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Preface

This book is about synergy in computational intelligence (CI). It is a col-
lection of chapters that covers a rich and diverse variety of computer-based
techniques, all involving some aspect of computational intelligence, but each
one taking a somewhat pragmatic view. Many complex problems in the real
world require the application of some form of what we loosely call “intelli-
gence” for their solution. Few can be solved by the naive application of a single
technique, however good it is. Authors in this collection recognize the limi-
tations of individual paradigms, and propose some practical and novel ways
in which different CI techniques can be combined with each other, or with
more traditional computational techniques, to produce powerful problem-
solving environments which exhibit synergy, i.e., systems in which the whole
is greater than the sum of the parts'.

Computational intelligence is a relatively new term, and there is some dis-
agreement as to its precise definition. Some practitioners limit its scope to
schemes involving evolutionary algorithms, neural networks, fuzzy logic, or
hybrids of these. For others, the definition is a little more flexible, and will
include paradigms such as Bayesian belief networks, multi-agent systems,
case-based reasoning and so on. Generally, the term has a similar meaning
to the well-known phrase “Artificial Intelligence” (AI), although CI is per-
ceived more as a “bottom up” approach from which intelligent behaviour can
emerge, whereas Al tends to be studied from the “top down”, and derive from
pondering upon the “meaning of intelligence”. (These and other key issues
will be discussed in more detail in Chapter 1.) In this book we will take a
relatively broad view of CI.

Common themes to be found in the various chapters of this collection in-
clude the following: fusion, collaboration and emergence. Fusion describes the
hybridization of two or more techniques, at least one of which will involve
CIl. Fused techniques need to Collaborate in order to “work together” har-
moniously on the required application. Distributed CI techniques, such as

! This phrase is attributed originally to Aristotle.
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neural networks and multi-agent systems are also collaborative in their na-
ture, and all such systems require effective communication. Emergence refers
to the phenomenon that complex behaviour can emerge from collaboration
between simple processing elements - indeed, many would say that this is the
key to success. The twenty two chapters have been grouped into nine parts
(see Table 1):

L. Introduction

II.  Fusing evolutionary algorithms and fuzzy logic
ITI. Adaptive solution schemes

IV. Multi-agent systems

V.  Computer vision

VI. Communication for CI systems

VII. Artificial immune systems

VIII. Parallel evolutionary algorithms

IX. CI for clustering and classification

This book is aimed at a broad audience: graduate students, researchers,
engineers, and computer scientists. The idea is to try to motivate the reader
to explore cutting-edge challenges that may sit on the periphery of their
present areas of interest. Most chapters include a gentle introduction to the
topics they address, and thus should prove interesting to the relative beginner
as well as to the more experienced reader. All chapters provide suggestions
for background and further reading.
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Table 1 The chapters and themes of the book

Theme

Chapter

Introduction

1: Synergy in Computational Intelligence

2: Computational Intelligence: The Legacy of
Alan Turing and John von Neumann

Evolutionary Algorithms and Fuzzy
Logic

3: Multiobjective Evolutionary Algorithms
for the Electric Power Dispatch Problem

4: Fuzzy Evolutionary Algorithms and Ge-
netic Fuzzy Systems: A Positive Collabora-
tion Between Evolutionary Algorithms and
Fuzzy Systems

5: Multiobjective Genetic Fuzzy Systems

Adaptive Solution Schemes

6: Exploring Hyper-Heuristic Methodologies
with Genetic Programming

7: Adaptive Constraint Satisfaction: The
Quickest First Principle

Multi-Agent Systems

8: Collaborative Computational Intelligence
in Economics

9: IMMUNE: A Collaborating Environment
for Complex System Design

10: Bayesian Learning for Cooperation in
Multi-Agent Systems

11: Collaborative Agents for Complex Prob-
lem Solving

Computer vision

12: Predicting Trait Impressions of Faces Us-
ing Classifier Ensembles

13: The Analysis of Crowd Dynamics: From
Observations to Modelling

Communication for CI

14: Computational Intelligence for the Col-
laborative Identification of Distributed Sys-
tems

15: Collaboration at the Basis of Sharing Fo-
cused Information: The Opportunistic Net-
works

Artificial Immune Systems

16: Exploiting Collaborations in the Immune
System: The Future of Artificial Immune
Systems

Parallel EAs

17: Evolutionary Computation: Centralized,
Parallel or Collaborative

Clustering and Classification

18: Fuzzy Clustering of Likelihood Curves
for Finding Interesting Patterns in Expression
Profiles

19: A Hybrid Rule Induction/Likelihood
Ratio-Based  Approach for Predicting
Protein-Protein Interactions

20: Improvements in Flock-based Collabora-
tive Clustering Algorithms

21: Combining Statistics and Case-Based
Reasoning for Medical Research

22: Collaborative and Experience-Consistent
Schemes of System Modelling in Computa-
tional Intelligence
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Synergy in Computational Intelligence

Christine L. Mumford

Abstract. This chapter introduces the book. It begins with a historical perspective
on Computational Intelligence (CI), and discusses its relationship with the longer es-
tablished term “Artificial Intelligence” (AI). The chapter then gives a brief overview
of the main CI techniques, and concludes with short summaries of all the chapters
in the book.

1 Introduction

In the early days of information technology computers were large, expensive and the
property of the few government organizations, academic institutions and big busi-
nesses who could afford them. Centralized operating systems were developed and
two classes of computer systems evolved: one for scientific computing and engi-
neering, specializing in “number crunching” and the other for business computing
focussing on data processing activities such as stock control and computerized cus-
tomer accounts. Today computing devices are small and cheap, and pervade our
every day lives. It is therefore not surprising that the style of software required for
the twenty-first century is very different from that needed to run operations on the
large mainframe computers of the past. It is in this climate that the field of “Artificial
Intelligence” (AI) has given way to the newer study of “Computational Intelligence”
(Clﬂ. Al grew out of attempts to emulate the human brain on mainframe computers,
while CI is more pragmatic and relies on distributed computation, communication
and emergence. CI is well suited to today’s modern ubiquitous computing devices.
This book is about practical computational intelligence. It covers many tech-
niques and applications, and focuses on novel ways of combining different CI

Christine L. Mumford

Cardiff University, School of Computer Science, 5 The Parade, Cardiff, CF24 3AA,
United Kingdom

e-mail: C.L.Mumford@cs.cardiff.ac.uk

! Terms with very similar meanings have also emerged in the recent literature, such as “soft
computing” and “natural computing”.
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techniques together, or hybridizing CI techniques with traditional computational
techniques. Recognizing the need for pragmatism, authors in this collection propose
some new and exciting problem-solving frameworks. The key themes emphasized
in the book title are collaboration, fusion and emergence. Fusion refers to the amal-
gamation of CI techniques with each other or with more traditional computational
methods. Collaboration involves effective communication and is essential, if the
above mentioned “fused” techniques are to work harmoniously together. Finally,
emergence can be viewed as a central goal of CI, asserting that complex behaviour
can emerge from collaboration between simple processing elements. An essential
ingredient of a CI system exhibiting emergent behaviour is synergy in which the
whole is greater than the sum of the parts.

The remainder of this chapter is structured as follows. It will begin with some
discussion on the origins of Computational Intelligence, and examine its relation-
ships with Artificial Intelligence. This will be followed by a brief survey of some of
the key CI paradigms. The chapter will conclude with a brief overview of the rest of
the book.

2 The Birth of Computational Intelligence

The origin of the term “Computational Intelligence” (CI) has been widely attributed
to Bezdek [ 2]. Defining a new field devoted to computer-based intelligence can
be viewed as a timely attempt to escape from some of the difficult issues and bad
publicity associated with the longer established field of Artificial Intelligence (AI).
Although Al and CI have much in common, the emphasis is subtly different. CI
concentrates on practical application, self organization and the emergence of com-
plex behaviour from simple components, while Al aims to build intelligent systems
based on ideas of how the human brain works. John McCarthy originally coined
the term “Artificial Intelligence” in 1955, in advance of a month long brainstorming
conference held in Dartmouth College in the following year. The proposal for the
Dartmouth conference [[13] makes interesting reading. The introduction is repro-
duced below.

We propose that a 2 month, 10 man study of artificial intelligence be carried out during
the summer of 1956 at Dartmouth College in Hanover, New Hampshire. The study is
to proceed on the basis of the conjecture that every aspect of learning or any other
feature of intelligence can in principle be so precisely described that a machine can
be made to simulate it. An attempt will be made to find how to make machines use
language, form abstractions and concepts, solve kinds of problems now reserved for
humans, and improve themselves. We think that a significant advance can be made in
one or more of these problems if a carefully selected group of scientists work on it
together for a summer.

The document goes on to discuss the “various aspects of the artificial intelligence
problem” in more detail, including computers and computer programming, natural
language processing, neural networks, the theory of computation, the need for au-
tomatic self-improvement, and aspects of abstraction and creativity. Most of these
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topics remain active research issues to this day. However, the assumption that hu-
man intelligence can be simulated by machine was perhaps a little overoptimistic.
Indeed, it is one of the “big questions” remaining in computer science.

The two decades following the 1956 conference saw many high profile Al re-
search projects, for example, the development of the LISP and PROLOG program-
ming languages, the SHRDLU “microworlds” project, and the first expert systems
(see standard texts on Al, such as [20, 21], for more information). Although few
could argue that these projects had produced some highly successful results, and
useful applications, there was, nevertheless, a general feeling of disappointment at
the time, that the Al community had in some sense “failed to deliver”. This percep-
tion was effectively articulated in a report to the British Science Research Council
by the British academic James Lighthill in 1973 [14]:

In no part of the field have discoveries made so far produced the major impact that was
then promised.

In essence, the so-called “Lighthill Report” stated that Al researchers had failed to
address the issue of the combinatorial explosion, i.e., Al techniques may work on
small problem domains, but the techniques do not scale up well to solve more real-
istic problems. Following this very pessimistic view, the Science Research Council
slashed funding for AI projects in the UK. Although a rather more optimistic view
prevailed in much of the rest of the world, and major new investments continued
throughout the 1980s (e.g., CYC in the USA [13], and the Fifth Generation Com-
puter Systems project in Japan [6]). AT was becoming an increasingly fragmented
study, consisting of many disciplines, such as reasoning, knowledge engineering,
planning, learning, communication, perception, and so on. Despite the many suc-
cesses that had been achieved using expert systems, logic programming, neural net-
works etc., it was blatantly obvious that the dream of properly emulating human
intelligence had never come close to being realized. It was time to perhaps “move
on” and capitalize on the substantial achievements provided by some of the “off-
shoots” of Al, and leave behind the very negative image that had become so closely
associated with the term “Al” itself, not so much because Al had failed per se, but
rather because of the over-inflated expectations that had become intrinsically tied
up with the notion of it.

Bezdek’s view of CI was as a system that exhibited some form of “intelligence”,
yet dealt with numerical (low level) data, as opposed to “knowledge”, and in this
sense differed from traditional Artificial Intelligence. Nevertheless, the view of
Bezdek was very much focussed towards his personal research interests of pattern
recognition and neural networks. In the following years the term “CI” became firmly
established when it was adopted by the IEEE (the Institute of Electrical and Elec-
tronic Engineers), and in 2004 the Computational Intelligence Society (CIS) was
established (as a name change from the Neural Network Society). The slogan of the
IEEE CIS is “mimicking nature for problem solving”, and its scope is stated as:

The Field of Interest of the Society shall be the theory, design, application, and de-
velopment of biologically and linguistically motivated computational paradigms em-
phasizing neural networks, connectionist systems, genetic algorithms, evolutionary
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programming, fuzzy systems, and hybrid intelligent systems in which these paradigms
are contained.

Artificial intelligence brings its connotations of “intelligence”, which can be dis-
tracting. One can get sidetracked into pondering the meaning of intelligence, rather
than asking more useful questions, about self-organization, and emergence of com-
plex systems from simple components, for example. A useful definition taken from
the Computer Science web site of Amsterdam University (http://www.cs.vu.nl/ci/)
emphasizes the “bottom up” nature of CI:

Enclosed in the name computational intelligence is a ‘message’, according to scien-
tific folklore it is chosen to indicate the link to and the difference with artificial intel-
ligence. While some techniques within computational intelligence are often counted
as artificial intelligence techniques (e.g., genetic algorithms, or neural networks) there
is a clear difference between these techniques and traditional, logic based artificial
intelligence techniques. In general, typical artificial intelligence techniques are top-to-
bottom, where the structure of models, solutions, etc. is imposed from above. Com-
putational intelligence techniques are generally bottom-up, where order and structure
emerges from an unstructured beginning.

Some interesting further discussions on the birth of Al and CI, and on some of
the important philosophical issues on the essence of intelligence can be found in
Chapter 2 of this book.

3 The Main CI Techniques

In this section we will look briefly at the following key CI paradigms: Evolutionary
Algorithms, Neural Networks, Fuzzy Systems and Multi-Agent Systems. This will
be followed by a short summary covering some other important techniques included
by various authors in this collection.

3.1 Evolutionary Algorithms

Evolutionary algorithms (EAs) comprise a class of techniques inspired by evolution
and natural selection. The best known EAs are undoubtedly the genetic algorithms
(GAs) developed by John Holland [9] in the 1960’s and 70’s. Contemporaries of
Holland independently developed some similar techniques however, for example of
Rechenberg introduced evolution strategies (ES) and Fogel, Owen and Walsh
[7] developed evolutionary programming (EP). Since these early days, interest in
evolutionary-inspired algorithms has grown extensively, and many new variations
have appeared, often very different from the original models conceived by Holland,
Rechenberg or Fogel. For example, in the early 1990s, John Koza proposed genetic
programming [11]]: an evolutionary style technique for evolving effective computer
programs, mostly using the LISP programming language (see also Chapter 6). Other
popular paradigms to have been derived from the more generic approach include



Synergy in Computational Intelligence 7

artificial life [12], evolvable hardware [8], ant systems [4] and particle swarms
(Chapter 20), to name but a few. Artificial Immune Systems (Chapter 16) have also
become a popular topic for research in recent years, drawing analogies with some
of the ingenious problem-solving mechanisms observed in natural immune systems
and applying them to a broad range of real-world problems. In addition, there are
many examples of hybrid (or memetic) approaches where problem specific heuris-
tics, or other techniques such as neural networks, fuzzy systems, or simulated an-
nealing, have been incorporated into a GA framework. Thus, due to the growth
in popularity of search and optimization techniques inspired by natural evolution
during the last few decades, it is now common practice to refer to the field as evo-
lutionary computing and to the various techniques as evolutionary algorithms. In
addition, evolutionary techniques for simultaneously optimizing several objectives
have recently become popular. These approaches, collectively known as multi-
objective evolutionary algorithms [3]] are very effective at balancing the frequently
conflicting objectives to produce excellent trade-off solutions, from which a human
decision maker can make an informed choice. Chapters 3 and 5 deal with multi-
objective optimization problems.

Parallel evolutionary algorithms are discussed in Chapter 17. The analogy with
natural population structures and their geographical distributions make parallel im-
plementations highly desirable, to speed up processing and to facilitate complex
emergent behaviour from simple components within the distributed populations.

Given the range of EAs mentioned above, it is not perhaps surprising that there is
no rigorous definition of the term “evolutionary algorithm” that everyone working in
the field would agree on. There are, however, certain elements that the more generic
types of EA tend to have in common:

1. a population of chromosomes encoding candidate solutions to the problem in
hand,

2. a mechanism for reproduction,

. selection according to a fitness, and

4. genetic operators.

W

Figure[Ilgives an outline of a generic EA. The process is initialized with a starting
population of candidate solutions. The initial population is frequently generated by
some random process, but may be produced by constructive heuristic algorithms, or
by other methods. Once generated, the candidate solutions are evaluated to establish
the quality of each solution, and based on this quantity, a fitness value will be com-
puted, in such a way that better quality solutions will be assigned higher values for
their fitness. Individuals will next be selected from the population to form the par-
ents of the next generation, and these will be duplicated and placed in a mating pool.
The selection process is frequently biased, so that fitter individuals are more likely
to be chosen than their less fit counterparts. Genetic operators are then applied to the
individuals in the mating pool. The idea is to introduce new variation, without which
no improvement is possible. Recombination (also known as crossover) is achieved
by combining elements of two parents to form new offspring. Mutation, on the other
hand, involves very small random changes made to solutions. The final stage in the
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Selection
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Recombination

Mutation
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Fig. 1 The Evolutionary Cycle

cycle requires the population is updated with new individuals. Depending on the
style of the EA, this may involve replacing the parent population in its entirety, or
partial replacement is favoured by some researchers - perhaps replacing the poorest
10 % of the population by the best offspring, for example. A good general text on
evolutionary algorithms is Eiben and Smith [3].

3.2 Neural Networks

Artificial Neural Networks (ANNs) are inspired by biological nervous systems,
and emulate a simple “brain”. They consist of large numbers of highly intercon-
nected processing elements (neurons) working together and learning from experi-
ence. ANNs are specially configured for each application, and typical uses include
pattern recognition and data classification. In a biological nervous systems, learn-
ing involves making adjustments to the synaptic connections between the neurons.
In a similar way for ANNS, learning is accomplished through the adjustment of
weights by application of some “learning rule” to the connections between the ar-
tificial neurons or nodes. Learning rules typically attempt to reinforce connections
that contribute to a “correct output”, and penalize connections that produce incor-
rect results. There are three main classes of ANN, distinguished by their different
learning processes: 1) supervised learning, 2) unsupervised learning, and 3) rein-
forcement learning. With supervised learning a training stage uses a set of test data
and a teacher to score the performance of the ANN, then adjusts the connection
weights in an effort to improve the performance to better match the actual output
to the predicted output. The most widely known supervised learning ANNs are the
backpropagation nets. ANNs that use unsupervised learning do not have a training
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Fig. 2 A Neural Network with One Hidden Layer

stage, and these are frequently referred to as “self organizing networks”. Kohonen
nets are the best known example of this type. In reinforcement learning data is not
usually available. Instead the aim is to discover a policy for selecting actions that
minimize some measure of long-term cost. A schematic neural network is illus-
trated in Figure[2l For more details on ANN see Mehrotra, Mohan, and Ranka [16].
Chapters 12, 13 and 22 all utilize neural networks, in one form or another.

3.3 Fuzzy Systems

Fuzzy logic was first proposed by Lotfi A. Zadeh of the University of California
at Berkeley in a 1965 paper [23]]. It is a modification of boolean (or crisp) logic
which allows approximate and common sense reasoning in the absence of “true” or
“false” certainty. In crisp logic, set membership is “all or nothing”. In contrast, fuzzy
logic allows partial membership of sets, known as fuzzy sets, and forms the basis of
fuzzy systems. Fuzzy Systems can deal with partial truth and incomplete data, and
are capable of producing accurate models of how systems will behave in the real
world, particulary when appropriate conventional system models are not available.
Instead of supplying equations for a mathematical model, for example, a designer
will need to produce appropriate fuzzy rules to describe the system he/she wishes to
implement. The system operates when inputs are applied to the rules consisting of
the current values of appropriate membership functions. Once activated, each rule
will fire and produce an output, which will also be a partial truth value. In the final
stage, the outputs from all the rules are combined, in some way, and converted into
a single crisp output value. In summary, a fuzzy system consists of the following:
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Fig. 3 A Fuzzy Temperature Control System

a set of inputs

a fuzzification system, for transforming the raw inputs into grades of member-
ships of fuzzy sets

a set of fuzzy rules

an inference system - to activate the rules and produce their outputs

a defuzzification system - to produce one or more final crisp outputs

We will now look at a simplistic fuzzy system: a fuzzy controller for room tem-
perature.

The fuzzy set membership diagram in Figure [3] characterizes three functions,
identifiable as subranges of temperature: cold, warm and hot. Suppose we wish to
keep a room at a comfortable temperature (warm) by building a control system to
adjust a room heater. We can see in Figure3lhow each function maps the same tem-
perature value to a truth value in the O to 1 range, so that any point on that scale has
three “truth values”, one for each of the three functions. It is these truth values that
are used to determine how the room temperature should be controlled. The vertical
line in the diagram represents a particular temperature, . At this temperature it is
easy to observe the degree of membership to “hot” (red) is zero, this temperature
may be interpreted as “not hot”. Membership of “warm” is about 0.7, and this may
be described as “fairly warm”. Similarly, examining membership of the “cold” func-
tion gives a value of about 0.15, which may describe it as “slightly cold”. Adjectives
such as “fairly” and “slightly”, used to modify functions are referred to as “hedges”,
and can be a useful way to specify subregions of the functions to which they are
applied.

To operate our fuzzy temperature control system, we require a number of fuzzy
IF-THEN rules, in the form of “IF variable IS property THEN action”. For example,
an extremely simple temperature regulator that uses a heater might look like this:

1. IF temperature IS cold THEN turn heater to high
2. IF temperature IS warm THEN do nothing
3. IF temperature IS hot THEN turn off heater

Notice there is no “ELSE”. All of the rules are evaluated, because the temperature
will belong to all three sets (cold, warm and hot) at the same time, but to different
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degrees. At temperature ¢ in Figure[3] for example, M(cold) = 0.15,M (warm) = 0.7
and M (hot) = 0.

Obviously, the greater the truth value of “cold”, the higher the truth value of “turn
the heater to high”, although this does not necessarily mean that the output itself will
be set to “high”, since this is only one rule among many. In our example, the partial
truth inputs for “cold”, “warm” and “hot” will in turn produce partial truth values
for the outputs “turn the heater to high”, “do nothing” and “turn the heater off”.
The simplest way to produce a single crisp instruction, is to select the output with
the maximum value (which will probably map to “do nothing” in the case of our
temperature ). A more sophisticated method involves finding the centroid of all the
outputs. This methods locates the “centre of mass” of the combined membership
function curves.

More complex rules can be built for fuzzy systems, using AND, OR, and NOT
operators. These are the counterparts of the familiar crisp logic operators, and they
are usually defined (respectively) as the minimum, maximum, and complement. So,
for the fuzzy variables x and y:

NOT x = (1 - truth(x))
x AND y = minimum(truth(x), truth(y))
x OR y = maximum(truth(x), truth(y))

Clearly, the simple temperature controller described above is for illustration only,
and practical fuzzy systems will typically be made up from many more rules - per-
haps hundreds or even thousands. In these more sophisticated systems, it is likely
that the fuzzy rule set will be less “flat”, and form more of a hierarchy, so that the
outputs of some rules provide inputs to others. Systems with large rule sets will
probably require more sophisticated inference systems to ensure the efficient pro-
cessing of the rules, in a reasonable order.

To complete this section, it is worth mentioning a variation of fuzzy sets called
rough sets. Rough Set Theory was introduced in the early 1980s by Zdzislaw Pawlak
[18]. The basic idea is to take concepts and decision values, and create rules for
upper and lower boundary approximations of the set. With these rules, a new object
can easily be classified into one of the regions. Rough sets are especially helpful
in dealing with vagueness and uncertainty in decision situations, and for estimating
missing data. Uses include data mining, stock market prediction and financial data
analysis, machine learning and pattern recognition.

For further reading on fuzzy systems is a good introductory text. Also Chap-
ter 4 in the present book, provides a good background to many of the important
concepts, and chapters 3, 5, 18, and 22 also cover aspects of fuzzy systems.

3.4 Multi-Agent Systems

A multi-agent system (MAS) is a system composed of many interacting intelligent
agents; each one is in itself simple and apparently acts only in its own interest, yet by
collaborating and/or competing with each other agents, an MAS can be used to solve
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problems which would entirely defeat an individual agent or a monolithic system.
MAS can exhibit self-organization and complex behaviour can emerge. Example
applications include financial forecasting and online trading (see Chapter 8) and
disaster response (see Chapter 10).

The agents in a multi-agent system have several important characteristics [22]]:

Autonomy: the agents are at least partially autonomous

Local views: no agent has a full global view of the system

Decentralization: there is no one controlling agent

Typically multi-agent systems research refers to software agents. However, the
agents in a multi-agent system could equally well involve robots, humans or hu-
man teams. A multi-agent system may contain combined human-software agent
teams (see Chapter 8).

Generally, multi-agent systems are flexible and they are easily maintained or
modified without the need for drastic rewriting or restructuring. MAS also tend
to be robust and recover easily from a breakdown, due to built in duplication and
redundancy of components. Chapters 8, 9, 10, 11 and 20 all deal explicitly with
multi-agent systems.

3.5 Other Techniques Covered in the Book

Besides the main methods outlined above, a number of other CI techniques have
been used by various authors in this text, including rule induction (Chapter 19),
Bayesian Learning (Chapter 10), Likelihood Ratios (Chapters 18 and 19), Case-
Based Reasoning (Chapter 21), Collaborative Clustering (Chapter 22), Blackboard
Database Systems (Chapter 9), and Hyper-Heuristics (Chapter 6). Among the “tra-
ditional techniques” used in partnership with the CI methods, statistical methods are
used in Chapters 13 and 21, and computer vision techniques in Chapters 12 and 13.
Effective communications are essential for agent-based systems and all distributed
CI techniques. These important issues are addressed in Chapters 14 and 15.

4 Chapters Included in This Book

This book is divided into nine parts:

Introduction

Fusing evolutionary algorithms and fuzzy logic
Adaptive solution schemes

Multi-agent systems

Computer vision

Communication for CI systems

Artificial immune systems

Parallel evolutionary algorithms

CI for clustering and classification
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4.1 PartI: Introduction

This Part covers some of the history of computational intelligence, and sets the scene
for the rest of the book.

Chapter 1: Synergy in Computational Intelligence

The present chapter, by Christine Mumford, introduces the book and begins Part I.
It begins with a brief history of Artificial Intelligence and discusses the origins of
the term “Computational Intelligence”. Then follows an introduction to the main
Computational Intelligence paradigms used by the various authors in the book; and
finally, the chapter concludes with short summaries of all the individual chapters.

Chapter 2: Computational Intelligence: The Legacy of Alan Turing and John
von Neumann

In this thought-provoking chapter, Heinz Miihlenbein recalls the fundamental re-
search questions of computational intelligence, and explains how many of these
issues remain unresolved to this day. In recent years, it has become fashionable
to subdivide computational intelligence into many fields e.g. evolutionary compu-
tation, neural networks, fuzzy logic. This was not always the case. This chapter
recalls the broader issues and reviews the seminal research of Alan Turing and John
von Neumann in detail. The author discusses the many areas of computational in-
telligence that need to come together, if we are to create automata with human-like
intelligence.

4.2 Part II: Fusing Evolutionary Algorithms and Fuzzy Logic

These three chapters cover some useful ways to combine evolutionary algorithms
with fuzzy systems.

Chapter 3: Multiobjective Evolutionary Algorithms for the Electric Power
Dispatch Problem

The main objective of the electric power dispatch problem is to schedule the avail-
able generating units to meet the load demand at minimum cost, while satisfying all
constraints. However, thermal plants are a major source of atmospheric pollution.
Recently the pollution minimization problem has attracted a lot of attention as the
public demand clean air. Mohammad Abido explores the use of evolutionary multi-
objective optimization to minimize cost and pollution, simultaneously. Furthermore,
he uses fuzzy set theory to select the “best” compromise solution from the trade-off
solution set.
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Chapter 4:Fuzzy Evolutionary Algorithms and Genetic Fuzzy Systems: A
Positive Collaboration Between Evolutionary Algorithms and Fuzzy Systems

Two alternative ways of integrating fuzzy logic and evolutionary algorithms are dis-
cussed in detail by F. Herrera, M. Lozano in this chapter. The first one, called a ge-
netic fuzzy system (GFS) consists of a fuzzy rule based system (FRBS) augmented
by a learning process based on evolutionary algorithms. In the second approach,
fuzzy tools and fuzzy logic-based techniques are used for modeling different evolu-
tionary algorithm components and also for adapting evolutionary algorithm control
parameters, with the goal of improving performance. The evolutionary algorithms
resulting from the second type of integration are called fuzzy evolutionary algo-
rithms. This chapter includes some excellent introductory material on fuzzy logic,
as well as a summary of state-of-the-art with respect to genetic fuzzy systems and
fuzzy evolutionary algorithms. The potential benefits derived from the synergy be-
tween evolutionary algorithms and fuzzy logic are made clear.

Chapter 5: Multiobjective Genetic Fuzzy Systems

Hisao Ishibuchi and Yusuke Nojima describe the two conflicting goals in the design
of fuzzy rule-based systems: one is accuracy maximization, and the other is com-
plexity minimization. Generally, complex rules and large rule sets promote accuracy,
and smaller rule sets with simple rules reduce complexity. The authors discuss the
trade-off relation between these two goals, i.e., that improving the accuracy of a rule
set will simultaneously increase its complexity. This chapter explains how various
studies in multiobjective genetic fuzzy systems have experimented with the provi-
sion of non-dominated trade-off solutions, each solution being a complete candidate
rule set for the decision maker’s consideration. These rule sets will range from the
simplest and least accurate to the most complex and most accurate.

4.3 Part I11: Adaptive Solution Schemes

These two chapters describe two different approaches to adaptive problem solving,
involving mechanisms to select from a portfolio of algorithmic alternatives, adapting
to the best choices for particular problems and instances.

Chapter 6: Exploring Hyper-Heuristic Methodologies with Genetic
Programming

Hyper-heuristics represent a novel search methodology that is motivated by the goal
of automating the process of selecting or combining simpler heuristics in order to
solve hard computational search problems. This approach operates on a search space
of heuristics rather than directly on a search space of solutions to the underlying
problem which is the case with most meta-heuristics implementations. In this chap-
ter, Edmund Burke, Mathew Hyde, Graham Kendall, Gabriela Ochoa, Ender Ozcan



Synergy in Computational Intelligence 15

and John Woodward look at the use of Genetic Programming to automatically gen-
erate heuristics for a given problem domain.

Chapter 7: Adaptive Constraint Satisfaction: The Quickest First Principle

James Borrett and Edward Tsang demonstrate the potential of adaptive constraint
satisfaction in this chapter, using a technique known as algorithmic chaining. It is
recognised that some constraint satisfaction instances are much easier to solve than
others, and thus it makes sense to apply a simple and fast algorithm, whenever such
an approach is adequate for solving the instance in question. However, when faced
with exceptionally hard problem instances, a more complex (and slower) approach
may be required. Algorithmic chaining presents a sequence of algorithms, which
are applied to a problem instance in turn, if and when required. Thus, if the first
algorithm is unsuccessful, the second in the sequence will be tried, and then the
third, if required, and so on. The chapter describes the “Reduced Exceptional Be-
haviour Algorithm” (REBA), which is a technique based on algorithmic chaining.
The REBA algorithm makes use of a mechanism for predicting when thrashing type
behaviour is likely to occur, and results presented within the chapter clearly demon-
strate the effectiveness of the approach in reducing susceptibility to exceptionally
hard problem instances.

4.4 Part IV: Multi-Agent Systems

Multi-Agent Systems (MAS) provide increasingly popular paradigms for solving
complex problems, using a distributed system of (simple) individual processing el-
ements. These four chapters offer some novel solutions to difficult design and im-
plementation issues associated with practical MAS.

Chapter 8: Collaborative Computational Intelligence in Economics

This chapter provides a general review of collaborative computational intelligence
(CCI) in economics. Shu-Heng Chen demonstrates the potential of CCI by focussing
on three research paradigms in economics: heterogeneous agent-based economics,
experimental economics, and financial data mining. The essence of agent-based eco-
nomics is a society of heterogeneous agents working together. Experimental eco-
nomics is explored with respect to laboratories comprising both human agents and
software agents. Finally, the chapter concludes with a survey of hybrid CI systems
currently used in financial data mining.

Chapter 9: IMMUNE: A Collaborating Environment for Complex System
Design

To address the dilemma of distributed versus central control in complex system
design, decision support systems that enable robust collaboration amongst many
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design agents from different disciplines are required. The particular characteristics
of such decision support systems must include immunity to catastrophic failures and
sudden collapse that are usually observed in complex systems. This chapter, written
by Mahmoud Efatmaneshnik and Carl Reidsema, lays the conceptual framework
for IMMUNE as a robust collaborating design environment. Agents in IMMUNE
are adaptive and can change their negotiation strategy and in this way can con-
tribute to the overall capability of the design system to maintain its problem solving
complexity.

Chapter 10: Bayesian learning for cooperation in multi-agent systems

Mair Allen-Williams and Nicholas R Jennings consider the problem of agent coor-
dination in uncertain and partially observable systems. They present an approach to
this problem using a Bayesian learning mechanism, and demonstrate its effective-
ness on a cooperative scenario from the disaster response domain.

Chapter 11: Collaborative Agents for Complex Problems Solving

In a multi-agent system (MAS), agents that possess different expertise and re-
sources collaborate together to handle problems which are too complex for indi-
vidual agents. Generally, agent collaborations in a MAS can be classified into two
groups, namely agent cooperation and agent competition. In this chapter Minjie
Zhang, Quan Bai, Fenghui Ren and John Fulcher introduce two main approaches
for complex problem solving via agent cooperation and/or competition, these be-
ing (i) a partner selection strategy among competitive agents, and (ii) dynamic team
forming strategies among cooperative agents.

4.5 Part V: Computer Vision

Computer vision is a key application area for CI techniques. Chapters 12 and 13
discuss two extremely challenging applications: predicting human character traits
from facial appearance and analyzing crowd dynamics, respectively.

Chapter 12: Predicting Trait Impressions of Faces Using Classifier Ensembles

Recent studies in social psychology indicate that people are predisposed to form
impressions of a person’s social status, abilities, dispositions, and character traits
based on nothing more than that person’s facial appearance. In this chapter Sheryl
Brahnam and Loris Nanni present their work on building machine models of hu-
man perception, aimed at recognizing traits (such as dominance, intelligence, matu-
rity, sociality, trustworthiness, and warmth) simply by observing human faces. They
demonstrate that ensembles of classifiers work better than single classifiers, and also
that ensembles composed of 100 Levenberg-Marquardt neural networks (LMNN5s)
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seem to be as capable as most individual human beings are in their ability to predict
the social impressions certain faces make on the average human observer.

Chapter 13: The Analysis of Crowd Dynamics: From Observations to
Modelling

B. Zhan, P. Remagnino, D.N. Monekosso and S. Velastin describe how computer
vision techniques, combined with statistical methods and a neural network, can be
used to automatically observe, measure and learn crowd dynamics. New methods
are proposed to measure crowd dynamics, and model the complex movements of a
crowd.

4.6 Part VI: Communication for CI Systems

Distributed CI systems of all kinds need reliable, fast and efficient communications.
These two chapters describe simple, low cost and effective ways to use the lat-
est technology in a discriminatory way. Chapter 14 covers large scale collaborative
sensor networks, and Chapter 15 focusses on opportunist networks.

Chapter 14 :Computational Intelligence for the Collaborative Identification of
Distributed Systems

In this chapter Giorgio Biagetti, Paolo Crippa, Francesco Gianfelici and Claudio
Turchetti suggest a new algorithm for the identification of distributed systems by
large scale collaborative sensor networks. They describe how recent advances in
hardware technologies have made it possible to realize low-power low-cost wireless
devices and sensing units that are able to detect information from the distributed
environment. Even though individual sensors can only perform simple local com-
putation and communicate over a short range at low data rate, when deployed in
large numbers they can form an intelligent collaborative network interacting with
the surrounding environment in a large spatial domain. Sensor networks (SNs) char-
acterized by low computational complexity, great learning capability, and efficient
collaborative technology are highly desirable to discriminate, regulate and decide
actions on real phenomena in many applications such as environmental monitoring,
surveillance, factory instrumentation, defence and so on.

Chapter 15: Collaboration at the Basis of Sharing Focused Information: The
Opportunistic Networks

This chapter is written by Bruno Apolloni, Guglielmo Apolloni, Simone Bassis,
Gian Luca Galliani and Gianpaolo Rossi and discusses opportunistic networks. Op-
portunistic networks provide a communication protocol that is particularly suited
to set up a robust collaboration within a very local community of agents. Like me-
dieval monks who escaped world chaos and violence by taking refuge in small and
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protected communities, the authors point out that modern people may escape the
information avalanche by forming virtual communities without relinquishing most
of the benefits of the latest information and computer technology. A communication
middleware to obtain this result is represented by opportunistic networks.

4.7 Part VII: Artificial Immune Systems

Chapter 16 provides a broad overview of artificial immune systems research, and
focusses particularly on areas of natural immune systems that have been rather ig-
nored by the AIS community in the past.

Chapter 16: Exploiting Collaborations in the Immune System: The Future of
Artificial Immune Systems

This chapter, written by Emma Hart, Chris McEwan and Despina Davoudani, sug-
gests some novel ways in which the natural immune system metaphor could be
exploited to build new types of computational systems capable of meeting some of
the challenges of the 21st Century, including self-configuration, self-maintenance,
self-optimization and self-protection in an ever-changing environment. The authors
focus particularly on aspects of the natural immune system which appear to have
been largely overlooked by the artificial immune systems (AIS) research community
in the past, and place significant emphasis on the design of systems rather than algo-
rithms. The article puts forward some possible reasons why the potential promised
by AIS has not yet been delivered, and suggests how this might be addressed in
the future. The arguments are particularly relevant in light of recent advances in
technology which present a new and challenging range of problems to be solved.
A number of examples of systems in which steps are currently being taken to im-
plement some of the mechanisms are then described. The chapter concludes with
a discussion of an emerging field, that of immuno-engineering which promises a
methodology which will facilitate maximum exploitation of immune mechanisms
in the future.

4.8 Part VIII: Parallel Evolutionary Algorithms

Chapter 17 discusses the variety and importance of spatial interactions of popula-
tions in the natural world and demonstrates the relevance of these issues to parallel
evolutionary algorithms.

Chapter 17: Evolutionary Computation: Centralized, Parallel or
Collaborative

In this second chapter by Heinz Miihlenbein, the author focusses on the nature
and importance of spatial interactions in evolutionary computation, and he also
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investigates cooperation and collaboration in this context. While “competition” is
a fundamental component of Darwin’s theory of natural selection, it can be argued
that cooperation and collaboration also play a large role in evolution and population
dynamics. In this chapter genetic algorithms with several different spacial interac-
tion schemes are tested, and the results are discussed in relation to Darwin’s ideas
on the evolutionary gain achieved if subpopulations of individuals are periodically
isolated from each other or from the main continental population of a species (i.e.,
the continent-island cycle).

4.9 Part IX: CI for Clustering and Classification

The four chapters in this section cover various aspects of pattern recognition, clus-
tering and data mining.

Chapter 18: Fuzzy Clustering of Likelihood Curves for Finding Interesting
Patterns in Expression Profiles

In this chapter Claudia Hundertmark, Lothar Jinsch and Frank Klawonn present a
prototype-based fuzzy clustering approach that allows the automatic detection of
regulatory regions within individual proteins. Cellular processes are mediated by
proteins acting e.g. as enzymes (catalysts) in different metabolic pathways. Modi-
fications are regularly made to specific regions of proteins within a living cell after
that protein has been manufactured. The purpose of these post-translational mod-
ifications is to provide regulatory effects that will control the binding and activity
properties of the modified proteins. In other words, the same protein will behave
differently depending on the specific modifications made to it after its creation. Fol-
lowing the digestion of proteins into fragments (peptides), which is a necessary first
stage of the work, the approach described in this chapter utilises likelihood curves
to summarise the regulatory information of the peptides, based on a noise model
obtained by an analytical process. Since the algorithm for the detection of peptide
clusters is based on fuzzy clustering, their collaborative approach combines proba-
bilistic concepts as well as principles from soft computing. However, fuzzy cluster-
ing is usually based on data points and its application to likelihood curves provided
a considerable challenge for the authors. An interesting feature of this work is its
potential transferability to noisy data from other applications, provided the noise
can be specified by a noise model.

Chapter 19: A Hybrid Rule Induction/Likelihood Ratio-Based Approach for
Predicting Protein-Protein Interactions

Mudassar Igbal, Alex A. Freitas and Colin G. Johnson propose a new hybrid data
mining method for predicting protein-protein interactions in this chapter. The pur-
pose is to predict unknown protein interactions using relevant genomic informa-
tion currently available. The new technique combines Likelihood-Ratios with rule
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induction algorithms and uses rule induction to discover the rules to partition the
data. The discovered rules are subsequently interpreted as “bins” and used to com-
pute likelihood ratios. In this way a rule induction algorithm learns classification
rules, and these learned rules are used to improve the effectiveness of a likelihood
ratio-based classifier, which is used to predict unknown protein interactions.

Chapter 20: Improvements in Flock-based Collaborative Clustering
Algorithms

Esin Saka and Olfa Nasraoui begin their chapter with a brief survey of swarm in-
telligence clustering algorithms, and point out that since the early 90s, swarm in-
telligence (SI) has been a source of inspiration for clustering problems, and has
been used in many applications ranging from image clustering to social clustering,
and from document clustering to Web session clustering. The chapter then focuses
mainly on a recent development: simultaneous data visualization and clustering us-
ing flocks of agents. The chapter presents some improvements to previous algo-
rithms of this type and proposes a hybrid approach. Experiments on both artificial
and real data confirm the validity of the approach and the advantages of the variants
proposed in this chapter.

Chapter 21: Combining Statistics and Case-Based Reasoning for Medical
Research

Case-based Reasoning (CBR) uses previous experience represented as cases to un-
derstand and solve new problems. A case-based reasoner remembers former cases
similar to the current problem and attempts to modify solutions of former cases to
fit the current problem. In this chapter Rainer Schmidt and Olga Vorobieva present a
system, called ISOR, that helps to explain medical cases that do not fit a theoretical
hypothesis. Indeed, it is often the case that no well-developed theory exists. Further-
more, at the start little knowledge or past experience may be available. This chapter
focusses on the application of the ISOR system to the hypothesis that a specific ex-
ercise program improves the physical condition of dialysis patients. Additionally,
for this application a method to restore missing data is presented.

Chapter 22: Collaborative and Experience-Consistent Schemes of System
Modelling in Computational Intelligence

This study by Witold Pedrycz discusses a number of developments which form a
conceptual and algorithmic framework for collaborative computational intelligence.
First of all, the fundamentals of collaborative clustering are introduced in terms of
information granules, i.e, fuzzy sets which emerge as a result of knowledge sharing.
This is followed by the development of algorithmic definitions, which show the per-
tinent computing details. Hierarchies of clusters are also introduced, and experience-
consistent fuzzy modeling is presented in the context of rule-based fuzzy models and
neural networks.
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Computational Intelligence: The Legacy of Alan
Turing and John von Neumann

Heinz Miihlenbein

Abstract. In this chapter fundamental problems of collaborative computational in-
telligence are discussed. The problems are distilled from the seminal research of
Alan Turing and John von Neumann. For Turing the creation of machines with
human-like intelligence was only a question of programming time. In his research
he identified the most relevant problems concerning evolutionary computation,
learning, and structure of an artificial brain. Many problems are still unsolved,
especially efficient higher learning methods which Turing called initiative. Von Neu-
mann was more cautious. He doubted that human-like intelligent behavior could be
described unambiguously in finite time and finite space. Von Neumann focused on
self-reproducing automata to create more complex systems out of simpler ones. An
early proposal from John Holland is analyzed. It centers on adaptability and pop-
ulation of programs. The early research of Newell, Shaw, and Simon is discussed.
They use the logical calculus to discover proofs in logic. Only a few recent research
projects have the broad perspectives and the ambitious goals of Turing and von
Neumann. As examples the projects Cyc, Cog, and JANUS are discussed.

1 Introduction

Human intelligence can be divided into individual, collaborative, and collective in-
telligence. Individual intelligence is always multi-modal, using many sources of in-
formation. It developed from the interaction of the humans with their environment.
Based on individual intelligence, collaborative intelligence developed. This means
that humans work together with all the available allies to solve problems. On the
next level appears collective intelligence. It describes the phenomenon that fami-
lies, groups, organizations and even entire societies seem to act as a whole living
organism.
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The importance of interactions between higher animals has been reinforced by
the discovery of mirror neurons. These are neurons which fire both when an animal
acts and when the animal observes the same action performed by another ( especially
conspecific) animal. The neurons have been observed in primates and are believed
to exist also in humans and in some birds. The function of the mirror system is still
a subject of much speculation. To date no plausible neural or computational models
have been developed to explain how mirror neurons support the cognitive functions.

In my opinion the most impressive collaborative computational intelligence ex-
amples developed so far are the search machine Google and Wikipedia. In both
systems the interaction human-computer plays an important role. Google is a gigan-
tic storage system with an impressive fast search engine. It remains the task of the
user to filter out the important information from the search results.

Wikipedia tries to make the dream of the Age of Enlightenment become true, to
develop an encyclopedia describing all human knowledge and making it accessible
to all humans. Both systems use pure text driven search. More intelligent search
methods have been not successful so far. Despite the many efforts no computational
system is approaching the level of human intelligence.

Today computational intelligence is partitioned into many specialized and sep-
arate research areas. This was not always the case. The aim of this chapter is to
recall the broader issues and research goals of computational intelligence. To this
end the seminal research of Alan Turing and John von Neumann is reviewed in de-
tail. Their proposals discuss many areas of computational intelligence necessary to
create automata with human-like intelligence.

Right at the beginning of electronic computers researchers looked into nature for
ideas to solve difficult problems or even create what is called today artificial intelli-
gence. Because of the lack of understanding the functioning of natural systems, the
research had to be largely experimental. This was already pointed out by John von
Neumann [23].

Natural organism are, as a rule, much more complicated and subtle, and there-
fore much less well understood in detail, than are artificial automata. Nevertheless,
some regularities, which we observe in the organization of the former may be quite
instructive in our thinking and planning of the latter; and conversely, a good deal of
our experiences and difficulties with our artificial automata can be to some extend
projected on our interpretations of natural organisms.

In this chapter I will first review the work of Alan Turing, described in his famous
seminal paper “Computing Machinery and Intelligence” and in the not so well
known paper “Intelligent Machinery” [24]]. Turing’s thoughts about learning, evo-
lution, and structure of the brain are described.

Then I will discuss the most important paper of John von Neumann concern-
ing our subject “The General and Logical Theory of Automata” [25]. John von
Neumann’s research centers on artificial automata, computability, complexity, and
self-reproduction
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All three papers were written before the first electronic computers became avail-
able. Turing even wrote programs for paper machines. As a third example I will
describe the proposal of John Holland [10]. The simplification of this proposal lead
later to the famous genetic algorithm [[11]]. The historical part ends with a discussion
of the early research of Newell, Shaw and Simon.

I will first discuss this early research in detail, without reference to today’s knowl-
edge. Then I will try to evaluate the proposals in answering the following questions

e What are the major ideas for creating machine intelligence?

e Did the original proposals lack important components we see as necessary today?

e What are the major research problems of the proposals and do solutions exist
today?

Then two recent large projects are shortly summarized. The goal of the project
Cyc is to specify common sense knowledge in a well-designed language The Cog
project tried to build a humanoid robot that acts like a human. In addition the archi-
tecture of our hand-eye robot JANUS is described. It has a modular structure similar
to the human brain.

This chapter is a tour de force in computational intelligence. It requires that the
reader is willing to contemplate fundamental problems arising in building intel-
ligent machines. Solutions are not given. I hope that the reader finds interesting

research problems worthy of being investigated. This paper extends my research
started in [13]].

2 Turing and Machine Intelligence

The first sentences of the paper "Computing machinery and intelligence” have be-
come famous.

I propose to consider the question “Can machines think?” This should begin with
definitions of the meaning of the terms “machine” and “think”....But this is absurd.
Instead of attempting such a definition I shall replace the question by another, which
is closely related to it and is expressed in relatively unambiguous words. The new
form of the question can be described in terms of a game which we call the imitation
game.

Turing’s definition of the imitation game is more complicated than that normally
used today. Therefore I will describe it shortly. It is played with three actors, a man
(A), awoman (B) and an interrogator (C). The object of the game for the interrogator
is to determine which of the other two is the man and which is the woman. It is
A’s objective in the game to cause C to make the wrong identification. Turing then
continues: “We now ask the question “What will happen when a machine takes the
part of A in the game?”” Will the interrogator decide wrongly as often when the
game is played like this as he does when the game is played between a man and a
woman? These questions will replace our original “Can machines think”.
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Why did Turing not define just a game between a human and a machine trying to
imitate a human, as the Turing test is described today? Is there an additional trick
in introducing gender into the game? There has been quite a lot of discussions as to
whether this game characterizes human intelligence at all. Its purely behavioristic
definition leaves out any attempt to identify important components which together
produce human intelligence. I will not enter this discussion here, but just state the
opinion of Turing about the outcome of the imitation game.

I believe that in about fifty years’ time it will be possible to programme computers
with a storage capacity of about 10° bits to make them play the imitation game so
well that an average interrogator will not have more than 710% chance of making
the right identification after five minutes of questioning.

The very detailed prediction is funny: Why a 70% chance, why a duration of five
minutes? In the next section I will discuss what arguments Turing used to support
this prediction.

2.1 Turing’s Construction of an Intelligent Machine

In Sections 2 — 6 of [23] Turing mainly seeks to refute general philosophical argu-
ments against the possibility of constructing intelligent machines. “The reader will
have anticipated that I have no very convincing argument of a positive nature to
support my views. If I had I should not have taken such pains to point out the falla-
cies in contrary views. Such evidence as I have I shall now give.” What is Turing’s
evidence?

As I have explained, the problem is mainly one of programming. Advances in
engineering will have to be made too, but it seems unlikely that these will not be
adequate for the requirements. Estimates of the storage capacity of the brain vary
from 109 10 10 binary digits. Lincline to the lower values and believe that only a
small fraction is used for the higher types of thinking. Most of it is probably used for
the retention of visual impressions. I should be surprised if more than 10° was re-
quired for satisfactory playing of the imitation game. Our problem then is to find out
how to programme these machines to play the game. At my present rate of working
I produce about a thousand digits of programme a day, so that about sixty workers,
working steadily through fifty years might accomplish the job, if nothing went into
the wastepaper basket.

The time to construct a machine which passes the imitation game is derived from
an estimate of the storage capacity of the brair and the speed of programming.

I At this time the number of neurons was estimated as being between 10'0 to 10'%. This
agrees with the estimates using today’s knowledge.

2 It was of course a mistake to set the storage capacity equal to the number of neurons! Von
Neumann estimated the storage capacity of the brain to be about 1029, But this affects in
no way the logic of Turing’s argument.
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Turing did not see any problems in creating machine intelligence purely by pro-
gramming, he just found it too time consuming. So he investigated if there exist
more expeditious methods. He observed:

“In the process of trying to imitate an adult human mind we are bound to think
a good deal about the process which has brought it to the state that it is in. We may
notice three components.

1. The initial state of the brain, say at birth.

2. The education to which it has been subjected.

3. Other experience, not to be described as education, to which it has been been
subjected.

Instead of trying to produce a programme to simulate an adult mind, why not
rather try to produce one which simulates the child’s...Presumably the child brain is
something like a notebook. Rather little mechanism, and lots of blank sheets. Our
hope is that there is so little mechanism in the child brain that something like it can
easily be programmed. The amount of work in the education we can assume, as a
first approximation, to be much the same as for the human child.”

2.2 Turing on Learning and Evolution

In order to achieve a greater efficiency in constructing a machine with human like
intelligence, Turing divided the problem into two parts

e The construction of a child brain
e The development of effective learning methods

Turing notes that the two parts remain very closely related. He proposes to use
experiments: teaching a child machine and seeing how well it learns. One should
then try another and see if it learns better or worse. “There is an obvious connection
between this process and evolution, by the identifications

e structure of the machine = hereditary material
e changes of the machine = mutations
e Natural selection = judgment of the experimenter

Survival of the fittest is a slow process of measuring advantages. The experimenter,
by the exercise of intelligence, should be able to speed it up.”

Turing then discusses learning methods. He notes ([23]], p.454): “We normally
associate the use of punishments and rewards with the teaching process...The ma-
chine has to be so constructed that events which shortly proceeded the occurrence of
a punishment signal are unlikely to be repeated, whereas a reward signal increases
the probability of repetition of the events which lead to it.”

But Turing observes the major drawback of this method: “The use of punish-
ments and rewards can at best be part of the teaching process. Roughly speaking,
if the teacher has no other means of communicating to the people, the amount of
information which can reach him does not exceed the total number of rewards and
punishments applied.”
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In order to speed up learning Turing demanded that the child machine should un-
derstand some language. In the final pages of the paper Turing discusses the problem
of the complexity the child machine should have. He proposes to try two alterna-
tives: either to make it as simple as possible to allow learning or to include a com-
plete system of logical inference. He ends his paper with the remarks: “Again I do
not know the answer, but I think both approaches should be tried. We can see only
a short distance ahead, but we can see plenty there that needs to be done.”

2.3 Turing and Neural Networks

In the posthumously published paper Intelligent Machinery Turing describes
additional details how to create an intelligent machine. First he discusses possible
components of a child machine. He introduces unorganized machines of type A, B,
and P. A and B are artificial neural networks with random connections. They are
made up from a rather large number N of similar units, which can be seen as binary
neurons. Each unit has two input terminals and one output terminal which can be
connected to the input terminals of O (or more) other units. The connections are cho-
sen at random. All units are connected to a central synchronizing unit from which
synchronizing pulses are emitted. Each unit has two states. The dynamics is defined
by the following rule:

The states from the units from which the input comes are taken from the previous
moment, multiplied together and the result is subtracted from 1.

Thus a neuron is nothing else than a NAND gate. The state of the network is
defined by the states of the units. Note that the network might have lots of loops,
it continually goes through a number of states until a period begins. The period
cannot exceed 2 cycles. In order to allow learning the machine is connected with
some input device which can alter its behavior. This might be a dramatic change of
the structure, or changing the state of the network.

Maybe Turing had the intuitive feeling that the basic transition of the type A
machine is not enough, therefore he introduced the more complex B-type machine.
I will not describe this machine here, because neither for the A or the B machine did
Turing define precisely how learning can be done.

A learning mechanism is introduced with the third machine, called a P-type ma-
chine. The machine is an automaton with a number of N configurations. There exists
a table where, for each configuration, the action the machine has to take is specified.
The action may be either

1. To do some externally visible act Ay,...A
2. To set a memory unit M;

The reader should have noticed that the next configuration is not yet specified.
Turing surprisingly defines: If the current configuration is s, then the next configura-
tion is the remainder of 2s or 2s + 1 on division by N. These two configurations are
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called the alternatives 0 and 1. The reason for this definition is the learning mech-
anism Turing defines. At the start the description of the machine is largely incom-
plete. The entries for each configuration might be in five states, either U (uncertain),
or TO (try alternative 0), T1 (try alternative 1), DO (definite 0) or D1 (definite 1).

Learning changes the entries as follows: If the entry is U, the alternative is chosen
at random, and the entry is changed to either TO or T1 according to whether O or
1 was chosen. For the other four states, the corresponding alternatives are chosen.
When a pleasure stimulus occurs, state T is changed to state D, when a pain stimu-
lus occurs, T is changed to U. Note that state D cannot be changed. The proposed
learning method sounds very simple, but Turing surprisingly remarked:

I have succeeded in organizing such a (paper) machine into a universal machine.

Today the universal machine is called the Turing Machine. Turing even gave
some details of this particular P-type machine. Each instruction consisted of 128
digits, forming four sets of 32 digits, each of which describes one place in the main
memory.

2.4 Discipline and Initiative

We now turn to the next important observation of Turing. Turing notes that punish-
ment and reward are very slow learning techniques. So he requires:

If the untrained infant’s mind is to become an intelligent one, it must acquire both
discipline and initiative.

Discipline means strictly obeying the punishment and reward. But what is initia-
tive? The definition of initiative is typical of Turing’s behavioristic attitude. “Disci-
pline is certainly not enough in itself to produce intelligence. That which is required
in addition we call initiative. This statement will have to serve as a definition. Our
task is to discover the nature of this residue as it occurs in man, and to try and copy
it in machines.”

With only a paper computer available Turing was not able to investigate the sub-
ject initiative further. Nevertheless he made the bold statement [24]]: “A great posi-
tive reason for believing in the possibility of making thinking machinery is the fact
that it is possible to make machinery to imitate any small part of a man. One way
of setting about our task of building a thinking machine would be to take a man
as a whole and to try to replace all parts of him by machinery...Thus although this
method is probably the ‘sure’ way of producing a thinking machine it seems to be
altogether too slow and impracticable. Instead we propose to try and see what can be
done with a ‘brain’ which is more or less without a body providing, at most organs
of sight, speech, and hearing. We are then faced with the problem of finding suitable
branches of thought for the machine to exercise its powers in.”
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Turing mentions the following fields as promising:

Various games, e.g. chess, bridge
The learning of languages
Translation of languages
Cryptography

Mathematics

Turing remarks: “The learning of languages would be the most impressive, since
it is the most human of these activities. This field seems however to depend rather
too much on sense organs and locomotion to be feasible.” Turing seems here to have
forgotten that language learning is necessary for his imitation game!

3 Von Neumann’s Logical Theory of Automata

In 1938 Alan Turing was assistant to John von Neumann. But later they worked
completely independently from each other, not knowing the thoughts the other had
concerning the possible applications of the newly designed electronic computers. A
condensed summary of the research of John von Neumann concerning machine in-
telligence is contained in his paper “The General and Logical Theory of Automata”
[23]. This paper was presented in 1948 at the Hixon symposium on: Cerebral mech-
anism of behavior. Von Neumann was the only computer scientist at this sympo-
sium. The reason was that von Neumann closely observed the theoretical research
aimed to understand the brain in order to use the results for artificial automata.

Von Neumann notices three major limitations of the present size of artificial
automata

e The size of componentry
e The limited reliability
e The lack of a logical theory of automata

There have been tremendous achievements in the first two areas. Therefore I will
concentrate on the theory problem. Here von Neumann predicted:

The logic of automata will differ from the present system of formal logic in two
relevant respects.

1. The actual length of “chains of reasoning”, that is, of the chains of operations,
will have to be considered.

2. The operations of logic will all have to be treated by procedures which allow
exceptions with low but non-zero probabilities.

... This new system of formal logic will move closer to another discipline which has
been little linked in the past with logic. This is thermodynamics, primarily in the
form it was received from Boltzmann, and is that part of theoretical physics which
comes nearest in some of its aspects to manipulating and measuring information.
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Von Neumann tried later to formalize probabilistic logic. His results appeared
in [26]]. But this research was more or less a dead end, because von Neumann did
not abstract from the hardware components. They are unreliable and have a certain
probability of failure. In addition, von Neumann included time in his model, making
a mathematical analysis of a given system difficult. Probabilistic reasoning is now
heavily used in artificial intelligence [17]. The chains of operations are investigated
in a branch of theoretical computer science called computational complexity [8].

3.1 McCulloch-Pitts Theory of Formal Neural Networks

In 1943 McCulloch and Pitts had described the brain by a formal neural net-
work, consisting of interconnected binary neurons. Von Neumann summarizes their
major result follows:

“The “functioning’ of such a network may be defined by singling out some of the
inputs of the entire system and some of its outputs, and then describing what original
stimuli on the former are to cause what ultimate stimuli of the latter. McCulloch and
Pitts” important result is that any functioning in this sense which can be defined
at all logical, strictly, and unambiguously in a finite number of words can also be
realized by such a formal system.”

In modern terms: Any computable function can be realized by a sufficiently large
McCulloch and Pitts network.

McCulloch and Pitts had derived this result by showing that their formal neural
network connected to an infinite tape is equivalent to a Turing machine. But even
given this result, von Neumann observes that at least two problems remain

1. Can the network be realized within a practical size?
2. Can every existing mode of behavior really be put completely and unambigu-
ously into words?

Von Neumann informally discusses the second problem, using the problem of
analogy. He remarks prophetically:

There is no doubt that any special phase of any conceivable form of behavior can be
described “completely and unambiguously” in words.... It is, however an important
limitation, that this applies only to every element separately, and it is far from clear
how it will apply to the entire syndrome of behavior.

This severe problem has not been noticed by Turing. Using the example visual
analogy von Neumann argues: “One can start describing to identify any two rec-
tilinear triangles. These could be extended to triangles which are curved, whose
sides are only partially drawn etc... We may have a vague and uncomfortable feel-
ing that a complete catalogue along such lines would not only be exceedingly long,
but also unavoidably indefinite at its boundaries. All of this, however, constitutes
only a small fragment of the more general concept of identification of analogous
geometrical objects. This, in turn, is only a microscopic piece of the general con-
cept of visual analogy.” Thus von Neumann comes to the conclusion:
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Now it is perfectly possible that the simplest and only practical way to say what
constitutes a visual analogy consists in giving a description of the connections of
the visual brain....It is not at all certain that in this domain a real object might not
constitute the simplest description of itself.

Von Neumann ends the section with the sentence: “The foregoing analysis shows
that one of the relevant things we can do at this moment is to point out the directions
in which the real problem does not lie.” In order to understand and investigate the
fundamental problem, von Neumann identified an important subproblem. In nature
it is obvious that more complex beings have been developed from less complex ones.
Is this also possible using automata? How much complexity is needed for automata
to create more complex ones?

3.2 Complication and Self-reproduction

Von Neumann starts the discussion of complexity with the observation that if an
automaton has the ability to construct another one, there must be a decrease in com-
plication. In contrast, natural organisms reproduce themselves, that is, they produce
new organisms with no decrease in complexity. So von Neumann tries to construct
a general artificial automata which could reproduce itself. The famous construction
consists of the following automata:

1. A general constructive machine, A, which can read a description @(X) of another
machine, X, and build a copy of X from this description:

A+ Dd(X)~X
2. A general copying machine, B. which can copy the instruction tape:
B+ ®d(X)~ O(X)

3. A control machine, C, which when combined with A and B, will first activate B,
then A, link X to @(X) and cut them loose from A+B+C

A+B+C+OX)~X+D(X)
Now choose X to be A+B+C
A+B+C+PA+B+C)~A+B+C+DPA+B+C)
4. Itis possible to add the description of any automaton D

A+B+C+®(A+B+C+D)~>A+B+C+D
+®(A+B+C+D)

Now allow mutation on the description @(A + B+ C+ D)
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A+B+C+®A+B+C+D)~A+B+C+D
+@A+B+C+D)

Mutation at the D description will lead to a different self-reproducing automaton.
This might allow the system to simulate some kind of evolution as seen in natural
organisms.

Von Neumann later constructed a self-reproducing automata which consisted of
29 states [27]). This convinced von Neumann that complication can also be found in
artificial automata. Von Neumann ends the paper with the remark:

This fact, that complication, as well as organization, below a critical level is degen-
erative, and beyond that level can become self-supporting and even increasing, will
clearly play an important role in any future theory of the subject.

Von Neumann was well aware of the other two important evolutionary processes
besides replication - namely variation and selection. He decided that knowledge
about these two processes was not yet sufficient to incorporate them in his the-
ory of automaton. “Conflicts between independent organisms lead to consequences
which, according to the theory of natural selection, are believed to furnish an im-
portant mechanism of evolution. Our models lead to such conflict situations. The
conditions under which this motive for evolution can be effective here may be quite
complicated ones, but they deserve study.”

Cellular automata have lead to great theoretical research. They can easily be ex-
tended to have the power of Turing machines. Nevertheless, the central problem
of this approach remains unsolved: How can the automata evolve complex prob-
lem solving programs starting with fairly simple initial programs? This happened
in biological evolution. Starting with small self-reproducing units complex problem
solving capabilities have evolved, culminating in the human brain.

4 Holland’s Logical Theory of Adaptive Systems

In the paper “Outline for a Logical Theory of Adaptive Systems” [10] John Holland
tried to continue the scientific endeavor initiated by von Neumann. He wrote:

The theory should enable to formulate key hypotheses and problems particularly
from molecular control and neurophysiology. The work in theoretical genetics
should find a natural place in the theory. At the same time, rigorous methods of
automata theory, particularly those parts concerned with growing automata should
be used.

Holland’s proposal is a very early attempt to work on a constructive theory of the
evolution of automata. It tries to combine being, acting, developing, and evolving
(see Chapter 17 for more details). This proposal is so important that I will describe
it in detail. Holland’s emphasis (like von Neumann‘s) is foremost on theories and
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systems, he does not claim to solve grand challenge applications with the proposed
methods. This can be tried after the theories have been formulated and verified.

“Unrestricted adaptability (assuming nothing is known of the environment) re-
quires that the adaptive system be able initially to generate any of the programs of
some universal computer ... With each generation procedure we associate the pop-
ulation of programs it generates;. . . In the same vein we can treat the environment as
a population of problems.”

Now let us have a closer look at Holland’s model. First, there is a finite set of gen-
erators (programs) (g1, ..., gx). The generation procedure is defined in terms of this
set and a graph called a generation tree. Each permissible combination of generators
is represented by a vertex in the generation tree. Holland now distinguishes between
auxiliary vertices and main vertices. Each auxiliary vertex will be labeled with two
numbers, called the connection and disconnection probabilities. This technique en-
ables to create new connections or to delete existing connections. Each main vertex
is labeled with a variable referred to as density. The interested reader is urged to
read the original paper [10].

Holland claims that from the generation tree and the transition equations of any
particular generation procedure, one can calculate the expected values of the den-
sities of the main vertices as a function of time. Holland writes: “From the general
form of the transition equations one can determine such things as conditions under
which the resulting generation procedures are stationary processes.” Thus Holland
already tried to formulate a stochastic theory of program generation! This is an idea
still waiting to be explored.

Holland’s next extension of the system is similar in spirit to von Neumann’s self-
reproducing automata. Holland introduces supervisory programs which can con-
struct templates which alter the probabilities of connections. Templates play the
role of catalysts or enzymes. Thus program construction is also influenced by some
kind of “chemical reactions.”

The above process is not yet adaptive. Adaptation needs an environment posing
problems. Therefore Holland proposes that the environment is treated as a popula-
tion of problems. These problems are presented by means of a finite set of initial
statements and an algorithm for checking whether a purported solution of the prob-
lem is in fact a solution. Holland then observes the problems of partial solutions and
subgoals. “When we consider the interaction of an adaptive system with its environ-
ment we come very soon to questions of partial solutions, subgoals etc. The simplest
cases occur when there is an a priori estimate of the nature of the partial solution
and a measure of the closeness of its approach to the final solution.”

Holland then observes that a rich environment is crucial for the adaptation.
“Mathematical characterization of classes of rich environments relative to a given
class of adaptive systems constitutes one of the major questions in the study of adap-
tive systems. ... An adaptive system could enhance its rate of adaptation by some-
how enriching the environment. Such enrichment occurs if the adaptive system can
generate subproblems or subgoals whose solution will contribute to the solution of
the given problems of the environment.”
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It is very interesting to note that Holland distinguished three kinds of programs
— supervisory programs, templates, and programs for the problem solution. The su-
pervisory programs use a probabilistic generation tree to generate programs, the
templates are used as catalyst to “skew” the generation process. Holland perceived
a hierarchy of programs [9]:

1. productive systems — the generator system is able to produce other generators

2. autocatalytic systems — the generator system produces generators which are used
in the construction

self-duplicating systems — the generator system produces duplicates of itself

4. general adaptive systems — has still to be defined

(O]

“The beginning of such a definition (of adaptive systems) lies in the following
consideration: with the help of concepts such as autocatalytic and self-duplicating
generator systems it is possible to define such concepts as steady-state equilibria and
homeostasis for embedded automata. . . If the generator system for such an automa-
ton has a hierarchical structure, then a small change in structure produces a small
change in proportion to the “position” of the change in the hierarchy. .. By making
changes first at the highest level and then at progressively lower levels of the hier-
archy, it should be possible to narrow down rather quickly to any automaton in this
category having some initially prescribed behavior.”

I believe that Holland’s proposal is a very good starting point for future research.
It puts forward many ideas not yet contained in current research. After working for
several years on this theory Holland turned to a much simpler evolution model. The
environment is hidden in a fitness function. Evolution then reduces to an optimiza-
tion problem. This research lead to the famous genetic algorithm.

5 The Beginning of Artificial Intelligence - The Logic Theorist

The term artificial intelligence was coined in the mid fifties. One of the first achieve-
ments was the logic theory machine, also called the Logic Theorist LT by Newell,
Shaw and Simon [16]]. LT proved theorems in elementary symbolic logic, more pre-
cisely the sentential calculus. It consists of expressions built from combinations of
basic symbols. Principia Mathematica from Russell and Whitehead lists five ex-
pressions as axioms for the sentential calculus. The first three are

(porq) —p
p— (porq)
(porq) — (qorp)

p and g are binary variables. Given any variable p we can form (not p) Given any
two variables we can form the expression (p or ¢) or p — q. From these axioms
theorems can be derived.

When the LT found a simpler proof of proposition 2.85 of Principia Mathematica,
Simon wrote to Russell: “We have accumulated some interesting experience about
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the effects of simple learning programs superimposed on the basic performance
program. For example we obtain rather striking improvements in problem-solving
ability by inducing the machine to remember and use the fact that particular the-
orems have proved in the past useful to it in the connection with particular proof
methods.....In general, the machine’s problem solving is much more elegant when it
works with a selected list of strategic theorems than when it tries to remember and
use all the previous theorems” ([20] ,p.208).

Russell answered: “I am delighted by your example of superiority of your ma-
chine to Whitehead and me...I am also delighted by your exact demonstration of the
old saw that wisdom is not the same thing as erudition” ([20], p. 208).

Simon made serious attempts to interpret LT as a psychological theory of problem
solving. But after analyzing thinking-aloud protocols he realized that LT did not yet
fit at all the detail of human problem-solving revealed by the protocols. Newell and
Simon identified the subjects principal problem solving tool. They called it means-
ends analysis.

Means-ends analysis is accomplished by comparing the problem goal with the
present situation and noticing one or more differences between them. The observed
difference jogs memory for an action that might reduce or eliminate the differences.
The action is taken, a new situation is observed, and if the goal has still not been
reached, the whole process is repeated. Means-ends analysis is used today in many
problem solving tools. In principle backpropagation in artificial neural networks can
also be seen as means-ends analysis.

Means-ends analysis is the central component of the next Al system Newell,
Shaw, and Simon developed. It was named the General Problem Solver GPS. It is
an impressive system incorporating many important problem solving techniques,
but difficult applications have not been reported.

The success of LT lead Simon and Newell in 1958 to their famous prediction : “I
do not want to shock you, but there are now in the world machines that think, that
learn, and that create. Moreover, their ability to do these things is going to increase
rapidly until - in a visible future - the range of problems they can handle will be
coextensive with the range to which the human mind has been applied [19].”

6 Discussion of the Early Proposals to Create Artificial
Intelligence by Simulating Evolution

I have reviewed only four of the early proposals which simulate natural systems
to create machine intelligence. One observation strikes immediately: all the re-
searchers investigated the problem of machine intelligence on a very broad scale.
The main emphasis of Turing was the design of efficient learning schemes. For Tur-
ing it was obvious that only by efficient learning of something like a child machine
an intelligent machine could be developed. The attitude of Turing was purely that
of a computer scientist. He firmly believed that machine intelligence equal to or
surpassing human intelligence could eventually be created.
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Von Neumann’s approach was more interdisciplinary, using also results from the
analysis of the brain. He had a similar goal, but he was much more cautious con-
cerning the possibility of creating an automaton with intelligence. He identified im-
portant problems which blocked the road to machine intelligence.

Both von Neumann and Turing investigated formal neural networks as a basic
component of an artificial brain. This component was not necessary for the design,
it was used only to show that the artificial automata could have a similar organization
as the human brain. Both researchers ruled out that a universal theory of intelligence
could be found, which would make it possible to program a computer according
to this theory. So Turing proposed to use learning as the basic mechanism, von
Neumann self-reproducing automata.

Von Neumann was sceptical about the creation of machine intelligence. He was
convinced that learning leads to the curse of infinite enumeration. While every sin-
gle behavior can be unambiguously described, there is obviously an infinite number
of different behaviors. Turing also saw the limitations of teacher based learning by
reward and punishment, therefore he required that the machine needs inifiative in
addition. Turing had no idea how learning techniques for initiative could be im-
plemented. He correctly observed that it was necessary for creating machine intelli-
gence by learning. Higher-level learning methods are still an open research problem.

The designs of Turing and von Neumann contain all components considered nec-
essary today for creating machine intelligence. Turing ended his investigation with
the problem of learning by initiative. Von Neumann invented as a first step self-
reproducing cellular automata.

There is no major flaw in their designs. Von Neumann’s question - can visual
analogy be described in finite time and limited space, is still unsolved.

In order to make the above problem clear, let me formulate a conjecture: The
computational universe can be divided into three sectors: computable problems;
non-computable problems (that can be given a finite, exact description but have no
effective procedure to deliver a definite result); and, finally, problems whose indi-
vidual behaviors are, in principle, computable, but that, in practice, we are unable to
formulate in an unambiguous language understandable for a Turing machine. Many
non-computable problems are successfully approached by heuristics, but it seems
very likely that the problem of visual analogy belongs to the third class.

Holland proposed a general scheme for breeding intelligent programs using the
mechanisms of evolution. This was the most ambitious proposal using program gen-
eration by evolutionary principles to create intelligent machines. This proposal tried
to circumvent Turing’s problem to code all the necessary knowledge.

Let us try to contrast the approach of Turing with those of von Neumann and
Holland. Turing proposed to programme the knowledge the humans have. In order
to speed up the implementation he suggested to programme an automaton with only
child like intelligence. The automaton child is then taught to become more intelligent.

Von Neumann was skeptical if all the components necessary for human like in-
telligence could be programmed in finite time and finite space. Therefore von Neu-
mann started with the idea to automatically evolve automata. This idea was extended
by Holland proposing an environment of problems to evolve the automata. On first
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sight this seems to solve the programming problem. Instead of copying human like
intelligence, an environment of problems was used. But Holland overlooked the
complexity of programming the problems. This would seem to be no easier than
programming the knowledge humans have about the environment.

Holland’s proposal to use stochastic systems, their steady-state equilibria and
homeostasis is in my opinion still a very promising approach for a constructive evo-
lution theory of automata. Holland himself never implemented his general model. It
is still a theoretical design.

Later von Neumann’s proposal has been extended insofar as both, the problem
solving programs and the problems evolve together [[14]. This obviously happened
in natural evolution. In a new research discipline called artificial life several attempts
have been made to evolve automata and the environment together, but the evolution
always stopped very early.

Newell, Shaw and Simon concentrated on the higher level problem solving capa-
bilities of humans. Evolutionary principles or lower level structures like the human
brain are not considered to be relevant. Instead a theory of problem solving by hu-
mans is used. Their research lead to cognitive science and to artificial intelligence
research based on theories of intelligence. Despite their great optimism, no convinc-
ing artificial intelligence system has been created so far using this approach.

7 Cyc and Cog: Two Large Projects in the Legacy of Alan
Turing

Only very few big projects have been pursued in the spirit of Alan Turing. Two
recent examples are the projects Cyc and Cog. Cyc is an attempt to assemble a
comprehensive ontology and data base of everyday knowledge, with the goal of
enabling the system human-like reasoning. The goal of the Cog project was to create
a humanoid robot.

7.1 The Cyc Project

The Cyc project was started in 1984 with the goal to specify common sense knowl-
edge in a well designed language [12}[6]]. Cyc attempts to assemble a comprehensive
ontology and database of everyday common sense knowledge, with the goal of en-
abling AI applications to perform human-like reasoning. The original knowledge
base is proprietary, but a smaller version of the knowledge base, intended to estab-
lish a common vocabulary for automatic reasoning, was released 2005 as OpenCyc
under an open source license.

Typical pieces of knowledge represented in the database are “Every tree is a
plant” and “Plants die eventually”. When asked whether trees die, the inference
engine can draw the obvious conclusion and answer the question correctly. The
Knowledge Base (KB) contains over a million human-defined assertions, rules or
common sense ideas. These are formulated in the language CycL, which is based
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on predicate calculus and has a syntax similar to that of the Lisp programming
language.

Much of the current work on the Cyc project continues to be knowledge en-
gineering, representing facts about the world by hand, and implementing efficient
inference mechanisms on that knowledge. Increasingly, however, work at Cycorp
involves giving the Cyc system the ability to communicate with end users in natural
language, and to assist with the knowledge formation process via machine learning.

Currently (2007) the knowledge base consists of

e 3.2 million assertions (facts and rules)
e 280,000 concepts
e 12,000 concept-interrelating predicates

Cyc runs now for 32 years, it is the longest running project in the history of Al
But despite its huge effort its success is still uncertain. Up to now Cyc has not been
successfully used for any broad Al application. The system is far away from being
used for a Turing test.

We remind the reader, that the coding of knowledge was considered by Turing as
too inefficient. Von Neumann even doubted if the necessary knowledge for visual
analogy could be specified in finite time. Today Cyc seems to be more a confirmation
of von Neumann’s doubt than a refutation.

7.2 The Cog Project

The Cog project was started in 1993 with extreme publicity. The goal was to under-
stand human cognitive abilities well enough to build a humanoid robot that develops
and acts similar to a person [3l[4]]. One of the key ideas of the project was to build
a robot with capabilities similar to a human infant. We have encountered this idea
already in Turing’s proposal.

“By exploiting a gradual increase in complexity both internal and external, while
reusing structures and information gained from previously learned behaviors, we
hope to be able to learn increasingly sophisticated behavior [4]].” Cog was designed
bottom-up [3]]. This lead to reasonable success in the beginning. The big problems
appeared later.

Brooks et al. wrote prophetically: To date (1999), the major missing piece of our
endeavor is demonstrating coherent global behavior from existing subsystems and
sub-behaviors. If all of these systems were active at once, competition for actua-
tors and unintended couplings through the world would result in incoherence and
interference among the subsystems [4)].

During the course of the project a lot of interesting research has been done. But
the problem of coherent or even intelligent behavior could not be solved. Therefore
the project was stopped in 2002 without even entering the learning or development
phase.
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8 The JANUS Hand-Eye Robot and the Pandemonium
Architecture

With my research group I have also tried two larger research projects in the spirit of
Alan Turing and John von Neumann. The most spectacular was our hand-eye robot
JANUS. With JANUS we bridged the gap between small-scale neural networks and
real-world applicability. The robot had two eyes and two arms with which it ob-
served and manipulated its environment. The robot learned from experience and
self-supervision, initialized only with a few essential properties. JANUS also incor-
porated structural and functional medical knowledge of the brain.

The JANUS architecture was directly influenced by the top-level structure of the
human brain and its hemispherical functional lateralization [7, 22]. However the
similarities end at that level and a great deal of freedom is permitted in lower-level
neural networks. The name JANUS was chosen after the Roman god for a specific
reason: The brain not only looks out and observes and weighs up its environment,
but it also looks inwardly and is aware of its own processes. It has a reflective archi-
tecture.

The JANUS brain controls a physical robot that may exist in a changing environ-
ment. The robot can be affected by the environment either directly, through physical
contact with objects, or indirectly by the thought and learning processes. The highest
level description of the JANUS architecture is illustrated in Figure[Il

The brain is divided in two halves laterally and two blocks vertically. All sensory
signals from the left side of the robot pass directly to the right half of the brain,
while those from the right side pass directly to the left half of the brain. The left
half of the brain controls the motor outputs affecting the right side of the robot,
and similarly the right half controls the left motor side. There exist an important
connection between the two hemispheres (the corpus callosum) where information
is exchanged.

The central concept of the JANUS architecture is the notion of self-assessment or
self-supervision, within a hierarchy of adaptable network modules. The modules can
modify themselves, and higher levels can act on other levels. In order that this might
be possible, each module tries to estimate its limitations through self-assessment
measures like confidence and reliability.

The JANUS project run from 1991 till 1997. It had to be abandoned because of
lack of funding. The research progress was promising, but in 1997 JANUS was still
far away to be used in a real application.The research has been published in the
series GMD reports. The reports are out of print. The easiest access is via the WEB
(http://citeseer.ist.psu.edu) or www.iais.fraunhofer.de/muehlenbein.html.

The low-level neural network architecture of JANUS has been investigated sep-
arately. We called it the PANDEMONIUM or MINOS architecture. Pandemonium
had been originally proposed in 1958 by Selfridge [18]]. The idea is to divide adap-
tively a complex domain, through the use of specialized agents, working in parallel.
All these agents, or daemons in Selfridge’s words, process the same signal in par-
allel, and each provides an answer with a certain confidence. The daemon with the
largest confidence will be chosen for classification.
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Fig. 1 The architecture of the JANUS brain

Thus for a letter classification problem we might have 26 agents, each of which
is specialized in recognizing a particular letter in all distortions. Each agent uses a
number of filters. The learning method used by Selfridge was gradient descent for
adapting the weights for each filter used.

We have taken this general idea and extended it to a modular system of neural net-
works. The central new idea is self-assessment by reflection. Each module observes
its own behavior and produces information relating to the quality of its classifica-
tion. The architecture was very successful in a number of classification tasks, but in
the course of developing it more and more refinements had to be implemented. The
interested reader is referred to 21} [1} 2]].

9 Conclusion

Today computational intelligence is divided into many fields e.g. evolutionary com-
putation, neural networks, fuzzy logic. These are further separated in a myriad of
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specialized techniques. In this paper I have recalled the fundamental research issues
of machine intelligence by discussing the research of Alan Turing and John von
Neumann. They represent two positions popular till today. For Turing the creation
of machines with human-like intelligence was just a question of programming time.
He estimated that sixty programmers had to work for fifty years. John von Neumann
was more cautious. Using the example of visual analogy he doubted that human-like
intelligent machines could be programmed in finite time and space. This lead him
to the question if intelligent programs could automatically evolve by simulating
evolution. While von Neumann solved the problem of self-reproducing automata,
automata solving complex problems could not be yet obtained. I have identified the
major problem of this approach: the programming of the environment seems to be
as difficult as programming the human problem solving capabilities.

In my opinion it is not yet clear if Turing will be ultimately right that automata
with human like intelligence could be programmed. Up to now computational intel-
ligence was successful in specialized applications only, automata passing the Turing
test or understanding languages are not yet in sight.
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Multiobjective Evolutionary Algorithms for
Electric Power Dispatch Problem

Mohammad A. Abido

Abstract. The potential of Multiobjective Evolutionary Algorithms (MOEA) for
solving a real-world power system multiobjective nonlinear optimization problem
is comprehensively presented and discussed. In this work, the Non-dominated Sort-
ing Genetic Algorithm (NSGA), Niched Pareto Genetic Algorithm (NPGA), and
Strength Pareto Evolutionary Algorithm (SPEA) have been developed and success-
fully applied to the Environmental/Economic electric power Dispatch (EED) prob-
lem. These multiobjective evolutionary algorithms have been individually examined
and applied to a standard test system. A hierarchical clustering algorithm is imposed
to provide the power system operator with a representative and manageable Pareto
set. Moreover, a fuzzy set theory based approach is developed to extract one of the
Pareto-optimal solutions as the best compromise solution. Several optimization runs
have been carried out on different cases of problem complexity. The results of the
MOEA have been compared to those reported in the literature. The results confirm
the potential and effectiveness of MOEA compared to the traditional multiobjective
optimization techniques. In addition, the performance of MOEA have been assessed
and evaluated using different measures of diversity, distribution, and quality of the
obtained non-dominated solutions.

1 Introduction

Generally, the basic objective of the traditional economic dispatch (ED) of electric
power generation is to schedule the committed generating unit outputs so as to meet
the load demand at minimum operating cost while satisfying all generator and sys-
tem equality and inequality constraints. This makes the ED problem a large-scale
highly constrained nonlinear optimization problem.
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However, thermal power plants are major causes of atmospheric pollution be-
cause of the high concentration of pollutants they cause such as sulphur oxides SO,
and nitrogen oxides NO,. Nowadays, the pollution minimization problem has at-
tracted a lot of attention due to the public demand for clean air. In addition, the
increasing public awareness of the environmental protection and the passage of the
U.S. Clean Air Act Amendments of 1990 have forced the power utilities to modify
their design or operational strategies to reduce pollution and atmospheric emissions
of the thermal power plants [17, 24 [43]].

Several strategies to reduce the atmospheric emissions have been proposed and
discussed in the literature [43]]. These include

e Installation of pollutant cleaning equipment such as gas scrubbers and electro-
static precipitators;
Switching to low emission fuels;
Replacement of the aged fuel-burners and generator units with cleaner and more
efficient ones;

e Emission dispatching.

The first three options require installation of new equipment and/or modification
of the existing ones that involve considerable capital outlay and, hence, they can
be considered as long-term options. The emission dispatching option is an attrac-
tive short-term alternative in which the emission, in addition to the fuel cost objec-
tive, is to be minimized. In recent years, this option has received much attention
(8,10 [16] since it requires only a small modification of the basic economic
dispatch to include emissions. Thus, the power dispatch problem can be handled as
a multiobjective optimization problem with non-commensurable and contradictory
objectives, since the optimum solution of the economic power dispatch problem is
not environmentally the best solution.

Generally speaking, there are three approaches to solve the environmen-
tal/economic dispatch (EED) problem. The first approach treats the emission as a
constraint with a permissible limit. The second approach treats the emission as an-
other objective in addition to the usual cost objective, and the problem is converted
to a single objective problem either by linear combination of both objectives or by
considering one objective at a time for optimization. The third and the most re-
cent approach handles both fuel cost and emission simultaneously as competing
objectives.

In the problem has been reduced to a single objective problem by treating
the emission as a constraint with a permissible limit. This formulation, however, has
severe difficulty in getting the trade-off relations between cost and emission.

Alternatively, minimizing the emission has been handled as another objective in
addition to the usual cost objective. A linear programming based optimization pro-
cedures in which the objectives are considered one at a time was presented in [18]].
Unfortunately, this approach does not give any information regarding the trade-offs
involved. In another research direction, the multiobjective EED problem was con-
verted to a single objective problem by linear combination of the different objectives
as a weighted sum [9, [10} [T6]. The important aspect of this weighted sum method
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is that a set of non-inferior solutions can be obtained by varying the weights. Un-
fortunately, this requires multiple runs. Furthermore, this method cannot be used
to find Pareto-optimal solutions in problems having a non-convex Pareto-optimal
front. To avoid this difficulty, the e-constraint method for multiobjective optimiza-
tion was presented in [[7, 45]]. This method is based on optimization of the most
preferred objective and considering the other objectives as constraints bounded by
some allowable levels €. The obvious weaknesses of this approach are that it is
time-consuming and tends to find weakly non-dominated solutions.

The recent direction is to handle both objectives simultaneously as competing ob-
jectives. A fuzzy multiobjective optimization technique for the EED problem was
proposed [41]. However, the solutions produced are sub-optimal and the algorithm
does not provide a systematic framework for directing the search towards the Pareto-
optimal front. A fuzzy satisfaction-maximizing decision approach was successfully
applied to solve the bi-objective EED problem [42]]. However, extension of the
approach to include more objectives such as security and reliability is a very in-
volved question. A multiobjective stochastic search technique for the multiobjective
EED problem was proposed in [14]. However, the technique is computationally in-
volved and time-consuming. In addition, the genetic drift and search bias are severe
problems that result in premature convergence. Therefore, additional efforts should
be made to preserve the diversity of the non-dominated solutions.

In dealing with multiobjective optimization problems, classical search and opti-
mization methods are not efficient for the following reasons.

e Most of them cannot find multiple solutions in a single run, thereby requiring
them to be applied as many times as the number of desired Pareto-optimal solu-
tions.

e Multiple applications of these methods do not guarantee finding widely different
Pareto-optimal solutions.

e Most of them cannot efficiently handle problems with discrete variables and
problems having multiple optimal solutions.

e Some algorithms are sensitive to the shape of the trade-off curve and cannot be
used in problems having a non-convex Pareto-optimal front.

On the contrary, the studies on evolutionary algorithms have shown that these meth-
ods can be efficiently used to solve multiobjective optimization problems and elim-
inate most of the above difficulties of classical methods [11],[12) 22,
144), 147, [49]. Since they use a population of solutions in
their search, multiple Pareto trade-off solutions can be found in a single run.
Recently, different multiobjective evolutionary algorithms (MOEA) have been
implemented and applied to the EED problem with impressive success B4.[35].
In this chapter, implementations of different MOEA techniques to solve the
real-world multiobjective EED problem have been carried out to assess their poten-
tial and effectiveness. Specifically speaking, Non-dominated Sorting Genetic Algo-
rithm (NSGA) [40], Niched Pareto Genetic Algorithm (NPGA) [26]], and Strength
Pareto Evolutionary Algorithm (SPEA) have been developed and implemented.
It is worth mentioning that this work presents an exploratory study, aiming to
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demonstrate the potential of MOEA for solving the problem under consideration.
The EED problem is formulated as a nonlinear constrained multiobjective optimiza-
tion problem where fuel cost and environmental impact are treated as competing
objectives. The potential of MOEA to handle this problem is investigated and dis-
cussed. A hierarchical clustering technique is implemented to provide the system
operator with a representative and manageable Pareto trade-off set. In addition, a
fuzzy-based mechanism is employed to extract the best compromise solution. Dif-
ferent cases with different complexities have been considered in this study. The
MOEA techniques have been applied to the standard IEEE 30-bus 6-generator test
system. These techniques were compared to each other and to classical multiob-
jective optimization techniques as well. The effectiveness of MOEA to solve the
EED problem is demonstrated. The quality and diversity of the non-dominated so-
lutions obtained by different MOEA techniques have been measured and assessed
quantitatively.

2 EED Problem Formulation

The environmental/economic dispatch problem is to minimize two competing ob-
jective functions, fuel cost and emission, while satisfying several equality and in-
equality constraints. Generally the problem is formulated as follows [28].

2.1 Problem Objectives

Minimization of Fuel Cost: The generator cost curves are represented by quadratic
functions and the total fuel cost F'(Pg) in ($/h) can be expressed as
N
F(Pg) =Y ai+biPg, +ciP},, (1)
i=1

where N is the number of generators, a;, b;, and c¢; are the cost coefficients of the
i"" generator, and Py; is the real power output of thei’” generator. P is the vector of
real power outputs of generators and is defined as

PG:[PGUPqu'“vPGN]T' (2)
Minimization of Emission: The total emission E (P ) in (ton/h) of atmospheric pol-

lutants such as sulphur oxides SO, and nitrogen oxides NO, caused by the operation
of fossil-fueled thermal generation can be expressed as

N
E(Pg) = Y. 107%(04+ BiPg, + 1iP3,) + Giexp(AiPg,), 3)
i=1

where a;, B, ¥i» i, and A; are coefficients of the i/ generator emission characteristics.



Multiobjective Evolutionary Algorithms for Electric Power Dispatch Problem 51

2.2 Problem Constraints

Generation capacity constraint: For stable operation, the real power output of each
generator is restricted by lower and upper limits as follows:

PEM < PG, < PE™, i=1,...,N. 4)

Power balance constraint: the total electric power generation must cover the total
electric power demand Pp and the real power loss in transmission lines Py,. Hence,

N
N PG, — Pp— Pipss = 0. 5
i=1

Calculation of Py, implies solving the load flow problem which has equality con-
straints on real and reactive power at each bus as follows

NB

PG,' — PD,- — Vl z Vj[G,‘j COS(5,‘ — 51) +B,‘j sin(&- — 51)} = O7 (6)
j=1
NB

0c, — Op, — Vi X, Vj[Gijsin(8; — 8;) — Bijcos(8; — 8;)] = 0, O]
Jj=1

where i =1,2,...,NB; NB is the number of buses; Qg; is the reactive power gener-
ated ati'* bus; Pp; and Qp; are the i bus load real and reactive power respectively;
G;; and B;; are the transfer conductance and susceptance between bus i and bus j
respectively; V; and V; are the voltage magnitudes at bus i and bus j respectively;
0; and J; are the voltage angles at bus i and bus j respectively. The equality con-
straints in Equations (&) and (7)) are nonlinear equations that can be solved using the
Newton-Raphson method to generate a solution of the load flow problem. During
the course of solution, the real power output of one generator, called the slack gen-
erator, is left to cover the real power loss and satisfy the equality constraint in ().
The load flow solution gives all bus voltage magnitudes and angles. Then, the real
power loss in transmission lines can be calculated as

NL

Ploxx = z 8k [Vlz + VJ2 - 2V1VJ COS((Si - 6/)] 5 (8)
k=1

where NL is the number of transmission lines; gi is the conductance of the K" line
that connects bus i to bus j.

Security constraints: for secure operation, the apparent power flow through the
transmission line S; is restricted by its upper limit as follows:

S), <SM™, k=1,...,NL. )
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It is worth mentioning that the &’ transmission line flow connecting bus i to bus j
can be calculated as

Sy = (Vid&i) I, (10)
where I;; is the current flow from bus i to bus j and it can be calculated as
liy = (Vig8) x |(Vid &= V;28)) xyiy + (Vid &) x ) | (an

where y;; is the line admittance while y is the shunt susceptance of the line.

2.3 Problem Formulation

Aggregating the objectives and constraints, the problem can be mathematically for-
mulated as a multiobjective optimization problem as follows.

Minlg'mize [F(Pg),E(Pg)], (12)
G
Subject to:
8(Pg) =0, (13)
h(Pg) <0, (14)

where g is the equality constraint representing the power balance while % are the in-
equality constraints representing the generation capacity and power system security.

3 Multiobjective Optimization

3.1 Principles and Definitions

Many real-world problems involve the simultaneous optimization of several objec-
tive functions. Generally, these functions are non-commensurable and often conflict-
ing objectives. Multiobjective optimization with such conflicting objective functions
gives rise to a set of optimal solutions, instead of a single optimum. The reason why
many optimal solutions are obtained is that no one can be considered to be better
than any other with respect to all objective functions. These optimal solutions are
known as Pareto-optimal solutions.

A general multiobjective optimization problem consists of a number of objectives
to be optimized simultaneously and is associated with a number of equality and
inequality constraints. It can be formulated as follows:

Minimize f;(x) i=1,...,Nppj, (15)



Multiobjective Evolutionary Algorithms for Electric Power Dispatch Problem 53

Subject to : { 8j(x) (16)
k

where f; is the i'" objective function, x is a candidate solution, and N, ; is the number
of objectives.

For a multiobjective optimization problem, any two solutions x; and x, can have
one of two relationships - one dominates the other or none dominates the other. In a
minimization problem, without loss of generality, a solution x; dominates x, iff the
following two conditions are satisfied:

1. Vie{1,2,..,Nyj}: fi(x1) < fi(x2), a7

2. E|j€{1,2,...,N,,hj}2fj(xl)<fj()€2). (18)

If any of the above conditions is violated, the solution x; does not dominate
the solution x;. If x; dominates the solution x,, x; is called the non-dominated
solution within the set {x;, x,}. The solutions that are non-dominated within the
entire search space are denoted as Pareto-optimal and constitute the Pareto-optimal
set. The objective function values associated with the non-dominated solutions in
Pareto-optimal set comprise the Pareto-optimal front.

3.2 Fitness Assignment

Fonseca and Fleming [22] categorized several MOEAs and compared different fit-
ness assignment approaches. They classified these approaches as aggregating ap-
proaches, non-Pareto-based approaches, and Pareto-based approaches.

Aggregating approaches combine the problem objectives into a single function
that is used for fitness calculation. Although these approaches have the advan-
tage of producing one single solution, they require well-known domain knowledge
that is often not available. In addition, multiple runs are required to find a family
of non-dominated solutions and to identify the a Pareto trade-off front. The most
popular aggregating approaches are the weighted-sum, goal programming, and &-
constrained methods [11].

To overcome the difficulties involved in the aggregating approaches, alternative
techniques based on population policies, selection criteria, or special handling of the
objectives have been developed. These approaches are known as non-Pareto-based
approaches. The advantage of these approaches is that multiple non-dominated
solutions can be simultaneously evolved in a single run. These approaches, how-
ever, are often sensitive to the non-convexity of Pareto-optimal sets. The most
popular non-Pareto-based approaches are the Vector Evaluated Genetic Algo-
rithm (VEGA) [37], multi-sexual genetic algorithm [33], and weighted Min-Max
approach [12]].
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The basic idea of the Pareto-based fitness assignment is to find a set of solutions
in the population that are non-dominated by the rest of the population. These so-
lutions are then assigned the highest rank and eliminated from further contention.
Generally, all approaches of this class explicitly use Pareto dominance in order to
determine the reproduction probability of each individual. Some Pareto-based ap-
proaches are NSGA, NPGA, and SPEA.

3.3 Diversity Preservation

In general, the goal of a multiobjective optimization algorithm is not only to guide
the search towards the Pareto-optimal front but also to maintain population diver-
sity in the trade-off front. Unfortunately, a simple evolutionary algorithm tends to
converge towards a single solution due to selection pressure, selection noise, and
operator disruption [34]]. Several approaches have been developed in order to over-
come this problem, preserve the diversity in the population, and prevent premature
convergence. These approaches are classified as niching techniques and non-niching
techniques. Niching algorithms are characterized by their capabilities of maintain-
ing stable subpopulations (niches).

Fitness sharing is the most frequently used niching technique. The basic idea be-
hind this technique is: the more individuals are located in the neighborhood of a
certain individual, the more its fitness value is degraded. The neighborhood is de-
fined in terms of a distance measure d;; and specified by the niche radius Ogpqye.

Restricted mating is the most frequently used non-niching technique. In this tech-
nique, two individuals are allowed to mate only if they are within a certain distance.
This mechanism may avoid the formation of lethal individuals and therefore im-
prove the online performance. However, it does not appear to be widely used in the
field of multiobjective evolutionary algorithms [22]].

4 Multiobjective Evolutionary Algorithms

The recent studies on evolutionary algorithms have shown that these methods can
be efficiently used to eliminate most of the difficulties of the classical optimization
methods. In this study, the basic Pareto-based MOEA have been developed and
implemented. Specifically speaking, NSGA [40], NPGA [26], and SPEA have
been considered in this work.

4.1 Non-dominated Sorted Genetic Algorithm (NSGA)

Srinivas and Deb [40] developed NSGA in which a ranking selection method is
used to emphasize current non-dominated solutions and a niching method is used
to maintain diversity in the population. Before the selection is performed, the
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population is first ranked in several steps. At first, the non-dominated solutions
in the population are identified. These non-dominated solutions constitute the first
non-dominated front and are assigned the same dummy fitness value. To maintain
diversity in the population, these non-dominated solutions are then shared with their
dummy fitness values. Phenotypic sharing on the decision space is used in this tech-
nique. After sharing, these non-dominated individuals are ignored temporarily to
process the rest of population members. The above procedure is repeated to find the
second level of non-dominated solutions in the population. Once they are identified,
a dummy fitness value, which is a little smaller than the worst shared fitness value
observed in solutions of first non-dominated set, is assigned. Thereafter, the shar-
ing procedure is performed among the solutions of the second non-domination level
and the shared fitness values are found as before. This process is continued until
all population members are assigned a shared fitness value. The population is then
reproduced with the shared fitness values. A stochastic remainder selection is used
in this study.

In the first generation, the non-dominated solutions of the first front are stored
in an external set. After ranking in the subsequent generations, this external set
is extended by adding the solutions from the new first fronts, and removing any
dominated solutions. Generally, NSGA includes two main steps: fitness assignment
and fitness sharing.

Fitness assignment: the basic idea of this approach is to find a set of solutions in
the population that are non-dominated by the rest of the population. Consider a set
of N population members, each having N,;,; objective function values, the following
procedure is used to find the nondominated set of solutions:-

Step 1: Initiate the individual counter i with i = 1.

Step 2: Forall j = 1,...,N and j # i, compare solutions x’ and x/ for domina-
tion using the conditions of domination.

Step 3: If for any j, x' is dominated by x/, mark x’ as dominated.

Step 4: If all individuals in the population are considered, Go to Step 5, else
set i =i+ 1 and go to Step 2.

Step 5: All solutions that are not marked dominated are non-dominated
solutions.

These solutions represent the first front and are eliminated from further contention.
This process continues until the population is properly ranked.

Fitness sharing: the basic idea behind sharing is: the more individuals are located
in the neighborhood of a certain individual, the more its fitness value is degraded.
The neighborhood is defined in terms of a distance measure d and specified by the
niche radius O p,.. Given a set of iy, solutions in the kth front each having a dummy
fitness value f , the sharing procedure is performed in the following way [26] for
each solution i = 1,... ,ny:-
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Step 1: Compute a normalized Euclidean distance measure with another solu-
tion j in the kth nondominated front, as follows:

\{Z xk—xk (19)

where P is the number of variables in the problem. x4 and x| are the
upper and lower bounds of variable x;.

Step 2: This distance d;; is compared with a prespecified parameter O g4, and
the following sharing function value is computed:

di \? .
Sh(dlj) = = (th;m> ’ if d’/ S Oshare (20)
0, otherwise

Step 3: Increment j. If j < ng, go to Step 1 else calculate niche count for ith
solution as follows:

Ny
=Y Sh(d;)) (1)
=1

Step 4: Degrade the dummy fitness f; of ith solution in the kth nondomination
front to calculate the shared fitness, f;*, as follows:

=3 k
fi= f (22)

m;
This procedure is continued for all i =1,..,n and a corresponding f;* is found.
Thereafter, the smallest value f" of all f;" in the kth nondominated front is found
for further processing. The dummy fitness of the next non-dominated front is as-

signed to be f, 1 = ,?’i“ — &, where g is a small positive number.

4.2 Niched Pareto Genetic Algorithm (NPGA)

Horn et al [26] proposed a tournament selection scheme based on Pareto dominance.
Two competing individuals and a comparison set of other individuals are picked at
random from the population. The number of individuals in the comparison set is
given by the parameter #,4,,,. Generally, the tournament selection is carried out as
follows. If one candidate is dominated by one or more members of the comparison
set while the other is not, then the later will be selected for reproduction. If neither
or both candidates are dominated by any members of the comparison set, then the
winner will be decided by sharing. The phenotypic sharing on the attribute space is
used in this technique. Generally, the tournament selection and sharing procedure
are carried out as follows.

Pareto domination tournaments: Consider a set of N population members, each
having N,,; objective function values. The following procedure can be used to find
the non-dominated set of solutions:
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Step 1: Begin withi = 1.

Step 2: Randomly pick two candidates for selection x| and x;.

Step 3: Randomly pick a comparison set of individuals from the population.

Step 4: Compare each candidate, x| and x;, against each individual in the com-
parison set for domination using the conditions for domination.

Step 5: If one candidate is dominated by the comparison set while the other
is not, then select the latter for reproduction and go to Step 7, else
proceed to Step 6.

Step 6: If neither or both candidates are dominated by the comparison set, then
use sharing to choose the winner.

Step 7: If i = N is reached, stop selection procedure, else set i =i+ 1 and Go
to Step 2.

Sharing procedure: To prevent the genetic drift problem, a form of sharing should
be carried out when there is no preference between two candidates. This form of
sharing maintains the genetic diversity along the population fronts and allows the
GA to develop a reasonable representation of the Pareto-optimal front. Generally,
the basic idea behind sharing is: the more individuals are located in the neighbor-
hood of a certain individual, the more its fitness value is degraded. The sharing
procedure is performed in the following way for the candidate i:-

Step 1: Begin with j = 1.
Step 2: Compute a normalized Euclidean distance measure with another
individualj in the current population, as follows:

Novj (i _ i\ *
dij=1| >, ( ” ﬁ) (23)
k=1 Jk - Jk

where N,,; is the number of problem objectives. The parameters J}'
and J,lC are the upper and lower values of the k-th objective function Jj.
Step 3: This distance d;; is compared with a prespecified niche radius g
and the following sharing function value is computed as:
d:: 2 .
1- ( Y ) 3 lfdij < Ohare

Oshare

Sh(d;j) = (24)

0, otherwise

Step 4: Set j = j+1.If j <N, go to Step 2, else calculate niche count for the
candidate i as follows:

N
mi =Y Sh(d;j) (23)
j=1

Step 5: Repeat the above steps for the second candidate.
Step 6: Compare m| and my. If m; < mj, then choose the first candidate, else
choose the second candidate.
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4.3 Strength Pareto Evolutionary Algorithm (SPEA)

Zitzler and Thiele presented SPEA as a potential algorithm for multiobjective
optimization. This technique stores externally the individuals that represent a non-
dominated front among all solutions considered so far. All individuals in the external
set participate in selection. SPEA uses the concept of Pareto dominance in order to
assign scalar fitness values to individuals in the current population. The procedure
starts with assigning a real value s in [0,1) called the strength for each individual
in the external set. The strength of an individual is proportional to the number of
individuals covered by it. The strength of a Pareto solution is at the same time its
fitness. Subsequently, the fitness of each individual in the population is the sum
of the strengths of all external Pareto solutions by which it is covered. In order to
guarantee that Pareto solutions are most likely to be produced, one is added to the
resulting value. This fitness assignment ensures that the search is directed towards
the non-dominated solutions and, in the same time, the diversity among dominated
and non-dominated solutions is maintained.

The basic elements of the SPEA technique are briefly stated and defined as
follows:-

e FExternal set: - It is a set of non-dominated solutions. These solutions are stored
externally and updated continuously. Ultimately, the solutions stored in this set
represent the Pareto optimal front.

o Strength of an individual: - It is an assigned real value s [0,1) for each individual
in the external set. The strength of an individual is proportional to the number of
individuals covered by it.

e Fitness of population individuals: - The fitness of each individual in the popula-
tion is the sum of the strengths of all external solutions by which it is covered. It
is worth mentioning that, unlike the technique presented in [[14]], the fitness of a
population member is determined only in relation to the individuals stored in the
external set. This significantly reduces the computational burden of the fitness
assignment process. In fact, the strength of an individual in the external set is at
the same time its fitness.

Generally, SPEA can be described in the following steps.

Step 1 (Initialization): Generate an initial population and create the empty
external set.
Step 2 (External set updating): The external set is updated as follows.

(a) Search the population for the non-dominated individuals and copy
them to the external Pareto set.

(b) Search the external Pareto set for the non-dominated individuals
and remove all dominated solutions from the set.

(c) If the number of the individuals externally stored in the Pareto set
exceeds a prespecified maximum size, reduce the set by means of
clustering.
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Step 3 (Fitness assignment): Calculate the fitness values of individuals in
both external Pareto set and the population as follows.

(a) Assign a strength s to each individual in the external set. The
strength is proportional to the number of individuals covered by
that individual.

(b) The fitness of each individual in the population is the sum of the
strengths of all external Pareto solutions which dominate that in-
dividual. A small positive number is added to the resulting sum to
guarantee that Pareto solutions are most likely to be produced.

Step 4 (Selection): Combine the population and the external set individuals.
Select two individuals at random and compare their fitness. Select the
better one and copy it to the mating pool. Repeat the selection process
N times to fill the mating pool

Step 5 (Crossover and Mutation): Perform the crossover and mutation oper-
ations according to their probabilities to generate the new population.

Step 7 (Termination): Check for stopping criteria. If any one is satisfied then
stop else copy new population to old population and go to Step 2. In
this study, the search will be stopped if the generation counter exceeds
its maximum number.

It is worth mentioning that new and revised versions of MOEA have been presented
such as NSGA-II [15}29], SPEA?2 [47], and multiobjective particle swarm optimiza-
tion MOPSO [13]. Recently, different studies in analysis, test cases, and applications
of MOEA have also been discussed [20, 31}, 39].

5 MOEA Implementation

5.1 Reducing the Pareto Set by Clustering

The Pareto-optimal set can be extremely large or even contain an infinite number of
solutions. In this case, reducing the set of non-dominated solutions without destroy-
ing the characteristics of the trade-off front is desirable from the decision maker’s
point of view. An average linkage based hierarchical clustering algorithm [33] used
by SPEA [49] is employed to reduce the Pareto set to a manageable size. It works
iteratively by joining the adjacent clusters until the required number of groups is
obtained. It can be described as:

Given a set P for which its size exceeds the maximum allowable size N, it is required
to form a subset P* with the size N
The algorithm is illustrated in the following steps.

Step 1: Initialize cluster set C; each individual i € P constitutes a distinct
cluster.
Step 2: If the number of clusters < N, then go to Step 5, else go to Step 3.
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Step 3:

Step 4:

Step 5:

Step 6:
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Calculate the distance of all possible pairs of clusters. The distance d,
of two clusters ¢; and ¢, € C is given as the average distance between
pairs of individuals across the two clusters

1
d, =
nip.ny

Y dlir.i) (26)

i|€cy,hh€Cy

where n and n, are the number of individuals in the clusters ¢; and ¢;
respectively. The function d reflects the distance in the objective space
between individuals i1 and i;.

Determine two clusters with minimal distance d.. Combine these clus-
ters into a larger one. Go to Step 2.

Find the centroid of each cluster. Select the nearest individual in this
cluster to the centroid as a representative individual and remove all
other individuals from the cluster.

Compute the reduced non-dominated set P* by uniting the representa-
tives of the clusters.

5.2 Best Compromise Solution

Fuzzy set theory has been implemented to efficiently derive a candidate trade-off
solution for the decision makers [[19, 211, [36]]. Upon having the final non-dominated
set, the proposed approach presents a fuzzy-based mechanism to extract a single
non-dominated solution from the trade-off front as the best compromise solution.
Due to the imprecise nature of the decision maker’s judgment, the ith objective
function of a solution in the non-dominated set, F;, is represented by a membership
function u; defined as [36]

min
L, F < F™,
FM—F; min max
.ui - F‘m[ax _Fmin E < E < I.Tl )
1 1
0’ F > Fimax.

27)

where F/"** and F/™" are the maximum and minimum values of the ith objective
function respectively. For each non-dominated solution k, the normalized member-
ship function p* is calculated as

(28)
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where M is the number of non-dominated solutions. The best compromise solution
is the one having the maximum of u¥. As a matter of fact, arranging all solutions in
the trade-off front in descending order according to their membership function will
provide the decision maker with a priority list of non-dominated solutions. This will
guide the decision maker in view of the current operating conditions.

5.3 Real-Coded Genetic Algorithm

Due to the difficulties of binary representation when dealing with a continuous
search space of large dimensions, a real-coded genetic algorithm (RCGA) has
been implemented in this study. A decision variable x; is represented by a real num-
ber which lies between a lower limit a; and upper limit b;, i.e. x; € [a;,b;]. The
RCGA crossover and mutation operators are described as follows:-

Crossover: A blend crossover operator (BLX-o) has been employed in this study.
This operator starts by choosing randomly a number from the interval [x; — ot(y; —
Xi),yi+ o(yi — x;)], where x; andy; are the i parameter values of the parent solutions
andx; < y;. In order to ensure the balance between exploitation and exploration of
the search space, o = 0.5 is selected. This operator can be depicted as shown in
Figure[Tl

Mutation: The non-uniform mutation has been employed in this study. In this oper-
ator, the new value x: of the parameter x; after mutation at generation 7 is given as

;o Xi+A(l‘,b,'—X,'), if t=0,
xi_{xi—A(t,x;—a,-), ift=1, (29)
and;
Alt,y) = y(1 e, (30)

where 7 is a binary random number, r is a random number r € [0,1], gmqx iS the
maximum number of generations, and 3 is a positive constant chosen arbitrarily. In

exploitation

—

a, X, yr b,

[ i | | [ |
l I |

L) | ]
Y=oy, = x,) Y +eay = x)

—_— | S—
"' exploration

Fig. 1 Blend crossover
operator (BLX-or)
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this study, B = 5 was selected. This operator gives a value x; € [a;,b;] such that the
probability of returning a value close to x; increases as the algorithm advances. This
encourages uniform search in the initial stages when ¢ is small, and local search in
the later stages.

5.4 The Computational Flow

In this study, the basic MOEAs have been developed in order to make them suitable
for solving real-world nonlinear constrained optimization problems. The following
modifications have been incorporated in the basic algorithms.

(a) The constraint-handling approach adopted in this work is to restrict the search
within the feasible region. Therefore, a procedure is imposed to check the feasi-
bility of the initial population individuals and the children generated through GA
operations. This ensures the feasibility of the non-dominated solutions.

(b) A procedure for updating the non-dominated archive set is developed. In every
generation, the non-dominated solutions in the first front are combined with the
existing archive set. The augmented set is processed to extract the non-dominated
solutions that represent the updated non-dominated archive.

(c) A fuzzy-based mechanism is employed to extract the best compromise solution
over the trade-off curve and assist the power system operator to adjust the gener-
ation levels efficiently.

The solution procedure starts with generating the initial population at random. A
feasibility check procedure has been developed and superimposed on the MOEA to
restrict the search to the feasible region. The objective functions are evaluated for
each individual. The GA operations are applied and a new population is generated.
This process is repeated until the maximum number of generations is reached. All
techniques used in this study were implemented along with the above modifications
using the FORTRAN language. The computational flow charts of the developed
NSGA, NPGA, and SPEA are shown in Figures 2l 3] and @ respectively.

5.5 Settings of the Proposed Approach

For all optimization runs, the population size was set at 200. The size of the ex-
ternal set was chosen as 25. If the number of the non-dominated archive exceeds
this bound, the hierarchical clustering technique is called. Since the population in
SPEA is augmented to include the externally stored set for selection process, the
population size in SPEA was reduced to 175 individuals only. Crossover and muta-
tion probabilities were chosen as 0.9 and 0.01 respectively in all optimization runs.
Several runs have been carried out to set the parameters of each technique in order
to get the best results for fair comparison.
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6 Results and Discussions

In this study, the standard IEEE 6-generator 30-bus test system is considered to
assess the potential of MOEAs for solving the EED problem. The power system
considered has 30 buses or electrical nodes interconnected with each other with 41
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Table 1 Generator Cost and Emission Coefficients

G, G, Gs Gy Gs G

a 10 10 20 10 20 10
Cost b 200 150 180 100 180 150
c 100 120 40 60 40 100
o 4001 2543 4258 5326 4.258 6.131
B -5.554 -6.047 -5.094 -3.550 -5.094 -5.555
Emission Y 6490 5.638 4586 3.380 4586 5.151
¢ 2.0E-4 5.0E-4 1.0E-6 2.0E-3 1.0E-6 1.0E-5
A 2.857 3333 8000 2.000 8.000 6.667

Table 2 Problem complexity for the cases considered

Equality Constraints Inequality Constraints
Case 1 1 6
Case 2 60 6
Case 3 60 47

transmission lines. The system has also 6 generation plants to supply 23 electrical
loads. The single-line diagram of this system is shown in Figure[3l The line data and
bus data are given in the Appendix. The values of fuel cost and emission coefficients
are given in Table[Il

To demonstrate the effectiveness of the MOEA, three different cases have been
considered as follows:

Case 1: For the purpose of comparison with the reported results, the system is
considered as lossless and the security constraint is released. Therefore, the prob-
lem constraints are the power balance constraint without P, and the generation
capacity constraint.

Case 2: P, is considered in the power balance constraint and the generation
capacity constraint is also considered.

Case 3: All constraints are considered.

For fair comparison among the developed techniques, 10 different optimization runs
have been carried out in all cases considered. Table2]shows the problem complexity
with all cases in terms of the number of equality and inequality constraints.

At first, the fuel cost objective and emission objective are optimized individu-
ally to explore the extreme points of the trade-off surface in all cases. In this case,
the standard GA has been implemented as the problem becomes a single objective
optimization problem. The best results of cost and emission when optimized indi-
vidually for all cases are given in Table 3]

Case 1: NSGA, NPGA, and SPEA have been applied to the problem and both ob-
jectives were treated simultaneously as competing objectives. For NPGA, the niche
radius was chosen based on the guidelines in [26] and the size of the comparison set
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Table 3 Best solutions for cost and emission optimized

Case 1 Case 2 Case 3

Cost Emission Cost Emission Cost Emission
Psi 0.1095 0.4058 0.1152 0.4101 0.1475 0.4693
Ps» 0.2997 0.4592 0.3055 0.4631 0.3340 0.5223
Ps3 0.5245 0.5380 0.5972 0.5435 0.7864 0.6479
Pgy 1.0160 0.3830 0.9809 0.3895 1.0096 0.4734
Pgs 0.5247 0.5379 0.5142 0.5439 0.1072 0.1784
Pse 0.3596 0.5101 0.3542 0.5150 0.4806 0.5761
Cost 600.11 638.26 607.78 645.22 618.50 654.14
Emission 0.2221 0.1942 0.2199 0.1942 0.2302 0.2016

L 14 l 1

10 [

Fig. 5 Single-line diagram of the test system
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Fig. 6 NPGA with different settings of 4, parameter

tiom Was determined experimentally. The algorithm was tested several times with
different values for 7,4, starting from 5% to 50% of the population size with a step
of 5%. Only a part of the results is shown in Figure [6] for the purpose of clarity.
Experimental results have shown a favorable value of #4,, at 10% for our prob-
lem instance, whereas the performance degrades for values ¢4, greater than 20%.
Therefore, t,,,, is set at 10% of the population size.

The non-dominated fronts of all techniques for the best optimization runs are
shown in Figure[7] It is clear that the non-dominated solutions have good diversity
characteristics. It is quite clear that the problem is efficiently solved by these tech-
niques. The results also show that SPEA has better diversity characteristics. The best
cost and best emission solutions obtained out of 10 runs by different techniques are
given in Table @] It is clear that SPEA gives best cost and best emission compared
to others.

The best results of the MOEAs were compared to those reported using linear
programming (LP) [18] and a multiobjective stochastic search technique (MOSST)
[14]). The comparison is shown in Table[3l It is quite evident that the MOEAs give
better fuel cost results than the traditional methods, as a reduction more than 5 $/h
is observed with less level of emission in case of SPEA. The results also confirm
the potential of multiobjective evolutionary algorithms to solve real-world highly
nonlinear constrained multiobjective optimization problems.
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Table 4 The best solutions out of 10 runs for cost and emission of MOEA, Case 1

NSGA

Cost  Emission
Psi 0.1038 0.4072
P 0.3228 0.4536
Ps3 0.5123 0.4888
Psa 1.0387 0.4302
Pss 0.5324 0.5836
Pge 0.3241 0.4707
Cost 600.34 633.83
Emission 0.2241 0.1946

NPGA SPEA
Cost  Emission Cost Emission
0.1116 0.4146 0.1009 0.4240
0.3153 0.4419 0.3186 0.4577
0.5419 0.5411 0.5400 0.5301
1.0415 0.4067 0.9903 0.3721
0.4726 0.5318 0.5336 0.5311
0.3512 0.4979 0.3507 0.5190
600.31 636.04 600.22 640.42
0.2238 0.1943 0.2206 0.1942

69

Table 5 The best fuel cost and emission out of 10 runs of MOEA compared to traditional

algorithms

LP
Best Cost 606.31
Emission 0.2233
Best Emission 0.1942
Cost 639.60

MOSST[14] NSGA NPGA SPEA

605.89 600.34 600.31 600.22
0.2222 0.2241 0.2238 0.2206
0.1942 0.1946 0.1943 0.1942
644.11 633.83 636.04 640.42
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Table 6 The best solutions out of 10 runs for cost and emission of MOEA, Case 2

NSGA NPGA SPEA

Cost  Emission Cost Emission Cost Emission
Psi 0.1447 0.3929 0.1425 0.4064 0.1279 0.4145
P 0.3066 0.3937 0.2693 0.4876 0.3163 0.4450
Ps3 0.5493 0.5818 0.5908 0.5251 0.5803 0.5799
Pss 0.9894 0.4316 0.9944 0.4085 0.9580 0.3847
Pss 0.5244 0.5445 0.5315 0.5386 0.5258 0.5348
Pss 0.3542 0.5192 0.3392 0.4992 0.3589 0.5051

Cost 607.98 638.98 608.06 644.23 607.86 644.77
Emission 0.2191 0.1947 0.2207 0.1943 0.2176 0.1943

Case 2: With the problem complexity shown in Table 2, MOEA techniques have
been implemented and compared. Figure [8] shows the trade-off fronts of differ-
ent techniques for the best optimization runs. It is evident that the non-dominated
solutions obtained have good diversity characteristics. The closeness of the non-
dominated solutions of different techniques demonstrates good performance char-
acteristics of MOEAs. The best solutions obtained out of 10 runs by different tech-
niques are given in Table
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Fig. 8 Comparison of trade-off fronts, Case 2
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Table 7 The best solutions out of 10 runs for cost and emission of MOEA, Case 3

NSGA NPGA SPEA

Cost Emission Cost Emission Cost Emission
Psi 0.1358 0.4403 0.1127 0.4753 0.1319 0.4419
P 0.3151 0.4940 0.3747 0.5162 0.3654 0.4598
Ps3 0.8418 0.7509 0.8057 0.6513 0.7791 0.6944
Pss 1.0431 0.5060 0.9031 0.4363 0.9282 0.4616
Pss 0.0631 0.1375 0.1347 0.1896 0.1308 0.1952
Pse 0.4664 0.5364 0.5331 0.5988 0.5292 0.6131

Cost 620.87 649.24 620.46 657.59 619.60 651.71
Emission 0.2368 0.2048 0.2243 0.2017 0.2244 0.2019

Table 8 The best compromise solutions of NSGA

Casel Case2 Case3

Pgy 0.2252  0.2935 0.2712
Pcs 0.3622 0.3645 0.3670
Ps3 0.5222  0.5833 0.8099
Pca 0.7660 0.6763  0.7550
Fss 0.5397 0.5383 0.1357
Pss 0.4187 0.4076 0.5239

Cost 606.03 617.80 625.71
Emission 0.2041  0.2002 0.2136

Table 9 The best compromise solutions of NPGA

Casel Case2 Case3

Pgy 0.2663 0.2976 0.2998
Pcs 0.3700 0.3956 0.4325
Ps3 0.5222  0.5673 0.7342
Pca 0.7202 0.6928 0.6852
Fss 0.5256  0.5201 0.1560
Pgs 0.4296 0.3904 0.5561

Cost 608.90 617.79 630.06
Emission 0.2015  0.2004  0.2079

Case 3: MOEA techniques have been implemented and the trade-off fronts of
different techniques for the best optimization runs are shown in Figure B In this
case, the performance of NSGA is degraded with increasing the problem complex-
ity. The best cost and best emission solutions obtained out of 10 runs are given in
Table[7l
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Table 10 The best compromise solutions of SPEA

Casel Case2 Case3

Psi 0.2623 0.2752 0.3052
Pe 0.3765 0.3752 0.4389
Ps3 0.5428 0.5796 0.7163
Pca 0.6838 0.6770 0.6978
Pgs 0.5381 0.5283 0.1552
Pse 0.4305 0.4282 0.5507
Cost 610.30 617.57 629.59
Emission 0.2004 0.2001 0.2079
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Fig. 9 Comparison of trade-off fronts, Case 3
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Best compromise solution: - The membership functions given in Equation (27) and
Equation (28) are used to evaluate each member of the non-dominated set for each
technique. Then, the best compromise solution that has the maximum value of mem-
bership function was extracted. This procedure is applied in all cases and the best
compromise solutions are given in Tables[8] [0 and[T0lfor NSGA, NPGA, and SPEA
respectively. The best compromise solutions are also shown in Figures Bl Bl and [T0l

It is clear that there is good agreement between SPEA and NPGA.
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7 A Comparative Study

Generally, the definition of quality in the case of multiobjective optimization is sub-
stantially more complex than for single objective optimization problems. This is
because the optimization goal itself consists of the following multiple objectives

[46. 481 50]: -

1. The distance of the resulting non-dominated set to the Pareto-optimal front
should be minimized.

2. A good distribution of the solutions found is desirable.

3. The spread of the obtained non-dominated solutions should be maximized.

In this section, the above results for the different techniques have been compiled and
compared in view of the above objectives. In order to assess the diversity character-
istics of the proposed techniques, the best fuel cost and the best emission solutions
among the obtained non-dominated solutions for each technique given in Tables 4]
[6l and[7lare compared to those of individual optimization of each objective given in
Table 3l This indicates of how far the extreme solutions are from the single objec-
tive case. The agreement and closeness of the results given in these tables are quite
evident as the best solutions of different techniques are almost identical. It can be
concluded that the developed techniques have satisfactory diversity characteristics
for the problem under consideration as the best solutions for individual optimization
are obtained along with other non-dominated solutions in a single run.

A performance measure of the spread of the non-dominated solutions is presented
in [46]. The measure estimates the range to which the fronts spread out. In other
words, it measures the normalized distance of the two outer solutions, i.e. the best
cost solution and the best emission solution. The average values of the normalized
distance measure over 10 different optimization runs are given in Table [[1l The
results show that NPGA has the largest spread of the non-dominated solutions in
Case 1 while SPEA has the largest spread in Case 2. In Case 3, NSGA has the
largest spread.

On the other hand, the set coverage metric measure [50] for comparing the per-
formance of different MOEAs has been examined in this study. The average values
of this measure over 10 different optimization runs are given in Table It can be
shown that the non-dominated solutions of NSGA do not cover any SPEA solutions
in Case 3 while those of NSGA are approximately covered by SPEA. In addition,
NPGA non-dominated solutions barely cover SPEA solutions with a maximum cov-
erage of 14.4% while SPEA solutions cover relatively higher percentages of NPGA
solutions.

The quality measure [6] of the non-dominated solutions obtained by different
MOEAs is applied. This quality measure starts with combining all individual non-
dominated sets of all techniques to form a pool. An index to each solution is added
to refer to the associated technique. Then, the dominance conditions are applied to
all solutions in the pool. The non-dominated solutions are extracted from the pool to
form an elite set of solutions obtained by all techniques. From their indices, the non-
dominated solutions in the elite set can be classified according to their associated
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Table 11 Normalized distance measure of different techniques

NSGA NPGA SPEA
Case 1 0.93757 0.95001 0.93809
Case 2 0.92211 0.93747 0.94509
Case 3 0.85539 0.81312 0.85363

Table 12 Percentage of non-dominated solutions of set b covered by those in set a

Set A Set B Case 1 Case 2 Case 3
NSGA gpy 36 24 00

NPGA iy 20 56 1
SPEA Npa s e a0

Table 13 Number of “Pareto-optimal” solutions of different techniques in elite set of non-
dominated solutions

NSGA NPGA SPEA Elite Set
Size
Case 1 36 16 129 181
Case 2 19 17 129 165
Case 3 1 35 81 117

Table 14 Normalized distance measure of different techniques on elite set of non-dominated
solutions

NSGA NPGA SPEA
Case 1 0.82937 0.73043 1.00000
Case 2 0.63184 0.93501 1.00000
Case 3 0.00000 0.53827 1.00000

technique. The quality measure has been applied to the non-dominated solutions
obtained in each case. For 10 different optimization runs with 25 non-dominated
solutions obtained by each technique per run, the created pool contains 750 solu-
tions. For each case, the non-dominated solutions are extracted out of the pool and
the elite set is formed. The elite set consists of 181, 165, and 117 for Cases 1, 2,
and 3 respectively. The results of the proposed quality measure are given in Table
It can be observed that SPEA has the majority of the elite set members in all
cases. It can be concluded that the non-dominated solutions obtained by SPEA are
the best since approximately 71%, 78%, and 69% of the elite set size is contributed
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by SPEA in cases 1, 2, and 3 respectively. Also, it can be seen that only one non-
dominated solution obtained by NSGA in case 3 is a member in the elite set. The
trade-off represented by the non-dominated solutions in the elite set for all cases 1,
2, and 3 are shown in Figures[IQ [TT] and [[2]respectively.
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Table 15 Run time of Different Algorithms

NSGA

Run time (s) 0.727

NPGA
0.750

SPEA
0.671

Table 16 Robustness of MOEA for different initial populations

NSGA
Cost Emission
Min 600.34 0.1946
Max 600.77 0.1949
Ave 600.43 0.1947

NPGA
Cost Emission Cost
600.31 0.1943 600.22
600.78 0.1944 600.60
600.48 0.1943 600.33

SPEA
Emission
0.1942
0.1943
0.1943

M.A. Abido

The average value of the normalized distance results of the proposed measure
over 10 different optimization runs are given in Table [[4l It is worth mentioning
that the distance obtained with the proposed measure is that between the outer non-
dominated solutions of each technique represented in the elite set. It can be seen that
the non-dominated solutions obtained by SPEA span over the entire Pareto front in
all cases. In general, it can be concluded that SPEA has the best distribution of the
non-dominated solutions for the problem under consideration.

With the proposed approach of extracting an elite set from the combined non-
dominated solutions of all techniques, it can be seen that the proposed measure and
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Table 17 IEEE 30-bus test system line data

Line
#
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

40
41

From To Resistance Reactance Susceptance Rating

Bus

OO AN B DN WD~~~

C\WNNNNNNNNNP—!ND—AHHHr—lb—kr—lr—lb—kr—lr—lb—kr—l#
O 1 100U nh WNDW—= OO0 B NN

Bus

CESGEGESSSoSe® AN e

D) DD L L DN DN DN DD DN NN NN — DD
00O O VO I B WNDND =IO O

(pu)
0.0192
0.0452
0.0570
0.0132
0.0472
0.0581
0.0119
0.0460
0.0267
0.0120
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.1231
0.0662
0.0945
0.2210
0.0824
0.1070
0.0639
0.0340
0.0936
0.0324
0.0348
0.0727
0.0116
0.1000
0.1150
0.1320
0.1885
0.2544
0.1093
0.0000
0.2198
0.3202
0.2399
0.0636
0.0169

(puw)
0.0575
0.1852
0.1737
0.0379
0.1983
0.1763
0.0414
0.1160
0.0820
0.0420
0.2080
0.5560
0.2080
0.1100
0.2560
0.1400
0.2559
0.1304
0.1987
0.1997
0.1923
0.2185
0.1292
0.0680
0.2090
0.0845
0.0749
0.1499
0.0236
0.2020
0.1790
0.2700
0.3292
0.3800
0.2087
0.3960
0.4153
0.6027
0.4533
0.2000
0.0599

(puw)
0.0264
0.0204
0.0184
0.0042
0.0209
0.0187
0.0045
0.0102
0.0085
0.0045
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0214
0.0065

(MVA)
130
130
65
130
130
65
90
70
130
32
65
32
65
65
65
65
32
32
32
16
16
16
16
32
32
32
32
32
32
16
16
16
16
16
16
65
16
16
16
32
32

71
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Table 18 IEEE 30-bus test system bus data

Bus Pp MW)  Qp (MVAR)
1 0.00 0.00
2 21.70 12.70
3 2.40 1.20
4 7.60 1.60
5 94.20 19.00
6 0.00 0.00
7 22.80 10.90
8 30.00 30.00
9 0.00 0.00
10 5.80 2.00
11 0.00 0.00
12 11.20 7.50
13 0.00 0.00
14 6.20 1.60
15 8.20 2.50
16 3.50 1.80
17 9.00 5.80
18 3.20 0.90
19 9.50 3.40
20 2.20 0.70
21 17.50 11.20
22 0.00 0.00
23 3.20 1.60
24 8.70 6.70
25 0.00 0.00
26 3.50 2.30
27 0.00 0.00
28 0.00 0.00
29 2.40 0.90
30 10.60 1.90

the normalized distance measure are consistent and their results have a satisfactory
agreement with the simulation results. Also, the proposed measure reflects properly
the quality of the non-dominated solutions produced by each algorithm. In addition,
several techniques can be compared in a single run rather than on a one-to-one basis.

The comparison of the average value of the run time over 10 different optimiza-
tion runs per generation per “Pareto-optimal solution” of MOEA techniques with
case 1 is given in Table[T3l It is quite evident that the run time of SPEA is less than
that of the other techniques.

The robustness of MOEA techniques with respect to different initial populations
has been examined in all cases considered. Due to space limitations, only results for
Case 1 are given in Table which shows the minimum, the maximum, and the
average values of the best cost and the best emission. It is clear that all techniques
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exhibit satisfactory degree of robustness to initial populations. In addition, SPEA
gives better average results.

Based on the above comparisons and discussions, it can be concluded that SPEA
is better than other techniques for the environmental/economic power dispatch op-
timization problem since elite solutions with satisfactory diversity characteristics
have been produced in this study.

8 Future Work

Since this work represents an exploratory study aiming to demonstrate the potential
of MOEA for solving EED problem, the fuel cost function given in Equation (I is
a smooth and simple quadratic one. However, more complicated formulations with
non-smooth and non-convex fuel cost functions can be considered in
future work. Additionally, different objective functions, such as heat dispatch ,in
addition to the fuel cost and emission objective functions can be considered
and incorporated in problem formulation in future studies.

On the other hand, new and revised versions of MOEA have been presented
such as NSGA-II, NPGA 2, SPEA2, and multiobjective particle swarm optimiza-
tion MOPSO. These techniques can be examined in future studies. This will en-
hance the potential of MOEA to solve more complex multiobjective power system
optimization problems.

9 Conclusions

In this chapter, three multiobjective evolutionary algorithms have been compared
and successfully applied to the environmental/economic power dispatch problem.
The problem has been formulated as a multiobjective optimization problem with
competing economic and environmental impact objectives. MOEAs have been com-
pared to each other and to those reported in the literature. In addition, a new and
efficient procedure for quality measure is proposed and compared to some measures
reported in the literature. The optimization runs indicate MOEAs outperform the
traditional techniques. Moreover, SPEA has better diversity characteristics and is
more efficient when compared to other MOEAs. The results show that evolution-
ary algorithms are effective tools for handling multiobjective optimization where
multiple trade-off solutions can be found in one simulation run.

In addition, the diversity of the non-dominated solutions is preserved. It is also
demonstrated that SPEA has the best computational time. It can be concluded that
MOEA has potential to solve different multiobjective power systems optimization
problems.

Acknowledgements. The author acknowledges the support of King Fahd University of
Petroleum & Minerals.



80

M.A. Abido

Appendix

The line and bus data of the IEEE 30-bus 6-generator system are given in Table[T7]
and Table [[8 respectively.
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Fuzzy Evolutionary Algorithms and Genetic
Fuzzy Systems: A Positive Collaboration
between Evolutionary Algorithms and Fuzzy
Systems

F. Herrera and M. Lozano

Abstract. There are two possible ways for integrating fuzzy logic and evolution-
ary algorithms. The first one involves the application of evolutionary algorithms
for solving optimization and search problems related with fuzzy systems, obtaining
genetic fuzzy systems. The second one concerns the use of fuzzy tools and fuzzy
logic-based techniques for modelling different evolutionary algorithm components
and adapting evolutionary algorithm control parameters, with the goal of improv-
ing performance. The evolutionary algorithms resulting from this integration are
called fuzzy evolutionary algorithms. In this chapter, we shortly introduce genetic
fuzzy systems and fuzzy evolutionary algorithms, giving a short state of the art, and
sketch our vision of some hot current trends and prospects. In essence, we paint a
complete picture of these two lines of research with the aim of showing the benefits
derived from the synergy between evolutionary algorithms and fuzzy logic.

1 Introduction

Computational intelligence techniques such as artificial neural networks [157],
fuzzy logic [204], and genetic algorithms (GAs) [87,163] are popular research sub-
jects, since they can deal with complex engineering problems which are difficult to
solve by classical methods [109].

Hybrid approaches have attracted considerable attention in the computational in-
telligence community. One of the most popular approaches is the hybridization be-
tween fuzzy logic and GAs leading to genetic fuzzy systems (GFSs) [38] and fuzzy
evolutionary algorithms [[79,[149,[183]]. Both are well known examples of a positive
collaboration between soft computing techniques.

A GFS is basically a fuzzy rule based system (FRBS) augmented by a learning
process based on evolutionary computation, which includes GAs, genetic program-
ming, and evolution strategies, among other evolutionary algorithms (EAs) [56].
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The automatic definition of a FRBS can be seen as an optimization or search prob-
lem, and GAs are a well known and widely used global search technique with the
ability to explore a large search space for suitable solutions only requiring a perfor-
mance measure. In addition to their ability to find near optimal solutions in complex
search spaces, the generic code structure and independent performance features of
GAs make them suitable candidates to incorporate a priori knowledge. In the case
of FRBSs, this a priori knowledge may be in the form of linguistic variables, fuzzy
membership function parameters, fuzzy rules, etc. These capabilities extended the
use of GAs in the development of a wide range of approaches for designing FRBSs
over the last few years.

The behaviour of the EAs in general, and GAs in particular, is strongly determined
by the balance between exploration (to investigate new and unknown areas in a search
space) and exploitation (to make use of knowledge acquired by exploration to reach
better positions on the search space). The GA control parameter settings, such as mu-
tation probability, crossover probability, and population size, are key factors in the
determination of the exploitation versus exploration tradeoff. It has long been ac-
knowledged that they have a significant impact on GA performance. If poor settings
are used, the exploration/exploitation balance may not be reached in a profitable ways;
the GA performance shall be severely affected due to the possibility of premature con-
vergence. Finding robust control parameter settings is not a trivial task, since their
interaction with GA performance is a complex relationship and the optimal ones are
problem-dependent. Furthermore, different control parameter values may be neces-
sary during the course of a run to induce an optimal exploration/exploitation balance.
For these reasons, adaptive GAs have been built that dynamically adjust selected
control parameters or genetic operators during the course of evolving a problem so-
Iution. Their objective is to offer the most appropriate exploration and exploitation
behaviour. FRBSs provide a tool which can convert the linguistic control strategy
based on expert knowledge into an automatic control strategy. They are particularly
suited to model the relationship between variables in environments that are either
ill-defined or very complex. The adaptation of GA parameters is one such complex
problem that may benefit from the use of FRBS, producing the so-called fuzzy adap-
tive GAs. If we consider any kind of EA that can be improved by means of fuzzy
logic based techniques, then we can use the name of fuzzy EAs.

In this chapter we shortly introduce GFSs and fuzzy EAs, giving a short state of
the art, and sketch our vision of some hot current trends and prospects.

The remainder of this article is organized as follows. In Section2] we provide an
overview of FRBSs. In Section[3] we focus our attention to GFSs. In Sectiond] we
tackle fuzzy EAs. Finally, in Section[3] we provide some concluding remarks of this
work.

2 Fuzzy Rule Based Systems

FRBSs constitute one of the main contributions of fuzzy logic. The basic con-
cepts which underlie these fuzzy systems are those of linguistic variables and fuzzy
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IF-THEN rules. A linguistic variable, as its name suggests, is a variable whose val-
ues are words rather than numbers, e.g., small, young, very hot and quite slow.
Fuzzy IF-THEN rules are of the general form: if antecedent(s) then consequent(s),
where antecedent and consequent are fuzzy propositions that contain linguistic vari-
ables. A fuzzy IF-THEN rule is exemplified by “if the temperature is high then the
fan-speed should be high”. With the objective of modelling complex and dynamic
systems, FRBSs handle fuzzy rules by mimicking human reasoning (much of which
is approximate rather than exact), reaching a high level of robustness with respect
to variations in the system’s parameters, disturbances, etc. The set of fuzzy rules of
an FRBS can be derived from subject matter experts or extracted from data through
a rule induction process.

In this section, we present a brief overview of the foundations of FRBSs, with the
aim of illustrating the way they behave. In particular, in Section 2]l we introduce
the important concepts of fuzzy sets and linguistic variables. In Section 2.2} we deal
with the basic elements of FRBSs. Finally, in Section 23] we describe a simple
instance of FRBS, a fuzzy logic controller for the inverted pendulum.

2.1 Preliminaries: Fuzzy Set and Linguistic Variable

A fuzzy set is distinct from a crisp set in that it allows its elements to have a degree
of membership. The core of a fuzzy set is its membership function: a surface or line
that defines the relationship between a value in the set’s domain and its degree of
membership. In particular, according to the original ideal of Zadeh [208], member-
ship of an element x to a fuzzy set A, denoted as 4 (x) or simply A(x), can vary
from O (full non-membership) to 1 (full membership), i.e., it can assume all values
in the interval [0, 1]. Clearly, a fuzzy set is a generalization of the concept of a set
whose membership function takes on only two values {0,1}.

The value of A(x) describes a degree of membership of x in A. For example,
consider the concept of high temperature in an environmental context with temper-
atures distributed in the interval [0, 50] defined in degree centigrade. Clearly 0°C is
not understood as a high temperature value, and we may assign a null value to ex-
press its degree of compatibility with the high temperature concept. In other words,
the membership degree of 0°C in the class of high temperatures is zero. Likewise,
30°C and over are certainly high temperatures, and we may assign a value of 1 to ex-
press a full degree of compatibility with the concept. Therefore, temperature values
in the range [30, 50] have a membership value of 1 in the class of high tempera-
tures. From 0°C to 30°C, the degree of membership in the fuzzy set high tempera-
ture gradually increases, as exemplified in Figure[Il which actually is a membership
function A : T — [0, 1] characterizing the fuzzy set of high temperatures in the uni-
verse T = [0,50]. In this case, as temperature values increase they become more and
more compatible with the idea of high temperature.

Linguistic variables are variables whose values are not numbers but words or
sentences in a natural or artificial language. This concept has clearly been developed
as a counterpart to the concept of a numerical variable. More precisely, a linguistic
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variable L is defined as a quintuple [107]]: L = (x,A,X,g,m), where x is the base
variable, A = {A|,A,,...,Ax} is the set of linguistic terms of L (called term-ser), X
is the domain (universe of discourse) of the base variable, g is a syntactic rule for
generating linguistic terms and m is a semantic rule that assigns to each linguistic
term its meaning (a fuzzy set in X). Figure [2| shows an example of a linguistic
variable Temperature with three linguistic terms “Low, Medium, and High”. The
base variable is the temperature given in appropriate physical units.

Each underlying fuzzy set defines a portion of the variable’s domain; but this
portion is not uniquely defined. Fuzzy sets overlap as a natural consequence of their
elastic boundaries. Such an overlap not only implements a realistic and functional
semantic mechanism for defining the nature of a variable when it assumes various
data values but provides a smooth and coherent transition from one state to another.
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2.2 Basic Elements of FRBSs

The essential part of FRBSs is a set of [F-THEN linguistic rules, whose antecedents
and consequents are composed of fuzzy statements, related by the dual concepts of
fuzzy implication and the compositional rule of inference.

An FRBS is composed of a knowledge base (KB), that includes the information
in the form of IF-THEN fuzzy rules;

IF a set of conditions are satisfied
THEN a set of consequents can be inferred

and an inference engine module that includes:

o A fuzzification interface, which has the effect of transforming crisp data into
fuzzy sets.

e An inference system, that uses them together with the KB to make inference by
means of a reasoning method.

o A defuzzification interface, that translates the fuzzy rule action thus obtained to
a real action using a defuzzification method.

FRBSs can be broadly categorized into different families:

e The first includes linguistic models based on collections of IF-THEN rules,
whose antecedents are linguistic values, and the system behaviour can be de-
scribed in natural terms. The consequent is an output action or class to be applied.
For example, we can denote them as:

R;:If X;; is A;; and --- and X, is A;, then Y is B;

or

R; : If X;; is A;; and - -+ and X, is A;, then C, with wy

with i = 1 to M, and with X;; to X;, and Y being the input and output variables
for regression respectively, and Cy, the output class associated to the rule for clas-
sification, with A;; to A;, and B; being the involved antecedents and consequent
labels, respectively, and wy; the certain factor associated to the class. They are
usually called linguistic FRBSs or Mamdani FRBSs [134].

e The second category is based on a rule structure that has fuzzy antecedent and
functional consequent parts. This can be viewed as the expansion of piece-wise
linear partition represented as
R; :If X;; is A;; and - - - and X, is Aj, then Y = p(Xi1,- -+, Xin),
with p(-) being a polynomial function, usually a linear expression, ¥ = pg +
p1-Xi1 + -+ pn - Xin. The approach approximates a nonlinear system with a
combination of several linear systems. They are called Takagi and Sugeno’s type
fuzzy systems [177] (TS-type fuzzy systems).

e Other kinds of fuzzy models are the approximate or scatter partition FRBSs,
which differ from the linguistic ones in the direct use of fuzzy variables [4].
Each fuzzy rule thus presents its own semantic, i.e., the variables take different
fuzzy sets as values (and not linguistic terms from a global term set). The fuzzy
rule structure is then as follow:
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R; : If X;; is Ail and --- and X, is A,‘n then Y is G,‘

with A; j to Ain and G; being fuzzy sets. The major difference with respect to
the rule structure considered in linguistic FRBSs is that rules of an approximate
nature are semantics free, whereas descriptive rules operate in the context formu-
lated by means of the linguistic semantics.

In linguistic FRBSs, the KB is composed of two components, a data base (DB)
and a rule base (RB).

e A DB, containing the linguistic term sets considered in the linguistic rules and
the membership functions defining the semantics of the linguistic labels.
Each linguistic variable involved in the problem will have an associated fuzzy
partition of its domain representing the fuzzy set associated with each of its
linguistic terms. Figure 3] shows an example of a fuzzy partition with five la-
bels. This can be considered as a discretization approach for continuous domains
where we establish a membership degree to the items (labels), we have an over-
lapping between them, and the inference engine manages the matching between
the patterns and the rules, providing an output according to the rule consequents
with a positive matching. The determination of the fuzzy partitions is crucial in
fuzzy modelling [[I1]], and the granularity of the fuzzy partition plays an impor-
tant role for the FRBS behaviour [39].

If we manage approximate FRBSs, then we do not have a DB due to the fact

that rules have associated the fuzzy values.

e An RB, comprises a collection of linguistic rules that are joined by a rule con-
nective (“also” operator). In other words, multiple rules can fire simultaneously
for the same input.

The inference engine of FRBSs acts in a different way depending on the kind of
problem (classification or regression) and the kind of fuzzy rules (linguistic ones,
TS-ones, etc). It always includes a fuzzification interface that serves as the input
to the fuzzy reasoning process, an inference system that infers from the input to
several resulting output (fuzzy set, class, etc) and the defuzzification interface or
output interface that converts the fuzzy sets obtained from the inference process into
a crisp action that constitutes the global output of the FRBS, in the case of regression
problems, or provide the final class associated to the input pattern according to the
inference model.

The generic structure of an FRBS is shown in Figure 3l

For more information about fuzzy systems the following books may be consulted
[94]. For different issues associated with the trade-off between the
interpretability and accuracy of FRBSs, the two following edited books present a
collection of contributions on the topic [25} 26].

Finally, we must point out that we can find a lot of applications of FRBSs in all
areas of engineering, sciences, medicine, etc. At present it is very easy to search
for these applications using the publisher web search tools focusing the search in
journals of different application areas.
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Fig. 3 Structure of an FRBS

2.3 Example of FRBS: Fuzzy Logic Control of an Inverted
Pendulum

Fuzzy logic controllers [53] are a particular model of FRBS that provide a tool
which can convert the linguistic control strategy based on expert knowledge into
an automatic control strategy. In these controllers, the domain knowledge is repre-
sented by a set of fuzzy IF-THEN rules that approximate a mapping from a state
space X to an output space Y. They have been used in many practical applications,
especially industrial ones in Japan and Europe. Industrial success stories of fuzzy
control include portable video cameras, automatic transmission of automobiles, fur-
nace temperature, robotics, urban underground railway, and banking.

The example of the inverted pendulum given in is selected to illustrate
elementary fuzzy control principles. Consider the problem of keeping an inverted
pendulum (which is fixed) articulated at a fixed point on a mobile cart. The cart
can move forward and backward, and the controller decides on the direction and
acceleration of the cart (Figure d)).

To balance an upright pendulum, we know from naive physics that the control
force F should be chosen according to the magnitudes of the input variables 8 and
o that measure the angle from the upright position and the angular velocity, respec-
tively. The relation between these variables is linguistic, a much weaker form than
differential equations. That is exactly what happens in a human mind that processes
information qualitatively. Humans choose F' using common sense knowledge in the
form of rules such as “if the pendulum is in a balanced position, then hold very still,
that is, do not apply any force”. By taking all such rules into account, the inverted
pendulum can be successfully controlled.
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Fig. 4 Inverted pendulum W

ONNO)

A sensor measures 6 and o (state variables) and a fuzzy logic controller may
adjust F (output or control space) via a real time feedback loop with the objec-
tive of taking the pendulum to the vertical position. While the classical equations
of motion of this system are extremely complicated and depend upon the specific
characteristics of the pendulum (mass distribution, length), Yamakawa [203]] found
a set of linguistic fuzzy rules providing a stable fuzzy control of the pendulum in-
dependently of its characteristics. They are the following:

Rule 1. IF 0 is PM AND o is ZR THEN F is PM.
Rule 2. IF 6 is PS AND o is PS THEN F is PS.
Rule 3. IF 6 is PS AND @ is NS THEN F is ZR.
Rule 4. IF 6 is NM AND o is ZR THEN F is NM.
Rule 5. IF 6 is NS AND @ is NS THEN F is NS.
Rule 6. IF 0 is NS AND o is PS THEN F is ZR.
Rule 7. IF 6 is ZR AND o is ZR THEN F is ZR.

The linguistic term set for 8, o, and F is {Negative Large (NL), Negative
Medium (NM), Negative Small (NS), Zero (ZR), Positive Small (PS), Positive
Medium (PM), Positive Large (PL)}, which has associated the fuzzy partition of
their corresponding domains shown in Figure[3l

Given a sensor measured state (6, ), the inference obtained from the fuzzy con-
troller is the result of interpolating among the response of these linguistic fuzzy
rules. The inference’s outcome is a membership function defined on the output
space, which is then aggregated (defuzzified) to produce a crisp output.

The fuzzy logic controller described above is an example of linguistic FRBS.
However, the problem of controlling the inverted pendulum may be tackled as well
by means of a fuzzy logic controller based on the TS-type fuzzy system model. In
this case, possible TS-type rules may include:

If 6 is ZR and w is ZR then F = 0.
If 6isPSand wis ZR then F = 0.5 x 6.
If6isPSand wisNSthen F =0.4 x 6 +0.6 X 0.
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Fig. 5 Membership functions of the linguistic variables (where y stands for 8, , and F)

3 Genetic Fuzzy Systems

FRBSs constitute an extension to classical rule-based systems, because they deal
with "IF-THEN” rules, whose antecedents and consequents are composed of fuzzy
logic statements, instead of classical ones. They have demonstrated their ability for
control problems [[146], modelling [148]], classification or data mining [[113,94] in
a huge number of applications.

A GFS is basically a fuzzy system augmented by a learning process based on
evolutionary computation, which includes GAs, genetic programming, and evolu-
tion strategies, among other EAs. Figure [0 illustrates this idea, where the genetic
process learns or tunes different components of an FRBS.

The central aspect of the use of a GA for automatic learning of an FRBS is that
the KB design process can be analyzed as an optimization problem.

From the optimization point of view, to find an appropriate KB is equivalent to
coding it as a parameter structure and then finding the parameter values that give
us the optimum for a fitness function. The KB parameters provide the search space
that is transformed according to a genetic representation. Therefore, the first step in
designing a GFS is to decide which parts of the KB are subject to optimization by
the GA.

In the last few years we observe an increase of published papers in the topic due
to the high potential of GFSs. In contrast to neural networks, clustering, rule induc-
tion and many other machine learning approaches, GAs provide a means to encode
and evolve rule antecedent aggregation operators, different rule semantics, rule base
aggregation operators and defuzzification methods. Therefore, GAs remain today
as one of the few knowledge acquisition schemes available to design and, in some
sense, optimize FRBSs with respect to the design decisions, allowing decision mak-
ers to decide what components are fixed and which ones evolve according to the
performance measures.

The predominant type of GFS is that focused on FRBSs. However other kinds
of GFSs have been developed, with successful results. They include genetic fuzzy
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neural networks and genetic fuzzy clustering algorithms. We will not analyze
them in this papers. Readers can find an extended introduction to them in [38]
(chapter 10).

In this section, we propose a taxonomy of GFSs focused on the FRBS compo-
nents and sketch our vision of some hot current trends of GFSs [73]].

3.1 Taxonomy of Genetic Fuzzy Systems

The central aspect on the use of GAs for automatic learning of FRBSs is that the
design process can be analyzed as a search problem in the space of models, such as
the space of rule sets, by means of the coding of the model in a chromosome.

From the optimization point of view, to find an appropriate fuzzy model is equiva-
lent to code it as a parameter structure and then to find the parameter values that give
us the optimum for a concrete fitness function. Therefore, the first step in designing
a GFS is to decide which parts of the fuzzy system are subjected to optimization by
the GA coding them into chromosomes.

We divide the GFS approaches into two processes, tuning and learning. It is diffi-
cult to make a clear distinction between tuning and learning processes, since estab-
lishing a precise borderline becomes as difficult as defining the concept of learning
itself. The first fact that we have to take into consideration is the existence or not
of a previous KB, including DB and RB. In the framework of GFSs we can briefly
introduce the following distinction.

e Genetic tuning. If there exists a KB, we apply a genetic tuning process for
improving the FRBS performance but without changing the existing RB. That
is, to adjust FRBS parameters for improving its performance, maintaining the
same RB.
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e Genetic learning. The second possibility is to learn KB components (where we
can even include an adaptive inference engine). That is, to involve the learning
of KB components among other FRBS components.

We classify the proposals according to these two processes and according to the
FRBS components involved in the genetic learning process. In this way, we consider
the taxonomy shown in Figure[7] [73].

There are three main areas in the taxonomy that we can observe in the first tree:
genetic tuning, genetic KB learning, and genetic learning of KB components and
inference engine parameters.

In the following, we briefly analyze the three areas. We will provide some refer-
ences as examples for every approach, but we do not present an exhaustive list of
papers, this is far from the chapter’s objective.
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With the aim of making the FRBS perform better, some approaches try to improve
the preliminary DB definition or the inference engine parameters once the RB has
been derived. A graphical representation of this kind of tuning is shown in Figure[8l

The following three tuning possibilities can be considered (see the sub-tree under

“genetic tuning”).

1.

Genetic tuning of KB parameters. In order to do so, a tuning process considering
the whole KB obtained (the preliminary DB and the derived RB) is used a pos-
teriori to adjust the membership function parameters. Nevertheless, the tuning
process only adjusts the shapes of the membership functions and not the number
of linguistic terms in each fuzzy partition, which remains fixed from the begin-
ning of the design process. In [100], we can find a first and classic proposal on
tuning. We can also find recent proposals that introduce linguistic modifiers for
tuning the membership functions, see [24]. This latter approach is close to the
inference engine adaptation.

Genetic adaptive inference systems. The main aim of this approach is the use
of parameterized expressions in the Inference System, sometimes called Adap-
tive Inference Systems, for getting higher cooperation among the fuzzy rules and
therefore more accurate fuzzy models without loosing the linguistic rule inter-
pretability. In [8, 42, [43]], we can find proposals in this area focused in regression
and classification.

. Genetic adaptive defuzzification methods. The most popular technique in prac-

tice, due to its good performance, efficiency and easier implementation, is to
apply the defuzzification function to every inferred rule fuzzy set (getting a
characteristic value) and to compute them by a weighted average operator. This
method introduces the possibility of using parameter based average functions,
and the use of GAs can allow us to adapt the defuzzification methods. In [103],
we can find a proposal in this area.

Genetic KB learning

As a second big area we find the learning of KB components. We will now describe
the four approaches that can be found within the genetic learning of a KB (see the
second tree under “genetic KB learning”).
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Fig. 9 Genetic rule learning
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1. Genetic rule learning. Most of the approaches proposed to automatically learn
the KB from numerical information have focused on the RB learning, using a
predefined DB. The usual way to define this DB involves choosing a number of
linguistic terms for each linguistic variable (an odd number between 3 and 9,
which is usually the same for all the variables) and setting the values of the sys-
tem parameters by an uniform distribution of the linguistic terms into the variable
universe of discourse. Figure [0 shows this type of RB learning graphically. The
pioneer proposal for this approach can be found in [180].

On the other hand, we also find approaches that are focused on the extraction
of some descriptive rules for data mining problems (association rules, subgroup
discovery, etc.) [102] 48].

2. Genetic rule selection. Sometimes we have a large number of rules extracted
via a data mining method that subsequently provide us with a large number of
rules associated with our problem. A big RB and an excessive number of rules
makes it difficult to understand the FRBS behaviour. Thus we can find different
kinds of rules in a fuzzy rule set: irrelevant rules, redundant rules, erroneous rules
and conflictive rules, which perturb the FRBS performance when they coexist
with others. To face this problem we can use a genetic rule selection process for
obtaining an optimized subset of rules from a previous fuzzy rule set, by selecting
some of them. Figure [[0]illustrates this idea graphically. In [93] we can find the
most classic and first contribution in this area and in we can find the first
journal paper on multiobjective genetic rule selection.

We must point out that rule selection can be combined with tuning approaches,
to try to get a good rule set together with a tuned set of parameters. In [24, [5]], we
can find two recent proposal that combines genetic tuning with rule selection.

3. Genetic DB learning. There is another way to generate the whole KB that con-
siders two different processes to derive each component, DB and RB. A DB
generation process allows us to learn the shape or the membership functions and
other DB components such as the scaling functions, the granularity of the fuzzy
partitions, etc. This DB generation process can use a measure for evaluating the
quality of the DB, we can call it “a priori genetic DB learning”. The second
possibility is to consider an embedded genetic learning process where the DB
generation process wraps an RB learning one working as follows: each time a
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DB has been obtained by the DB definition process, the RB generation method
is used to derive the rules, and some type of error measure is used to validate the
whole KB obtained. We should note this operation mode involves a partitioning
of the KB learning problem. These two kinds of learning models are represented
in Figure[TTl In [41]], we can find a proposal following the embedded genetic DB
learning.

4. Simultaneous genetic learning of KB components. Other approaches try to learn
the two components of the KB simultaneously. This kind of learning is depicted
in Figure [T2] Working in this way, they have the possibility of generating better
definitions but there is a need to deal with a larger search space that makes the
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Fig. 12 Genetic KB learn-
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learning process more difficult and slow. In [85]], we can find a contribution that
uses the simultaneous genetic KB learning process.

Genetic learning of KB components and inference engine parameters

This is the last area of GFSs taxonomy, belonging to a hybrid model between an adap-
tive inference engine and KB components learning. We can find novel approaches
that try to find high cooperation between the inference engine via parameter adapta-
tion and the learning of KB components, including both in a simultaneous learning
process. In [133]], we can find a recent proposal to learn a linguistic RB and the para-
metric aggregation connectors of the inference and defuzzification in a single step.
Figure [[3] presents the coding scheme of the model proposed in this paper.

3.2 Genetic Learning: Rule Coding and Cooperation/Competition
Evolutionary Process

Although GAs were not specifically designed for learning, but rather as global
search algorithms, they offer a set of advantages for machine learning. Many
methodologies for machine learning are based on the search for a good model inside
the space of possible models. In this sense, they are very flexible because the same
GA can be used with different representations. Genetic learning processes cover
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Fig. 13 Example of the coding scheme for learning an RB and the inference connective
parameters
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different levels of complexity according to the structural changes produced by the
algorithm, from the simplest case of parameter optimization to the highest level of
complexity for learning the rule set of a rule-based system, via the coding approach
and the cooperation or competition between chromosomes.

When considering the task of learning rules in a rule based system, a wider range
of possibilities is open. When considering a rule based system and focusing on learn-
ing rules, the different genetic learning methods follow two approaches in order to
encode rules within a population of individuals:

e The “Chromosome = Set of rules”, also called the Pittsburgh approach, in which
each individual represents a rule set (Smith 1980). In this case, a chromosome
evolves a complete RB and they compete among them along the evolutionary
process. GABIL is a proposal that follows this approach [47]).

e The “Chromosome = Rule” approach, in which each individual codifies a sin-
gle rule, and the whole rule set is provided by combining several individuals in
a population (rule cooperation) or via different evolutionary runs (rule competi-
tion). In turn, within the “Chromosome = Rule” approach, there are three generic
proposals:

— The Michigan approach, in which each individual encodes a single rule. These
kinds of systems are usually called learning classifier systems [88]. They are
rule-based, message-passing systems that employ reinforcement learning and
a GA to learn rules that guide their performance in a given environment. The
GA is used for detecting new rules that replace the bad ones via the compe-
tition between the chromosomes in the evolutionary process. An interesting
study on the topic can be found in [110].

— The IRL (Iterative Rule Learning) approach, in which each chromosome rep-
resents a rule. Chromosomes compete in every GA run, choosing the best rule
per run. The global solution is formed by the best rules obtained when the algo-
rithm is run multiple times. STA is a proposal that follows this approach.

— The GCCL (genetic cooperative-competitive learning) approach, in which the
complete population or a subset of it encodes the RB. In this model the chro-
mosomes compete and cooperate simultaneously. COGIN [67]], REGAL [62]]
and LOGENPRO [200] are examples with this kind of representation.

These four genetic learning approaches (Pittsburgh, Michigan, IRL and GCCL) have
been considered for learning KB components, and we can find different examples
of them in the literature. Two of the pioneer GFS proposals were focused on the
Pittsburgh and Michigan approaches. MOGUL and SLAVE
[64] are two proposals that follow the IRL approach in the framework of GFSs. In
[93.97], we find two proposals following the GCCL approach.

3.3 Some GFS Milestones: Books and Special Issues

For beginners, in the following we present the GFS milestones associated to the
books and special issues published in the specialized literature.
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We can find two authored books and three edited ones:

e A, Geyer-Schulz. Fuzzy Rule-Based Expert Systems and Genetic Machine
Learning. Physica-Verlag, 1995. This is the first GFS book. It is a very specific
book focused on fuzzy classifier systems (Michigan approach) and RB learning
with genetic programming.

e O. Cordén, F. Herrera, F. Hoffmann and L. Magdalena. Genetic Fuzzy Systems.
Evolutionary Tuning and Learning of Fuzzy Knowledge Bases, World Scientific,
2001. This is the first general GFS book. It covers the overall state of the art of
GFSs at that time.

These three following books compile an important number of contributions that
gave maturity to the topic.

e F. Herrera and J.L. Verdegay (Eds.). Genetic Algorithms and Soft Computing.
Physica-Verlag, 1996.

e E. Sanchez, Shibata and L. Zadeh (Eds.). Genetic Algorithms and Fuzzy Logic
Systems. Soft Computing Perspectives. World Scientific, 1997.

e W. Pedrycz (Ed.). Fuzzy Evolutionary Computation. Kluwer Academic Publish-
ers, 1997.

In the following we provide a list of the journal special issues devoted to GFSs,
including important contributions to all topics of GFSs.

e F. Herrera. Special Issue on Genetic Fuzzy Systems for Control and Robotics. In-
ternational Journal of Approximate Reasoning, Volume 17, Number 4, November
1997.

e F. Herrera and L. Magdalena. Special Issue on Genetic Fuzzy Systems. Inter-
national Journal of Intelligent Systems, Volume 13, Numbers 10-11, Oct.-Nov.
1998.

e 0. Cordon, F. Herrera, F. Hoffmann and L. Magdalena. Special Issue on Recent
Advances in Genetic Fuzzy System. Information Sciences, Volume 136, Num-
bers 1-4 , August 2001.

e 0. Cordén, F. Gomide, F. Herrera, F. Hoffmann, L. Magdalena. Special Issue
on Genetic Fuzzy Systems. Fuzzy Sets and Systems, Volume 141, Number 1,
January 2004.

e J. Casillas, M.J. del Jesus, F. Herrera, R. Pérez, P. Villar. Special Issue on Genetic
Fuzzy Systems and the Interpretability-Accuracy Trade-off. International Journal
of Approximate Reasoning. Volume 44, Number 1, February 2007.

e O. Cordén, R. Alcald, J. Alcald-Fdez, I. Rojas. Genetic Fuzzy Systems. Special
Section on Genetic Fuzzy Systems: What’s Next?. IEEE Transactions on Fuzzy
Systems. Volume 15, Number 4, August 2007.

e B. Carse, A.G. Pipe. Special Issue on Genetic Fuzzy Systems. International Jour-
nal of Intelligent Systems. Volume 22, Number 9, September 2007.

e J. Casillas, B. Carse. Special Issue on Genetic Fuzzy Systems: Recent De-
velopments and Future Directions. Soft-Computing Volume 13, Number 5,
March 2009.
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The collection of papers that we could find on these special issues give us
a historical tour on the different stages we can find in the evolution of GFSs
research:

e The two first special issues (1997, 1998) contain contributions devoted to learn-
ing KB components using the different learning approaches (Michigan, IRL,
Pittsburgh) together with some applications. We can find representative ap-
proaches of different areas of the taxonomy.

e In the next two special issues (2001, 2004) we can find contributions that exploit
the mentioned genetic learning approaches together with contributions that stress
new branches such as genetic rule selection, multiobjective genetic algorithms
for rule selection, the use of genetic programming for learning fuzzy systems,
hierarchical genetic fuzzy systems, coevolutionary genetic fuzzy systems, the
combination of boosting and evolutionary fuzzy systems learning, embedded ge-
netic DB learning, and first studies for dealing with high dimensional problem:s,
among others. We would like to point out the review paper that was published
in the last issue [36]] that was the first review in the topic, briefly introducing
GFS models and applications, trends and open questions. Another short review
was presented in [72]]. The present chapter can be considered as a continuation
of those, with the novelty of the taxonomy, the GFSs outlook based on the pio-
neer papers, the ISI Web of Science based visibility and the milestones along the
GFSs history and new trends and prospects.

e The next three special issues, published in 2007, emphasize three different di-
rections. Carse and Pipe’s special issue collect papers focused in the mentioned
areas (multiobjective evolutionary learning, boosting and evolutionary learning,
etc) and stress some new ones such as evolutionary adaptive inference systems.
Casillas et al.’s special issue is focused on the trade-off between interpretabil-
ity and accuracy, collecting four papers that proposed different GFSs for tackling
this problem. Cordén et al.’s special issue focuses its attention on novel GFS pro-
posals under the title “What’s Next?”, collecting highly innovative GFS propos-
als that can mark new research trends. The four collected papers are focused on:
anew Michigan approach for learning RBs based on XCS [22]], GFSs for impre-
cisely observed data (low quality data) [162], incremental evolutionary learning
of TS-fuzzy systems [86], and evolutionary fuzzy rule induction for subgroup
discovery [48].

e The last special issue, co-edited by J. Casillas and B. Carse, is devoted to new
developments, paying attention to multiobjective genetic extraction of linguistic
fuzzy rule based systems from imprecise data [163], multiobjetive genetic rule
selection and tuning [60], parallel distributed genetic fuzzy rule selection [144],
context adaptation of fuzzy systems [17], compact fuzzy systems [28]], neuro-
coevolutionary GFSs [133]], evolutionary learning of TSK rules with variable
structure and genetic fuzzy association rules extraction [29].
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3.4 Current Research Trends in GFSs

In this subs