). As a result, many non-dominated fuzzy rule-based classifiers
were not obtained for the wine data set. Nevertheless we can observe an accuracy-
complexity tradeoff relation for training data in Figure 22 (a). The highest test data
accuracy was obtained by a fuzzy rule-based classifier with three fuzzy rules in
Figure 22 (b). That fuzzy rule-based classifier also has the highest training data ac-
curacy among the obtained fuzzy rule-based classifiers with three fuzzy rules (see
Figure 23).



Multiobjective Genetic Fuzzy Systems 153

Number of rules

C
la

ss
ifi

ca
tio

n 
ra

te
 (%

)

2 360

70

80

90

100

 
(a) Training data accuracy.
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(b) Test data accuracy.

Fig. 21 Obtained non-dominated fuzzy rule-based classifiers (Iris)
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(a) Training data accuracy.
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(b) Test data accuracy.

Fig. 22 Obtained non-dominated fuzzy rule-based classifiers (Wine)

Fig. 23 Relation between
the accuracy and the average
rule length of the obtained
fuzzy rule-based classifiers
with three rules (Wine)
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In our computational experiments in this subsection, we always observed a clear
tradeoff relation between the training data accuracy of fuzzy rule-based classifiers
and the number of fuzzy rules. Such an accuracy-complexity tradeoff relation was
not always clear for test data. For some data sets, we observed a clear tradeoff re-
lation between the test data accuracy of fuzzy rule-based classifiers and the number
of fuzzy rules. For other data sets, we observed the overfitting of fuzzy rule-based
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classifiers to training data due to the increase in the number of fuzzy rules. It should
be noted that we can obtain these observations from a single run of NSGA-II for
each data set. This is because NSGA-II (EMO algorithms in general) can search for
a large number of non-dominated fuzzy rule-based classifiers by its single run.

5 Multiobjective Fuzzy Genetics-Based Machine Learning

In the previous section, NSGA-II was used for multiobjective fuzzy rule selection.
Various approaches to the multiobjective design of fuzzy rule-based systems have
also been proposed in the framework of genetics-based machine learning (GBML)
where fuzzy rules are generated by genetic operations. In this section, we explain
how NSGA-II can be used as a multiobjective fuzzy GBML algorithm.

5.1 Two Approaches in Genetics-Based Machine Learning

Applications of genetic algorithms to machine learning are referred to as genetics-
based machine learning (GBML). Studies on GBML are often divided into two
classes: Pittsburgh and Michigan approaches (for example, see [18, 48, 53] for
GBML and [36, 37, 63, 80] for fuzzy GBML). A rule set is handled as an indi-
vidual in the Pittsburgh approach while a single rule is handled as an individual in
the Michigan approach. The final result (i.e., the finally obtained rule set) is usu-
ally the best individual in the final population in the Pittsburgh approach while it
is the final population in the Michigan approach. Another category of GBML is an
iterative rule learning approach [25, 35, 55] where a single rule is obtained from its
single execution. Thus multiple runs are required to generate a rule set in the iter-
ative rule learning approach. Multiobjective GBML algorithms have usually been
implemented in the framework of the Pittsburgh approach. In many studies, the an-
tecedent part of each rule is coded as a substring of integers and/or real numbers
in Pittsburgh-style GBML algorithms. A rule set is represented by a concatenated
string of multiple substrings.

A three-objective fuzzy GBML algorithm was compared with its rule selection
version in [79]. A Pittsburgh-Michigan hybrid fuzzy GBML algorithm [91] was gen-
eralized as a multiobjective algorithm for interpretability-accuracy tradeoff analy-
sis in [85]. Other examples of multiobjective fuzzy GBML algorithms are found in
[10, 23, 24, 29, 54, 57, 80, 94, 97, 105, 124, 134, 135, 138, 140, 141, 144] where vari-
ous aspects of fuzzy rule-based systems are adjusted by EMO algorithms (e.g., input
selection, membership function tuning, and rule selection). Multiobjective GBML
algorithms were also implemented for non-fuzzy classifier design (e.g., [110]).

5.2 Implementation of Multiobjective Fuzzy GBML Algorithms

In this subsection, we explain how a multiobjective fuzzy GBML algorithm can
be implemented for efficiently finding non-dominated fuzzy rule-based classifiers
in the same situation as in the previous section. That is, we assume that we have
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m training patterns xp = (xp1, ..., xpn), p = 1, 2, ..., m from M classes in an n-
dimensional unit-hypercube [0, 1]n. We use the 14 antecedent fuzzy sets in Figure
9 and don’t care (i.e., the unit interval [0, 1]) in the antecedent part of fuzzy rules
of the same form (i.e., fuzzy rules of the form in (11)). The antecedent part of each
fuzzy rule is generated by genetic operations while its consequent class and rule
weight are heuristically specified. We use the single winner-based fuzzy reasoning
scheme for classifying each training patterns. We also use the same three objectives
(i.e., f1(S): the number of correctly classified training patterns, f2(S): the number
of selected fuzzy rules, and f3(S): the total number of antecedent conditions). Our
multiobjective fuzzy GBML algorithm is implemented in the framework of NSGA-
II. That is, each individual (i.e., fuzzy rule-based classifier) is evaluated by the non-
dominated sorting and the crowding distance. The next population is generated from
the current and offspring populations by the (μ +λ )-ES generation update scheme
where μ = λ .

In our multiobjective fuzzy GBML algorithm, each fuzzy rule Rq is repre-
sented by its antecedent fuzzy sets Aqi (i = 1, 2, ..., n) as an integer string of
length n where n is the dimensionality of the pattern space (i.e., n is the num-
ber of attributes of each pattern). We use 15 symbols (e.g., 0, 1, ..., 9, a, b, c,
d, e) to represent don’t care and the 14 antecedent fuzzy sets as shown in Fig-
ure 9. For example, an integer string “0102d0” denotes the fuzzy rule “If x2 is
S2 and x4 is L2 and x5 is ML5 then Class Cq with CFq” where don’t care con-
ditions on x1, x3 and x6 represented by 0s in the string are omitted. It should
be noted that the consequent class Cq and the rule weight CFq are heuristically
specified by compatible training patterns in the same manner as in the previous
section.

A rule set S is handled as an individual and coded as a concatenated integer string
where each substring of length n represents a single fuzzy rule. It should be noted
that the number of fuzzy rules in each rule set is not fixed in our multiobjective
fuzzy GBML algorithm. This means that we use integer strings of variable length
as individuals.

It was shown in [77, 78] that the search ability of Michigan-style fuzzy GBML
algorithms was drastically improved by directly generating initial fuzzy rules from
training patterns in a heuristic manner. We use a similar heuristic method to generate
an initial population of rule sets. First we randomly select a prespecified number of
training patterns (say, Nrule training patterns where Nrule is the number of fuzzy rules
in each initial rule set). Next we generate a fuzzy rule Rq from each training pattern
xp = (xp1, ..., xpn) by probabilistically choosing an antecedent fuzzy set Aqi for each
attribute value xpi from the 14 antecedent fuzzy sets Bk (k = 1, 2, ..., 9, a, b, c, d, e)
in Figure 9. Each antecedent fuzzy set Bk has the following selection probability for
the attribute value xpi:

P(Bk) =
μBk(xpi)

e

∑
j=1

μB j(xpi)
, k = 1, 2, ..., 9, a, b, c, d, e. (19)
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That is, each antecedent fuzzy set Bk has a selection probability which is propor-
tional to its compatibility grade with the attribute value xpi. Then each antecedent
fuzzy set of the generated fuzzy rule is replaced with don′t care using a prespeci-
fied probability Pdon′t care. In this manner, Nrule initial fuzzy rules are generated. An
initial rule set consists of these fuzzy rules. By iterating this procedure, we generate
Npop initial rule sets (i.e., an initial population).

Two individuals (i.e., two rule sets) are selected from the current population by
binary tournament selection with replacement in the same manner as in NSGA-II.
Let the selected rule sets be S1 and S2. Some fuzzy rules are randomly selected from
each parent to construct a new rule set by crossover. The number of fuzzy rules
to be inherited from each parent to the new rule set is randomly specified. Let N1

and N2 be the number of fuzzy rules to be inherited from S1 and S2, respectively. We
randomly specify N1 and N2 in the intervals [1, |S1|] and [1, |S2|], respectively, where
|Si| is the number of fuzzy rules in the rule set Si. In order to generate a new fuzzy
rule, N1 and N2 fuzzy rules are randomly chosen from S1 and S2, respectively. The
offspring rule set has (N1 + N2) fuzzy rules. We use an upper bound on the number
of fuzzy rules in each rule set (e.g., 40 in our computational experiments). When the
number of fuzzy rules is larger than the upper bound, we randomly remove fuzzy
rules from the offspring rule set until the upper bound condition is satisfied. The
above-mentioned crossover operation is applied to the selected pair of parent rule
sets with a prespecified crossover probability PC. When the crossover operation is
not applied, one of the two parent rule sets is randomly chosen as their offspring rule
set. Each antecedent fuzzy set of fuzzy rules in the offspring rule set is randomly
replaced with a different antecedent fuzzy set by mutation. The mutation operation
is applied to each antecedent fuzzy set with a prespecified mutation probability PM.

After the crossover and mutation operations, a single iteration of the following
Michigan-style algorithm is applied to the newly generated offspring rule set S:

Step 1: Classify each training pattern by the rule set S. The fitness value of each
fuzzy rule in S is the number of correctly classified training patterns by
that rule.

Step 2: Generate Nreplace fuzzy rules from the existing rules in S by genetic op-
erations and from misclassified and/or rejected training patterns by the
above-mentioned heuristic manner.

Step 3: Replace the worst Nreplace fuzzy rules in S with the newly generated
Nreplace fuzzy rules.

In Step 2, Nreplace fuzzy rules are to be generated. We generate at least a half of
new fuzzy rules (i.e., at least Nreplace/2 fuzzy rules) by genetic operations from the
existing fuzzy rules in S. The probabilistic specification of each antecedent fuzzy
set by (19) and the replacement with don′t care using the probability Pdon′t care are
used to generate the other fuzzy rules.

Let NMR be the sum of the number of misclassified and rejected training patterns
by the rule set S. When NMR is less than or equal to Nreplace/2, all the NMR train-
ing patterns are used to generate new fuzzy rules. In this case, NMR fuzzy rules are



Multiobjective Genetic Fuzzy Systems 157

generated from the NMR training patterns. The other fuzzy rules (i.e., (Nreplace −
NMR) fuzzy rules) are generated by genetic operations. On the other hand, when
NMR is larger than Nreplace/2, Nreplace/2 patterns are randomly chosen from the NMR

misclassified or rejected training patterns. Then Nreplace/2 fuzzy rules are directly
generated from the chosen patterns. The other Nreplace/2 fuzzy rules are generated
by genetic operations.

When we generate a new fuzzy rule from existing rules in S by genetic operations,
first a pair of parent fuzzy rules is selected from S using binary tournament selection
with replacement. Then the standard uniform crossover operation is applied to the
selected pair to generate a new fuzzy rule. Finally each antecedent fuzzy set is ran-
domly replaced with a different one using a prespecified mutation probability. This
procedure is iterated to generate a required number of new fuzzy rules (i.e., Nreplace

fuzzy rules including directly generated fuzzy rules from training patterns).
The number of replaced fuzzy rules (i.e., Nreplace) is specified as 0.2× |S|� for

each rule set S where 0.2×|S|� is the minimum integer not smaller than 0.2×|S|.
For example, one fuzzy rule is replaced when the number of fuzzy rules in S is
less than or equal to five. In this case, the heuristic rule generation procedure from
training patterns and the genetic operation-based procedure from existing rules are
randomly evoked with the same probability when at least one training pattern is
misclassified or rejected by the rule set S.

As we have already explained, a new rule set S is generated in our multiobjective
fuzzy GBML algorithm by selection, crossover, mutation, and a single iteration of
the Michigan-style algorithm. Whereas unnecessary fuzzy rules were removed from
each rule set in the multiobjective genetic fuzzy rule selection algorithm in the pre-
vious section, they are not removed in our multiobjective fuzzy GBML algorithm in
this section. This is because unnecessary fuzzy rules may include useful antecedent
fuzzy sets. Effects of the removal of unnecessary fuzzy rules on the performance
of our multiobjective fuzzy GBML algorithm, however, should be examined in de-
tail in future studies. The above-mentioned rule set generation procedure is iterated
Npop times to generate an offspring population of Npop rule sets. The next popula-
tion is constructed by choosing the best Npop rule sets from the current and offspring
populations in the same manner as in NSGA-II. Generation update is iterated until
a prespecified stopping condition is satisfied. The total number of generations was
used as the stopping condition in our computational experiments in this section.

5.3 Computational Experiments

We applied our multiobjective fuzzy GBML algorithm to the five data sets in Table
1 using the following parameter specifications:

Number of fuzzy rules in each initial rule set: 20 rules,
Probability of don′t care (Pdon′t care): 0.8,
Population size: 200 rule sets,
Crossover probability in the Pittsburgh-style part: 0.9,
Crossover probability in the Michigan-style part: 0.9,
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(b) Test data accuracy.

Fig. 24 Obtained non-dominated fuzzy rule-based classifiers (Breast W)

Mutation probability in the Pittsburgh-style part: 1/n,
Mutation probability in the Michigan-style part: 1/n,
Stopping condition: 5000 generations.

We used the same population size and the same stopping condition as in the pre-
vious section for multiobjective fuzzy rule selection. We also used the same partition
of each data set into training patterns and test patterns. Experimental results by our
multiobjective fuzzy GBML algorithm are briefly reported in the following.

Wisconsin Breast Cancer Data Set: Experimental results are summarized in Fig-
ure 24. Our multiobjective fuzzy GBML algorithm found 10 non-dominated rule
sets. From the comparison between Figure 10 (a) and Figure 24 (a), we can see
that very similar results were obtained for training data. We can also see that the
most complicated fuzzy rule-based classifier with the highest training data accu-
racy in Figure 24 (a) does not have the highest test data accuracy in Figure 24 (b).
This classifier, which is shown in Figure 25, includes long fuzzy rules with many
antecedent conditions as well as short ones. Computation time for multiobjective
fuzzy GBML was 180 minutes on a PC with Intel Xeon 3.6GHz with 4GB RAM in
Figure 24 while it was 17 minutes for multiobjective fuzzy rule selection including
candidate rule generation in Figure 10. This difference is due to a tailored efficient
implementation of multiobjective fuzzy rule selection where the compatibility grade
of each candidate rule to each training pattern was calculated just once and stored
during the execution of NSGA-II. Such an efficient implementation of multiobjec-
tive fuzzy GBML is a future research issue.

Glass Data Set: Experimental results are shown in Figure 26. Our multiobjective
fuzzy GBML algorithm found 28 non-dominated fuzzy rule-based classifiers. Simi-
lar results were obtained in Figure 16 and Figure 26 except for complicated classifiers
with more than six rules (i.e., those classifiers were not obtained in Figure 26).

Cleveland Heart Disease Data Set: Experimental results are shown in Figure 27.
Our multiobjective fuzzy GBML algorithm found 21 non-dominated fuzzy rule-
based classifiers. As in Figure 26, complicated fuzzy rule-based classifiers were not
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Fig. 25 The most complicated fuzzy rule-based classifier with the highest training data ac-
curacy in Figure 24 (Breast W). The fifth and sixth fuzzy rules are exactly the same. We can
remove one of them without changing any classification results. Such a duplicated fuzzy rule
is removed as an unnecessary rule if we include the unnecessary rule removal mechanism
into our fuzzy GBML algorithm
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(b) Test data accuracy.

Fig. 26 Obtained non-dominated fuzzy rule-based classifiers (Glass)

obtained in Figure 27 (compare Figure 27 with Figure 19). Similar results, however,
were achieved in Figure 27 (b) and Figure 19 (b) with respect to classification rates
on test data.

Iris Data Set: Experimental results are shown in Figure 28. As in Figure 21 (a), all
training patterns were correctly classified by three fuzzy rules in Figure 28 (a).

Wine Data Set: Experimental results are shown in Figure 29. All training patterns
were correctly classified by five fuzzy rules in Figure 29 (a) while they were correctly
classified by four fuzzy rules in Figure 22 (a). That is, better results were obtained
by rule selection in Figure 22 (a) than GBML in Figure 29 (a) for training data.
On the other hand, similar performance was obtained by these two approaches with
respect to classification rates on test patterns in Figure 22 (b) and Figure 29 (b).
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(b) Test data accuracy.

Fig. 27 Obtained non-dominated fuzzy rule-based classifiers (Heart C)
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(a) Training data accuracy.
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(b) Test data accuracy.

Fig. 28 Obtained non-dominated fuzzy rule-based classifiers (Iris)

We did not observe any clear differences between experimental results by the two
approaches: Multiobjective fuzzy rule selection in the previous section and multiob-
jective fuzzy GBML in this section. In Figure 30, we compare these two approaches
in terms of the average rule length. We can see from Figure 30 that much longer
fuzzy rules were included in fuzzy rule-based classifiers obtained by GBML than
rule selection. This is because only short fuzzy rules were used as candidate rules in
rule selection.

Since multiobjective fuzzy GBML can generate any fuzzy rule with an arbi-
trary number of antecedent conditions, fuzzy rule-based classifiers may include long
fuzzy rules as well as short ones (e.g., see Figure 25). This means that GBML has
a much larger search space than rule selection [85]. Thus GBML may need much
more computation load (i.e., a larger population size and/or a larger number of gen-
erations) whereas we used the same specification for these two approaches.

Since the performance and the computation time of rule selection strongly de-
pend on the choice of candidate rules, the above-mentioned observations with re-
spect to the comparison between the two algorithms are not always valid. Different
observations may be obtained when we use different specifications of candidate
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(a) Training data accuracy.
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(b) Test data accuracy.

Fig. 29 Obtained non-dominated fuzzy rule-based classifiers (Wine)
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(a) Classifiers with four rules.
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(b) Classifier with five rules.

Fig. 30 Relation between the accuracy and the average rule length (Heart C)

rules in multiobjective fuzzy rule selection. Multiobjective fuzzy GBML can be im-
plemented in a more efficient manner by including some heuristics (e.g., an upper
bound on rule length, unnecessary rule removal, and rule removal mutation) as in
multiobjective fuzzy rule selection.

6 Related Studies

In this section, we briefly explain various studies related to multiobjective genetic
fuzzy systems. More detailed explanations can be found in [97] for multiobjective
machine learning and [51] for multiobjective data mining.

6.1 Evolutionary Multiobjective Data Mining

Evolutionary algorithms have been applied to knowledge discovery and data mining
in various manners [48]. Recently EMO algorithms have been used for two different
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tasks: One is to search for Pareto-optimal rules and the other is to search for Pareto-
optimal rule sets.

In data mining techniques such as Apriori [7], support and confidence have fre-
quently been used as rule evaluation criteria. Other rule evaluation criteria, however,
were also proposed. Among them are gain, variance, chi-squared value, entropy
gain, gini, laplace, lift, and conviction [15]. It was shown for non-fuzzy rules that
the best rule according to any of these measures is a Pareto-optimal rule of the fol-
lowing two-objective rule discovery problem [15]:

Maximize {Support(R), Confidence(R)}, (20)

where R denotes a single rule.
The use of NSGA-II [42] was proposed in [71, 73] to search for Pareto-optimal

classification rules of the two-objective data mining problem in (20). A dissimilar-
ity measure between classification rules was used in [72] instead of the crowding
distance in NSGA-II to increase the diversity of obtained Pareto-optimal rules. The
Pareto-dominance relation used in NSGA-II was modified in [126] in order to search
for not only Pareto-optimal classification rules but also near Pareto-optimal ones.
Similar multiobjective formulations to (20) were used to search for Pareto-optimal
association rules [52] and Pareto-optimal fuzzy association rules [103]. In [65], the
tradeoff between the number of extracted fuzzy rules and the computation time for
rule extraction was discussed in fuzzy data mining.

The above-mentioned studies on multiobjective fuzzy rule selection and multi-
objective fuzzy GBML in the previous sections can be viewed as data mining tech-
niques for finding Pareto-optimal rule sets. In [74], the use of Pareto-optimal fuzzy
rules as candidate rules was examined in multiobjective fuzzy rule selection.

6.2 Evolutionary Multiobjective Feature Selection

Feature selection [109] is an important issue in modeling, classification, knowledge
discovery and data mining. The basic idea of multiobjective feature selection is to
minimize the size of a subset of features and maximize its performance. There exists
a clear tradeoff relation between the size of feature subsets and their performance on
training data. Evolutionary multiobjective feature selection was discussed in some
studies (e.g., [45, 120, 121]). Feature selection was also discussed in the context of
multiobjective genetic fuzzy systems [39].

6.3 Evolutionary Multiobjective Clustering

Fuzzy clustering [16] has frequently been used for fuzzy rule generation. In evolu-
tionary multiobjective clustering [59, 60, 61, 62], multiple cluster quality measures
are optimized simultaneously. Evolutionary multiobjective clustering will play a
very important role in multiobjective design of fuzzy rule-based systems whereas
it has not been used in many studies. The number of clusters can be used as an
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objective function to be minimized in multiobjective clustering since it is directly
related to the number of fuzzy rules in the design of fuzzy rule-based systems.

6.4 Evolutionary Ensemble Design

A promising approach to the design of reliable classifiers is to combine multiple
classifiers into a single one [13, 44]. Several methods have been proposed for gen-
erating multiple classifiers such as bagging [19] and boosting [49]. The point in
the design of a high-performance ensemble classifier is to generate an ensemble of
classifiers with high diversity. Ideally the classification errors by each individual
classifier in an ensemble should be uncorrelated.

EMO algorithms have been used to generate an ensemble of classifiers with high
diversity. Non-dominated neural networks were combined into a single ensemble
classifier in [1, 26, 27, 98]. The choice of ensemble members seems to be an inter-
esting issue when a large number of non-dominated neural networks are obtained.
Design of fuzzy ensemble classifiers was discussed in [82, 88, 117]. Feature selec-
tion was used for neural network ensemble design in [119, 122].

6.5 Evolutionary Multiobjective Neural Network Design

In addition to ensemble design, EMO algorithms have also been used for multiob-
jective design of neural networks in various manners. An EMO algorithm was used
to generate a number of non-dominated neural networks on a receiver operating
characteristic curve in [107]. Non-dominated radial basis function (RBF) networks
of different sizes were generated in [56]. A multiobjective memetic algorithm was
used to speed up the back-propagation algorithm in [2] where a number of neural
networks of different sizes were evolved to find an appropriate network structure.

6.6 Multiobjective Genetic Programming

As in fuzzy rule-based systems and neural networks, there exists a clear trade-
off relation between the training data accuracy and the size of trees in genetic
programming. Multiobjective genetic programming has been discussed in many
studies [11, 17, 38, 127, 129]. In standard single-objective genetic programming,
constraints and/or penalties with respect to the size of trees have often been used
to prevent too complicated trees. Multiobjective genetic programming seems to be
a promising approach to the multiobjective design of tree-structured fuzzy systems.
Multiobjective genetic programming can be used to search for various trees with
different tradeoffs between the structural complexity and the training data accuracy.

7 Future Research Directions

An important future research issue is the formulation of interpretability of fuzzy
rule-based systems as complexity measures. Various aspects are related to their
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interpretability (e.g., the number of input variables, the number of fuzzy sets for
each variable, the separability of adjacent fuzzy sets, the number of fuzzy rules, the
number of antecedent conditions of each fuzzy rule, etc.). See [23, 24, 58, 83, 113]
for further discussions on interpretability of fuzzy rule-based systems. If we use
those aspects as separate objectives, fuzzy system design is formulated as a many-
objective problem. Pareto ranking-based EMO algorithms such as NSGA-II [42]
and SPEA [147], however, do not work well on such a problem with many objec-
tives [70, 87, 93, 104, 125]. Thus it is necessary to choose only a few interpretability
measures or to combine various interpretability measures into a few objective func-
tions. It would be interesting to examine how the search ability of EMO algorithms
for multiobjective fuzzy system design depends on the choice of interpretability
measures.

Performance evaluation of multiobjective genetic fuzzy systems is also very im-
portant. This issue is two-fold. One is related to the performance of a finally se-
lected fuzzy rule-based system. After a single fuzzy rule-based system is chosen
from a large number of obtained non-dominated ones, its generalization ability
together with its interpretability can be compared with results by single-objective
approaches. Such a comparative study may clearly demonstrate advantages and dis-
advantages of multiobjective approaches over single-objective ones. Another per-
formance evaluation issue is related to the search ability of multiobjective genetic
fuzzy systems as multiobjective optimizers. A number of performance indices for
evaluating EMO algorithms [32, 34, 41, 47, 148] can be used for this task. It should
be noted that the search ability of EMO algorithms in multiobjective genetic fuzzy
systems is evaluated by training data accuracy (i.e., accuracy measures in multi-
objective problems) while the performance of obtained fuzzy rule-based systems
is evaluated by test data accuracy (i.e., actual performance of fuzzy rule-based
systems).

Another future research issue is theoretical analysis for maximizing the general-
ization ability of fuzzy rule-based systems. As shown in this chapter, multiobjective
genetic fuzzy systems can be used for empirical analysis of accuracy-complexity
tradeoff of fuzzy rule-based systems [85]. Almost all studies on multiobjective ge-
netic fuzzy systems are based on computational experiments with no theoretical
analysis. Theoretical analysis such as statistical learning theory [30] seems to be an
important research issue for finding fuzzy rule-based systems with high generaliza-
tion ability. In this context, regularization methods can be discussed as multiobjec-
tive problems [99].

Incorporation of user’s preference is a hot issue in the EMO community [5, 31,
40, 43, 84, 96]. User’s preference can be incorporated into multiobjective genetic
fuzzy systems in order to efficiently search for preferred fuzzy rule-based systems.
Some users may prefer accurate fuzzy rule-based systems even if its interpretabil-
ity is not high. Other users may prefer simple fuzzy rule-based systems even if its
accuracy is not very high. Interpretability is important in some application areas
while accuracy is the primary objective in many studies on the design of fuzzy rule-
based systems. Information on user’s preference can be used to guide the multiob-
jective search for preferred fuzzy rule-based systems. The choice of a single fuzzy



Multiobjective Genetic Fuzzy Systems 165

rule-based system from a large number of obtained non-dominated ones should
be also discussed in future studies. In this context, visualization of obtained non-
dominated fuzzy rule-based systems seems to play an important role.

As in genetic fuzzy systems [36, 37, 63], genetic algorithms have been domi-
nantly used in multiobjective genetic fuzzy systems. The use of other techniques
such as multiobjective particle swarm optimization [6, 14, 33, 64] and multiobjec-
tive differential evolution [12, 28, 108, 128] will be examined for multiobjective
design of fuzzy rule-based systems. The use of multiobjective clustering and multi-
objective genetic programming will be also examined in the near future.

Finally we need efficient tricks for the handling of large data sets in evolutionary
algorithms (e.g., stratification [20]). Parallel implementation of evolutionary com-
putation [8, 21, 114] seems to be a promising research direction in genetic fuzzy
systems (e.g., parallel implementation with data set stratification [118]).

8 Conclusions

Linguistic interpretability is the main advantage of fuzzy rule-based systems over
other nonlinear models such as neural networks. Accuracy maximization, however,
often leads to the deterioration in the linguistic interpretability (i.e., increase in the
complexity) of fuzzy rule-based systems. As a promising approach to the handling
of the tradeoff between accuracy maximization and complexity minimization, we
explained multiobjective design of fuzzy rule-based systems in this chapter. A large
number of non-dominated fuzzy rule-based systems with respect to accuracy maxi-
mization and complexity minimization can be obtained by a single run of an EMO
algorithm. Through computational experiments, we demonstrated that an accuracy-
complexity tradeoff relation can be visually shown by the obtained non-dominated
fuzzy rule-based systems. Human users are supposed to choose a single fuzzy rule-
based system from the obtained non-dominated ones by their preference with re-
spect to accuracy and interpretability. In this chapter, we also briefly explained a
wide range of related studies to evolutionary multiobjective design of fuzzy rule-
based systems. Moreover, we pointed out some future research directions in the
field of multiobjective genetic fuzzy systems.
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Exploring Hyper-heuristic Methodologies with
Genetic Programming

Edmund K. Burke, Mathew R. Hyde, Graham Kendall, Gabriela Ochoa,
Ender Ozcan, and John R. Woodward�

Abstract. Hyper-heuristics represent a novel search methodology that is motivated
by the goal of automating the process of selecting or combining simpler heuristics
in order to solve hard computational search problems. An extension of the original
hyper-heuristic idea is to generate new heuristics which are not currently known.
These approaches operate on a search space of heuristics rather than directly on a
search space of solutions to the underlying problem which is the case with most
meta-heuristics implementations. In the majority of hyper-heuristic studies so far, a
framework is provided with a set of human designed heuristics, taken from the lit-
erature, and with good measures of performance in practice. A less well studied ap-
proach aims to generate new heuristics from a set of potential heuristic components.
The purpose of this chapter is to discuss this class of hyper-heuristics, in which
Genetic Programming is the most widely used methodology. A detailed discussion
is presented including the steps needed to apply this technique, some representa-
tive case studies, a literature review of related work, and a discussion of relevant
issues. Our aim is to convey the exciting potential of this innovative approach for
automating the heuristic design process.

1 Introduction

Heuristics for search problems can be thought of as “rules of thumb” for algorithmic
problem solving [53]. They are not guaranteed to produce optimal solutions, rather,
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the goal is to quickly generate good quality solutions. They are often used when
exact methods are unable to be employed in a feasible amount of time. Genetic
Programming is a method of searching a space of computer programs, and therefore
is an automatic way of producing programs. This chapter looks at the use of Genetic
Programming to automatically generate heuristics for a given problem domain. A
knowledge of Genetic Programming is assumed, and while a brief introduction is
given, readers unfamiliar with the methodology are referred to suitable tutorials and
textbooks.

1.1 The Need for Heuristics

Combinatorial problems arise in many disciplines such as artificial intelligence, lo-
gistics, operational research, finance and bioinformatics. Prominent examples are
tasks such as finding shortest round trips in graphs (the travelling salesman prob-
lem), finding models of propositional formulae (Boolean satisfiability), or deter-
mining the 3D structure of proteins (the protein folding problem). Other well-known
combinatorial problems are found in scheduling, planning, resource and space allo-
cation, cutting and packing, software and hardware design, and genome sequencing.
These problems are concerned with finding assignments, orderings or groupings of
a discrete set of objects that satisfy certain constraints [30].

Most real-world combinatorial problems such as scheduling and planning, are
difficult to solve. The main difficulty arises from the extremely large and/or heavily
constrained search spaces, and the noisy/dynamic nature of many real-world sce-
narios. In practice, we often deal with them using heuristic methods, which have
no guarantee of optimality and that often incorporate stochastic elements. Over
the years, a large variety of heuristic methods have been proposed and are widely
applied. Often, heuristics are the result of years of work by a number of experts.
An interesting question is how can we automate the design of heuristics, and it is
this question which represents the underlying motivation for this chapter. Hyper-
heuristics [9, 49, 53] are search methodologies for choosing or generating (combin-
ing, adapting) heuristics (or components of heuristics), in order to solve a range of
optimisation problems. We begin by looking at hyper-heuristics employed across a
broad spectrum of applications in more detail.

1.2 Hyper-heuristics

The main feature of hyper-heuristics is that they search a space of heuristics rather
than a space of solutions directly. In this sense, they differ from most applications
of meta-heuristics, although, of course, meta-heuristics can be (and have been) used
as hyper-heuristics. The motivation behind hyper-heuristics is to raise the level of
generality at which search methodologies operate. Introductions to hyper-heuristics
can be found in [9, 53].

An important (very well known) observation which guides much hyper-heuristic
research is that different heuristics have different strengths and weaknesses. A key
idea is to use members of a set of known and reasonably understood heuristics to
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either: (i) transform the state of a problem (in a constructive strategy), or (ii) perform
an improvement step (in a perturbative strategy). Such hyper-heuristics have been
successfully applied to bin-packing [54], personnel scheduling [13, 17], timetabling
[1, 13, 14, 15, 59], production scheduling [61], vehicle routing problems [52], and
cutting stock [58]. Most of the hyper-heuristic approaches incorporate a learning
mechanism to assist the selection of low-level heuristics during the solution pro-
cess. Several learning strategies have been studied such as reinforcement learning
[17, 46], Bayesian learning [45], learning classifier systems [54], and case based
reasoning [15]. Several meta-heuristics have been applied as search methodologies
upon the heuristic search space. Examples are tabu search [13, 14], genetic algo-
rithms [23, 29, 58, 59, 61], and simulated annealing [4, 18, 52]. This chapter fo-
cusses on Genetic Programming as a hyper-heuristic for generating heuristics, given
a set of heuristic components.

1.3 Genetic Programming

Computers do not program themselves; they need a qualified and experienced pro-
grammer who understands the complexity of the task. An alternative to paying a
human programmer to design and debug a program, is to build a computer sys-
tem to evolve a program. This may not only be cheaper, but has the advantage that
progress can be made on problem domains where a human programmer may not
even have a clear idea of what the programming task is, as there is no formal pro-
gram specification. Instead, a partial description of the desired program’s behaviour
could be supplied in terms of its input-output behaviour.

Genetic Programming [41, 42], a branch of program synthesis, borrows ideas
from the theory of natural evolution to produce programs. The main components of
evolutionary computation are inheritance (crossover), selection and variation (mu-
tation). Inheritance implies that the offspring have some resemblance to their parents
as almost all of the offspring’s genetic material comes from them. Selection means
that some offspring are preferable to others, and it is this selection pressure which
defines which individuals are fitter then others. Variation supplies fresh genetic ma-
terial, so individuals containing genetic material which was not present in either of
the parents (or the wider gene pool) can be created. Evolutionary computation can
be thought of the interaction of these three components.

Informally, a population of computer programs is generated, and the genetically
inspired operations of mutation and crossover are applied repeatedly in order to
produce new computer programs. These programs are tested against a fitness func-
tion, that determines which ones are more likely to survive to future generations.
The fittest programs are more likely to be selected to continue in the evolutionary
process (i.e. survival of the fittest).

More formally, a multiset of computer programs is generated. Programs are
transformed by a number of operations, which typically take one or two computer
programs as inputs. A fitness function assigns a value to each program (typically de-
pending on its performance on the problem). A selection function generates a new
multiset of programs from the previous multiset. This process is repeated until a
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termination condition is satisfied. In other words, Genetic Programming is a method
of generating syntactically valid programs, according to some predefined grammar,
and a fitness function is used to decide which programs are better suited to the task
at hand.

In Genetic Programming, the programs that comprise the population are tradi-
tionally represented as tree structures. There are other program structures which can
be evolved, such as linear sequences of instructions or grammars. We will briefly
introduce tree-based Genetic Programming. Each node in the tree returns a value
to its parent node. The leaf nodes are usually input variables providing information
about the problem state, or numeric constants. The internal nodes have one or more
children nodes, and they return a value obtained by performing operations on the
values returned by their children nodes. The trees’ internal nodes are referred to as
functions, and leaf nodes are referred to as terminals.

A number of decisions needs to be made before a Genetic Programming run is
started. This includes the setting of parameters, such as the size of the population,
and the termination condition (which is typically the number of generations). It also
includes such as the function set and terminal set, along with the fitness function,
which ultimately drives the evolutionary process. The terminal set is the set of nodes
that can be the leaf nodes of the program tree, and as such, they take no arguments.
They are the mechanism through which the problem state is made available to the
program, and they act as input variables, changing their value as the problem state
changes. The example of evolving a program to control a robot to clean a floor is
given in [42]. The terminals may be defined as the movements that the robot can
make, such as ‘turn right’, ‘turn left’, and ‘move forward’. Other terminals may
provide sensory information, such as how far an obstacle is from the robot. On the
other hand, the function set is the set of operations that can be represented by the
internal nodes of the tree. For example, they can be arithmetic operators, Boolean
logic operators, or conditional operators. The functions of a Genetic Programming
tree manipulate the values supplied to the program by the terminals, and as such
their defining feature is that they take one or more arguments, which can be the
values returned by terminal nodes, or other function nodes.

There is an important distinction which can be drawn between an optimisation
problem and a learning problem. In the former, we seek the highest quality solu-
tion with respect to some evaluation function. An example is the minimisation of
a function, where we seek a value of x such that f (x) is a minimum. In the latter,
we seek a solution which optimises the value of a target function on the validation
data, which is independent of the training data. For example, consider function re-
gression, where we seek a representation of f (x), given a set of training data, but
tested on a second set of data to confirm its ability to generalise. Typically, Genetic
Programming is used as described in the second example. However, as we shall
see, this distinction is apparent when we consider the difference between reusable
heuristics (which need to be tested on a second set of examples to confirm their
status as reusable heuristics), and disposable heuristics (which are only used on a
single set of examples, without reuse in mind). For more details, see [42].
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There are numerous tutorials, introductory articles and text books on Genetic Pro-
gramming. See the series of books by Koza [38, 39, 40, 41] and the book by Banzhaf
et al. [5]. Also [42] and [50] are more recent introductory texts. Introductory articles
can also be found in most current textbooks on machine learning.

Genetic Programming can be employed as a hyper-heuristic. It can operate on
a set of terminals and functions at the meta-level. Figure 1(a) shows a standard
hyper-heuristic framework presented in [9, 17]. Figure 1(b) shows how Genetic
Programming might be employed in this capacity. The base-level of a Genetic
Programming hyper-heuristic includes the concrete functions and terminals asso-
ciated with the problem. Across the domain barrier, abstract functions and termi-
nals in the meta-level can be mapped to concrete functions and terminals in the
base-level.

Hyper-heuristic 
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Low level heuristics
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n

Domain-independent information acquisition and processing: change in a candidate 

solution’s quality, number of low level heuristics, measuring the performance of the 
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Fig. 1 (a) A generic and (b) a Genetic Programming hyper-heuristic framework
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1.4 Chapter Outline

The outline of the remainder of this chapter is as follows. In Section 2, the use of
Genetic Programming as a Hyper-heuristic is introduced. In Section 3, two cases
studies are examined, namely the applications of Boolean Satisfiability and On-
line Bin Packing. In Section 4, some of the current literature concerning the auto-
matic generation of heuristics is covered. Section 5 summarises and concludes the
chapter.

2 Genetic Programming as a Hyper-heuristic

In this section, we examine a number of issues concerning the use and suitability
of Genetic Programming to generate heuristics. A fundamental point concerning
the scalability of this method is stated. As this methodology borrows ideas from
human designed heuristics, which are then used as primitives to construct the search
space of Genetic Programming, we are then in the enviable position of being able to
guarantee heuristics which perform at least as good as human designed heuristics.
Finally, we outline the basic approach to using Genetic Programming to generate
heuristics.

2.1 Suitability of Genetic Programming as a Hyper-heuristic

A number of authors [5, 38, 39, 40, 41, 42] have pointed out the suitability of Ge-
netic Programming over other machine learning methods to automatically produce
heuristics. We list these advantages here (in no particular order).

• Genetic Programming has a variable length encoding. Often, we do not know (in
advance) the optimal length of representation for heuristics for the given problem
domain.

• Genetic Programming produces executable data structures. Heuristics are typi-
cally expressed as programs or algorithms.

• Humans can easily identify the good features of the problem domain which form
the terminal set of a Genetic Programming approach.

• Human designed heuristics can readily be expressed in the language used to con-
struct the search space of Genetic Programming. A function set, relevant to the
problem domain can be determined without too much difficulty. In addition, the
Genetic Programming system could also be supplemented with a grammar.

Of course, there are a number of disadvantages of using Genetic Programming
to generate heuristics. For example, each time a Genetic Program is run it will give
a different “best-of-run” heuristic, so it needs to be run multiple times, in order to
gain a feel for the quality of the heuristics which it can produce. Other disadvan-
tages include the, often unintuitive values for parameters, which are typically found
through a trial and error process.
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2.2 The Basic Approach

Given a problem domain, the application of Genetic Programming to generate
heuristics can be undertaken as follows. Many of the steps described here are the
same as those one would be required to go through in the construction of a normal
Genetic Programming application (e.g. function regression). The main difference,
which may not usually be required in a normal application of Genetic Programming,
is to decide how the heuristic function is applied to the given problem domain.

1. Examine currently used heuristics. Here, we see if currently used heuristics
can be described in a common framework, in which each existing heuristic is a
special case. These could be either human designed or produced by other ma-
chine learning approaches. This step is not trivial and can involve the detailed
understanding of the workings of a number of diverse existing heuristics, which
may work in very different ways, in order to essentially arrive at the “big pic-
ture”, or a generalisation of the heuristics used for the problem. Often, these
human designed heuristics are the result of years of work by experts, so this
process can be difficult.

2. A framework for the heuristics to operate in. We are concerned here with the
question of how the heuristics are to be applied to an instance of the problem
from the given domain. In general, this will be very different depending on the
problem domain. It may be the case that many heuristics are applied in the same
way, so it may be efficient to apply evolved heuristics in the same fashion. For
example, many local search heuristics for the Boolean satisfiability problem fit
into the same framework (see [25]).

3. Decide on the terminal set. Here, we decide on a set of variables which will
express the state of the problem. These will appear as some of the terminals
to the Genetic Programming system. Other terminals will also be needed. In
particular, random constants are useful.

4. Decide on the function set. We need to know how the variables will be con-
nected or composed together. This set of functions will form the function set of
the Genetic Programming system. As with the problem of parameter setting (de-
scribed below), it is worth revisiting this choice as the development progresses.

5. Identify a fitness function. A fitness function needs to be defined for the prob-
lem. Often, a simple naive fitness function does not perform very well, and in-
troducing some parameters may help find a more suitable one.

6. Run the Genetic Programming approach. Often, a Genetic Programming sys-
tem will not produce good solutions on a first run as poor parameters are chosen.
This is especially the case with the novice practitioner. It is therefore essential
that different parameter settings are thoroughly investigated.

3 Case Studies

We examine two examples in detail in order to illustrate the basic methodology (gen-
erating heuristics for Boolean satisfiability and online bin packing). In both cases,
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we describe the problem, a number of currently used human created heuristics, and
some design questions about using Genetic Programming to generate heuristics.
In the first example, evolving a local search heuristic for the Boolean satisfiability
problem, a number of the design decisions (e.g. what variables are needed to ex-
press the problem, and a framework in which to express possible heuristics) seem
reasonably straightforward, as similar choices were made by two independent au-
thors [3, 25]. In the second example, these choices appear to be a little more difficult.
The aim of this section, therefore, is to take the reader step by step through the pro-
cess and raise a number of issues that will arise during the steps needed to apply
Genetic Programming to generate heuristics. These domains have been chosen as
they are well known problems, which both have published results concerning the
automatic generation of heuristics.

3.1 Boolean Satisfiability – SAT

The Boolean satisfiability problem is the problem of finding the true/false assign-
ments of a set of Boolean variables, to decide if a given propositional formula or
expression (in conjunctive normal form) can be satisfied (i.e. does there exist val-
ues for the variables which make the expression evaluate to true). The problem is
denoted as SAT. It is a classic NP-complete problem [27]. For example, the formula
with three clauses (a∨b∨¬c)∧ (¬a∨ c)∧ (¬a∨¬b∨¬c) is satisfiable as the for-
mula evaluates to true when (a = true, b = false, c = true). However, the formula
a∧¬b∧ (¬a∨ b)∧ (a∨ b∨ c) is not satisfiable, as an assignment of the variables,
such that the formula is true does not exist. A clause is referred to as broken, if all
the variables in the clause are evaluated to be false under a given assignment. For
example, in the formula (¬a∨b∨¬c)∧(¬a∨¬b)∧(¬b∨¬c)∧(¬a∨¬c), there are
two broken clauses under the assignment (a = true , b = false, c = true): (¬a∨b∨¬c)
and (¬a∨¬c).

3.1.1 Existing Heuristics

Fukunaga [24] lists a number of well known local search heuristics which have been
proposed in the SAT literature.

• GSAT selects a variable from the formula with the highest net gain. Ties are
decided randomly.

• HSAT is the same as GSAT, but it decides ties in favour of maximum age, where
age of a variable indicates the total number of bit-flips from the time when a
variable was last inverted.

• GWSAT(p) (also known as “GSAT with random walk”) randomly selects a vari-
able with probability p in a randomly selected broken clause; otherwise, it is the
same as GSAT.

• Walksat(p) picks a broken clause, and if any variable in the clause has a negative
gain of 0, then it selects one of these to be flipped. Otherwise, it selects a ran-
dom variable with probability p in the clause to flip, and selects a variable with
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probability (1− p) in the clause with minimal negative gain (breaking ties ran-
domly). Otherwise, it selects a random variable with probability p in the clause
to flip, and selects a variable with probability (1− p) in the clause with minimal
negative gain (breaking ties randomly).

Other heuristics, such as, Novelty, Novelty+ and R-Novelty are also discussed
in [24].

3.1.2 Framework for Heuristics

Fukunaga [24] first examines the original local search heuristic GSAT, and also its
many variants (including GSAT with random walk, and Walksat). Then, a template
is identified which succinctly describes the most widely used SAT local search al-
gorithms. This framework is also adopted by Bader-El-Den and Poli [3]. In this
template, the set of Boolean variables are initially given random truth assignments.
Repeatedly, a variable is chosen according to a variable selection heuristic and its
value is inverted. This new assignment of values is then tested to see if it satisfies the
Boolean expression. This is repeated until some cut off counter is reached. Notice
that in this framework, only a single Boolean variable is selected to be inverted. An
interesting alternative would be for the variable selection heuristic to return, not a
single variable, but a subset of variables.

3.1.3 Identifying the Terminal Set

Fukunaga describes a number of factors in identifying which Boolean variables
might be advantageous to invert. Let B0 be the number of broken clauses in the
expression, under the current variable assignment. Let B1 be the number of broken
clauses in the expression, under the current variable assignment, but when variable
V is flipped. Let T , be the variable assignment and T 1 be the variable assignment
when V is flipped. By looking at the number of clauses that become satisfied or
unsatisfied when V is flipped, we can define a number of gain metrics. The net gain
of V is B1−B0. The negative gain of V is the number of clauses satisfied in T but
broken in T 1. The positive gain of V is the number of clauses satisfied in T 1 but
broken in T . Another example of a factor which can be used is the “age” of a vari-
able (i.e. the number of inversions from the time when a variable was last inverted).
These will form some of the terminals of the Genetic Programming system. For a
complete list of terminals see [25].

3.1.4 Identifying the Function Set

Some heuristics are hybrid, in the sense that they are a combination of two existing
heuristics. The “composition” (or blending) of two heuristics is achieved by first
testing to determine if a condition is true, then if the test is passed apply heuristic1
else apply heuristic2. This composition operator therefore gives us a way to com-
bine already existing heuristics. An example of the testing condition may simply
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Fig. 2 Genetic Programming as a hyper-heuristic. At the meta-level Genetic Programming
refers to abstract functions { f1, f2, ...}, and terminals {T1,T2, ...}. At the base-level these
are given concrete meaning. For example, f1 = IF–RAND–LT , f2 = OLDER–VAR , T1 =
NET–GAIN, T2 = –GAIN, etc

be “(random number ≤ 0.2)”. Having identified a template for local search and a
method of identifying the utility of inverting a given variable, Fukunaga then de-
fined a language in which most of the previously human designed heuristics can be
described, but more importantly, it can also be used to describe new novel heuristics.
For a complete list of functions see [25].

3.1.5 Identifying a Fitness Function

The fitness function works as follows. First, the heuristic is tested on 200 problem
instances consisting of 50 variables and 215 clauses. The heuristic is allowed 5000
inversions of the Boolean variables. If more than 130 of these local searches were
successful, then the heuristic is run on 400 problem instances consisting of 100
variables with 430 clauses. The heuristic is allowed 20000 inversions of the Boolean
variables. The idea of using smaller and larger problems, is that poor candidate
heuristics can be culled early on (very much like brood selection, reported in [5]).

f itness = (number of 50 variable successes)

+ 5(number of 100 variable successes)

+ 1/(mean number of flips in successful runs) (1)

The second term carries a weight of 5, as performance on these instances is
much more important. In the case of a tie-break, the last term differentiates these
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heuristics. It should be noted that the fitness function takes a large number of
parameters, and reasonable values for these should be arrived at with a little
experimentation.

3.2 Online Bin Packing

The online bin packing problem can be described as the problem of being given
a sequence of items and assigning each one to a bin as it arrives, such that the
minimum number of bins is required [55]. There is an unlimited supply of bins,
each with the same finite capacity which must not be exceeded. We do not know in
advance either the sizes of the items, or the total number of items. This is in contrast
to the offline version of the problem where the set of items to be packed is available
from the start.

3.2.1 Existing Heuristics

A number of examples of heuristics used in the online bin packing problem are
described below: In each case, if the item under consideration does not fit into an
existing bin, then the item is placed in a new bin.

• Best-Fit [51]. Puts the item in the fullest bin which can accommodate it.
• Worst-Fit [16]. Puts the item in the emptiest bin which can accommodate it.
• Almost-Worst-Fit [16]. Puts the item in the second emptiest bin.
• Next-Fit [36]. Puts the item in the last available bin.
• First-Fit [36]. Puts the item in the left-most bin.

It should, of course, be noted that this list of heuristics is not exhaustive. The
selection is simply intended to illustrate some of the currently available heuristics,
and provide a background against which we can build a framework. The reader is
referred to the following article if they are particularly interested in the domain of
online bin packing . Here the HARMONIC algorithms are discussed (which in-
clude HARMONIC, REFINED HARMONIC, MODIFIED HARMONIC, MODI-
FIED HARMONIC 2, and HARMONIC+1). All of these algorithms are shown to
be instances of a general class of algorithm, which they call SUPER HARMONIC.

3.2.2 A Framework for Heuristics

In [10, 11, 12], heuristics are evolved for the online bin packing problem. In the first
paper [10], a number of existing heuristics are listed. Interestingly these heuristics
do not fit neatly into a single framework. In this paper, the decision was made to
apply the evolved heuristic to the bins and place the current item under considera-
tion, into the first bin which receives a positive score. Using this method of applying
heuristics to problem instances, a heuristic equivalent to the “first-fit” heuristic was
evolved. The “first-fit” heuristic places an item in the first bin into which it fits (the
order of the bins being the order in which they were opened). In this framework, the
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15 
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3 2 7 6 4 

0 1 2 3 4 

Best-Fit →→→→ 1

Worst-Fit →→→→ 2  

Almost-Worst-Fit →→→→ 3

Next-Fit →→→→ 4

First-Fit →→→→ 0
5 

Fig. 3 The figure shows the chosen bin for a number of heuristics. The bin capacity is 15,
and the space remaining in the open bins (in order of index 0, 1, 2, 3, 4, 5) is 3, 2, 7, 6, 4, 15.
The current item to be packed has size 2. “Best-fit”, for example would place the item in bin
1, leaving no space remaining. “First-fit”, for example would place the item in bin 0, leaving
1 unit of space

For each item
int binIndex := 0
For each bin b in A
output := evaluate Heuristic
If (output > 0 )

return binIndex
End If

End For
place item in bin binIndex

End For

Fig. 4 An item is considered for each bin in turn, until a positive score is obtained. Thus
the heuristic may not be evaluated on all bins, for a given item. The item is placed in the bin
which gives the first positive score. This method of applying heuristics differs fundamentally
from the method described in figure 5

heuristic may not be evaluated on all of the bins when an item is being placed (i.e.
only the bins up until the bin that receives a positive score will be considered).

In [11], it was decided that the heuristic would be evaluated on all the open bins,
and the item placed in the bin that receives the maximum score. This has the ad-
vantage that the heuristic is allowed to examine all of the bins (and, therefore, has
more information available to it to make a potentially better decision). It also has the
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For each item
int currentMaximumScore = -∞
int binIndex := 0
For each bin b
output := evaluate Heuristic
If (output > currentMaximumScore )

currentMaximumScore = output
binIndex := b

End If
End For
place item p in bin binIndex

return binIndex

Fig. 5 In this framework, the item is placed in the bin which gives the maximum score
according to the heuristic. This method of applying heuristics differs fundamentally from the
method described in figure 4

disadvantage that it will take longer on average to apply, as it will, in general, ex-
amine more bins (though this aspect of the evolved heuristic’s performance was not
studied). In this framework, heuristics were evolved which outperformed the human
designed heuristic “best-fit”. The “best-fit” heuristic places an item in the bin which
has the least space remaining when the item is placed in the bin (i.e. it fits best in
that bin).

The two search spaces created by these frameworks are very different. In the first
case, the “first-fit” heuristic can be expressed, but “best-fit” cannot. In the second
case, the “best-fit” heuristics can be expressed but “first-fit” cannot. The first frame-
work cannot express “best-fit”, as not all of the bins may be examined. That is, the
evaluation of the heuristic is terminated as soon as a positive score is obtained. The
second framework cannot express “first-fit” as a bin which receives a larger score
may exist after one which receives a positive score. That is, an earlier bin may re-
ceive a smaller positive score, but this is overridden when a larger score is obtained.
Further effort could be put into constructing a more general framework in which
both of these heuristics could be expressed.

So far, just two frameworks have been considered which could be used to ap-
ply heuristics to the online bin packing problem. There are many different ways a
heuristic could be applied.

• They can differ in the order in which the bins are examined. For example, left to
right, right to left, or some other order.

• They can differ in the order we start to examine the bins. For example, start at a
random bin and cycle through the bins until each bin has been examined, or start
at some distance from the last bin that received an item.

• They can differ in the score used to decide which bin is employed. For example,
place the item in the bin which got the second highest score, or alternatively place
the item in the bin which gets the maximum then the next item in the bin that gets
the minimum score; in effect we are switching between two placement strategies.
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There is also the question of where to place an item when there is a draw between
two bins (e.g. the item could be placed in a fresh bin, or it could be placed in a bin
using an existing human designed heuristic). The point is that there are plenty of
opportunities to design different ways of applying heuristic selection functions to
a problem domain. Therefore, instead of presenting Genetic Programming with a
single framework, it is possible to widen this and allow a number (or combination)
of different frameworks for Genetic Programming to explore. One interesting way
to tackle this would be to cooperatively co-evolve a population of heuristics and the
frameworks in which they are applied.

It is also worthwhile pointing out that a heuristic evolved under one framework
is unlikely to perform well under another framework, so a heuristic really consists
of two parts; the heuristic function and the framework describing how the heuristic
is applied to a problem instance. In Genetic Programming, we are usually just in-
terested in the function represented by a program, and the program does not need a
context (e.g. in the case of evolving electrical circuits, the program is the solution).
However, if we are evolving heuristics, we need to provide a context or method
of applying the Genetic Programming-program. This additional stage introduces a
considerable difference.

3.2.3 Identifying the Terminal Set

The question of which variables to use to describe the state of a problem instance is
also important, as these will form some of the “terminals” used in Genetic Program-
ming. In the first stages of this work, the authors used the following variables; S the
size of the current item, C the capacity of a bin (this is a constant for the problem)
and, F the fullness of a bin (i.e. what is the total cost of all of the items occupying
that bin).

It was later decided that three variables could be replaced by two; S the size of
the current item and, E (= C−F) the emptiness of a bin (i.e. how much space is
remaining in the bin, or how much more cost can be allocated to it before it ex-
ceeds its capacity). These two variables are not as expressive as the first set, but are
expressive enough to produce human competitive heuristics. The argument is that
it is not the capacity or fullness of a bin which is the deciding factor of whether
to put an item in a bin, but the remaining capacity, or emptiness E , of a bin. In
fact, the capacity of a bin was fixed for the entire set of experiments, so could
be considered as a constant. In other words, the output of the heuristic based on
this pair of variables, could be semantically interpreted as how suitable is the cur-
rent bin, given its emptiness, and the size of the item we would like to place in
the bin.

This pair of variables can be replaced by a single variable, R (= E−S) the space
remaining in a bin if the current item were placed in the bin. The output of a heuristic
based solely on this single variable could not be interpreted as in the previous case,
but rather as the following question: If the current item were placed in the current
bin, what is the utility of the remaining space?
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So far, we have only considered variables describing the current item and current
bin. However, there are other variables which could be introduced. Other examples
of variables which could be stored are

• the item number (i.e. keep a counter of how many items have been packed so far)
• the minimum and maximum item size seen so far (as more items are packed,

these bounds will diverge)
• the average and standard deviation of item size seen so far (these could provide

a valuable source of statistical information on which to base future decisions).

All of this information can be made available to the evolving heuristic.

3.2.4 Identifying the Function Set

In [10], the function set {+, −, x, %, abs, ≤} was used, where abs is the absolute
operator and % is protected divide. There are a few points worth considering with
this chosen function set. Firstly, ≤ returns -1 or +1, rather than 0 or 1, which is
normally associated with this relational operator. This was to satisfy the property of
closure, that the output of any function in the function set, can be used as the input
of any function in the function set. Secondly, this function set is sufficient to express
some the human designed heuristics described (namely “first-fit” and “best-fit”).

Protected divide (%) is often used in Genetic Programming, as if the denominator
is zero, then the function is undefined (i.e. its value tends to infinity). Typically,
protected divide returns 0 or 1. However, this choice does not reflect the idea that
the quotient could be a very large number. Thus, in [11], a much larger value was
returned.

In [12],≤was removed from the function set as it was effectively redundant. This
is because, as the evolved heuristic function is enveloped in a loop which returns the
index of the maximum scoring bin, any test for ‘less than’ can be done by the loop.
The aim of this discussion is to outline the difficulty in choosing a function set for
the given problem domain.

3.2.5 Identifying a Fitness Function

The fitness function to determine the quality of a solution is shown in Equation 2
[22], where n = number of bins used, Fi = fullness of bin i, and C = bin capacity

Fitness :=

⎧⎨
⎩

high penalty value, if illegal solution

1−
(

∑n
i=1 (Fi/C)k

n

)
, if legal solution

(2)

It returns a value between 0 and 1, with 0 being the best result where all bins are
filled completely, and 1 representing completely empty bins.

In the bin packing problem, there are many different solutions which use the same
number of bins. If the fitness function were simply the number of bins used, then there
would be a plateau in the search space that is easily reached, but difficult to escape
from [22]. Using equation 2 as a fitness function helps the evolutionary process by
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differentiating between two solutions that use the same number of bins. The fitness
function proposed by Falkenauer rewards solutions more if some bins are nearly full
and others nearly empty, as opposed to all the bins being similarly filled.

The constant k in equation 2 determines how much of a premium is placed on
nearly full bins. The higher the value of k, the more attention will be given to the
almost filled bins at the expense of the more empty ones. A value of k = 2 was
deemed to be the best in [22] so this is the value we use here.

4 Literature Review

In this section, we briefly discuss the area, in order to give the reader a flavour of
what has been attempted to date. We include some work specifically using Genetic
Programming as a hyper-heuristic. We also include some work on other areas which
are similar in the sense that they use a meta-level in the learning system, and can
tackle multiple problems. We now briefly review two areas of the machine learning
literature which could also be considered in the context of hyper-heuristics. The first
is learning to learn, and the second is self-adaptation.

4.1 Genetic Programming Hyper-heuristics for Generating
Reusable Heuristics

Keller et al. [37] use a grammar to describe promising meta-heuristics for the travel-
ling salesman problem. Primitives in the grammar may represent manually created
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meta-heuristics, low level heuristics, or component parts of them. There are a num-
ber of heuristics used in this system, including heuristics which swap two or three
edges in the solution, and an iterative heuristic which executes another heuristic a
maximum of 1000 times unless an improvement is seen. The execution of the meta-
heuristic is a sequential execution of a list of heuristics and so generates a candidate
solution to the given problem from a random initial route. Tours whose lengths are
highly competitive with the best real-valued lengths from the literature are found
using this grammar based Genetic Programming.

In a series of papers, Burke et al. [10, 11, 12] examine the viability of using
Genetic Programming to evolve heuristics for the online bin packing problem. Given
a sequence of items, each must be placed into a bin in the order it arrived. At each
decision point, we are only given the size of the current item to be packed. In [10],
an item is placed into the first bin which receives a positive score according to
the evolved heuristic. Thus, the heuristic may not be evaluated for all bins, as it is
terminated as soon as a positive score is obtained. This approach produces a heuristic
which performs better than the human designed “first-fit” heuristic.

In [11], a similar approach is used. However, this time, the heuristic is allowed
to examine all bins, and the item is placed in the bin which receives the maxi-
mum score. This produces a heuristic which is competitive with the human designed
heuristic “best-fit”. The difference between these two approaches, illustrates that the
framework to evaluate the heuristics is a critical component of the overall system.
In [11], the performance of heuristics on general and specialised problem classes
is examined. They show that, as one problem class is more general than another,
then the heuristic evolved on the more general class is more robust, but performs
less well than the specialised heuristic on the specialised class of problem. This is,
intuitively, what one would expect.

In [12], evolved heuristics are applied to much larger problem instances than they
were trained on, but as the larger instances come from the same class as the smaller
training instances, performance does not deteriorate and indeed, the approach con-
sistently outperforms the human designed best-fit heuristic. The paper makes the
important distinction between the nature of search spaces associated with direct and
indirect methods. With direct methods, the size of the solution necessarily grows
with the size of the problem instance, resulting in combinatorial explosion, for ex-
ample, when the search space is a permutation. However, when the search space
consists of programs or heuristics, the size of a program to solve a given class of
problem is fixed as it is a generalisation of the solution to a class of problem (i.e. the
solution to a class of problem is independent of the size of an instance).

Drechsler et al. [19], instead of directly evolving a solution, use Genetic Pro-
gramming to develop a heuristic that is applied to the problem instance. Thus the
typically large run-times associated with evolutionary runs have to be invested only
once in the learning phase. The technique is applied to a problem of minimising
Binary Decision Diagrams. They state that standard evolutionary techniques cannot
be applied due to their large runtime. The best known algorithms used for variable
ordering are exponential in time, thus heuristics are used. The heuristics which are
developed by the designer often fail for specific classes of circuits. Thus it would
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be beneficial if the heuristics could learn from previous examples. An earlier pa-
per is referred to where heuristics are learnt using a genetic algorithm [20], but it
is pointed out that there are problems using a fixed length encoding to represent
heuristics. Experiments show that high quality results are obtained that outperform
previous methods, while keeping low run-times.

Fukunaga [24, 25] examines the problem domain of Boolean satisfiability (SAT).
He shows that a number of well-known local search algorithms are combinations of
variable selection primitives, and he introduces CLASS (Composite heuristic Learn-
ing Algorithm for SAT Search), an automated heuristic discovery system which
generates variable selection heuristic functions. The learning task, therefore, is de-
signing a variable selection heuristic as a meta-level optimisation problem.

Most of the standard SAT local search procedures can be described using the
same template, which repeatedly chooses a variable to invert, and calculates the
utility in doing so. Fukunaga identifies a number of common primitives used in hu-
man designed heuristics e.g. the gain of flipping a variable (i.e. the increase in the
number of clauses in the formula) or the age of a variable (i.e. how long since it
was last flipped). He states that “it appears human researchers can readily identify
interesting primitives that are relevant to variable selection, the task of combining
these primitives into composite variable selection heuristics may benefit from au-
tomation”. This, of course, is particularly relevant for Genetic Programming.

In the CLASS language, which was shown to able to express human designed
heuristics, a composition operator is used which takes two heuristics and combines
them using a conditional if statement. The intuition behind this operator is that the
resulting heuristic blends the behaviour of the two component heuristics. The impor-
tance of this composition operator is that it maintains the convergence properties of
the individual heuristics, which is not true if Genetic Programming operators were
used. CLASS successfully generates a new variable selection heuristic, which is
competitive with the best-known GSAT/Walksat-based algorithms. All three learnt
heuristics were shown to scale and generalise well on larger random instances; gen-
eralisation to other problem classes varied.

Geiger et al. [28] present an innovative approach called SCRUPLES (schedul-
ing rule discovery and parallel learning system) which is capable of automatically
discovering effective dispatching rules. The claim is made that this is a significant
step beyond current applications of artificial intelligence to production scheduling,
which are mainly based on learning to select a given rule from among a number
of candidates rather than identifying new and potentially more effective rules. The
rules discovered are competitive with those in the literature. They state that a re-
view of the literature shows no existing work where priority dispatching rules are
discovered through search. They employ Genetic Programming, as each dispatch-
ing rule is viewed as a program. They point out that, Genetic Programming has a
key advantage over more conventional techniques such as genetic algorithms and
neural networks, which deal with fixed sized data structures. Whereas Genetic Pro-
gramming can discover rules of varying length and for many problems of interest,
such as scheduling problems, the complexity of an algorithm which will produce the
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correct solution is not known a-priori. The learning system has the ability to learn the
best dispatching rule to solve the single unit capacity machine-scheduling problem.
For the cases where no dispatching rules produced optimal solutions, the learning
system discovers rules that perform no worse than the known rules.

Stephenson et al. [57] apply Genetic Programming to optimise priority or cost
functions associated with two compiler heuristics; predicted hyper block formation
(i.e. branch removal via prediction) and register allocation. Put simply, priority func-
tions prioritise the options available to a compiler algorithm. Stephenson et al. [57]
state “Genetic Programming is eminently suited to optimising priority functions be-
cause they are best represented as executable expressions”. A caching strategy, is
a priority function that determines which program memory locations to assign to
cache, in order to minimise the number of times the main memory must be ac-
cessed. The human designed “least recently used” priority function is outperformed
by results obtained by Genetic Programming. They make the point that by evolv-
ing compiler heuristics, and not the applications themselves, we need only apply
our process once, which is in contrast to an approach using genetic algorithms. In
addition they emphasise that compiler writers have to tediously fine tune priority
functions to achieve suitable performance, whereas with this method, this is effec-
tively automated.

4.2 Genetic Programming Hyper-heuristics for Generating
Disposable Heuristics

Bader-El-Din et al. [3] present a Genetic Programming hyper-heuristic framework
for the 3-SAT problem domain. Their aim is not to evolve reusable heuristics, but
to solve a set of problem instances. The evolved heuristics are essentially disposed
of and are considered as a by-product of the evolutionary process. Human designed
heuristics are broken down into their constituent parts, and a grammar is used to
capture the structure of how the constituents relate to each other. The constituent
parts, along with the grammar, are used to construct a search space, which con-
tains (by definition) the human designed heuristics. The resulting space is searched
using Genetic Programming. Although the initial population of heuristics were ran-
domly generated and included no handcrafted heuristics as primitives, individuals
representing such heuristics were created in the initial population in almost all ex-
periments (i.e. heuristics equivalent to human designed heuristics were found by
random search). This is due to their simple representation in the grammar defined
in the system.

4.3 Learning to Learn

Learning to learn [60] is similar to using Genetic Programming as a hyper-heuristic
to solve a class of problem. Rather than trying to learn a single instance of a prob-
lem, a class of related problems is tackled. The key idea is to have two explicit levels
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in the learning algorithm, a meta-level and a base-level. The base-level is associ-
ated with learning a function, just like regular supervised learning in the single task
case. The meta-level is responsible for learning properties of these functions (i.e.
invariants or similarities between the problem instances). Thus, the meta-level is
responsible for learning across the distribution of problems. Any machine-learning
paradigm could be used at the base-level or meta-level.

4.4 The Teacher System

An interesting related project at the interface between machine learning and engi-
neering was termed “Teacher” [62, 63] (an acronym for TEchniques for the Auto-
mated Creation of HEuRistics), which was designed as a system for learning and
generalising heuristics used in problem solving. The objective was to find, under
resource constraints, improved heuristic methods as compared to existing ones, in
applications with little (or non-existent) domain knowledge. The Teacher system
employed a genetic-based machine learning approach, and was successfully ap-
plied to several domains such as: process mapping, load balancing on a network
of workstations, circuit placement, routing and testing. The system addressed five
important general issues in learning heuristics [62]: “(1) decomposition of a prob-
lem solver into smaller components and integration of heuristic methods designed
for each smaller component; (2) classification of an application domain into subdo-
mains so that the performance can be evaluated statistically for each; (3) generation
of new and improved heuristic methods based on past performance information and
heuristics generated; (4) evaluation of each heuristic method’s performance; and (5)
performance generalization to find heuristic methods that perform well across the
entire application domain”.

4.5 Related Areas

Heuristic search represents a major research activity at the interface of Operational
Research and Artificial Intelligence. It provides the core engine for real-world ap-
plications as diverse as timetabling, planning, personnel and production schedul-
ing, cutting and packing, space allocation, and protein folding. Several researchers
have recognised that a promising direction for developing improved and automated
search techniques is to integrate learning components that can adaptively guide the
search. Many techniques have independently arisen in recent years that exploit ei-
ther some form of learning, or search on a search space of algorithm configura-
tion, to improve problem-solving and decision making. A detailed review of these
techniques is beyond the scope of this chapter. However, we mention here some
related areas of research: adaptation and self-adaptation of algorithm parameters
[2, 21, 32], algorithm configuration [33], racing algorithms [8], reactive search
[6, 7], adaptive memetic algorithms [34, 35, 43, 44, 47, 48, 56], and algorithm
portfolios [26, 31].
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5 Summary and Conclusion

Often, in the field of computational search, a single problem (sometimes even a sin-
gle instance) is tackled. This chapter describes work which is motivated by the goal
of moving away from this situation. The work described here is attempting to “raise
the level of generality”. This offers a number of long term advantages. In particular,
we can obtain more general systems rather than problem specific approaches. More-
over, we can achieve this more cheaply in terms of resource(s) used; i.e. a computer
system is much cheaper to run than a team of heuristic designers is to employ.

5.1 The Need for Automatic Heuristic Generation

Real-world intractable problems demand the use of heuristics if progress is to be
made in reasonable time. Therefore, the practical importance of heuristics is un-
questionable, and how heuristics are produced then becomes an important scientific
question. Many of the current heuristics in use today are the result of years of study
by experts with specialist knowledge of the domain area. Therefore, one may pose
the question;

Instead of getting experts to design heuristics, perhaps they would be better
employed designing a search space of heuristics (i.e. all possible heuristics or a
promising subset of heuristics) and a framework in which the heuristics operate,

and letting a computer take over the task of searching for the best ones.

This approach shows a clear division of labour; Humans, taking on the innovative
and creative task of defining a search space. Computers take on the chore of search-
ing this vast space. Due to the fact that humans often still need to play an important
part in this process, we should strictly refer to this methodology as a semi-automated
process.

One of the advantages of this methodology is that if the problem specification
were to change, the experts who engage in hand designing heuristics, would prob-
ably have to return to the drawing board, possibly approaching the problem from
scratch again. This would also be the situation with the search for automatically de-
signed heuristics, with one important difference. As the search process is automated
this would largely reduce the cost of having to create a new set of heuristics. In
essence, by employing a method automated at the meta-level, the system could be
designed to tune itself to the new problem class presented to it.

A paradigm shift has started to occur in search methodologies over the past few
years. Instead of taking the rather short term approach of tackling single problems,
there is a growing body of work which is adopting the more long term approach of
tackling the general problem, and providing a more general solution.

5.2 Supplementing Human Designed Heuristics

Typically in the “meta-heuristics to choose heuristics” framework, the heuristics are
human designed, and therefore have all the strengths of human designed heuristics,
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but also all of the weaknesses. In contrast, machine generated heuristics will have
their own strengths and weaknesses. Thus, as one of the motives of hyper-heuristics
is to combine heuristics, this would offer a method where manually and automati-
cally designed heuristics can be used side by side. It may also be possible to evolve
heuristics specifically to complement human designed heuristics in a hyper-heuristic
context, where an individual heuristic does not need to be good on its own, but is a
good team player in the environment of the other heuristics. Again this is another
example of cooperation between humans and computers.
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2. Bäck, T.: An overview of parameter control methods by self-adaption in evolutionary
algorithms. Fundam. Inf. 35(1-4), 51–66 (1998)

3. Bader-El-Din, M.B., Poli, R.: Generating SAT local-search heuristics using a GP hyper-
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J.-L., Schwefel, H.-P. (eds.) PPSN 2002. LNCS, vol. 2439, pp. 527–536. Springer, Hei-
delberg (2002)

35. Jakob, W.: Towards an adaptive multimeme algorithm for parameter optimisation suiting
the engineers’ needs. In: Runarsson, T.P., Beyer, H.-G., Burke, E.K., Merelo-Guervós,
J.J., Whitley, L.D., Yao, X. (eds.) PPSN 2006. LNCS, vol. 4193, pp. 132–141. Springer,
Heidelberg (2006)

36. Johnson, D., Demers, A., Ullman, J., Garey, M., Graham, R.: Worst-case performance
bounds for simple one-dimensional packaging algorithms. SIAM J. on Comput. 3(4),
299–325 (1974)

37. Keller, R.E., Poli, R.: Linear genetic programming of parsimonious metaheuristics. In:
Srinivasan, D., Wang, L. (eds.) 2007 IEEE Congress on Evolutionary Computation, pp.
4508–4515. IEEE Computational Intelligence Society/IEEE Press, Singapore (2007)

38. Koza, J.R.: Genetic Programming: on the Programming of Computers by Means of Nat-
ural Selection. The MIT Press, Boston (1992)

39. Koza, J.R.: Genetic Programming II: Automatic Discovery of Reusable Programs. The
MIT Press, Cambridge (1994)

40. Koza, J.R., Bennett III, F.H., Andre, D., Keane, M.A.: Genetic Programming III: Dar-
winian Invention and Problem solving. Morgan Kaufmann, San Francisco (1999)

41. Koza, J.R., Keane, M.A., Streeter, M.J., Mydlowec, W., Yu, J., Lanza, G.: Genetic Pro-
gramming IV: Routine Human-Competitive Machine Intelligence (Genetic Program-
ming). Springer, Heidelberg (2003)

42. Koza, J.R., Poli, R.: Genetic programming. In: Burke, E.K., Kendall, G. (eds.) Search
Methodologies: Introductory Tutorials in Optimization and Decision Support Tech-
niques, pp. 127–164. Springer, Boston (2005)

43. Krasnogor, N., Gustafson, S.: A study on the use of ’self-generation’ in memetic algo-
rithms. Nat. Comput. 3(1), 53–76 (2004)

44. Krasnogor, N., Smith, J.E.: Emergence of profitable search strategies based on a simple
inheritance mechanism. In: Proceedings of the 2001 Genetic and Evolutionary Compu-
tation Conference, pp. 432–439. Morgan Kaufmann, San Francisco (2001)

45. Mockus, J.: Application of bayesian approach to numerical methods of global and
stochastic optimization. J. of Glob. Optim. 4(4), 347–366 (1994)

46. Nareyek, A.: Choosing search heuristics by non-stationary reinforcement learning. In:
Resende, M.G.C., de Sousa, J.P. (eds.) Metaheuristics: Computer Decision-Making, ch.
9, pp. 523–544. Kluwer, Dordrecht (2003)

47. Ong, Y.S., Keane, A.J.: Meta-lamarckian learning in memetic algorithms. IEEE Trans.
on Evol. Comput. 8, 99–110 (2004)

48. Ong, Y.S., Lim, M.H., Zhu, N., Wong, K.W.: Classification of adaptive memetic algo-
rithms: a comparative study. IEEE Trans. on Syst. Man and Cybern. Part B 36(1), 141–
152 (2006)

49. Ozcan, E., Bilgin, B., Korkmaz, E.E.: A comprehensive survey of hyperheuristics. Intell.
Data Anal. 12(1), 3–23 (2008)

50. Poli, W.B.R., Langdon, N.F.M.: A Field Guide to Genetic Programming. Lulu Enter-
prises, UK (2008)

51. Rhee, W.T., Talagrand, M.: On line bin packing with items of random size. Math. Oper.
Res. 18, 438–445 (1993)



Exploring Hyper-heuristic Methodologies with Genetic Programming 201

52. Ropke, S., Pisinger, D.: A unified heuristic for a large class of vehicle routing problems
with backhauls. Eur. J. of Oper. Res. 171(3), 750–775 (2006)

53. Ross, P.: Hyper-heuristics. In: Burke, E.K., Kendall, G. (eds.) Search Methodologies:
Introductory Tutorials in Optimization and Decision Support Techniques, ch. 17, pp.
529–556. Springer, Heidelberg (2005)

54. Ross, P., Marin-Blazquez, J.G., Schulenburg, S., Hart, E.: Learning a procedure that
can solve hard bin-packing problems: A new ga-based approach to hyper-heuristics. In:
Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2003,
pp. 1295–1306. Springer, Heidelberg (2003)

55. Seiden, S.S.: On the online bin packing problem. J. ACM 49(5), 640–671 (2002)
56. Smith, J.E.: Co-evolving memetic algorithms: A review and progress report. IEEE Trans.

in Syst. Man and Cybern. Part B 37(1), 6–17 (2007)
57. Stephenson, M., O’Reilly, U., Martin, M., Amarasinghe, S.: Genetic programming ap-

plied to compiler heuristic optimisation. In: Proceedings of the Eur. Conference on Ge-
netic Programming, pp. 245–257. Springer, Heidelberg (2003)

58. Terashima-Marin, H., Flores-Alvarez, E.J., Ross, P.: Hyper-heuristics and classifier sys-
tems for solving 2D-regular cutting stock problems. In: Beyer, H.G., O’Reilly, U.M.
(eds.) Proceedings of Genetic and Evolutionary Computation Conference, GECCO 2005,
Washington DC, USA, June 25-29, pp. 637–643. ACM, New York (2005)

59. Terashima-Marin, H., Ross, P., Valenzuela-Rendon, M.: Evolution of constraint satis-
faction strategies in examination timetabling. In: Proc. of the Genetic and Evolution-
ary Computation Conf. GECCO 1999, pp. 635–642. Morgan Kaufmann, San Francisco
(1999)

60. Thrun, S., Pratt, L.: Learning to learn: Introduction and overview. In: Thrun, S., Pratt, L.
(eds.) Learning To Learn. Kluwer Academic Publishers, Dordrecht (1998)

61. Vazquez-Rodriguez, J.A., Petrovic, S., Salhi, A.: A combined meta-heuristic with hyper-
heuristic approach to the scheduling of the hybrid flow shop with sequence dependent
setup times and uniform machines. In: Proceedings of the 3rd Multidisciplinary Inter-
national Scheduling Conference: Theory and Applications (MISTA 2007), pp. 506–513
(2007)

62. Wah, B.W., Ieumwananonthachai, A.: Teacher: A genetics-based system for learning
and for generalizing heuristics. In: Yao, X. (ed.) Evol. Comput., pp. 124–170. World
Scientific Publishing Co. Pte. Ltd, Singapore (1999)

63. Wah, B.W., Ieumwananonthachai, A., Chu, L.C., Aizawa, A.: Genetics-based learning
of new heuristics: Rational scheduling of experiments and generalization. IEEE Trans.
on Knowl. and Data Eng. 7(5), 763–785 (1995)



Adaptive Constraint Satisfaction: The Quickest
First Principle

James E. Borrett and Edward P.K. Tsang

Abstract. The choice of a particular algorithm for solving a given class of constraint
satisfaction problems is often confused by exceptional behaviour of algorithms. One
method of reducing the impact of this exceptional behaviour is to adopt an adaptive
philosophy to constraint satisfaction problem solving. In this report we describe one
such adaptive algorithm, based on the principle of chaining. It is designed to avoid
the phenomenon of exceptionally hard problem instances. Our algorithm shows how
the speed of more naı̈ve algorithms can be utilised safe in the knowledge that the
exceptional behaviour can be bounded. Our work clearly demonstrates the potential
benefits of the adaptive approach and opens a new front of research for the constraint
satisfaction community.

1 Introduction

Constraint Satisfaction Problems occur in many areas of everyday life. These range
from problems such as timetabling and transport planning to configuration prob-
lems and document layout design. In all cases, the notion of a Constraint Satisfac-
tion Problem (CSP) is characterised by the need to assign values to elements of the
problem instances, these values coming from a finite set of possibilities and subject
to a set of rules or constraints [31] [23].

Once a CSP has been identified there are whole host of problem solving tech-
niques which have been developed for solving them [23]. The most basic of these is
the simple backtracking algorithm but more sophisticated algorithms such as look-
ahead approaches have been shown to be highly effective [13] and are commonly
used in commercial software libraries such as ILOG Solver [22]. Heuristic search
has been applied to CSP with success, e.g. see [14] [18] [32], and have also been
embedded in industrial packages such as iOpt [33].
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More formally, the constraint satisfaction problem (CSP) can be defined in terms
of the triple <Z, D, C>, where Z is a set of variables, D is a mapping of the variables
in Z to domains and C is a set of constraints [31]. Given this definition of a CSP,
there are many ways in which different types of problem can be classified, in terms
of the elements of Z, D and C1. This classification may then be used as a basis for
the selection of a particular algorithm to solve that class of problems.

There is, however, a significant complication with the definition of CSP classes.
Sometimes particular instances of problems in a class may exhibit exceptional qual-
ities, in terms of the solving abilities of the chosen algorithm. One clear example
of this is the phenomenon of exceptionally hard problem instances [28], or EHPs as
they shall be referred to in this paper.

The example of EHPs is illustrative of the dilemma posed to the problem solver.
There is a clear choice of either using a naı̈ve algorithm which is likely to solve
most instances very quickly, at the risk of catastrophic encounter with an EHP, or to
choose a more complex algorithm, which has a far lower probability of encountering
EHPs2. However, as is often the case, the use of more complex algorithms entails
an overhead.3

One approach which can overcome this dilemma is to use a more flexible ap-
proach which we describe as adaptive constraint satisfaction. The notion of adaptive
constraint satisfaction can be encapsulated in the following description:

Adaptive Constraint Satisfaction is a general philosophy for solving constraint satis-
faction problems. It aims to make use of the many algorithms and techniques available
by relaxing the commitment to a single algorithm when solving a particular CSP, al-
lowing for the active modification or switching of algorithms and models during the
search process.

Built upon the Adaptive Constraint Satisfaction context was a set of research
projects4. Adaptive constraint satisfaction is based on the belief that there is no “best
algorithm” in constraint satisfaction – different algorithms work for different prob-
lem instances – an idea that was later articulated as the “No Free Lunch Theorem”
[35, 36]5. Based on this belief, Kwan et al [17] [30] developed a machine learn-
ing framework for learned mappings from CSPs to algorithms and heuristics. Given

1 In [3] the issue of classifying different formulations of the same problem is considered.
2 In the context of complete algorithms, [25], [26] suggest it is likely that investing in more

complex algorithms, such as forward checking with conflict-directed backjumping [20],
will decrease the frequency of encounters with EHPs.

3 Given that EHPs are algorithm dependent, as explained above, another approach is to
restart the search with, say a random algorithm. The difficulty in this approach is deciding
when to restart. Abandoning the search prematurely means a waste of search effort; if one
is not careful, one could end up restarting indefinitely. That motivated us to develop a
mechanism to recognize thrashing.

4 See Adaptive Constraint Satisfaction Project (1992-98) http://csp.bracil.net/acs.html
5 According to this theorem “there is no free lunch when the probability distribution on

problem instances is such that all problem solvers have identically distributed results”. See
Wikipedia http://en.wikipedia.org/wiki/No free lunch in search and optimization (ac-
cessed 18 August 2008)
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a CSP, the algorithm picked may not work efficiently. This is because such map-
pings were generated statistically, which may not apply to every problem instance.
The problem instance on hand may be “exceptionally hard” to the chosen algo-
rithm and heuristic. Therefore, part of the Adaptive Constraint Satisfaction project
was to develop measures for monitoring algorithms when they search. Every algo-
rithm is designed to exploit certain characteristics of the problem instance. If an
algorithm/heuristic does not do what it is supposed to do, it should be stopped, and
a different algorithm/heuristic should be used. For example, lookahead algorithms
[13] are designed to propagate constraints in order to prune the search space and
detect dead-ends. If, during the search, it is found that not much of the search space
is pruned, and a large amount of constraint propagation effort has resulted in few
dead-ends being detected, the lookahead algorithm that is currently used should be
replaced.

In this paper, we outline a particular instance of the adaptive approach where we
make use of Algorithmic Chaining. The result is REBA (for Reduced Exceptional
Behaviour Algorithm) which is designed to avoid the phenomenon of exceptionally
hard problems in the so called easy region for solvable CSPs. REBA operates on
complete search methods – methods that explore the search space systematically
and entirely if necessary.

2 The Adaptive Strategy

We have defined adaptive constraint satisfaction as a general approach to solving
CSPs. Within that approach there are many possible strategies. We examine one
particular adaptive strategy, designed to reduce the significance of EHPs by utilis-
ing algorithmic chaining. Algorithmic chaining uses a set of algorithms, arranged
in a pre-determined order, combined with a switching mechanism. The switching
mechanism monitors the search process of the current algorithm and, should certain
conditions occur, stops the current algorithm, trying again with the next algorithm
in the chain. In this section we discuss these two elements of the strategy.

2.1 Chain Design

As noted in [25], [26] the phenomenon of EHPs appears to affect different
algorithms to different degrees. However, the trend tends to be for more naı̈ve algo-
rithms, such as simple chronological backtracking algorithms, to be more suscepti-
ble. This presents us with two potentially useful measures for ranking algorithms.
The first is the cost to solve ‘normal’ occurrences of CSPs (measured by the median
cost), and the second is the algorithms sensitivity to EHPs. An example of possible
differences in ranking is given in Table 1.

If we can determine similar rankings to those in Table 1, we would have
enough information to design a useful chain for solving CSPs in the easy region
whilst increasing the likelihood of avoiding the potentially catastrophic effects of
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Table 1 Example showing how the ranking of algorithms can differ when based on median
cost of solving CSPs, and sensitivity to EHPs

Rank Algorithm Complexity Median Cost Sensitivity to EHPs
1 X X Z
2 Y Y Y
3 Z Z X

encountering an EHP. The chain can simply be set to an ordering based on the
“Quickest First Principle” (QFP), where quickest indicates the algorithm with the
best median performance.

We wanted to design an algorithm for solving easy solvable problems without
failing in EHPs. Using QFP means that we always have the potential for solving the
CSPs quickly. However, if we can detect that the current algorithm is not working
well, we could switch to the next quickest algorithm, and so on. As a result we can
still benefit from the speed of the naı̈ve algorithms while at the same time having the
capability to resort to more complex algorithms in the event that a switch scenario
is detected.

While there is some overhead involved in this approach, the benefits can be con-
siderable. For example, the ability to use a simple algorithm can result in an order of
magnitude gain in performance over its more complex counterparts. Another advan-
tage is that in the event of a bad initial choice of algorithm, we are not stuck with it.
Mistakes of this nature will be rectified when we switch away from the bad choice.

2.2 Switching Policy

The main requirements of the switching mechanism are that it can detect the phe-
nomena you wish to avoid, while adding only minimal overheads to the basic al-
gorithm. For REBA this means we need to predict the thrashing type behaviour
associated with EHPs encountered by naı̈ve algorithms, using a simple and efficient
prediction method.

There appear to be many types of thrashing in CSPs. [25], [26] note the basic
thrashing scenario is often seen in chronological backtracking algorithms such as
forward checking [13]. This is the worst type of thrashing, where the algorithm vis-
its all nodes in a sub-tree of the search space when it is futile to do so. It is not
experienced by more complex algorithms, such as intelligent backjumping algo-
rithms. However the idea of a search sub-space being repeatedly visited when it is
futile to do so still occurs in these algorithms, the main difference being the amount
of the sub-space visited.

At the heart of the switching mechanism of REBA is the Monitor Search Level
(MSL) thrashing predictor which is described in detail in Section 3.2. MSL rep-
resents one possible mechanism which attempts to predict when thrashing type
behaviour is likely to occur such that only a small portion of any futile sub
search space is actually explored by the algorithm in question. Using a sensitivity
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threshold supplied to it, the predictor will suggest that a switch is necessary if the
threshold is reached.

3 The Reduced Exceptional Behaviour Algorithm (REBA)

Having outlined the basic strategy for our Reduced Exceptional Behaviour Algo-
rithm, we give more details of its design. We also give a description of the prediction
mechanism used by REBA.

3.1 The REBA Algorithm Chain

The chain used by REBA is designed using the principles outlined in Section 2. This
chain uses a selection of algorithms with good median performance on easy soluble
CSPs, and a selection of algorithms with good worst case performance. These cover
a range of complete search techniques including features such as forward checking,
backjumping and heuristics which cover both static and dynamic variable orderings.
No stochastic algorithms are considered for REBA, but this should not rule out the
possibility of using them in alternative adaptive approaches. Space would not allow
us to go into details of these algorithms. Relevant pointers are provided here. [31]
explains most of these algorithms. In a way, it is not essential to understand details
of these algorithms. For this paper, the relevant point is that they cover a wide range
of algorithms and heuristics with diversified strength.

Having carried out some preliminary investigations, we chose to use the follow-
ing algorithms;

BM+MWO back-marking [9] with the minimum width ordering
heuristic [6]

BMCBJ+MWO back-marking with conflict-directed backjumping [20]
with the minimum width ordering heuristic

BMCBJ+MDO back-marking with conflict-directed backjumping [20]
with the maximum degree ordering heuristic6

FCCBJ+BZ forward checking with conflict-directed backjumping
[20] with the Brélaz ordering heuristic [29], [4]

MAC+MDO Maintain Arc Consistency [24] with the maximum de-
gree ordering heuristic

We propose to use these algorithms in the following chain to tackle problem
instances in the easy, soluble region:

BM+MWO → BMCBJ+MWO → BMCBJ+MDO → FCCBJ+BZ →
MAC+MDO

The reasoning behind this chain is that BM+MWO is very fast for many easy sol-
uble problem instances, but very susceptible to EHPs. However, it might succeed
in a very quick solution, otherwise thrashing will be detected. In the event that
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Fig. 1 An example of a sub search space

Fig. 2 The types of progress during search (see text for explanations)

BM+MWO fails, we try adding intelligent backjumping to it. If this fails, we try
changing the ordering, since a bad ordering is often a contributing factor to EHPs
[28]. If these simpler algorithms fall victim to an EHP, we attempt to use a form
of forward checking with conflict-directed backjumping and a dynamic variable or-
dering. Finally, if this fails, we resort to another algorithm which has relatively low
susceptibility to EHPs, MAC+MDO.

3.2 The Monitor Search Level (MSL) Thrashing Predictor

In this section we describe the Monitor Search Level (MSL) thrashing predictor.
We describe the behaviour MSL watches for, and explain how it decides when this
behaviour is sufficiently clear for thrashing to be predicted.
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As a basis for the design of MSL we defined the following functional specifica-
tion;

Given a CSP, an algorithm, and a variable ordering, the predictor should monitor the
progress of the search and be able to predict if thrashing is likely to occur during the
search.

One indication of thrashing is when the search from a particular level i never pro-
ceeds beyond a certain depth, d, and that a large proportion of the search space
between level i and level i + d is explored (i.e. little pruning takes place between
these two levels, see Figure 1). Such a situation can occur when the culprits of the
failure at level i + d precede the level i. MSL is a simple method which uses this
observation to predict thrashing type behaviour.

Before discussing MSL in more detail, we must identify three distinct types of
progress which occur during search. These are presented in figure 2.The types of
progress are defined as;

1. A value is found for the current variable which is compatible with all previous
assignments, or future variables in the case of lookahead algorithms. For example
the second arrow in Figure 2, where a value is found for the variable at level 2
which is compatible with the value assigned to the variable at level 1.

2. Backtracking occurs after finding no values for the current variable which are
compatible with previous assignments, or future variables in the case of looka-
head algorithms. For example the third arrow in Figure 2, where no value can
be found for the variable at level 3 which is compatible with the current assign-
ments of the variables at levels 1 and 2. This will be known as a No Assigned
Value (NAV) backtrack. The NAV backtrack occurs at the tail of the arrow, level
3. At the head of the arrow, level 2 learns of an Unsuccessful Subspace Search
(USS).

3. Backtracking occurs, but only after at least one value has been found for the
current variable which is compatible with the assignments of previous variables,
or future variables in the case of lookahead algorithms (Meaning the search must
have progressed at least one level further down than the current one). For example
the seventh arrow in Figure 2, where a value for the variable at level 3 has been
found which is compatible with the assignments of the variables at levels 1 and
2, but is later rejected because no value can be found for the variable at level
4. This will be known as a Successfully Assigned Values (SAV) backtrack. The
SAV backtrack occurs at the tail of the arrow, level 3. At the head of the arrow,
level 2 learns of a USS.

During the search MSL keeps track of the last level at which a NAV backtrack
occurred. This is considered to be the deepest level of the current search sub-space.
We will refer to this level as DEEPEST.

In addition, for each level in the search, MSL keeps track of two values. Firstly
a count indicating the number of USS’s which returned to the level with the same
value for DEEPEST. Secondly a record of the value of DEEPEST when this count
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Table 2 Possible actions of MSL on counti and DLi for level i

(1)
DEEPEST < DLi

(2)
DEEPEST = DLi

(3)
DEEPEST > DLi

(a)
USS

No action Increase counti by
1;
Check count against
threshold

Set counti to 1;
Set DLi to DEEP-
EST

(b)
NAV
Back-
track

Set DEEPEST to i Set DEEPEST to i Not Possible

(c)
SAV
Back-
track

Reset counti to 0;
Set DLi to DEEP-
EST

No action Not Possible

is started. We will refer to these values as counti and DLi respectively, where i is the
level they refer to.

In considering how the count is maintained, we must examine the seven possible
cases. These depend on whether a USS, a NAV backtrack or a SAV backtrack is
occurring, and what the value of DEEPEST is compared to the value of DLi for the
level. Table 2 illustrates the different actions taken at a given level, i, depending on
these circumstances.

Some points should be noted here:

• DEEPEST and counti are initialised to 0 and DLi are initialised to i
• DEEPEST can only be changed by a NAV backtrack occurring, and always

changes when such a backtrack occurs.

Figure 3 gives an example illustrating the possible situations encountered by
MSL. Each column in Figure 3 represents either an assignment, a NAV backtrack,
or a SAV backtrack together with a USS if applicable (with the exception of the
first column). The numbers below the arrow indicate the values of DL1,..,DL4,
count1,...,count4 and DEEPEST after the actions for that column have been car-
ried out. The values of the actions indicate which entries in Table 2 apply to the
above arrow7. This includes actions at both the tail and the head of the arrow. The
first column simply shows the initial values before the search begins.

As an example consider columns 14 to 16. Column 14 shows a simple assignment
to the variable at level 3, action A. No further actions take place. Column 15 then
shows a NAV backtrack from the variable at level 4. When the backtrack occurs,
DL4 = 4 and DEEPEST = 3, so DL4 > DEEPEST and entry b1 in Table 2 applies
to level 4. As a result DEEPEST is set to the value of i, i.e. DEEPEST = 4. At the

7 The entry A indicates a successful assignment, no action is taken.
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Fig. 3 Example search

head of the arrow USS entry a3 applies (because DEEPEST = 4 and DL3 = 3) and
count3 is set to 1 with DL3 being set to DEEPEST.

Column 16 shows a SAV backtrack from the variable at level 3. When the back-
track occurs, DL3 = 4 and DEEPEST = 4. Since DL3 = DEEPEST entry c2 in Table
2 applies and no action is taken at level 3. At the head of the arrow USS entry a3
applies and count2 is set to 1 with DL2 being set to DEEPEST.

3.2.1 Effectiveness of Thrashing Prediction Mechanisms

Having defined the function of our prediction mechanism, we also define a set of
criteria for evaluating its effectiveness. These criteria are based on three main func-
tions;

i It should predict as exceptionally hard those problem instances with high search
cost for the current algorithm.

ii The computational cost of predicting a CSP to be exceptionally hard should be
low and preferably not exceed the median cost. It should also be cheap in terms
of space.

iii It should not be so sensitive that too many problem instances are predicted to
be exceptionally hard. A high proportion of the problem instances with search
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costs of median or lower should not be predicted to be exceptionally hard for the
current algorithm.

3.3 The REBA Switching Mechanism

The MSL predictor is used by REBA for its switching mechanism. This is done
by REBA supplying the predictor with a formula for calculating the threshold. If
the threshold is exceeded, then MSL suggests that a switch should take place. As a
result, REBA will switch to the next algorithm in the chain.

We have experimented with a threshold based on the domain size of the variables,
and the number of levels separating the current level i and DLi. The base threshold
is a multiple of the domain size. The number of separating levels is taken as DLi - i.
The more separating levels, the lower the threshold has to be for switching to occur.
The formula used is;

T hreshold = base∗
(

n− separation
n

)

where: - base is the base threshold, which is a linear function of the domain size
- n is the number of variables,
- separation is the number of separating levels (DLi- i).

The threshold is adjusted according to separation to improve the sensitivity of de-
tection when the subspace is only searched sparsely, as might be the case with intel-
ligent backjumping algorithms.

Note that in subsequent experiments a suffix is given to the name of REBA. This
suffix indicates the multiples of the domain size used for the base threshold.

4 Experiments

In order to evaluate the overall performance of REBA and the effectiveness of its
switching mechanism we carried out an experiment on different classes of easy
soluble CSPs (which is what REBA is designed to tackle). This section describes
details of our experiment as well as presenting our results.

4.1 Experimental Design

The main aim of our experiment was to compare the performance of REBA with two
types of algorithms - those exhibiting good median performance in the easy soluble
region, and those that have a good worst case performance on easy soluble region.
Randomly generated CSPs are used to evaluate REBA. They allow us to control the
tightness of problem classes, and therefore select appropriate problem classes for
experimentation.
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The actual CSPs we used were based on randomly generated binary CSPs clas-
sified by the tuple <n, m, p1, p2>, where the elements of the tuple are defined
as;

n number of variables
m uniform domain size
p1 density of constraints in the constraint graph
p2 tightness of individual constraints8 i.e. the percentage of incompatible

assignments between the two variables involved in the constraint

Specifically, we wanted to conduct our experiments on problems in the so-called
easy soluble region where exceptionally hard problem instances were likely to oc-
cur. As a result, we chose the class <50, 10 , 0.1, 0.35 - 0.5 >. This range of p2
gives us a spread of problem instances in the region of interest and it also includes
some of the sets of problems used in [25] and [26], where EHPs were investigated.

The algorithms we chose for comparison, based on initial tests of problem
instances in the class description above, were as follows;

BMCBJ+MWO back-marking with conflict-directed backjumping with
the static minimum width ordering - this combination
gives a low median performance but has a sensitive
worst case performance in the region of interest.

FCCBJ+BZ forward checking with conflict-directed backjumping
with the dynamic Brélaz ordering - this combination
gives a relatively high median performance but a good
worst case performance in the region of interest.

MAC+MDO maintain arc-consistency with the static maximum de-
gree ordering - this combination also gives a relatively
high median performance but a good worst case perfor-
mance in the region of interest.

The CSPs for our experiments were generated at intervals of p2 of 0.01 and the
sample size for each data point was 1000. In order to limit the impact of EHPs on
our experimentation time, we limited the actual process CPU time for any given run
to 30 minutes. Where this time is exceeded, the compatibility check count up to that
time was recorded9.

The effect of using such a limit is that for a few data points, for the BM-
CBJ+MWO combination, the limit was reached. This does not detract from the
essence of our results, however, since the effect of any EHP is still clearly visi-
ble. The truncated values are many orders of magnitude above the median search
cost.

9 Note that the algorithms were implemented in C++ and run on DEC Alpha 3000 Model
600 AXP workstations running at 175 MHz.
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4.2 The Effectiveness of REBA

The results of our experiment in measuring the effectiveness of REBA are presented
in Figures 4–710. The results clearly show that the use of algorithmic chaining in
REBA has produced a good worst case performance where the impact of EHPs has
been significantly reduced. This is evident in the worst case plots of Figures 5 and 7.
REBA even outperforms FCCBJ+BZ in many cases. At the same time, the median

Fig. 4 Median performance on 50 variable problems in terms of compatibility checks

Fig. 5 Worst case performance on 50 variable problems in terms of compatibility checks

10 We only present cpu time results for MAC since our implementation is the same as that
of [24] where the compatibility check count is not a true reflection of the work done by
MAC.
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Fig. 6 Median performance on 50 variable problems in terms of cpu time. (Note that where
the plot for REBA and BMCBJ+MWO does not exist this means the median time was less
that one clock cycle and hence does not show in the logarithmic scale)

Fig. 7 Worst case performance on 50 variable problems in terms of cpu time

performance of REBA is much better than that of the more complex algorithms,
in most cases. This is particularly apparent when the CPU time is considered as in
Figures 6 and 7.

It should be noted that we have tested REBA on problems in the easy region.
This is because we advocate that different types of problem would be tackled by
different algorithms as noted in [30]. REBA, by design, appears to be useful in
tackling problems in the easy region on the soluble side of the phase transition. It is
the subject of further work to investigate the applicability of the strategies used in
REBA to tackling other problem types such as those in the phase transition.
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4.3 Evaluation of the MSL Predictor

To see how effective the switch detection mechanism in REBA is, we carried out
a further experiment. This time, we did not run the chain of algorithms. Instead,
we ran a version of BM+MWO, which included the MSL predictor, and monitored
where a switch was predicted (if one was required). If a switch was predicted, the
number of compatibility checks was recorded and the algorithm was allowed to
continue running to completion to see what the actual outcome would have been11.
We also repeated this experiment for an intelligent backjumping algorithm, BM-
CBJ+MWO, allowing us to observe the effectiveness of MSL in these two types of
algorithm.

For the BM+MWO combination, a problem set of 1000 CSPs were generated
with the specification <50, 10, 0.1, 0.4>. For the BMCBJ+MWO combination 1000
CSPs with the specification <50, 10, 0.1, 0.5>. This difference in p2 is a reflection
of the location where REBA was observed to have switched from these algorithms
in the experiment detailed in Section 4.2.

In Section 3 we defined three criteria for a evaluating a thrashing prediction
mechanism. We present our results in three ways to address these criteria. In Figures
8 and 9 we see how effective MSL is at filtering out problems where the actual cost
of search to completion would have been high, including the possibility of EHPs.
These histograms show the actual cost to completion of all the instances where a
switch would have taken place12(of which there were 589 for BM+MWO and 693
for BMCBJ+MWO).

These two figures show how there are many high cost searches predicted by MSL
to be thrashing.

Fig. 8 Ultimate search cost for BM+MWO had a switch not been predicted (total of 589
instances)

11 For the purposes of this experiment we used a base threshold equal to the domain size of
the variables.

12 The results are presented as multiples of the median search cost when considering the cost
to completion for all CSPs in the sample of 1000.
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Fig. 9 Ultimate search cost for BMCBJ+MWO had a switch not been predicted (total of 693
instances)

The second criterion was that the cost to detection should be low. Figures 10 and
11 show the actual search cost up to detection for the instances where a switch was
suggested.

As can be seen from these figures the performance is good, since the median
cost for predicting a switch in BM+MWO was always less than the median search
cost when all CSPs are considered. For BMCBJ+MWO a similar result can be seen,
with the exception of a few cases. However, even with these exceptions, there are
no cases where the cost exceeds five times the overall median.

Finally, the third criterion was that the prediction mechanism should not be too
sensitive and prevent completion of search for the many problem instances that
would have only had median cost to solve to completion. Figures 12 and 13 show
the cost of search for all the problem instances where no switch was predicted place
(of which there were 411 for BM+MWO and 307 for BMCBJ+MWO).

Fig. 10 Cost to predict a switch for BM+MWO (total of 589 instances)
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Fig. 11 Cost to predict a switch for BMCBJ+MWO (total of 693 instances)

Fig. 12 Search cost for problems where no switch was predicted for BM+MWO (total of 411
instances)

This clearly shows that no high cost problem instances are allowed through and
that there were many low cost problems let through. For BM+MWO, the maximum
search cost for a CSP in this set was less than the median for all problems. In the
case of BMCBJ+MWO, the maximum never exceeds five times the median.

From Figures 9–14 it is clear that the MSL predictor used for this version of
REBA, with a base threshold of 1.0, has performed very effectively, and that the
criteria laid out in Section 3.2 are largely fulfilled.

There is obviously a trade off when choosing the value for the threshold such that
no exceptionally hard problems are encountered, whilst at the same time allowing
the majority of the easier problems to be solved. The base threshold we have used
was equal to the domain size of the variables and was the same for all algorithms.
However, it may be possible to improve the effectiveness of algorithms such as
REBA by using a different threshold, or perhaps by using different thresholds for
the different algorithms in the chain.
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Fig. 13 Search cost for problems where no switch was predicted for BMCBJ+MWO (total
of 307 instances)

We have experimented with different thresholds and find that they also produce
good results when compared to the algorithms used in the above tests. We have also
looked at how REBA performs with larger problem sizes. Again, REBA performs
well. These results are given in Section A2.

5 Discussion

In this chapter we have demonstrated the potential of adaptive constraint satisfac-
tion. We have outlined a particular application of the adaptive approach using the
technique known as algorithmic chaining. This technique was incorporated in an al-
gorithm that we have named REBA, and has been shown to be effective in reducing
susceptibility to exceptionally hard problem instances.

The REBA algorithm makes use of a mechanism for predicting when thrashing
type behaviour is likely to occur. This notion of prediction is one of the keys to the
adaptive approach since it is prediction that allows algorithms to avoid search spaces
before they can impact significantly on the overall search. The MSL mechanism
used here is computationally very cheap and it has been shown to be reasonably
accurate.

Experiments with the REBA algorithm, which is specifically designed to reduce
the impact of exceptionally hard problem instances, show that it is possible to take
advantage of the speed of basic constraint satisfaction algorithms when solving easy,
soluble problem instances, while at the same time allowing us to bound the excep-
tional behaviour of these algorithms when exceptional problem instances are en-
countered. The principle of using the quickest algorithm first means that the best
case performance of the naı̈ve algorithms always has a chance of being achieved.
It also gives the opportunity for fast solutions to be provided in the event that “ex-
ceptionally easy” problem instances are encountered - this could be significant if a
similar method were to be used on, for example, hard classes of CSPs.
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REBA represents a novel approach which demonstrates the potential of collab-
oration between algorithms. Exceptionally hard problem instances are so punitive
in terms of cost that effective detection of potential traps for naı̈ve algorithms us-
ing a low cost detection mechanism such as MSL that it is possible to make use of
more sophisticated algorithms when they are needed, without incurring their general
overhead.

REBA demonstrates a number of key ideas of adaptive constraint satisfaction.
First, it recognizes that no algorithm is best for every CSP, as the No Free Lunch
Theorem does. It also demonstrates that search performance could be monitored
to see whether the algorithm is achieving what it is designed to achieve. (In fact,
there is no reason why algorithms should not be monitored beyond the constraint
satisfaction context.) REBA also demonstrates that efficiency can be gained by a
rigid chain of algorithms.

Gomes et al [12] studied when expensive search happens in a given algorithm,
which is highly related to thrashing detection in REBA. Dynamic restart was also
investigated by a number of other works. Kautz et al [38] defined a set of policies
for restarting the search. Gagliolo and Schmidhuber [8, 7] proposed to model the
runtime distribution – if training is possible – and use the estimated runtime distri-
bution to decide when to restart. In the Solution-Guided Search algorithm, Beck [2]
set, before the search starts, limits on the number of fails that the search is allowed
to encounter. One could imagine using REBA’s thrashing predictor to dynamically
set this limit.

Using a portfolio of algorithms for constraint satisfaction has gained momen-
tum in the last decade, see, for example, [15], [11] and [39]. Once a portfolio of
algorithms is involved, selecting the right algorithm for the job becomes part of the
research agenda in [10] and [39].

Many attempts have been made to learn from the problem solving experience.
The idea of selecting the right heuristic algorithm during run time was developed
by Allen and Minton [1]. Epstein et. al. [5] sought to learn search order heuristics
during problem solving. Related to these ideas, Minton [37] demonstrated the pos-
sibility of synthesizing heuristics. Kern (2005) used population-based incremental
learning to select algorithms and parameters. Kern’s work is embedded in iOpt [33],
which is used in many real-life dynamic problems, such as service scheduling [34].

This piece of work has opened many new areas of future work. One could fur-
ther investigate the use of chains and similar methods of choosing appropriate algo-
rithms to switch to in types of problems other than soluble easy CSPs. One could
also look at other methods for detecting when it would be useful to switch between
algorithms. This would involve identifying useful information that can be gathered
during search. The actual process of switching could also be a source of improve-
ment in efficiency. Ideally, information collected during the search could be used
for selecting the new algorithm or heuristic. When switches take place, information
gathered so far could be transferred to successive algorithms.
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Appendix

A.1 Tables of results for Figures 4–7

Table 3 Data for Figure 4, median performance on 50 variable problems in terms of compat-
ibility checks

p2 bmcbj+mwo fccbj+bz REBA1.0
35 296 934 300
36 308 929 319
37 324.5 920 344
38 342 914 446
39 367 907.5 530
40 399.5 904 601
41 435.5 899 671
42 489.5 900 742.5
43 575 897 840
44 620 906 932
45 799 915 1216.5
46 1021.5 932 1691
47 1226 982 2037
48 2090 1064 2475.5
49 3624.5 1244 3002
50 5785 1628 3491.5
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Table 4 Data for Figure 5, worst case performance on 50 variable problems in terms of
compatibility checks

p2 bmcbj+mwo fccbj+bz REBA1.0
35 815674 1005 3044
36 2639 1274 2342
37 8067955 1320 2886
38 50716 1828 3092
39 13907031 2103 4787
40 913249 1139 4601
41 2E+08 2737 3997
42 14676577 29868 37618
43 698687 3071 27071
44 1.43E+08 1242863 32790
45 1.57E+08 16877 30992
46 1.56E+08 66307 53962
47 9738619 1875137 48700
48 12706257 107156 52169
49 23113988 524932 50650
50 11733913 269627 100697

Table 5 Data for Figure 6, median performance on 50 variable problems in terms of cpu time

p2 bmcbj+mwo fccbj+bz mac+mdo REBA1.0
35 0 49 250 0
36 0 33 249 0
37 0 49 233 0
38 0 33 233 0
39 0 49 233 0
40 0 49 233 0
41 0 49 233 0
42 0 49 233 0
43 16 49 233 0
44 16 49 216 16
45 16 49 216 16
46 16 49 216 16
47 16 49 216 16
48 16 50 216 33
49 33 66 216 49
50 50 66 216 65
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Table 6 Data for Figure 7, worst case performance on 50 variable problems in terms of cpu
time

p2 bmcbj+mwo fccbj+bz mac+mdo REBA1.0
35 8016 83 316 49
36 16 83 283 66
37 71233 83 283 66
38 416 82 266 82
39 157783 83 333 82
40 9283 83 266 99
41 1800000 116 850 82
42 138433 916 283 498
43 6916 132 300 283
44 1800000 50266 316 448
45 1800000 583 300 332
46 1800000 2582 950 1082
47 107600 55149 366 766
48 144550 3549 433 815
49 237282 17632 650 732
50 135583 8549 1983 2615

A.2 Results for 100 Variables

Fig. 14 Median performance on 100 variable problems in terms of compatibility checks
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Fig. 15 Worst case performance on 100 variable problems in terms of compatibility checks

Fig. 16 Median performance on 100 variable problems in terms of cpu time
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Fig. 17 Worst case performance on 100 variable problems in terms of cpu time

A.3 Tables of results for Figures 14 – 17

Table 7 Data for Figure 14, median performance on 100 variable problems in terms of com-
patibility checks

p2 bmcbj+mwo fccbj+bz REBA1.0
15 865 3757 866
16 918 3682 928
17 971 3607 1010.5
18 1047 3533 1446.5
19 1177.5 3465 1830
20 1383.5 3396 2037.5
21 1598.5 3335 2275.5
22 1940.5 3271 2694
23 2756 3222.5 3606
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Table 8 Data for Figure 15, worst case performance on 100 variable problems in terms of
compatibility checks

p2 bmcbj+mwo fccbj+bz REBA1.0
15 2353 3920 3261
16 3387 3834 4100
17 3527 3773 5996
18 90854 3706 10388
19 10129 3623 11008
20 30716 3584 16016
21 1527678 3804 16256
22 4266115 5348 29393
23 59600500 4400 41197

Table 9 Data for Figure 16, median performance on 100 variable problems in terms of cpu
time

p2 bmcbj+mwo fccbj+bz mac+mdo REBA1.0
15 16 166 1232 0
16 16 166 1216 0
17 16 166 1200 16
18 16 166 1199 16
19 32 166 1183 16
20 32 166 1166 16
21 32 150 1166 16
22 32 166 1150 32
23 33 150 1133 33

Table 10 Data for Figure 17, worst case performance on 100 variable problems in terms of
cpu time

p2 bmcbj+mwo fccbj+bz mac+mdo REBA1.0
15 33 216 1266 49
16 49 216 1283 49
17 66 216 1266 132
18 832 200 1266 164
19 116 216 1333 215
20 532 200 1249 232
21 16800 200 1216 232
22 61533 283 1199 315
23 884032 216 1182 432
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Collaborative Computational Intelligence in
Economics

Shu-Heng Chen

Abstract. In this chapter, we review the use of the idea of collaborative compu-
tational intelligence in economics. We examine two kinds of collaboration: first,
the collaboration within the realm of computational intelligence, and, second, the
collaboration beyond the realm of it. These two forms of collaboration have had a
significant impact upon the current state of economics. First, they enhance and en-
rich the heterogeneous-agent research paradigm in economics, alternatively known
as agent-based economics. Second, they help integrate the use of human agents and
software agents in various forms, which in turn has tied together agent-based eco-
nomics and experimental economics. The marriage of the two points out the future
of economic research. Third, various hybridizations of the CI tools facilitate the
development of more comprehensive treatments of the economic and financial un-
certainties in terms of both their quantitative and qualitative aspects.

1 Introduction

Computational intelligence has been applied to economics for more than a decade.
These applications can be roughly divided into two categories, namely, agent-based
computational economics and financial data mining. Although in many such stud-
ies only one computational intelligence (CI) tool is involved, studies which apply
more than one CI tool also exist and have become popular. In these studies, a few
CI tools work together or collaborate with each other to perform a certain function.
These studies are, therefore, examples of the use of collaborative computational
intelligence. In this chapter, we shall provide a general review of collaborative com-
putational intelligence in economics based on these studies.

There are three major sources that motivate the application of collaborative
computational intelligence (CCI) to economics. The first source of stimulation
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comes from the new research paradigm in macroeconomics, which is known as
the heterogeneous-agent research paradigm. This new research paradigm is an al-
ternative to the conventional representative-agent paradigm, which has dominated
the development of macroeconomics for about half a century [54]. In Section 2, we
shall comprehensively review this development and point out its relevance to CCI.

The second source pertains to the recent attempt to integrate the experimental
economics and agent-based computational economics [22, 27, 45, 85]. One main
task associated with this integration is an inquiry into the relationship between hu-
man agents and software agents. Three relations have been mentioned in the lit-
erature, namely, mirroring, competition, and collaboration. In Section 3, we shall
review this development and indicate how CCI can be applied along these lines.

The last source is the use of hybrid systems in financial data mining [16, 109].
Over the last two decades, we have evidenced the simultaneous use of multiple CI
tools to build intelligent systems, including many financial ones. However, a general
review of this development is beyond the scope of this chapter. Besides, related
discussions may be available from other chapters. Therefore, to avoid redundancy
and to use the limited size efficiently, in Section 4, we shall focus on only the few
frequently used economic and financial hybrid systems in financial data mining.
Section 5 will give the concluding remarks.

2 Heterogeneous Agents

Why is collaborative computational intelligence relevant to the study of economics?
There is a straightforward answer: economic agents are heterogeneous, and their
differences and interactions match the idea of CCI well. In this section, we shall see
how computational intelligence has worked with the conventional approach in mod-
eling a population of heterogeneous agents and their interactions. Basically, these
types of collaboration can be differentiated into three levels, from the macroscopic,
to the microscopic, to the molecule level. We shall first briefly state these three levels
of collaboration (Section 2.1), and then elaborate on the significance of the collabo-
ration at each level by highlighting existing research (Sections 2.2-2.4).

2.1 The Three Levels of Collaboration

From a macroscopic viewpoint, the population-based CI tools, such as evolutionary
computation and swarm intelligence, have already encapsulated the idea of popu-
lation dynamics. Therefore, they are readily applicable to model a population of
heterogeneous economic agents. As we shall see in Section 2.2, there has already
been a great deal of this kind of collaboration. On the other hand, from a micro-
scopic viewpoint, we may also represent the heterogeneity of agents individually by
different CI algorithms. In this case, these agents can be regarded as incarnations of
different CI algorithms. These algorithms may be the same and may only differ in
their control parameters, or else they may be fundamentally different. For example,
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in the former case, all agents are represented by genetic programming, while us-
ing different parameters of population size [36], or, for the latter case, some agents
are represented by the K-nearest-neighbors (KNN) algorithm or general instance-
based learning (IBL) algorithms, while some others are represented by Bayesian
learning [21].

By moving further down to even more fine-detail level, referred to as the molecule
level, we can regard each individual agent as being represented by more than one
CI tool [67, 98]. In other words, the idea of hybrid systems is applied to model
agents, and hence their heterogeneity can also be manifested in terms of different
hybridization styles.

2.2 Macroscopic Level: Evolving Population

From the macroscopic viewpoint, the collaboration of computational intelligence
with the conventional cluster analysis has developed the conventional economic
agent engineering from the N-type designs into the autonomous-agent designs. This
development is particularly evident in the agent-based financial modeling. To review
this progress, let us first briefly review how agent-based economic and financial
modeling have arisen (Section 2.2.1), and then consider the two different approaches
in the designs of economic and financial agents (agent engineering) (Sections 2.2.2-
2.2.3).

2.2.1 Agent-Based Economic Modeling

The rise of agent-based economics and finance can be considered to be a paradigm
shift after long questioning, and even dissatisfaction with, the mainstream eco-
nomics methodology built upon representative agents. [54] provides a lengthy dis-
cussion on this “troubling” concept. There are many reasons for going against the
device of the representative agents, both from the empirical and theoretical aspects.
The main empirical grounds are that there is ample empirical evidence to show that
great heterogeneity and diversity exists at the micro level, from households, firms,
traders, and other decision-makers. Nonetheless, a solid understanding of this diver-
sity, such as the wealth distribution of households, the size distribution of firms, and
the optimistic and pessimistic forecasting distributed among financial practitioners,
is still lacking. Therefore, there is a need to search for a more suitable methodology
in order to study the distributive behavior of an economy. Furthermore, given the
great diversity at the micro level, the relationship between the macro (aggregates)
and micro (individuals) becomes much more complex than that of which holds in
the representative-agent economy. The exact relationship between the micro and
macro has actually presented economic theorists with a new challenge. All these
together motivated the formation of heterogeneous-agent approaches or the agent-
based paradigm approach to economics in the 1990s.1

1 There are a number of textbooks on macroeconomics written within this new background.
See, for example, [5, 44].
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Agent-based economics is an application of agent-based tools to economics. As
with other agent-based models, the agent-based economics also begin with agents.
This starting procedure is mainly composed of technical characterizations of eco-
nomic agents, i.e., how to design economic agents. Hence, it is also called economic
agent engineering. Economic agent engineering matters because, in general, it is
expected that different designs of agents can result in different aggregate dynamics,
even under the same institutional arrangements. Therefore, the agent-based eco-
nomic model can serve as a tool to run a sensitivity analysis of a specific market
or institution design to evaluate its possible performance. In this sense, it enables
social scientists to have their own laboratory and to perform their own experiments
as natural scientists do.

What follows are two very different designs of financial agents. The first one
is called the N-type design (Section 2.2.2), whereas the second is called the
autonomous-agent design (Section 2.2.3).

2.2.2 N-Type Designs

Let us now focus on the core of the agent-based financial markets, namely, financial
agents and their design. In reality, financial agents can differ in many dimensions,
ranging from expectations formation (beliefs), trading strategies, information ex-
posure, risk attitudes,and wealth (investment scale), to the need for liquidity, etc.
Given this high-dimensional heterogeneity, the essential question for financial agent
engineering is to decide how much heterogeneity is to be reflected in the artificial
markets. How much coarsely or finely do we want to differentiate these financial
agents?

Before we examine the design of artificial financial agents, it is useful to recall
what we have done for other artifacts. To name a few, the design of artificial ants
(ant algorithms) was motivated by observing the behavior of real ants in a labo-
ratory; the design of artificial bacteria (bacterial algorithms) was inspired by the
microbial evolution phenomenon; the design of the artificial brain (neural networks,
self-organizing maps) was motivated by the study of the real human brain; and the
design of the evolutionary process (evolutionary algorithms) was inspired by real
biological evolution. Generally speaking, the design of an artifact is, by and large,
motivated and guided by the behavior of its counterpart in nature.

The design of artificial financial agents is no exception. It is highly motivated by
observing how real financial agents behave. Empirical evidence accumulated since
the late 1980s and early 1990s has shed new light on the forecasting behavior of
financial agents. This empirical evidence was obtained through different kinds of
surveys, such as questionnaires and telephone interviews, with financial specialists,
bankers, currency traders, and dealers, etc. [50, 2]. The general findings from these
abundantly established empirical data are two-fold. First, the data indicate that, by
and large, there are two kinds of expectations existing in the market. The one which
is characterized as a stabilizing force of the market is associated with a type of fi-
nancial agent, called the fundamentalist. The one which is characterized as a desta-
bilizing force is associated with another type of financial agent, called the chartist,
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technical analyst or trend extrapolator. Second, the proportion (micro-structure) of
fundamentalists and chartists, also called the market fraction, is changing over time,
which indicates that financial agents are adaptive. These empirical findings provide
the initial direction for the early development of financial agent engineering. First,
they suggest what rules to look at; second, they point out the significance of learning
and adaptation.

Fundamentalists and chartists are concerned with two very different beliefs re-
garding the stock price dynamics. In a simple setting, they differ in terms of the
mean-reverting speed of the stock price when it is mispriced (undervalued or over-
valued). Fundamentalists tend to believe that the mispriced situation will soon be
corrected, whereas chartists tend to believe that in the short run it will continue.

2-Type Design

To make what we say more precise, we generally denote the forecasting rule of a
type-h agent as follows:

Eh,t [pt+1] = fh,t(pt , pt−1, ...), (1)

where Eh,t refers to the expectations of the type-h agent at time t. Equation (1)
indicates the one-step ahead forecast. At the beginning, we start with a very general
forecasting function fh,t , which uses all the historical data on price up to the present.
In addition, by considering that agents are adaptive, we allow the function to change
over time and hence denote it by the subscript t.

For the fundamentalists (h = f ) and chartists (h = c), their forecast rules, in a
very simple setting, can be written as

E f ,t [pt+1] = pt +α f (p f
t − pt), 0≤ α f ≤ 1., (2)

Ec,t(pt+1) = pt +αc(pt − pt−1), 0≤ αc. (3)

The idea of these two behavioral rules is that the fundamentalist has a mean-
reverting belief, and his belief is characterized by a reverting coefficient (α f ),
whereas the chartist has a trend-continuing belief, and his belief is characterized
by an extrapolating coefficient (αc). The magnitude of the reverting coefficient (α f )
measures the speed at which the fundamentalists expect the price to return to the
fundamental one (p f

t ), whereas the magnitude of the extrapolating coefficient (αc)
expresses the degree to which chartists expect the past to change into the future.

3-Type Design

There is little doubt that the behavior of financial agents can be more complex than
the two-type design. One obvious way to scale-up this design is to add more types
of agents to the model so as to take into account a finer degree of heterogeneity of
financial agents. This type of expansion is called the N-type design. For example,
in a three-type design, one can further distinguish two kinds of chartists, namely,
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momentum traders and contrarian traders, or simply, contrarians. Like momentum
traders, contrarians extrapolate past movements of the price into the future, but they
follow the opposite of the trend. More precisely, their forecasting rule is as follows:

Eco,t(pt+1) = pt +αco(pt − pt−1), αco ≤ 0. (4)

Contrarians consider that the price trend will finish soon, and will start to reverse.
However, unlike fundamentalists, contrarians do not base their forecasts on the fun-
damental price, which they either do not know, or they do not care about.

The recent availability of more proprietary data has enhanced the transparency of
the trading behavior of financial agents, including both individual and institutional
investors. Empirical studies using such data have shown that individuals and institu-
tions differ systematically in their reaction to past price performance and the degree
to which they follow momentum and contrarian strategies. On average, individual
investors are contrarian investors: they tend to buy stocks that have recently under-
performed the market and sell stocks that have performed well in recent weeks [15].
With this empirical basis, financial agent engineering has already added the contrar-
ians to the fundamentalist-chartist model, and popularized this three-type design.

Generalization of 2- and 3-Type Designs

Financial agent engineering can also be advanced by enriching the behavioral rules
associated with each type of financial agent. This alteration may make financial
agents more interdisciplinary. Considerations from different fields, including neural
sciences, cognitive psychology, and statistics, can be incorporated into designs. For
example, in behavioral finance, there is a psychological bias known as the “law of
small numbers”, which basically says that people underweight long-term averages,
and tend to put too much weight on recent experiences (the recency effect). When
equity returns have been high for many years, financial agents with this bias may
believe that high equity returns are “normal”. By design, we can take such bias into
account. One way to do so is to add a memory parameter to the behavioral rules of
our financial agents. This more general rule for contrarians is specified as follows:

Ec,t(pt+1) = pt +αc(1−βc)
T

∑
i=0

(βc)i(pt−i− pt−i−1), 0≤ αc, 0≤ βc ≤ 1. (5)

Eco,t(pt+1) = pt +αco(1−βco)
T

∑
i=0

(βco)i(pt−i− pt−i−1), 0≥αco, 0≤βco≤ 1. (6)

The momentum traders and contrarians now compute a moving average of the
past changes in the stock price and they extrapolate these changes into the future
of the stock price. However, we assume that there is an exponential decay in the
weights given to the past changes in the stock price. The parameters βc and βco can
be interpreted as reflecting the memory of momentum traders and contrarians. If
βc = βco = 0, momentum traders and contrarians remember only the last period’s
price change and they extrapolate this into the future. When βc and βco increase, the
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weight given to the price changes farther away in the past increases. In other words,
the chartists’ memory becomes longer.

The psychological bias mentioned earlier, therefore, corresponds to a small
value of this memory parameter, and this “hypothesis” can actually be tested. In
fact, by using the data for the S&P 500 index, one of the three major US stock
market indices, from January 1980 to December 2000, [4] actually estimated a
three-type agent-based financial market model, and found that contrarians have a
longer memory than momentum traders when they form their forecast of the fu-
ture price. Of course, this is just the beginning in terms of seeing how agent-based
financial market models can be quantified so as to communicate with behavioral
finance.

Adaptive Behavior

In the original fundamentalist-chartist model, learning does not exist. Agents who
initially happen to be fundamentalists will continue to be fundamentalists and will
never change this role, and likewise for chartists. As a result, the proportion (market
fraction) of fundamentalists and chartists remains fixed. Nonetheless, this simplifi-
cation underestimates the uncertainty faced by each trader. In general, traders, be
they fundamentalists or chartists, can never be certain about the duration of the
biased trend, since the trend can finish in weeks, months, or years. This uncer-
tainty causes the alerted traders to review and revise their beliefs constantly. In other
words, traders are adaptive.

Therefore, a further development of financial agent engineering is to consider
an evolving micro-structure of market participants. In this extension, the idea of
adaptive agents or learning agents is introduced into the model. Hence, an agent who
was a fundamentalist (chartist) may now switch to being a chartist (fundamentalist)
if he considers this switching to be more promising. Since, in the two-type model,
agents can only choose to be either a fundamentalist or a chartist, modeling their
learning behavior becomes quite simple, and is typically done using a binary-choice
model, specifically, the logit model or the Gibbs-Boltzmann distribution.

The logit model, also known as the Luce model, is the main model used in the
psychological theory of choice, and was proposed by Ducan Luce in 1959 in his
seminal book, “Individual Choice Behavior: A Theoretical Analysis.” Consider two
alternatives f (fundamentalist) and c (chartist). Each will produce some gains to the
agent. However, since the gain is random, the choice made by the agent is random
as well. The logit model assumes that the probability of the agent choosing f is the
probability that the profits or utilities gained from choosing f are greater than those
gained from choosing c. Under a certain assumption for the random component of
the utility, one can derive the following binary logit model:2

Prob(X = f ,t) =
expλVf ,t−1

expλVf ,t−1 +expλVc,t−1
, (7)

2 The extension into the multinomial logit model is straightforward.
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where Vf ,t and Vc,t are the deterministic components of the gains from the alterna-
tives f and c at time t. The parameter λ is a parameter carried over from the assumed
random component. The logit model says that the probability of choosing the alter-
native f depends on its absolute deterministic advantages, as we can see from the
following reformulation:

Prob(X = f , t) =
1

1 + exp−(λ (Vf ,t−1−Vc,t−1)
. (8)

When applied to the agent-based financial models, these deterministic components
are usually related to the temporal realized profits associated with different fore-
casting rules. So, in the two-type model, if Vf can be the temporal realized profits
from being a fundamentalist, then Vc can be the temporal realized profits from be-
ing a chartist. In addition, there is a new interpretation for the parameter β , namely,
the intensity of choice, because it basically measures the extent to which agents are
sensitive to the additional profits gained from choosing f instead of c.

Market Maker Equation

The market fractions above then determine the market fraction of each type of agent
in the market. For example, if Prob(X = F) = 0.8, it means that 80% of the market
participants are fundamentalists and the remaining 20% are chartists. The asset price
will be determined by this market fraction via the market maker equation.

pt = pt−1 + μ0 + μ1Dt (9)

where
Dt =∑

h

wh,t dh,t =∑
h

Prob(X = h, t)dh,t . (10)

Equation (9) is the market maker equation, which assumes that the price is adjusted
by the market maker, whose decision is in turn determined by the excess demand
normalized by the number of market participants, Dt . Dt , in Equation (10), is a
weighted average of the individual demand of each type of trader, weighted by the
market fractions (7).

Risk Preference and Portfolio

The demand for assets of each type of trader is derived in a standard expected-
utility maximization manner, which depends on the risk preference of the type-h
agent. Risk preference is important because it is the main determinant of agents’
portfolios, i.e., how agents’ wealth is distributed among different assets. The classi-
cal Markowitz mean-variance portfolio selection model offered the first systematic
treatment of asset allocation. Harry Markowitz, who later received the 1990 Nobel
Prize in Economics for this contribution, assumes that investors are concerned only
with the mean and variance of returns. This mean-variance preference has been
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extensively applied to modeling agents’ risk preference since the variance of returns
is normally accepted as a measure of risk.

In addition to the mean-variance preference, there are two other classes of risk
preferences that are widely accepted in the standard theory of finance. These two
correspond to two different attitudes toward risk aversion. One is called constant
absolute risk aversion (CARA), and the other is called constant relative risk aver-
sion (CRRA). When an agent’s preference exhibits CARA, his demand for the risky
asset (or stock) is independent of his changes in wealth. When an agent’s preference
exhibits CRRA, his demand for risky assets will increase with wealth in a linear way.
Using a Taylor expansion, one can connect the mean-variance preference to CARA
preferences and CRRA preferences. In fact, when the returns on the risky assets
follow a normal distribution, the demand for risky assets under the mean-variance
preference is the same of that under the CARA preference, and is determined by the
subjective-risk-adjusted expected return.

dh,t =
Eh,t(Δ pt+1)

ah,tVh,t(Δ pt+1)
=

Eh,t(pt+1)− pt

ah,tVh,t(Δ pt+1)
, (11)

where Δ pt+1 = pt+1− pt , and ah,t is a risk aversion coefficient. The Eh,t(pt+1) in
the numerator of Equation (11) is given by Equations (2), (3) and (4), and Vh,t in the
denominator represents the perceived risk of the type-h agents. Further details of the
formation of this subjective perceived risk can be found in the agent-based finance
literature [42, 58].

Use of the N-Type Designs

While putting this N-type design into practical financial forecasting is still in its
infancy stage, we have already seen some successful initial attempts in foreign ex-
change markets, which can be found in [43], a three-type design, and [75], a two-
type design.

2.2.3 Autonomous-Agent Designs

So far, all the types and rules of financial agents are given at the beginning of the
design, and what financial agents can do is to choose among these different types
and rules based on their past experiences. The N-type design has characterized a
major class of agent-based financial markets. However, this way of doing things
also severely restricts the degree of autonomy available for financial agents. First,
they can only choose how to behave based on what has been offered; secondly, as
a consequence, there will be no new rules available unless they are added outside
by the designers. If we want our artificial financial agents to behave more like real
financial agents, then we will certainly expect that they learn and discover on their
own. Therefore, as time goes by, new rules which have never been used before and
have not been supplied by the designer may be discovered by these artificial agents
inside the artificial world.
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Genetic Algorithms

Designing artificial agents who are able to design on their own is an idea similar to
John von Neumann’s self reproducing automata, i.e., a machine which can repro-
duce itself. This theory had a deep impact on John Holland, the father of the genetic
algorithmindexgenetic algorithms. Under von Neumann’s influence, Holland had
devoted himself to the study of a general-purpose computational device that could
serve as the basis for a general theory of automata. In the 1970s, he introduced the
genetic algorithm, which was intended to replace those ad hoc learning modules
in contemporary mainstream AI. Using genetic algorithms, Holland could make an
adaptive agent that not only learned from experience but could also be spontaneous
and creative. The latter property is crucial for the design of artificial financial agents.
In 1991, Holland and John Miller, an economist, published a sketch of the artificial
adaptive agent in the highly influential American Economic Review. This blueprint
was actually carried out in an artificial stock project in 1988 in the Santa Fe Institute
[82, 10].

Sante Fe Institute Artificial Stock Market

Armed with GAs, the Santa Fe Artificial Stock Market (SFI-ASM) considers a novel
design for financial agents. First, like many N-type designs, it mainly focuses on
the forecasting behavior of financial agents. Their trading behavior, as depicted in
Equation (11), will depend on their forecasts of the price in the next period. Second,
however, unlike the N-type designs, these agents are not divided into a fixed number
of different types. Instead, the forecasting behavior of each agent is “customized”
via a GA. We shall be more specific regarding its design because it provides us
with a good opportunity to see how economists take advantage of the increasing
computational power to endow artificial decision makers with a larger and larger
degree of autonomy.

In the SFI-ASM, each financial agent h uses a linear forecasting rule as follows:

Eh,t(pt+1) = αh,t +βh,t pt . (12)

However, the coefficients αh,t and βh,t not only change over time (time-dependent),
but also are state-dependent. That is, the value of these two coefficients at time t will
depend on the state of the economy (market) at time t. For example, the recent price
dynamics can be an indicator, so, say, if the price has risen in the last 3 periods,
the financial agent may consider lower values of both α and β than otherwise. The
price dividend ratio can be another indicator. If the price dividend ratio is lower
than 50%, then the financial agent may want to take a higher value of β than if it is
not. This state-dependent idea is very similar to what is known as classification and
regression trees (CART) or decision trees, a very dominant approach in machine
learning.

Therefore, one simple way to think of the artificial agents in the SFI-ASM is that
they each behave as machine-learning people who use regression trees to forecast
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the stock price. At each point in time, the agent has a set of indicators which help him
to decompose the state of the economy into m distinct classes, (A1

h,t ,A
2
h,t , ...,A

m
h,t),

and corresponding to each of the classes there is an associated linear forecasting
model. Which model will be activated depends on the state of the market at time t,
denoted by St . Altogether, the behavior of the financial agent can be summarized as
follows:

Eh,t(pt+1) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

α1
h,t +β 1

h,t pt , i f St ∈ A1
h,t ,

α2
h,t +β 2

h,t pt , i f St ∈ A2
h,t ,

. .

. .

. .
αm

h,t +βm
h,t pt , i f St ∈ Am

h,t .

(13)

A few remarks are added here. First, the forecasting rule summarized above is
updated as time goes by, as we keep the subscript t there. So, agents, in this sys-
tem, are learning over time with a regression tree, or they are using a time-variant
regression tree, in which all the regression coefficients and classes may change ac-
cordingly with the agents’ learning. Second, agents are completely heterogeneous
as we also keep the subscript h above. Therefore, if there are N financial agents in
the markets at each point in time, we may observe N regression trees, each of which
is owned and maintained by one individual agent. Third, however, the forecasting
rules introduced in the SFI-ASM are not exactly regression trees. They are, in fact,
classifier systems.

Classifier System

A classifier system is another of John Holland’s inventions in the late 1970s. This
system is similar to the Newell-Simon type of expert system, which is a population
of if-then or condition-action rules. The conventional expert systems are not able to
learn by themselves. To introduce adaptation into the system, Holland applied the
idea of market competition to a society of if-then rules. A formal algorithm, known
as the bucket-brigade algorithm, credits rules generating good outcomes and debits
rules generating bad outcomes. This accounting system is further used to resolve
conflicts among rules. The shortcoming of the classifier system is that it cannot
automatically generate or delete rules. Therefore, a GA is applied to evolve them
and to discover new rules.

This autonomous-agent design has been further adopted in many later studies.
While most studies continuously carried out this task using genetic algorithms3, a
few studies also used other population-based learning models, such as evolutionary
programming and genetic programming.

3 A lengthy review of this literature can be found in [23].
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Genetic Programming and Autonomous Agents

The development from the few-type designs to the many-type designs and further to
the autonomous-agent designs can be considered to be part of a continuous effort to
increase the collective search space of the forecasting function Eh,t , from finite to in-
finite space, and from parametric to semi-parametric functions. The contribution of
genetic programming (GP) to this development is to further extend the search space
to a infinite space of non-parametric functions, whose size (e.g., the dimensionality,
the cardinality or the number of variables used) and shapes (for example, linearity
or non-linearity, continuity or discontinuity) have to be determined, via search, si-
multaneously. This way of increasing the degree of autonomy may not contribute
much to the price dynamics, but can enrich other aggregate dynamics as well as the
behavior at the individual level. As we shall see below, the endogenous determina-
tion of the size and shape of Eh,t provides us with great opportunities to see some
aspects of market dynamics which are not easily available in the N-type designs or
other autonomous-agent design.

The first example concerns the sophistication of agents in market dynamics. The
definition and operation of GP rely on a specific language environment, known as
LIST Programming (LISP). For each LISP program, there is a tree representation.
The number of nodes (leaves) or the number of depths in the LISP trees provides
one measure of complexity in the vein of the program length. This additional obser-
vation enables us to study not just the heterogeneity in Eh,t , but also the associated
complexity of Eh,t . In other words, genetic programming can not only distinguish
agents by their forecasts, as the N-type designs did, but further delineate the dif-
ferentiation according to the agents’ sophistication (complexity). Must the survival
agents be sophisticated or can the simple agents prosper as well?

One interesting hypothesis related to the above inquiry is the monotone hypoth-
esis: the degree of traders’ sophistication is an increasing function of time. In other
words, traders will evolve to be more and more sophisticated as time goes on.
However, this hypothesis is rejected in [33]. They found that, based on the statis-
tics on the node complexity or the depth complexity, traders can evolve toward
a higher degree of sophistication, and at some point in time, they can be simple
as well.

The second example concerns the capability to distinguish the information from
noise. As we mentioned earlier, the variables recruited in the agents’ forecasting
function are also endogenously determined. This variable-selection function allows
us to examine whether the smart picking of these variables is crucial for survival.
In particular, the hypothesis of the extinction of noisy traders says that traders who
are unable to distinguish information from noise will become extinct. [34] test this
hypothesis. In an agent-based artificial market, they supplied traders with both in-
formative and noisy variables. The former include prices, dividends and trading vol-
umes, whereas the latter are just series of pseudo random numbers. Their simulation
shows, as time goes on, that traders who are unable to distinguish information from
noise do have a tendency to decline and even become extinct.
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2.3 Microscopic Level: Heterogeneity in Intelligence

2.3.1 Bounded Rationality and Intelligence Quotient

At the microscopic level, collaborative computational intelligence has shown its
relevance to modeling bounded rationality. Computational intelligence can be col-
laborated to address bounded rationality because different CI tools themselves may
already demonstrate different degrees of rationality or intelligence. Having said that,
we are aware of the measurement problems pertaining to rationality or intelligence.
Certainly, so far, there is no formal measure of rationality, and whether it can be
positively related to the intelligence quotient (IQ) is also unclear4, even though the
latter is frequently used as a proxy for the former.5 In addition, our experience that
smart people are not immune from doing dumb things further casts doubt on the con-
nection between the two.6 Needless to say, the study of human intelligence is still
an open-ended on-going body of research. The current research trend in empirical
economics, however, has attempted to make the behavior of bounded-rational agents
transparent or observable using real-world data. In addition, bounded rationality is
frequently used as an input in models since it may generate different predictions or
outcomes.

Therefore, despite the lack of an acceptable measure of rationality, the current
trend in economic research forces us to ask how computational intelligence can help
us building economic models of bounded rationality or building bounded-rational
agents. The simplest answer is that CI tools can help us to model the learning or
adaptive behavior of bounded-rational agents. A huge economic literature has al-
ready documented this development.7 Almost all major CI tools have been applied
to model the learning and adaptive behavior of economic agents, that includes re-
inforcement learning, instance-based learning, regression trees, Bayesian learning,
artificial neural nets, fuzzy logic, and evolutionary computation [23].

However, these studies have been frequently criticized as ad hocry in terms of
the choice of a specific CI tool. Hence, to move forward, the research question to
address is: can we have a theory or an acceptable practice to guide us in the choice of
CI tools when modeling the adaptive economic agents? This question has motivated

4 Despite their incurring criticisms, some empirical studies support a positive correlation
between IQ and income. While the correlation coefficient is often found to be less than
0.5, it may increase with age to some extent [57, 61].

5 The most famous example is the device of the zero-intelligence agents introduced in [52].
To motivate this design, [52] raised the issue: how much intelligence is required of an
agent to achieve human-level trading performance? The zero-intelligence agent, based on
the design of [52], is a randomly behaved agent, who needs no memory, no learning, and
no strategic playing. It is a kind of naive agent, who just randomly bids or randomly asks. It
was found that these randomly behaved agents are sufficiently able to replicate the market
efficiency achieved by human agents.

6 That is why we frequently see books like [48].
7 Among many available textbooks, [89] is the first one which introduces the materials of

computational intelligence to economists. [47] also has a section introducing the use of
computational intelligence to build learning models.
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a number of research directions. The one which is related to experimental economics
will be addressed in Section 3. In this subsection, we address the one directly related
to controlling the degree of intelligence or smartness. However, before that, let us
make a distinction between the two.

Certainly, models of learning and adaptation should be a part of bounded ratio-
nality, but not the whole. What has been generally neglected in the past applications
of CI tools to learning is that economic agents are not equally smart, as they have
different IQ, EQ, or whatever Q.8 Even though they are all learning, it does not
mean that they are learning under the same cognitive constraints or under the same
mental capacity. In fact, current behavioral genetics enhance our understanding of
the heterogeneity in human cognitive ability, that includes the ability to memorize,
to search, to learn, to perceive, and to socialize [76, 84]. A large proportion of the
variance in cognitive abilities can be attributed to genetics. Therefore, the difference
in genome may need to be incorporated into our applications of CI tools, and agents
with different innate cognitive abilities are expected to be equipped with different
CI tools.

2.3.2 Heterogeneity Characterized by Different CI Tools

Fortunately, taxonomies of CI tools based on the degree of cognitive constraints are
possible, while not perfect.9 For example, reinforcement learning models tend to be
regarded as less sophisticated than evolutionary computational models. Therefore,
a market composed of agents with heterogeneity in intelligence can be considered
to be a market composed of some “less smart” agents, whose adaptive behavior is
driven by reinforcement learning, and some “smart” agents, whose adaptive behav-
ior is driven by evolutionary computation. With this mixture, a few CI tools can
interact with each other in the same economic environment. This defines the first
kind of application of CCI at the micro level.10

[21] is probably the first study of this kind. In a context of agent-based artificial
stock markets, [21] considers three different types of agents. The first is the momen-
tum trader (chartist), whose forecasting behavior is a special case of Equation (3)
when αc is set to 1 and becomes 11

Ec,t(pt+1) = pt +(pt − pt−1). (14)

8 Of course, IQ as an important causal determinant of decision making is not just neglected
in economics, but is neglected in all social sciences [69].

9 Both [17] and [45] give a comprehensive treatment of various learning algorithms.
10 While various computational intelligence tools are often compared or compete in the fi-

nancial engineering domains, such as financial forecasting, trading, etc.. There has been
little work on comparing their behavior in agent-based economic modeling. The difference
between the two study styles is that in the former case the competition or tournament is
conducted without interaction or feedback, whereas in the latter case this mechanism is
presented.

11 See Section 2.2.2 for a detailed description of momentum traders.
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This type of momentum trader is naive in the sense that they continuously believe
that what they experience today regarding the price change will remain unchanged
tomorrow. Given this naive momentum trader, they also introduced two sophisti-
cated type of agents, namely, empirical Bayesian traders and K-nearest-neighbor
traders. Both empirical Bayesian traders and K nearest neighbors (KNN) are active
members of the CI toolkit.

Bayesian Learning

Before the advent of computational intelligence in the early 1990s, Bayesian learn-
ing was the dominant learning model used by economists. Economists have a strong
preference for Bayesian learning partially because in spirit it is consistent with opti-
mization. The optimality of Bayesian learning has been well established in statisti-
cal decision theory. It has a lot of variants and applications in regard to the economic
modeling of learning. The two most popular ones are Kalman filtering and recursive
least squares.12

As a Bayesian, the trader forecasts pt+1 using his posterior distribution (belief)
of pt+1, denoted by ft+1(p | x). ft+1(p | x) is the trader’s updated subjective belief
of the distribution of the price pt+1 after receiving the state information x at time t.
The updating formula is the famous Bayes rule:

ft+1(p | x) =
ft (p)ht(x | p)∫
ft(p̄)ht(x | p̄)d p̄

(15)

The Bayesian trader will then forecast using the posterior mean:

Eb,t(pt+1) =
∫

p ft+1(p | x), (16)

where Eb,t refers to the prediction made by the Bayesian trader at time t. Intu-
itively speaking, the Bayesian trader has a set of possible predictions (hypotheses)
St = {pe

t+1}, and not just a single degenerated prediction (hypothesis) pe
t+1. The

possibility of each of the possible predictions in the set St is governed by the pos-
terior distribution (15). It is now clear that Bayesian traders need to have a greater
mental capacity to first keep a set of hypotheses and then to deal with possibly very
demanding computations involved in (15) and (16).13

There is, however, a way to reduce this very demanding work. With the assump-
tion of the multivariate normal distribution, the entire updating of the posterior dis-
tribution can be reduced to the updating of two parameters only, namely, the mean
and the variance. In this case, we have the familiar Kalman filtering. By denoting
these expectations by Ek,t , then

12 See [89] and [47] for details.
13 It has been argued that the inability of humans to produce consistent and reliable probabil-

ity and preference judgments may explain why Bayesian decision theory fails in view of
this lack of necessary inputs.
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Ek,t(pt+1) = Ek,t−1(pt)+ kt(pt −Ek,t−1(pt)), (17)

where kt is the Kalman gain at time t.
Alternatively, one can also simplify the possible messy computation by using the

so-called empirical Bayes.14 The empirical Bayesian trader basically behaves like a
Bayesian, except that the posterior distribution is built upon an empirical rather than
a subjective distribution. This simplification requires traders to “memorize” all of
the association between the state information x and the price so that they can replace
the posterior distribution ft+1(p | x) simply by using the most recent histogram. As
we shall see below, this simplification connects the empirical Bayes to the K nearest
neighbors, to which we now turn.

K Nearest Neighbors

KNN differs from the conventional time-series modeling techniques. The conven-
tional time-series modeling, known as the Box-Jenkins approach, is a global model,
which is concerned with the estimation of the function, be it linear or non-linear, in
the following form:

pt+1 = f (pt , pt−1, ..., pt−m)+ εt = f (Pm
t )+ εt (18)

by using all of the information up to t, i.e., Pm
s ,∀s≤ t, where the estimated function

f̂ is assumed to hold for every single point in time. As a result, what will affect
pt+1 most is its immediate past pt , pt−1, ... under the law of motion estimated by all
available samples.

For KNN, while what affects pt+1 most is also its immediate past, the law of
motion is estimated only with similar samples, and not all samples. The estimated
function f̂t is hence assumed to only hold for that specific point in time. To facilitate
the discussion, we introduce the following notations.

Pm
1 ,Pm

2 , ...,Pm
T , Pm

t ∈ Rm, ∀ t = 1,2, ...,T (19)

Pm
t ≡ {pt , pt−1, ..., pt−m}, pt−l ∈ R,∀ l = 0,1, ...,m−1. (20)

Pm
t is a windowed series with an immediate past of m observations, also called the

m-history. Equation (19), therefore, represents a sequence of T m-histories which are
derived from the original time series, {pt}T

t=−m+1, by moving the m-long window
consecutively, each with one step.

KNN forms a cluster based on each Pm
t , N (Pm

t ), as follows.

N (Pm
t ) = {s | Rank(d(Pm

t ,Pm
s ))≤ k,∀s < t}, (21)

14 See [20] for a fine overview of empirical Bayes, and also [19] for an in-depth treat-
ment. The BUGS software provides an implementation of empirical Bayes methods us-
ing Markov Chain Monte Carlo [51]. The software is available from http://www.mrc-
bsu.cam.ac.uk/bugs.
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In other words, Pm
t itself serves as the centroid of a cluster, called the neighborhood

of Pm
t , N (Pm

t ). It then invites its k nearest neighbors to be the members of N (Pm
t )

by ranking the distance d(Pm
t ,Pm

s ) over the entire community

{Pm
s | s < t} (22)

from the closest to the farthest.
Then, by assuming a functional relation, f , between ps+1 and Pm

s and using only
the observations associated with N (Pm

t ) to estimate this function ft 15, one can con-
struct the tailor-made forecast for each pt ,

Eknn(pt+1) = f̂t (Pm
t ). (23)

In practice, the function f used in (23) can be very simple, either taking the
unconditional mean or the conditional mean. In the case of the latter, the mean is
usually assumed to be linear. In the case of the unconditional mean, one can simply
use the simple average in the forecast,

Eknn(pt+1) =
∑s∈N (Pm

t ) ps+1

k
, (24)

but one can also take the weighted average based on the distance of each member.
The same idea can be applied to deal with the linear conditional mean (linear re-
gression model): we can either take the ordinal least squares or the weighted least
squares. KNN can also be viewed as another kind of empirical Bayes since Equation
(24) can be related to the posterior mean (16).

Embodiment: Game-Theoretic CCI

The efficient market hypothesis implies that there are no profitable strategies, and
hence learning, regardless of its formalism, does not matter. As a result, the three
types of traders, momentum traders, empirical Bayesian and k-nearest-neighbor
traders should behave equally well, at least in the long run. However, when the mar-
ket is not efficient, and learning may matter, it is expectedthat smarter agents can
take advantage of dumber agents. In their experiments, [21] found that momentum
traders, who never learn, performed worst during the transition period when market
is not efficient. Furthermore, the empirical Bayesian traders was also outperformed
by the KNN traders. While the two types of traders started learning at the same time
and competed with each other to discover the true price, evidently the KNN traders
were able to exploit predictability more quickly than the empirical Bayesian traders.

[21] points to a new style of application of CCI to economics, namely, using an
agent-based environment to allow for a more vivid competition of different CI tools,
each of which is to represent an opportunity-seeking trader with different degrees

15 Even though the functional form is the same, the coefficients can vary depending on Pm
t

and its resultant N (Pm
t ). So, we add a subscript t as ft to make this time-variant property

clear.
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Fig. 1 Double Auction Market

of smartness. This style of application is not the same as a general forecasting tour-
nament, in which a number of CI tools also compete with each other in forecasting
a given time series. The key difference between the two styles of application lies in
the complex interacting effects among these competing CI tools, which obviously
exist in the former style, but not the latter. Put alternatively, [21] demonstrates an
embodied game-theoretic environment for a set of CI tools, which may be coined as
game-theoretic CCI.

2.3.3 Heterogeneity Characterized by Different Parameters

In addition to using different CI tools to characterize heterogeneity in intelligence,
it is also possible to use different parameters of the same CI tool to distinguish
different degrees of smartness. In this case, instead of the interaction of several
different CI tools, what we observe is the interaction of the same CI tools, but which
differ owing to different parameters.

In a study of the agent-based double auction market, [36] examine how the co-
evolution of agents’ strategies will change with the agents’ level of smartness, and
the associated micro-and-macro correspondence. Their agent-based double auction
market is simulated with genetic programming (GP) (Figure 1). While GP enables
all agents to learn, different values of control parameters of GP may imply different
levels of smartness of agents. In this study, the parameter population size is used to
characterize different degrees of smartness.

Using population size to characterize or approximate the degree of smartness
can be justified as follows. Population size is positively associated with the search
intensity. A larger search intensity can imply a higher performance.16 In this vein,
they vary their GP traders so as to have different population sizes, ranging from

16 It is not always so. See [24].
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10, 20,..., to 50. A smaller population size assumes a lower degree of smartness,
whereas a larger population size implies a higher degree of smartness.

It is found that, other things being equal, increasing the intelligence of individual
traders can contribute positively to the realized social welfare, a measure of market
efficiency. Nevertheless, it is also found that, other things being equal, increasing the
number of intelligent traders can exert an negative influence on the realized social
welfare. These findings, therefore, suggest an interesting implication: if the increase
in the number of intelligent traders is inevitable, then the increase in social welfare
can be made possible only if all intelligent traders become smarter.

The significance of the degree of smartness is pursued in [25]. In the context of
an agent-based artificial stock market, [25] address whether agents with different
degrees of smartness may result in different wealth. This brings us closer to the
original concerns of psychometricians mentioned in Section 2.3.1. In this study,
artificial traders are all modeled by genetic algorithms (GA). They use a GA to do
the forecasting, and then use it again to engage in portfolio optimization. By varying
the control parameter of the GA, [25] are able to design traders with different levels
of intelligence. In this case, the chosen control parameter is the size of the validation
window, and this choice can be justified as follows.

In machine learning literature, it is very common to divide our data into three
parts, namely, the training set, validation set, and testing set. The purpose of the
validation sample is to prevent the trained model from being subjected to over-
learning or over-fitting. In the environment of [25], it can be shown that the size of
the validation window can affect the forecasting accuracy of the model constructed,
which in turn will affect the quality of the portfolio decision. Through agent-based
simulation, they, therefore, show that the agents’ degree of smartness can positively
affect their wealth share. Not surprisingly, the smarter they are, the wealthier they
become.

2.3.4 Heterogeneity across Societies

Sections 2.3.2 and 2.3.3 are both concerned with an economy composed of agents
with different degrees of smartness. These kinds of application can then examine
how these different degrees of smartness can contribute to the resultant heterogene-
ity in economic performance. Therefore, they provide us with replications or pre-
dictions of the correlation between IQ and performance in a social context. One
can further ask, to what extent, the institutional design can eliminate or minimize
the impact of the heterogeneity in intelligence on the heterogeneity in economic
performance, for example, income inequality [79].

However, one may also be concerned with the comparisons between different
economies or different groups of agents. For example, [72, 71] provide rich re-
sources on the comparative studies of IQ among different countries and races. On
the other hand, differences in individuals’ behavior among different societies can
also be attributed to the culture factor. The recent path-breaking studies in this area
can be found in [55, 56]. Using experimental results from the ultimatum bargain-
ing games, [55] is able to show that “economic decisions and economic reasoning
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may be heavily influenced by cultural differences–that is, by socially transmitted
rules about how to behave in certain circumstances (economic or otherwise) that
may vary from group to group as a consequence of different cultural evolutionary
trajectories.” (Ibid, p. 973)

With these backgrounds, it is useful to distinguish different groups of agents by
using different CI tools. For example, one can use reinforcement learning to model
a group of agents, and use genetic algorithms to model another group of agents.
One may also try the same CI tool but with different control parameters to charac-
terize two different societies, as what we do in Section 2.3.3. Then by putting these
two groups of agents separately in the same environment, such as the ultimatum
bargaining game or stock market, one can compare the performance of the two dif-
ferent groups. In this way, the possible impacts of genetics and cultures upon the
collective performance can be tackled. This research direction can be exemplified
by the following few examples.

Minority Games

[90] addressed the traffic-flow problem in the context of games. This issue concerns
the most efficient distribution of the road space among drivers, characterized by the
travel time among different paths among drivers connecting the same origin with the
destination being identical. The intriguing part of this issue is: can we achieve this
goal in a bottom-up manner without the top-down supervision? [90] explored the
possibility by assuming that each driver learns how to choose the paths by means
of reinforcement learning. Several different versions of reinforcement learning have
been attempted. They differ in one key parameter, learning speed or the degree of
forgetting. It has been found that the allocative efficiency of roads is not independent
of this parameter. In other words, unless the learning speed is tuned correctly, there
is no guarantee that drivers will necessarily coordinate their use of roads in the most
efficient way, and congestion can happen all the time.

The congestion problem, also known as minority games, originates from the fa-
mous El Farol problem, which was first studied by [9]. The problem concerns the
attendance at the bar, El Farol, in Sante Fe. Agents’ willingness to visit the bar on
a specific night depends on their expectations of the attendance at that night. An
agent will go to the bar if her expected attendance is less than the capacity of the
bar; otherwise, she will not go. [9] showed that the time series of attendance levels
seems to always fluctuate around an average level of the capacity of the bar. How-
ever, agents in [9] reason with a fixed set of models, deterministically iterated over
time. Discovering new models is out of the question in this set-up.

[49] replace this fixed set of rules with a class of auto-regressive (AR) models.
Furthermore, the number of lag terms and the respective coefficients are revised and
renewed via evolutionary programming (EP). The introduction of EP to the system
of AR agents has a marked impact on the observed behavior: the overall result is
one of large oscillations rather than mild fluctuations around the capacity.

[90] and [49] together show that there is no guarantee that agents with arbitrary
learning algorithms, characterizing different cultures, habits, routines, or IQ, can
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coordinate well to avoid congestion and maximize social efficiency, and the coordi-
nation limit is affected by the IQ or cultures of society, which are characterized by
various computational intelligence tools.

2.4 Molecule Level: Hybridization

The idea of hybrid systems is also employed to build individual agents. In this case,
each individual is represented by more than one CI tool, and is an incarnation of a
specific style of CCI.

Evolutionary Artificial Neural Nets

[67] provides the first application of this kind, and, in this case, the specific style is
the evolutionary artificial neural net. In the context of the SFI artificial stock market,
the financial agents are required to solve the portfolio optimization problem, which
involves the distribution of the savings into risky and riskless assets, something
which is similar to Equation (11). Equation (11) is a typical two-stage decision, i.e.,
the forecast decision is made before the investment decision, but [67] considered
a reduced one-stage decision. The mapping is, therefore, directly constructed from
the information available at time t− 1 to the optimal portfolio at time t, yh,t . More
precisely, the financial agents are first represented by an artificial neural network, or
a feedforward neural network with one hidden layer, to be exact.

yh,t = h2(w0 +
l

∑
j=1

wjh1(w0 j +
p

∑
i=1

wi jxi,t−1)) (25)

The information set, {xi}p
i=1 includes past dividends, returns, the price/dividend ra-

tio, and trend-following technical trading indicators. This population of investment
decision rules (over all agents) is then evolved with genetic algorithms to symbolize
the evolutionary learning of financial agents.

Genetic Fuzzy Classifier System

Another related development has occurred in the use of natural language. People
frequently and routinely use natural language or linguistic values, such as high,
low, and so on, to describe their perceptions, demands, expectations, and decisions.
Some psychologists have argued that our ability to process information efficiently is
the outcome of applying fuzzy logic as part of our thought processes. The evidence
on human reasoning and human thought processes supports the hypothesis that at
least some categories of human thought are definitely fuzzy. Yet, early agent-based
economic models have assumed that agents’ adaptive behavior is crisp. [98] made
progress in this direction by using the genetic-fuzzy classifier system (GFCS) to
model traders’ adaptive behavior in the SFI-like artificial stock market.

[98] considers a fuzzy extension of the forecasting function (13). In Equation
(13), each forecasting rule has two coefficients, the constant term (α) and the
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slope (β ). Without any augmentation, these forecasting rules are simply linear, and
cannot be expected to work well. The original SFI-ASM made them non-linear by
making these two coefficients state dependent via the classifier system. However,
the two coefficients are crisp. [98] applies the Mamdani style of fuzzy rules to make
them fuzzy. As an illustration, the Mamdani style of a fuzzy if-then rule is:

If x is “A”, then y is “B”,

whereas the input set “A” and the output set “B” are both fuzzy. In [98], this
application becomes something like:

If pt
MA(5) is “ low”, then α is “moderately high”, and β is “moderately high”.

Obviously, the terms “low”, “high”, “moderately low”, and “moderately high” are
all linguistic variables, and they are represented by the respective membership
functions. The state variable is pt/MA(5), where MA(5) is the moving average of
the price over the last five periods. So, this rule compares the current price with the
5-day moving average, and if the ratio is low enough, then both α and β will be
moderately high. Of course, the above fuzzy forecasting rule can easily be extended
to include more variables. For example,

“If pt×rt
dt

is high and pt/MA(5) is moderately low and pt/MA(10) is moderately
high and pt/MA(100) is low and pt/MA(500) is high, then α is “moderately
low”, and β is “high”.

ptrt/dt reflects the current price in relation to the current dividend and it in-
dicates whether the stock is above or below the fundamental value at the current
price. The inclusion of this information makes agents behave like fundamentalists.
The remaining four state variables indicate whether the price history exhibits a trend
or similar characteristic. The inclusion of this information makes agents behave
more like chartists. Therefore, by combining these state variables, the financial
agents may choose to behave more like fundamentalists or more like chartists.17

3 Human and Software Agents

We have now reviewed how the idea of CCI enhances the heterogeneous-agent re-
search paradigm at the macro, micro and molecule levels. In addition to that, the
idea of CCI also plays an important role in the recent efforts made by economists
to overarch agent-based computational economics (ACE) and experimental eco-
nomics. It has been argued in many instances that agent-based simulation should be
integrated with experiments using human subjects, for example, [45], [60] and [74].
The relationship between agent-based computational economics and experimental

17 This design is not the 2-type design as we see in Section 2.2.2.
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economics is, in essence, a relationship between human agents and software agents.
The literature has already demonstrated three possible ways of closely relating ACE
to experimental economics, namely, mirroring, competition and collaboration. They
appear in the literature in chronological order.

3.1 Mirroring

The early ACE studies are clearly motivated by using software agents to mimic
the behavior of human agents observed in the laboratory. The famous Turing test
serves as the best illustration. [8] point out that the development of social science
theories can be likened to the task of building a computer to mimic human behavior,
or equivalently, to building a computer that will pass the Turing test in the range of
behavior covered by the theory. Thus, a social science theory can be deemed to be
successful when it is no longer possible for a computer judge to tell the difference
between behavior generated by humans and that generated by the theory (i.e., by a
machine).

3.1.1 Mirroring with Genetic Algorithms

In this regard, the two CI tools, namely, genetic algorithms and genetic program-
ming are frequently used to build software agents such that their collective behavior
can mirror the laboratories with human subjects. [6] pioneered this research direc-
tion. [6] applied two versions of GAs to study market dynamics in a cobweb model.
The basic GA involves three genetic operators: reproduction, crossover, and muta-
tion. Arifovic found that in each simulation of the basic GA, individual quantities
and prices exhibited fluctuations for its entire duration and did not result in con-
vergence to the rational expectations equilibrium values, which is quite inconsistent
with experimental results involving human subjects.

Arifovic’s second GA version, the augmented GA, includes the election opera-
tor in addition to reproduction, crossover, and mutation. The election operator in-
volves two steps. First, crossover is performed. Second, the potential fitness of the
newly-generated offspring is compared with the actual fitness values of its parents.
Among the two offspring and two parents, the two highest fitness individuals are
then chosen. The purpose of this operator is to overcome difficulties related to the
way mutation influences the convergence process, because the election operator can
bring the variance of the population rules to zero as the algorithm converges to the
equilibrium values.

The results of the simulations show that the augmented GA converges to the ratio-
nal expectations equilibrium values for all sets of cobweb model parameter values,
including both stable and unstable cases, and can capture several features of the ex-
perimental behavior of human subjects better than other simple learning algorithms.
To avoid the arbitrariness of choice of an adaptive scheme, [70] suggested that com-
parison of the behavior of adaptive schemes with behavior observed in laboratory
experiments with human subjects can facilitate the choice of a particular adaptive
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scheme. From this suggestion, the GA could be considered an appropriate choice to
model learning agents in a complex system. Other similar studies to justify the use
of genetic algorithms to mirror human experiments include [7].

3.1.2 Mirroring with Genetic Programming

The application of genetic programming to the cobweb model started from [30]. [30]
compared the learning performance of GP-based learning agents with that of GA-
based learning agents. They found that, like GA-based learning agents, GP-based
learning agents can also learn the homogeneous rational expectations equilibrium
price under both the stable and unstable cobweb case. However, the phenomenon of
price euphoria, which did not happen in [6], does show up quite often in the early
stages of the GP experiments. This is mainly because agents in their setup were
initially endowed with very limited information as compared to [6]. Nevertheless,
GP-based learning can quickly coordinate agents’ beliefs so that the emergence of
price euphoria is only temporary. Furthermore, unlike [6], [30] did not use the elec-
tion operator. Without the election operator, the rational expectations equilibrium
is exposed to potentially persistent perturbations due to the agents’ adoption of the
new, but untested, rules. However, what shows up in [30] is that the market can still
bring any price deviation back to equilibrium. Therefore, the self-stabilizing feature
of the market, known as the invisible hand, is more powerfully replicated in their
GP-based artificial market.

The self-stabilizing feature of the market demonstrated in [30] was further tested
with two complications. In the first case, [31] introduced a population of speculators
to the market and examined the effect of speculations on market stability. In the
second case, the market was perturbed with a structural change characterized by
a shift in the demand curve, and [32] then tested whether the market could restore
the rational expectations equilibrium. The answer to the first experiment is generally
negative, i.e., speculators do not enhance the stability of the market. On the contrary,
they do destabilize the market. Only in special cases when trading regulations, such
as the transaction cost and position limit, were tightly imposed could speculators
enhance the market stability. The answer for the second experiment is, however,
positive. [32] showed that GP-based adaptive agents could detect the shift in the
demand curve and adapt to it. Nonetheless, the transition phase was non-linear and
non-smooth; one can observe slumps, crashes, and bursts in the transition phase. In
addition, the transition speed is uncertain. It could be fast, but could be slow as well.

In addition to genetic algorithms, genetic programming is also extensively ap-
plied to build systems of software agents which are able to replicate the labora-
tory results with human subjects. [26] studied bargaining behavior observed in the
double-auction laboratory markets with human subjects. All buyers and sellers in
[26] are artificial adaptive agents. Each artificial adaptive agent is built upon ge-
netic programming. The architecture of genetic programming used is what is known
as multi-population genetic programming (MGP). Briefly, they viewed or modeled
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Fig. 2 Agent-Based Double Auction Market Simulation with GP Agents. The three markets
presented here are selected and adapted from [26], Fig. 4

an agent as a population of bargaining strategies.18 Genetic programming is then
applied to evolving each population of bargaining strategies. In this case, a society
of bargaining agents consists of many populations of programs. This architecture is
shown in Figure 1.

In Figure 2, there are three plots. The leftmost plot is the market with its equilib-
rium price or equilibrium price interval. The middle plot and the rightmost plot are
the time series of the GP simulations with different parameters. As we can see from
Figure 2, the three markets presented here either have a unique equilibrium price
(Market 10) or a tight equilibrium interval (Markets 7 and 20). Market prices in this
case quickly move toward the equilibrium price (or price interval), and then slightly
fluctuate around there. This result is basically consistent with what we learned from
experimental economics with human subjects [96].

3.2 Competition

In addition to mirroring the collective behavior of human agents, software agents
are also used directly to interact with human agents. This advancement is partially

18 The number of bargaining strategies assigned to each bargaining agent is called the popu-
lation size. AIE-DA Version 2, developed by the AI-ECON Research Center, allows each
agent to have at most 1000 bargaining strategies.
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motivated by the increasing popularity of electronic commerce. In web-based on-
line markets, such as ebay, one general question concerns the role of software
agents. Can software agents perform better than human agents in making deals?
This question is similar to the inquiry on the degree of smartness of software agents
in comparison with that of human agents, which is a generalization of the issue
pursued in Section 2.3.1. Of course, it would be problematic to measure the IQ of
software agents. Nevertheless, the Turing test does challenge the possibility that one
can measure the IQ of software agents if they are properly designed. As a result, as
an extension of Section 2.3.2, we can now match human agents with software agents
in various kinds of markets or games.

The agent-based financial system U-MART provides one of the best illustra-
tions. U-MART stands for UnReal Market as an Artificial Research Test bed. This
is a research project collaboratively initiated by a number of universities in Japan
[95]. It is an agent-based future market, which serves both purposes of education
and research. Second, U-MART enables us to address a very basic question: can
human agents dominate the software agents when they are placed together in the
market? What was found in some limited experiments is that the performance of
software agents was superior to that of human agents. Of course, the result is still
premature. Even the question is not well-defined. This is so because the competition
was generally not made on a fair basis. For example, during the transaction process,
human agents were poorly equipped with computational facilities so that they were
not able to figure out some important figures in the nick of time. The competition
will be considered more fair if it allows human agents to write their own trading
programs and modify the program on-line, as will be discussed in Section 3.3.

Other interesting research questions can also be addressed by watching the inter-
action between human and software agents. Market efficiency is a case in point. [53]
studied whether market efficiency can be enhanced when software agents are intro-
duced to the markets which were originally composed solely of human agents.19

They designed a continuous double auction market in the style of the Iowa electronic
market, and introduced software agents with a passive arbitrage seeking strategy to
the market experiment with human agents. They then went further to distinguish
the case where human agents are informed of the presence of software agents from
the case where human agents are not informed of this presence. Whether or not the
human agents are well informed of the presence of the software agents can have
significant impacts upon market efficiency (in the form of price deviations from the
fundamental price). They found that if human agents are well informed, then the
presence of software agents triggers more efficient market prices when compared
to the baseline treatment without software agents. Otherwise, the introduction of
software agents results in lower market efficiency.20 In a sense, this question can
be viewed in terms of the socio-psychological impact on human behavior in the
presence of interacting machine intelligence.

19 See also [91] and [101].
20 These issues have been further pursued in the recent development of the U-Mart platform

([99], [92], [65]).
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3.3 Collaboration

At the third stage, neither do we mirror, nor do we match, the two kinds of agents.
Human agents now work with software agents as a team, and they are no longer
treated as two entities. The modern definition of artificial intelligence has already
given up the dream of passing the Turing test. Instead, a more realistic and also in-
teresting definition is based on the team work cooperatively performed by software
agents and human agents [68]. If the studies of the first two stages can be considered
to be the works under the influence of classical AI, then the third development is a
natural consequence of the modern AI.

3.3.1 Is Collaboration Behaviorally Feasible?

This stage of research involves one non-trivial question: is collaboration behav-
iorally feasible? Would human agents choose to work with software agents if they
were given this option? Can we see the collaborative computational intelligence be-
yond software agents in this way? [28] carried out an experiment to make software
agents available in a laboratory with human subjects, and to watch whether human
agents will choose software agents to be their representatives, while forming their
decisions and actions. The laboratory used to facilitate this study is a prediction
market, which is a kind of web-based and agent-based simulation platform [102].
They designed the software agents as the trading algorithms which can execute bid
orders or ask orders when the market timing condition is met. Human agents have
the option of choosing these software agents, and even rewrite these algorithms, to
be their trading representatives. If they do so, their identities are completely char-
acterized by the associated software agents. In this case, the distinction between
human and software agents becomes problematic.

They carried out the above experiment in relation to a recent political event (a
mayoral election in Taiwan), and found that out of 425 market participants (human
agents), only 25 used software agents to trade. In other words, most human agents
chose not to bother with software agents. This result is evidence that human agents
may not collaborate with software agents. They then went further to ask the rationale
behind the choice to ignore software agents. They first found that human agents
who used software agents to trade generally earned higher profits than those who
did not use them, and this dominance was statistically significant. This brought us
face to face with a puzzling question: Why do human agents not “recruit” software
agents when they are available in a promising way? To tackle this question, they
distributed questionnaires to market participants to gain more information regarding
their choice behavior.

3.3.2 Collaborate with Customized Software Agents

One of the reasons why human agents did not use software agents as their repre-
sentatives was that they did not feel comfortable with them, or else they did not
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quite trust them. In other words, these software agents were not customized. In a
subsequent experiment, they considered a different setup which may blur the rela-
tions between human and software agents. That is, they asked each human agent
to write his or her own trading program (software agents), and used them as their
incarnations in the later agent-based market simulation. This idea is very similar to
the game-like tournaments pioneered by Robert Axelrod in the mid-1980s [12, 63],
and the market-like tournament initiated by the Santa Fe Institute in the early 1990s
[86]. However, moving one step further, they considered a comparison between the
simulation based on these humanly-supplied software agents and the one based on
purely computer-generated software agents. For the latter case, genetic program-
ming was applied to generate the autonomous agents, and the platform AIE-DA
was used to implement the simulation (see also Section 3.1.2).

Out of the 20 simulations which they carried out, they found that the market
composed of purely computer-generated software agents that are autonomous and
adaptive performs consistently better, in terms of market efficiency, than the mar-
ket composed of humanly-supplied software agents, even though humanly-supplied
software agents are more sophisticated or thoughtful.

The two experiments above together have two implications. The first experiment,
from a sociological viewpoint, provides evidence that human agents may have dif-
ficulty embracing (containing) software agents when making decisions. The second
experiment further shows that if we allow human agents to choose or even design
their own software agents, their collective behavior may not be the same as that ob-
served from the computer-generated software agents. This second finding is similar
to that of [8].21

4 Hybrid Systems

Section 2 reviews the applications of CCI to agent-based computational economics
(the heterogeneous-agent research paradigm), and Section 3 reviews the applications
of CCI to experimental economics. In both of these two cases, CCI is mainly used to
build software agents in economic and financial models. In other words, CCI con-
tributes to economic and financial agent engineering. Another major area to which
CCI is also vastly applied, with an even longer history, is financial engineering. This
application is mainly motivated by the rapid development of various hybridizations
of CI tools. There are a number of hybrid systems frequently observed in financial
engineering. We shall only sample some in this section.

4.1 Nature of Hybridization

The idea of using various CI tools as a module of a hybrid system or an agent of
a multi-agent system is not new, but it has just gained its momentum over the last

21 [8] find significant differences in data generated by some chosen learning models and
humans, with the greatest ones in coordination games.
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decade. 22 The room for this collaboration is available mainly because of the het-
erogeneity of CI tools (see also Section 2). Different CI tools are designed with
different mechanisms inspired from various natural and artificial processes; there-
fore, they may each handle one or a few different aspects of an intelligent task [23].
To name a few, self-organizing maps are operated for pattern discovery and concept
formation, auto-association neural networks are good for the removal of redundan-
cies and data compression, feedforward and recurrent neural networks are regarded
as universal function approximators, and the approximation process can usually be
facilitated by genetic algorithms. With this diversity in specialization, it would be
surprising to see very little collaboration but much competition among them, as has
been developed in the literature over the past. The recent research trend seems to
recognize this biased development and move back to the collaboration theme ac-
cordingly.

Financial hybrid systems are mainly the financial applications of the hybrid sys-
tems or multi-agent systems. Among the many designs of financial hybrid systems,
it is important to distinguish models from processes, particularly, evolutionary pro-
cesses. Many financial hybrid systems are designed based on the idea of putting
a model or a population of models under an evolutionary process, which includes
evolutionary artificial neural networks, evolutionary fuzzy inference systems, evo-
lutionary support vector machines, etc. We shall start with a review of this main idea
(Section 4.2). The second major element we experienced in hybrid financial systems
is the desire to make semantic sense of the hybrid systems, which includes the use
of natural language and qualitative (non-numeric) reasoning. We shall then provide
a brief review of this (Section 4.3). We conclude this section by mentioning the col-
laboration work done with the data or database, such as feature selection, dimension
reduction, etc. (Section 4.4).

4.2 Evolutionary-Based Hybridization

The idea of the evolutionary-based hybridization is clear: there are two major el-
ements in this hybrid system. One is the universal function approximator, and the
other is the built-in approximation process. If we consider the former as an para-
metric model, then the latter can be regarded as an estimator of it. In economics,
there are three frequently used evolutionary-based hybrid systems, namely, evolu-
tionary artificial neural networks (Section 4.2.1), evolutionary support vector ma-
chines (Section 4.2.2), and evolutionary fuzzy or neurofuzzy inference systems.

4.2.1 Evolutionary Artificial Neural Networks

Among all hybridizations of CI in finance, the most popular one is probably the
combination of genetic algorithms and artificial neural nets, which is one of the
kinds of evolutionary artificial neural nets (EANNs), referred as to GANNs (genetic

22 A more comprehensive treatment of the hybrid system can be found in [18] and [41].
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algorithms + neural nets). EANNs are computationally very demanding; therefore,
despite their conceptual appeal, there were few financial applications using EANNs
in the 1990s. However, recently, a number of commercial algorithms, such as Neu-
roSolutions, have been made available, and hence the adoption of EANNs has spread
quickly and widely.

In GANNs, genetic algorithms are applied to evolve an artificial neural net so
as to genetically determine not only its weights, but also its topology, including the
number of layers, the number of hidden nodes and input selection. For example, [64]
uses a genetic algorithm to simultaneously optimize the connection weights between
layers and select instance. It is found that genetically selected instances shorten the
learning time and enhance prediction performance. It many applications, the weight
determination is performed through the backpropagation algorithm, but in this case
genetic algorithms can be applied to determine the learning rate and momentum of
the backpropagation algorithm [94].

In addition to GAs, another subclass of EANNs is GPNNs (genetic programming
+ neural nets). [3] employ genetic programming to evolve artificial neural networks,
and the genetically evolved neural networks are applied to forecast exchange rate
returns for the Japanese Yen and the British Pound against the US dollar. The em-
pirical results show the existence of a short-term weak predictable structure for both
currencies.

Not being confined to feedforward neural nets, GAs have also been used to evolve
other kinds of neural nets. [94] use a GA to genetically evolve recurrent neural net-
works. In this study, a hybrid model that combines a seasonal linear time series
model and a recurrent neural network is used to forecast agricultural commodity
prices. A genetic algorithm is employed to determine the optimal architecture of
the ANNs. It turns out that the out-of-sample prediction can be improved slightly
with the hybrid model. [105] uses a GA to evolve fuzzy neural networks for finan-
cial forecasting. In this study, the genetic algorithm and the gradient decent (GD)
algorithm are used alternatively in an iterative manner to optimize all parameters
and weights in a five-layer fuzzy neural network. It is found that the hybrid learn-
ing algorithm combining GA and GD is more powerful than the previous separate
sequential trading algorithm.

The most active financial domain using EANNs is financial time series forecast-
ing. [83] apply genetically evolved neural network models to predict the Straits
Times Index (STI) of the Stock Exchange of Singapore. This study shows that satis-
factory results can be achieved when applying genetically evolved neural networks
to predict the STI. EANNs’ applications to other financial domains include finan-
cial distress prediction [78] and trading [93, 14]. [93] enhance EANNs with fractal
analyses. Based on Hurst exponent calculations, the appropriate input windows for
the EANN are identified. It then investigates the efficacy of the model using closing
price time series for a suite of stocks listed on the SPI index on the Australian Stock
Exchange. The results show that Hurst exponent configured models out-perform ba-
sic EANN models in terms of average trading profit found using a simple trading
strategy.
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4.2.2 Evolutionary Support Vector Machines

In the 1990s, based on results from statistical learning theory, an alternative to the
artificial neural network was developed, i.e. the support vector machine (SVM), also
called the kernel machine. It has been found that when compared with the standard
feedforward neural nets trained with the backpropagation algorithm, support vector
machine can have superiorperformance [37]. This superiority may be attributable
to different optimization principles running behind the two: for the SVM, it is the
structural risk minimization principle, whereas for backpropagation it is the empiri-
cal risk minimization principle. The objective of the former is to minimize the upper
bound of the generalization error, whereas the objective of the latter is to minimize
the error based on training data. Hence, the former may lead to better generalization
than the latter. Partially due to this advantage, the financial applications of SVM
have kept on expanding.23

However, like the ANN, the SVM can also be treated as a semi-parametric model.
To use it, there are a number of parameters or specifications that need to be deter-
mined. Basically, there are three major parameters in the SVM. First, there is the
penalty parameter associated with the empirical risk appearing in the structural risk
function. In the literature, it is normally denoted by C. Second, when the SVM is ap-
plied to the regression problem, in addition to C, there is a parameter ε appearing in
the ε-error intensive function. Third, it is the parameter of the chosen kernel func-
tion. Support vector machines non-linearly map a lower dimensional input space
into a high dimensional, possibly, an infinite dimensional, feature space. However,
a central concept of the SVM is that one does not need to consider the feature space
in explicit form; instead, based on the Hilbert-Schmidt theory, one can use the ker-
nel function. There are two kernel functions frequently used, namely, the Gaussian
kernel and the polynomial kernel. The former has a parameter associated with the
second moment of a Gaussian called width (normally denoted by σ ), and the latter
has a parameter associated with the polynomial degree (normally denoted by p).

At the beginning, these parameters were arbitrarily given by trial-and-error. Later
on, genetic algorithms were extensively employed to optimize the SVM, and the ap-
plications of ESVM have been seen in various fields, such as reliability forecasting
[81], traffic flow forecasting [97], bankruptcy forecasting [1, 103, 106], and stock
market prediction [107, 40].

[103] uses a GA to genetically determine the parameters C and σ of the SVM.
The proposed GA-SVM was then tested on the prediction of financial crisis in Tai-
wan. The experimental results show that the GA-SVM model performs better than
the manually-driven SVM. [1] use a GA to simultaneously optimize the feature se-
lection and the instance selection as well as the parameters of a kernel function. It is
also found in this study that the prediction accuracy of the conventional SVM may
be improved significantly by using the ESVM. In [107] a GA is used for variable
selection in order to reduce the modeling complexity of the SVM and improve the

23 The interested reader can find some useful references directly from the website of the
SVM: http://www.svms.org/
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speed of the SVM, and then the SVM is used to identify the stock market movement
direction based on historical data.

4.3 Semantics-Based Hybrid Systems

Fuzzy-based modeling is appealing for social scientists because the use of linguis-
tic variables enables them to make semantic sense of their models, which generally
leads to easy interpretation of the rules or knowledge extracted from the models. By
contrast, many so-called “black-box” CI tools are often criticized for the lack of this
property. Therefore, fuzziness becomes an imperative element for building intelli-
gent systems, and, like an evolutionary mechanism, its necessity generates another
series of hybrid systems, that we generally call semantics-based hybrid systems.
From our point of view easy to understand is the distinguishing feature of semantics-
based hybrid systems, and among all economic and financial applications of them,
neuro-fuzzy systems are probably the most popular ones.

A neuro-fuzzy system is a fuzzy system that is represented by a kind of neu-
ral network, for example, the feedforward neural network, and, therefore, it can be
trained (estimated) by using the associated learning algorithms of the network, e.g.,
backpropagation. Therefore, the neuro-fuzzy system is a learning fuzzy system in
which the neural network learning algorithms are used to determine parameters of
the fuzzy system. Several different neuro-fuzzy systems exist in the literature [80],
but only the ANFIS (Adaptive Network-based Fuzzy Inference System) is widely
used in economic and financial applications.

4.3.1 ANFIS

The ANFIS was proposed by [59]. It represents a Sugeno-style fuzzy system in a
special five-layer feedforward neural network. The Sugeno style of a fuzzy if-then
rule is:

If x is “A” and “y” is “B”, then z = f (x,y).

“A” and “B” above are fuzzy sets. However, the function f (x,y) in the AN-
FIS is linear:

z = f (x,y) = α +βxx +βyy. (26)

The structure can, therefore, be comparable to the autonomous-agent design in the
SFI artificial stock market (see Section 2.2.3, Equation 13) and is even closer to
the modified version of the SFI-ASM proposed by [98] (see Section 2.4). However,
unlike [98], the rule base used in the ANFIS must be known in advance. The ANFIS
integrates the backpropagation algorithm with the recursive least squares algorithm
to adjust parameters.
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The ANFIS has been applied to water consumption forecasting [11], stock prices
forecasting [13, 39, 108], credit scoring [73], market timing decisions [38], credit
risk evaluation [104], and option pricing [62].

[62] applies the ANFIS to option market pricing based on the transaction data
of the Indian Stock Option. The pricing capability of the ANFIS is compared with
the performance of the ANN model and Black-Scholes (BS) model. The empirical
results show that the out-of-sample pricing performance of the ANFIS is superior to
that of the BS, and is also better than the ANN. In addition, compared to the ANN,
the ANFIS is explicit about its decision rules.

Instead of backpropagation, [39] uses extended Kalman filtering to estimate the
ANFIS, and demonstrates its performance by comparing it with the ANFIS with
regard to stock index forecasting. It is found that the proposed extended Kalman
filtering can perform better than backpropagation.

4.3.2 Other Neuro-fuzzy Systems

In addition to the ANFIS, financial applications using other neuro-fuzzy systems
also exist. [46] present a cooperative neuro-fuzzy inference system to forecast the
expected financial performance of farm businesses. The fuzzy inference system con-
sidered is the Mamdani Style rather than the Sugeno Style generally used in the
ANFIS. In addition, [46] only estimates the rule weight, and the parameters of the
membership function, which is a sigmoid function, are not part of it. Therefore, it
uses Kosko’s FAM (fuzzy associative memories) vector quantization algorithm (or
competitive learning algorithm) [66] to estimate the fuzzy inference system. The
proposed system is compared with the conventional ordered multinomial logit re-
gression model. The result shows that logit regression generally classified farms
more accurately, but the FAM model was more accurate at predicting poorly per-
forming farms, and, more importantly, the development and interpretation of the
NFIS was found to be very intuitive.

[100] propose a new neural fuzzy system, namely the generic self-organizing
fuzzy neural network based on the compositional rule of inference, as an alternative
to predict banking failure. The system referred to as GenSo is able to identify the
inherent traits of financial distress based on financial features derived from publicly
available financial statements. The interaction between the selected features is cap-
tured in the form of highly intuitive if-then fuzzy rules. Such rules hence provide
insights into the possible characteristics of financial distress and form the knowledge
base for a highly desired early warning system that aids bank regulation.

4.4 Feature Reduction: Rough GA or GP

The hybrid system which we shall review in this section comprises two CI tools,
namely, genetic programming and rough sets. The hybridization of GP and rough
sets provides an excellent illustration of how the usual competitive relationship
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between two CI tools can be more productively transformed into into a collaborative
relationship ([77, 88]).

Rough sets define a mathematical model of vague concepts that is used to rep-
resent the relationship of dissimilarity between objects. Two objects are considered
equivalent with respect to a certain subset of attributes if they share the same value
for each attribute of the subset. By collecting all equivalent objects, one can decom-
pose the entire universal (set of objects) into equivalent classes. The decomposition,
of course, is not unique and is dependent on the subset of attributes which we use to
define the equivalent relation.

Rough sets arise when one tries to use the equivalent classes with respect to
some attributes to give a description of a concept based on the associated decision
attributes. For example, if the decision attribute concerns financial distress and is
binary (bankruptcy or not), then what one wants to characterize is the concept of
bankruptcy by using some attribute of the firms, e.g., their financial ratios, size, etc.
The characterizations are only approximate when complete specification of the con-
cept is infeasible. In this case, the concept itself is rough, and the objects associated
with the concept are referred to as the rough set.

Two partial specifications are considered to be the most important, namely, the
lower approximations and the upper approximations. The lower approximations
consist of objects (equivalent classes) which belong to a concept with certainty,
i.e., the entire equivalent classes are a subset of the rough set. The upper approx-
imations consist of those equivalent classes which possibly belong, i.e., they have
non-empty intersection with the rough set. A subset of the attributes is called reduct
if all attributes belonging to it are indispensable. An attribute is dispensable if its
absence does not change the set approximation. In other words, a reduct is a set of
attributes that is sufficient to describe a concept.

A financial hybrid system using rough sets and GP is first proposed by [77]. In
this hybridization, the rough set is firstly adopted to select the discriminative features
by identifying reducts. Only these reducts are then taken as the input features for
the GP learning process. [77] uses genetic programming to construct a bankruptcy
prediction model with variables from a rough sets model. The genetic programming
model reveals relationships between variables that are not apparent in using the
rough sets model alone.24

5 Concluding Remarks

According to the current trend in the literature, this paper addresses what collabo-
rative computational intelligence can mean for economists. While the recent series
of publications on the economic and financial applications of computational intel-
ligence has already demonstrated the relevance of various CI tools to economists
[29, 35], they are mostly taken as techniques for economists. In this chapter, we go

24 There are many other ways to hybridize GP or GA with rough sets, but so far their financial
applications have rarely been seen.
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one step further to show that they can be more productive so as to be part of the
future of economics. Specifically, we demonstrate this potential by singling out two
new research paradigms in economics, namely, agent-based economics and experi-
mental economics.

The essence of agent-based economics is a society of heterogeneous agents, a
subject which is highly interdisciplinary motivated. Collaborative computation in-
telligence enables or inspires economists to see how some initial explorations of
the richness of this society can be made. In this regard, computational intelligence
may contribute by providing not just models of learning or adaptation, but models
of learning or adaptation processes which may be influenced by behavioral genetic
and cultural factors.

After one decade of rapid development, a challenging issue facing experimental
economics is how to strengthen the reliability of the laboratory results with human
subjects by properly introducing software agents to labs. In fact, the state-of-art
economic laboratory is no longer a lab with only human subjects, but a lab com-
prising both human agents and software agents [27]. Collaborative computational
intelligence can contribute significantly to the building of the modern lab.

The last part of the paper reviews some recent economic and financial applica-
tions of hybrid systems. However, there is no attempt to give an exhaustive list,
which itself may deserve a separate treatment. We, therefore, single out the two
most significant elements in frequently used economic and financial hybrid sys-
tems, namely, evolution and semantics. The former mainly contributes to the hybrid
system as a process to facilitate the universal approximation, whereas the latter con-
tributes to the hybrid system by enhancing its semantics.

To sum up, this chapter has shown how collaborative computational intelligence
has enriched the design of economic and financial agents, while, in the meantime,
providing quantitative economists with a longer list of ideas to cope with the inher-
ent complexity and uncertainty in the data.
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IMMUNE: A Collaborating Environment for
Complex System Design

Mahmoud Efatmaneshnik and Carl Reidsema

Abstract. Engineering complex systems is a testing paradigm for engineers of this
century. Integration of complex systems design is accomplished through innova-
tion, and autonomy of design agents has been recognized as the main contributor to
novelty and innovation of solutions. Unfortunately, agents’ autonomy can make the
design environment chaotic and inefficient. To address this dilemma of distributed
versus central control in complex system design, decision support systems that en-
able robust collaboration amongst many design agents from different disciplines, are
required. The particular characteristics of such decision support system must include
immunity to catastrophic failures and sudden collapse that are usually observed in
complex systems. This chapter lays the conceptual framework for IMMUNE as a
robust collaborating design environment. In this environment the complexity aris-
ing from autonomous collaborations is sensed and monitored by a central unit. The
collaboration complexity, which is the collective problem solving capability of the
design system, is compared to the complexity of the problem estimated from simu-
lation based techniques. In this regard IMMUNE is an artificial immune system that
balances the complexity of the environment and by that increases the possibility of
achieving innovative and integral solutions to the complex design problems. Agents
in IMMUNE are adaptive and can change their negotiation strategy and by that can
contribute to the overall capability of the design system to maintain its problem
solving complexity.
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1 Introduction

A decision is a choice between alternatives based on estimates of the values of those
alternatives. There is a substantial amount of empirical evidence that human intu-
itive judgment and decision making can be far from optimal, and it deteriorates even
further with the complexity of the problem and stress [21]. Supporting a decision
means helping people working alone or in a group to gather intelligence, generate
alternatives and make choices. A Decision Support System (DSS) is a computer-
ized system for helping make decisions. Supporting the decision process involves
supporting the estimation, the evaluation and/or the comparison of alternatives (see
Turban [68]). Turban defines a DSS more specifically as “an interactive, flexible, and
adaptable computer-based information system, especially developed for supporting
the solution of a non-structured management problem for improved decision mak-
ing”. Druzdzel and Flynn [21] define a DSS as an integrated computing environment
for complex decision making. A DSS can be defined as a knowledge-based system,
which formalizes the domain knowledge so that it is amenable to mechanized rea-
soning. Knowledge-based problem solving is the domain of Artificial Intelligence
(AI) and the selection of an appropriate AI development tool that may provide a
framework to incorporate knowledge will come from this area (see Reidsema and
Szczerbicki [54]). Reidsema and Szczerbicki identified three different architectures
for decision support systems for product design planning and manufacturing in a
concurrent engineering environment: Expert Systems, Agent Based Systems, and
Blackboard Database Systems. These have been defined as follows:

An Expert system is one of a class of AI techniques that is able to capture the
knowledge and reasoning of an experienced expert for re-use in assisting the less
experienced in making decisions.

The Blackboard Database Architecture is a problem solving system based on
the metaphor of human experts who cooperate by entering partial solutions to the
current problem onto a physical blackboard. The type of problems best suited to
this approach are those that are able to be reduced to a set of simpler problems that
are reasonably independent. The integration of the partial solutions to the overall
solution takes place by the intervention of a centralized controller known as control
source and therefore has a top down approach to problem solving.

Multi-agent systems are distributed systems that use a bottom up approach to
problem solving in which case the intervention of the centralized coordination be-
tween agents is minimal or totally eliminated. Each agent in a multi-agent system
behaves as an abstraction tool which has the characteristics of a self-contained prob-
lem solving system that is capable of autonomous, reactive, proactive as well as in-
teractive behaviour. The solution in this case emerges as a whole and is the result
of a synergetic effect. Synergy denotes a level of group performance that is above
and beyond which could be achieved by the members of the group working inde-
pendently [40]. Synergy in a multi-agent system enables the integration of partial
solutions of nonlinear and coupled problem. Multi-agent systemsindexmulti-agent
system are the natural candidates for complex systems which show heavy interde-
pendency between partial problems.
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Providing an extensive literature review of concurrent design and manufacturing
systems, Shen et al. [59] identify three different approaches for agent based archi-
tectures: hierarchical architectures, federated architectures and autonomous agent
architectures. Each architecture has particular strengths for specific applications,
and choosing the right architecture involves matching requirements to capabilities.
Hierarchical architectures consist of semi-autonomous agents with a global control
agent dictating goals/plans or actions to the other agents. Multi-Agent Systems with
a global blackboard data base are hierarchical architectures. They report that some
researchers have considered their blackboard systems to be multi-agent systems, and
others have implemented their agent based systems using blackboard architectures.
In these systems control can be implemented in different ways: using a special con-
trol expert called a supervisor as in EXPORT [48]; using a shared graphical model
as in ICM, “Interdisciplinary Communication Medium” [26] or a shared database as
in SHARED [70]; or through multiple shared workspaces as in MATE [56]. Because
hierarchical architectures suffer from deficiencies associated with their centralized
character, federated multi-agent architectures are increasingly being considered as
a compromise solution for industrial agent based applications [59], especially for
large scale engineering applications. A fully federated agent based system has no
explicit shared facility for storing active data; rather, the system stores all data in
local databases and handles updates and changes through message passing. In the-
ory, a truly open multi-agent system need not have any predefined global control.
An example of such an architecture is DIDE, “Distributed Intelligent Design Envi-
ronment” [57]. Another good example of such a system is ANARCHY which was a
working prototype of an asynchronous design environment [50]. Agents in ANAR-
CHY were autonomous, and used broadcast communications. It however, utilised a
global design strategy based on simulated annealing. For such systems there is the
threat of exhibiting chaotic behaviour [65].

In this paper we present IMMUNE which is a flat federated architecture for
the parametric design of complex products. IMMUNE uses a global blackboard
to save the current state of the design. All the agents are grouped into virtual teams
or coalitions, the structure of which mirrors the structure of the problem and its
decomposition pattern. This idea was previously utilized in MetaMorph [47]. Meta-
Morph was devised as an adaptive agent based architecture to address system adap-
tation and extended-enterprise issues at four fundamental levels: virtual enterprise,
distributed intelligent systems, concurrent engineering, and agent architecture.
MetaMorph benefited extensively from low level mediators to coordinate between
different groups (or coalitions). IMMUNE, however, does not have any low level
mediator, broker or facilitator, and is a flat architecture. Instead IMMUNE benefits
from a special unit in the control shell of the blackboard that we denote as the CEO
(Complexity Estimator and Observer). The CEO estimates the complexity measure
of the problem and compares it to the observed complexity of the multi-agent sys-
tem. In IMMUNE the problems at various levels of abstraction are decomposed
using a complexity measure of the problem [24]. Based on the complexity of the
problem after decomposition (real complexity), the CEO estimates the minimum
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and maximum complexity of the process. It then monitors the complexity of the
process as a function of the exchanged information between the agents (cognitive
complexity). An effective and efficient design process must have a cognitive com-
plexity in between the minimum and maximum complexity of the problem; this is
the result of a simple notion which is: the best a single person (or a single system)
can do is limited by his/her (cognitive) complexity [2].

A design system, with its cognitive complexity surpassing the maximum com-
plexity of the problem, has lost effectiveness since the design process may become
chaotic. If the cognitive complexity of the design system is lower than the minimum
complexity of the problem, then the efficiency of the system, in solving the complex
problem and managing the interdependencies between its subproblems, would not
be achieved. In both cases, the agents are expected to undertake corrective measures
to stabilize the cognitive complexity of the system and immunize it against fragility,
and failure. The CEO monitors the complexity at two levels: inside the coalitions
(at the local levels) and the entire system (at the federal level). The next section dis-
cusses the fundamentals of design planning for complex products and a complexity
based method for monitoring the design process.

2 Design Planning for Complex Products Development

Real world concurrent engineering design projects require the cooperation of mul-
tidisciplinary design teams using sophisticated and powerful engineering tools such
as commercial CAD tools, engineering database systems and knowledge based sys-
tems [51]. To coordinate the design activities of various groups and support effective
cooperation among the different engineering tools, a distributed intelligent environ-
ment is required. This environment should not only automate individual tasks, in
the manner of traditional computer aided engineering tools, but also help individual
members share information and coordinate their actions as they explore alternatives
in search of a globally optimal or near optimal solution. Designing in a concurrent
environment requires the precise planning of the resources, tasks, collaborations, in-
formation exchanges and cooperation [53]. Planning to achieve the development of
a new product is usually accomplished by distributing the tasks required to achieve
the plan to individuals or groups of team members, best suited to accomplishing
these tasks [53]. Planning increases the design efficiency, and reduces the risk of not
achieving a design consensus and consequently the agreed upon design objectives.

There are various approaches and perspectives to design planning which Reid-
sema and Szczerbicki [53] summarized as:

• Task model
• Design Process
• Resource Structure
• Organizational Model
• Cooperative Planning Model (GDDI)
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Fig. 1 Design planning can be performed by using knowledge corresponding to various levels
of the hierarchy of organization, process and product [53]

The cooperative model of design planning proposed by Reidsema and Szczer-
bicki [52] deploys a gradualistic approach to dealing with problems of a complex
nature (such as planning in the concurrent engineering environment), through the
gradual introduction of the problem space. The full cycle of distributed planning
may then be thought to consist of:

1. Plan Generation,
2. Plan Decomposition
3. Plan Distribution
4. Plan Integration

The execution of this cycle of Generation, Decomposition, Distribution, and In-
tegration (GDDI cycle) follows a common planning method whereby a complex
problem is first reduced to a number of simpler problems. These simpler problems
are then solved and the information obtained from their solution is used to solve the
parent problem. The coordination and control of these agents is achieved through
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Fig. 2 Produce, process and organization structures are tightly related [7]

the multi-agent planning actions of task decomposition, task distribution and result
integration [53].

For complex systems, due to coupling between the distributed tasks, integra-
tion may not be performed linearly simply by adding the partial solutions together.
Since the coupled problems tend to be nonlinear (same as the coupled differen-
tial equations) as a result the solutions may not be achieved by using the usual
concurrent planning (that adds the partial solutions to obtain the overall solution).
The nonlinearity limits the kind of knowledge being used for planning. In general
in a CE environment, planning may be obtained by the utilization of quite diverse
knowledge from the Product, Process and Organizational (PPO) knowledge domains
(Figure 1).

2.1 The Necessity of Emulating Low Level Product Knowledge
for Complex Product Design Planning

The design structure matrix (DSM) is a well known knowledge representation and
analysis tool for system modeling, especially for the purpose of decomposition and
integration. A DSM displays the relationships between components of a system in a
compact, visual, and analytically advantageous format as a square matrix with iden-
tical row and column labels. DSMs are usually employed in modeling products,
processes, and organizational architectures. Presenting the following definitions,
Browning [7] argued that the three DSMs and the structures they model are tightly
related, and in many real industrial cases they exhibit strong couplings (Figure 2):

1. Parameter-Based (or Low-Level Schedule) DSM: Used for modeling low-level
relationships between design decisions and parameters, systems of equations,
subroutine parameter exchanges which represents the product architecture.

2. Activity-Based or Schedule DSM: Used for modeling processes and activity net-
works based on activities and their information flow and other dependencies.

3. Team-Based or Organization DSM: Used for modeling organization structures
based on people and/or groups and their interactions.

Most design planning takes place in a top-down fashion by defining and decom-
posing the organization structure. If they begin at “the top”, such models rarely
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reach the lowest levels of design activity, where individual design parameters are
determined based on other parameters. Determining these parameters constitutes
the lowest level design activities, and a bottom-up, integrative analysis of these low-
level activities can provide process structure insights. Browning [7] emphasized that
clearly, parameter-based DSMs have integrative applications. This characteristic of
the parameter based DSM which represents the low level product knowledge makes
it suitable to be utilized in the planning of complex engineering systems. We have
previously referred to this matrix as the self of the system [23] with the values of
parameters representing the non self.

2.2 Concurrent Parametric Design

Emulation of low level product knowledge for planning is feasible through simpli-
fication of the design problem, by modeling the target product as sets of variables.
These include the set of design variables (or inputs) and the set of design objectives
(or outputs). Within the context of planning, the outcome of the decision making
process is quite likely to be an objective [53]. Design objectives are concerned with
the performance and quality of the product, lead time and cost of production. The
design variable sets include subsets of sizing variables, shape variables, topologies
and process knowledge and manufacturing variables such as process capabilities
(see Prasad [49]). Prasad has defined some of these as follows:

• Sizing Variables: these include variables like thicknesses (for thin walled sec-
tions) and areas (for solid objects) that can be changed.

• Shape Variables: These involve changing the configuration points or the geome-
try of the parts that are represented such as length width, height, coordinates and
so on.

• Topology Variables: These define parameters that actually determine where ma-
terial should or should not be removed. As long as the topology change can be
represented parametrically in the CAD system, the model can be optimized.
Topology optimization allows feature patterns such as how many bolts are needed
to hold down a given part, or how many ribs provide a given stiffness.

• Process Variables: these involve changing the rules concerning the part’s form-
ing or processing needs that have the effect on changing the part’s size, shape,
topology or functions themselves, cost and lead time.

• Manufacturing Variables: these include the process capability indices, and re-
quired precisions, manufacturing lead time and cost.

Each variable may be accompanied by a set of constraints. Design problem solving
is the process of assigning values to parameters in accordance with the given design
requirements, constraints, and optimization criterion [71]. A design task in this view
constitutes the determination of a single design variable and a plan comprises a set
of design parameters with their constraints, and determining the values of which is
the task of multidisciplinary design teams.
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Chen and Li [9] referred to Concurrent Product Design taking place in the para-
metric design stage as Concurrent Parametric Design. An engineered product is
developed through the concurrent consideration of various design issues, and mul-
tiple teams may be needed to tackle different design issues. In parametric design,
the focus is on the determination of a parametric configuration that achieves an op-
timization of individual design attributes. In multi-team design, a team refers to a
collaboration of design participants that, in a broad sense, can consist of design-
ers, computers or even algorithms, whatsoever is able to cope with distributed tasks
as part of the whole design problem [9]. In this design situation, teams may face
uncertainties during the design process, especially when their design decisions are
interrelated [9].

2.3 Simulation Based Engineering, and Complexity Measures

Formica [25] has recognized modeling and simulation as the key to reconcile am-
bitious performance and operational requirements improvement with realistic de-
velopment and production costs, times and risks for highly innovative industrial
high-tech systems. The performance and operational requirements are micro or low
level parameters whereas production costs, times and risks are macro and high level
(often emergent), properties; a system exhibits emergence when there are coherent
properties at the macro-level (i.e. of the system as a whole) that dynamically arise
from the interactions between the parts at the micro-level [69]. Integrating these two
levels of micro and macro level knowledge in a Cyber Infrastructural Environment,
Formica [25] addresses the issue of engineering process fragmentation. Connecting
the low (micro) level design variables and performance variables to high (macro)
level organizational goals including cost and lead time is referred to as “Knowledge
Integrators and Multipliers” because they are able to synthesize data, information,
and knowledge from [25]:

• Different disciplines.
• A wide range of scientific and engineering time and space domains.
• Multiple scientific and engineering models and representations (science-

engineering integration).
• Multiple methods (analytical theories and experimentation & testing) and related

knowledge bases.

As creating high-fidelity simulation models is a complex activity that can be
quite time-consuming [60], Monte Carlo Simulation is suggested to establish the
fitness landscape of the design problem. A fitness landscape is a multi-dimensional
data set, in which the number of dimensions is determined by the number of system
variables [46]. Marczyk [45] has stressed that by means of Monte Carlo Simulation
of design parameters (at both micro and macro levels), the fitness landscape of the
design space is created, enabling the verification of the global dependencies between
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Table 1 A simulated DSM is a weighted adjacency matrix. This DSM has 10 variables

- V1 V2 V3 V4 V5 V6 V7 V8 V9 V10
V1 0 0.53 0.32 0 0 0.1 0 0 0 0
V2 0.76 0 0.12 0.12 0.3 0.2 0.2 0 0.1 0
V3 0.45 0.11 0 0 0 0.2 0.3 0 0.52 0.72
V4 0.16 0.65 0.64 0 0.34 0.43 0 0 0 0
V5 0.22 0.44 0.11 0.45 0 0.53 0.02 0 0.02 0
V6 0.77 0.78 0.31 0.34 0 0 0 0 0 0
V7 0.12 0 0.02 0 0 0 0 0.45 0.1 0.3
V8 0.01 0 0 0 0.01 0 0.2 0 0.4 0.1
V9 0 0 0.15 0 0 0 0.7 0.2 0 0.5
V10 0 0.18 0 0 0.01 0 0.1 0.8 0.9 0

low level design variables (product characteristics) and high level design process
variables (cost, time). We suggest the actualization of the multi scale and multidis-
ciplinary design structure matrices through Monte Carlo and Statistical Simulation
in the early stage of the design process, after the plan generation phase in each GDDI
cycle and before the plan decomposition and distribution. In order to establish the
correlation coefficients between different variables, global entropy based correla-
tion coefficient have significant advantages over linear covariance analyses through
capturing both linear and nonlinear dependencies. This measure is embedded in the
OntospaceTM software. The outcome of the design space (or fitness landscape) sim-
ulation may be fed into this software to produce the correlation matrix (simulated
parameter based DSM). Table 1 shows an example of a typical simulated parameter
based DSM of a product (such as an aircraft, car, computes, etc) with normalized
weights (all the weights are between zero and one). The data presented and the de-
sign variables are however fictitious. Throughout this paper, the self map will be
referred to as the corresponding weighted graph of the matrix in Table 1.

Complexity is frequently confused with emergence; emergence of new structures
and forms is the result of re-combination and spontaneous self-organization of sim-
pler systems to form higher order hierarchies, i.e. a result of complexity [46]. We
define complexity as the intensity of emergence in a system. If the complexity is too
high the system becomes chaotic and uncontrollable and is likely to lose its struc-
ture, or in other words, downward causation raises the subsystems’ performance. If
complexity is too low the system loses the intrinsic characteristics of the entity it was
intended to describe, and fails to emerge as a spontaneous organization. Complexity
materializes the system’s self by the emergence of the self structure when the sub-
systems have sufficient interaction. Complexity is a “holistic” measure of the system
that enables us to study the system as a “whole”. Marczyk and Deshpande [46] pro-
posed a comprehensive complexity metric and established a conceptual platform for
practical and effective complexity management. The metric takes into account all
significant aspects necessary for a sound and comprehensive complexity measure,
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Fig. 3 An example of a self map and its three complexity measures

namely structure, entropy and data granularity, or coarse-graining [46]. The metric
allows one to relate complexity to fragility and to show how critical threshold com-
plexity levels may be established for a given system. The metric is incorporated into
OntoSpaceTM , an innovative complexity management software. This software cal-
culates three complexity measures for every self map (Figure 3):

1. The complexity of the map which is a very specific measure reflecting the
coupled-ness and size of the system. This complexity measure is called Ontix.
We will refer to the complexity of this map as self complexity.

2. The upper complexity bound to which the complexity of the system may be in-
creased without exhibiting chaos.

3. The lower complexity bound where the system with a lower complexity loses its
intrinsic characteristics and fails to emerge as a coherent self.

“A system performing a given basic function is irreducibly complex if it includes
a set of well-matched, mutually interacting, nonarbitrarily individuated parts such
that each part in the set is indispensable to maintaining the system’s basic, and
therefore original, function. The set of these indispensable parts is known as the
irreducible core of the system” [17]. The lower complexity bound represents the ir-
reducible complexity of the system that contains the intrinsic characteristics of the
system.

There is a sufficient body of knowledge to sustain the belief that whenever dy-
namical systems undergo a catastrophe, the event is accompanied by a sudden jump
in complexity [46]; this is also intuitive: a catastrophe implies loss of functionality,
or organization. The increase of entropy increases complexity – entropy is not nec-
essarily adverse as it can help to increase fitness – but at a certain point, complexity
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Fig. 4 Product architecture is tied to organization through the decomposition/ integration
problem [31]

reaches a peak beyond which even small increase of entropy inexorably cause the
breakdown of structure [46]. After structural breakdown commences, an increase in
entropy nearly always leads to loss of complexity (fitness) [46]. However, beyond
the critical point, loss is inevitable, regardless of the dimensionality and/or density
of the system. Therefore every closed system can only evolve/grow to a specific
maximum value of complexity. This is known as the system’s critical maximum
complexity. Close to criticality, systems become vulnerable, fragile and difficult to
manage. The difference between the current and critical complexity is a measure
of the overall “health” of the system. The closer to criticality a system is, the less
healthy and therefore generally more risky it becomes.

2.4 Deriving a Team Based DSM from a Simulated Parameter
Based DSM

Integrated product development (IPD) describes how tasks are interconnected and
seeks to integrate the product process and organization (the network of the tasks)
but does not provide adequate problem solving methodologies [49]. Choosing an
integration scheme is critical in determining how efficient or how flexible a result-
ing problem solving architecture will turn out to be [49]. As a result, the ease of
organizational partitioning and integration is tied to the nature of the product de-
composition [31] (Figure 4). The product architecture and organization structure
relationship can affect an enterprise in several dimensions, including architectural
innovation [6].

The product architecture has a large influence on the appropriate structure
of the product development organization since organizational elements are typi-
cally assigned to develop various product components [6]. Appropriately clustering
interdependent design parameters can reveal a preferred integration of low-level ac-
tivities into higher-level ones. Indeed, clustering may be a key to tying top-down,
activity-based DSMs together with bottom-up, parameter-based DSMs [6]. To in-
corporate this knowledge into the product development system, we have developed
a decomposition scheme founded on minimizing the complexity of the decomposed
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Fig. 5 The system is decomposed through minimizing real complexity

system (or real complexity, CR) which is always more than or equal to the complex-
ity of the system before the decomposition [24]. In Figure 5, 120 random decompo-
sitions of the system example in Table 1 are illustrated. In Table 2 the system after
decomposition is shown.

The approach to organizational integration in IMMUNE is to directly derive the
team based DSM from the simulated parameter based DSM. IMMUNE does not
have any pre-specified organizational architecture – rather the developed organiza-
tion integration scheme is determined by deriving the team based DSM from the
simulated parameter based DSM. A direct mapping is used that forces the organi-
zation structure to mirror the product architecture. Therefore the above matrix is
directly taken as the predicted team based DSM. The predicted team based DSM is
used for two purposes: 1) to form the multidisciplinary and multi functional teams,
and 2), to calculate the minimum and maximum process complexity.

Three teams responsible for the parametric problem solving of these variables
must be chosen (same as the number of subsystems). These would normally be
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Table 2 The variables of Table 1 are rearranged to form three subsystems

Subsystem 1 Subsystem 2 Subsystem 3

V5 V4 V2 V10 V8 V7 V9 V6 V1 V3

Su
bs

ys
te

m
1

V50 0.45 0.44 0 0 0.02 0.02 0.53 0.22 0.11

V40.34 0 0.65 0 0 0 0 0.43 0.16 0.64

V20.3 0.12 0 0 0 0.2 0.1 0.2 0.76 0.12

Su
bs

ys
te

m
2

V100.01 0 0.18 0 0.8 0.1 0.9 0 0 0

V80.01 0 0 0.1 0 0.2 0.4 0 0.01 0

V70 0 0 0.3 0.45 0 0.1 0 0.12 0.02

V90 0 0 0.5 0.2 0.7 0 0 0 0.15

Su
bs

ys
te

m
3

V60 0.34 0.78 0 0 0 0 0 0.77 0.31

V10 0 0.53 0 0 0 0 0.1 0 0.32

V30 0 0.11 0.72 0 0.3 0.52 0.2 0.45 0

multidisciplinary and cross functional teams of people with different functional ex-
pertise and disciplinary knowledge responsible for working toward a common goal.
It may include people from finance, marketing, operations, and human resources de-
partments and different scientific disciplines. Typically, it includes employees from
all levels of an organization.

Note that the team members or design agents at this stage are not yet explicitly
defined but the likely interactions inside and across the teams are determined. From
the above DSM a team based DSM is derived by summing up the amount of in-
formation exchange (dependency) of the design variables each is responsible for. In
Table 3 the CTi’s denote the complexity of the interaction inside the teams, or they
may be interpreted as the complexity that each team must internally deal with. The
complexity based method is derived from the assumption that the complexity of an
interconnected system may be represented by a single measure of that system which
is termed a complexity measure. Figure 6 shows this simplified team based DSM.
This predicted team based matrix reflects the amount of information exchange as well
as the internal complexity of the problem that the design teams are dealing with.

From the above matrix a single measure of complexity of the entire problem that
the network of design teams must deal with can be estimated by using the Ontix.
This measure is equal to the real complexity of the decomposed system (CR). Simi-
lar to the maximum and minimum complexity of the system before decomposition,
real minimum and maximum complexity may be calculated for the above matrix
(CRmin,CRmax).
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Table 3 The predicted team based DSM for the entire system

- Team1 Team2 Team3

Team1 CT 1 0.34 3.17

Team2 0.2 CT 2 0.3

Team3 1.76 1.52 CT 3

Fig. 6 The predicted team based map or the entire system

3 Radical Innovation

Henderson and Clark [32] demonstrated that there are different kinds of innovation
as depicted in Figure 7 where innovation is classified along two dimensions. The
horizontal dimension captures an innovation’s impact on components (subsystems),
while the vertical dimension captures its impact on the linkages between core con-
cepts and components. Radical innovation establishes a new dominant design and,
hence, a new set of core design concepts embodied in subsystems that are linked
together in a new architecture. Incremental innovation refines and extends an es-
tablished design. Improvement occurs in individual components, but the underlying
core design concepts, and the links between them, remain the same. Modular inno-
vation on the other hand, changes only the core design concepts without changing
the product’s architecture. Finally, architectural innovation changes only the rela-
tionships between modules but leaves the components, and the core design concepts
that they embody, unchanged. We can say that radical innovation embodies both
modular and architectural innovation.

An organization’s communication channels, both formal and informal are critical
to achieving radical and architectural innovation [32]. The communication channels
that are created between these groups will reflect the organization’s knowledge
of the critical interactions between product modules. Organization’s communication
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Fig. 7 Different types of innovation [32]

channels will embody its architectural knowledge of the linkages between compo-
nents that are critical to effective design [32]. They are the relationships around
which the organization builds architectural knowledge.

Innovation processes in complex products and systems differ from those com-
monly found in mass produced goods [34]. The creation of complex products and
systems often involves radical innovation, not only because they embody a wide
variety of distinctive components and subsystems (modular innovation), skills and
knowledge inputs but also because large numbers of different organizational units
have to work together in a collaborative manner (architectural innovation). Here, the
key capabilities are systems design, project management, systems engineering and
integration [34]. Integration in complex system and product design is to make the
solutions to subproblems compatible with each other and this is possible through
innovation. The innovation that integrates the complex system must be radical inno-
vation and creativity [62] and this is an emergent property of the entire system rather
than the property of the sub-solutions to the individual subproblems [61]. A property
that is only implicit, i.e. not represented explicitly, is said to be an emergent property
if it can be made explicit and it is considered to play an important role in the intro-
duction of new schemas [28]. The radical innovation and coherency in an engineered
large scale system is emergent and obtained in a self-organizing fashion in a multi-
agent environment. When designing self-organizing emergent multi-agent systems
with emergent properties, a fundamental engineering issue is to achieve a macro-
scopic behavior that meets the requirements and emerges only from the behavior of
locally interacting agents. Agent-oriented methodologies today are mainly focused
on engineering the microscopic issues, i.e. the agents, their rules, how they interact,
etc, without explicit support for engineering the required macroscopic behavior. As
a consequence, the macroscopic behavior is achieved in an ad-hoc manner [69].

Creativity requires ad hoc communication in which the need to communicate of-
ten arises in an unplanned fashion, and is affected by the autonomy of the agents to
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develop their own communication patterns (see Leenders et al. [43]). It is thus obvi-
ous that, a fixed organizational structure with established patterns of communication
is not capable of delivering new complex structures (products). Also Leenders et al.
[43] showed that team creative performance will be negatively related to the pres-
ence of central team members (including brokers, mediators and facilitators) in the
intra-team communication network. ‘Emerging’ properties and innovative organiza-
tional structures are required to coordinate between different design teams that lead
to integration of the entire complex system with coherency.

3.1 Holistic Process Monitoring

When the inherent nature of a complex task is too large, a better solution is to create
an environment in which continuous innovation can occur [1]. This can be accom-
plished through process monitoring: Bayrak and Tanik [4] reported that improving
the design process that increases the product quality without increasing the design
resources is possible by providing feedback to the designer to help him/her under-
stand the nature of the design process. Therefore, the nature of the design becomes
easier to analyze if there are metrics obtained from activity monitoring [4]. Since
the design process of the complex systems by concurrent engineering is an emer-
gent process [11], holistic metrics are required to monitor the design process. One
such metric is the cognitive complexity of a process that is defined as the ability
of a problem solver to flexibly adapt to a multidimensional problem space [42].
Cognitive complexity represents the degree to which a potentially multidimensional
cognitive space is differentiated and integrated. A problem solver (a person, organi-
zation or a multi-agent system) with higher cognitive complexity is more capable of
having creative (and holistically correct) outcomes [42].

We suggest measuring the cognitive complexity of a multi-agent design process
as a function of the information exchange between the design agents. The main com-
plication here is the way in which the information exchange is measured. Kan and
Gero [35] suggested the use of entropy based measures for the evaluation of infor-
mation content of a design agent’s interactions. We suggest using a fuzzy method by
simply asking the design participants to tag qualitative and quantitative information
content of their interactions with a single fuzzy variable, e.g. high, low, and medium,
etc. These can then be defuzzified, which is the process of producing a quantifiable
result in fuzzy logic, according to a simple fuzzy rule shown in figure 8.

An example of the produced fuzzy DSM and the procedure of estimating the
cognitive process complexity for a design system comprised of three design teams
is illustrated in figure 9. Four design agents are assumed to be in team 1, the
internal interactions of which create the cognitive complexity of team 1 (CCt1). Hav-
ing measured the cognitive complexity of all the design teams using Ontix (CCt1,
CCt2, CCt3) of any instance, and knowing the amount of intra team information ex-
change, one can measure the cognitive complexity of the entire system (CCS).

Note that the information mentioned here is qualitative and quantitative and
therefore the proclivity of the design agents for more collaboration by the means
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Fig. 8 A simple fuzzification scheme. N is the total number of parameters

of information exchange do not necessarily lead to more overall cognitive com-
plexity of the design system. This is to say, unnecessary information exchange may
lower the overall cognitive complexity. As such, by testing a sample of 44 new prod-
uct development organizations, Leenders et al. [43] showed that the performance of
innovation networks (innovation teams) have an inversely U-shape relationship to
frequency of intra team cooperation. Considering this, one can conclude that the
cognitive complexity of the entire design system must be upper and lower bounded
for effective and efficient innovation networks.

Bar-Yam [2] has stated that in order to solve a problem, the problem solver needs
to have (cognitive) complexity greater than or equal to the problem complexity. This
is to say, the cognitive complexity of the process must be equal or greater than the
real (overall) minimum (irreducible) complexity of the problem.

CC ≥CRmin (1)

Also Chiva-Gomez [10] favoured a balanced participation of design players in
the design decision making process, against increasing information flow between
the design players to a maximum. It is obvious that the cognitive complexity of
the process need not be more than the real maximum complexity of the problem.
In fact, having more than the required information exchange can lead to creativity
blocks [43] which can be termed a chaotic situation. Thus an upper bound for the
cognitive complexity of the process is the real maximum complexity of the problem:

CC ≤CRmax (2)

Innovation in a multi-agent environment is the result of communication between
social agents that happens in a self-organizing fashion and when the multi-agent sys-
tem finds itself on the so-called edge of chaos [64]. When the cognitive complexity
of the process is in between the real minimum and maximum complexity of the
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Fig. 9 Measuring the cognitive complexity of the design process of any instance

problem, the design system might be on the edge of chaos but certainly not chaotic.
Besides, for collaborative multi-agent systems with cognitive complexity less than
the minimum complexity, the design process is certainly far away from the edge of
chaos, thus the design systems does not have enough functionality to deliver radical
innovation in an optimal and efficient manner. Extravagant and excessive practice
of collaboration and cooperation has a negative effect on the design system by re-
ducing the collective cognitive complexity ; as such, this condition strikes one as
being chaotic. Chaos makes the design process fragile and susceptible and raises
the design system effectiveness. It can be tested in figure 10 that design system’s
overall cognitive complexity increase only to a certain threshold by the proclivity of
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Fig. 10 Design process functionality versus process complexity

the design agents for exchanging design information. In order to ensure the health
of the design process it is necessary to ensure that the overall cognitive complexity
stays away from the maximum complexity and above the minimum. This way the
real minimum and maximum complexity that are obtained using the initial Monte
Carlo Simulation of the complex product (low level product knowledge) are used
to monitor the efficiency and effectiveness (health) of the complex product design
process. This may be achieved through monitoring the design process. The process
monitoring here serves the purposes of meeting the design objectives (quality, cost,
and lead time) by immunizing the design system against chaos and lack of effective-
ness. This immunization enables the design system to integrate the complex system
and product through utilization of radical innovation

3.2 Artificial Immune Systems (AIS)

According to Cohen [12] the immune system is a “computational strategy” to carry
out the functions of protecting and maintaining the body. Cohen’s maintenance role
of the immune system requires it to provide three properties:

1. Recognition: to determine what is right and wrong.
2. Cognition: to interpret the input signals, evaluate them, and make decisions.
3. Action: to carry out the decisions.

These properties are provided via a cognitive strategy in which self-organization of
the immune system is used to make decisions [66]. The stages correspond to the
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Fig. 11 Summary of the proposed immune algorithm for the design of complex systems

holistic control of the system, which is to immunize or ensure the realization of
self-organization, by using a complexity measure:

1. Recognition: recognizing the lower and upper complexity bounds.
2. Cognition: to evaluate the instantaneous complexity of the system.
3. Action: to maintain this complexity in between the bounds at all times.

In the field of AIS an immune algorithm is a plan that determines how the com-
ponents of the systems are going to interact to determine the system dynamics
[66]. For example Dasgupta [16] examined various response and recognition mech-
anisms of immune systems and suggested their usefulness in the development of
massively parallel adaptive decision support systems. Lau and Wong [41] pre-
sented a multi-agent system that could imitate the properties and mechanisms of
the human immune system. The agents in this artificial immune system could ma-
nipulate their capabilities to determine the appropriate response to various prob-
lems. Through this response manipulation, a non-deterministic and fully distributed
system with agents that were able to adapt and accommodate to dynamic en-
vironment by independent decision-making and inter-agent communication was
achieved [41]. Ghanea-Hercock [29] maintained a multi-agent simulation model
that could demonstrate self-organizing group formation capability and a collective
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immune response. He showed that the network of agents could survive in the face
of continuous perturbations. Fyfe and Jain [27] presented a multi-agent environ-
ment in which the agents could manipulate their intensions by using concepts sug-
gested by artificial immune systems to dynamically respond to challenges posed
by the environment. Goel and Gangolly [30] presented a decision support mecha-
nism for robust distributed systems security based on biological and immunological
mechanism.

We define a system to be immune to chaos and capable of preserving its holis-
tic self characteristics if its complexity is in between the minimum and maximum
complexity bounds. The proposed immune algorithm provides collective immune
responses for the engineering design of complex systems and is illustrated in Figure
11. This algorithm ensures the successful emergence of the complex product in a
multi-agent design environment. This method is in accordance with the recent re-
sults that argue for flatter, organic organizational structures that enable workers to
deal more effectively with dynamic and uncertain environments [33].

The next section describes the structure of a decision support system for com-
plex system design that emulates this immune algorithm. It should be noted that
the conceptual framework without any validation is presented here. The system can
however be tested by using simulations in the context of game theory.

4 IMMUNE: A Collaborating Architecture

Real world concurrent engineering design projects require the cooperation of mul-
tidisciplinary design teams; individuals and multidisciplinary design teams work in
parallel with various engineering tools that are located at different sites often for
quite a long time [59]. At each instant, individual members may be working on dif-
ferent versions of a design or viewing the design from various perspectives (e.g.
profitability, manufacturability, resource capability or capacity) at various levels of
detail. To coordinate the design activities of various groups and guarantee good
cooperation among the different engineering tools, a distributed intelligent environ-
ment is required [59]. Such an environment requires the utilization of collaborating
software that involves the integration and coordination of relatively independent,
self-contained software systems that are able to work together effectively on their
own [14]; “collaborating software” is very different from “collaboration software,”
where the software is used to facilitate the interaction among human participants
rather than to provide an automated environment where software—and potentially
human—entities work together in order to perform complex activities [14]. For the
effective development of collaborating software Corkill [14] identified six main
challenges:

1. Representation: To enable system components and modules to understand one
another.

2. Awareness: to render modules aware when something relevant to them occurs.
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3. Investigation: helping modules to quickly find information related to their current
activities.

4. Interaction: to create modules that are able to use the concurrent work of others
while working on a shared task.

5. Integration: to combine results produced by other modules.
6. Coordination: ensuring that modules focus their activities on the right things at

the right time.

All of these challenges, except for the representation, are addressed in IMMUNE
and presented in this chapter. So far two main approaches have been consid-
ered for the design of a collaborating environment: Blackboard architectures and
multi-agent architectures. Corkill [13] presented the following metaphor to describe
Blackboard-based problem solving: “imagine a group of human specialists seated
next to a large blackboard. The specialists are working cooperatively to solve a
problem, using the blackboard as the workplace for developing the solution. Prob-
lem solving begins when the problem and initial data are written onto the black-
board. The specialists (knowledge sources) watch the blackboard, looking for an
opportunity to apply their expertise to the developing solution. When a specialist
finds sufficient information to make a contribution, she records the contribution on
the blackboard, hopefully enabling other specialists to apply their expertise. This
process of adding contributions to the blackboard continues until the problem has
been solved”. Each problem solving expert is designed to independently contribute
specialized knowledge required to solve one aspect of the overall problem. The se-
quence of the contributions of these experts is not determined a priori but is instead
based on the current state of the solution and the selection of the most applicable
and effective expert for solving the associated problem part [53]. As such, the black-
board model of problem solving is a highly structured case of opportunistic problem
solving [53].

Multi-agent systems, on the other hand, have the following problem solving char-
acteristics [14]:

• Distribution (no central data repository)
• Autonomy (local control)
• Interaction (communication and representation)
• Coordination (achieving coherence in local control decisions)
• Organization (emergent organizational behavior)

Multi-agent System architectures are expressed as the pattern of relationships
amongst agents [59]. Two kinds of relationships may be assumed between agents:
Control relationships and Collaboration relationships [59]. A Control relationship
relates to the degree of autonomy which an agent possesses. An agent whose goals,
plans and/or actions are prescribed by the imperatives of another agent(s) has little
autonomy. In a Collaborating relationship however, the agents involved are free to
accept, reject or modify goals, plans or actions proposed to them. In theory, a truly
open multi-agent system need not have any predefined global control. An example
of such architecture is that of DIDE [57].
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Shen et al. [59] have identified three different architectures for agent based
systems: hierarchical architectures, federated architectures and autonomous agent
architectures. Each architecture has particular strengths for specific applications,
and choosing the right one involves matching requirements to capabilities. Hierar-
chical architectures consist of semi autonomous agents with a global control agent
dictating goals/plans or actions to the other agents. Systems with a global black-
board data base are hierarchical architectures.

Because hierarchical architectures suffer from serious problems associated with
their centralized character, federated multi-agent architectures are increasingly be-
ing considered as a compromise solution for industrial agent based applications,
especially for large scale engineering applications. A fully federated agent based
system has no explicit shared facility for storing active data; rather, the system stores
all data in local databases and handles updates and changes through message pass-
ing. They mostly use local control regimes referred to as facilitators, brokers and
mediators.

In general, collaborating environments use two different techniques to manage
complexity: abstraction and decomposition [3]. Abstraction simplifies the descrip-
tion or specification of the system, by representing the same problem from different
viewpoints and at various levels of detail. Decomposition, however, breaks a sin-
gle problem into many smaller problems. According to Bar-Yam [3] each of these
two techniques, when dealing with complexity suffers from inefficiency. Abstrac-
tion assumes that the details to be provided to one part of the system (module) can
be designed independent of the details in other parts [3]. Decomposition incorrectly
assumes that a complex system behavior can be reduced to the sum of its parts [3].

The Blackboard architecture, however, utilizes abstraction and solves prob-
lems through iteration. Because it uses a global memory, blackboard architectures
are able to maintain the focus of attention of different knowledge sources asyn-
chronously on different abstraction levels within this memory; the main point is that
the knowledge sources do not communicate with each other directly and commu-
nication is solely done through the blackboard. This allows for asynchronous com-
munication and thus blackboard systems suit loosely coupled problems [14]. On the
other hand, multi-agent systems, due to their ability to interact autonomously, can
reach to high overall cognitive complexity to solve densely interconnected problems
without the need for a global memory (integrator). Collaboration in multi-agent en-
vironments can be asynchronous and is not restricted to one abstraction level; there-
fore agents must be allowed to focus on different aspect of the problem.

According to Corkill [14] a quarter-century of blackboard-system experience and
more than a decade of multi-agent system development have produced a strong
baseline of collaborating-software technologies. The next generation of complex,
collaborating software applications must span the entire design space of Figure
12 to enable development of high performance, generic collaborating-software ca-
pabilities. This is the motivation behind the design of the presented architecture,
IMMUNE, which combines agent based and blackboard technologies. This rare
approach was first introduced by Lander et al. [39], in which they proposed the
use of agent based blackboards to manage agent interactions [59]. Their model
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Fig. 12 Collaborating environment comparison [14]

contained multiple blackboards, used as data repositories for each group of agents.
Along with design data, tactical control knowledge could be represented in the
shared repository, enabling reasoning about the design itself [59]. SINE [5] was
another agent based blackboard platform that used a single global blackboard to
record the current state of the design. Even though agents could exchange messages
directly, design data could flow through the blackboard, and it was accessible to all
agents [59].

Our proposed architecture (IMMUNE) is an agent based blackboard system that
uses a flat federated architecture. All the agents are grouped into virtual teams or
coalitions. There is no local controller for coordination in between the coalitions.
IMMUNE uses a global blackboard to save the current state of the design and to
facilitate asynchronous communication between agents through the blackboard by
saving the complete solution and partial solutions in different abstraction hierarchies.

The primary purpose of designing this architecture was to incorporate the com-
plexity science into the collaborating software paradigm. Lissack [44] demonstrated
that since both organization science and complexity science deal with uncertainty, it
is important to combine the two. This marriage of the two sciences allows for having
an autopoietic view of organization. Autopoietic systems theory analyse systems as
having self-productive, self-organized, and self-maintained nature [20]. The main
characteristic of IMMUNE is to emulate complexity measures of the product and
process which enables the manifestation of autopoietic characteristics.

The control source of the proposed blackboard does not dictate the pattern of
cooperation between agents, thus allowing autonomy in the interaction. It however
does monitor the complexity of the system at two levels: inside the coalitions and
in between the coalitions at the same abstraction level (we refer to this as a layer).
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The agents are designed to react to the information that they receive from the con-
trol source about the complexity of the coalitions and layers. Adding or eliminat-
ing agent(s) from the design system is possible in IMMUNE, making it an open
architecture.

4.1 Blackboard Architecture

The Blackboard Database is a hierarchical and partitioned global memory space
that acts as a central storage area for holding problem solving data, information
and partial solutions that represents the problem to be solved [15]. The blackboard
provides a common data structure that acts as an interface to agents (or knowledge
sources in standard blackboard systems) allowing them to read the problem data
and alter the state of this data when necessary, thereby effecting an incrementally
improved solution to the problem [53]. The higher abstraction levels relate to the
more intrinsic characteristics of the product, which has to do with the main functions
and performances of the product. The lower abstraction levels locate the variables
that describe the detailed functionalities of the product. Bearing this in mind, it is
clear that the first abstraction level in the hierarchy is like a seed that all the solutions
of all other abstraction level variables depend heavily upon. The seed must reflect
the most important and general functions of the product. Each abstraction hierarchy
is decomposed according to one of the modes that will be described in Section
5. Abstraction levels are introduced on the blackboard gradually according to the
GDDI model of design. The IMMUNE blackboard contains the design variables,
their interactions (derived from simulation) and the agents’ proposed solutions.

4.2 Control Source

Typically blackboard architectures provide a control mechanism called a control
source to coordinate the use of knowledge sources in a consistent and effective
manner [53]. The control source determines which knowledge sources should make
a contribution to the solution, when they should do so, and what part of the solu-
tion should be the focus. In IMMUNE, however, the agents decide their focus of
attention in a manner described in the next section. The control source of IMMUNE
comprises several agents with distinct tasks, all of which can be computationally
modeled:

• Decomposition agent: decomposes the generated problem on the main black-
board according to the connectivity of the problem. Important control features
that affect the entire system’s performance can be incorporated in this agent’s
knowledge namely the number of subsystems, and decomposition mode. The
former is beyond the scope of this paper although the later is discussed compre-
hensively in Section 5.
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Fig. 13 Shared mail boxes for coalitions

• Composition Agent: groups the agents based on their bids for the problems in
coalitions using the contract net protocol. A composition agent contains the map
of all the agents, their characteristics and types of expertise.

• IT manager: Sets up the LAN and communications channels of the dispersed
agents for each abstraction level.
All the agents in the same coalition must be visible to each other, meaning that
the messages that one agent receives are made visible to all team members. This
may be thought of as a shared mailbox for each coalition. For example, Figure
13 shows that when a message is sent from agent 2 in coalition A to agent 4 in
coalition B, it would be visible to all the members of these two coalitions.

• Simulation Agent: Performs Monte Carlo Simulation to generate the design space
fitness landscape. It comprises a Monte Carlo Simulation software package and
a human operator. It gathers information about the conditional probability distri-
bution of the design variables from the agents that generate them. As the criteria
for the termination of the generation stage of a given abstraction level can be
based on the self complexity of the abstraction level, the composition agent must
be able to dynamically simulate the fitness landscape as the new entries (design
variables) appear on the blackboard for a given abstraction level.

• CEO (complexity evaluator and observer): This agent announces the termination
of the generation stage for a given abstraction level as soon as the complexity
of the level reaches a certain threshold. This threshold is a control feature of the
entire system. This agent also monitors the design process. It has an embedded
blackboard on which all the communications between the agents and in between
the agents and blackboard are recorded (Figure 14). The design agents can only
write on this blackboard but there is no necessity for them to be able to read it.
The communication arrows on this blackboard must have a tag that represents
both the qualitative and quantitative weight of transferred information. Based on
these maps of the system which vary regularly over time, the CEO measures the
instantaneous cognitive process complexity of each coalition (a team of agents)
and layer (in between the coalitions of one abstraction level). The CEO measures
the lower and upper complexity bounds for the coalitions and also upper and
lower complexity bound for layers. The control source must contain knowledge
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Fig. 14 The control source structure of IMMUNE

of the different types of resource agents in terms of their capabilities, functionali-
ties and discipline knowledge. If an agent is being recruited to the system it must
register all its characteristics with the composition agent of the control source.

The control source may be fully computational and may not need any human
intervention to proceed with its tasks. The design process begins with the control
source broadcasting notices to all agents with regard to the generation of new design
variables. The agents place their entries on the blackboard in the specified abstrac-
tion level. This is the generation stage of the GDDI cycle. As mentioned before,
the termination of the generation stage in each abstraction level, can be conditional
to the self complexity of the level. The first set of initial design variables act like
a seed on the blackboard that would gradually evolve to other design parameters
at other abstraction levels. The control source, then, whether by itself or through
knowledge sources, is in charge of simulating the fitness landscape (or design space)
corresponding to these sets of design parameters and the extraction of the self map
for the design parameters. After this, the control source decides on the number of
sub problems, and the decomposition mode, decomposes the self by considering
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the number of active design agents (design resources) and the real complexity. The
control source then clusters the design agents into virtual teams and distributes the
subproblems to them. The design agents within the virtual teams solve the prob-
lems cooperatively. They send the results back to the blackboard, and negotiate the
conflicts with the other groups until they reach a resolution.

Using the common practices of sequential engineering would lead to starting a
new cycle (GDDI cycle) after all activities of the previous cycle are performed and
the results are finalized. However, the concurrent engineering principle of overlap-
ping the activities to shorten the design lead time may be applied here. Therefore
agents must be allowed to introduce their proposed design variables on the black-
board (problem generation), however the decomposition and distribution stages start
only when the CEO supposes an abstraction level as having reached a certain com-
plexity threshold. Since agents can be cloned to perform different tasks, it is possi-
ble that two or more abstraction levels could simultaneously be at different stages
within the GDDI cycle. In order to reduce the complexity of the entire design sys-
tem, we propose that the design agents of different abstraction levels be allowed to
communicate only through the blackboard.

4.3 Agents Structures

In artificial intelligence, an intelligent agent observes and acts upon an environment,
as a rational agent: an entity that is capable of perception, action and goal directed
behaviour. Such an agent might be a human, computer code or an embedded real
time software system. The internal architecture of an agent is essentially the de-
scription of its modules and how they work together [59]: agent architectures in
various agent based systems (including agent based concurrent design and manu-
facturing systems) range from the very simple (a single function control unit with
a single input and output) to very complex human like models. The agents in IM-
MUNE are Single Function Agents (SiFAs) which were developed in the AIDG
research group [22] to investigate concurrent engineering design problem solving
using multi-agent architectures. It involves multiple agents that cooperatively pro-
duce a solution when the task of the entire system is decomposed into many, very
small subtasks; where exactly each one of these is assigned to an individual agent
[22]. Every agent now has one function to perform, that is, to execute its subtask.
Agents have their own point of view that represents the expertise of the agent; which
might be cost, strength, manufacturability etc [22]. In IMMUNE, SiFAs have three
functions: 1) to generate the design variable; 2) to estimate the values of the design
variables; and 3) to evaluate the solutions of other agents from their own point of
view, verifying the existence of any conflicts. SiFAs are collaborative agents (also
called interacting or social agents) that work together to solve problems. The joint
expertise of collaborative agents is applied to ensure that the overall design is con-
sistent [59].

Coherence is a global (and regional) property of the MAS that could be mea-
sured by the efficiency, quality, and consistency of a global solution (system
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behavior) as well as the ability of the system to degrade gracefully in the presence
of local failures [65]. Coherency is about the ability of the MAS’s to “cope” with
problem integration. Several methods for increasing coherence have been studied,
all of which relate to the individual agent’s ability to reason about the following
questions: who should I interact with, when should I do it, and why? Sophisticated
individual agent reasoning can increase MAS coherence because each individual
agent can reason about non-local effects of local actions, form expectations of the
behaviour of others, or explain and possibly repair conflicts and harmful interac-
tions [65]. On this basis, four different agent architectures have been discussed in
the literature: reactive agents (also known as behaviour based or situated agent ar-
chitectures), deliberative agents (also called cognitive agents, intentional agents, or
goal directed agents), collaborative agents (also called social agents or interacting
agents), and hybrid agents [59].

Reactive agents are passive in their interactions with other agents. They do not
have an internal model of the world and respond solely to external stimuli. They
respond to the present state of the environment in which they are situated. They do
not take history into account or plan for the future [65]. Through simple interactions
with other agents, complex global behavior can emerge. In reactive systems, the
relationship between individual behaviors, environment, and overall behaviour is
not understandable [59]. However, the advantage of reactive agent architecture is
simplicity [59].

Deliberative agents use internal symbolic knowledge of the real world and en-
vironment to infer actions in the real world. They proactively interact with other
agents based on their sets of Beliefs, Desires and Intentions (BDI system). These
agents perform sophisticated reasoning to understand the global effects of their lo-
cal actions [65]. Consequently, they have difficulties when applied to large complex
systems due to the potentially large symbolic knowledge representations required
[65]. Shen et al. [59] identified collaborative agents as a distinct class of agents that
work together to solve problems; communication between them leads to synergetic
cooperation, and emergent solutions.

Hybrid architectures are neither purely deliberative nor purely reactive [65], and
the agents in IMMUNE have a hybrid architecture (Figure 15). According to Sycara
[65] hybrid agents usually have three layers: at the lowest level in the hierarchy, there
is typically a reactive layer, which makes decisions about what to do on the basis
of raw sensor input. This layer contains the self knowledge that is the knowledge
of the agent about itself including physical state, location, and skills, etc. [59]. The
agent’s self knowledge is used to participate in tasks and reply to other agents as
well as control source requests about its competence.

The middle layer, typically abstracts away from raw sensor input and deals with
a knowledge-level view of the agent’s environment, often making use of symbolic
representations [65]. This layer contains two types of knowledge: domain knowl-
edge and common sense knowledge. The domain knowledge is the description of the
working projects (problems to be solved), partial states of the current problem, hy-
pothesis developed and the intermediate results [59]. The common sense knowledge
enables the agent to emulate and make sense of the cognitive complexity measure
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Fig. 15 Agent structure of IMMUNE

of the environment that is reported by the CEO. The middle layer has two mod-
ules that are in contact with backboard and the CEO and correspond to two major
responsibilities:

1. Deciding on the focus of attention and reporting it to the lower layer: in this, the
middle layer acts as an agenda manager that has been used in many blackboard
systems such as HEARSAYII [8] with the difference that in these systems a cen-
tral agenda manager has been in charge of maintaining the focus of attention for
the entire set of knowledge sources (agents). Generally agenda managers are data
driven (what is present on the blackboard) and its operation leads to opportunistic
problem solving [8]. The agenda manager chooses the focus of attention of the
agent on different problems at different abstraction levels. It may shift the focus
of attention of the agent from one abstraction level to another depending on the
status of the problems and partial solution on the blackboard. The main reason
for using agendas for control is to speed up the process of problem solving, and
for reducing agent idle time [8]. The agenda manager in the middle layer emu-
lates the domain knowledge and regularly monitors the blackboard to maintain
its domain knowledge.

2. Maintaining the cognitive complexity of the coalitions in the focused level in the
appropriate range: This module contains the common sense knowledge (or sym-
bolic knowledge of the world) which (in IMMUNE) is the collective cognitive
complexity of the environment being broadcasted by the CEO. We refer to this
module as COPE (Complexity Oriented Problem Evaluator) that can make sense
of the environment’s cognitive complexity by comparing it to the maximum and
minimum complexity that is determined by CEO. COPE is a goal driven mod-
ule and communicates with the agent’s upper layer. To increase the complexity
of the environment COPE informs the upper layer of the agent to socialize and
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collaborate more actively. To decrease the complexity of the environment the up-
per layer of the agent becomes more passive by only reacting to the incoming
information from the control source and other agents and avoiding proactive en-
gagement in the design process” In this way COPE may provide immunity from
agent overreacting or under acting in the environment. Also COPE can dictate
to the upper layer to choose different conflict resolution schemes that are more
passive like constraint relaxation to reduce the complexity. Conversely, active
negotiation techniques can be used to increase the cognitive complexity of the
environment when there is conflict with another agent’s solutions.

The uppermost level of the architecture handles the social aspects of the environ-
ment [65]. This layer contains the social knowledge and is in charge of coordination
with other agents. It reports its information exchanges to the process blackboard of
the CEO.

5 Implementation and Overall Behavior

The control source of IMMUNE is active throughout the entire design process. The
design process starts with the generation of an initial set of product variables upon
a notification from the control shell to single agents to introduce their entries on the
blackboard. This set of product variables act as a seed representing the highest ab-
straction hierarchy of the problem space. The seed might be a rough guess of what
needs to be done (Figure 16). The simulation agent of the control source simulates
the fitness landscape of the generated problem space and is in charge of gathering all
the required information (for simulation) from the design agents. The decomposi-
tion agent of the control source decomposes the set of generated variables and calls
for the design agents’ bids to participate in solving them. The agents announce their
interest back to the control shell by weighting their interest in solving each individ-
ual design variable or estimating the value of a design constraint. The composition
agent assigns each individual parameter to a single design agent. So far the process
performs the same as SINE, which was a support platform for single function agents
[5]. However, in IMMUNE the single function agents are also grouped into virtual
teams (coalitions). The composition agent announces the coalitions’ formats; this
issue is discussed in detail in Section 5.2. The IT manager is in charge of setting
the shared mail boxes for each coalition. The problems are solved by the design
agents and the results are sent back to the blackboard. The CEO agent of the control
source estimates the minimum and maximum process cognitive complexities that
are exactly the minimum and maximum complexity of the problem. It monitors the
design process cognitive complexity arising from the collaboration of the design
agents during this last stage. If all the solutions are prepared, the virtual groups are
dismantled and collaboration process is stopped. The next set of design variables is
introduced and the cycle continues.

One possible drawback of this approach is that the design agents might be idle
for a while until a task is assigned to them. To rectify this problem we introduced
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Fig. 16 The design process at different abstraction levels may run simultaneously

an agenda manager for each individual design agent. The agents are allowed to in-
troduce new product variables at any abstraction level at any time during the design
process. They may also be cloned to solve two different design variables related
to different design groups or in the same design group. Also it is possible that the
entire process of two abstraction levels be at run at the same time. To reduce the
complexity of the system we propose that agents in the same abstraction level be
allowed to communicate directly but agents that are working in different abstraction
levels be allowed to communicate only through the blackboard. In order to facilitate
this process, the simulation agent must respond dynamically. This notion is further
discussed in the next section.

5.1 Structuration: Adaptive Organization Structure with Virtual
Cross-Functional Teams

An important research question in the field of organization design is how to
constitute cross-functional teams (See Browning, [6]). Coordination schemes are
needed to direct the design process so that a design solution is sought in a way that
accommodates the team interactions [9]. The productivity of design teams depends
to a large extent on the ability of its members to tap into an appropriate network of
information and knowledge flows [37]. Utilizing cross-functional teams that adapt
the organization structure to the task structure is one way to address these situations
[6]. Browning [6] has argued that appropriately clustering design parameters can
reveal a preferred integration of low-level activities into higher-level ones and that
indeed clustering is a key to tying top-down, activity-based DSMs together with
bottom-up, parameter-based DSMs. At each round of the GDDI cycle the organiza-
tion (team configuration) must be adapted to the generated tasks and reconfigured.
Giddens (see [19]) has studied this problem extensively in a sociological context and
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developed a theory of Structuration. This theory is formulated as “the production
and reproduction of the social systems through members’ use of rules and resources
in interaction”. DeSanctis and Poole [19] adopted Giddens’ theory to study the inter-
action of groups and organizations with information technology, and called it Adap-
tive Structuration Theory. Structuration Theory, thus deals with the evolution and
development of groups and organizations. The theory views groups or organizations
as systems with (“observable patterns of relationships and communicative interac-
tion among people creating structures”). Systems are produced by actions of people
creating structures (sets of rules and resources). It is useful to consider groups and
organizations from a structuration perspective because doing so [19]:

1. Helps one understand the relative balance in the deterministic influences and
willful choices that reveal groups’ unique identities.

2. Makes clearer than other perspectives the evolutionary character of groups and
organizations.

3. Suggests possibilities for how members may be able to exercise more influence
than they otherwise think themselves capable of.

Virtual teams (or coalitions) are groups of individuals collaborating in the execution
of a specific project while geographically and often temporally distributed, possibly
anywhere within (and beyond) their parent organization [43]. Virtual teams work
across boundaries of time and space by utilizing modern computer-driven tech-
nologies; as an instrument of team design, Information Technology (IT) is used for
creating interdependent relationships by actively shaping and reshaping interdepen-
dencies and the communication structure of the virtual teams [43]. As these are al-
tered, consequently, so is the team’s productivity [43] and creativity [18] which are
related to the creation of the appropriate information flow between the design teams.
Adaptive Structuration can be implemented with less effort by using virtual teams.
This is so, because the creation of interdependencies within and between the virtual
teams is arguably easier than in a conventional team [18], and so the management
of creativity is easier in virtual organizations [43].

The idea of embedding different knowledge sharing patterns amongst the de-
sign agents and design teams of one system has been to date, considered by several
systems researchers ([9, 55, 72, 47, 57]). MetaMorph [47] was a federated architec-
ture and could dynamically adapt to emerging tasks and changing environment. In
MetaMorph, core collaboration mechanisms are based on task decomposition and
dynamically formed agent groups [59]. The agents with various knowledge and util-
ity are clustered into virtual groups or coalitions. In MetaMorph, resource agents are
cloned as needed for concurrent information processing [47]. These clone agents are
included in the virtual clusters.

Shen and Norrie [58] argued that knowledge in modern manufacturing must be
well organized and should be able to be flexibly applied to different kinds of applica-
tions. They used three different types of knowledge sharing architectures primarily
introduced by Tomiyama et al [67]. A situation with independent knowledge bases
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Fig. 17 Knowledge sharing architectures [67]

is depicted in Figure 17a. In this case, the ’strength’ of knowledge is just a sum of
each of the independent knowledge bases [58]. Integrated knowledge bases can be
represented as in Figure 17b. Here, the knowledge bases can be applied to various
situations and the ’strength’ of knowledge is near maximum [58]. In Figure 17c
independent knowledge bases can communicate and form an interoperable situation,
although the ’strength’ of knowledge might be weaker than that in Figure 17b [58].
The entire knowledge base is a federated set of loosely coupled intelligent agents.

Zhang [72] classified types of problem solving among human experts in four
predominant categories according to their interdependencies:

(a) Horizontal cooperation is where each expert in the cooperative group can get
solutions to problems without depending on other experts, but if the experts
cooperate, possibly using different expertise and data, they can increase confi-
dence in their solutions. For example, cooperation between doctors when diag-
nosing problem patients is often a form of horizontal cooperation. Consultation
and comparison of opinions add significantly to the value of the confidence of
the final diagnosis.

(b) Tree cooperation is where a senior expert depends on lower-level experts in
order to get solutions to problems. For example, a chief engineer’s decisions
often depend on the work of junior engineers.

(c) Recursive cooperation is where different experts mutually depend on each other
in order to get solutions to problems. For example, in order to interpret geologi-
cal data, geological experts, geophysical experts, and geochemical experts often
depend on each other in a recursive way. That is, there is a mutual dependence
in that a geophysicist may ask a geologist to perform a subtask which in turn
requires performance by the geophysicist of the same sub-subtask. (NB: tree
cooperation is a special case of recursive cooperation.)

(d) Hybrid cooperation is where different experts use horizontal cooperation at
some level in an overall tree or recursive cooperation. On the other hand, they
could equally use tree or recursive cooperation at some point in an overall hor-
izontal cooperation.

Rosenman and Wang [55] introduced the Component Agent-based Design-
Oriented Model (CADOM) for collaborative design. This was a dynamic integrated
model, using an integrated schema to contain data for multiple perspectives, but
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Fig. 18 System modes for collaborative design systems [55]

also with flexibility to support dynamic evolution. They recognized five types of
modeling mechanisms for a collaborative design environment (Figure 17).

(a) Integrated mode (Figure 18a): This is an integrated CAD system which works
as a sharable server for all users using an integrated data model and a central
management mechanism. The distributed users register with the main host and
operate the system remotely. However, such an integrated system does not seem
able to meet the complex design requirements needed in a multi-disciplinary
environment. For example, each item on the system will be communicated to
all users.

(b) Distributed-integrated mode (Figure 18b): in this mode, distributed designers
usually have their own domain systems along with a central service module
called a sharable workspace.

(c) Discrete mode (Figure 18c): this is a fully distributed system, where there is
normally no central module but simply a set of distributed domain systems
with discrete models and management mechanisms. The most obvious feature
of this mode is its flexibility, without a central control unit, but many model
interpreters are required between different domain systems.

(d) Stage-based mode (Figure 18d): In this mode a base model is set up at the
first stage, and all subsequent models are derived from the base model. Some
internal mechanisms are provided to control this evolution process. This evolu-
tionary system solves the flexibility of a system, but it requires a great deal of
AI work to develop the system.

(e) Autonomy-based mode (Figure 18e): This is based on the concept of autonomy,
in which each model is implemented as a distributed set of knowledge sources
representing autonomous, interacting components.
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5.2 Global Decomposition Strategies and Modality

According to Chen and Li [9], in order to enable dynamic structuration and adapt-
ability, two preconditions must be satisfied:

1. The relevant design attributes, functions and variables necessary to formalize a
design problem have been identified.

2. The interacting relation existing in teams is prescribed a priori in seeking a multi-
team design solution.

In Section 2 we suggested that prior knowledge of the interactions (driven from the
simulated parameter based DSM) should be used in measuring the process complex-
ity, instead of being used for forced communications through channels and filters.
The reason to use this democratic method was to enhance the creativity across the
entire design system and within the teams. The CEO module of the control source
was in charge of measuring and tracking the cognitive complexity of the integrated
design system. The decomposition module of the control source was in charge of
decomposing the problem after the generation stage of a given abstraction level was
accomplished. The process of multi disciplinary team formation was based on the
decomposition format of the problem, and SiFAs that were the elements of teams
were grouped on this basis. The problem however may be decomposed in several
modes and some of the literature on this issue was discussed in the previous section.
Table 4 shows the decomposition modes that we have envisaged for IMMUNE. The
decomposition module decides on one of these modes on the basis of problem con-
nectivity for a given abstraction level.

This problem connectivity can be defined as the total number of edges in the
parametric based DSM (and self map) of the problem divided by the total number
of possible edges – that is, the number of edges of a complete graph with the same
number of nodes. The total number of possible edges in a complete undirected graph
with n nodes or vertices is

K =
(

n
2

)
=

n× (n−1)
2

(3)

For directed graphs, K is twice the amount presented in (3). If the self map of the
simulated parameter based DSM has k connections (edges), we define the problem
connectivity as:

p =
k
K

(4)

It must be noted that the connectivity values presented in Table 4 are sugges-
tions based on the experience gained from the experiments of authors with ran-
dom graphs. More appropriate methods require more theoretical investigations into
graph theory. We propose five modes of knowledge sharing and organizational struc-
ture that correspond to these decomposition modes: independent, integrative, multi-
agent, collaborative and competitive:
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Table 4 Modal decomposition of the problem at every abstraction layer based on the con-
nectivity of the problem

Connectivity Very Low
(0-0.02)

Low
(0.02-0.1)

Intermediate
(0.1-0.2)

High
(0.2-0.3)

Very High
(0.3-1)

Possible or
Best
decomposition
strategy

Full
decomposition

Integrative
clustering

Modular
clustering

Overlap
clustering

No
decomposition

Illustration:
a subsystem

Fig. 19 Independent process mode: coalitions do not need to communicate

1. Independent mode: in this mode the decomposition agent has managed to fully
decompose the problem; generally, very low self map connectivity leads to such
situations. In this mode there is no collaboration between the coalitions as de-
picted in Figure 19 because when tasks are not interdependent, there is no need
or reason to collaborate [43]. Consequently the need for radical innovation to in-
tegrate the system at the considered abstraction level would be minimal, and the
process will be characterized by short lead times. However collaboration exists
between the design agents inside the same coalition. The CEO monitors the cog-
nitive complexity inside the coalitions using the system knowledge provided by
the agents regarding the degree of interaction with other members of the coali-
tion; this is the only control relationship in the system.
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Fig. 20 Integrated process model. All coalitions exchange information with only one central
coalition

2. Integrative mode: Integrative systems were reported and studied by Sosa et al.
[63]; in these systems all subsystems are connected to a single subsystem, namely
the integrative subsystem. The integrative decomposition is derived from the re-
sequencing [63] of the parameter based DSM usually using integer program-
ming [38]. Simple coordination of the design process makes this mode desirable,
since all the coalitions have to coordinate their communications with only one
integrative coalition. The corresponding organizational structure and integrative
process mode is that illustrated in Figure 20. One drawback of this mode is that
it might be hard for the design agents of the integrative coalition to maintain the
cognitive complexity of the layer above the CEO-prescribed minimum cognitive
complexity; which is to say one module must be able to reach a high cogni-
tive complexity. In other words the coordination in between several coalitions
through one coalition might not be feasible. As such integrative mode is advised
for problems with low self connectivity.

3. Modular decomposition and autonomy based process model: Modular decom-
position results in subsystems having significant connectivity to each other. In
Efatmaneshnik and Reidsema [24] we have shown that the immune decomposi-
tion of systems into modular mode is less than that of integrative decomposition.
As such modular decomposition is desirable for problems with intermediate self
connectivity. The major criteria for clustering algorithms of modular decomposi-
tion are 1) to minimize the connectivity between the subsystems, 2) to maximize
the connectivity of each subproblem. Both these criteria are met by minimization
of the real complexity. Two significant issues that appear as decomposition con-
straints are the maximum number of subsystems and their minimum degree. The
corresponding process model is depicted in Figure 21 and is referred to as an au-
tonomy based process model. In this mode the agents explicitly act autonomously
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Fig. 21 Autonomy based process model

Fig. 22 Collaborative process mode

in their social behavior. The main characteristic of the autonomy process model
is cooperation amongst the SiFAs inside and across the boundaries of coalitions.

4. Overlap decomposition and collaborative process model: In this mode subsys-
tems are overlapped and they share some of the design variables with each other.
As a result some of the coalitions explicitly share some of the agents, and there
are some agents that have the membership of two or more coalitions (Figure
22). The real complexity is measured for overlap decompositions [24]. The main
characteristic of this process model is the intense collaboration between coali-
tions that makes this mode an information and knowledge intensive process [36].

5. No decomposition and competitive process model: when the problems are very
connected resulting in dense self maps, any kind of decomposition leads to large
departures of the real complexity from the self complexity (CR >> CS). In
this condition, decomposition may not be a solution to problem tractability.
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Fig. 23 Competitive process model

Bar-Yam [2] proposed the enlightened process model of problem solving for
very connected problems. It was based on competition and cooperation between
several design teams focused on solving the same problem. The main character-
istic of this process model is competition between the design coalition (Figure
23). In the competitive mode the problem is not decomposed, and each coalition
tackles the entire problem by itself. However, informal cooperation may exist
between the coalitions, although there is no formal and explicit cooperation be-
tween the coalitions. The final solution is chosen from the submitted solutions of
the coalition for the entire problem for a given abstraction level.

The quality of the solution is determined by the control source, based on the
accuracy weights that the coalitions suggest for their solutions. In this mode the
complexity is controlled only at the agents level (inside the coalitions) and the
cognitive complexity arising from the informal cooperation of the coalitions is
ignored.

6 Conclusion

Complex engineered systems can be conceived of as densely coupled systems. The
design of such systems is a major challenge for engineering research. A new concep-
tual approach to concurrent parametric design of complex products was presented,
representing it as a model of distributed computation and planning. IMMUNE is
a multi-agent architecture that supports parametric decision making for complex
products, employing a number of unique sub-solution methods in order to cope with
complexity. These were:

Gradualism: Gradual implementation of the problem space through sequences of
Generation, Decomposition, Distribution, and Integration of problems (GDDI cycle)
[51]. Each sequence of the cycle represents the problem at a different abstraction
level.
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Monte Carlo Simulation and Global Entropy Based Correlation Coefficient [23]:
are used to establish, early in the design phase, the self map of the system which
shows the sensitivity of design and objective variables. This self map is represented
as a weighted graph or parametric based design structure matrix [7]. A complexity
measure is then applied to the graph to measure the complexity of the problem.

Immune Decomposition: The resulting complexity measure obtained through
problem decomposition has been shown to be an indication of the system’s real
complexity which we have shown increases the overall complexity. We have de-
fined this as a system’s real complexity. Additional real complexity is the price paid
for improving the tractability and manageability of a complex problem through de-
composition. (No Free Lunch Theorem). A decomposition that has the least real
complexity leads to a problem space being more robust and immune to chaotic
behaviour.

Modal decomposition of problem space: A problem may be decomposed in sev-
eral modes depending on the connectivity (or coupled-ness) of the problem variables
at each level of abstraction. These decomposition modes are described as being
analogous to the growing connectivity of the problem and are defined as: 1) Full
decomposition, all subsystems (subproblems) are independent for least connected
systems. 2) Integrative or coordination based decomposition; where one subsystem
(named integrative subsystem) is connected to all other independent subsystems that
are independent. (3) Modular or multi-agent decomposition, where all subsystems
or some of them are connected. 4) Overlap decomposition [24], which is similar
to multi-agent decomposition with the exception that some of the subsystems are
overlapped indicating shared design and objective variables. 5) No decomposition
[3] for densely connected systems.

Adaptive Structuration [19]: The proposed architecture is capable of planning
decisions in a metamorphose environment [47] for each of the five mentioned de-
composition modes at every GDDI cycle. Design agents are clustered within each
GDDI cycle as virtual teams or coalitions of agents whose structure mimics the
structure of the problem. Subsequently, and correspondingly to the five modes of
decomposition, the IMMUNE architecture is capable of employing five modes of
design: 1) Independent mode that is fully concurrent problem solving. 2) Integrative
mode which is coordination based problem solving. 3) Autonomy based problem
solving that is cooperative and on the basis of cooperation of several coalitions of
agents. 4) Collaborative problem solving where some of the coalitions of agents
are semi merged and overlapped [36]. 5) Competitive problem solving on basis of
Enlightened Engineering [2] in which several independent coalitions of agents com-
peting to solve the same problem.

Global blackboard data base: Adaptive Structuration is accomplished using a
global blackboard containing the current state of the design at all abstraction levels
[5]. The control source decides on the decomposition mode based on the connectiv-
ity of the problem and then decomposes it on the basis of minimum real complexity.

Monitoring of the design process complexity using complexity bounds: Since the
relationships between system parameters in a complex system are often nonlinear,
the development and integration of such systems is often obscure. Nonlinear systems
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may exhibit chaotic properties that are non-integrative systems. Cognitive complex-
ity is the ability of a person or an organization to integrate a system [42]. In order
to integrate and manage a complex system the problem solving central management
unit requires a complexity that is more, or at least equal, to the complexity of the
problem [2] and that is the cognitive complexity of the organization. In this paper
the minimum and maximum cognitive complexity bounds were measured from the
simulated parameter based design structure matrix by the CEO module of the black-
board control source. The collective cognitive complexity of a product development
organization is tied to the extent its units are connected [42], and therefore can be
measured as a function of the amount of information exchange between the de-
sign agents inside one coalition and in between the coalitions. Correspondingly, the
CEO monitors the cognitive complexity at two hierarchical levels: 1) low level and
inside each coalition 2) high level that is the entire federation of coalitions in any
abstraction level. The CEO informs all the design agents of the amount of cognitive
complexity of their coalition and the federation. The COPE module of the design
agents are then in charge of maintaining the cognitive complexity of the coalitions
and the federation above the announced (by CEO) minimum away from the maxi-
mum bound. The COPE module, decides on the high level interactions mode (pas-
sive or proactive-social) by using the conflict resolution strategies that are passive
like constraint relaxation or proactive such as active negotiation.

By utilizing the aforementioned tools the fragility of the development process
of a complex system may be dealt with. The presented architecture is IMMUNE
against sudden failure in meeting the top level organization objectives including
cost, lead time and the quality of the product. It is often argued that complex sys-
tems are robust yet in the presence of uncertainties they become fragile; this strange
behaviour is related to the chaotic and sensitive characteristic of complex systems.
In the domain of sustainability of the organizations that design complex products
this means that the top level goals may often be robustly met, however, sudden and
large departures from those goals may seem inevitable. To immunize against this
fragility the proposed system advocates coherency in collaboration. That is, the lo-
cally aware design agents (aware of their local tasks) maintain the global coherency,
harmony and order through their COPE module by making the agents’ social be-
haviour subservient to the information the system’s cognitive complexity received
from the CEO module.
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Bayesian Learning for Cooperation in
Multi-Agent Systems

Mair Allen-Williams and Nicholas R. Jennings

Abstract. Multi-agent systems draw together a number of significant trends in
modern technology: ubiquity, decentralisation, openness, dynamism and uncer-
tainty. As work in these fields develops, such systems face increasing challenges.
Two particular challenges are decision making in uncertain and partially-observable
environments, and coordination with other agents in such environments. Although
uncertainty and coordination have been tackled as separate problems, formal models
for an integrated approach are typically restricted to simple classes of problem and
are not scalable to problems with many agents and millions of states. We improve
on these approaches by extending a principled Bayesian model into more challeng-
ing domains, using heuristics and exploiting domain knowledge in order to make
approximate solutions tractable. We show the effectiveness of our approach applied
to an ambulance coordination problem inspired by the Robocup Rescue system.

1 Introduction

As computing power and ubiquity increase, the use of multi-agent technology in
large distributed systems is becoming more widespread. For example, sensors are
often now included in new buildings or vehicles. When these sensors are able to
sense intelligently and communicate with one another, they form a multi-agent sys-
tem. Mobile sensors may be able to make inferences about a scenario such as a
terrorist attack or a flood, and provide human teams with uncertainty estimates
and suggest actions. In situations where a human would be at some risk, intelli-
gent communicating machines may be deployed—for example, thousands of UAVs
(unmanned aerial vehicles) can collaborate to search over a wide area [32], or robots
may also act as intelligent agents, aiding or replacing humans to perform a coordi-
nated search of a burning building [33]. Consequently, as such systems develop, the
scalability of complex interacting systems becomes increasingly important.
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In more detail, an autonomous agent is an entity which makes local perceptions
within an environment and processes these perceptions in order to decide how to
act on that environment, based on some internal goals. When many such agents are
acting within the same environment then the actions of one can affect the perceptions
of others. This is the essence of a multi-agent system and the reason why cooperation
is essential to its effective operation.

In order to provide a focus, and to motivate this work, we will consider the dis-
aster response domain as an example multi-agent system. Disaster scenarios form
rich grounds for multi-agent distributed problem solving, allowing us to explore sev-
eral features of complex multi-agent problems. While there are many characteristics
which may be present in disaster scenarios, we will find that there are two common
themes: uncertainty, and coordination.

The first of these, uncertainty, may concern the environment (“What’s going
on?”) and the agent’s position in the environment (“Where am I?”); it may be about
any other agents which might exist in the environment (“Who else is around? Where
are they?”) and their behaviour (“What are they going to do?”). In these uncertain
situations, each agent must do some form of discovery to determine the essential
characteristics of the scenario, including the agent’s collaborators, before and along-
side directly working to achieve its goals. This discovery phase in a multi-agent
system is tightly linked with the presence of other agents in the system. As well as
determining which other agents are present, agents may be able cooperate to search
over different regions, sharing information with each other as appropriate.

In addition to explicitly sharing information, observing the behaviour of the other
agents allows an autonomous agent to make inferences about the system. For exam-
ple, in a scenario involving a burning building, a rational agent will not enter the
building (although a specially designed robot or one which believes itself to be ex-
pendable may). Beyond discovery, there will continue to be interaction between the
agents in a multi-agent system, whether explicit via communications and negotia-
tions, or implicit through activity. Moreover, achieving some subgoals may involve
a collaboration between several agents, as in a rescue operation where two ambu-
lance members are required to carry a stretcher, or a driving team with a navigator
and a driver.

Now, this general problem of taking others into account, coordination, is the
second key issue we have identified for multi-agent systems. In uncertain or open
systems, fixed protocols for coordination must function against a background where
agents are not fully aware of the situation; that is, their environment, the resources
available to them, or the behaviour of the other agents. The negotiation of co-
ordinated behaviour in such systems is intertwined with the discovery phase, as
agents interact with one another, perhaps cooperating to determine properties of the
situation.

In order to achieve such a comprehensive model for planning and acting, we
have built on existing techniques for cooperative decision making under uncertainty.
Now, the inherent dynamism in many of these problems calls for timely online
responses, rather than offline computation of strategies. For partially observable
multi-agent problems, recent work has advanced the state of the art for finding
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offline solutions in systems of stationary agents, with solutions in systems contain-
ing at least fifteen agents (where previously the maximum was five or six) [23].
Building on this, we describe a related online approach which is suitable for com-
plex dynamic systems with mobile agents, and also scales to tens of agents.

Our algorithm explicitly models other agents, demonstrating a principled ap-
proach to cooperative behaviour in uncertain and partially-observable multi-agent
systems. Through empirical evaluation, we show that our approach, using learned
finite state machines to approximate the behaviour of others, is more efficient than
other principled approaches [14] and more effective than a state-of-the-art hand-
written strategy for the same scenario. In practical terms, this algorithm could be
directly deployed in systems such as collaborative mobile sensor networks or for
UAVs sharing a distributed search. In more human-led systems, such as a disas-
ter response, we anticipate that communicating sensors in both fixed networks (for
example, in buildings) and hand-held applications could suggest actions or action
sequences to human participants. While in the future we expect that robot teams
will be able to become increasingly autonomous with valuable contributions to such
scenarios, in this chapter we think it best to consider our ‘agents’ to be computer-
advised humans.

Over the next sections, we provide a detailed background to our work (Section 2)
and motivate a cooperative approach using finite state machines to model agent be-
haviour. In Sections 3 and 4 we describe this approach in detail. In order to validate
our model we test it on a problem taken from the disaster response domain. Section
5 describes this problem and Section 6 compares the performance of our algorithm
with previous approaches to partially observable uncertain systems. In Section 7 we
conclude and describe directions for future work.

2 Background

In this Section we introduce the ideas which we will use in our algorithm, explain-
ing the way in which the multi-agent approach to partially-observable systems is
developed from single-agent decision theory, and justifying the decisions we have
made at each step. First, however, we introduce the disaster response domain as a
motivation for this work and identify its key characteristics.

2.1 The Disaster Response Domain

We ground our work in the disaster response domain. After a disaster such as an
earthquake or a flood, the immediate situation and its environmental properties are
typically unknown to the rescue teams, and the complete situation cannot be atomi-
cally observed by a single agent. Rescue teams may come from different regions but
all must collaborate to search the area and rescue any disaster victims in a timely
fashion. However, communication lines may be unavailable or restricted so that this
collaboration is necessarily implicit or based on short one-way communications.
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In more detail, we find that taking disaster response as our focus domain drives a
particular interest in collaborative multi-agent domains which include the following
properties:

Decentralisation: In these large and dynamic systems, providing a central con-
troller is likely to be infeasible. Firstly, there are unlikely to be sufficient re-
sources to allow communications between one central controller and every other
node. Secondly, one central controller is almost certainly not going to be able to
obtain a complete view of the system, and the potentially rapid changes as agents
enter and leave the system would be difficult to track.

Dynamism: Realistic systems are rarely static. For example, in disaster recovery
agents must adapt to changing weather conditions, any aftershocks, and unex-
pected events such as building collapse or fires. When taken together, this can
lead to a very dynamic environment.

Partial observability: Along with decentralisation, it is likely that no one agent is
able to see the complete system all the time. Although communication between
agents may extend a particular agent’s view of the system, the agent must con-
tinually make judgements based on an incomplete view.

Bandwidth-limited: Limited communication is a characteristic common to disas-
ter scenarios—for example, mobile phone networks often become jammed [24],
or time constraints can limit opportunities for communication. Thus, agents may
be able to exchange some information, but both time and bandwidth restrictions
will limit these exchanges.

Openness: The rescue agents are likely to be entering or leaving the disaster scene
throughout the rescue operation. Agents may be harmed at the scene and thence-
forth be out of action, while new agents may arrive late. A collaborative model
in a disaster response scenario must therefore be able to adapt to the continual
arrival and loss of agents.

Example 1 describes an earthquake scenario having many of these features. Keep-
ing these driving forces in mind, we begin with a description of the most straight-
forward of this class of dynamic problems, the single agent observable Markov
Decision Process (MDP) (Section 2.2.1). Building on the single agent MDP, we
will generalise to partially observable (Section 2.2.4) and multi-agent environments
(Section 2.3), discussing means of coordination among agents. We will not discuss
open systems in detail until the final Section (Section 7).

2.2 Single Agent Decision Making

We begin with an introduction to decision making processes for a single agent act-
ing in a dynamic environment, going on to explain how the agent can learn about
uncertain environments via reinforcement learning, and introducing Bayesian rein-
forcement learning. We then extend these decision making techniques into partially
observable environments, again using Bayesian techniques.
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Example 1. Earthquake scenario
An earthquake has damaged the small town of Tameugny (Figure 1), including its hospital
and ambulance fleet. Buildings are still collapsing and there may be aftershocks (dynamism).
Ambulance teams from nearby towns converge on Tameugny, travelling through the damaged
streets searching for hurt victims among the rubble (partial observability). Although the am-
bulance dispatch stations are able to communicate with one another, once the ambulances are
on the road to Tameugny, they find the communications networks are blocked (bandwidth
limitations). They must therefore make decisions independently (decentralisation), leaning
out of their windows to warn other ambulance drivers about damaged roads, exploring parts
of town not yet marked by emergency services’ red and white tape, or going to the aid of
ambulance teams working in particularly damaged areas, such as a collapsed office building.
They also need to learn about the capabilities of ambulances from other towns, who may be
equipped differently or even have different goals—one apparent ambulance turns out to be a
concealed news team. As the ambulances come and go, the system is open.

Fig. 1 Tameugny, after an earthquake

2.2.1 Markov Decision Processes

In this most basic model, the agent perceives the state of the world through its sen-
sory inputs, and decides on its immediate action based on this state. Following the
agent’s action, the world transitions into a new state, and the agent may receive some
reward. This model forms the basis of Markov decision theory [36]. The fundamen-
tal feature of this theoretical model is the assumption that the immediate next state
is dependent only on the previous state and choice of action—this is the Markov
property. Although the Markov property may not fully hold, it is often a sufficiently
good approximation, and techniques which use this theory can get good results. This
is demonstrated by many practical examples [18] [35] [2]. With the Markov assump-
tion, if the models describing the transition and reward probabilities are completely
known to the agent then the system can be solved, using a pair of recursive equa-
tions [36] which determine the optimal action from each world state. These are the
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Bellman equations. For large systems, there are efficient ways of approximating
these solutions—we do not go into these here, as we will not be dealing with known
MDPs, but refer the interested reader to [36], Chapter 9.

2.2.2 Reinforcement Learning

Example 2. Rescue worker in the old people’s home
A lone rescue worker searches Tameugny’s old people’s home after the earthquake. As she
works her way up the building, she takes increasing care how she treads, not knowing what
structural damage the earthquake may have caused—the environmental dynamics are uncer-
tain. Some parts of the building were more heavily populated than others—the dining area
was full of elderly people and waiters; most of the bedroom wings are almost empty, but the
Violet Wing was being cleaned by a team of a dozen cleaners. The rescue worker does not
initially know how the building was laid out or which areas were most crowded, and must
discover this as she makes her way through the building.

When there is uncertainty about the aforementioned models, as in Example 2,
the agent can learn the optimal actions through experimentation. To this end,
reinforcement learning techniques, such as Q-learning, TD(λ ) and SARSA [36],
provide techniques for the agent to do this. There are two types of learning: model-
based and model-free. In the former, the agent aims to learn the system model, in this
case the underlying MDP, and then solve that model (using the Bellman equations,
as above) to decide an action. In the latter, the agent learns a direct mapping from the
state to the optimal action. Model-free learning typically involves simple updates at
each step and is consequently often more efficient for one-off problems. However, in
comparison, model-based methods can be used to carry out many simulation steps
alongside each real-time step, taking advantage of otherwise idle cpu cycles in rel-
atively slow-progressing problems. Another advantage of model-based methods is
the ability to bias the system towards a particular real model, using domain knowl-
edge. Models or parts of models can also be re-used in different problems. Given
this, we will focus on model-based methods particularly because of these two prop-
erties: in scenarios such as disaster response we will have initial beliefs about the
system based on the domain or similar disasters and would like to incorporate those
beliefs into our solutions.

2.2.3 Bayesian Reinforcement Learning

In particular, we focus on Bayesian model-based learning. By comparison to most
model-based learning methods, which maintain a point estimate of the models, a
Bayesian learning method will maintain a probability distribution over all possi-
ble models, in the form of a belief state. This provides a principled solution to the
exploration-exploitation problem (Example 3): the decision an agent has to make
between taking the action it currently believes to be optimal, and taking an ex-
ploratory action. In general, the more certain the agent is about its current model, the
more likely it should be to take the currently optimal action. The Bayesian model
pins this intuition down precisely.
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Example 3. Exploration-exploitation in the Tameugny earthquake
The river Tam runs to the east of Tameugny. As ambulances rush in to the rescue from the
east, they find that the earthquake has also destroyed several of the bridges across the river.
An ambulance arriving at the riverside early after the disaster is able to learn over the radio
that there is a bridge still standing two miles downriver. However, there is no data about the
bridges upriver. The ambulance driver knows that there is a bridge only half a mile away,
if it is still standing, and another a mile and half away, but then no more bridges for five
miles. The decision the ambulance driver must make about whether to travel in the uncertain
direction, or head straight for the bridge which is known to be standing, is an example of an
exploration-exploitation problem.

2.2.4 Partially Observable Markov Decision Processes

Now, reinforcement learning, combined with the Bellman equations, will allow a
single agent to solve any observable MDP which comes its way. However, although
MDP models will form the basis of our environment, in large or complex scenarios
it is common for an agent to make local observations which allow it to form infer-
ences about the current state (Example 4), without observing the complete state di-
rectly (although in multi-agent systems, local observations may be augmented with
communicated information). When the underlying process of moving from global
state to global state is still (assumed to be) Markov, the scenario is described as a
partially observable Markov decision process, or POMDP, and there are a host of
POMDP-solution techniques.

Example 4. Partial observability in the Tameugny earthquake
Two Tameugny ambulances which survived the earthquake immediately swing into action.
However, beyond the strength that they felt the earthquake to be, they have no idea of the
scale or the detail of the situation. Elsewhere, as an office worker runs from a crumbling
building, an approaching ambulance calls out to ask how many people were in the building—
the answer (an estimate) is information which will remain local to that ambulance until much
later. In other parts of town, other ambulances will have their own local information. However,
the big picture will not be completed until much later on, if at all.

In particular, when the underlying environmental model is known, the POMDP can
be converted to a continuous Markov decision process by defining a belief state as a
probability distribution over states. The resulting continuous MDP, from belief state
to belief state, can be solved using exact algorithms [7] or using approximations to
make computation easier [3], [20]. If the underlying model is not known, learning
techniques must be used to refine a solution as the agent explores the system. Model-
free approaches, such as [1], have had some success in using learning techniques to
solve POMDPs. However, as discussed, we believe that model-based approaches
may again have benefits—for example, [34] demonstrates a model-based algorithm
which uses variable length suffix trees to address the fact that even if state transitions
are Markov, the observable process may not be. However, existing approaches rely
on a number of approximations and assumptions about the state space, hence are not
entirely satisfactory. A principled approach may be to extend the Bayesian model
described previously into partially observable domains [30].
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2.3 Coordinated Decision Making

Above, we have discussed agents reasoning about their environments. However, as
well as reasoning about their environment, agents in a multi-agent system will be
interacting with each other (Example 5). This interaction can be modelled by defin-
ing a (hyper)sphere of influence for each agent within the environment. Overlapping
spheres of influence indicate interactions between agents [41]. A model of how dif-
ferent spheres interact will form a part of the agent’s model of the system, as will
models of the behaviour of the other agents. Making decisions in the context of
these other agents is the fundamental principle of coordination [12]. Clearly, this is
a central part of a reasoning agent in a multi-agent system. Thus, in the following
sections we expand on how agents can reason about the behaviour of others and
incorporate that reasoning into their own behaviour.

Example 5. Ambulance traffic at the the Tameugny earthquake
Consider again the ambulance driver arriving at the River Tam after the Tameugny earth-
quake. If he is the only ambulance approaching the scene, he may choose not to take the risk
of having to travel many miles upriver, and head straight for the bridge which is known to
be standing. However, if he knows that there is a fleet of ambulances following him, he may
choose to head upriver so that he can (subject to communication networks functioning) send
back data about the status of the bridges to later ambulances, enabling them to update their
model without the travel costs. He might also consider that if all the ambulances were to head
for the one bridge, a traffic jam would form there, perhaps wasting precious time.

Perhaps the simplest example: agents functioning in uncertain worlds among other
agents may include others’ behaviour in the Markov state transition model they
develop. However, by doing this they may form inaccurate assumptions about the
world, as agents adapt their behaviour to one another. Consequently, maintaining
models of the world and of other agents separately provides greater flexibility and
may enable the agent to reuse a world model as agents come and go, or reuse models
built for known agents in fresh scenarios. Below, we outline three common ways in
which agents may develop and use models of the world to coordinate.

2.3.1 Coordination Mechanisms

Three, potentially overlapping, coordination mechanisms are identified by [4]: con-
ventions, communication, and learning (Example 6). Firstly, conventions are typi-
cally the simplest form of coordination. In a convention-based coordination system,
there are a number of assumed “social rules” describing ways for agents to interact
when they are aware of other agents. Coordination by convention is typically sim-
ple, scalable and requires no setup time [16]. However, it is inflexible, and relies on
all participants knowing the conventions and complying with them. More complex
models using conventions include role-based structures [37] and self-organising
structures [39]. Secondly, communication is used for coordination in many kinds
of system. Coordination through communication has a small setup time and some
bandwidth costs. In most large systems there will be some form of communication in
order to share information between agents; it will be impossible for any one agent
to sense all the information it needs to function effectively in context [13]. How-
ever, we expect to make limited use of communication beyond information-sharing,
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as the bandwidth and timeliness constraints will typically preclude it. Finally, it is
possible to extend single agent learning into the multi-agent domain. The uncertain-
ties of our target domain make learning techniques a natural approach to problems
within this domain. Learning techniques enable agents to evolve coordinated polices
within uncertain state spaces, either with a group of learners exploring the space and
converging towards an equilibrium (as in [10] and [22]), or by one agent explicitly
learning about the behaviour of others in order to adapt its own appropriately [8].

Example 6. Coordination mechanism examples
Consider the ambulance drivers approaching the Tameugny earthquake. They can use all three
of the above coordination mechanisms:

• By convention, they will drive on the left hand side of the road; they will use sirens to
indicate their approach; they will rescue the elderly, the mothers and the children first.

• They will communicate with the other ambulance drivers, calling things like “road’s gone
up there”, “I think someone needs to check out the North-East of the town”, “We need
three more people to help lift here”. By convention, sirens also communicate with others.

• As they work with other ambulance teams, they will learn which teams need the most
help, which areas of the city have been searched, and how a particular team tends to
operate (for example, whether they use one-two-lift, or one-two-three-lift)

2.3.2 Game Theory

Distinct from the three approaches to coordination identified above, another research
domain which investigates coordination from a theoretical angle is game theory
[21]. In game-theoretic formulations, agents model the scenario as a game and try
and derive, either through exact evaluation or through learning, a best response to
the strategies of the other players in the game (Example 7). If all the players itera-
tively keep playing best responses, and if strategies are mixed (stochastic) the play
will converge to a (mixed) equilibrium, in which every player’s strategy is a best
response to every other player. One of the challenges of game theory is to direct the
play so that convergence is not just to any equilibrium but to an optimal one [10].

Within the domain of game theory, the form of multi-agent learning in which
the agents maintain explicit models of the other agents is described as learning in
stochastic games. One effective approach to extending single-agent reinforcement
learning into this setting is the win-or-learn-fast (WoLF) approach: an agent’s learn-
ing rate is adjusted according to its current performance, without explicitly mod-
elling the other agents [5]. However, WoLF techniques can be improved upon by
using a Bayesian model in which agents maintain beliefs about the behaviour of the
other agents, as well as a probability distribution over world models [8]. The need
for heuristically determined learning rates is then eliminated, while prior informa-
tion about agents can be incorporated.

Game theory is an obvious model for scenarios with heterogeneous and compet-
itive agents, but searching for the optimal Nash equilibrium is also a useful formu-
lation for cooperative problems. WoLF and related approaches are often applied in
such problems, with each agent gradually adjusting to the others so that the whole
system is incrementally improved. Although there is no guarantee that the optimal



330 M. Allen-Williams and N.R. Jennings

equilibrium is found, the technique is effective, and in large problems it is often
sufficient to come up with a “good” solution rather than the optimal solution.

Example 7. Game theory in Tameugny
Twin boys are standing near the old people’s home when the rescue workers leave it with all
the survivors. During the rescue several parts of the building have collapsed, and more may
go at any moment. The boys know that they can dart into the building to loot it for jewellery,
but if they do, that will be the signal to the rest of the gang to join them. If the rest of gang are
not put off by the risk of building collapse, they will surely all want to join in and claim some
of the spoils—greatly increasing the risk of building collapse for all. The twins must decide
how likely the others are to follow them in their dash into the building before deciding to
make it. A possible set of outcomes for the game is summarised below. In fact, each outcome
is associated with some probability and the twins will make their decision by considering all
probabilities.

Outcome for the twins:
Twins

Loot Don’t Loot

Gang Loot BC; -100 S; -20
Don’t Loot J; 100 0

Outcome for the gang:
Twins

Loot Don’t Loot

Gang Loot BC; -100 J; 15
Don’t Loot 0 0

Outcome Building collapse BC =−100

Outcome Jewellery 10 < J < 100

Outcome Loss o f status S =−20

2.3.3 Integrated Learning and Coordination

Considering these coordination techniques in the light of our domain requirements,
we believe that “acting” and “coordinating” in uncertain systems should be com-
pletely integrated. That is, rather than use an explicit coordination layer, agents
should include their beliefs about other agents’ behaviour in their action selection
mechanism, and adjust their own action according to their beliefs about the other
agents. By doing this, agents can smoothly make decisions about coordinated ac-
tions. Moreover, we believe that such an integrated approach should be based on
sound theoretical principles, allowing us to reason about the behaviour of agents.
In uncertain and dynamic domains, this motivates the use of multi-agent learning
models, since these provide a basis for such coordinated action selection and are
designed for uncertain domains. Furthermore, although in large domains it may
be impractical to learn a complete solution in real time, we have explained that
learning methods can be used on top of other coordination mechanisms to pro-
vide adaptability on top of known conventions or communication languages, to se-
lect between coordination mechanisms, or to use learning for some subproblem.
We therefore explore the application of multi-agent learning models to dynamic,
partially-observable domains. Finally, we observe that within model based learning
it is sensible for agents to maintain models of the other agents separately from the
environment, as these models need not be treated as Markovian. Therefore, the game
theoretic paradigm, computing “best responses” to agents within their environment,
is appropriate and more flexible than treating other agents implicitly.
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2.3.4 Learning Models of Other Agents’ Behaviour

Given the aim of learning models of the environment, we have previously discussed
reinforcement learning. However, learning about other agents’ behaviour is typically
a different kind of task from learning about the environment. In a fully observable
domain with the Markov assumption, the optimal action will only ever depend on
the current state. Therefore, agents can learn simple models of the strategies of the
other agents, using multinomial distributions over actions (one for each state) and
updating these distributions either using a simple frequency count or using Bayes’
rule. In the situation in Example 7, this may mean the twins observing the state
(Home empty, Gang in alley) and deciding to loot, or observing the state (Home
empty, Gang at head of alley) and deciding not to risk it. This is known as fictitious
play [17]. Conversely, in scenarios where the full state is unknown to the agent,
simple fictitious play is not appropriate. Each agent may have knowledge of the
environment and a model of the current world state—but this is not sufficient to
respond optimally to the other agents. In a rescue scenario, some rescue tasks require
several agents, and so the agents must come to the same conclusions about when
these tasks are approached. If agents have differing views of the situation, they may
not make the same decisions about urgency, resulting in an ineffective dispersal of
agents. In Example 7, the twins may believe mistakenly that the gang will realise
how unstable the building is, and thus expect the gang to take more care than it does,
or they may not know how desperate one of the gang is for cash.

In principle, each agent can maintain and update a POMDP in which the unknown
POMDP “state” includes the world state, the other agents’ world models, and be-
havioural models for the other agents. In practice, it is not tractable either to up-
date such a model or to determine a best response within it without performing some
approximations—forexample, projecting just a small number of steps into the future,
and using a domain-specific heuristic to estimate the values of those future states [14].
Even this heuristic approach relies on each agent being able to predict the compu-
tations of the other agents—each must be initialised with the same random seed. A
different approach to approximation is to restrict the possible opponent strategies to
those which can be described by regular automata, often called finite state machines
or finite automata.

2.3.5 Finite State Machines

An agent controlled by a finite state machine has a number of internal states, each
associated with an action (or a probability distribution over actions)—this tells the
agent how to act when it reaches this internal state. After taking an action, the agent’s
observations determine its movement to a new internal state. The finite state machine
captures the notion that an agent’s beliefs can be approximated, for the purposes of
decision making, by a variable but finite sequence of past observations, and exam-
ples such as [38] [6] demonstrate that it can be very effective. Furthermore, approx-
imate best responses to finite state machines can be computed efficiently [23].

To date previous work using finite state machines focuses on offline solutions to
multi-agent problems, precomputing responses to every possible belief state. How-
ever, it is impossible for every belief state to be reached: each belief state which is
visited narrows the space of possible future beliefs (at least within a static environ-
ment). For offline solvers without tight time constraints, there may be no problem in
generating redundant information. Other approaches use the intuition that the belief
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space need only be divided into sufficient chunks to determine the next action, for
example using principal components analysis on a discretized state space [31]. The
alternative to such techniques is to search for solutions online. This is the only way
of approaching very dynamic systems, or systems where the problem parameters
may not be known in time to perform a comprehensive offline search—as is likely
to be the case in our target domain. Online solutions will, of necessity, be approx-
imate, since any accurate solution projects infinitely far into the future and thus is
effectively an offline solution.

In the next section we expand some of these ideas and describe in detail an al-
gorithm for online cooperative action in partially observable multi-agent systems in
which agent communication is limited to information-sharing. Our algorithm uses
finite state machines to model the policies of the other agents and each agent com-
putes online a best response to its beliefs about these finite state machines.

3 Bayesian Learning Models

As outlined in the previous section, we will use finite state machines to model indi-
vidual agent policies in a multi-agent setting. In this section we flesh out the theoret-
ical background behind this model, first outlining an exact theory and then showing
how this is approximated by a finite state machine model. Then in Section 4 we
describe the finite state machine model in more detail.

3.1 Bayesian Learning

We begin by specifying our definitions. Throughout, we assume that there is some
underlying world state, s, which changes in response to the joint actions of the
agents. The progression of world states and joint actions forms an MDP. We as-
sume that agents are not able to perceive s completely, but make some observations
o from which they make inferences about the state. These observations may include
communications from other agents—we do not treat those distinctly in this work.
More formally, we will make use of the following definitions:

• S : {s0, . . . sns}, a set of states. A state will generally be described by a set of state
variables.

• I : {I1, . . . Ik}, a set of k agents
• L⊂ S = {L1, . . .Lk}, a location variable for each agent. These determine the view-

point from which agents make local observations.
• A = {a1, . . .ana}, the set of individual actions. A = Ak is the set of joint actions.

Thus, we differentiate between a single action a and a joint action a by using
bold for the latter, to emphasize that it is a vector. We may also use a−i to refer
to the vector a with the element corresponding to agent i removed, and a ◦ a′ to
refer to a with ai integrated.

• O : {oo, . . .ono}, a set of observations
• Tf : Tf (st+1,s,at) = P(st+1|st ,at), the transition function from state to state,

where st+1,st ∈ S and a ∈ A.
• O f : An no-dimensional function where O f (st ,ot)i = P(ot |i,st), the observation

function for agent i, where ot ∈ O and st ∈ S.
• R : {r1, ....rnr}, nr ≤ ns, a set of possible rewards which an agent may receive
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• R f : SxAxS→ R, a reward function, specific to the agent. Typically, the reward
will be associated with the immediate state, but for some problems it may be
associated with the transition between states (for example, if actions have a cost).

When taken together, Tf , R f and O f describe the dynamics of the environment. We
may use θ = (Tf ,R f ,O f ) to refer to these dynamics as a whole. An individual agent,
A, may also have:

• A (deterministic) policy π : (p,h,ot)→ a where p defines any prior or domain
knowledge, h defines all relevant historical information (observation sequences
including communications from other agents), ot ∈ O is the current observation
and a∈ A is a single agent action. Typically, (p,h) will be compressed to contain
the sufficient statistics for a belief state (a probability distribution over states and
unknown parameters).

• Beliefs over unknown parameters: for some variable X taking values x1,x2, . . .,
b(xi) is the probability that X = xi, given the agent’s prior information and sub-
sequent observations.

• Models of the other agents’ behaviour: P(πi|p,h) where πi has the same form as
π above and (p,h) refer to the prior and historical information of the agent A.
To be clear, we assume that the other agents have deterministic policies, and our
agent maintains beliefs over these deterministic policies.

Taking these definitions, we go on in the rest of this section to build up a formal
model of learning in multi-agent systems. The following section (Section 4) explains
an approximation which can be used to make implementing this model practical
in a particular special case of interest to us. First, however, we introduce Markov
Decision Processes.

3.2 MDPs and POMDPs

The transition function Tf has the Markov property: the probability of future states
depends only on the current state and the action choices, and not on past state history.
Consequently, {S,A,T,R} defines a Markov Decision Process (Figure 2):

Fig. 2 Markov Decision Process progression

In choosing an action at time t = tT , the agent’s aim is to optimise the expected
discounted future rewards, defined by:

Rγ
T =∑

t
γt rt (t ranges from T to ∞) (1)

where rt ∈ R is the reward at time t. γ is a problem specific parameter which defines
the agent’s myopia; that is, to what extent it considers delayed future rewards to
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be important. It balances the importance we place on future states with our need to
accumulate reward now. In practical terms it will be chosen to express the extent of
lookahead appropriate to the problem (consider chess as an analogy: for the most
part, say, 3 steps of lookahead are sufficient to play well). Typically, we will use
a γ value of around 0.8, making lookahead negligible after around ten steps into
the future—in a fragile disaster scenario we expect this to be sufficient for most
planning purposes. It is most common for reinforcement learning algorithms to set
γ between 0.7 and 1, although the choice will depend on the exact problem.

Now, in a fully observable world, O = S and P(ot |st) = (1 if ot = st ,0 otherwise),
i.e. the agent knows the complete state st at every timestep t. Given the Markov
property, its optimal policy therefore need depend only on the current state. We can
therefore define a policy in a fully observable MDP by π(s) = a, a function from
states to actions. Then, if the strategies of the other agents are known, the agent can
compute its own optimal policy by solving the large simultaneous equation known
as the Bellman Equations (2 and 3), via dynamic programming, and then taking the
policy π∗ described in equation 4.

In more detail, Qπ(s,a) is the (discounted expected) value of taking action a from
state s, and then working to policy π . Q∗(s,a) is the (discounted expected) value of
taking action a from state s, and then working to the optimal policy π∗. We will use
“best response” to refer to the optimal single-agent action, a, maximising Q(s,a)
throughout this paper as we replace s with more complex models.

Q(s,a) = ∑
s′

P(s′|s,a)[r(s′)+ γV(s′)] (2)

V (s) = max
a

Q(s,a) (3)

π∗(s) = a such that Q(s,a) = max
a

Q(s,a) (4)

P(s′|s,a) = Tf (s′,s,a ◦ a−i) (5)
where a−i is the joint actions of the other agents as defined by their strategies

There are various ways of efficiently approximating these solutions in large prob-
lems, and for solving in continuous systems. Briefly, the equations can be solved
iteratively, and efficiency is achieved by (a) updating the states most likely to have
changed first, and (b) updating “nearby” states when a state is updated [36]. We do
not go into details of these solution techniques as realistically we are unlikely to
know all the necessary parameters. In the next section we explain how this model is
extended into systems with unknowns.

3.2.1 Partially Observable Systems

It is often the case that the agent may not know (in the case of static parameters), or
be able to observe (in the case of state-related values) all the details of the MDP. If
the underlying state s cannot be observed, then the problem becomes a POMDP: a
“partially observable” Markov decision process (Figure 3). At each step, the MDP
proceeds behind the scenes, while the agent makes observations o derived from
the underlying state s, where o is insufficient for the agent to reliably determine s.
O f (s, i) describes the probability density function P(o|s) for agent i.

To solve this POMDP, we can derive from it a secondary MDP—a belief MDP.
The multi-dimensional states of this secondary MDP have one continuous variable,
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Fig. 3 Partially observable Markov Decision Process

Fig. 4 POMDP inducing a Bayesian belief state MDP

b(s), for every possible value s of the underlying state. The value of b(s) indicates
the probability that the underlying state is s, given the agent’s prior knowledge and
the history of observations and actions. The system proceeds from b to b′ at each
step using Bayes’ rule (equation 6) to update the state probabilities (Figure 4):

P(M|observations)∝ P(observations|M)P(M) (6)

This belief MDP is, therefore, completely known, and although continuous and
high-dimensional has an exact solution describing the optimal action in any belief
state. This solution will inherently take into account the need for exploratory actions.
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In principle, any general techniques for continuous MDP solutions can be used to
solve the belief MDP [36]. However, all belief-state MDPs fall into a particular class
of continuous MDPs, since each belief state restricts the possible future belief states.
More efficient solution techniques exploit the properties of these MDPs [28] [27].

Given this, we can extend the belief MDP idea further to consider cases where the
environmental dynamics, θ , are not known or are partially known. In these cases,
we can consider an underlying MDP which has the dynamics, θ , as one of its state
variables. This MDP has a known transition function: (s,θ )→ (θ (s),θ ). The obser-
vations for the POMDP associated with this MDP will include state transitions as
well as the immediate observations. In principle, this POMDP can be solved exactly
as described above. Finally, the same model extends into the multi-agent world by
including the actions of other agents in the underlying state, and the behaviour func-
tions of other agents in θ . In a partially observable system, the behaviour of another
agent will depend on its beliefs about the state, and so we also add the beliefs over
states of the other agents to our own MDP state:

sMDP = {s,∀ j.(σ j),∀ j.(b j(s)),θ}
To date, existing work has studied some sub-cases of this general model: the

fully-observable case where the dynamics are unknown, for single agent problems
[11] and multi-agent problems [8]; and the partially-observable case where the
dynamics are unknown for multi-agent problems [30]. All of these find online solu-
tions using appropriate approximation techniques. In particular, in solving the Bell-
man equations, typically these techniques will only refer to a small number of belief
states, beginning at the current one. Recall,

Q(s,a) =∑
s′

P(s′|s,a)[r(s′)+ γV(s′)]

The belief-state version, writing b for the belief state and leaving s to refer to the
underlying state, is

Q(b,a) =∑
s′

P(s′|b,a)[E[r(s′)|b]+ γV(b′)]

where b′ is the belief state resulting from the transition to state s′.
Finally, the case of particular interest to us, the partially-observable multi-agent

case with known dynamics (sometimes described as a partially observable stochas-
tic game, or POSG) has also been investigated. For example, in one online approx-
imate algorithm [14], each agent tries to compute the joint optimal action for that
step, then executing its own part of this joint optimal action. Providing that all agents
are initialised with the same information (in particular, they should share a random
seed), every agent can compute the approximately optimal action so that the actions
are truly cooperative. Although this algorithm is theoretically sound, it is computa-
tionally intensive and has only been tested on relatively small POSGs. More recent
work has investigated offline algorithms for a special case of much larger POSGs,
the networked POSG. In the case where the agents are networked according to a
specific structure—such as a sensor network—it is possible to exploit this structure
to develop more sophisticated strategies for agents located in critical parts of the
network, and simpler strategies for agents located in less critical regions [23].

An alternative technique for making approximate action choices is to gather to-
gether similar states, belief states or groups of observations, reducing the state space.
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In particular, in problems where a notion of proximity can be defined between states,
an action can be decided for a new state based on experience of nearby states. Ex-
amples of the former include manual feature abstraction and hierarchies [15]. Ex-
amples of the latter include include neural networks [36], Kohonen maps [35] and
belief compression via principal components analysis [31]. We leave investigation
of such state aggregration to future work.

A further optimisation that has been used to good effect for modelling and re-
sponding to agents in partially observable domains is to restrict agent policies to the
class of policies which can be described by finite state machines (sometimes called
finite state automata or regular automata, and abbreviated to FSMs). Using this
class of policies, which we describe in more detail in the next section, it has been
shown that it is possible to compactly represent good approximates to the optimal
agent policy [6] [9]. More recent work has used finite state machines to find offline
solutions in partially observable domains [23]. In the next section we describe finite
state machines in more detail and develop an online solution strategy to partially ob-
servable problems, using finite state machines to model the behaviour of the other
agents.

4 Bayesian Learning Approximation Using Finite State
Machines

A finite state machine can be used to represent an agent’s policy. We have discussed
fully-observable MDPs in which the agent’s policy is decided on its immediate ob-
servations, and partially-observable MDPs in which the agent state is a continuous,
high-dimensional belief-state derived from its entire history. A finite state machine
policy falls between these two: the agent state is based on a variable length history.
A fixed and finite number of agent states, more than the number of possible obser-
vations, are defined in the finite state machine and the agent moves from state to
state of the machine based on its observation.

We now detail how to model agent policies using finite state automata (4.1 and
4.2). In Section 4.3 we then explain how these models fit with the multi-agent
POMDP solution techniques described above, giving an algorithm for online learn-
ing (4.4) and explaining how this model extends previous work in the area. First we
begin with the definition of a finite state machine.

4.1 Definitions

A deterministic finite state machine has:

• A set of n nodes N = {n1, . . .nn}
• A set of m edges E = {e1, . . .en}
• For each node, an associated action a from the set of actions
• For each edge, an associated observation o from the set of observations

One of the nodes is designated as a start node, N0. We write Act(n) to refer to the
action associated with a node n.
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An agent’s policy is determined by such a state machine (Algorithm 1.): at each
node (or agent state), the agent carries out the associated action. The resulting ob-
servations determine the agent’s transition to a new node within the FSM.

Algorithm 1.. A finite state machine policy
1. The agent begins at the start node n0.
2. The agent performs the action associated with the current node n.
3. When all agents have performed their action, the system moves to a new world

state s, supplying agents with observations o.
4. The agent moves along the edge associated with o, arriving at a new node n′.
5. Repeat from step 2.

Now, in order to use finite state machines as representations of agent policies
in unknown multi-agent scenarios, we will do two things: (1) to learn the finite
state machine models over time, from the sequence of observed actions and state
observations, and (2) to derive an online policy as a best response to a set of (beliefs
over) FSM policies. We describe each of these in turn, bringing them together in
Section 4.4.

4.2 Learning FSMs

In principle, learning a deterministic finite state machine from a set of observations
can proceed as follows [6]:

• Base case: initialise the FSM with the single node N0, setting the associated
action to the first observed action

• Recursion step: given a FSM and an observation string, determine if the obser-
vation string is consistent with the FSM:

1. Find a node whose action corresponds to the first action in the string: if there
are no untested nodes remaining, FAIL

2. Follow the FSM as prescribed by the observation sequence until (a) the action
associated with a particular node does not match the action in the sequence:
FAIL, return to 1 or (b) the end of the sequence is reached: CONSISTENT

If the observation string is consistent, then no further action need be taken. If the
observation string is inconsistent, then we select a node from one of the failure
points, and expand the FSM to include the new string.

Then, given a FSM and a particular (short-term) observation history (after applying
the above algorithm to the history), we can construct a list of possible current nodes
for the corresponding agent by considering each of the starting points consistent
with the observation history and following the FSM through to a current node from
each (abandoning any inconsistent nodes en route). The probability of each resulting
current node will be the total probability of all start nodes which reached it, with that
probability having been computed in a previous step.
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However, there are two problems: one is that observation strings can be of indefi-
nite length, i.e. we may find ourselves storing the entire observation history in order
to accurately build the FSM. The second is that although the FSM is a deterministic
model, the behaviour it is modelling may be neither deterministic nor static. (A third
issue is that we do not in fact know the observation strings, but rather have proba-
bilities over them which are based on our own observations). We therefore wish to
adjust our learning strategy to take these facts into account.

A point to note is that although we do not know the strategies of others or their
optimal strategies, because we do know the MDP and the observation function, we
can make some judgements about how much observation history is likely to be im-
portant in making decisions, providing us with a way of judging the optimal size of
the FSMs.

We propose to sample possible observation strings from our belief state, and
construct a candidate FSM for each sample, using the following tactics in learning
these candidate FSMs:

• Define a maximum number of nodes which can occur in the FSM
• Break the observation history into overlapping observation strings of length l
• Assign each observation string a likelihood based on the frequency of occurrence

and its sample probability, weighting more recent occurrences more highly. Dis-
card completely observation strings older than nt timesteps.

• Rather than resolve inconsistencies by always creating new nodes, resolve incon-
sistencies by appealing to the likelihood of each of the inconsistent strings, and
discarding the least likely

In the next sections we describe in more detail an algorithm for learning FSMs
from observation strings.

4.2.1 A Polynomial FSM Learning Algorithm

For any set of agent behaviours, there may be several possible FSMs. The least
compact FSM for a finite time period has a distinct node for every time step. The
minimal FSM for an agent’s behaviour has the smallest number of nodes neces-
sary to describe the behaviour exactly. Now, finding the minimal FSM is an NP-
complete problem and cannot be approximated by any polynomial-time algorithm
[6]. However, it is possible to learn compact FSMs in polynomial time, for many
practical problems. The US-L* algorithm [6] has polynomial running time and has
been shown to be effective at finding compact models of agent behaviour on small
agent coordination problems—we propose to test it on larger problems.

This algorithm models the FSM using a table, with rows corresponding to ob-
servation string prefixes s, columns corresponding to string suffixes e, and the table
entries corresponding to actions σ . The alphabet of possible observations is Σ . The
table is then partitioned into equivalence classes:

C(s) = row(s)|row(s′) = row(s)

The table must be constructed in such a way that it describes a FSM: that is, it
must be

• consistent: ∀s1,s2 ∈ S, [C(s1) = C(s2)→∀t ∈ Σ ,C(s1t) = C(s2t)].
• closed : ∀s ∈ SΣ ,∃s′ ∈ S,s ∈ S,s ∈C(s′)
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From such a consistent and closed table a deterministic FSM can be described.
Specifically, US-L* marks entries in the table as either hole entries or permanent

entries. The former are those which can be reassigned as the algorithm tries to re-
adjust the table for consistency. Only when no hole entries can be reassigned is a
new test added to the table. Permanent entries correspond to a fixed action.

The algorithm proceeds by:

• Take a set of observation strings
• Initialise the table so that all the prefixes of the observation strings have an asso-

ciated row in the table, and there is just one column with the empty string.
• Fill in the table entries using the observations, marking entries as hole entries if

they are not supported by previous examples or permanent entries if they are are
supported by previous examples. In order to bound the size of the automaton,
we specify a maximum number of times a hole entry can be changed, basing
the maximum on domain knowledge if it is available: the maximum should de-
pend on the dynamism in the system (since an entry will change if the system is
changing) and on the uncertainty in the system. In our work, we may adjust the
maximum over time using learned domain knowledge.

• Adjust the table to make it consistent, adding new columns to the table where
necessary (adding a new column enables the separation of one equivalence class
into two—this adds at least one new state to the corresponding automaton).

• Adjust the table to close it, adding new rows where necessary.
• Take the next set of observation strings and loop.

This algorithm is designed to be used as an online algorithm for an adaptive agent
to learn models of opponent behaviour, although Carmel and Markovitch only ap-
ply it to repeated two-player games. We will be investigating its application in our
domain, specifying in advance a maximum size for the automata. Now, in order to
make use of these finite state machine models of agent behaviour, our agent (main-
taining these models) must be able to find an optimal response to what it believes to
be the current situation. Referring back to our generic Bayesian model, this means
evaluating Q(b,a) for a belief state b which includes beliefs over finite state ma-
chines. The next section explains how this is done.

4.3 Online Solutions: Best Response

Previous work [38], [6] has considered fully-observable, but non-Markov, repeated
games. In such scenarios finding a best response is straightforward, since the state
and consequently the reward can be computed for every step.

By contrast, in our work, the state is not known. This adds to the complexity of
the situation (as previously discussed), since even if the policies of the other agents
are known, we do not know what observations they may make and consequently
cannot determine what their actions are based on. We consider first this idealised
case where the policies of the other agents are known. Now, we can compute a best
response to any belief-state b using the Bellman equations, as discussed in Section 3:

Qi(b,a) = ∑
s′

P(s′|b,a)[r(s′)+ γV(b′)] (7)
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where P(b′(s′)|b,a) = ∑
nj,s′,s

P(b′(s′)|s,a ◦Act(nj))P(nj,s|b) (8)

and P(b′(n′j)|b,a) = ∑
n j ,o′,s

P(n′j|o′)P(o′|s,a ◦Act(nj))P(nj,s|b) (9)

where P(o′|s,a ◦Act(nj)) =∑
s′

P(s′|s,a ◦Act(nj))P(o′|s′) (10)

(P(n′j|o′) is 1 or 0.)
In an online algorithm, Qi(b,a) can be approximated from the current belief state

by projecting k steps into the future. On the kth step, we replace V (b′) in equation
7 with some heuristic value. Possible heuristics include 0, a QMDP-based heuristic
[19] or some domain-specific heuristic (for example, the expected distance from
any agent to a goal, or visible future rewards such as victims which can be saved,
in a disaster problem). Algorithm 2. outlines this best response solution. Such finite
horizon algorithms have been used in related belief-state problems in many cases: in
observable problems with unknown parameters (the heuristic is to assume that the
current parameters are correct, and solve the corresponding MDP [8]), in finding
offline solutions for networked POMDPs [23], and in online partially observable
stochastic games [14].

Algorithm 2.. Finite-horizon best response
• At timestep t, agent i has beliefs b over the state and the nodes n j of the other

agents j, and knows policies n j → a j for these agents.
• For some k, compute Qk(b,a) for each possible action a, using

– Qk(b,a) = ∑s′ P(s′|b,a)[r(s′)+ γVk−1(b′)]
– Vk(b) = maxa Qk(b,a)
– V0(b,a) = ∑s′ P(s′|b,a)Vheuristic(s′)

• Execute the action a which maximises Qk(b,a)

In our partially observable setting, where the agent does not in fact have knowl-
edge of the policies of the other agents, but rather has beliefs over these policies,
we propose to estimate the best response to the belief state by sampling from the
possible policies to obtain a selection of sets of FSMs, F = {F1, ...Fm}. For each
sample FSM set Fs (containing a FSM for each other agent), the agent computes a
best response action BRi(Fs,b). The action decision is then given by:

a = maxai

m

∑
i=1

Pi.δ (BRi(Fs,b) = ai)

(where δ (A = B) = 1 if A = B and 0 otherwise).

4.4 An Online Learning Algorithm

We conclude this section with a complete description of our algorithm, which brings
together several of the techniques described above. This is an algorithm implemented
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by a single agent who is aiming to adaptively find a best response to the behaviour of
the other agents in the system. Our intent is that when all agents are implementing this
algorithm, adapting to each other, they should converge on a “good” collaborative
solution for the problem. This algorithm, as described below, maintains approximate
models of the other agents in the form of finite state machines. A set of possible
models is held in a belief state which is updated using Bayesian learning. At each
step, the agent uses its observations to update each of the possible models and to
update its beliefs about the world. It then computes the finite-horizon best response
to each of these possible models and weights the possible responses with its belief
in the corresponding model to decide on its action.

• An agent maintains a current belief state, b(X), with beliefs over the variables
X = (s,{o,F,n}) where s is the current state, and {o,F,n} describes a set of
triples: in each triple, o is an observation history and (F,n) are the induced FSM
and current node in the FSM. The belief state contains one such triple for each
other agent in the system. The agent also maintains historical information about
b(s) over a fixed number of steps.

• Several parameters are fixed initially: Fmax the maximum number of nodes in
any FSM, γ the myopia of the agent, nt the horizon length to use in computing
an approximate best response, ol the observation window length. nt may be de-
termined based on γ: roughly, for a state n steps into the future, sn contributes
γn.r(sn) towards the discounted future reward. Thus with γ = 0.8 (a common
myopia value), after 10 steps less than 10% of the reward will be contributing
towards the estimates of the future reward. This may be a small enough value to
ignore. If γ is increased to 0.9, then it will take 21 steps before the fraction of the
reward under consideration is reduced below 10%.

• initialise:
The belief state is initialised: b(s) is initialised either to uniform beliefs or biased
based on domain knowledge. The observation strings o are all empty, and the F
have a single node with uniform probabilities over all actions1

• at each step:

– The agent observes the actions of the others and makes observations about the
state: these observations are used to update b(s) using Bayes’ rule.

– The observation samples o are extended into the current time frame to obtain
o′, reweighting as appropriate. This is achieved by sampling from the expected
observations of the other agents, given the current observation samples and
b(s). When the length of an observation string exceeds ol , the earliest obser-
vations are dropped. If a sample’s likelihood falls below probability threshold
ps, the sample is discarded, and a new string sampled using b(s) and the stored
history of b(s) over ol previous steps.

– For each observation sample o′, update the FSMs F associated with the sample
with the new information in o′ using US-L*. The weighting given to the FSM
F is the probability of the associated observation sample.

– For each sample FSM, compute an approximate best response, and thus decide
the maximum likelihood best response action a from the FSM weightings as
described in Section 4.3.

1 It would be possible to initialise with a more sophisticated set of F corresponding to shared
conventions relating to the domain, for example encapsulating the knowledge that agents
will run from a burning building. We leave that possibility to future work.
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– Perform the action a
– Repeat

To reduce computational requirements, rather than doing all of this every step, we
may prefer to collect behavioural samples over several steps and update our model
less frequently. The best response is still computed every step.

Thus, in this section we have outlined a theoretical model for the online solu-
tion of partially observable multi-agent systems, based on the POMDP model, and
then shown how we can approximate a particular (challenging) case of this model
using finite state machines to model agent behaviour. In order to demonstrate the ef-
fectiveness of this model, we have implemented it on a rescue problem. In the next
section (5) we outline the problem before going on to describe our results (Section 6)
and how they compare with the state of the art.

5 Model Instantiation

In order to test the algorithm on a challenging problem, we implemented a rescue
scenario involving coordinating ambulances. We compared our algorithm with a
current state of the art algorithm and a hand-written solution for this problem. In
this section, we specify the problem as a multi-agent POMDP and explain how we
simplify the observation space.

In more detail, in the rescue problem we have an n by m gridworld. k agents can
move left, right, up or down (constrained, of course, at the edges of the grid). In the
gridworld are buried victims, described by two parameters: D and R. D (‘deadness’)
is a measure of the proximity of the victim to death. When it reaches a maximum
level the victim is dead and subsequently ignored for the purposes of the rescue
problem. R (‘rescue needed’) is a measure of the depth at which the victim is be-
lieved to be buried. Agents digging can reduce R. If R reaches 0 before the victim
dies, then the victim is assumed to be safe. The urgency of the victim therefore
increases with increased D and with increased R, unless R is sufficiently large com-
pared with D that the victim can be considered a lost cause. Figure 5 shows one step
on the grid for a 4x4 grid with three agents.

Specifically, taking the model of Section 3, the various parameters are instanti-
ated in the following way:

States: A state of this world is described by using a pair of variables for each of
the grid squares, characterising the D and R values in the square (we make the
simplifying assumption that there can be at most one victim in the square), and
a variable for each agent, identifying its current square. We use ld and lr discrete
levels to describe D and R, so for each square there are ld*lr possible states, and
for each agent there are m * n possible states, making a total of ((ld ∗ lr)(m∗n))
possible states.

Agents: We assume that the number of agents, k, is fixed throughout each problem
and known to each agent.

Locations: The location variable for each agent is its current square.
Actions: Agents may take Move actions (left, right, up or down), or Dig actions

in their current square.
Observations: An agent observes some subset of the state variables, so there is one

observation variable for each state variable. The values taken on by observation
variables are those of the corresponding state variable, plus “null”.
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Fig. 5 One step of the rescue problem on a 4x4 grid with three agents

Transition function: Move actions move the agent one square in the requested di-
rection, unless this is impossible in which case the action has no effect. Each
square transitions (D,R) independently of other squares, so it is sufficient to de-
fine the transition function for one square. We use two global probabilities, pd
and pr, to specify the probability of the D level changing (this is a constant prob-
ability independent of the action) and of the R level changing if there is a Dig
action. If there is no dig action, R remains unchanged. We assume that if there
are k digs in a square, they are concatenated. Finally, if a square is empty, we
use a further parameter, pa, to define the probability that a victim will appear in
that square. If a victim does appear, the (D,R) levels it has are determined with
uniform probability (greater than 0).

Observation function: Agents are able to see the squares (deadness, rescue-level,
and any other agents in the square) to the left and right, and above and below
them, as well as their own square. Additionally, we define a problem-specific
parameter, v, for the visibility. For every other square, the agent will be able
to see the agent-deadness D in that square with probability v and the rescue-
level R in the square with independent probability v. Since all agent actions are
fully observable, we assume that we can also observe all agent locations. This
‘visibility’ parameter could be justified as some level of communication with a
centralised observer, say a helicopter viewing the scene. We assume no error in
the observation: either a variable is completely and correctly observed or it is not
observed at all.

Reward function: The reward function is a function of both the previous state and
the current state. For each square, if a victim disappears because they have died,
then the reward is decremented by one point. If a victim disappears because they
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have been saved, then there is no change to the reward. Consequently, for this
problem rewards will always be less than or equal to 0.

The above definitions allow us to define beliefs over the values (D,R) of a square
(and thus over the state, since locations are observable), and beliefs over the obser-
vations of other agents, given their locations:

Agent locations: We are certain for all squares how many rescue agents they con-
tain / for all agents where they are located

The square is observed: We are certain of both its parameters
The square is not observed and has not been observed for i timesteps: for each

property sq which may take values x,

P(sqt = xt |sqt−i = xt−i) =∑
x

P(sqt = xt |sqt−1 = x)P(sqt−1 = x|sqt−i = xt−i)

where the 1-timestep probabilities depend on pd , pr, pa as appropriate, and the
dig observations in that square.

The square has never been observed: This is just as above, but with P(sq0 = x0)
set to the problem-specific prior probabilities. Here, we assume that all squares
are empty to begin with.

The above equations describe our beliefs about the world state: that is, the D and R
values of the squares and the locations of the other agents. Similarly, we must define
our beliefs about the observations of the other agents. Just as our beliefs about the
state of each square are multinomial, the other agents’ beliefs about the state of
the square will be multinomial. Therefore, in the full POMDP model, our beliefs
about other agents’ beliefs over the state of the square would take on corresponding
Dirichlet distributions. However, we are not trying to maintain beliefs about the
other agents’ belief states, only about their observations. Now, our own beliefs about
the state of the square define exactly what we believe other agents will see if they
see that square, as the observation function is deterministic and consistent for all
agents. Because we know the location of the agent, we know of the (up to) four
surrounding squares it definitely sees. Finally, we know that there is a v probability
it will see any other square. Using this model, we investigate the behaviour of our
algorithm on the rescue problem.

6 Experimental Evaluation

In order to test our strategy, we compare it against two other online algorithms: the
state of the art for online partially observable stochastic games is the Bayesian game
approximation using the finite-horizon approximation technique [14], described in
Section 3 (“POSG”). However, for large dynamic problems, this algorithm, which is
exponential in the number of agents, proves to be very inefficient and we find that
for all but the smallest variants of the rescue problem, POSG is too slow to be useful.
Previous work on large dynamic rescue problems of a similar form [26] compares
with a handwritten strategy (“smart”) tailored to the problem, and we do the same
thing. Our handwritten strategy is the strategy that was used by the AladdinRescue
team for ambulance distribution in the Robocup Rescue competition, which inspired
this problem. The algorithm uses a greedy strategy to allocate ambulances to victims
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and is optimal in scenarios where (1) no new victims are arriving and (2) visibility is
perfect [29]. It is therefore not an optimal strategy for the problem as we have stated
it, but is a good approximation, thus providing a good target for our algorithm to meet.

Comparing against these two algorithms, and using the null policy in which
agents move randomly, but never dig and so never effect any rescues (“null”)
as a baseline, we investigate our algorithm, “best response” over different pa-
rameter settings on the rescue problem, and then focus on the scaling properties of
the algorithm. Next, we identify the fixed parameters and then go on to our results.

6.1 Experimental Setup

Following experimentation, we fix the following parameters: ld = lr = 4, pd = 0.15,
pr = 0.4, pa = 0.05, v = 0.5. In particular, we felt that the choice of four health and
burial levels was sufficient to make the problem interesting without making the state
space too huge. The other parameters were selected to generate scenarios requiring
cooperation: victims were not arriving so fast that simply digging out the nearest
was appropriate, victims might require more than one agent for rescue, and victims
could survive long enough to be reached by agents some distance away.

We vary m,n and k as specified. We also experimented with increasing pa to-
wards problems where “dig nearby” becomes a reasonable strategy, and varying v.
Finally, in the belief-state based algorithms, we must take samples from the belief
state. We define the sampling rate as the number of samples taken for each vari-
able, initialising it at a rate of 35 (for comparison, previous work on a single agent
problem found that 20 samples was sufficient for good solutions [11]).

In every experiment, we carried out several runs of the problem, varying the
initial placement of civilians and randomising their arrival and visibility. The same
random seed was used to initialise each of the test algorithms in each run. The error
bars included in the results show the 95% confidence intervals around each point.
The rest of this section discusses our key results.

6.2 Examining the Learning Rate

To begin with, we compared the algorithms over the course of 1000 steps on a 7x7
grid, with three agents. We found that the POSG algorithm, which is exponential
in the number of agents, did not complete in any reasonable time (we consider one
minute per step to be “reasonable”for this problem), taking ten minutes for one agent
to complete a single step. Figure 6 shows the performance of the smart policy
with our algorithm over 1000 steps. Our aim was to examine the performance of the
best response algorithm on a challenging problem, focusing on any changes
in its behaviour over time. To this end, we have used two different sampling rates
for the best response policy, comparing how the agent learns when sampling
very little information (samplerate = 10) or more information (samplerate = 50).
We expect that the agent will both perform better, and learn faster at the higher
sampling rate.

It is immediately clear from Figure 6 that the best response algorithm is
outperforming the smart policy for these parameters. Now, if our algorithm (best
response) is benefitting from learning, we expect to see that the advantage the
best response algorithm has over the smart (handwritten) policy is increasing
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Fig. 6 Comparison of two algorithms over time on a 7x7 grid with 3 agents. Note that we use
a log scale to show more clearly the differences between the algorithms, and the rewards are
scaled up to > 0 for the log scale.
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over time. From Figure 6(a) it is not clear that there is a large improvement in
this advantage—that is, the lines are fairly straight. However, Figure 6(b) shows
a closeup comparison of the two different sampling rates, showing the way in which
the lower sampling rate is able to match the performance of the higher sampling
rate after around 800 steps. We therefore see that with better information, the best
response algorithm is able to perform well on this problem even without accurate
models of the other agents, but when the sampling rate is very low, the best response
algorithm is able to compensate for this by learning.

Consequently, it seems that the best response algorithm is performing well
primarily on the basis of the sampled best response, rather than accurate estimates of
the behaviour of the others being critical. In order to investigate further, we compare
the algorithms on some smaller problems which the POSG algorithm is able to run
on, first looking at the effects of changing sample rates in more detail, and then
varying two parameters relating to the character of the problem (visibility and victim
distributions). This allows us to gain insights into the performance of our algorithm
as the problem nature is changed. We also investigate parameters relating to the scale
of the problem (number of agents, and size of grid). For each of these experiments
we compare the total reward after 150 steps—from Figure 6 we can see that this is
sufficient to show the differences between the algorithms or settings.

6.3 Varying the Sampling Rate

In order to examine how the best response algorithm will perform on chal-
lenging problems such as those we identified in our domain requirements, we will
consider the effects of scale both on solution quality and on the computational re-
quirements. Linked to the solution scales is the number of samples taken in esti-
mating beliefs. The sensitivity of the solution to the number of samples is therefore
relevant in considering the effectiveness of the algorithm.

For the POSG algorithm, on a 3x3 grid with two agents, Table 8(a) shows the
time/sample-rate ratios for 100 steps (to the nearest minute). Since our cut-off was
one step per minute, we did not run any tests on the POSG algorithm beyond a sam-
ple rate of 75, while the null policy and the smart policy do not do any sampling.
For our own policy, which does not need to iterate over all joint policies, the scaling
factor was much better: Table 8(b) shows the equivalent rates. The POSG algorithm
is exponential in the number of agents, since it iterates over all joint actions. It
therefore scales badly as the number of agents is increased. By contrast, Table 8(c)
shows the times for the best response algorithm running on the larger problem
of a 7x7 grid with three agents. Even on this larger grid the times are well within
our “reasonable” range. We next investigate whether there is truly a need for higher
sampling rates, since our earlier investigations indicated that the best response
algorithm is able to perform quite well even at low sample rates.

To this end, Figure 7 shows the effect of changing the sample rate. As expected,
neither the null policy nor the smart policy are susceptible to changing sample
rates. However, the performance of the best response policy also does not
vary much with the changing sample rates. It is also worth remarking that the error
does not reduce noticeably as the number of samples is increased, suggesting that
the same actions are selected with as few as ten samples. By contrast, the POSG
algorithm performs noticeably better as the number of samples is increased, and the
error around the points reduces.
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3x3 grid, 2 agents
Sample rate Time

10 12 minutes
20 19 minutes
35 38 minutes
60 67 minutes
75 113 minutes

(a) POSG algorithm

3x3 grid, 2 agents
Sample rate Time

10 7 seconds
30 18 seconds
50 27 seconds

100 50 seconds
500 4 minutes

(b) best response
algorithm

7x7 grid, 3 agents
Sample rate Time

10 18 seconds
35 48 seconds
60 5 minutes

(c) best response
algorithm

Fig. 8 Time taken to complete one run of 150 steps

These results indicate that similar actions are selected even with a small number
of samples, perhaps because the best response can be estimated well, and the best
response performs well with small sampling rates, making it possible for the
algorithm to be very efficient. This compares favourably with the POSG algorithm
which approaches optimality at high sampling rates but performs very badly at low
sampling rates, at least for this type of problem. We do not investigate the POSG
algorithm in the larger version of the problem (Figure 7(b)) but we see that as for
the larger problems above, the best response algorithm slightly outperforms
the smart policy, due to its better handling of imperfect visibility. The next section
investigates the effects of visibility in more detail.

6.4 Varying the Visibility

As the visibility increases and all agents have a better view of the scenario, we ex-
pect that the performance of all algorithms will improve. However, we expect the
probabilistic algorithms (POSG and best response) to be at less of a disadvantage
than the handwritten policy for the lower visibilities—this is because the handwrit-
ten policy always behaves as though the visibility is 100% thus does not do any
exploration actions.

Figure 9 demonstrates the effects of varying visibility on a 3x3 grid and on a 7x7
grid, each with three agents. In Figure 9(a) we see the performance of the POSG
algorithm is much worse than either the smart policy or the best response
policy and fluctuates at lower visibilities, but noticeably improving as the visibility
is increased. However, both the smart policy and the best response policy do
reasonably well even at the lower visibilities, but there is no discernible difference
between them. This is because three agents on a three-by-three grid can do fairly
well using the very simple strategy of digging where they see victims and can prob-
ably directly observe most of the grid between them. By contrast, Figure 9(b) shows
the performance on the larger grid. We do not show the slow POSG algorithm on
this problem; the baseline of the null policy is at around -90. Here, we see that as
expected the best response policy does outperform the smart policy at lower
visibility levels, with the smart policy approaching the performance of the best
response policy as the visibility increases, although the best response pol-
icy continues to outperform the smart policy.
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6.5 Varying the Victim Arrival Rate

As well as varying the visibility, we can vary the problem by adjusting the victim
density. We expect that increasing the rate at which victims arrive, pa, and thus
the overall density of victims, will make the problem easier, as agents can do well
with the simple strategy of digging out the victims around them. The reward for the
null policy drops sharply—this is because there are more victims dying. This is
demonstrated in Figure 10.

As the victim density increases, the optimal strategy approaches the very simple
strategy of digging if there are any nearby victims. The point at which the simple
strategy becomes optimal is indicated by the point where the smart policy stops
making improvements over the null policy: between the 0.1 and 0.5 arrival rate
on the small problem (Figure 10(a)). The best response policy has matched
the smart policy, and the POSG policy also catches up by the 0.5 data point. On
the larger problem (Figure 10(b)), the smart policy and best response policy
continue to improve across the graph, indicating that there is some sophistication
needed in the strategies even at the high victim densities. As expected, on the larger
problem, the best response policy slightly outperforms the handwritten strat-
egy due to its better handling of the imperfect visibility.

For the next sections, we fix the visibility at 0.5 and the arrival rate at 0.05,
as discussed in Section 6.1. We go on to investigate the scaling properties of the
algorithms.

6.6 Varying Scaling Factors

The difficulty of the rescue problem scales exponentially with the size of the grid and
the number of agents, which are related to the number of states and the number of
joint actions respectively. Furthermore, in our implementation, all the agents were
running on the same machine as one another and the environment; consequently,
the memory requirements of the implementation scaled linearly with the number
of agents. Nonetheless, we were able to test our algorithm on grids of up to 12x12
( 2173 states), and with up to 7 agents ( 80,000 joint actions).

Now, although 7 agents is not a huge number for an algorithm which we would
like to scale into dozens of agents, the primary limiting factor was the memory
requirement for our implementation. Figure 11 shows the effect of increasing the
number of agents on two larger grids, a 7x7 grid and a 9x9 grid. We observe that
on the 7x7 grid as the number of agents is increased, the smart policy appears
to saturate while the best response policy continues to improve. The results
are similar for both the 7x7 and the 9x9 grid, although the smart policy does not
saturate so much on the 9x9 grid—the larger problem space provides more room
for improvement. Future work should involve a more efficient implementation, di-
viding the agents among several machines. We expect that the best response
algorithm will then scale well as the number of agents is increased.

The best response algorithm also performs well on the large grids with
many millions of states: with five agents nearly all the victims are rescued (the re-
ward does not fall far below 0) even on the largest (12x12) grid. The smart policy
falls away by comparison. This reflects the results we have seen earlier where the
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best response improves over the smart policy more as the grid size increases,
a consequence of the way in which the best response policy incorporates un-
certainty and the need for search on larger grids. The results are very similar for both
three agents (Figure 12(a)) and five agents (Figure 12(b)) although, as expected, five
agents are able to make more rescues than three agents (the lines are slightly flatter).

Thus, we have observed that the best response algorithm performs well
by comparison with a handwritten strategy designed for the same problem, and
requiring much less sampling than the POSG algorithm to achieve this perfor-
mance. Although the best response algorithm typically has similar performance to
the handwritten strategy, it is consistently outperforming it. Furthermore, the best
response algorithm scales well, solving problems with many states and increas-
ing numbers of agents and improving on the handwritten strategy for these large
problems. Since in general we anticipate our algorithm to be useful in scenarios
where no good handwritten strategy is available, especially as the problem scales,
the best response algorithm seems promising. Further improvements are dis-
cussed in the next section.

7 Conclusions and Future Work

In summary, we have considered the problem of agent coordination in uncertain
and partially observable systems. We developed an approach to this problem using
a Bayesian learning mechanism, extending previous work on learning models of
other agents, and demonstrated its effectiveness on a cooperative scenario from the
disaster response domain. To emphasize, the novelties in this work lie in an exten-
sion of online model-based learning techniques into partially observable domains,
using finite automata. As part of our theory, we outline a general Bayesian model
of which our model forms a specific instantiation and show how other techniques,
such as POMDPs and Bayesian learning, fit into this same model.

We have examined the performance of our algorithm on a rescue problem with
respect to differing problem parameters, finding that its performance consistently
outperforms a handwritten strategy for this problem, more noticeably so as the num-
ber of agents and the number of states involved in the problem increase. We also
observe that reducing the sampling rate of our algorithm has only small effects on
its performance, indicating that the best response calculation is the most important
feature—this is encouraging, as it enables us to use the best response algorithm with
few samples, resulting in greater efficiency. However, we have commented that the
limiting factor in running our algorithm, particularly as the number of agents in-
creases, is the memory usage of our implementation, rather than the per-step time
required. We therefore propose that future work should investigate more efficient
implementations, and ways of distributing the problem across several machines—
this is in any case a more accurate model of the problems of interest to us.

Although the work described above is encouraging, there remain a number of
areas in which improvement can be made. As well as scaling the model into higher
numbers of agents and larger state spaces, using a more efficient implementation for
the environment and agents, and running the agents on distributed machines, there
are improvements which can be made to the model. We discuss each of these in
turn below.
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Firstly, we propose to improve upon the learning of the FSM, using automatic
state clustering. In the rescue problem, and in many other problems, groups of states
can be considered equivalent by the agents. As a simple demonstration, note that
there are several symmetries in our example problem: at every step the grid can
be rotated until our agent is towards, say, the bottom right, dividing state space
into equivalence classes with four states in each class, one corresponding to each
rotation (90o,180o,270o,0o). More generally, we need only as many abstract states
as there are joint actions, associating every underlying state with its optimal joint
action. However, in practice, particularly if we plan to re-use parts of our model,
reducing it purely to joint actions will be too abstract. An appropriate abstraction
algorithm should be adaptable, allowing us to change our mind about which action
is associated with a particular state, should allow us to update clusters incrementally
and should not tie us to any predefined set of clusters. We propose to use a form of
statistical clustering based on that described in [18] for this purpose.

A second area of improvement is to better exploit the information available to
agents. We are investigating a complex problem domain in which some domain
knowledge can be assumed. We may also be able to assume some level of rationality
in the other agents (akin to coordination conventions). As we develop our models of
the agents, we have discussed how we can use these models to improve our beliefs
about the agents’ observations, applying Bayes’ rule. However, it may be possible to
make more sophisticated belief updates by considering the observations which we
make and the observations which other agents will make to be correlated streams
of information. Techniques such as the Kalman Filter [40] are able to operate over
correlated streams of information to make more accurate estimates about the value
of any particular point and to estimate missing data [25]. These techniques could be
applied (with caution) to our estimates of the observations of the other agents and
of the current state.

Thirdly, we propose to move beyond the scope of the current work, considering
cases in which the environmental dynamics are unknown or are changing, and in
which agents are able to enter and leave the environment as the problem progresses.
As discussed in Section 3, the algorithm we have presented can in principle be used
to learn fixed parameters such as parts of the environmental dynamics, by treating
these parameters as a part of a “grand state” from which observations are made.
Indeed, related work [8] [30] has done this for some special cases.

In this context, given the uncertainties of our domain, it is clear that if the be-
haviour of the other agents is completely unknown, and the current state is un-
known, and the environmental parameters are completely unknown, an agent must
stumble around “in the dark” for some considerable time before it can begin to
get a handle on good or optimal behaviour. However, in the typical scenarios moti-
vated by our example domain of disaster response, an agent will have strong prior
information about some or all of the unknown parameters. For example, the other
agents may be assumed to be rational and cooperative, thus likely to behave in a
near-optimal way. In our example problem, the form of the transition function may
be known, but not the exact values of every parameter. By incorporating all the
information available to the agent into its model, and particularly by correlating in-
formation, we anticipate that our model will be able to handle problems in which
the environmental dynamics are not completely known using the theoretical form
laid out in Section 3.
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Following on from this, our model will easily handle scenarios in which the num-
ber of agents changes (but is known to our agent) over time. Since the best response
is computed at each step, there will be no difficulty in computing a best response
over a subset of the other agents, or in adding a new agent model to the collection.
Our agent will adapt continually during the problem run. Similarly, if the agent is
learning the environmental dynamics, and those dynamics change, the agent should
adjust its model smoothly.

With these improvements, we anticipate that the model of Section 3 can be used
as the basis of an algorithm capable of solving medium-sized distributed collabo-
rative problems in the real world, such as traffic management, controlling search
robots in a building after a fire, or distributing ambulances during a disaster. Similar
algorithms could also be included in software which could be loaded onto handheld
devices to aid human decision-making during critical situations such as war or a
large-scale disaster.

Acknowledgements. Thanks to Georgios Chalkiadakis and Zinovi Rabovich for discussions
on the early versions of this work.
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Collaborative Agents for Complex Problems
Solving

Minjie Zhang, Quan Bai, Fenghui Ren, and John Fulcher

Abstract. Multi-Agent Systems (MAS) are particularly well suited to complex
problem solving, whether the MAS comprises cooperative or competitive (self-
interested) agents. In this context we discuss both dynamic team formation among
the former, as well as partner selection strategies with the latter type of agent.
One-shot, long-term, and (fuzzy-based) flexible formation strategies are compared
and contrasted, and experiments described which compare these strategies along
dimensions of Agent Search Time and Award Distribution Situation. We find that the
flexible formation strategy is best suited to self-interested agents in open, dynamic
environments. Agent negotiation among competitive agents is also discussed, in
the context of collaborative problem solving. We present a modification to Zhang’s
Dual Concern Model which enables agents to make reasonable estimates of poten-
tial partner behavior during negotiation. Lastly, we introduce a Quadratic Regres-
sion approach to partner behavior analysis/estimation, which overcomes some of
the limitations of Machine Learning-based approaches.

1 Introduction

Complex problem solving typically requires diverse expertise and multiple tech-
niques. Over the last few years, Multi-Agent Systems (MASs) have come to be
perceived as a crucial technology, not only for effectively exploiting the increasing
availability of diverse, heterogeneous, and distributed on-line information resources,
but also as a framework for building large, complex, and robust distributed infor-
mation processing systems which exploit the efficiencies of organized behaviour.
MAS technology is particularly applicable to complex problem solving in many ap-
plication domains, such as distributed information retrieval [22], traffic monitoring
systems [32], and Grid computing [35], etc.
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A MAS comprises a group of agents, which can collaborate when dealing with
complex problems, or alternatively perform tasks individually with high autonomy.
In a MAS, agents can be characterised as either ‘self-interested’ or ‘cooperative’
[21] [34]. When different types of agents work together, management of their inter-
actions is a very important and challenging issue for the success of MASs.

This chapter introduces two main approaches for complex problem solving via
agent cooperation and/or competition, these being (i) a partner selection strat-
egy among competitive agents, and (ii) dynamic team forming strategies among
cooperative agents.

This chapter is organised as follows. Section 2 provides some background knowl-
edge and definitions relevant to agents and MASs. In Section 3, a dynamic team-
forming approach for MASs in open environments is introduced, which can be
used among both cooperative and self-interested agents. In Section 4, a fuzzy logic
approach for partner selection among self-interested agents via agent competi-
tion is discussed in detail. The chapter concludes and further research outlined in
Section 5.

2 Self-interested and Cooperative Multi-Agent Systems

2.1 Traditional Classification

Agent activities are driven by their goal(s), and according to the properties of these
goal(s), can be classified as either ‘self-interested’ (competitive) or ‘cooperative’
(benevolent) agents [20] [21]. These two types of MAS can be defined as follows:

Definition 1. A MAS that contains agents with distinct or even competitive individ-
ual goals is defined as a self-interested MAS.

Generally, an agent of a self-interested MAS collaborates with other agents to realise
or maximise their local utilities.

Definition 2. A MAS that contains agents with common goals is defined as a coop-
erative MAS.

Normally, agents of a cooperative MAS work together toward maximising the real-
ization of their common goal(s).

An example of a cooperative MAS application is RoboCup [4] [5] [18]. In a robot
soccer team, all robot players (agents) collaborate to achieve their common goal,
i.e., winning the game. A typical example of a self-interested MAS is an agent-
based e-Commerce system in an electronic marketplace [15] [23] [39] [40]. In an
electronic marketplace, different agents work in the same environment toward non-
cooperative individual goals. However, agents still need to collaborate with others in
order to maximise their individual utilities, i.e. purchase/sell items collaboratively
in order to obtain the best price(s).
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2.2 The Blurred Boundary

As the sophistication of MASs increases, the traditional classification of ‘self-
interested’ versus ‘cooperative’ MAS becomes impractical and unreasonable in
many domains [42]. In many MAS applications, a MAS can neither be a simple
market system nor an agent colony. The boundary between self-interested and co-
operative MASs thus becomes blurred [20] [42]. This is mainly due to the following
reasons:

1. In many current MAS applications, agents can come from different organisa-
tional entities. These agents work together because the organisations they belong
to have some cooperative relationships [27]. Therefore the terms and conditions
of this cooperation between individual agents mainly depend on the higher-
level relationship between the organisations. This kind of MAS is not purely
self-interested because of the existence of common goal(s) among the agents.
However such MASs can neither be classified as typically cooperative because
cooperation between agent members are facile and depend not only on the sys-
tem’s overall utility but also on many outside factors.

2. In many MAS applications, self-interested agents are also required to take care
of the global system utility via temporal cooperation in order to maintain and im-
prove their working environments. As the social welfare of the system increases,
all system members, including self-interested agents, will benefit.

3. A MAS can include agents from different organisational entities. This leads to an
agent in the MAS having different attitudes toward different targets. An agent can
be cooperative with agents from the same organisation as itself, yet act in a self-
interested manner with agents of other organisations. Therefore, a MAS could be
a system comprising both self-interested and cooperative agents. In this situation,
it is difficult to identify whether the MAS is cooperative or self-interested.

4. Even within the same organisation, cooperative agents may also behave in a self-
interested way due to their limited local view [16] [42].

2.3 Two Scenarios

In Sections 3 and 4, we introduce first a team-forming mechanism for cooperative
problem solving via agent cooperation, followed by a partner section approach for
collaboration via agent competition, in various types of agent systems.

The following two scenarios will be used in Section 3 and Section 4, respec-
tively, to demonstrate the application of our proposed approaches supporting by
experimental results.

Scenario 1
In a general service composition system, a number of services need to be combined
together to execute a task in the system. For instance, if we want to transport goods
overseas, we have to combine several kinds of services together, which might in-
clude packing service, road transport service, custom elated service and shipping
service. An agent in a service composition system is normally used to represent a
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particular service, and the resource of the agent is the service that the agent can
provide. In such a system, agents must work with each other like a team in order to
achieve the desired goal i.e. to execute tasks cooperatively because each task must
be accomplished by more than one services.

Scenario 2
A car buyer wants to purchase a car. However, there are several prospective sell-
ers. To avoid extensive negotiation with each seller, the buyer should filter out some
‘impossible’ car sellers. For example, if a car seller’s bid is much higher than the
buyer’s expectation or the seller’s reputation cannot be trusted by the buyer, then the
buyer will filter out such car sellers by employing the partner selection approach be-
fore the negotiation starts. During the negotiation, in order to maximise self’s profit,
the car buyer can predict its negotiation partner’s behaviors and make corresponding
responses. For example, for a car buyer in a hurry, if he estimates that a car seller
cannot make further concession, then he will not spend more time on the current
bargaining but looks for another possible seller. On the other hand, for a patient car
buyer, if he estimates that a car seller still has scope to make future concessions, then
the car buyer will make more effort on the bargaining. Therefore, by employing the
behaviours prediction approach, the agent can get some advantages in bargaining.

In distributed and complex problem solving, many MAS applications face a
similar situation as Scenario 1, such as Web-based grid computing, distributed
information gathering, distributed monitoring systems, automated design and
production lines. Scenario 2 is a typical example for self-interested MASs in the
domain of e-commerce and frequently happens in wide agent-based e-trading and
e-market places. Section 3 and Section 4 introduce the detail definitions and princi-
ples about two proposed approaches for agent collaboration, and also demonstrate
experimental results about how to achieve agent collaboration through dynamic
team formation in Scenario 1, and how to achieve agent collaboration by using a
partner selection strategy in Scenario 2, respectively.

3 Collaborative Problem Solving through Agent Cooperation

As introduced in the previous section, MASs can be classified as either self-
interested or cooperative, according to the features of agent goals. However, cooper-
ation is unavoidable in most MASs regardless of whether or not they are cooperative
or self-interested. Due to the distributed nature of the problem to be solved, and be-
cause of limitations in agent abilities, in many cases agents need to work together
on some tasks (i.e. via cooperation).

Agent abilities are limited. To perform tasks beyond its inherent ability, an agent
needs to collaborate with other agents through joining or forming a particular organ-
isation. The organisation of a group of agents is the collection of roles, relationships
and authority structures which govern agent behaviours [14]. All MASs possess
some form of organisation to support agent interactions. The form of organisation
guides how the agent members interact with each other. An agent team is a kind of
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organisational structure that supports agent cooperation. Generally speaking, each
agent team is composed of a team leader and several team members. After an agent
joins a team, it will cooperate with other team members towards a common goal.

In current MAS research, MAS team formation is faced with a number of chal-
lenges, especially with regard to the following two aspects:

• Many current multi-agent systems (MASs) are required to work in open and dy-
namic environments [1] [13] [37] [38]. Uncertainties of dynamic environments
obstruct coherent teamwork and bring difficulties for agent cooperation. In dy-
namic environments, system constraints, resource availability, agent goals, etc.
are all changeable. Changing any of these factors may directly require a MAS to
deal with different situations. In a new situation, retaining outdated cooperative
relationships may obstruct agents in achieving their individual goals.

• Compared with cooperative agents, cooperation among self-interested agents
is more complicated and dynamic, due to their selfish features. Self-interested
agents are impelled to cooperate with others by their individual goals (due to
limited individual abilities). In an agent team composed of self-interested agents,
temporary cooperation among agents might conflict with the selfish goals of in-
dividual agents as the environment changes. In open and dynamic environments,
if factors such as agent goals, task requirements and resources change, a selfish
agent may need to modify or even terminate the cooperative relationships with
its colleagues, otherwise the cooperation would be in conflict or even be harm-
ful to the individual agent goal. Considering this point, some researchers suggest
using dynamic agent cooperation strategies in this kind of application. However,
how long cooperation should be maintained among particular agents is always a
problem.

In many MAS applications, a dynamic team-formation mechanism is needed to
enable agents to automatically form and reform groups/teams to avoid profit con-
flicts between agents in line with changes in the environment. Toward this objective,
a number of researchers try to find an optimal mechanism for dynamic team forma-
tion and member selection [30] [36] [37] [38]. Generally, in current MAS research,
there are two kinds of team-formation mechanisms in widespread use, these be-
ing one-shot team formation and long-term team formation. These team-formation
mechanisms are described below:

• One-shot team-formation mechanism (for temporal cooperation)
In self-interested MASs, an individual agent’s willingness and goals are impor-
tant factors that need to be considered during team formation. Research on team
formation for self-interested agents generally focuses on forming one-shot teams,
also called short-term teams, for individual tasks. In this kind of mechanism,
agents come together when they need to handle some tasks, and their relation-
ships will be terminated after the tasks have been accomplished.

• Long-term team-formation mechanism (for long-term cooperation)
Obviously, one-shot teams can experience frequent grouping and regrouping
among agents. Each grouping/regrouping consumes some communication and
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computation resources. To overcome the weakness of one-shot team formation,
Rathod and desJardins proposed several stable-team formation strategies for self-
interested MASs [30]. These strategies allow self-interested agents to form long-
term relationships in order to reduce team formation overhead. However, for
many self-interested MASs, agent goals or willingness are changeable and re-
main uncertain. A long-term relationship is very difficult to maintain after the
goals of team member agents change.

Both one-shot team formation and long-term team-formation mechanisms have
some weaknesses. One-shot team formation may bring high communication and
computation overhead to a MAS. However, long-term team formation strategies are
not suitable for the dynamic features of open environments and the selfish features
of self-interested agents.

In this section, we introduce and compare the features of the one-shot and
long-term team-formation mechanisms. In addition, to cover some shortcomings of
one-shot and long-term team formations, a flexible team-formation mechanism that
enables both cooperative and self-interested agents to flexibly choose team mem-
bership and duration is proposed. Factors such as historical agent performance, task
requirements and resource constraints are considered in the mechanism. Especially
for open environments, flexible team formation and member selection mechanisms
are more suitable for agent applications. This flexible team-formation mechanism
enables more dynamic and reasonable cooperation between agents and reduces un-
necessary overhead and utility conflicts brought about by team formation. Due to
the high uncertainty inherent in most open environments, analysis and evaluation
of dynamic factors is not very straightforward. More specifically, a fixed standard
for agent evaluations does not exist (e.g. how good an agent’s performance is). Re-
garding this point, fuzzy rules are used in our flexible team-formation mechanism
to evaluate the performance and importance of agents. This will enable an agent
to dynamically select cooperation durations and objectives based on the results of
fuzzy evaluations, and to choose cooperation mechanisms more flexibly.

3.1 Agent Cooperation in Agent Teams: The Scenario

Various MAS applications may have different system structures. In this chapter, an
MAS environment is set up to demonstrate and analyse team formation and member
selection mechanisms. Hence, the system structure is set up toward assisting agent
communication and task allocation. Some simplifying assumptions and definitions,
which can avoid adding to the scheduling and task decomposition problems, are
also made, and only elementary agents and task models are included in the MAS.
However, these models are sufficiently generic to be practical and applicable to a
wide range of real-world applications.

Figure 1 shows the general structure of team organisation. To simplify the prob-
lem, we assume that all agents are aiming to achieve rewards through accomplishing
tasks sent by outside users. New tasks are published on the system Task Board, and
will be removed from the Task Board after being taken by an agent or agent team.
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Fig. 1 The System Architecture

Published tasks are accessible to all individual agents and agent teams within the
system. The number of agents in the system can be dynamic; agents can enter and
leave the system at will. However, agents need to publish and remove their regis-
tration information on the system Agent Board before they so enter (leave). The
registration information records the skills and status of an agent (see Definition 4).

Agent abilities are limited. To perform tasks beyond their individual ability, an
agent needs to collaborate with other agents through joining or forming a team.
Each agent team is composed of one (and only one) team leader and several team
members. After an agent joins an agent team, it can receive payments from the agent
team. At the same time it needs to work for the agent team for a certain period. The
payment and serving term are described in the contract (see Definition 5) between
the team member and the team leader.

Before presenting the team-formation mechanism, some important definitions
and assumptions are given.

Definition 3. A task is defined formally as ti = 〈wi,R′i〉, where wi is the reward
gained by an agent/agent team if task ti is accomplished by that agent/agent team;
Ri is the set of resources or skills, which are possessed by agents, required by task
ti. A task can only be assigned to one agent or agent team.

Definition 4. An agent is formally defined as ai = 〈gi,Ri,si〉, where gi is a set
of individual goals of agent ai; Ri is the skills and resources possessed by agent
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Table 1 Status of An Agent

si value Status of agent ai

(0, 0, 0) Performing no task; has no agent team.
(1, 0, 0) Performing a task; has no agent team.
(0, 1, 0) Has a one-shot contract as a team member; performing no task currently.
(1, 1, 0) Has a one-shot contract as a team member; performing a task currently.
(0, 1, t) Team member of an agent team for period t; performing no task currently.
(1, 1, t) Team member of an agent team for period t, performing a task currently.
(0, 2, 0) The team leader of an agent team; performing no task currently.

(It is assumed that the team leader cannot quit from its agent team and let
t value of a team leader equal to 0.)

(1, 2, 0) The team leader of an agent team; performing a task currently.

ai; and si is the status of ai, where si = (va,vp,t). si represents whether agent ai is
performing a task and participating in an agent team. The meanings of different si

values are listed in Table 1. The names and meanings of va, vp and t are as follows:

Availability va: represents whether an agent is performing a task. va = 0 when
the agent has no task (available); va = 1 when the agent is performing a task (not
available);
Position Parameter vp: represents whether an agent is an individual agent, team
leader or team member. vp = 0 when the agent is an individual agent; vp = 1
when the agent is a team member; vp = 2 when the agent is a team leader.
Contract Completion Time t: t is the contract completion time of an agent (also
see Definition 5).

Definition 5. A contract ci j is an agreement between team leader ai and team mem-
ber a j. It can be defined as ci j = 〈ti j, pi j,Si j〉, where ti j is the contract completion
time; pi j is the penalty that the team leader or team member has to pay (to the other
parties of the contract) if it breaks the contract and terminates the cooperation re-
lationship before ti j; Si j is a set of payments that a j can gain through serving the
agent team. Si j can be described as a tuple 〈sci j,sdi j〉. For contracts between the
team leader and team members of a one-shot team, ti j, pi j, and sdi j are equal to 0.
sci j is the payment that a j can gain for each task completed by the agent team when
a j directly participates in the task. sdi j is the dividend (or reward) that a j can share
for each task completed by the agent team, when a j does not actually participate in
that task.

Definition 6. An agent team is a set of agents. It can be formally defined as
ATi = 〈MSi,T Ri〉, where MSi is the set of agents (including the team leader) that
are currently team members of ATi; TRi is the total resources of the entire agent
team. Here it is assumed that T Ri =∑ j|a j∈MSi

( j)+ ri, where Ri and R j are resources
possessed by the team leader and team members, respectively. In other words, the
capability of an agent team is the sum of its team members’ capabilities and the
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team leader’s capability. We further define ∀i 	= j : MSi ∩MS j = ∅, which means
that an agent can only participate in a single agent team.

Definition 7. A Contributor Set CSi j(CSi j ⊂ MSi) of agent team ATi is the set
of agents that participate in performing task t j, where t j is a task of ATi. For
a one-shot team, the Contributor Set is equal to MSi of the team (also refer to
Definition 6).

Definition 8. For agent team ATi, a Member Contribution mci jk is the contribution
of agent ak, where ak ∈CSi j, in performing task t j (ti = 〈w,R′i〉). mci jk equals w/N,
where N is the size of Contributor Set and w is the task reward.

3.2 One-Shot and Long-Term Team-Formation Mechanisms

After presenting the system architecture and some important definitions, concepts
and comparisons of the one-shot and long-term team-formation mechanisms are
presented in this subsection.

3.2.1 One-Shot Team-Formation Mechanism

One-shot team-formation mechanisms are widely applied in many MAS applica-
tions. In this mechanism, agents do not initially have a team. When a task ti is pub-
lished in the Task Board, agents start to bid on the new task. The system facilitator
will choose (or randomly select) a bidder to assign the task. After the agent success-
fully bids for the task, it becomes a team leader and starts to look for collaborators
according to the task requirement R′i. Finally, the agent team will disband after the
task (ti) is accomplished.

Generally, the one-shot team strategy includes the following processes. (Here, it
is assumed that the agents cannot achieve the task individually.)

1. The system facilitator of the MAS publishes a new task ti = 〈wi,R′i〉 on the Task
Board, where wi and R′i are the reward and required resources of the task;

2. Agents, whose g < wi and s=(0, 0, 0) bid on ti;
3. The system facilitator awards ti to agent a j(a j =< g j,R j,s j >). At the same

time, a j becomes the team leader of agent team ATj and modifies its s j to (0, 2,
0). At this movement, TR j = R j;

4. a j searches the Agent Board to look for agents with status (0, 0, 0), which can
provide the lacking resources R, where R⊆ (R′i−R′i∩T R j);

5. a j finds a required agent ap, where Rp ⊆ (R′i−R′i∩TR j);
6. a j sends a contract c jp to ap, where sc jp ≤ (wi−g j) · sizeO f (Rp)/sizeO f (R′i−

Ri) ;
7. ap accepts c jp if sc jp ≥ gp or rejects c jp if sc j p≤ gp;
8. If c jp is accepted by ap, T R j = T R j∪Rp, and ap modifies its status to (0, 1, 0);
9. Goes to Process (4) until TR j = R′i;



370 M. Zhang et al.

10. ATj starts to perform ti; the team leader and the team members of ATj modi-
fies/modify its/their statuses to (1, 1, 0) and (1, 2, 0), respectively;

11. ATj accomplishes ti; agents of ATj modify their statuses to (0, 0, 0) and are
released from the team.

3.2.2 Long-Term Team-Formation Mechanism

In the long-term team-formation mechanism, the agent team will not be dissolved
after performing tasks. On the contrary, the team leader gives the team members
some payment to maintain the cooperative relationship, even if the team member
does not contribute to accomplishing the task.

The long-term team strategy normally includes the following processes [30]:

1. Team leader ai finds several free agents, whose status values are (0, 0, 0), from
the Agent Board and sends them contracts in order to form a team with them.
Agents modify their status to (0, 1, ti j) if they accept the contracts. In this case,
agent team ATi is formed successfully;

2. Team leader ai searches the Task Board for a suitable task and bids on task
tk(tk = 〈wk,R′k〉), where R′k ⊆ T Ri and wk ≥ ∑ j|a j∈MSi

(Si j + gi) (also refer to
Definitions 3 through 6).

3. If tk is successfully bid by team leader ai, ai assigns tk to team member
ap,aq...an, where Rp ∪Rq, ...,∪Rn is the minimum set that satisfies R′k ⊆ Rp∪
Rq, ...,∪Rn. At the same time, ap,aq, ...,an modify their status to (1,1, tip),
(1,1,tiq), ...,(1,1,tin). Also, for this task performance, the Contributor Set CSik

(refer to Definition 7) should be {ap,aq, ...,an};
4. ap,aq, ...,an modify their status to (0,1, tip),(0,1, tiq), ...,(0,1, tin) after tk is ac-

complished;
5. team leader ai awards team member am (am ∈ ATi) with (scim + sdim) if am ∈

CSik, or sdim if am is not in CSik;

In addition, if the team leader ai or team member ap wants to terminate the con-
tract before the contract completion time tip, they may process the following two
steps:

1. ai/ap terminates cip with ap/ai, and pays pip to ap/ai;
2. ap is released from ATi, and its status modified to (0, 0, 0).

3.2.3 Advantages and Disadvantages of Long-Term and One-Shot
Team-Formation Mechanisms

One-shot teams are suitable for dynamic MAS application domains. They always
maintain loosely-coupled relationships among agents by default. However, agents in
dynamic applications may also need to keep stable organisations in some situations.
For example, the tasks may have some similarity, and their requirements might be
similar (which means they may just need similar agent teams). In this case, frequent
grouping and regrouping is not necessary, since each such grouping consumes some
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Table 2 Features of One-Shot Teams and Long-Term Teams

One-Shot Teams Long-Term Teams
Communication Overhead High Low
Suitable Domains Highly dynamic Stable environments

environments
Suitable MASs Self-interested MAS Cooperative MAS
Relationships among Loosely coupled Tightly coupled
Team Members

system resources. In contrast with one-shot teams, long-term teams can greatly re-
duce the system overhead caused by grouping and regrouping. However, most cur-
rent long-term team formation strategies cannot figure out when agents should form
long-term teams, which agents should be included, and how long the relationships
should be maintained. For self-interested MAS applications, keeping unnecessary
long-term cooperative relationships could be dangerous and harmful for the overall
system performance. Features of one-shot and long-term teams are summarised and
compared in Table 2.

3.3 Flexible Team-Formation Mechanism

From the description of short-term and long-term team formation in the previous
section, it can be seen that both long-term and one-shot teams have some advan-
tages and disadvantages. One-shot teams are suitable for dynamic tasks, where
the requirements of various new tasks are totally different. By contrast, long-term
teams possess advantages when tasks are ‘stable’ or similar. For most self-interested
agents, the team duration should not be fixed. Taking human society as an example,
a company may sign different contracts (with different durations and conditions)
with different employees. According to the performance of employees and changes
in the job market, the company will typically want to make changes to these con-
tracts in the future. For a MAS, it is also necessary to have a flexible team-formation
mechanism which can enable team leaders to choose different cooperation durations
with agents, according to the changing trends of task-requirements and agent per-
formance. In this section, a flexible team-formation mechanism is introduced. In
this mechanism, agent value and availability are evaluated. Team leaders will then
determine the required members and choose proper cooperation durations and cost
according to these evaluation results.

3.3.1 Team Member Performance Evaluation

In general, agents that always contribute to performing tasks and can bring more
benefits to the team are the most valuable members of an agent team. These agents
should be kept on the team for a long time. By contrast, an agent team should not
include agents that bring little contribution to the team. In this mechanism, two
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factors, namely Utilisation Ratio (ur) and Contribution Ratio (cr), are used to eval-
uate the value of a team member.

Definition 9. Utilisation Ratio urMk (urMk ∈ [0,1]) is the frequency with which a
team member ak has participated in the most recent M tasks of the agent team ATi.
It can be calculated using Equation 1. The value of the parameter M is chosen by
team leaders or assigned by users. Team leaders can also adjust M values according
to environmental situations and team performance.

urMk =
M

∑
j=1

1
M

( k|ak ∈CSi j) (1)

Definition 10. Contribution Ratio crMk (crMk ∈ [0,1]) is the ratio that team mem-
ber ak has contributed to the agent team ATi in the most recent M tasks. It can be
calculated using Equation 2 (also refer to Definition 8).

crMk =
∑M

j=1 mci jk ( k|ak ∈CSi j)

∑M
j=1 wj

(2)

The following example shows how to evaluate team members through Utilisa-
tion Ratio and Contribution Ratio. Suppose t1 =< 40,R′1 >,t2 =< 50,R′2 > and
t3 =< 60,R′3 > are the three most recent tasks accomplished by agent team ATi.
ap,aq,ar and as are the team members of ATi. Team members that participate in the
three tasks are {ap,aq},{ap,ar} and {ap,aq}, respectively. According to Equations
1 and 2 , the Utilisation Ratio and Contribution Ratio values of ap,aq,ar and as are:

ap: ur3p = 1, cr3p = (40/2+50/2+60/3)
(40+50+60) = 0.5

aq: ur3q = 0.67, cr3q = (40/2+60/3)
(40+50+60) = 0.33

ar: ur3r = 0.33, cr3r = 50/2
(40+50+60) = 0.17

as: ur3s = 0, cr3p = 0

Comparing Utilisation Ratio and Contribution Ratio values of the four team
members of ATi, it can be seen that ap is the most important member of ATi, since it
frequently participated in recent tasks and contributed the most benefit to the team.
On the other hand, as did not participate in recent tasks and contributes nothing
to ATi.

3.3.2 System Agent Resource Evaluation

With Utilisation Ratio and Contribution Ratio, a team leader can evaluate contri-
butions of team members. However, to make reasonable contracts with team mem-
bers, a team leader also needs to evaluate whether it is easy to find similar agents
(which possess similar resources and skills) in the MAS. In this mechanism, Agent
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Resource Availability is the parameter defined to evaluate agent resource availability
in the MAS.

Definition 11. Agent Resource Availability arak: arak is the ratio of available
agents (which do not have a team/task) that possess the same or more resources
than team member ak. It can be calculated using Equation 3 (Note: Nav here is the
available agent number of the MAS).

arak =
Rk⊆Ri

∑
si=(0,0,0)

1
Nav

(3)

For example, suppose that ak is a team member of ATi. Currently, there are ten
out of twenty available agents in the MAS, which possess the same or more re-
sources than ak. Hence, the Agent Resource Availability value of team member ak is:
arak = 0.5.

3.3.3 Flexible Member Selection Using Fuzzy Rules

According to the values of Utilisation Ratio, Contribution Ratio and Agent Resource
Availability, in this mechanism, team leaders use a fuzzy method to determine co-
operation durations and cost with their team members.
Input and Output Parameters:

In the fuzzy method, Utilisation Ratio, Contribution Ratio and Agent Resource
Availability are input parameters. The output parameters are Contract Term ct and
Commission Amount ca. These parameters are defined in Definitions 12 and 13.

Definition 12. Contract Term ctk is the parameter which denotes the duration that
agent ak should be kept in the agent team. It is an output parameter that needs to
be identified through the fuzzy method. The working range of Contract Term is
[0, MAXTERM]. MAXTERM, which is a constant that is defined in the MAS, and
denotes the maximum time period that an agent can be kept in an agent team.

Definition 13. Commission Amount cak is the parameter that denotes the maximum
commission that the agent team should pay to agent ak in order to keep it in the
team. It is an output parameter that needs to be identified through the fuzzy method.
The working range of Commission Amount is [0, MAXPAY], where the parameter
MAXPAY is decided by the team leader. MAXPAY denotes the maximum payment
that an agent team can afford to keep a single agent as a team member.

Membership Functions for Input Parameters:
For Utilisation Ratio, the following four linguistic states [17] are selected and

expressed by appropriate fuzzy sets: Never (N), Seldom (S), Medium, (M) and Fre-
quent (F). Another input parameter Contribution Ratio also has four linguistic states,
these being None (N), Little (L), Medium (M) and Huge (H). The trapezoidal [17]
fuzzy membership function is adopted here to define fuzzy memberships of these
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Fig. 2 Fuzzy Membership Function for ur/cr

four fuzzy sets. The membership functions for these four fuzzy sets are defined in
Equations 4 through 7, respectively. They are also depicted in Figure 2.

FNever(x)/FNone(x) =

{
1−5x x ∈ [0,0.2]
0 x 	∈ [0,0.2]

(4)

FSeldom(x)/FLittle(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

10x−1 x ∈ [0.1,0.2]
1 x ∈ (0.2,0.3)
4−10x x ∈ [0.3,0.4]
0 x 	∈ [0.1,0.4]

(5)

FMedium(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

10x−3 x ∈ [0.3,0.4]
1 x ∈ (0.4,0.6)
7−10x x ∈ [0.6,0.7]
0 x 	∈ [0.3,0.7]

(6)

FFrequent(x)/FHuge(x) =

⎧⎪⎨
⎪⎩

10x−6 x ∈ [0.6,0.7]
1 x ∈ (0.7,1]
0 x 	∈ [0.6,1]

(7)

For ara, three linguistic states are selected, namely Rare (R), Some (S), and Many
(M). The membership functions for ara are defined in Equations 8 through 10, and
depicted in Figure 3.

FRare(x) =

{
1−4x x ∈ [0,0.4]
0 x 	∈ [0,0.4]

(8)
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Fig. 3 Fuzzy Membership Function for ara

Fig. 4 Fuzzy Membership Function for ct/cl

FSome(x) =

⎧⎪⎨
⎪⎩

5x−1 x ∈ [0.2,0.4]
3−5x x ∈ (0.4,0.6]
0 x 	∈ [0.2,0.6]

(9)

FMany(x) =

⎧⎪⎨
⎪⎩

5x−2 x ∈ [0.4,0.6]
1 x ∈ (0.6,1]
0 x 	∈ [0.4,1]

(10)

Membership Functions for Output Parameters:
There are two output parameters – Contract Term (ct) and Commission Level (cl)

– in the fuzzy method. For ct, the following four linguistic states are selected: Long
(L), Medium (M), Short (S) and No (N). For cl, High (H), Medium (M), Low (L)
and No (N) are chosen as the four linguistic states. Fuzzy membership functions of
these fuzzy sets are defined in Equations 11 through 14, and described in Figure 4.
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FNo(x) =

{
1−10x x ∈ [0,0.1]
0 x 	∈ [0,0.1]

(11)

FShort(x)/FLow(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

10x x ∈ [0,0.1]
1 x ∈ (0.1,0.3)
4−10x x ∈ [0.3,0.4]
0 x 	∈ [0,0.4]

(12)

FMedium(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

10x−3 x ∈ [0.3,0.4]
1 x ∈ (0.4,0.6)
4−10x x ∈ [0.6,0.7]
0 x 	∈ [0.3,0.7]

(13)

FLong(x)/FHigh(x) =

⎧⎪⎨
⎪⎩

10x−6 x ∈ [0.6,0.7]
1 x ∈ (0.7,1]
0 x 	∈ [0.6,1]

(14)

Fuzzy Rule Base:
A fuzzy rule base is a matrix of combinations of each of the input linguistic

parameters and their corresponding output parameters. The rule base in this mecha-
nism is described in Table 3.

Table 3 Fuzzy Rule Base Matrix

Agent Resource Availability R S M
Utilisation Ratio Contribution Ratio Output Parameters: ct, cl

N N ct=N, cl=N ct=N, cl=N ct=N, cl=N
N L ct=M, cl=L ct=N, cl=N ct=N, cl=N
N M n/a n/a n/a
N H n/a n/a n/a
S N ct=M, cl=L ct=N, cl=N ct=N, cl=N
S L ct=L, cl=L ct=S, cl=L ct=N, cl=N
S M ct=L, cl=L ct=M, cl=M ct=S, cl=M
S H ct=L, cl=M ct=S, cl=M ct=N, cl=M
M N n/a n/a n/a
M L ct=L, cl=M ct=M, cl=L ct=S, cl=L
M M ct=L, cl=M ct=M, cl=M ct=M, cl=L
M H ct=L, cl=H ct=L, cl=M ct=M, cl=M
F N n/a n/a n/a
F L ct=L, cl=M ct=M, cl=M ct=L, cl=L
F M ct=L, cl=H ct=L, cl=M ct=L, cl=L
F H ct=L, cl=H ct=L, cl=H ct=L, cl=M
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Determination of Output Membership Values and Defuzzification
Each entry of the rule base is a rule, which is defined by ANDing two linguistic

input parameters to produce an output combination, in the form of: IF(F(ur) = α
AND F(cr) = β AND F(ara) = γ) THEN (F(ct) = δ ) AND F(cl) = eta), where
α ∈ {Never, Seldom, Medium, Frequent}, β ∈ {None, Little, Medium, Large}, γ ∈
{Rare, Some, Many}, δ ∈ {Long, Medium, Short, No}, and η ∈ {High, Medium,
Low, No}. In this mechanism, the AND/MIN operator is used to combine the mem-
bership values, i.e. the weakest membership determines the degree of membership in
the intersection of fuzzy sets [8] [17]. Hence, the output membership value μδ/η(v)
can be calculated using Equation 15.

μδ/η(v) = MIN(μα (ur),μβ (cr),μγ (ara)) (15)

With regard to output membership, the output values can be determined by tracing
the membership values for each rule back through the output membership functions.
Finally, the centroid defuzzification method [8] [17] is used to determine the output
value. In centroid defuzzification, the output value is calculated using Equation 16,
where membership of vi is represented as μ(vi), and k is the number of fuzzy rules
which are activated.

DF = ∑k
i=1(vi ·μ(vi))

∑k
i=1 μ(vi)

(16)

3.4 Experiments

To analyse the performance of the flexible team-formation mechanism, some exper-
iments are conducted to compare it with the one-shot and long-term team-formation
mechanisms. The experimental environment is set up to simulate the scenario intro-
duced in Subsection 3.1. Each agent possesses one (or more) kind of resource(s),
and needs to contribute its resource(s) to achieve rewards through accomplishing
tasks in the system. However in most cases an agent cannot accomplish a task due
to its limited resource(s). Hence, agents need to cooperate with others in order to
realise their goals. This experiment simulates some real world applications. For ex-
ample, in a Web service system [24], each peer can only provide a limited number
of services (i.e. possesses limited resources). To execute a complex task, we need to
aggregate or combine small services in different peers into larger services (i.e. form
a team to perform the task).

In the experiment, a set of tasks is sent to the agents, and they perform these tasks
using one-shot, long-term and flexible team-formation mechanisms, respectively. In
order to avoid agent teams including too many agents for too long a time (especially
for long-term teams), we set a maximum team size to limit the number of long-
term team members. In this experiment, the maximum team size equals five, which
means an agent team can at most keep five long-term members. Two factors are
compared in the experiment, namely Agent Searching Time and Reward Distribution
Situation.
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Fig. 5 Agent Search Comparison (no. of searches vs. no. of tasks)

Agent Searching Time represents the time that a team leader needs to search for
required agents from the agent board to accomplish the tasks. In general, the higher
the Agent Searching Time, the more communication cost the team leader needs to
spend on searching agents.

According to the experimental result, it can be seen that the Agent Search-
ing Time of one-shot team formation is much higher than both long-term and
flexible team formation (See Figure 5). This is because team leaders in one-shot
teams need to keep searching suitable team members for each task and disband
them after a task is accomplished. With long-term and flexible team formation,
the whole team (or part thereof) is retained after a task is completed. Thus these
two latter strategies will have less communication overhead. The experimental re-
sult shows that long-term teams have higher Agent Searching Time than flexible
teams. This is because, in the experiment, a long-term team can at most keep a
limited number of members for a long period. Hence, after a team accomplishes
several tasks, the number of long-term members will reach the limit, and the
team will start to search and disband new members in subsequent tasks. The re-
sult shows that the Agent Searching Time of using flexible team formation is the
lowest, which means it has the lowest communication overhead among the three
mechanisms.

Reward Distribution Situation is the second comparison factor. It represents the
rationality of agent team organisation. Without considering communication over-
head, a one-shot team has an ideal organisational structure because all its team
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Fig. 6 Reward Distribution Situation (no. of reward units per agent)

members contribute to task executions. Hence the Reward Distribution Situation
of one-shot teams can be considered as the benchmark for team organisation ra-
tionality. Throughout this experiment, it can be seen that the Reward Distribution
Situation of flexible teams is closer to one-shot teams than long-term teams (See
Figure 6). Therefore, flexible teams have more reasonable organisations than long-
term teams.

From the experimental results, it can be seen that the flexible team-formation
mechanism is more suitable for self-interested agents and open environments. In
cooperative domains, agents do not care whether the reward is distributed ratio-
nally, the most important thing that cooperative agents consider is the overall ben-
efit to the team. However, self-interested agents do consider rationality of reward
distribution, and do not want to keep “less valuable” members in the team for a
long period. The flexible mechanism can enable agent teams to keep valuable team
members according to their performance and changing environments. Furthermore,
agent teams can adjust their long-term member selection criteria through modify-
ing the member evaluation parameters. This feature can make team formation more
flexible and suitable for open environments. Therefore, compared with one-shot and
long-term team-formation mechanisms, the flexible team-formation mechanism can
enable self-interested agents to form more reasonable teams in an open environment
with less communication overhead.
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3.5 Summary

As a social entity, an intelligent agent needs to cooperate with others in most multi-
agent environments. At the same time, unreasonable team-formation mechanisms
could prevent agents from achieving local benefits, or lead to unnecessary system
overhead. Focusing on challenges inherent in dynamic application domains, many
researchers have suggested using long-term or one-shot team-formation mecha-
nisms in MASs. However, both of these mechanisms have some advantages and
disadvantages, as discussed earlier. A flexible team-formation mechanism can avoid
some of the limitations of the one-shot and long-term team-formation mechanisms.
It can enable agents to automatically evaluate the performance of other agents in
the system, and select team members with reasonable terms and costs according
to the evaluation result. In flexible team-formation, factors related to agent perfor-
mance and task requirements are considered as evaluation factors. Through eval-
uating these factors, team compositions are more reasonable and can avoid some
potential benefit conflicts among team members.

4 Collaborative Problem Solving through Agent Competition

In some application domains, agent competition can also be involved in collabo-
rative problems. Suppose a set of autonomous agents has a global goal it wants to
achieve, where this goal is too complex to be achieved by any single agent. There-
fore, the global goal must be divided into several local goals and distributed to agents
by considering their individual ability, requirement, restriction etc. Now each agent
wants to minimize its costs, that is, prefers to do as little as possible. Therefore, even
though the agents have a common goal, there is actually a conflict of interest here.
Agents may argue and compete with each other in order to maximize their individ-
ual benefits and also ensure that the global goal be achieved in a timely manner. This
kind of competition within a collaborative problem may pertain in applications such
as resource allocation, task distribution, emergencies etc. Agent negotiation can be
employed to solve competition problems.

4.1 Traditional Agent Negotiation

Motivations and aims determine agent behavior in negotiation. Therefore, it is nec-
essary to discuss the kinds of agent behavior which can take place during negotia-
tions. In general, agents may compete or cooperate with each other in order to reach
their own goals or a common goal within a MAS. Final agreements about how to
compete or cooperate are achieved through negotiation. Therefore, negotiations can
be classified into competitive and cooperative according to the behaviors of its par-
ticipants. In a competitive negotiation, participants perform the role of challengers,
while in a cooperative negotiation, participants act as cooperators. However, both
kinds of negotiation contain the following four components in general [33] :

1. The negotiation protocol,
2. The negotiation strategies,
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3. The information state of agents,
4. The negotiation equilibrium.

The negotiation protocol specifies the rules of engagement in agent negotiation.
It defines what kinds of (i) interaction between agents can be taken in different
circumstances; (ii) sequences are allowed and (iii) deals can be made in the negotia-
tion. For example, Rubinstein’s alternating offers protocol is a very commonly used
negotiation protocol. In this protocol, one of the negotiation participants makes an
offer, then the other responds by either accepting the offer, rejecting it, or opting out
of the negotiation. The negotiation will be finished only when all negotiation par-
ticipants accept an offer, or one or more negotiation participants opt out. In general,
agents should make an agreement on the negotiation protocol before the negotiation
proper starts. The negotiation protocol will be designed differently by considering
the following factors: (a) numbers of negotiation participants (e.g. sellers and buy-
ers), (b) numbers of negotiation issues (e.g. a car’s price, color, model and etc.), and
(c) negotiation environment (buyers’ market or sellers’ market).

The negotiation strategy specifies the sequence of actions that the negotiation par-
ticipants plan to make during the negotiation. In competition problem negotiation,
agents try to maximize their own local interests during the negotiation, and also have
to ensure the global goal of the negotiation. Therefore, agents may employ differ-
ent negotiation strategies by considering self and/or other information. For example,
an agent could bargain very hard throughout the negotiation in order to maximize
its benefit or give some kind of concession under time restrictions. Also, it should
be clear that a strategy which performs well with certain protocols may not nec-
essarily do so with others. Therefore, both the negotiation scenario and protocol
in use should be considered when the negotiation participant chooses a negotiation
strategy.

The agents’ information state describes information about the negotiation, which
can be classified as ‘private’ and ‘public’ [9]. Private information describes an
agent’s self situation, such as the negotiation strategy, which is only possessed by
that particular agent. Unless the negotiation participant agrees to share its private
information with others, it is not reachable by other negotiation participants. Public
information describes the negotiation environment, such as the number of nego-
tiation participants, number of negotiation issues, negotiation protocols etc. This
public information is available to all negotiation participants. In the negotiation, if
all negotiation participants would like to share all their private information, then the
negotiation is referred to as ‘negotiation with complete information’. Otherwise, if
the negotiation participant does not want to share their private information, then the
negotiation is termed ‘negotiation with incomplete information’. An agent’s infor-
mation state will impact the agent’s choice of negotiation strategy.

When agents choose negotiation protocols and negotiation strategies, agents cre-
ate negotiation mechanisms. During the negotiation, the negotiation mechanism
must be stable, i.e. a strategy profile must constitute an equilibrium. The Nash equi-
librium [26] is a commonly used concept. Two strategies are in Nash equilibrium if
each negotiation participant’s strategy is the best response to its opponent’s strategy.
The equilibrium is a very important and necessary condition for negotiation system
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stability. For different negotiation protocols, the equilibrium strategy may differ.
However, it is required that each negotiation participant should select an equilib-
rium strategy in the negotiation.

In this subsection, we provide an example of negotiation between two agents.
In our example, the negotiation is performed between two agents, i.e. the ‘buyer’
agent and the ‘seller’ agent. Both agents are bargaining over the price, therefore it
is a single-issue negotiation. In the following, we will show the four components in
our example negotiation and introduce how the negotiation is processed.

The negotiation protocol. We simply adopt the basic alternating offers protocol
[28]. Let b denote the buyer agent, and s the seller agent. The negotiation starts
when the first offer is made by an agent (b or s). The agent who makes the initial
offer is selected randomly at the beginning of the negotiation. When an agent
receives an offer from its opponent, it will evaluate it. According to this evalua-
tion, the agent will take one of the following actions: (i) Accept: when the value
of the offer received from the opponent is equal to or greater than the value of
the counter-offer it is going to send in the next negotiation cycle. Once the agent
accepts this offer, the negotiation ends successfully in an agreement; (ii) Reject:
when the value of the offer received from the opponent is less than the value of
the counter-offer it is going to send in the next negotiation cycle. Once the agent
rejects this offer, providing the negotiation deadline has not been reached, the
agent sends out a counter-offer to its opponent and the negotiation proceeds to
the next cycle; (iii) Quit: when the negotiation deadline falls due and no agree-
ment has been reached, then the agent has to quit and the negotiation fails.

The negotiation strategies. In our example, two agents are bargaining over price,
therefore each agent should have some idea about its acceptability. Let [IPa,RPa]
denote the range of price values which are acceptable to agent a, where a∈ {b,s}.
IPa denotes the initial price and RPa the reserve price of agent a. In general, when
a = b, IPb ≤ RPb, and when a = s IPb ≥ RPb. Let â denote agent a’s opponent,
where â∈ {b,s}. Then the offer made by agent a to agent â at time t (0≤ t ≤ τa),
where τa is the deadline for agent a, is modeled as a function Φa depending on
time as follows:

pt
a→â =

{
IPa +Φa(t)(RPa− IPa) a = b

RPa +(1−Φa(t))(IPa−RPa) a = s
(17)

where function Φa(t) (0≤Φa(t)≤ 1) is called the negotiation decision function
(NDF) [12]. The common way to define Φa(t) is:

Φa(t) = ka +(1− ka)(
t
τa )1/λ (18)

where ka (0 ≤ ka ≤ 1) is the parameter which controls the initial offer. For ex-
ample, when ka = 0, the initial offer is IPa, and when ka = 1, the initial offer
is RPa; λ is the parameter which controls the agent behavior. Depending on the
value of λ , three extreme cases show different patterns of behavior for the agent
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Fig. 7 Negotiation decision function for the buyer

b in Figure 7 [9]: (i) Conceder: when λ > 1, agent b gives more concession in
the beginning of the negotiation, and less concession closer to the deadline; (ii)
Linear: when λ = 1, agent b gives constant concession throughout the negotia-
tion; and (iii) Boulware: when 0≤ λ ≤ 1, agent b gives less concession initially,
and more concession when the deadline is looming.

Finally, agent utility functions at time t are defined as per Equation 19.

Ua(pt
a→â) =

{
RPa− pt

a→â a = b

pt
a→â−RPa a = s

(19)

Ua(t) is the agent a’s evaluation result of its opponent’s offer at negotiation cycle
t; based on this evaluation result, agent a can make a decision about its action.

The information state of agents. The sample negotiation is a negotiation with
incomplete information, i.e. both agents s and b do not share their private infor-
mation with each other.

The negotiation equilibrium. The Nash equilibrium is employed in our sample
negotiation. The action, Aa, of agent a at time t is defined as follows:

Aa(pt
a→â) =

⎧⎪⎨
⎪⎩

Quit i f t > τa,

Accept i fUa(pt
â→a)≥Ua(pt′

a→â),
Re ject i fUa(pt

â→a) < Ua(pt′
a→â).

(20)

where t ′ is the time of the next negotiation cycle. Therefore, the equilibrium
strategy employed in this negotiation indicates that the agent will only accept the
offer which can maximize self’s benefit given the time constraint.
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4.2 Partner Selection in Agent Negotiation

In the previous subsection, we briefly introduced agent negotiation and also indi-
cated that it can be employed by agents to solve competition problems. However,
due to the rapid development of autonomous agents and Internet techniques, most
MAS work environments have become uncertain and dynamic. In such open and
dynamic environments, when the number of potential partners is huge, performing
complicated traditional negotiations with all potential partners may be expensive in
terms of computational time and resources – indeed even impractical. Thus, we in-
troduce an approach which can be employed by agents to choose partners from a
large pool of potential partners with a high chance of reaching a good agreement in
subsequent negotiations.

Agents may have different criteria on partner selection based on the purpose of
their negotiation. Generally, in cooperative negotiation, agents will select a partner
which will increase global benefits; while in competitive negotiation, agents pre-
fer some partners which can supply the highest benefit to themselves. However, re-
searchers have found that it is not always beneficial for agents to only cooperate with
others about global tasks in cooperative negotiation [16] [42]. Also, in a competi-
tive negotiation, agents should consider the global tasks. Furthermore, when agent
behaviors are in between these two extreme cases, the existing partners selection
approach is no longer suitable.

Zhang et al. proposed a dual concern model which provides an outline about the
degrees of concern of an agent for its own and other’s outcomes [43]. However, this
model only briefly mentions the main trend of these degrees, without offering any
calculation or comparison method. To address these problems, we further extended
this dual concern model to allow agents to make reasonable decisions on their be-
haviors during partner selection based on these degrees. The extended dual concern
model is shown in Figure 8.

In Figure 8, the x-axis indicates the percentage of self-concern of an agent
while the y-axis is the percentage of other-concern from the agent. θ represents a
ReliantDegree (i.e. reflection of the collaboration degree), where θ ∈ [0◦,90◦]. We
use selfishness to represent the percentage of self-concern of an agent, which can be
calculated by cos(θ ), and selflessness to represent the percentage of other-concern,
which can be evaluated by sin(θ ). A ReliantDegree can illustrate the level of col-
laboration between the agent and its potential partner. From the extended model,
we find that there are two extreme cases: (i) when the agent only emphasizes its
own outcome, its negotiation attitude is completely selfish (θ = 0◦); and (ii) when
the agent only cares about its partner’s outcome, its attitude is completely selfless
(θ = 90◦). From this model, it is clear that there are many other cases between
completely selfish and completely selfless behaviors.

Suppose that there are n potential partners for an agent IDx in a MAS. If we use
a four-tuple px

i to represent the ith potential partner of agent IDx, px
i can be formally

defined by Equation 21:

px
i =< IDi,GainRatiox

i ,ContributionRatiox
i ,ReliantDegreex

i > (21)
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Fig. 8 The extended dual concern model

where IDi is the unique identification of the ith potential partner, and GainRatiox
i ,

ContributionRatiox
i and ReliantDegreex

i are factors used to evaluate the potential
partner IDi to be selected in the negotiation. These three factors are defined in Def-
initions 14 through 16, respectively.

Definition 14. GainRatiox
i is the percentage benefit that agent IDx obtains out of

the global benefit upon completion of the task. GainRatiox
i can be calculated as

GainRatiox
i = S

L ×100%, GainRatiox
i ∈ [0,100%], where S denotes the benefit that

agent IDx gains by selecting partner agent IDi as its partner, and L denotes the global
benefit by completing the task.

Definition 15. ContributionRatiox
i is the percentage benefit that agent IDi obtains

out of the global benefit upon completion of the task. ContributionRatiox
i can be cal-

culated as ContributionRatiox
i = I

L ×100%, ContributionRatiox
i ∈ [0,100%], where

I denotes the benefit that partner agent IDi gains by cooperating with agent IDx, and
L denotes the global benefit by completing the task.

Definition 16. ReliantDegreex
i represents agent IDx’s attitude to the negotiation,

and also indicates the dynamic behavior of the agent, such as selfishness, selfless-

ness, or other. ReliantDegreex
i can be calculated as ReliantDegreex

i = arctan(Cri
x

Crx
i
),

ReliantDegree ∈ [0◦,90◦], where Cri
x indicates how much agent IDx trusts partner

agent IDi, which can be defined as the trading success ratio from partner agent IDx

to IDi, or can be assigned by the system based on the performance record of partner
agent IDi, and Cri

x indicates how much partner agent IDi trusts agent IDx, which
can be defined in the similar way as Cri

x.



386 M. Zhang et al.

Then an agent IDx’s evaluation of its potential partner IDi is represented by
CollaborateDegreex

i , which is defined as follows:

CollaborateDegreex
i =Ψ(px

i ) (22)

where CollaborateDegreex
i ∈ [0,1]. This indicates the tendency that agent IDi will

be selected as a partner in subsequent negotiations by agent IDx. The bigger the
CollaborateDegreex

i , the higher the likelihood that agent IDi will be selected. The
function Ψ specifies how to evaluate a potential partner. The interested reader can
refer to [31] for a (non-linear) fuzzy approach toΨ . In this chapter, we only consider
a linear approach toΨ .

In order to cover all potential cases in partner selection, we need to consider not
only both GainRatio and ContributionRatio, but also the preference of the agent
on these two criteria. It is proposed that the agent’s preference on GainRatio and
ContributionRatio can be represented by a normalized weight. Let wg stand for the
weight on GainRatio, wc stand for the weight on ContributionRatio, and wc +wg =
1. Then the CollaborationDegree between agent IDx and its potential partner IDi is
defined as follows:

CollaborateDegreex
i = GainRatiox

i × wg + ContributionRatiox
i × wc (23)

The collaborationDegree (∈ [0,1]) indicates the degree for which the potential
partner should be selected by the agent. The bigger the collaborationDegree, the
more chance that the potential partner will be selected by the agent. In general,
there are three extreme cases on different combinations of wc and wg, namely:

• When wg = 0 and wc = 1, CollaborateDegree is calculated based only on Con-
tributionRatio, i. e. agent IDx’s attitude to negotiation is fully selfless.

• When wg = 1 and wc = 0, CollaborateDegree is calculated based only on
GainRatio, i. e. agent IDx’s attitude to negotiation is fully selfish.

• When wg = wc = 0.5, CollaborateDegree is calculated based equally on Gain-
Ratio and ContributionRatio, i. e. agent IDx’s attitude to negotiation is equitable.

• Besides the above three cases, the restriction of wg +wc = 1 can also reflect agent
IDx’s attitude to GainRatio and ContributionRatio in other cases.

The weights wg and wc can be calculated by employing the value of ReliantDe-
gree, which are defined by Equation 24 and Equation 25, respectively.

wg = cos2(ReliantDegree) (24)

wc = sin2(ReliantDegree) (25)

Finally, by combining Equations 23 through 25, the potential partners are evaluated
by considering the factors of GainRatio, ContributionRatio and ReliantDegree. The
collaborationDegree between the agent IDx and its potential partner IDi is:
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CollaborateDegreex
i = GainRatiox

i × cos2(ReliantDegreex
i )

+ContributionRatiox
i × sin2(ReliantDegreex

i ) (26)

where CollaborateDegreex
i ∈ [0,1]. Then the collaboration degrees set (Collaborat-

eDegreex) between the agent IDx and all its potential partners are generated accord-
ing to Equation 27.

CollaborateDegreex = {CollaborateDegreex
i}, i ∈ [1,n] (27)

Finally, any sorting algorithm can be employed to select favorable partners or ex-
clude unsuitable partners from the collaboration degree set CollaborateDegreex for
the agent IDx.

In this chapter, three examples are demonstrated. In each example, agent g is
going to select the most suitable partner from three potential partners (agents ga, gb

and gc). These examples will illustrate how the proposed approach selects the most
suitable partner for the agent.

Table 4 Example 1

Agent Gain Contribution Reliant Collaborate
Ratio Ratio Degree Degree

ga 80% 20% 0◦ 0.8
gb 50% 50% 0◦ 0.5
gc 20% 80% 0◦ 0.2

In Example 1 (Table 4), as the agent IDx performs as a fully selfish agent
(wg = cos2(0◦) = 1 and wc = sin2(0◦) = 0), the potential partner who can offer
the biggest GainRatio will be selected as the most suitable partner. From Table 4,
agent ga should be selected as the most suitable partner because it can contribute
the highest GainRatio to agent IDx among the three potential partners. By using our
proposed Equation 26, agent ga is also chosen as the most suitable partner because
the CollaborateDegree for agent ga is the largest among the three potential partners.

In Example 2 (Table 5), as the agent IDx performs as a fully selfless agent
(wg = cos2(90◦) = 0 and wc = sin2(90◦) = 1), agent gc should be selected as the
most suitable partner because it has the largest ContributionRatio. According to
Equation 26, agent gc is also selected as the most suitable partner because the Col-
laborateDegree for agent gc is the largest among the three potential partners.

Table 5 Example 2

Agent Gain Contribution Reliant Collaborate
Ratio Ratio Degree Degree

ga 80% 20% 90◦ 0.2
gb 50% 50% 90◦ 0.5
gc 20% 80% 90◦ 0.8
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Table 6 Example 3

Agent Gain Contribution Reliant Collaborate
Ratio Ratio Degree Degree

ga 80% 20% 0◦ 0.8
gb 80% 20% 45◦ 0.5
gc 80% 20% 90◦ 0.2

In Example 3 (Table 6), the agent IDx has different attitudes to its potential part-
ners. For potential partner ga, agent IDx performs as a selfish agent so that only
the GainRatio (80%) will be used to select the most suitable partner. For potential
partner gb, agent IDx performs as an equitable agent so that both GainRatio (80%)
and ContributionRatio (20%) will be used to evaluate whether gb could be chosen
as a suitable partner. Therefore, the final benefit by considering both GainRatio and
ContributionRatio for gb should be between 20% and 80%. For potential partner gc,
agent IDx performs as a selfless agent so that only the benefit of ContributionRa-
tio (20%) will be used for the selection of gc as a partner. By comparing the three
cases, agent ga should be selected as the most suitable partner because agent IDx

would gain the largest benefit(80%) when collaborating with agent ga. According
to Equation 26, agent ga is also selected as the most suitable partner because the
CollaborateDegree for agent ga is the largest among the three potential partners.

Therefore, from the examples, it can be seen that by considering the factors of
GainRatio, ContributionRatio and ReliantDegree between the agent and its poten-
tial partners, a partner selection mechanism can be generated dynamically to allow
agents to adapt to their individual behaviors in negotiation. The selection result is
also accurate and reasonable.

4.3 Behavior Prediction in Agent Negotiation

Negotiation is a means for agents to communicate and compromise to reach mu-
tually beneficial agreements [10] [19]. However, in most situations, agents do not
possess complete information about their partners’ negotiation strategies, and may
have difficulty in making a decision on future negotiation, such as how to select
suitable partners [3] [25], or how to generate a suitable offer in the next negotiation
cycle [29]. Therefore estimation approaches which can predict uncertain situations
and possible changes in the future are required to help agents to generate good and
efficient negotiation strategies. Research on partners’ behavior estimation has been
a very active area in recent years. Several estimation strategies have been proposed
[6] [7] [41]. However, as these estimation strategies are used in real applications,
some limitations begin to emerge, such as inaccurately estimated results or substan-
tial time cost.

Machine Learning is a popular mechanism adopted by researchers in agent be-
havior estimation. In general, this kind of approach comprises two steps in order to
estimate an agents’ behavior. In the first step, the proposed estimation function is
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required to be well trained using the available training data. Therefore, in a way, the
performance of the estimation function is virtually determined by the training result.
In this step, as much data as possible is employed by designers to train a system.
The training data could be synthetic and/or collected from the real world. Usually,
synthetic data is helpful in training a function to enhance its problem solving ability
for some particular issues, while real world data can help the function to improve its
ability in complex problem solving. After the system has been trained, the second
step is to employ the estimation function to predict partner behavior in the future.
However, no matter which and how many data are employed by designers to train
the proposed function, the training data will never be sufficiently comprehensive to
cover all situations in reality. Therefore, even though an estimation function is well
trained, it is also quite possible that some estimation results do not make sense at
all for some kind of agents whose behavior records are not included in the train-
ing data. Currently, as negotiation environments become more open and dynamic,
agents with different kinds of purpose, preference and negotiation strategy can enter
and leave the negotiation dynamically. This Machine Learning-based agent behavior
estimation function may not work well in some more flexible application domains,
for reasons of (i) lack of sufficient data to train the system, and (ii) requiring too
many resources during each training process.

In order to address the aforementioned issues, in this subsection we introduce
a quadratic regression approach for analysis and estimation of partner behaviors
during negotiation. The proposed quadratic regression function is:

u = a× t2 + b× t + c (28)

where u is the expected utility gained from a partner, t (0≤ t ≤ τ) is the negotiation
cycle and a, b and c are parameters which are independent of t. It is noticed that the
three types of agents’ behaviors in Figure 7 can be represented by this function as
follows:

• a > 0 (Boulware): the rate of change in the slope is increasing, corresponding to
smaller concession in the early cycles but large concession in later cycles.

• a = 0 and b 	= 0 (Linear): the rate of change in the slope is zero, corresponding
to making constant concession throughout the negotiation.

• a < 0 (Conceder): the rate of change in the slope is decreasing, corresponding to
large concession in early cycles, but smaller concession in later cycles.

We firstly transfer the proposed quadratic function 28 to a linear function, as
follows. Let {

x = t2

y = t
(29)

Then Equation 29 can be rewritten as:

u = a× x + b× y + c (30)
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where both a and b are independent of variables x and y. Let pairs (t0, û0), . . .,
(tn, ûn) be instances from each negotiation cycle. The distance (ε) between the real
utility value (ûi) and the expected value (ui) should obey the Gaussian distribution
ε ∼ N(0,σ2), where ε = ûi−a× xi−b× yi− c. Now since each ûi = a× xi + b×
yi + c+ εi, εi ∼ N(0,σ2), ûi is distinctive, and the joint probability density function
for ûi is:

L =
n

∏
i=1

1

σ
√

2π
exp[− 1

2σ2 (ûi−axi−byi− c)2] (31)

= (
1

σ
√

2π
)n exp[− 1

2σ2

n

∑
i=1

(ûi−axi−byi− c)2]

where L indicates the probability that a particular ûi may occur. Because each ûi

comes from the historical record, we should use their probabilities as L’s maximum
value. Obviously, in order to make L achieve its maximum,∑n

i=1(ûi−axi−byi−c)2

should achieve its minimum value. Let

Q(a,b,c) =
n

∑
i=1

(ûi−axi−byi− c)2 (32)

We calculate the first-order partial derivative for Q(a,b,c) on a, b and c respectively,
and let their results equal zero, as follows:

⎧⎪⎨
⎪⎩

∂Q
∂a =−2∑n

i=1(ûi−axi−byi− c)xi = 0
∂Q
∂b =−2∑n

i=1(ûi−axi−byi− c)yi = 0
∂Q
∂c =−2∑n

i=1(ûi−axi−byi− c) = 0

(33)

Then the Equations 33 can be expanded to:⎧⎪⎨
⎪⎩

(∑n
i=1 x2

i )a +(∑n
i=1 xiyi)b +(∑n

i=1 xi)c = ∑n
i=1 xiûi

(∑n
i=1 xiyi)a +(∑n

i=1 y2
i )b +(∑n

i=1 yi)c = ∑n
i=1 yiûi

(∑n
i=1 xi)a +(∑n

i=1 yi)b + nc = ∑n
i=1 ûi

(34)

Let PU , PA, PB and PC be the coefficient matrices as follows:

PU =

∣∣∣∣∣∣
∑n

i=1 x2
i ∑n

i=1 xiyi ∑n
i=1 xi

∑n
i=1 xiyi ∑n

i=1 y2
i ∑n

i=1 yi

∑n
i=1 xi ∑n

i=1 yi n

∣∣∣∣∣∣ (35)

PA =

∣∣∣∣∣∣
∑n

i=1 xiûi ∑n
i=1 xiyi ∑n

i=1 xi

∑n
i=1 yiûi ∑n

i=1 y2
i ∑n

i=1 yi

∑n
i=1 ûi ∑n

i=1 yi n

∣∣∣∣∣∣ (36)
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PB =

∣∣∣∣∣∣
∑n

i=1 x2
i ∑n

i=1 xiûi ∑n
i=1 xi

∑n
i=1 xiyi ∑n

i=1 yiûi ∑n
i=1 yi

∑n
i=1 xi ∑n

i=1 ûi n

∣∣∣∣∣∣ (37)

PC =

∣∣∣∣∣∣
∑n

i=1 x2
i ∑n

i=1 xiyi ∑n
i=1 xiûi

∑n
i=1 xiyi ∑n

i=1 y2
i ∑n

i=1 yiûi

∑n
i=1 xi ∑n

i=1 yi ∑n
i=1 ûi

∣∣∣∣∣∣ (38)

Because PU 	= 0, the parameters a, b and c have a unique solution, which is⎧⎪⎨
⎪⎩

a = PA
PU

b = PB
PU

c = PC
PU

(39)

Previously, we proposed a quadratic regression function to predict partners’ behav-
ior, and also specified how to determine parameters a, b and c. However, it should be
mentioned that the proposed quadratic regression function can only provide an esti-
mation on possible partner behaviors, which might not exactly accord with the part-
ners’ real behaviors. In practice, agents’ estimated behaviors should be close to their
real actions. The closer the estimated behaviors to the real actions, the higher the
probability that the estimated behaviors will occur. Thus we can deem that the differ-
ences (ε) between the estimation behaviors and the real behaviors obey the Gaussian
distribution N(ε,σ2). Thus, if the deviation σ2 can be calculated, we can make a
precise decision on partner behaviors. It is known that there is more than 68% prob-
ability that partners’ expected behaviors are located in the interval [u−σ ,u +σ ],
more than 95% that partners’ expected behaviors lie in [u− 2σ ,u + 2σ ], and more
than 99% in the interval [u−3σ ,u + 3σ ].

In order to calculate the deviation σ , we firstly calculate the distance between the
estimation results (ui) and the real results on partners’ behaviors (ûi) as follows:

di = ûi−ui (40)

It is known that all di (i ∈ [1,n]) obey the Gaussian distribution N(0,σ2). Then σ
can be calculated as follows:

σ =

√
∑n

i=1(di−d)2

n
(41)

where,

d =
1
n

n

∑
i=1

di (42)

Now by employing the Chebyshev inequality, we can calculate (1) the interval of
partners’ behaviors according to any accuracy requirements; and (2) the probability
that any particular behavior may occur in potential partners in the future.
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The Chebyshev’s inequality is:

P(|ûi−ui| ≥ ε)≤ σ2

ε2 (43)

where ûi is an instance, ui is the mathematical expectation, σ is the deviation and
ε is the accuracy requirement. This function indicates that based on a particular
accuracy requirement ε , the possibility that the real behavior ûi is included in the
interval [ui−σ ,ui +σ ] is greater than 1− σ2

ε2 .
In this chapter, we demonstrate three scenarios to indicate the agent behaviors

prediction approach. Also, we compare the proposed quadratic regression approach
with the Tit-For-Tat [9] and random approaches. The experimental results illustrate
the outstanding performance of our proposed approach. In order to simplify the
implemented process, all agents in our experiment employ the NDF [11] negotiation
strategy. The partners’ behaviors cover all possible situations in reality, which are
conceder, linear and boulware. In experiments, we use the average error (EA) to
evaluate the experimental results. Let ui be the predicted result in cycle i and ûi be
the real instance in cycle i, then AEi is defined as follows:

AEi =
∑i

k=1 |ûi−ui|
i

(44)

The AEi indicates the difference between the estimated results and the real value.
The smaller the value of AEi, the better the prediction result.

In the first scenario, a buyer wants to purchase a mouse pad from a seller. The
acceptable price for the buyer is in [$0,$1.4]. The deadline for the buyer to finish
this purchasing process is 11 cycles. In this experiment, the buyer adopts conceder
behavior in the negotiation, and the seller employs the proposed approach to esti-
mate the buyer’s possible price in the next negotiation cycle. The estimated results
are displayed in Figure 9(a) and the regression function is:

u =−0.002 ∗ t2 + 0.055 ∗ t + 0.948

It can be seen that in the 8th negotiation cycle, the proposed approach estimates
a price of $1.26 from the buyer in the next cycle. Then according to the historical
record in the 8th cycle, the real price given by the buyer in this cycle is $1.26, which
is exactly same as the estimation price. Furthermore, it can be seen that in cycles 4,
6, 9 and 10, the estimated prices are also the same as the real value. The estimation
prices for the 2nd, 3rd and 7th cycles are $1.05, $1.10 and $1.25, respectively, and
the real prices given by the buyer in these cycles are $1.07, $1.13, and 1.26, which
differ only slightly between the estimated prices and real prices. According to Figure
9(a), all real prices are located in the interval of [μ − 2σ ,μ + 2σ ], where μ is the
estimated price and σ is the changing span. The AE10 = 0.015, which is only 1% of
buyer’s reserve price. Therefore, the prediction results by employing the proposed
approach are very reliable.
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(a) Prediction results for scenario 1

(b) Prediction results comparison for scenario 1

Fig. 9 Scenario 1

In Figure 9(b), we compare results between the proposed approach and two
other estimation approaches (Tit-For-Tat and random). It can be seen that even
though the Tit-For-Tat approach can follow the trend of changes in the buyer’s
price, AE10 = 0.078 which is five times our proposed approach. For the random
approach, it cannot even catch the main trend. The AE10 for the random approach
is 0.11, which is ten times our proposed approach. The experimental results con-
vince us that the proposed approach outperforms both the Tit-For-Tat and random
approaches when a buyer adopts conceder negotiation behavior.

In the second scenario, a buyer wants to buy a keyboard from a seller. The desired
price for the buyer is in the interval of [$0,$14]. We let the buyer employ the linear
negotiation strategy, and still set the deadline to 11 cycles. The seller will employ
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(a) Prediction results for scenario 2

(b) Prediction results comparison for scenario 2

Fig. 10 Scenario 2

our proposed prediction function to estimate the buyer’s offer. The estimated results
are illustrated in Figure 10(a) and the estimated quadratic regression function is:

u =−0.015 ∗ t2 + 1.178 ∗ t−0.439

It can be seen that in the 3rd, 5th and 8th cycles, the estimated prices are exactly
the same as the real offers made by the buyer. The biggest difference between the
estimated price and the real value is just 0.4, which happens in the 9th cycle. The
average error in this experiment is only AE10 = 0.24, which is no more the 2% of
the buyer’s reserve price. The estimated quadratic regression function fits the real
prices very well.
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(a) Prediction results for scenario 3

(b) Prediction results comparison for scenario 3

Fig. 11 Scenario 3

Figure 10(b) compares results for the Tit-For-Tat approach, random approach and
our proposed approach. It can be seen that the proposed approach is much closer to
the real price than the other two approaches. The average error for the Tit-For-Tat
approach is AE10 = 2.52, which is 18% of the buyer’s reserve price. The average
error for the random approach is very high – AE10 = 4.82 (34% of the buyer’s re-
serve price). A second experimental result is that when partners perform with linear
behaviors, the proposed approach also outperforms the other two approaches.

In the third scenario, a buyer wants to purchase a monitor from a seller. The
suitable price for the buyer is in [$0,$250]. In this experiment, the buyer employs a
boulware strategy in the negotiation. The deadline is still 11 cycles. The estimated
quadratic function is:
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u = 3.038 ∗ t2−12.568 ∗ t+ 15.632

The estimated results are shown in Figure 11(a), it can be seen that the proposed
quadratic regression approach predicted buyer’s prices successfully and accurately.
Except for the 4th and 8th cycles, other estimated prices differ very little from the
buyer’s real offers. The average error in this experiment is AE10 = 4.07, which is
only 1.6% of the buyer’s reserve price. Therefore, we can say with confidence that
from these estimation results, the seller can make accurate judgement about the
buyer’s negotiation strategy, and make reasonable responses in order to maximize
its own benefit.

Finally, Figure 11(b) shows comparison results with two other estimation func-
tions for the same scenario. For the Tit-For-Tat approach, the average error is
AE10 = 57.74, which is 23% of the buyer’s reserve price. For the random approach,
the average error is AE10 = 83.12, which is 33% of the buyer’s reserve price. There-
fore, it can be seen that when the agent performs a boulware behavior, the proposed
approach significantly outperforms the other two approaches.

From these experimental results, we can conclude that the estimated quadratic
function regression approach can successfully estimate partners’ potential behav-
iors. Moreover, the estimation results are accurate and sufficiently reasonable to be
adopted by agents to modify their strategies in negotiation. The comparison results
among the three types of agent behavior estimation also demonstrate the outstanding
performance of our proposed approach.

In this section, we introduced agent negotiation for solving complex problems
between collaborative agents. Firstly, we pointed out that agent competition can
also be involved in collaborative problems. Then we introduced some basic knowl-
edge about agent negotiation for conflict resolution. Furthermore, we introduced a
partner selection approach and agents’ behavior prediction approach for complex
negotiation environments and illustrated some experimental results to show the im-
provements. In conclusion, we can say that agent negotiation is a very significant
mechanism for agents to solve conflicts which may occur during complex problem
solving procedures.

5 Conclusion

Complex problem solving requires diverse expertise and multiple techniques. MAS
is a particularly applicable technology for complex problem solving applications.
In a MAS, agents that possess different expertise and resources collaborate together
to handle problems which are too complex for individual agents. Generally, agent
collaborations in a MAS can be classified into two groups, namely agent coop-
eration and agent competition. These two kinds of collaborations are unavoidable
for most MAS applications, but both present challenges. In addition, two main ap-
proaches for complex problem solving via agent cooperation and agent competition
have been introduced – these being a dynamic team formation mechanism for co-
operative agents, and a partner selection strategy for competitive agents. These two
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approaches can be applied to coordinate utility conflicts among agents, and make a
MAS more suitable for open dynamic working environments.

Research into dynamic team formation can be extended in the following two
directions. Currently, team formation research is based on a simple agent organi-
sation. However, in many current MAS applications, more complex organisational
structures, such as congregation [2], are adopted. Building a mechanism to support
complex organisational formation is one research direction for the future. Further-
more, different organisational structures are suitable for different circumstances. In
a complex dynamic working environment, agents may need to choose different or-
ganisational structures due to a changing environment. To develop mechanisms that
enable agents to not only select cooperation partners but also dynamically choose
organisational structures is another avenue for future research.

Further work on agent negotiation can proceed in two directions, as (i) Currently,
most agent negotiation strategies and protocols can only handle the negotiation with
single issue. However, with expansion of application domains, negotiating multiple
issues will become a significant trend. Therefore, research on multi-issue negoti-
ation will become a future direction. (ii) Most negotiation environments currently
mainly focus on the static situations, but fail to take into account where a negoti-
ation environment becomes open and dynamic. In an open and dynamic environ-
ment, agents can perform more flexibly to enhance their benefits. Also an open and
dynamic negotiation environment is much more efficient in handling real world ap-
plications. Therefore, changing the negotiation environment from static to open and
dynamic is another significant research direction on the topic of agent negotiation
for the future.

Another potential direction is to extend our current research to complex domains
in which agents can show semi-competitive behaviours or temporary collaborative
behaviours in different situations.
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Predicting Trait Impressions of Faces Using
Classifier Ensembles

Sheryl Brahnam and Loris Nanni

Abstract. In the experiments presented in this chapter, single classifier systems and
ensembles are trained to detect the social meanings people perceive in facial mor-
phology. Exploring machine models of people’s impressions of faces has value in
the fields of social psychology and human-computer interaction. Our first concern in
designing this study was developing a sound ground truth for this problem domain.
We accomplished this by collecting a large number of faces that exhibited strong
human consensus in a comprehensive set of trait categories. Several single classifier
systems and ensemble systems composed of Levenberg-Marquardt neural networks
using different methods of collaboration were then trained to match the human per-
ception of the faces in the six trait dimensions of intelligence, maturity, warmth,
sociality, dominance, and trustworthiness. Our results show that machine learning
methods employing ensembles are as capable as most individual human beings are
in their ability to predict the social impressions certain faces make on the average
human observer. Single classifier systems did not match human performance as well
as the ensembles did. Included in this chapter is a tutorial, suitable for the novice,
on the single classifier systems and collaborative methods used in the experiments
reported in the study.

1 Introduction

Whenever we meet new people, we immediately form impressions of them. These
impressions come from many sources: the social roles these people play, the
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quality of their clothes and grooming, their height and weight, and the way they
move, stand, and speak. One of the most important sources informing our initial as-
sessments of people are the impressions we gather from their faces. As Cicero once
remarked “Everything is in the face.” The shape and texture of a face conveys in-
formation about a person’s identity, gender, and age. Short term surface behaviors,
such as eye blinking, direction of gaze, and facial gestures provide clues regard-
ing a person’s emotional and mental state, and the texture and color of the face are
indicators of various health conditions.

Most modern people, however, would deny agreeing with Cicero’s further claim
that the face is inscribed with signs that reveal a person’s inner essence and destiny.
We are taught not to judge a book by its cover. Nonetheless, there is considerable
evidence in recent studies in social psychology that people today are predisposed
to form impressions of a person’s social status, abilities, dispositions, and character
traits based on nothing more than that person’s facial appearance. When shown a
face, not only are most people prepared to judge a person’s gender, age, and emo-
tional state, but also, as the social psychologist Bruce [12] has noted, that person’s
“personality traits, probable employment and possible fate” (p. 31). Furthermore,
the evidence indicates that people are remarkably consistent and similar, across cul-
tures and age groups, in their evaluations and reactions to faces [87].

Several theories have been advanced to explain why certain facial characteris-
tics consistently elicit specific personality impressions. One major theory is that
facial appearance is important because it guides people’s behavior towards others
that ensures the greatest chance of survival [56, 89]. Recognizing an angry face, for
example, triggers lifesaving fight/flight responses. It is theorized that faces that are
similar in structure to angry faces elicit similar responses. As Zebrowitz [87] ex-
plains, “We could not function well in this world if we were unable to differentiate
men from women, friends from strangers, the angered from the happy, the healthy
from the unfit, or children from adults. For this reason, the tendency to respond to
the facial qualities that reveal these attributes may be so strong that it overgeneral-
izes to people whose faces merely resemble those who actually have the attribute”
(pp. 14–15).

The most significant overgeneralization effects involve facial attractiveness, ma-
turity, gender, and emotion. The morphological characteristics of these overgener-
alization effects are associated with specific clusters of personality traits. Attractive
people, for example, are associated with positive character traits. They are con-
sidered more socially competent, potent, healthy, intellectually capable, and moral
than those less attractive. Attractive people are also perceived as being psychologi-
cally more adapted [47]. Facial abnormalities and unattractiveness, in contrast, elicit
negative responses and are associated with negative traits [47]. Unattractive people
are considered less socially competent and willing to cooperate [62]. They are also
considered more dishonest, unintelligent, and psychologically unstable and antiso-
cial. Unattractive people are often ignored and, if facially disfigured, avoided [16].
The unattractive are also more likely to be objects of aggression [3] and to suffer
abuse [47].
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Adults whose faces resemble those of babies (large eyes, high eyebrows, red lips
that are proportionally larger, small nose and chin) are often treated positively as
well [87], but they are also attributed childlike characteristics. Babyfaced people are
perceived to be more submissive, naı̈ve, honest, kindhearted, weaker, and warmer
than others. They are also perceived as being more helpful, caring, and in need of
protection [8]. Mature-faced individuals, in contrast, are more likely to command
respect and to be perceived as experts [87].

The overgeneralization effect of gender is strongly correlated with facial maturity
[87]. Female faces, more than male faces, tend to retain into adulthood the morpho-
logical characteristics of youth [28] and are more likely to be ascribed characteristics
associated with babyfacedness: female faces are thought to be more submissive, car-
ing, and in need of protection. Similarly, male faces, tending to be morphologically
more mature, are perceived as having the psychological characteristics typically as-
sociated with mature-faced individuals: male faces are thought to be more dominant,
intelligent, and capable.

While many social psychologists believe that facial impressions of character are
related in part to the morphological configurations that characterize emotional dis-
plays, the overgeneralization effect of emotion has not received as much attention
as some of the other overgeneralization effects. Nonetheless, there is evidence sup-
porting the idea that morphological configurations suggestive of emotional expres-
sions play a role in the formation of trait impressions. Take smiling for instance.
People react positively to smiling faces and find them disarming and thus not very
dominant [39]. A person whose lips naturally curl upward would thus be perceived
more positively than a person whose lips tend to turn downward, as illustrated in
Figure 1.

In the study reported in this chapter, we experiment with face recognition systems
made of single classifiers and ensembles to see whether these techniques are capable

Fig. 1 Illustration of the overgeneralization effect of emotion. A face with lips that natu-
rally turn upwards (left) is perceived similarly to smiling faces, that is, as low in dominance,
whereas a face with lips that turn downwards (right) is perceived as more threatening. In the
two images, only the lips differ. These faces were generated using FACES by InterQuest and
Micro-Intel
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of predicting the social meanings different facial morphologies produce. Face recog-
nition involves the classification of facial morphology mostly in terms of identity [1].
Application areas where face recognition has been successfully employed include
biometrics, information security, law enforcement, surveillance, and access control.
Since gender, age, and race are closely tied to identification, these facial character-
istics have also been the focus of many investigations [13, 49, 61, 64, 65, 85].

Our application differs significantly from most face classification tasks in that
the ground truth is not based on factual information about the subjects but rather on
the impressions faces make on the average observer. Few classification experiments
have focused on the average observer’s impressions of faces. One of the first was
[9]. In that study, holistic face classifiers, based on principle component analysis
(PCA), were trained to match the human classification of faces along the bipolar
rating extremes of the following trait dimensions: adjustment, dominance, warmth,
sociality, and trustworthiness. Although results were marginally better than chance
in matching the perception of dominance (64%), classification rates were signif-
icantly better than chance for adjustment (71%), sociality (70%), trustworthiness
(81%) and warmth (89%). The dataset used in that study, however, may have posi-
tively influenced classification rates. The faces were randomly generated using the
full database of photographs of facial features (eyes, mouths, noses, and so forth)
found in the popular composite software program FACES [30], produced by In-
terQuest and Micro-Intel. Although it was possible to generate a fairly large number
of unique faces by randomly manipulating individual facial features in the FACES
database, subject ratings of the faces produced small classes (less than 15 faces each)
that were strongly associated with the bipolar extremes for each trait dimension. We
believe that the low number of faces in each trait class inflated recognition rates.

Related to our work are face recognition experiments that have recently been per-
formed to detect facial attractiveness. In [38], for instance, faces are compared to an
archetypical mask with good recognition rates. Two sets of photographs of 92 Cau-
casian females, approximately 18 years old, were rated by subjects using a 7-point
scale. In their experiments, they classified faces into two classes, attractive (high-
est 25% rated images) and unattractive (lowest 25% rated images). Performance,
based on percentage of correctly classified images, averaged 76.0% using K-nearest
neighbor and 70.5% using linear Support Vector Machines. The authors believed
that the low number of faces in their two classes of attractive and unattractive faces
(numbering approximately 24 images each) accounted for the poor performance.

As illustrated in both these studies, a major problem with modeling human attri-
butions of faces, whether along a number of trait dimensions or in terms of attrac-
tiveness, is developing a sufficiently large database of representative faces. One of
the contributions of the study reported in this chapter and discussed in Section 3 is
the production of six databases of faces that were found to be strongly associated
with the bipolar extremes of the following six trait dimensions: intelligence, matu-
rity, dominance, sociality, trustworthiness, and warmth. To create these databases,
480 stimulus faces were artificially constructed by four artists using FACES. The
artists were instructed to produce faces they felt would be perceived as either high
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or low in the six trait dimensions. Using this method, we were able to produce trait
classes that averaged 111 faces.

A variety of approaches are available to deal with such complex pattern recogni-
tion problems as face recognition. Typically the goal is to find the best single classi-
fier for the task. In most application areas, holistic algorithms are preferred because
they are easy to implement and have been shown to outperform other methods [48].
In addition, they allow the classifier to determine the best set of features available in
the raw pixel data of the images. Holistic algorithms, however, suffer from what is
commonly referred to as the curse of dimensionality [6]. The pixel values of image
files contain a very small number relevant to the classification problem. Processing
large numbers of insignificant values greatly increases computational complexity
and degrades performance. For this reason, most holistic classification systems ap-
ply various methods to reduce dimensionality. In Section 2, we describe several
holistic face recognition algorithms as well as the general principles behind feature
reduction and extraction.

A well established technique for improving single classifier performance is based
on building ensembles from classifiers that perform less optimally as a whole but
which nonetheless contribute some essential information. Ensembles have been
shown to achieve higher classification rates than single classifier systems [37, 40].
As described in some detail in Section 2, the diversity of classifier evaluations, aug-
mented by such collaborative methods as boosting and bagging [10] and the avail-
ability of combination rules [23] are major reasons for improved performance. The
superiority of collaborative methods is borne out by the results of our study reported
in Section 4. Ensembles composed of 100 Levenberg-Marquardt neural networks
(LMNNs) using different methods of collaboration proved to be as capable as most
individual human beings are in their ability to predict the social impressions cer-
tain faces make on the average human observer. Single classifier systems, including
systems using a single LMNN, did not match human performance as well as the
ensembles did.

We believe that exploring machine models of people’s impressions of faces has
value in several fields, most notably in social psychology and human-computer in-
teraction. In psychology, building models of human perception could expand our
understanding of the specific characteristics of faces that impact human social im-
pressions. Depending on the types of classifier systems used (ensembles of neural
networks for instance), it may be possible to build representative models of the
brain’s processing of faces for impression formation.

A major area of research in human-computer interaction (HCI) involves build-
ing socially intelligent interfaces. A human-like interface capable of matching the
average observer’s impressions of a user’s face could use this information to deter-
mine an initial interaction strategy that is socially adept. The interface could assume
that users have been treated in ways that reflect the trait impressions of their faces.
People that look dominant, for instance, probably feel comfortable with an initial re-
action that shows some deference, whereas commenting on a person’s intelligence
might best be avoided altogether if the user appears unintelligent. A system that
predicts how others view people could also help the human-like interface talk more
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intelligently with users about other people, such as celebrities. Other application ar-
eas of a trait prediction system could include the development of smart mirrors that
inform people how other’s might view them. This could assist people in composing
their faces for various social settings, such as job interviews. It may also be possi-
ble to extend social perception systems of faces to include other aspects of human
appearance and behavior.

The remainder of this chapter is organized as follows. In Section 2, we pro-
vide a tutorial suitable for the novice on such basic classifiers in computer vision
as PCA and nearest neighbor (NN), support vector machines (SVMs) [84], en-
hanced subspace methods (SUB) [66], and Levenberg-Marquardt neural networks
(LMNN) [24]. We then define methods for creating classifier ensembles using mul-
tiple LMNNs for enhanced performance. In particular, we describe such collabora-
tive methods as bagging (BA), random subspace (RS), and class switching (CW).
In Section 3, we present the study design and our method of generating the stimulus
faces and evaluating subject ratings of the faces. In Section 4, we present our clas-
sifier systems and compare the performance of some simple classifiers (PCA+NN,
SUB, SVM, and LMNN) to classifier ensembles (100 LMNN selected using RS,
BA and CW). Ensembles of LMNN perform only slightly better than the best single
classifier (SVM), but the ensembles are more stable in performance across all six
trait dimensions and, as already noted, more closely approximate the performance
of individual human raters. We conclude this chapter in Section 5 by noting some
of the contributions and weaknesses of the study reported in this chapter. We also
mention our current work developing a larger database of photographs of people
that strongly produce specific trait impressions.

Although Section 2 provides a fairly comprehensive tutorial of the single classi-
fier systems and collaborative methods used in building our ensembles, we recom-
mend reading Kuncheva’s book [44] for additional details on developing ensembles
using a larger variety of collaborative methods. For general books on machine learn-
ing, pattern recognition and classification, Alpaydin [4], Duda, Hart and Stork [24],
and Russell and Norvig [73] provide particularly good complementary overviews.

2 Face Classification: Single Classifier Algorithms and
Collaborative Methods

Face classification can be defined as the computer vision problem of assigning pre-
defined labels to samples of one or more faces. One of the first considerations when
developing a face classification system is deciding on a method for representing
faces. A method used in many early studies involved measuring the relative dis-
tances between important facial key points: eye corners, mouth corners, nose tip,
and chin edge. Although this approach has the advantage of drastically reducing
the number of features to be considered, a major drawback has been the difficulty
in determining the best set of key points to measure [17, 82]. An alternative ap-
proach is to process faces holistically [14]. Holistic techniques discover the features
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Fig. 2 General schematic of
holistic face classification
systems

relevant to a classification problem and have been shown to outperform classifica-
tion systems that rely on facial key points [48].

In holistic systems, face images are represented as single points in a high dimen-
sional vector space. As illustrated in Figure 2, input into the system is originally
collected by a sensor. In most face recognition tasks, the sensor inputs are m x n
pixel values. In the preprocessing stage these values are filtered of noise and un-
dergo various normalization processes, such as illumination correction, subtraction
of the mean, and division of each value by the variance. The resulting values are
then concatenated into N feature vectors, x, forming a data set, X = [xT

1 ,xT
2 , ...,xT

N ],
where each feature vector x belongs to RD.

Because of the large size of the feature vectors, processing each vector results in
high computational costs. To contend with the curse of dimensionality [6], the orig-
inal feature space is generally transformed so that the most relevant variables can be
extracted. Feature transformation can occur within the spatial domain using statis-
tical methods, such as principle component analysis (PCA) and linear discriminant
analysis (LDA), or within the frequency domain using such methods as the discrete
Fourier transform, Gabor wavelet transform, and discrete cosine transform.

The basic principle of a transform is to take the preprocessed feature vector and
arrive at another vector of rotated values. Although the two sets of values carry
the same amount of energy and information, the transforms tend to decorrelate the
features and redistribute most of the energy contained in the raw input into a smaller
number of components, thus allowing for feature extraction. In feature extraction,
the feature set is greatly reduced by selecting only those features that possess the
most significant information.
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In the classification stage, the extracted feature vectors are divided into training
and testing sets. Classifiers, such as the nearest neighbor (NN) [21], artificial neural
networks (ANNs), support vector machines (SVMs) [84] and Oja’s subspace (SUB)
[66] are then given the task of learning to map the training vectors to a set of labels,
or classes.

In practice, a simple 1-NN classifier is used to benchmark the performance of
other classifiers, since it performs well in most applications and involves few user-
controlled parameters. NN is usually employed in all techniques that adopt dimen-
sionality reduction (e.g., PCA). Classification in this case involves projecting an
unknown face vector onto the transformed face space and measuring its distance
from representative classes within the same space. PCA has successfully been used
to classify faces according to identity [75, 78, 79], gender [35, 65, 80], age [82],
race [52, 64], and facial expression [20, 55, 69].

ANNs are modeled after biological neurons. They are massively parallel com-
puting systems composed of simple processors that are highly interconnected. At its
simplest, a neuron, or node, in the system is given an input, i, that is transformed by
a weight, w. Node output is then dependent on a transfer function. The central idea
of an ANN is to adjust architecture parameters in the training process in such a way
that the network learns to correctly map the training vectors to their assigned classes.
Learning algorithms (based mostly on a form of gradient descent) search through
the problem space to find a function that solves this problem with the lowest cost.

ANNs have proven capable of handling a variety of face recognition tasks: gen-
der classification [26, 31, 59], face identification, [19] face detection [72], and facial
expression recognition [69]. Kohonen [41] was one of the first to use a linear au-
toassociative neural network to store and recall face images. Autoassociative neural
networks associate input patterns with themselves [81]. It is interesting to note that
a linear autoassociative neural network is equivalent to PCA [67]. Early surveys of
neural network face classification techniques can be found in [18] and [82].

SVMs are powerful binary classifiers. They determine a decision boundary in the
feature space by constructing the optimal separating hyperplane that distinguishes
the classes. Using SVMs to classify faces is a recent development [33, 60, 70],
yet SVMs have already established a proven track record [18, 70, 92]. They typi-
cally outperform PCA [32, 33, 60] and provide performance comparable to neural
networks.

Once classifiers have been trained, the measure of classifier performance is the er-
ror rate produced when presented the testing set of samples. In the post-processing
stage, various correction techniques are implemented and scores are normalized.
The percentage of misclassified test samples provides an estimate of the error rate.
For this estimate to be reliable, the training and testing sets should be sufficiently
large. In practice this is often not the case, and a small training set results in classi-
fiers that do not generalize well. If the test set is small, then the confidence levels are
also low. Cross-validation approaches, e.g., the leave-one-out and rotation schemes,
strengthen classifier generalizability and confidence levels. However, there are lim-
itations to these approaches. A bootstrap method proposed by [27] has been shown
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to outperform cross-validation approaches by resampling training patterns with re-
placement to generate a large number of artificial training sets [36].

The Receiver Operating Characteristic (ROC) Curve, which plots the False Re-
ject Rate (FRR) versus the False Acceptance Rate (FAR) assesses system perfor-
mance at various operating points [58]. FAR is the ratio of the number of incorrectly
matched patterns of different classes to the total number of attempted matches.
FRR is the ratio of the number of incorrectly matched patterns of the same class
to the total number of attempted matches. ROC provides a more comprehensive
measure of the error rate than that provided by FAR and FRR alone. The most
commonly reported version of the ROC curve is the area under the ROC curve,
or AROC.

Typically error rates are used to find the best single classifier for the face classi-
fication task. However, much recent work has focused on employing ensembles of
classifiers. Despite new advancements in the design of single classifiers, ensembles
continue to achieve higher classification rates than single classifier systems [37, 40].
This good performance has been demonstrated both theoretically and empirically
[5, 40, 68], especially when ensembles are built using classifiers that are both accu-
rate and independent, i.e., when the classifiers make errors on different regions of
the feature space [57, 86, 91].

Figure 3 illustrates the basic framework for training a classifier ensemble. In step
1, multiple datasets are created from the master training set. In step 2, a set of base
classifiers are trained on the subsets. In step 3, classifier opinions are combined in
some fashion using a combiner, C∗. The basic idea is to construct a set of classifiers
from the training data and to predict class labels from previously unseen records in
the testing set by aggregating predictions made by the ensemble.

Some of the most popular methods for assembling classifier ensembles are Bag-
ging (BA), Random Subspace (RS), and Class Switching (CW). In bagging [11],
a randomly selected subset of the training set is extracted (with replacement) for
training each base classifier. In Random Subspace [34], a randomly selected feature
subset of the original feature set is used for training each base classifier. In class
switching [54], the classes of the training samples are randomly switched according
to a given probability that is based on the original training set.

There are several methods for combining classifier results. The most typical com-
bination methods are majority voting, sum rule, max rule, min rule, product rule,
median rule, and Borda count. The sum rule (averaging) has been shown to out-
perform other classifier combination rules and is more resilient to estimation errors
[40]. Voting, the sum rule, and Borda count are static, with no training required,
while others are trainable. The trainable combiners work better if a large training
set is available for training the combiners.

Ensemble performance depends on the diversity of the classifiers. Different met-
rics have been proposed in the literature to evaluate whether the individual classifiers
in the ensemble are independent from each other. The most reliable and frequently
used metric is the Yule’s Q-statistic [43, 45]. For two classifier Di and D j the Q-
statistic is an a posteriori measure that is defined as:
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Fig. 3 General schematic of classifier ensembles

Qi, j =
N11N00−N01N10

N11N00 + N01N10 (1)

where Nab is the number of instances in the test set, classified correctly (a=1) or
incorrectly (a=0) by the classifier Di, and correctly (b=1) or incorrectly (b=0) by
the classifier D j. Q varies between -1 and 1, and it is 0 for statistically independent
classifiers. Classifiers that tend to recognize the same patterns correctly will have
Q > 0, and those which commit errors on different patterns will have Q < 0.

Readers wanting a more comprehensive survey of face classification techniques
should refer to [92] for single classifier systems and [37] for more recent advances
using classifier ensembles. The remainder of this section provides a basic tutorial
on the classification algorithms used in the experiments presented in this chapter.
In Section 2.1, we describe PCA (as a transform and classification method using
NN), SVM, Oja’s subspace (SUB), and the Levenberg-Marquardt neural network
(LMNN) algorithm for computing gradient descent in feedforward neural networks.
This is followed by a description in Section 2.2 of the methods we used to build
classifier ensembles, viz., bagging (BA), class switching (CW), and random sub-
space (SUB). We conclude the tutorial in Section 2.3 by listing software resources
that implement the algorithms discussed in this section and by listing some excellent
general books on machine learning and pattern recognition and classification.



Predicting Trait Impressions of Faces Using Classifier Ensembles 413

2.1 Single Classifier Algorithms

In this Subsection we provide a general discussion, followed by an algorithmic out-
line, of each of the classifiers used in this study: PCA and NN, SUB, SVM, and
LMNN.

2.1.1 Principle Component Analysis (PCA)

The central idea behind PCA is to find an orthonormal set of axes pointing in the
direction of maximum covariance in the data. In terms of facial images, the idea is
to find the orthonormal basis vectors, or the eigenvectors, of the covariance matrix
of a set of images, with each image treated as a single point in a high dimensional
space. It is assumed that facial images form a connected subregion in the image
space. The eigenvectors map the most significant variations between faces and are
preferred over other correlation techniques that assume every pixel in an image is
of equal importance, (see, for instance, [42]). Since each image contributes to each
of the eigenvectors, the eigenvectors resemble ghostlike faces when displayed. For
this reason, they are often referred to in the literature as holons [19] or eigenfaces
[78], and the new coordinate system is referred to as the face space [78]. Exam-
ples of eigenfaces are shown in Figure 4. Individual images can be projected onto
the face space and represented exactly as weighted combinations of the eigenface
components, as illustrated in Figure 5.

The resulting vector of weights that describes each face can be used both in face
classification and in data compression. Classification is performed by projecting a

Fig. 4 The first ten eigenfaces of the 480 stimulus faces generated for our experiments, with
the eigenfaces ordered by magnitude of the corresponding eigenvalue
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Fig. 5 Illustration of the linear combination of eigenfaces. The face to the left can be repre-
sented as a weighted combination of eigenfaces plus ψ the average face (see Equation 3)

new image onto the face space and comparing the resulting weight vector to those
of a given class [78]. Compression is achieved by reconstructing images using only
those few eigenfaces that account for the most variability [74]. PCA classification
and compression are discussed in more detail below.

PCA Classification

The principal components of a set of images can be derived directly as follows. Let
I(x,y) be a two-dimensional array of intensity values of size NxN. I(x,y) may also
be represented as a single point, a one-dimensional vector ΓΓΓ of size N2. Let the set
of face images be ΓΓΓ 1,ΓΓΓ 2,ΓΓΓ 3, . . .ΓΓΓM, and let

ΦΦΦk = ΓΓΓ k−ΨΨΨ (2)

represent the mean normalized column vector for a given face ΓΓΓ , where

ΨΨΨ =
1
M

M

∑
k=1

ΓΓΓ k (3)

is the average face of the set. PCA seeks the set of M orthonormal vectors, uk,
and their associated eigenvalues, λk, which best describes the distribution of the
image points. The vectors uk and scalars λk are the eigenvectors and eigenvalues,
respectively, of the covariance matrix:

C =
1
M

M

∑
k=1

ΦΦΦkΦΦΦT
k = AAT (4)

where the matrix A = [ΦΦΦ1,ΦΦΦ2, . . . ,ΦΦΦM] [78].
The size of C is N2 by N2 which for typical image sizes is an intractable task

[78]. However, since typically M < N2, that is, the number of images is less than
the dimension, there will only be N− 1 nonzero eigenvectors. Thus, the N2 eigen-
vectors can be solved in this case by first solving for the eigenvectors of an M x
M matrix, followed by taking the appropriate linear combinations of the data points
ΦΦΦ (see [78]).
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PCA is closely associated with the singular value decomposition (SVD) of a data
matrix. SVD can be defined as follows:

ΦΦΦ = USVT (5)

where S is a diagonal matrix whose diagonal elements are the singular values, or
eigenvalues, of ΦΦΦ , and U and V are unary matrices. The columns of U are the
eigenvectors of ΦΦΦΦΦΦT and are referred to as eigenfaces. The columns of V are the
eigenvectors ΦΦΦΦΦΦT and are not used in this analysis.

Faces can be classified by projecting a new faceΓΓΓ onto the face space as follows:

ωk = uT
k (ΓΓΓ k−ΨΨΨ) (6)

for k= 1, . . . M eigenvectors. The weights form a vector ΩΩΩT
k = [ω1,ω2, . . . ,ωM],

which contains the projections onto each eigenvector. Classification is performed
by calculating the distance of ΩΩΩ k from ΩΩΩ , where ΩΩΩ represents the average weight
vector defining some class [78].

Two commonly used distance measures are the sum of absolute differences, also
known as the L1 metric, and the Euclidean distance, also know as the L2 metric.
If we have 2 points, A (x1,y1) and B (x2,y2), the L1 distance between A and B is
abs(x1− x2) + abs (y1− y2). The L2 metric is

√
(x1− x2)2 +(y1− y2)2.

PCA Representation

Since the eigenfaces are ordered, with each one accounting for a different amount
of variation among the faces, images can be reconstructed using only those few
eigenfaces, M′ << M in Equation 4, that account for the most variability [74]. As
noted above, PCA results in a dramatic reduction of dimensionality and maps the
most significant variations in a dataset. For this reason, it is often used to transform
and reduce features when performing other classification procedures. In the experi-
ments reported in this chapter, we retain those components that account for 0.98 of
the variance.

Outline PCA

The basic steps necessary to perform PCA training and testing using face images
are outlined in Table 1. These steps follow from the presentation given above.

2.1.2 Support Vector Machines (SVMs)

Support Vector Machines (SVMs), introduced in [84], belong to the class of max-
imum margin classifiers. They perform pattern recognition between two classes by
finding a decision surface that has maximum distance to the closest points in the
training set. The data points that define the maximum margin are called support
vectors.
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Table 1 Outline of PCA Training and Testing Steps

PCA Training PCA Testing
Using a set of training feature vectors:

1. Compute the average feature vec-
tor,ΨΨΨ ;

2. Subtract ΨΨΨ from the feature vec-
tors to obtainΓΓΓ , the mean adjusted
dataset;

3. Derive eigenfaces for ΓΓΓ using
SVD;

4. Obtain the weight vectors, or
eigenvalues, for each ΓΓΓ k by pro-
jecting it onto the resulting face
space;

5. Reduce dimensionality by retain-
ing only the most significant
eigenvalues;

6. Obtain the class vectors, ΩΩΩ , by av-
eraging the eigenvalues of each ΓΓΓ k

belonging to each class.

Using a set of testing feature vectors:

1. Subtract ΨΨΨ from the feature vec-
tors to obtain ΓΓΓ ;

2. Obtain the weight vectors, or the
eigenvalues, for each ΓΓΓ k by pro-
jecting ΓΓΓ k onto the face space de-
rived using the training set;

3. Reduce dimensionality as was
done with the training set;

4. Classify each ΓΓΓ kbased on its dis-
tance from ΩΩΩ , using a distance
metric.

SVMs are designed to solve two-class problems. SVMs produce the pattern
classifier 1) by applying a variety of kernel functions (linear, polynomial, radial
basis function, and so on) as the possible sets of approximating functions, 2)
by optimizing the dual quadratic programming problem, and 3) by using struc-
tural risk minimization as the inductive principle, as opposed to classical sta-
tistical algorithms that maximize the absolute value of an error or of an error
squared.

Different types of SVM classifiers are used depending upon the type of input pat-
terns: a linear maximal margin classifier is used for linearly separable data, a linear
soft margin classifier is used for linearly nonseparable, or overlapping, classes, and
a nonlinear classifier is used for classes that are overlapped as well as separated by
nonlinear hyperplanes. Each of these cases is outlined below. Readers interested in
using SVM should consult [22].

Outline of SVM

Suppose, there is a set of training data, x1,x2, . . . ,xk where xi ∈ Rn and i =
1,2, . . . ,k. Each xi belonging as it does to one of two classes, has a corresponding
value yi where yi ∈ {−1,1}.
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Linear maximal margin classifier

The goal is to build the hyperplane that maximizes the minimum distance between
the two classes. This hyperplane is called the Optimal Separating Hyperplane (OSH)
and has the form:

f (x) =
k

∑
i=1

αyixi ·x + b (7)

where α and b are the solutions of a quadratic programming problem. Unknown test
data xt can be classified by simply computing Equation 8.

f (x) = sign(w0 • xt + b0) (8)

Examining Equation 8, it can be seen that the hyperplane is determined by all the
training data, xi that have the corresponding attributes of αi > 0. We call this kind
of training data support vectors. Thus, the optimal separating hyperplane is not de-
termined by the training data per se but rather by the support vectors.

Linear soft margin classifier

The objective in this case is to separate the two classes of training data with a min-
imal number of errors. To accomplish this, some non-negative slack variables, ξi,i=
1, 2, . . . k, are introduced into the system. The penalty, or regularization parameter,
C, is also introduced to control the cost of errors. The computation of the linear soft
margin classifier is the same as the linear maximal margin classifier. Thus, we can
obtain OSH using Equations 7 and 8.

Nonlinear classifier

In this case, kernel functions such as the polynomial or RBF are used to transform
the input space to a feature space of higher dimensionality. In the feature space,
a linear separating hyperplane is sought that separates the input vectors into two
classes. In this case, the hyperplane and decision rule for the nonlinear training
pattern is Equation 9.

f (x) = sign(
K

∑
i=1

αiyiK(xt ,x)+ b) (9)

Where, αi and b are the solutions of a quadratic programming problem and K(xt,x)
is a kernel function.

2.1.3 Oja’s Subspace Learning and Classification (SUB)

In PCA we are approximating images as a linear combination of some subset of
orthogonal basis vector, the eigenfaces. Each choice of orthonormal vectors gives
a different approximation. There are many alternative criteria for choosing a set of
basis vectors. Oja [66] lists six:
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1. Minimum approximation error (least average distance between x and x̂);
2. Least representation entropy;
3. Uncorrelated coefficients (with each other);
4. Maximum variances of the coefficients;
5. Maximum separation of two classes in terms of distance in a single subspace;
6. Maximum separation of two classes in terms of approximation errors in two

subspaces.

Number 1 gives rise to the Karhunen-Loeve Transform and number 2 to PCA. The
outline below presents the operations needed when dealing with subspaces (numbers
4 and 5 above).

Outline of SUB

The algorithm for the creation of the subspace related to each class is divided into
two phases:

1. Normalization: all the objects in each class are normalized such that their Eu-
clidian distance to the origin is one. This normalization is useful for employing
the norm of the projection of a pattern on a subspace as similarity measure;

2. Subspace generation: for each class, a PCA subspace is calculated (see the PCA
section for details).

The algorithm for the classification of each test image is divided in two phases:

1. Projection of the pattern: a map between the original space and the reduced
eigenspace is performed by means of the operator of projection (see the PCA
section for details);

2. Distance calculation: the norm of the projection of a pattern on each subspace is
used as similarity measure between the input vector and the class related to the
subspace. The input vector is then classified according to the maximal similar-
ity value argmax j=1,...,s[log(‖yi‖2)− log(1−∥∥y j

∥∥2)], where s is the number of
classes and y j is the vector x projected onto the space of the class j.

2.1.4 Levenberg-Marquardt Neural Networks (LMNN)

The LMNN algorithm was first presented in [50]. Marquardt [53] rediscovered the
algorithm approximately twenty years later. It is now a widely used optimization
algorithm, solving the problem of nonlinear least squares minimization using Gauss-
Newton’s iteration in combination with gradient descent. It is considered one of the
fastest methods for training moderate sized feedforward neural networks. For a more
comprehensive tutorial see [63].

Outline of LMNN

Gradient descent is a simple method for finding the minima in a function but suffers
from a number of convergence problems. When the gradient is small, intuitively it
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makes sense to take large steps down the gradient. Conversely, when the gradient is
large, it would be logical to take smaller steps. The exact opposite occurs in gradient
descent, which updates a parameter at each step by adding a negative of the scaled
gradient:

xi+1 = xi−λ∇ f (10)

By using the second derivative and by expanding the gradient of f using a Taylor
series, Equation 10 can be improved as follows:

∇ f (x) = ∇ f (x0)+ (x− x0)T∇ f (x0)+higher order terms of(x− x0) (11)

Ignoring the higher order terms by assuming f to be quadratic around x0 and solving
for the minimum of x by setting the lefthand side of Equation 10 to 0, we obtain
Newton’s method:

xi+1 = xi− (∇2 f (xi))−1∇ f (xi) (12)

where x0 is replaced by xi and x by xi+1.

LMNN is designed to approach second-order training speed without having to com-
pute the Hessian matrix, which is

H = JT J (13)

The gradient can be computed as

g = JT e (14)

where J is the Jacobian matrix that contains the first derivatives of the network
errors with respect to the weights and biases, and e is the vector of network errors.
Levenberg proposed an algorithm that combines the above equations:

xi+1 = xi− [H +λ I]−1g (15)

Levenberg’s algorithm can be outlined as follows:

1. Update weights as in Equation 15;
2. Evaluate the error of the new parameter vector;
3. If the error has increased then reset the weights to their previous values and

increase λ by a significant factor and goto 1;
4. If the error had decreased then accept the new values for the weights and de-

crease λ by a factor a significant factor and goto 1.

A problem with the above algorithm is that when λ is large, the Hessian matrix
is not used. Marquardt improved the algorithm by replacing the identity matrix in
Equation 15 with the diagonal of the Hessian, resulting the Levenberg-Marquardt
update rule

xi+1 = xi− (H +λdiag[H])−1g (16)
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By using singular value decomposition (SVD) and other techniques to compute the
inverse, the cost of the updates is far less than the costs involved in computing the
gradient descent for parameters numbering only in the hundreds, but eventually the
costs become prohibitive when weight size increases into the thousands.

2.2 Classifier Ensembles

This section provides a description of the aggregating methods used in our experi-
ments, viz., Bagging (BA), Class Switching (CW), and Random Subspace (RS).

2.2.1 Bagging (BA)

The term bagging was first introduced in [10] as an acronym of Bootstrap AGGre-
gatING. The idea is to generate random bootstrap training subsets, with replace-
ment, from the master training set. Base classifiers are then trained on each subset
and the results combined using a majority vote rule. That is, the combiner evaluates
the testing samples by querying each of the base classifiers on the sample and then
outputting the majority opinion.

Breiman’s [10] two main arguments for Bagging effectiveness are the following:
1) running many trials on uniform samples of a population results in less variant
statistical results, and 2) the majority opinion reduces noise-induced errors made by
a small minority of the base classifiers.

Key to the success of using this algorithm is the selection of appropriate base
classifiers. To guarantee diversity, the classifiers should be unstable, i.e., small vari-
ations in the training set should produce large changes on the classifiers, otherwise
the ensemble will not outperform the individual classifiers. Typical unstable classi-
fiers are neural networks, decision trees, regression trees, and linear regression.

Outline of Bagging

A bootstrap subset is generated, with replacement, by uniformly sampling m in-
stances from the master training set. T bootstrap subsets B1,B2, ...,BT are generated
and a classifier Ci is built from each bootstrap subset, Bi. The combiner, C∗, is built
from C1,C2, ...,CT whose output is the class predicted most often by the classifiers,
with ties broken arbitrarily.

Below is a simple pseudocode description of the bagging algorithm.

In the training process

For t = 1,2, . . . T do:

1. Build a random subset xt taking randomly selected samples from the original
training set;

2. Train a classifier Ct using the subset xt ;
3. Add the classifier to the ensemble.
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In the testing process

Build the final decision rule by combining the results of the classifiers. Several de-
cision rule can be used to combine the classifier, e.g., majority voting, the sum rule,
and the max rule [40].

2.2.2 Class Switching (CW)

Class Switching is an ensemble method based on the creation of new training sets
obtained by changing the class labels of the training patterns. The class label of each
example is switched according to a probability function that depends on an overall
switching rate. Thus, in each new training set, the label of a fixed fraction, p, of the
training patterns of the master training set is selected at random for switching.

Outline of Class Switching

As outlined in [54], the class switching ensemble method is characterized by the
following rule:

P ji = p/(K − 1), i 	= j ,

Pii = 1 - p

where: p is the switching rate, P ji is the probability that an example with label i gets
the label j, Pi is the proportion of elements of class i, and K is the number of classes.

2.2.3 Random Subspace (RS)

Random subspace is a method for reducing dimensionality by randomly sampling
subsets of features and improving accuracy by aggregating the resulting base clas-
sifiers. The seminal paper on this method is [34].

Outline of Random Subspace

As outlined in [34], the Random Subspace ensemble method is characterized by
three steps:

1. Given a d-dimensional data set D = {(x j, t j)|1 ≤ j ≤ m},x j ∈X⊂ Rd , t j ∈C=
{1, ...,c}, n new projected k-dimensional data sets Di={(Pi(x j), t j)|1 ≤ j ≤ m}
are generated (1 ≤ i ≤ n), where Pi is a random projection Pi : Rd → Rk. Pi is
obtained by random selecting, through the uniform probability distribution, a k-
subset A = {α1, ...,αk} from {1,2, ...,d} and setting Pi(xi, ...,xd) = (xα1, ...,xαk);

2. Each new data set Di is given in input to a fixed learning algorithm L which
outputs the classifiers hi for all i,1≤ 1≤ n;

3. The final classifier h is obtained by aggregating the base classifiers hi, ...,hn

through a given decision rule.
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2.3 Resources

Because of its excellent visualization tools and platform independence, MATLAB
[76] by MathWorks is commonly used for experimenting with face classification
algorithms. Numerous toolboxes have been developed that provide MATLAB users
with routines for handling images and statistical pattern recognition tasks. Math-
Works, for instance, offers an excellent image processing toolbox. MathWorks also
produces a neural network toolbox for designing and visualizing neural network al-
gorithms, with built-in support for many common neural network algorithms, such
as LMNN.

An excellent MATLAB toolbox for experimenting with statistical pattern recog-
nition is PRTools [83]. It is free for academic research. PRTools provides over 200
routines, including PCA, LMNN, Oja’s subspace, and SVM. The SVM implemen-
tation in PRTools, however, is limited. For a more comprehensive package, the OSU
SVM MATLAB toolbox developed by Ohio State University is an excellent choice.
It is available at http://sourceforge.net. Links to additional software and resources
are available at http://www.face-rec.org.

3 Study Design

In the experiments presented in this chapter, single classifiers and classifier ensem-
bles are trained to detect the social meanings people perceive in facial morphology.
Our first concern in designing our study was developing a sound ground truth for
this problem domain. Our goal was to collect a set of faces that exhibit strong hu-
man consensus in a comprehensive set of trait categories. The traits selected for this
study are a modification of Rosenberg’s [25, 29, 71] meta-analysis of a broad range
of categories and include the following: dominance, intelligence, maturity, sociality,
trustworthiness, and warmth.

As noted in the introduction, our task is unusual in that our ground truth is not
based on factual information about the subjects’ faces. In most face recognition and
classification applications, faces are associated with classes that are derived either
from the subject’s self-report (age, gender, and emotional state) or from different
views, spatial as well as temporal, of the same person. The division of faces into
relevant classes poses few problems, as the classes are clearly definable. In the clas-
sification task of matching human impressions of faces, however, the division of
faces into relevant trait classes is not a straightforward process. It is complicated
by the fact that most faces fail to elicit strong opinions in any given trait dimension
and by the fact that human beings, while consistent in their ratings, are not in total
agreement.

Figure 6 outlines the steps we took to develop our database of faces. In Section
3.1, we describe the process we used to generate 480 stimulus faces. We also discuss
some of the issues involved in selecting different facial representations (e.g., artifi-
cially constructed faces, 2-D photographs, and 3-D scans) and justify our decision
to artificially construct faces from the popular composite program FACES [30]. In
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Fig. 6 Steps taken to generate a database of representative faces for each trait dimension
(T1−6) with two classes, high (CH) and low (CL)

Section 3.2, we describe our experimental design for assessing subject ratings of the
stimulus faces along the six trait dimensions using a 3-point scale. In Section 3.3,
we describe the process we used in steps 3 and 4 for determining face membership
into the two trait classes of high and low for each trait dimension. It should be noted
here that a stimulus face can belong to more than one trait database. Faces can be
rated as both submissive and trustworthy, for instance. However, within any trait
database, a stimulus face can only belong to one of the two trait classes. A face, for
example, cannot be both high and low in perceived dominance.

3.1 Step 1: Generation of Stimulus Faces

In attribution studies in the person perception literature, stimulus faces are typically
of four types: photographs of faces, drawings of faces, faces pieced together using
facial composite products such as Identi-Kit [12], and faces that have been altered
using a variety of geometrical transformations (see for instance [77], where a car-
dioidal transform is used to vary facial maturity).

Each of these facial representations offers some attractive benefits. Two-
dimensional photographs and facial composites have been widely studied in the
person perception literature, and compared to 3-D scans are easier to collect. An
advantage using facial composite programs, whether two-dimensional or three-
dimensional, is that the contributions of individual facial features in the attribution
process can more easily be investigated.

Each facial representation is also problematical. A danger in using a dataset of
faces that have been artificially produced is that the classifier systems might not
generalize well enough to handle photographic images of actual faces. It might be
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thought that using photographs of actual faces would address this potential prob-
lem. However, photographs are two-dimensional representations, and it could be
argued that people form impressions of faces in situ based on multidimensional
views. Three dimensional scans of actual faces also present representational dilem-
mas. How faces are seen in space for instance could affect viewer ratings. Will the
viewer control how the scans are viewed or will the scanned faces move on their
own? Even judging films of faces is problematical, as the perspective of the camera
is typically artificial and stationary.

In psychological studies, large databases of faces are not required. It is not un-
common for subjects to evaluate fewer than twenty faces. In building classification
systems, larger numbers of samples are necessary. Furthermore, the faces need to
strongly represent the various trait classes. Most faces are not extreme in their attri-
butions, so finding large numbers of faces that distinctly represent various traits is
difficult.

To generate as many representative faces as possible, we decided that it would
be best to construct faces artificially. We asked four college art students (all female
seniors) to generate 120 faces (60 female and 60 male) using the program FACES.
This produced a total of 480 stimulus faces. The artists were given three months to
complete the task and were asked to generate even groups of faces (5 male and 5
female) that they thought would be perceived by others as intelligent, unintelligent,
mature, immature, warm, cold, social, unsocial, dominant, submissive, trustworthy,
and untrustworthy. The artists were given the same definitions of these terms as
were later given the subjects who rated the stimulus faces using these same trait
descriptors (see Appendix for these definitions). Thus, we hoped to obtain at least 40
faces in each trait class that would be verified by subjects to produce the impressions
intended.

The artists were also instructed to use as many different facial features in the
program’s database as possible, with the caveat that they make the emotional ex-
pressions of the faces as neutral as possible. The program FACES contains a fairly
large set of individual features: 512 eyes, 541 noses, 570 lips, 423 jaws, 480 eye-
brows, and 63 foreheads, to list some of the more important features, so the faces
were generally unique in appearance, as illustrated in Figure 7.

3.2 Step 2: Assessing Trait Impressions of Stimulus Faces

Once the stimulus faces were generated, they were evaluated in step 2 by 20 human
subjects as detailed below.

Subjects. A total of 80 students, recruited from the same university as the artists,
were asked to judge the stimulus faces. An equal number of male and female sub-
jects participated in the study. A total of 62 were undergraduate and 18 were gradu-
ate. The average age was 24 and ranged from 18 to 61. Each student received extra
credit in a Computer Information Systems course for participating in the study. The
graduate students were in the college of business and were working towards MBA
and MHA degrees. The undergraduates were mostly business and science majors.
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The majority of students were white (69), followed by African (5), Asian (3), His-
panic (2) and other (1).

Dependent Measures. Each subject judged a full set of 120 faces created by one
of the four artists along the six trait dimensions using a forced 3-point scale with
associated descriptors. Thus, each image was judged by 20 subjects. The 1 and
3 values were given the bipolar trait descriptors of dominant/submissive, intel-
ligent/unintelligent, mature/immature, social/unsocial, trustworthy/untrustworthy,
and warm/cold, and their positions were randomized for each trait dimension and
for each image. Neutral was always located at the middle 2 value.

Subjects were given access to the trait definitions and, in some cases, behav-
ioral potential questions modeled after Berry and Brownlow [7] and Zebrowitz and
Motepare [88]. The Appendix provides the description of the traits and the behav-
ioral potential questions that were given to both the artists and the subjects.

Apparatus. The program that administered the survey was located on a campus
server and was made available to the participants in the computer labs located across
campus. Due to the large number of faces each subject was asked to rate, they were
given one week to complete the task.

3.3 Step 3: Division of Stimulus Faces into Trait Class Sets

A complete analysis of human variance is not presented in this study, as the objec-
tive was not to perform another facial attribution study. This is a topic that has been
well researched, and people of different ages, genders, races, and cultures have been
shown to be remarkably consistent in their judgments [2, 90]. Rather the study de-
sign was geared solely towards obtaining human judgments of the 460 faces in order
to extract faces that unambiguously elicit specific impressions. Table 2 presents the
mean ratings and standard deviations of the 460 faces for each of the six trait dimen-
sions. Standard deviations were less than 1.0, and the average rating of the faces in
each dimension was close to neutral (2.0).

Membership in each trait class of high and low required that a face met the fol-
lowing specifications:

1. That the standard deviation in the ratings was less than 1.0;

Table 2 Rater Means and Standard Deviations Per Trait of the 460 Stimulus Faces

Trait Dimension Descriptor Trait Dimension Means Standard Deviations
Intelligence 2.20 0.794
Dominance 2.00 0.782
Maturity 2.10 0.822
Sociality 1.99 0.784
Trustworthiness 2.07 0.771
Warmth 2.00 0.728
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Fig. 7 Samples from the two classes (high and low) of warmth. The top row faces were
rated significantly higher in warmth. The bottom row faces were rated significantly lower in
warmth

Table 3 Number of Images in the Two Classes (High and Low) of Each Trait Dimension

Trait Dimension Attribution Class Number
Intelligence Low 39

High 140
Dominance Low 99

High 102
Maturity Low 49

High 126
Sociality Low 126

High 117
Trustworthiness Low 97

High 151
Warmth Low 139

High 146

2. That the mean rating was less than 1.6 for low membership and greater than 2.4
for high membership;

3. That the mode matched the class (1 for low and 3 for high)

To illustrate class membership, in Figure 7, a sample of faces that fell into the high
and low classes of warmth are presented.

Table 3 lists the total number of images that fell into the two classes for each
trait dimension. The average number of images in each class is 111 (minimum 39
and maximum 151). Except for low intelligence (39), the number of images that fell
into each class greatly exceeded our minimum expectation of 40 faces. Since trait
dimensions are correlated (recall in the introduction how morphological features
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of the overgeneralization effects were associated with clusters of traits), the total
number of images is greater than 460 because many images produced significant
trait impressions in more than one dimension.

4 Classification Experiments

In this section we describe our classification experiments using the six trait
databases. In Section 4.1 we describe the basic system architecture, and in Section
4.2 we present our experimental results.

Fig. 8 Basic System Architecture

4.1 System Architecture

Figure 8 provides a basic schematic of our system architecture. First, we transform
the raw sensor inputs (gray scale values) using PCA, where the preserved variance
is 0.98. Then we train both single classifier systems (NN, SUB, SVM, and LMNN)
and different ensembles of 100 LMNNs, using RS, BA, and CW.

Our single classifier systems included the following classifiers1:

• PCA+NN, classifier based on the PCA coefficients and 1-nearest neighbor clas-
sification using the Euclidean distance;

• PCA+SUB, classifier based on the PCA coefficients and Oja’s subspace maps,
where subspaces are computed for each class of the dataset and the distance of
the test patterns to these subspaces are used to classify the data ( p=(3/5)×[(K−
1)/K]);

• PCA+SVM, classifier based on the PCA coefficients and a Linear Support Vector
Machine [84];

• PCA+ LMNN, classifier based on the PCA coefficients and a Levenberg-
Marquardt neural net [24], using 5 hidden nodes.

As noted in Section 2, collaborative methods, such as RS, BA, and CW, work best
if unstable classifiers are used in building the ensembles [46]. For our ensemble ex-
periments, we selected the Levenberg-Marquardt neural net (LMNN) with 5 hidden
nodes for comparison purposes. The ensembles were constructed using the follow-
ing three methods (see Section 2 for a more detailed description of each method):

1 Implemented as in PrTools 3.1.7 ftp://ftp.ph.tn.tudelft.nl/pub/bob/prtools/prtools3.1.7
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Fig. 9 Comparison of single classifier performance (average AROC obtained in 20 runs) for
the six trait dimensions

Fig. 10 Comparison of single classifier performance averaged across all six trait dimensions
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Fig. 11 Comparison of ensemble performance (average AROC obtained in 20 runs) for the
six trait dimensions

Fig. 12 Comparison of ensemble classifier performance averaged across all six trait
dimensions
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Fig. 13 Comparison of ensemble and single classifier performance averaged across all six
trait dimensions

• PCA+RS, classifier based on the PCA coefficients and a RS ensemble of 100
LMNNs. Recall from Section 2 that in RS the individual classifiers use only
a subset of all features for training and testing. The percentage of the features
retained in each training set was set to 50%;

• PCA+BA, classifier based on the PCA coefficients and a BA ensemble of 100
LMNN. Given a training set S, BA generates K new training sets S1,. . . , SK ; each
new set Si is used to train exactly one classifier. Hence an ensemble of individual
classifiers is obtained from K new training sets;

• PCA+CW, classifier based on the PCA coefficients and a CW ensemble of 100
LMNN. As explained more fully in Section 2, CW creates an ensemble that com-
bines the decisions of classifiers generated by using perturbed versions of the
training set where the classes of the training examples are randomly switched.

4.2 Results

The performance indicator adopted in this work is the area under the Receiver Op-
erating Characteristic curve (AROC) [51]. As explained in Section 2, AROC is a
two-dimensional measure of classification performance that plots the probability of
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Fig. 14 Comparison of best single (PCA+SVM) and ensemble (PCA+RS) performance (av-
erage AROC obtained in 20 runs) with subject (Raters) performance (average AROC) for the
6 trait dimensions

classifying the genuine examples correctly against the rate of incorrectly classifying
impostor examples.

In Figure 9, we compare the performance of single classifiers on each of the six
trait dimensions. SVM and LMNN greatly outperformed NN and SUB on the trait
dimensions of warmth, sociality, dominance, and trustworthiness. Looking at Ta-
ble 4 and Figure 10, we find that the average performance of SVM and LMNN are
very close, with both SVM and LMNN performing best across all six trait dimen-
sions. However, referring back to Figure 9, we see that SVM and LMNN performed
relatively poorly, compared with SUB and NN, on the trait dimension of maturity.
None of the single classifiers in our experiments was able to perform well on all six
dimensions.

In Figures 11 and 12, we compare the average AROC of the ensemble experi-
ments using the six databases. As seen in Table 4, RS, BA, and CW perform com-
paratively well, with RS performing slightly better than BA and CW. As with the
single classifier systems, ensembles had more difficulty classifying faces perceived
as intelligent and mature.

Looking at Table 4 and Figure 13, we can compare results between the single
classifier systems and the ensembles. The ensembles clearly outperform NN and
SUB. SVM and LMNN are close in performance to the ensembles; however, as we
can see in Table 4, the ensembles, unlike SVM and LMNN, performed compara-
tively well across all six trait dimensions.
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Fig. 15 Comparison of best ensemble classification (PCA+RS) and best single classifier
(PCA+SVM) performance with subject (Raters) performance averaged across all six trait
dimensions

Table 4 Performance Comparison (Average AROC Obtained in 20 Runs) Between Single
Classifier Systems, Ensembles, and Human Subjects (Raters) for the Six Trait Dimensions

Classifier Intelligence Maturity Warmth Sociality Dominance Trustworthiness Average
PCA+SVM 0.68 0.62 0.82 0.81 0.72 0.81 0.74
PCA+NN 0.59 0.64 0.57 0.61 0.53 0.58 0.59
PCA+SUB 0.67 0.67 0.61 0.62 0.58 0.60 0.63
PCA+LMNN 0.68 0.60 0.80 0.78 0.62 0.81 0.73
PCA+RS 0.73 0.69 0.82 0.78 0.74 0.83 0.77
PCA+BA 0.73 0.67 0.82 0.79 0.74 0.83 0.76
PCA+CW 0.71 0.67 0.81 0.78 0.73 0.82 0.75
Raters 0.76 0.75 0.80 0.78 0.76 0.78 0.77

Looking at Table 4, where we report the average AROC obtained by the subjects,
and Figures 14 and 15, we can see that the performance obtained by ensembles is
similar to the performance of the average rater, with RS exactly matching the raters
in the averaged performance of all six trait dimensions. This result leads us to believe
that machines are as capable of classifying faces according to the impressions they
make on the general observer as are most human beings.
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5 Conclusion

In this chapter we present unique face classification experiments using a variety of
collaborative methods. The experiments are unique because the systems were not
asked to classify faces according to such factual information as identity and gender
but rather the systems had to match the human perception of faces in terms of the
social impressions they make on the average observer.

One contribution of the study reported in this chapter was the development of
a sound ground truth for this problem domain. Our goal was to collect a set of
faces that exhibit strong human consensus in a comprehensive set of trait cate-
gories. To accomplish this objective, four artists were asked to construct 480 stimu-
lus faces, using the composite program FACES, with an eye towards making faces
they thought were clearly intelligent, unintelligent, mature, immature, warm, cold,
social, unsocial, dominant, submissive, trustworthy, and untrustworthy. Subjects
then rated the 480 faces using the same twelve descriptors. Since traits are corre-
lated, this process succeeded in creating trait classes that averaged over one hundred
faces each, a vast improvement over the databases of faces we used in earlier work
(see [9]).

Single classifiers and ensembles were then trained to match the bipolar extremes
of the faces in each of the six trait dimensions of intelligence, maturity, warmth,
sociality, dominance, and trustworthiness. With performance measured by AROC
and averaged across all six dimensions, results show that single classifiers, espe-
cially linear SVMs (0.74) and LMNN (0.73), performed as well as human raters
(0.77). These single classifiers, however, performed poorly in the trait dimension
of maturity. Ensembles of 100 LMNNs, constructed using BA (0.76), SUB (0.77),
and CW (0.75), compared equally well to rater performance, but were better than
the single classifiers at handling all six trait dimensions. The Random subspace
AROC, averaged across the six dimensions, exactly matched rater performance. We
concluded that machine learning methods, especially ensembles, are as capable of
perceiving the social impressions faces make on the general observer as are most
human beings.

Although research shows that people perceive personality even in abstract draw-
ings of faces [15], one shortcoming in developing the system reported in this chapter
is the possibility that classifiers trained on artificially constructed faces will not gen-
eralize to natural faces. We are currently developing studies to determine how well
our ensembles, trained with this dataset, are able to match human raters of pho-
tographs of people. In addition, we are developing a dataset of photographs of faces
that have equally large numbers of faces in each of the twelve trait classes.

As noted in the introduction, developing models of the human perception of the
social meanings of faces may have value in a number of fields, including social psy-
chology and human-computer interaction. Certainly, the human-like interfaces and
robots of the future will need to be able to see faces and other objects as human
beings see them, if they are to have more than a superficial social engagement with
us. It is not enough in human society simply to recognize what an object is; one must
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also be aware of the cultural layers of meanings that envelop each object. Our exper-
iments demonstrate that it is possible for machines to match some of these cultural
meanings to attributes possessed by the objects. For socially interactive interfaces
and robots to be believable, however, they will need the ability to integrate a host
of social impressions. Building machines that perceive the social meanings of ob-
jects will involve further research in the exciting area of collaborative computational
intelligence.
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Appendix

Table 5 Definition of each trait dimension and behavioral potential questions (modelled after
Berry and Brownlow [7] and Zebrowitz and Motepare [88]) as given to the subjects who
evaluated the stimulus faces

Dominant, Submissive, Neutral Here we are looking at how dominating the person looks.
Dominant: Is a person who is most likely to tell other peo-
ple what to do.
Submissive: Is a person who usually follows others and is
not very assertive.
A helpful question might be: “Does s/he look like someone
who would be the kind of roommate who would comply
with most of your wishes about the furniture arrangement,
quiet hours, and house rules?”

Intelligent, Unintelligent, Neutral Here we are looking at how intelligent the person looks.
Intelligent: Is a person who is possible very educated, ca-
pable, and interested in intellectual work.
Unintelligent: Is a person who probably does not value
school as s/he was not good at school subjects.
A helpful question might be: “Does s/he look like someone
you would learn from when discussing such topics as art,
politics, philosophy, or science?”

Mature, Immature, Neutral Here we are looking at how responsible the person looks.
Mature: Is a person who acts like an adult and behaves
responsibly.
Immature: Is a person who behaves in a childish or irre-
sponsible manner.
A helpful question might be: “Does s/he look like someone
you could trust to take on important responsibilities?”

Trustworthy, Untrustworthy, Neutral Here we are looking at how honest the person looks.
Trustworthy: Is a person who is mostly honest and is not
likely to steal, lie, or cheat.
Untrustworthy: Is a person who is often not honest and
who possible steals, lies, or cheats.
A helpful question might be: “Does s/he look like someone
you would ask to watch your backpack while you made a
visit to the restroom?”

Social, Unsocial, Neutral Here we are looking at how social the person looks.
Social: Is a person who is most likely very outgoing, extro-
verted, and who enjoys parties and other social activities.
Unsocial: Is a person who is introverted, a loner, shy, and
who would prefer to stay home rather than go out.
A helpful question might be: “Does s/he look like someone
you would invite to a party to enliven it?”

Cold, Warm, Neutral Here we are looking at how approachable the person is.
A helpful question might be: “Does s/he look like someone
who would turn a cold shoulder to your attempts at friendly
conversation?”
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The Analysis of Crowd Dynamics: From
Observations to Modelling

B. Zhan, P. Remagnino, D.N. Monekosso, and S. Velastin

Abstract. Crowd is a familiar phenomenon studied in a variety of research disci-
plines including sociology, civil engineering and physics. Over the last two decades
computer vision has become increasingly interested in studying crowds and their dy-
namics: because the phenomenon is of great scientific interest, it offers new compu-
tational challenges and because of a rapid increase in video surveillance technology
deployed in public and private spaces. In this chapter computer vision techniques,
combined with statistical methods and neural network, are used to automatically ob-
serve measure and learn crowd dynamics. The problem is studied to offer methods
to measure crowd dynamics and model the complex movements of a crowd. The re-
fined matching of local descriptors is used to measure crowd motion and statistical
analysis and a kind of neural network, self-organizing maps were employed to learn
crowd dynamics models.

1 Introduction

We are interested in devising methods to automatically measure and model the
crowd phenomenon. Crowded public places are increasingly monitored by security
and safety operators. There are companies (for example LEGION) that have em-
ployed large resources to study the phenomenon and generate realistic simulations:
for instance, to optimize the flow of people in a public space. Section 2 presents
some details about crowd related work, including the applications, research in com-
puter vision and research in other areas, like civil engineering and sociology. The
purpose of Section 2 is to give an overview of the state-of-the-art on crowd analysis
and to discuss the probability to bridge the research from computer science to areas
like civil engineering and sociology.
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Computer Vision research offers a large number of techniques to extract and
combine information from a video sequence acquired to observe a complex scene.
The life cycle of a computer vision system includes the acquisition of the monitored
scene with one or more homogeneous or heterogeneous cameras, the extraction of
features of interest and then the classification of objects, people and their dynamics.
The overall objective of our work is to develop an intelligent crowd analysis system,
in this chapter the work includes combining techniques from image processing, ma-
chine vision, statistics and neural networks to measure and model crowd dynamics.
In particular, novel methods to measure crowd dynamics are proposed using image
processing and machine vision techniques and two crowd modelling methods are
developed by statistical methods and neural networks.

In simple scenes the background is extracted with statistical methods and then
foreground data and related information are inferred to describe and model the
scene. Background is usually defined as stationary data, for instance man made
structure, such as buildings, in a typical video surveillance application, or the in-
door structure of a building in a safety application, for instance deployed to mon-
itor and safeguard elderly people in a home. Unfortunately, background modelling
becomes rapidly less effective in complex scenes and its usefulness seems to be in-
versely proportional to the clutter measured in the scene. Figure 1 shows a small
experiment testing the effectiveness of background modelling with different types
of scenes. Three frames per chosen sequence and the resulting background image
built with roughly 1000 frames are illustrated. The background modelling works
well with the first scene; it fails to recover the background of some regions in the
second scene because of the frequent occupancy over these regions; and in the third
scene, due to the continuous clutter, the background model can be barely recov-
ered. When the monitored scene becomes very cluttered, then one could think of

Fig. 1 The example frames and the built background images from three different scenes. Left
to right: three different scenes; top to bottom, three example frames and the built background
images, respectively
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measuring dynamics with optical flow methods, designed to extract information
about the dynamics of the scene, typically using gradient information. Unfortu-
nately, popular and conventional optical flow techniques such as Horn and Schunck
[36] and Lucas and Kanade [60] also work poorly with heavily crowded scenes. On
the other hand, feature based optical flow techniques using multi-resolution work
quite well with relatively high frame rate (typically around 25fps) video sequences
[15]. Section 3 presents two methods that can automatically measure crowd dynam-
ics. The methods are feature based and employ more sophisticated constraints. They
are briefly presented in the chapter and for more details the reader is referred to [98]
[100]. Both methods have been assessed with video sequences capturing different
types of crowded situations. A comparison of the two methods was carried out and
also described in the chapter, for more details the reader should refer to [99]. The
performances of both methods produce satisfactory results, even with low frame rate
video sequences (typically 4 to 8 fps).

Optical flow or optic flow is the pattern of apparent motion of objects, sur-
faces, and edges in a visual scene caused by the relative motion between an
observer (an eye or a camera) and the scene. In the survey of Beauchemin
[11] existing optical flow techniques are investigated, including: 1) differential
methods; 2) frequency based methods; 3)correlation based method; 4)multiple
motion methods and 5) template refined methods.

Section 4 describes the methods used to model crowd dynamics. First a statisti-
cal method is introduced. This method is focused on defining the main path of the
crowded scene [95]. Then a neural network based approach is proposed to capture
the crowd dynamics with a reduction of the dimensions of the input data. The self-
organizing map technique is employed for this purpose and the results have been
generated for different types of crowded scenes. Section 5 discusses the obtained
results and sheds some light on the future directions of the work on crowd analysis.

2 Background

The steady population growth, along with the worldwide urbanization, has made
the crowd phenomenon more frequent. It is not surprising; therefore, that crowd
analysis has received attention from technical and social research disciplines. The
crowd phenomenon is of great interest in a large number of applications:

Crowd Management: Crowd analysis can be used for developing crowd man-
agement strategies, especially for increasingly more frequent and popular events
such as sport matches, large concerts, public demonstrations and so on, to avoid
crowd related disasters and insure public safety.

Public Space Design: Crowd analysis can provide guidelines for the design of
public spaces, e.g. to make the layout of shopping malls more convenient to
costumers or to optimize the space usage of an office.
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Virtual Environments: Mathematical models of crowds can be employed in vir-
tual environments to enhance the simulation of crowd phenomena, to enrich the
human life experience.

Visual Surveillance: Crowd analysis can be used for automatic detection of
anomalies and alarms. Furthermore, the ability to track individuals in a crowd
could help the police to catch suspects.

Intelligent Environments: In some intelligent environments which involve large
groups of people, crowd analysis is a pre-requisite for assisting the crowd or an
individual in the crowd. For example, in a museum deciding how to divert the
crowd based on to the patterns of crowd.

Crowd management and public space design are studied by sociologists, psychol-
ogists and civil engineers; virtual environments are studied by computer graphics
researchers; visual surveillance and intelligent environments are of interest to com-
puter vision researchers. The approach favoured by psychology, sociology, civil en-
gineer and computer graphics research is an approach based on human observation
and analysis. Sociologists, for instance, study the characters of a crowd as a so-
cial phenomenon, exploring human factors. For example, the computational model
developed by Seed Projects at Stanford University [86], incorporated human be-
haviour in environments with emergency exits. The Crowd - MAGS Project, which
is funded by GEOIDE and the Canadian Network of Centers of Excellence in Ge-
omatics, aims to develop micro-simulations of crowd behaviours and the impact of

Fig. 2 A framework for Crowd analysis
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Table 1 Features in crowd analysis by computer vision methods

Sensor typology and topology
Moving or Static platform

Number of cameras
Type of video sequence: colour or gray scale, etc.

Environmental conditions
Indoor/outdoor
Level of clutter

Light condition, etc.

Scene typology
Individual characters

location/velocity/etc.
Appearance, etc.

Collective
Crowd density

Average speed, etc.

police or military groups [22]. The Police Academy of the Netherlands and School
of Psychology of University of Liverpool are cooperating on a project funded by the
UK Home Office: “A European study of the interaction between police and crowds
of foreign nationals considered to pose a risk to public order” [1].

On the other hand, computational methods, such as those employed in computer
graphics and vision methods, focus on extracting quantitative features and detecting
events in crowds, synthesizing the phenomenon with mathematical and statistical
models. For example, an early project funded by the EPSRC in the UK was con-
cerned with measuring crowd motion and density and hence potentially dangerous
situations [25] [87] [93]. The EU funded projects PRISMATICA [75] and ADVI-
SOR [2], completed in 2003, were concerned with the management of public trans-
port networks through CCTV cameras. The UK EPSRC funded project BEHAVE,
was concerned with the pre-screening of video sequences with the detection of ab-
normal or crime-oriented behaviour [12]. ISCAPS [42] started in 2005, a consortium
of 10 European ICT companies and academic organizations, aims to provide auto-
mated surveillance of crowded areas. SERKET, a recently started EU project aims
to develop methods to prevent terrorism [40].

Figure 2 illustrates the processes involved in crowd analysis. In a crowd scene
the attributes of importance are crowd density, location, speed, etc. This information
can be extracted either manually or automatically using computer vision techniques.
Crowd models can then be built based on the extracted information. Event discovery
is achieved using pre-compiled knowledge of the scene or using the computational
model, although both approaches can be combined. In both cases the model is up-
dated with newly extracted information.

2.1 Crowd Information Extraction

The components of crowd analysis from a computer vision perspective are described
in Table 1. Essentially, the sensors and their topology influence the scene cap-
ture processes; environmental conditions, such as natural and artificial illumination
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changes often introduce noise; the scene typology affects the type of process one
requires to extract the most accurate information of a dynamics scene.

Visual surveillance methods have been developed to estimate the motion of ob-
jects and people in the scene, in isolation or in groups; a review can be found in
[37]. When video is analysed for very crowded scenes, conventional computer vi-
sion methods are not appropriate, in these cases methods must be designed to cope
with extreme clutter. Features from conventional image processing are still em-
ployed, such as colour, shape and texture etc. However, sophisticated methods have
been developed to retrieve crowd information. In the following sections the existing
state-of-the-art will be reviewed.

2.1.1 Density Measurement

An important crowd feature is crowd density and it is natural to think that crowds of
different densities should receive a different levels of attention.

Research methods have been proposed for crowd analysis which employ back-
ground removal techniques such as [93], [61] and [26]. These studies makes use
of examples to map the global shape feature directly to configurations of humans,
and work under the typical assumption that the number of foreground pixels are
proportional to the number of people, which is only true when there are not serious
occlusions between people.

Image processing and pattern recognition techniques are also used for the anal-
ysis of the scene to estimate the crowd density. Marana et al. [64] assume that im-
ages of low-density crowds tend to present coarse texture, while images of dense
crowds tend to present fine textures. Self-organizing neural maps [65] combined
with Minkowski fractal dimensions [63] are employed to deduce the crowd density
from the texture of the image. The work by Marana is compared in [76] with an-
other method that uses Chebyshev moments. An optimization of performance under
different illumination conditions is discussed. Lin et al. [59] present a system that
estimates the crowd size through the recognition of the head contour using Haar
wavelet transform (HWT) and support vector machines (SVM).

Alternative methods combine several techniques, to achieve more accurate and
reliable measurements. For example, in [87], an edge-based technique is integrated
with background removal using a Kalman filter. Marana et al. [62] use different
methods including Fourier and Fractal analysis and classifiers to estimate the crowd
density level. Kong et al. in [52] [53] employ background subtraction and edge de-
tection; the work defined the extracted edge orientation and blob size histograms as
features. The relationship between the feature histograms and the number of pedes-
trian is learned from labelled training data. Obviously more cues may indicate a
more accurate solution.

2.1.2 Recognition

Conventional visual surveillance focuses on object detection and tracking. In
essence, image processing techniques are employed to extract the chromatic and
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shape information of the moving objects and the background for detecting and track-
ing purposes.

For crowd dynamics modelling, detecting and tracking are also important as they
provide the location and velocity features of the dynamics. Crowded scenes add
a degree of complexity to the conventional detection and tracking problem of sin-
gle individuals. In the following sections the focus will be on methodologies for
crowded situations.

Face is the most discriminating feature of the human body, and many researchers
try to detect a pedestrian through face detection. The majority of the existing re-
search employs supervised learning methods to detect faces in a crowded situation,
for example [85] [58] [43][38].

Pedestrian detection and tracking is a well studied problem in computer vision.
Many methods have been proposed, such as using the afore mentioned background
removal technique, or combining chromatic and shape information of the tracked
pedestrians. The following sections discuss the methods that try to provide a solution
for pedestrian detection in crowded scenes.

Occlusion caused by the high clutter of the pedestrian in a crowd scene is the
major challenge for crowd detection problems. Research is being carried out to ad-
dress the problem by using human body parts, for example [91] [28] [57]. Besides
conventional cues of pedestrian appearance, space-temporal cues are also used for
detection. Brostow et al. [17] tackle the problem by tracking simple image features
and probabilistically grouping them into clusters representing independently mov-
ing entities. In extremely cluttered scenes, individual pedestrian cannot be properly
segmented in the image. However, sometimes the crowd within which the pedestri-
ans share a similar purpose can be recognized. Reisman et al. [79] propose a scheme
that uses slices in the spatial-temporal domain to detect inward motion as well as
intersections between multiple moving objects. The system calculates a probabil-
ity distribution function for left and right inward motion and uses these probability
distribution functions to infer a decision for crowd detection.

2.1.3 Tracking

Tracking has been proposed to localize the interested object in time-space. Also
the velocity feature can be derived afterwards. Though as a natural extension of
detection, tracking has its own problem to recognize and identify pedestrians in
the consecutive frames. Tracking could be regarded as the most popular topic in
visual surveillance, however currently for crowd analysis, most of the techniques
are validated only for multiple (e.g. up to 10) people.

As discussed in the last subsection, occlusions can occur very frequently when
there are many objects and people in the scene. Tracking techniques have to over-
come this problem in order to continuously track before, during and after the
occurrence of occlusions. A comprehensive review on occlusion handling can be
found in [30]. A formulation of the occlusion problem is provided, and the tech-
niques are divided in two groups: the merge-split approach, which addresses the
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problem to re-establish object identities following a split, and straight-through ap-
proaches, which maintain object identities at all times.

Crowd scenes increase the complexity of tracking because there are multiple
moving objects in the scene. Different techniques are developed to improve the con-
tinuous tracking of an individual in a crowd.

• Likelihood. Colour, edge etc. are the most popular features in tracking. In
crowds, salient traceable image features are of particular interest. For example,
as one of the good candidates, interest points (IPs) are employed in [30] and [67].

• Human body model. Methods using models of human bodies or human body
parts have been developed for tracking in complex crowded scenes, which are
usually completed with probabilistic frameworks, examples like Zhao [101][102]
[92] [91].

• Tracking inference strategies. Tracking inference strategies have been
developed for the problem of tracking multiple objects. For non-linear and
non-Gaussian dynamic models, a particle filter technique, also known as CON-
DENSATION [41], is one of the most popular among those. Particle filters are
sequential Monte Carlo methods based upon a point mass (or ’particle’) repre-
sentations of probability densities [27]. Large portions of multiple object tracking
work have employed this technique, for example [88][73] [80] [18][51] [44].

• Data assoication. To address data association problems, there are Multiple
Hyphotheses Tracker (MHT) and Joint Probabilistic Data Association Filter
(JPDAF). MHT tries to keep the track of all the possible hypotheses over time
[78]. A detailed summary and a discussion of MHT for multiple target tracking
is included in [13]. JPDAF computes a Bayesian estimation of correspondence
between the different features and the different objects, e.g. [77] [45].

In certain cases, interaction happens frequently in crowded scene. Researchers
have shown great interest in studying these interactions to get new perspectives on
tracking techniques. For example, both Smith et al. [81] and Khan et al. [47] propose
to use Markov Chain Monte Carlo (MCMC) and the particle filter. Some researchers
interpret interactions as relationships between pedestrians and a group (pedestrian
merging/splitting into groups) [66] [69].

Furthermore, for large public areas the use of a multi-camera system is required
to cover most of the monitored areas, for example [70] [20][46] [48].

2.2 Crowd Modelling and Events Inference

Dynamics in public spaces can indeed be recurrent. Crowd information can be bet-
ter exploited to indicate the status of the crowd so that crowd events can be inferred.
Crowd models have been built to represent these statuses, either implicitly or ex-
plicitly. On the other hand, some research makes direct use of crowd information
instead of building models. In such cases, the events are usually inferred based on
some prior knowledge of the properties of the particular scene and the crowd. In this
section, crowd models and events inference in computer vision will be presented as
well as some crowd models from non vision areas.
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2.2.1 Crowd Models and Crowd Events Inference in Computer Vision

In computer vision crowd modelling is achieved based on the extracted informa-
tion from visual data and normally can be employed in crowd events inference.
Meanwhile, there are also some approaches that attempt to infer events without the
construction of models.

• Crowd models as representations of recurrent behaviours. Zhan et al. [94]
Andrade et al. [6][5][7] characterize crowd behaviour by observing the crowd
optical flow associated with the crowd, and use unsupervised feature extraction
to encode normal crowd behaviour.

• Event inference. Early work on crowd monitoring and crowd event inference
using image processing is reviewed by Davies et al. [25]. More recent work on
this includes [14] [68] [24] [23] [19]. In these methods especially, assumptions
of crowd are usually involved, indicating that some prior knowledge is required
for events inference.

2.2.2 Crowd Models from non Vision Approach

Computational models aim at describing and predicting the collective effects of
crowd behaviour by identifying the relationship between crowd features.

• Physics inspired models. Several quantitative factors of crowds and pedestrians
are measurable. This fact encourages researchers to look for the mathematical
models of crowd dynamics. For example Helbing [34][35][33] propose social
force model based on the social field theory. Hughes [39] describes the crowd by
“types”, where pedestrians in each type have the same walking habits.

• Agent based models. These are qualitative models that employ fuzzy methods
to describe the relations of factors and crowd motion, instead of using pure math-
ematical methods. Agent-based models use agents to represent the pedestrian or
the crowd, examples include [72][74] [16]. Some work on agent-based models
has already been commercialised, such as the work of Keith Still at Crowd Dy-
namics Ltd [21] and LEGION international LTD [56], both provide pedestrian
simulations for space design and planning, based on agent technology.

• Cellular automation models. Another research approach employs the construc-
tion of local models, where the active area has been virtually divided into cells,
such as [3] [54].

• Nature based models. Some of the models take their inspiration from nature.
The emotional ant model [10] extends the psychological information using a
biologically inspired ant agent as a crowd and Kirchner et al. [49] apply a bionics
approach to the cellular automation model.

2.3 Examples of Bridging the Research

Computer simulation can be used to evaluate the developed system’s performance.
Considering that real visual evidence for abnormal scenarios are rare or unsafe to



450 B. Zhan et al.

reproduce in a controllable way, Andrade et al. [4] have developed an approach
generating simulations to allow training and validation of computer vision systems
applied to crowd monitoring. The simulation is generated by a pedestrian path model
and a pedestrian body model. Vu et al. [90] conceive a test framework that generates
3D animations corresponding to behaviours recognised by an interpretation system.
In other words, this is a test system for a given interpretation system for generating
test animations. Traditional models can be borrowed for computer vision analysis.
Anotonini et al. [8][9] propose a framework using discrete choice model, which is
widely used in traffic simulations, for pedestrian dynamics modelling.

The work of traditional analysis shows that all of the factors or information
extracted from the real world using computer vision techniques is inter-related. More-
over, researchers have proposed the probable relationships in their work, which rep-
resent the human understanding of crowd dynamics. On the other hand, computer vi-
sion techniques have the ability of exploiting the special environmental constraints,
which could be applied to calibrate the proposed models. We can claim that it is pos-
sible that to develop intelligent systems combining these works with computer vision
approaches. The system would be capable of automatically understanding and mod-
elling the crowd behaviours at both instantaneous and recurrent level.

3 Measuring Crowd Motion

Algorithms exist to analyze simple scenes, where a few people enter and exit the
field of view of the deployed cameras. In such scenes, people and objects are iden-
tified and tracked throughout the network of cameras. People and objects, such as
vehicles, are tracked between frames1 and their trajectories are also predicted us-
ing conventional Kalman filters, or more sophisticated particle filter techniques.
We studied algorithms that use refined matching methods, exploiting local descrip-
tors to derive the dynamics features instead of providing a conventional tracking of
pedestrians. The problem with tracking in very cluttered and complex scenes is that
matching is not always possible and tracks are frequently lost, creating fragmenta-
tion in the tracking process. What we propose is tracking for short periods of time,
and we provide two algorithms to provide robust matching between frames for use
in short-time tracking. The extracted and matched dynamics features can then be
directly used in the process of crowd understanding and dynamics modelling.

3.1 Method 1: Pyramid-Based Interest Points Topological
Matching

In order to devise algorithms to automatically derive complex crowd dynamics, local
descriptors, classified as interest points have been extracted using colour gradient
information at scale space. Furthermore, besides the use of the extracted descriptors,

1 Tracking refers to matching and predicting position and form of extracted features between
time frames.
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an advanced matching improved by incorporating topological constraints has been
developed.

3.1.1 Extraction of Local Descriptor: Harris Detector

The first method employs a modified version of the Harris interest point detector
[31]). The Harris interest point detector provides a repeatable and distinctive de-
scriptor of the image features and it is view-point and illumination invariant. This
detector extracts feature points, making use of the three chromatic channels is de-
fined as the M matrix:

M = G(σ)⊗
(

Cx ·Cx Cx ·Cy

Cy ·Cx Cy ·Cy

)
(1)

In the operation the image is firstly smoothed using a standard Gaussian operator (of
deviation σ ). Cx and Cy are respectively the gradient in x and y directions of the pixel
chromatic triplet. They are estimated by applying the Gaussian derivative operator
G(σ) of (deviation σ ) to the smoothed image, this is efficiently implemented by
using the method from [89]. The interest points are then extracted using term R,
which is calculated as a combination of the Eigen values of the M matrix:

R = det(M)+κtrace2(M) (2)

Where κ is a constant where 00.4≤ κ ≤ 0.06. The points with local maximum are
selected as interest points. A multi-scale approach is used, generating the interest
points at the lowest (finest scale) layer and then projecting them up to the top (coars-
est scale) layer of the generated pyramid.

3.1.2 Point Matching

The matching is carried out in two steps: searching for the candidate matching points
by similarity, and then applying the topological constrains described later. Frequent

Fig. 3 Interest Point Generation, from bottom layer to top layer
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occlusions reduce the probability of identifying correct matches, as a result without
local support, similar gradient local regions might be found as plausible matches,
generating false positives. In this implementation a topological constraint is pro-
posed to make the search for correspondences more robust. Gabriel [29] suggested
a similar method using topological information, however in his algorithm the area
(object) of interest was predefined and the topological information was evaluated
by the already know centre of the object. In this approach, instead of detail track-
ing a particular object over long period, the motion of two consecutive frames is
more desirable. Therefore, the necessary local support is derived from local win-
dows centered at the interest point and the relative location of the interest points in
such windows is used. Support is estimated for the matched interest point pair inside
the support window.

3.1.3 Temporal Pyramidal Analysis

Temporal smoothing and matching is also carried out by comparing a number of N
spatial pyramids, corresponding to a specific time window. Thus, a spatial-temporal
pyramidal analysis of the sequence is generated for a number of frames. Tempo-
ral smoothing is employed to enforce time consistency on matches, reducing false
alarms generated by unstable interest points.

So matching is carried out in both space and time, starting at the highest level
(coarsest level) of each pyramid, searching interest point correspondences between
the initial frame of the N frames and all the other frames within the given time period
(corresponding to N−1 matches). Spatial matching works from the top (finest scale)
of a pyramid to the bottom (coarsest level). Then temporal integration of pyramidal
matches of interest point j in 0th frame can then be applied by combining the N
matches.

3.2 Method 2: Using Edge Continuity Constrains of Interest
Points

The second method is developed using local descriptors, but also incorporating
shape information. Inspired by the methodology used in deformable object track-
ing, edge information is extracted and descriptor points are extracted as points along
an edge with local maximum curvature. The information about an edge is main-
tained and used to impose the edgelet constraint and refine the estimate. Thus, the
advantage of using point features which are flexible to track, and the advantage of
using edge features which maintain structural information, are combined here.

3.2.1 Edge Retrieval

The Canny edge detector is employed to extract the edge information of a given
frame. Each Canny edge is a chain of points, and all the edges are stored in an edge
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(a) Original frame. (b) Edge chains and their bounding
boxes).

Fig. 4 Edge Chain

list. Figures. 4 show an example image frame and the extracted edge chains with
associated bounding boxes, respectively. It can be observed that even in a scene
which depicts a crowd of moderate density, edge chains can occlude each other,
increasing the descriptor matching complexity.

The Canny edge detector is an approach which is optimal for a step edge
corrupted by white noise. The optimality of the detector is related to three
criteria. The detection criterion is about low error rate. It is important that
edges occurring in images should not be missed and that there be no responses
to non-edges. The second criterion is that the edge points be well localized.
The distance between the edge pixels as found by the detector and the actual
edge is to be at a minimum. A third criterion is to minimize multiple responses
to a single edge. Thus, based on these criteria, the Canny edge detector was
proposed and has become one of the most popular edge detectors [82].

3.2.2 Curvature Estimation and Interest Point Extraction

Interest points can be quickly extracted for a sequence of frames, for instance with
the Harris corner operator used in the last section. However Harris interest points
can only represent the local characteristics of an image in isolation, while the shape
information of the moving person/people is lost. In this implementation the interest
points are from the edges and then the constraint is imposed that they lie on a specific
edge. Each edge can be represented by a parameterized curve:

x = x(t), (3)

y = y(t). (4)

The curve is smoothed with a Gaussian filter, as follows
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X(t) = G(t)⊗ x(t), (5)

X ′(t) = G′(t)⊗ x(t), (6)

X ′′(t) = G′′(t)⊗ x(t). (7)

The curvature of each edgelet can then be given by [71] :

κ =
X ′Y ′′ −Y ′X ′′

(X ′2 +Y ′2)
3
2

(8)

Corner points are defined and extracted as the local maxima of the absolute value
of curvature on each edge. Thus the edge representation is changed from a point
sequence to a corner point sequence, resulting in a list of corner point sequences for
all the edges of the image.

3.2.3 Point Matching and the Edgelet Constraint

Given two consecutive frames It and It+1, the motion is estimated for each extracted
point of interest. For each corner point with coordinate (x,y) in It a rectangular
search window is defined centering at (x,y)in It+1. A look-up table (LUT) contains
corner points and edge information is generated to enhance the matching. The corre-
spondence is matched by using curvature information of corner points in the search
window in LUT against the reference point. The error is calculated by the curvature.

Complex dynamics and frequent occlusions generated in crowd scenes make the
estimation of motion a very complex task. Point matching in isolation is too fragile
and prone to errors to provide a good motion estimator. If the interest points are
extracted on edge chains, then the edge constraint can be imposed and used.

For an image frame It , every edge is split to a uniform length edgelets repre-
sented by sub-sequences (so called edgelet). There are two reasons for doing this:
to avoid a very long edge that could be generated by several different objects, and
to enhance the matching of the edge fragments that are generated by occlusions.
For each corner point there are n candidate matching points. Each candidate point
belongs to an edgelet, thus there are m(m <= n) candidate matching edgelets. To
find the best match, three parameters are used: energy cost, variation of displace-
ments and the match length for each candidate, and these are combined into a single
matching score. The length of the edgelet is assumed to be sufficiently small so that
it would not split again to two or more matches. This is so that their candidate points
correspond to the same candidate sequence.

The matching is carried out over every point of the given edgelet, and an overall
matching will be examined to determine the matched edgelet.

3.3 Comparison of the Two Methods

When the scene is very complex, occlusions make it virtually impossible, not only
to track individuals, but also to estimate a stochastic background model. The two
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(a) (b)

(c) (d)

Fig. 5 Two scenes of different complexity levels are illustrated. The original frames (left)
and the extracted corner points (right) which are marked with red crosses on grey edges

described motion estimation methods were validated and compared. In both of the
algorithms, constraints are applied to improve the robustness of the matching be-
tween individual descriptors. The first algorithm carries out a local check of the
spatial temporal consistency of the colour gradient, supported by the local topol-
ogy constraints, and the second one uses the points of local extreme curvature along
Canny edges and applies contour constraints.

3.3.1 Testing Data

The two motion estimation algorithms are tested using three sequences taken from
crowded public space, and quantitative results are generated. In the following a brief
description of the test dataset used in the experiments is given. Then the details of
the testing methods adopted, and an explanation of the results generated from the
tests are introduced. Again additional visual results are included at the end of the
section. Sample frames from the three sequences are shown in Figure 6: sequence
1 (left) is a mid field scene with people scattered across the field of view; sequence
2 (middle) is a mid field scene with major motions taking place in certain areas;
sequence 3 (right) is a far field scene with pedestrians present in all parts of the field
of view, with some predominant trajectories.
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(a) (b) (c)

Fig. 6 Sample frames from 3 testing sequences

3.3.2 Testing Based on Local Descriptors

In this test only the quality of matching of individual local descriptors is consid-
ered. For each pair of consecutive frames, local descriptors in the initial frame are
compared with their corresponding local descriptors, found by the two presented al-
gorithms, in the target/second frame, respectively. Two measures, Mean Similarity
(MS) and Mean Absolute Error (MAE), are used here.

The images in Figure 7 represent the plots of MS and MAE for the two algorithms
tested against the three sequences. MS and MAE are calculated every frame along
the sequence. In each plot the x axis represents time (the number of the frame) and
the y axis represents the values of MS and MAE, respectively. Hence, for the two
algorithms the MS and MAE for the three testing sequences are both good, though
in most of the cases the second algorithm has a higher MS and a lower MAE. Also,
along the time scale the MS and the MAE produced from the first algorithm fluctuate
a lot while the second one produces more stable results. It can be concluded that the
second algorithm has a more desirable performances than the first one.

3.4 Testing Based on Motion Connect Component

The test here makes use of a connected components algorithm based on motion
vectors (so called MCC – Motion Connected Component). The algorithm groups
together motion vectors that are in close proximity and have common motion prop-
erties. The result of the MCC algorithm segments the motion field into clusters of
uniform motion group (e.g. a (part of) pedestrian or a group of pedestrians), and the
test is based on each MCC to assess the two algorithms. In order to assess the two
algorithms with MCC, two measures, which are from evaluating search strategies:
Recall and Precision, are adapted here.

For every frame an average Recall value and an average Precision value are cal-
culated. Figure 8 gives the plots of Recall and plots of Precision; the layouts of these
plots remain similar to the previous ones, though the y axis represents Recall and
Precision, respectively.

From the plots again the results of Recall and Precision of both of the algorithms,
especially the results of Recall, are satisfied. It can be observed that the results of
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(a)

(b)

(c)

Fig. 9 Number of MCCs along time for the 3 testing sequence, red lines for Algorithm 1;
green lines for Algorithm 2 (From top to bottom: sequence 1, sequence 2 and sequence 3).
Algorithm 3 detects much more MCCs for all of the three video sequences

Precision for sequence 3 is lower than the other three. One possible reason could
be that, as sequence 3 is a far field view for a crowded scene, when mapping the
bounding box of the MCC to the second frame, local descriptors of other MCC
could be included and noise could be introduced.
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When comparing the results of Recall, it can be seen that values for Algorithm 2
are always higher, though for sequence 2 and sequence 3 Precision values for Algo-
rithm 1 are slightly higher. Here another measure should be taken into consideration,
which is the number of the MCC detected by each algorithm. According to the plots
in Figure 9, in sequence 1 the average number of MCC detected by Algorithm 1
is around 20, while by Algorithm 2 the number is around 100; in sequence 2, the
numbers are around 20 and 200, respectively; in sequence 3 the numbers are around
40 and 280, respectively. Algorithm 2 detects much more MCC, especially for se-
quence 2 and 3. Due to the above fact and the fact Algorithm 2 produces higher
Recall, it can be deduced that the slight drawback of the Precision only indicates
more noise has been introduced to the assessment.

4 Modelling Crowd Dynamics

Crowds appear to move at random in a scene. In fact, this is not exactly true: people
move purposively and their movements are guided by intentions. For instance, in a
railway station or at an airport, people tend to enter and exit the scene at the gates and
usually stop in front of a timetable, a shop or a cash point. Although at first chaotic,
the video of a crowded place, if observed attentively, reveals main trajectories. We
have studied two methods to extract the main paths or directions of motion of a
crowded scene. They are described in the following sections of the chapter.

4.1 Statistical Analysis

The proposed method can be summarized in the following steps:

• Occurrence PDF(Probability Density Functions): foreground detection, con-
nected components, accumulator,

• Orientation PDF(Probability Density Functions): correlation matrix, accumula-
tor of block matching,

• Path discovery: previous orientation, probability calculation, path split.

4.1.1 Occurrence PDF

It is unrealistic to precompile a background model of a complex real world scene,
such as those video recorded by security cameras in public spaces. This is because
of sudden or continuous changes in illumination, shadows and noise in the video
signals. This method assumes that the scene is not too crowded and the Gaussian
mixture model [83] is used to build a robust model of the background of the scene.
The foreground data is further processed to reduce noise. In particular, connected
components have been implemented. Connectivity of foreground pixels gives more
robustness to the foreground data and assures that only large foreground blobs are
accepted for further analysis, while smaller blobs are rejected as likely noise.
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A background model is essential for video analysis, to separate foreground
data from the scene. There is a standard background adaptation carried out by
averaging images over time, creating a background approximation which is
similar to the current static scene except where motion occurs. While this is
effective in situations where objects move continuously and the background is
visible a significant portion of the time, it is not robust for scenes with many
moving objects, particularly if they move slowly. A Gaussian mixture model
is proposed in [83]. It is an adaptive tracking system that is flexible enough to
handle variations in lighting, moving scene clutter, multiple moving objects
and other kinds of changes to the observed scene. Rather than explicitly mod-
elling the values of all the pixels as one particular type of distribution, the
values of a particular pixel are simply modelled as a mixture of Gaussians.
Based on the persistence and the variance of each of the Gaussians of the mix-
ture, the model determines which Gaussians may correspond to background
colours. Pixel values that do not fit the background distributions are consid-
ered foreground until there is a Gaussian that includes them with sufficient,
consistent evidence supporting it.

For each frame foreground, features are accumulated for every pixel, so that af-
ter a relatively long video sequence the accumulator of the foreground occurrence
throughout the whole image will have some information.

4.1.2 Orientation PDF

The image plane is segmented into a regular grid of cells (N ×M). The dimen-
sion of each cell is a multiple of 2 and each cell is square-shaped (K ×K). The
idea is to speed up the matching process employed as a coarse estimator of motion
between frames. Motion is estimated between consecutive frames, using the fore-
ground blocks of the first frame as a reference and searching for an optimal match
in the second frame. In the current implementation, block matching is carried out in
a 3x3 neighborhood, around the selected foreground cell. A cell is labelled as fore-
ground if the majority of its pixels are indeed foreground. Matching performance is
improved by matching only between foreground cells, ignoring background cells.

Each cell is therefore associated with a histogram representing the eight possible
directions of motion. The intention here is to build a local representation of motion,
similar to a discrete reinforcement learning technique [84], where each cell of the
table has associated a quality array, indicating the likelihood of transition from the
current cell to a neighbouring cell. The final outcome is an orientation PDF, which
could be interpreted as the global optical flow of the scene.

4.2 Path Discovery

The work described in the previous sections provides two PDFs: one for the oc-
currence and one for the orientation of a scene. To discover the main paths, the
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information and the extracts of those corresponding to higher likelihood/probability
need to be combined. Ideally the paths are identified corresponding to the modes of
a probability density function that combines both occurrence and orientation infor-
mation.

In order to estimate the main paths make a number of assumptions was made.
Path origin: The assumption is that all paths originate from the boundaries of the

scene. Consequently, path discovery is started from a cell at the boundary of the
scene and having high occurrence probability. This assumption would not work if
the scene had an entrance or exit in the middle of the image, but this can be overcome
relatively easily by using user-defined boundaries.

Graceful continuation/Smooth trajectory: As observed, the paths have a high
probability to maintain their orientation (e.g. people are more likely to go on a
straight line, and seldom go backwards.) So the expected direction of motion is
modelled with a Poisson distribution, with its maximum in the neighboring cell
along the current direction of motion.

The idea is to spread the likelihood of change in direction unevenly, maintain-
ing the previous orientation as the one with highest probability, and forcing the
other directions (change in direction) to have a lower likelihood. From the start
point, the probability is calculated for each neighboring block using the occurrence
PDF (PDFocc), the block matching accumulator (Pb) and the orientation probabil-
ity (PDFor). Furthermore, to avoid repeating calculations from the same block, the
visited cells are marked and their probability is set to to 0 each time the path discov-
ery process has to deal with them.

The process will follow the highest probability block. Also, a way of deciding
when to split a trajectory in two or more sub-trajectories is devised. This technique
works on a threshold that estimates whether two or more paths are viable, given
their associated likelihood. However, so as not to generate too many branches, only
a single split along a trajectory is admitted.

Once all paths are identified, a fitting process takes place. This serves two pur-
poses: (i) to have a compact representation of the path, (ii) to have a faster way of
estimating the distance between a blob/bounding rectangle, identified by new fore-
ground data, and the spline, and consequently estimating an error. The final path is
represented as a curve by fitting a uniform Cubic B-spline.

4.3 Self-Organizing Map for Learning Crowd Dynamics

The previous approach is based on background modelling, which cannot work prop-
erly under extremely crowded situations. The crowd PDFs derived by the described
method are not global statistics. Also, the number of dimensions of the model is
relatively high, especially for the orientation PDF. Those are disadvantages can be
overcome by the method described in this section.

Here we describe some work carried out applying self-organized maps to learn
the dominant crowd dynamics. The self-organized map (SOM) model [32] is a well
known dimensionality reduction method proved to bear resemblance with some
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features of the human brain, which represent different sensory input by topologi-
cally ordered computational maps. SOMs are widely used in mapping multidimen-
sional data onto a low-dimensional map. Examples of applications include the anal-
ysis of banking data, linguistic data [50] and image classification [55]. This section
proposes a system learning the crowd dynamics with the SOM. The system uses
dynamics information as input; and it generates SOM which captures the dominant
recurrent dynamics.

4.3.1 Building SOM for a Crowded Scene

The most common SOMs have neurons organized as nodes in a one- or two-
dimensional lattice. The neurons of a SOM are activated by input patterns in
the course of a competitive learning process. At any moment in time only one
output neuron is active, the so called winning neuron. Input patterns are from a
n-dimensional input space and are then mapped to the one- or two- dimensional
output space of the SOM. Every neuron has a weight vector which belongs to the
input space.

The desirable SOM in this application should capture the two major components
of the crowd dynamics: occurrence and orientation. Thus, a four dimensional in-
put space is chosen to be the weight space of the SOM, which can be represented
as f : (x,y,θ ,ρ). Each data from the input space can be explained as the location
where crowd moves and the motion vectors in the form of angle (θ ) and magnitude
(ρ). The SOM used in this experiment is organized in a two-dimensional space and
represented by a square lattice.

There are two phases for tuning the SOM with an input pattern I, competing
and updating. In the competing phase every neuron is compared with I; the sim-
ilarly of I and the weights of all of the neurons are computed; and the neuron
N(iw, jw)(denoted by the neuron’s coordinates of the lattice) with highest similarity
is selected as the winning neuron. In the update phase, for each neuron N(i, j), a
distance is calculated as:

d2 = (i− iw)2 +( j− jw)2 (9)

the topological neighborhood function is then defined as:

h(n) = exp(− d2

2σ2(n)
) (10)

where n denotes the time, which can also be explained as the number of iterations.
and σ2(n) decreases with the time. The weight of each neuron N(i, j) at time n + 1
is then defined by:

w(n + 1) = w(n)+η(n)h(n)(x−w(n)) (11)

where w(n) and w(n+1) is the weight of the neuron at time n and n + 1. η(n) is the
function of learning rate, which always decreases with time.
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Fig. 10 The example frames from three different scenes

4.3.2 Visualization

Figure 10 illustrates three different video sequences with different dynamics. These
video sequences have been input into the system, and Figure 11 shows the output
SOMs. In the figure SOMs are visualized in the input space, i.e. showing the weight
vector of each neuron. In the visualization, the colour arrows and their locations
are from the weight vector of neurons; the location of the arrows are from the first
two components of the weight vectors (x,y), and the arrows show the second two
components - the components of motion (θ ,ρ). The different colours of the arrows
are also indicating the different orientation of the motion.

In the first video (the left column in Figure 10) the major crowd is moving from
bottom left to top right of the scene. There is another crowd flow from bottom right
of the scene which joins the major flow. In its SOM (the first one in Figure 11)
the neurons with green arrows are clearly from the major flow and the ones with
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Fig. 11 The visualization of built SOMs
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red and purple arrows are from the minor flow. In the second video (the middle
column in Figure 10 it is an area of an entrance to a public space. So most of the
people move from top to bottom of the scene. The crowd in the upper part of the
scene is sparser and moves faster when compared to the crowd in the lower part
of the scene. There is also a minor flow, which joins the major flow from the right
of the scene. In the built SOM (the second SOM in Figure 11), again the flows are
clearly indicated. Furthermore, the SOM takes an umbrella shape, which represents
the shape of the flow constrained by the obstacles in the scene. In the third video
(the right column in Figure 10) the scene is a large open area with multiple crowd
flows. The major flow is moving from right to left; however there are several minor
flows, most of which are in the lower part of the scene. Again the SOM (the third in
Figure 11) captures the major dynamics and also some minor flows. From the three
examples, it can be concluded that the SOMs not only preserves the dominant mo-
tion vector, but also represents the shape of the regions with dominant motion of the
scenes.

5 Discussion

This chapter has described novel methods for an intelligent system which can au-
tomatically analyze crowd phenomena. The methods are based on computer vision
techniques, combined with statistical techniques and a neural network. In particular,
local descriptors matching with refined constraints are proposed to tackle the prob-
lem of crowd motion measurements. Two novel algorithms to estimate the motion
of a crowd in complex scenes are presented, evaluated and compared in this chapter.
The first algorithm employs Harris corner points and topological constraints are ap-
plied to make the matching of the points more robust. The second algorithm makes
use of shape information. Local maximum curvatures are used as local descriptors
and the edgelet constraints are enforced for the refined matching.

Statistical methods using Probability Density Functions are employed to learn the
crowd dynamics by mining the main path of the crowded scene. Two PDFs (PDFocc

and PDFor) are generated during this process. A path recovering method is devel-
oped by calculating the probability along the path using the PDFs. The results show
that this work is a simple approach with reasonable results. Another approach of
crowd dynamics learning adapts Self Organizing Maps to capture the main recur-
rent dynamics. There are a couple of possible extensions of the work. Especially
for latter approach, analyzing the organization of the SOM would make it possible
to understand the characters of the dynamics. Also the development of a metric for
comparing SOMs could be very useful to enhance the automatic classification of
crowded scenes.

Acknowledgements. This work was partially supported by the British Telecom Group PLC.



The Analysis of Crowd Dynamics: From Observations to Modelling 467

References

1. Adang, O.M., Stott, C.: A European study of the interaction between police and
crowds of foreign nationals considered to pose a risk to public order, http://
policestudies.homestead.com/Euro2004.html

2. ADVISOR: http://advisor.matrasi-tls.fr/
3. AEA, Techology: A technical summary of the aea egress code. Technical Report 1

(2002)
4. Andrade, E., Fisher, R.: Simulation of crowd problems for computer vision. In: First

International Workshop on Crowd Simulation, vol. 3, pp. 71–80 (2005)
5. Andrade, E., Fisher, R.: Hidden Markov models for optical flow analysis in crowds. In:

Proceedings of the 18th International Conference on Pattern Recognition (ICPR 2006),
Washington, DC, USA, vol. 01, pp. 460–463. IEEE Computer Society, Los Alamitos
(2006)

6. Andrade, E., Fisher, R.: Modelling crowd scenes for event detection. In: Proceedings
of the 18th International Conference on Pattern Recognition (ICPR 2006), vol. 01, pp.
175–178. IEEE Computer Society, Washington (2006)

7. Andrade, E.L., Blunsden, S., Fisher, R.B.: Performance analysis of event detection
models in crowded scenes. In: Proc. Workshop on Towards Robust Visual Surveillance
Techniques and Systems at Visual Information Engineering 2006, Bangalore, India, pp.
427–432 (2006)

8. Antonini, G., Bierlaire, M., Weber, M.: Simulation of pedestrian behaviour using a
discrete choice model calibrated on actual motion data. In: 4th STRC Swiss Transport
Research Conference, Ascona (2004)

9. Antonini, G., Venegas, S., Thiran, J.P.: A discrete choice pedestrian behaviour model in
visual tracking systems. In: Advanced Concepts for Intelligent Vision Systems, Brus-
sels, Belgium, pp. 273–280 (2004)

10. Banarjee, S., Grosan, C., Abarha, A.: Emotional ant based modeling of crowd dynam-
ics. In: Seventh International Symposium on Symbolic and Numeric Algorithms for
Scientific Computing (SYNASC 2005), pp. 279–286 (2005)

11. Beauchemin, S., Barron, J.: The computation of optical flow. ACM Computing Surveys
(CSUR) 27(3), 433–466 (1995)

12. BEHAVE: http://www.homepages.informatics.ed.ac.uk/rbf/
BEHAVE/

13. Blackman, S.: Multiple hypothesis tracking for multiple target tracking. IEEE
Aerospace and Electronic Systems Magazine 19(1), 5–18 (2004)

14. Boghossian, B., Velastin, S.: Motion-based machine vision techniques for the man-
agement of large crowds. In: The 6th IEEE International Conference on Electronics,
Circuits and Systems, vol. 2 (1999)

15. Bouguet, J.: Pyramidal Implementation of the Lucas Kanade Feature Tracker Descrip-
tion of the algorithm. Intel Corporation, Microprocessor Research Labs (2000)

16. Brenner, M., Wijermans, N., Nussle, T., de Boer, B.: Simulating and controlling civilian
crowds in robocup rescue. In: Proceedings of RoboCup 2005: Robot Soccer World Cup
IX. Osaka (2005)

17. Brostow, G., Cipolla, R.: Unsupervised Bayesian Detection of Independent Motion in
Crowds. In: Proceedings of the 2006 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, vol. 1, pp. 594–601. IEEE Computer Society, Wash-
ington (2006)

http://policestudies.homestead.com/Euro2004.html
http://policestudies.homestead.com/Euro2004.html
http://advisor.matrasi-tls.fr/
http://www.homepages.informatics.ed.ac.uk/rbf/BEHAVE/
http://www.homepages.informatics.ed.ac.uk/rbf/BEHAVE/


468 B. Zhan et al.

18. Cai, Y., de Freitas, N., Little, J.J.: Robust visual tracking for multiple targets. In:
Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3954, pp. 107–
118. Springer, Heidelberg (2006)

19. Chan, M.T., Hoogs, A., Bhotika, R., Perera, A., Schmiederer, J., Doretto, G.: Joint
recognition of complex events and track matching. In: CVPR 2006: Proceedings of the
2006 IEEE Computer Society Conference on Computer Vision and Pattern Recogni-
tion, pp. 1615–1622. IEEE Computer Society, Washington (2006) http://dx.doi.
org/10.1109/CVPR.2006.160

20. Chang, T., Gong, S., Ong, E.: Tracking multiple people under occlusion using multiple
cameras. In: British Machine Vision Conference, pp. 566–575 (2000)

21. Crowd, Dynamics: http://www.crowddynamics.com/
22. Crowd, MAGS: http://www2.ift.ulaval.ca/muscamags/

Dnd-crowdmags-project.htm
23. Cupillard, F., Bremond, F., Thonnat, M.: Behaviour recognition for individuals, groups

of people and crowd. IEE Seminar Digests 7 (2003)
24. Cupillard, F., Bremond, F., Thonnat, M., INRIA, F.: Group behavior recognition with

multiple cameras. In: Sixth IEEE Workshop on Applications of Computer Vision, 2002
(WACV 2002). Proceedings, pp. 177–183 (2002)

25. Davies, A., Yin, J., Velastin, S.: Crowd monitoring using image processing. Electronics
& Communication Engineering Journal 7(1), 37–47 (1995)

26. Dong, L., Parameswaran, V., Ramesh, V., Zoghlami, I.: Fast Crowd Segmentation Using
Shape Indexing, Rio de Janeiro, Brazil (2007)

27. Doucet, A., Godsill, S., Andrieu, C.: On sequential Monte Carlo sampling methods for
Bayesian filtering (2000)

28. Elgammal, A., Davis, L.: Probabilistic framework for segmenting people under occlu-
sion. In: Eighth IEEE International Conference on Computer Vision, 2001. ICCV 2001.
Proceedings, vol. 2, pp. 145–152 (2001)

29. Gabriel, P., Hayet, J., Piater, J., Verly, J.: Object tracking using color interest points. In:
Proceedings. IEEE Conference on Advanced Video and Signal Based Surveillance, pp.
159–164 (2005)

30. Gabriel, P., Verly, J., Piater, J., Genon, A.: The state of the art in multiple object tracking
under occlusion in video sequences. Advanced Concepts for Intelligent Vision Systems,
166–173 (2003)

31. Gouet, V., Boujemaa, N.: About optimal use of color points of interest for content-based
image retrieval. Technical Report pp. RP–4439 (2002)

32. Haykin, S.: Neural Networks: A Comprehensive Foundation. Prentice Hall PTR, Upper
Saddle River (1994)

33. Helbing, D., Farkas, I., Vicsek, T.: Simulating Dynamical Features of Escape Panic.
Letters to Nature 407, 487–490 (2000)

34. Helbing, D., Molnár, P.: Social force model for pedestrian dynamics. Physical Review
E 51(5), 4282–4286 (1995)

35. Helbing, D., Molnar, P.: Self-organization phenomena in pedestrian crowds
(1997), http://www.citebase.org/abstract?id=oai:arXiv.org:
cond-mat/9806152

36. Horn, B., Schunck, B.: Determining Optical Flow. Artificial Intelligence 17(1-3), 185–
203 (1981)

37. Hu, W., Tan, T., Wang, L., Maybank, S.: A survey on visual surveillance of object
motion and behaviors. IEEE Transactions on Systems, Man, and Cybernetics, Part C:
Applications and Reviews 34(3), 334–352 (2004)

http://dx.doi.org/10.1109/CVPR.2006.160
http://dx.doi.org/10.1109/CVPR.2006.160
http://www.crowddynamics.com/
http://www2.ift.ulaval.ca/muscamags/Dnd-crowdmags-project.htm
http://www2.ift.ulaval.ca/muscamags/Dnd-crowdmags-project.htm
http://www.citebase.org/abstract?id=oai:arXiv.org:cond-mat/9806152
http://www.citebase.org/abstract?id=oai:arXiv.org:cond-mat/9806152


The Analysis of Crowd Dynamics: From Observations to Modelling 469

38. Huang, C., Ai, H., Li, Y., Lao, S.: Vector boosting for rotation invariant multi-view
face detection. In: Tenth IEEE International Conference on Computer Vision, vol. 1,
pp. 446–453 (2005)

39. Hughes, R.: A continuum theory for the flow of pedestrians. Transportation Research
Part B: Methodological 36(6), 507–535 (2002)

40. INRIA: http://www.inria.fr/rapportsactivite/RA2005/orion/
uid1.html

41. Isard, M., Blake, A.: A mixed-state CONDENSATION tracker with automatic model-
switching. In: IEEE International Conference on Computer Vision, pp. 107–112 (1998),
http://citeseer.ist.psu.edu/isard98mixedstate.html

42. ISCAPS: http://www.iscaps.reading.ac.uk/home.htm
43. Jones, M., Viola, P.: Fast multi-view face detection. Mitsubishi Electric Research Lab

TR-20003-96 (2003)
44. Kang, H., Kim, D., Bang, S.: Real-time multiple people tracking using competitive

condensation. Proc. of the Intl. Conference on Pattern Recognition 1, 413–416 (2002)
45. Karlsson, R., Gustafsson, F.: Monte Carlo data association for multiple target tracking.

Target Tracking: Algorithms and Applications (Ref. No. 2001/174), IEE 1 (2001)
46. Khan, S.M., Shah, M.: A multiview approach to tracking people in crowded scenes

using a planar homography constraint. In: Leonardis, A., Bischof, H., Pinz, A. (eds.)
ECCV 2006. LNCS, vol. 3954, pp. 133–146. Springer, Heidelberg (2006)

47. Khan, Z., Balch, T., Dellaert, F.: MCMC-based particle filtering for tracking a vari-
able number of interacting targets. IEEE Transactions on Pattern Analysis and Machine
Intelligence 27(11), 1805–1819 (2005)

48. Kim, K., Davis, L.S.: Multi-camera tracking and segmentation of occluded people on
ground plane using search-guided particle filtering. In: Leonardis, A., Bischof, H., Pinz,
A. (eds.) ECCV 2006. LNCS, vol. 3953, pp. 98–109. Springer, Heidelberg (2006)

49. Kirchner, A., Schadschneider, A.: Simulation of evacuation processes using a bionics-
inspired cellular automaton model for pedestrian dynamics. Physica A: Statistical Me-
chanics and its Applications 312(1-2), 260–276 (2002)
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Computational Intelligence for the Collaborative
Identification of Distributed Systems

Giorgio Biagetti, Paolo Crippa, Francesco Gianfelici, and Claudio Turchetti

Abstract. In this chapter, on the basis of a rigorous mathematical formulation, a
new algorithm for the identification of distributed systems by large scale collabora-
tive sensor networks is suggested. The algorithm extends a KLT-based identification
approach to a decentralized setting, using the distributed Karhunen-Loève transform
(DKLT) recently proposed by Gastpar et al.. The proposed approach permits an ar-
bitrarily accurate identification since it exploits both the asymptotic properties of
convergence of DKLT and the universal approximation capabilities of radial basis
functions neural networks. The effectiveness of the proposed approach is directly
related to the reduction of total distortion in the compression performed by the sin-
gle nodes of the sensor network, to the identification accuracy, as well as to the low
computational complexity of the fusion algorithm performed by the fusion center to
regulate the intelligent cooperation of the nodes. Some identification experiments,
that have been carried out on systems whose behavior is described by partial differ-
ential equations in 2-D domains with random excitations, confirm the validity of this
approach. It is worth noting the generality of the algorithm that can be applied in a
wide range of applications without limitations on the type of physical phenomena,
boundary conditions, sensor network used, and number of its nodes.

1 Introduction

In the last few years collaborative signal processing with distributed sources of data,
signals, images and natural phenomena has been gaining importance.
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Thanks to the recent advances in hardware technologies, today it is possible to
realize low-power low-cost wireless devices with limited on-board processing ca-
pabilities and sensing units that are able to detect information from the distributed
environment [1].

Even though individual sensors can only perform simple local computation and
communicate over a short range at low data rate, when deployed in large numbers
they can form an intelligent collaborative network interacting with the surrounding
environment in a large spatial domain.

Sensor networks (SNs) characterized by low computational complexity, great
learning capability, and efficient collaborative technology are highly desirable to
discriminate, regulate and decide actions on real phenomena in many applications
such as environmental monitoring, surveillance, factory instrumentation, defence
and so on.

In classical multi-sensor schemes all the local sensors communicate their data to a
central processor, that performs optimal estimation based on conventional statistical
techniques. Conversely, in decentralized processing, some preliminary processing
of data (often lossy compression) is locally carried out and condensed information
is sent to a central processing unit, often known as the fusion center, so that the re-
sulting sensor network has intelligence at each node [19]. Moreover, physical limita-
tions can be present in the communication links between the sensors and the fusion
center. In such cases, local data quantization/compression is not only a necessity,
but also an integral part of the design of sensor networks. In addition, the sensor
observations are usually corrupted by noise whose distribution can be difficult to
characterize in practice, especially for large networks. Therefore, it is important to
design optimal decentralized estimation schemes in the presence of unknown sensor
noise as well as channel bandwidth limitations.

1.1 Sensor Networks: The State of the Art

Sensor networks represent an interesting and highly active research topic, with many
important results being constantly discovered and published on the subject. In this
section only a very concise summary of the main and most recent contributions is
listed.

Kunniyur et al. determined in [27] that as the number of sensors grows there
exists, under mild assumptions, a critical point in time determined solely by the life-
time distribution at which the number of emergent lacunae is asymptotically Pois-
son. Dana et al. established in [10]: (i) that for n nodes placed in a domain of fixed
area, with probability converging to one as n grows, the power efficiency scales at
least by a factor of

√
n, and (ii) a random network with n relay nodes and r simul-

taneous transmitter/receiver pairs located in a domain of fixed area can achieve a
power efficiency that scales by a factor of

√
n. Dukes et al. derived in [13] that an

arc-decomposition of the complete λ-fold directed graph
−→
Kn into directed complete

bipartite subgraphs
−→
Ka,b, as a model for ternary scheduling in wireless SNs, can be
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used to guarantee that every ordered pair of nodes can communicate in λ time slots.
Baek et al. established in [2] that if the sensed data is bursty in space and time, then
one can reap substantial benefits from aggregation and balancing. Georgiadis et al.
determined in [20] that starting from a characterization of the optimal superflow
amounts to obtaining a structural decomposition of the network in a sequence of
disjoint subregions with decreasing overload, such that traffic flows only from re-
gions of higher overload to regions of lower overload, it is possible to state that the
optimal superflow represents the smoothest trajectory to overflow, followed by the
network in case of instability. Toumpis et al. developed in [36] effective equations
for the design of large wireless sensor networks that can be deployed in the most
efficient manner, not only avoiding the formation of bottlenecks, but also striking
the optimal balance between reducing congestion and having the data packets fol-
low short routes. Dousse et al. determined in [12] that communications occurring
at a fixed nonzero rate imply a fraction of the nodes to be disconnected. Gastpar
et al. established in [18] that if all nodes act purely as relays for a single source-
destination pair, then capacity grows with the logarithm of the number of nodes.
Haenggi showed in [22] that the density function of the distance to the n-nearest
neighbor of a homogeneous process in R

M is governed by a generalized gamma dis-
tribution. Barros et al. determined in [3] that the information as flow view provides
an algorithmic interpretation for several results, among which perhaps the most im-
portant one is the optimality of implementing codes using a layered protocol stack.
Chamberland et al. showed in [6] that on the basis of the Gartner-Ellis theorem and
similar large-deviation theory results, it is possible to establish that performance im-
proves monotonically with sensor density, whilst a finite sensor density is defined to
be optimal in the stochastic signal case. Xiao et al. proposed in [41] a new decentral-
ized estimation scheme that is universal in the sense that each sensor compression
scheme requires only the knowledge of local SNR, rather than the noise probabil-
ity distribution functions (pdf), while the final fusion step is also independent of
the local noise pdfs. Franceschetti et al. determined in [15] that, on the basis of the
Chen-Stein method of Poisson approximation, it is possible to show derivations and
generalizations that are able to improve upon and simplify previous results that ap-
peared in the literature. Xue et al. showed in [42]: (i) the exact threshold function for
μ-coverage for wireless networks modeled as points uniformly distributed in a unit
square, with every node connecting to its nearest neighbors, and (ii) that the network
will be connected with probability approaching one. Yang et al. established in [43]
that cooperative SNs with a mobile access point and no energy constraints but pos-
sibly misinformed nodes have the same capacity as with no misinformed sensors, if
polling can be performed. Luo presented in [29] that: (i) the sensors are necessary
and sufficient to jointly estimate the unknown parameter within a fixed root mean
square error, and (ii) the optimal decentralized estimation scheme suggests allocat-
ing sensors to estimate the i-th bit. Liu et al. introduced in [28] an iterative algorithm
to construct distributed quantizers that are person-by-person optimal. Tay et al. de-
rived in [35] an asymptotically optimal strategy for the case where sensor decisions
are only allowed to depend on locally available information, and global sharing of
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side information does not improve asymptotic performance, when the “Type I” error
is constrained to be small.

1.2 Identification of Distributed Systems

The availability of scalable, flexibly deployable, and low-maintenance, energy-
efficient sensor networks makes it possible to detect information on systems dis-
tributed in large domains in order to model their behavior. In mathematical lan-
guage modeling a physical system corresponds to solve the system identification
problem, namely given a set of input-output experimental data, find a mathematical
model that describes the dynamic input-output relationship with sufficient accuracy.
Although this problem has been extensively studied during the last four decades,
and significant results have been obtained in this field [30], the general problem of
identifying a distributed system on a large spatial domain has not been exhaustively
investigated yet.

Several early works have demonstrated that one of the main features of neural
networks such as Multilayer Perceptrons (MLPs) [9, 16, 26], Radial Basis Function
(RBF) networks [31] and Approximate Identity Neural Networks (AINNs) [7, 37]
is their ability to approximate some classes of input-output functions. These works
have also shown how the degree of accuracy of the approximation depends on the
learning algorithm as well as on the number of neurons available. Also, in the last
years, neural networks have extensively used for modeling natural and artificial
phenomena, for identifying and controlling dynamical systems as well as for ap-
proximating deterministic or random input–output functions representing unknown
systems and/or their control laws.

Among these works, Schilling et al. in [34] presented an effective technique
for approximating multivariate continuous functions with multidimensional raised-
cosine type RBF networks. Ferrari et al. in [14] used an algebraic approach for
approximating smooth multivariate nonlinear functions by feedforward neural net-
works. Huang et al. in [25] presented a new sequential learning algorithm for RBF
networks, referred to as generalized growing and pruning algorithm for RBF, in
order to approximate functions with any arbitrary distribution of input training sam-
ples/data. Huang et al. in [24] also proved in theory that the single-hidden-layer
feedforward networks with randomly generated hidden nodes are actually universal
approximators. Wu et al. in [40] proposed a novel neural organization of generalized
adalines (adaptive linear elements) of Widrow for data driven function approxima-
tion. Wedge et al. in [39] presented an efficient function approximation through a
hybrid RBF sigmoid neural network with a three-step training algorithm that utilizes
both global search and gradient descent training. The algorithm used is intended to
identify global features of an input-output relationship before adding local detail to
the approximating function. Belli et al. in [4] showed that some classes of artificial
neural networks exist such that they are capable of providing arbitrarily approx-
imation, in the mean square sense, to prescribed stationary stochastic processes.
Finally Crippa et al. in [8] and Turchetti et al. in [38] demonstrated the ability of
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stochastic neural networks to approximate nonlinear input-output random transfor-
mations, thus widening the range of applicability of these networks to nonlinear
systems with memory.

Based on these premises, the aim of this chapter is to suggest an innovative frame-
work for the identification of nonlinear non-stationary distributed systems. This ap-
proach is based on a centralized intelligent identifier that makes the best identi-
fication in a distributed setting on a chosen ensemble of realizations and with no
constraints in terms of model kind and/or model order. Methodologically, we define
a stochastic setting where the nonlinear system to be identified generates nondeter-
ministic signals, i.e., stochastic processes (SPs), from given initial conditions and
random parameters of input signals. In this way, the set of input-output pairs so ob-
tained shows complex but identifiable geometrical relationships in the Hilbert spaces
obtained by KLT-transformation of the outputs, because of the intrinsic separabil-
ity property of the Karhunen-Loève transform (KLT) and uniformity properties of
the systems considered. As a subsequent step we define a computational intelligence
technique for approximating with arbitrary accuracy the previously mentioned map-
pings that are able to globally identify the distributed system.

The global optimization of the identification performance, the computational
complexity, and the interactions between network elements is performed in a col-
laborative setting, exploiting and developing the cooperation mechanisms that un-
derpin other related methodologies such as the distributed KLT [17]. This approach
is particularly suitable in this context since an iterative algorithm that cooperatively
minimizes the overall compression-induced distortion is suggested, and its conver-
gence properties stated and proved.

The collaborative optimization of the distributed identification is a key factor for
the extension from a centralized setting, in fact it allows to manage the evolution
of the identifier with respect to the phenomena under analysis, the devolution of
nodes, and the cooperative diversity of the network nodes, and all the other aspects
that characterize sensor networks.

The proposed technique has been proven on physical models of real phenomena
described by partial differential equations (PDEs) with random input signals and
simulated in a CAD/CAM simulation environment. The experimental results ob-
tained clearly show the effectiveness of the suggested identification methodology
and its excellent compression capability. With no limitations on the type of model,
environment geometry and model order the technique represents an innovative and
very powerful framework in a large number of applications.

This chapter is organized as follows. Section 1 introduces the state of the art and
the current best practices of sensor networks and ad-hoc networks. In Section 2 the
mathematical representation of distributed systems using the KLT is given. Section 3
is devoted to the KLT-based algorithm, defined by means of an approximating non-
linear mapping based on RBF networks, for the identification of distributed systems.
In Section 4 the problem of identifying a distributed system by means of a network
of independent sensors is faced and solved. Section 5 reports the experimental re-
sults achieved identifying some physical systems whose behaviors are described by
partial differential equations. Finally Section 6 concludes this chapter.
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2 Modeling a Distributed System by the Karhunen-Loève
Transform

Let us consider in a domain D ⊂ R
Z the functional F , depending on the position

point p =
[
p′ p′′ . . . p(Z)

]T ∈ D, the time t, a generic input signal u(t) and some
initial condition c,

y (t, p) = F
(

u (τ)|[t0,t) , t, p, c
)

, y ∈ R (1)

represents a scalar field, that is the behavior of a distributed system to be identified.
Well known examples of distributed systems are those described by partial dif-

ferential equations.
The main problem in system identification is due to the great extent of input

space which makes it difficult to achieve an exhaustive stimulation of the system.
Nevertheless, in most application problems a complete description of the system is
not required, since it is sufficient to restrict the input space to the subset U of signals
actually occurring in the problem under observation. The identification of systems
can thus be more effective if the input and output signals u and y are regarded as
stochastic processes (SPs) u and y, and the vector c of the initial conditions is also
reckoned as a random variable (RV) vector c.

Let us introduce the setH of all real-valued random variables (RVs) a, satisfying
the relationships E{a} = 0 and E

{|a|2} <∞ where the symbol E{·} denotes the
expectation. With the above considerations in mind, we assume that U is spanned
by the signals u(t, a) where a is an RV that parameterizes the process u(t). Corre-
spondingly, y(t, a) varies within a subset Y so that (1) establishes a transformation
between SPs given by

y(t) = y(t, p,x) = F {u(τ, a)|[t0,t), t, p, c
}

, u ∈ U , y ∈ Y (2)

where x = [a cT ]T is the collection of all parameters a related to the input process
and the initial conditions c, so that the system output is a function of the time t and
vector x alone. This assumption is equivalent to restricting the input space only to
the most likely signals.

Assuming the domain D has been discretized by a mesh defined by the nodal
points p1, p2, . . . , pS then (1) reduces to S functionals

y� (t,x) = y (t, p�,x) = F
(

u (τ, a)|[t0,t) , t, p�, c
)

, � = 1, . . . , S (3)

Moreover time discretization yields to

y� (n,x) = y (n, p�,x) = F
(

u (η,a)|[0,n) , n, p�, c
)

,

� = 1, . . . , S , n = 0, 1, . . . , Ls − 1 (4)

Let us introduce the vectors y� ∈ R
Ls×1
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y� � [y� (0) · · · y� (Ls − 1)]T , � = 1, . . . , S (5)

and assume L = S Ls, the vector y ∈ R
L×1,

y �
[
yT

1 yT
2 · · · yT

S

]T
= [y1 (0) y1 (1) · · · y1 (Ls − 1) · · · yS (0) yS (1) . . . yS (Ls − 1)]T (6)

is the discrete-space discrete-time representation of the scalar field y (t, p). This
representation holds for every system that possesses the properties of uniformity
and causality.

It is well-known that if Y is in a Hilbert space then y, defined by (6) and with
its realizations y ∈ R

L×1, can be represented by the Discrete Karhunen-Loève
Transform (DKLT) [11], also called canonical representation. The DKLT and its
inverse can be written in matrix form as{

y = Φ k(x)
k(x) = ΦT y (7)

where k(x) ∈ R
V ×1 is defined as [k(x)]j = kj(x), with j = 1, . . . , V and V ≤ L.

It is worth noting that the DKLT is the most efficient representation of the SP if the
expansion is truncated to use fewer than L orthonormal basis vectors. The matrix
Φ = [φ1 . . . φV ] ∈ R

L×V is the reduced orthogonal matrix whose columns φj ,
j = 1, . . . , V , are the eigenvectors as obtained from the eigenvalue equation

RyyΦ = ΦΓ (8)

where Ryy ∈ R
L×L is the autocorrelation matrix of y that is estimated as

Ryy = E{yyT} (9)

and Γ ∈ R
V ×V is the diagonal matrix with (non-null) eigenvalues on the diagonal.

The main benefit of this representation is related to the separation property of
KLT. On the basis of this property the output of the system can be expressed as a
linear combination of products of a function of x alone and a function of n alone.
Since the vectors φj are determined by means of Ryy, which can be estimated by
the realizations of y, the system identification reduces to modelling the functions
kj(x), j = 1, . . . , V . As y is a function of x, the terms kj(x) describe on the space
spanned by the columns of Φ curves Cj

y(x), which all together characterize the SP
y. As an example, Fig. 1 displays the curves Cj

y(x) described by the components
kj(x), for j = 1, . . . , 6 of a Duffing ordinary differential equation.

The properties of uniformity and causality determine a smooth behavior of these
curves that have then to be reconstructed from an ensemble of points extracted by
the described approach to perform the identification. Since k(x) is a no-memory
input/output mapping, it can be approximated by a given vector function,

k(x) ≈ G[x, W] (10)
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Fig. 1 The curves Cj
y(x) described by the components kj(x), for j = 1, . . . , 6 of a Duffing

ordinary differential equation

where G[·] is a nonlinear operator and W ∈ R
V ×M is a matrix of parameters to be

estimated.

3 Identification of a Distributed System Knowing the Output y

With the above considerations in mind, it can be stated that once the structure of
the functional G[x, W] has been defined, the identification of the nonlinear system
is equivalent to the estimation of the matrix W from an ensemble of the system’s
input-output pairs.

In order to derive the identification algorithm, it is necessary to relate the stochas-
tic properties of the system (that allowed the development of the general theory)
to the available ensemble of realizations. Let us then refer to these N realizations
of x as x(i) ∈ R

Mx×1, with i = 1, . . . , N , and to the corresponding realizations
of y as y(i) ∈ R

L×1, with i = 1, . . . , N . Both can be put in matrix form as
X = [x(1) x(2) · · · x(N)] and Y = [y(1) y(2) · · · y(N)], where X ∈ R

Mx×N and
Y ∈ R

L×N . A currently used estimation R̂ of the autocorrelation matrix is given by

R ≈ R̂ =
1
N

YYT (11)

where R ∈ R
L×L.



CI for the Collaborative Identification of Distributed Systems 483

The spectral representation of R is

R̂ U = UΛ (12)

where U = [u1 u2 · · · uV ] ∈ R
L×V is the matrix of eigenvectors and Λ ∈ R

V ×V

the matrix of eigenvalues. By projecting all the N realizations onto the basis U we
obtain the KLT representation{

y(i) = Uk(i)

k(i) = UTy(i) i = 1, . . . , N (13)

and, in matrix form,
K = UT Y (14)

where K = [k(1) k(2) · · · k(N)] ∈ R
V ×N . Once these projections have been ob-

tained, the problem of approximating k(x) by a given function G[x, W] corresponds
to finding the parameters W that make the following approximation

k(i) ≈ G[x(i), W], i = 1, . . . , N (15)

hold, so that a model of the system output is

y ≈ UG[x, W] (16)

The estimation algorithm is particularly simple if G[x, W] is a linear function of
W, namely

G[x, W] = W g(x), (17)

with g(x) being an M -dimensional vector of suitable functions. By sampling these
functions in correspondence of the N realizations of the parameterized input values
and initial conditions vector, x(i), i = 1, . . . , N , we obtain the matrix G ∈ R

M×N

defined as
G = [g(x(1)) g(x(2)) · · · g(x(N))] (18)

and the estimation problem reduces to estimating W so that

K ≈W G . (19)

3.1 Neural Network Based Identification

In general, being G[x, W] a nonlinear mapping, learning the proper weight matrix
W is usually computationally very expensive. In this chapter we present an identi-
fication algorithm that is defined by means of an approximating mapping based on
neural networks.

One of the main features of neural networks, allowing them to collect informa-
tion from the environment, is their ability to learn by experience. Learning is a
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crucial activity for an intelligent system, whether artificial or biological, that aims
at modeling the real world it interacts with. From a mathematical point of view,
learning is related to the ability of the neural networks to approximate some classes
of input-output functions. Several works have demonstrated that MLPs [9, 16, 26],
RBF networks [31] and AINNs [7, 37] possess this property with reference to some
classes of functions. These results show that neural networks of these kinds are
capable of approximating arbitrarily well any function belonging to a certain class,
the degree of accuracy depending on the learning algorithm as well as on the number
of neurons available. Therefore, in the last years neural networks have gained much
popularity in the modeling of natural and artificial phenomena, in the identification
and control of dynamical systems as well as in the approximation of deterministic or
random input–output functions representing unknown systems and/or their control
laws [4, 34, 14, 25, 40, 24, 39, 33, 38].

In the following we will give a brief introduction to the RBF neural networks that
have been considered as the best choice for our identifier. A radial basis function is
a real-valued function γ (x) whose value depends only on the distance from a some
point xC , called a center, so that γ (x, xC) = γ (‖x− xC‖). The norm is usually the
Euclidean distance. Radial basis functions are typically used to build up function
approximations of the form

f (x) =
Mn∑
i=1

wi γ (‖x− xCi‖) (20)

where the approximating function f (x) is represented as a sum of Mn radial basis
functions, each associated with a different center xCi , and weighted by an appropri-
ate coefficient wi. The sum can be interpreted as a rather simple single-layer type
of artificial neural network called a radial basis function network, with the radial
basis functions taking on the role of the activation functions of the network. It can
be shown that any continuous function on a compact interval can in principle be in-
terpolated with arbitrary accuracy by a sum of this form, if a sufficiently large num-
ber Mn of radial basis functions are used. Girosi and Poggio [21, 32] have shown
that RBF networks possess the property of best approximation. An approximation
system has this property if, in the set of approximating functions (i.e. the set of
functions corresponding to all possible choices of the adjustable parameters) there
is one function which has minimum approximating error for any given function to
be approximated. They also showed that this property is not shared by MLPs.

Being G[x, W] a nonlinear mapping, learning the weight matrix W is usually
computationally much more expensive than solving a linear problem such as (17).
Thus, as a result of the considerations made above, the proposed nonlinear-in-the-
parameter identifier is based on radial basis function networks [23, 5], so that the
j-th component of the functionalG[x, W] defined in (10) can be put in the following
form
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[G[x, W]]j =
Mn∑
l=1

[ωj ]l exp

(
−[χj ]l

Mx∑
m=1

([x]m − [Ξj ]l,m)2
)

, j = 1, . . . , V

(21)
where Mn is the number of neurons in the RBF network, Mx is the dimension of
vector x, and ωj ∈ R

Mn×1, χj ∈ R
Mn×1, and Ξj = [ξ1

j ξ2
j · · · ξMx

j ] ∈ R
Mn×Mx

with ξm
j ∈ R

Mn×1, for m = 1, . . . , Mx, are vectors or matrices of weights within
W = [w1 w2 · · · wV ]T ∈ R

V ×M , with M = Mn (Mx + 2), defined so that wj =
[ωT

j χT
j (ξ1

j )T (ξ2
j )T · · · (ξMx

j )T ]T . Despite its complexity the neural network-
based approximations allow for great flexibility in the choice of the number of free
parameters and scale gracefully when Mx increases, thus posing themselves as an
interesting option in many circumstances.

4 Identification of a Distributed System by a Network of
Independent Sensors

Let us consider the problem of identifying a distributed system by using a sensor
network. In this case the generic variable y� (n), � = 1, ..., S, n = 0, 1, ..., Ls − 1
corresponds to the �-th sensor and we assume the sensors are able to transmit only
the observed subvector to a fusion center and cannot communicate to each other.

By applying a KLT to the observations of each sensor ignoring the dependencies
with other terminals we obtain the marginal KLT, which is a particular case of (7)
and is expressed as⎡

⎢⎢⎢⎣
k1(x)
k2(x)

...
kS(x)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎣

Φ11 0 · · · 0
0 Φ22 · · · 0
· · · · · · · · · · · ·
0 · · · · · · ΦSS

⎤
⎥⎥⎦

T
⎡
⎢⎢⎢⎣

y1
y2
...

yS

⎤
⎥⎥⎥⎦ (22)

with Φii ∈ R
LS×Vi , i = 1, . . . , S. As it is clearly stated by (22) the generic sensor

� transmits the subvector k� (or an approximation of it) so that the output vector y
cannot be reconstructed with a negligible error. This means that the identification
approach previously discussed cannot be applied directly to this case due to the lack
of a complete knowledge of the output y. It is easy to verify that the marginal KLT
will lead to a suboptimal solution to this problem. In general we can search for a
solution of the kind ⎡

⎢⎢⎢⎣
h1(x)
h2(x)

...
hS(x)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎣

Ψ1 0 · · · 0
0 Ψ2 · · · 0
· · · · · · · · · · · ·
0 · · · · · · ΨS

⎤
⎥⎥⎦

T
⎡
⎢⎢⎢⎣

y1
y2
...

yS

⎤
⎥⎥⎥⎦ (23)

with Ψi ∈ R
LS×Vi , hi ∈ R

Vi×1, i = 1, . . . , S or in a more compact form,



486 G. Biagetti et al.

h(x) = ΨTy (24)

with Ψ = diag [Ψ1, . . . , ΨS ] ∈ R
L×V and h ∈ R

V ×1, V =
∑S

i=1 Vi. In this case
the accuracy of the distributed identification is related both to the approximation of
the mapping k (x) and to the minimization of the error E

{‖y − ŷ‖2} between the
real system output y and its estimation ŷ, based on the sensors’ observations, and
given by

ŷ = RΨ
(
ΨTRΨ

)−1
h(x) . (25)

However in this case, to the best knowledge of authors, and as it is also pointed out
in [17], it is not known a closed-form solution to this problem.

The algorithm developed by Gastpar et al., also known as distributed Karhunen-
Loève transform is an iterative procedure that aims at finding the matrix Ψ that
achieves the MSE best estimate of ŷ in (25).

4.1 Two Sensors (S = 2)

In order to better illustrate the procedure, instead of using the general formulation
(22), we start by considering the simple case of two sensors only, corresponding to
the variables y1 and y2. Assuming the representation y2 given by the sensor S2 to
be fixed, we would determine the representation of y1 such that E

{‖y− ŷ‖2} is
minimum, ŷ being the approximation of y.

The approximation provided by the second sensor can be expressed by h2(x) =
ΨT

2 y2 +z2 where z2 are jointly Gaussian random variables independent of y2, with
zero mean and covariance matrix Rz . Then we can partition the covariance matrix
of the entire vector y into four parts, according to

R =
[

R11 R12
R21 R22

]
(26)

where Rij = E
{
yiy

T
j

}
with i, j = 1, 2. Now to find the best estimate of y1 we

define the matrix Ξ, as follows

Ξ =
[
RT

12 RT
22 Ψ2

] [ R11 R12Ψ2
ΨT

2 RT
12 ΨT

2 R22Ψ2 + Rz

]−1

(27)

Let Ξ∗ consist of the first LS column of Ξ, thus, we obtain a new matrix

Rw =
[

ILS

Ξ∗

] (
R11 − R12Ψ2

(
ΨT

2 R22Ψ2 + Rz

)−1
ΨT

2 RT
12

) [
ILS Ξ∗T ] (28)

with Rw ∈ R
L×L, that can be reduced to the diagonal form
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Rw = Dwdiag
(
λ(1)

w , . . . , λ(N)
w

)
DT

w (29)

with λ
(1)
w ≥ λ

(2)
w ≥ . . . ≥ λ

(N)
w , thus we can obtain the basis for representing y1

ΨT
1 =

[
D(V1)

w

]T [ ILS

Ξ∗

]
(30)

where D(V1)
w denotes the matrix consisting of the first V1 ≤ N columns of the

matrix Dw and ILS is the LS-dimensional identity matrix. In this way by truncating

the representation to the first V1 eigenvectors of D(V1)
w we obtain the parameters

h1(x) = Ψ1
Ty1 . (31)

4.2 S Sensors

Let us now consider the general case of S sensors, but in which all the variables
y1, . . . ,yS are known except for the j-th variable yj . Thus assuming the represen-
tation of y1, . . . ,yj−1,yj+1, . . . ,yS given by the S − 1 sensors to be fixed, we
would determine the representation of yj such that E

{‖y − ŷ‖2} is minimum, ŷ
being as usual the approximation of y.

The approximation provided by the sensors with the fixed representation can be
expressed as ki(x) = ΨT

i yi+zi with i = 1, . . . , S and i 	= j where zi are Gaussian
random variables of zero mean and covariance matrix Rzi ∈ R

Vi×Vi , (zi ∈ R
Vi).

Thus the covariance matrix R ∈ R
L×L of y can be written as

R =

⎡
⎢⎢⎢⎣

R11 R12 · · · R1S

R21 R22 · · · R2S

...
...

. . .
...

RS1 RS2 · · · RSS

⎤
⎥⎥⎥⎦ (32)

where Rik = E
{
yiy

T
k

}
, i, k = 1, . . . , S and Rik ∈ R

LS×LS . Now let Ξj ∈
R

LS(S−1)×V −Vj+LS be the matrix defined by

Ξj =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

R11Ψ1 · · · R1j−1Ψj−1 R1j R1j+1Ψj+1 · · · R1SΨS

R21Ψ1 · · · R2j−1Ψj−1 R2j R2j+1Ψj+1 · · · R2SΨS

...
. . .

...
...

...
...

...
Rj−11Ψ1 · · · Rj−1j−1Ψj−1 Rj−1 j Rj−1j+1Ψj+1 · · · Rj−1SΨS

Rj+11Ψ1 · · · Rj+1j−1Ψj−1 Rj+1 j Rj+1j+1Ψj+1 · · · Rj+1SΨS

...
...

...
...

...
. . .

...
RS1Ψ1 · · · RSj−1Ψj−1 RSj RSj+1Ψj+1 · · · RSSΨS

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
·
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Q11 + Rz1 Q12 · · · Q1j−1 ΨT
1 R1j Q1j+1 · · · Q1S

Q21 Q22 + Rz2 · · · Q2j−1 ΨT
2 R2j Q2j+1 · · · Q2S

...
...

. . .
...

...
...

...
...

Qj−11 Qj−12 · · · Qj−1j−1 + Rzj−1 ΨT
j−1Rj−1j Qj−1j+1 · · · Qj−1S

Rj1Ψ1 Rj2Ψ2 · · · Rjj−1Ψj−1 Rjj Rjj+1Ψj+1 · · · RjSΨS

Qj+11 Qj+12 · · · Qj+1j−1 ΨT
j+1Rj+1j Qj+1j+1 + Rzj+1 · · · Qj+1S

...
...

...
...

...
...

. . .
...

QS1 QS2 · · · QSj−1 ΨT
S RSj QSj+1 · · · QSS + RzS

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−1

(33)
where

Qik = ΨT
i RikΨk , i, k = 1, . . . , S , i, k 	= j (34)

and Qik ∈ R
Vi×Vk . Let the matrix Ξ∗

j ∈ R
LS(S−1)×LS consist of the columns of

Ξj from
∑j−1

i=1 Vi + 1 to
∑j−1

i=1 Vi + LS. Then Ξ∗
j can be cast as

Ξ∗
j =

[
Ξ′∗

j

Ξ′′∗
j

]
(35)

with Ξ′∗
j ∈ R

LS(S−1)(j−1)×LS and Ξ′′∗
j ∈ R

LS(S−1)(S−j)×LS , j = 1, . . . , S. Let
ILS ∈ R

LS×LS be the identity matrix, thus, we can obtain a new matrix

Rw,j =

⎡
⎣ Ξ′∗

j

ILS

Ξ′′∗
j

⎤
⎦(Rjj − CjH−1

j CT
j

) [
Ξ′∗

j
T ILS Ξ′′∗

j
T
]

(36)

where

Cj =
[
Rj1Ψ1 Rj2Ψ2 · · · Rjj−1Ψj−1 Rjj+1Ψj+1 · · · RjSΨS

]
(37)

and

Hj =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Q11 + Rz1 Q12 · · · Q1j−1 Q1j+1 · · · Q1S

Q21 Q22 + Rz2 · · · Q2j−1 Q2j+1 · · · Q2S

...
...

. . .
...

...
...

...
Qj−11 Qj−12 · · · Qj−1j−1 + Rzj−1 Qj−1j+1 · · · Qj−1S

Qj+11 Qj+12 · · · Qj+1j−1 Qj+1j+1 + Rzj+1 · · · Qj+1S

...
...

...
...

...
. . .

...
QS1 QS2 · · · QSj−1 QSj+1 · · · QSS + RzS

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(38)
with Rw,j ∈ R

L×L, Cj ∈ R
LS×V −Vj , and Hj ∈ R

V −Vj×V −Vj . The matrix Rw,j

can be reduced to the diagonal form

Rw,j = Dw,j Λj DT
w,j (39)

where
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Algorithm 1. Iterative refinement of sensor transform matrices.
1: Function Distributed KLT(R)
{Algorithm initialization:}

2: for all � ∈ {1, . . . , S} do
3: Ψ� ← Φ��

{Refinement:}
4: repeat
5: for all � ∈ {1, . . . , S} do
6: compute formulae (33)–(39)
7: Ψ� ← result of (41)
8: until MSE does not improve any more

Λj = diag
(
λ

(1)
w,j, . . . , λ

(N)
w,j

)
(40)

with λ
(1)
w,j ≥ λ

(2)
w,j ≥ . . . ≥ λ

(N)
w,j , and with Dw,j ∈ R

L×N and Λj ∈ R
N×N , thus

we can obtain the representation for the j-th sensor

ΨT
j =

[
D(Vj)

w,j

]T ⎡⎣ Ξ′∗
j

ILS

Ξ′′∗
j

⎤
⎦ (41)

where D(Vj)
w,j ∈ R

L×LS denotes the matrix consisting of the first Vj columns of the
matrix Dw,j . In this way by truncating the representation to the first Vj eigenvectors

of D(Vj)
w,j we obtain the parameters

hj(x) = ΨT
j yj . (42)

4.3 Best Estimate of the Matrix Ψ Based on the Distributed KLT
Algorithm

On the basis of the previous formulation we are now in a position to establish a col-
laborative algorithm that progressively estimates the best approximation for a sensor
as a function of the given representation for the other sensors. The pseudocode of the
algorithm based on the Distributed KLT proposed by Gastpar et al. [17] is reported
in Algorithm 1.

As it has been demonstrated in [17], the MSE decreases monotonically,

i.e. E
{
‖y− ŷ(m)‖2

}
≥ E

{
‖y − ŷ(m+1)‖2

}
, where ŷ(m) is the approximation

obtained after having performed m iterations. This implies that the algorithm will
converge to a stable point, a saddle point or a local minimum, but it clearly cannot
guarantee the convergence to a global optimum.
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Having obtained the best estimate of the matrices Ψ�, � = 1, . . . , S, by the algo-
rithm previously described and taking into account the results of Sect. 3, the identi-
fication of the distributed system, that is the model of the system, is represented by
(25) where the function h(x) is approximated as

h(x) = ΨTy ≈ G[x, W] (43)

and G[x, W] is given by (21).

5 Experimental Results

To validate the identification technique suggested, the collaborative algorithm was
applied to the identification of several distributed systems whose behavior can be
described as the solution of a partial differential equation (PDE). These equations
are used as a mathematical model in a wide variety of physical systems. As an exam-
ple, elliptic and parabolic PDEs are used for modeling: i) steady and unsteady heat
transfer in solids, ii) flows in porous media and diffusion problems, iii) electrostatics
of dielectric and conductive media. At the same time hyperbolic PDEs are used for
i) transient and harmonic wave propagation in acoustics and electromagnetics, ii)
transverse motions of membranes.

In this section we consider two application examples regarding the solution of
a parabolic and a hyperbolic PDE over simple geometries. The solutions of such
equations were achieved by using the Matlab PDE-Toolbox. In this framework the
equations are solved by the finite-element method with non uniform meshes.

5.1 First Experiment: Parabolic PDE

The term parabolic PDE is used for equations with spatial operators and first order
time derivatives of the form:

d
∂y

∂t
−∇ · (c∇y) + ay = f (44)

where y is the unknown, d is a complex valued function on a bounded domain D in
the plane, and c, a, f are coefficients that can depend on time t, d can depend on
time t as well.

The first experiment carried out made use of a scalar field obtained by the dis-
cretization of the following parabolic PDE, derived from (44) with d = 1, c = 1,
a = 5, and f = 10:

∂y

∂t
−∇2y + 5 y = 10 (45)

on the mesh shown in Fig. 2 where the elliptical equation domainD is reported. The
excitation was given as a boundary condition y = sin(ω t) applied to an arc of the
boundary, with ω being proportional to the input parameter. We placed four sensors,
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Fig. 2 Domain of the equation used in the first example and mesh used for its solution.
Highlighted are the positions in which the sensors were placed

labeled 1–4, on randomly chosen knots and selected the best rate allocation for a
fixed rate V = 10, which resulted to be V1 = 1, V2 = 2, V3 = 5, V4 = 2 i.e. the
sensor 1 has one output, the sensor 2 has two outputs, the sensor 3 has five outputs
and finally the sensor 4 has two outputs.

The results are shown in Fig. 3, that displays the outputs from the sensors’ net-
work (dots) and from the trained neural network (solid line) used to approximate
their dependence on the input parameter. In the subfigures (a)–(h) all the ten out-
puts of the four sensors are reported. As you can see the perfect match between the
sensor outputs and the curve fitting performed by the trained neural network demon-
strates the very good performance of the RBF neural network based identification
algorithm.

The results of the overall identification process for the system generated by the
PDE (45) and the comparison between the distributed and the marginal KLT-based
techniques are reported in Fig. 4. Here the inputs to the sensor network (red solid
line), the estimated system output (blue dashed line) along with the approximation
that would have been achieved by a simple marginal KLT-based (dotted black line)
encoding of the system output at the same rate have been displayed. It can be easily
seen that a huge improvement of this methodology over the marginal KLT can be
achieved for the same rate V .

5.2 Second Experiment: Hyperbolic PDE

In this second experiment we tested our algorithm against results obtained with a
hyperbolic PDE. A hyperbolic PDE is an equation with spatial operators and second
order time derivatives of the form:
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Fig. 3 Outputs from the sensor networks (dots) and from the trained neural network (solid
line) used to approximate their dependence on the input parameter. (a) is the only output of
sensor 1, (b)–(c) are the two outputs of sensor 2, (d)–(h) the five outputs of sensors 3, and
(i)–(j) the two of sensor 4
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Fig. 4 Inputs to the sensor network (red solid line) and estimated system output (blue dashed
line). The dotted black line represents the approximation that would have been achieved by a
simple marginal KLT-based encoding of the system output at the same rate
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Fig. 5 Domain of the equation used in the second example and mesh used for its solution.
Highlighted are the positions in which the sensors were placed

d
∂2y

∂t2
−∇ · (c∇y) + ay = f (46)

where y is the unknown, d is a complex valued function on a bounded domain D in
the plane, and c, a, f are coefficients that can depend on time t, d can depend on
time t as well. The well-known wave equation is a special case of this.

We solved the following PDE,

∂2y

∂t2
− c∇2y = 0 (47)

corresponding to (46) with parameters d, c, a, and f , chosen so as to model sound
propagation in a U-shaped air duct at a speed

√
c = 343 m/s, on the mesh shown in

Fig. 5, where the equation domainD is also reported. The boundary conditions were
set to simulate total reflection at all the surfaces, except at the top left segment that
sourced into the domain a sine wave with fixed amplitude and a random frequency
ω/2π comprised between 0.5 kHz and 2 kHz. The simulated time-span and the sen-
sor locations were chosen to highlight different phenomena that may occur in wave
propagation: sensor 1 is most sensible to the excitation itself and is scarcely influ-
enced by reflections, sensors 2 and 3 are subject to multipath-induced interferences
near the bend, and sensor 4 to standing waves.
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Fig. 6 Relative mean square error of the reconstructed signals plotted versus the number of
iterations of the DKLT algorithm, for various rates and rate allocation. The four numbers
given in the legend are V1, V2, V3, and V4, respectively

We conducted various experiments with different rate allocations, with the results
being reported in Fig. 6. As it can be easily seen, the rate allocation plays a some-
what important role. For the three cases with a total rate of 48, it is slightly better to
allocate more outputs to sensor 4 than to sensor 1, as is reasonable, for it senses the
most “complex” signal of the four.

The results for V1 = V2 = V3 = V4 = 12 are shown in Fig. 7, that displays the
outputs from the sensors network (dots) and from the trained neural network (solid
line) used to approximate their dependence on the input parameter. In the subfigures
(a)–(h) the first two outputs of the four sensors are reported. As you can see also
in this case the match between the sensor outputs and the curve fitting performed
by the trained neural network demonstrates the very good performance of the RBF
neural network identification algorithm.

The results of the overall identification process for the system generated by the
PDE (47) and the comparison results between our distributed technique and the
marginal KLT-based technique are reported in Fig. 8. The inputs to the sensor
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Fig. 7 Outputs from the sensor networks (dots) and from the trained neural network (solid
line) used to approximate their dependence on the input parameter. (a), (c), (e), and (g) are
the most significant outputs of sensors 1–4, respectively, while (b), (d), (f), and (h) are the
second significant outputs of the same sensors
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Fig. 8 Inputs to the sensor network (red solid line) and estimated system output (blue dashed
line). The dotted black line represents the approximation that would have been achieved by a
simple marginal KLT-based encoding of the system output at the same rate
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network (red solid line), the estimated system output (blue dashed line), and the
approximation that would have been achieved by marginal KLT-based (dotted black
line) encoding have been displayed. Also in this case a huge improvement of this
methodology over the marginal KLT can be recognized for the same rate V .

6 Conclusions

In this chapter an innovative framework for the collaborative identification of dis-
tributed systems has been presented. This approach is based on a centralized intel-
ligent identifier that makes the best identification in a distributed setting on a cho-
sen ensemble of realizations and with no constraints in terms of model kind and/or
model order. Methodologically, we defined a stochastic setting where the system
to be identified generates nondeterministic signals, i.e., stochastic processes, from
given initial conditions and random parameters of input signals. In this way, the set
of input-output pairs so obtained shows complex but identifiable geometrical rela-
tionships in the output space of the sensor network. As a subsequent step we defined
a computational intelligence technique for approximating the previously mentioned
mappings that is able to globally identify the distributed system. The global opti-
mization of the identification performance was performed in a collaborative setting,
exploiting and developing the cooperation mechanisms that underpin other related
methodologies such as the distributed KLT. The effectiveness of the proposed col-
laborative algorithm has been demonstrated in the identification of two distributed
systems whose behavior is described as the solution of a partial differential equation.
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Collaboration at the Basis of Sharing Focused
Information: The Opportunistic Networks

Bruno Apolloni, Guglielmo Apolloni, Simone Bassis,
Gian Luca Galliani, and Gianpaolo Rossi

Abstract. There is no doubt that the sharing of information lies at the basis of any
collaborative framework. While this is the keen contrivance of social computation
paradigms such as ant colonies and neural networks, it also represented the Achilles’
heel of many parallel computation protocols of the eighties. In addition to compu-
tational overhead due to the transfer of the information in these protocols, a modern
drawback is constituted by intrusions in the communication channels, e.g. spam-
ming in the e-mails, injection of malicious programming codes, or in general attacks
on the data communication. While swarm intelligence and connectionist paradigms
overcome these drawbacks with a fault tolerant broadcasting of data – any agent has
access massively to any message reaching him – in this chapter we discuss within
the paradigm of opportunistic networks an automatically selective communication
protocol particularly suited to set up a robust collaboration within a very local com-
munity of agents. Like medieval monks who escaped world chaos and violence by
taking refuge in small and protected communities, modern people may escape the
information avalanche by forming virtual communities that do not in any case relin-
quish most ITC (Information Technology Community) benefits. A communication
middleware to obtain this result is represented by opportunistic networks.

1 Introduction

Beyond its sociological concept, an ideal form of collaboration between comput-
ing devices is represented by the paradigm of parallel computing. Having a highly
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time-consuming computational task, you may think of distributing it on a certain
number, say m, of computing devices so that the original running time t becomes
t/r with r, also called throughput, between 1 and m. A major disappointment of the
eighties, when the technology for assembling a huge number of processors was avail-
able, came in the realization that, apart from very special tasks, the throughput was
never greater than 10 [23, 5]. This is true even with m around 1000, with non rare
instances where r is less than 1. The cause of this drawback lies in the overhead in-
troduced in parallel computing by the coordination and synchronization of the single
processor tasks. This is achieved mainly through the proper vehicling of the output
of a processor to the input of the ones deputed to compute the subsequent tasks.

The social computation paradigm [40, 43] overcomes the problem with data
transfer protocols that are essentially independent of both tasks and data themselves,
and (almost) costless. Whatever its specific goal, a neural network node receives in-
put from the incoming connections as soon as they are available [34], which means
either at periodic clock strikes or at an unpredictable (for instance random) time.
Analogously, the pheromone deposited by ants is recognized by any other ant pass-
ing through the same track [14], and so on. Another feature emerging from these
paradigms is the extreme locality of each computation. Like with recent economic
theories [44], each processor is an individual taking care of its own computation,
possibly the same for all processors, conditioned just by the locally incoming inputs.
At a higher level we may modify parameters of these computations, data transmis-
sion included, with a uniform procedure, such as temperature assessment [31] of the
processors or learning algorithms [39], so that a global functionality emerges from
the ensemble of the individual processors which complies with our computational
goal. Thus, it happens in spite of or at least unbeknown to individual behavior, sim-
ply thanks to smart laws conditioning it. It is not surprising that the favorite way of
studying the emerging functionality is a statistical one, and the related distribution
laws are either Gaussian or Gibbs distribution laws [20], as descriptors of totally
symmetric random phenomena.

Collaboration is something more, even with computing devices. It means that
individuals are aware of sharing a common goal with other individuals and jointly
use computational and communication tools to achieve it. In this chapter we aim at
capturing some mathematical features of collaboration. First of all we realize that
collaboration is a process that has a privileged time direction. Moreover, to be ef-
fective, any action involves a reaction on the part of collaborating mates, and vice
versa, so that what emerges from the cooperation, say the cooperation phenotype, is
the result of a genotype sequence whose length is in a logarithmic relation with the
former. Nested in the social computation framework, we still deal with collaboration
in terms of a random phenomenon, and focus on special features of the collabora-
tive actions leading its evolution far from the typical equilibrium distributions to
which we are used with physical processes. We are challenged to exploit these pe-
culiarities in a real world scenario that, within the sphere of opportunistic networks
[45], gathers both artificial and human collaborating agents in a unified framework.
From a true technical perspective, these are telecommunication networks whose
exploitation requires the existence of virtual communities. This mix recently won
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the attention of the scientific community, as a true form of collaborative compu-
tational intelligence that is highly promising but still lacks a concrete widespread
application.

In very succinct terms, you may think of yourself within a group of agents, each
endowed with a short-range radio device able to transmit messages, with a modest
energy consumption, preferentially to other agents of the group every time they en-
ter in the operational range of the radio devices. The benefits are clear, covering two
aspects: the selective pervasivity of the information broadcasting – i.e. the capabil-
ity of realizing a capillary information network between agreeing recipients – and
the quasi gratuity of this operation, as it is automatically managed by low power
devices. To get these benefits, however, we must address a certain number of techni-
cal problems. You have no guarantee of when and where your message will arrive.
Rather, it depends on mates crossing your transmission basin and the paths that they
will in turn subsequently follow [10]. Moreover, you cannot transmit the message
indefinitely, otherwise you saturate the system capacity and exhaust the power of
your device. The strategies you may adopt to solve these problems are principally
statistical. Hence they depend on the particular story of the community they re-
fer to – for instance the excursion of a group of tourists, news/info exchanges in a
campus, or military men in action – and on the special features you draw from its log
– i.e. the statistics on which you base the strategy. As for the latter, with opportunis-
tic networks we face a peculiar framework where the symmetry at the basis of the
most widespread probabilistic models is broken by the common interests grouping
people within a cluster. In short, in place of a random walk in a public park, people
may jointly move toward a cafeteria, though each person reaches it with a randomly
perturbed path. This opens scenarios where a basic variable is the intercontact time
between transmitting agents, and its distribution law falls in the family of power
laws instead of negative exponential laws [21]. From the number of these intercon-
tacts per minute you derive the message speed and the number of hops to reach far
away agents in a timely manner. From the reckoning of “infected” agents, i.e. those
being reached by a given message, you may decide when to stop transmitting it.

The chapter is organized as follows. We devote the next section both to describ-
ing opportunistic networks functionalities and to depicting a possible application
scenario which involves the authors research team. Then we formally describe the
principled collaboration process and mathematically synthesize its behavior. In this
way we introduce new probabilistic scenarios requiring experimental validation. We
provide it, at least at a preliminary stage, in Section 3 where we describe an exper-
iment to collect data from the field, providing a statistical analysis. After a brief
discussion of the strategies with which to transmit messages with this kind of net-
works in Section 4, in the last section we draw conclusions and perspectives.

2 The Opportunistic Networks Framework

We may get a quick idea of opportunistic networks by considering a group of peo-
ple who have short-range radio devices for communicating with one another at a
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distance somewhat greater than with mere voice range. The device has electronic
functions so that the communication is automatic. Hence no one is bored by an
intentionally repetitive message sending or storing, and performing, in general, a
series of typical database operations. Vice versa, people may decide to whom to
send the message or conversely from whom to receive a message. Cooperation starts
when two people, a sender and a receiver, decide that it is appropriate to forward the
message to someone not directly reachable by the sender; rather, its transponding
through the receiver device could favor the forwarding. This is the scheme of multi-
hop communication, a scheme that is neither robust nor reliable per se – i.e. with
the task of transmitting a message from any agent A to any agent B – but may prove
extremely compliant with the intents of a virtual community.

According to the literature, we may describe the main features of this framework
using the metaphor of word-of-mouth recommendation [42] – i.e. a transmission of
specific information to selected people, as we may do with private conversations –
and the following functionalities of a communication network:

• device vicinity exploration. The range limitation of radio-devices requires a co-
location of transmitting/receiving devices. The movement limitations of their
owners – the agents – and their sparseness in a territory identify a speed limi-
tation on the message transmission. Paired with transmission strategies (number
of repetitions of the message forwarding and the like) it identifies an effective
transmission range [13] of the single agents w.r.t. another one within a group of
agents. The interests’ coincidence of these agents identifies the range of activity
of an opportunistic community;

• user profile. A connection between two agents is refused if they do not share
a common interest in the message to be transmitted. This implies two levels of
message: a beacon message1 to identify the presence of candidate receivers and
the preferential transmission band, and the true message to be transmitted. We
may imagine a graduation of affinity between the mating agents. However, we
prefer to discard the role of pure transponding functionality as a service provider
[28]. The messages are vehicled exclusively through agents interested in the con-
veyed information;

• data dissemination. In the old children’s telegraph game, the kids line up in a
row. Then the one in the leftmost position whispers a sentence in the ear of the
kid on his right, and so on. The general result is that the last kid on the right
hears a sentence that is almost completely different from the original. The cause
may be mere background noise or, otherwise, cheating on the part of one or more
kids. In the opportunistic network this must not occur. Hence no manipulation is
admitted in a message, only its forwarding. The sole corruption may come from
the total disappearance of the message, due to the transmission policies [35]. This
may be a drawback for some members of the community, but it also represents

1 In a wireless network, beaconing refers to the continuous transmission of small packets
(called beacons) that advertise the presence of a base station (access point). The mobile
units sense the beacons and attempt to establish a wireless connection. In opportunistic
networks all mobile units may both transmit and sense beacons.
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a benefit since it defines a spatial and temporal frontier for the community. It
means no spam, information focusing and confidence growth.

• privacy/distributedness of the information. An opportunistic network is a com-
pletely distributed system. Each device is the router of the next move with the
sole responsibility on the part of the receiver to refuse the communication. To
decide a transaction, sender and receiver are anonymous but must declare their
interest profile. The degree of identity protection may be more or less high as a
function of the cryptographic protocols employed, where a breakeven point must
be sought between safety and transmission/computation load. Moreover, we may
adopt a reputation system to avoid spammer intrusions [27].

2.1 A Case Study to Lead the Theory

Consider a huge social event, such as a world expo, a championship final, etc. As-
sume that many tour groups come from around the globe, many of them composed
of people familiar with neither local uses nor the native language. There are a lot of
reasons for keeping a group of these people in a virtual community held together by
an opportunistic network: comfort, security, possibility of fruitful interactions with
the environment and so forth. Here below we assume that each member of these
groups receives a tourist package upon entering the event site including a radio-
device, for short r-d, to state opportunistic connections with his travel companions.
Now, from the social design methodology, we borrow a story board showing a typ-
ical case where the opportunistic community may fulfill a task in an exclusive way
that outperforms other solutions. In the forthcoming sections we will give mathe-
matical models and numerical evidences supporting the scenarios.

2.1.1 The Story Board

We follow this story from the different perspectives of a kid and his father from a
Far East country, say China, visiting a world expo in Europe as part of a group, and
a hostess coming to help them (see the strip in Fig. 1). Both have the above r-d,
whereas each of them wants to see and do something different. After his father has
been talking about future business deals at the various stands, the son receives on
the r-d an announcement about a photography exhibition of interest to him at an-
other pavilion – the yellow one. He tells his father and, assuming he knows, goes to
the yellow pavilion. But the father didn’t really get the message, so the face-to-face
communication between the two is broken. We may imagine on the one hand the
kid waiting for the father in a recognizable puzzled posture (e.g. sitting for a long
time looking lost and concerned), on the other the father realizing he has lost the kid
when ending one discussion and about to move on to the next scheduled appoint-
ment. We may figure many ways of exploiting the r-d facility. One is that a hostess
recognizes the kid’s trouble. She doesn’t speak Chinese, but may select a local pre-
coded message on the r-d – say the number 12 : “are you lost?” – which will appear
on the LCD both in English and in Chinese, so that it can be understood by the kid.
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Fig. 1 Strip depicting lead story from different perspectives

Then the same device may be used to forward both an emergency message to the
leader of the group (assumed to be nearby) and to the expo security staff, as well
as a specific message to the relatives of the kid who will recognize the message ID.
Both messages should ensure a happy ending.
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This simple case highlights some strategic features expected from the r-d:

1. Beside the radio waves, the local communication channels of the device should
be both audio, for emergency signal, and visual, committed to a small LCD
screen. Three buttons: up, down and ok, will manage the communications.

2. The memory of the device should store an ID of its user, for instance made up
of: language, age, sex and preference re the message content he likes to receive.
The storing may be done either in remote, via the Internet, or directly upon device
delivery.

3. In addition, the user may decide to store special messages he receives that may
represent a record of his visits and hints about future tourist proposals.

4. The opportunistic functionality of the device concerns the circulation of service
and emergence messages. They are improved by some local functionalities, con-
sisting of translation of pre-coded inquiries that may be either sent in remote or
formulated locally (such as “are you lost?”).

2.2 An Elementary Mathematical Model

The intercontact time is the key ingredient of this networking mode which has quite
recently gained the attention of the researchers. Studying it calls for an extensive
comprehension of the users’ mobility, a task far from fulfillment. Since it involves
random phenomena, we find in the literature both statistical analyses of the message
transmission traces, and probabilistic models of the message piping dynamics. Let
us visualize the mathematical terms of our approach through the example of dodgem
cars. Although the primary goal of each player is to hit the car of another player, this
example correctly highlights the intentionality at the basis of the collaborative task
under consideration. Assume you are playing with dodgem cars at an amusement
park. You drive around until, from time to time, you decide to bang into a given
car which is unaware of your intent. For the sake of simplicity we may assume the
trajectory of each car to be a plane Brownian motion before the chase is triggered.
Thus, with the reference frame in Fig. 2(a), indexing with i = 1,2 the cars whose
stories we are following, we have:

Xi(t)∼N0,
√

t Yi(t)∼N0,
√

t (1)

where Nμ,σ is a Gaussian variable of mean μ and standard deviation σ . Then you,
sitting in the first car, decide at time τ to reach and crash into the second car. The
questioned variable records the instant T > τ when you succeed. In the case study
where cars are points in the plane, in order to identify this instant we must specify:
i) an operational definition of the cars’ clash since the probability of exact match-
ing is 0, and ii) the symmetry break introduced by the chase intention. The chase
effectiveness depends on the capability of orienting your motion in the direction of
the target, which corresponds to converting a part of the motion along the cars’
connecting line from symmetric to oriented moves. Mathematically, orientation
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Fig. 2 Joint traces of two cars (plain and dashed curves respectively) when: (a) both move
according to a Brownian motion behavior; (b) the former moves only in one quadrant (ab-
solute value of the Brownian motion components) from a trigger time on; and (c) an oracle
rotates this trajectory toward the other car with some approximation (quantified by the ray of
a proximity circle)

corresponds to taking the absolute value of the elementary steps in that direction,
so as to work with Chi distributed addends in place of Gaussian ones (see Fig. 2(b)).

In order to overcome analytical complications we propose this simple scheme.
As the difference between two Gaussian variables is a Gaussian variable too, we
may use (1) also to describe the components of the distance Δ between the two cars
before τ . We just need to multiply them by

√
2 so as XΔ (t) ∼N0,

√
2t and similarly

for YΔ (t). Moreover, if we move to polar coordinates (r,θ ) with x = r cosθ ,y =
r sinθ , the density function fΔ of Δ becomes

fΔ (r,θ ) =
1

4πt
re−

r2
4t (2)

which looks for the joint density function of (R,Θ), with R a Chi variable with 2
degrees of freedom scaled by a factor

√
2t and Θ a variable uniformly distributed

in [0,2π). Our assumption about the pursuit is that, with reference to the distances
D1 and D2 of the two cars from the position of the first one at time τ , you are able
to maneuverΘ1 from τ on, so that when D1 = D2 also Θ1 =Θ2 (see Fig. 2(c)). As
mentioned before, per se the probability of a match between two points representing
the cars is null. Thus your task is unrealistic. However, intentionality recovers fea-
sibility thanks to the fact that in practice it is enough that the angles are sufficiently
close to entangle the two cars. The actual correspondence with the pursuit dynamics
is facilitated by some free coefficients which will be embedded in the model.

With this assumption we are interested in the time t when D1 = D2. Given the
continuity of the latter we may measure only a probability density with t. In other
words, at any change of the sign in the difference D1−D2 with the running of the
two cars, there will correspond a matching time as a specification of a continuous
variable T . Since both D1 and D2 scale with the square root of time, expressing their
dependence on the trigger time τ and the pursuit time t, we have
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D1(t) =
√

tχ21 ; D2(t) =
√

2τ+ tχ22 (3)

where χ2 is a random variable with density function fχ2(z) = ze−
z2
2 . Thus, after

equating D1(t) with D2(t) we obtain

1 =
D1(t)
D2(t)

=
χ22

χ21

√
2τ+ t√

t
(4)

under the condition χ22 ≥ χ21 . Denoting with T the random variable with specifica-
tions t and T with specifications τ , this equation finds a stochastic solution in the
random variable

V =
T
T

= 2

(
χ2

21

χ2
22

−1

)−1

(5)

It follows the same distribution law of the ratio between two unconstrained Chi
square variables, i.e. an F variable with parameter (2,2) [19], whose cumulative
distribution function (CDF) reads

FV (v) = 1− 1
1 + v

I[0,∞)(v) =
v

1 + v
I[0,∞)(v) (6)

where I[a,b](x) is the indicator function of x w.r.t. the interval [a,b], thus being 1 for
a≤ x≤ b, 0 otherwise.

2.3 A Very General Way of Maintaining Memory in a Time
Process

Let us make some general considerations about processes with memory. To start
from the very beginning, for any ordered variable T , such that only events on their
sorted values are of interest to us, the following master equation holds

P(T > t|T > k) = P(T > q|T > k)P(T > t|T > q) ∀k≤ q≤ t (7)

It comes simply from the fact that in the expression of the conditional probability

P(T > t|T > k) =
P(T > t)
P(T > k)

=
g(t)
g(k)

(8)

we may separate the conditioned variables from the conditioning ones. While (7)
denotes the time splitting in the fashion of the Chapmann–Kolmogorov theorem
[37] as a general property of any sequence of data, equation (8) highlights that events
(T > t) and (T > k) are by definition never independent. What is generally the target
of the memory divide in random processes is the time t− k elapsing between two
events. In this perspective, the template of the memoryless phenomena descriptor
is the Poisson process, whose basic property is P(T > t) = P(T > q)P(T > t− q),
if t > q. It says that if a random event (for instance a hard disk failure) did not
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Fig. 3 CCDF LogLogPlot when T follows: (a) a Pareto law with α = 1.1 and k = 1; (b) a
negative exponential law with λ = 0.1. Parameters were chosen to have the same mean 11

occur before time q and you ask what will happen within time t, you must forget
this former situation (it means that the disk did not become either more robust or
weaker), since your true question concerns whether or not the event will occur at a
time t−q. Hence your true variable is τ = T −q, and the above property is satisfied
by the negative exponential distribution law with P(T > t) = e−λ t , for constant λ 2,
since with this law (7) reads

e−λ (t−k) = e−λ (q−k)e−λ (t−q) (9)

and the property that g(t)
g(k) in (8) equals g(t− k) is owned only by the exponential

function.
In contrast, you introduce a memory of the past (q-long) if you cannot separate

T −q from q. In this paper we consider very simple cases where this occurs because
the time dependence is of the form τ = (T/q)β . The simplest solution of (7) is
represented by P(T > t|T > k) = (t/k)−α so that the master equation reads

(t/k)−α = (t/q)−α(q/k)−α (10)

Note that this distribution, commonly called the Pareto distribution, is defined only
for t ≥ k, with k > 0 denoting the true time origin, where α identifies the distribution
with the scale of its logarithm. The main difference w.r.t. the negative exponential
distribution is highlighted by the LogLogPlots of the complementary cumulative
distribution function (CCDF) FT in Fig. 3: a line segment with a Pareto curve (see
picture (a)) in contrast to a more than linearly decreasing curve with the exponential
distribution (picture (b)).

The difference between the graphs in Fig. 3 shows that, for a same mean value of
the variable, we may expect this occurrence in a more delayed time if we maintain
memory of it as a target to be achieved rather than if we rely on chance.

We recover the distribution of V coming from the dodgem car model by extending
(6) as follows

2 Variants with λ = 1/β (t) allow simple adaptation of the law to more complex phenomena
when β (t) is not far from being a constant.
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FV (v) = 1− b
b +(v/c + 1)a (11)

which we call shifted Pareto, with b and c playing the role of both scale and shift
parameters. The latter stands for a key feature of a memory dependent model; the
former of a memoryless framework. The exponent a plays a role similar to α’s. With
this formula we aim to approximately capture many variants of v, as for both mod-
eling variations and model adaptation to real data. For instance we almost recover

FV (v) =
2v

2
α

v
2
α +(v + 2)

2
α

I[0,∞)(v) (12)

obtained by extending the dependence on t from square root to a generic power
1/α in model (1). Though somewhat structurally different from (12), (11) almost
coincides with (12). In particular, with a = b = c = 1 and v = v− 1 it takes the
form (6) into which (12) translates when α = 2. Actually, we may get satisfactory
approximations in a relatively wide range of parameters. Moreover V in (11) ranges
from−c to +∞. Hence, when we refer to a variable in [0,+∞), we use the truncated
version of (11) that is given by

FV (v) = 1− (b + c)
b +(v/c + 1)a (13)

To obtain the pursuit times we need to multiply v by the trigger time; we must also
add the latter to the product in order to obtain the contact times. In the next section
we will see that both contact times and intercontact times remain approximately in
the same family, provided we have a suitable distribution law of the trigger times.
We will also study some manageable deviations from this model.

2.4 The Timing of the Intentional Process

From our model we are left with a power law describing the ratio between pursuit
and trigger times. Since t = vτ , to complete the description of contact times we need
a model for the trigger time too. Let fT be its probability density function (PDF),
defined in a range (τinf,τsup). Since t +τ = (v+1)τ , we obtain FW with W = T +T
by computing

FW (w) =
∫ max{w,τsup}

τinf

FV (w/τ−1) fT (τ)dτ (14)

With many families of T PDFs the shape of V CDF transfers to W , as shown in
Figs. 4(a) to (c). The difference of the trigger time distributions slightly affects the
length of the plateau, the slope of the linear trait and the smoothness of their unions
as well, all elements that make great differences in the linear scales.



512 B. Apolloni et al.

10�5 0.001 0.1 10 1000 105

1.00

0.50

0.20

0.10

0.05

0.02

logFT

log t
(a)

10�5 0.001 0.1 10 1000 105

1.00

0.50

0.20

0.10

0.05

0.02

logFT

log t
(b)

10�5 0.001 0.1 10 1000 105

1.00

0.50

0.20

0.10

0.05

0.02

logFT

log t
(c)

Fig. 4 CCDF LogLogPlot of contact times with a trigger time varying according to distribu-
tion law: (a) uniform ; (b) Pareto; and (c) negative exponential

For instance, for a Pareto distributed trigger time:

FT (τ) = 1− τ−λ (15)

with c = 1 we have the expression

FW (w) = 1− 2F1

(
1,
λ
a

;
a +λ

a
;−wa

b

)
, (16)

where 2F1 is the Hypergeometric2F1 function defined as 2F1(a,b;c;z) =
∑∞

k=0
(a)k(b)k

(c)k

zk

k! , with (a)k = a(a + 1)(a + 2) · · · (a + k − 1) being the rising
factorial [1].

But the time until trigger is not an idle time. Some encounters may occur even
during the initial wandering. We prefer to study this T contribution empirically.
For instance, In Fig. 5 we see the empirical complementary cumulative distribution
function (ECCDF) LogLogPlot of a T sample obtained by tossing a trigger time
uniform in [1,1000]. To these points we added further samples coming from an
exponential distribution with tentatively λ = α exactly truncated to the maximum
trigger time. These points take into account the casual crossing of a device in the
range of another one during its non intentional motion. The ratio between points
sampled before and after trigger times is a way of fixing the true λ . We see a plateau
analogous to the one in Fig. 4, having the abscissa of its right end around 100, fol-
lowed by a linear slope. This distribution may be recovered through a Pareto-like
distribution of form (13) apart from the small hump over the sloping trait, which we
realize is still an effect of the exponentially drawn points and will represent a pecu-
liarity of the experimental curves to be seen in the next section. Indeed, the shape
of (13) presents the plateau shown in these diagrams and a linear trait constituting
the second main feature of them. In particular, the parameter b1/a (where a = 1.1)
is strictly connected to the average trigger time, denoting the divide between non
intentional and intentional behavior, a is proportional to the rate of contact when
agents move according to some purpose, and c is a fine-tuning factor.
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Fig. 5 Recovering the intercontact ECCDF shape through our mobility model

3 Validating the Model

As we may argue from the previous sections, opportunistic rendezvous involve com-
plex processes that depend highly on the operational context. However, analytical
forms like (13) seem to denote that there is a basic course which characterizes the
intercontact time T . We may also guess that this behavior biases the other variables
that boil up around this particular communication network. That is why a certain
number of theories have been constructed around T , and companion experimental
campaigns have been carried out to validate the models.

3.1 Drawing Data and Models from the Literature

We can presently find in the literature a few real user-traces databases which we
generally consider limited, specific to particular environments and difficult to man-
age. However, a common feature emerging from these traces is that the distributions
underlying mobility phenomena are heavy-tailed distributions having the Pareto law
as a common template [7, 25, 33, 30, 10]. Actually, the CCDF synthesizing these
tracks shows two different traits that appear linear (see Fig. 6(a)), thus suggesting
descriptions in terms of: a double Pareto curve (a lower power curve followed by a
greater power one), or, alternatively, a temporal sequencing of a Pareto trait prose-
cuting with an exponential distribution that quickly nears 0 [29] (see Figs. 6(b) and
(c), respectively); or, in contrast, the sequencing of an exponential trait and a Pareto
trait as we suggested in the previous sections.

This behavior has no well-assessed theoretical model in the literature. So,
synthetic models normally produce quite different time distributions which find
justification more in human mobility abstract (possibly simplifying) hypotheses
than in experimental feedbacks. Thus, at a very elementary level, we find a Random
Walk Mobility Model [8] described in terms of a Brownian process [17], where
each user randomly chooses a direction and a speed at each time-step. The inter-
action between users is enhanced in two directions: i) the dynamics of the single
agent, and ii) the correlation between their moves. As for the former, in the Random
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Fig. 6 CCDF LogLogPlot of a T randomly varying according to: (a) the Cambridge/Haggle
Crawdad dataset; and (b) a double Pareto law; and (c) a power law followed by an exponential
one

WayPoint Mobility Model [48, 26] each user randomly selects a target point in the
region where users move and goes toward it (the pursuit phase) with a speed uni-
formly chosen in a fixed interval. Once he arrives he remains there for a fixed time
and then starts moving again with parameters drawn independently from the pre-
vious ones. The model is made more sophisticated in various ways. For instance,
according to the Gauss-Markov model, the direction and speed at time t depend on
their values at time t−1 [36]; otherwise the path toward the goal region takes into
account the obstacles represented by buildings [12] etc. As for the second direc-
tion, correlations between users are considered in the Group Mobility Model and its
variants [9].

3.2 A Homemade Validation

Aiming for a more direct feedback on our model, we decided to collect and analyze
human mobility traces in a campus area. We achieved this by developing portable
radio devices, denoted as Pocket Traces Recorders, and by deploying different test
beds involving faculty members and students.

3.2.1 Requirements

The design of the Pocket Trace Recorder, or PTR, has both functional and architec-
tural requirements. The former are related to trace collection, recording and trans-
ferring to a server station for off-line analysis. The primary focus of the PTRs design
is the collection of data that describe the contacts among encountering devices. The
distribution of the intercontact times between mobile devices is the key ingredient
to estimate the delays in the system and to generate a mobility model seamlessly
reproducing real human mobility. On the other hand, the amount of contacts and
how long they last, for both individual and group interactions, provide significant
information about the network capacity and the people’s way of moving according
to some spatial, social or functional law [36].
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The main PTR architectural requirement is to enable experiments to last 3-4
weeks without needing human intervention for any battery changes. This energy
consumption constraint heavily influenced the design of the PTR and forced a de-
parture from other experiences that placed more computation power onboard and
adopted more energy consuming radio technologies [18]. PTRs can operate with a
configurable frequency with which beacons are transmitted. The corresponding time
periods range from 1 second to a few minutes, according to the mobility environ-
ment we wish to observe. Once defined at configuration time, however, the beacon
time may autonomously range within a small time interval to grant access to the
channel in crowded locations. After sending its beacon, a PTR enters a sleep mode
and wakes up whenever it receives a beacon from the neighborhood.

Whenever a beacon is received from a given encounter, let us say PTRe, the de-
vice creates a new entry in the local contact-log if no entry is active for PTRe. The
beacon is discarded otherwise, while the entry is maintained and contains the fol-
lowing items: i) local ID and ID of the encounter PTR; ii) the time stamp of the first
contact; and iii) the time stamp of the contact closing event. An entry in the contact-
log is closed when the beaconing from the encounter device has been missing for
more than t seconds, with t = 60 seconds in our experiments. The local memory size
should be dimensioned to store the contacts of experiments lasting up to 3-4 weeks.
Our test beds have generated on average 2000 contacts per device, with beaconing
time set to 1.5 seconds. The drawback of using a non-standard radio access technol-
ogy, as opposed to a general standard such as Bluetooth, is to be unable to record
the contacts with other mobile devices in the area. Finally, no specific bandwidth
and processing requirements have been envisaged for PTRs.

3.3 The Architecture

The Pocket Trace Recorder is a portable radio device with the overall architecture
described in Fig. 7. It uses the Cypress CY8C29566 microcontroller and the radio
module AUREL, model RTX-RTLP. The radio range has been limited to 10 meters
in order to maintain a sparse PTR distribution even in an office area and to limit
power consumption. This combination allows a very low power consumption that
lets the experiments last for the required time with common batteries NiMh, AA
1.2V . Each PTR has a 1 MB flash memory where more than 50,000 contacts can be
stored.

The PTR firmware implements the first two layers of ISO-OSI model [32]:
Manchester coding is used at the physical layer, while a CSMA non-persistent MAC
protocol that regulates access to the 2400b/s channel characterizes the data-link
layer. Within the latter layer, beacons are the only frames that a device has to ex-
change with its neighbors. The beacon payload is composed of: the PTR identifier;
a set of bits representing the internal state (and which are used for diagnosis pur-
poses); and the current time. The local time is set at the configuration time. The total
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Fig. 7 PTR architecture

clock drift in 3-week experiments has been evaluated in 10-12 seconds and, so far,
we have not executed any run-time clock synchronization. After sending its beacon,
a PTR enters a sleep mode and wakes up whenever it receives a beacon from the
neighborhood.

Each PTR uses an USB interface to communicate with the Pocket Viewer, the
Desktop application software, which has been used to configure the devices, collect
the recorded data at the end of the experiment and support data analysis and device
monitoring.

3.4 Preliminary Matches

We arranged the collected data so as to analyze intercontact and intracontact times.
To remove artifacts, we remodulated the recorded times by eliminating idle peri-
ods represented by the time intervals where people are expected to be far from the
campus. Namely we contracted to 0 the time intervals between 7 p.m and 8 a.m. of
workdays and the entire weekends. We also clamped to 0 the last 60 seconds of con-
tacts that we essentially assume to be artificially generated by the above beaconing
control rule. After this preprocessing, we have for each PTR a log of its inter- and
intracontact times with any other of the PTRs enrolled in the experiment. Thus we
may focus on three kinds of statistics, respectively concerning: single pairs, one PTR
versus the remaining ones, and each PTR versus others. As the second kind concerns
the union of the files singularly collected for the first, and analogously with the third
w.r.t. the second kind, we are essentially considering the same distribution laws but
with different parameters. The basic distributions – negative exponential and Pareto
– are indeed reproducible distributions [47]. Thus, the minimum among a sample
of sampled values has the same CCDF as the original values in both cases, but with
possibly changed parameters.

From previous sections we are left with: i) a constructive model to produce em-
pirical CCDFs, and ii) an approximate analytical counterpart having the benefit of
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Fig. 8 Overview of the PTR connections’ timing. Part I: Intercontact times; Part II: intracon-
tact times. On each part, line (1): episode lengths l vs. their starting time t (in hours); line (2):
episode lengths ECCDF with time expressed in seconds; column (a): encounters between a
specific PTR pair; column (b): encounters of a specific PTR with all remaining ones; column
(c): only for intercontacts, net intercontact times independently of the mate ID

being characterized by a reduced number of parameters (see (13)) that are relatively
easy to infer. Fig. 8 reports an excerpt of the experimental distributions. Namely we
see: 1) the log of intercontact and intracontact lengths with the daily times, and 2)
their synthesis in terms of ECCDF. For each item we have an exemplar related to
the above three layers: single pair, one versus others and each versus every other.
The type (a) diagrams highlight a common path that the PTR encounters during
the course of a day, whereas a more detailed analysis could reveal biases with the
weekdays and preferences of the single PTR owners. All these biases seem how-
ever to be well adsorbed by the Pareto-like distribution as shown in Fig. 8. Here
the experimental graphs are satisfactorily recovered with curves as in (13) through
confidence regions (whose computation together with a general inference procedure
are remanded to the next section), apart from a slight hump overposition that we
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Fig. 9 The non intentional features of the encounters. (a) Scatterplot of intercontact-
intracontact times drawn from same records as in column (b) of Fig. 8. (b) Exponential CDF
of the first intercontact times when the contacts have almost zero duration

already observed on the sloping trait of the picture in Fig. 5 and interpret through
the simple constructive model in the previous section.

We obtained feedback from the experimental data on the matter presented
through the pictures in Fig. 9. From part (a) of this figure – representing the scatter-
plot of intercontact-intracontact times – we see that most of the intracontact times
lasting less than 2 seconds are linked to small intercontact times, actually those
located within the plateau. Whereas the high correlation between the two times
(around 0.27) depends on the PTR blindness to other contacts once one contact
has been stated, the distribution of these times within the plateau when the intracon-
tact time is less that 2 seconds means the encounters are non intentional. Indeed, as
shown in Fig. 9(b) the distribution is exponential, figuring only crosswalks that are
random and have an almost null duration.

3.5 The Statistical Versant

Inferring either a Pareto or a Pareto-like distribution is not a standard task per se. In
addition, we must consider that empirical data are affected by many artifacts, linked
for instance to seasonal phenomena such as user habits during a particular week
and/or on a particular day of the week, special tasks shared exclusively by some
pairs of users, etc. Thus, rather than expecting a perfect fit, we look for tight regions
such as confidence regions [3] in which the experimental curves can be expected to
lie with a high probability. The identification of these regions is a favorite task of
the Algorithmic Inference paradigm [4, 2]. We infer them via a bootstrap procedure
[16] that we develop through the following steps.

1. Sampling mechanism. It consists of a pair 〈Ψ ,gθ 〉, where the seed Ψ is a ran-
dom variable without unknown parameters, while the explaining function gθ is
a function mapping from samples ofΨ to samples of the random variable X we
are interested in. Thanks to the probability integral transformation theorem [38]
we have that, by using the uniform variable U in [0,1] as a seedΨ , the explaining
function for T distributed according to (13) is:
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t = c

(
1 + bu
1−u

) 1
a

− c (17)

2. Master equations. The actual connection between the model and the observed
data is tossed in terms of a set of relations between statistics on the data and
unknown parameters that come as a corollary of the sampling mechanism. With
these relations we may inspect the values of the parameters that could have gen-
erated a sample with the observed statistic from a particular setting of the seeds.
Hence, if we draw seeds according to their known distribution – uniform in our
case – we get a sample of compatible parameters in response [4]. In order to en-
sure this sample clean properties, it is enough to involve sufficient statistics w.r.t.
the parameters [41] in the master equations. Unluckily, because of the shift terms,
the parameters are so embedded in the density function of T that we cannot iden-
tify such statistics for them. Rather we focus on the statistics tmed = t(!m/2+1"),
s1 = ∑m

i=1

∣∣t(i)/tmed−1
∣∣r and s2 = ∑m

i=!m/2+1" log
(
t(i)/tmed

)
, where t(i) denotes

the i-th item within the sample sorted in ascending order, and propose the fol-
lowing master equations having analogous notation for u(i) and umed

tmed = c

(
1 + bumed

1−umed

) 1
a

− c (18)
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s2 =
m

∑
i=!m

2 +1"
log

(
1 + bu(i)

1−u(i)

)
− log

(
1 + bumed

1−umed

)
+
⌊m

2
+ 1

⌋
logc (20)

We cannot state a general course of these statistics with the parameters. However,
in the region where we expect to find a solution this course is monotone in a
and b, with a tilting attitude of c. In greater detail, the true ratio term in s1 and

s2 should be

((
1+bu(i)
1−u(i)

) 1
a −1

)/((
1+bumed
1−umed

) 1
a −1

)
, which we approximately

simplify as in (19) to make the solution easier. Moreover, the last term in (20)
does not derive from the explaining function of T . Rather, it is added to introduce
a shaking in the numeric search of a solution, in the assumption that c is close to
1, hence its logarithm to 0, while shifts from this value raise tmed and decrease
s2. To achieve the first condition together with a suitable range of values, we
normalize the tis with a wise shift and rescaling. We also modulate r, ruling a
balance between second and third statistics, in order to avoid disastrous paths
followed by the search algorithm leading to diverge. This denotes the fact that at
the moment, due to the difficulties of the involved numerical optimization tasks,
the estimation procedure is not completely automatic.
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Fig. 10 Population of fitting curves

Embedding the found parameters in (13) we obtain a population of random curves
to contrast with the empirical one as in Fig. 10. From the empirical population a
confidence region may be derived, as shown in Fig. 8, where we expect to lie with
confidence 0.90 the CCDF curve compatible with the experimental data according
to our model. This region is computed through a peeling method, as detailed in [3],
for short, by discarding the most external curves up to a percentage of 10%.

4 Exploiting the Model

A second major technical problem to be solved in order to have an opportunistic
network running is the way of transmitting a message. The general idea is that in an
opportunistic network each radio device receiving a message is available to forward
it to its neighboring devices. Each transmission from one device to the next is a
hop. The hope is that with a limited number of hops each message reaches all its
addressees. With this aim the naive flooding strategy – each device immediately
forwards the received message to all neighboring devices – shows a certain number
of drawbacks linked to: i) device power consumption, ii) backlog management
of previously relayed messages that are still waiting to be delivered and could be
outdated, iii) band saturation due to an intense replication of messages, and iv)
collision between messages reaching a same device from different transmitters.
Avoiding these drawbacks requires the setting up of some contrivances that may
concern either a proper selection of the devices to which a message is passed [22],
and/or the message timing [11], and in any case will provide rules for deciding when
to stop the forwarding repetition of a given message. All these techniques require
the involvement of sophisticated strategies, often endowed with probabilistic rules
[15], generally based on statistics on the current status of the networks [46], e.g.
the number of devices in the surroundings, the number of repetitions already done
of the message, a list of IDs of the devices through which the message has already
passed, and the like. The fact is that an optimization of the transmission protocol is
hard even when the environment is known. On the other hand, as mentioned before,
the basic elements of this environment described by the mobility models have not
yet been completely assessed. Hence, from time to time we find segments of a
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protocol optimization theory based on specific hypotheses that definitely shed light
on the problem, but require deep simulations and experimental campaigns to get
truly operational results.

Our guess is that, on the one hand, non intensive communication networks which
are moderately delay tolerant, like the one sketched in our example, may find rea-
sonable solutions having the above drawbacks as caveats. On the other hand, we still
need to assess some leading principles, such as the Pareto-like laws ruling intention-
ality, to have a robust vision of the phenomenon in a substantially distribution-free
mode that will direct the results in more complex cases. As in any new operational
field, these principles will be the offspring of former pioneering applications, where
the latter take advantage of the methodology novelty when even broad results be-
come satisfactory and rewarding.

5 Conclusions

In the previous century, scientists elaborating ideas around computing machines de-
voted primary attention to the program instructions, i.e. on how to process data. In
contrast, in the new century the focus seems mainly on communication protocols,
i.e. on how to communicate the data to be processed. Within this vein, a state-of-the-
art template of communication paradigms is the Internet, where in essence we may
appreciate that the most efficient communication protocol consists in the absence of
social constraints, apart from some technological utilities. Hence no special permis-
sion or authentication is required in general, and on demand a user may typically
receive thousands of records in response to an inquiry. The limitations of the web
are obvious to everybody: a mass of data is available to any node of the network,
with no guarantee of their value. Thus, except for skillful users capable of drawing
the desired information, the vast majority of people are bombarded by a huge set
of data, with very little time and limited skills for processing them. At its worst,
the single user is affected by a set of mainly unstructured stimuli whose cumulative
effect is not far from a Gaussian noise. To desaturate this information flow we may
operate either from the bottom with feature selection methods such as random sub-
space [6, 24], or directly on the source of the data by selecting those of interest to us.
Opportunistic networks are a tool for the latter option, where the selection derives
from three factors: i) topological reasons, given the short range of the transpon-
der devices; ii) transmission protocols, which are not based on the message content
but on the transmission partners ID’s; and, above all, iii) common intentions of the
transmission partners, automatically giving rise to virtual communities at the basis
of a collaborative computational intelligence.

In this paper we show, through the analysis of real-life intercontact times, the
intentionality of the agents to be at the root of memory endowed processes form-
ing the communities. From a statistical perspective this is due to the longer tails of
the time distributions w.r.t. those of memoryless processes. Indeed, these tails allow
us to relax the typical synchronization constraints that are at the root of the con-
ventional parallel processing mechanisms. Rather, when the parallelism is exploited
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in terms of collaborative computational intelligence, the memory of the involved
processes lets them take all the time that is necessary to meet the interested recipi-
ents of the messages to be processed.
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Exploiting Collaborations in the Immune
System: The Future of Artificial Immune
Systems

Emma Hart, Chris McEwan, and Despina Davoudani

Abstract. Despite a steady increase in the application of algorithms inspired by the
natural immune system to a variety of domains over the previous decade, we argue
that the field of Artificial Immune Systems has yet to achieve its full potential. We
suggest that two factors contribute to this; firstly, that the metaphor has been applied
to insufficiently complex domains, and secondly, that isolated mechanisms that oc-
cur in the immune system have been used naı̈vely and out of context. We outline
the properties of domains which may benefit from an immune approach and then
describe a number of immune mechanisms and perspectives that are ripe for explo-
ration from a computational perspective. In each of these mechanisms collaboration
plays a key role. The concepts are illustrated using two exemplars of practical appli-
cations of selected mechanisms from the domains of machine learning and wireless
sensor networks. The article suggests that exploiting the collaborations that occur
between actors and signals in the immune system will lead to a new generation
of engineered systems that are fit for purpose in the same way as their biological
counterparts.

1 Introduction

The natural immune system, one of nature’s most complex and fascinating systems,
first provided inspiration for computer scientists in the 1990s. Since then, the rapidly
evolving paradigm of Artificial Immune Systems (AIS) has developed, with a
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thriving community of researchers world-wide. A glance through the dedicated AIS
conference series ICARIS [2], or through the many papers now published in a di-
verse array of journals highlights the variety apparent in both the domains that AIS
algorithms have been applied to, and in the design of the algorithms themselves. Un-
like in other biologically inspired areas of computation (for example Evolutionary
Computing), there is no canonical AIS algorithm1 — the diverse array of immune-
inspired algorithms have roots in an equally diverse set of immune mechanisms. The
various algorithms are described in detail in a number of publications - the reader is
referred to a textbook such as [19] for an introductory overview or to recent journal
publications such as [50] or [28] which discuss the current state-of-the-art in detail.
The purpose of the article is not to recover this ground, but to examine some over-
looked aspects of the natural immune system which we believe provide a richer (and
currently unexploited) source of inspiration for computational systems in the future
than current algorithms; in particular, we place significant emphasis on the design
of systems rather than algorithms. The article suggests some possible reasons why
the potential promised by AIS has not been delivered, and suggests how this might
be addressed in the future. The arguments are particularly relevant in light of recent
advances in technology which present a new and challenging range of problems to
be solved.

1.1 A Reflection on AIS Today

Analysis of the AIS literature reveals a number of perhaps surprising facts. Firstly,
computational algorithms tend to exploit individual, naı̈ve mechanisms that are ap-
parent in the immune system, despite the obvious fact that these mechanisms do
not operate in isolation in the natural immune system. Thus, we observe algorithms
derived from mechanisms such as clonal selection [8], negative selection, and im-
mune networks [32]. Algorithms derived from clonal selection principles have been
applied in the optimisation [11] and classification [55] domains. Negative selection
acts as inspiration for a number of anomaly detection algorithms, leading on from
seminal work in the AIS field from Forrest et al [22, 21] (though note that there is an
increase in recent literature which questions the theoretical basis of these algorithms
as anomaly detectors [47] due to questions of scalability). Algorithms derived from
immune network theory are prevalent particularly in robotics [56] but also in con-
tinuous learning algorithms which perform clustering [36]. These problem domains
are familiar to many branches of computational learning, and have been addressed
by many other non-AIS approaches and techniques. Immune-inspired algorithms
have provided useful alternative perspectives to many of these more traditional tech-
niques, and have often been shown to achieve comparable, or sometimes better re-
sults on some problems than some other algorithms. However, it is unclear what the
immune metaphor, applied in these contexts, can offer over and above that which

1 Note that the authors hold the position that this is in fact beneficial.
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can be already achieved by other more traditional methods 2. To this end, we argue
that application of immune inspiration to these problem domains is failing to exploit
the true potential of the metaphor of the immune system as a complex system.

Secondly, research and therefore algorithm development has increasingly
become driven by engineering requirements; algorithms are developed to solve a
particular problem, and then tweaked and tuned to solve the particular problem in-
stance at hand. This prevents the development of principled algorithms which can
be generalised to other domains. This trend goes side-by-side with an increasing
tendency for algorithms to move further and further away from the biology that
originally inspired them. This is often referred to by Stepney et al [44] as “reason-
ing by metaphor” - Timmis argues further in [50] that the limited perspective of the
immune system exploited in current AIS algorithms will ultimately limit the success
of the field. On a more positive note, it is worth noting that this trend is beginning to
be reversed - recent publications such as [48, 34, 25] present new, inter-disciplinary
viewpoints which have roots firmly in the underlying immunology.

Thirdly, and perhaps underlying both of the previous points however has been a
tendency to attempt to exploit what is commonly regarded as classical immunology.
This refers to the common assumption that the immune system’s major function is
to separate self from non-self, where self defines the ‘normal’ state of the immune
system host and non-self everything else. The point that this is a general percep-
tion is perhaps made best with reference to the Wikipedia definition of the immune
system “The immune system defends the body by recognizing agents that represent
self and those that represent non-self, and launching attacks against harmful mem-
bers of the latter group”. It does not seems surprising therefore that this viewpoint
often results in the perception in those working outside of the immediate field that
AIS algorithms are associated mostly with domains such as security and anomaly
detection, as a form of defence.

However, despite the ubiquity of the self/non-self theory of immunology, a num-
ber of alternative camps exist in the immunological world, each with sizeable fol-
lowings, and proposing a number of different theories which question not only the
mechanisms by which the immune system is held to operate but more fundamen-
tally, the actual role of the immune system itself. Such theories are not necessarily
mutually exclusive to classical immunology, rather they present a different perspec-
tive on both the functioning and the role of the immune system which has significant
potential for engineering systems. For example, while host defence is clearly a crit-
ical function, [12, 45] have proposed that it cannot be the only function of interest.
In a radical departure from accepted thinking, recent work by leading immunologist
Irun Cohen has suggested that the immune system plays a much more fundamen-
tal role in the body than simply protecting it from harm, and instead, its function
is that of body maintenance. Although this may seem a subtle semantic point, in
this view (expounded in detail by Cohen in [13]), detection of harmful situations
becomes merely a special case of overall body maintenance. The immune system

2 Furthermore, many alternative, perhaps older fields, offer algorithms which are backed
up by theory (which tends to be currently lacking in AIS), and hence are more readily
accepted.
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instead is seen as a cognitive system (in the sense that is computes state and acts
upon that state) which continuously provides body maintenance to the host. In the
body, the term maintenance covers a wide and diverse spectrum of functions, rang-
ing from healing of cuts and bruises, to inflammation, to mending broken bones. In
[14] Cohen likens the functioning of the immune system to that of a computational
machine, in that it must compute its current state and act upon that. His sugges-
tion that by computing both its internal and external state the immune system can be
re-configurable, adaptive, secure, and provide self-healing functionality in an unpre-
dictable and dynamic environment is clearly appealing from an engineering context.

Regarding the immune system as a system which provides maintenance rather
than defence considerably widens the scope of engineered applications which might
benefit from an immune inspired approach. Additionally, the properties just men-
tioned suggest application of immune-inspired mechanisms to a far richer field than
is currently apparent. The motivation of this article therefore is as follows. First,
we ground the discussion by focusing on the features and properties of challeng-
ing engineered systems which necessitate novel computational approaches. We then
describe a number of immune-mechanisms which are yet to be fully exploited in
computational systems. The discussion re-positions the immune system as a com-
plex, collaborative system of multiple signals and actors. A number of examples of
systems in which steps are currently being taken to implement some of the mecha-
nisms are then described. We conclude with a discussion of an emerging field, that
of immuno-engineering which promises a methodology which will facilitate maxi-
mum exploitation of immune mechanisms in the future.

1.2 Challenges Posed by Real Systems

Computational devices are now ubiquitous — in every home, in every office, on
every street, numerous small and inexpensive devices are becoming capable of spon-
taneously networking to each other and to the Internet, bringing with this ability the
potential of a new age in computing which is data, rather than technology, driven.
We can now construct autonomous systems, ranging from perhaps a robot contain-
ing tens of simple devices, to mobile, adhoc networks containing 1000s of such de-
vices. At both extremes, such systems consist of unreliable heterogeneous sensors
and actuators, which must make decisions across multiple time-scales in unpre-
dictable, and potentially hostile, dynamic environments in order to maintain their
integrity and achieve their desired functionality [49]. Current technology allows us
to hard-wire responses to foreseeable situations; a considerable void is still to be
crossed however to achieve systems which adapt continuously and autonomously to
their environments and exhibit what is becoming known as self-CHOP character-
istics; self-configure, self-heal, self-optimize and self-protect. A paradigm shift in
engineering is required to address this — current methodologies in software engi-
neering will not suffice when attempting to develop networks that are self-managing,
self-diagnostic, and above all, robust and secure in ever changing dynamic and un-
predictable environments. This view is reinforced by Zambonelli and Panurak who
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note that the complexity introduced to software systems by several emerging com-
puting scenarios goes beyond the capabilities of traditional computer science and
software engineering abstractions [59]. We propose that when attempting to ad-
dress such challenges in building and maintaining truly complex systems, then the
immune system metaphor is ripe for exploration [27].

The properties we wish to endow on complex engineered systems are exhibited
by the immune systems of many complex living systems. Such systems possess an
immune system which comprises of an innate component which endows the host
with rapid, pre-programmed responses and an adaptive component which is capa-
ble of learning through experience. Much of the desired functionality of the sys-
tem arises from the interplay between these subsystems and the regulatory effect
they have on each other. Together, these operate over multiple time-scales, from
seconds to the entire lifetime of the organism, endowing a system with the ability
to function, and maintain itself over its lifetime. Application of immune-inspired
mechanisms to engineered systems which are required to exhibit the same kind of
properties will need to be in stark contrast to the type ‘traditional’ AIS algorithm
development prevalent in the literature. For example, many efforts have been made
to derive optimisation or classification algorithms by looking to a natural system
which arguably does not exhibit the hoped for functionality at all (optimisation) or
where the functionality is one smaller part of a bigger picture (classification). The
features of applications which are likely to profit from this area are summarised in
previous research by one of the authors in collaboration with Timmis [28], and are
listed below. We stress that the biggest rewards are likely to be observed in applica-
tions which exhibit all of these features — systems which exhibit only one or two
features from the list are unlikely to profit fully.

1. They will be embodied
2. They will exhibit homeostasis
3. They will benefit from interactions between the innate and adaptive immune sys-

tems
4. They will consist of multiple, heterogeneous interacting components
5. They will be easily and naturally distributed
6. They will be required to perform life-long learning

The properties above are mainly self-explanatory, with perhaps the exception
of the first two: Embodiment from the point of view of the type of systems we
describe is perhaps best understood in terms described succinctly by Stepney in
[43]. A system which is embodied in its environment is a system which can sense
and manipulate its own environment, with its internal state depending on what it
senses, and its actions depending on its state. The system’s actions may change the
environment which affects what it subsequently senses ... and thus its subsequent
actions, thus producing a complex dynamical feedback. Homeostasis in a system
generally describes the ability of an organism to regulate its internal environment
such that it remains in a stable and constant condition and has a natural mapping to
an engineered system which must maintain itself in some viability zone [7] in order
to operate successfully.
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Neal and Trapnell provide further elaboration on point (4) above; in [37] they
discuss in detail the numerous actors and interactions in the immune system. The
arguments presented in [28] are extended, stating that appropriate exploitation of
immune collaborations will have the following benefits:

• Systems requiring multiple representations of actors, information and interac-
tions should become tractable and appropriate

• Systems requiring distributed detection of correlations of events and/or patterns
can be considered

• Systems requiring close integration and distribution of pattern recognition mech-
anisms with existing complex engineered systems can be considered.

This is a compelling view. Therefore, in the remainder of the article we first pro-
vide a brief overview of some of the mechanisms that are observed in the natural
immune system in which collaboration plays a crucial role, and in which we believe
provide much inspiration for the computer scientists solving complex problems in
the future. The material covers two perspectives. Firstly, we consider mechanisms
apparent in the natural immune system which are currently unexploited in artifi-
cial systems. Secondly, we discuss recent work in immunology which attempts to
reposition the immune system away from a pure defence mechanism to a complex,
self-organising computational system. Finally, we suggest some future directions
for AIS research; complex problems require complex solutions — paying closer at-
tention to the intricacies of the immune systems rather than resorting to “reasoning
by metaphor” can potentially reap rich rewards.

2 The Natural Immune System

The natural immune system is one of the most complex systems in nature, consisting
of numerous players and mechanisms. Research in immunology flourishes world-
wide - in 1970, Jerne [32] estimated that the number of immunologists in the world
had tripled every 20 years since the late 19th century, and Coutinho[15] recently
estimates the current number as around 40000, with a new paper in immunology
published on average every 15 minutes. Despite this, many of its mysteries remains
unsolved, and a particular paradox of the field is that despite huge advances in ba-
sis science, there has been few clinical applications resulting from this [15]. There
are several competing (though not necessarily mutually exclusive) theories as to
how immune function is achieved, each associated with a plethora of mechanisms.
Although unsatisfactory from a clinical point of view, this is not necessarily a hin-
drance for the computer scientist — indeed, one might argue that exactly the oppo-
site is true. Unencumbered by the need to explain experimentally observed data, the
computer scientist is at liberty to pick and choose from the theories of the immune
system described in the literature 3.

3 The computer scientist does not have a completely free hand; as described in Section 6
and advocated by [44] immune-inspired algorithms should result from careful abstraction
of natural mechanisms and be under-pinned by theory.
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We present a brief overview of some of the fundamental processes that occur in
the natural immune system. Our overview omits much detail, and in particular does
not cover the ’classical’ theories of clonal selection and negative selection in the
adaptive natural immune system which has inspired much of the work in the AIS
field. Background on these processes can be found in the introduction to almost any
AIS paper. Additionally, the interested reader is referred to accessible immunolog-
ical texts such as [42] and [31] or to [19] for a computer-scientists’ perspective. A
very detailed discussion of the many actors and interactions apparent in the natural
immune system is given by Neal and Trapnell in [37] - this text gives a much more
detailed account of vast numbers of cells and interactions occurring in the immune
system than is provided here, and draws parallels with the type of engineered sys-
tem that could benefit from such interactions. We focus particularly on some of the
immunological mechanisms which particularly rely on collaboration. Some of the
these mechanisms have been overlooked by the AIS community, particularly those
occurring in the innate immune system which has often been overlooked as being too
simplistic by researchers in computational intelligence. Hence, they are presented
here to stimulate discussion and future research. Others, such as the cognitive im-
mune theory of Cohen, have attracted much attention recently in the AIS community.
Timmis and Andrews proved a thoughtful theoretical perspective on the usefulness
of this theory in [48, 5, 3]; work of a more practical flavour which exploits Cohen’s
ideas is discussed more detail later in this chapter in Sections 4.1 and 5. The collab-
orative theme is evident throughout all the mechanisms reviewed, occurring in the
innate IS, between the innate and adaptive systems, and in the adaptive system itself.

2.1 Innate vs. Adaptive Immunology

The natural immune system consists of several layers or subsystems. A first line of
defence is provided by physical barriers such as the skin, but beyond this, lie two inter-
acting complex systems, the innate immune system and the adaptive immune system.
The innate system is present in all animals, and provides a number of programmed
responses to invading bacteria and potentially harmful signals. It is the innate system
that is responsible amongst other things for inflammation, one of the first outward
signs that an immune response is occurring, and for sending signals to alert the brain
that something hurts! 99% of animal species exist with only an innate immune sys-
tem. In vertebrates however, another level of defence, the adaptive system, provides
an extra layer of response which can adapt dynamically to any invader which is caus-
ing harm. The latter system has attracted much attention in AIS whilst the former has
been largely ignored. A number of salient innate mechanisms are now described.

2.2 Cooperative Innate Immunology

The innate immune system includes a number of important cells such as the com-
plement system, professional phagocytes, and natural killer cells. We discuss the
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role of the latter two players here; a further key innate player, the dendritic cell, is
discussed in more detail in the next section. The system works efficiently due to the
cooperation of the various cells; only via a collaborative effort can the innate system
respond quickly and strongly when under attack. The role of some of the actors and
the mechanisms by which they cooperate are now described.

2.2.1 Macrophages

The “professional” phagocytes of the immune system have a primary function
of phagocytosing or eating other cells. The most important of these cells is the
macrophage, which plays a number of roles which are of potential interest; in their
resting state, they function as a garbage collector, clearing cells of debris. However,
if they receive environmental signals which indicate that the initial defence barri-
ers have been penetrated, they change function: they increase the rate at which they
engulf other cells, and thus begin to engulf invaders. At the same time, the infor-
mation that describes the engulfed invaders (i.e. the proteins) is displayed on the
surface of the macrophage. The activating signals come from a class of immune
communication molecules known as cytokines — the best studied is a cytokine
called interferon-gamma, INF-γ . Macrophages can exist in a third state which arises
via direct activation as a result of signals received directly from invading cells and
is known as hyperactivaton. In this state, the signals received from invading cells
(such as LPS) cause the macrophage to switch behaviours - it stops proliferating,
increases in size, and becomes a ‘killer’, phagocytosing invaders. Additionally, the
macrophages release other signalling molecules (in particular tumor necrosis factor
TNF) which can both act as killers themselves and recruit other collaborators in the
immune system. The various signalling mechanisms provide important guidance to
the innate immune system, and also emphasise the role played by the environment.
Environmental signals activate a set of behaviours in the immune system and also
recruit other players into cooperating.

2.2.2 Natural Killer Cells

Anther important class of cells is the family of cells known as Natural Killer Cells
(NK cells). These cells kill invaders by forcing them to commit suicide. NK cells
appear to directly target invaders – a two signal exchange between a potential target
cell and the NK is thought to determine whether or not the target is killed. Further-
more, NK cells also release the activating cytokine IFN-γ . As with macrophages,
NK cells require activating signals from the environment; several signals, produced
only when the body is under attack, have been identified.

2.2.3 Cooperation

The clever cooperation between these cells which results in an efficient system is
shown in Figure 1. For example, signals from an invading bacterium activate the
NK cell; this responds by producing INF-γ , the signal that activates macrophages.
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signals from invading cellssignals from invading cells

activating signal (INF)

killer signal

second activation signal (IL−12)

macrophage

NK cell

Fig. 1 Cooperation between macrophages and natural killer cells provides a self-regulatory
system, adapted from [42]

The activated macrophage becomes hyper-activated when it receives this signal and
the signal from the invading bacterium. The hyper-activated macrophage produces
the killer cytokine TNF. This cytokine is detected by the macrophage itself which
causes it to release another molecule IL-2. Together, the released IL-12 and the TNF
activate NK cells which produce more INF-γ ..... and a positive feedback loop is set
up which in turn primes more macrophages. The cooperation between the different
classes of cells play a dual role; it provides reinforcement via positive feedback
loops and also provides confirmation to cells that their diagnosis of a situation is
correct.

Currently, there exist very few applications in AIS which attempt to exploit the
immunological features described in Sections 2.2.1 to 2.2.3. One the one hand, the
innate immune system is inherently more simple than the adaptive immune system;
yet, until very recently, almost all focus in the computational literature was on the
adaptive system. Secondly, many natural systems function perfectly well with only
an innate immune system - perhaps computer scientists ought to look to the innate
immune system in the first place in order to design artificial systems. For example,
it seems clear that progress could be made in a number of robotics and control
applications (particularly those concerned with fault tolerance) by exploiting the
type of feedback loops exemplified in the immune system just described, without
having to resort to more complex systems at all.

2.3 Dendritic Cells

Until very recently, it was thought that the only role of the innate system was to
provide an indiscriminate, rapid defence until an adaptive response kicked in; how-
ever, it is now clear that the innate system is actually responsible for sensing danger
and then activating the adaptive system. Furthermore, rather than simply turning on
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the adaptive system, the innate system essentially computes the state of the body,
and returns this state to the adaptive system. The state information returned to the
adaptive system includes information regarding the type and location of the attack,
thus imparting knowledge on how and where to react. This is achieved via dendritic
cells, which scout the body tissues to determine its state, integrate the information,
and then signal to the adaptive system whether to react or not.

For this reason, the dendritic cell is often referred to as the ‘sentinel’ of the im-
mune system [42]. Dendritic cells reside in the epithelial tissues of the body (for
example the skin). These cells migrate through the tissue, sampling the tissue in
their vicinity. Essentially, the dendritic cells soak up molecular debris (for exam-
ple, bacteria or other pathogenic material) and additionally, sense molecular signals
present in the tissue. Some of these signals derive from safe or normal events such
as regular, or pre-programmed cell-death (apoptosis). Other signals are derived from
potentially dangerous events — for example, an exogenous signal known as a PAMP
is produced exclusively by pathogens. Another class of endogenous signals known
as danger signals are produced by by cells which die as a result of stress or from
attack. Exposure to sufficient levels of either signal results in the dendritic cell ma-
turing into one of two states, known as semi-mature or mature. The matured cell
then migrates back to the nearest lymph node through a complex system of lym-
phatic vessels via a process known as chemotaxis.

The lymph nodes function as molecular dating agencies where the different im-
mune cells of the body congregate — their small volume increases the probability
of cellular interactions. In particular, the dendritic cells that reach the lymph node
carry a snapshot of the current state of the tissues back. The snapshot contains two
important pieces of information: antigen, i.e. material causing a problem, and also
the signals representing the context under which the material was collected. This
snapshot is viewed by the reactive immune cells, in particular T-Cells, and a pro-
cess of communication, and collaboration between cells ensues which ultimately
results in activation or tolerance of the immune system, depending on the content
and context of the information presented. Returning DCs which have been exposed
to antigenic material in the context of safe signals are known as semi-mature; these
induce tolerance in the T-cells present in the lymph node. Those DCs which have
returned having been exposed to antigen in the context of PAMP and Danger sig-
nals induce a reactive response. This is shown in Figure 2. Thus, antigens are no
longer considered dangerous per se, it is their context and resulting effect on the
environment that determine their ultimate outcome.

This aspect of dendritic cell behaviour has inspired computational research con-
cerned with anomaly detection, in which the basic problem is to determine whether
to ignore or react to patterns of information in a system (for example, in a computer).
This approach shifts the focus of a detection algorithm to understanding the effects
of an intrusion to a system, rather than the signature of the intrusion itself. This has
perhaps significant advantages in that the effects on a system are potentially easier
to measure than patterns of incoming information which may be numerous and di-
verse in their nature e.g. [25]. Furthermore, the dendritic-cell-algorithm (DCA) of
Greensmith et al encapsulates a time dependent method of reacting to the effects of
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Fig. 2 The pathways of dendritic cell differentiation are dependent on the amount and type
of signal received. Mature cells eventually activate an immune response in the lymph node.
Semi-mature cells collect antigen, i.e. non-self material, but do not activate a response to this
material

an accumulation of signal over time, rather than reacting to individual incoming pat-
terns or signatures. The dendritic system has also inspired applications in the broad
area of wireless sensor networks [17, 16, 18]. These applications exploit two es-
sential properties of this system, the first concerned with the action of the dendritic
cells themselves and the second with the lymphatic dating agency just discussed.
The former mechanism exploits the notion of DCs as mobile agents which scout
an environment, collecting information about the contents of that environment. The
latter is concerned with how the collective information returned by numbers of DCs
to the lymph node is integrated and interpreted and ultimately results in a system
wide response. We return to this in more detail later in the chapter in Section 3.1 in
a discussion of the cognitive immune system.

3 The Adaptive Immune System: Carneiro’s Networks

The majority of existing AIS applications are based around interpretation of adap-
tive immune mechanisms (e.g clonal selection). The major players in these mecha-
nisms are the B-Cell and T-Cell. Immunologists today take for granted that T-cells
and B-cells must interact to realize the full potential of the immune system, but it
is telling that this fact has to date been overlooked in AIS. In fact, many of the
successful AIS algorithms which have been derived from adaptive immune mecha-
nisms (e.g aiNET [11] and others discussed in Section 1.1) focus on modelling only
B-cell interactions, ignoring T-cell collaboration altogether4. Here, we briefly de-
scribe the role of these two cells before describing in detail the immunological basis
of a model which exploits the interactions between the cells to great effect. Later
in the chapter, we describe a computational interpretation of this model and suggest
possible applications.

4 An exception is the work on network intrusion detection using the LYSIS system of[29]
which did incorporate the requirement of a second signal for cells to become activated.
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B-Cells are white blood cells produced by the bone-marrow that mature to pro-
duce antibodies. Each antibody can bind to a specific set of antigens according to
its molecular shape, with the specific antigen to which it binds referred to as its
cognate antigen. This process gives rise to the popular “lock and key” metaphor of
immunology, describing the process by which antibodies (keys) and bind to specific
antigens (locks). Most AIS models adopt a simplified view of the immunology, ex-
ploiting the fact that ultimately, recognition of a cognate antigen by a B-cell causes
it to proliferate, producing clones which have receptors which recognise the same
antigen - a process known as clonal selection. However, the process is actually more
complex:

T-Cells are similar to B-Cells in appearance, and display on their surface
antibody-like receptors known as TCRs, T-cell receptors. Like B-cells, these re-
ceptors also bind to their cognate antigen, however the process has a number of
crucial differences. Firstly, T-Cells only recognise protein antigen, unlike B-cells
which can recognise any organic molecules. Most importantly however, T-Cells can
only recognise antigen that is presented to them displayed on the surface of a further
class of molecule known as MHC, in contrast to B-cells which require no help to
recognise their cognate antigens. MHC processes antigen into peptide fragments,
which are displayed on the MHC surface. T-cells recognise short linear chains of
these peptides which correspond to contiguous sequences in the primary structure
of the antigen itself. B-cell binding on the other hand involves direct binding of the
BCR to the antigen, which therefore recognise the secondary, or surface structure of
the antigen, i.e. amino-acids that are discontinuous in the primary structure but are
brought together in the folded protein. These differences in the level of abstraction
at which recognition occurs play an important role in the collaborative response of
these cells, and one which we exploit in a machine learning context as explained
later in Section 4.1.

Recognition of cognate antigen by T-Cells causes them to become activated, at
which point they secrete cytokines. These cytokines produced by the T-Cell provide
a crucial second signal to a B-Cell which has also recognised a cognate antigen,
confirming to the B-Cell that it should become activated. Without this signal, B-
Cells which have recognised cognate antigen through their own receptors (BCRs)
do not become activated. Thus, the interaction between the T-Cell and B-Cell is
critical in turning on the immune response.

In theoretical immunology, many of the seminal models (typically described as
coupled differential equations) are concerned with the dynamics of the clonal selec-
tion process – how receptors bind ligands and then induce proliferation, secretion
and mutation of antibodies in the immune repertoire. This is extended in idiotypic
network theories [32] by incorporating the ability of antibodies to bind both antigen
and other antibodies, but the fundamental processes in the models remain similar. In
both cases, inter-clonal competition, i.e the relative ability of clones to proliferate,
is a function of fitness in ability to bind ligands and thus be selected, but there is no
real sense of co-operation amongst clones.

A lineage of work in theoretical immunology (starting notably from Jerne [32]
and continuing through to work by Carneiro [9]) has evolved these models to
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Fig. 3 Left: Two modes of B-T co-operation (i) B1 achieves the sustained surface proximity
to T necessary for T-Help via MHC-Presentation. By virtue of T-Cell receptor/B-Cell receptor
(TCR/BCR) morphological similarity, the resulting secreted antibody has little affinity with
the TCR and both clones proliferate in an explosive positive feedback loop. (ii) B2 interacts
via direct BCR recognition of the TCR. The resulting secreted antibody thus has affinity
and directly suppresses T in a negative feedback loop. Right: an illustration of how these
complementary interactions “close the loop” and drive each other into a stable configuration
via idiotypic interactions between B-Clones

demonstrate compelling behaviour of emergent tolerance and immunity driven by
endogenous criteria — exactly the type of behaviours which have encouraged
computer scientists and engineers to attempt to induce the similar behaviours in
engineered systems. However, although these models show that it was possible to
partition a space into tolerant and immune regions, thus capturing the the function
of the immune response, they failed to capture the structure of such a response, par-
ticularly in regard to the ability of the models to maintain a distinction between self
(that which should not be reacted to) and non-self, (that which should be reacted to).
This failure results from an implicit requirement for symmetry in a space imposed
by the lock and key notion which requires that complementary shapes interact. This
is of critical importance in both immunology and computational or engineering ap-
plications: imposing a complementary shape-space on a model or in an algorithm
has fundamental implications for the resulting structure and therefore functionality
of a space5.

Carneiro et al [9, 10] however extended the existing models (which are gener-
ally presented in a mathematical form as a series of differential equations [40]) and
showed that it was possible to break this underlying requirement for symmetry by
integrating the co-operation between B-Cells and T-Cells in regulating the adaptive
immune response [46].

Although the integration of T-Cells is a conceptually straight-forward modifica-
tion to existing models, its derivation and consequences are quite profound. We refer
the reader to [9, 10] for the original details and analysis and instead, attempt to de-
couple the significant mechanisms of the model from the overall dynamics (which
later in the chapter are interpreted from a statistical learning perspective). The cen-
tral notion is that B-Cells cannot achieve activation without a second signal from

5 See [26] for a detailed discussion of the relationship between structure and function in a
number of geometric spaces.
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co-operative interaction with T-Helper cells. The two modes of possible interaction
are illustrated in Figure 3 where each induce positive and negative feedbacks loops,
respectively.

B-Clone activation (and thus antibody secretion) is limited by available T-Help;
T-Help, in turn, is limited by the suppressive effects of TCR-specific antibody on
T-Clones. The complementary waves of immune response initiated by the antigen
(then by antibody, then anti-antibody etc) thus self-regulates, with ultimate tolerance
or immunity resulting from the indirect competition between T-Clones and antigen
to survive suppression from antibody. As B-Clones compete to garner available T-
Help, only the fittest achieve activation and secretion, relegating weaker clones out
of the repertoire and focusing it to best reflect the antigenic environment of the host.

Thus there are several forms of asymmetry in the model: (i) T-Clones act as a
driving force, limiting factor and target of the immune response, much like their cog-
nate antigen; however T-Help is provided to B-Clones via a separate mechanism that
is crucially, independent of the “shape” of the BCR (ii) TCR-specific B-Clones have
an inherent advantage in binding T-Clones, and thus receiving T-Help, because their
binding is based on a BCR-TCR rather than an MHC-TCR pathway and there are
many more BCR on a B-Cells surface (iii) Complementary B-Clones can only sus-
tain traditional oscillatory relationships while both antigen and T-Clone survive; the
eradication of either T-Clone (tolerance) or antigen (immunity) leads to a collapse
of the repertoire where one response dominates and the other is suppressed, and (iv)
T-Clones only bind to single points in the shape-space, whereas B-Clones can bind
to several, non-contiguous points (to simulate protein surface binding where distant
peptides on the proteins primary structure are brought together on the surface of the
folded secondary structure).

The latter two asymmetries are described in detail in [34], and are motivated
by the wish to extend Carneiro’s model beyond its original context [35] in order
to apply it in a machine-learning context, however, the principles are still relevant
in an immunological context. Figure 4 illustrates the mechanism in the case of a
tolerance-inducing response to a high-dose antigen. The TCR-specific response is
able to eradicate T-Clones before the antigen-specific response can eradicate anti-
gen. The absence of TCR leaves the tolerance-inducing B-Clone in a slow decaying
resting state. The immunity-inducing B-Clone, still stimulated by the now tolerated
antigen, transitions into an induced state where lack of available T-Help forces the
clone into a fast decaying anergetic death. The situation for immunity is equivalent
but reversed. In both case, the difference between slow and fast decay ensures that
the immune system “remembers” the correct response for an extended period and
rapidly “forgets” the wrong response.

From a computational perspective, there are a number of benefits in being able
to produce such behaviours in an engineered system. Later (Section 4.1), we de-
scribe how this model can be interpreted in a machine learning context, in a doc-
ument classification or query expansion application. In this type of application, a
system must learn how to respond to incoming data, for example, information con-
tained in a stream of documents. In such a scenario, the system might respond to
words in the documents, depending on the context in which they are presented and
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Fig. 4 Left: A schematic illustration of how eradication of either T-Clone or antigen (in
this case, T-Clone) causes different state changes in immunity and tolerance inducing B-
Clones that lead to fast decay (forgetting) and slow decay (memory). In both cases the loss of
available T-Help from B-T co-operation is the trigger for rapid decay. Right: A graph of the
dynamics of competing tolerance-inducing and immunity-inducing responses to a high-dose
antigen. In this case tolerance out-competes immunity and the dominant response transitions
into a slow decaying memory state while the recessive response is quickly eliminated

the previous history of presentation. The concepts governing the B/T cell interac-
tions provide a possible mechanism for this by which response to any word (or
other feature in a different domain) is a dynamic one governed by the competing
B/T responses. The balance of the competing response ultimately results in a win-
ner which determines whether tolerance of immunity to a feature is observed. Cru-
cially for AIS, this mechanism does not require any a priori knowledge of good/bad,
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interesting/not-interesting etc. data — this is determined solely by context. The par-
ticular relevance of Carneiro’s model is that it is unclear how these behaviours could
be induced without modelling fine-grained co-operative interactions between hetero-
geneous cell types such as B and T cells: the loss of co-operative interactions is the
trigger for rapid post-response correction.

3.1 The Cognitive Immune System

In a radical departure from classical immunology, Irun Cohen has popularised the
cognitive immune system [13], viewing the immune system from a holistic perspec-
tive as a complex, adaptive and reactive system which is capable of cognition. This
is a fundamentally different viewpoint to the classical immunology of the previous
decade, and one that has attracted much attention in recent years in the AIS com-
munity, as it implicitly captures many of the properties one would like to mimic
in intelligent systems. Cohen’s arguments are compelling, but in a sense, represent
more of a perspective than a tangible model; there are few quantitative models of
the underlying immunology that can be directly exploited, though a notable excep-
tion to this is recent work by Voigt et al which captures the essence of the cognitive
model in the framework of a learning classifier system [54]. Nonetheless, the con-
cepts captured by the viewpoint offer a rich source of inspiration for the computer
scientist or engineer. The arguments are elaborated below.

In line with the earlier network based approaches of Jerne and Varela [32, 51],
Cohen proposes that the primary function of the immune system is maintenance.
This may take the form of healing and repair (such as mending broken bones)
as discussed in Section 1.1 or even defence. Neuman sums this up neatly in [38]
“Rather than promoting the metaphor of the immune system as a warrior that de-
fends his castle against invaders.... the immune system is the maintenance man of
the compartment building we call the organism”. Such functionality demands far
more complexity from a system than defence, requiring examining the cells and in-
teractions that comprise the immune system in a completely different light. Cohen
views the immune cells as forming an immune dialogue with the body tissues in
which the condition is assessed via a collaborative effort from both adaptive and
innate immune agents, which form a picture of both endogenous and exogenous
activity (i.e of the body-self and of pathogens respectively).

Cohen re-frames the entire problem of attempting to define the proposed goals
of immunity by considering the entire immune system as a computational system.
The computational question is then not “ which cells and interactions comprise the
immune system” but rather “what is the immune system computing”, which can
only be answered by considering the state of the immune system [14].

Considering the immune system as cognitive, i.e that it computes states and
effects actions given that state, may at first glance seem surprising. Cognition
is usually thought of as a conscious process performed by the brain, but Cohen
defines three elements that, when integrated, can result in a cognitive system without
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consciousness; the first requires a system to be capable of making decisions based
on a number of potential choices. The second states that in order to accomplish
this, the system must possess internal-images of its environment, which are updated
based on its experience. The third element relates to the fact that the internal images
are gained via interactions or self-organisation. In summary, update of the internal-
images implies an increase of information which is driven through inputs of energy
and information by the world, and similar outputs generated by the system. Eventu-
ally, these interactions result in choices, and therefore the emergence of cognition.

Cohen describes three important mechanisms which contribute to the emergence
of cognition; co-respondence, pleiotropia and redundancy. The co-respondence
concept suggests that in order to fulfill its role (maintenance, protection), the im-
mune system maintains different classes of immune cells. These cells individually
see different aspects of any object that may be of immune interest, from within the
body (tissues) or external (antigens). Each class of immune cell informs other im-
mune cells about what it has seen, by expressing co-response signals (cytokines,
processed peptides, interaction molecules, antibodies). The effect of these signals,
essentially, is that each cell modifies its own response based on the feedback it re-
ceives from the other cells [13] — essentially, although it is impossible for a cell to
perceive what another cell perceives of its environment, it can perceive how another
cells responds, and therefore respond to this response. Through this cooperative re-
sponse and dialogue, the immune system can generate a system-wide view of an
event and its context.

Pleiotropia denotes the capacity of a single immune component to produce sev-
eral diverse effects. Depending on existing conditions, immune agents elicit differ-
ent responses and do different, sometimes contradictory things. For example, in the
natural immune system, a T cell can kill a target cell and stimulate the growth of
another. This is another essential property for components of an autonomic system,
in which components must be capable of effecting a number of different responses
depending on current environmental conditions.

The final property, redundancy is distinguished as simple and degenerate. Sim-
ple redundancy designates the existence of multiple copies of the same element
(e.g. numerous antibodies are produced during an immune response), while degen-
erate redundancy describes the situation in which many different immune compo-
nents perform the same action. Both types are relevant to large, distributed networks
containing multiple components. Assuming unreliability of individual network ele-
ments , multiple copies of the same network component will inevitably exist in any
application, and in addition, different components may respond in a similar manner
to certain environmental conditions.

This is a short summary of the Cognitive Model — the immunological basis is
described in detail in [13] and summarised by Andrews in [4] for the computing
community. Perhaps however the theory (and its potential use) is summed up most
succinctly by Cohen himself in purely computational terminology in [14] and de-
picted in Section 5. “The immune system functions to compute the state of the body
and effects actions accordingly. The input to the immune system is the state of the
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Fig. 5 Immune Computation (adapted from Cohen (2007))

body which comprises of a collection of molecular signals (indicating for example
inflammation or trauma). The output is a particular response state which triggers
the appropriate processes. The output is fed back to the tissues (inducing healing for
example), but also to the immune system itself which modifies both its structure and
behaviour. The response is thus formulated as a result of the cumulative experience
of the immune system dealing with both the body and the world.”.

In short, the cognitive view is indeed compelling as a framework for building
computational systems — one obvious application is in developing autonomic or
pervasive systems, which can continuously compute their state and act accordingly.
Although Varela [51] and Stewart [45, 46] amongst others have attempted to develop
models which capture aspects of this cognitive view, there is no all-encompassing
model of the cognitive immune system as a whole (from an immunological per-
spective anyway). However, some progress has recently been made in formalising a
computational framework which captures the ingredients and collaborations of the
concept by Voigt et al in [54] who propose a modified Learning Classifier System
(LCS) approach. The LCS was first introduced by Holland in [30] and is a classic
example of a truly collaborative learning system. Parallels between the LCS and the
immune system were first drawn by Farmer in 1986 [20], and since then a number
of authors have used the LCS framework to model the functioning of the immune
system. The relationship between the two systems is discussed in [21] and Vargas et
al use a simple LCS-immune model in an robotic autonomous navigation applica-
tion [53, 52]. Voigt et al go further however in capturing the characteristic aspects
of Cohen’s cognitive view, that of degeneracy and context, in an LCS framework.
They point out that the framework offers much potential in the domain of machine-
learning and problem-solving, in particular in the context-based processing of sig-
nals. In Section 5, we describe an alternative implementation of Cohen’s ideas in
research in the wireless sensor network area.
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4 Interpreting Immune Collaborations in Real-World
Applications

The preceding discussion has emphasised a number of collaborative interactions in
the natural immune system which we suggest might be exploited in computational
systems in the future. We now show how some of these mechanisms might be in-
terpreted in real-world applications. In the first example, we map open problems in
machine learning to immune-inspired mechanisms. This represents work currently
in progress. In a second example, some practical work that has already been un-
dertaken in the field of wireless sensor networks is presented. In both cases, the
applications possess the properties described in Section 1.2 which suggests they can
benefit from an immune-inspired approach. In both cases, the collaborative mech-
anisms inspired from the immune system provide a means to achieving the desired
system functionalities.

4.1 Application of Carneiro’s Model in a Machine Learning
Scenario

In Section 3 we described Carneiro’s model of the immune response which is cen-
tered around the interaction of B and T cells and their ability to bind protein. By
abstracting these mechanisms, we now show how it is possible to interpret its be-
haviour in terms of an online learning task. We discuss how we might apply these
behaviours to appropriate machine learning problems, where appropriateness is de-
fined in terms of similarity to the biological problem, in accordance with the prin-
ciples described in [28]: life-long online learning of changing concepts of self and
non-self based on endogenous criteria. Online, because the immune system has no
separate training phase or priming via parental genes; Changing, because the self is
not constant (puberty, pregnancy, transplants etc.); Endogenous, because there is no
external oracle a priori labelling molecules as self or nonself (though there may be
environmental feedback). The conceptual motivations that may subsume alternate
approaches are discussed.

The immune system functions despite a number of constraints. The first is that
it only senses molecular shapes within a certain size – those able to bind receptors.
Larger compound structures such as protein, complexes, tissues and organisms are
invisible, or rather implicit, to the immune response. The second constraint is that
chains of amino acids (called “peptides”) capable of acting as ligands may often be
equally likely to appear in the context of both normal physiology and pathology –
the self and non-self are made of the same basic components. The first constraint
implies that the task faced by the immune system may be better understood as that of
feature-selection: distinguishing sufficiently discriminatory features (peptides) from
random and persistent noise. The second constraint emphasises that features are not
independent labels of selfhood or non-selfhood, but must be judged in context and
in relation to the morphological and dynamic dependencies between them. These
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are critical points; most AIS literature 6, relies on either pre-labelling data into one
class or another, or presenting examples of one class. The latter approach makes an
assumption that data not represented by examples in the presented class belongs to
the other which is clearly not valid in a number of applications. Furthermore, the
notion that many features of a set of data may not be sufficiently discriminatory to
provide any classification ability is generally ignored in AIS literature — all features
are implicitly assumed to be discriminatory.

This has a direct mapping to a machine learning context. For example, consider
the task of trying to discern relevant information that may be contained in a con-
tinuous stream of incoming documents. Words in the documents map to proteins;
some of these words can be considered random noise, and therefore should be toler-
ated. Other words, although not noise, are too ubiquitous to be useful. These words
also must be tolerated - the remainder provoke some level of response. Just as in
the immune system, where the morphological and dynamic dependencies between
proteins determine their current ‘label’ as opposed to some pre-assigned labelling,
the categorisation of a word in a document stream depends not on the word itself but
the context it finds itself in. The key factor is that the model does not at any stage
treat words independently7, but that the response to any word depends on its inter-
action with other words. Interactions might include the context the word is found in
(e.g. the sentence the word appears in), how similar the word is to other words being
presented, and the dynamics of the presentation of the word over time. Determining
what to react to and what to tolerate is precisely what the model of tolerance derived
from the B-T cell interaction model attempts to achieve. The co-operation between
T-Clones and B-Clones is the essential mechanism that makes this work:

• The degree of suppression toward T-Clones and their cognate antigen are essen-
tially a judgement on the signal-to-noise ratio of that particular antigenic shape:
weakly significant (low-dose) and weakly discriminatory (persistent/high-dose)
antigen are actively tolerated, while those in-between invoke various degrees of
immune response. The asymmetry and magnitude of the response acts as a con-
fidence margin of the appropriateness of the response.

• The B-Clone repertoire is a constructive representation of the antigenic en-
vironment, made viable by clonal selection against present surface patterns.
Competitive exclusion over available T-Help regulates the complexity of this
representation. The extremes of tolerance and immunity by extinction further
emphasises the structure underlying the viable repertoire, by removing inappro-
priate responding cells and deactivating useful but currently unnecessary cells.
The high turnover and disposability of individual components of the repertoire
allows the representation to adapt rapidly to changes in the environment.

Individual cells in the repertoire have a small window of contribution and contri-
butions overlap considerably. The capacity for successful clones to proliferate lends
them extra weight when integrating these responses into an executive decision. This

6 An exception being the DCA algorithm of Greensmith et al [25].
7 Which would simply reduce the model to a statistical model.
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increases confidence in the system wide response, even if there is much contradic-
tion at the component level: the variance of individual responses is reduced. Con-
versely, the higher levels of suppression toward more confident responses changes
the antigenic environment of the host. This makes redundant aspects of the reper-
toire less viable; that is, bias in the preceding responses is compensated in later
responses. Furthermore, this additional diversity in the data (antigen), as well as
diversity in the repertoire, allows the system as a whole to perform better than its
single best component, which is the theoretical upper bound of an majority vote (see
e.g. [33]).

4.2 The Relationship of the Carneiro Model with Theoretical
Machine Learning

These ideas share a formal foundation in computational and statistical learning, no-
tably culminating in Boosting by Schapire et al. [23, 24]. Boosting is known for its
formal demonstration of the “strength of weak learnability” [41]: individual arbi-
trary weak learners, each performing only marginally better than random guessing,
can be aggregated into an arbitrarily strong learning algorithm. This result relies
on the diversity generated in the data and the individual learners, essentially as
described above. The correspondence, both conceptually and practically, with the
immune system is both natural and compelling (see Table 1).

Of course, the immune system is not simply a learning algorithm or statistical
model. The immune system does not train, test on independent data, then termi-
nate when its improvements are statistically significant. It cannot make a priori as-
sumptions that constrain its learning problem to something analytically convenient.
It cannot run several times and choose the best, or average, performance. How-
ever, studying the mechanisms of an immune response potentially offers a means by

Table 1 Comparison of conceptual ideas in Boosting and Immune System

Boosting Immune System
Weighted majority to increase confi-
dence and reduce variance

System-wide coherent responses via
inter-cell signalling

Reweighting data to increase accuracy
and reduce bias

Feedback between antigen presentation,
cell proliferation, antibody production
and antigen opsonisation

Weak Learner B-Clone with limited receptor speci-
ficity

Strong Learner Immune repertoire
Regularisation to manage representation
complexity

Competitive exclusion over available T-
Help to focus the repertoire

Learning algorithm e.g. y ∈ {+1,−1} Competing complementary responses
y =−1 and y = +1
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which models might be derived which capture features which are currently outwith
the scope of isolated models of statistical learning – how to adapt over time, how
to self-regulate, how to co-evolve with adversaries, how to distribute responsibility
and manage resources under physical constraints.

The immune system must maintain a healthy host and deploy lethal effector
mechanisms. The cost of errors in either case can be fatal or disabling. It runs
constantly over the lifetime of the host, interacting with the host’s physiology, the
external environment and other hosts. This is an application area severely under-
developed in the computational intelligence literature. It is not difficult to imagine
scenarios where these behaviours are essential, particularly as computing devices
becomes increasingly ubiquitous, ad-hoc and unmanaged. The immune metaphor
provides a coherent, economic and comprehensive framework for thinking about
and tackling these domains.

5 A Practical Perspective: Application of Innate and Adaptive
Immune Mechanisms to WSN

The previous section described a potential application of Carneiro’s model of adap-
tive immunology to machine learning problems. We conclude the discussion with a
look at another challenging domain in which some progress has recently been made
in exploiting some of the immune mechanisms described earlier. We describe work
in progress in a branch of the wireless sensor network field known as Speckled Com-
puting, which exploits both the Cohen view of the immune system and some of the
more specific processes observed in dendritic cells. As in the previous example, the
domain possesses exactly the qualities defined by [28] which suggest an immune in-
spired approach might be useful. The description also provides a direct illustration
of how the immune mechanisms can be interpreted in a engineering context. The
discussion below presents a high-level overview of concepts involved - the reader is
referred to [18] for the actual technical details of the system implementation.

Speckled Computing developed from the field of wireless sensor networks, and
sets out to offer a new concept in the way digital and physical worlds communicate
and interact [6]. Currently under ongoing development by the SpeckNet consortium,
a speck, illustrated in Figures 6 and 7, is a miniature device, capable of performing
sensing, data processing and wireless networking under program control. The speck
is designed to occupy a volume of approximately five millimetres cubed. At such
a small scale, energy storage and available memory are highly restricted. Although
efficient battery technologies and other forms of renewable power sources are be-
ing investigated, operations in specks need to be modest both in terms of power
consumption and memory requirements. Moreover, these units are aimed to be in-
expensive, produced and used in thousands, suggesting unreliability of specks is
an expected feature. A number of key differences between a SpeckNet and a tra-
ditional sensor network are apparent [58]. Firstly, SpeckNets are program-centric
rather than data-centric: a traditional sensor network collects data which is transmit-
ted back to some central hub for processing. In contrast, in a SpeckNet, each unit is
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Fig. 6 A version (June
2005) of the speck proto-
type, ProSpeckz IIK (with-
out battery), built by the
SpeckNet Group

Fig. 7 An overview of the
internal architecture of a
ProSpeckz [57]

programmable and extracts information and acts upon it in collaboration with its lo-
cal neighbours. Thus, computational tasks as well as data are disseminated through
the network. Secondly, specks have a much smaller range of communication than
in typical networks, being of the order of tens of centimetres, rather than metres
or kilometres. This switches the burden of energy-usage to reception rather than
transmission, in contrast to a WSN. Specks are designed to be inherently mobile
rather than static, introducing further engineering and software constraints. Finally,
SpeckNets operate in an asynchronous manner, with different operations occurring
dynamically according to need, with aperiodic data transfer.

Thus, the difficulties associated with the specks’ engineering constraints com-
bined with challenging issues in the software development of such a computational
system require a fundamentally new approach to development. The interactions be-
tween many autonomous, spatially distributed units must result in coherent global
behaviours. As powerful central units are not part of the network, the system must
find its way to co-ordination through alternative pathways. Furthermore, the system
must be able to cope with unpredictable conditions, such as erratic communica-
tion and open, sometimes harsh, environments. The domain is a perfect example
of a system which exhibits the properties defined by Hart and Timmis in [28] in
Section 1.2.
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Table 2 Common physiological features between immune system and SpeckNet

Immune System SpeckNet
Large populations of cells Great number of specks
Cells distributed in the body Specks scattered over the environment
Asynchronous molecular signalling Asynchronous optical/RF communication
Cellular network Wireless network
Autonomous cells Self-powered specks
No central organ No central base unit
Cells simple and expendable Specks basic and unreliable
Mobile cells Non-static specks

5.1 Immune Approaches to SpeckNets

The vision of the immune system put forward by Cohen as described in Section
3.1 appears to encapsulate at both a structural and physical level the properties that
are either observed in a SpeckNet or we wish to emulate. Table 2 outlines the com-
mon physiological features between the two system. On a functional level, it is
clear that the computational properties expressed in the immune system such as
self-regulation, learning, memory and ability and to be robust in the face of un-
reliable functioning of components and unexpected environmental events, all have
direct analogies with a SpeckNet. Above all, both systems comprise of many indi-
vidually weak components which together must cooperate to produce system wide
behaviour.

Although this cognitive view of the immune system is appealing, as already men-
tioned in Section 3.1, it is difficult to build a computational model which achieves
all of the functionality Cohen describes. However, the over-arching themes of the
cognitive concepts can still be achieved in a system at a high-level by focusing on
modelling some of the components of the natural immune system.

Considering the immune system from a computational point of view, various el-
ements collect information about the state of the body (input), which is channelled
through several layers of presentation and filtered collectively by different cells (pro-
cess), before the appropriate reaction is induced (output). The reaction closes an im-
portant feedback loop by causing changes to the body environment and modifying
the structure of the immune system itself [14]. Correspondingly, in a SpeckNet, a
deployed network must actively gather sensor data which, depending on the defined
application, it then must interpret and proceed with an appropriate reaction, if nec-
essary. Throughout its operation, the network is also responsible for attending to
itself, i.e managing its internal state (e.g. resources, potential failures) and poten-
tially its structure. The first process in this continuous cycle has a natural mapping
to the functioning of dendritic cells, the sentinels of the immune system described
in Section 2.3. In particular, the following functional properties of dendritic cells are
of interest:
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1. Dendritic cells circulate through body tissues, sampling exogenous and endoge-
nous signals.

2. Dendritic cells return to the lymph nodes when they become mature, where they
deliver a snapshot of the current environment.

3. The maturation state under which DCs return to the lymph provides crucial in-
formation to the system regarding how it should react.

4. The lymph nodes in the body are distributed; the large lymph nodes are strate-
gically located to areas of the body that are closer to sources of input from the
environment.

From this in [16, 18] we have derived the outline of a model which maps tissues
in the body to specks, and messages sent between specks to dendritic cells. We
currently distinguish two different types of specks:

• Tissue specks correlate to tissues in the body, and contain sensors for monitoring
the external environment (e.g. pressure, temperature etc.). They can also provide
endogenous signals, for example relating to their own internal state (i.e. battery
power). These specks constitute the majority of specks in any given environment.

• Integration specks correspond to lymph nodes. These specks receive informa-
tion from dendritic cells, process it, and determine an appropriate response.
These specks may have greater processing power than tissue specks (but are not
required to).

A typical environment will contain a high ratio of tissue specks over integration
specks. Although in the body, lymph nodes are strategically placed, this is not fea-
sible in a typical speck deployment, where ultimately, applications are envisaged
in which thousands of specks may be sprayed at random into an environment. To
take account of this, we have studied a number of models of SpeckNets which adopt
random placements of integration specks. Dendritic cells are mapped to scouting
messages. Messages originate at integration specks and traverse the tissue specks,
where they collect both exogenous and endogenous environmental information from
each speck visited. Eventually they return to an integration speck where the infor-
mation collected is filtered and aggregated. Eventually, a decision may be made by
the integration node to act upon the collective information. This may result in one
or more of several possible actions. For example, consider an application in which
a SpeckNet might be used to monitor temperature in an environment. As well as
maintaining a functioning network, the SpeckNet should be able to regulate fluctu-
ations in temperature in local regions by activating or deactivating heat sources, as
well as indicate unusual sources of heat, for example, a fire. Integration nodes there-
fore might send out effector messages which modify the external environment, e.g
turning a heat source on or off; alternatively, the integration node may modify the
endogenous variables of the system, for example, alerting tissue specks to modify
their endogenous parameters or increasing the rate at which it sends out scouting
messages in order to gather more information.

An overview of the model is given in Figure 8. Scouting messages originate from
an integration speck and are relayed through the SpeckNet in essentially a random
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Fig. 8 A high level overview of immune-inspired model used to achieve achieve functionality
and self-regulation and maintenance in a SpeckNet

walk. As they visit tissue specks, they collect information from the speck regard-
ing its local perception of the environment. For example, this may take the form of
an average value of a sensor reading over a specified window size. The parameters
used for processing sensor readings from the tissues and the functions applied to
local sensor values depend on the application and are set accordingly. The scouting
message aggregates this information as it travels (again in an application depen-
dent manner) and eventually either expires, matures or semi-matures depending on
the information it has collected. The conditions which cause a scouting message to
mature may for example include measuring variance of exogenous signals or mon-
itoring of endogenous signals such as battery power. This change of state triggers a
return to the integration node where the scouting message presents its information.
The integration node is able to estimate context based on the proportion of differ-
ent types of messages returning and also by aggregating information contained in
the expired messages. Once again, aggregating information from the network via
scouting messages is configurable with respect to the type of information needed.

The model just described has been tested in simulation using a simulation tool,
SpeckSim [1], developed to simulate a SpeckNet environment, taking account of
the physical constraint apparent in such a network. For example, radio communi-
cation is asynchronous, messages can be lost, and specks can go down at any time
(either temporarily or permanently). Experimentation with SpeckNets under a num-
ber of random configurations using a heat-monitoring scenario has confirmed that
integration nodes can successfully obtain a local picture of their environment, and
detect local changes. There is clearly a balance to be struck concerning the local-
ity of the information obtained by an integration node — increasing the number of
these nodes in the system results in each node obtaining a very local picture; fewer
nodes give a more global overview. [16, 18] describe these experiments in detail,
presenting technical results. Continuing research in this vein is now focusing on the
processes that occur in the integration nodes which integrate the information from
returning scouting messages and formulate a response. One avenue of investigation
focuses on collaborative voting methods, where a majority vote based on returned
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states might determine the eventual outcome. Another research direction will focus
on the collaboration between B and T-cells evident in the Carneiro model described
in Section 3 which allow the integration nodes to learn a model which will en-
able tolerance or reactivity to naturally emerge in a system based on the stream of
information arriving at the nodes.

6 The Future of AIS: Immuno-Engineering

The previous section has illustrated how one example of a collaborative mechanism
in the natural immune system can be practically exploited in an engineered system.
Taking a step back from this, we conclude the paper by examining how systems such
as the one described might be designed in the future via a principled approach which
results in generic, well-understood mechanisms which have wide applicability to a
range of domains, rather than being problem or domain specific.

Timmis et al propose a new branch of engineering to be known as immuno-
engineering which is inspired by the work of Orosz [39]. Orosz defines immuno-
ecology and immuno-informatics (definitions 1 and 2 respectively), stating that
immuno-informatics addresses the mechanisms by which the immune system con-
verts stimuli into information, how it processes and communicates that information,
and how the information is used to promote an effective immuno-ecology. [39].

Definition 1. Immuno-ecology is the study of immunological principles that permit
effective immunological function within the context of the immensely complex im-
munological network

Definition 2. Immuno-informatics is the study of the immune system as a cognitive,
decision-making device

Following on from this, Timmis et al outline a vision for a new type of engineering
they term immuno-engineering (definition 3) in [49], which they argue can be used
for the development of biologically grounded and theoretically understood AIS.
This is envisaged to enable the construction of robust, engineered artifacts via a
bottom-up approach to engineering.

Definition 3. Immuno-engineering is the abstraction of immuno-ecological and
immuno-informatics principles, and their adaptation and application to engineered
artifacts (comprising hardware and software), so as to provide these artifacts with
properties analogous to those provided to organisms by their natural immune systems.

Immuno-engineering takes into account the differences between artificial systems
and biological systems: for example, the different numbers, kinds, and rates of sig-
nals that need to be monitored and processed; the different kinds of decisions that
need to be made; the different effectors available to support and implement those
decisions and the different constraints of embodiment. For example, Orosz [39]
suggests that the most important design feature of the immune system that endows
it with speed, flexibility and multiple-response options is the parallel-processing
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Fig. 9 The conceptual framework proposed by Stepney et al, taken from [44]

architecture of the system. However, such an architecture is extremely wasteful in
its use of resources and relies on numerous back-up systems. The natural system
cannot simply be translated to an engineered system - the engineer is constrained by
physical constraints such as processing speeds, communication overheads and phys-
ical resource and further hindered by hardware requirements such as transmitting
signals from devices. [49] argue that in order to successfully transfer the function-
ality of the immune system to an engineered system, one must follow a principled
approach, probing the biological system and building computational and mathemat-
ical models which can be executed and validated. To this end, they advocate the
use of the conceptual framework originally proposed by Stepney et al which pro-
vides a structure which allows principled models to be derived which capture the
rich functionalities of the underlying systems. The framework is shown in Figure 9.
The framework advocates that probes, for example, observations and experiments,
be used to obtain a view of a complex biological system. Although any such view
is clearly limited to a sub-part of the complete system, it can be used to build ab-
straction models which attempt to capture the underlying biology. These models
can then be validated. The models, which may be mathematical or computational
in nature, can then be further abstracted in analytical computational frameworks
which can also be validated. Depending on the desired application, the validation
may require use of benchmark problems or engineering demonstrators. Above all,
the framework, in line with [48] emphasises the need for collaborative, interdisci-
plinary research to sophisticated models built on well-founded analytical principles.

The ultimate goal of the research presented in [49] is to be able to use such a
framework to create a generic set of immuno-engineering libraries which encap-
sulate essential properties and interactions and can be instantiated in a variety of
applications. It is hoped that in the future this will push the boundaries of both bio-
logically inspired computing and engineering.

7 Conclusions

The natural immune system is a vastly complex system, which functions due to
a complicated web of interactions that occur between multiple cells and multiple
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signals. Although AIS has developed a strong, and thriving field in its own right
over the past decade or so, in this article we have argued that the true potential of the
immune system has not yet been exploited in computational systems. The metaphor
is much richer than one might perceive given a glance through the AIS literature. We
have outlined some of the functional properties of the immune system that emerge as
a result of these collaborations, and shown how these properties are desirable, if not
essential, in engineered systems, particularly those that are required to function au-
tonomously. Some of the immune mechanisms which might be exploited to achieve
this functionality have been described in order to point the reader in the right direc-
tion. These mechanisms must be considered carefully in order to prevent a recourse
to reasoning by metaphor - the conceptual framework and the immuno-engineering
approach described provided a scientifically appropriate method for achieving this.
Any field, whatever the inspiration, must ultimately prove its worth by standing on
firm theoretical foundations, rather than simply exploiting its novelty. Exploiting
the similarities between immune mechanisms and other more traditional domains
such the boosting domain discussed earlier in the article may offer some mileage in
this respect. Progress may also be made via the immuno-engineering approach de-
scribed in Section 6 which advocates a principled abstraction of immune metaphors,
through a series of abstractions, at a mathematical and computational level.

Our argument is perhaps summed up most succinctly by the words of Neal et al
in [37] who propose

...the importance of the nature of the interactions in the immune system leads naturally
to the expectation that far more complex and ambitious immune inspired computation
than is currently attempted is required and should be possible.

By considering complex applications, we look forward to a new age in AIS in which
it may be possible to construct engineered artifacts that are fit for purpose in the
same way as their biological counterparts.
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Evolutionary Computation: Centralized,
Parallel or Collaborative

Heinz Mühlenbein

Abstract. This chapter discusses the nature and the importance of spatial inter-
actions in evolutionary computation. The current state of evolution theories is
discussed. An interaction model is investigated which we have called Darwin’s
continent-island cycle conjecture. Darwin argued that such a cycle is the most ef-
ficient for successful evolution. This bold conjecture has not yet been noticed in
science. We confirm Darwin’s conjecture using an evolutionary game based on the
iterated prisoner’s dilemma. A different interaction scheme, called the stepping-
stone model is used by the Parallel Genetic Algorithm PGA. The PGA is used to
solve combinatorial optimization problems. Then the Breeder Genetic Algorithm
BGA used for global optimization of continuous functions is described. The BGA
uses competition between subpopulations applying different strategies. This kind of
interaction is found in ecological systems.

1 Introduction

Modeling evolutionary principles found in nature in order to make the develop-
ment of powerful problem solving programs easier, or even to create human-like
intelligence was tried already in the beginning of the computer area. At least three
approaches have been followed to achieve this goal.

1. Use a theory - develop a theory of problem solving and implement it on a com-
puter

2. Copy the brain - analyze the human brain and make a copy of it on a computer
3. Copy natural evolution - analyze natural evolution and implement the most

important evolutionary forces on a computer

In the history of artificial intelligence research one of the three approaches was
dominant at any one time. The second and third approach depend on biological
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knowledge. In this chapter I will concentrate on the third approach. It relies on the-
ories of evolution and of computation. The theory of computation is well advanced,
so the problems of evolutionary computation lie in implementing theories of evolu-
tion. If a convincing constructive (or even mathematical) theory of evolution existed,
then evolutionary computation would be just a matter of implementation - which of
the major evolutionary forces to implement in what detail.

But does biology possess a constructive theory of evolution? Here the opinions
differ considerably. The main stream theory of evolution is called New or Modern
Synthesis. Its followers claim that it reconciles Darwin’s idea of continuous small
variations with gene flows derived from population genetics. The second major force
of the Modern Synthesis is Darwin’s concept of natural selection. But are these two
forces sufficient to explain the wonders of evolution at least in some broad terms?

There is no doubt that Modern Synthesis is able to explain the change of gene
frequencies on a small time scale. If there is enough diversification, then the theory
correctly predicts further changes for a short time. But can it explain the evolution
on a large time scale with new species arising and old species vanishing?

The outline of the chapter is as follows. First I recall the state of art of evolu-
tion theories, because they are used as models for evolutionary computation. Then I
describe different genetic algorithms, centralized, parallel and co-evolutionary. The
major part of the chapter deals with the investigation of Darwin’s conviction that
space is as important as time for evolution to take place. Especially we1 will ana-
lyze an important conjecture of Darwin which has been unnoticed sofar. We have
called it the Continent-island cycle conjecture. This conjecture is analyzed using
evolutionary games. Here a number of different spatial distributions are compared.
Then I describe the parallel genetic algorithm PGA and its use in combinatorial opti-
mization. In the final section co-evolution of sub-populations is used for continuous
optimization.

The term collaboration does not appear in textbooks of biology. In a restricted
form collaboration is investigated in ecology. Collaboration in the general sense is
considered to be an important component of human societies and therefore part of
sociology. Biology researches cooperation driven by interactions - between individ-
uals, between species, between geographic distributed sub-populations, within in-
sect colonies etc. In this chapter we investigate spatial distributions which vary over
time. The most interesting distribution is the continent-island cycle. This might also
be a model for successful collaboration in human societies.

2 Darwinism - The Unfinished Theory

Darwin‘s book “The Origin of Species by Means of Natural Selection” had un-
doubtedly an immense influence on biology and modern thinking in general. But
it should have been seen as the beginning of a new theory of evolution, not a
solution. The further development of Darwin‘s ideas has been hindered especially

1 The research has been done together with many researchers. Therefore I use mainly we
throughout the chapter.
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in the Anglo-Saxon countries because of the battle of its supporters against some
orthodox believers of religion2.

In Germany Ernst Haeckel was a strong advocate of Darwin’s theory. Neverthe-
less he wrote as early as 1863 - only four years after the publication of the Origin:
“Darwin’s evolution theory is by no means finished, instead it gives only the first
outline of a future theory. On the one hand we are not aware of all the other rela-
tions, which may be equally important in the origin of species to natural selection,
which was emphasized far too much by Darwin. And in many cases the external
conditions of existence of an-organic nature like climate and habitat, geographic and
topographic conditions, to which the organism have to adapt, should be considered
no less important than these relations....Another, and no doubt the most important
shortcoming of Darwin’s theory lies in the fact, that it gives no indication of the
spontaneous creation or the first genesis of the one or the few oldest organisms from
which all other organisms developed [19]3”.

It is outside the scope of this paper to discuss the above problems in detail. They
are still controversial in biology. In order to refresh the memory of the reader I recall
some important terms in evolutionary biology

• Genotype: The molecular basis of inheritance as defined by genes and chromo-
somes.

• Phenotype: The actual appearance of the living beings.
• Species: A group of organisms capable of inter-breeding and producing fertile

offspring. More precise measures are based on the similarity of DNA or mor-
phology.

Another important concept in population genetics is the fitness. It describes the
capability of an individual of certain genotype to reproduce, and usually is equal
to the proportion of individual genes in the next generation. An individual’s fitness
is manifested through its phenotype. As the phenotype is affected by both genes
and environment, the fitness of different individuals with the same genotype are
not necessarily equal, but depend on the environment on which the individuals live.
However, the fitness of the genotype is considered to be an averaged quantity, it will
reflect the outcomes of all individuals with that genotype.

This is a very careful definition, but how can this fitness be measured? It needs the
next generation! I will not discuss this complicated issue further. All mathematical
models of population genetics assume that the fitness is given. In the simplest case
of a single gene with two alleles a and A, we have the genotypes with genotypes aa,
aA, AA with corresponding fitness values w00, w01, w11.

In order to illustrate the current state of art of evolution theories, I shortly describe
two representative examples. The first one is expressed in the book of Maynard
Smith and Szathmary [47]. They see evolution as the evolution of complexity in
terms of genetic information and how it is stored, transmitted, and translated. This

2 This controversy is still not settled, if one considers the many supporters of “intelligent
design” in the US.

3 Translation by the author.
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Table 1 Major transitions in evolution [47]

before → after
replicator molecules → population of molecules in compartments
independent replicator → chromosomes
RNA as gene and enzyme→ DNA and protein
procaryote → eucaryote
asexual clones → sexual population
protist → plants, animals, fungi
solitary individuals → colonies
societies of primates → human societies

approach has led them to identify several major transitions, starting with the origin
of life and ending with the origin of human language (see Table 1).

The authors “solve’” some of the transition problems with a very narrow version
of the Modern Synthesis. “We are supporters of the gene centered approach pro-
posed by Williams and refined by Dawkins.” In the gene centered approach, also
called the selfish gene concept [7], the genes are the major actors. They possess an
internal force to proliferate as much as possible.

Let me illustrate the gene centered approach with the kin selection concept. In the
gene centered approach fitness measures the quantities of copies of the genes of an
individual in the next generation. It doesn’t really matter how the genes arrive in the
next generation. That is, for an individual it is equal beneficial to reproduce itself, or
to help relatives with similar genes to reproduce, as long as at least the same number
of copies of the individual’s genes get passed on to the next generation. Selection
which promotes this kind of helper behavior is called kin selection. It has even been
put into a mathematical rule by Hamilton [20]! An altruistic act will be done if

C < r ∗B (1)

Here C means the cost in fitness to the actor, B the benefit in fitness and r the relat-
edness. Let us discuss a simple example. Consider a father and his children, which
are drowning. Here r = 0.5. Let us assume that the father has to make a sacrifice,
this means C = 1. First assume B = 1. Then the father will not make a sacrifice for a
single child, but it needs three children at least. But if the father is not able to father
new children, then he makes the sacrifice for a single child! (see also the discussion
of altruism in [47]).

The selfish gene concept has been opposed by a small group in biology, most no-
tably the late Stephen J. Gould. Recently even philosophers of science formulate a
basic critic. “The synthetic theory bypassed what were at the time intractable ques-
tions of the actual relationship between stretches of chromosomes and phenotypic
traits. Although it was accepted that genes must, in reality, generate phenotypic
differences through interaction with other genes and other factors in development,
genes were treated as black boxes that could be relied on to produce phenotypic
variation with which they were known to correlate [17].”
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A more complex theory of evolution is contained in the book by Jablonka
and Zeligowski. The title is: “Evolution in Four Dimensions” [23]. The four
dimensions are

• The genetic inheritance system
• The epigenetic inheritance system
• The behavioral inheritance system
• The symbolic inheritance system

The genetic dimension dominates the current research. It culminated in se-
quencing the human genome. The epigenetic inheritance system is less understood
and varies considerably. Although their DNA sequences remain unchanged dur-
ing development, cells nevertheless acquire information that they can pass to their
progeny. Let me give a simple example. Liver cells, skin cells, and kidney cells, look
different, behave differently, and function differently, yet they contain all the same
genetic information. The differences are the consequences of events that occurred
during the developmental history of each type of cell and determined which genes
are turned on. Now, when liver cells divide their daughter cells are liver cells, and
so on. Although their DNA sequences remain unchanged during development, cells
nevertheless acquire information that they can pass to their progeny. This informa-
tion is transmitted by the epigenetic inheritance system. Sometimes the information
can be transmitted even transgenerationally. The existence of epigenetic inheritance
was barely recognized until the mid-1970s.

Behavioral inheritance is still controversial. Most evolutionists stress the genetic
basis of behavior (see Maynard Smith discussed earlier). They maintain that behav-
ioral strategies are to a large extent genetically determined and almost independent
of each other. Each behavior has been shaped through natural selection of genes that
led to the construction of a specific behavioral module in the brain.

The fourth dimension, the symbolic interaction system, is unique to man. There
exists only a few attempts of a mathematical theory of the symbolic inheritance
system. Most notably is the theory of “cultural transmission” [4].

But what makes even this very condensed theory so difficult is the interaction of
all four inheritance systems. The genetic inheritance system neither dominates nor
even forms a foundation for the other three systems. The four dimensions cannot be
analyzed separately, it is their complex interaction which defines the success of the
individual.

Metaphorically speaking: Each organism travels on a unique trace in this four di-
mensional space.

2.1 The System View of Evolution

One of the major weakness of the Modern Synthesis is the separation of the indi-
viduals and the environment. The fitness is averaged over individuals and environ-
ments. Let O(t) = (O1(t), . . .ON(t)) denote the vector of individuals at generation
t. Then we can formulate a simple system model. Each individual Oi(t) (mainly



566 H. Mühlenbein

characterized by its genotype) is assigned a fitness f predicting the performance of
this individual within the environment E and given the other individuals. Then the
evolution can be written as:

Oi(t + 1) = f (O(t),E(t)) (2)

E(t + 1) = g(E(t) (3)

It seems impossible to obtain numerical values for this fitness. Therefore theo-
retical biology has made many simplifications. The environment is kept fixed, i.e
g(E(t)) = const, the influence of other individuals is described by some averages of
the population, etc.. The above model is still too simple, because each individual is
developing in a close interaction with its environment.

The model given by 2 has not yet been used in population genetics, but special-
ized cases are applied commonly in population dynamics [21] or ecology. Given
two species with population sizes N and M, the following equations are used

N(t + 1) = F(N(t),M(t)) (4)

M(t + 1) = G(N(t),M(t)) (5)

The population sizes of the next generation depends on the interaction of the
two species at generation t. The interaction can be positive, this means that both
species are supporting each other. If the interaction is negative we have the classical
predator-prey system [18].

The development problem in evolutionary models has been addressed recently
by the developmental system theory [40]. Unfortunately the theory is very informal,
it has been formulated from a philosopher’s point of view. Therefore I will describe
the nucleus of an evolution theory as it has been stated by Anatol Rapaport [43].

The theory is based on the concept of an organism. “According to a soft defini-
tion, a system is a portion of the world that is perceived as a unit and that is able to
maintain its identity in spite of changes going on in it. An example of a system par
excellence is a living organism. But a city, a nation, a business firm, a university are
organisms of a sort. These systems are too complex to be described in terms of suc-
cession of states or by mathematical methods. Nevertheless they can be subjected to
methodological investigations [43].”

Rapaport then defines: “Three fundamental properties of an organism appear in
all organism-like systems. Each has a structure. That is, it consists of inter-related
parts. It maintains a short-term steady state. That is to say, it reacts to changes in
the environment in whatever way is required to maintain its integrity. It functions.
It undergoes slow, long term changes. It grows, develops, or evolves. Or it degen-
erates, disintegrates, dies. Organisms, ecological systems, nations, institutions, all
have these three attributes: structure, function, and history, or, if you will, being,
acting, and becoming.”

Taking the importance of individual development into account, I divide becom-
ing into developing and evolving. Development is the process creating a grown-up
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individual in a given environment from an fertilized egg . Evolution is the change of
the species in many generations.

The neuro-biologist Humberto Matura [32] also tried to find criteria for what
characterizes life. He proposed a new concept which he called autopoiesis. It is
derived from Greek “autos=self” and “poiein=to make”. The theory remained rather
informal and speculative. Therefore the concept was not very successful in biology,
but it is very popular in other sciences, especially in sociology.

The major conclusion of this section is: There exists no theory of evolution to-
day which could serve as a computer model for evolving artificial creatures with
problem solving capacities. Given this situation it is no surprise that early models
of evolutionary computation are not based on detailed biological models, but use
biological terms only metaphorically. This observation is still valid.

3 Evolutionary Algorithms - Centralized, Parallel or
Collaborative

There exist a myriad of evolutionary algorithms which model parts of general evolu-
tionary models described in the previous section. The most popular algorithm is the
genetic algorithm GA which models evolution by sexual reproduction and natural
selection. The GA was invented by Holland [22]. The optimization problem is given
by a fitness function F(x).

Genetic Algorithm

1 Define a genetic representation of the problem; set t = 0
1 Create an initial population P(0) = x0

1, . . .x0
N

1 Compute the average fitness F = ∑N
i F(xi)/N. Assign each individual the

normalized fitness value F(xt
i)/F

1 Assign each xi a probability p(xi,t) proportional to its normalized fitness.
Using this distribution, randomly select N vectors from P(t). This gives
the set S(t)

1 Pair all of the vectors in S(t) at random forming N/2 pairs. Apply
crossover with probability pcross to each pair and other genetic operators
such as mutation, forming a new population Pt+1

1 Set t = t + 1, return to STEP2

In the simplest case the genetic representation is just a bit-string of length n, the
chromosome. The positions of the strings are called loci (sing. locus) of the chro-
mosome. The variable at a locus is called a gene, its value an allele. The set of chro-
mosomes is called the genotype which defines a phenotype (the individual) with a
certain fitness. The crossover operator links two searches. Part of the chromosome
of one individual (search point) is inserted into the second chromosome giving a
new individual (search point). We will later show with examples why and when
crossover helps the search.
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A genetic algorithm is a parallel random search with centralized control. The
centralized part is the selection schedule and the mating. For selection the average
fitness of the population is needed. The result is a highly synchronized algorithm,
which is difficult to implement efficiently on parallel computers.

In our parallel genetic algorithm PGA we use a distributed selection scheme. This
is achieved as follows. Each individual does the selection by itself. It looks for a part-
ner in its neighborhood only. The set of neighborhoods defines a spatial population
structure. Thus the PGA runs totally asynchronous, there is no synchronization

Our second major change can now easily be understood. Each individual is active
and not acted on. It may improve its fitness during its lifetime by performing a local
search. The generic PGA can be described as follows

Parallel genetic algorithm

1 Define a genetic representation of the problem
1 Create an initial population and its population structure
1 Each individual does local hill-climbing
1 Each individual selects a partner for mating in its neighborhood
1 An offspring is created with genetic crossover of the parents
1 The offspring does local hill-climbing. It replaces the parent, if it is better

than some criterion (acceptance)
1 If not finished, return to STEP3.

Because each individual runs independently on a processor, it may use a specific
local hill-climbing method. This feature will be important for problems, where the
efficiency of a particular hill-climbing method depends on the problem instance.

The PGA can be described as a parallel search with information exchange be-
tween neighbors in the space. Because the neighborhoods overlap, a diffusion pro-
cess takes place. In the PGA all decisions are made by the individuals themselves.
Therefore the PGA is a totally distributed algorithm without any central control.

There have been several other attempts to implement a parallel genetic algorithm.
Most of the algorithms run k identical standard genetic algorithms in parallel, one
run per processor. They differ in the linkage of the runs. Tanese [48] introduces
two migration parameters: the migration interval, the number of generations be-
tween each migration, and the migrationrate, the percentage of individuals selected
for migration. The subpopulations are configured as a binary n-cube. In the imple-
mentation of Cohoon [5] it is assumed that each subpopulation is connected to each
other. The algorithm from Manderick et al. [30] has been derived from our PGA.
In this algorithm the individuals of the population are placed on a planar grid and
selection and crossing-over are restricted to small neighborhoods on that grid.

All but Manderick’s algorithm use subpopulations that are densely connected. We
have shown in [34] why restricted connections like a ring are better for the parallel
genetic algorithm. All the above parallel algorithms do not use hill-climbing, which
is one of the most important parts of our PGA.
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Before we report applications of the PGA, we discuss the importance of spatial
structures and collaboration in biology.

4 Co-evolution and Collaboration in Evolution

Collaboration is not part of evolution theories, it plays the dominant role in a sep-
arate field, today called ecology. Evolution theories try to understand how collabo-
ration evolves and changes, whereas ecology models the existing collaboration in a
habitat, trying to understand its influence on the size of the populations. A famous
example are predator-prey cycles described in equation 4. In this section we dis-
cuss the interaction of populations in spatial distributions and its importance for the
speed of evolution.

4.1 Darwin Revisited

First we will show that Darwin was aware of the importance of external conditions
of an-organic nature like the geographic distribution. In the section “Circumstances
favourable and unfavourable to Natural Selection” Darwin tries to describe the in-
fluence of intercrossing, isolation and number of individuals on the production of
new organic forms. Darwin mentions that this is an extremely intricate subject. He
argues very carefully, for example: ”For to ascertain whether a small isolated area
or a large open area like a continent has been the most favourable for the production
of new organic forms, we ought to make comparisons within equal times; and this
we are incapable of doing’”.

Simulation makes such a comparison possible. It is of course impossible to sim-
ulate the real evolution of nature, so we have to find an artificial environment which
is nevertheless complex enough to model the important aspects of evolution. As a
first step we have decided to simulate an artificial population where each individual
plays a two-person game against the other individuals. We have selected the Iterated
Prisoner’s Dilemma IPD, because it is surprisingly complex. The simulation will be
discussed in Section 5.

After a lot of reasoning Darwin arrives at the following conclusion. “I conclude
that a large continental area, which will probably undergo many oscillations of
level, and which consequently will exist for long periods in a broken condition,
will be the most favourable for the production of many new forms of life, likely to
endure long and spread widely.” Darwin argues as follows:

In a large continent, there is severe competition. This leads to the extinction of
over-specialized species. But it is highly improbable that something new arises on
a large continent. This happens much easier on small islands. But if the islands are
isolated for a long time, then over-specialized forms will develop.

So Darwin postulates, that the islands should reconvert to a large continent. There
will again be severe competition eliminating the specialized forms. This briefly
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sketches Darwin’s derivation of his hypothesis. The interested reader is highly
recommended to read the above mentioned chapter in Darwin’s book. I found
this conjecture so important that I have named it Darwin’s continent-island cycle
conjecture.

Mainstream biological science seems not to have noticed or to have delib-
erately neglected this section in Darwin’s book. Darwin’s evolution model is a
non-equilibrium model, whereas all the popular Darwinian, Neo-Darwinian and
Synthesis theories are equilibrium models.

Darwin’s arguments in favor of the continent cycle can also, with some minor
changes, be applied to other areas like the invention of successful scientific ideas
or the efficient organization of companies. Take the organization of companies as
an example. If the market (the environment) is stable, a large centralized company
with severe internal competition is most effective. If the company has to adapt to
a changing market, the large company should be subdivided into small companies
which can adapt much faster.

4.2 Spatial Population Structures in Evolution Theories

Several researchers in biology have tried to investigate the importance of spatial
population structures for evolution - without ever referring to Darwin. Space is an
important element of the shifting balance theory of evolution proposed by Wright
[55]. He argued that the best way to avoid a species being hung up on a low fitness
peak is to have the population broken up into many nearly isolated subpopulations.
Wright’s theory has three phases [56]. Phase 1 consists of the differentiation of innu-
merable small local populations by more or less random processes that occasionally
lead to higher peaks. Phase 2 is the occupation of higher peaks by local mass se-
lection. Phase 3 is the diffusion of these successful subpopulations throughout the
species, followed by the appearance of still more successful centers of diffusion at
points of contact. Then the whole process starts again.

Fisher [11], in contrast, argued that no such theory is needed. In a highly multi-
dimensional fitness surface, the peaks are not very high and are connected by fairly
high ridges, always shifting because of environmental changes. According to Fisher,
the analogy is closer to waves and troughs in an ocean than to a static landscape.
Alleles are selected because of their average effects, and a population is unlikely to
be ever in such a situation that it can never be improved by direct selection based on
additive variance.

The difference between these two views is not purely mathematical, but physio-
logical. Does going from one favored combination of alleles to another often necessi-
tate passing through genotypes that are of lower fitness? Fisher argued that evolution
typically proceeds in a succession of small steps, leading eventually to large differ-
ences by the accumulation of small ones. According to this view, the most effective
population is a large panmictic one in which statistical fluctuations are slight and
each allele can be fairly tested in combination with many others alleles. According
to Wright’s view, a more favorable structure is a large population broken up into
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subgroups, with migration sufficiently restricted (less than one migrant per genera-
tion) and size sufficiently small to permit appreciable local differentiation.

Four different models for spatially structured populations have been investigated
mathematically

• the one-island model
• the island model
• the stepping stone model
• the isolating by distance model

In the one-island model, an island and a large continent are considered. The large
continent continuously sends migrants to the island. In the island model, the popu-
lation is pictured as subdivided into a series of randomly distributed islands among
which migration is random.

In the stepping-stone model migration takes place between neighboring islands
only. One and two dimensional models have been investigated. The isolation by
distance model treats the case of continuous distribution where effective demes are
isolated by virtue of finite home ranges ( neighborhoods) of their members. For
mathematical convenience it is assumed that the position of a parent at the time it
gives birth relative to that of its offspring when the latter reproduces is normally
distributed.

Felsenstein [9] has shown that the isolating by distance model leads to unrealis-
tic clumping of individuals. He concluded, that this model is biologically irrelevant.
There have been many attempts to investigate spatial population structures by com-
puter simulations, but they did not have a major influence on theoretical biology. A
good survey of the results of the different population models can be found in [10].
Population models with oscillation like Darwin’s continent-island cycle have not
been dealt with.

The issue raised by Wright and Fisher is still not settled. Phase 3 of Wright’s the-
ory has been recently investigated by Crow [6]. He concludes: ”The importance of
Wright’s shifting-balance theory remains uncertain, but we believe whatever weak-
nesses it may have, they are not in the third phase.”

The problem of spatial population structures is now reappearing in the theory of
genetic algorithms. The plain GA is based on Fisher’s model. It is a well known
fact, that the GA suffers from the problem of premature convergence. In order to
solve this problem, many genetic algorithms enforce diversification explicitly, vi-
olating the biological metaphor. A popular method is to accept an offspring only
if it is genetically more than a certain factor different from all the members of the
population.

Our parallel genetic algorithm PGA tries to introduce diversification more
naturally by a spatial population structure. Fitness and mating is restricted to
neighborhoods. In the PGA we have implemented the isolation by distance model
and the stepping stone model. The three phases of Wright’s theory can actually be
observed in the PGA. But the relative importance of the three phases are different
than Wright believed. The small populations do not find better peaks by random
processes. The biggest changes of the population occur at the time after migration
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between the subpopulations. Recombinations between immigrants and native
individuals occasionally lead to higher peaks which were not found by any of the
subpopulations during isolation. This behavior can easily be demonstrated in the
application function optimizationfunction optimization ( see [34] for details). We
can therefore state the following observation.

The creative forces of evolution take place at migration and few generations
afterwards. Wright’s argument that better peaks are found just by chance in small
subpopulations is wrong.

In our opinion the most important part of Wright’s theory is what Wright pos-
tulated as “the appearance of still more successful centers of diffusion at points of
contact”. The difference of the evolution in a large continent and small isolated is-
lands, has been recently investigated by [42].

We believe that static fitness functions cannot model natural evolution. In a real
environment the fitness of an individual depends on the outcome of its interactions
with other organisms in the environment. The fitness cannot be specified in advance.
Therefore we used for a simulation of complex spatial population structures an evo-
lutionary game.

5 The Iterated Prisoner’S Dilemma as an Evolutionary Game

In our artificial ecology the interactions of the individuals are modeled by a game.
The fitness of the individual is the sum of the payoffs the individual gets during its
lifetime. We have chosen the Iterated Prisoner’s Dilemma (IPD), because it has been
investigated from a number of different viewpoints.

The major emphasis of our research is on methodological questions for at least
two reasons. First we believe that methodological questions are of utmost impor-
tance in a scientific field where it is almost impossible to compare simulation results
with actual experiments. Second, a convincing simulation to support or disprove
Darwin’s continent cycle theory would need a tremendous effort.

Over its 60-year lifespan, the Iterated Prisoner’s Dilemma has been one of the
most frequently studied phenomena in economics, political science, sociology and
psychology ( see Axelrod [1] for a survey). The basic prisoner’s Dilemma is a two-
person game, with each player having a choice of either cooperating (C) or defecting
(D). A typical set of payoffs is presented below.

Move C D
C 3/3 0/5
D 5/0 1/1

Given these payoffs, it is easily shown that mutual defection is the only Nash
equilibrium. Of course, the intrigue of the Prisoner’s Dilemma is that this unique
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equilibrium is Pareto inferior to the mutual cooperation outcome. If the basic
Prisoner’s Dilemma is iterated, the resulting super game is an Iterated Prisoner’s
Dilemma IPD. If the number of iterations is a known finite number, then a simple
backward induction argument implies that the only equilibrium is mutual defection
in every round. However, if the game is repeated a finite, but unknown number of
times, then cooperative behavior can theoretically emerge.

The ecological approach to experimental games has added another dimension to
the study of conflict and cooperation in societies. John Maynard Smith [46] intro-
duced the evolutionary game theory, where the games are played by a population of
individuals. The higher the payoff of an individual, the more offspring he will get.
In this manner the most effective strategies survive. A strategy is called evolutionary
stable [46], if it cannot be invaded by a single mutant strategy.

The theory assumes that the strategies are not changed during the course of
evolution. In our simulations the strategies are coded by genes. The strategies are
constantly changed by the parallel genetic algorithm, which uses mutation and
crossing-over for generating offspring.

5.1 The Simulation of Spatial Structures Using the Iterated
Prisoner’s Dilemma

There have been many attempts to investigate the IPD with genetic algorithms. The
first simulation was performed by Axelrod [2]. Axelrod considered strategies where
the moves are based on the game’s past three-move history. The major focus of Axel-
rod’s study was on strategies evolving against a fixed environment. Each individual
played against eight representative strategies. Marks [31] extended the investigation
to bootstrap evolution, where the individuals play against each other. Miller [33]
used finite automata to represent strategies. Furthermore he investigated the effect
of informational accuracy on the outcome of the simulation. All three researchers
used the plain genetic algorithm for evolving the population. They have been inter-
ested in equilibrium states and “optimal” strategies. We concentrate on the evolution
of the behavior of the total population.

The PGA has been extended to simulate different population structures. The ma-
jor enhancements of the PGA to the plain genetic algorithm are the spatial popula-
tion structure, the distributed selection and the local hill-climbing. The individuals
are active. They look for a partner for mating in their neighborhood. The partner is
chosen according to the preference of the individuals. The best individual in a neigh-
borhood has the chance to get as many offspring as the global best individual of the
population. The PGA therefore has a very “soft” selection scheme. Each individual
has the chance that on average 50% of its genes are contained in the chromosome of
an offspring. The offspring replaces the parent. In order not to complicate the sim-
ulations the individuals are not allowed to improve their fitness by learning. This
means their strategy is fixed during their lifetime.

We now turn to the problem of genetic representation of strategies.
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5.2 The Genetic Representation

There are at least two obvious ways to represent strategies as a genetic chromosome,
one is based on a simple table lookup, the other on a finite automaton. We will
discuss deterministic table lookup strategies in this paper. A k-lookback strategy can
be defined as a mapping of the outcome of the last k moves into a new move. In the
simplest case of just looking one play back, a strategy can be defined by four entries
in a table symbolizing the four possible moves of the last game - DD,DC,CD,CC. In
addition two bits are necessary to specify the first move. The genetic representation
of one-lookback thus consists of six bits. This gives 26 different genotypes. Three
popular strategies are given below

strategy
C * * * C C ALL-C
D * D D * * ALL-D
C * D C D C TIT-FOR-TAT

The sign * denotes that the allele on this locus does not have any influence on the
performance of the strategy. The ALL-C strategy in row one is defined as follows.
The player starts with C, then only two outcomes are possible, CD or CC. In both
cases the player plays C. The outcomes DD and DC are not possible, therefore
the entries in these columns are irrelevant. Altogether there are twelve different
bit-strings which define an ALL-C strategy. The problem of this straightforward
genetic representation is that we have a distinction between the representation and
the interpretation. The program which interprets the representation is not part of the
genetic specification and therefore not subjected to the evolution process.

But we have a clear distinction between genotype, phenotype and behavior. The
genotype is mapped into some phenotype, the phenotype together with the environ-
ment (in our case the other phenotypes) defines the strategy. Let us take the famous
TIT-FOR-TAT as an example. In TIT-FOR-TAT the player makes the move the op-
ponent made the game before. In an environment where only C is played, TIT-FOR-
TAT cannot be distinguished from an ALL-C player. A different behavior can only
be recognized if there exists an individual who occasionally plays D.

The mapping from genotype to phenotype is many-to-one. This makes a behavior
oriented interpretation of a given genetic representation very difficult. There exist no
simple structure of the genotype space. The Hamming distance between two ALL-
C genetic representations can be as large as four, whereas the Hamming distance
between two very different strategies like ALL-C and ALL-D can be as small as
one. An example is shown below

strategy
C C D D C C ALL-C
C C D D C D ALL-D
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If we assume that the genetic operators mutation and crossing-over uniformly
explore the genotype space, then strategies like ALL-C and ALL-D will have a much
higher chance to be generated than other strategies which are less often represented.
The genetic search is therefore biased by the genetic representation. We believe that
this effect is not a shortcoming of the chosen representation, but that this feature
models real life evolution. The evolution has always to work within the constraints
it creates for itself.

The complex mapping between genotype and phenotype makes it difficult to
estimate the outcome of a genetic operator. For example, a winning strategy may
be crossed with a losing strategy, giving in most cases a new strategy. An ALL-D
strategy which is crossed-over with an ALL-C strategy gives with probability 0.2
ALL-D and with probability 0.2 ALL-C. With probability 0.6 we get a strategy
which is different from the strategies of the parents.

We believe that in our artificial ecology the crossover operator is too disruptive
compared to real evolution. The same problem occurs if the genetic representation is
based on a finite automaton. In order to solve this problem we have to find a genetic
representation which is based on a more complex genetic machinery than simple
bit-strings. It is outside the scope of this paper to discuss this genetic machinery. We
only want to mention that we have to incorporate some ideas of genetic models of
self-reproduction proposed already in the 60’s.

The influence of spatial population structures is independent of the genetic rep-
resentation, therefore we will concentrate on this subject.

5.3 Mathematical Analysis of Structured Populations in
Evolutionary Games

Before we discuss some of the simulation results in detail we want to show by a
simple analysis how a spatial population structure influences the development of
strategies. For simplicity we assume that we have a population, consisting of in-
habitants playing strategy I and invaders playing strategy J. Let 0 < s < 1 be the
proportion of invaders. We assume that s is very small. Furthermore the invaders are
clustered. We model this fact by a clustering factor 0 < k ≤ 1/s.

Let P(I,J denote the payoff of an individual playing strategy I against an indi-
vidual playing strategy J. After invasion the fitness of the inhabitants F(I) is given
by the outcomes of plays with each other and against the invaders. Computing the
fraction of each of the games we obtain

F(I) = (1− s∗ 1− ks
1− s

)∗P(I, I)+ s∗ 1− ks
1− s

P(I,J) (6)

The fitness of the invaders is given by

F(J) = (1− ks)∗P(J, I)+ ks∗P(J,J) (7)
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We see that for k = 0 the invaders play against the inhabitants only, the case k = 1
gives the panmictic population normally considered in the theory of evolutionary
games. Here the plays are performed according to the frequency of the actors. In
the case of k > 1 we have a clustering effect. The players play more often within
their groups (inhabitants, invaders). For k = 1/s the effect is most dramatic. The
mixed terms with P(I,J) vanish, thus the invaders and the inhabitants play within
their group only. This is a very crude model of a structured population, but it can be
used to show some important points.

A strategy is called collective stable if no strategy can invade it. A new strategy is
said to invade if the newcomer gets a higher score than the native strategy, this means
that F(I) < F(J). In order to obtain a simple formula, we assume that s is small
approximate F(I) by P(I, I). Thus the small number of plays between inhabitants
and invaders is ignored. We get

P(I, I) < (1− ks)P(J, I)+ ks∗P(J,J) (8)

It is now easily seen that even ALL-C can withstand the invasion of ALL-D, if
there is a strong preference for each strategy to play only against each other. With
our payoff values we obtain that ALL-C will not be invaded by ALL-D if k > 0.5s−1.
But also the other invasion is possible. ALL-C can invade an ALL-D population as
long as they “stick together”. This means they play, even after the invasion, much
more against each other than against ALL-D. 4

In a one-dimensional spatial population structure with fixed neighborhoods the
situation is more difficult. The contest between the strategies happens at the bound-
ary of the neighborhoods, whereas the individuals in the interior play only against
members of their own group. In this spatial structure the success of the invasion is
therefore totally determined by the outcomes at the boundary.

It is almost impossible to investigate realistic spatial population structures by
analytical methods, one has to use simulations. This was first done by Axelrod ([1],
pp. 158-168). Axelrod investigated a simple 2-D structure where each player had
four neighbors. The selection was very strong. If a player had one or more neighbors
which had been more successful, the player converted to the strategy of the most
successful of them. Axelrod’s major conclusion was that mutual cooperation can be
sustained in a (not too highly connected) territorial system at least as easily as it
can be in a freely mixing system. We will extend Axelrod’s work. First, different
population structures are compared and second, the strategies evolve controlled by
the genetic algorithm.

5.4 Simulation Results

In our simulation we have investigated the following population structures

4 If we set p = ks then the above inequality is identical to Axelrod’s p-cluster invasion
([1],p.212).
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• a small panmictic population
• a large panmictic population(500 individuals)
• a one-dimensional population (ring structure with four neighbors)
• the continent-island cycle: a cycle between ten islands populations and a panmic-

tic population
• a competition between five population structures

In a panmictic population each individual plays against each other, in a spatial
population structure the individuals play only against their neighbors. Most of the
experiments have been done with a small population of 50 individuals. Detailed
simulation results can be found in [3]. We outline in this paper only the major facts
supporting or disproving Darwin’s argument. In our simulations we used 2-lookback
strategies. They can be coded by 20 bits. This gives 220 different genotypes.

The figures show individual runs which are “representative”. Each individual ex-
periment has been repeated 10 times. The results are qualitative as described. The
figures are what we believe “average” runs. Because of the stochastic nature of the
individual runs (especially the runs with small populations) it makes no sense to
average the fitness over the 10 different runs. A small panmictic population for in-
stance occasionally changes to a non-cooperative behavior for a certain time. The
time when this will happen cannot be predicted.

For a qualitative investigation we used the average fitness of the population. Batz
[3] has used more difficult measures like the distribution of classes of strategies.
Given the pay-off table theoretical research indicates that strategies like TIT-FOR-
TAT (TFT) are evolutionary stable, leading to an average fitness of three.

The difference between a large panmictic population and a small one is shown
in Figures 1 and 2. The simulation of the large population started with three pre-
defined strategies - 5 ALL-D, 490 ALL-C and 5 TFT. The population heads first to
non-cooperative behavior. Then ALL-D is beaten by TFT. The population arrives at
cooperation in generation 45.

Similarly the small population started with 5 ALL-D, 40 ALL-C and 5 TFT.
The small panmictic population oscillates, but is also heads first to non-cooperative
behavior. It arrives at cooperation at generation 65.

The result of this experiment can be explained mathematically. The initial fitness
of the strategies can easily be computed. In the small population the fitness of ALL-
D is given by

F(ALL−D) = (4 + 200 + 5)/49 = 4.27

Similarly we obtain F(T FT ) = 2.84 and F(ALL−C) = 2.69. Thus ALL-D first
increases by eliminating ALL-C. Then ALL-D is conquered by TFT. For the large
population we get F(All−D)≈ 5, F(T FT )≈ 3, F(ALL−C)≈ 3. The difference of
the fitness between ALL-D and TFT is larger in the large population. This explains
the rapid increase of ALL-D in the large population at the beginning.

The ring population oscillates as shown in Figure 3. The selection scheme of
the PGA is too soft for this population structure. In order to implement a higher
selection pressure we introduced an acceptance test of the offspring. In the first
scheme the offspring replaced the parent only if it won the IPD against the parent.
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The effect was dramatic. Now the population always settled on non-cooperative
behavior. The situation changed with our second scheme. This extension we called
the family game. Each mating produces two offspring. After the mating the family
consisting of the two parents and the two offspring plays an IPD tournament. The
winner replaces the parent. With this selection scheme the population settled on
cooperative behavior.

The explanation of this result is simple. In the IPD non-cooperative strategies can
be eliminated if the cooperative individuals stick together. In a single contest, ALL-
D can never be beaten. It is outside the scope of this paper to compare the family
game with kin selection proposed in sociobiology [54].

In Figure 4 the continent-island cycle is shown. One easily recognizes the cycle
(20 generations island, 20 generations continent). During the continent phase the
variance is reduced, during the island phase it is increased.

In Figure 5 the average fitness of the population is shown for five different pop-
ulation structures. The simulation started with a homogeneous ALL-D population.
We investigated whether the populations will change to cooperation. We see that the
population which is subjected to the continent-island cycle is first to arrive at co-
operation. This result was consistent in ten runs. A closer analysis of the strategies
showed that the winning cooperative strategies are not naive like ALL-C, but they
resemble TIT-FOR-TAT.

In a further set of experiments we changed the game during the course of the sim-
ulation, for instance we changed the IPD to the chicken game. The spatial structured
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populations adapted much faster to the new game than a large panmictic popula-
tion. This is one of the extensions that have been already proposed by Axelrod for
investigation ([1], p.221).

5.5 The Punctuated Equilibrium Theory

In our simulation, we observe rapid changes in fitness, followed by long intervals of
small fluctuations. This offers some support for a view of evolution called punc-
tuated equilibrium [16]. This concept was controversial in evolutionary biology
for some time, but it has now many supporters. Let us describe the theory and its
historical context.

During the years of Darwin’s apprenticeship in science there has been an intense
conflict in geological circles between adherents of rapid and gradual changes of
the fossil record. There is no doubt that Darwin strictly favored gradualism in his
writing.

This posed a dilemma to paleontologist. In order to favor gradual changes by nat-
ural selection, they had to view the empirical data as so incomplete that the process
of natural selection cannot be observed.

Gould and Eldredge abandoned this view by rejecting gradualism. They observed
in the history of most fossil species two features particularly inconsistent with grad-
ualism:

• Stasis: Most species exhibit no directional change during their tenure on earth.
They appear in the fossil record looking much the same as when they disappear;
morphological change is usually limited and direction less.

• Sudden appearance: In any local area, a species does not arise gradually by the
steady transformation of its ancestors; it appears all at once and ‘fully formed’.

This behavior they called punctuated equilibrium. It explains the fossil record.
The evolutionary forces responsible for this behavior are still controversial. In all
simulations the time of changes (indicated by a change in average fitness) is small
compared to the time of the equilibrium.

We next turn to a different application of the PGA, the solution of difficult
combinatorial problems.

6 Combinatorial Optimization by the PGA

Most applications of genetic algorithms are optimization problems. Here a static
fitness function is used derived from the optimization problem. The search strategy
of the PGA is driven by three components - the spatial population structure, the
crossover operator and the hill-climbing strategies. The spatial structure has been
discussed in the previous section. In this section we concentrate on the problem
dependent aspect, the crossover operator and the local hill-climbing.
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There have been attempts to “prove” that genetic algorithms make a nearly opti-
mal allocation of trials. This result is called the “Fundamental Theorem of Genetic
Algorithms” (Goldberg [13]) We have shown already in [34] that the above claim
is only valid for simple optimization problems. In fact, in [37] we have proven a
correct schema theorem, based on Boltzmann selection and our Estimation of Dis-
tribution family of algorithms [29, 36].

The search strategy of a genetic algorithm can be explained in simple terms. The
crossover operator defines a scatter search [12] where new points are drawn out
of the area which is defined by the old or “parent” points. The more similar the
parents are, the smaller will be the sampling area. Thus crossing-over implements
an adaptive step-size control.

But crossing-over is also exploring the search space. Let us assume that the com-
binatorial problem has the building block feature. We speak of a building block fea-
ture if the substrings of the optimal solutions are contained in other good solutions.
In this case it seems a good strategy to generate new solutions by patching together
substrings of the old solutions. This is exactly what the crossover operator does.

6.1 The Traveling Salesman Problem

The major difficulty for applying the PGA to combinatorial problems is to define
a crossover operator which creates valid solutions i.e. solutions which fulfill the
constraints of the problem. We will explain this problem first with the TSP.

THE TRAVELING SALESMAN PROBLEM

OPT 1 (TSP) Given are n cities. The task of the salesman is to visit all cities once
so that the overall tour length is minimal.

This problem has been investigated in [35, 14, 15, 34] with the PGA. The genetic
representation is straightforward. The gene at locus i of the chromosome codes the
edge (or link) which leaves city i. With this coding, the genes are not independent
from each other. Each edge may appear on the chromosome only once, otherwise the
chromosome would code an invalid tour. A simple crossing-over will also give an
invalid tour. This is the reason why this simple genetic representation has not been
used in genetic algorithms. The researchers tried to find a more tricky representation
in order to apply a simple crossover operator.

We take the opposite approach. We use a simple representation, but an intelligent
crossover operator. Our crossover operator for the TSP is straightforward. It inserts
part of chromosome A into the corresponding location at chromosome B, so that the
resulting chromosome is the most similar to A and B. A genetic repair operator then
creates a valid tour.

We call our crossover operator MPX, the maximal preservative crossover oper-
ator. It preserves sub-tours contained in the two parents. The pseudocode is given
below.
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PROC crossover (receiver, donor, offspring)

Choose position 0 <= i < nodes and length blow <= k <= bup randomly.
Extract the string of edges from position i to position j = (i+k)MODnodes from the
mate (donor). This is the crossover string.
Copy the crossover string to the offspring.
Add successively further edges until the offspring represents a valid tour.
This is done in the following way:

IF an edge from the receiver parent starting at the last city in the offspring is possi-
ble (does not violate a valid tour)
THEN add this edge from the receiver
ELSE IF an edge from the donor starting at the last city in the offspring is
possible
THEN add this edge from the donor
ELSE add that city from the receiver which comes next in the string, this adds
a new edge, which we will mark as an implicit mutation.

We want to recall, that in the PGA the crossover operator is not applied to all TSP
configurations, but only to configurations which are a local minima. Our local search
is a fast version of the 2-opt heuristic developed by Lin [28]. It is a 2-opt without
checkout. It gives worse solutions than 2-opt, but the solution time scales only lin-
early with the number of cities.

We have later found that the efficiency of the PGA increases with the quality of
the local search. But the major goal of the PGA work on the TSP was to investi-
gate the problem independent aspects i.e. the population structure and the selection
schedule. Therefore many generations were needed, which could only be obtained
by a fast local search method.

We turn to a popular benchmark problem, the ATT-532 problem solved to opti-
mality in [41]. The PGA with a population size of 64 and truncated 2-opt as local
search method got a tour length of 0.10% above optimal in ten runs of t = 1080s
(1000 generations,15000 local searches) on a 64 processor system, the average fi-
nal tour length was 0.19% above optimal [14]. This is a substantial improvement
over the results in [49] for genetic 2-opt search. It demonstrates the robustness of
the parallel genetic algorithm. The PGA finds good solutions with a simple local
search also.

This implementation had some influence in the development of heuristics for the
TSP. There is a section about the different PGA implementation in Johnson and
McGeoch’s seminal paper [26].

We will compare our heuristic with a very fast and efficient heuristic proposed
by Johnson [24]. It is called iterated Lin-Kernighan search. In his implementation a
new start configuration is obtained by an unbiased 4-opt move of the tour at hand.
Then a new L-K search is started. If the search leads to a tour with a smaller tour
length, the new tour is accepted.

Johnson reports the following results. In time t = 2700s (500 L-K searches) the
optimal tour (length 27686) was output 6 of 20 IterL-K runs, the average final tour-
length was 0.05% above optimal. Multiple L-K runs gave much worse results. A
single L-K run averages 0.98% above optimal in time t = 120s. 100 L-K runs gave
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a tour length of 0.25% above optimal. It needed 20000 L-K runs (t = 530hours) to
obtain a tour of length 27705.

Why is IterL-K more efficient than independent L-K runs? The success of IterL-
K depends on the fact that good local L-K minima are clustered together and not
randomly scattered. The probability to find a good tour is higher nearby a good tour
than nearby a bad tour.

We have shown in [34] that 2-opt local minima are clustered. Furthermore we
could show the following relation: The better the solutions are, the more similar
they are. This relation is the reason for the success of Johnson’s IterL-K. The rela-
tion holds, if the problem has the building block feature, which is necessary for the
success of the crossover operator of our genetic algorithm.

Iterated hill-climbing needs a fine tuned mutation rate to get with high probability
to the attractor region of a new local minimum. In the TSP case Johnson found that a
simple 4-opt move is sufficient. In other combinatorial problems it is more difficult
to find a good mutation rate and a good local heuristic like the Lin-Kernighan search
for the TSP. Therefore we share the opinion of Johnson that the TSP is in practice
much less formidable than its reputation would suggest [24]. An in-depth evaluation
of heuristics for the solution of large TSP problems can be found in [26].

6.2 The Graph Partitioning Problem

We will now turn to another combinatorial problem, the graph partitioning problem
GPP. Here the Lin-Kernighan heuristic is not as good as in the TSP case. We will
show that the genetic search is very efficient for this problem. The major obstacle is
to find a suitable crossover operator.

THE GRAPH PARTITIONING PROBLEM

The m graph partitioning problem (m-GPP) is a fundamental problem which arises
in many applications. The GPP is to divide a given graph into a number of parti-
tions (m) in order to optimize some criterion e.g. to minimize the number of edges
between partitions. More formally:
Let a graph G = (V,E,w) be given. V = {v1,v2, ...,vn} is the set of nodes, E ⊆
V × V is the set of edges and w : E #→ IN defines the weights of the edges.
The m-GPP is to divide the graph into m disjunct parts, such that some optimization
criteria will be fulfilled. In this paper we will consider the following optimization
criteria:

OPT 2 (m-GPP) Let P = {P1, ...,Pm} be a partition. Let G = (g1g2...gn) denote
the partition to which the nodes belong (1≤ gi ≤m). Then we look for

min
P

∑
1≤i< j≤n
gi 	=g j

wi j

such that σ(P) is minimal.



Evolutionary Computation: Centralized, Parallel or Collaborative 585

σ(P) is defined as

σ2(P) =
1
m

m

∑
i=1
|Pi|2− (

1
m

m

∑
i=1
|Pi)2

In order to solve the GPP, we have to define the genetic representation and the
genetic operators. In the simplest representation, the value (allele) gi on locus i
on the chromosome gives the number of the partition to which node vi belongs.
But this representation is highly degenerate. The number of a partition does not
have any meaning for the partitioning problem. An exchange of two partition num-
bers will still give the same partition. All together m! chromosomes give the same
fitness value.

F(G ) = ∑
1≤i< j≤n
gi 	=g j

wi j

All m! chromosomes code the same partitioning instance, the same “phenotype”.
The genetic representation does not capture the structure of the problem. We did not
find a better genetic representation, so we decided that the crossover operator has to
be “intelligent”. Our crossover operator inserts complete partitions from one chro-
mosome into the other, not individual nodes. It computes which partitions are the
most similar and exchanges these partitions. Mathematically speaking, the crossover
operator works on equivalence classes of chromosomes.

Figure 6 shows an example. The problem is to partition the 4×4 grid into four
partitions.

The crossover operator works as follows. Partition 2 has to be inserted into B.
The crossover operator finds, that partition 4 of B is the most similar to partition
2 in A . It identifies partition 2 of A with partition 4 of B. Then it exchanges the
alleles 2 and 4 in chromosome B to avoid the problems arising from symmetrical
solutions. In the crossover step it implants partition 2 of chromosome A into B.

After identifying all gene-loci and alleles which lead to a non-valid partition a
repair operator is used to construct a new valid chromosome. Mutation is done after
the crossover and depends on the outcome of the crossover. In the last step a local
hill-climbing algorithm is applied to the valid chromosome.

For local hill-climbing we can use any popular sequential heuristic. It should be
fast, so that the PGA can produce many generations. In order to solve very large
problems, it should be of order O(n) where n is the problem size. Our hill-climbing
algorithm is of order O(n2), but with a small constant. In order to achieve this small
constant, a graph reduction is made. The general outline of our hill-climbing algo-
rithm is as follows:

Local search for the GPP

1. Reduce the size of the graph by combining up to r nodes into one hyper-node
2. Apply the 2-opt of Kernighan and Lin [27] to the reduced Graph. For the GPP it

is defined as follows:
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a. Select two hyper-nodes
b. Test if an exchange of this hyper-nodes gives a lower fitness
c. If this is the case, exchange the nodes
d. Terminate, if no exchange can be made over the set of nodes

3. Expand the resulting graph
4. Create a valid partition
5. Apply a further local hill-climbing algorithm to the valid partition

Step2 and step5 are of order O(n2). The constant is smaller than doing 2-opt
search on the original string. The above local search is only done for the initial
population. After the first generation we use a still faster search. We apply 2-opt
only to the nodes which have connections to outside partitions.

The general m-GPP problem has been rarely studied. More popular is the the bi-
partitioning problem. A detailed study of the bi-partitioning problem can be found
in [25]. In that paper random graphs and random geometric graphs up to 1000 nodes
are used to compare different heuristics. We decided to make a performance analysis
with real life graphs. Furthermore we are more interested in the general partition-
ing problem, not in the bi-partitioning problem. Detailed results can be found in
[52]. Results for the bi-partitioning problem using our new Factorized Distribution
Algorithm FDA can be found in [37].

We will give here the computational results for solving a large GPP benchmark
problems. The problem is called EVER918. It is a 3-D graph which consists of 918
nodes and 3233 edges. It has to be partitioned into 18 partitions.

In Figure 7 we show the progress of the PGA for problem EVER918. The progress
is typical. The best progress is made at the beginning, then it decays exponentially.
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For EVER918 the PGA found the best solution computed so far [53]. Further
investigations have indicated that it will be difficult to construct an efficient iterative
Lin-Kernighan search for the m-GPP. First, the quality of an average L-K solution
is bad for the GPP. Second, it is difficult to determine a good mutation rate which
jumps out of the attractor region of the local minimum. This has been demonstrated
in [53]. There the following relation was shown: the better the local minimum, the
larger its attractor region.

In summary: The m-GPP problem is more difficult to solve than the TSP. The
PGA got results which are better than other known heuristics.

7 Continuous Function Optimization by Competition

Optimization of multi-modal continuous functions was a notoriously difficult task
for genetic algorithms. Sometimes good results have been achieved, but for many
benchmark problems genetic algorithms have not been competitive with other meth-
ods. Therefore we developed an algorithm called the Breeder Genetic Algorithm
BGA. The BGA uses a real-valued representation [38, 39]. Therefore a number of
specialized mutation and recombination operators have been implemented. These
depend on parameters. In order to automatically adapt the parameters, competition
between subpopulations using different parameters has been implemented. Detailed
discussions of the competition scheme can be found in [39, 45].

7.1 The BGA for Continuous Parameter Optimization

Let an unconstrained optimization problem be given on a domain D⊂ℜn

min(F(x)) ai ≤ xi ≤ bi i = 1, ...,n . (9)

The breeder genetic algorithm BGA was designed to solve the above problem
[38]. The BGA uses a set of search strategies. An overview of search strategies
based on recombination can be found in [51] and [50]. In [51] it was shown that
a new recombination scheme called fuzzy recombination (FR) worked best as a
breadth search. In this chapter we only describe the BGA mutation scheme and the
BGA line recombination which uses also the mutation scheme.

BGA mutation BM(ρ ,k,ν)

The BGA mutation scheme depends on the mutation range ρ , the precision k and
a new parameter ν which gives the number of neighboring variables to be mutated.
The standard BGA mutation (ν = 0) randomly selects just one variable xi.

Given xi a new value zi is computed according to

zi = xi +ρi ·δ (k) (10)
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ρi is normally set to the domain of definition of variable xi. δ (k) is a random
variable which is computed as follows:

δ (k) = sign(α) ·2−k·|α | α = U(−1,1)

where U(u,v) denotes the uniform probability distribution with support (v,w) ⊂ℜ.
k is called the precision constant. The smallest absolute value of δ (k) is 2−k, the

highest value is 1.0. Therefore the step sizes of the BGA-mutation are contained in
the interval [ρi ·2−k;ρi].

The rationale of the BGA mutation scheme has been explained in [38]. An ex-
tension of the BGA-mutation is specified by its third parameter ν . Now additionally
to the randomly chosen variable xi also adjacent variables are modified. The higher
the distance to i the smaller is the change.

zi− j = xi− j +ρi− j ·2− j (11)

zi+ j = xi+ j +ρi+ j ·2− j (12)

for j = 1, . . .ν
and i− j > 0, i+ j ≤ 0

where Δ is the value of δ (k) generated for xi

The parameter ν defines the size of the neighborhood. It lies in the interval [0;n].
For the standard BGA-mutation we have ν = 0. Note that the mutation step de-
creases exponentially starting from variable xi. This is in accordance to the design
rationale of the BGA mutation.

BGA line recombination BLR(ρ ,k)

The BGA line recombination uses components from both, mutation and recom-
bination. It creates new points in a direction given by the two parent points. The
placement of the point is done by the BGA mutation scheme. It works as follows:
Let x = (x1, . . . ,xn) and y = (y1, . . . ,yn) be the parent strings with x being the one
with better fitness. Then the offspring z = (z1, . . . ,zn) is computed by

zi = xi +ρi ·δ (k) · yi− xi

‖x−y‖ (13)

The BGA line recombination may generate points which are far from the given
point xi.

7.2 Competition between Subpopulations

In order to automatically adapt the parameters, we had the idea to use subpopula-
tions each with a different set of parameters. The subpopulations with high fitness
should increase, the ones with low fitness should decrease. Before implementing a
scheme we looked if theoretical models could guide us.
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Ecology deals with the interaction of subpopulations and species. Unfortunately
even the analysis of the interaction between two species can be quite complicated,
involving the effects of exterior and interior parameters. As a first approximation
one may distinguish four basic situations — competition, predator-prey, symbiosis
and host-parasite.

The most popular equations for analyzing the interaction of species are gen-
eralizations of the famous Lotka-Volterra equations. For two species they are as
follows [8]

dN1

dt
= r1 ·N1

(
1− N1

K1
−α12

N1

K2

)
(14)

dN2

dt
= r2 ·N2

(
1− N2

K1
−α21

N1

K2

)
(15)

Here N1,N2 denote the population sizes of the two species, r1,r2 are the growth
rates, K1,K2 the carrying capacities and α12,α21 the interaction coefficient. This
equation has been studied intensively [8]. It is very useful for understanding the
complex patterns which may arise by two interacting species. For a competition
scheme to be implemented these equations cannot be used because the interaction
coefficients cannot be specified in advance. In analogy to the above model the fol-
lowing model has been implemented.

7.3 The Basic Competition Model of the BGA

Our competition scheme requires a quality criterion to rate a group, a gain criterion
to reward or punish the groups, an evaluation interval, and a migration interval. The
evaluation interval gives each strategy the chance to demonstrate its performance
in a certain time window. By occasional migration of the best individuals, groups
which performed badly are given a better chance for the next competition. The sizes
of the groups have a lower limit. Therefore no strategy is lost. The number of com-
peting subpopulations (S) depends on the set of strategies used in the competition.
Normally the number of groups is between 2 and 8.

Our quality criterion (Q) is based on the fitness of the best individual of the
group. To avoid an inefficient oscillation of group sizes we use information about
the last ω competitions for the evaluation. The vector w ∈ Nω provides the win-
ners of the last ω competitions. wk ∈ {1, . . . ,S} contains the winner of the k-last
competition.

The following formula describes the quality of group i. k = 0 denotes the current
competition, k = 1 the previous one, etc. The time window ω is 10.

Qi(w) =
ω−1

∑
k=0

{
(ω− k)/ω : i = wk

0 : i 	= wk
(16)
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The gain criterion (G) defines how the population size of each group is modi-
fied according to its quality. Normally, the size of the group with the best quality
increases, the sizes of all other groups decrease. The following scheme increases
the size of the best group (w0) by the accumulated loss of the others. The loss of a
group is proportional to its population size. The loss factor κ ∈ [0;1] defines the rate
of loss.

The change of the population sizes is computed from the following equations:

ΔNi =

⎧⎪⎨
⎪⎩

S
∑

j=1, j 	=i
Nt

j ·κ :
Qi(w) > Q j(w)
∀ j, j 	= i

−Nt
i ·κ : else

(17)

where Nt
i denotes the size of group i and S denotes the number of groups. The

loss factor κ is normally set to 0.125.
The population size of each group of the next generation is given by:

Nt+1
i =

{
Nt

i +ΔNi : Nt
i +ΔNi ≥ Nmin

Nmin
i : else

(18)

The size of the population is only reduced if it is greater than the minimal
size Nmin.

This gain criterion leads to a fast adaptation of the group sizes. Each group looses
the same percentage of individuals.

The evaluation interval η and the migration interval θ are rather robust exter-
nal parameters. Normally we set η = 4 and θ = 16.

If one compares equations 17 with the generalized Lotka-Volterra equation 14
the following major difference can be observed. Our equations are linear whereas
the Lotka-Volterra equations contain the nonlinear term Ni ·Nj . The reason for this
difference is that the Lotka-Volterra equations model individual competition. If there
are many predators and each one captures two preys, then the reduction of the preys
depends on the number of predators. In contrast, our competition scheme evaluates
whole groups by taking the best individual as evaluation criterion.

The current competition scheme seems appropriate in cases when the strategies
used by the different groups differ substantially. Sometimes a competition model
might be better where even the size of the total population may vary.

7.4 The Extended Competition Model

If search strategies differ very much they may also require a different population
size to be efficient. It has been shown in [38] that mutation is most efficient in
small populations whereas recombination needs a larger population size. This can
be modeled by introducing growth rates which depend on the group.

In our implementation we introduced a consumption factor γ for each subpop-
ulation. Biologically speaking, a consumption factor specifies the consumption of



592 H. Mühlenbein

the limited resource by one individual of a species — the higher the consumption
factors the lower the number of individuals which can be supported by that resource.
We implemented this extension by introducing a normalized population size Ñ.

Ñi = γi ·Ni (19)

The gain criterion of equation 17 is now applied to the normalized population sizes.
The sum of the normalized population sizes remains constant because it is limited
by the limited resource K.

S

∑
i=1

Ñi = K (20)

For γi = 1.0 for i = 1, . . . ,S we obtain the basic model.In contrast to the basic
model the sum of the real population sizes varies during a simulation. This extended
competition scheme can be very effective for multi-modal problems where it is use-
ful to locate the region of attraction of the global (or a good local) optimum by a
breadth search and to do the fine adaptation by an exploring strategy afterwards. In
this case the strategy performing breadth search gets a lower γ than the other strat-
egy. So the total population size is high at the beginning when the breadth search
works and low at the end when the fine adaption is done. Thus, the whole population
size is adapted during the run by the competition model.

Numerical results for difficult test functions can be found in [45]. A discussion
about he evolution of the population sizes during a run can be found in [44].

8 Conclusion

Complex spatial population structures are seldom used in evolutionary computa-
tion. In this chapter we have investigated the stepping-stone model, competing sub-
populations, and Darwin’s continent-island cycle. For Darwin’s conjecture an evo-
lutionary algorithm was used where the fitness of each individual is given by the
competition with other individuals. The competition is modeled by evolutionary
games. The parallel genetic algorithm PGA uses the stepping-stone interaction. It
runs totally in parallel. The selection is distributed and done by each individual in
its neighborhood. Faster convergence can be obtained by the Breeder Genetic Algo-
rithm BGA. It models breeding as it is done by a human breeder. For really difficult
optimization problems the competing BGA has been developed. It uses compet-
ing sub-populations which are bred using different strategies. Occasionally good
individuals migrate to other sub-populations. The sizes of the sub-populations are
adjusted according to their performance.

Darwin’s cycle model seems also a good starting point for investigating the devel-
opment of new ideas in human societies, be it in science or art. It takes small groups
or even a single individual to try out new ideas. But for the ideas to be accepted
a large community is needed. In a large community many individuals evaluate the
new ideas, only the most promising eventually survive.
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Fuzzy Clustering of Likelihood Curves for
Finding Interesting Patterns in Expression
Profiles

Claudia Hundertmark, Lothar Jänsch, and Frank Klawonn

Abstract. Peptides derived from proteins are routinely analysed in so-called bottom-
up proteome studies to determine the amounts of corresponding proteins. Such stud-
ies easily sequence and analyse thousands of peptides per hour by the combination
of liquid chromatography and mass spectrometry instruments (LC-MS). However,
quantified peptides belonging to the same protein do not necessarily exhibit the
same regulatory information in all cases. Several causes can produce these regu-
latory inconsistencies at the peptide level. Quantitative data might be simply in-
fluenced by specific properties of the analytical procedure. However, it can also
indicate meaningful biological processes such as the post-translational modification
(PTM) of amino acids regulated in individual protein regions. This article describes
a fuzzy clustering approach allowing the automatic detection of regulatory peptide
clusters within individual proteins. The approach utilises likelihood curves to sum-
marise the regulatory information of each peptide, based on a noise model of the
used analytical workflow. The shape of these curves directly correlates with both
the regulatory information and the underlying data quality, serving as a representa-
tive starting point for fuzzy clustering of peptide data assigned to one protein.

1 Introduction

Cellular processes are mediated by proteins acting e.g. as enzymes in different
metabolic or signalling pathways. Their activity is determined by (i) their abundance
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controlled by gene expression, and (ii) modifications made following (post) their
synthesis (translation) at ribosomes. These post-translational modifications (PTMs)
alter the chemical structure of protein-constituting amino acids. The modifications
occur only at specific regions of the protein sequence and often control essential
intra- and intermolecular binding and activity properties of the modified proteins.
Therefore, proteome research, i.e. the systematic characterisation of proteins, aims
to develop quantitative strategies suitable for both protein expression and PTM anal-
yses. In so-called bottom-up approaches proteins are routinely digested first into
peptides, resulting in complex samples comprising unmodified and modified pro-
tein regions. Following this, all peptides are separated by liquid chromatography
and can be analysed quantitatively by mass spectrometry (LC-MS). Thus, a com-
parative investigation of peptides derived from cells in different physiological states
or/and under variable environmental conditions provides data that characterizes pro-
teins as well as the post-translational modifications that are involved in biological
processes.

If a protein has changed its function at the expression level, it is likely that pep-
tides representing different regions of this protein will be regulated in a consistent
manner. In contrast, scientists have to consider PTMs if individual peptides present-
ing individual protein regions are differently regulated.

Regulatory information can simply be presented as ratios (regulation factor,
expression ratio), which are calculated from pairwise comparisons of detected
amounts of the same peptide under different conditions. However, calculating the
expression states of proteins itself requires a statistical strategy to combine the
regulatory information of peptides belonging to the same protein correctly. Signal
intensities in mass spectrometry are compromised by noise, resulting in variable
expression ratios even under assumed constant experimental conditions. Thus, reg-
ulatory peptide data for one protein are often similar but never identical, raising the
question: which variation is caused by simple noise and which indicates individually
regulated protein regions that should be excluded from general protein expression
calculations?

We have recently established a noise model-based workflow for the iTRAQTM

technology frequently used in quantitative proteome research [8]: Different types of
iTRAQTM reporter molecules are linked to peptides and produce sample-specific
ions (reporter masses of 114, 115, 116 or 117 Dalton) during MS analyses. The
measured relative reporter intensities correlate with the relative ratios of peptides in
comparatively analysed biological samples. Following this, a mathematical model
calculates the noise inherent in a peptide’s regulatory information that is generally
decreasing with increasing intensity of the detected iTRAQTM reporter signals. The
noise model allows calculation of both the most likely regulation factor and the
probability of alternative regulations, based on the underlying MS data qualities.
Both aspects are graphically summarised in likelihood curves that were established
systematically for all regulatory peptide data. Overlapping curves of peptides be-
longing to the same protein often form a kind of main cluster indicating the general
expression state of the total protein. In contrast, the regulation of individual protein
regions is probably significant, if the likelihood curve of the corresponding peptide
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does not substantially overlap with other curves of the main cluster. Those outlying
curves are called outliers. Importantly, these cases can detect regulated PTMs but
also can reveal peptides that cannot be assigned unambiguously to one protein.

Therefore, computer-aided clustering of regulatory peptide data is a feasible re-
source for both quality management in proteome studies and the detection of impor-
tant biological processes, such as post-translational modifications. In this chapter a
prototype-based fuzzy clustering approach is presented to inspect the variations of
regulatory peptide data at the protein level. In a first step, regulatory information is
calculated and visualised by a probabilistic approach resulting in likelihood curves
for each individual peptide. Then, the likelihood calculations for all peptides be-
longing to one protein are inspected by fuzzy clustering in order to detect outlying
curves. Since the algorithm for the detection of peptide clusters is based on fuzzy
clustering, our collaborative approach combines probabilistic concepts as well as
principles from soft computing. However, fuzzy clustering is usually based on data
points and its application to likelihood curves was a challenging task. An integrative
concept is presented and discussed in this article with particular respect to distance
and quality measures.

2 Background to Quantitative Proteomics and iTRAQTM

Based Likelihood Curves

Important classes of cellular bio-molecules (e.g. proteins) have become accessible
by way of different high throughput technologies, and can be analysed systemati-
cally to define and discover the molecular basis of life. Active genes are transcribed
into messenger RNA (mRNA) which is translated into proteins by ribosomes. Be-
sides structural properties, the majority of proteins work as enzymes mediating
nearly every type of cellular function by controlling the metabolism and signalling
networks. Chemical products resulting from enzyme activities are generally termed
metabolites.

From the biological perspective, it is very important to compare measurable prop-
erties for the same item (mRNA, proteins, metabolites) under different conditions
and to conclude unambiguously (i) whether they differ significantly and (ii) to reveal
the level of regulation. Typically, tested conditions focus on the consequences of,
e.g. variable environmental or physiological settings (treated vs. untreated; aerobe
vs. anaerobe), a different genetic background (wild type vs. mutant) or molecular
processes in human diseases (normal/healthy cell vs. infected/cancerogenic cell).

mRNA levels can be investigated on micro array-based imaging systems de-
tecting fluorescence signals, and these strategies are termed transcriptomics.
Accordingly, the systematic investigation of proteins and metabolites was named
proteomics and metabolomics, respectively. Both research directions depend deci-
sively on mass spectrometry (MS) as a read out system for their quantification. In ad-
dition to two-dimensional polyacrylamide gel electrophoresis (2D-PAGE), proteins
with highly diverse biochemical properties are nowadays routinely investigated by
the combination of liquid chromatography and MS, allowing automated amino acid
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sequencing (LC-MS/MS). Similar, metabolite concentrations are determined by
combining gas chromatography and MS (GC-MS).

2.1 Proteomics

Protein-dependent gene regulation determines the selection and synthesis of differ-
ent mRNAs, resulting in the translation of proteins at ribosomes. Proteins are large
organic compounds made of 20 different types of amino acid and consist of up to
several thousands of amino acids. Short sequences comprising less then 100 amino
acids are usually termed peptides.

Once produced, proteins mediate, control and regulate almost all cellular pro-
cesses and establish the physiological and reactive capacities of organisms. Some
proteins have structural or mechanical functions, such as actin in the cytoskeleton or
myosin in muscles. However, the majority of proteins act as enzymes, which catalyse
chemical reactions. Each organic compound (e.g. metabolite) is the product of enzy-
matic activities. In addition, proteins constitute a dynamic network which transmits
and integrates environmental and internal signals that are indispensable for cellu-
lar communications. The molecular interactions of signalling proteins are frequently
regulated by post-translational modifications which are again catalysed by enzymes.
Currently, about 200 [13] different modifications have been described for proteins,
altering their structure and concomitantly their activity state, localisation or stability.

In contrast to the genome, the proteome, i.e. the sum of all proteins of a cell
is per se highly dynamic and varies significantly with regard to its qualitative and
quantitative composition during the cell cycle and depending on the environmental
conditions. Proteomics aims at the identification and representative characterisation
of all proteins in a cell under defined conditions. Since technologies for absolute
protein quantifications are still limited and the corresponding strategies very time
and cost intensive, proteome studies are usually comparative, yielding relative quan-
tifications. The quantifications are based either on staining procedures and resulting
signals from gel separated proteins or in the case of LC-MS/MS based on labelling
strategies and sample specific ion intensities (see below).

2.2 Identification and Characterisation of Proteins Based on
LC-MS

Mass spectrometry (MS) is an analytical technique that measures the mass-to-charge
ratio of charged, i.e. ionised particles. The ionisation can be achieved by laser energy
(Maldi Assisted Laser Desorption Ionisation, MALDI ) or by electrospray ionisation
(ESI ) of appropriate solvents containing the analytes. Characteristic masses can be
obtained from total proteins, from protein derived peptides or fragments compris-
ing partial amino acid sequences. Amino acid-specific ion-fragmentation patterns
are usually generated in so-called tandem mass spectrometry experiments (MS/MS)
and allow the automated sequencing of peptides and the site-specific detection of
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post-translational modifications. Since proteomes are often highly complex samples
comprising thousands of proteins, further biochemical or chromatographic separa-
tion strategies have to be combined with MS to achieve representative analyses.

2D-PAGE was considered the “work horse” in comparative proteome studies for
many years. Separated protein spots and corresponding intensities can be analysed
by specific software packages defining regulated proteins and often providing statis-
tical information about the robustness of this analytical procedure. Regulated protein
spots are usually identified individually based on MALDI-MS and a method called
“mass fingerprinting”. Actually, 2D-PAGE is still the method of choice for inves-
tigating complex proteomes at the level of intact proteins. However, 2D-PAGE has
only limited capabilities for the characterisation of hydrophobic proteins or those
that exhibit extreme isoelectric point (pI) or molecular mass (MW) values. In con-
trast, the combination of liquid chromatography directly linked with MS (LC-MS )
is to a large extent compatible with proteins of highly diverse biochemical proper-
ties. In bottom-up proteomics, proteins are digested into peptides that are separated
by liquid chromatography methods. The last LC preferentially elutes only a small
number of peptides at a particular time into a mass spectrometer where they become
ionised (ESI) and are characterised with respect to their mass to charge ratios (m/z).
Instruments used in proteomics usually provide additional tandem MS functionality,
i.e. peptide ions are selected individually for fragmentation experiments. Fragmen-
tations occur “randomly” at different positions in the peptide backbone of the amino
acid sequence. Therefore, the mass increments of fragments correspond to the order
of neighbouring amino acids in the peptide and can be utilised for the systematic
sequencing as well as for the detection of modified amino acids. Expected fragment
ions can also be calculated in silico based on the sequence information stored in pro-
tein databases. The comparison of in silico and experimentally generated fragmen-
tation patterns is utilised in best fit approaches for the high throughput sequencing
of peptides in automated LC-MS/MS workflows. Thus, LC-MS/MS basically allows
sequencing and unambiguous identification of hundreds to thousands of peptides per
hour, yet only provides limited information about the abundance of the investigated
components. Several physical and biochemical parameters contribute to the process
of peptide ionisation, hampering reliable quantifications at this time because the cal-
culation of peptide and protein abundances is based on corresponding ion intensities
and does not provide the data quality that can be achieved by using labels. In order
to overcome this limitation in LC-MS, several labelling strategies were established
for quantitative proteomics. The key benefit of these approaches is the possibility of
combining differentially labelled peptides before LC-MS analyses. Consequently,
peptides with identical sequence from different samples are equally affected by pa-
rameters varying the ionisation efficiency during the analytical process.

2.3 Quantification of Peptides and Proteins

Besides identification, mass spectrometry is used for the relative quantification of
proteins. Comparative analyses are performed in order to reveal proteins regulated
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under specific conditions and to define the networks, processes and signalling path-
ways involved. LC-MS/MS typically investigates protein-derived peptides. Thus,
strategies for the quantification and characterisation of proteins should preferen-
tially assess the peptide level.

Besides SILAC [10], iTRAQTM – introduced by [12] in 2004 – became the stan-
dard for relative quantifications of automatically sequenced peptides. iTRAQTM al-
lows differential labelling and relative as well as absolute peptide quantification of
up to eight different samples in parallel. During the labelling process only one type
out of eight iTRAQTM molecules is linked covalently to every peptide from one bi-
ological sample. All eight iTRAQTM molecules have the same structure and molec-
ular weight, but differ in the distribution of incorporated isotopes (Figure 1). In the
intact molecule the total mass is balanced and each labelling reaction introduces an
identical mass shift. However, under the conditions of peptide sequencing (MS/MS)
iTRAQTM also produces fragment ions that differ in mass and serve as sample spe-
cific reporters: Same peptides (with identical amino acid sequence) from different
biological samples, which were labelled differentially and are subsequently pooled
exhibit the same biochemical properties and total masses. Consequently, identical
peptides from different samples co-elute at the same time from chromatographic
columns, enter with the same molecular weight the MS device and are subjected
commonly to the fragmentation process. The ratios of the released iTRAQTM re-
porter ions correlate with the relative abundance of the analysed peptides as part of
the investigated samples.

Fig. 1 Chemical constitution of the iTRAQTM molecules: reporter group, balance group and
reactive group (taken from [11])
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Fig. 2 iTRAQTM workflow: proteins from samples A and B are digested, peptides are
iTRAQTM labelled and combined. When performing LC-MS/MS peptide bonds between
the amino acids as well as bonds of iTRAQTM molecules and peptides are broken. Subse-
quently, peptides are used for identification and iTRAQTM molecules are used for relative
quantification

A typical iTRAQTM workflow, allowing the relative quantification of peptides
derived from proteins of two different samples, is summarised in Figure 2. Initially,
all proteins from both samples are cleaved into peptides by a specific endo-protease
(e.g. digestion with Trypsin). Thereafter, both peptide fractions are labelled sepa-
rately using different iTRAQTM reagents, each containing reporter groups of dif-
ferent masses (e.g. 115 Dalton or 117 Dalton of mass). iTRAQTM molecules are
linked covalently to the N-terminus of each peptide as well as to every present ly-
sine in the peptide sequence. Identical peptides from different samples exhibit a
modified but identical chemical behaviour and mass subsequent to the iTRAQTM

labelling. Therefore, differentially labelled samples can be pooled and subjected to
LC to decrease the sample complexity before the MS analyses. Whereas the amino
acids of peptides from both samples commonly contribute to the total ion intensities
used for the peptide sequencing, the reporters dissociate in sample-specific amounts.
Reporter ions with 115 Da and 117 Da can be detected as part of every peptide frag-
mentation spectrum and a direct comparison of their intensities gives information
about the relative abundance of peptides in the compared samples.
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Table 1 Two different peptides are found in both analysed samples. The samples were la-
belled quantitatively with iTRAQTM reagents 115 and 117 that were experimentally found
with ion intensities of 200 and 400, respectively. Therefore, the 115-labelled sample con-
tains half the amount of peptide 1 than the 117-labelled sample (regulation factor = 0.5). In
constrast, the fragmentation pattern of peptide 2 exhibited reporter intensities of 80 and 40
indicating a regulation factor of 2

Peptide intensity iTRAQTM 115 intensity iTRAQTM 117 regulation factor

Peptide 1 200 400 0.5

Peptide 2 80 40 2

Regulatory information can be presented as ratios (regulation factor, expression
ratio), which are calculated from pairwise comparisons of iTRAQTM reporter ions
of peptides from all samples. Table 1 gives an example for an experiment with
two peptides found in two samples, which were labelled with iTRAQTM 115 and
iTRAQTM 117.

2.4 Impreciseness of Regulatory Information:
Intensity-Dependent Noise

The quality of measured intensities is not the same for all detectable intensity values:
in comparison, accuracy of high intensities is significantly better than accuracy of
low intensities. This effect has been observed previously [6, 9] and can be demon-
strated by calculating and plotting the regulation factors (intensity ratios) of two
equally regulated samples (Figure 3). The simulation of such a case can be achieved
by differentially labelling and combining two parts from the same original sample.
According to the presented workflow in Figure 2, both aliquots are digested, labelled
separately with different iTRAQTM reagents and then combined (test dataset). Fol-
lowing this, intensity ratios of all detected peptides in both compared samples are
calculated (cf. Table 1). The result of two samples prepared that way and analysed
by LC-MS/MS is given in Figure 3, and regulation factors are plotted vs. intensity
of the iTRAQTM 115 labelled sample. For the sake of clarity, intensities are log-
arithmic transformed (base two). The horizontal line gives the position where the
intensity ratio was placed in case of no regulation of the compared samples. Inten-
sity ratios on the left hand side of the plot derived from low intensities are deviating
considerably from the line compared to the ratios derived from high intensities on
the right. Hence, there is no doubt that ratios derived from high intensities are sig-
nificantly more accurate than ratios derived from low intensities. In the following,
we refer to this effect as intensity-dependent noise.

2.4.1 Noise Model

The high fluctuation of expression ratios, particularly at low intensities, originates
from the imprecision of measured intensities. Small errors of measurement affect
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expression ratio calculation more while detecting low intensities than it is the case
with high intensities. Therefore, the noise inherent in intensity measurements must
be estimated. How can this be done?

Each intensity is measured several times. In the ideal case without noise and
without regulation, all measurements should be identical. Since noise cannot be
ruled out, it is impossible to know the true intensities. Due to the fact that normally
only very few samples (between two and eight) are analysed in parallel, available
data do not conform to statistical methods. Hence, performing noise estimation from
the sample to be analysed is not recommended. In order to specify the noise char-
acteristics, we prepared a special training dataset. We repeatedly analysed selected
synthesised and iTRAQTM labelled peptides, generating intensities over a broad
dynamic range. Of course, the obtained data are only reliable specifically for that
instrument, which was used for the measurements.

The noise follows a log-normal distribution whose variance depends on the (true)
intensity. It does not seem appropriate to assume a normal distribution of the noise
directly, since intensities are always non-negative. Since calculations are much eas-
ier with normal distributions, in most cases we will consider the data after taking
their logarithm.

The general problem to be solved is as follows. A data set of the following form

is given:
(

y(1)
1 , . . . ,y(k1)

1 , . . . ,y(1)
n , . . . ,y(kn)

n

)
. (Here we use the transformed data.)

Fig. 3 Regulation factors versus intensity of iTRAQTM 115 labelled sample (both logarith-
mic transformed). Intensity-dependent noise: ratios derived from high intensities are signifi-
cantly more accurate than ratios derived from low intensities
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y(1)
i , . . . ,y(ki)

i represents ki noisy measurements of the same (logarithmic) unknown
intensity μi.

We assume that the subsample y(1)
i , . . . ,y(ki)

i originates from independent samples
of a normal distribution with unknown mean μi and unknown variance σi. From
experiments we know that the variances follow a certain tendency. Small intensities
are less reliable (more noisy) than larger ones. In order to take this into account, we
assume that we have

σ(μi) = a + re−λμi (1)

with a,r,λ ≥ 0. a represents the absolute noise in the measurement that is always
present. r specifies the amount of relative noise depending on the (logarithmic)
intensity μi. λ determines how fast the relative noise decreases with increasing
(logarithmic) intensity. The aim is to estimate the parameters a,r and λ based on

the sample
(

y(1)
1 , . . . ,y(k1)

1 , . . . ,y(1)
n , . . . ,y(kn)

n

)
. Unfortunately, this requires that we

estimate μi for each subsample y(1)
i , . . . ,y(ki)

i . We only know that the values in the
subsample are noisy measurements of the same intensity μi, but we do not know
μi. We carry out a maximum likelihood estimation based on an EM (expectation
maximisation) strategy. By estimating the parameters a,r and λ , we want to
maximise the likelihood

L
(

y(1)
1 , . . . ,y(k1)

1 , . . . ,y(1)
n , . . . ,y(kn)

n |a,r,λ
)

=

n

∏
i=1

ki

∏
j=1

1

(a + re−λμi)
√

2π
exp

(
− (y( j)

i − μi)2

2(a + re−λμi)2

)
. (2)

The factors are simply the densities of normal distributions with mean μi and devi-
ation σi = a + re−λμi.

As mentioned before, the maximisation of L does not only involve the determi-
nation of the parameters a,r and λ , but also the estimation of the μi. Assuming
the parameters a,r and λ to be fixed at the moment, we estimate the μi-values in
the following way. Since the maximisation of the log-likelihood is equivalent to
the maximisation of the likelihood itself, we consider – as usual in maximum like-
lihood estimation – the log-likelihood. When the parameters a,r and λ are fixed,
the μi-values can be optimised independently. This means we have to maximise the
log-likelihoods

L̃i =
ki

∑
j=1

(
− ln(

√
2π)− ln(h(μi))− (y( j)

i − μi)2

2(h(μi))2

)
(3)

where h(μi) = a + re−λμi. In order to maximise L̃i it is necessary that
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dL̃i

dμi
=

ki

∑
j=1

(
−h′(μi;θ )

h(μi;θ )

+
(x( j)

i − μi)(h(μi;θ )+ (x( j)
i − μi)h′(μi;θ ))

h3(μi;θ )

)
= 0 (4)

holds. With h′(μi) =−λ re−λμi and multiplying (4) by (a + re−λμi)3 we obtain

dL̃i

dμi
=

ki

∑
j=1

(
(λ re−λμi)(a + re−λμi)2

+(x( j)
i − μi)((a + reλμi)+ (x( j)

i − μi)(−λ re−λμ)

)
= 0 (5)

Solving (5) for μi yields the maximum likelihood estimation for μi, assuming the
parameters a,r and λ to be fixed. This is done in a numerical manner by a simple
bisection strategy. As one boundary for bisection, we choose the mean value of the

y( j)
i . The second one is determined by systematically searching to the left and right

from this value until the sign of (5) changes.
The optimisation of the parameters a,r and λ is carried out by a stochastic heuris-

tic algorithm, an evolution strategy [1] with adaptive mutation rates, population size
= 10, number of children = 25, maximum tolerated number of succeeding genera-
tions in which no improvement could be achieved = 20 and maximum number of
iterations = 200. The fitness of a parameter combination (a,r,λ ) is given by (2),
where the μi are determined as described above based on solving (5).

2.5 Calculation and Visualisation of Regulatory Information

In Section 2.3 we introduced an intuitive method for the calculation of regulation
factors at the level of peptides. Indeed, this idea does not consider the different qual-
ity of intensities presented in the previous section. Furthermore, we have to establish
a concept for the calculation of representative protein regulation factors based on
individual peptide information. Besides, sometimes in MS/MS single peptides are
detected several times (possibly varying in length) with slightly differing regulation
or several MS/MS results are merged. The outcome is a dataset containing identical
peptides several times. All these cases require the calculation of the most suitable
regulation factor for the total group of peptides as well.

As an application of our noise model we developed an intuitive concept for the
visualisation-aided exploration of regulatory iTRAQTM data based on likelihood
curves precisely depicting the overall data-dependent quality of regulatory informa-
tion [7]. This approach can be applied in a cumulative way at both the protein and
the peptide level.
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All of the likelihood plots that are presented in the following examples are de-
rived from proteins of differentially stimulated and quantitatively analysed cells.

2.5.1 Calculation of Regulatory Information

An approach to the calculation of the best fitting regulation factor (expression ratio)
for a group of peptides was derived from the noise model. Generally, this method
can be applied to two different cases; firstly, the calculation of protein regulation
factors. Several proposals were submitted in the last few years [4, 9], but until now
none of those considered the reliability of the underlying peptide signals. The sec-
ond application is the calculation of expression ratios of multiple observed identical
peptides. As usual in MS/MS, the identification of every detected peptide is linked
to an MS/MS spectrum. Since multiple selection for fragmentation of one peptide
is not unusual, MS/MS datasets may contain redundancies in the form of multiple
measured peptides. In the following we will refer to every single identification of a
peptide as a matched MS/MS spectrum.

According to the noise model, expression ratios derived from high intensities
have to outweigh the expression ratios derived from low intensities. In order to find
the most suitable expression ratio for a peptide from a group of possibly different ex-
pression ratios we scan all expression ratios c j inside an individually specified inter-
val [cmin, . . . ,cmax] for all MS/MS spectra that match the actual considered peptide.
A likelihood value l j is determined corresponding to every c j. The most suitable
overall expression ratio cbest is that one which results in the maximum likelihood
value lbest .

In addition to the calculation of a protein’s and peptide’s best fitting regulation
factor, this method can be used for the detection of mismatched peptides. Often,
parts of related proteins are identical in their amino acid sequence. A peptide that
was identified by MS/MS can not be matched unambiguously to one of the related
proteins if its sequence is part of more than one protein. Thus, for regulated peptides
it has to be tested whether their sequence occurs exclusively only in one protein. If
not, such regulatory events can indicate to significant mistakes in the identification
reports. The determination of outliers is done by fuzzy clustering (Section 4).

2.5.2 Visualisation of Regulatory Information

All of the likelihood values l j and the corresponding expression ratios c j are plotted
after area normalising

∫ cmax
cmin

= 1 to enhance the clarity of visualisation. Robustness
of the underlying data is proportional to both the height and the slope of the pro-
duced curve .

Depending on the aim of analysis, various views of a protein may be useful. Pep-
tides can be combined and visualised by a shared curve or separately by individual
curves within the plot. Figure 4 shows all peptides of a protein given by a single like-
lihood curve representing the total protein. In the next figure all different peptides
are presented separately by individual curves (Figure 5). Finally, both perspectives
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Fig. 4 Protein CSK21 HUMAN: 5 peptides combined to a single likelihood curve represent-
ing the total protein

Fig. 5 Protein NEK9 HUMAN: 3 peptides slightly down-regulated, 1 peptide up-regulated
by factor 3

can be combined in such a way that some special peptides can be plotted separately
in contrast to the remaining peptides of the protein, which are given by the protein
curve (Figure 6).
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Fig. 6 Protein K1C14 HUMAN: 3 peptides combined to the protein likelihood curve, 1 pep-
tide represented by an individual curve

3 Fuzzy Cluster Analysis

Discovering unusual deviations in regulatory behaviour is the main focus of the in-
vestigation of the likelihood curves in this paper. In the ideal case, the likelihood
curves for the regulation of peptides from the same protein should be more or less
similar. However, due to the different intensity of the noise, depending on the mea-
sured intensities for the peptides, the likelihood curves might be narrower in case
of low noise and broader in case of higher noise. Nevertheless, in normal protein
regulation, all likelihood curves should centre roughly around the same regulation
value. In this sense, the normal case would be that all likelihood curves form a sin-
gle cluster of such curves. The existence of two or more clusters is an indication
of a deviating situation. The cause might be wrong measurements, the assignment
of a peptide to a wrong protein or the special modifications of peptides. The main
intention of clustering likelihood curves here is not find typical prototypes, but to
group the curves and to discover cases where the curves are split into two or more
clusters.

The application here involves small datasets that easily lead to unsuitable clus-
tering results, since it can happen that single data objects – here likelihood curves –
form a separated cluster. In order to reduce this effect, fuzzy clustering is applied.

Fuzzy clustering divides a dataset into a set of clusters and – in contrast to hard or
deterministic clustering – a data object is not assigned to a unique cluster. In order
to handle noisy and ambiguous data, membership degrees of the data to the clusters
are computed. Most fuzzy clustering techniques are designed to optimise an object
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function with constraints. The most common approach is the so called probabilistic
clustering with the objective function

f =
c

∑
i=1

n

∑
j=1

um
i jdi j (6)

under the constraints

c

∑
i=1

ui j = 1 for all j = 1, . . . ,n. (7)

In this equation it is assumed that the number of clusters c is fixed. How to de-
termine the number of clusters will be discussed later on. ui j is the membership de-
gree of data object x j to the ith cluster. di j is some distance measure specifying the
distance between data object x j and cluster i, for instance the (squared) Euclidean
distance of x j to the ith cluster centre when the data objects are simple points, not
likelihood curves as in the case of the investigations here. The parameter m > 1,
called the fuzzifier, controls by how much clusters may overlap. The constraints (7)
lead to the name probabilistic clustering, since in this case the membership degree
ui j can also be interpreted as the probability that x j belongs to cluster i. The pa-
rameters to be optimised are the membership degrees ui j and the cluster parameters
that are not given explicitly here. They are hidden in the distances di j. Since this
is a non-linear optimisation problem, the most common approach to minimise the
objective function (6) is to alternatingly optimise either the membership degrees or
the cluster parameters while considering the other parameter set as fixed. Assuming
the cluster parameters and therefore the values di j as fixed, the best choice for the
membership degrees is given by

ui j =
1

∑c
k=1

(
di j
dk j

) 1
m−1

. (8)

If di j = 0 for one or more clusters, one must deviate from (8) and assign x j with
membership degree 1 to one of the clusters with di j = 0 and choose ui j = 0 for the
other clusters i.

The update equation for the cluster parameters or cluster prototypes strongly de-
pends on the type of cluster. For the specific case of likelihood curves, an algorithm
is proposed in the following section.

Cluster validity measures are used to validate a clustering result in general and
also to determine the number of clusters. In order to fulfil the latter task, the cluster-
ing might be carried out with different numbers of clusters and the one yielding the
best value of the validity measure is assumed to have the correct number of clusters.

A straight forward validity measure is the objective function (6) itself. However,
(6) will always decrease with increasing number of clusters. Therefore, if the num-
ber of clusters is determined based on (6), the procedure is as follows. The number
of clusters c is increased step by step starting from c = 1 and (6) is evaluated each
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time. As long as increasing the number of clusters leads to a significant decrease
of (6), the optimum number of clusters is still not reached. Once (6) starts to drop
slowly when c is increased, c is too high.

There are other validity measures, such as the partition coefficient and the par-
tition entropy [2]. Both these measures validate the clustering result based on the
membership degrees only, without taking specific properties of the cluster proto-
types into account.

The partition coefficient is defined by

∑c
i=1∑

n
j=1 u2

i j

n
. (9)

The higher the value of the partition coefficient the better the clustering result. The
highest value 1 is obtained, when the fuzzy partition is actually crisp, i.e. ui j ∈
{0,1}. The lowest value 1/c is reached, when all data are assigned to all clusters
with the same membership degree 1/c. This means that a fuzzy clustering result is
considered to be better, when it is more crisp.

The partition entropy

−∑c
i=1∑

n
j=1 ui j ln(ui j)

n
(10)

is inspired by the Shannon entropy. The lower the value of the partition entropy,
the better the clustering result. This means that, similar to the partition coefficient,
crisper fuzzy partitions are considered to be better.

As mentioned before, there are many other validity measures for fuzzy clustering.
However, they are not of interested here, since they assume the data to be points in
R

p and not likelihood curves as in our case. For a general overview on fuzzy cluster
analysis we refer to [3, 5].

4 Fuzzy Clustering of Likelihood Curves

Clustering of curves requires the definition of a distance measure, which is consid-
erably more complex than comparing the positions of points in a coordinate system.
Various kinds of distance measures for clustering curves are possible e.g. (i) max-
imum peak position, (ii) profile (width and height) of the curve or (iii) overlap of
area.

Since likelihood curves give the distribution for the true (unknown) position of
the maximum peak, it would not be advisable to take this value exclusively as the
distance measure. Choosing the non-overlapping area of curves as distance measure
combines the position of maximum peak on the one hand and the profile of the curve
on the other hand. Furthermore, possible uncertainty concerning the exact position
of the maximum peak is taken into account.

Thus, we have the objective function (6) and di j is given by

di j = 1−
∫ +∞

−∞
min{x j(t),vi(t)}dt (11)
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with x j = Peptide j and vi = Prototype i.

Discretisation leads to

di j = 1−
lx

∑
t=1

min{x(t)
j ,v(t)

i }. (12)

Areas under curves are normalised to 1, in consequence 0≤ di j≤ 1 and especially

di j =
{

0 if complete overlap of Peptide i and Prototype j
1 if no overlap of Peptide i and Prototype j.

Minimisation of the objective function f is done by generation of new prototype
curves from the former prototype curves and the total amount of peptide curves
(for details see Section 4.1). This process terminates when updating the prototypes
yields no further decrease of f .

4.1 Generation of Prototypes

For the identification of the best partition of all peptide curves into c clusters (c
fixed) c prototypes are initialised firstly. Subsequently, for all prototypes i ∈ [1 . . .c]
and all peptides j ∈ [1 . . .n] the membership degrees ui j are calculated by Eq. (8).
The initialisation and update scheme for the cluster prototypes is described in detail
in the following.

The listing below gives a general idea of the algorithm.

result[];
for ( 1 ≤ c ≤ n ){

f(pold) = ∞;
p := initialise prototypes (curves, c);
d := calculate distances (curves, p);
u := calculate u (d);
f(p) := evaluate cluster (u, d);
while ( |f(p)−f(pold)| > ε ){

pold := p;
f(pold) := f(p);
p := update prototypes (p, curves, u);
d := calculate distances (curves, p);
u := calculate u (d);
f(p) := evaluate cluster (u, d);

}
result[c-1] = pold;

}
return result;
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Initialisation

In order to avoid unsuitable results based on an unfavourable initialisation step, we
prefer repeated (k = 3) initialisation. Initialisation of c prototypes is done by ran-
domly choosing c likelihood curves from the dataset, which are slightly modified by
multiplying the centre with a fixed factor, and cutting off the edges when area A = 1
is reached. To obtain results as different as possible, it is important to make sure that
different combinations of peptide curves are selected in all of the n initialisation steps.

Updating

The aim of repeated updating is the generation of a new set of prototypes from the
previous set of prototypes. In the case of crisp clustering, where a likelihood curve
l j either belongs to a cluster i (ui j = 1) or not (ui j = 0), the update procedure is ex-
plained very easily. The more curves are overlapping at a position x, then the more
the objective function for the clustering will be reduced when the prototype curve
has a high value there as well. At first, areas with a high number of overlapping
curves are added to the prototype. Step by step, less overlapping areas are added
as well, and the procedure is finished when the area under the prototype likelihood
curve reaches the value 1. Therefore, the new prototype likelihood curve is com-
posed of those areas, where the most likelihood curves are overlapping. Besides the
number of overlapping curves the weight wi j

w(t)
i j =

c

∑
i=1

n

∑
j=1

um
i j

(t) (13)

strongly affects the development of a prototype i from likelihood curves l j and the
former prototype.

The update procedure for the actual prototype i is as follows: We assume that
the horizontal axis is divided into T intervals of equal length l. Initially, all points

p(t)
j , that are part of the likelihood curve j, 0 ≤ j ≤ n, are evaluated by application

of equation (13) related to the considered prototype i. Therefore, points belonging
to a likelihood curve which is similar to prototype i (high membership degree ui j),
are evaluated better than those which belong to a curve that is less overlapping with
prototype i. Furthermore, the weight is increasing with every additional curve, which
is overlapping with curve j in the considered interval.

A simple heuristic strategy to add the most interesting points to the new prototype
is the following: All of the points are sorted in decreasing order with respect to
their weights, regardless of their belonging to a special peptide curve. One after
another, the points with the highest weights are added to the prototype likelihood
curve under the constraint that every newly added point must be directly adjacent
to the present dataset. This means that the x-coordinate of the new point xp must
not exceed the borders of the present interval of support of the partially constructed
likelihood curve [xmin, ...,xmax] for more than one interval length l (xmin− l ≤ xp ≤
xmax + l).
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Fig. 7 Protein PCTK1 HUMAN: Resulting prototype after initialisation with the labelled
curve and all possible updates. The prototype likelihood curve consists mainly of those areas
where most of the data likelihood curves overlap

Figure 7 presents the resulting prototype after initialisation with the labelled
curve and all possible updates. In this example we assumed that all six pep-
tides build a single cluster (c = 1) and the prototype representing this cluster was
calculated.

4.2 Validity Measures

As mentioned in Section 3, one way to determine the number of clusters would be to
consider a prototype independent validity measure like the partition coefficient (Eq.
(9)) or the partition entropy (Eq. (10)). Both measures are suitable for clustering
larger datasets than those we are dealing with in this study. Typically, the number of
likelihood curves to be clustered is between 2 and 10, and the majority of proteins
is represented by less than 7 different curves. Due to these circumstances, neither
of the well-established validity measures are suitable for our approach, due to the
fact that a clear minimum and maximum respectively, can not always be found (for
details see Example 2 in Section 4.3). Therefore, we prefer to use an alternative
method as presented below to determine the optimal number of clusters.

The objective function f (Eq. 6) is minimised during calculation of the best clus-
tering result for each c, 1 ≤ c ≤ n (n = number of curves), and the result in each
case is stored. As the result is decreasing with increasing c and always reaches its
minimum for c = n, we can not regard the minimum value as the best one. We rather
consider the differences (slope) Δ of c−1 and c
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Δ = | fc−1− fc| (14)

for every c ∈ [2, . . . ,n].
In order to decide whether all likelihood curves can be represented by a single

cluster, which is the normal and therefore the most frequent case, we compare the
total area overlap of the resulting prototype and all n likelihood curves. If the over-
lap of every curve and the prototype is 50% of the curve’s total area at least, we can
assume that the similarity of all curves is significantly high and that they are repre-
sented by a single cluster. The threshold value of 50% was determined by analysis
of curves, which form a single cluster by visual inspection.

4.3 Examples

In order to demonstrate the difficulties described in Section 4.2 in determination of
the optimal number of clusters copt and to present some results, we now give two
examples. Every one of the following figures consists of a protein likelihood plot
(top) and a combined illustration of the validity measures partition entropy, partition
coefficient as well as the objective function.

First of all, we show a plot containing 5 curves (Figure 8). By visual inspection
they are arranged in a single cluster. The calculated overlaps of all 5 curves with the
final prototype for c = 1 are presented in Table 2. Since the overlap of all 5 curves
with the prototype is greater than the half of each curves’ total area, the algorithm
terminates with the outcome that all peptide curves are to be considered as one single
cluster. Validity measures, on the other hand, give no clear result. The outcome of
the investigation of partition entropy is quite clear and proposes 2 clusters, partition
coefficient analysis slightly tends towards 1 cluster. The objective function’s slope
finally gives no information about the quality of a single cluster in principal and is
not to be regarded in this case.

Table 2 Overlapping areas of likelihood curves and resulting prototype in the case of c = 1.
As the overlaps are at least half of the curve’s total area in every case, the clustering algorithm
returns that one single cluster was found

Curve 1 Curve 2 Curve 3 Curve 4 Curve 5

59% 65% 86% 54% 53%

The likelihood plot of the second example (Figure 9) clearly shows 2 clusters,
each containing 2 curves. The results of the analysis of area overlaps of peptide
curves and prototype in the case of c = 1 are given in Table 3. As 2 of the 4 curve
overlaps are less than 50%, the existence of one single cluster can be excluded. Par-
tition entropy as well as the slope of objective function yield the result that the data
builds 2 clusters. However, the interpretation of the partition coefficient is not easy,
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Fig. 8 Protein LYN HUMAN: Top: 5 peptide curves clustering into 1 cluster. Bottom: parti-
tion entropy giving copt = 2 (+), objective function resulting copt = 2 (•), partition coefficient
giving copt = 1 (∗)
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Fig. 9 Protein MK01 HUMAN: Top: 4 peptide curves clustering into 2 clusters. Bottom:
partition entropy giving copt = 2 (+), objective function resulting copt = 2 (•), partition coef-
ficient ranging between copt = 1 and copt = 2 (∗)
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Table 3 Overlapping areas of likelihood curves and resulting prototype in the case of c = 1.
As the overlaps are not at least the half of the curve’s total area in every case, the clustering
algorithm returns that more than one single cluster was found

Curve 1 Curve 2 Curve 3 Curve 4

90% 58% 2% 0%

as its value is between 1 and 2 clusters. What is the reason for this ambiguous be-
haviour? If the optimal number of clusters were copt = 2 as in this case, partition
coefficient c=2 must be higher than partition coefficient c=3. Since this is an exam-
ple with n = 4 likelihood curves in a total of 3 clusters represented by 3 different
prototypes means that nearly every curve has its own prototype and the partition
coefficient c=3 will rarely be significantly less than partition coefficientc=2. In any
case, samples resulting with partition coefficient c=3 ≥ partition coefficientc=2 do
occur. This kind of problem is caused by the very low number of clustering objects.
Depending on initialisation and the further design of prototypes both partition co-
efficient and partition entropy can be affected. As slope of objective function on
the other hand is a more reliable measure we prefer to use this one instead of the
established validity measures in our special case.

5 Conclusions

We have introduced a noise model and derived likelihood curves for the visualisation
of regulatory information and the analysis of the robustness of quantitative LC-
MS/MS data after iTRAQTM-labelling. Furthermore, we presented an approach for
fuzzy clustering of likelihood curves, in order to reveal erroneous measurements, the
assignment of a peptide to a wrong protein or special modifications of peptides. The
aim of clustering likelihood curves is to group the curves and to discover proteins
where the peptide curves are split into two or more clusters. Upcoming problems
concerning the determination of the number of clusters by means of well-established
validity, means partition coefficient and partition entropy were solved by definition
of new criteria specific to the available data for the detection of both a single cluster
and multiple clusters as well as the number of clusters in the last case.

By the means of the workflow – estimation of the noise inherent in quantitative
LC-MS/MS data analysed by using the iTRAQTM method, calculation and subse-
quently clustering of likelihood curves – advanced systematic analyses of those data
is possible.

The presented approach is easily transferable to other noisy data, if the noise
can be specified by a noise model. Then, after once-only estimation by means of a
suitable biological sample, all derived applications, like calculation and clustering
of likelihood curves for the visualisation of regulatory information and robustness,
can be used.
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A Hybrid Rule-Induction/Likelihood-Ratio
Based Approach for Predicting Protein-Protein
Interactions

Mudassar Iqbal, Alex A. Freitas, and Colin G. Johnson

Abstract. We propose a new hybrid data mining method for predicting protein-
protein interactions combining Likelihood-Ratio with rule induction algorithms. In
essence, the new method consists of using a rule induction algorithm to discover
rules representing partitions of the data, and then the discovered rules are inter-
preted as “bins” which are used to compute likelihood ratios. This new method is
applied to the prediction of protein-protein interactions in the Saccharomyces Cere-
visiae genome, using predictive genomic features in an integrated scheme. The re-
sults show that the new hybrid method outperforms a pure likelihood ratio based
approach.

1 Introduction

Protein-protein interactions are involved in almost every cellular function, from
DNA replication and protein synthesis to regulation of metabolic pathways [1].
Proteins interact with each other by physically binding themselves or with other
molecules in the cell and form larger complexes to perform specific cellular func-
tions. Hence, the study of protein-protein interactions is of utmost importance to
understand their functions [7, 2], and detailed information about the interactions
of proteins can have potentially very useful applications, e.g., predicting disease-
related genes by looking at their interactions [28] as well as a potential use in de-
veloping new drugs that can specifically interrupt or modulate protein interactions
[41]. Also, the study of these interactions at the genomic level can help understand-
ing the large scale organization and features of the underlying network and the role
of individual proteins within the network [46].

Consequently a number of experimental techniques for determining protein-
protein interactions have been developed [39, 20, 12, 17]. Unfortunately the
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experimental determination of the interaction network of even very simple organ-
isms is difficult and potentially erroneous, and the overlap among the interactions
determined by different such techniques is very low [46, 42]. Hence, there is a clear
motivation to develop new computational methods which can use data integrated
from several genomic sources, as it is done in this work, as explained below. Many
experimental and computational methods for the prediction of protein-protein inter-
actions are discussed in recent reviews [36, 37, 41].

1.1 Computational Prediction of Protein-Protein Interactions

The purpose of computational methods is to predict unknown protein interactions
using the relevant genomic information available, i.e., computational methods typ-
ically try to predict protein interaction by using data produced by other genomic
techniques such as gene expression, localization etc, which are indirectly related to
protein interactions. A variety of computational methods have been investigated for
this problem so far. Many methods infer interactions from a single type of genomic
data. For example, [3] and [4] address the question whether protein interactions
can be predicted directly from the primary structure and associated data. Given a
database of interacting proteins, they develop a machine learning system (Support
Vector Machine) trained to recognise the potential interactions based solely on the
primary structure and the associated physicochemical properties.

Another well-known method is called the Rosetta Stone Method. In this method,
Marcotte et al. [23] find and exploit a very interesting observation that:“some pairs
of interacting proteins have homologs in another organism fused into a single protein
chain (Rosetta stone)”. Other biological hypotheses used for prediction of protein-
protein interactions include similarity in phylogenetic profiles [11] and co-evolution
of interacting partners [15, 16].

Another approach consists of casting the protein-protein interaction prediction
problem as a type of combinatorial optimization problem (Satisfiability) by look-
ing at the domain (conserved evolutionary units within the proteins) assignments
of interacting and non-interacting protein pairs and then using a combinatorial
optimization method to solve it. In [18] a particle swarm optimization method,
a relatively new type of computational intelligence algorithm, was used to infer
domain-domain interactions and then use the inferred domain-domain interactions
to predict new protein-protein interactions. Yet another approach consists of ana-
lyzing protein-protein interaction data to infer domain-domain interactions using
graph-theoretical belief propagation methods [19].

Also, there is a whole group of methods in which information from different ge-
nomic features is combined to predict interactions. Such methods are here called
“Integrative Methods” . For instance, in [45], the authors build an integrative model
using a kernel based method combining many heterogenous data sets and present
a supervised learning approach for prediction of protein interactions. Jansen et
al. in [21] formulate a Bayesian framework for combining different types of data
and predict genome wide interactions in Yeast. The basic idea is that given certain
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features corresponding to protein pairs under consideration and their class attribute
(interacting or non-interacting), one can estimate the likelihood of interaction for a
given feature, and overall likelihood is estimated using a naive Bayesian formula-
tion by assuming independance among all the features. Rhodes et al.[33] extend this
Bayesian approach for predicting protein interaction to the human genome. The gen-
eral idea of all the integrative methods is that one could combine various relatively
weak features in a setting in which overall prediction is boosted by this integration
of data. Some interesting observations are drawn in [22] regarding this data integra-
tion for protein interaction prediction. A detailed analysis of this data integration
using different classifiers is researched in [5].

1.2 Overview of the Proposed Method

Our work is partly inspired by the work done by [21], in which they proposed a
Bayesian method using the MIPS (Munich Information center for Protein Sequences
[24]) complexes catalog as a gold standard for positive interactions, and a list of
proteins in separate sub-cellular compartments as negative interactions, as there is
no particular data set of experimentally determined non-interactions. They integrate
multiple genomic data corresponding to protein pairs, including correlation in ex-
pression levels, functional similarity based measure, etc., as well as other experi-
mental data about protein interactions, as predictive features for these positives and
negatives. We use many of the protein pair features used in [21] and a subset of their
gold standard non-interactions to conduct a data mining experiment in order to ana-
lyze the effect of hybridizing simple naive Bayesian style likelihood based method
with some rule induction algorithms. Rule induction algorithms learn classification
rules given the predictive features as well as the class attribute of a set of exam-
ples (protein pairs in this case). Those learned rules can be used to predict unknown
protein interactions. We first analyze a simplified version of the naive Bayes clas-
sification method without using any prior information and analyze its behavior for
different possible values of sensitivity and specificity of prediction. Then we com-
bine that simplified naive Bayes formulation with another data mining algorithm,
namely a rule induction algorithm which learns IF-THEN type classification rules
from data.

In essence, we propose a new hybrid approach where we use the partitioning of
the data corresponding to the induced rules as “bins” from which likelihood ratios
are computed and used to classify the data. We present a ROC (receiver operating
characteristic) curve analysis of results obtained using different threshold levels on
the calculated likelihood values. Since these rules consist of multiple antecedents
coping with attribute interactions, the bins defined by these rules should give us a
better insight as compared to the uniform binning of attributes used in general naive
Bayesian methods. We have applied this hybrid method to a specific biological ap-
plication here, e.g., prediction of protein-protein interactions in the yeast S. Cere-
visiae using multiple genomic features, but the underlying principles of the method
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are not application domain dependent, and indeed it can be applied to a wide range
of classification problems in different application domains.

1.3 Organisation

The chapter is organized as follows. Section 2 discusses the background on rule
induction algorithms for classification. Section 3 details the protein interaction
data and data related to different attributes used. Section 4 explains our method,
starting with a brief introduction to Naive Bayes for classification and a rule dis-
covery algorithm, the PART1 method for classification; and then proposes a new
hybrid method combining features of both techniques. Comparative results based
on the ROC analysis are presented in Section 5. Finally, Section 6 concludes the
chapter.

2 Classification Rule Discovery Algorithms

Classification is one of the major data mining tasks. Given the data (examples) with
the predictive attributes and class labels (e.g. interacting or non-interacting in a pro-
tein pair’s case), the task of classification amounts to find relationship(s) among the
attributes and class labels. These relationships can be in the form of, for instance, IF-
THEN-ELSE type rules, decision tree or conditional probabilities depending upon
which approach is used for building the model [43]. A classification model is built
using the training data, i.e., with class value known, and that learned model’s quality
is then tested on the test data, i.e., where the class value is absent.

Classification rules are one of the popular data mining approaches mainly be-
cause of their comprehensibility, by representing the gained knowledge in a form
which is intuitive to human understanding. These rules have two parts, i.e. the rule
antecedent – which is a conjunction of multiple conditions on the predictor attributes
– and a rule consequent-which is the prediction of class attribute based upon the
conditions in the antecedent. Conditions over individual attribute values potentially
involve all relational operators.

IFcond1ANDcond2...T HENclass

There are many approaches to building models involving rule sets for a classifi-
cation problem. One most common and widely used approach is the separate-and-
conquer approach, which we will discuss in some detail in the next section. Another
popular classification method is the divide-and-conquer technique by building deci-
sion trees [31]. In the work below we describe a rule induction algorithm that uses
aspects of both of these approaches. Therefore, we begin by reviewing the basic
concepts of these two methods.

1 PART builds rule sets using partial decision trees.
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2.1 Separate-and-Conquer Approach

One of the two main approaches to rule induction is the separate-and-conquer
approach. This approach was originally devised in [25] with the name covering strat-
egy, whilst the term separate-and-conquerwas introduced by Pagllao&Haussler [29].
Many different variants on this approach, designed to tackle different problems and
data types, have been implemented; the review by Fürnkranz [10] gives an overview.

The general idea of the separate-and-conquer approach begins with an induction
of a rule, via some rule induction algorithm, on the entire dataset. The examples that
are correctly classified by this rule are then removed from the dataset, and the rule
induction algorithm applied to this reduced dataset. An example is said to be cor-
rectly classified by a rule when the example’s attribute values satisfy the conditions
in the rule’s antecedent and the example’s class is the same as the class predicted by
the rule’s consequent. This process of rule induction and removal of covered train-
ing examples is repeated until the dataset is empty. In this way each example in the
training data will be covered by at least one rule.

This approach has been used with a number of rule representations, i.e., the
allowed structure of the antecedent in the IF-THEN rule. In early work on this
approach [26] the antecedent of the rules is a simple relation between attribute
and value; for example, a threshold for a numerical value. In other approaches,
more sophisticated representations are allowed, for example in FOIL [32] PRO-
LOG relations are used. A more sophisticated approach is to allow the representa-
tion to expand when needed [40]; a number of approaches to this are reviewed by
Fürnkranz [10].

Many different approaches have been used for the rule induction mechanism it-
self. These include both deterministic methods such as hill climbing [32] and beam
search [27], and stochastic methods such as evolutionary algorithms [14].

One danger with these methods is that they can suffer from overfitting, where
the model is fitted too specifically to the (noisy) training data set, and is therefore
unable to generalise well to the test data set (unseen during training). Methods for
tackling this problem revolve around the idea of pruning the rule set, either by re-
moving whole rules, or by simplifying the precedent of the rule [35]. Such pruning
methods fall into two main types: pruning methods that operate whilst the learn-
ing process is running (so called pre-pruning methods), and post-pruning methods
that process the rule set after it has been generated. These methods are reviewed by
Fürnkranz [10].

2.2 Divide-and-Conquer Approach

In the previous section, the dataset was split by instances, each application of the
rule induction algorithm removing some instances from the dataset. By contrast, the
divide-and-conquer approach splits the attribute space as it works. The canonical
representation used in the divide-and-conquer approach is the decision tree.
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An example of a decision tree is given in Figure 1. To predict the class of an
unseen data instance using the tree, the tree is worked from the root. The algorithm
evaluates the condition at the root node, and then moves on the the left or right child
node depending on whether the result of evaluating that condition is true or false.
This process is repeated until a leaf node is found; the leaf node names the class that
should be assigned to that instance.

x1<20

x3>50 x2<30

Class 1 x2<50

Class 1 Class 2 Class 2 Class 1

Class 1 x4 <10

T F

T F T F

T F T F

Fig. 1 An example of a decision tree

A number of methods have been devised for the induction of decision trees from
data sets. The most widely used methods are those based on information gain, first
introduced by Quinlan [30, 31]. This begins by constructing putative tree “stumps”
[43], based on a number of options for the condition in the root node (how these
options are constructed is algorithm and data-type specific). The training set is then
distributed between the edges adjacent to this node based on this criterion, and a
measure of the balance of classes associated with each of these edges is calculated.
This measure is highest when an edge contains only one class (as there is no more
decision to be made) and lowest when there is an equal balance of classes (as no
information has been provided by the consideration of that condition). Based on this
measure, the condition that maximises this information gain is chosen. This is then
recursively repeated for lower levels of the tree, until one of the following conditions
is satisfied: all classes are classified correctly (i.e. there are no “impure” edges);
no more non-contradictory conditions can be created; or some algorithm-specific
criterion for the simplicity of representation is satisfied (to avoid overfitting).
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3 Protein Interaction Data and Predictive Features

We use four different features which were described as highly predictive features
in the detailed analysis done by Lu et al. [22]. These features are explained below.
All these features have been downloaded from supplementary material available
with [22] and available online at http://networks.gersteinlab.org/
intint.

• mRNA Co-expression (COE): Based on the hypothesis that interacting proteins
have correlated expression profiles [21, 22, 13], this feature seems promising for
the prediction of protein-protein interaction.

• MIPS Functional Similarity (MIPS): Interacting proteins often function in the
same biological process [22]. The data associated with this feature was extracted
from the MIPS functional catalog.

• GO2 Functional similarity (GOF): This data is based on a similar hypothesis as
the MIPS data, but is created using the GO functional classification scheme. The
details of preparation of the data are given in [21] and [22].

• Marginal Essentiality (MES): This is a quantitative measure of the importance
of non-essential genes to a cell [47] and it is based on the Marginal-Benefit Hy-
pothesis that many non-essential genes make a significant but small contribution
to the fitness of the cell [38].

Of course there are many other genomic features available like essentiality, data
derived from Rosetta stone method, etc; but most such features are very scanty,
i.e., very few protein pairs have known values for these features, or their predictive
power is very low as compared to the above mentioned highly predictive features.
Hence, in this work we only use the above mentioned highly predictive features
along with some high confidence gold standard interacting and non-interacting pairs
of proteins.

We obtained the S. Cerevisiae protein interaction data from DIP (Data base of
Interacting Proteins [34, 44]). We obtained nearly 5000 high confidence positive in-
teractions in DIP, called CORE, which is a subset of the total number of reported
protein interactions in DIP. Negative interactions are hard to find. As used by many
researchers in this field we consider a protein pair as a negative example (i.e., the
proteins in question do not not interact) if the proteins in the pair are not in the
same cellular compartment [21, 22]. This gives us many hundred thousands of pro-
tein pairs which are not co-localized. As there are too many negative examples
found in this way, we keep only a small subset of those. We obtained gold stan-
dard negatives from [22]. For both positive and negative gold standard data, we
keep only those pairs with complete information, i.e., with no missing values in
the four predictive features which we use. After this preprocessing we end up with
2122 positive interactions (positive examples) and 5656 negative ones in our gold
standard set.

2 Gene Ontology.

http://networks.gersteinlab.org/intint
http://networks.gersteinlab.org/intint


630 M. Iqbal, A.A. Freitas, and C.G. Johnson

4 A New Hybrid Rule Induction/Likelihood-Ratio Based
Method

In this section we will first discuss two different approaches which can be used for
prediction of protein-protein interactions. First we will describe a naive Bayesian
formulation which is based on the estimation of likelihood values of interactions
given the predictive features, followed by a discussion of rule induction algorithms
which output a classification rule set. Then we will describe a hybrid approach
which integrates both rule induction algorithms and likelihood ratios drawn from
the naive Bayesian approach.

4.1 From Naive Bayes to a Likelihood Based Approach for the
Prediction of Protein-Protein Interactions

The Bayesian approach is widely used in inference problems in many different
areas, including several types of bioinformatics problems. Jansen et al. [21] and
Rhodes et al. [33] used a form of Naive Bayes classifier to predict protein-protein
interactions by combining multiple features. Given a data set of interacting pro-
teins considered as positives, and a set of protein pairs separated in different cellular
compartments considered as negatives, prior odds are defined as:

Oprior =
P(pos)
P(neg)

=
P(pos)

1−P(pos)
(1)

Where P(pos) and P(neg) is the fraction of positives and negatives respectively
among all pairs of proteins in the training data. The posterior odds that a pair of
proteins interacts given the predictive features f1... fn is:

Oposterior =
P(pos| f1... fn)
P(neg| f1... fn)

= Oprior ∗L( f1... fn) (2)

L( f1... fn) is the likelihood ratio and is defined as:

L( f1... fn) =
P( f1... fn|pos)
P( f1... fn|neg)

(3)

Making the Naive Bayes assumption that the predictive features are independent
from each other given the class (positive or negative), the likelihood ratio can be
easily calculated as the product of individual likelihood ratios for each feature fi as
per Eq.4.

L( f1... fn) = ∏
i=1..n

L( fi) = ∏
i=1..n

P( fi|pos)
P( fi|neg)

(4)

L( fi) is calculated as the fraction of positives having feature fi divided by the
fraction of negatives having feature fi. As we are using a relatively small subset of
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total interactions and non-interactions and a reliable estimate of prior odds does not
seem to be available, we do not use the prior odds at all in this formulation, and
hence the posterior odds are the same as the likelihood ratio. Since the prior odds
are not used, we analyze the predictive accuracy obtained for different threshold
cutoffs of likelihood ratio values, instead. Hence, in this paper, we use a likelihood
based approach for the prediction of protein interactions.

4.2 Generating Classification Rules for Protein-Protein
Interaction Prediction

A popular type of data mining methods consist of building predictive models in the
form of IF-THEN classification rules. More precisely, each rule has the form:

IF (condition(s) on attribute value(s)) THEN (class value)

Hence, each rule represents a relationship between the predictor attributes
(features) and the goal attribute. Rules are discovered using the training set. The
discovered rules are then used to predict the class value of examples in the test
set, unseen during training [9]. Rule induction methods are known to present the
knowledge discovered from the data in a comprehensible form to the users. Such
comprehensible rules can be very helpful for the domain experts, for example bi-
ologists in our case, who can validate the discovered rules and potentially get new
insight about the data. The discovered rules also have the potential to represent new
knowledge about the problem at hand.

A variety of approaches exist for learning accurate and comprehensible rules
from the data [43]. One line of research is to begin with building a decision tree and
then transform it into a set of rules [31]. However, in the literature the term rule in-
duction is often used to refer to an algorithm which discovers rules somewhat more
flexible than a decision tree, in the sense that the discovered or induced rules cover
data space regions that can have some overlap (unlike the leaf nodes of a decision
tree, which represent non-overlapping data space regions). Most rule induction al-
gorithms use the previously discussed separate-and-conquer approach, which tries
to determine the most powerful rule that underlies the data by sequentially adding
conditions on the attributes to the rule, separates out those examples that are covered
by the rule and repeats the procedure on the remaining examples [6].

For the problem at hand, we use a method called PART [8] for the classification of
protein-protein pairs (examples or data instances) into interacting or non-interacting.
PART involves features of both decision tree building and rule induction algorithms
– both of which were reviewed above. PART is available for use in the freely avail-
able data mining package WEKA3 [43]. The basic idea of this method is that it uses
the separate-and-conquer strategy, as in the case of rule induction algorithms, in that
it builds a rule, removes the examples it covers and continues creating rules for the
remaining examples until none are left. But it differs from most rule induction al-
gorithms in the way a rule is induced. To build a single rule, first a pruned decision

3 Waikato Environment for Knowledge Analysis.
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tree is built for the current set of examples. Then the leaf with the largest coverage is
made into a rule, and the tree is discarded. This process is iteratively repeated until
all training examples are covered by the induced set of rules. The details about the
PART method and its comparison to other competing methods are in [8].

4.3 Classification Rule Discovery as a Binning Method for a
Likelihood-based Approach

When using the rule induction method described in previous subsection, most of the
discovered rules contain conditions on multiple predictor attributes. For example,
the following rule containing conditions on two attributes (GO and MIPS as defined
in Section 2) and predicting class 0 (negative interaction).

IF ( GO ≥ 3.85 AND MIPS ≥ 5.45 AND MIPS ≤ 6.15 ) CLASS = 0

There will be some negative examples satisfying this rule as well as some (per-
haps small in number) positive examples. Unlike the Naive Bayes method, each dis-
covered rule represents an interaction among the attributes in the rule’s antecedent
(since all attributes in that antecedent have to be satisfied, in order for an example
to satisfy the rule). We can view each of these rules as a multiple-attribute binning
of the data. This allows us to compute the likelihood in a way conceptually similar
to Eq.3, i.e., the fraction of positive examples satisfying this rule antecedent divided
by the fraction of negative examples satisfying the antecedent of this rule, but with
the difference that, instead of computing a likelihood for each individual feature, we
compute a likelihood for each “bin”, i.e., each conjunction of the attribute values in
a rule antecedent. Of course the bins and corresponding likelihoods are computed
using rules discovered from the training data. We then evaluate this hybrid predic-
tor’s performance on the test set using a ROC curve. In other words, after having the
rules, or these multi-attribute bins, we calculate their likelihood ratios and predictive
accuracy by putting different thresholds on the minimum value of the likelihood ra-
tio required to assign an example to the positive class. In this way we can analyze the
whole range of threshold values like in the case of the Naive Bayes method, instead
of the hard classification done by a stand alone rule based method. We analyze the
effects of these multi-attribute bins/rules against the assumption of the Naive Bayes
method which assumes independence among the attributes given the class.

5 Results and Discussion

We present here a ROC (receiver operating characteristic) curve analysis of the re-
sults obtained using a likelihood-based approach as explained in section 4 and using
our hybrid approach based on a rule learner combined with likelihood ratio test. A
ROC curve graphically depicts the performance of a classifier at different levels of
thresholds that we put on the minimum likelihood for prediction of positive inter-
action in this two class classification problem. In other words, for a given threshold
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value t, a test example (protein pair) is predicted to have interaction (positive class)
if and only if the value of likelihood (Eq. 3) is greater than or equal to t. This kind of
analysis gives us an opportunity to evaluate the classifier not just by the total number
of classification errors it makes, but rather allows us to analyze what is the tradeoff
among two different types of errors, i.e., false positive predictions and false negative
predictions. It plots true positive rate (sensitivity) vs false positive rate (1-specificity),
where each point in the curve belongs to a particular threshold on the likelihood value.
In this way we can analyze the effect of different thresholds on predictive accuracy
instead of analyzing the effect of a single threshold using prior odds.

We use the 10-fold cross validation procedure [43] in all experiments reported
here. Both positive and negative interaction data along with the predictive features
is divided into ten equal folds, respectively. For each experiment, we divide the
data (for both positive and negative classes along with their features separately)
randomly in ten equal folds. Each time we use nine out of ten folds as training and
the remaining one fold as a test. This process is repeated ten times, each time using
a different fold as the test set. Likelihood values estimated during the training run
are used to predict protein-protein interactions in the test examples. Sensitivity and
specificity are defined by Eq. 5 and 6,

Sensitivity =
T P

TP + FN
(5)
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Table 1 Results for maximum value of accuracy for both methods

Method LogLRcut TPR FPR(1−Spec) Sen ∗ Spec Acc T P/FP
LIKE-PART 0.49 0.748 0.0433 0.716 0.8998 6.48

LIKE 0.6 0.66 0.0457 0.63 0.874 5.41

Speci f icity =
TN

TN + FP
(6)

Where T P,TN,FP and FN are the number of true positives, true negatives, false
positives and false negatives, respectively. A ROC curve for a good classifier will be
as close as possible to the upper left corner of the graph, with a large area under the
curve. Fig.2 shows the ROC curves for pure likelihood-based approach (hereafter
called LIKE) and the hybrid method (hereafter called LIKE-PART, i.e., Likelihood
based classifier using PART for finding rules/bins). The corresponding areas under
the curve are 0.8862 and 0.9325, showing a better predictive performance of the
LIKE-PART hybrid.

We can see from the Figure 2 that taking into account the multi-attribute binning
or the rules produced by the base rule learner has enhanced the overall performance
of the classifier significantly, even though the features in this data are not so well
correlated, as reported in [22]. Table 1 reports the results for the likelihood cutoffs
which correspond to maximum predictive accuracies for both methods. A statistical
significance test performed on the accuracy values over ten folds for these likelihood
cutoffs gives a p-value of 0.0000017, which indicates that LIKE-PART outperforms
the LIKE method very significantly.

6 Conclusions

In this work, we have addressed a challenging and important bioinformatics prob-
lem, namely the prediction of protein-protein interactions using a hybrid data mining
technique combining rule induction methods with likelihood ratio based classifiers.
We used integration of different genomic features for a small data set and imple-
mented two versions of a likelihood ratio based classifier. We did not use any prior
odds, but rather used only likelihood ratio and presented a range of results using a
ROC curve for different thresholds of the likelihood values used as a minimum value
for the prediction of positive examples. We proposed a new hybrid method which
used a known Rule Induction algorithm (PART) to induce rules from the training
set taking into account possible attribute interactions and then interpret each rule as
a bin for the likelihood based classifier. Since these bins were produced by taking
into account attribute interaction, they avoid the unrealistic assumption of indepen-
dence between attributes that is made by a pure likelihood based classifier. Then we
compared the ROC curve of this new hybrid PART/Likelihood-based method with
the ROC curve of the pure likelihood-based method and we observe that the hybrid
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method significantly improves as an overall classifier. Also, in the proposed method
we can use different levels for likelihood value cutoff for final prediction, which
gives us a more general setting where one can go for different levels of sensitivity
and specificity.

We have evaluated this collaborative technique in the specific problem of predict-
ing protein-protein interactions using genomic features, but the basic idea behind
the technique, i.e., using induced rules as multi-attribute bins for the likelihood ra-
tio based classifier, can be used for other classification problems easily, since it is
independent of the application domain.
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Improvements in Flock-Based Collaborative
Clustering Algorithms

Esin Saka and Olfa Nasraoui

Abstract. Inspiration from nature has driven many creative solutions to challenging
real life problems. Many optimization methods, in particular clustering algorithms,
have been inspired by such natural phenomena as neural systems and networks, nat-
ural evolution, the immune system, and lately swarms and colonies. In this paper,
we make a brief survey of swarm intelligence clustering algorithms and focus on the
flocks of agents-based clustering and data visualization algorithm, (FClust). A few
limitations of FClust are then discussed with proposed improvements. We thus pro-
pose the FClust-annealing algorithm that decreases the number of iterations needed
to converge and improves the quality of resulting clusters. We also propose a (K-
means+FClust) hybrid algorithm which decreases the complexity of FClust from
quadratic to linear, with further improvements in the cluster quality. Experiments on
both artificial and real data illustrate the workings of FClust and the advantages of
our proposed variants.

1 Introduction

Clustering is the problem of finding groups in a dataset, according to some data
properties and attributes which have a meaning in some context [14, 13]. Since no
class information is used to cluster the data, it is called unsupervised learning. In
addition to being an interesting and challenging problem, applications of cluster-
ing include customer segmentation in marketing, image segmentation, document
organization, web usage mining, etc.
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One of the many different approaches used for clustering is swarm intelligence
(SI). Swarm intelligence is an artificial intelligence paradigm which is mainly in-
spired from the dynamics of several societies in nature, such as ant-colonies, bird-
flocks, fish-schools, etc. SI is based on the social, collective and structured behav-
ior of decentralized, self-organized agents [16, 36]. Although these agents have a
very limited individual capacity, cooperatively they perform many complex tasks.
Characteristics of swarm intelligence are: 1) Collaboration: agents in the swarm
collaborate or interact with the environment and each other; 2) Collective intel-
ligence: whereas agents in the swarm are mostly unintelligent, the collaborating
system, or swarming mechanism results in an intelligent system; 3) Inspiration from
nature; and 4) Decentralized control. In this chapter, we will mainly focus on using
SI for clustering.

Given the above definition, the most popular swarm intelligence clustering
algorithms are:

1. Ant-clustering
2. Particle swarm clustering
3. Flocks of agents-based clustering

There are mainly two approaches for ant-based clustering. In the first version,
data is randomly placed on a grid. Then the ants move around the grid and form
clusters by picking up and dropping the data items while moving [20]. Later, this
version was improved in [34, 9, 10]. In the second version of the ant clustering
algorithm, ANTCLUST, ants represent data items. Initially, none of the ants are
assigned to a cluster, i.e. none of the ants have a label. During the clustering process,
in each iteration, two randomly selected ants meet each other. Then, according to
some defined behavioral rules, they may form a new cluster, one of the ants may
be assigned to an existing cluster, one of the ants maybe removed from a cluster, or
clustering quality measures may be updated [11, 17, 18, 19].

Clustering with particle swarms is based on particle swarm optimization[16, 15].
In the clustering problem, each particle encodes all cluster centroids. In other words,
each particle represents a complete clustering solution [1, 22].

Lately, an approach based on flocks of agents, known as FClust [30, 29], was
used for data clustering. This approach is inspired by bird flocks. Each agent of the
flock represents a data item. Initially, agents are placed on a planar surface (here-
inafter referred to as the visualization panel). Then, in each iteration, their speed
gets updated according to the neighboring agents. In the end, similar agents start
moving together and they form clusters. This makes FClust especially useful for
data visualization. Although the experimental results given in [30] were acceptable,
we observed that the standard deviations of the number of clusters, the cluster error,
and the number of required iterations were rather high. Moreover, FClust was not
successful for each data set. Another disadvantage was the high computational cost
which can make FClust costly for many real time applications.

This chapter starts by reviewing algorithms for particle swarm clustering and
ant clustering in Section 2. Section 3 reviews flocks of agents-based clustering,
while pointing to their limitations. Then we will present several modifications in
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Section 4, including an annealing variant, and a (K-means+FClust) Hybrid algo-
rithm to overcome some of these limitations. In Section 6, post processing and ex-
perimental results are presented. Finally, our conclusion, in Section 7, summarizes
the study and discusses future work.

2 Swarm Intelligence Clustering

Swarm intelligence is an artificial intelligence paradigm based on social, collective
and structured behavior of decentralized, self-organized agents [16, 36]. Algorithms
in this domain, mainly depend on an inspiration from nature, in particular from so-
cial insects like bees, ants, termites; flocks of birds, and fish schools. These animals
have a very limited individual capacity. Yet, cooperatively, they perform many com-
plex tasks such as searching for and storing food, and flying collectively over long
distances. The characteristics of swarm intelligence are:

• Collaboration : Agents in the swarm collaborate or interact with the environment
and with each other.

• Collective intelligence: Whereas agents in the swarm are mostly unintelligent, the
collaborating system, or swarming mechanism results in an intelligent system.

• Inspiration from nature: Agents’ properties tend to be derived from analogous
creatures such as ants, bees, or birds.

• Decentralized control: Agents behave and interact without a centralization
mechanism.

Five basic principles of swarm intelligence are [23]:

• Proximity principle: The group should be able to perform simple space and time
computations.

• Quality principle: The group should be able to respond to quality factors in the
environment.

• Principle of diverse response: The group should not allocate all of its resources
along excessively narrow channels.

• Principle of stability: The group should not change its behavior with every
change in the environment.

• Principle of adaptability: The group should change its behavior if it is benefi-
cial.

In this chapter, we will mainly focus on using SI for clustering. Most common SI
algorithms for clustering are:

1. Ant-clustering
2. Particle swarm clustering
3. Flocks of agents clustering

In the following subsections, general information about ant-clustering and parti-
cle swarm clustering is provided. Following this section, we will discuss clustering
using flocks of agents in detail.
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2.1 Particle Swarm Clustering

Clustering with particle swarms is based on particle swarm optimization[16, 15],
which was initially inspired from bird flocks. Though the initial motive was model-
ing human social behavior, PSO later became a very popular search and optimization
technique.

In PSO, the population is a group of particles and each particle is a candidate
solution to the problem. Therefore in the swarm intelligence concept, with PSO,
a swarm is a solution set. Each particle flies through a multi-dimensional problem
space, and every position represents a different solution. After each move, the posi-
tion is evaluated by a fitness function as shown in Line 7 of Algorithm 1.. The fitness
function aims to evaluate the performance of each particle which is the closeness of
the solution represented by the particle to the global optimum solution. The personal
best solution which is the best position visited by the particle so far is calculated and
kept (Line 8 of the Algorithm 1.). The particle’s best position and the global best,
which is the best solution found in the neighborhood, are used for computing the
particle’s new location (Line 10 of the Algorithm 1.). Depending on the definition of
neighborhood, there exist two different versions of PSO: 1)gbest: the neighborhood
is the entire swarm 2) lbest: a swarm is divided into overlapping neighborhoods of
particles and the best particle is determined in the neighborhood.

The PSO Clustering algorithm was first applied in image clustering [27, 28],
which took the number of clusters as input and used the gbest version of PSO. In
the clustering problem, each particle is constructed from all cluster centroids. In
other words, each particle represents a clustering solution [1, 22].

Algorithm 1. The PSO Clustering Algorithm
Input: Dataset and the number of clusters K.
Output: Clustered data.

1: Initialize each particle to contain K random cluster centroids.
2: for iteration=1 to max do
3: for all particle i do
4: for all data record x do
5: Calculate the Euclidean distance of x to all cluster centroids in i.
6: Assign x to the closest cluster.
7: Calculate the fitness of the particle.
8: Find the global best position (among all particles) and personal best position of each

particle.
9: Update the velocity of each particle based on the global and personal best positions.

10: Update the cluster centroids based on the particles’ velocities.

A hybrid model of PSO clustering with the K-means clustering algorithm was pre-
sented in [22], where one of the particles was initialized with the result of K-
means. Another (PSO+K-means) hybrid model was used for document clustering
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in [5, 7], where the results illustrated that the hybrid PSO algorithm can generate
more compact results than K-means and PSO. A survey and a modified PSO-based
clustering algorithm was presented in [2].

2.2 Ant Clustering

There are mainly two approaches for ant-based clustering. In the first version, Ant
Clustering Algorithm (ACA), data is randomly placed in the environment, which is
generally a two-dimensional plane with a square grid. As shown in Algorithm 2., the
ants move around the grid, via a random walk or jumping to form clusters by picking
up, transporting, and dropping the data items while moving around [20]. The pick-
ing and dropping operations are influenced by the similarity of the surrounding data
items and the density of the ant’s local neighborhood f (xi). Generally, the size of the
neighborhood is 3×3. The probability of picking up increases when the data item is
surrounded by dissimilar data items or the density of the neighborhood is low. Simi-
larly, the probability of dropping increases when similar data items are encountered.
After ACA is stopped, a post-processing algorithm such as an agglomerative clus-
tering algorithm is run for cluster retrieval [9]. More recently, performance analysis
and strategies for increased robustness were presented [9, 10]. Improvements were
also proposed by adding a progressive vision scheme and including pheromone on
the grid cells [34]. A good review can be found in [11].

Algorithm 2. The Ant Clustering Algorithm (ACA)
Input: Dataset.
Output: Clustered data.

1: Randomly scatter data items on the grid.
2: Randomly scatter ants on the grid.
3: for iteration=1 to max do
4: for all ant ai do
5: if ai is unladen and ai’s grid position is occupied by item xi then
6: Calculate f (xi) and calculate probpick−up(xi) using f (xi).
7: if probpick−up(xi) ≥ random() then
8: Let ai pick up item xi.
9: else if ai is carrying item xi and ai’s grid position is empty then

10: Calculate f (xi) and calculate probdrop(xi) using f (xi).
11: if probdrop(xi) ≥ random() then
12: Let ai drop item xi to i’s current grid position.
13: Move ai to a randomly selected, neighboring, unoccupied grid position.
14: iteration++

In the second version of the ant clustering algorithm, ANTCLUST, each ant rep-
resents a data item. Initially, none of the ants are assigned to a cluster, i.e. none
of the ants have a label. Then, during the clustering process, in each iteration, two
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randomly selected ants meet each other. According to some defined behavioral
rules, they may form a new cluster, one of the ants may be assigned to an exist-
ing cluster, one of the ants may be removed from a cluster, or clustering quality
measures may be updated [17, 18, 19]. The basic idea is that agents who carry simi-
lar data items attract each other, while agents who carry dissimilar agents repel each
other, which results in the formation of groups. A general outline of the ANTCLUST
Algorithm is given in Algorithm 3. and behavioral rules are given below.

Ant Behavioral Rules in ANTCLUST:

1. New nest creation: If two ants without clusters meet each other and they are
similar enough, they form a new cluster.

2. Adding an unlabeled ant to an existing nest: If a labeled ant ai meets an
unlabeled ant a j, and if they are similar enough, a j is labeled with the same
label of ai, i.e. added to the cluster of ai.

3. Positive meeting between two nest-mates: If two ants ai and a j have the same
labels and they are similar enough, then the quality measures are increased for
these ants and the cluster they belong to.

4. Negative meeting between two nest-mates: If two ants ai and a j have the same
labels and they are not similar enough, then the quality measures are decreased
for these ants, and the ant with smaller quality measure is unlabeled.

5. Meeting between two ants of different nests: If two ants ai and a j have differ-
ent labels but they are similar enough, then the quality measures are decreased
for these ants and the cluster they belong to. Then, the ant belonging to the
smaller nest is moved to the other ant’s bigger nest.

6. Default rule: If none of the above applies, do nothing.

Algorithm 3. The Ant Clustering Algorithm ANTCLUST
Input: Dataset.
Output: Clustered data.

1: Map ants to data items and initialize ants’ quality measures. Initially ants do not have any
labels, i.e. they do not belong to any cluster.

2: for iteration=1 to max do
3: Randomly choose two ants and apply the behavioral rules above.
4: iteration++
5: Delete nests that do not contain enough ants.
6: Reassign ants without labels to the most similar nests.

Another clustering algorithm called AntTree uses the ability of building mechani-
cal structures of ants and builds a tree structure [3]. In this version, each data to be
clustered represents a node of the tree and the algorithm searches for the optimal
edges.



Improvements in Flock-Based Collaborative Clustering Algorithms 645

3 Flocks of Agents for Data Visualization and Clustering

A recent swarm intelligence approach uses a flock of agents. One of the definitions
given for a flock is “a number of animals of one kind, esp. sheep, goats, or birds,
that keep or feed together or are herded together”1.

“The motion of a flock of birds is one of nature’s delights” according to Craig
Reynolds who has simulated this beauty in computer animation, where the bird-like,
birdoid object is called boid [32]. One of the biggest differences between a particle
and a boid in simulation is that boids have orientation, which makes them suitable
for data visualization as well as clustering.

Studies about flocks of agents in computer science have mainly started with simu-
lating moving bird flocks, based on two balanced and opposing behaviors of natural
flocks, namely, 1) Desire to stay close to the flock, and 2) Desire to avoid collisions.
These are simulated in the following three behaviors [32].

Natural Bird Flock Behaviors:

1. Collision Avoidance/Separation: Steering away from the other boids to avoid
collision.

2. Alignment/Velocity Matching: Aiming to match the moving direction (i.e.
heading) and speed to that of nearby flockmates.

3. Cohesion/Flock Centering: Attempting to adjust steering toward the average
position of local flockmates and to stay close to the neighbors.

While cohesion and velocity matching represent the attraction forces, which keep
the boids together, collision avoidance formed the rejection/repelling force. Other
studies also tried to present behavioral rules and model collective behavior of ani-
mals [12, 4]. Later studies also focused on visualizing data using flocks of agents.
Each individual boid represented one data item and a fourth behavior was added to
represent moving with similar data items [31]:

4. Information Flocking: Attempting to move with similar boids.

The fourth behavior is pretty similar to the second behavior, velocity matching.
However, in the fourth behavior, the aim is not moving together with all neighbors,
but only with the ones similar enough to form a group. This behavior provided
a suitable ground for using flocks of agents for data visualization and offered a
motivation for data clustering.

It should be noted that, just as a flock can be formed of birds, it can also be
formed by other boids such as fish, sheep, etc. Therefore, for the sake of generality,
in this study, instead of the word boid, we use the word “agent”.

The Multiple Species Flocking clustering model (MSF) [6] used flock cluster-
ing for data clustering and implemented a distributed multi-agent system. In that
study, MSF was compared to Ant clustering and K-Means clustering algorithms.
MSF converged faster than ant clustering. However, the clustering results for MSF

1 http://dictionary.reference.com/browse/flock
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were manually generated. The user looked at the visualization panel and selected
the clusters. The results showed that MSF performed better than K-Means. Lately,
in [30], a detailed flock clustering algorithm (FClust) was presented with a stopping
criteria and automated cluster extraction algorithm. An application of this approach
to Web usage mining can be found in [33]. In the following sections, we will de-
scribe the FClust algorithm, discuss its limitations, and suggest improvements with
real life application examples.

3.1 Flocks of Agents Based-Data Visualization

Data visualization using flocks of agents is suitable for any kind of data set where
one can define a similarity measure between data items. A flock consists of several
agents, with each agent mapped to and representing one data record. As mentioned
in Section 3, flocks are different from ordinary particles because they have orien-
tation. Agents in a flock are attracted to similar agents and are repelled by the dif-
ferent agents. Moreover, the distance between the agents depends on the similarity
between the data items that are mapped to those agents. Therefore, the visualiza-
tion panel visualizes the similarity relation between the data items. Normally, data
sets with at most three attributes can be visualized by a simple plot. However, when
there are more than three attributes, this becomes harder. In particular, when there
is a huge number of attributes, as in web usage data, data visualization becomes a
challenging job.

When flocks of agents are compared to other swarm intelligence algorithms, such
as ants and particle swarms, we find that flocks are more suitable for data visualiza-
tion. In the case of ants, data items are moved on a rigidly structured grid by ants and
placed on the same stack with similar items. However, distance does not necessarily
represent the similarity, as in the case of flocks. The distance between two neigh-
boring agents in a flock is inversely proportional to the similarity between them
whereas the similarity between two ants only increases the chance of data items
being neighbors, but does not define how close/far they are. The distance between
two more similar data items may be bigger than the distance between two other
items which are less similar. In the case of particle swarms, each particle does not
represent one data item, but rather represents a clustering solution itself. Therefore,
particle swarms may not be as suitable for data visualization, either.

It has been mentioned that neural networks can also be used for data visualization.
However, most neural networks have a rather static structure whereas a flock of
agents is inherently dynamic [31]. Also, neural networks are a centralized learning
mechanism, whereas agent flocks are decentralized.

3.2 Flocks of Agents-Based Clustering

In the clustering with flocks of agents approach [30], each agent represents one
data item. Initially, agents are placed on the visualization panel, which is a 2
or 3-dimensional continuous space, where x, y (and if applicable z) coordinate
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values range between 0 and 1. Agents may be placed randomly or some background
information can be used to place them. Then, they start moving around. As they
meet other agents in a defined neighborhood, they try to remain at an ideal distance
from each other, which is determined according to the similarity of the original data
items that agents are representing. The more the data items are similar, the smaller
the ideal distance will be. Ideal distances are computed for each agent pair once at
the beginning of the algorithm, based on the intrinsic properties or attributes of the
data items. If neighboring agents are further apart than the ideal distance, there will
be an attraction force between them and the agents will try to move closer to each
other. In contrast, if the distance is less than the ideal distance, then there will be a
rejection force, and agents will move apart from each other. Given this basic idea,
Algorithm 4. gives the procedure for Flocks of Agents Clustering (FClust).

Algorithm 4. FClust Algorithm [30]
Input: Dataset.
Output: Visualization of interaction between the data items. Agents corresponding to more
similar items are located closer in the 2D visualization panel.

1: Initially place the agents on the visualization panel.
2: Initialize velocities of all agents.
3: Compute the ideal distances, dideal , between agents.
4: repeat
5: for each agent i do
6: for all j such that d( j, i)≤ dth and i 	= j do
7: if d(i, j) = dideal(i, j) then
8: β (i, j)← 0
9: else if d(i, j) > dideal(i, j) then {attraction}

10: β (i, j)← 4×
(

d(i, j)−dideal(i, j)
dth−dideal(i, j)

)2

11: else {repulsion}
12: β (i, j)←−4×

(
1− d(i, j))

dideal(i, j)

)2

13: vresulting(i, j)← v( j)+β (i, j)×vcap(i, j)
14: if ∃ j such that d( j, i)≤ dth and i 	= j then
15: w(i) = normalize ( ∑

j|d( j,i)≤dth&i	= j

vresulting(i, j))

16: if The angle between v(i) and w(i) is less than or equal to 90 degrees then
17: vnext(i)← w(i)
18: else
19: vnext(i)← v(i)
20: else
21: vnext(i)← v(i)
22: ampnext (i)← ampde f + dth

20×(neighbor no(i)+1)
23: for each agent i do
24: compute new position pnext(i)← pcurrent(i)+ampnext(i) × vnext(i)
25: Move all agents to the updated positions and update current velocities.
26: until Clusters are formed
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In steps 1 and 2, the initialization is performed. The velocity vector v, is a unit
vector, (i.e. ||v|| = 1), representing the direction. In step 3, the ideal distances be-
tween agents are computed via Equation (1). Later, for each agent i, the neighboring
agents that are close enough to i on the visualization panel, are extracted in Line
6, where d(i,j) is the 2D Euclidean distance between agents i and j. Then, for each
neighbor:

• If the distance between the agents i and j is equal to the ideal distance between
them (Line 7), there is no attempt to change i’s velocity due to j (Line 8).

• If the distance between the agents i and j is greater than the ideal distance be-
tween them (Line 9), an attraction force will move i closer to j, with a more
similar velocity to j (Line 10).

• If the distance between the agents i and j is smaller than the ideal distance be-
tween them (Line 11), a repelling force will move i further from j, with a less
similar velocity to j (Line 12).

In line 13, the velocity effect on i due to neighbor j is computed where vcap(i, j) is
the unit vector pointing from i to j. Next is the computation of the updated velocity
of agent i, vnext(i), between lines 14 and 21. First, if i has neighbors, then their
resulting velocities on i are summed up and normalized. If the total, normalized
velocity w, does not change the agent’s current direction more than 90 degrees, then
the updated velocity is assigned as w. Otherwise the velocity is kept unchanged for
the next iteration. Similarly, if agent i does not have any neighbors -note that an
agent is not a neighbor of itself- then the velocity will be kept the same for the
next iteration. In line 22, the amplitude is computed depending on the number of
neighbors and distance threshold, where ampde f is the default minimum amplitude.
If the amplitude is too low, it may increase the number of iterations to converge.
However, if the amplitude is too high, the agents may move further than the desired
location. The minimum amplitude is empirically set to 1

5 × dth [30]. At the end of
each iteration, the updated agent coordinates are computed, and all the agents are
moved to their updated positions simultaneously (lines 23 to 25). Moving agents
around the visualization panel is performed until a stopping criteria is met and/or
clusters are formed.

3.2.1 Setting the Parameters for FClust

The selection of parameters has a large impact on the convergence of the FClust al-
gorithm. The first parameter is dth, the distance threshold, which defines the neigh-
borhood size (see line 6 in Algorithm 4.), and the latter affects the ideal distance via
Equation (1) (see line 22 in Algorithm 4.) and amplitude. When dth is too small, the
agents cannot affect each other, and when it is too high, the algorithm does not con-
verge. One method to compute the ideal distance between two agents, dideal , is given
in Equation (1). If the ideal distances are overestimated, then the clusters cannot be
observed on the visualization panel.

dideal(i, j) =
1− sim(i, j)

1− simth
×dth. (1)
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The similarity threshold, simth, in (1) is computed via Equation (2). If the similarity
threshold is too large, then the algorithm will fail to converge, and if it is too small,
then different clusters risk being combined into one cluster.

simth =
simaverage + simmax

2
(2)

3.2.2 Stopping Criteria for FClust

The most common method for stopping the algorithm is using human experts
[31, 6, 30]. An expert keeps watching the visualization panel until stable clusters
are formed. At that time, the algorithm is stopped. However, an automated method
was also presented in [30]. The visualization panel, i.e. a 2D continuous space
([0,1]x[0,1]), was divided into 20 cells. For each cell, the spatial entropy which
depends on the proportion p of agents located in this cell was computed, and if the
observed minimum entropy has not improved for the last 3× n iterations, where n
is the number of data records, the algorithm is stopped. The spatial entropy is given
in Equation (3).

ES =−
20

∑
i=0

p(i)× ln(p(i)) (3)

The problem with this criterion is that the entropy may remain unchanged for a
while if new neighbors do not meet, but after a meeting occurs, changes may start
re-occurring. Thus, the above stopping criterion cannot capture these delayed dy-
namics, and thus a risk that the algorithm will be stopped before convergence.

3.2.3 Cluster Formation in FClust

When FClust is run, flocks of agents are visually observable. However, the clusters
are not explicitly formed and the data is not yet assigned to clusters. Similar to
the stopping criterion, one method of forming clusters is using human experts. The
person marks the clusters and assigns agents to the clusters. Since there is a one-
to-one mapping between agents and data records, the data will also end up being
clustered. In addition to this, an automated procedure was presented in [30], which
is given in Algorithm 5.. Basically, a new cluster is created for an unlabeled agent.
Then the neighboring agents of this cluster are explored, and all the agents which
are similar to at least one of the agents in the cluster are inserted into this cluster.
New agents are inserted to the cluster until no more agents can be inserted. Then
the procedure restarts by creating another new cluster, and stops when all the agents
are labeled.

After cluster formation, a post processing phase is needed to cluster the original
(input) data, to validate the results, and if possible to interpret the clusters.
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Algorithm 5. Cluster Formation Algorithm
Input: Agents’ coordinates at a stable/converged state.
Output: Clusters of agents.

1: for each agent i do
2: if i’s cluster is not assigned then
3: Form a new cluster c
4: Assign i to c
5: for all agent j such that there exists an agent k such that k ∈ c and distance(k,j)≤

dth and sim(k, j) > simth do
6: Assign j to c

3.2.4 Complexity Analysis of FClust

The FClust algorithm, given in Algorithm 4., needs to compare every agent to every
other agent in order to compute the ideal distance initially, and then to update the
agent’s velocity based on its neighboring agents. Although some complexity reduc-
tion suggestions, such as using a neighborhood matrix, was given [30], the worst
case time complexity remains O(n2), where n is the number of data records. Simi-
larly, the memory complexity is also O(n2) to keep the ideal distances, in addition
to O(n) memory needed for keeping agent locations, velocities and amplitudes.

3.2.5 Limitations of FClust

Although the experimental results given in [30] were acceptable, we observed that
the standard deviations of the number of clusters, the cluster error, and the number
of required iterations were high. Moreover, FClust was not successful for each data
set. Another disadvantage was the high computational cost which makes FClust
unsuitable for many real time applications.

In addition to the above limitations, we observed that convergence strongly de-
pends on the similarity threshold. When the similarity threshold is too high, the al-
gorithm may not converge, and when the threshold is too low, the algorithm may not
differentiate between different clusters, and thus end up combining some of them.
Therefore, Equation (2) is not suitable for every dataset. Furthermore, if the data
similarity values follow a power low distribution, then the similarity threshold given
in Equation (2) will produce a very high similarity threshold. Therefore agents will
not be able to form clusters. In other words, the clustering algorithm will not con-
verge. Another problem occurs when there are connecting agents between clusters,
meaning that instead of being well separated, a bridge of data points connects two
clusters. As a result the clusters are labeled as the same, even though they should be
labeled differently. To solve this problem to some extent, an alternative formulation
will be presented in Section 4. Moreover, the ideal distance formula in [30] requires
mostly unique data records. Otherwise, if many similarity values are 1, the ideal dis-
tance computation results in an infinite value in Equation 1 because simth = 1. An
alternative formulation, which can handle many 1-similarities is given in Section 4.1.
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4 Improved Distance Threshold Estimates

4.1 Alternative Fixed Thresholding

In our experiments, we observed that the original FClust was not suitable for some
very high dimensionality sparse datasets, such as Web usage data. Therefore, we
had to find a new formulation for the similarity threshold as given by Equation (4).
When the maximum similarity is very high and the average similarity very low, the
similarity threshold computed by (2) is too high for FClust to converge. Equation
(4) includes a flexible way to tune the similarity threshold, by a tuning factor α ,
where simmax

simaverage
≥ α ≥ 1.

simth = α× simaverage (4)

Another problem observed is that the ideal distance computation results in an infinite
value via Equation (1) if many similarity values are 1, because simth = 1. Equation
5 proposes an alternative formulation, which can handle many 1-similarities.

dideal(i, j) =

{
1−sim(i, j)

1−simth
×dth, simth 	= 1

0, simth = 1
(5)

Additionally, when the number of data records is small, setting the distance thresh-
old is very hard because, if it is too low, the agents cannot meet each other, while
if it is too high, the ideal distances computed via Equations (1) and (5) will be too
high, and cluster formation will not occur. As a solution, a new parameter for ideal
distance tuning is added, as given in Equation (6). The ideal distance threshold con-
stant, dideal th, used in Equation (6), is also used, replacing dth during the cluster
formation given in Algorithm 5., line 5.

dideal(i, j) =

{
1−sim(i, j)

1−simth
×dideal th, simth 	= 1

0, simth = 1
(6)

In addition to these simple tuning modifications, an annealing version of FClust is
proposed in Section 4.2.

4.2 Adaptive Thresholding Using FClust-Annealing

The distance threshold, dth, has a great effect on the convergence of clustering.
When dth is too high, too many other agents affect a given agent. This results in
an attempt to satisfy too many constraints at once, and the algorithm does not con-
verge. However, when dth is too low, the neighborhood tends to be too narrow for
agents to see each other. Therefore they may not affect each other. Even when con-
vergence is possible, it takes too many iterations.

One way to decrease the sensitivity to a fixed threshold is by using an annealing
schedule for dth, where dth is highest at the beginning and then decreases as the
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Fig. 1 Cooling Schedule for
dth for Annealing FClust
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number of iterations increases. In that case, dideal is computed using Equation (6).
A possible cooling schedule for dth is given in Equation (7) and shown in Figure 1.

dth(t) =
dth(0)−dth(N)

cosh( 10×t
N )

+ dth(N) (7)

where, t is the iteration number and N is the number of iterations. dth starts from
dth(0) and decreases down to dth(N).

During the cluster formation process, in line 5 of Algorithm 5., dideal th is used to
define the neighborhood.

5 The (K-means/FClust) Hybrid Algorithm

K-means is a fast algorithm with O(n) time complexity. However, the number of
expected clusters, K, needs to be given as an input to the K-means algorithm and K-
means may not cluster the data successfully if the cluster boundaries are not hyper-
spherical. Unlike K-means, FClust has an adaptive way to extract a reasonable num-
ber of clusters without any boundary restrictions. However, the complexity cost for
FClust is higher than K-means. In this section, we propose a (K-means+FClust)
Hybrid Algorithm which aims to benefit from the advantages of both K-means and
FClust.

5.1 K-Means Algorithm

The K-Means Algorithm is a popular, simple, unsupervised, learning algorithm for
clustering. [21]. In this iterative, partitional clustering approach, each cluster is as-
sociated with a cluster centroid and each data point is assigned to the cluster with
the closest centroid.

The K-Means Algorithm, listed in Algorithm 6., aims to minimize an objec-
tive function, consisting of the sum of squared errors or distances between the data
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records and K cluster centroids, as given in Equation 8, by iteratively updating the
cluster centroids and assigning data to the most similar centroid, until the total er-
ror between the data records and the assigned cluster centroids converges. Note that
this procedure forms clusters with n-dimensional hyper-spherical boundaries, where
cluster centroids represent the centers.

E =
d

∑
j=1

n

∑
i=1
||χ j

i − c j
π(χi)

|| (8)

where n is the number of data records, d is the number of attributes and π(χi) =
cluster to which χi is assigned.

The complexity is O(n ∗K ∗ I ∗ d) where n is the number of points, K is the
number of clusters, I is the number of iterations, and d is the number of attributes.

Algorithm 6. K-Means Algorithm

Input: Dataset χ ∈ ℜd where |χ|=n; number of clusters, K ≤√n.
Output: A partition of the dataset into K disjoint clusters γ1, ...,γK .

1: Read sessions.
2: Arbitrarily select K records as centroids out of the n data records.
3: repeat
4: for all Data record χi do
5: Find the closest centroid ci using Euclidean Distance.
6: Assign data record χi to the cluster γi.
7: for all Cluster γ j do

8: Update its centroid c j=
∑χi∈γi χi

||∑χi∈γi χi||
9: until stopping criterion is met.

5.2 (K-means+FClust) Hybrid

K-means is a fast algorithm with O(n) time complexity. However, the number of
expected clusters, K, needs to be given as an input to the K-means algorithm. More-
over, K-means can only find clusters with hyperspherical shapes. Therefore, if the
clusters are not hyperspherical, K-means may not estimate the cluster boundaries
correctly. A hybrid algorithm of K-means and FClust is presented in Algorithm 7.
to take advantage of the speed of K-means while also benefiting from the power
of automatically determining the number of clusters in FClust. In the hybrid algo-
rithm, initially, K-means is run with a high number of clusters which is more than
the expected number of clusters. The cluster centroids are then extracted to get clus-
ter representatives, and these representatives are mapped to the agent domain. Next,
FClust is run on this smaller number of agents (relative to the size of the input data
set) and the clustering results are mapped back to the input data domain. Note that,
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in the hybrid approach, each agent is mapped to the closest group of data records via
its group centroid, since each agent represents a group centroid. The time complex-
ity for K-means, lines 1 to 2 in Algorithm 7., is O(n), and the time complexity of
the FClust part, in lines 3 to 4, is O(K2). Since the number of agents K is very small
compared to the number of agents n, as long as K ≤√n (which is always the case
in practice), the time complexity and memory complexity of the (K-means+FClust)
hybrid is O(n). Therefore the hybrid version reduces the time and memory complex-
ities from quadratic to linear.

Algorithm 7. (K-means+FClust) Hybrid Algorithm
Input: Dataset with n data records, an over-specified number of initial clusters, K ≤√n.
Output: Visualization of interaction between the data items and agent-cluster formation.

1: Run K-means on the original dataset with K clusters, where K ≤√n).
2: Extract K cluster centroids from K-means’ results,
3: Map each cluster centroid to an agent for FClust,
4: Run FClust with K agents.

5.3 Advantages of the (K-means+FClust) Hybrid Algorithm

The advantages of the (K-means+FClust) Hybrid algorithm can be listed as:

• Linear complexity: Unlike FClust, the (FClust+K-means) Hybrid algorithm has
linear complexity inherited from K-means.

• Unlike K-means, the (FClust+K-means) Hybrid algorithm has an adaptive way
to extract a reasonable number of clusters.

• Unlike K-means, the (FClust+K-means) Hybrid algorithm suffers from no hy-
perspherical boundary restrictions on the extracted clusters.

5.4 Stopping Criterion

During the movement of the agents, the goal of each agent is to move such that
the agent will be located at an ideal distance to all neighboring agents. Therefore,
the procedure can be considered as a constraint satisfaction problem [35], where
having the ideal distance between every agent pair represents the optimal goal. The
difference between the real distance between two agents and their ideal distance
is called the ideal distance error in this paper as shown in Equation (9). One pro-
posed stopping criterion is to halt if the difference in total ideal distances between
all agent pairs in two consecutive iterations is small enough. Since this stopping
criterion is feasible when the number of agents is small, it will be used for the (K-
means+FClust) Hybrid algorithm in the experiments of Section 6.3.

ideal distance error(i, j) = |dideal(i, j)−d(i, j)| (9)
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6 Experimental Results

In this section, we describe our experiments and their results. We start by describ-
ing the datasets that we used in our experiments, in Section 6.1. Then, we proceed
to explaining how post processing is applied to extract the clusters in Section 6.2.
Finally, Section 6.3 presents the experimental results observed for FClust, FClust-
annealing, and (K-means+FClust) Hybrid on different datasets. No experiments are
presented for (K-means+FClust) Hybrid-Annealing because, the aim behind anneal-
ing is to initially have a bigger neighborhood and then reduce it with time to speed
up the convergence of clusters. However, in the hybrid version, since the number
of agents is already small, a bigger distance threshold, thus a wider neighborhood
size, is being used, and naturally convergence is very fast. Therefore, annealing is
not used for the hybrid experiments.

6.1 Datasets

As shown in Table 1, datasets I and II are synthetic datasets, whereas dataset WebM
consists of real Web usage sessions. Iris and Pima are also real life datasets from
the UCI machine learning repository 2. Datasets I and II have 2 attributes and are
thus suitable to show the clustering results visually. Dataset WebM, the Web us-
age data, consists of Web usage sessions, where each session is a bag of visited
URLs. Each session includes the URLs that were visited during that session. In
Web usage mining, each URL or item is considered as one dimension which re-
sults in a huge dimensionality. To compare the proposed improvements and the hy-
brid algorithm with the original FClust algorithm, datasets Iris and Pima are also
used. In the experiments, two different similarity measures are used, the Manhattan
based similarity for datasets I and II, and the cosine similarity for dataset WebM.
The Manhattan based similarity is used for the linearly normalized Iris and Pima
datasets.

The Manhattan based (L1) similarity of two data records xi and x j is given by

sim(xi,x j) = 1− 1
A

A

∑
k=1

|xk
i − xk

j|, (10)

Table 1 Datasets

Dataset Number Number of Number of Maximum Average
ID of Items Attributes Clusters Similarity Similarity
I 1600 2 2 0.999948 0.814345
II 811 2 2 0.997500 0.732619

WebM 1704 (sessions) 343 (urls) NA 1.000000 0.059718
Iris 150 4 3 1.0 0.709334

Pima 768 8 2 0.986171 0.832665

2 http://archive.ics.uci.edu/ml/
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where A denotes the number of attributes and xk
i denotes the kth attribute of data

record xi. When the data is linearly normalized to [0,1], the Manhattan based simi-
larity is the same as the 1-norm similarity, which is used in (10).

Given that si and s j are two sessions, each formed of a list of |si| and |s j|
URLs visited in each user session respectively, the cosine similarity is computed
as follows:

sim(si,s j) =
|si
⋂

s j|√|si|× |s j|
(11)

6.2 Post Processing

After the agent clusters are formed, a post-processing phase is needed to cluster
the data and validate the results. Post-processing depends on the data properties.
If the data has 3 attributes or less, the data points are plotted with different colors
depending on the cluster assigned. If the data has a class attribute, then the cluster
error, given in Algorithm 11., is also computed.

Algorithm 8. Synthetic Data Post-Processing Algorithm
Input: Agents’ coordinates and their cluster labels, Original data set, ST H : minimum cluster
size.
Output: Clustered data, plot of agents and data set colored according to their cluster label.

1: Create as many clusters as formed for the agents.
2: Label each data record with the same label as the agent representing that data record.
3: Keep only the clusters with enough data records (i.e. size is above ST H ).
4: Plot agents on the visualization panel, colored according to cluster label.
5: If the data is in 2D or 3D, then plot the data records, colored according to the cluster label

(for validation).
6: If the data has a class label, compute the cluster error via Algorithm 11.

Algorithm 9. Web Usage Data Post-Processing Algorithm
Input: Agents’ coordinates and their cluster labels, Original data set, ST H : minimum cluster
size.
Output: Clustered data, plot of agents colored according to their cluster label, and user pro-
files.

1: Create as many clusters as formed for the agents.
2: Label each session with the same label as the agent representing that session.
3: Keep the clusters with more than ST H sessions.
4: Plot agents on the visualization panel, colored according to their cluster label.
5: for all Clusters do
6: Find the URLs which are visited more than item count threshold in all the sessions

of that cluster.
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Algorithm 10. (K-Means+FClust) Post-Processing Algorithm
Input: Cluster means produced by K-means, agents’ coordinates and cluster labels from
FClust’s output.
Output: Clustered data, and plot of agents and dataset, colored according to their cluster
label.

1: Create as many clusters as formed for the agents
2: Map data records to the cluster means of K-means, in other word to agents.
3: If data is in 2D or 3D, plot data records, colored according to their cluster labels from

K-means.
4: Label each data record with the same label as the FClust-generated label of the agent

representing that data record.
5: Keep the clusters with more data records than ST H .
6: Plot agents on the visualization panel, colored according to their cluster label.
7: If data is in 2D or 3D, plot data records, colored according to their cluster label from

FClust.
8: If the data has a class label, compute the cluster error via Algorithm 11.

Algorithm 11. Cluster Error Computation Algorithm
Input: Dataset with class labels and cluster labels from FClust output.
Output: Cluster error -a real number between 0 and 1-.

1: Error← 0
2: for all Data record pairs (i, j), where i 	= j do
3: if i and j have the same class label, but different cluster labels then
4: Error ++
5: else if i and j have different class labels, but the same cluster label then
6: Error ++
7: Return Error/Number o f pairs

Moreover, if the data consists of Web user sessions, then profiles are extracted
as shown in Algorithm 9., line 6. In Algorithm 8., line 3, Algorithm 9., line 3, and
Algorithm 10., line 5, ST H , denotes the session threshold, i.e. the minimum number
of sessions required for a cluster to be valid. If a data record is a bag of items, as
in the case of Web usage data, the value of item count threshold used in Algorithm
9., line 6 is given in Equation (12), where ICT F denotes the Item Count Threshold
Frequency, where 0≤ICTF≤ 1 is a real number. As a result, each set of URLs,
extracted in line 6 of Algorithm 9., can be considered as a pattern that represents a
Web user profile that summarizes the sessions assigned to that cluster.

item count threshold = ICT F ∗ cluster size (12)

6.3 Results

In Sections 6.3, we start with 2D datasets to allow us to do a visual evaluation.
Then we proceed with the Web usage data as a challenging, high dimensional, real
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(b) Clustering result for all agents.
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(c) Clustering result for dataset.
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(d) Agent clusters generated after post pro-
cessing and assigning agents to clusters.

Fig. 2 Clustering a dataset with two clusters using FClust where dth=0.04, simth=0.91

life data example. Finally, we present our results for the Iris and Pima datasets and
compare the clustering outputs to the data class provided as part of the datasets.

6.3.1 FClust Results for 2D and Web Usage Datasets

Figure 2(a) shows an example of a data set with 2 clusters, and the resulting agents
space are shown in Figure 2(b). In Figure 2(d), agent clusters which include more
than ST H data records are shown. And in Figure 2(c), the clustered data is shown.
Figure 3 shows the result for a more complicated data set, given in Figure 3(a), using
the Manhattan based (i.e. L1) similarity given in Equation (10). Likewise, Figure
3(d) is the post-processed version of Figure 3(b). When we compare the results in
Figure 2(c) and Figure 3(c), we observe that, when the data clusters are not strictly
separated, the cluster formation algorithm, Algorithm 5., may suffer from a bridging
effect that results in merging two distinct clusters. Note that, since the synthetic
datasets used in our experiments already had attributes between 0 and 1, we did not
linearly normalize them in [0,1].

Figure 4 shows the results after more iterations compared to Figure 3. This shows
that, if the agents’ movement is stopped in a wrong state, different clusters may be
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(c) Clustering result for dataset.
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(d) Agent clusters generated after post pro-
cessing and assigning agents to clusters.

Fig. 3 Clustering a dataset with three clusters using FClust at iteration 24400 where dth=0.04,
simth=0.86

assigned to the same cluster. Therefore, the stopping criteria is crucially important
for overlapping data sets.

The next results are for two weeks worth of Web usage data for a Computer
Engineering and Computer Science department’s website. We have chosen this
data set, because it has have previously undergone extensive experiments and val-
idation in [26, 25, 24], hence it is considered a benchmark data set. In Figure
5(a), the algorithm did not converge because the similarity threshold computed
according to Equation (2) was too high to form good clusters. With the average
similarity and maximum similarity given in Table 1, the similarity threshold is
computed as 0.53, which is very high given that the average similarity is 0.06.
Therefore this example visually shows that the similarity threshold given in Equa-
tion (2) is not suitable for data with similarities distributed as a power law, as can
be verified in Figure 5(b) and Figure 5(c) (the log-log plot exhibiting several linear
segments).

If we compute the similarity threshold using (4), it is 0.15. The value of α was set
to 2.5 in this set of experiments. We obtain convergence as shown in Figure 6, where
STH = 10 and ICTF = 0.10. Several examples of the extracted profiles are presented
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ing and assigning agents to clusters.

Fig. 4 Clustering a dataset with three clusters using FClust at iteration 30700 where dth=0.04,
simth=0.86
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Fig. 5 Clustering the Web usage data using FClust with similarity threshold computed ac-
cording to Equation (2). (a) no convergence because of an improper similarity threshold (b)
Similarity histograms, (c) Log-log plot of similarities exhibiting power law properties

in Table 2. For example, Pro f ile1 represents a group of users (possibly prospective
students) checking the department’s main web pages. Pro f ile2 represents a group
of student users taking the course CECS 352 (Joshi is the instructor teaching the
course).
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Table 2 Several examples from the profiles of a Web usage data extracted using FClust where
ST H = 10 and ICT F = 0.1

URL Frequency URL
Profile 1 (includes 211 sessions)

0.92 /
0.79 /cecs computer.class
0.53 /courses.html
0.52 /courses index.html
0.51 /courses100.html
0.27 /people.html
0.27 /people index.html
0.27 /faculty.html
0.20 /courses300.html
0.19 /degrees.html
0.15 /courses200.html
0.13 /grad people.html
0.12 /research.html
0.11 /courses webpg.html
0.11 /index.html
0.10 /staff.htm

Profile 2 (Includes 43 sessions)
0.93 / joshi/courses/cecs352
0.33 / joshi/courses/cecs352/slides-index.html
0.26 / joshi/courses/cecs352/outline.html
0.23 / joshi/courses/cecs352/text.html
0.23 / joshi/courses/cecs352/handout.html
0.21 / joshi/courses/cecs352/proj
0.19 / joshi
0.16 / joshi/courses/cecs352/proj/proj1.html
0.14 / joshi/courses/cecs352/proj/overview.html
0.12 / joshi/courses/cecs438
0.12 / joshi/courses/cecs352/environment.htm

6.3.2 FClust-Annealing Results for 2D and Web Usage Datasets

Figure 7 shows the clustering results for the dataset with 2 clusters using FClust-
annealing. Comparing this result with Figure 2, we can see that the annealing results
in fewer iterations to convergence (1410 vs. 2792 iterations).

Figure 8 also shows that annealing not only accelerates the convergence, but also
results in better quality clusters (no bridging effect). In Figure 3, even though there
were 3 separate clusters in the agent space, after 24,400 iterations, as seen in Fig-
ures 3(b) and 3(d), clustering the data domain as shown in Figure 3(c) showed that
the clustering process did not converge. Figure 4 also confirms the fact that there
is a tendency to combine 3 clusters into one cluster unless a better cluster forma-
tion algorithm is applied. Although the classical FClust suffers from these prob-
lems, FClust-annealing clearly differentiates between these clusters. In addition to
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 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

Y
 c

oo
rd

in
at

e

X coordinate

Iteration = 10250

cluster 1
cluster 2
cluster 3
cluster 4
cluster 5
cluster 6
cluster 7
cluster 8
cluster 9

cluster 10
cluster 11
cluster 12
cluster 13
cluster 14
cluster 15

cluster 16
cluster 17
cluster 18
cluster 19
cluster 20
cluster 21
cluster 22
cluster 23
cluster 24
cluster 25
cluster 26
cluster 27
cluster 28
cluster 29
cluster 30

(b) After post-processing with Algorithm 9.

Fig. 6 Generated profiles from web usage data using FClust in 10250 iterations where
dth=0.04, simth=0.15, ST H =10, ICTF=0.10
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(c) Agent clusters generated after post processing and
assigning agents to clusters.
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(d) Agent clusters generated after post processing and
assigning agents to clusters.

Fig. 7 Clustering a dataset with two clusters using FClust-annealing where dth=started from
1 down to 0.04, simth=0.91

being more successful in clustering, FClust-annealing converges in fewer iterations
(3,435), compared to 24,400 iterations for FClust, i.e. it was 7 times faster.

Figure 9 shows the results of clustering the real life Web usage data, listed in
Table 1, using FClust with the annealing. Example profiles are shown in Table 3.
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(b) Clustering result for all agents.
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(c) Clustering result for dataset.
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(d) Agent clusters generated after post processing and
assigning agents to clusters.

Fig. 8 Clustering a dataset with three clusters using FClust-annealing where dth=started from
1 down to 0.04, simth=0.91, dideal th for FClust and post-processing is 0.04
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agents.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

Y
 c

oo
rd

in
at

e

X coordinate

Iteration = 6840

(b) Clustered agents before
pruning.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

Y
 c

oo
rd

in
at

e

X coordinate

Iteration = 6840

cluster 1
cluster 2
cluster 3
cluster 4
cluster 5
cluster 6
cluster 7
cluster 8
cluster 9

cluster 10
cluster 11
cluster 12
cluster 13
cluster 14
cluster 15
cluster 16
cluster 17
cluster 18
cluster 19
cluster 20
cluster 21
cluster 22
cluster 23
cluster 24
cluster 25

(c) Agent clusters generated
after post-processing and as-
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Fig. 9 Clustering the Web usage session data using FClust-annealing where dth=started from
1 down to 0.04, simth=0.15 , dideal th for FClust and post-processing is 0.04

Compared to Figure 6 which took 10,250 iterations, better quality clusters are now
formed in only 6,840 iterations. Also 30 clusters were formed in Figure 6 whereas,
with annealing, 25 clusters are formed. By checking the post-processed profiles, we
observed that the decrease in the number is not a loss of information but rather a
better convergence (broken clusters were combined). In FClust, some clusters were
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Table 3 Some samples from the Web user profiles, extracted using FClust-annealing where
ST H = 10 and ICT F = 0.1

URL URL
Frequency

Profile 1 (includes 116 sessions)
0.90 /
0.69 /cecs computer.class
0.43 /courses index.html
0.42 /courses100.html
0.41 /courses.html
0.29 /people.html
0.28 /people index.html
0.28 /faculty.html
0.20 /courses300.html
0.18 /degrees.html
0.17 /courses200.html
0.13 /general.html
0.13 /general index.html
0.13 /facts.html
0.13 /research.html
0.11 /grad people.html

Profile 2 (Includes 31 sessions)
0.90 / joshi/courses/cecs352
0.35 / joshi/courses/cecs352/slides-index.html
0.35 / joshi/courses/cecs352/handout.html
0.35 / joshi/courses/cecs352/outline.html
0.29 / joshi/courses/cecs352/text.html
0.26 / joshi/courses/cecs352/environment.html
0.13 / joshi
0.13 /
0.13 / joshi/courses/cecs438
0.13 / joshi/courses/cecs352/proj

broken and their agents could not meet each other on the agents visualization panel
and therefore could not be unified.

6.3.3 (K-means+FClust) Hybrid Results for 2D Datasets

Figure 10 shows the results of the (K-means+FClust) Hybrid algorithm for Dataset
I. The disadvantage of K-means is that it requires the number of clusters as input,
however FClust can extract the number of clusters automatically. With the hybrid
approach, 8 clusters are generated with K-means, as shown in Figure 10(b), where
each agent was mapped to one cluster center generated by K-means. From these,
FClust generated the 2 clusters, shown in Figure 10(c). Figure 10(b) represents the
K-means result, (i.e. before starting the iterations of FClust). Compared to Figure 2,
where 2,792 steps were needed for FClust’s convergence, only 122 iterations were
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(b) Data clustered into K = 8 clusters using K-
means.
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(c) Agent clusters after applying thresholding.
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(d) Data clusters after applying thresholding.

Fig. 10 Stable output of (K-means+FClust) hybrid on a 2 cluster-data set where simth=0.88
(using Eqn.(2)), dth= 0.4. dideal th for FClust=0.04, dideal th for forming clusters = 0.08

needed for the Hybrid version. Although the hybrid version speeds up the process
considerably, it does not necessarily suffer from the bridging effect observed during
the cluster extraction in post-processing.

Figure 11 is a collection of figures showing the results of the (K-means+FClust)
Hybrid Algorithm given in Algorithm 7. for Dataset II. When the results are com-
pared with the simple FClust Algorithm in Figures 3 and 4, it can be observed that
the hybrid algorithm is faster thanks to fewer iterations and to the modest linear
computational cost.

6.3.4 FClust, FClust-Annealing and (K-means+FClust) Hybrid Results for
Iris and Pima Datasets

Table 4 compares the FClust, FClust-annealing, and (K-Means+FClust) Hybrid al-
gorithms on the datasets Iris and Pima, which were also used in [30]. The results
were averaged over 10 different runs, and the numbers inside the parentheses rep-
resent the standard deviations. We have also observed, in the Iris dataset experi-
ments, that the original FClust algorithm tends to get stuck in local optima for a
long time, but after enough iterations, it can find a better clustering. For example, in
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(b) Data clustered into K=8 clusters using K-
means.
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(c) Agent clusters after applying thresholding.
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(d) Data clusters after applying thresholding.

Fig. 11 Stable output of (K-means+FClust) hybrid on a 3 cluster-data set where simth=0.73
(using Eqn.(2)), dth= 1.0. dideal th for FClust=0.04, dideal th for cluster forming =0.08.

Table 4 Compared Results (Averaged over 10 runs)

FClust FClust Annealing FClust Hybrid
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Average Avg. Avg. Average Avg. Avg. Average Avg. Avg.

Dataset Number Clusters Error Iter. Clusters Error Iter. Clusters Error Iter.

of Items Found No Found No Found No

Iris 150 4 3 3.1 0.18 1811 2.9 0.16 11.6 4.5 0.22 41.5
(0.32) (0.04) (400.1) (0.32) (0.03) (4.33) (0.85) (0.06) (22.45)

Pima 768 8 2 2 0.47 3995.1 2 0.475 19.9 3.8 0.45 41.7
(0) (0.01) (984.6) (0) (0.02) (4.95) (1.5) (0.03) (18.58)
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one run, FClust produced 4 clusters around 1500 iterations, with a cluster error rate
of approximately 0.25, computed via Algorithm 11., while around 2500 iterations,
it formed 3 clusters. However, the error rate was still high (0.27). Later, the number
of clusters dropped to 2 and around 7000 iterations, it found 3 clusters with an error
rate of 0.08. More iterations resulted in high error rates (around 0.22) again with 2
clusters. So the system will cycle between 2, 3 and 4 clusters. These are different
but somehow stable clustering options. However, it was observed that, results with
more than 5 clusters with the given parameters, are produced due to an insufficient
number of iterations. Again as we have noted in Section 5.4, since every pairwise
ideal distance is one constraint/objective to be satisfied, there are n× (n−1)/2 ob-
jectives. Theoretically this can lead to up to n× (n− 1)/2 Pareto solutions on the
Pareto front. The actual number in practice is much less however, since several of
these constraints can be satisfied simultaneously.

The FClust-annealing version decreases the number of iterations drastically. It
starts forming cluster centers from the first iterations, and even though the centers
are created in less than 10 or 20 steps, they still seem to be reasonably good. For
the first few iterations, the cluster centers changed rapidly since the neighborhoods
were wide. Yet clusters were still formed after post-processing. Finally, the clus-
tering scheme which gave the minimum error was reported. Annealing converges
to a meaningful cluster formation faster than FClust. Moreover, in just a few itera-
tions, it can already present different possible clustering options. This process and
the changes in the formed cluster numbers and their errors with the iterations, for
10 different runs on the Iris dataset, are shown in Table 5. For each run, the first row
is the number of clusters generated at the corresponding iteration number, which is
given as the column label. Similarly, the second row shows the error computed via
Algorithm 11.

In FClust-annealing and the (K-means+FClust) Hybrid, since the neighborhood
is wider, clusters are formed faster, and there will be fewer agents on the visualiza-
tion panel between agent flocks. Later (in the case of annealing), when the neigh-
borhoods become narrow, the chance of flocks meeting and affecting each other
decreases, which causes a decrease in the exploration for better clustering options.
Therefore FClust-annealing and the (K-means+FClust) Hybrid are more prone to
getting stuck in local optima. Some random moves could be added to the algorithm
to increase the opportunity for exploration. One of the problems observed with the
(K-means+FClust) Hybrid on the Iris data set was that the algorithm may separate
the members of the first cluster into two groups. During the clustering using the
Hybrid algorithm, K was set to 8 in K-means, dideal th was 0.04, and during post
processing, it was 0.08.

To stop the Hybrid algorithm, the ideal distance error, for each pair of agents
is computed, and when its difference compared to the previous iteration fell below
0.009, the algorithm was stopped. Figure 12 shows the ideal distance error versus
the iteration number for the Iris dataset using the (K-means+FClust) Hybrid algo-
rithm. The irregularities observed as sudden increases in the error correspond to
the time when clusters reached the border of the visualization panel and contin-
ued moving, thus wrapping around toward the opposite side of the panel. That said,
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Table 5 Number of clusters extracted and corresponding error at different iteration steps
for 10 different runs of clustering the Iris data using FClust-annealing where dth=0.4,
dideal th=0.04

.
Iteration No 1 10 50 100 200 300 400 500 1000 1500 2000 2500

Run 1 1 3 6 6 5 6 5 4 4 4 3 4
0.67 0.16 0.26 0.26 0.24 0.24 0.18 0.16 0.15 0.15 0.13 0.15

Run 2 0 3 2 2 2 2 2 2 2 2 3 2
0.15 0.23 0.23 0.23 0.23 0.23 0.22 0.23 0.24 0.22 0.22

Run 3 0 1 5 5 7 7 5 4 4 4 2 3
0.67 0.23 0.21 0.24 0.24 0.21 0.19 0.19 0.19 0.22 0.18

Run 4 0 2 2 2 2 2 2 3 3 4 4 3
0.24 0.23 0.22 0.22 0.23 0.22 0.17 0.17 0.18 0.19 0.09

Run 5 0 2 4 4 4 4 4 4 2 3 3 4
0.32 0.23 0.27 0.27 0.28 0.28 0.28 0.23 0.18 0.18 0.11

Run 6 1 0 4 4 3 3 4 3 5 5 4 4
0.67 0.28 0.2 0.17 0.18 0.27 0.22 0.21 0.22 0.18 0.19

Run 7 0 1 3 5 4 4 3 3 3 4 4 4
0.67 0.19 0.16 0.14 0.17 0.15 0.16 0.15 0.1 0.13 0.11

Run 8 0 0 5 6 4 5 4 4 4 2 2 2
0.26 0.28 0.22 0.2 0.22 0.22 0.26 0.22 0.22 0.22

Run 9 1 0 5 3 3 3 3 3 2 2 2 2
0.67 0.19 0.13 0.15 0.13 0.14 0.14 0.22 0.22 0.22 0.22

Run 10 0 1 4 4 4 6 4 3 3 2 2 3
0.67 0.27 0.22 0.24 0.22 0.13 0.16 0.17 0.22 0.23 0.1

Avg. No of Clusters 0.3 1.3 4 4.1 3.8 4.2 3.6 3.3 3.2 3.2 2.9 3.1
Average Error 0.67 0.411 0.237 0.218 0.212 0.212 0.203 0.192 0.198 0.192 0.192 0.159
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Fig. 12 Evolution of the ideal distance error with iterations for clustering the Iris dataset
using (K-means+FClust) Hybrid algorithm. Big changes correspond to major changes due to
agents wrapping around the agent space boundaries

the (K-means+FClust) Hybrid algorithm produced reasonable clustering results in
fewer iterations on the Iris dataset.

In the experiments with the Pima data, FClust formed 2 or 3 clusters, for dth=0.04
with an error rate around 0.50. Manual stopping terminated earlier than automated
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Table 6 Average result of 10 different runs of clustering the Pima data set using FClust-
annealing, where dth started from 1 and decreased to 0.04

Found Clusters Error Iteration No
2 0.47 1651.1
(0) (0.01) (587.3)

stopping because, a Human typically follows the bigger flocks of agents, thus the
agents which are spread around the visualization panel do not affect the human
observer as much as they may affect the automated stopping mechanism. In the
FClust-Annealing algorithm, 2 clusters of the Pima dataset were formed around
20 to 30 iterations, with a cluster error rate between 0.45 and 0.50. For the Pima
data set, with smaller cluster size threshold values, clusters would be observed in
fewer iterations. However, we kept this threshold constant as n/20 to be able to
compare the proposed algorithms with the original FClust algorithm. Table 6 shows
that an average of 1651 iterations for FClust-annealing were sufficient to get a state
of the visualization panel which would require an average of 3995 iterations of
the original FClust algorithm. Similarly, K was 8 and dideal th was 0.04 for the the
Hybrid algorithm. During post processing, dideal th was 0.08. We also observed that,
for both the Iris and Pima data sets, minimum cluster errors were observed for the
FClust-annealing experiments (0.11 for Iris and 0.43 for Pima) compared to all other
algorithms.

7 Conclusions and Future Work

Since the early 90s, swarm intelligence (SI) has been a source of inspiration for
clustering problems. SI has been used in many applications ranging from image
clustering to social clustering, and from document clustering to Web session clus-
tering. Particle swarm clustering and ant-clustering methods are two of the most
common SI clustering techniques. But more recently, clustering using flocks of
agents proved to be promising as well. Since in this approach, each agent repre-
sents a data item, and the distance between agents on the visualization panel de-
pends on the similarity between the data records represented by these agents, the
flocks-of-agents approach offers a solution not only for clustering but also for data
visualization. Although the initial experimental results with FClust were acceptable,
some limitations were discussed in this chapter.

To overcome these limitations, we have proposed some improvements includ-
ing FClust-annealing and the (K-means+FClust) Hybrid algorithms. Annealing de-
creased the number of iterations to convergence and improved the quality of the
clusters. The effect of different cooling functions should be studied further. In
addition to these improvements, the proposed (K-means+FClust) hybrid algorithm
reduces the quadratic complexity of FClust to linear complexity and performs sim-
ilarly to FClust with fewer iterations. In the future, we will consider hybridizing
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FClust with the Spherical K-Means algorithm [8] for clustering high-dimensional
data such as web usage data and text documents.

Our experiments have illustrated how the cluster formation algorithm was suscep-
tible to the bridging effect for overlapping clusters, and seems to be very sensitive
to threshold parameter tuning. Therefore, future studies are needed to devise better
automated stopping criteria and algorithms to form better clusters given a state of
the visualization panel.
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Combining Statistics and Case-Based Reasoning
for Medical Research

Rainer Schmidt and Olga Vorobieva

Abstract. In medicine many exceptions occur. In medical practice and in knowledge-
based systems too, it is necessary to consider them and to deal with them appropri-
ately. In medical studies and in research, exceptions should be explained. We present
a system, called ISOR, that helps to explain cases that do not fit to a theoretical hy-
pothesis. Starting points are situations where neither a well-developed theory nor
reliable knowledge nor, at the beginning, a case base is available. So, instead of
theoretical knowledge and intelligent experience, just some theoretical hypothesis
and a set of measurements are given. In this chapter, we focus on the application
of the ISOR system to the hypothesis that a specific exercise program improves the
physical condition of dialysis patients. Additionally, for this application a method
to restore missing data is presented.

1 Introduction

Case-based Reasoning (CBR) uses previous experience represented as cases to un-
derstand and solve new problems. A case-based reasoner remembers former cases
similar to the current problem and attempts to modify solutions of former cases to
fit the current problem.

The fundamental ideas of CBR originated in the late eighties (e.g,. [24]). In the
early nineties CBR emerged as a method that was firstly described by Kolodner [14].
Later on, Aamodt and Plaza presented a more formal characterisation of the CBR
method. Figure 1 shows the Case-based Reasoning cycle developed by Aamodt and
Plaza [1], which consists of four steps: retrieving former similar cases, adapting
their solutions to the current problem, revising a proposed solution, and retaining
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Fig. 1 The Case-based Reasoning cycle developed by Aamodt

new learned cases. However, there are two main subtasks in Case-based Reasoning
[14, 1]: The retrieval (the search for a similar case), and the adaptation (the modifi-
cation of solutions of retrieved cases). For retrieval, many similarity measures and
sophisticated retrieval algorithms have been developed within the CBR community.
The most common ones are indexing methods [14] like tree-hash retrieval [28],
which are useful for nominal parameter values, retrieval nets [15], which are useful
for ordered nominal values, and nearest neighbour search [5], which is useful for
metric parameter values.

The second task, the adaptation, is a modification of solutions of former simi-
lar cases to fit for a current one. If there are no important differences between a
current and a similar case, a simple solution transfer is sufficient. Sometimes only
few substitutions are required, but at other times the adaptation is a very compli-
cated process. So far, for adaptation only very domain independent methods like
compositional adaptation [29] currently exist.

1.1 Case-Based Reasoning in Medicine

Especially in medicine, the knowledge of experts does not only consist of rules, but
of a mixture of textbook knowledge and experience. The latter consists of cases,
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typical and exceptional ones, and the reasoning of physicians takes them into ac-
count [10]. In medical knowledge based systems there are two types of knowledge,
objective knowledge, which can be found in textbooks, and subjective knowledge,
which is limited in space and time and changes frequently.

The problem of updating the changeable subjective knowledge can partly be
solved by incrementally incorporating new up-to-date cases [10]. Both kinds of
knowledge can be clearly separated: Objective textbook knowledge can be repre-
sented in forms of rules or functions, while subjective knowledge is contained in
cases.

So, the arguments for case-oriented methods are as follows:

1. Reasoning with cases corresponds with the decision making process of physi-
cians.

2. Incorporating new cases means automatically updating parts of the changeable
knowledge.

3. Objective and subjective knowledge can be clearly separated.
4. As cases are routinely stored, integration into clinic communication systems is

easy.

Since differences between two cases are sometimes very complex, especially in
medical domains, many case-based systems are so called retrieval-only systems.
They only perform the retrieval task, visualise current and similar cases, and some-
times additionally point out the important differences between them.

However, a string of medical CBR systems have already been developed, for
overviews see [11, 25, 20].

1.2 The ISOR Approach

In our previous work on knowledge-based systems [26], it is demonstrated how
a dialogue-oriented Case-Based Reasoning system can help in situations where a
theoretically approved medical therapy does not produce the desired and normally
expected results. In medical studies and in research, exceptions need to be explained.
We have developed ISOR, a conversational case-based system that helps doctors
to explain exceptional cases. Conversational CBR systems have begun to become
popular in recent years [2]. However, so far no common conversational methodology
exists, only the common idea to incorporate the user into a conversational solution
search.

ISOR deals with situations where neither a well-developed theory nor reliable
knowledge nor a proper case base is available. So, instead of theoretical knowledge
and intelligent experience, just a theoretical hypothesis and a set of measurements
are given. In such situations the usual question is, “how do measured data fit to a
theoretical hypothesis?” To statistically confirm a hypothesis it is necessary that the
majority of cases fit the hypothesis. Mathematical statistics determines the exact
quantity of necessary confirmation [13]. However, when a few cases do not satisfy
the hypothesis, these cases need to be examined to find out why they do not fit.
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Fig. 2 ISOR’s general program flow

ISOR offers a dialogue to guide the search for possible reasons in all components
of the data system. The exceptional cases belong to the case base. This approach
is justified by a certain mistrust of statistical models by doctors, because modelling
results are usually non-specific and “average oriented” [12], which reflects a lack of
attention to individual “imperceptible” features of specific patients.

The usual Case-Based Reasoning assumption is that a case base with complete
solutions is available [14, 1, 21]. Our approach starts with a situation where such a
case base is not available but has to be set up incrementally. The general program
flow is shown in Figure 2. The main steps are:

1. Construct a model,
2. Point out the exceptions,
3. Find causes why the exceptional cases do not fit the model, and
4. Set up a case base.

So, Case-Based Reasoning is combined with a model, in this specific situation
with a statistical one. The idea to combine CBR with other methods is not new.
Care-Partner, for example, resorts to a multi-modal reasoning framework for the
co-operation of CBR and rule-based reasoning (RBR) [4]. Montani [19] rather uses
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CBR to provide evidence for a hybrid system in the domain of diabetes. Another
way of combining hybrid rule bases with CBR is discussed by Prentzas and Hatzil-
geroudis [22]. The combination of CBR and model-based reasoning is discussed in
[27]. However, statistical methods are used within CBR mainly for retrieval and re-
tention [6, 23]. Arshadi and Jurisica [3] propose a method that combines CBR with
statistical methods such as clustering and logistic regression.

The first application of ISOR is on hemodialysis and fitness. Unfortunately, the
data set contains many missing data items, which makes the process of finding ex-
planations for exceptional cases difficult. So, we decided to attempt to first solve the
missing data problem. This is done by partly applying CBR again.

Hemodialysis means stress for a patient’s organism and has significant adverse
effects. Fitness is the most available and a relative cheap way of support. It is meant
to improve a physiological condition of a patient and to compensate negative dial-
ysis effects. One of the intended goals of this research is to convince patients of
the positive effects of fitness and to encourage them to actively participate in the
fitness program. This is important because dialysis patients usually feel sick, they
are physically weak, and they do not want any additional physical load [7].

At the University clinic in St. Petersburg, a specially developed complex of phys-
iotherapy exercises including simulators, walking, swimming and so on, is offered
to all dialysis patients. However, only some of them actively participate, whereas
some others participate but are not really active. The purpose of this fitness offer is
to improve the physical conditions of the patients and to increase the quality of their
lives. The hypothesis is that actively participating in the fitness program improves
the physical condition of dialysis patients.

2 Incremental Development of an Explanation Model for
Exceptional Dialysis Patients

For each patient a set of physiological parameters is measured. These parameters
contain information about burned calories, maximal power achieved by the patient,
oxygen uptake, oxygen pulse (volume of oxygen consumption per heart beat), lung
ventilation and others. There are also biochemical parameters like haemoglobin and
other laboratory measurements. More than 100 parameters were planned for every
patient. But not all of them were actually measured.

Parameters are supposed to be measured four times during the first year of partic-
ipating in the fitness program. There is an initial measurement followed by one after
three months, then after six months and finally after a year. Unfortunately, since
some measurements were not taken, many data are missing. Therefore the patient
records often contain different sets of measured parameters.

It is necessary to note that parameter values of dialysis patients essentially differ
from those of non-dialysis patients, especially of healthy people, because dialysis in-
terferes with the natural, physiological processes in an organism. In fact, for dialysis
patients, all physiological processes behave abnormally. Therefore, the correlation
between parameters differs too.
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For statistics, this means difficulties in applying statistical methods based on cor-
relation and it limits the usage of a knowledge base developed for normal people.
Non-homogeneity of observed data, many missing data, many parameters for a rel-
atively small sample size, all this makes the data set practically impossible for usual
statistical analysis.

Since the data set is incomplete, additional or substitutional information has to be
found from other available data sources. These are databases – the already existent
individual base and the sequentially created case base – and the medical expert as a
special source of information.

2.1 Setting up a Model

A medical problem needs to be solved based on given data. In this example it is:
”Does special fitness improve the physiological condition of dialysis patients?”
More formally, physical conditions of active and non-active patients need to be com-
pared. Patients are divided into two groups, depending on their activity, active and
non-active patients.

According to the assumption, active patients should feel better after some months
of the fitness program, whereas non-active ones should feel rather worse. The mean-
ing of “feeling better” and “feeling worse” has to be defined in this context. There-
fore, a medical expert selects appropriate factors from ISOR’s menu, which contains
the parameter names from the observed database. The expert selects the following
main factors:

- F1: O2PT - Oxygen pulse by training
- F2: MUO2T - Maximal Uptake of Oxygen by training
- F3: WorkJ – performed Work (Joules) during control training

Subsequently the “research time period” has to be determined. Initially, this period
was planned to be twelve months, but after a while the patients tend to give up the
fitness program. This means, the longer the time period, the more data are missing.
Therefore, a compromise between time period and sample size had to be made; a
period of six months was chosen.

The next question is whether the model should be quantitative or qualitative? The
observed data are mostly quantitative measurements. The selected factors are also
quantitative in nature. On the other hand, the goal of this research is to find out
whether physical training improves or worsens the physical condition of dialysis
patients.

One patient does not have to be compared with another patient. Instead, each
patient has to be compared with his/her own situation some months ago, namely
just before the start of the fitness program. The success should not be measured
in absolute values, because the health statuses of patients are very different. Thus,
even a modest improvement for one patient may be as important as the great im-
provement of another. Therefore, we simply classify the development into two cat-
egories: “better” and “worse”. Since the usual tendency for dialysis patients is to
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Table 1 Results of Fisher’s exact test, performed via an interactive web-program:
http://www.langsrud.com/fisher.htm. The cases in bold have to be explained

Improvement
mode

Patient’s
physical condition

Active Non-active Fisher
Exact p

Strong
Better 28 1

< 0.0001Worse 22 21

Medium
Better 40 10

< 0.005Worse 10 12

Weak
Better 47 16

< 0.02Worse 3 6

worsen over time, those few patients where no changes could be observed are added
to the category “better”.

The three main factors are supposed to describe the changes of the physical con-
ditions of the patients. The changes are assessed depending on the number of im-
proved factors:

- Weak version of the model: at least one factor has improved
- Medium version of the model: at least two factors have improved
- Strong version of the model: all three factors have improved

The final step is to define the type of model. Popular statistical programs offer a large
variety of statistical models. Some of them deal with categorical data. The easiest
model is a 2x2 frequency table. The “better/ worse” concept fits this simple model
very well. So the 2x2 frequency table is accepted. The results are presented in Table
1. According to the assumption after six months of active fitness the conditions of
the patients should be better.

Statistical analysis shows a significant dependence between the patients activity
and improvement of their physical condition. Unfortunately, the most popular Pear-
son Chi-square test is not applicable here because of the small values “2” and “3”
in Table 1. But Fisher’s exact test [13] can be used. In the three versions shown in
Table 1 a very strong significance can be observed. The smaller the value of p is, the
more significant the dependency.

Exceptions. The performed Fisher test confirms the hypothesis that patients do-
ing active fitness achieve better physical conditions than non-active ones. How-
ever, there are exceptions, namely active patients whose health conditions did not
improve.

Exceptions need to be explained. Explained exceptions build the case base. Ac-
cording to Table 1, the stronger the model, the more exceptions can be observed
and have to be explained. Every exception is associated with at least two problems.
The first one is “Why did the patient’s condition get worse?” Of course, “worse” is
meant in terms of the chosen model. Since there may be some factors that are not
included in the model but have changed positively, the second problem is “What



680 R. Schmidt and O. Vorobieva

has improved in the patient’s condition?” To solve this problem significant factors
where the values improved have to be searched.

In the following section the set-up of a case base on the strongest model version
is explained.

2.2 Setting up a Case Base

We intend to solve both problems (mentioned above) by means of CBR. So we
begin to set up the case base up sequentially. That means, as soon as an exception
is explained, it is incorporated into the case base and can be used to help explain
further exceptional cases. Alphabetical order for the exceptional cases was chosen.

The retrieval of already explained cases is performed by keywords. The main
keywords are “problem code”, “diagnosis”, and “therapy”. In the situation of ex-
plaining exceptions for dialysis patients, the instantiations of these keywords are
“adverse effects of dialysis” (diagnosis), “fitness” (therapy), and two specific prob-
lem codes. Besides the main keywords, additional problem specific ones are used.
Here the additional keyword is the number of worsened factors. Further keywords
are optional. They are just used when the case base becomes bigger and retrieval is
no longer simple.

However, ISOR not only uses the case base as a knowledge source but further
sources are involved, namely the patient’s individual base (his medical history) and
observed data (partly gained by dialogue with medical experts). Since in the domain
of kidney disease and dialysis the medical knowledge is very detailed and much
investigated but still incomplete, it is unreasonable to attempt to create an adequate
knowledge base. Therefore, a medical expert, observed data, and just a few rules
serve as medical knowledge sources.

2.2.1 Expert Knowledge and Artificial Cases

An expert’s knowledge can be used in many different ways. Firstly, it is used to
acquire rules, and secondly, it can be used to select appropriate items from the list
of retrieved solutions, to propose new solutions, and last but not least, to create
artificial cases.

Initially, artificial cases are created by an expert, afterwards they can be used in
the same way as real cases. They are created in the following situation. An expert
points out a factor F as a possible solution for a query patient. Since many data are
missing, it may happen that just for the query patient values of factor F are missing.
In such a situation the doctor’s knowledge can not be applied, but it is sensible to
save it anyway. In essence, there are two different ways to do this. The first one is to
generate a correspondent rule and to insert it into ISOR’s algorithms. Unfortunately,
this is very complicated, especially to find an appropriate way for inserting such a
rule. The alternative is to create an artificial case. Instead of the name of a patient an
artificial case number is generated. The other attributes are either inherited from the
query case or declared as missing. The retrieval attributes are inherited. This can be
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done by a short dialogue (Figure 4) and ISOR’s algorithms remain intact. Artificial
cases can be treated in the same way as real cases: they can be revised, deleted,
generalised and so on.

2.2.2 Solving the Problem “Why Did Some Patients Conditions Became
Worse?”

A set of solutions of different origin and different nature is obtained. There are three
categories of solutions: additional factor, model failure, and wrong data.

Additional factor. The most important and most frequent solution is the influence
of an additional factor. However, three main factors are obviously not enough to
describe all medical cases. Unfortunately, for different patients different additional
factors are important. When ISOR has discovered an additional factor as explanation
for an exceptional case, the factor has to be confirmed by the medical expert before
it can be accepted as a solution. One of these factors is Parathyroid Hormone (PTH).
An increased PTH level can sometimes explain a worsened condition of a patient
[7]. PTH is a significant factor, but unfortunately it was measured for only some
patients.

Another additional factor as a solution is blood phosphorus level. The princi-
ple of artificial cases was used to introduce the factor phosphorus as a new so-
lution. One patient’s record contained many missing data. The retrieved solution
meant high PTH, but PTH data in the current patient’s record was missing too.
The expert proposed an increased phosphorus level as a possible solution. Since
data about phosphorus data was also missing, an artificial case was created that in-
herited all retrieval attributes of the query case, whereas the other attributes were
recorded as missing. According to the expert, high phosphorus can provide an
explanation. Therefore it is accepted as an artificial solution or a solution of an
artificial case.

Some exceptions can be explained by indirect indications, which can be consid-
ered as another sort of additional factor. One of them is a very long period of dialysis
(more than 60 months) before a patient began with the fitness program.

Model failure. We regard two types of model failures. One of them is deliberately
neglected data. As a compromise we only considered data collected in the chosen
six months period, whereas further data of a patient might be important. In fact,
three of the patients did not show an improvement in the considered six months,
but did so in the following six months. So, they were wrongly classified and should
really belong to the “better” category. The second type of model failure is based
on the fact that the two-category model was not precise enough. Some exceptions
could be explained by a tiny and not really significant change in one of the main
factors.

Wrong data are usually due to a technical mistake or to data not really proved.
One patient, for example, was reported as actively participating in the fitness pro-
gram but really was not.
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2.2.3 Solving the Problem “What in the Patient’s Condition Improved?”

There are at least two criteria to select factors for the model. First, a factor has to
be significant, and second there must be enough patients for which this factor was
measured at least for six months. So, some principally important factors were ini-
tially not taken into account because of missing data. The list of solutions includes
these factors (Figure 4): haemoglobin and maximal power (watt) achieved during
control training. Oxygen pulse and oxygen uptake were measured in two different
situations, namely during the training and before training in a state of rest. Therefore
we have two pairs of factors: oxygen pulse in state of rest (O2PR) and during train-
ing (O2PT); maximal oxygen uptake in state of rest (MUO2R) and during training
(MUO2T). Measurements made in a state of rest are more indicative and significant
than those made during training. Unfortunately, most measurements were made dur-
ing training. Only for some patients did corresponding measurements in a state of
rest exist. Therefore O2PT and MUO2T were accepted as main factors and were
incorporated into the model. On the other hand, O2PR and MUO2R are solutions
for the current problem “What in the patient’s condition improved?”

In the case base every patient is represented by a set of cases, and every case
represents a specific problem. This means that a patient is described from different
points of view, and accordingly different keywords are used for retrieval.

2.3 Another Problem

Based on the same data set, with this method and this dialogue menu (Figure 4)
many research questions can be analysed. Above we described just one of them.
Another interesting research question is “Does it make sense to start the fitness pro-
gram during the first year of dialysis?” The question arises, because the conditions
of the patients are considered to be unstable during their first year of dialysis. So,
the question is expressed in this way “When should patients begin with the fitness
program, earlier or later?” The term “earlier” is defined as “during the first year of
dialysis”. The term “later” means after at least one year of dialysis. To answer this
question two groups of active patients are considered, namely those who began their
training within the first year of dialysis and those who began it later (Table 2).

According to Fisher’s exact test a dependence can be observed, with p < 0.05.
However, the result is not as it was initially expected. Since patients are considered
as unstable during their first year of dialysis, the assumption was that an earlier
beginning might worsen conditions of the patients. But the test revealed that the
conditions of active patients who began with their fitness program within the first
year of dialysis improved even more than the conditions of patients starting later.

Table 2 Changed conditions for active patients

Earlier Later
Better 18 10
Worse 6 16
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However, there are six exceptional cases, namely those active patients starting
early and their conditions worsened. These exceptions belong to the case base, the
explanations of them are high PTH or high phosphorus level.

2.4 Example

The following example demonstrates how ISOR attempts to find explanations for
exceptional cases. Because of data protection no real patient can be used. It is an
artificial case but nevertheless it is a typical situation.

Query patient: a 34-year old woman started with fitness after five months of dial-
ysis. Two factors worsened, namely Oxygen pulse and Oxygen uptake, and conse-
quently the condition of the patient was assessed as worsened too.

Problem: Why the patient’s condition deteriorated after six months of physical
training?

Retrieval: The number of worsened factors is used as an additional keyword in
order to retrieve all cases with at least two worsened factors.

Case base: It does not only contain cases but more importantly a list of general
solutions. For each of the general solutions there exists a list that contains specific
solutions based on the cases in the case base. The list of general solutions contains
these five items (Figure 3):

1. Concentration of Parathyroid Hormone (PTH),
2. Period of dialysis is too long,
3. An additional disease,

Fig. 3 Dialog menu to search for general solution
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4. A patient was not very active during the fitness program, and
5. A patient is very old.

Individual base. The patient suffers from a chronic disease, namely from asthma.

Adaptation. Since the patient started with a fitness program already after five
months of dialysis, the second general solution can be excluded. The first general
solution might be possible, though the individual base does not contain any infor-
mation about PTH. Further laboratory tests showed PTH = 870, which means that
PTH is a solution.

Since an additional disease, bronchial asthma, is found in the individual base,
this solution is checked. Asthma is not contained as a solution in the case base, but
the expert concludes that asthma can be considered as a solution. Concerning the
remaining general solutions, the patient is not too old and proclaims that she was
active at fitness.

Adapted case. The solution consists of a combination of two factors, namely a high
PTH concentration and an additional disease, asthma.

3 Illustration of ISOR’s Program Flow

Figure 4 shows the main dialogue of ISOR. At first, the user sets up a model (steps
1 to 4), subsequently he/she gets the result and an analysis of the model (steps 5 to
8), and then he/she attempts to find explanations for the exceptional cases (steps 9
and 10). Finally, the case base is updated (steps 11 and 12). On the menu (Figure 4)
the steps are numbered, and in the following paragraph they are explained in detail.

At first the user has to set up a model. To do this he/she has to select a grouping
variable. In this example CODACT was chosen. It stands for “activity code”, and
means that active and non-active patients are to be compared. Provided alternatives
are the sex and the beginning of the fitness program (within the first year of dialysis
or later). In another menu the user can define further alternatives. Furthermore, the
user has to select a model type (alternatives are “strong”, “medium”, and “weak”),
the length of the time period that should be considered (3, 6 or 12 months), and
the main factors have to be selected. The list contains the factors from the observed
database. In the example, three factors are chosen: O2PT (oxygen pulse by training),
MUO2T (maximal oxygen uptake by training), and WorkJ (work in joules during
the test training). In the menu list, the first two factors have alternatives: “R” instead
of “T”, where “R” stands for state of rest and “T” for state of training.

When the user has selected these items, ISOR calculates the table. “Better” and
“worse” are meant in the sense of the chosen model, in the case of our example,
the strong model was used. ISOR does not only calculate the table but additionally
extracts the exceptional patients from the observed database. In the menu, the list
of exceptions shows the code names of the patients. In the example, patient “D5” is
selected and all further data belong to this patient.
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Fig. 4 ISOR’s main dialogue menu

The goal is to find an explanation for the exceptional case “D5”. In point 7 of the
menu it is shown that all selected factors worsened (-1), and in point 8 the factor
values according to different time intervals are depicted. All data for twelve months
are missing (-9999).

The next step means creating an explanation for the selected patient “D5”. From
the case base ISOR retrieves general solutions. The first retrieved solution in this
example, the PTH factor, denotes that the increased parathyroid hormone blood
level may explain the failure. Further theoretical information (e.g. normal values)
about a selected item can be received by pressing the button “show comments”. The
PTH value of patient “D5” is missing (-9999). From menu point 10 the expert user
can select further probable solutions. In the example, an increased phosphorus level
(P) is suggested. Unfortunately, phosphorus data are missing too. However, the idea
of an increased phosphorus level as a possible solution should not be lost. So, an
artificial case should be generated.

The final step means inserting new cases into the case base. There are two kinds
of cases, query cases and artificial cases. Query cases are stored records of real
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patients from the observed database. Artificial cases inherit the key attributes from
the query cases (point 7 in the menu). Other data may be declared as missing. Using
the update function, the missing data can be inserted later on. In the example of
Figure 4, the generalised solution “High P” is inherited, it may be retrieved as a
possible solution (point 9 of the menu) for future cases.

4 Missing Data

Databases with many variables have specific problems. Since it is very usually dif-
ficult to overview their content, a priory, a user does not know how complete a
data set is. Are there any data missing? How many of them and where are they
located?

In the dialysis data set, many data are missing in a random fashion, without any
regularity. The main cause is that many measurements were not taken.

It can be assumed that the data set contains groups of interdependent variables
but a priory it is not known how many such groups there are, what kind of variables
are dependent, and in which way they are dependent. However, we intend to make
use of all possible forms of dependency to restore missing data, because the more
complete the observed data base is, the easier it should be to find explanations for
exceptional cases and, furthermore, the better the explanations should be. Even for
setting up the model the expert user should select those parameters as main factors
with only few missing data. So, the more data that are restored, the better the choice
for setting up the model can be.

A data analysis method is often assessed according to its tolerance to missing
data (e.g., in [18]). In principle, there are two main approaches to the missing data
problem. The first approach is a statistical restoration of missing data. Usually it is
based on non-missing data from other records.

The second approach suggests methods that accept the absence of some data. The
methods of this approach can be differently advanced, from simply excluding cases
with missing values up to rather sophisticated statistical models [17, 8].

Gediga and Düntsch [9] propose the use of CBR to restore missing data. Since
their approach does not require any external information, they call it a “non-invasive
imputation method”. Missing data are supposed to be replaced by their correspon-
dent values of the most similar retrieved cases. However, the dialysis data set con-
tains rather few patients, which means that the “most similar” case for a query case
might not be very similar at all.

So, why don’t we just apply statistical methods? Statistical methods require
homogeneity of the sample. However, there are no reasons to expect the set of
dialysis patients to be a homogenous sample. Since the data consists of many pa-
rameters, sometimes missing values can be calculated or estimated from other pa-
rameter values. Furthermore, the number of cases in the data set is rather small,
whereas in general, statistical methods are more appropriate the larger the number
of cases.
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4.1 The Data Set

For each patient a set of physiological parameters is measured. These parameters
contain information about burned calories, maximal power, oxygen pulse (volume
of oxygen consumption per heartbeat), lung ventilation, and many others. Further-
more, there are biochemical parameters like haemoglobin and other laboratory mea-
surements. All these parameters are supposed to be measured four times during the
first year of participating in the fitness program. There is an initial measurement
followed by a next one after three months, then after six months, and finally after
a year. Since some parameters, e.g. the height of a patient, are supposed to remain
constant within a year, they were measured just once. The other ones are regarded as
factors with four grades, they are denoted as F0 – the initial measurement of factor
F, and F3, F6, and F12 – the measurements of factor F after 3, 6, and 12 months.

All performed measurements are stored in the observed database, which contains
150 records (one patient – one record) with 460 variables per record. 12 variables
are constants, the other 448 variables represent 112 different parameters.

The factors can not be considered as completely independent from each other, but
there are different types of dependency among specific factors. Even a strict mathe-
matical dependency can occur, for example the triple: “time of controlled training,
work performed during this time, and average achieved power”, can be expressed
as Power = Work/Time. Less strict are relations between factors of biochemical na-
ture. An increase of parathyroid hormone, for example, implies an increase of blood
phosphorus. Such relations between factors enable us to fill some missing data in
the data set.

4.2 Restoration of Missing Data

In ISOR, again CBR is applied, now to restore missing data, the calculated values
are filled in the observed database. The whole knowledge is contained in the case
base, namely in form of solutions of former cases.

4.2.1 Types of Solutions

There are three types of numerical solutions: exact, estimated, and binary. Some
examples and restoration formulas are shown in Table 3. All types of solutions are
demonstrated by examples in the next section.

When a missing value can be completely restored, it is called an exact solution.
Exact solutions are based on other parameters. A medical expert has defined them
as specific relations between parameters, using ISOR. As soon as they have been
used once, they are stored in the case base of ISOR and can be retrieved for further
cases.

Since estimated solutions are usually based on domain independent interpolation,
extrapolation, or regression methods, a medical expert is not involved. An estimated
solution is not considered as full reconstruction but just as an estimation.
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Table 3 Some examples of solutions and restoration formulas. Abbreviations: BC = Breath
consumption, BF = Breath frequency, BV = Breath volume, HAT = Hematocrit, P = Phos-
phorus, PTH = Parathyroid hormone, PV = plasma volume

Missing
parame-
ter

Type of solution Numeric
solution
(examples)

Description ParametersTime
points

PTH Binary 1 If P(T) >= P(t)
then PTH(T) >=
PTH(t)
Else PTH(T) <
PTH(t)

P, PTH 0 and 6

HT Exact 36,2 HT = 100 *
(1–PV/0.065 *
Weight)

PV,
Weight

6

HT Estimated 29,1 Y(6) = Y(3)*0.66
+ Y(12) * 0.33

HT 3 and 12

WorkJ Exact 30447,1 WorkJ = MaxPower
* Time * 0.5

Time,
Max-
Power

12

BC Exact 15,6 BC = BF * BV BF, BV 12
Oxygen
pulse

Estimated 10,29 Linear regression O2plus 0 and 3
and 12

A binary solution is a partial reconstruction of a missing value. Sometimes ISOR
is not able to construct either an exact or an estimated solution, but the expert may
draw a conclusion about increasing/decreasing the missing value. So, a binary so-
lution expresses just the assumed trend. “1” means that the missing value should
have increased since the last measurement, whereas “0” means that it should have
decreased. Binary solutions are used in the qualitative models of ISOR.

4.2.2 Examples

The following three typical examples demonstrate how missing data are restored.

First example: Exact solution
The value of hematocrit (HT) after six months is missing. Hematocrit is the pro-
portion of the blood volume that consists of red blood cells. So, the hematocrit
measurements are expressed as percentages.

The retrieved solution (the third line of Table 3) requires two additional parame-
ters, namely plasma volume (PV) and the weight of the patient. For the query patient
these values (measured after six months) are weight = 74 kg and PV = 3,367. These
values are inserted in the formula and the result is a hematocrit value of 30%.

This restoration is domain dependent, it combines three parameters in such a spe-
cific way that it can not be applied to any other parameters. However, the formula
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can of course be transformed in two other ways and so it can be applied to restore
values of PV and the weight of the patient. The formula contains specific medical
knowledge that was once given as a case solution by an expert.

Second example: Estimated solution
This is the same situation as in the first example. The value of hematocrit that should
have been measured after six months is missing. Unlike the first example, now the
PV value that is required to apply the domain dependent formula is also missing.
Since no other solution for exact calculation can be retrieved, ISOR attempts to
generate an estimated solution. Of course, estimated solutions are not as good as
exact ones but are acceptable. ISOR retrieves a domain independent formula (fourth
line of Table 3) that states that a missing value after six months should be calculated
as the sum of two-thirds of the value measured after three months and one-third of
the value measured after twelve months. This general calculation can be used for
many parameters.

Third example: Binary solution
The value of parathyroid hormone (PTH) after six months is missing and need to
be restored. The retrieved solution involves the initial PTH measurement and the
additional parameter phosphorus (P), namely the measurement after six months,
P(6), and the initial measurement, P(0). Informally, the solution states that with
an increase of phosphorus goes along an increase of PTH too. More formally, the
retrieved solution states:

If P(6) >= P(0)
then PTH(6) >= PTH(0)
else PTH(6) < (PTH(0)
So, here a complete restoration of the missing PTH value is not possible but just

a binary solution that indicates the trend, where “1” stands for an increase and “0”
for a decrease.

4.2.3 Case-Based Reasoning

In ISOR, cases are mainly used to explain further exceptional cases that do not fit
the initial model. One such secondary application is the restoration of missing data.
The solutions given by the medical expert are stored in the form of cases so that
they can be retrieved for solving further missing data cases. Such a case stored in
the case base has the following structure:

1. Name of the patient
2. Diagnosis
3. Therapy
4. Problem: missing value
5. Name of the parameter of the missing value
6. Measurement time point of the missing value
7. Formula of the solution (the description column of Table 3)
8. Reference to the internal implementation of the formula
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9. Parameters used in the formula
10. Solution: Restored value
11. Type of solution (exact, estimated, or binary)

Since the number of stored cases is rather small (at most 150), retrieval is not cru-
cial. The retrieval is performed by keywords. The four main keywords are: Prob-
lem code (here: “missing value”), diagnosis, therapy, and time period. As an addi-
tional keyword the parameter where the value is missing can be used. Solutions that
are retrieved by using the additional keyword are domain dependent. They contain
medical knowledge that has been provided by the medical expert. The domain in-
dependent solutions are retrieved by using just the four main keywords. The flow of
restoring missing values in shown in Figure 5.

What happens when the retrieval provides more than one solution? Though only
very few solutions are expected to be retrieved at the same time, only one solution
should be selected. At first ISOR checks whether the required parameter values of
the retrieved solutions are available. A solution is accepted if all required values are
available. If more than one solution is accepted, the expert selects one of them. If
no solution is accepted, ISOR attempts to apply the one with the fewest required
parameter values.

Each type of solution has its specific adaptation. A numerical solution is just a
result of a calculation according to a formula. This kind of adaptation is performed
automatically. If all required parameter values are available, the calculation is car-
ried out and the query case receives its numerical solution.

The second kind of adaptation modifies a restoration formula. This kind of adap-
tation can not be done entirely automatically but the expert has to be involved. When
a (usually short) list of solutions is retrieved, ISOR at first checks whether all re-
quired values of the exact calculation formulae are available. If required parameter

Fig. 5 Flow of restoration
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values are not available, there are three alternatives to proceed. First, to find an exact
solution formula where all required parameter values are available, second to find
an estimation formula, and third to attempt to restore the required values too. Since
for the third alternative there is the danger that this might lead to an endless loop,
this process can be manually stopped by pressing a button in the dialogue menu.
When for an estimated solution required values are missing, ISOR asks the expert.

The expert can suggest an exact or an estimated solution. Of course, such an
expert solution also has to be checked for the availability of the required data. How-
ever, the expert can even provide just a numerical solution, a value to replace the
missing data – with or without an explanation of this suggested value.

Furthermore, adaptation can be differentiated according to its domain depen-
dency. Domain dependent adaptation rules have to be provided by the expert and
they are only applicable to specific parameters. Domain independent adaptation uses
general mathematical formulae that can be applied to many parameters. Two or more
adaptation methods can be combined.

In ISOR a revision occurs. However, it is a rather simple one. It is not as sophis-
ticated as, for example, the theoretically one described by Lieber [16]. Here, it is
just an attempt to find better solutions. An exact solution is obviously better than an
estimated one. So, if a value has been restored by estimation and later on (for a later
case) the expert has provided an appropriate exact formula, this formula should be
applied to the former case too. Some estimation rules are better than others. So it
may happen that later on a more appropriate rule is incorporated in ISOR. In princi-
ple, the more new solution methods are included in ISOR, the more former already
restored values can be revised.

Artificial cases. Since every piece of knowledge provided by a medical expert is
supposed to be valuable, ISOR saves it for future use. If an expert solution cannot
be used for adaptation for the query case (required values for this solution might
be missing too), the expert user can generate an artificial case. In ISOR there exists
a special dialogue menu to do this. Artificial cases have the same structure as real
ones, and they are also stored in the case base.

5 Results

At first, we undertook some experiments to assess the quality of our restoration
method, subsequently we attempted to restore the real missing data, and finally we
set up a new model for the original hypothesis that actively participating in the
fitness program improves the conditions of the patients.

5.1 Experimental Results

Since ISOR is a dialogue system and the solutions are generated within a conver-
sation process with the user, the quality of the solutions not only depends on ISOR
but also on the expert user.
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Table 4 Summary of randomly deleted and restored values. Only the deleted values were
attempted to restore, but not the really missing ones

Number of Parameters 112
Number of values 448
Number of really missing values 104
Number of randomly deleted values 97
Number of completely restored values 29
Number of estimated values 17
Number of partly restored values (binary) 13
Number of automatically restored values 34
Number of expert assistance 25
Number of values that could not be restored 38

Table 5 Closeness of the restored values. The numbers in brackets show the deviations on
average in percentage

Deviation Number of exactly restored values Number of estimated values
< 3 % 14 (2.2) 9 (1.8)
< 5 % 13 (5.7) 5 (6.1)
< 10 % 2 (8.5) 2 (7.4)
> 10 % 0 1 (12.3)

To test the method a random set of parameter values was deleted from the ob-
served data set. Subsequently, the method was applied and it was attempted to re-
store the deleted values - but not the ones actually missing!

Table 4 summarises how many deleted values could be restored. Since, for those
12 parameters that were only measured once and remain constant throughout, no
values were deleted (and none of them are really missing), they are not considered in
Table 4. More than half of the deleted values could be at least partly restored, nearly
a third of the deleted values could be completely restored, about 58% of restoration
occurred automatically. However, 39% of the deleted values could not be restored
at all. The main reasons are that for some parameters no proper method is available
and that specific additional parameter values are required that are sometimes also
missing.

Another question concerns the quality of the restoration. That means how close
are the restored values to the real values? We have to distinguish between exact,
estimated and binary restored values. Just one of the 13 binary restored values was
wrong. However, this mainly shows the “quality” of the expert user, who proba-
bly was rather cautious and made binary assessments only when he/she felt very
sure. The deviation (percentage) between the restored values and the real ones is
shown in Table 5. Concerning the two exactly restored values with more than 5%
deviation, we consulted the expert user, who consequently altered one formula,
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which had been applied for both values. For the estimated values, it is conspicu-
ous that for a few values the deviation is rather large. The probable reason is that
general estimation methods have problems in discovering underlying patterns in
certain cases. For example, with sequences such as 5, 7, 10 and so on, restoration
can be quite straightforward. On the other hand, sequences like 5, 10, 3 can prove
problematic.

5.2 Restoration of Real Missing Data and Setting up a New Model

As a consequence of the experimental results, we assumed that our method is not
perfect but at least practical. So, we attempted to restore the real missing data. The
result is shown in Table 6.

Table 6 Summary of missing and restored values

Number of Parameters 112
Number of values 448
Number of missing values 104
Number of completely restored values 37
Number of estimated values 24
Number of partly restored values (binary) 19
Number of automatically restored values 49
Number of expert assistance 31
Number of values that could not be restored 24

It is no surprise that more missing values could be restored (Table 6) than ran-
domly deleted ones (see Table 2). As all restoration methods rely on other parameter
values, the more parameter values you have, the better the chance of restoring miss-
ing values. In the experiment (Table 4) not just the randomly deleted values were
missing but also the real missing ones.

After this restoration we return to the original problem, namely to set up a model
for the hypothesis that actively participating in the fitness program improves the
conditions of the patients (see section 2.1). Since many missing values have been
restored, the expert user can choose other main factors to set up the model, includ-
ing ones where many data had been missing previously. In fact, the expert user now
chose a different third factor than before, namely PTH instead of WorkJ. The result-
ing strongest model is shown in Table 7.

Table 7 Results of Fisher’s exact test, for p < 0.0001

Patient’s
physical condition Active Non-active

Fisher
Exact p

Better 39 1
< 0.0001Worse 11 21
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The result is obviously much better than the previous model (see Table 1 in
section 2.1). However, since the missing data problem is not responsible for all
exceptional cases, for this model some (eleven) exceptional cases still have to be
explained.

6 Conclusion

In this chapter, it has been proposed to use CBR in ISOR to explain cases that do
not fit a statistical model. Here one of the simplest statistical models was presented.
However, it is relatively effective, because it demonstrates statistically significant
dependencies. In our example, relating fitness activity to health improvement for
dialysis patients, the model covers about two thirds of the patients, whereas the
other third can be explained by applying CBR.

Since binary qualitative assessments (better or worse) were chosen, very small
changes appear identical to very large ones. As a future step, it is intended to define
these concepts more precisely, especially to introduce more assessments.

The presented method makes use of different sources of knowledge and informa-
tion, including medical experts. This approach seems to be a very promising method
to deal with a poorly structured database, with many missing data, and with situa-
tions where cases contain different sets of attributes.

Additionally, a method to restore missing values was developed. This method
combines general domain independent techniques with expert knowledge, which is
delivered as formulae for specific situations (treated as cases) and can be used for
later similar situations too. The expert knowledge is gained within a conversational
process between the medical expert, ISOR, and the system developer. Since the time
of the expert is valuable, he/she is only consulted when absolutely necessary.

In ISOR, all main CBR steps are performed: retrieval, adaptation, and revision.
Retrieval (of usually a list of solutions) occurs with the help of keywords. Adap-
tation (just like part of the restoration process of missing data) is an interactive
process between ISOR, a medical expert, and the system developer. In contrast to
many CBR systems, in ISOR revision plays an important role. The whole knowl-
edge is contained in the case base, namely as solutions of former cases. No further
knowledge base is required.

In principle, the active incorporation of a medical expert into the decision making
process seems to be a promising idea. Already in our previous work [26], a success-
ful Case-Based Reasoning system was developed that performed a dialog with a
medical expert user to investigate therapy inefficacy.

Since CBR seems to be appropriate for medical applications (see section 2.1)
and many medical CBR systems have already been developed, it makes sense
to combine both ideas, namely to build systems that a both, case-oriented and
dialog-oriented.
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Collaborative and Experience-Consistent
Schemes of System Modelling in Computational
Intelligence

Witold Pedrycz

Abstract. Computational Intelligence (CI) is commonly regarded as a synergistic
framework within which one can analyze and design (synthesize) intelligent sys-
tems. The methodology of CI has been firmly established through the unified and
highly collaborative usage of the underlying information technologies of fuzzy sets
(and granular computing, in general), neural networks, and evolutionary optimiza-
tion. It is the collaboration which makes the CI models highly versatile, compu-
tationally attractive and very much user-oriented. While this facet of functional
collaboration between these three key information technologies has been broadly
recognized and acknowledged within the research community, there is also another
setting where the collaboration aspects start to play an important role. They are in-
herently associated with the nature of intelligent systems that quite often become
distributed and whose interactions come with a suite of various mechanisms of
collaboration. In this study, we focus on collaborative Computational Intelligence
which dwells upon numerous forms of collaborative linkages in distributed intelli-
gent systems. In the context of intelligent systems we are usually faced with various
sources of data in terms of their quality, granularity and origin. We may encounter
large quantities of numeric data coming from noisy sensors, linguistic findings con-
veyed by rules and associations and perceptions offered by human observers. Given
the enormous diversity of the sources of data and knowledge the ensuing quality
of data deserves careful attention. Knowledge reuse and knowledge sharing have
been playing a vital role in the knowledge management which has become ampli-
fied over the time we encounter information systems of increasing complexity and
of a distributed nature. The collaborative CI is aimed at the effective exchange of lo-
cally available knowledge. The exchange is commonly accomplished by interacting
at the level of information granules rather than numeric quantitative. As a detailed
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case study we discuss experience–consistent modeling of CI constructs and raise
an issue of knowledge reuse in the setting of constructs of Computational Intelli-
gence. One could note that the knowledge-based component (viz. previously built
CI constructs) can serve as a certain form of the regularization mechanism encoun-
tered quite often in various modeling platforms. The optimization procedure applied
there helps us strike a sound balance between the data-driven and knowledge-driven
evidence. We introduce a general scheme of optimization and show an effective way
of reusing knowledge. In the sequel, we demonstrate the development details with
regard to fuzzy rule-based models and neural networks.

1 Introductory Comments

Complex phenomena such as those encountered in human-centric systems , in which
the human factor is predominant, are highly multifaceted. This concerns a panoply of
economic and social systems which can be looked at and comprehended from var-
ious perspectives (points of view) and levels of abstraction. These phenomena are
distributed and generate significant masses of data which become available locally
with eventual restriction on their possible availability on a global basis. The global
economy as a system is not described by a single model but its holistic view is formed
by studying its behavior at more local and individually selected levels where building
a model could be more feasible. Afterwards through interaction between the models
and reconciliation of their findings a general global model is sought. The distributed
and collaborative way of global model building becomes an interesting tendency that
is worth adopting in the current practice of system modeling. Distributivity of the sys-
tems is a result of the existence of locally available data. Collaborative interaction
supports a coherent formation of findings and facilitates the reconciliation of differ-
ences and reinforcement of some commonalities (general findings).

There are two fundamental dimensions of the overview perspective established
for the phenomena under considerations (refer to Figure 1). First, a certain perspec-
tive arises on a basis of some features (attributes) of the phenomenon. Different sub-
sets of features could offer complementary and equally relevant views of the system
under discussion. The individual subsets of features could be disjoint. They can also
overlap. Each of these subsets gives rise to various models describing the system
from the different individual standpoint. These models, when combined together,
are helpful in forming a global and comprehensive view at the phenomenon. The
second coordinate is associated with the concept of cognitive perspective [8, 9, 10].
The most promising level of information granularity to be captured within the de-
veloped model is used to establish a suitable cognitive perspective.

The collaboration predominantly occurs at the level of information granules
[14, 15] which can be represented as fuzzy sets, sets , rough sets and others. There
are two interesting scenarios of substantial generality which will be discussed in
detail. In the first one, whose essence is outlined in Figure 2(a), the development
(reconciliation) of the information granules is realized by running any algorithm of
information granulation which processes the locally available data while taking into
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Fig. 1 Two fundamental dimensions of system modeling: through collections of features (at-
tributes, variables) and by admitting a variable level of granularity and establishing a suitable
cognitive perspective. Note two models (depicted as squares) are formed by considering spe-
cific subsets of features and selected information granularity

Fig. 2 Two general modes of reconciliation of information granules

account the description of information granules available at the collaborating data
sites. At the algorithmic end, we envision a certain augmentation of the original
objective function which is needed to support this form of collaboration.

The second general scheme of collaboration is realized by completion of cluster-
ing of granular findings coming from both the local data site and the remaining data
sites, Figure 2 (b). The resulting information granules (which in this context might
be referred to as meta-granules) are sent back to the local data site where they help
in further navigation of the formation of the information granules. In this sense there
is some feedback loop formed there being visualized by the solid and dotted lines.

Generally speaking, in fuzzy information processing, not too much has been said
about its schemes of a distributed nature. While there has been a wealth of method-
ological and algorithmic developments in fuzzy modeling, the subject of distributed
and collaborative fuzzy models has not been investigated in great detail. For in-
stance, a lot has been said about rule-based fuzzy models of the form “if x is Ai then
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y =fi(x, ai), i=1, 2, . . . ,c where Ai are fuzzy sets defined in the multidimensional
input space and fi denotes a local model endowed with some parameters (ai). What
if we encounter individual data sites D[1], D[2], . . . , D[P] for which such models
have to be constructed? Not only do they have to be formed on a basis of locally
available data D[ii], ii =1, 2, . . . , P but they should collaborate, exchange their find-
ings and reconcile eventual differences. In other words, the communication involves
knowledge instead of data. In the communication scheme of this nature we witness
an effect of knowledge sharing. Formally, the underlying knowledge being shared
between the individual sites can be represented as K[ii]. For instance, for the rule
based-systems, K[ii] = {Ai[ii], i=1, 2, . . . , c}where Ai[ii] are the information gran-
ules (fuzzy sets) formed at D[ii]. In this way, the knowledge of these fuzzy sets
is communicated to the other data sites. We may have another format of K[ii] be-
ing a more comprehensive version of knowledge sharing which concerns both the
information granules and the local models, that is K[ii] = {Ai[ii], fi[ii], ai[ii]}.

The study brings forward a number of developments which form a conceptual
and algorithmic framework of collaborative Computational Intelligence. In Section
2, we present the fundamentals of collaborative clustering where we show how in-
formation granules – fuzzy sets – emerge as a result of knowledge sharing. Then
in Sections 3 and 4 we present the algorithmic aspects of the method by showing
a general flow of computing and the pertinent computing details. Hierarchies of
clusters are introduced in Section 5. Experience-consistent fuzzy modeling brings
along a new concept and it is presented in the context of rule-based fuzzy models
and neural networks. Section 6 is devoted to experience-consistent fuzzy models
whose development embraces experimental data and some previous experience -
knowledge hints coming in the form of previous models. In the sequel, the concept
of experience consistency is further discussed in application to the design of radial
basis function neural networks (Section 7). Conclusions are presented in Section 8.

To focus our discussion and discuss an algorithmic setup in a tangible fashion,
we consider information granules that are constructed through fuzzy clustering, and
Fuzzy C-Means (FCM), in particular [1, 2, 3, 4, 11, 13]. We assume that all data sites
D[1], D[2], . .. , D[P] comprise data positioned in the same n-dimensional feature
space Rn.

2 Collaborative Clustering

The communication of knowledge involves a structure K[ii] which embraces a col-
lection of information granules – fuzzy clusters. Considering that such clusters have
been constructed with the use of the FCM algorithm, they are fully characterized
in terms of prototypes and partition matrices. As a matter of fact, these two charac-
terizations are equivalent in the sense that for the given data {x1, x2, . . . , xN} the
prototypes are expressed by means of the partition matrix while the partition matrix
comes with the entries whose computing involves the knowledge of the prototypes.
The prototypes and partition matrices are the two possible communication vehicles
between the data sites. Given the fact that the data sites concern different data sets
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Fig. 3 Data sites and communication realized through passing prototypes and the consecutive
generation of the induced partition matrices U∼[ii|jj]

of possibly different cardinalities, sharing knowledge about the partition matrices
is not feasible at all. The prototypes, on the other hand, form a viable alternative.
Communicating a limited number of prototypes is also highly attractive since in this
manner no significant communication overhead builds up. As the FCM optimization
focuses on the partition matrices as one of its components to be adjusted throughout
collaboration, we introduce a concept of so-called induced partition matrices. Con-
sider the ii-th data site. The prototypes produced at the jj-th data site v1[jj], v2[jj],. . . ,
vc[jj] are communicated to the ii-th data site. Given this collection of the prototypes,
we induce a partition matrix over the data site D[ii]. Denote it by U∼[ii|jj] where
the two indexes (ii and jj) point at data sites taking part in this interaction. Its entries
are determined in a standard way encountered in FCM computing [1], that is

u∼ ik[ii| j j] =
1

c
∑
j=1

( ||xk[ii]−vi[ j j]||
||xk[ii]−v j [ j j]

)2 (1)

i=1, 2,. . . , c; k=1, 2,. . . ,N[ii] and xk ∈D[ii]. Refer also to Figure 3 which high-
lights the essence of this mechanism of the collaboration by visualizing a way in
which the communication links have been established.

Proceeding with all other data sites, D[1], . . . , D[ii-1], D[ii+1],. . . , D[P], we
end up with P-1 induced partition matrices , U∼[ii|1], U∼[ii|2],. . . ., U∼[ii|ii-1],
U∼[ii|ii+1],. . . ., U∼[ii|P]. The minimization of differences between the U[ii] and
U∼[ii|jj] is used to establish some collaborative activities occurring between the
data sites. At the ii-th site, the clustering is guided by the augmented objective func-
tion assuming the following form

Q[ii] =
N[ii]

∑
k=1

c

∑
i=1

u2
ik[ii]‖xk− vi‖2 + β

P

∑
j j=1
j j 	=ii

N[ii]

∑
k=1

c

∑
i=1

(uik[ii]−u∼ik[ii| j j])2d2
ik (2)
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where β is a certain nonnegative number (scaling coefficient). The objective func-
tion Q[ii] consists of two components. The first one is nothing but a standard sum of
weighted distances between the patterns in the standard FCM being applied to D[ii]
with the fuzzification coefficient m =2. The second component reflects an impact
coming from the structures formed at all remaining data sites. The distance between
the optimized partition matrix and the induced partition matrices is to be minimized
– this requirement is captured by this part of the objective function (2). The scal-
ing coefficient β strikes a sound balance between the optimization guided by the
structure in D[ii] and the already developed structures available at the remaining
sites. The value of β implies a certain level of intensity of collaboration; the higher
its value, the stronger the collaboration. For β = 0 no collaboration occurs and the
problem reduces to the collection of “P” independently run clustering tasks being
exclusively confined to the corresponding data sites.

In a nutshell, the problem of collaborative clustering can be formulated as
follows:

Given a finite number of disjoint data sites with patterns defined in the same
feature space, develop a scheme of collective development and reconciliation
of a fundamental cluster structure across the sites that it is based upon ex-
change and communication of local findings where the communication needs
to be realized at some level of information granularity. The development of
the structures at the local level exploits the communicated findings in an active
manner through minimization of the corresponding objective function aug-
mented by the structural findings developed outside the individual data site.
We also allow for retention of key individual (specific) findings that are es-
sential (unique) for the corresponding data site.

Schematically, we portray the essence of the collaborative clustering as presented
in Figure 4, which stresses an act of balancing between collaborative activities oc-
curring between the data sites and reflecting global and common characteristics of
all data and the crucial findings implied by the locally available data.

Alluding to Figure 4, we can offer another important and visible category of ap-
plications which deal with wireless sensor networks. In such networks, we envision
a collection of randomly scattered sensors whose communication is established on
an ad hoc basis. Each node (sensor) collects the data available in its neighborhood
and realizes their processing leading to the determination of the local characteris-
tics of data (say, formulated as a collection of clusters being observed at this par-
ticular local level of the given sensor). At the same time it is recognized that the
local processing could benefit from some collective activities established between
the sensors. This need for a global and collective style of processing is motivated by
a limited amount of data available locally and a need to establish a global view of
the data collected by the overall network. Each sensor formulates a very limited and
localized perception of the environment that has to be augmented by local findings
formed by other sensors.
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Fig. 4 The essence of collaborative clustering in which we aim at striking a sound balance
between local findings (produced at the level of locally available data) and the findings com-
ing from other data sites (sensors) building some global characterization of data. Shown are
only communication links between data site D[ii] and all other data sites

3 The General Flow of Collaborative Processing

The essence of collaborative clustering pertains to the development of structures at
individual data sites on the basis of effective communication of the findings obtained
at the level of the individual data sites. There are two phases, namely an optimiza-
tion of the structures at the individual sites and an interaction between them when
exchanging the findings. They intertwine so that these two phases occur in a fixed
sequence. Initially, the FCM algorithm is run independently at each data site (this
happens without any communication). After FCM has terminated at each site, pro-
cessing stops and the data sites communicate their findings. As already stressed, this
communication needs to be realized at some level of information granularity. The
effectiveness of the interaction depends on the way in which one data site “talks” to
others in terms of what has been discovered so far. We discuss the pertinent details
later. Once communication has been established and the nodes are informed about
structural findings at other sites, each site proceeds with its optimization pursuits by
focusing on the local data while at this point taking into consideration the findings
communicated by other data sites. These optimization processes are run indepen-
dently from each other. Once all of them have declared termination of computing,
they are ready to engage in the communication phase. Again they communicate the
findings and set up new conditions for the next phase of the FCM optimization.
The pair of optimization and communication processes is referred to as a collabora-
tion phase. The overall collaboration takes a finite number of collaboration phases
(phases, for short), which terminates once no further significant change in the re-
vealed structure is reported.

As has become clear from this high-end description of the collaboration, there
are two important components crucial to the overall process. First, we have to
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specify a way of communicating and representing findings at some level of granu-
larity (let us recall that we are not allowed to communicate at the level of individual
data but have to establish communication at the higher level of abstraction by en-
gaging the exchange of the granular constructs). Second, we have to come up with
an augmented objective function whose minimization embraces both the structures
at the local level of the individual data sites and reconciles them with the structures
communicated by other data sites.

4 Algorithmic Aspects of Collaborative Clustering

In what follows we discuss several main algorithmic issues of collaborative
clustering.

4.1 The Computing Scheme

The objective function Q[ii] expressed by Equation (2) consists of two components.
Its minimization is quite standard. Making use of Lagrange multipliers we derive
detailed formulas for the partition matrix and a set of prototypes; both of them are
determined in an iterative fashion. The overall scheme of the collaborative cluster-
ing is outlined as follows

Given: data sites D[1], D[2], . . . , D[P]
Choose the number of clusters (c) to be looked for in the collaborative clustering,

set up some termination criterion of the FCM, and establish a level of collaboration
(interaction) by choosing some nonnegative value of β .

Initial phase Carry out clustering (FCM) for each data site producing a collection
of prototypes {vi[ii]}, i=1,2,. . . ,c for each data site.

Collaboration
Iterate {successive phases of collaboration}

Communicate the results about the structure determined at each data site.
For each data site (ii)
{
Minimize performance index (2) at each data site by iteratively proceeding with

the calculations of the partition matrix and the prototypes, that is

urs[ii] =
1

c
∑
j=1

d2
rs

d2
js

⎡
⎢⎢⎢⎢⎢⎣1−

c

∑
j=1

β
P
∑

j j=1
j j 	=ii

u∼js[ii| j j]

[1 +β (P−1)]

⎤
⎥⎥⎥⎥⎥⎦+

β
P
∑

j j=1
j j 	=ii

u∼rs[ii| j j]

[1 +β (P−1)]
(3)
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and

vrt [ii] =

N[ii]
∑

k=1
u2

rk[ii]xkt +β
P
∑

j j=1
j j 	=ii

N[ii]
∑

k=1
(urk[ii]−u∼rk[ii| j j])2xkt

N[ii]
∑

k=1
u2

rk[ii]+β
P
∑

j j=1
j j 	=ii

N[ii]
∑

k=1
(urk[ii]−u∼rk[ii| j j])2

(4)

r=1,2,. . . ,c; t =1, 2, . . . , n; s =1, 2, . . . , N[ii]
} for data site

until termination condition of the collaboration activities has been satisfied.

4.2 Evaluation of the Quality of Collaboration: Striking a Sound
Compromise between Global and Local Characteristics of
Data

The evaluation of the quality of the results of collaboration between the data sites
requires a careful assessment. As there are partition matrices associated with each
of the D[ii]’s, one could think of computing distance between them and treat it as a
measure of quality of the ongoing process. While the idea sounds convincing, its re-
alization requires more attention. We should stress the fact that a direct comparison
of two partition matrices could not be feasible [5, 12] as we may not have a direct
correspondence between their rows (respective clusters). This is a well-known prob-
lem identified in the literature, cf. [6]. To get around this shortcoming, we use the
concept of proximity and proximity matrix induced by a given partition matrix. Let
us recall that for any partition matrix U = [uik], i=1,2,.., c, k=1,2, . . . ,m, an induced
proximity matrix, that is Prox = [prox(k,l)], k, l=1,2,. . . ,m, comes with entries which
satisfy the following properties

(a) symmetry prox (k1,k2) = prox(k2,k1)

(b) reflexitivity prox(k1,k1) =1.0

Interestingly enough, here we do not require transitivity (which, albeit nice to
have, is always difficult to achieve in practice). The proximity values are based on
the corresponding membership degrees occurring in the partition matrix

prox(k1,k2) =
c

∑
i=1

min(uik1
,uik2

) (5)

It is worth noting that the proximity matrix is more abstract in this form than the
original partition matrix it is based upon. It “abstracts” the clusters themselves and
this is what we really need in this construct. Given the proximity matrix, we cannot
“retrieve” the original entries of the partition matrix it was generated from.
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Let us consider now the ii-th data site with its partition matrix U[ii] and the
induced partition matrices U∼[ii| j j], jj =1, 2, . . . , ii-1, ii+1, . . . , P. To quantify the
consistency between the structure revealed at the ii-th data site with those existing
at remaining sites by computing the following expression

W [ii] =
1

(N2[ii]/2)

P

∑
j j=1
j j 	=ii

‖Prox(U [ii])−Prox(U∼[ii| j j])‖ (6)

More specifically, we consider that the distance between the corresponding prox-
imity matrices is realized in the form of the Hamming distance. In other words, we
have

||Prox(U [ii])−Prox(U∼[ii| j j])|| = (7)
N[ii]

∑
k1=1

N[ii]

∑
k2>k1

|prox(k1,k2)[ii]− prox(k1,k2)
∼[ii| j j]|

where prox(k1,k2)[ii] denotes the (k1, k2)- entry of the proximity matrix U[ii]. Sim-
ilarly, Prox(k1,k2)∼[ii|jj] is the corresponding (k1, k2) entry of the proximity matrix
produced by the induced partition matrix U∼[ii|jj]. In a nutshell, rather than working
at the level of comparing the individual partition matrices (which requires knowl-
edge of the explicit correspondence between the rows of the partition matrices), we
generate their corresponding proximity matrices that allows us to carry out com-
parison at this more abstract level. Next summing up the values of W[ii] over all
data sites, we arrive at the global level of consistency of the structure discovered
collectively through the collaboration

W = W [1]+W [2]+ . . .+W [P] (8)

The lower the value of W, the higher is the consistency between the “P” structures.
Likewise the values of W being reported during the successive phases of the collab-
oration can serve as a sound indicator as to the progress and quality of the collabora-
tive process and serve as a suitable termination criterion. In particular, when tracing
the successive values of W, one could stop the collaboration once no further changes
in the values of W are reported. The use of the above consistency measure is also
essential when gauging the intensity of collaboration and adjusting its level through
changes of β . Let us recall that this parameter shows up in the minimized objective
function and shows how much other data sites impact the formation of the clusters at
the given site. Higher values of β imply stronger collaborative linkages established
between the sites. By reporting the values of W treated as a function of β , that is
W =W(β ), we can experimentally optimize the intensity of collaboration. One may
anticipate that while for low values of β no collaboration occurs and the values of
W tend to be high, large values of β might lead to competition and subsequently the
values of W(β ) may tend to be high. Under some conditions, no convergence of the
collaboration process could be reported. There might be some regions of optimal
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values of β . Obviously, the optimal level (intensity) of collaboration depends upon
a number of parameters of the collaborative clustering, in particular the number of
clusters and the number of data sites involved in the collaboration. It could also
depend upon the data themselves.

4.3 Fuzzy Sets of Type-2 in the Quantification of the Effect of
Collaboration

Along with the ongoing collaboration, it is also advantageous to assess the quality
of the results by evaluating their consistency and expressing a level of differences.
Here the quantification of results completed in terms of type-2 fuzzy sets constitutes
an interesting alternative or prototypes being treated as granular constructs, which is
fuzzy sets rather than plain numeric entities. Recall that type-2 fuzzy sets are granu-
lar constructs that generalize fuzzy sets in the sense that their membership functions
do no assume numeric membership grades but instead of them we encounter fuzzy
sets defined in the unit interval. Interestingly, type-2 fuzzy sets have been discussed
in various settings however very little was said about a determination of their mem-
bership functions. In collaborative clustering we estimate the membership function
on a basis of a collection of membership grades available in different partition ma-
trices. To be more specific, let us revisit what becomes known about cluster mem-
bership of pattern x in D[ii] given the available results of collaborative clustering.
The membership in the i-th cluster is computed using the prototypes of D[ii] and is
denoted as u = ui. The prototypes optimized for the jj-th data site, jj =1, 2, . . . , ii-1,
ii+1, . . . , P give rise to the membership of x to the same i-th cluster. Denote them by
z1, z2, . . . , zP−1. All in all, we obtain a collection of membership grades which are
now captured in a form of type-2 fuzzy set. The corresponding membership func-
tion is determined by solving a certain optimization problem [10][11][12] which
realizes an idea which could be referred to as a principle of justifiable granularity.
We consider triangular fuzzy set as one of the simplest versions of the membership
functions. It is also legitimate in the context of this application given that we operate
in presence of limited experimental evidence. The modal value of the fuzzy set is
the membership value obtained with the use of the prototypes present at D is equal
to “u”. Consider now the values of zi that are lower than u, zi < u. We use them in
the formation of the left-hand side of the linear portion of the membership function,
refer to Figure 5.

There are two fundamental requirements guiding the design of the fuzzy set,
namely

(a) maximize the experimental evidence of the fuzzy set; this implies that we tend
to “cover” as many numeric data as possible, viz. the coverage has to be made
as high as possible. Graphically, in the optimization of this requirement, we
rotate the linear segment up (clockwise) as illustrated in Figure 5. Normally,
the sum of the membership grades A(zi), ∑

i
A(zi)where A is the linear mem-

bership function to be optimized with respect to its slope and zi is located to
the left to the modal value (u) has to be maximized
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Fig. 5 Computation of a membership function of a fuzzy set of type-2; note that in order to
maximize the performance index, we rotate the linear segment of the membership function
around the modal value of the fuzzy set. Small dark boxes denote available experimental data.
The same estimation procedure applies to the right-hand side of the fuzzy set

(b) Simultaneously, we would like to make the fuzzy set as specific as possible so
that is comes with some well defined semantics. This requirement is met by
making the support of A as small as possible, that is mina|u –a|

To accommodate the two conflicting requirements, we have to combine these two
constraints (a) and (b) into the form of a single scalar index which in turn becomes
maximized. Two alternatives could be sought, say

maxa 	=u

∑
i

A(zi)

|u−a| (9)

or

∑
i

(1−A(zi))(u−a) (10)

The linearly decreasing portion of the membership function positioned at the right-
hand side of the modal value (u) is optimized in the same manner. We exclude a
trivial solution of a = u in which case the fuzzy set of type-2 collapses to a type-1
fuzzy set (with numeric values of membership function). We use this construct in
the formation of granular prototypes and fuzzy sets of type-2.

4.4 Collaborative Clustering in Presence of Different Levels of
Information Granularity

The method presented so far was quite restrictive in the sense that we assumed that
the number of clusters at each of collaborating data sites is the same. While this
could still be a viable alternative assuming that all the collaborative parties agree
in advance on the level of granularity they are interested in to consider, in general
this assumption could be considered quite restrictive and not realistic. A far more
flexible scenario is the one in which each party considers its own number of clus-
ters (which could be quite legitimate considering that data’s structure could vary
from site to site and one may consider variable levels of information granularity).
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The choice of the number of clusters at each data site is beyond this study as this
topic is well covered in the existing literature and supported by various algorithmic
means including an extensive suite of cluster validity indexes. Given this, the algo-
rithmic settings discussed so far have to be augmented. The major step would be
to present information granules at each data site at the level of granularity that has
been accepted before collaboration. There are several possible ways of doing this.
Here we consider the one which uses clusters of the prototypes. Consider the ii-th
data site. Before each phase of collaboration, we cluster the prototypes of this data
site {vi[ii]}, i=1, 2, . . . , c[ii] and the prototypes communicated from all remaining
data sites, {vi[jj]}, i=1, 2, . . . , c[jj], jj=1, 2, ii-1, ii+1,. . . ,P. The number of clusters
is the same as the number of clusters at this data site. The results are denoted by v∼i
i=1, 2,. . . , c[ii]. These new prototypes are used in the next steps of the collaborative
clustering. More specifically, the minimized objective function comes in the form

Q[ii] =∑
i,k

u2
ik[ii]‖xk− vi[ii]‖2 + β

c[ii]

∑
i=1

u2
ik[ii]‖vi[ii]− v∼i [ii]‖2 (11)

The overall flow of processing is realized in the following manner

Given: data sites D[1], D[2], . . . , D[P] with different structures
Select a number of clusters (c[ii]) for each data site, set up some termination

criterion and establish a level of collaboration (interaction) by choosing some non-
negative value of β .

Initial phase
Carry out clustering (FCM) for each data site producing a collection of proto-

types {vi[ii]}, i=1,2,. . . ,c[ii] for each data site.

Collaboration
Iterate {successive phases of collaboration}

Communicate the results about the structure determined at each data site.
For each data site (ii)
{

Collect all prototypes from other sites at data site (ii) and run FCM on that collec-
tion of all prototypes by selecting the same number clusters at that site to generate
new prototypes v∼[ii]. Minimize performance index (11) at each data site by it-
eratively proceeding with the iterative calculations of the partition matrix and the
prototypes, that is

urs[ii] =
1

c[ii]
∑
j=1

‖xs−vr[ii]‖2+β‖vr [ii]−v∼r [ii]‖2

‖xs−v j [ii]‖2+β
∥∥∥v j [ii]−v∼j [ii]

∥∥∥2

(12)

and
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vrt [ii] =

N
∑

k=1
u2

rk[ii]xkt +β
N
∑

k=1
u2

rk[ii]v
∼
rt [ii]

N
∑

k=1
u2

rk[ii] (1 +β)
(13)

r=1,2,. . . ,c[ii]; t =1, 2, . . . , n; s =1, 2, . . . , N
} for the data site

until termination condition of the collaboration activities has been satisfied.

The quality of collaboration is optimized by choosing a suitable value of β
(which minimizes the performance index W given by Equation (8)).

5 Hierarchical Clusters of Clusters

In the previous collaboration strategy, we have assumed that the collaborating data
sites exchange their findings (prototypes) which have been produced at the same
level of granularity (there is the same number of clusters c[ii] across all collaborat-
ing parties). One can envision a different architecture and the underlying strategy of
reconciling findings at the local level. This brings the concept of clusters of clus-
ters. The essence of the method is that the structural findings formed at the lowest
level are reconciled in the form of structure that is common to all local data sites.
The prototypes at each D[ii] are considered together and clustered into “cc” clusters
formed at the higher level. In the sequel, the resulting partition matrix is used to
convey information about the behavior of the original prototypes when being con-
fronted with structural findings (prototypes) at other data sites. More specifically,
using the partition matrix U formed at the higher level of this hierarchy, we form
some relevancy index γ(U) to quantify the impact on any of the prototypes coming
from the data site. The index which applies to each column of U associates the ith
prototype at data site D[ii] with γi(U)[ii] which articulates how much identity this
prototypes retains when confronted with the data structure obtained at other data
sites. The index is included in the modified objective function used to cluster data at
the ii-th data site

Q =
c[ii]

∑
i=1

∑
xk∈X[ii]

γi(U)[ii]||xk−vi[ii]||2 (14)

The formation of the clusters of clusters is an interactive process: we start with
the development of structure individually at D[ii], cluster the obtained prototypes
and use the relevancy index to minimize the modified objective function as shown
above. The clusters formed in this way are again clustered at the higher level of
the hierarchy. This leads to new values of the relevance index and the process it-
erates until it stabilizes. The number of clusters “cc” assumed at the higher level
plays an important role as a measure to express the intensity of reconciliation of the
individual findings. Strong interaction becomes realized when we consider a few
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clusters. In the case when cc = c[1] + c[2]+. . . + c[P] there is no interaction at all
(each prototypes retains its identity) and the values of γi(U)[ii] are all equal to 1 not
affecting the form of the objective function and thus not changing the prototypes.
The strength of the structural interaction controlled by the values of the number of
clusters “cc” may affect the dynamics of collaboration with the likelihood that its
lower values associated with stronger collaboration may imply eventual instability.

6 Experience-Consistent Fuzzy Modeling

Fuzzy rule-based models [7, 10, 15] and fuzzy modeling play a predominant role
in system modeling realized in the context of fuzzy sets. The most recent studies
are a genuine testimony to the wealth of approaches and new computational pur-
suits in this area. As usual in system modeling [10] including the development of
fuzzy rule-based systems, we rely on an intensive and prudent usage of experimental
data. We exploit the existing data in order to establish a structure of the respective
model and estimate its parameters. With regard to the character of the usage of data,
we encounter several fundamental problems that require careful attention. Gener-
alization capabilities of the models rely in a direct way on the characteristics of
data (in particular their representative capabilities with respect to the problem at
hand) and the nature of the model itself. The characteristics of data deserve par-
ticular attention in case we encounter small data sets which could be also heavily
affected by noise. The models developed on the basis of a limited and noisy data
set typically exhibit low prediction capabilities. A certain alleviation of the prob-
lem of this nature could be realized by contemplating reliance on other sources of
knowledge about the system to be modeled where they might have been acquired
in the past. They are not necessarily data themselves (whose accessibility could
be limited to various reasons) but could be available in the format of the parame-
ters of the models. In the anticipated modeling scenario, it becomes advantageous
not only to consider currently available data but also actively exploit previously
obtained findings. Such observations bring us to the following formulation of the
problem:

Given some experimental data, construct a model which is consistent with the
findings (models) produced for some previously available data. Owing to the
existing requirements such as data privacy or data security of data as well as
some other technical limitations, access to these previous data is not available.
Instead we can take advantage of the knowledge coming in the form of the
parameters of the existing models.

Considering the need to achieve a certain desired consistency of the proposed
model with the previous findings, we refer to the development of such models as
experience-based or experience-consistent fuzzy modeling.

When dealing with experience-consistent models, we may encounter a number of
essential constraints which imply a way in which the underlying processing can be
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realized. For instance, it is common that the currently available data are quite limited
in terms of its size (which implies a limited evidence of the data set) while the
previously available data sets could be substantially larger meaning that relying on
the models formed in the past could be beneficial for the development of the current
model. There is also another reason in which the experience –driven component
plays a pivotal role. The data set D could be quite small and affected by a high
level of noise – in this case it becomes highly legitimate to seriously consider any
additional experimental evidence available around.

In the realization of consistent-oriented modeling, we consider the following sce-
nario. Given is a data set D using which we intend to construct a fuzzy rule-based
model. There is a collection of data sets D1, D2, . . . , DP. For each of them devel-
oped is an individual fuzzy model. Those local models are available when seeking
consistency with the fuzzy models formed for Dii, ii=1, 2, . . . , P. At the same time,
it is worth stressing that the data sets themselves are not available to any processing
and modeling realized at the level of D.

The underlying architectural details of the rule-based model considered in this
study are as follows. For each data site D and Dii, we consider the rules with local
regression models assuming the form

Data D

-if x is Bi then y = aT
i x (15)

where x ∈ Rn+1 and Bi are fuzzy sets defined in the n-dimensional input space, i=1,
2,. . . , c. The local regression model standing in the i-th rule is a linear regression
function described by a certain vector of parameters ai. More specifically, the n-
dimensional vector of the original input variables is augmented by a constant input
so we have x =[x1 x2 . . . xn 1]T and a =[a1 a2 . . . an a0]T where a0 stands for a bias
term that translates the original hyperplane.

The same number of rules (c) is encountered at all other data sites, D1, D2, . . . ,
DP. The format of the rules is the same as for D, that is for the ii-th data sited Dii

we have

-if x is Bi[ii] then y = ai[ii]T x (16)

As before the fuzzy sets in the condition part of the i-th rule are denoted by Bi[ii]
while the parameters of the local model are denoted by ai[ii]. The index in the square
brackets refers to the specific data site, that is Dii for ai[ii].

Alluding to the format of the data at D, it comes in the form of input – output pairs
(xk, yk), k=1, 2,. . . , N which are used to carry out learning in a supervised mode. The
previously collected data sets denoted by D1, D2, . . . , DP consists of N1, N2, and NP

data points. We assume that due to some technical and non-technical reasons, the
data available at D j cannot be shared with D. However, the communication between
the data sites can be realized at a higher conceptual level such as those involving the
parameters of the fuzzy models.
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6.1 The Consistency-Based Optimization of Local Regression
Models

To make the ensuing formulas concise, we use a shorthand notation FM, FM[1],
FM[2], . . . , FM[P] to denote rule-based models pertaining to data D, D[1],. . . etc.

As usual the optimal parameters of the local models occurring in the conclusions
of the rules are chosen in such a way so that they minimize the sum of squared
errors

Q =
1
N ∑

xk∈D
yk∈D

(FM(xk)− yk)
2 (17)

For given fuzzy sets of conditions, the determination of the parameters of the linear
models is standard and well documented in the literature. Considering the form of
the rule-based system, the output of the fuzzy model is determined as a weighted
combination of the local models with the weights being the levels of activation of
the individual rules. More specifically we have

ŷk =
c

∑
i=1

ui(xk)aT
i xk (18)

where uik= ui(xk) is a membership degree of the k-th data xk to the i-th cluster being
computed on a basis of the already determined prototypes in the input space. In a
nutshell Equation (18) comes as a convex combination of the local models which
aggregates the local models by taking advantage of the weight factors expressing a
contribution of each model based upon the activation reported in the input space.

The essence of the consistency-driven modeling is to form local regression mod-
els occurring in the conclusions of the rules on a basis of data D while at the same
time making the model perform in a consistent manner (viz. close enough) to the
rule-based model formed for the respective Di’s. The following performance index
strikes a sound balance between the model formed exclusively on a basis of data D
and the consistency of the model with the results produced by the models formed
on a basis of some other data sites Di’s, that FM[j](xk)

V = ∑
xk∈D
yk∈D

(FM(xk)− yk)
2 +α

P

∑
j=1

∑
xk∈D
yk∈D

(FM(xk)−FM[ j](xk))
2 (19)

The calculations of FM[j](xk) for some xk in D require some words of explana-
tion. The model is communicated to D by transferring the prototypes of the clusters
(fuzzy sets) and the coefficients of the linear models standing in the conclusions of
the rules refer to Figure 6.

When used at D, the prototypes vi[j], i=1, 2,. . . ,c give rise to an induced partition
matrix in which the k-th column (for data xk) assumes the following membership
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Fig. 6 Communication between D and D j realized by transferring parameters of the rule-
based model available at individual data sites D j

values wi(xk) computed in the standard manner as being encountered when running
the FCM algorithm, that is

wi(xk)[ j] =
1

c
∑

l=1

(
xk−vi[ j]
xk−vl [ j]

)1/m-2
(20)

The transferred parameters of the local models obtained at the j-th data site produce
the output of the model FM[j](xk) obtained at D as a weighted sum of the form

FM[ j](xk) =
c

∑
i=1

wi(xk)[ j]aT
i ( j)xk (21)

where xk ∈D.
The minimization of the performance index V for some predefined value of α

leads to the optimal vectors of the parameters of the linear models ai(opt), i=1,
2,. . . , c which is reflective of the process of satisfying the consistency constraints.
After some algebra, the final result comes in the form

aopt =
1

αP + 1
X̂#(y +αy1 +αy2 + ....+αyP) (22)

where yi is a vector of the outputs of the i-th fuzzy model (formed on a basis of
Di) where the corresponding coordinate of this vector the output obtained for the
corresponding input, that is
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yi =

⎡
⎢⎢⎣

FM[i](x1)
FM[i](x2)

FM[i](xN)

⎤
⎥⎥⎦

where X̂# is a pseudoinverse of the data matrix.
An overall balance captured by Equation (19) is achieved for a certain value of

α . An evident tendency of increased impact becomes clearly visible in the sense
that higher values of α stress higher relevance of other models and their more pro-
found impact on the constructed model. First, the model is constructed on the basis
of D. Second, the consistency is expressed on a basis of differences between the
constructed model and those models coming from Dis where the differences are as-
sessed with the use of data D. There is another interesting view of the format of this
performance index under minimization. The second component in V plays a role
that is similar to a regularization term being typically used in estimation problems.
However its origin here has a substantially different format from the one encoun-
tered in the literature. Here, we consider other data (and models) rather than focus-
ing on the complexity of the model expressed in terms of its parameters to evaluate
the performance of the model.

While the semantics of the above performance index in Equation (19) is straight-
forward, a choice of the value of α requires some attention. To optimize the level of
contribution coming from the data sets, we may adhere to the following evaluation
process which invokes two fundamental components. As usual, the quality of the
optimal model is evaluated with respect to data D. The same optimized model (viz.
its prototypes and the parameters of the local regression models) are made available
at Di and the quality of the model is evaluated there with the use of the local data
present there. We combine the results (viz. the corresponding squared errors) by
adding their normalized values. Given these motivating notes, an index quantifying
a global behavior of the optimal model arises in the following form

VV =
1
N ∑

XK∈D
yk∈D

(FM(xk)− yk)
2 +

P

∑
j=1

1
Nj

∑
xk∈Dj
yk∈Dj

(FM(xk)− yk)
2 (23)

A schematic view of computing and communication of findings being realized with
the aid of Equation (23) is illustrated in Figure 7.

Note that when the fuzzy model FM(.) is transferred to D j, as before we commu-
nicate the prototypes obtained at D and the coefficients of the local linear models
of the conclusion part of the rules. Likewise as shown in Equation (18), the output
of the fuzzy model obtained for xk ∈D j involves the induced value of membership
degree w j(xk) and an aggregation of the local regression models.

Apparently the expression of VV is a function of α and the optimized level of
consistency is such for which VV attains its minimal value, namely

αopt = arg Min VV (α) (24)
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Fig. 7 A quantification of the global behavior of the consistency – based fuzzy model

The optimization scheme in Equation (19) along with its evaluation mechanisms
governed by Equation (24) can be generalized by admitting various levels of im-
pact each data Di might have in the process of achieving consistency. To do so, we
introduce some positive weights wi, i=1, 3, . . . p which are afterwards used in the
performance index

V = ∑
xk∈D
yk∈D

(FM(xk)− yk)
2 +α

P

∑
j=1

wj ∑
xk∈D
yk∈D

(FM(xk)− yk)
2 (25)

Lower values of wi indicate lower influence of the model formed on a basis of data
Di when constructing the model for data D. The role of such weights is particularly
apparent when dealing with data Di which are in some temporal or spatial rela-
tionships with respect to D. In these circumstances, the values of the weights are
reflective of how far (in terms of time or distance) the sources of the individual data
are from D. For instance, if D j denotes a collection of data gathered some time ago
in comparison to the currently collected data Di, then it is intuitively clear that the
weight w j is lower than wi.

As an auxiliary performance index that expresses a quality of the model for which
Equation (19) has been minimized with α being selected with regard to Equation
(25), we consider the following expression

Q∼ =
1
N ∑

xk∈D
yk∈D

(FM(xk)− yk)
2 (26)

The values of Q∼ considered vis-à-vis the results expressed by Equation (26) are
helpful in assessing an extent the fuzzy model optimized with regard to data D while
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achieving consistency with D1, D2, . . . , Dp deteriorates when applied to D over the
optimal model being optimized exclusively on a basis of D.

In what follows, we also introduce a computationally effective measure artic-
ulating a level of experience consistency obtained for D in the form of granular
characterization of the parameters of local regression models. Before moving with
the details, we elaborate on a way in which individual rules existing in the models
formed for D and the data sites D1, D2, . . . , Dp are “synchronized” (aligned).

6.2 The Alignment of Information Granules

The rules forming each fuzzy model have been formed independently at each data
site. If we intend to evaluate a level of consistency of the rules at D vis-à-vis the
modeling evidence available at D j, some alignment of the rules becomes essential.
Such an alignment concerns a way of lining up the prototypes forming the condition
part of the rules. We consider the models obtained at D and D j, j=1, 2, . . . , P with
their prototypes v1, v2, . . . , vc and v1[j], v2[j],. . . , vc[j]. We say that the rule “i” at D
and the rule “l” at D j are aligned if the prototypes vk and vl[j] are the closest within
the collections of the prototypes produced for D and D j. The alignment process is
realized by successively finding the pairs of the prototypes being characterized by
the lowest mutual distance. Overall, the alignment process can be described in the
following manner:

Form two sets of integers (indexes) I and J, where I = J = {1, 2, . . . ,c}. Start with
an empty list of alignments, L= /0.

Repeat

Find a pair of indexes i0 and j0 for which the distance attains minimum

(i0, j0) = arg mini,l ||vi- vl(j)||
The pair (i0, j0) is added to the list of alignments, L= L ∪(i0, j0)
Reduce the set of indexes I and J by removing the elements that were placed
on the list of alignments, I = I \ {i0} and J = J \{j0}

until I = /0

Once the above loop has been completed, we end up with the list of alignment of
the prototypes in the form of pairs (i1, j1), (i2, j2),. . . , (ic, jc)

6.3 Characterization of Experience-Consistent Models through
its Granular Parameters

Once the mechanism of experience consistency has been completed and the local
models have been aligned (following the scheme provided in the previous section),
we can now look at the characterization of the set of related parameters of the local
regression models. In essence, through the alignment of the prototypes at D and
D j, we obtain the corresponding vectors of the parameters of the regression models
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of the conclusion parts. Denote these vectors corresponding to a certain rule by a,
ai, ak, . . . , and al altogether arriving at P+1 of them. If we now consider the j-th
coordinate of all of them, we obtain the numeric values a j, ai j, . . . , al j. The essence
of their aggregation concerns their global representation completed in the form of a
single fuzzy set. Its modal value is just a j while the membership function is reflective
of the numeric values of the corresponding parameters of the local models. Again
for each set of the values of the parameters of the models we apply the principle
of justifiable granularity. We consider that a modal value of A j, that is a j is given.
Let us look at the values of a ji that are lower than a j, a ji < a j. Denote this set
by Ω., Ω.={a ji| a ji <a j}. We use them to estimate the parameters of the left-hand
side of the membership function. The determination of the right-hand side of the
membership function is realized in an analogous manner by considering the set Ω+
where Ω.={a ji| a ji >a j} around the modal value of the membership function.

In particular, we can consider a linear form of the membership function. The
result of the use of the principle becomes a triangular fuzzy number of the j-th pa-
rameter of the local regression model. Denote it by A j =(a j−, a j, a j+) with the three
parameters denoting the lower, modal, and upper bound of the fuzzy number. Ap-
plying the same procedure to all remaining parameters of the vector a, we produce
the corresponding fuzzy numbers A1, A2, . . . , A j−1, A j+1, . . . , An, and A0. Given
them the rule in D reflects the nature of the incorporated evidence offered by the re-
maining models D1, D2, etc. If there is a fairly high level of consistency, this effect is
manifested through a fairly “concentrated” fuzzy number. Increasing inconsistency
results in a broader, less specific fuzzy number of the parameters. In summary, a
certain fuzzy rule assumes the following format

If x is B then Y = A0⊕A1⊗ x1⊕A2⊗ x2⊕ . . .⊕An⊗ xn (27)

The symbols ⊕ and ⊗ being used above underline the nonnumeric nature of the
arguments standing in the model over which the multiplication and addition are
carried out. For given numeric inputs x =[x1, x2, . . . , xn]T the resulting output Y of
this local regression model is again a triangular fuzzy number Y = <w, y, z> where
their parameters are computed as follows

Modal value y = a0 +a1x1 +a2x2 + . . .+anxn

Lower bound w = a0 +min(a1.x1,a1+x1)+min(a2.x2,a2+x2)+ . . .+min(an.xn,an+xn)
Upper bound z = a0 +max(a1.x1,a1+x1)+max(a2.x2,a2+x2)+ . . .+max(an.xn,an+xn)

The above process is of the formation of the fuzzy numbers of the local regression
model of the rule is repeated for all rules. At the end we arrive at the rules of the
form

If x is B1 then Y = A10⊕A11⊗ x1⊕A12⊗ x2⊕ . . .⊕A1n⊗ xn (28)

If x is B2 then Y = A20⊕A21⊗ x1⊕A22⊗ x2⊕ . . .⊕A2n⊗ xn

. . .

If x is Bc then Y = Ac0⊕Ac1⊗ x1⊕Ac2⊗ x2⊕ . . .⊕Acn⊗ xn
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Given this structure, the input vector x implies the output fuzzy set with the fol-
lowing membership function

Y =
c

∑
i=1

wi(x)⊗ [Ai0⊕ (Ai1⊗ x1)⊕ (Ai2⊗ x2)⊕ ...⊕ (Ain⊗ xn)] (29)

Owing to the fact of having fuzzy sets of the parameters of the regression model
in the conclusion part of the rules, Y becomes a fuzzy number rather than a single
numeric value.

7 Experience-Consistent Design of Radial-Basis Function
Neural Networks

Radial basis function (RBF) neural networks consist of three layers of processing
elements. The first one is made up of source nodes (sensory units). The second layer
comprises a collection of highly-dimensional receptive fields (radial basis func-
tions). The output layer consists of a linear unit which linearly aggregates activation
levels of the receptive fields. Schematically, the overall structure of the network is
presented in Figure 8. The activation level of the i-th receptive field Ri caused by x
is governed by the expression [7]

Ri(x) =
1

c
∑
j=1

( ||x−vi||
||x−v j ||

)2/(m−1) (30)

where x is the input to the network while vi is the prototype (center) of the i-th
receptive field. The above expression stems from the fact that the receptive fields
are formed through fuzzy clustering, say the FCM method and Equation (30) is
reflective of the way in which such receptive fields (clusters) have been formed.

The output of the network is formed as a weighted sum of the activation levels of
the receptive fields, see Figure 8.

ŷk = w0 +
C

∑
i=0

Ri(xk)wi (31)

where wi is the i-th weight (connection) of the linear neuron.
The determination of the receptive fields, and the prototypes, in particular is real-

ized through fuzzy clustering. The determination of the weights of the output neuron
is realized by the minimization of the standard least-square error. Given the linear
nature of the problem with respect to, the connections to be determined, the obtained
solution leads to the global minimum of the performance index.

For the “P” data sets D[1], D[2], . . . , D[P] we construct the corresponding
RBF NNs. Following the main design process outlined above, for the ii-th data
set we form a collection of receptive fields {Ri[ii]}, i=1, 2,. . . ,c which are fully
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Fig. 8 A schematic view of a RBF neural network (the number of receptive fields is equal
to c)

characterized by the prototypes of the clusters {vi[ii]}. Furthermore the connections
of the linear neuron are optimized resulting in the vector w[ii]. In summary, the RBF
NN is fully characterized by the collection of the prototypes and the vector of the
connections which jointly could be described as knowledge acquired from the data
D[ii]. To underline this fact, we use the notation K[ii] = { {vi[ii]}, w[ii], c}. Note
that communicating knowledge is to make K[ii] available to the user. The number
of clusters (receptive fields) at D and D[ii] is the same. However this assumption is
not critical at all and we could envision working with the networks built at different
level of detail (different number of the clusters)

In this setting, the idea of the experience-consistent learning of the network trans-
lates into an effective usage of experience K[1] , K[2] ,. . . , K[P] to construct a
RBF NN. We further refine this general statement into a functionally meaningful
optimization problem. The underlying optimization criterion – performance index
comes in the following form

V =
N
∑

k=1
xk ,targetk∈D

(
C
∑

i=0
wiRi(xk)− targetk)

2+

+α
P
∑

ii=1

N
∑

k=1
xk∈D

(
C
∑

i=0
wiRi(xk)−

C
∑

i=0
wi[ii]Ri[ii](xk))

2

(32)
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The prototypes of the receptive fields at D[ii] after being used in the context of D
give rise to the receptive fields denoted here by Ri[ii]. The data set D is composed
of input-output pairs { (xk, targetk)}, k=1,2, . . . , N. The objective is to minimize V
by adjusting the weights of the linear neuron w

Given the additive format of Equation (32) which consists of two main compo-
nents, when minimizing V we attempt to achieve a balance between the model built
only on the basis of data D (the first part of Equation (32) and the results produced
formerly by the models for data D[ii], ii = 1, 2, . . . , P (the second term of Equation
(32)). The balance is established by choosing a certain positive value of α . Notably,
the higher the value of α , the stronger the impact coming from the experience accu-
mulated in the form of the previously constructed models. If α tends to zero, then
the RBF NN is constructed on the basis of the currently available data D. Consid-
ering the nature of the second term in the performance index in Equation (3), we
could say that it plays a role similar to the regularization mechanism quite often
considered in the training of neural networks.

As becomes clear, the result of the learning depends upon the level of impact
of the experience-based component (already designed neural networks). While the
general tendency could be easily controlled by changing the value of α , choosing its
suitable value is not clear at all. An approach we can take comes with the following
motivation: the optimal RBF NN should perform well not only on D but also on
all other data sets D[1], D[2], . . . , D[P]. In other words, we compute a quality of
the constructed model on D and then transfer the knowledge K to D[1], D[2],. . . ,
D[P] and assess the quality of the network over there. The overall performance
of the experience-consistent RBF NN is quantified in the form of the following
index

G = 1
N ∑

xk,targetk∈D

(
C
∑

i=0
wi(opt)Ri(xk)− targetk

)2

+

+ 1
N1

∑
xk,targetk∈D[1]

((
C
∑

i=0
wi(opt)Ri(xk)

)
− targetk

)2

+......+ 1
NP

∑
xk,targetk∈D[P]

((
C
∑

i=0
wi(opt)Ri(xk)

)
− targetk

)2

.

(33)

In other words, G expressed by Equation (33) measures the global performance of
the optimal neural network when all data are taken into consideration. Apparently G
is a function of α and the optimized level of consistency is that for which G attains
its minimal value, namely αopt = arg Min G(α).

The optimization scheme Equation (32) along with its evaluation mechanisms
governed by Equation (33) can be generalized by admitting the various levels of
impact that each data D[ii] could exhibit in the process of reaching consistency.
We introduce some positive weights Wii, ii=1, 2, . . . P which are included in the
performance index
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V =
N
∑

k=1
xk,targetk∈D

(
C
∑

i=0
wiRi(xk)− targetk)

2+

+α
P
∑

ii=1

N
∑

k=1
xk∈D

Wii(
C
∑

i=0
wiRi(xk)−

C
∑

i=0
wi[ii]Ri[ii](xk))

2

(34)

Lower values of Wii indicate lower influence of the model formed on a basis of data
Dii when constructing the model for data D. The role of such weights is particularly
apparent when dealing with data Dii, which are in some temporal or spatial rela-
tionships with respect to D. In these circumstances, the values of the weights are
reflective of how far (in terms of time or distance) the sources of the individual data
are from D. For instance, if D j j denotes a collection of data gathered some time ago
in comparison to the currently collected data Dii, then it is intuitively clear that the
corresponding value of weight W j j should assume lower values than Wii.

8 Conclusions

We have stressed that the distributed and collaborative nature of systems has to be
addressed when dealing with fuzzy models (whose design methodology has been
predominantly focused on a centralized development scheme). The collaborative
construction of fuzzy rule-based models relies on fuzzy clusters and the schemes
of collaborative clustering are of genuine interest with this regard. In the study,
we have elaborated on the two main avenues of the formation of the clusters, viz.
collaborative clustering and a buildup of hierarchies of clusters which offer some
general directions of more detailed algorithmic pursuits.
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