SMALL DENOMINATORS. |
MAPPINGS OF THE CIRCUMFERENCE ONTO ITSELF*

V. L. ARNOL'D

In the first part of the paper it is shown that analytic mappings of the cir-
cumference, differing little from a rotation, whose rotation number is irrational and
satisfies certain arithmetical requirements, may be carried into a rotation by an
analytic substitution of variables. In the second part we consider the space of
mappings of the circumference onto itself and the place occupied in this space by
mappings of various types. We indicate applications to the investigation of tra-
jectories on the torus and to the Dirichlet problem for the equation of the stting.

Introduction

Continuous mappings of the circumference onto itself were studied by Poin-
caré€ (see [1], Chapter XV, pp. 165—191) in connection with the qualitative in-
vestigation of trajectories on the torus. The problem of Dirichlet for the equation
of the string can be reduced to such mappings, but the topological investigation
turns out here to be insufficient (see [5]). In the first portion of the present
paper we attempt an analytic refinement of the Denjoy theorem completing the
theory of Poincaré [2],

Suppose that F(z) is periodic, F (z + 27) = F (z), real on the real axis and
analytic in its neighborhood, with F’ (z) £ ~1 for Im z = 0. Then to the mapping
of a strip of the complex plane defined by z —s Az = z + F(z) there corresponds
an orientation-preserving homeomorphism B of the neighborhood of the points

w(z) = et?;

w=w(z) — w(dz) = Bw.

In this sense we say that A is an analytic mapping of the circumference onto it-
self.

Suppose that the rotation number *of A is equal to 2my. From Denjoy’s
- theorem it follows that for irrational p there exists a continuous inversible real
function ¢(z) of the real variable z, periodic in the sense that

¢z +2m) = p(2) + 27

and such that

¢ (Az) = $(2) + 2ap. (1)

*We assume that the reader is acquainted with the results of the papers (1 (pp. 165~
191, 322-335) and [2], which appear in the textbooks [3](pp. 65-76) and [4] (pp.442—-456).

* Editor’s note: translation into English published in Am. Math. Soc. Transl. (2) 46 (1965), 213-284
Translation of V.I. Arnol’d: Small denomnators. I. Mapping the circle onto itself. Izv. Akad.
Nauk SSSR Ser. Mat. 25:1 (1961). Corrections in Izv. Akad. Nauk SSSR Ser. Mat. 28:2 (1964),
479-480

152



214 V.I. ARNOL'D

We shall say that ¢ is a new parameter and that when expressed in the parameter
¢ the transformation 4 becomes a rotation by the angle 27yu. Such a function ¢
must be unique up to an additive constant.

In 81 it is shown that for certain irrational p, in spite of the analyticity of
F (z), the function ¢ in (1) may turn out not to be absolutely continuous. The
idea of this example consists of the following. Since under rotations of the cir-
cumference length is preserved, the reduction of a transformation to a retation by
an appropriate choice of parameter amounts to the determination of the invariant
measure of the transformation. In the case of a rational rotation number the in-
variant measure is concentrated, as a rule, at separate points, the points of the

cycles of the transformation. However, if the rotation number is irrational, but
can be approximated extremely well by rationals, then the invariant measure re-

tains its singular character, though it is distributed everywhere densely on the
circumference.

The following conjecture appears to be plausible:

There exists a set M C [0, 1] of measure 1 such that for each p €M the
solution of the equation (1) for any analytic transformation A with rotation
number 2mp is analytic.

At present this is proved only for analytic transformations sufficiently close

*
to a rotation by the angle 2mu (§4, Theorem 2). The proof consists in the cone

struction of the solution of equation (1) by means of the solution of equations of
the -form

g(z +- 2mp) — g(z) = f(z). (2)

In the solution of this equation by the use of Fourier series, there appear small
denominators, making the convergence difficult. The calculation of the successive
cofrections, adapting the salution of the equation (2) to the equation (1), is car-
ried out by a method of the type of Newton’s me thod, and the rapid convergence
of this method guarantees the possibility of realizing not only all the approxi-
mations of the theory of perturbations, but also the passage to the limit.

*Note added in proof. As this paper was going to press the author learned of the work
of A. Finzi [38], [39]. From the tesults of [38] it follows that if the rotation number of a
sufficiently smooth mapping of the circumference onto itself satisfies certain arithmetical .
requirements, then the transformation may be converted into a rotation by a continuously
differentiable change of variables. Thus the method of A. Finzi does not require that the
transformation be close to a rotation. This partly confirms the conjecture stated above. A,
Finzi notes, however, that he does not see how to extend his method to the case when a
higher smoothness of the substitution of variables is required. The present paper contains
a partial answer to some of the questions posed by Finzi. For a partial answer to some of
the questions posed here the reader is referred to the Finzi papers.
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Newton’s method was applied for a similar purpose by A. N. Kolmogorov [6l.
Theorem 2 of the present paper is in a way a discrete analogue of his theorem on
the preservation of conditionally periodic motions under small changes of the
Hamilton’s function. In distinction to [6] we have no analytic integral invariants
at our disposal, but rather we seek them. Moreover, we prove (in Theotem 2) the
analyticity of the dependence on a small patameter ¢, from which there follows
the convergence of all the series in powers of ¢ that are usual in the theory of

perturbations.

A direct proof of the convergence of these series has not been achieved, and
A. N. Kolmogorov has even conjectuxed* (before studying the paper [7] of K. L.
Siegel) that they might diverge.

Another conjecture of Kolmogorov, stated by him in the report [8], turned out
to be true: questions in which small denominators play a role are connected with
the monogenic functions of Borel [9]. For our case this is established in §§7,8
and used in §11.

Certain important problems with small denominators were solved by K. L.
Siegel (see [7], [33], [34], [35]). There is a direct connection between mappings
of the circumference and the problem of the center for the Schroeder equation: is
it possible to make an analytic substitution of variables ¢(z) =z + bzz2 doeen
which will convert a mapping of the neighborhood of the origin of the complex
plane, given by the analytic function f(z) = e2™Hz 4 a2z2 4+ +++, into arotation

by the angle 2up?

The result of Siegel in [7] is analogous to our Theorem 2 and may be obtained
by the same method. The problem of the center is a singular case of the problem
of the mapping of a circumference whose radius, in the singular case, is equal to
zero. In comparison with the general case the position here is simpler, since the
solution (the Schroeder series ) may be formally written down directly. The ap-
plication of Newton’s method also gives the Schroeder series; in distinction to
Theorem 2, each coefficient of the solution will be exactly defined after a finite
number of approximations.

In the second part of the paper we cite the classical mappings of the cit-
cumference onto it self and discuss the question of the typicality of various cases.
In §9 we introduce the function p(T) (rotation number) on the space of mappings
of the circumf erence. Further we study, for rational (§10) and irrational ($11) e
the level sets u(T) =y from the point of view of their structure (Theorems 6 and
7)and density (Theorems 5 and 8). Of greatest importance from the topological

e )

*In a report to the Moscow Mathematical Society on January 13, 1959.
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216 V. I. ARNOL'D

point of view are the rough mappings (the word "‘rough’’ being taken in the sense
of Andronov and Pontrjagin [10]) with normal cycles and rational rotation numbers;
these mappings form an open everywhere dense set.” From the point of view of
measure in finite-dimensional subspaces the ergodic case also is typical. In $12
we consider the two-dimensional subspace of mappings x — x + a + € cos x.

In $$13 and 14 the preceding results are applied to the qualitative investi-
gation of trajectories on the torus and to the Dirichlet problem for the, equatioh
of the string.

I wish to express my thanks to A. N. Kolmogorov for his valuable advice and
assistance.

Part I
On analytic mappings of the circumference onto itself

The basic content of the first part of this paper is contained in §§4—6 (Theo-
rem 2). For an understanding of the proof of Theorem 2 (§§5 ,0) it is necessary
to study subsections 2.1 and 2.3 of &2 and subsection 3.3 of §3. For the lemmas
on implicit functions and on finite increments contained in §3 one may turn at need
to the references. Each of $$1, 2, 7 may be read independently of all the rest.
In '§8 we prove a generalization of Theorem 2 (Theorem 3), used in the second
portion of the paper.

$1. The case when the new parameter is not an absolutely
continuous function of the old parameter

1.1. In this section we construct an analytic mapping A4 of the circumference
C, subsets G, (n=1,2,---) of the circumference and integers N, (n=1,2,--+)
such that:

1. mes G, — 0 as n —s oo

2. AN (C\6,) c 6,

3. The rotation number u of the transformation 4 is irrational.

This transformation A cannot be converted into a rotation by an absolutely
continuous change of variables. Indeed, let ¢ be a continuous parameter in which
the transformation becomes a rotation by the angle 2an (¢ exists from Denjoy’s
theorem). Suppose that G C C. The measure of the set ¢(G) of values ¢(x),

x € G, coincides with the measure of ¢(ANG), since these sets superpose under
a rotation. Therefore it follows from condition 2 that:

25 — mes ¢ (Gp) <, mes ¢ (Gy)

*Note added in proof. This result was also obtained by V. A. Pliss in the paper [43],
published while this paper was being printed.
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MAPPINGS OF THE CIRCUMFERENCE ONTO ITSELF 217

and
mes @ (Gn) > T

In view of condition 1, ¢ is not an absolutely continuous function on C.
1.2. For the construction we use the following lemmas.

Lemma a. Let the transformation A of the circumference be semistable
for*wanfl= and analytic in the neighborhood of the real axis, and suppose that the
-points zg,zp= A(z;) (0<k < n) form a cycle, i.e., A(z,_y) = z. Then for
any €> 0 there is in the indicated neighborhood of the real axis a transformation
A" differing from A by less than ¢ and having exactly one cycle, in fact z,
Zppttte 2y

Proof. We construct a correction A(z) analytic in the strip in question,
vanishing at the points z(, z;,°--, z,.; and positive on the remainder of the
real points.

Put
A (2) = A (2) -+ A (2);
for sufficiently small ¢’ > 0,| €' A(2) | < ¢ in the indicated strip and A "(2) is a
- transfommation of the circumference. Evidently the transformation (A' )* moves
forward all the points z not less than the transformation A”; furthermore the
points zg,---, z,.; move by 2mm, and the remaining points by not less than 2#m.
Lemma & is proved.

Definition. Suppose that A is a transformation of the circumference C and
that G is a set on C. We shall say that the transformation A has property 2 re-
lative to G and N if 4 (C\G) CG.

Lemma . Given a transformation A with the single cycle 2oy 21 and
any €> 0, then A possesses property 2 relative to the set G, of points of the
eneighborhood of the cycle and any N exceeding some N (e).

Proof. Suppose that z; <x < 2, where x;x. is one of the ares into which
the cycle divides the circumference. The points Akn (x) (n=1,2,+++) lieon
the arc z;z. and form a monotone sequence (for more details see §10). Therefore
it follows that in the case when the transformation A is semistable forward (the
case of backward semistability is completely analogous),

A (@) —>-z;.
Jo->4-02
Indeed, suppose that A is the limit of the monotone sequence A% (%), Then A
is invariant with respect to A" and belongs to a cycle satisfying the inequalities

27 A< 5

SN ‘:’J'

*This means that for some integers m, n and any real z, 4"(z)> z + 2mm, with
equality attained. '
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218 V. 1. ARNOL'D

Thus

lim ¥ (2) = 4 (z)).
k—>co

The same is true for the other intervals into which the cycle divides the cir-
cumference.

Consider the points x; = z; + €. By what has been proved, beginning with
some N,(e), all the points AN %; lie in an e-neighborhood of the cycle. Evidently
that N is the one desired.

Lemma y. Suppose that the transformation has property 2 relative to G and
N, and suppose that € > 0. Then there exists a § > 0 such that each transformation
B differing from A by less than 8 has property 2 relative to N and the e-neighbor-
kood of G.

Proof. The lemma follows in an obvious way from the continuous dependence
of AN on 4.

Lemma J. Suppose that A is a semistable forward transformation, B(z) =
4(z) + hy b > 0. Then the rotation number p of the transformation B is strictly
larger than the rotation number m/n of the transformation A.

Proof. Evidently y > m/n. In addition B"(z)> A"(z) and therefore B does
not have a cycle of order n. Hence g > m/n.

Lemma ¢ (degenerate case of Liouville’s theorem). If the inequality
|a~m/n| <c/|n| for any ¢ > 0 has an infinite set of irreducible solutions m/n,
then the number a is irrational.

Proof. If a=p/q, then for n> g

since the quotient m/n is irreducible, so that |pn — gm| & 0 for g <n.
1.3. The transformation A is formed as a limit of a sequence of traps-
formations A , With rational rotation numbers. Beginning with the transformation

z — A (z), we shall suppose that it has the following ptroperties:

1,. A, is analytic in the strip | Im z| <R, and in this swip [4,(z)| < C/2.

2,. The rotation number of 4, is rational: p; =p,/q;.

31a- 4 is semistable forward.

31p+ A has exactly one cycle.

The existence of such an A; is evident: from each Af with property 1,
one may obtain, with an appropriate choice of & > 0, A{ = Ai' + h with properties
1,,2; and 3;, and then one may correct Ai to A, using Lemma a. The sub-
sequent transformations An are obtained from the preceding ones by using a
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MAPPINGS OF THE CIRCUMFERENCE ONTO ITSELF 219

process based on the following Induction Lemma.

Induction Lemma. Suppose that 8, > 0 and suppose given transformations
A, (k=1,2,--+,n) and R>0, C>0 such that

1,. For |Im z| <R the A, are analytic and satisfy the inequalities
Ly (2) — Apmr (2) [ 2(/1 (Ao (2) = 0).
2,. The rotation numbers of the A, are rational and for k> 1
LY |

ey | O Grax g

'

o

‘i 4 9p—1

3,- A, is semistable forward and has a unique cycle.

Then one may construct a transformation A, ,, such that the sequence A,
(k=1,2,+-+, n+1) will have properties 1, 41,2, 41, 3,4; and

4,41 | Aoy (5) — An (8)| < 0n for Imz =0,

Proof. Consider the transformation A): z — 4 (z) + A, A > 0. Evidently
there exists a Ag > 0 such that for A <A,

LA, (@) - A (3)] < -Z"L; (lmz! < R).

[ 4(5) — A< (s = 0)

and the rotation number of A, is strictly larger than p /g, (Lemma 8) and less
than

Pn 1
7, = #*(maxg;*
1<n

(continuity of the rotation number, see §9). Suppose that the rotation number of

AM is p. We select a rational number p_ 41/, +1»

Pn Ppir
. < . <p.

Among all the A for which the rotation number of 4) is p, ,,,l/qn +1 we select
the largest. Suppose that it is A;. The transformation A Al has the properties

1 415 2,410 4, +1» and, as is easily seen, is semistable forward. We apply Lemma
a to it. Then we obtain a transformation A".+1 satisfying all the requirements of
the Induction Lemma.

1.4. The transformation A1 satisfies requirements 1y, 2;, 3 of the Induction
Lemma for the same C, R. We shall describe the choice of 3" in carrying out the
induction from 4 ¢ A ,;. We denote by G, the eneighborhood of the single
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220 v.I. ARNOL'D

cycle A , where €>0 is chosen so that the measure of G is less than 2772,
By Lemma S there is an N, such that 4 has property 2 relative to G, and N_.
By Lemma y there exists a 5: > 0 for which the transformation A has property 2
relative to N and to a G, -neighborhood of G} of measure 2771 if on the real

axis

4@ (@) 0,

Choose

(we formally take 8, = 0). Applying the Induction Lemma, we obtain 4, ,,.
If the transformations 4 , n=1, 2,-+-, are constructed in the way de-
scribed, then, in view of property 1 this sequence converges uniformly in the

strip |Im z | <R, so that the limit 4 is an analytic uwansformation. Evidently

oo o (\"L
4@ - @)D e () — (@< N oalz)  <ow (Imz=0)
k=n k=n
for any n and therefore A has property 2 relative to G, and N, n=1,2,---.
From property 2, and the continuity of the rotation number, we conclude on the

basis of Lemma ¢ that the rotation number of A4 is irrational. Indeed, for any n

' o [ o« .
< N =,
”‘"%! \2 Iﬂ(maxq)‘-’\ZI'Z‘-’ ~ g2
{ 1 e q
k=n 1<Kk k=n n
Thus all three properties of subsection 1.1 are satisfied, so that 4 is the
desired transformation.

1.5. Remark. Considering the example just constructed, it is not difficult to
see that a transformation 4 with the indicated properties may be found in any
family of analytic transformations

s> Ay z=2-1- A F(z)
and therefore in any neighborhood of any transformation with an irrational rotation
number, given only that the family has the following property: among the trans-
formations A there are no rotations. Probably the family z — z + A+Lcos 2
has this property; in this case an example may be given by a simple analytic
formula.
§2. On the functioaal * equation ¢ (2 - 2mp) — g (2) = £ (=)

* Hilbert [12] gave this equation as an example of an analytic problem with a nonana-
lytic solution. It is encountered in investigations on the metric theory of dyamical sys-
tems (see [13], [14]), and is the simplest example of a problem with small denominators.

Added in proof. This paper was already in press when the author became acquainted

with the paper {40] of A. Wintner in which this equation was apparently first studied from
a modern point of view.
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2.1. Suppose that f(z) is a function of period 27, y a real number. It is re-
quired to define from the equation
(2 + 2mp) — ¢ (2) = / (2) (1
a function g(z) having period 27.

In case the equation (1) is solvable, evidently

an

S/ (2) dz == 0.

Furthermore, if g(z) is a solution, then g(z) + C is also a solution. There-
fore we shall consider only right sides which are in the mean equal to zero and
seek only solutions in the mean equal to zero. In each function ¢(z) on [0, 27]
‘we single out the constant part

¢ =5\ 0(2)ds

G/' ‘:5

L
2n

<

and the variable part

P(2) =¢() —q.
The equation -f— =0 is thus a necessary condition for the solvability of equation
(1). By a solution of (1) we shall from now on always understand the variable
part g(z).

If u=m/n, i.e., is rational, then for the existence of a solution it is neces-

Z/( Hn—):()

Jr==]

sary that

since this sum may be expressed in terms of the solution in the form

é‘,lg(z-}—2n% -—;—Zn%) Zg( L 2% _>

and in these two sums the terms are identical. If such a condition is satisfied,
then a solution exists but it is defined only up to an arbitrary function of period
2n/n, since such a function satisfies the homogeneous equation

g(s+202)—g(x) =0,
Now if p is irrational, then the equation has a unique solution; in fact,

1) For irrational p equation (1) cannot have two distinct continuous solutions.

Proof. The difference of two continuous solutions of equation (1) satisfies
the equations
gz-2m) —g(z) == 0,
g(z 4 2mu)--g(2) = 0;
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222 V. 1. ARNOL'D

i.e., this continuous function has two incommensurable periods. Such a function
is a constant (see [15], pp. 55—56); it takes on one and the same value atall

points 27k + 2mul, which form an everywhere dense set. Since
271

n

\g(z)dz = (),
o
then the constant in question is zero.

2) For an irrational p equation (1) cannot have two measurable solutions not
coinciding almost everywhere.

Proof. Again we consider the difference of two solutions of (1) and denote it
by g(z). It can be considered as a function on the circumference, since it has
period 27. By condition 1

g(z 4 2mp) —g(2) = 0;
i.e., g(z) does not change under a rotation through the angle 27u. Therefore the
set E  of points of the circumference where g(z) > a is invariaat under a rotation
through the angle 2zu. If the function g(z) is constant almost everywhere, then
this constant, as in case 1), is zero. If g(z) is not constant, then for some a
the set £ has a measure satisfying 0 < meas E, < 2a. But it is well known that
a set invariant with respect to rotations by an angle noncommensurable with 27
has measure zero or a complete measure (see, for example, [3]; for the proof it
is sufficient to use the theorem on points of density). Thus g(z) = 0 almost

everywhere.

If the function f(z) is expanded into the Fourier series
f(Z) = aneinz’
n30

then for the Fourier coefficients of g(z) we have

g,,eﬁf‘il”‘ —8n = /ru
i.e.,
. fn “( ) _ 2 g einz (2)
&n = onipn 1 ? g\z) = on :
€ - n3o0
For rational g some of the denominators vanish. For irrational p there are arbi-
trarily small denominators. We note that

12— m| @)
for any integer n and some integer m. Therefore the smallness of the denomi-
nators in (2) depends on the approximation of p by rational numbers.

Lemma 1 (see [16]). Suppose that ¢ > 0. For almost every (in the sense of
Lebesgue measure) p with 0 <y <1 there exists a K> 0 such that

(4)

K
n—m| > —
I m;/nlﬁ
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MAPPINGS OF THE CIRCUMFERENCE ONTO ITSELF 223

for any integers m and n> 0.

Proof. We select any K > 0 and estimate the measure of the set Ej of
points p, 0 <p <1, not satisfying the inequality (4), which we rewrite in the

form
m K
’“_T.>HT+:-

This set contains all the points m/n with circumferences of radius K/n2*€. For
a fixed n the number of these points will be equal to » + 1, and the common
length of the circumferences (on [0, 1]) will be equal to K/ n1*€, Therefore

(e e}

mes Ly < Z‘

n=]

The set of points y, for which the number K required in the lemma does not

= ¢ (&) K.

niTe

exist, is contained in E for any K > 0, so that this measure is less than
c(e)K for any K; i.e., it is equal to zero.

2.2. We shall show that for almost all j small denominators worsen the con-
vergence of the series (2) only a little.

Lemma 2 (see [17]). The series

o 1 1
- Zl atte [np—m, | ()

n=1

converges for any ¢> 0 and any integers m_, if p is such that

lun—m|>—K o (K>0, 0<8<e (6)

nl—l—s—&
for all integers m and n > 0.

Proof. Without loss of generality we may suppose that |un —mnl <1l. We
consider series S, of the same type as S, but in which the summation is extended
only over those indices n = nfc':) for which

1 (i) t . . (i i —.
Py < pny’ — mn}:,|<'—)i— (i=0,1,2,...5 nhs >nf"). (M)

The series S; taken together contain all the terms of S, so that it is sufficient
to prove that o

Z 8 < oo,

i=0
To estimate Si we note that from (6) the successive indices nii), n(,::)ﬂ of terms
of the series S; are significantly far apart: since from (7) there follows the in-
equality

; (i) (i) | L
|p‘ (nk _12k+1) —m ! < 2,'___1 7’
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224 V. 1. ARNOL'D

from (6) we deduce

(I
i—-1 14&e—8
2 NIt
where
N; = min (n“) — n®).
0-<k-Zoo
Therefore we obtain
1
. i 1fe—3
Ni > (27'K) . (8

Evidently n(li) > N;, and more generally nfj) > kN, so that in view of (5), (7),
(8) we have

oc i ; 0
9it1 9i+1 -
S - = L, K) (L(e K)>0),
< ,§l (kN,-)H_E Nli—i-s 2 k1—1: (1 1)1_1|_-tf_5
_1+te ( 1+€ ) s
Sy 2T L2 VT L (e, 8, K) O
Here
1— e
g =2 e
so that

as was required to be proved.

- - - * -
As is well known, if f(x) is a function p + ¢ times differentiable, then its
Fourier coefficients have an order of decrease

j- 0 (_;[Z_>P+€ ’

1 )T"i“l‘}‘i

Jn=0(+

n

and if

then f(x) is differentiable p + ¢ times. From this and from inequality (3) and
Lemmas 1 and 2, applied to the series (2), we obtain the following result:

If the function f(2)is p +1 + €+ O times differentiable, then for almost all
i equation (1) has a p + ¢ times differentiable solution.

On the other hand, it is not hard to construct examples for which the number

*l.e., a function whose pth derivative satisfies a HSlder condition of degree €:

lf(p)(t-{-h)—-‘}'(m(x)]( CHhE.
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MAPPINGS OF THE CIRCUMFERENCE ONTO ITSELF 225

p can he approximated by rationals so well that in spite of the rapid decrease of
the numerators fn the series (2) converges slowly or not at all. So even if f(z)
is analytic there may appear cases where g(z) is not analytic but is infinitely
differentiable, or even only differentiable finitely many times, or enly continuous,
or even discontinuous, or the solution is not measurable (see [14], [17])."

2.3. Consider the equation (1) in the class of analytic functions. To investi-
gate this case we recall two lemmas concerning the Fourier coefficients of ana-
lytic functions.

Lemma 3. [If the function f(z) of period 2u in the strip |Im z| < R is ana-
lytic and in this strip | f(2)| < C, then its Fourier coefficients satisfy the in-
equalities

ifn[\\/\:(,){)“l'n[“.

Proof. By definition, on
1 .
Jo= gz \ 1@ eminedz.
0

From the periodicity of f(z)e "%,

g f(z)e—inzdz — gLi:f(z) e~inzdz

so that
24T
1

In= 5= & [ (z)e-inzdz
0z

for any 7€ [~ R, R]. Integrating in the case n > 0 along the line 7=—R and

for n <0 along 7= R, we obtain

[l < g \ Com iRz,

as was required to be proved.

1o
g1~
ce/?r;‘:

Lemma 4. Suppose that the Fourier coefficients of f(z) satisfy the inequal -
ities |f | < Ce I 7R, Then f(2) is analytic and satisfies for |Im z| <R ~ 5,
0 <8 <R, the inequality
. 2C
T < =
and its derivative satisfies the inequality

{f'(z)lg—(%)“p

*A. N. Kolmogorov has conjectured that this last case is realized whenever the
series 271:!:0 I fi l/|62mﬁn ~1 ‘2 diverges.
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226 V.1 ARNOL'D
Proof. For [Im z| <R -8, 0 <8 <R it is evident that

l einz l < elnl (R-—B).

Therefore
| fnginz| < Ce—1n18
and - _
Dl [ faginz] <2 D) Cemd L zc_a ‘
=T n=n 1—e
In the same way
b [ee]
2 | fainetns [ <20 3 nemo 2
n=—oo n-=0 (1 e )..

In the strip |Im z| < R — & the series converge absolutely uniformly. The lemma
is proved,
Now it is not difficult to investigate the analytic solutions of equation (1).
Theorem 1. Suppose that f(z) = ’f\l(z) is an onalytic function of period 27
and that, for |Im z| <R, | f(2)| < C. Let p be irrational, K > 0 and

m ~ K (())

W= 1=
for any integers m and n > 0. Then the equation
g(z+2mp) — g (2) =/ (2)
has an analytic solution g(z)=g (z), and for |Im z| < R - 28 and any 6<1,
0<38<R/2,

(10)

(1

Proof. Applying Lemma 3 for the estimate of the Fourier coefficients f, of
the function f(z), and using inequalities (3) and (9), we obtain from (2)

C a
| g,| <% nte-inin, (12)
We note the simple inequality
P p\p enl® 13
nP< (%) 5 (1)

valid for any 8> 0. In fact p ln x < p ln (p/e) + x, since the function p ln x —x
has its maximum at x = p. Putting x = 6|n|, we obtain (13). Applying (13) to
(12) (for p = 2), we have
Ce—]n[Re]nls Ce— || (B—3)
l gnl < Ko? = K&2 )
so that from Lemma 4 we obtain in the strip |Im z | <R - 28:

165



MAPPINGS OF THE CIRCUMFERENCE ONTO I'TSELF 227

2C
Ko (1 —e ™)

2C

12 (2) | << KU — O

18 @)<
Since |1 -~ e %> 8/2 for <1, we therefore obtain the inequélities (10) and
(11). The theorem is proved.
Remark 1. Evidently the solution is real if f(z) is real on the real axis.
Remark 2. If the function f(z, ) depends analytically on a parameter A, then
the solution (under the conditions of Theorem 1) also depends analytically on that
parameter.

2.4. We considet equation (1) for complex p. In this case the solution of the

homogeneous equation
g(z+2mp) —g(2) =0
is any doubly periodic function with periods 27 and 2mpy, so that the solution of

the problem is certainly not unique. If we require that g(z) be analytic in a strip
of width greater than |Im 27|, then the solution of (1) is defined uniquely up to

a constant, Indeed, a strip of that width contains a parallelogram of periods, and
a solution of the homogeneous equation analytic in it is bounded in the entire
plane; i.e., it is a constant. The condition g = 0 singles out the unique solution
which is given by the series (2). This series converges for any nonreal p, but we
are interested in estimates, and thus we must exclude neighborhoods of rational p.
We shall denote by M;( the set of points p of the rectangle in the complex plane
0<Rep<1, |Imp| <r such that for all integer m, n the inequality
m K

[p= >
is satisfied. It is evident that along with p the points i, 1~ pu and 1 -7 are
also contained in M}.

Instead of inequalities (3) we have
lemz—l]}min(%,nlz——m]) (14)
for any complex z with some integer n. We shall prove (14). If [e2™z_ 1] » 1

then (14) is proved. If |e2™% — 1| < L then we join the points 1 and e27Z by
a segment and consider the integral

e2miz

1 dw 1 o AN e
— S o (ne—In1)=z—m,

1
where ln w is one of the branches of the logarithm and In 1 = 27im, m an integer.
Since the segment of integration lies entirely in the circle

lw—1]< 5,
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and in this circle {w] > %—, we have

e2miz

dw
. w

1

L2]e iz — 1.

Therefore
|z——m|\<—1—|e2““—1|,
s
as was required to be proved.
If u€ M}(, then by applying (14) to z = pn we find

. . 1 nK
lewpn——1|>mm(7, . )

nt
Thus, if p € My, where K <1/2a, then
QXA J'IK
le_..r. n_1|>? .

Theorem 1'. Suppose that f(z) = ?'(z) is an analytic function of period 2w
and that | f(z)| < C for |Im z| <R, and suppose that p € M%, K < 1/2n. Then
the equation

g (z+ 2ap) — g (2) = / (2) M)
has an analytic solution g(z) = g(z), and for |Im (z — 2mu)| <R - 28 and any
8<1,0<86<R/2,

e I< =L, 18 ()< e - (16)

Proof. From formula (2) and Lemma 3, we have

y - R
lg einz l \< Ce Il ein (z——2ru+27p) (17)
n

e2mpun —1

But for |Im (z - 2mp)| <R - 20
] ein (z—2x=p) | Lelnl (R—28),
so that it follows from (17) chat

| gneinz l \<

Ce—2% 11l

,lme‘-zm'u.n .

Since 1 -p € M;(, we have from (15),

l 1 — e—2mivn | > n& ,

which means that

Ce “5]11]
inz
g6 | < ——F

Hence from (13) it follows that the series g(z) and g’ (2) converge, and according-
ly the inequalities (16) are valid (see the proofs of Theorem 1 and Lemma 4).

Remark 1. Remark 2 to Theorem 1 applies also to Theorem 1'.
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Remark 2. Let us fix the function [ and the number z and consider the de-
pendence of the solution just found on pu:

gw) = 3 —e“fn%e (2),
730
The function g() is analytic in the upper and lower half-planes, but the axis
Im =0 is a cut. On it the series (2) converges almost everywhere, but to an
everywhere discontinuous limit. That does not prevent us in §7 from differenti~
ating the solution with respect to y even for Im p = 0 if we make use of the ideas
of Borel [9]. For the time being we shall take the formula

25tine? inn f

[ 2 einz
(ezmp.n. 2
n 30

to have a meaning only in the upper and lower half-planes separately.

$3. Lemmas necessary for the proof of Theorem 2
3.1. Lemma 5. If at each point of the segment z,z, the function f(z) is ana-
lytic and |df/dz| <L, then |f(z,) ~f(z)) | <L |z,~-2q].
Proof. Indeed,

2y

je) — 1 (@) = | Pz,

2

from which it follows that ,
df (z
17— @ | <{| L2 1dz | < Lfea— ).

Remark. The example f(z) = e'%, z, =0, z, = 27 shows that in the complex
domain the theorem on the finite increment in the form

f o) —f(z) = LE (o, — 2

17 ) = F @) | = | L2 |12 — 2]
is invalid.
3.2. Lemma 6 (on implicit functions). Suppose that the functions F(e), ® (¢, A)
are analytic and that for |e| < €5, |A] <A,
|F(e)| <My, |@( A)|<M:|A]
where Ml/(l -M)< AO/S and M, < 1/6. Then
1. The equation A + F(¢) + ®(¢, A) = 0 has analytic solution A*(e), satisfying
for €| <eq the inequality |A™e)| <M,/(1 - M,).
2. The equation A + F(e) + B (¢, A) = A, has a solution A= A(AI, €),
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analytically depending on A, and ¢, |A;| <Ay/6, | €| < ¢, where
|A (A, &) — A (8) | < 2|A
Proof. The disk |A| <M,/(1 - M,) lies, when M /(1 - M,) <Ag, | €| < ¢,
in the region where |F(e)| < M;, |®(¢, A)| <M,|A|, and therefore under the
transformation A —s — F(¢) - ®(¢, A) is carried inside itself:

|F (&) + @ (e, A) | <My + 720 My = 1250

1— M, 3
The fixed point of the transformation is the desired soluuon A* (¢). Analyticity

follows from the usual theorem on implicit functions, since
i)
2 (A4 F(e) + D e, A) F0,

which follows from the estimate of d®/0dA using Cauchy’s integral formula: for
IA‘ 52A0/3,|€|<€0
\ 2A0 < __1__
aA NTA 2T
3

2. Under the transformation w — w + ®(w, ¢) the point A* () goes into

~ F(e), and the point w of the disk |w — A*(e)| <2|A,| into the point
W+ DA (), &) + [© (w, &) — D (A (e), &)1
Since under the conditions of the lemma
I(D(wr 8)—(D(A*(8)7 E)l<lAll

for the points of this disk (Lemma 5), the image of the disk |w — A*(¢)| < 2| Al
contains the entire disk |w + F(¢)| <A, and has the point A(A,, ¢), going into
A, - F (). This point satisfies the inequality

A — A< 2]A]

and the equation

A=A —F(e)—D(, A).

Uniqueness and analyticity follows from the inequality |d®/dA | < 1

Remark. It is easy to see that if under the conditions of Lemma 6 thze functions
F(e) and ®(e, A) are real for real ¢, A, then A*(¢) and A(Al, €) are real for
real A}, e

3.3. Newton’s method (see [18], [19]). Suppose that
we are seeking a solution of the equation f(x) =0 Z
(Figure 1). We determine x roughly as x; and find the 2z
point of intersection x; of the tangent at x, to the
curve y = f(x) with the x axis:

Figure 1
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Further, we define successively .
2y = Ty — T@ny)_
’ (wn—l,)
and estimate the rapidity of convergence of the process. Suppose that x is the
desired solution and |x0 — x| =& Then the deviation of the curve from its tan-
gent at the point x, has order €® at the point %, which means that | % ~x| is
a quantity of order €2, Thus after the nth step the error will be of order 2",
which represents extraordinarily fast convergence.
We shall apply a similar method to the solution of a linear functional equation
approximated by the equation considered in §2. The rapid convergence will para-

lyze the denominators appearing at each step.
§84. Theorem 2 and the Fundamental Lemma
4.1, Heutistic considerations. The transformation
72—z 4 2mp
is a rotation of the citcumference. The transformation
z —> 2z -1- 2mp + eF(2)
is a rotation perturbed by the term €F (z), which is small along with e. Its rotation

number, even if F= 0, may be different from 2zu. However, we may seek A=
A{e) such that the transformation

z2—>72 4 2np - A + & F(2)
will have a rotation number equal to 2mu. We shall show that for numbers y that are
normally approximable by rational numbers, and sufficiently small ¢,
1) A(e) depends analytically on ¢
2) the transformation z — z + 2ap + A + €F (z) may be converied into a
rotation through the angle 2y by an analytic substitution of variables ¢(z) =
z + g(2).
Here g(z) is a correction small with ¢, and property 2) meaas that
@ (z + 2np + A (e) + e F(z), &) = ¢ (3, g) -+ 2mp,
or, what is the same thing (the dependence of g on ¢ is implied),
g(s - 2mp+ A+ F@) —g(2) = — A — e F(2). (1)
This equation differs from that considered in §2 only by small quantities of
second order, and therefore it is natural in the first approximation to choose

A = A(e) so that the right side of equation ( 1) will be equal to zero in the mean:

A1=——4E‘,F

*Here we cite no exact assumptions and estimates. They are given in the paper (18]
in a very general form, which, however, does not include the arguments of the following
sections.
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and to seek g1 (z) as the solution of the equation

£1(2 4 2mp) — g, (2) = — & F(2).
The g, thus defined has order ¢ and in the variable ¢; = z — g, our wransformation

—7Z - A 1= z
has the form poach et Aule) e F )

Qi(z+2nu+ Ay (e) +eF(2)) =2 - 2mp L~ A, L e F
+ g1z +2mpu + Ay + &F) =z - g, (2) - 2u
+ 181 (2 + 2ap 4+ A, + eF) — g, (z - 27y) ]|
+ & (z + 2mp) — g1 (2) + eF (2)] — (A, + SF)
The last two terms vanish because of the choice of Al and gl(z) and we obtain
@1(2) = @1 (2) + 2 - F, (2, €).
Now the "perturbation’ has the form

; ; l 5

Fy(z, €)= g1 (z 4 2mp -+ By - eF) — g (4 2mp) = BEL (A, 1 o),
Hete dg l/dz, as also g1, is a quantity of order ¢, and, since the same relates
to the second factor, the perturbation in the parameter ¢; has order €%. With the
trans formation

G —> @y - 2 - F
one may proceed in the same way and define a “‘correction to the frequency’’
A2 and a new parameter ¢, such that the transformation
$1> @2 - A, - F,
in the parameter ¢, goes into the transformation
@2 —> Py - 231!‘« - F:;,

where F 3" 4. However, here in the parameter z the transformation

G131 =@+ 2ap — A, L,
will not have the form B

Iz 2 A e R

Therefore we need to begin with the transformation
z—z 4 2mu - A () - AL (A,) + eF;
then with a proper choice of A{ (Az) we may in the parameter ¢; obtain the
transformation
1 — Py = 20 - Ay - Fo (@),

and in the parameter ¢, the transformation

G2 —> @y - 200 - B,
and so forth, The rapid convergence of the method (F, ~ czn-l) makes it pos-
sible to carry out the limit transition and in the limit to obtain a new parameter
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¢ (2, €) and a final correction A(e) with the properties 1) and 2).

The usual method of solution of our problem in the theory of perturbations
would consist in seeking A(e) and ¢(z, €) in the form of series in powers of e,
while the coefficients of the series would be successively determined by equation
(1) in the first approximation, in the second, and so forth, The proof of con-
vergence of such series by direct estimates has not been achieved, though it re-
sults from the following fundamental theorem of this paper.

4.2. Theotem 2. Suppose given a family of analytic transformations of the
circumference, depending analytically on two parameters ¢, A;

z->A(z, &, A)yzsz |- 2mp - A 1 F (2, &) (2)
and numbers R > 0, €>0,K>0,L>0 such that
1) F(z+2m, € =F(z,e¢);
2) for Im z =Im ¢ = 0 we always have Im F (z, ¢€) = 0;
3) for |Im z| <R, |e| < ¢
P e) | < Lel (3)
4) the irrational number p for any integers m and n satisfies the inequality

Then there exist numbers ¢' and R', 0< ¢ < €g» 0 < R' <R, and functions
A(e), ¢(z, ), real for real € and z and analytic for |e| <e', |Im z| <R’ such
that

¢ (4 (z, & A(e)), &) = (2, &) + 2mp. (5

This theorem is proved in §6 on the basis of the following lemma.
Fundamental Lemma. Suppose given a family of analytic transformations of
the circumference, depending analytically on the parameters ¢, A:

z2—> A, (2, 8, Ay =z -+ 2mp + A+ F(z,8) + Dz, 8 A) (6)
and numbers Ry >0, ¢,>0,K>0,8>0,C>0,0<A,<1 such that
1) F(z +2m €)=F(z, € ®(z + 27, ¢, A) = D(z, ¢, A);
2) for Imz=Ime=Im A =0 always Im F =Im ® = 0;
3) for |Im z| <Ry, [e] < g [Al <A
| F (z, ) | << C <88, (7)
|®(z, &, A) | < S| A; (8)
4) the irrational number y for any integers m and n satisfies the inequality
(4);

5) the number & satisfies the inequalities
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K R
0l 0<% 9)
8 < o) (10)
and moreover
c<he (1)

Then there exist analytic functions z(d, €), A(A, ¢, F1(¢, e, (¢, & A)
such that

1. Identically
Z[Al ((P1 87 A1)1 8] == ‘40 [Z((Py 8)7 81 A(Aly 8)]7 (12)

where
Ay (9, &, A) =@+ 2np ++ Ay £ Fy (9, &) + Dy (9, &, Ay). (13)
2. Fy(@ + 2m, &)= Fy(@, £), @y( 4 2, &, Ay)= Di(9, &, Ay); 2(@+2x, €)=
z(9, &) + 2a.

3. For Img =ImA;=Ime =0 dways Imz=ImA=ImF, =Im®,=0.
4. For |101<<C, |Ime|<CR— T8, |e] g,

|Fi(e, 0| <% (14)

| @, (@, &, Ay)| << Ay, (15)

2@ 0 —el<g, |5|<2 (16)
AL B[ <A, |on]<2. (17

The Fundamental Lemma shows that small (of order C) perturbations of the
rotation z — z + 2au may be compensated by the change in the parameter z — ¢
for A = A(Al, €), so that in the new parameter the difference from a rotation will be
of order C2. The proof of the lemma is given in the next section.

4.3. In $11 we shall use the following assertion.

Corollary to Theorem 3. Suppose that the irrational number p satisfies in-.
equality (4) of Theorem 2, and suppose that R > 0. Then there exists a C(R,K)> 0
suck that if the transformation

Az:z->z -+ 2np -+ F(2)
hkas a rotation number 2my and |F(2)| < C for |Im z| <R, then Az may be

converted into a rotation by the angle 2mu by an analytic change of variables.
Proof. Consider the function

_ F(z)
Fi(2) = s (FO1
| Imz|<R
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and the family of transformations

Az :z—>z 4 2mp + eF, (2),
satisfying the conditions of Theorem 2 for L =1, since | F(z)| <1 for |Imz| <R.
According to Theorem 2, there exists an ¢ (R, K) > 0 such that for ¢ <¢' the
transformation

z2—2 -+ 2np + A (8) + eFy(2)

can be converted into a rotation through the angle 2mu. Choose C (R, K)<¢'.
Then, if | F(z)| > C for |Im z| < R, there exists a A such that

z—z + 2np - A 4+ F(2)
can be turned by an analytic transformation of coordinates into a rotation through
the angle 27p, since

F (z) = max |F (2)|F, (),

| Im zI<R
and
max | F (2) | <C < @',
But the rotation number of Az is equal to 2wy, from which it follows that A =0
(see item 2 in the proof of Theorem 4 in $10, where it is shown that for an arbi-
trarily small A the rotation number of the transformation z — z + 27p + A + F(2)
is larger than 2ap). The corollary is proved.

The assertion of the corollary may be obtained directly as well, using con-
structions analogous to those of Theorem 2. Because of the absence of the para-
meters ¢ and A, these constructions will be less clumsy.

4.4. Remark onthe multidimensional case. All the constructions of §$2-8
may be considered to be multidimensional if we replace a point of the circumference
by a point of a torus of & variables. Condition 4) of Theorem 2 is replaced by the
following condition of '‘incommensurability’’ for the vector pi:

) - > K
an o (% n) l > | —>[m
I

(18)

for any integer vector n = (no, *++, n;). Here (ﬁ, n) is the scalar product

k k
2 wini, 0| =3 nl.
i=1 i=0
For sufficiently large « condition (18) is satisfied for almost all vectors /-2
Without dwelling in detail on the formulations and proofs of all the inequa-
lities, lemmas and theorems for the multidimensional case, we present only one
resule.
Multidimensional Theorem 2. Suppose that ﬁ.—.v(yl, “++y i) is a vector with
incommensurable components such that for any integer vector n
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K
ik
Then there exists an ¢(R, C, k) > 0 such that for the vector field F_)(_:z) on the
torus, analytic and sufficiently small,|F (Z)| <€ for |Im z| <R, there exists a

> . .
wector a for which the transformation

l”O _i_ (}17 n)l :

z—>z-4-a - F (3)
of the torus into itself is converted into

§ > @i Zﬂ}i
by an analytic substitution of variables.

§5 Proof of the Fundamental Lemma

5.1. Construction of z(¢, €), A(A, ¢), F (¢, ¢) and ®,(¢, ¢, A}). The
function z (¢, €) is constructed as the inverse to
P (2, 8) =z g(z, ¢), )
and the function A(A,¢) as the inverse to A, (A, ¢). In subsection 4.1 we saw

these functions had to be chosen so that the expression
(A, (2, 8, A), &) — g (5, 8) - F(z. 8) = A-D (s ¢, A)

would be small. Without defining A(A,, ¢) for the time being (i.e., considering A
as an independent variable) we define g*(z, €, A) as the solution of the equation

E o 2m, e, A) =g (58, A) = — F(z, e) — D (5 e, A) (2)

Expressing the transformation 4 (see §4, formula (6)) in terms of the parameter
i (z, e, A) =z g (5 8 A),
we obtain
P 1A, (2, 8, A), &, Al =z -+ 2ap - A - F (z, &) + D (2, 8, A)

g (a 2m, e, A) g (A, (5 8 A)) ¢ (2 2, 8, A,

or, transforming the right side by means of (2),
@ [4,(z, 8, A), 8, Al =24 g7 (2,8, B) 4 2p + A + F (e) 4 D (g, A)
+ 8 4z 8, ), &, Al —g' ( + 27, &, A).

Thus from (1) we obtain
9 (4, (5 8 A), 8, Al = @7 (2, 8, ) 4 21+ AL F (o) + @ (e, &) +
+ g 14, (2, &, A), &, Al — g™ (z 1~ 2n, &, A).

We define Aa (¢) as the solution of the equation

Ap(e)-+ F (e) + D (e, Ao (e)) = 0 4)
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and put _ . _
g (2, 8, Ay (&) = g (2, 8). (9)

Now the new parameter ¢(z, ¢) is defined by equations (5) and (1). We represent
(3) in the form

(‘P [‘40 (Z’ g, A)7 8] - (P(Zv 8) _5 2””’ {_ Al (87 A) ’}“ i—'l (27 8) +(,i)l (Z1 g, A)v (6)

where
Fy(z, &) = g (a1, &) — g (21, ©), (7)
61)1 (2, &, A) = g (2111, &) — 8 (21, &), 8)
Ay (e, A) = A - F (e) + @ (g, D), (9)
21=z+2np-i—p (2, &) + (13(2, g, Ay (€)), (10)
Zy = 2 -+ 2mp, (11)
fip = 74 2 - F (2, 8) - Ay (e, A) + D (z, 8, A). (12)

We define z (g, ¢) from (1), A(A,, ¢) from (9), and write

Fi(g, ) =F (z(g, &), &), (13)
@, (¢, &, Ay) = D, (z(9, €), &, A(Ay, £)), (14)
A (9, &, A) =@ [A,(z (9, &), &, A(Ay, £)), £]. (15)

5.2. We shall prove that the functions just constructed are those sought. As-
sertions 1, 2, and 3 of the Fundamental Lemma are satisfied in an obvious way.

The proof of assertion 4 is based on the following estimates.

1°. Estimate of A’a(c). On the basis of the inequalities (10), (11) of §4,
Lemma 6 of §3 is applicable to equation (4). Here M, = C, M, =8, and since

c Ao 1S
Tjg<'7y d

pd
3 ~ 2

(see formulas (10), (11) of $4),
. o c
| A (e)] < -8 °

Taking into account that & < %, we find for || <¢, that

| Aa(e); < 2C. (16)

2°. Estimate of g(z, ¢). Inequality (16) makes it possible to estimate the
right side of equation (2). For |Im z| <R, |¢| <¢g, A =Ag(e), from (16) and
inequalities (7), (8), (10) of &84 it follows that

| F (z,8) + D (2,8, A)| <20 + 28 - 2C < 4C. (17)

Applying Theorem 1 of §2 to equation (2), we obtain on the basis of (5), (17) and
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condition 4) of the Fundamental Lemma that for |Im z| <R —23, |¢| <¢; and
any 0<1,0<3<Ry2,

8.4C" 16 4C
] g (Z B) l < K63 ’ ’
from which, in view of inequality (9) of §4,
c ke | O 18
2G| <o | | < (18)

Since C < 88 by inequality (7) of $4, it follows that

|8 (2, &) | <.
Therefore under the mapping z — ¢(z, €) = z + g(z, € the strip
[ Im z | <R, — 26
goes into a region containing the strip
[Img| << R, — 38.
In the latter the inverse function is analytic, since | d¢/dz | > = 1 for] Im z| <R, -26.
In the same way one proves inequality (16) of §4.

3° Estimate of F, (¢, ¢). Suppose that |Im z | <R - 35, |¢| < ¢y- Since,
from inequality (16) and conditions 3) and 5) of the Fundamental Lemma,

Fi(g, €)== Fi (2 (g, ), &),
the imaginary parts z; and zj; (see (10) and (11)) do not exceed R — 26. Ap-

plying Lemma 5 of §3, we find on the basis of (17) and (18) that for |Im z| <
Ry-39, €] < ¢

1B (2, 0) | < 2 (19)

We note that the appearance of C 2 in this inequality is the most essential feature
of the proof of Theorem 2.

For |Im ¢| <R - 48 and |¢| < ¢; we have from 2°
[Imz (g, &) | <R, — 39,
and therefore estimate (14) of §4 follows from (19) in view of the definition of
F (¢, ) and inequality (10) of §4.
4°, Estimate of |A(A}, €) - A*
A=A — Fe)—D (e b)
defining A(A, €), belongs to the type considered in Lemma 6 of §3. We have

seen (see (16)) that | A’a(e)| < 2C, from which, on the basis of formula (11) of §4,
it results that

. The equation
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(o) < A (20)
Thus Lemma 6 is applicable, and for |A;| <C < Ay/6, |e] <¢
A (A, &) — Ag(e)| < 2] A,]. (21)

Comparing (20) and (21), we find that for |¢| <€, |A;| < C
2
| A (A, &)| < TAO‘
For |e| <¢y, | A| <(2/3)Ay, from Cauchy’s formula we have
l < (SAO 1

-
~ 2
3
(see inequalities (8), (10) of §4 ). Estimate (17) of §4 is proved since it is
evident that

1

1+"_‘£

< 2.

5° Estimate of | D, (s, ¢, A
formulas (12) and (10) it is equal to

A+ @z, e, A (A, 8)) — @ D (z, &, Ao (e)).
From Lemma 5 of $3, for |Im z| SRy, el < ego [A]] <Ap/6

. Let us set up the difference z;; - z;. From

1Dz, e, A(Ay, ) — Bz, e, Ay(e))] < |A— Ay,

since | a$/aA| < 1. Comparing the inequality just obtained with inequalicty (21),
we have

lZu[—le<3|AII. (22)

Applying Lemma 5 of §3 to the right side of (8), on the basis of (22), (18) and in-
equalities (7), (10) of §4 we find that

|y (2, &, A)] < -5 3] Ay <82 A (23)
under the condition that |¢| < €, IA1 | < A0/6,
[Im (z 4 A, + F + @) | <R, — 28.
This last inequality is satisfied if

|Imz| < B, —68, [A]<C, le|<e,
Indeed, then

|F + @ <6+ 20A, < 36

(see formulas (7), (8), (17) of §4 and inequality (20)) in both the terms Znr and
zp. For |Im ¢} <Ry —-78, |A;| < C we have, from 2°,
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[Imz | < R, — 6.
Therefore estimate (15) of S4 follows from (23).
The Fundamental Lemma is proved.
$6. Proof of Theorem 2
6.1. Construction of z(¢, ¢) and A(e). We put @ = 0 in the Fundamental
Lemma, and as F(z, ¢) we take the function F(z, €) of Theorem 2. We choose
51 > 0 so that

ZJ(S" - 8a , where §, = (3,1_ (n=2,3,...);
n=1

K

-)‘) 61<T7 61< )h'

Let 65{2 < AO <1, R =Ry, K be the same as in the condition of the theorem. Let

Le' < C1 = 8%2, 0<e < €g» C1 and J; be respectively ¢g, C and 6 of the Funda-
mental Lemma. Then all the hypotheses of that lemma are satisfied, and for
|Im &, | <R -78;, le} <€, |A;| < Cy, we find that

Qr— @y - 2 - Ay 4 Fy (91, &) + D (¢4, &, Ay),

where
|y (g, )<< = o (1)
| D1 (91, &, A1)|<5I5A11<525A1]7 (2)
2o &) — | <b, 4| <2, 3)
A (A1, &)< A,, (4)
'6A1 ’\~ (o)

*
More generally, if the functions

Bi-r(Bks ), Filow, ©), Dl e, Av)y @iy (s, €) .
Ay (i, &, Ap),

are defined for k =1, 2,+++, n and satisfy the conclusion of the Fundamental
Lemma with z replaced by ¢'Z-1’ b by b0 Rg by Rp_q, Rg - 76 by Ry =R, _;-
78,, Ay by 8,1, Ag by Aj_q, Ay by A;,8by ;, C by Cp = 3;2 for each
k=1,2,..+,n, then we may introduce functions $,4+1 and An+1 such that the
conclusion of the Fundamental Lemma will be valid for them for k=1, 2,.-.
n + 1. Indeed ,inequalities (9) and (10) are satisfied for 5 from the defxmuon of

1, (11) follows from the inequality C . = Ca/ <(1/6) Ck’ and all the other

* g denotes z, Cq denotes Ao A, (Ay, &) = A (B4, #).
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conditions of the lemma enter into the conclusion (of course, for the functions
with the preceding index). Therefore we may consider all the functions indicated
above as having been constructed. The functions ¢ _;(¢,, €, A, _; (A , ¢
(n=N, N-1,+-+, 1) define the functions
2N (@, &) =2(@s (... (PN, €)...), &), (6)
AN (An, &) = A (A (... (AN, €)...), &) )

Put AN = 0, and suppose that A({)V) 0, €) = AM(e). Then

A (e) = lim A7 (@),

N—->oo

2 (g, &) = lim 2V (9, ).
N—-oo .

For the basis of the convergence of A(N)(e) and z (V) (¢, € we note first of all
that from the definition of 3 , for @ >0
lim 2V 8% = 0.
N—oo
6.2. Convergence of AM) (¢). The functions ASN ) (AN, €), as follows from
formula (7) and from inequality (17) of §4, are defined for |e| < € |AN | < 51%]2.

Since )
aA() oA aAN—I

—————-aAN :—*—-aAl... 6AN ’

in the indicated region, on the basis of (5), the inequality
oAl
Ay

<2

is satisfied, and since
| Ay [Ansi( .. (Am,€)...8),e]|<CON
if |Ayl< 5}12 (M > N), therefore from Lemma 5 of §3,
|AY [An (Angr- - - (Ayr, €) ..., e), ] — A8V (0, )| < 2V 8R.
Thus in view of (7) we deduce that
| AM (g) — AP () | < 27 8F,
from which it immediately follows that AN (¢) converges for || < €p» and also
that A(e) is analytic.

6.3. Convergence of z(N)(¢, ¢). From the Fundamental Lemma, the functions
&, -1(¢,, € are defined for |Im ¢ | <R, || < ¢g, and, in view of (3), differ
from their arguments ¢_ by less than 3, so that

l Im (Pn—l ((Pn, 8) l < Rn—l'
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Thus formula (6) defines z(N)(qS, €) in the strip

n
' k=1
From condition 1) on the choice of 8,, all these strips contain the strip |Im ¢ |
R/8, so that all the functions 2(¥) (¢, ) are defined in the latter.

Since

IN

M
|(p1v(q>1v+1' L ((pM’ 8)7 fe ey B)—(PM' < 2 61:7
k=N
and this sum, from the definition of Sn, is not larger than 25N, we find from (6)
that

3z I
5% 20n.

|2 (@, &) — 2z (g, &) | <

On the basis of (3),

9z
op

|<2%,

so that

12 (@, &) — 2 (g, &)| <2V by,

which proves the uniform convergence of 2V (¢, ) for |Im | <R/B, |€| < €
6.4. We shall define ¢(z, ¢) as the inverse to z(¢, ¢). From inequalities
(1) and (2) and from the fact that 3n — 0 as n — o it results that
¢ (z, &) —@(z, &)+ 2mp
when z — A(z, ¢, A(¢)). Theorem 2 is proved.
§7. On monogenic functions
7.1. The concept of monogeneity. In the investigation of the dependence

of the solutions of equation (1) of §2 on the parameter p we encounter functions
analytic in the upper and in the lower half-

plane, and everywhere discontinuous on the ,
.o.o@,.o. real axis. All the functions, A , 2., ¢,, F, @,

constructed in §6, considered as functions of

/ i, have these properties (see §8). These

. functions belong to the type called by Borel
Figure 2 .
[9] monogenic.

The monogenic functions of Borel are defined on the set £ = [J 7‘°=1 E,,
where E, C E, ., are perfect compact subsets of the complex plane. In our case

E, is the set Mlig of points p of the rectangle |Im | <R, 0 <Rep <1 of the
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complex plane, for which

e (K= %)

i.e., the set formed by rejecting from the rectangle |Im | <R, 0 < Re g <1 the

circles Cm/n,K' shaded in Figure 2, of radii K/|n |3 with centers at rational
points m/n.

Definition. A fanction f(u) is said to be uniformly differentiable on a per-
fect compact set F of the complex plane, and the function g{y) its derivative,
if for any ¢ > 0 there exists a &(¢) such that

L= L) g ()| <,

whenever |, —py| <8, [He —pa! <0, Uy, Moy Us€F.

A function is monogenic on E = |J 7 - E, if it is uniformly differentiable on
each E,.

In particular, a uniformly differentiable function on E is monogenic on
E= .11:=1 E,, and conversely a function monogenic on E=1) ,1‘=1 E, is uni-
formly differentiable on E. Such functions will be called monogenic on E, in
distinction to those that are monogenic on E = {J 7. E,.

The following properties of monogenic functions are evident.

1) From monogenicity on E = | -; E; follows continuity of the derivative
on E,.

2) If T is a rectifiable curve joining two points a and B in E, then

V7 @y dn=7®) —/ ().
A

3) If a function is analytic in a neighbothood of each point of a set, it is
monogenic on the set.

4) If Ek contains a region, then a function in it which is monogenic on
E= %= E, is analytic.

An example of a nonanalytic monogenic function was constructed in §2, as
is proved in subsection 7.4 (see Lemma 10; the fact that g(y) is not analytic
for Im p = 0 is left to the reader to prove).

Properties of monogerﬂc‘ity of a function may essentially depend on its region
of definition £ = | :=1Ek and on the decomposition of E into the E,. If the
rapidity of décrease of the components of the complements to the E, is suf-
ficiently great, then, as Borel proved, monogenic functions on E=1 7c°=1 E k
have many properties of analytic functions (Cauchy integral, infinite differenti-

ability, uniqueness of the monogenic prolongation). The question as to which of
these properties are preserved in our case will be left aside, since in the sequel
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($§8 and 11) we use only the definition of uniform differentiability.
The class of functions monogenic on E = |J -y E; depends not only on E

but also on E,. However, if E is obtained by using another system of sets, E =
U 7:=1 Fk’ Fk C Fk"’l’ such that

Eaq CF,CEg  (2a<{1P),

then the class of functions monogenic on £ = |J7 -1 E; and on E= YT, F,
coincide. The sets Mﬁ (Figure 2) are not convenient for the investigation of
monogenic functions because of the complex character of the intersections of the
disks Cm/n,K‘ Making use of the.above remark, we replace these sets by another
system of sets Nllg such that:

1. MBEcNEcmE.

2
m 2. The set Nﬁ is obtained from the rectangle
|Im u| <R, Re p € [0, 1] by deleting noninter-
secting open disks.

The construction of the NIIE (K<1/9) is
given in subsection 7.2; it is complex and may be
omitted by the reader.

7.2. Coastruction of the N g The transformation of the M§ into the N ﬁ con-
sists of two operations. First the disks being deleted are diminished to disks
C'm/n,K so that in the system C’M/n,K (m=0,1,~++;n=1,2,-+-) there are no
**bridges’’ (see Figure 3), i.e., triples of disks of which the smallest intersects
both the larger, while these latter do not intersect one another, Then the disks
C' are imcreased to disks C"m/n,K so that two such disks either do not intersect
or else one lies inside the other. Here it is necessary to order them so that

Figure 3

¢ DC, o¢C

m m ="m K
ER
c cc ccC

mokT MK ™

n n n

Then

Cm Kgcm g-Cm
m, =, K —, 2K

n 2 n n

and after deletion from the rectangle of the disks C” K there remains a set

m/n
N ﬁ, having both of the needed properties.

Lemma 7. Suppose that the disks Cm/n,K and Cp/q,K (n > q) intersect
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and K <1/9. Then n> 2q4/3; i.e., the smaller disk is much smaller than the
larger.

Proof. Indeed, the sum of the radii of the circles is larger than the distance
between their centers, so that

K K P m
kil

Since pn — gm # 0, then —;’-—— %‘2 q~1,;, and
K (n® + ¢°) > g°n’;

tn view of the inequality n > ¢ we obtain

K (n*+¢*) > ¢,

or

¢

nd > - ¢3.

K q

Taking into account the fact that K <1/9, we have
n’ > 9¢* —¢* > 8¢*,
as was required to be proved.
Operation 1: Construction of the C’ m/n,K+ This construction consists of an
?

infinite number of successively realized stages such that after the nth stage

disks €', /.
: A,. No disk C”‘l/ﬂl,K , :
¢ m2/n2,K (n 2 < n) if these disks C m/n,K and C

k (0 <m <n) have been constructed with the following properties:

(nq>n) can join a disk ¢’ x to adisk

m/n,

do not intersect
m2/n72,K

each other.

Bn' Cm J; — Cm . g« C'm R
iy — —, K ~, K
n 2 n n

We begin with the first stage. Suppose that C'm/l,K = Cm/l,K' Then che
property B, is satisfied. Property A; is also satisfied, since the diameter of
the disk C,”/nl,K (nl‘ > 1) is less than
K2 - 1
was (K<)

B [5)
nl

and the distance between the disks CO/l K !
. , To7
and Cl/l,K is larger than ANEANE

19K > 2.

)

The first stage is done. Figure 4
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Now we suppose that we have successively performed n ~ 1 stages. We con-

sider any disk C =C_ , . (Figure 4). Suppose that O is its center, AB the dia-
?’

meter lying on the real axis, E and D the means of A0 and OB. The disk C
can only intersect with those disks C’mz/ng,K (ny < n) for which sz/nz,K in-
tersects with C (because of property B,, k <n ~1). Further, all such disks
c 'mz /n2,K intersect also one with another (as a consequence of property
A, k<n-1).

Now we arrange the disks in the order of decrease of n, (i.e., of the growth
of the disks):

Ci= Cmg,i X R=nyo>n,n>...>n>1).

ngi’

From Lemma 7, n, , > 2, ;41 (0<igl~-1), sothat n> 2! and 1 <log,n.
Thus, the circumferences of the disks C mo/n2,K yield in their intersection with
the diameter AB not more than 2 log,n points. Therefore among the portions
into which these points divide the segment BD and the segment AE, there is at
least one length larger than K/. 4n3 log,n. Now the diameter of the circumference
C'"l /n1.K (nl > n), which intersects with C, by Lemma 7 does not exceed

K K

8n4 < 4n3 logan*
We take the ends B’ and A’ closest to O of the largest pieces of BD and AE,
which we denote by B'D' and A'E’, as the ends of the diameter of C‘m/n K

?

Such a choice does not contradict property B, . It is clear that if the circumference
Cl = le/nl K (ny > n) intersects C’m/n,K’ then it lies inside C, and among
the disks Cp,y/ny,k f ph
of C, is less than the lengths of B'D" and A'E’, therefore C, can only inter-

(n, < n) can only intersect the C,. But since the diameter

sect those C; which are intersected by Clm/ll,K' Therefore property A, is also
satisfied, and thus we have given the construction of the nth stage.

At the conclusion of all the stages one obtains a system of disks C'm/n,K
with the following properties:

A. No disk C_ can join C. and C if ny>ny, ny>ng
bl 2 g =2 K

n,' n,' n,

and C, ﬂC;' =0,
2 K

\ Mk
ny N,
B. C, ,CC, <C,
2, =7 kT Tk
n 2 n n

Property B follows from B, and property A from A/ 2 if ny>nj, and
from An3 if ny>n,.

Operation 2: Construction of the C"m /n,K- Now we shall enlarge the disks
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of the system C"m/n,K'

By a tail C = C’m/n,K we shall mean the collection of all the C'mi/ni,K
(n; >n) which may be joined to C by a monotone finite chain of pairwise inter-
secting disks C’

0<k<l):
m]k/n]k,K ( - — L)
",
" ' 71; m;
Jo __ n . . ’ . 1 _ 1
n,  on’ n]k<n3k+l’ ijk ﬂC m; +0, n, . on,
Jo VK k+1 VK i i
"k g1

Obviously, if the disk C; enters into the tail of the disk C,, then the tail
of C, alv:eays enters into the tail of C,. Moreover, if the tails of C; and C,
intersect, then one of the tails lies entirely in the other. We shall prove this
fact. We suppose on the contrary that the disks C 1 and C, may be joined toa
common disk of their tails, C 3 by monotone
chains. Two such chains at the same time
join C; and C,. Of the chains joining C,

and Cz we select one consisting of the

smallest number of disks. In this chain only

successive disks intersect one another (see

Figure 5

Figure 5; in the system of circles drawn

there the shaded tail is the largest). If this

chain is monotone, then our assertion is proved. If the chain is not monotone,
then there is a disk in it which joins two preceding it, which contradicts prop erty
A of operation 1. Thus, if two tails intersect, then one of them contains the

other.

Suppose that @ and S are the upper and lower bounds of the points of the
real axis covered by the tail of the disk C = Clm/n i+ The disk with diameter
af} will also be a disk c’ m/n,K* From what has been stated above it follows
that the circumferences of two such disks do not mtetsect. vadently c’ m/n, K2
Cl

m/n,K* We shall show that

¢ Ccc

3|3
|
3

Indeed, on the basis of Lemma 7, it is easy to estimate the measure of the
tail of C. Suppose that the disk C1 belongs to the tail of C and the monotone
chain joining C 1 to C consists of N disks. Since each of those following them
is not less than 8 times smaller than the preceding one, the sum of their dia-
meters does not exceed the diameter of C for any N. Therefore it is evident

*1It is easy ta see that if two tails intersect as point sets, then they have a common
disk.
**But they can touch.
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[
m/n,
Cm/n,K' and from the center m/n by not more than 9/7 of the radius of Cm/n,K'

that a and 3 are distant from C k by not more than 1/7 of the diameter of

Hence it follows that

c

3|3

The construction of the N IIE is complete.

7.3. Differentiation of sequences. The passage to the complex plane of y
was undertaken largely for the sake of the following lemma, which is not valid if
by the set Nﬁ is meant its part lying on the real axis.

Lemma 8. Suppose that the sequence f (p) of functions, monogenic on the

set Nﬁ, converges there uniformly to f(u), and
2y that the derivatives converge uniformly to g(p).

) Then f(u) is monogenic on NIIE and '(p) = g(u).

N Proof. Suppose that ¢ > 0. We may choose
6> 0 so that
X, flw) —F(pa) e
‘ 7 5 40/“7 1 — Mo g (“3) “~
. Whe“‘1‘1—113‘<5,“’~2—F3l<5vﬂ1vﬂ2sﬂ3€
Figure 6 Nﬁ.

If 8> 0 is sufficiently small, then all of these points lie in one component
of Nﬁ,

We shall show that in such a case the points p,, yt, may be joined in Nﬁ by
a rectifiable curve I" such that the following conditions are satisfied:

1) forany point p € I" |p - p3| <28;

2) the length of I' is less than 2{p; - p,]|.

Indeed, let us join the points p; and p, by a segment Fin, (see Figute 6).
This segment may intersect certain disks C,, by the deletion of which from the
rectangle |Im p| <R, Re p € [0, 1] the set Nﬁ was formed. These disks are dis-
joint and do not separate (i; from p, in Nﬁ, since the points y, and p, lie in -
one component. The disks C ; excise on pu, nonintersecting intervals Ai" We
replace each such interval A; by the smaller of the two arcs into which p;pu,
divides the circumference C,, and denote this arc by y,. The length of A, is in-
creased by such a substitution by not more than #/2 times, and therefore the
length of I' will be less than 2|p; - u,|. The distance |p; ~p,|, by hypoth-
esis, does not exceed 28, so that all the points of y; are less than o units
distant from the midpoint of Ai‘ This last point, as well as all the points of the

segment (i ,, lies in the disk |p; - p,| <3, so that for any point y € y;
|-y <7 28.

Thus the curve T is the one desired.
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2. We have already noted that if ¢(p) is monotone in NIIE and T is a recti-
fiable curve with endpoints p; and p,, then

gcp’ (1) dp = @ (pa) — @ (1y).
r

(For the proof it is only necessary to equate the integral to the integral sum.)

Applying this equation to the curve I' constructed above and to the function
f,{w), which is monogenic by hypothesis, we obtain

\f ) i = Fo (112) — 7 ().

T
In view of the uniform convetgence of the fn to f and f': to g, we may pass to
the limit on left and right:

Sg(u) dp = 7 (o) — 7 ().
?

3. Now we shall estimate

f (pe) — 1 (wa)

P—T — 8 (us) |-

To this end we consider the integral

(6 (1) — g (b)) dis = 7 (a) — 7 (#2) — (o — 1) § (o).
We have 1

IS w) — & us))du‘ Slg(u)—a (o) [[dp | <max]g (1) — g () [-2 (12 — |
i

since the length of I" is less than 2|p, —p; |
Thus,

‘ﬂu_z)__fﬂ*_ﬂ_ £ (1ts) 2max|g (W) — g (pa) |-

Mo — M1

The right side of the last inequality, from property 1) of the curve I', is twice
the increment of g(y) on a segment of length less than 28, and, in view of the
unif orm continuity of the function g{(u) on the compactum NR, tends to zero
along with 8. Lemma 8 is thus proved.

7.4. Functions of several variables and operations on them. In what follows
we shall need functions analytic in one variable and monogenic in the others.

Suppose that the variable z is angular (varies in the strip Im z € (ab )) and

has period 277,*3k the variables ¢ and A vary in the neighborhood of zero, and

* The boundaries may depend on L.
**I.e., as z increases by 27, functions of z have increments of 0 or 2.
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R
p€E NK'
Definition. The function f(z, ¢, A, p) is analytic in z, ¢, and A, and mono-
genic in p € Nﬁ if the series ‘
f(zl g, A7 !J‘) = 2 fkm'ﬂ (l—l‘) etz g™ Anv

in which the coefficients are monogenic functions of p € N 2, converges along
with its derivative with respect to g uniformly for p € Nﬁ and z, ¢, A, varying
in the indicated regions.

Evidently such a function is continuous, while

a) for fixed p it is analytic in z, ¢, A and

b) for fixed z, ¢, A it is monogenic in p € Nﬁ.

Property b) follows from Lemma 8.

Lemma 9. Suppose that the functions h,(z, ¢, A, p) are monogenic with
respect to u € E and analytic in z, e, A. Then the following functions have the

same property in the corresponding regions:
1) the functions
Wz, &, A, p)+ha(z, 8, A, p), hi(z, 8 A, pn)hy(z, &, A, 1),
hy(hy (2, 8, A, n), & A, n), hy(z, &, hy(z, €. A, p), u);

2) the solution ¢z, ¢, A, ) of the equation h(, ¢, A, p) = z;

3) the solution y(z, €, A, p) of the equation h(z, ¢ y, p) = A;

4) the partial derivatives of h with respect to z, ¢, A;

5) the integral with respect to a parameter fzo" h(z, & A, p)dz;

while in all these cases the usual rules of differentiation apply; for example, in

case 2) oh
o9 _  op
ow - o

)

The proof repeats well-known arguments from standard analysis and will be
omitted.

Lemma 10. Suppose that the function f(z, €, A, p) =f is analytic with
respect to z in the region |Im z| <R; ¢, |e} < ¢p; |A| <A and is monogenic
with respect to p € NIIE, and suppose that in the indicated region

i11<e, | El<L.

Then the solution of the equation
g(z+2mp, &, A, p)—g(z, &, A, ) =f(z, & A,

is monogenic with resvect to u € N® and analvtic with respect to z in the
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region |Im(z - 2mp)| <R - 25, ¢, | €| <egs A, | A| < Ay, while in this region

4C dg 8C 9% | _10C
18] < g ‘W <z |o|Ske
P) C+L10° a2 C+ LA

g
t?ﬁ’< KT 8% |o0zdp S—x o §

Proof. The solution is given for fixed p by the series (2) of §2:

2’ /n (M: g, A) einz
n+o T — 1 ’
of which it is required to establish the uniform convergence for | Im(z - 2mp)| <

R - 28, since

fa(u, &, A) = ankl(l") g® Al.

But the uniform convergence of this series has been established in §2 along
with the desired estimates of g and dg/dz in the proof of Theorem 1’, since

= 1
2n 27
Ny CM ™.

o

Estimates of the other derivatives are obtained by differentiation of the series
using the usual formulas and taking account of inequality (13) of S2.
$8. On the dependence of the constructions of Theotem 2 on p

8.1. We have seen, in subsection 7.4, that the solution of the linear equation-
(1) of §2 depends on y monogenically. In the present section we shall prove the
monogenicity with respect to p of the functions A , F , ®,, ¢, A®) constructed
in $6.

It turns out that the region of monotonicity contracts as n increases (by
|Im 27p| at each step) and the author has not been able to establish whether the
solution of equation (1) of §4 depends monogenically on p.

The monogenicity of A®) with respect to p for real p is used in Sil.
There we shall also make use of the smallness (uniformly with respect to n) of

BA(")/(?# for small e.
In order to shorten complicated expressions in this section the argument ¢
will be dropped in all functions. This is similar to the way in which we earlier

ignored the dependence on p and took only z, ¢, ¢ A as arguments.
The construction of A (i) was carried out in the following way.

Step by step we constructed new parameters ¢, = ¢, (an_l, p) and quantities
A _;=A,_1(A,, 1) such that the transformation

Pn—1—> Py + 2700 + Any (An, ) + Froy(@n—1, 1) + D,y (Pa—1s An—i(Bn, 1) W)

is converted into the transformation
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o= Pn - 2000 -+ Ay + Fr (@n, 1) + D (Pn, An, p)
with significantly smaller F and ®, where ¢ =z, Fy= F,®,=0, Ay = A.

Further, we constructed A(")(I,L) such that the transformation

z—>z + 2 + A™ (n) + F (2)

converts, in the variable ¢ , into the transformation

Prn—> Pn + 200 + Fo (@n, p) + Qu(@n, 0, p),
to which end we put
A () = Ae (A (), p) (B=0,1,...,n—1),
AL () = 0.

Thus we obtained

(1)

A5 (1) = A™ ().

Theorem 3. Under the conditions of Theorem 2, for sufficiently small ¢ > 0,

0<K<1/9
AW = lim A™ (),
n-—>00

where the functions A () are monogenic with respect to p € N;? (r, > 0) and
under these conditions |dA™/du| < 6L | €|.

The proof of this theorem rests on the following lemma, which repeats the
Fundamental Lemma (see $4 and 5).

Lemma 11. Suppose we are given a family of analytic mappings of the cir-
cumference, depending analytically on A and monogenically on p € N7,

z—>Ay(z, A, p) =z -+ 2au + F(z, p) + A -D(z, A, p)

and numbers Ry>0,1/9>K>0,8>0,C>0, 0<Ay<1,0<r<1/2m 2ar
Ry - 58 such that

1) Fa4 2 p)=F(z p), O+ 27, A w) =0, A, p);

2) for mz=TImp= ImA =0 aways ImF =Im@ = 0;

3) for lImzigRov “’EN;G IAI \<~.An

| F iz w) | <G, (2)
3F (2, )
._au .<C’ @)
|®(z, p, A)| <A, (4)
oD (z, n, A
_(za“”—)’\gazlAl; (5)

4) the number 8 satisfies the inequality
< _
8 i (6)
5) C =87, A,=0%.

Then there exist functions z(®, 1), A(A,, i) analytic in ¢, A; and mono-
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genic in t lV'K such that
1. Identically

Z(Al(@v w, A1); M) = AO(Z((P, p‘)v A(Als p‘)’ p‘)’

AL, 1y Ay) =@+ 2np 4 Ay 4 Fy (@, p) + D1 (9, 1, Ay).
2. Fi(o+2m, p)=Fy(p, p), @i(9+2m, p, A)=01(p, p, A),
2(9 + 27, p) = z (¢, p) + 2m.
3. ForImo =ImA; = Imp= 0alwaysImz=ImA =ImF, =Im®, =0
4. For |4:]<8%, |Imo|<R, — 70— |Im2np |, p € Nk the functions

constructed above are analytic in ¢, A,, monogenic in p € N, and the following
relations hold:

where

IFII\%, (7)
D <5 1A, )
| < ©
| <gwladl, (10)
| < 11)
S| <4, (12)
|A (A, n)| <A, (13)
12(@, 1) — q>|<§, (14)
n| S (15)
g_; <2. (16)

8.2, The proof of Lemma 11 is more complicated than the proof of the Funda-
mental Lemma. The construction repeats the considerations of subsections 5.1
with the difference that u changes from a fixed real number to an independent
complex variable. In the construction of A(A,), z(¢), g, F| and A, following
subsections 5.1, one uses integration with respect to z, the solution of equation
(1) of §2, the construction of an inverse function and the substitution of a function
into a function. From the lemmas of subsection 7.4 all of these operations do not
lead out of the class of functions monogenic in p € N?( and analytic with respect
to z, A, ¢, A; in the corresponding regions.

Therefore special attention need be directed only to inequalities (9), (10),
(11), and (12), which are not in the Fundamental Lemma. Their proof is based on
the following estimates.
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1°. Estimate of dg*/dp. On the basis of subsections 5.1, 7.4, and in view
of the conditions of the lemma, for [Im z| < Ry, p € N, |A] < A,

oF |58 <200, <2

| <2c

Thus the right side of equation (2) of §5 has a derivative with respect to
not exceeding 4C. Applying Lemma 10, we find chat

18 1< 2o, (17)
=< (18)
T < (19)
|| <> (20)
| <y (21)

for |Im(z—2mp) | <R —28, ne Nk, [A|<<A
2°, Estimate of aA’B/ay . From equation (4) of §5 and subsection 7.4 it fol-
lows that

. oF 30
6A0 (n) o au ap
o (4 00
" oA

Estimating A; as in 1° of subsection 5.2, we find that
* A
[A0] <20 <5
For |A| <Ay/2, using Cauchy’s integral formula, we find from (4) that
80 _ 1

5<%
- Z
Accordingly |1 + 9®/9A| >1/2 for | A| < Ay/2. Therefore, on the basis of (3),
(5), and Lemma 9,
oA,
I_ﬂL<mc+&%)

In view of (6), 52A0 < C, so that
Ay i,
H‘W<4C (22)
for p € N},
3°, Estimate of dg/du. From subsections 7.4 and 5.1,

* da* 6A*
o _ 0 0 00 (23)
N I N op
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2 o 2,5 OA
g _ g o%g 0 (24)
dzop  0zop dz0A op

First we shall estimate dg*/dA and 9%g*/9z0A. We note that the equation
g (z+-2mp, A ) —g (2 A pw=—F (z, ) —D(, A, p

on differentiation with respect to A gives the equation

og* og* oD

(o 2mp, A p) — 4 (2 A ) = — 53
of the same form with respect to dg*/dA, and we may use Lemma 10. To this end
we estimate J®/JA using Cauchy’s integral formula: for |Im z| < R,|A| <Ay/2
D[ - 20°Ay s
-a—A A _A_o < 40°.

2
From Lemma 10, for |Im(z - 2mu)| <Ry —28, |A| < Ay/2, p € N

ag* ! 4 2
a | < e 40

o0%g* 8 2
| < 4.

OA 0z
Substituting these estimates, and also estimates (20), (21) and the estimate of

A’(") from point 2°, into formulas (23) and (24), we find that

d | _5C10° | 16, _ C10f
\a—u|<ﬁw" x5 4C

~< K286 °

g | _510C |, 32 C108
—_— RSN Bl Il
s0p l T Gy o

for |Im (z - 2ap) | < R - 26, p € N%.
4° Estimate of dA(A;, p)/dp. Analogously to subsection 2° we have

oF oD
o T
oy oo’
1455
and if |A| <Ay/2, then, as in point 2° we obtain
dA
|G| <4c

In order that the inequality |A| < Ay/2 should be satisfied it is sufficient that
| A} | <8%7. For then, as was shown in §5, |A%| <2C, |A -~ A}| <2|A,|, and
since C = 8?7, then for 1Al < 827 we have

1A Ay p) | <4t <& =
Thus, for |A;] < 827, u € Ng» -

{ﬂgu_”’\ <4C. (25)

23
S
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At the same time we have shown that for |A;]| < 527 the estimates of point
1° are valid.

5°. Estimate of 317‘ l/ Jp. From subsections 5.1 and 7.4 we have

OFy (z, p) _ [33 Gp ) 9% (2, P)] n [3g (2, B 9g(zy, l‘)] on

op Em i 0z 0z
g (21, B aF o> | oD 3,
where - - .
71 =z + 2ap + F (z, p) + D (2, p, Ao (1)), (27)
25 = 2 -} 2mp. (28)

The first two brackets on the right side of (26) may be estimated by using the
lemma on finite increments, Lemma 5 of §3. We have

9g (z)  9g (zy) 2i—2 llazg )
Bp. - ap X 14l 1f auaz ’

putting their estimates in place of z; —z; and azg/ dpdz, we obtain

og (e  Og (zn) L
ap' \ K267
and analogously
og(zp) Og (21 ) 40C 160 C*
—5ZL— L —zn| << Koo 4C = K&5 °

The last term on the right side of (26) may be estimated using inequalities (3),
(5), (22), (18) and does not exceed

32C 200 C?

Tat 4 C+20) <=z
Thus . o
aF 410 160 200 51 4
i n < c* [ K287 + 2 K& + KG‘] < K2b7

All of these estimates are valid if the arguments z; and zy; do not leave
the region |Im (z - 27p) | < Ry — 23, where the estimates of g and its derivatives
operate. To this end it suffices, for example, that |Im z| < R, - 38, Indeed,
then

|F (2, w) + Bz, Ag(w)| <20 <8
i.e.,

| Im (z; — 27p) | < Ry — 29.

Thus, for [Im z| <Ry - 38, p €N',|A1|<327
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oF 5-10% o 29
l 6}1‘1<K26"C (9

6°. Estimate of (3/du)(A - A? ) We have

OA(By ) 3A (Op) |
on op

o (A (A1, 1) — Ay () =

by the lemma on finite increments,

| (A —A0)|<

B0 () | A A*
|18 — Al

We estimate |3%A (A}, @)/0A 0y, using the Cauchy integral, as the derivative
of dA/du. For |A1| < 827, as follows from (25), |0 A/du| < 4C. Therefore in
the disk |A, | < 5%7/2 always

- 8.

02 i 4
oA 8p| 2

In particular, |82A/6A16,¢| <8 when |A,]< 528, since

|A—Ag| <2 A,
then for |A,| < 8?8, p€ N,
a *
ap (A (Ar, 1) — Bo () | <16 A . (30)

7°. Estimate of (3/dp) [(D(A Ay, p) = @(AL(p)]. This derivative is equal
to
oB () aBA) | aDoA(A) oD (dg) 94g
W op T oA ap T 0N ou

The first difference may be estimated using the lemma on finite increments: for
|A} < Ao/2, p € N, |Im z| <R
D (a) 0D (A" <’
op o ET
(here | 025/ OudA | is estimated using the Cauchy integral: | 024)/ OudA | <
287 | Ag|/L 1 Ag| = 487

The second difference may be written in the form

9B (8) (aA (Ay) _?Ao) 94, (ao o) @ (Ao)) 31)

ETN op op Bp \ oA oA/ :
where the first term is estimated with the use of inequality (30) and does not ex-
ceed 16| A, |, since |d®/IA| <1 (see point 2°) and the second term, from the
lemma on finite increments, does not exceed

oA* || D .
HW ]A(A1)—Ao|<4 C§4‘21A1|

llA A< 88| Ay
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Here the only new estimate is that of d 26/ 9A2. To find it we employ the expres-
sion for the second derivative obtained from the Cauchy integral:
0| o Who 16
EYXA R Ao\2 §24

(%)
for | A| < Ay/2, for which, as we have seen in point 4°, it is sufficient that the
inequality |A1 | < 527 should be satisfied. Comparing all three estimates, we
find that

2 ~ -~

| (@A) —

1Ay 4 16] Ay |+ 1288%] A, |.

Finally we have
|30 [0 (8 (A, ) — B (Ag ()1 | < 1001 4, (32)

for |A,] < 6%, |Im z[ <Ry p €ENg.
8°. Estimate of (3/dy) &)1 (z, p, A(Ay, p). It is convenient for us first to
consider the function of z, p and A;, and not of z, p, and A. We have

6&’1 — {ag (zr1p) og (zy) } + l:ag (2 . dg (21)] 0z; + 9g (2q11) [%I_l "_’_z—I:'

TS op op oz 9z | ap. 0z . apl’
(33)
where
zr=1z+ 2+ F (3, B+ D(z, p, Ae(W)), (27)
zp =z + 2np + Ay + F (3, 1) + @ (2, p, A(Ay, ) +Ar (34)

The first two brackets on the right side of (33) may be estimated as in point 5°

o%g
| opoz

C10

ag (z11) . dg (zp) ot — ] < <o 3(Al,

on op

since

au—z =04+ Dz, b, 8) —D(z, p, A" (W)
and, using the estimate (22) of $s,
IZ[H—Z;[I<3I All-

Analogously,
g (z11D) dg (z;) \ 0z a2 0z
‘( (aIzH . OzI )?ﬁl < g |12 — 2l |35
4c oD aA 4cC 1600 c

where the factor | dz;/0p| is estimated using conditions 3) of Lemma 11 and
estimate (22), taking account of the fact that C < 1. It remains for us to estimate
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(3/9p) ‘(ZIII - z;). We have
su—z= A+ @z p, AAy, p)) —D(z, 1, Ag ().

From estimate (32) we find that

7]

ﬁ- (ZIII —_ Z[) < 100 , Al l,
where |A;| < 528, € N%-

Thus,
g (eyqp) [ 92y Oz 32C _10°C
' i (o) [< 10018, B <0C 1,

Comparing the estimates of all three terms of the right side of equation (33), we
find that

9 ¢ C 10¢ ., 1600C, , . CA100 c
ap(D](Z’P*’A(AI,”))I<W3IA1[+—WIAI{—-}—%IAIlgri%slAll_

All of these estimates have been derived under the hypothesis that |A, | <
528, u€ N’ and that z;, z;;; do not leave the strip |Im (z - 27p)| < R ~ 25,
where Lemma 10 operates. For this it is sufficient, for example, that |Im z| <

RO — 40, since then
[Ay+ F(z,8) +D (2,8, A)| <<+ 2C +2C < 28,
[ Im (21 — 2mp) | <K Ry — 40 + 28 = R, — 20.
6°. Estimate of dz/du. The function g(z, u) is defined for
[Im (z — 2np) | < Ry — 26.
Therefore the following function is also defined in that strip:
?(z,p) =2+ g(zn).
Since in that strip | g(z, ) < 8| (see (6), (17)), then the image of this strip
as z — ¢ contains the strip
| Im (¢ — 2mp) | < R, — 38,
which as ¢ — z goes into a region containing the strip
| Im (z — 2mp) | << Ry — 496.

From subsections 5.1 and 7.4 it follows that

%
9z o
- dg*
W 145

From inequality (18) and conditions 4), 5) of Lemma 11, |dg/dz | < %— Thus, ap-
plying estimate (23), we obtain

9z
op

104C
X K256
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for |Im(z - 2mp)| <R, - 28, p € N} and, in particular, for
| Im (@ — 2mp) | << Ry — 38.
10°. Estimate of (3/9y) F (¢, p), (3/dp) ®, (¢, p, A;). From subsection
5.1,
Fi(g, 1) =Fi (2 (@, 1), 1),
D@, &) = Dy (2 (9, 1), 1y A (A, 1))
The function z(¢, ) is defined for |Im (¢ ~27p)| < R~ 35, p € N, and
if
[ Im (z — 2mp) | << Ry — 49,

then for this z there exists a ¢ such that z = z(¢, p) and
|Im (¢ — 2mp) | < Ry — 38.

The functions ﬁl (2), &)l(z) are defined for [Im z| < R - 46 and therefore
the functions F (¢, p), ®, (¢, p, A;) are defined for
[Im @ | < Ry — | Im 2mp | — 56
under the hypothesis that |Im 27| < R ~ 53, i.e., that 2mu < Ry ~ 58. In this
region
6F1 —61'1 0F1 0z &_a@l 8‘1)1 9z
R + 5 u’  op + % TN
where in the calculation of 1/ du the independent variables are taken to be z,
g and Al' as in point 8%
For the estimation of JF/dz and d®/dz we use the Cauchy integral.
Staymg ata distance O from the boundary of the strip, where the estimates of
Fl and (I)I are known, we see from the estimates of 3° and 5° of §5 that

3C| A

|oF,
o STE

0z

40 | ad,
S '5;

for |Im z| < Ry~ 50. Applying estimates 5° 8° and 9°, we find from (35) that

|OF [ - 5:10°C | 0°C 4C°

{op | STk T K86
oy | C-105] Ay | 3(‘|A1|104C
!T SR T Kb

Thus, for
[A]<0%, p€Nk, 2nr <Ry — 59, {Imo| << Ry —|Im 2| — 63 |

we have

02 A
| Py (9 w) | < <& D, (g, p, A | <. Ao
aFll Id(D] ClAll

L R
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since
Kz 1. (6)
In exactly the same way all the remaining estimates 1°-9° in view of con-
ditions 4) and 5) of Lemma 11, may be brought into the form (7)—(16).

Lemma 11 is proved.
8.3. Proof of Theorem 3. Theorem 3 is derived from Lemma 11 in the same
way as Theorem 2 was derived from the Fundamental Lemma in $6.

We choose 31 > 0 such that

1

©o
/R 1;
)216"<\—" where 8, = 8* (n=2,3,.),

K2
2) &<z 5108 °

K
Let R = R,, K be the same as in condition of Theorem 2, p (: ]\ﬂ';f"("'ﬂ), Ay =

8%, Le, < C, , where

Cl - l ’ (35)

and C;, 8, are respectively the C and § of Lemma 11. Then from inequalities
(7)—(16) we obtain

|y ’<aw<64°5 o= o,
‘aF1 <o,
l(Dll<613|A1|<53|A11—6'>|A11
6®1<62!A1|
-

18] < 08 = 89 < 8, |Imy | <Ry~ 78, — |lm2mp | = Ry, pe N

Thus, we again find ourselves in the conditions of Lemma 11, but with a decrease
of 731 + R/8(n + 1) in the radius of Rl' Since

o R
Z 67’1 < _8' ’
n=1
then we may carry out n successive approximations, and the last will operate for
B
R 16=(n+1) 92,
|Im g, | < s MENk , | An | < 8.
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Omitting the usual (see §6) proof of the convergence of the approximations
for real 1, we estimate |dA™)/gy |.

From subsection 8.1 it follows that

.k k41
op I OAyy, Op

A 9A,  BA, ALY

Putting C, = 827, on the basis of Lemma 11 we find thai

aaM ALY
I g . ¢ +1
a“ i 4CI\ +1 +2‘ Em .
If
)
aAl(r,i-l C
au k41,
then
EIN
ap < 6ck+l < Cl\'-
Since
aAM -0
ou !
then
oAt |
al; | <<6C;.
|

Theorem 3 is proved.
Remark. In exactly the same way we may prove the monogenicity of the

functions g , F , ® , ¢, and obtain analogous estimates.

Part I

On the space of mappings of the circumference onto itself

The problem of studying the dependence of the rotation number on the coef-
ficients of the equation was posed by Poincaré [1]. The consideration of the
rotation number as a function on the space of mappings makes it possible to
elucidate questions concerning typical and exceptional cases.

Angular coordinates of a point on a circumference will be denoted by small
greek letters; ¢ and ¢ + 27 are one and the same point of the circumference. We

shall use capital letters to denote transformations:
T:¢— To.

We shall consider only continuous one-to-one direct (orientation-preserving)
transformations. As an example one may cite the rotation through the angle
0: ¢— &+ 0. To each transformation we assign a ‘‘displacement.’”” namely a
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function on the circumference showing how much each point is displaced. We shall

denote a displacement by the same letter as the transformation, but in lower case :

T:og—To=q¢+ t(p).

Here t(¢) is the displacement. If T is a rotation through the angle 0, then
t(¢) = 0. Generally speaking, a shift, as also ¢, is defined only up to a multiple
of 2z, However, if we define t(¢) at one point, we may uniquely continue it by
continuity.

If T is a smooth transformation, then :(¢) is a smooth periodic function:

t (g - 2m) =t (@).
We denote by
I =¢+ 1" (g)
the nth power of the transformation of 7. In connection with this notation we
suppose that branches of t()(¢) are chosen to correspond to the branches of
t(eh):
1 (@) =10 (@) + t (T (g)) (n=2,3,...).
Under this condition t(*)(¢) is called a displacement with n steps.
§9. The function p (T) and its level sets
We consider the spaces
COC'DOHCD...DC"D...DC" D4

of one-to-one direct mappings of the circumference onto itself, continuous, con-
tinuously and infinitely differentiable, and analytic in the neighborhood of the
real axis, with the topologies usual in these spaces. Each successive topology
is stronger than the* preceding one and each of the spaces is everywhere dense in

the preceding one.

Poincaré [1] defined for each transformation T € C the rotation number
2nu. Thus on the space C there is given a function p(7T). The following theorem
was stated by Poincaré without proof.

Theorem 4. The function u(T) is continuous at each point of C.
Proof. We shall show that u(7T) is continuous at the point T .

Suppose given a point ¢ > 0. We choose a number n > 2/e¢ such that

%<P(To)<m%.

*If T lies in one of the spaces Cl, C2, ««+, A without distinction as to which one,
then we shall call T a smooth transformation.
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Then under the transformation

TP :p—¢ -+ 1" (9)

each point is shifted by more than 27 m. Indeed, if some point were shifted less,
and another point more, then there would be a point shifted by exactly 27m, i.e.
a point which is fixed for T{;. Then, evidently, in spite of the choice of n, we
would have
m

W= -
If all the points were shifted by less than 27 m, then we would bave u < m/n,
which again contradicts the choice of n.

Analogously one proves that each point is shifted in the course of n steps
through less than 27 (m + 1). Thus

2mum < 1§ (@) < 27 (m - 1).
In view of the continuity of t%n)(tb),
2mm +n < 1" (¢) < 27 (m + 1) —n

for some 7 > 0, and in view of the continuous dependence of T on T there
exists a 6 > 0 such that

11" (@) — &5 () | < m,

as soon as the transformation T differs from T, by less than &:
12 (@) — 2o ()| 8.
For such T

200m < 1™ (q) < 27 (m + 1),

so that

S <
Thus, |p (T) - pu(Ty)| <e for |2(h) — ty(h) | < 8. The theorem is proved.

Remark. Even in very nice cases the function p(7) is only coatinuous. For
example, consider the family of transformations

Th:9p—>¢ 4 h+0,1sin?q,

where h is a parameter. By what has been proved, u(7,) is a continuous function
of h. With increasing k the function u(T,) grows, but with a lag at each rational
value of u. To this value there corresponds a whole segment [hth] of values of .
k. On the other band, for 4 > h, the function y (T,) increases with extreme
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rapidity. E. G. Belaga showed that, for example, in the neighborhood of the crigin
pu (T;) grows at least as fast as C\VE/-log k.

A level set of u(T) is a set of transformations with the same rotation number
27p. To such transformations there belong the rotation through the angle 2y,
transformations canvertible into rotations through the angle 2@ by an appropriate
change of variables, and possibly other transformations.

The structure of the level set u(T) = p essentially depends on whether p is
rational or irrational.

§10. The case of rational p
10.1. If p(T) = m/n, then, as Poincaré showed, T" has fixed points:
t(")(a) = 27m. The set of these points is invariant relative to T and closed, as
the level set of the continuous function t)(a). The points a, Ta,s++, T" "1,

are called a cycle. In the investigation of cycles it is convenient to consider the
graph of the transformation T" and the graph of the function t(")(qﬁ) (see Figure

7; on this drawing we have shown the graph of T(¢) = ¢ + -;— cos ¢ and we have
indicated the image of 0 for several iterations of T). A cycle is called isolated
if in some neighborhood of its points there are
P (y) / 0 no points of other cycles. An isolated cycle is
stable if one of its points, and thus all of its
points, has arbitrarily small neighborhoods
which are taken into their own interiors by the

transformation T". It is easy to see that as
n — + oo the points of such a neighborhood
tend to points of the cycle, which explains the

p usage. A stable cycle of the transformation
9 o T71 is called an unstable cycle of T. An iso-
lated cycle is semistable forward (backward)
ty) if all the points of some neighborhood of a
I P :Lf’ point of the cycle (the point itself excluded)

are moved forward (backward) by the trans-
Figure 7 formation T7, i.e., if in this neighborhood
(™) (g) — 2am >0 (< 0),
A transformation T € ¢l is normal if at the points of its cycles
(lt(dip(cp) :%:O.

Evidently, a normal transformation has a finite number of cycles, while all
of these cycles are stable or unstable. Indeed, those roots of t(")(¢) ~2am,
where dt(")/d¢ < 0, are points of stable cycles, and those where dt™/dg >0

are points of unstable cvcles. Therefore it follows that the points of stable and
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unstable cycles of a normal transformation alternate.

10.2. Theorem S. Normal transformations form a set open in Cl and every-
where dense in A.

Proof. 1. The points of a cycle are the points where t(")(¢) = 2mm. At these
points dt(")(gb)/dqﬁ % 0. Therefore for a small, along with the first derivative,
variation of t(*)(¢) the function t(”)(¢) —27m does not acquire any new roots
and the old ones do not disappear, but rather are displaced continuously, while
the derivatives at the roots preserve sign. This means that the transformation T
with such a variation of the function z(")(qS) becomes normal. In view of the con-
tinuous dependence of t(")(qS) on T, the first assertion of the theorem is proved.

2, We shall show that arbitrarily close to any transformation there is an ana-
lytic transformation with a cycle. Evidently it is sufficient to prove this for an
analytic transformation and analytic proximity. Suppose that T is an analytic
transformation with an irrational rotation number, and suppose that ¢ > 0. Among
the poiats ¢, =T "¢0 is one displaced from ¢ by less than ¢, for example, back-
ward:

2am — e <t (o) < 2nm
(Denjoy’s theorem). We consider a family of analytic transformations T)\ (A>0,
Ty=T):
Tr:io— ¢+ t(g)-+ M
It is not hatd to see that for A=¢ T:{ displaces ¢, ahead:
1 (o) > 2am.
Hence, in view of the continuity of ts\n) (¢g) in A, it follows that for some

Ay <€ T)»O has a cycle ¢, T)\0¢'0' ceet

£ (@) = 2nm.

3. An analytic transformation with a cycle can be convetted into a normal
transformation by an arbitrarily small variation. Indeed, suppose that T is an
analytic transformation, and among its cycles there is no stable cycle (and there-
fore also no unstable cycle). We choose a cycle ¢, ¢1,+--, ¢, _; and introdice
an analytic function A(¢), vanishing at these points and having there negative
derivatives. The transformation

Tyt (@) = t(g) + 0A ()

for small 6 is arbitrarily proximate to T and has at least one stable cycle bos
¢1, *++, ¢,-1- Therefore it is sufficient to consider the case when the desired
transformation T has a stable cycle, We shall construct over T an analytic
function 8(¢) which
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1) is equal to zero and has anegative (positive) derivatives at the points of
e stable cycles of T;

2) is positive (negative) at the points of the cycles of T which are semi-
able forward (backward).

The existence of such a function is obvious, since the number of all cycles

T is finite, because the analytic function t(")(qS) ~ 27m has an isolated root
d therefore is not identically zero.

Consider the transformation Ty : ¢ — ¢ + t(¢) + 05(¢). For small @ this
insformation is nommal. The formal proof of the fact that the stable cycles of T
r small 0 are only somewhat shifted, while the roots of t(*)(¢) - 2mm become
utiple, and the semistable cycles vanish, is left to the reader. For sufficiently
1all @ the transformation T, is the desired one.

Theorem 5 is proved.

10.3. The construction of a normal transformation may be easily perceived
m the graph of the function t(")(qS) — 2qm. Its roots are the points of the cycles
the transformation and divide the circumference into arcs. Each such arc af3
bounded at one end by a point a of a stable cycle and at the other end by a
int B of an unstable cycle. For n — + o the points of the arc wind around
to the stable cycle, and for n — — « onto the unstable cycle, i.e.,

lim T () = o (mod 2;t),  lim T*"(y) = B (mod 2m),

k—>00 k—>—co
iere y € (@, B). Assertions of this type are well known in the. qualitative
eory of differential equations, and we omit the proof.

Thus a topologically normal transformation is characterized by three integers
. n, k, where m/n is the rotation number and % the number of stable (and
erefore of unstable) cycles. Two transformations with the same m, n, k are
milarly arranged in the sense that one of them can be converted into the other
' a continuous change of variables on the circumference (i.e., T ,=@T 1(17-1.
sere ® € C). In addition the derivative di(?)(¢)/d¢ at the points of the cycle,
rich characterizes the rapidity of winding around onto the cycle, is an invariant
der a smooth change of variables. Probably there are no other invariants, but I
ve not been able to prove this.

Theorem 6. The set E, , at the level p=m/n in any of the spaces cl,-..
+, A is connected and consists of

1) a kernel %= El;‘/n of normal transformations denl.:e in E_, ,, and open

CP (A). The kernel consists of connected components Em/n
ith k stable and k unstable cycles. Two transformations of one component E’r;/n

of transformations

ay be converted one into the other by a continuous change of variables;
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2) the boundaries of E_ , and E’;l/n. The boundary of E, ,.
transformations T for whick t?") (¢p) - 2zm does not change sign. Its parts
F+(t(") (¢) = 2am > 0) and F_(t(")(qS) — 2am < 0) contain transformations semi-
stable forward and backward, and are connected and intersect in a connected set

consists of

F,. Transformations from F change under a smooth substitution of variables

k
m/n°

Proof. 1. The sets £, , F,, F_ are connected. For the proof we joiﬁ,with-
m/n(F,” F_) with the
rotation T, through the angle 27m/n by an arc Ty (0 <0< 2, Ty=T). Suppose

into rotations. Fy lies in the boundary of each component of E
out leaving the set in question, any transformation T € £

that ¢,-++, ¢ _; is a cycle of T. Making the smooth substitution of variables
P—>Yo=0+ 9 (g
we transfer the points ¢,-*-, ¢, _; into 2mml/n (0<1<n-1). Put

Yop = ¢ + 0 ()
Top=TITW o= +t(p) (O<BELY).

This transformation is the transformation 7 described in the variable ¥, and
belongs to Em/n (F,, FO).

Now we consider the segment joining T to T,:

and consider

m

Top=¢+@O—1)20 =+ 204y (1<)
The points 2#ml/n (0 <1 <n —1) form a cycle Ty forall 1 <6 <2 and therefore

the curve T, lies entirely in E (respectively F . F_). The connectedness

m/n
is proved.

2. The set E ’,; /n ©of normal transformations with given m, n, k is connected
in any of the spaces Cl,..., A. For the proof we join in the space in question
the transformations T, T, by the arc T (0 < 6 < 2). We carry out a smooth sub-
stitution of variables

taking the points of the cycles T, into the corresponding points of the cycles T,
(which is not hard to do since the number of these points is the same and they
follow in the same order). The transformation T = ‘I’TO‘I"1 operates on the
points of the cycles of T, in the same way as the transformation T,; it is easy
to see that it does not have other cycles. Putting

Wo(9) = ¢+ 0 (9)

and
To="oTo¥5' (0<K0D),

we join T to T by a curve lying in E’;,/n.

207



MAPPINGS OF THE CIRCUMFERENCE ONTO ITSELF 269
Consider the transformation

Ti(@) =94 t(q), To(9)=9+ L(p).
The functions t1(¢) and t2(¢) coincide at the points of the cycles, and there-
fore all the transformations

T'v@=9+2—0n(@)+ 00— (E<<IK<2)
have the same cycles. Accordingly, the curve T, (0 < 60<2), joining T0 to T,
lies entirely in E

3. The proof of the fact that the set E¥ m/n 1S open and that the set | I, E m/n
of normal transformations with the rotation number m/n is everywhere dense in

E m/n is analogous to the proof of Theorem 5 (subsections 1 and 3).

4. ¥ T,,T,€ E* m/n»then we may carry out a continuous change of variables
¥ =¢ +¢(4) such that T| goes mto Ty T,=YT, ‘I‘ . Indeed, we denote the
points of the stable cycles of T, by a acg l <k, 1<i<nm, Tya; = a;41s @, 41=0a;)
and the points of the unstable cycles of T| by bll- (by ! we denote the number of
the cycle in the order in which it follows on the circumference). Here there are mo
poullts of the cycles on the arc albI (thus the same is true of each arc albl and
bl +1)

Suppose further that cf-

and df are the points of the stable and unstable
cycles of T 2 enumerated in an analogous way. The substitution of variables ¥
carries the points a bf into cf, dl and it remains for us to complete the defi-
nition of ¥ to the arcs albl bl “1 We choose the points x and y inside the
arcs alb1 and cld1 The pomts T'lx and Ty lie in the same arcs closer to a%
and Cl respecuvely. We map the arc (x, T%}x) onto the arc (y, T .y) homeo-
morphically and directly using ¥: x —» Y, Tlx — sz Evidently under the trans-
formations Tp the images of the arc [x, T 121 (or of the arc [y, T%y] under the
transformatmns Tg) entirely cover the whole arc albl (1 <7 <n) (the whole arc
1dl) Thus we define ¥(g) on the arc TRx, TR +”x as TEWT P. An analogous

1+l

construction is possible on afbi and béai . The proof of the fact that the sub-

stitution of variables just found is the desired one is not complicated and we omit it.

S. The structure of the boundary. If ¢(*)(¢) — 27m changes sign, then T is

an interior point of E since under a small variation of T, t(")(gb) - 2mm will

m/n
change sign as before, and T preserves the cycle. Therefore the boundary E. .
enters into the sum of F, (T € F, if ) ($) — 2zm > 0) and F_. In order to con-
vert the transformation T € F = F N F_ into a rotation, we need to carry the

points of one cycle into 2rml/n by a smooth substitution of variables and then to

T e birt—ate
*By ! +1 for | =k we understand 1.
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redefine the parameters on all the arcs [27ml/n, 27(ml + 1)/n], except one
(! =0), according to the formula

§ ! —
Y (q) =2a"" 4+ T (g).
By a small variation of a rotation through the angle 27m/n one may convert
it into a transformation in any E ]'; Jar roughly as was done in the proof of Theorem
5 of subsection 3. From the preceding considerations it follows that the same is

true also for all transformations of F, which proves the last assertion of
Theorem 6.

10.4. From Theorem 6 (point 4 of the proof) it follows that normal trans-
formations are rough in the sense of Andronov-Pontrjagin [10]. Since, by Theorem
5, the set of all normal transformations is everywhere dense, no nonnormal trans-
formation can be rough,

From the topological point of view normal transformations fill out a predomi-
nant part of the space of transformations, namely an everywhere dense open set.
In the following section it will be proved that from the point of view of measure

the typical case is also the ergodic case.

§11. The case of irrational p

11.1. Coasider now the set Ep, of irrational level p. In the spaces C2,..-,A,
by Denjoy’s theorem, each transformation T € E’i may be converted into a rotation
through the angle 27y by a continuous change of variables. We are also concerned
with transformations which can be converted into a rotation by a smooth change
of variables. The set of such transformations will be denoted by Egp (respective-
ly by Eﬁ; the common notation is E;L).

Theorem 7. 1 The set Eﬁ is everywhere dense in E# in the topology of
C. All sets E;L are connected.

2°, If p is such that |p —m/n|> K/|n|3 for any integers m and n not
equal to zero, then the set Eﬁ is open in E  in the topology of A.

Proof. 1° Suppose that T denotes a rotation through the angle 27p, and
suppose that T1 €EE 'L'L. Then there exists a smooth substitution of variables
V(@) = ¢ -+ ¥ (¢)
such that T, = ‘I’TO\P_I. The substitution
Fo (@) =0+ 09(9) (00

converts T into Ty =, Tol/lgl; thus the curve Ty joining Ty to T, lies en-

tirely in E;L. The connectedness of E;l_

We shall construct in Eﬁ a transformation T* in a given neighborhood of

is proved.

TEE e By Denjoy’s theorem there exists a continuous substitution of variables
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¥(¢4) such that T = ‘I’TO‘I’-I. We shall construct an analytic substitution ¥* (¢)
! variables ¢ such that ‘l’ and ¥*, W71 and ¥*71 Jiffer only slightly in the
etric of C. Then T*=W*T ¥*~ { approximates T in the metric of C and lies
! E A Assertion 1° is completely proved.
2 The fact that the set EA is open in E uwN A follows from Theorem 2.
vidently it is sufficient to show that some nelghborhood of the rotation T in

pNA4 lies in E « The wansformation T € £ pN A may be written in the form

¢—> @+ 2+ F (@),
hile the neighborhood Up R,C of the transformation T, is given by the inequality

(@) | <C for |Im ¢p| < R. But by the Corollary to Theorem 3 (see subsection
3), for a given R there exists a C such that all the transformations T € UR cn E#

alytically reduce to rotations. Theorem 7 is proved.

11.2. In turning to the question of typicality from the point of view of measure
ee [8]) we encounter the absence of a reasonable measure in functional spaces
id therefore we are forced to restrict ourselves to finite-dimensional subspaces.

Consider the two-dimensional space of analytic transformations
Aapiz—z-a--F(z, b)/
aere for [Im z| <R, |b| <b, F(z, b) is an analytic function satisfying the
equality |F(z, )| <L|b]|.
Theorem 8.

mes E,
i = 1

here Ey is the set of points of the set (ab), a € [0, 24, b € [0, 6], such that
e transformation A, converts into a rotation by an analytic substitution of the
rordinate z.

Proof. 1. Consider the set My, namely the compact set of points 0 <p < 1
itisfying the inequality

>/K

m
e

n

rall m, n>0. By Theorem 2, for any p € M, there exist C = C(K, R) >0 and
function A (b, p), analytic in b, such that the transformation Amush (b,1), b
r £ € My,|b| < C may be converted into a rotation by an analytic change of
wameter: (2mp + A(b, p), b) € E,;. We denote by My (b) the set of points y +
(by w/2a, p € M, for a fixed b. Then the transformation Dy : y— p + A(b,p)/27
irries MK into the set MK(b).

Put ¢ >0 and choose K > 0 so that MZK >1~¢/3 (from Lemma 1 of §2
is is possible). We shall show that for sufficiently small b the inequality

mes M g () >1—e
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is valid, from which Theorem 8 will follow immediately, since it is evident that
0

270 > mes £y > 2w S mes ‘“L" (b) db.

0

2. In §7 we constructed a perfect set N?( =Ngs My SNg C MK/Z‘ Evi-
dently it is sufficient to show that for sufficiently small b

mes Ny (0) -1 —e. (2)
(Since K > 0 is fixed, we may now drop the index K: Ny =N.)

From Theorem 3, the mapping D, : N — N(b) is the limit of a uniformly con-
verging sequence of monogenic mappings

AT, ),

Dy ip—p -t o
We shall show that for any ¢ >0 there exists a b(¢) such that for b < b(e)

and any n
mes Dy (N) >1 —e. (3)

From Theorem 3, there exists a b{¢) such that for n, b <b(¢), u € N the fol-
lowing inequality will hold:

i.e., under the mapping D%, N maps almost without dilation.

We shall show that b(e) has the desired property (the index n will be dropped
everywhere, since the argument is always carried out for n fixed). Suppose b <
b(e). From the definition of monogenicity, for ¢/3 there exists a & > 0 such

that
Blw = 0G| e

|
i |
Hr— Ra o | 3

if ““I-/“a} <O |py-u3| <8, uyq, y 3 € N. Then under the same con-
ditions
|2 lual =2 )

2e
i 4
. = (4)

-
~

in view of the choice of b (¢).

3. We decompose N into nonintersecting (of course, measurable) parts
NE U z‘L=1 N =N, the diameter of each of which is less than &, and suppose that
N'(b) are their images under the transformation D?. Since under this transformation
the distance between two points of N' cannot decrease, as follows from (4), by

more than 1 ~ 2¢/3 times, therefore

x 2e\ ;
s NV (D) S (1 TR ee VY
mes N (D) 2 <' 3 /mt.b.\ ,
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from which it follows that

L L
>\ mes N* (b) > <1 — 278) >\ mes N,
= Ci=1

i=1
Thus
- 2e
mes IV (b) > (1 — T) mes N,
and since
mes N >1— —‘; ,
we obtain

mesN(b)><1 — 31 - ) >,
and inequality (3) is proved. Inequality (2) follows from this, since the following
lemma is valid.

Lemma. Suppose that E C [0, 1] is a perfect set and that f, is a sequence
of continuous mappings of this set onto F, C[0, 1}, uniformly converging to the
mapping f: E — F, and suppose 0 <A< 1. If mes F, >1-A for all n, then
mes F >1 —A.

Proof. Suppose that ¢ > 0. We consider the set D ¢ of contiguous intervals
of F larger than ¢. There will be a finite number of them, and for a sufficiently
large n these intervals will be arbitrarily little different from the corresponding
contiguous intervals of F . The sum of the length of the latter for any n is less
than A, since mes F_ > 1 - A. Therefore the total length of D, does not exceed
A. In view of the arbitrariness of the choice of ¢ > 0, the measure of the entire
complement to F is also not larger than A, as was required to be proved.

Putting E =N, f, = D}, F, = D} (N), A = ¢, we obtain inequality (2) from (3).
Theorem 8 is proved.

§12. Example

We consider the two-dimensional space of mappings of the circumference onto

itself of the form

£ o=@ +a+tecosg="T,.(g). ®

’
i

i

)

T sz T . i T

iz 2 12 3 ]
Figure 8
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For ¢ = 0 we obtain Ta ¢» namely a rotation through the angle a. For |e] <1
?
formula (1) defines a direct one-to-one continuous mapping of the circumference

onto itself.

The level sets of the function
w(a, &) =p(Ta <)
continuous for |e| < 1 may be studied from two points of view. First, we may
seek those points (a, ¢) of the plane for which pu is rational; the boundaries of
such regions are given by the conditions of semistability of the cycle. For ex-
ample, the point (a, €) enters into the level set y = 0 if the equation
¢ =@¢+a-ecosg
has a real solution, i.e., the boundary of the region p =0 is the straight line
a= fe Inthe same way we find the regions y = m/n. They approach the line
€= 0 with ever narrowing tongues (Figure 8); two boundaries of the region u =m/n
have coatact of (n — 1)st order. For example, the regions g = 1/2 and p =1/3

have bounding curves

@ =t 40 (eY), (2)
a=2 Ve ble o). @)

Therefore one obtains approximate formulas, valid also for not very small e: for
€= 1 formula (2) gives 7 *0.25 instead of 7 £0,23237..-,

The second approach to the determination of the level sets y (a, €) consists
in using Newton’s method for the approximate determation of the curves of ir-
rational level p. After two steps of Newton’s method we obtain the following

approximate equation for the level lines:
¢ € et .3 H &t lo 2 1 | -2 v/
a = 2 - - elg - g el g clg 2 (1 el o), (4)

which works well when the cotangents are not large. Figure 9 gives an idea of
the character of the convergence of the

approximations and on the relation of # 7

YRS

this result to the preceding one. On this
drawing we have shown the graph of the 1
function p(a) = u(a, 1). We have de-
noted the zeroth approximation of New-
ton’s method by 0, the first by I, and
the second by II. The horizontal segments 7
for p=0,1/2,1/3 are determined inde- ) !
pendently in accordance with formulas

(2) and (3). For the number o given by Figure 9
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formula (4) the substitution of variables

. & sin(g—amp) | iz. sin (2 — )
V(O =93 sin nip " "4 sin sy sin 2np

converts the transformation (1) into the transformation

PP+ 2mu - Fy (§, &, p),
4

where F, ~ ¢

Remark. In the theory of oscillations the phenomenon of *'locking in’’ is well
known. This phenomenon corresponds to zones with rational rotation numbers.

Transformations of type (1) and diagrams of the type of Figure 8 describe a
certain regime of the work of a generator of relaxation oscillations, synchronized
by a sinusoidal impulse (see [25]). Another problem of a similar sort connected
also with the mappings of a circumference onto itself is considered in the book
[37] (pp. 221-231 of 2ud ed.).

$13. On trajectories on the torus”

13.1. Suppose that we are given on the torus x, y € [0, 27] a differential

equation
W Fley) (Flet 2k, y2nl) = F(z, 3) > 0)

dx
and that the usual conditions of existence and uniqueness theorems are satisfied.
Through each point y, of the meridian x = 0 there passes a trajectory
y(@ ) ¥ %) = Yo

Following Poincare, we make correspond to the point y, the point y (2w, o)
Then we obtain a mapping of the circumference x = 0 onto itself, direct, one-to-
one, continuous, and smooth or analytic for sufficiently smooth or analytic right
side. If now the function F(x, y) differs by little from a constant, then this map-
ping will be close to a rotation. All the properties of the transformation y, (yo)
reflect the corresponding properties of the solutions of equation (1), and we need
only formulate the results of the preceding sections in the new terms.

If the mapping y;(y,) is converted by the change of variables from y to ¢ (y)
into a rotation through the angle 27y, then this substitution may be extended in
a natural way to the whole torus if at the point (x, y(x, y,)) we set

¢ (. y) = @ (y,) + ne.

Evidently, if ¢(y) is a smooth, or analytic, substitution, then the substitution
¢ (x, y) on the whole torus will also be smooth or analytic. In the %, ¢ coordinates
the trajectories are written in the form

¢ = @ + p

*See (1] - (4], (14], [19] and [20].
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and one therefore says that a substitution of this kind straightens out, or rectifies,
the trajectories. An analytic rectification of trajectories was obtained by A. N.
Kolmogorov [14] in the case of the presence of an analytic integral invariant, On
the basis of Theorem 2 we may now assert that if the function F(x, y) is ana-
lytically close to a constant and if the rotation number p satisfies the usual
arithmetic conditions, then the trajectories may be analytically rectified. Thus it

follows that the dynamical system

-’% =F@.y, —F=1
has an analytic integral invariant with invariant measure equal to the area in the
%, ¢ coordinates.

On the other hand, in the same way as in the example of §1 one may comn-
struct an analytic function F(x, y) such that the invariant measure of the system
is not absolutely continuous relative to the area dxdy, although the rotation
number g is irrational and the system ergodic.

13.2. Suppose that on the torus we are given a system of differential equa-
tions

Ay, G=BEy (@p>0 B> 1)

with analytic right side. Consider the equation

dy B (z,_y\_

dz T Ay
which has the same integral curves as the system. If these may be rectified in
accordance with subsection 13.1, then in the new coordinates the system has the

form

l ’
2= A (2, @), qu% = pA’ (z, ¢),

where A' (%, ¢) = A(x, y(x, ¢)). This system has the analytic integral invariant
1/4' (x, ), and in the paper [14] it was shown, with the usual hypotheses on p,
how to convert it to the system

du an

R —_ 1
at ? dt !
bv an analytic substitution of variables.

The contrary possibility, both in the case of an equation and in the case of

a system, is the presence of limit cycles [20], The decomposition of the space

* Added in proof. The contrary assertion in the review [41], which appeared whilé
this paper was being printed, is mistaken.
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of right sides of the system ( 1) into level sets for the rotation number, the charac-
terization of rough systems and the consideration of the question as to the typi-
cality, are analogous to the considerations of §59-11. It results that

1. The case of nomal cycles (it is still rough) is topologically ptedominant:k
The corresponding set of right sides is open and everywhere dense; however, in
systems with an integral invariant this case cannot happen at all.

2. The ergodic case (the case of irrational p) is typical as well if one uses
measures in finite-dimensional spaces as the point of departure for judging typi-
cality. For systems with an analytic integral invariant this case is predominant.

In the multidimensional case, in the absence of an integral invariant, the
rotation number is not defined. Nevertheless, by making use of the remark of sub-
section 4.4, we may obtain the following assertion.

Theorem 9. Suppose that ﬁ: (n 1 I,) is a vector with noncommensurable
components such that for any integer k

L r Y[ > ﬁf‘n :

Then there exists an €(R, C, n) > 0 such that for any analytic vector field P_:(;)
on the torus, i.e., a field with _F)'(; + ZﬂZ) = ?7(5:’ )), which is sufficiently small,
'ﬁ(;H <e for |Im 2| <R, there exists a vector a for which the system of dif-
ferential equations

converts into

by an analytic change of variables.
§14. Dirichlet’s problem for the equation of the string

14.1. Suppose that D is a region on the plane, convex in the coordinate di-
rections; i.e., its boundary I' intersects each line x = ¢, ¥ = ¢ at not more than
two points.

The Dirichlet problem for the equation 0%u/3xdy = 0 on D consists in firding
on D a function u(x, y) = ¢(x) + ¢{y) which on U is transformed into a given
function f(a) (@ €T) : ujp=f.

Here one may impose various requirements of smoothness, analyticity and so

*In the paper [19], to judge from the review [21], it is asserted that a necessary and
sufficient condition for roughness is the presence of one stable cycle. This is not true.
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forth on f, &, Y, I'.

In the case when D is the rectangle 0<x+y <l,0<y-x<t, itis con-
venient to refer to the coordinates &= x + v, 7=y — x. Then our equation becomes
the equation of the string, and the problem may be interpreted as the problem of
finding the motion of the string with respect to two instantaneous photographs
and the motion of the ends. From physical considerations (standing waves) it is
clear that with commensurable ! and ¢ the problem is not always solvable, and if
it is solvable, not always uniquely. This problem has been the object of a series
of papers, e.g., [22], [23], [5], [24], [17], [28]. There are difficulties of an ana-
logous order in the solution of certain other problems, e.g., [25]-[27].

14.2. Uniqueness theorems (see [5]). We shall associate with the boundary
certain of its mappings onto itself (see Figure 10). Suppose that P is a trans~

formation carrying the point ¢ € I into
g the point Pa € I with the same coordinate

x, and that @ is a transformation car-

= e rying the point a € I" into the point
Qa € T" with the same coordinate 7.
These transformations are continuous,
one-to-one, and change the orientation of
a . \ the contour I'. We write QP = T. Evi-
X

dently

Figure 10 P*=Q*=L, PQ=T"
T is a direct homeomorphic mapping.

Theorem 10 (see |5)). If the contour I is such that for some point ay € I’
the set T"ay (n=0, 1, 2,++) is everywhere dense on I, then the Dirichlet
problem for I' cannot have more than one continuous solution.

Proof. The solution u(x, )’S = ¢ (x) + Y (y) defines functions ¢(x), ¥ (y) up
to a constant. We shall show that under the canditions of the theorems, knowing
$(x) at one point a € I' makes it possible to determine ¢(T"a), ¥ (T"a) atall
the points T"a (r =0, 1,-++) (we write ¢(a) and ¥ (a) for ¢(x), ¥(y), where
x, y are the coordinates of the point a € I).

Knowing ¢(a), it is easy to find

¥ (Pa) = / (Pa)— ¢ (a),
since the abscissae of a and Pa are the same. Then we may determine

¢(Ta) =  (T'a) — ¥ (Pa),
using the fact that the ordinates of the points Pa and Ta coincide. Further, in
the same way we obtain ¢, { at all the points T"Pga, T"a. They form a set

everywhere dense on I', so that continuous functions which coincide at these
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points of I' coincide everywhere. The theorem is proved.

In the case when D is the rectangle 0 <x+y <1, 0 <y~ x < ¢, the trans-
fomation T is, in particular, a rotation. Indeed, if we introduce on the contour
T" a parameter

2ot

0=
VZi+o

where a is the length measured along the contour from the point 0 to a (Figure
11), then our transformation

T . 2wt
R e

is a rotation through the angle 2mt/(¢ + I). If
D is an ellipse, then it is not difficult to in-
troduce on I' a parame ter such that in it the

transformation may be written as a rotation, 720 22010
Indeed, we map the ellipse affinely onto a
disk. The straight lines in the coordinate
directions go into two families of parallel

lines, while two lines of different families Z

form an angle of wp, in general not a right
angle. Evidently, when the ellipse is sub- Figure 11

jected to the transformation T, the circumference rotates by an angle 2mpu (Figure
10).

If ' is a curve of bounded curvature, then 7 is a twice differentiable trans-
formation, from which, by Denjoy’s theorem, we have the result that for an ir-
rational rotation number y the mapping T of the set T"a is everywhere dense on
I". Hence we have the following theorem.

Theotem 11 (see [5], [24]). If T" has bounded curvature and y is irrational,
then the Dirichlet problem can have only one continuous solution.

Remark. Using the theorem on points of density, it is easy to prove that under
the conditions of our theorem there can be only one measurable solution. On the
other hand, the method of proof of Theorem 10 makes it possible, for irrational g,
to construct as many solutions as desired, but, generally speaking, nonmeasurable
ones,

14.3. Detailed investigation of the rectangle.

Theorem 12 (see [23], [17]). Suppose that on the boundary T" of the rectangle
0<x+y<l,0<y—x<t, there is given a function f(0) which is (p +¢) times
differentiable along the boundary. Then for all p=t/(t+1)€ M, satisfying the in-
equality | ~m/n| > K/\n|3 for any m and n and some K >0, the Dirichlet
problem with the indicated boundary functions has a p — 1 times differentiable
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solution, and the problem relative to f{}) is correctly posed. In the case of
analyticity of f the solution for the same p is analogous.

For certain irrational p, even in spite of the analyticity of the function f(8),
the solution may turn out to be

1) only infinitely differentiable,

2) differentiable k, but not k + 1, times,

3) only continuous,

4) discontinuous,

5) rormeasurable.

Proof. If
F0) = X ane™®, @ (8) = O budn®, P (8) = D) cpein?,

n30 n+0 n}0

then, since ¢ () depends only on x, and ¢/(¥) only on y, we have
¢ =g (— 2“” A ﬁ): by = b_geirzan |
P (U) = (—9), Cn = C_n.
Since f(U) is real and therefore o = a_,, from the equation f(9) =
¢'(ﬁ) + ¢ (9) we find that

—in2m.
bn + Cn = Qyp, - bne -+ Cp = an,
or

A = ly

by = AR Cn == An — bn. (1)

Now, when the formal solution is found, the rest of the proof may be carried
out by an exact repetition* of the argument of §2.

Remark. It is clear from formula (1) that for all p it is possible, by truncating
the series, to construct an ‘‘approximate solution,”’ the degree of approximation
of which is greater in proportion as the commensurability of / and ¢ is less. For
rational p the approximation is not higher than the limit imposed by u, but for
strongly noncommensurable | and ¢ we have Theorem 11. This meaning of cor-

rectness with respect to a region was introduced by N. N. Vahanija in the papér [28].
We may assert that the dependence of the solution on p is monogenic (see .

14.4. General case. If the boundary of D is such that the transformation T

may be represented as a rotation in a parameter which is a smooth function of the

*Added in proof. In an article [421by P. P, Mosolov, published while the present
article was at the press, the statement analogous to that of Theorem 12 was proved for an
arbitrary linear differential equation with censtant coefficients in which all the deriva-
tives are of even order.
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wint on the boundary, then evidently for each such contour all the arguments of
subsection 14.3 are applicable, and in the case of a “‘sufficiently irrational p’*
he Dirichlet problem has a smooth solution .

As an example there is the ellipse, for which the parameter was constructed
n subsection 14.2. Now in the general case of irrational pu, in spite of the arbi-

rary degree of smoothness of I', one cannot guarantee the smoothness of the
rarameter in which the transformation T becomes a rotation, although by Denjoy’s

heorem such a parameter exists. F. John {5] showed that with a continuous

hange of variables %, y of the form x — u(x), y — v(y) (“'preserving the
quation 9%w/dxdy = 0°’) it is possible to map a region for which T has an ir-
ational p onto a rectangle or onto an ellipse with the same p. However this sub-
ttitution, generally speaking, is only continuous, and it may convert smooth
oundary conditions on the curve into nonsmooth boundary conditions on the ellipse.

We note that if 1" is an analytic curve, then P and @, and thus T and T7,
re analytic mappings. But if I' is also analytically close to an ellipse, then in
:n appropriate parameter the transformation will be analytically close to a rotation.
'herefore it follows from Theorem 2 that among the curves for which y € M, all
mrves sufficiently close to the ellipse are analogous to the ellipse in respect to
he solvability of the Dirichlet problem.

In exactly the same way one may formulate other problems on mappings of
he circumference in these terms. In particular, if the transformation T has a
'ycle, then the Dirichlet problem with zero boundary conditions has a nonzero
olution (at least piecewise constant; for more details see [24]).

The Dirichlet problem for the string equation is a problem on eigenvalues
or the two-dimensional Sobolev equation

Phe o
oz T oax?
see [24], [27], [29], [30]). The values of A which belong to the spectrum are
hose for which the mapping T, constructed for the curves F)\, has a cycle
here by I') we mean the curve I' subjected to a dilation depending on A).

From the results of $10 it follows that if the cycle is stable, then aH the
urves close to F)\ yield an analogous cycle, and accordingly the point A belongs
10 the spectrum, together with a neighbothood. An example of a curve I" gener-
ating a transformation with a stable cycle was constructed by R. A. Aleksandrjan
[24]. On the basis of §10 we may show that such curves may lie in any neighbor-
hood of any curve I,

The Dirichlet problem for the wave equation with given values on the el-

lipsoid was recently investigated by R. Dencev [32].
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